
WIM-based Modelling of Traffic Load 

Scenarios for Extreme Load Effects in Long-

span Bridges  
 

 

 

Doctoral thesis performed by: 

Xuejing Wang 

 

 

 

Directors: 

Prof. Dr. Joan Ramon Casas  

Prof. Dr. Xin Ruan  

 

 

Doctoral program: 

Construction Engineering 

 

Barcelona, Spain  

July, 2023 

 

 
 

  

D
o

ct
o

ra
lT

h
e

si
s 



  



 

 

 

 

PhD program in Construction Engineering  

 

 

WIM-based Modelling of traffic Load Scenarios 

for Extreme Load Effects in Long-span Bridges 

 

 

Doctoral thesis by: 

Xuejing Wang 

 

 

 

Thesis advisor: 

Joan Ramon Casas, Xin Ruan 

 

 

 

 

Department of Civil and Environmental Engineering 

Barcelona, July, 2023 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

  



Acknowledgments | Xuejing Wang 

V 

Acknowledgments 

Across the campus, spring is showing up as trees and flowers bloom. In this season of new 

beginnings, I've finished my PhD thesis. The journey started with worries and doubts, but they 

turned into a deep understanding of my topic. Every word written is a symbol of the hard work 

I've put in over the last few years, and the guidance I've received from many supervisors and 

friends. 

I want to first thank my supervisor, Prof. Joan Ramon Casas and Prof. Xin Ruan. They introduced 

me to the field of bridges and helped me with every step of my thesis. Their profound knowledge, 

exacting standards, and vast practical experience will serve as an enduring source of inspiration 

and learning in my future pursuits. I wish to express my earnest appreciation and respect to them 

both. 

Next, I want to thank Prof. Xiaoying Zhou from Southeast University and Dr. Junyong Zhou from 

Guangzhou University. Their help and guidance while writing my thesis was invaluable. Their 

excitement for exploring different fields and their deep love for engineering has inspired me. I'm 

truly grateful to them. 

During my time as a doctoral student, I have been the beneficiary of the nurturing environment 

provided by the doctoral office of the Universitat Politècnica de Catalunya, its pristine campus, 

and its conducive academic atmosphere. I wish to express my heartfelt gratitude and deep respect 

to the staff and students of the university. 

My gratitude also extends to my colleagues: Hang Su, Tian Peng, Zeren Jin, Yue Li, Yiping Mai, 

Jun Song, Yi Wei, and Xinying Zhao. Their help with my research and their dedication to learning 

have set a great example for me. 

I must acknowledge my husband, Dr. Mingyang Zhang, for his unwavering support, 

encouragement, and guidance in my academic endeavors. His presence in my life has been a 

beacon, dissipating the fog of uncertainty and doubt.  

Finally, I want to thank my parents for their love and support. They've been there for me when I 

needed them most. I hope finishing this thesis brings them as much happiness as they've given me. 

 

 

 



Abstract | Xuejing Wang 

VI 

Abstract 

The traffic live load is one of the most important variable actions for the design of new and the 

assessment of existing bridges. Due to the spatial and temporal high randomness and various 

weights of vehicle loading, there are massive loading scenarios during bridge operation. It is 

challenging to model all the actual values of traffic load on bridges in a deterministic way. 

Probabilistic concepts were widely employed to consider the numerous sources of uncertainty in 

the traffic model. Meanwhile, the measured traffic data captured by Weigh-in-Motion (WIM) 

technologies has been widely used in the traffic load simulation. 

The WIM data has made it possible to analyze the traffic load of a specific site. However, previous 

traffic load models have shortcomings when it comes to representing the complicated spatial 

distribution of traffic loads on the bridge deck quantitatively. The probability of the spatial 

distribution pattern of vehicles on long-span bridge decks provoking maximum load effect (LE) is 

vital for assessing bridge safety and also helps to understand the performance of bridges under 

vehicular loading.  

This Ph.D. thesis proposes a probabilistic model for vehicle scenarios leading to extreme load 

effects (LEs (maximum-response-per-day event)) for long-span bridges. Meanwhile, a Bayesian 

inference-based approach for its updating according to the actual traffic conditions was developed 

with the objective of taking into consideration the changing characteristic of traffic, both in density 

and weight of the heavy vehicles. This thesis mainly contains three aspects of research. 

Firstly, a probabilistic Gaussian mixture model for heavy vehicle scenarios on the bridge deck 

under free-flow condition is proposed for long-span bridges based on collected WIM data. A non-

stationary Poisson process is utilized to simulate the uneven occurrence of heavy vehicles in 

different lanes, and it is assumed that they are located within the artificially defined cells on the 

bridge deck. Then, Nataf transformation is employed to consider the correlation of gross vehicle 

weights (GVWs) within close range in the same lane. The Monte Carlo method is employed with 

the proposed probabilistic model for modeling complex spatial distributions of heavy vehicles. 

Secondly, due to the fact that the traffic conditions are affected by the surroundings and will 

typically vary and also unpredictably change during the lifetime of long-span bridges, the prior 

site-specific traffic load spatial distribution model and its updated posterior version considering 

actual traffic conditions via Bayesian inference are proposed. A Bayesian inference approach is 

developed for the updating of spatial load distribution in the extremes LE scenarios utilizing the 

particle filter (PF). The updated load profile and corresponding load intensity for different traffic 

states proposed in this thesis, can be the basis to define accurate traffic load models for long-span 

bridges. 
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Finally, the application of the proposed methodology to a real bridge is presented. The effects of 

correlation in GVWs and stationarity of vehicle distribution location on the structural responses 

are investigated and discussed. The load responses calculated by the proposed model and Monte 

Carlo method for different effects are compared with the values derived from the code model. The 

results show that with the increase of the correlation level of the neighboring GVWs, the simulated 

responses are more prone to get extreme values, which means an increasing probability of the most 

unfavorable spatial distribution of on-bridge vehicles. The same results are also found under the 

non-stationary simulation state for vehicle location. The non-stationary Poisson process provides 

an efficient, highly feasible method, which is also on the safe side, for simulating the vehicle spatial 

distribution for specific effects. Meanwhile, by employing the Bayesian inference approach for the 

updating of spatial load distribution, the traffic load response of long-span bridges in operation can 

be accurately estimated while considering the changes in traffic states. It shows the superior 

performance in describing complex spatial distribution updating problems for traffic load 

modeling.  

 

Keywords: Long-span bridges; Traffic load model; Extreme load effect; Heavy vehicle scenarios; 

Gross vehicle weight; Vehicle spatial distribution; Bayesian inference; Particle filter; 
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Resumen de la Tesis 

La sobrecarga de tráfico es una de las acciones variables más importantes en el diseño de puentes 

nuevos y la evaluación de los existentes. Debido a la enorme variabilidad tanto espacial como 

temporal y los distintos tipos y pesos de los vehículos, existen una infinidad de escenarios de carga 

de tráfico durante la etapa de servicio. Es inviable intentar modelizar todas las posibles 

combinaciones y escenarios de manera determinista. Por ello, los métodos probabilísticos se han 

utilizado ampliamente para poder considerar las numerosas incertidumbres presentes en un modelo 

de sobrecarga de tráfico. Por otro lado, información relativa al tráfico obtenida mediante técnicas 

de pesaje en movimiento (weigh-in-motion, WIM) se han utilizado también de manera profusa en 

la simulación de la acción del tráfico.  

La técnica WIM ha hecho posible el análisis de las acciones de tráfico en un entorno específico. 

Sin embargo, los modelos de tráfico existentes presentan problemas cuando se trata de modelizar 

la complicada distribución de las cargas de los vehículos en el puente de manera cuantitativa con 

el objetivo de obtener valores máximos de respuesta. La probabilidad de distribuciones espaciales 

de los vehículos dentro del tablero de un puente de gran luz, provocando un valor máximo de un 

determinado esfuerzo o deformación, resulta vital para calcular su seguridad estructural, a la vez 

que sirve de ayuda para comprender la respuesta de dichos puentes frente a la acción del tráfico.  

En la presente tesis doctoral se propone un modelo probabilista de distribución de vehículos en el 

tablero de un puente de gran luz que dan lugar a valores extremos de la respuesta en esfuerzos y 

flechas (máxima respuesta diaria). Por otra parte, se propone también utilizar inferencia Bayesiana 

para la actualización del mismo de acuerdo con las condiciones reales de tráfico de un determinado 

lugar con el objetivo de acomodar el modelo a las situaciones cambiantes del tráfico, tanto en 

volumen como en distribución de pesos de los vehículos pesados. Por ello, la tesis contiene 3 

aspectos principales: 

En primer lugar, se define un modelo probabilístico mixto Gaussiano para los escenarios de 

vehículos pesados en el tablero de puentes de gran luz en condiciones de tráfico fluído, basado en 

datos reales de tráfico obtenidos de WIM. Se propone un proceso estocástico de Poisson no 

estacionario para simular la no uniformidad en la distribución de vehículos pesados en distintos 

carriles y dentro del mismo carril, asumiendo que los mismos se sitúan en determinadas posiciones 

dentro del tablero. A continuación, se utiliza una transformación de Nataf para tener en cuenta la 

correlación de pesos de vehículos pesados (GVW) entre vehículos cercanos en el mismo carril. El 

modelo propuesto se combina con el método de Monte Carlo para simular las complejas 

distribuciones espaciales de los vehículos en el puente.  

En segundo lugar y dado que las condiciones actuales de tráfico en un puente en particular están 

afectadas por distintos factores y variarán durante la vida útil del puente, el modelo “a priori” de 
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distribución espacial de tráfico para el puente en concreto, así como el modelo actualizado “a 

posteriori” se obtienen mediante inferencia Bayesiana utilizando el método de filtro de partículas 

(PF). El modelo actualizado de distribución espacial del tráfico así como la intensidad de la carga 

propuestos en esta tesis son la base para desarrollar modelos de tráfico futuros más precisos para 

el caso particular de puentes de gran luz. 

Finalmente, se aplica la metodología propuesta al caso de un puente real. Los efectos de la 

correlación de pesos en los vehículos pesados, así como la estacionariedad o no de la distribución 

de dichos pesos dentro del tablero son estudiados. Los valores característicos de respuesta máxima 

para determinadas variables obtenidos mediante el modelo propuesto y la simulación de Monte 

Carlo se comparan con los que se prescriben tanto en el código de acciones en China como en 

Estados Unidos y Europa. Los resultados ponen de manifiesto que los valores máximos de 

respuesta aumentan con el incremento de la correlación entre pesos de vehículos pesados cercanos. 

Asimismo, se obtiene valores máximos superiores si se supone un proceso de tipo Poisson no 

estacionario para la distribución espacial de los vehículos pesados. Por ello, dicho proceso se 

considera como el más preciso, y del lado seguro, para la simulación de la distribución espacial de 

vehículos pesados. Por otro lado, a través de la inferencia Bayesiana para la actualización de dicha 

distribución espacial, se puede estimar de manera precisa la respuesta frente al tráfico teniendo en 

cuenta las variaciones en las características del mismo.  

Palabras clave: puentes de gran luz, modelo de sobrecarga de tráfico, respuesta máxima, vehículo 

pesado, distribución espacial de tráfico, inferencia Bayesiana, Filtro de partículas 
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CHAPTER 1 Introduction 

1.1 Motivation 

The structural performance and durability of long-span bridges are negatively impacted by external 

loads, environmental factors, and the degradation of materials over time. These issues lead to 

costly maintenance and performance improvement efforts for bridge structures (Chen et al., 2017). 

Statistical data reveals that 26% of the 610,000 bridges in service in the United States exhibit 

structural defects, costing $76 billion annually for maintenance and repair; Almost 50% of the 

1,000,000 bridges in the European Union have been in service for over 50 years, thereby 

demanding considerable annual financial commitments towards their maintenance; In Australia 

70% of the 26,000 bridges have been in service for more than 40 years, requiring significant 

maintenance investments totalling A$18 billion annually (Zhu, 2017). Over the past three decades, 

China has witnessed extensive bridge construction and become the country with the largest number 

of bridges in the world, reaching more than 1 million, leading to a progressive rise in operation 

and maintenance expenses. Improving the assessment accuracy of bridges is of great significance 

to reduce severe damage to bridge structures, preventing structural failures, extending service life, 

and optimizing management and maintenance costs.  

For the assessment and management of long-span bridges, vehicle load is a very crucial variable 

load because its substantial uncertainty and high load level can pose many challenges to structural 

safety. In recent years, researchers have conducted many studies around vehicle load models for 

long-span bridges, especially site-specific vehicle load models that directly affect the structural 

response of bridges. Soriano et al. (2017) found that one heavy truck, two trucks traveling side by 

side or following in the same lane will provide the largest response of multi-lane bridges with 

spans less than 60 m. Meanwhile, the research of Caprani et al. (2008) shows that it is not realistic 

to believe that two trucks events drive the design of short to medium-span bridges. Clearly four 

trucks events play an important role. However, long-span bridges have more diverse and 

complicated extreme response scenarios (Guo & Caprani, 2019; Hwang & Kim, 2019; Chen & 

Wu, 2011; Xu et al., 2012). Meanwhile, the changes in the temporal-spatial characteristics of 

traffic loads are not always reasonably considered in the design specifications due to the rapid 
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development of transportation industry. Several traditional traffic load models as stated in codes 

were primarily developed for bridges with small or medium spans (Ruan et al., 2017; Enright & 

O’Brien, 2013; Nowak et al., 2010). Based on the above consensus, researchers have developed 

simulations and modeling of site-specific traffic flows for long-span bridges, while many 

researchers found that the congestion state is the most critical factor affecting the structural effects 

of long-span bridges (Ruan et al., 2017; Lipari et al., 2017; Getachew & O’Brien, 2007; He et al., 

2022; Caprani, 2012; Guo & Caprani, 2019; Hwang & Kim, 2019). 

In summary, previous studies have confirmed that the traditional traffic load models derived for 

short and medium-span bridges are not applicable to site-specific traffic assessment of long-span 

bridges. Also, most of the current site-specific load models for long-span bridges have been 

devoted to simulating site-specific traffic flows, and a significant portion of the studies have 

focused on congested traffic flows. Few studies have been conducted on vehicular load extreme 

response scenarios of free flow on the bridge deck. Extreme response scenario refers to the on-

bridge deck vehicles distribution, which can induce extreme response values for structural effects. 

The reason for the focus on free-flow is that the author found that certain free-flowing traffic with 

low volumes and high vehicle weight levels (usually readily available at night) are equally 

important for the safety assessment of long-span bridges, but lack the attention they deserve. 

Therefore, it is essential to focus on the site-specific traffic load-based vehicular load scenarios on 

bridge deck that can induce extreme response values for structural effects for long-span bridges, 

and develop the extreme response scenarios of vehicular load for free-flow conditions to improve 

their performance assessment. Additionally, the rapid advancements in sensor and computer 

technologies have enabled accurate traffic data measurement, making precise estimation of bridge 

vehicle load responses a research priority (Leahy et al., 2015; O’Brien et al., 2015). 

1.2 Objectives 

Based on the identified gaps and problems in the existing models of traffic load for long-span 

bridges, as summarized in the previous section and fully presented in the state of the art (chapter2), 

the objective of this work is to propose a probabilistic model for extreme response scenarios of 

vehicular load on bridge deck in free-flow conditions for long-span bridges, then, construct a site-

specific traffic load model based on the simulation results of the probabilistic model, and the 
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updating method for this site-specific model is also proposed. The detailed objectives of this thesis 

are presented as follows: 

Objective 1: To develop a probabilistic load model for heavy-vehicle extreme response scenarios 

leading to extreme LEs on long-span bridges. To implement the proposed method to simulate 

vehicle scenarios corresponding to maximum-response-per-day events under free-flow traffic 

conditions. Ensure the applicability of the proposed scenario probabilistic model to long-span 

bridge assessment by focusing on free-flow traffic conditions. 

Objective 2: A site-specific traffic load model is proposed based on the simulation results of the 

probabilistic model in Objective 1. The model is effective in deriving the maximum LEs for long-

span bridges during the reference period when free-flow traffic conditions are considered. 

Objective 3: To develop a Bayesian inference approach for model updating, enabling the site-

specific traffic load model to adapt to changing traffic conditions and provide more accurate 

predictions of maximum LEs. 

The brief logic of the thesis is shown in Figure 1-1. 

 

Figure 1-1 The brief logic of the thesis. 
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1.3 Thesis organization 

Based on the proposed objectives and the corresponding methodology, this thesis is organized into 

eight chapters. Each chapter is thought to deal with particular topics related to the above objectives: 

state of the art, probabilistic model of traffic scenarios for extreme LEs in long-span bridges, 

application of extreme response scenario probabilistic model, validation and extended applications 

of the scenario probabilistic model, site-specific traffic load model of long-span bridges via 

Bayesian updating, and application of the site-specific traffic model and its Bayesian updating. 

The summary content of each chapter is as follows: 

Chapter 2 is the state of the art. Firstly, the development of the vehicle load measurement technique 

is presented. Secondly, the state of the knowledge of the traffic load modeling method is 

comprehensively reviewed, and site-specific traffic load model and its updating is illustrated. 

Lastly, the gaps are detected according to the relate literature review. 

Chapters 3 proposes a probabilistic model for vehicle distribution simulation of extreme response 

scenarios on the bridge deck, resulting in extreme LEs.  

In Chapter 4, the proposed extreme response scenario model is applied to a real bridge. The 

numerical study is carried out on a long-span cable-stayed bridge to investigate the effects of 

correlation in GVWs and stationarity of vehicle distribution location on the structural responses. 

The load responses calculated by the proposed model and Monte Carlo method for different effects 

are compared with the values derived from code model.  

In Chapter 5, the proposed extreme response scenario model is validated and applied to congested 

traffic flow to demonstrate the applicability of the model to congested traffic situations too, and to 

show that free flow and congested flow are of similar importance for the safety of long-span 

bridges. 

Chapter 6 presents a site-specific traffic load model to derive the maximum LEs within a reference 

period for long-span bridges based on the simulation results of the extreme response scenario 

model proposed in Chapter 3. Then, Chapter 6 develops a Bayesian inference-based approach for 

the updating of the site-specific traffic load model according to the actual traffic conditions. 
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In Chapter 7, the proposed site-specific load model and its updating method are applied to a real 

bridge. The updated load profile and corresponding load intensity for different traffic states can be 

used as a reference for accurate traffic load assessment of long-span bridges under free-flow traffic. 

Finally, in Chapter 8, the conclusions are given based on the above chapter analysis. In addition, 

the future research works are presented. 
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CHAPTER 2 State of the art  

2.1 Vehicle load measurement 

Advancements in measurement technology have facilitated real-time monitoring and early 

warning systems for bridge condition assessment. Historically, vehicle load and information 

measurements were acquired through rudimentary observation techniques. Manual observation 

methods were employed to gather traffic flow data, such as traffic volume and composition for 

specific road sections, while integral scales provided overall vehicle weight information (Cheng 

et al., 2006). However, these approaches were labor-intensive and failed to capture details such as 

axle weight and vehicle speed. 

The subsequent evolution of static weighing technology enabled the measurement of vehicle 

information, including axle weight, vehicle weight, and wheelbase. Despite providing accurate 

data, static load-bearing methods necessitated stationary vehicles on weighing platforms, resulting 

in inefficiency and potential traffic congestion on busy road sections. Moreover, the large scale of 

static weighing platforms often led to overloaded vehicles taking alternate routes or unloading 

prior to inspection, compromising the authenticity of the acquired vehicle data. 

Contemporary dynamic weighing methods have emerged, offering varying degrees of accuracy 

and application scopes, contingent upon the type and precision of the sensors employed (Jiang et 

al., 2011; Yang et al., 2006). In China, curved plate and weighing platform-based dynamic 

weighing systems rely on the principle that as a vehicle axle traverses the weighing platform, the 

resistance strain gauges within the platform's sensors form multiple sets of bridges that lose 

balance, generating an instantaneous unbalanced output signal. Analog-to-digital converters 

transform the signal into electrical signals, which are then processed to identify axle weight and 

axle distance information. These dynamic weighing systems also have some minor drawbacks 

such as: the quartz dynamic weighing system addresses these limitations by directly generating 

electrical signals under sensor pressure as a result of axle action, with signal amplification yielding 

axle weight and additional information. 
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The aforementioned dynamic weighing system is extensively employed in contemporary domestic 

highway weighing and charging systems. It is characterized by limitations on vehicle speed, 

extended operational life, and data accuracy suitable for charging systems. In this dynamic 

weighing system, vehicles traverse the weighing platform at a specific speed, resulting in a brief 

tire interaction time with the platform. The force exerted on the platform stems not only from the 

actual axle weight but also from numerous interfering factors, such as vehicle speed, vibration, 

and road surface irregularities.  

The rapid development of modern sensing systems, including piezoelectric and fiber optic sensors, 

has facilitated their integration into dynamic weighing systems. This has enabled the accurate 

measurement of axle weight, wheelbase, vehicle weight, vehicle speed, as well as various traffic 

and vehicle information, such as vehicle spacing and time intervals, without impacting vehicle 

operation. This system, known as the Weigh in Motion (WIM) system, can measure vehicle and 

traffic flow data more precisely under high-speed vehicle operation conditions. The utilization of 

piezoelectric sensors offers a high signal-to-noise ratio, extended service life, and excellent impact 

resistance. Although road surface leveling and other factors may affect the measurement accuracy, 

the precision of the acquired data is sufficient for vehicle load response research in the field of 

dynamic vehicle weighing. 

In 1992, the European Federation of Highway Systems Research Laboratories initiated the 

COST323 program in accordance with the European Commission for Transport procedural 

framework. Focusing on dynamic load monitoring of vehicles in motion, the primary objective of 

the program was to study, improve, and promote WIM technology. By 1998, 19 countries had 

joined the COST323 organization, and the accuracy of WIM data had improved significantly. Due 

to its ability to capture comprehensive traffic flow and vehicle load data, WIM technology is highly 

valued in load and load response research. Scholars have explored wheel weight signal detection, 

noise removal, and wheel weight value identification techniques to enhance the WIM system's 

measurement accuracy. Additionally, studies have investigated the installation of WIM systems 

on highway sections to enable comprehensive vehicle information monitoring systems, supporting 

overload management and extreme vehicle traffic congestion prediction. Research has also been 

conducted to calculate the damage state of bridges and highway pavements using measured WIM 
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data, predict the structures' remaining lifespan, and develop reinforcement management and 

maintenance strategy (Enright et al., 2013; Xia et al., 2014). 

Although WIM technology can obtain accurate vehicle information due to efficient sensing 

systems, installing WIM systems on all highway sections is cost-prohibitive and impractical, and 

the equipment's durability for field use is limited. Bridge weigh in motion (BWIM) is a dynamic 

weighing system that measures a bridge's structural response under vehicle loading, using strain 

data to solve for vehicle axle weights and other information as an inverse problem. Moses (1979) 

first proposed the BWIM technique, which employed strain gauges to measure the strain history 

of a vehicle at the measurement point as it passed over a bridge. In conjunction with axle detection 

devices installed on the road, this method recorded the number of axles and vehicle speed to 

reconstruct complete vehicle information. 

The BWIM technique first obtains the strain time course at the measurement point by calibrating 

the structural impact line using a standard vehicle passing over the bridge. The strain response 

time course under any traffic condition is then obtained based on this information, and the number 

of vehicles, vehicle type, and vehicle weight are inferred using certain principles and algorithms 

(Hitchcock et al., 2012; Chen et al., 2009; Wang et al., 2013). The BWIM technique offers several 

advantages over the WIM method: 1) high weighing accuracy for gross weight, but not as good 

performance as WIM for axle weight measurement; 2) vehicles can pass freely, with minimal 

impact from travel speed on measurement results; 3) no interference with traffic or road surfaces, 

and no need for traffic restrictions on the bridge deck during installation (require traffic restrictions 

on the roads underneath the bridge). However, BWIM technology also faces certain challenges, 

such as: the measurement data is significantly affected by the signal-to-noise ratio of the equipment. 

Both WIM and BWIM technologies are unable to precisely determine the specific distribution of 

vehicles on a bridge or highway. Dynamic image recognition technology can process and analyze 

dynamic images captured from highway videos to identify the exact location and model of a 

vehicle, including parameters such as the number of axles, wheelbase, vehicle length, distance, 

license plate number, and others. By utilizing static vehicle data from toll stations and simulating 

the distribution of vehicle weight and axle weight, complete vehicle load and traffic flow 

information can be obtained. Currently, image recognition technology is in its early stages within 

the field of vehicle load research. Studies (Yu 2021; Bai 2021; Chen et al. 2013) have explored 
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violation vehicle monitoring, license plate information recognition, and vehicle identification on 

Sutong Bridge using image recognition technology, providing a foundation for its application in 

vehicle research. 

WIM, BWIM, and image recognition are the primary methods for measuring vehicle and traffic 

loads. These technologies not only serve as data sources for traffic engineering management, 

vehicle overload control, bridge and highway pavement structure damage analysis, and lifespan 

prediction, but also contribute to the development of intelligent highway monitoring systems. 

2.2 Traffic load modeling 

The traffic live load is one of the most important variable actions for the assessment of existing 

bridges. Due to the spatial and temporal high randomness and various combinations of vehicle 

loads, there are massive loading scenarios during bridge operation. Therefore, it is challenging to 

model all of the actual values of traffic load on bridges in a deterministic way. Probabilistic 

concepts were widely employed to consider the numerous sources of uncertainty in the traffic 

model. In the literature on traffic load simulation, the measured traffic data which is usually 

captured by WIM technologies, has been widely used. WIM is a technology that can capture the 

free-flow traffic characteristics of a vehicle sequence without interfering with the traffic operation 

(Hallenbeck & Weinblatt 2004). The WIM data has made it possible to analyze the traffic load of 

a specific site (Chen et al. 2018; Getachew & O’Brien 2007; Leahy et al. 2015; O’Brien et al. 2015; 

Ruan et al. 2017; Anitori, Casas & Ghosn 2017; 2018). Monte Carlo method, as a common 

simulation method, is able to utilize the probability parameters deduced from WIM records and 

generate massive traffic scenarios, including vehicle combinations that were not recorded 

throughout the duration of measurement (Ruan et al. 2017; Enright & O’Brien 2013). 

The changes in the temporal-spatial characteristics of traffic loads are not always reasonably 

considered in the design specifications due to the rapid development of transportation industry. 

Several traditional traffic load models as stated in codes were primarily developed for bridges with 

small or medium spans (Ruan et al. 2017; Enright & O’Brien 2013; Nowak, Lutomirska & Sheikh 

Ibrahim 2010). The codes include D60 (Ministry of Communications and Transportation 

[MOCAT], 2015), American Association of State Highway and Transportation Officials 

(AASHTO 2004), BS5400 (BSI, 2006), and Eurocode (EN, 2003). It should be noted that 
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AASHTO has extended the validity of the design live load, and the load model HL-93 is now used 

for all span lengths (Nowak, Lutomirska & Sheikh Ibrahim 2010). Nevertheless, the extension 

does not mean it is an accurate reflection of the actual traffic loading. The traffic load model for 

small and medium-span bridges may not be appropriate to be directly used for long-span bridges, 

or at least needs to be periodically updated based on current traffic before being applied to long-

span bridges. For example, the Eurocode provides a set of comprehensive methods for traffic load 

representation on bridges with loaded length not exceeding 200 m (although it has been applied to 

several longer bridges, it is extremely conservative). 

Therefore, numerous studies have been already devoted to the study of traffic LEs for long-span 

bridges and evaluating the applicability of traffic models in current codes to these bridges. Because 

the corresponding dominating traffic distribution scenarios are notably distinct, the responses to 

traffic load of bridges with long-loaded length are different from those with medium or small-

loaded length (Caprani 2013; O’Brien 2012; Caprani, O’Brien & McLachlan 2008; Chen & Cai 

2007). The traffic load of long-span bridges is governed by high-volume traffic or congestion. 

Because the span is long and there are numerous vehicles on several lanes, the influence of groups 

of trucks (platooning) is important for the structural assessment of long-span bridges (Chen & Wu 

2011; Xu, Chen & Xia 2012). Due to the characteristic of influence lines of short and medium-

span bridges, the maximum response of multi-lane bridges with short and medium-span is 

determined by several close traveling heavy trucks (Soriano, Casas & Ghosn 2017; Caprani et al. 

2008). Comparatively, long-span bridges have more diverse and complicated extreme response 

scenarios. 

Based on the long-term WIM data and congestion situation, Hwang and Kim, 2019 proposed a 

multi-lane load model for long-span bridges and found that the LE by the proposed congested 

model shows comparable values to AASHTO LRFD or Honshu-Shikoku bridge design code. Guo 

& Caprani (2019) focused on load patterning on long-span bridges and proposed a rational and 

practical load patterning method based on both congested and free-flow traffic. They suggested 

that the design model for long-span bridges can be obtained by reducing traffic load levels 

currently specified in the codes. Meanwhile, the cellular automaton (CA) method was a widely 

used tool to simulate the traffic flow (Ruan et al. 2017). With the aid of the CA method, complex 
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movements of vehicles, such as speed changes, lane changes, etc. (Ruan et al. 2017) can be 

simulated, and the generated long-term LEs can be utilized in the structural assessment.  

2.3 Site-specific traffic load model and its updating 

Bridge structures are subjected to various loads during the long-term service period such as dead, 

traffic, wind, and earthquake loads. Particular attention was devoted to traffic loads owing to the 

bridges suffering from them every day, not like winds or earthquakes. Traffic loads involve 

considerable uncertainties and variability. The main source of uncertainty are the traffic conditions 

(i.e., site-specific traffic) at the bridge location (Kim & Song 2019; Roberts & Shepard 2000). 

Therefore, it is necessary to consider the site-specific traffic conditions of the bridge when 

evaluating the traffic LEs, especially for long-span bridges, for which the effect is greatly affected 

by groups of trucks rather than by several heavy vehicles as it happens in short and medium-span 

bridges (Ruan et al. 2017; Caprani, O’Brien & McLachlan 2008; Caprani 2013; Chen & Wu 2011; 

O’Brien, Hayrapetova & Walsh 2012; Soriano, Casas & Ghosn 2017; Xu, Chen & Xia 2012). 

For a site-specific traffic load model considering extreme scenarios, the traffic parameters are 

time-varying. Updating the model according to the actual traffic parameters is crucial. The 

Bayesian inference technique offers a possibility to reduce the uncertainty in parameter estimation 

and prediction. Updating methodology can be employed within the Bayesian framework. The 

posterior probability distributions are acquired by integrating the existing information represented 

by a prior probabilistic model with newly observed data. Recently, Kim and Song (2021) 

developed a Bayesian inference methodology to update the probabilistic model parameters of 

bridge traffic loads given new observed data concerning the traffic environment, which allowed a 

more reasonable and accurate estimation of traffic parameters and LEs. Although used in many 

engineering applications (Pang et al. 2021; Kelly & Smith 2009), the applications of Bayesian 

method in the prediction of bridge extreme traffic LEs are still scarce and most of the cases are 

only used to update the response extremes for traffic loads, neglecting to update the scenarios for 

the spatial distribution of heavy vehicles on the bridge deck. In research using simulated traffic 

LEs, O’Brien et al. (2015) used the Bayesian method and found that its prediction capabilities 

varied depending on the type of LEs. Leahy et al. (2015) evaluated the site-specific LEs of bridges 

using the Bayesian method with GVW information collected from 19 sites as prior data. Yu & Cai 

(2019) and Yu et al. (2019) developed a Bayesian approach to predict the traffic LEs with fast 
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updates using the observed strain response. The changes in the traffic environment of a long-span 

bridge over its lifetime also require developing a model capable of estimating the site-specific 

traffic loads. 

2.4 Identifying gaps in the existing research 

The existing research on the limitations of operating costs and equipment durability of the WIM 

system necessitates the development of a simulation process for traffic flow. This process should 

be based on data obtained from the WIM system during a specific time period and should be 

capable of determining the extreme load response and corresponding traffic scenarios, such as the 

most critical maximum-per-day event, that may occur during a required return period (Ruan et al. 

2017). Notwithstanding, the majority of previous studies primarily focus on the extreme LEs of 

long-span bridges, with insufficient attention given to the characteristics of the spatial distribution 

of vehicles when extreme responses are obtained. 

Also, previous traffic load models exhibit limitations in accurately representing the complex 

spatial distribution of traffic loads on bridge decks. The probability of spatial distribution patterns 

of vehicles on long-span bridge decks, which can provoke maximum LEs, is important for 

assessing bridge safety and understanding their performance under vehicle loads (Chen et al. 2019). 

During operational periods, the formation of platoons, or groups of heavy vehicles, may pose 

significant risks to the safety of long-span bridges. The proportion of heavy vehicles in traffic flow 

has a more substantial impact on the structural effect than the traffic flow itself (Lipari, Caprani & 

O’Brien 2017). Moreover, diverse spatial patterns of vehicle distribution yield varying LEs, 

depending on the influence line/surface of the effect in question. Concurrently, traditional 

simulation methods have concentrated more on traffic flow or congestion sequences simulation 

rather than directly modelling the spatial distribution of vehicles on the bridge deck when extreme 

values are obtained, rendering them inefficient and costly, particularly when computing extreme 

responses over extended reference periods. 

The focus on traffic flow or congestion sequences simulation, while disregarding the 

characteristics of the spatial distribution of vehicles that may lead to extreme response values 

(especially for free flow traffic), renders traditional simulation methods both inefficient and costly 

in terms of computational effort required for obtaining extreme responses over long reference time 
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periods. In light of the limitations of conventional vehicle load models in spatial distribution 

modeling, Chen et al. (2019) proposed a probabilistic approach for modeling the spatial 

distribution of heavy vehicles on long-span bridges using an undirected graphical method. The 

authors noted that exploring all potential spatial arrangements of vehicles on bridge decks could 

result in a combinatorial explosion, making it challenging to compute the empirical probability of 

each possible spatial vehicle distribution pattern. This highlights the need for research on vehicle 

spatial distribution modeling and the development of efficient computational inference algorithms. 

Nevertheless, the proposed method by Chen et al. (2019) predominantly simulates standard vehicle 

spatial distribution scenarios, paying scant attention to maximum-response-per-day events, which 

hold significant implications for structural performance evaluation. 

In this thesis, a probabilistic model for vehicle scenarios leading to extreme LEs (maximum-

response-per-day event) for long-span bridges is proposed. The definition of these vehicle 

scenarios is the vehicle spatial distribution at the moment when the maximum effect is obtained. 

For the simulation of vehicle location on the bridge deck, the stationary and non-stationary Poisson 

process is introduced for both outer lanes and inner lanes. With the non-stationary process, the 

uneven spatial distribution of the vehicle loads on bridge deck can be simulated. The proposed 

method is able to take into consideration multiple lanes and complex spatial distribution of vehicle 

scenarios corresponding to maximum-response-per-day event under free-flow traffic. While 

congestion scenarios are indeed critical to the safety of long-span bridges, as demonstrated later in 

the thesis, the author has found that free flow can also threaten the safety of this type of bridges in 

specific scenarios and is of equal research value. For each day, a full day traffic data is passed 

through the influence line to identify the loading event that is critical for the corresponding LE. 

The vehicle distribution on the lane corresponding to the maximum response among the samples 

of 86400 seconds in one day is selected as one sample for the proposed model. Regarding the 

efficiency of the proposed method, which must be considered in the modeling process of the new 

model, the benefit is evident. In fact, the total time of the traditional method to obtain one-week 

six-lane traffic flow is about 0.7 to 1 hour (Ruan et al. 2017). With the one-week traffic flow, seven 

extreme LEs traffic scenarios can be obtained. Comparatively, applying the proposed method, it 

takes less than one second to simulate seven sets of traffic scenarios of maximum-response-per-

day event. Meanwhile, this thesis develops a site-specific traffic load model based on the 

simulation results of the probabilistic model of extreme response scenarios. Then, a Bayesian 
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inference-based approach for the updating of the site-specific traffic model according to the actual 

traffic conditions. The two proposed models are demonstrated under free-flow traffic conditions, 

which are also critical to long-span bridge assessment. 
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CHAPTER 3 Probabilistic model of traffic scenarios for 

extreme LEs in long-span bridges 

3.1 Introduction 

The importance and benefits of using a site-specific load model for assessing existing bridges and 

designing new bridges have been widely recognized (Ruan et al. 2017; Anitori, Casas & Ghosn 

2018; Enright, Carey & Caprani 2013). This is because site-specific traffic loads provide critical 

information for bridge maintenance and design, as the behaviors of bridge components under such 

traffic can be better understood (Frangopol & Liu 2007; Gao et al. 2022). However, despite the 

significant uncertainties associated with traffic loads and the fact that they can vary depending on 

site-specific traffic conditions, the design code and maintenance strategies for long-span bridges 

do not currently take into account the actual traffic conditions and uncertainties (Kim & Song 

2019). Therefore, it is essential to develop a probabilistic traffic model that can accurately reflect 

the actual traffic environments of long-span bridges. In this chapter, a probabilistic model of 

extreme response scenario that can express the characteristics of site-specific traffic flow for long-

span bridge is developed. The probabilistic model of extreme response scenario is a model that 

can simulate the distribution of heavy vehicles on the bridge deck when the extreme response is 

obtained. In the following, without specific claim, scenario refers to extreme response scenario 

which can be simulated by the proposed model.  

3.2 Model of heavy vehicle distribution 

To develop a model for scenarios of extreme LE, it is necessary to develop a spatial distribution 

model of heavy vehicles on the bridge deck. There are two key issues associated with heavy 

vehicles to be resolved: the first is their locations on the deck, and the second is their weights. In 

this paper, the bridge deck is divided into n × m cells according to the lane and specific constant 

cell length, 𝑑𝑙, wherein m means the number of cells along the longitudinal direction of the bridge 

and n is the number of lanes. 𝑑𝑙 is determined according to the statistical data of the length of 

heavy vehicles. According to Chen et al. (2019), the average length of large vehicles is 15.13 m. 
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Based on the measured WIM data, the total wheelbase (i.e., the distance from the first axle to the 

last axle) of the multi-axle vehicle shows a peak value of 17.5 m. Considering the influences of 

the front and rear overhang of the vehicle, and the distance between the vehicles while driving, the 

length of the cell should be slightly longer than the wheelbase. Therefore, the length of the cells is 

taken as 20 m as shown in Figure 3-1 (b). The shaded part shown in Figure 3-1 (b) represent one 

cell. When the loaded length of the bridge is 𝐿 as shown in Figure 3-1 (a), its longitudinal cell 

number m satisfies Equation (3-1). 

𝐿 < 𝑚 ∗ 𝑑𝑙 ≤ 𝐿 + 𝑑𝑙 (3-1) 

For the convenience of modeling, the influence of light vehicles on loading effect is ignored (which 

means removing all light vehicles, the removal is applied to the calculation of the response and 

also to the simulation of the spatial position); and the centroid of heavy vehicles is moved (i.e., the 

loading location of each heavy vehicle is moved from the original position to the closest cell center 

in the same lane). The simplified process is illustrated in Figure 3-1. Meanwhile, it is assumed that 

only one heavy vehicle can be accommodated in one cell. If there are two heavy vehicles 

distributed in the same cell, the vehicle with the farther centroid can be moved to the adjacent cell. 

Referring to the concepts of CA, each cell of a lane has two states: either empty or occupied by a 

heavy vehicle (Ruan et al. 2017). With a large amount of observation data, the state of each cell 

becomes random. Considering the presence of a vehicle in the cell as an event, the cell states can 

be regarded as the occurrence or non-occurrence of events in a random process. Then the event 

can be described as a binary random variable as shown in Equation (3-2). The value 0 means the 

cell is empty, and 1 means the cell is occupied by one heavy vehicle. 

Λ𝑖,𝑗  =  1 (𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑) 𝑜𝑟 0 (𝑒𝑚𝑝𝑡𝑦),      𝑖 =  1,2,⋯ ,𝑚      𝑗 =  1, 2,⋯ , 𝑛 (3-2) 

where i and j represent the i-th cell in lane j, as shown in Figure 3-1 (c). The presence or absence 

of vehicles in the cells is defined as a binary random variable. The state of cells on the n-th lane is 

described as the random vector as shown in Equation (3-3), also shown in the dotted box in Figure 

3-1 (c): 

𝚲 =  (Λ1, Λ2,⋯ , Λ𝑚) (3-3) 
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For instance, the location of heavy vehicles on the n-th lane in the extreme response scenarios can 

be described by a Poisson process, as Equation (3-4), according to Figure 3-1 (c). 

𝚲 =  (0,0,1, …… ,1) (3-4) 

 

(a) 

 

(b) 

 

(c) 

Figure 3-1 (a) Vehicle distribution of scenarios of extreme LE; (b) Heavy vehicle distribution 
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with cell structure of scenarios of extreme LE model; (c) Cell numbering and 

mathematical representation. 

Then, multiplying corresponding elements of this location vector and the GVW vector simulated 

by Gaussian mixture model (GMM) and Nataf method, the scenarios of heavy vehicles in the 

bridge can be modeled probabilistically as shown in Figure 3-2. 

 

Figure 3-2 Modelling process of extreme response scenario. 

3.3 Description of scenarios of extreme LE based on WIM Data 

The WIM data used in this study was collected during 423 days in 2014 to 2015 from a six-lane 

highway located in Zhejiang Province, China. This highway is a principal pass way connecting 

Hangzhou Bay and the surrounding cities and has been in service for over 10 years. Traffic data 

from six unidirectional lanes were measured. The accuracy and filtration criteria on raw data are 

shown in Table 3-1 (Ruan et al. 2017). After filtration, the daily traffic volume is approximately 

16,500-50,000, which is representative of multi-lane traffic level in China. Data containing 

11,055,095 vehicles with 28,034,398 axles, both cars and trucks, were collected. The WIM data 

can represent free-flow traffic state after analysis, and this consistent 423-day WIM data were used 

as the basis for building the proposed scenario model and also the basis for simulating data used 

for validation. 

 

dl=20 m

 = (     0,           1,           1,           0,           0,          1,            0,           1,          0      )

 = (      ,          ,          ,          ,          ,        ,           ,          ,        𝑖 )

         = (     0,            ,          ,         0,           0,          ,          0,           ,         0 )
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Table 3-1 Accuracy and filtration criteria of WIM data. 

Ordinal 1 2 3 4 5 6 7 

Item Arrival 

time 

Axle 

number 

Lane number Velocity GVW Axle 

weight 

Axle 

spacing 

Accuracy 0.1 s Positive 

integer 

Positive 

integer 

0.1 km/h 0.01 t 0.01 t 0.01 m 

Filtration 

criteria 

/ {2,3,4,5,6} {1,2,3,4,5,6} ≥10 km/h ≥0.5 t & 

≤200 t 

≥0.1 t & 

≤80 t 

≥0.6 m & 

≤20 m 

Note Vehicles with axle number more than 6 are no more than 0.17%.  

Velocity below 10 km/h cannot be measured correctly by the WIM system. 

GVW below 0.5 t is not correct, and that more than 200 t generally no exists.  

Axle weight below 0.1 t is not correct, and that more than 80 t generally no exists. 

Axle spacing should be larger than lowest tyre diameter e.g., 0.6 m, and axle spacing more 

than 20 m in trailer generally no exists. 

Ordinals 1-7 are essential for the construction of vehicle sequences. 

Axle number = number of axle weight 

Axle number = number of axle spacing + 1 

GVW = sum of all axle weights 

 

To simulate the passing of vehicle sequences from WIM data collected in a road section through 

a certain bridge length requires some assumptions. One is to assume that the monitoring station is 

set at a certain distance from one side of the bridge in such a way that the obtained WIM data is 

also valid for the bridge; the second is to assure that the vehicles maintain their velocities when 

crossing the bridge. As the proposed extreme response scenario model is a spatial model rather 

than a temporal model, the constant vehicle speed of the WIM data is assumed only to obtain static 

samples of the extreme response scenario under free-flow conditions, without considering rules 

such as overtaking and lane changing of the traffic flow. Then, according to the arriving time and 

velocity of a certain vehicle and also the location of the monitoring station (the location recording 

the arriving time of the vehicle), the time history of the vehicle when passing the bridge can be 

obtained.  

With the aid of the influence surface/line method, the LEs of long-span bridges can be calculated 

from data collected by WIM system. In this paper, the structural effects are calculated every second 

for 423 consecutive days. The maximum load response can be fitted by GEV distribution according 

to the extreme value theory. The block maximum approach, which divides a long series of data 

sets into blocks, can be used to determine the GEV parameters (Kim & Song, 2019). Then, using 

the set of maximum data, the highest value from each block may be used to estimate the parameters 

of the GEV distribution (Gnedenko, 2017). The maximum data of traffic field for each hour, day, 
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week, and year was utilized in several research to match the GEV distribution (O'Brien et al., 2015). 

In this thesis, the block size is chosen as 1-day, daily differences in scenarios caused by parameters 

such as traffic flow are ignored. Since the traffic characteristics evolve from year to year, a 

Bayesian approach needs to be introduced to update the extreme response scenario based site-

specific traffic model, so the yearly maximum value cannot be selected as the block size. The 

maximum response among the samples of 86400 seconds in every day is selected as one sample 

for the proposed model. Within one second, the total vehicle number and vehicle weight on the 

bridge deck will not change significantly. Also, the considered parameters of the proposed 

probabilistic model are the number of heavy vehicles on the lane and the GVWs on the lane, which 

will only change very slightly in a second. In Zhou’s research (Zhou, 2018), it was assumed based 

on the findings of a related study (Davis 2003), that the driving reaction time is no shorter than 1 

s and that the relevant driving mechanisms become complicated when it exceeds 1 s. Therefore, 1 

s was chosen as the time step in this thesis for calculating the response, according to Zhou’s 

research. One vehicle scenarios example of extreme LE of the axial force of the longest cable 

(AFC, Effect 1) is illustrated in Figure 3-3. The following figures and tables without special 

remarks are the results of Effect 1. The total scenarios of extreme LE consist of 423 samples. 

 

Figure 3-3 A sample of vehicle scenario of extreme LE. 

Figure 3-4 (a) displays the differences between the distribution functions in inner lanes and outer 

lanes of the statistical results of cells occupied by heavy vehicles on the probability paper. The 

outer lane is defined as the outermost lane in each direction. Both the leftmost and rightmost lanes 

Cells
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of a road are outer lanes. The remaining lanes are defined as the inner lanes. For example, for a 6-

lane road, lanes 1 and 6 are the outer lanes and lanes 2 to 5 are the inner lanes. Figure 3-4 (b) and 

(c) show the statistical results of cells occupied by heavy vehicles per lane for scenarios of extreme 

LE, which is the database of the following Poisson simulation. There are significant differences in 

occupied cells over the outer lanes (i.e., slow lane) and inner lanes (i.e., fast lane), which is 

consistent with vehicle driving habits. The average number of occupied cells along the whole 

loaded length is 1.9356 for inner lanes, and 4.6537 for outer lanes. The average number of cells 

occupied by heavy trucks in the inner lane is much smaller than for the outer lane, because the 

heavy vehicles over 10 tonnes prefer to drive on the outer lane. Since the bridge has six lanes, the 

average total number of cells occupied by heavy vehicles on the whole bridge deck under extreme 

response scenario may up to 1.9356×4 + 4.6537×2 = 17.0498. Due to the significant statistical 

differences in the distribution of heavy vehicles between lanes, it is necessary to model the 

different lanes separately.  

 

(a)                                                                       (b) 
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(c) 

Figure 3-4 Statistics of cells occupied by heavy vehicles in (a) normal probability paper; (b) 

inner lanes; (c) outer lanes. 

Figure 3-5 (a) displays the differences between the distribution functions in inner lanes and outer 

lanes of the GVWs on the probability paper. Figure 3-5 (b) and (c) show the histogram and fitting 

of the GVWs for inner and outer lanes. It can be seen that the observed GVW in the scenarios of 

extreme LE for heavy vehicle follows a typical multimodal distribution. Meanwhile, there is not 

significant differences in GVW between inner and outer lanes. 

 

(a)                                                                    (b) 
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(c) 

Figure 3-5 Sample data and Modelling of GVW in (a) normal probability paper; (b) inner lanes; 

(c) outer lanes. 

3.4 Modeling of vehicle location distribution by Poisson process 

A number of random process models have been used for modeling serial vehicle location or vehicle 

load, such as filtered compound Weibull process and filtered compound Poisson process (Guo, Li 

& Zhao 2016). In this paper, a suitable probabilistic distribution needs to be chosen to fit the 

occupancy state of the cells on a particular lane. A Poisson distribution is a probability distribution 

used in statistics to illustrate how many times an event is expected to occur during a certain period 

or within a certain area. It is a distribution of count. Poisson distributions are frequently used to 

analyze independent events that happen at a consistent rate within a certain time or region. Poisson 

process is also widely used in various fields to simulate the number of occurrences of specific 

events within a certain region or time frame (Kioumarsi et al. 2016; Li, Wang & Zhang 2016). 

According to the traffic simulation results shown in Figure 3-4, the Poisson process is adopted to 

develop a simple and reasonable model for the spatial distribution of heavy vehicle in one lane. 

The number of occurrences of cells occupied by vehicles within a certain loaded length (0, 𝐿] is n. 

The specific meaning of n as a Poisson distribution parameter is that the event of a vehicle 

appearing in a cell occurs n times in a certain loaded length (e.g., a given lane). Then, the 

probability of n can be determined by Equation (3-5): 
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𝑃𝑟(𝑇𝐿  =  𝑛)  =  
(𝜆𝐿) 𝑒𝑥𝑝(−𝜆𝐿)

𝑛!
,      𝑛 =  0, 1, 2, … (3-5) 

where 𝑃𝑟(∙) is the occurrence probability of the event, and 𝜆 represents the mean occurrence rate 

of the cells occupied by vehicles. For a stationary vehicle distribution process, 𝜆 is constant over 

the loading location, the units of 𝜆 should be vehicles per unit length. 

In addition to the stationary process, the location distribution of vehicles can also be considered as 

a non-stationary process. In Figure 3-6, the X-axis represents the cell location on the whole length 

of the investigated bridge, totally containing 105 cells. For a specific LE, the occurrence rate of 

cells occupied by heavy vehicles, represented by the Poisson parameter λ(l), can be assumed to 

vary by location, influenced by the shape of the influence line. Maximum effects are obtained 

when vehicles are situated in areas with the highest values of the influence line. Because the 

probability of occurrence is determined by the location of the cell in the lane, as shown in Figure 

3-6, 𝜆(𝑙) can be calculated by Equation (3-6): 

𝜆(𝑙)  =  𝜆0(𝑙) ∙ 𝜃 (3-6) 

where 𝜆0(𝑙) represents the average level of the occurrence rate of occupied cell, and 𝜃 reflects the 

variation along the loading location. 

 

(a)                                                                        (b) 

Figure 3-6 Probabilities of a cell to be occupied by a heavy vehicle in a maximum LE scenario 

of (a) inner lanes; (b) outer lanes (Effect 1). 

Cell Cell
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3.5 Modeling of heavy vehicles weight 

GVW is a critical variable to describe the characteristics of vehicle load, which has great 

uncertainties and must be modeled by a probabilistic approach. Gaussian, Weibull or empirical 

distributions are usually adopted to fit traffic random variables such as GVW, average velocity, 

traffic volume and small headway (Hwang et al., 2012; Kennedy et al., 1992; Kwon et al., 2011; 

Nowak, 1995). However, histograms of these variables with multiple peaks cannot be captured by 

these typical unimodal probability distribution models (Kim & Song, 2019; 2021). To 

accommodate the multimodal distribution of traffic parameters, GMM has been widely adopted 

due to its ability to accurately capture the attributes of multiple peaks (Enright & O’Brien 2013; 

Enright, Carey & Caprani, 2013; Kim & Song, 2019; Lu et al., 2017; Zhao et al., 2020). According 

to figure 3.4, in this study, the GMM is employed to represent the GVW. Meanwhile, in order to 

consider the correlation between vehicle weights, the Nataf transformation method is adopted. 

3.5.1 GMM and determination of components number 

GMM has been adopted in many fields to model uncertainties and exhibits promising performance 

(Yang et al. 2019). GMM comprises multiple Gaussian densities, which is suitable for modeling 

an arbitrary probability density function (PDF) accurately, especially for the PDF of variables with 

multiple peaks. For a random variable 𝜒, the PDF of GMM can be expressed as Equation (3-7): 

𝑝(𝜒)  =  ∑ 𝜋𝑘𝑁(𝜒|𝜇𝑘, Σ𝑘)

𝐾

𝑘 = 1

 (3-7) 

where 𝑁(𝜒|𝜇𝑘, Σ𝑘) is the PDF of the k-th Gaussian distribution with 𝜇𝑘 and Σ𝑘 as its mean and 

covariance matrix, 𝜋𝑘 represents the weight of the k-th Gaussian distribution component, which 

satisfies ∑ 𝜋𝑘  =  1𝐾
𝑘 = 1  and 0 ≤ 𝜋𝑘 ≤ 1.  

The selection of an appropriate number of components is crucial for developing a GMM model. 

Generally, increasing the number of components means higher accuracy of the GMM fitting, 

however it also leads to a decrease in efficiency (Yang et al. 2019). According to previous research, 

several entropy criterion methods can be used to determine the number of components, including 

Akaike information criterion (AIC) and Bayesian information criterion (BIC) (Li et al. 2013; 

Zivkovic 2004; Celeux & Soromenho 1996). In this study, the component number of the GMM is 
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determined using both the AIC approach and the visual judgment mixed with physical meaning 

method. 

3.5.2 Correlation of heavy vehicles and Nataf transformation 

Several consecutive trucks in one lane or side-by-side trucks in adjacent lanes are the critical 

scenarios causing the extreme LE, threatening the safety of bridge structures (Gil & Kang 2015; 

O’Brien & Enright 2013; Yuan et al. 2017; Xiong et al. 2017). The governing loading combination 

for long-loading length is always several groups of trucks and numerous on-bridge vehicles, not 

one or two sets of side-by-side trucks. Therefore, it is assumed that there is a two-by-two 

correlation between the GVWs of all vehicles within a certain range of the same lane for scenarios 

of maximum-response-per-day event, rather than simply assuming a correlation between the 

GVWs of two key heavy vehicles. The objective of setting this parameter is to describe the 

correlation between GVWs within a certain length in the same lane for the proposed scenarios, 

which is reflected by the correlation function. The Pearson coefficient of correlation is adopted to 

characterize the correlation of GVW as expressed in Equation (3-8): 

𝜌𝑗,𝑘  =  
𝛼𝑗,𝑘

𝜆𝑗 ∙ 𝜆𝑘
, (3-8) 

where 𝜌𝑗,𝑘 represents the coefficient of correlation between the GVW of locations 𝑙𝑗 and 𝑙𝑘 (i.e., 

the distance between j and k is short), 𝛼𝑗,𝑘 corresponds to the covariance between the GVWs, 𝜆𝑗 

and 𝜆𝑘 indicate the standard deviations of the GVWs at 𝑙𝑗 and 𝑙𝑘, respectively. It is common sense 

that the correlation coefficient 𝜌𝑗,𝑘 between two GVWs becomes weaker with increasing distance 

lag, |𝑙𝑗 − 𝑙𝑘|. Referring to engineering cases in related researches, the following exponential 

correlation function is employed (Li, Wang & Zhang, 2016; Mahadevan & Haldar, 1991): 

𝜌𝑗,𝑘  =   xp (−
|𝑙𝑗 − 𝑙𝑘|

𝐷
), (3-9) 

where D represents the scale factor reflecting the correlation length. For instance, if |𝑙𝑗 − 𝑙𝑘| takes 

the value of one centroid interval of adjacent cells (which means |𝑙𝑗 − 𝑙𝑘| = 20 m), then, 𝜌𝑗,𝑘 = 

0.3679, 0.6703, and 0.8187 when D is 20 m, 50 m, and 100 m respectively (i.e., 𝜌𝑗,𝑘  =

  xp (−
20

20
) = 0.3679 , 𝜌𝑗,𝑘  =   xp (−

20

50
) = 0.6703 , 𝜌𝑗,𝑘  =   xp (−

20

100
) = 0.8187 ). For the 
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actual extreme response scenarios, the GVWs in the blank cells are not known (blank cell means 

an empty cell, i.e., a cell without vehicle on it). As a result, the correlation lengths cannot be 

calculated and, as a consequence, in the proposed model, reasonable assumptions are made 

regarding the correlation lengths, specifically 20 m, 50 m, and 100 m. The effects of these 

correlation lengths are subsequently analyzed and discussed. 

Nataf transformation can be used to transfer any random variables into standard Gaussian 

distribution (Zhao et al. 2020; Noh, Choi & Du 2009). The marginal cumulative density functions 

(CDF) of an n-dimensional correlated random vector 𝛽  =  [𝛽1, 𝛽2, … , 𝛽 ]  is 𝐹𝑗(𝛽𝑗) , and the 

correlation coefficient matrix 𝑲 =  [Κ𝑗,𝑘  =  𝜅𝑗,𝑘]. By Nataf transformation, 𝛽 can be transferred 

into independent standard normal variables ζ⃗  =  [ζ𝑗]. The procedure of Nataf transformation is as 

follows (Der Kiureghian & Liu 1986; Liu & Der Kiureghian 1991; Hisada & Nakagiri 1985): 

Correlated standard normal variables ξ⃗  =  [ξ𝑗] are transferred from 𝛽 by Equation (3-10). 

ξ𝑗  =  Φ
−1 (𝐹𝑗(𝛽𝑗)) (3-10) 

where Φ−1(∙) is the inverse CDF of standard Gaussian distribution. The correlation coefficient 

matrix of ξ⃗ is supposed as 𝜥′  =  [𝜅𝑗,𝑘
′ ]. Then the relationship between 𝜅𝑗,𝑘 and 𝜅𝑗,𝑘

′  is shown as 

Equation (3-11). 

𝜅𝑗,𝑘  =  ∫ ∫
𝐹𝑗
−1 (Φ(𝛽𝑗)) − 𝐸(𝛽𝑗)

𝑆𝐷(𝛽𝑗)
∙
𝐹𝑘
−1(Φ(𝛽𝑘)) − 𝐸(𝛽𝑘)

𝑆𝐷(𝛽𝑘)
𝜔(𝛽𝑗, 𝛽𝑘; 𝜅𝑗,𝑘

′ )
∞

−∞

𝑑𝛽𝑗𝑑𝛽𝑘

∞

−∞

 (3-11) 

where 𝜔(𝛽𝑗 , 𝛽𝑘; 𝜅𝑗,𝑘
′ ) is given by Equation (3-12), 𝐸(∙) and 𝑆𝐷(∙) are the mean and standard 

deviation of variables, respectively. 

𝜔(𝛽𝑗 , 𝛽𝑘; 𝜅𝑗,𝑘
′ )  =  

1

2𝜋√1 − 𝜅𝑗,𝑘
′2

𝑒𝑥𝑝 {−
𝛽𝑗
2 − 2𝜅𝑗,𝑘

′ 𝛽𝑗𝛽𝑘 + 𝛽𝑘
2

2(1 − 𝜅𝑗,𝑘
′2 )

} 
(3-12) 

According to Equations (3-11) and (3-12), 𝜅𝑗,𝑘
′  can be calculated by 𝜅𝑗,𝑘. The relationship between 

𝜅𝑗,𝑘  and 𝜅𝑗,𝑘
′  can be simplified as Equation (3-13). 𝑃𝑗,𝑘  can be approximately estimated by a 

polynomial as Equation (3-14). 
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𝜅𝑗,𝑘
′  =  𝑃𝑗,𝑘 ∙ 𝜅𝑗,𝑘 (3-13) 

𝑃𝑗,𝑘  =  
𝜅𝑗,𝑘
′

𝜅𝑗,𝑘
 =  𝑝1𝜅𝑗,𝑘

3 + 𝑝2𝜅𝑗,𝑘
2 +𝑝3𝜅𝑗,𝑘 + 𝑝4 (3-14) 

where the parameters 𝑝1 to 𝑝4 can be calculated by Monte Carlo method (Xiao 2014). Then the 

relationship between 𝜅𝑗,𝑘  and 𝜅𝑗,𝑘
′  can be obtained by least squares fitting of polynomial as 

Equation (3-15) for outer lanes and Equation (3-16) for inner lanes. 

𝑃𝑗,𝑘  =  −0.01025𝜅𝑗,𝑘
3 + 0.01435𝜅𝑗,𝑘

2 − 0.09334𝜅𝑗,𝑘 + 1.091𝑝4 (3-15) 

𝑃𝑗,𝑘  =  −0.01301𝜅𝑗,𝑘
3 + 0.03364𝜅𝑗,𝑘

2 − 0.1469𝜅𝑗,𝑘 + 1.128𝑝4 (3-16) 

Since the covariance matrix of ξ⃗ is positive definite, 𝚱′ can be decomposed into a lower and an 

upper triangular matrix via Cholesky factorization as shown in Equation (3-17): 

𝚱′  =  𝐀 ∙ 𝐀T  =  [

𝑎11    0      …     0  
𝑎12   𝑎22    …     0  
 ⋮        ⋮                ⋮  
𝑎1    𝑎2    …  𝑎  

] [

𝑎11   𝑎12    …  𝑎1 
 0      𝑎22    …  𝑎2 
 ⋮        ⋮               ⋮   
 0       0      … 𝑎  

]  =  [

 1    𝜅12
′     …    𝜅1 

′

𝜅12
′     1     …    𝜅2 

′

  ⋮        ⋮      ⋱       ⋮    
𝜅1 
′   𝜅2 

′    …      1   

] (3-17) 

where 𝐀 is a lower triangular matrix. Therefore, the variables ξ⃗ can be expressed as the product of 

𝐀 and the independent standard normal variables ζ⃗, as shown in Equation (3-18): 

ξ⃗  =  𝐀 ∙ ζ⃗ (3-18) 

Then the relationship of the independent standard normal variables ζ⃗ and the original correlated 

variables 𝛽 can be established as Equation (3-19): 

𝛽1  =  𝐹1
−1(Φ(𝑎11𝜁1)) 

𝛽2  =  𝐹2
−1(Φ(𝑎21𝜁1 + 𝑎22𝜁2)) 

⋮ 

𝛽  =  𝐹 
−1(Φ(𝑎 1𝜁1 + 𝑎 2𝜁2 +⋯+ 𝑎  𝜁 )) 

(3-19) 
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where Φ(∙) is the CDF of standard Gaussian distribution. Then, Monte Carlo method is used to 

analyze the scenarios of extreme LE, in which the correlated GVWs are simulated according to 

Equation (3-19). 

3.6 Extreme value theory for the return period extrapolation 

Based on extreme value theory (O’Brien et al. 2015), the GEV can be employed in the study of 

the response value. The distribution of the maximum value for a series of independent identically 

distributed random variables 𝑍1, 𝑍2, … , 𝑍𝜚 is represented as 𝐻(𝑧)𝜚. According to Equation (3-20), 

the normalized sample maximum (𝑚𝑎𝑥(𝑍1, 𝑍2, … , 𝑍𝜚) − 𝑏𝜚)/𝑎𝜚 has a non-degenerate limiting 

distribution 𝐺(𝑧) that holds for all consecutive points of 𝐺(𝑧) for the asymptotic properties of the 

𝑚𝑎𝑥(𝑍1, 𝑍2, … , 𝑍𝜚) , providing that there is a constant sequence 𝑎𝜚 > 0 , and 𝑏𝜚 ∈ 𝑅 (𝜚 =

 1, 2, … ). 

l m
𝜚→∞

𝐻𝜚(𝑎𝜚𝑧 + 𝑏𝜚)  =  𝐺(𝑧),      𝜚 → ∞ (3-20) 

𝐺(𝑧) can be GEV distribution 𝐻𝐺𝐸𝑉(𝑧) when certain condition is satisfied (Jenkinson 1955). The 

distribution of 𝐻𝐺𝐸𝑉(𝑧) can be expressed as Equation (3-21): 

𝐻𝐺𝐸𝑉(𝑧;  𝜉, 𝜎, 𝜇)  =  

{
 
 

 
 
𝑒𝑥𝑝(−(1 + 𝜉 (

𝑧 − 𝜇

𝜎
))

−
1
𝜉

) ,      𝜉 ≠  0

𝑒𝑥𝑝 (−𝑒𝑥𝑝 (−
𝑧 − 𝜇

𝜎
)) ,      𝜉 =  0

 (3-21) 

where 𝜇, 𝜎 and 𝜉 are the location parameter, scale parameter and shape parameter of the observed 

data, respectively, satisfying 1 + 𝜉(𝑧 − 𝜇)/𝜎 > 0. In this thesis, the GEV distribution is used to 

fit the response acquired by the simulated extreme scenarios since the scenario samples are the 

vehicle distributions of the daily maximum effect value, which in the case of a long-span bridge 

can be assumed to be independent and identically distributed. 

3.7 Conclusions 

According to the state of the art analysis of traffic load modeling for long-span bridges in Chapter 

2, the previous research simulates standard vehicle spatial distribution scenarios, paying little 
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attention to maximum-response-per-day events, which hold significant implications for structural 

performance evaluation. Thus, the simulation approach of scenarios of long-span bridges extreme 

LE using GMM probabilistic model under free-flow traffic based on WIM data is developed. The 

Monte Carlo method makes it possible to establish a probabilistic model for modeling complex 

spatial distributions of heavy vehicles. 
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CHAPTER 4 Application of extreme response scenario 

probabilistic model 

4.1 Introduction 

This chapter aims to demonstrate the practical application of the methodology proposed in Chapter 

3 for a real-life long-span bridge. For the proposed probabilistic model of extreme response 

scenario, the distribution of vehicle locations is modeled using a Poisson process, with both 

stationary and non-stationary processes.  

The impact of excluding light vehicles from the vehicle distribution simulation of the bridge deck 

is also assessed. The chapter also applies the proposed probabilistic model for extreme response 

scenarios to various effects of the investigated bridge. Comparison of responses are made between 

the proposed model and the Design Codes. In the following, without special remark the proposed 

model refers to the probabilistic model of extreme response scenario. 

4.2 Description of the cable-stayed bridge 

The proposed probabilistic model is applied to describe the vehicle location distribution associated 

with scenarios of extreme LE on a real typical double-tower long-span cable-stayed bridge with 

two-way 6 lanes (Sutong Bridge in Jiangsu Province, China). The loaded length of the investigated 

bridge is 2088 m, which is also the overall length of the bridge. The maximum span length is 

1088m. As the loaded length increases, the number of vehicles that can be arranged in the loading 

area increases, and the distribution of vehicles and the average vehicle weight level become the 

key factors that affect the structural effect (Ruan et al. 2017). Therefore, it is necessary to consider 

the heavy vehicle distribution for the structural effect of long-loaded length. 

According to the previous research, the average length of large vehicles is 15.13 m (Chen et al. 

2019). Based on the measured WIM data, the total wheelbase (i.e., the distance from the first axle 

to the last axle) of the multi-axle vehicle shows a peak value of 17.5 m. Considering the influence 

of the front and rear overhang of the vehicle, and the distance between the vehicles while driving, 
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the length of the cell should be slightly longer than the wheelbase mentioned above. Therefore, for 

the investigated bridge, each lane is divided into 105 cells with the cell length of 20 m. 

Influence lines of load effects are obtained for the research in this thesis. Figure 4-1 depicts the 

configuration of the bridge along with the influence line of the axial force of the longest cable (AEC). 

It can be seen that the selected effect has a long-loaded length which can be cooperated with the 

modeling of the vehicle scenarios of extreme LE. 

 

Figure 4-1 Configuration of the long-span cable-stayed bridge with the influence line of effect 

AFC (Unit: m). 

The calculation examples in this thesis all revolve around the long-span cable-stayed bridge above, 

the structural effects addressed in the cases include: The axial force of the longest cable (AFC, 

Effect 1), the vertical deflection of main girder at mid-span of the main span (VDMS, Effect 2), 

the longitudinal displacement at the top of the pylon (LDTP, Effect 3), the bending moment of 

main girder at mid-span of the main span (BMMS, Effect 4), and the bending moment at the bottom 

of the pylon (BMBP, Effect 5). These LEs are of greater concern in engineering applications that 

have an impact on structural safety and include effects for all types of major elements of the bridge. 

4.3 Scenarios of extreme LE  

The developing process of the proposed model is given below through the case of Effect 1 (AFC). 

The following figures and tables without special remarks are the results of Effect 1, and the data 

of the remaining four effects are shown in the Appendix. 

 

100 100 300 1088 300 100 100

2088
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4.3.1 Heavy vehicle location distribution  

The distribution of vehicle location for the 105 cells × 6 lanes is modeled by a Poisson process. 

Two cases of stationary and non-stationary processes are considered, respectively. The parameters 

of stationary and non-stationary Poisson processes for different lanes are listed in Table 4-1 and 

shown in Figure 4-2. The X-axis of Figure 4-2 represents the cell number along the whole length 

of the investigated bridge, totally 105 cells. The parameter 𝜆 is determined by the maximum 

likelihood estimation method and the average frequency of the occurrence of heavy vehicle 

occupancy events in each cell according to the sample data (Paszek 2007). For the case of 

stationary Poisson process, all cells share the same intensity level. For instance, the parameter 𝜆 

of Poisson process of the total loaded length is 4.6537 vehs for outer lanes. For the case of non-

stationary Poisson process, the cells along lanes are divided into three intensity levels with 

different λ values, which represent different heavy vehicle densities (i.e., the classification of cell 

intensity level is based on the probabilities of occupied cell event) depending on the cell number 

and the distribution parameters according to Figure 4-2. 

Table 4-1 The parameters of Poisson processes for vehicle location model (veh) (Effect 1). 

𝜆 of Poisson process 
Cell number 

1-49 50-52 53 54-58 59-105 

Outer lanes 
Stationary 4.6537 

Non-stationary 3.6820 13.2221 29.3900 13.2221 3.6820 

Inner lanes 
Stationary 1.9356 

Non-stationary 1.4658 6.0453 14.1579 6.0453 1.4658 

where outer lanes include lane 1 and 6, inner lanes include lane 2 to lane 5. 

 

Figure 4-3 shows the cell classification according to the statistical results of sample data. The cells 

of intensive area have a high probability of being occupied by vehicles, which is coherent with the 

shape of the influence line in Figure 4-1. 
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(a)                                                                           (b) 

Figure 4-2 Poisson distribution parameters for each cell and the average values for different 

intensity level areas of (a) inner lanes; (b) outer lanes. 

 

Figure 4-3 Cell classification of load intensity level according to statistics. 

Six representative simulated samples for the cases of stationarity and non-stationarity are 

illustrated in Figure 4-4. Compared with the case of stationary process, heavy vehicles of non-

stationary process are significantly more likely to be represented in intensive and sub-intensive 

areas near the mid-span. This result suggests that the non-stationary Poisson process has a 

significant effect on the spatial distribution of heavy vehicles by adjusting the weights of vehicle 

occupancy probabilities in different cell regions. 
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(a) 

 

(b) 

Figure 4-4 Samples of simulated heavy vehicles distribution for (a) non-stationary process; (b) 

stationary process. 
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4.3.2 Heavy vehicle weight and parameters 

The samples of GVW are adopted from the heavy vehicles of the scenarios of extreme LE 

calculated from WIM data. The relationship between AIC of GMM and number of components 

for both inner lanes and outer lines are shown in Figure 4-5. The fitting effect gets better with the 

decrease of the AIC value, while the decreasing rate of AIC becomes slower when the number of 

components is large. Considering the fitting effect and the AIC values, the number of components 

of GMM is selected as 4. The parameters of simulated GMM are summarized in Table 4-2.  

 

Figure 4-5 Relationship between AIC and number of components. 

Table 4-2 Parameter of simulated GMM (tonnes). 

GMM i-th component Mean value of Outer lane Mean value of Inner lane 

1 16.98 17.02 

2 29.60 29.56 

3 60.80 60.66 

4 99.71 101.13 

 

4.3.3 Monte Carlo simulation of the scenarios model 

In order to obtain sufficient sample data to account for the possibility of an extreme load response 

within the required return period, the Monte Carlo method is employed in this research. Based on 
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105 simulations, the simulated scenarios of extreme LE are generated for 8 cases, respectively. 

These 8 cases include stationary and non-stationary processes for location distribution, and 4 levels 

of correlations of GVWs between adjacent cells in the scenarios of extreme LE are considered (i.e., 

D equals to 20 m, 50 m, 100 m, and uncorrelated). Figure 4-6 illustrates the effect of GVWs 

simulation with different correlation lengths. 

 

Figure 4-6 Simulation samples of GVWs from different correlation length D for outer lane. 

Several representative simulated samples on the bridge deck are depicted in Figure 4-7. The cases 

of stationary process and non-stationary process location distribution are illustrated in Figure 4-7 

(a) and (b), respectively. The difference between stationary and non-stationary process methods 

can be clearly observed in the figure. In Figure 4-7 (a), the heavy vehicles in the extreme response 

scenario are more evenly dispersed on the bridge deck. In contrast, in Figure 4-7 (b), the heavy 

vehicles in the extreme response scenario tend to be concentrated in the mid-span region of the 

bridge deck, indicating that the complicated spatial distribution of heavy vehicles on the bridge 

deck can be effectively characterized by this model. Meanwhile, the simulation of non-stationary 

process is more accurate than the stationary process and is recommended for use in subsequent 

studies. 
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(b) 

Figure 4-7 Simulated samples of scenarios for (a) stationary process location distribution; (b) 

non-stationary process location distribution 
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4.4 Impacts of ignoring light vehicles and moving vehicle-centroid into cell 

on LE 

Ignoring the light vehicles in the modeling of vehicle distribution on bridge deck can bring 

convenience to computation, while its impact still needs to be evaluated. Due to the small GVWs 

of these vehicles, the structural effect is slightly affected by ignoring them. Commonly, vehicles 

with gross weight larger than 10 tonnes can be treated as heavy vehicles (Chen et al. 2019; Ruan 

et al. 2017). Therefore, vehicles with GVW smaller than 10 tonnes are removed in a second 

analysis. Figure 4-8 presents the influence of ignoring light vehicles in the simulation process. The 

abscissa of the figure shows 423 samples. For each sample, the top subfigure gives the ratio of 

response calculated by ignoring light vehicles to response calculated by considering all vehicles in 

the scenario, which is displayed in percentage. The bottom subfigure shows the ratio of number of 

light vehicles to total number of vehicles. It can be seen that the vast majority of response is 

generated by heavy vehicles. For 423 samples, the effect losses induced by ignoring light vehicles 

are almost less than 5%. However, by this kind of simplification, the corresponding total number 

of vehicles on bridge deck that need to be considered in the modeling is significantly reduced. 

More importantly, in the process of vehicle spatial distribution modeling, this approach can 

eliminate the interference of lighter vehicles and accurately establish the probabilistic model for 

heavy vehicles which contributes significantly to the LE. 
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Figure 4-8 Impact on LE by ignoring light vehicles. 

Meanwhile, the influence of moving the centroid of heavy vehicles into the cell on obtaining LEs 

is also presented. The relative error of LE caused by moving vehicles into cell is displayed on the 

normal probability paper as shown in Figure 4-9 (a). The relative error histogram of LE is 

presented in Figure 4-9 (b). The relative error is centered between 0 and 2%. As observed, shifting 

the loading location of heavy vehicles from their actual position to the nearest cell center is 

acceptable in terms of maintaining the required level of accuracy.  
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(a)                                                                   (b) 

Figure 4-9 Relative error of LE caused by moving vehicles into cell: (a) normal probability 

paper; (b) Histogram. 

For different types of effects, the size of cell results in different levels of error in the response 

values. Figure 4-10 shows the error of moving heavy vehicles into cells for different effects when 

the cell length is 20m. Figure 4-11 shows the error when the cell length is 10m. Note that the error 

here refers to the relative error (the ratio of the response difference to the original response value). 

It can be seen that the error level related to the cell length and the shape of the ILs. For some highly 

peaked ILs (such as Effect 4), smaller cell sizes (such as 10 m) should be selected to ensure that 

errors are within acceptable limits. Therefore, for effects with a small effective area of influence, 

a suitable cell length should be selected to ensure accuracy. The cell length itself is a flexible 

parameter that can be adjusted. For example, in this thesis a cell length of 10m is used for congested 

traffic modeling. At the same time, this thesis focuses on the global effects (when a vehicle is 

applied anywhere on the whole loading length, a significant response can be created) of long-span 

bridges. Only effects with a long effective influence range are discussed in relation to the extreme 

response scenario; effects with a short effective influence range are similar to the extreme value 

acquisition mechanism for small and medium-span bridges, which is determined by three or less 

heavy vehicles, and therefore are not the focus of this study. If the method proposed in this thesis 

is subsequently applied to the research of partial effects, the cell lengths can be flexibly selected 

to achieve accuracy guarantees. 
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Figure 4-10 Error boxplot of moving heavy vehicles into cells (cell length = 20 m). 

 

Figure 4-11 Error boxplot of moving heavy vehicles into cells (cell length = 10 m). 

Extreme response scenarios with a high number of vehicles on the bridge deck were selected as 

showcase examples, as shown in Figure 4-12. According to this sensitivity study, a cell length of 

10m was selected for Effect 4 and 20m for the other effects. 
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Figure 4-12 Extreme response scenarios for different effects with different cell lengths. 
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4.5 Impacts of stationarity and correlation in vehicle weight on extreme LE 

This section examines the effects of stationarity and correlation in GVWs on the extreme value 

LE. Due to the lack of statistical data associated with the correlation of GVWs of adjacent heavy 

vehicles, four cases of correlation are considered in aforementioned analysis, 𝜌 = 0.3679, 0.6703 

and 0.8187 (i.e., D is 20 m, 50 m, and 100 m), and no correlation, respectively. Performing 105 

simulations, the sensitivity of maximum axial force of cable to the stationarity and correlation in 

GVWs is analyzed. 

Since the vehicle scenario samples are vehicle distributions of the maximum daily effect value, the 

GEV distribution can be applied to fit the response obtained by the simulated scenarios. Figure 4-

13 (a) displays the differences between the distribution functions in stationary and non-stationary 

conditions of the simulation results on the Gumbel probability paper. Figure 4-13 (b) shows the 

histogram and the fitted curves of the simulation results for stationary and non-stationary processes. 

It can be seen that the GEV distribution shows a good fitting effect on the tail tendency of the data. 

The upper tail of response is long which is consistent with the characteristics of GEV. 

 

(a)                                                                  (b) 

Figure 4-13 Probability density and fitting of the simulation results for non-stationary and 

stationary processes when the GVWs are uncorrelated: (a) Gumbel probability paper; 

(b) Histogram. 
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In order to compare the effects of stationarity of vehicle location on the simulation results, the 

GVWs with uncorrelated state is considered. The effect extremum of the simulated scenarios of 

extreme LE for non-stationary process is significantly larger than that of stationary process. For 

the extreme values of these two processes, the 0.9999 times quantile of response is 800 kN for 

non-stationary process, and 450 kN for stationary process. The non-stationary process simulation 

method for the location of vehicles contributes more to the extreme values. Meanwhile, because 

the design live load for long-span bridges should include multiple trucks (Wang & Xu 2019), and 

the impossibility of calculating the frequency for each possible spatial distribution pattern (Chen 

et al. 2019), then, the probability of the on-bridge vehicle distribution pattern for a certain effect 

is an important factor. The arrangement of vehicle distribution has an obvious relationship with 

the effect type, and the statistical results of the sensitive areas of the bridge deck are different for 

different load effects. According to the classification research of the effect depending on the 

effective influenced region (Ruan et al. 2017), the vehicle scenarios of extreme LE should be 

modeled separately for different types of effects. Although building the model separately for 

different effects may bring a large computational cost, it cannot be avoided in the process of 

loading the simulated traffic on the influence line and finding the maximum response value per 

day for the bridge assessment. Meanwhile, the non-stationary process method can better simulate 

the pattern of the vehicle distribution, thereby improving the response calculation accuracy by the 

simulated scenarios. 

Figure 4-14 (a) displays the differences between the distribution functions of cable axial force for 

non-stationary process and different correlation levels on the Gumbel probability paper. Figure 4-

14 (b) and (c) show the CDFs of extremum of axial force for non-stationary process. Theses CDFs 

corresponding to different correlation level of GVWs intersect in the region with CDF values 

between 0.7 and 0.8. When CDF value is more than 0.8, the exceeding probability is larger for the 

extreme effect simulated with higher correlation. The extreme value increases with the increase of 

the correlation in the GVWs. This is due to the fact that the distribution of the effect extremum of 

simulated scenarios has longer tail behavior for larger correlation. At a high percentile level as 

shown in Figure 4-14 (c), the effect extremum increases significantly with increasing correlation 

coefficient of GVWs. This is in accordance with the physical meaning that a larger probability of 

heavy vehicle queuing will lead to a larger probability of occurrence of extreme response values. 

An obvious fact is that the correlation coefficient of GVWs has a direct relationship with the 
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probability of heavy vehicle queuing. It can also be seen that, with a sufficient number of Monte 

Carlo simulations, statistical differences in the simulation results under different correlations can 

be manifested. 

 

(a)                                                                            (b) 

 

(c) 

Figure 4-14 Simulated CDFs of extremum of axial force for non-stationary process (a) Gumbel 

probability paper; (b) overall CDF; (c) tail behavior. 

Figure 4-15 shows different quantile values of maximum effect of simulated data. With the 

increase of correlation coefficient, the quantile value of extreme effect of simulated data becomes 

higher, as it is expected. For the case of non-stationary process, the 0.9999 quantile value of 

simulated data increases from 802.9 (i.e., uncorrelated) to 826.5 (i.e., D = 20 m; 𝜌 = 0.3679), 917.6 

(i.e., D = 50 m; 𝜌 = 0.6703) and 960.1 (i.e., D = 100 m; 𝜌 = 0.8187). In addition, the obvious 
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difference between stationary and non-stationary processes assumption can be observed in Figure 

4-15 (a) and (b). In summary, the most unfavorable effect is obtained by considering non-

stationarity of the vehicle location and correlation between the GVWs. 

 

(a)                                                                        (b) 

Figure 4-15 Quantile value of effect extremum of simulated data by (a) non-stationary process; 

(b) stationary process. 

4.6 Comparison of load model effect with Design Codes 

The proposed probabilistic model of vehicle scenarios of extreme LE is applied to the five effects 

of the investigated bridge. For comparison with the responses derived from the Chinese code D60 

(Ministry of Communications and Transportation, 2015), the responses calculated by the simulated 

scenarios are all extrapolated to the expected response results that will not be overpassed 95% of 

the cases in a design period of 100-year. The D60 specifies a characteristic traffic LEs as that value 

which has a 5% probability of being exceeded in 100 years, which is comparable to a value with a 

return period of around 1/(1 − 0.951/100)  =  1950  years (Ruan et al. 2017). The effects 

calculated by simulated data and their extrapolation curves are plotted on Gumbel probability 

paper as shown in Figure 4-16. The GEV based extrapolation method is employed to fit the 

simulated samples and 105 simulated samples are used. Based on extreme value theory (O’Brien 

et al. 2015), various methods are used to predict extremes based on limited data; among these 
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methods, the block maxima approach using GEV has been widely adopted (Zhou, Caprani & 

Zhang 2021).  

 

Figure 4-16 Ratio of simulated extreme response to Chinese code value for different effects with 

D = 100 m and non-stationary process. 

In Figure 4-16, the abscissa represents the ratio of responses of several effects to corresponding 

code value of D60, and the 1950-year return period value is calculated by −𝑙𝑜𝑔 (−𝑙𝑜𝑔(1 −

1/(1950 × 365)))  =  13.48. The considered effects are the axial force of the longest cable (AFC, 

Effect 1), the vertical deflection at mid-span of the main span (VDMS, Effect 2), the longitudinal 

displacement at the top of the pylon (LDTP, Effect 3), the bending moment at mid-span of the 

main span (BMMS, Effect 4), and the bending moment at the bottom of the pylon (BMBP, Effect 

5). The shape of the influence line for each effect is also plotted in Figure 4-16. It can be seen that 

in the unfavorable extreme state of the simulated data of D = 100 m and non-stationary process, 

the responses ratio of the LDTP and the BMBP are 0.628 and 0.575, which means the effects 

derived from proposed model are much lower than the code value. The response ratio of the 

BMMS is 2.363, which means the effect derived from proposed model is much higher than the 

code value. It should be noted that larger moments result in increased stresses at the upper or lower 

edges of the bridge deck slab. In the provisions of the code, the checking of stresses is within the 

scope of ultimate limit states. Excessive response values of bending moments, while reflecting 

some traffic load problems laterally, cannot be used as direct evidence to question the code. 



Application of extreme response scenario probabilistic model | Xuejing Wang 

50 

Therefore, the longer the effective loading range of the effect, the more conservative the code's 

loading result. Based on the comparison among the responses results, different effects show 

varying degrees of adaptability to the code load model, which suggest that it becomes critical to 

develop the load model for different effects separately according to the actual vehicle scenarios of 

extreme response event. 

Several codes are chosen to compare with the simulated load responses, including D60, Eurocode, 

AASHTO, and BS5400 (AASHTO 2004; BS EN 1991-2 2003; BS 5400-2 2006; Ministry of 

Communications and Transportation, 2015). In terms of bridge loaded length, these codes have 

certain rules that must be followed when they are used. The load model is only suitable for highway 

bridges with spans less than 200 m according to Eurocode. Until the 7th (2014) edition, when the 

HL-93 load model was introduced for long-span bridges, AASHTO expected bridge spans to be 

lower than 500 feet (152.4 m). In JTG D60-2015, a longitudinal reduction factor of 0.93 is used 

for bridges over 1000 m. In BS5400, the HAUDL decreases as the length increases, that can be 

thought as a longitudinal reduction factor. 

Table 4-3 compares the LEs calculated by the modeled vehicle scenarios and the codes. The effects 

of simulated data are calculated with non-stationary process and D = 100 m (maximum correlation 

between GVWs) which could be a possible traffic state for the investigated bridge giving the most 

unfavorable results. By placing the load models on the influence line with the same sign of 

influence value, the effects of the codes are obtained. The simulation extrapolated effects 

corresponding to the return period specified by codes are given in Table 5-7. The return period of 

each code is calculated according to the given service life. The return period of Chinese D60 is 

1950 years (5% probability of exceedance in a reference period of 100 years); Eurocode is 1000 

years (5% in a period of 50 years); BS 5400 is 2400 years (5% in a period of 120 years) and 

AASHTO is 75 years (based on the mean 75-year maximum LEs) (Cooper 2011; Micu et al. 2019; 

Nowak 1993; Nowak 1994; Ghosn, Moses & Wang 2003). The extrapolated value is related to the 

return period considered in the respective Code. Some partial extrapolated structural effects loaded 

by the simulated scenarios are lower than those derived from the codes, while others are higher. 

Specifically, for Effect 4 (BMMS), the extrapolated value is more than twice of the D60 value. 

The Eurocode provides the highest results, whereas the other codes are typically on the same level. 

This is due to the fact that the load model of the Eurocode is only applicable to bridges with spans 
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less than 200 m. Meanwhile, a site-specific traffic scenarios modeling approach should take into 

account the extreme effect value that the bridge will experience during the reference period, with 

acceptable reliability. By comparing the simulation results with the code value, it can be seen that 

the method proposed in this thesis provides an effective way for addressing this problem. 

Furthermore, since traffic characteristics are site-specific (Getachew & O’Brien 2007; O’Brien 

2015; Ruan et al. 2017; Lipari, Caprani & O’Brien 2017), the simulation process and results in this 

case are strongly dependent on the site-specific data. For this reason, in the next chapter the 

Bayesian up-dating of the model is carried out to take into account different traffic conditions. 

Table 4-3 Comparison of the responses derived from simulation load and codes for different 

effects of the investigated bridge. 

Traffic load 

response 

Max 

Simulated 

value 

CV and ESV for the corresponding return periods 

ChinaD60 AASHTO Eurocode BS5400 

CV ESV CV ESV CV ESV CV ESV 

AFC 

(×103)/kN 
1.08 0.87 1.19 0.98 1.02 2.07 1.16 1.78 1.20 

VDMS/m -1.45 -1.17 -1.40 -1.31 -1.18 -2.85 -1.35 -2.49 -1.41 

LDTP/m 0.22 0.37 0.23 0.41 0.20 0.95 0.23 0.82 0.24 

BMMS 

(×105)/kN·m 
1.75 0.79 1.86 0.93 1.46 1.59 1.78 1.34 1.88 

BMBP 

(×105)/kN·m 
-1.91 -3.66 -2.10 -4.02 -1.77 -9.27 -2.04 -7.99 -2.12 

CV: code value; ESV: extrapolated simulated value. 

4.7 Conclusions 

In this chapter, a typical double-tower cable-stayed bridge is introduced as a case study to 

demonstrate the extreme response scenario simulation of spatial vehicle distribution. Generally, 

the feasibility and advantages of the proposed probabilistic model for long-loaded length vehicle 

extreme response scenarios are demonstrated. The simulation method and process depend strongly 

on the site-specific data, which should be used to calibrate the site-specific bridge performance. 

And by comparison different responses of simulated data, it can be illustrated that different effects 

show various levels of sensitivity to the code value, which prove it is essential to build the load 

model for different effect separately according to the actual extreme response scenarios. 
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CHAPTER 5 Validation and extended applications of the 

scenario probabilistic model 

5.1 Introduction 

A new proposed traffic load model always needs to be validated. The validation strategies are 

different depending on the objectives of the proposed model and the real data available to carry 

out the validation. Therefore, an improved CA traffic model (Ruan et al., 2017) is selected as a 

simulation model for alternative traffic flows in this chapter for extreme scenario model validation. 

This CA traffic simulation method has been carefully calibrated by comparing data such as traffic 

parameters and load effects between simulation results and WIM data. The application of this CA 

method allows for rigorous acquisition of traffic flow with high simulation accuracy that are 

consistent with the original WIM data. The accuracy and reasonableness of the proposed model in 

simulating extreme response scenarios is discussed by comparing the simulation results between 

the model of extreme response scenarios and the introduced CA model which represents the 

original WIM data. 

In addition to accuracy verification of the load model, whether the model has wider applicability 

is also an element of the model performance to be examined. The load model should have a flexible 

scope of application and wide applicability to meet the modelling requirements of different types 

and spans of bridges with different assessment objectives. In this chapter, the proposed extreme 

response scenario model is constructed for the type of traffic that inevitably needs to be discussed 

for long-span bridges: congested traffic. As congested traffic differs from free flow in many 

aspects such as vehicle composition, vehicle density, and traffic speed, there are many differences 

in model assumptions and parameter selection for the construction of the extreme response 

scenario model, reflecting the flexibility of the application of the proposed extreme response 

scenario model. At the same time, the analysis of long-term measured WIM data shows that free 

flow is also important in the daily structural assessment of long-span bridges. The extreme 

response scenarios of free flow are no less threatening to the safety of structures than congested 

flow. 
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5.2 Validation of the proposed model 

In order to validate the proposed model of scenario of maximum-per-day event, an improved CA 

for microscopic traffic simulation is introduced to generate artificial WIM data to extend the 

amount of the original WIM data. In the proposed extreme response scenario model, there are two 

unknown parameters, the distribution of GVW and the Poisson parameter related to vehicle 

location. They can be acquired by the extreme response scenario samples derived from WIM data. 

In this way, the proposed model can be validated through the comparison of LEs obtained with the 

proposed model and the original and artificial WIM data. The time period used in both models for 

validation is 730 days. The validations are based on comparing the results of the proposed scenario 

model with those of simulated WIM data (artificial WIM data by CA method) and original WIM 

data. The distributions of GVWs and the Poisson parameters from the proposed model and WIM 

data are compared. Meanwhile, a comparison is conducted between the maximum-per-day LEs 

and the total load on the bridge deck obtained from the proposed model and those obtained from 

simulated WIM data (artificial WIM data by CA method). 

5.2.1 Validation of loading scenarios 

Table 5-1 displays the specified CA parameters based on the original WIM data. The bridge 

loading length of the simulation is selected as 3000 m. Traffic flows in two directions are simulated 

separately because the maximum number of lanes that can be simulated at the same time is four. 

The total time length of simulated traffic flows is two years, and the daily traffic volume ranges 

from 16,500 to 50,000, which is randomly selected according to the original WIM data. One 

second is selected as the time step due to the fact that it is accurate enough for traffic loading. 

It should be ensured that the simulated WIM data could well reflects the statistical parameters (i.e., 

vehicle headways, GVWs, traffic velocity, traffic composition, and traffic volume) of traffic loads 

and flow of the original WIM data. The statistical information of the scenario of maximum-per-

day event used for validation is obtained by loading the vehicle sequences of simulated WIM data 

on influence lines.  
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Table 5-1 Accuracy and filtration criteria of WIM data. 

Parameter Value Definition 

Simulation length 3000 m The length of investigated bridge is 2088 m. 

Lane number 3 * 2 = 6 The maximum number of lanes that can be simulated 

at the same time is 4 (only a limit of the software).  

Daily traffic volume From 16500 to 50000  

Number of days 730  

Time step 1 s  

 

The GVWs from both the proposed scenario model and the scenario obtained with the original 

WIM data are compared in Table 5-2. The relative errors are all lower than ± 1.3%. The highest 

relative errors appear at the second and fourth component of GMM for GVWs of the outer lane. 

The distribution of GVWs from the proposed scenario model is quite similar to the original WIM 

data, ensuring that the generated LEs are equivalent. 

Table 5-2 Parameter comparison of simulated and original GMM (tonnes). 

GMM i-th 

component 

Mean value of Outer lane Mean value of Inner lane 

Original 

data/tonnes 

Simulated 

data/tonnes 

Relative 

error 

Original 

data/tonnes 

Simulated 

data/tonnes 

Relative 

error 

1 16.98 16.97 -0.1% 17.02 17.06 0.21% 

2 29.60 29.22 -1.3% 29.56 29.77 0.71% 

3 60.80 60.44 -0.6% 60.66 60.64 -0.04% 

4 99.71 100.76 1.1% 101.13 100.35 -0.77% 

 

Table 5-3 gives the comparison of Poisson parameters (stationary Poisson process). The Poisson 

parameters of the proposed model exhibit uniform variation similar to those of WIM data, and the 

relative errors are less than 20% for all LEs, but always biased towards safety.  

Table 5-3 Comparison of Poisson parameters from the proposed model and simulated WIM data 

(artificial WIM data by CA method) (all lanes) (veh). 

Effect 

number 

Outer lane  Inner lane 

Scenario 

model 

Original 

WIM 

Relative 

errors 

 Scenario 

model 

Original 

WIM 

Relative 

errors 

AFC 5.27 4.65 18.9%  2.30 1.94 13.2% 
VDMS 5.45 4.86 18.9%  2.44 2.05 12.2% 
LDTP 5.88 5.21 20.3%  2.68 2.23 12.7% 

BMMS 4.80 4.22 20.4%  2.07 1.72 13.9% 
BMBP 5.91 5.25 20.1%  2.71 2.26 12.7% 
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5.2.2 Validation of LEs 

It is required that the simulation of LEs by the proposed scenario model should be commensurate 

as those obtained by real measurements in the bridge or by simulated traffic loads derived from 

reliable and already verified traffic models. As no real measurements of the interested LEs are 

available for this bridge, LEs from the proposed scenario model and simulated WIM data by CA 

are compared in detail. The simulation loading length is 3000 m (the length of the investigated 

bridge is 2088 m), and the bridge entrance is located 500 m away from one side of the bridge. 

In general, the LEs in the upper tail are the most important in the evaluation of bridge traffic loads. 

Thus, the obtained LEs from the proposed scenario model and simulated WIM data are derived 

from the maximum value of each day. The number of samples of proposed extreme response 

scenario model is 100000, the number of samples of simulated WIM data is 780. Figure 5-1 to 

Figure 5-5 show the comparison of the upper tail of five effects from proposed model and 

simulated WIM data (artificial WIM data by CA method). It can be seen that the proposed model 

shows higher response values in the upper tail, which is related to the larger number of Monte 

Carlo simulations of the proposed extreme response scenarios model, but also proves that the 

model is able to simulate the distribution of heavy vehicles on the bridge deck that can produce 

extreme response values. At the same time, it can be seen that the proposed model shows a large 

number of lower response values in the lower tail. This is due to the fact that the proposed model 

is a probabilistic model and its unscreened simulation results will inevitably contain a large number 

of samples with low response values. However, as structural safety is primarily concerned with 

the extreme value portion of the effect, the proposed model is able to produce extreme response 

scenarios that are comparable to the WIM data and in the safe side for the present case study. 
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Figure 5-1 Comparison of the upper tail of Effect 1 from proposed model and simulated WIM 

data (artificial WIM data by CA method). 

 

Figure 5-2 Comparison of the upper tail of Effect 2 from proposed model and simulated WIM 

data (artificial WIM data by CA method). 
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Figure 5-3 Comparison of the upper tail of Effect 3 from proposed model and simulated WIM 

data (artificial WIM data by CA method). 

 

Figure 5-4 Comparison of the upper tail of Effect 4 from proposed model and simulated WIM 

data (artificial WIM data by CA method). 
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Figure 5-5 Comparison of the upper tail of Effect 5 from proposed model and simulated WIM 

data (artificial WIM data by CA method). 

The total weight of vehicles on the deck corresponding to a scenario of a maximum-per-day event 

is also a relevant parameter to demonstrate the validity of the proposed model when compared to 

the WIM data, as shown in Figure 5-6. There are some outliers in the upper part, indicating some 

extremely maximum gross weights induced by the heavy GVWs. In comparison, the outliers are 

rare in the lower part. The minimum values are significantly different between the scenario model 

and the WIM data, but they are not of concern to the objectives of this work, which focus on the 

maximum effects. The maximum values are very close and always slightly higher than that of 

simulated WIM data, which indicates that the simulation number of the proposed model is 

sufficiently high and the proposed model is able to produce extreme response scenarios that are 

comparable to the WIM data and in the safe side for the case study presented in this thesis. 
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Figure 5-6 Box plot of gross weight on bridge deck of scenario of maximum-per-day event from 

proposed model and simulated WIM data. 

Overall, the validation items of the proposed model show good agreement with those by simulated 

WIM data and original WIM data. The simulated WIM data is obtained by using a previously 

validated traffic simulation model (Ruan et al. 2017). The maximum-per-day total load and load 

effects are very close to and always slightly higher than that of simulated WIM data, which 

indicates that the proposed model is biased towards the safety side. These results confirm the 
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validity of the probabilistic scenario model developed in this paper for estimating the maximum 

LEs on a long-span bridge. 

5.3 Congestion scenario simulation by the proposed model 

Although mainly developed for the simulation in flow traffic conditions, the model is also 

applicable to the simulation of congestion scenarios. In this section, a simulation of congested 

traffic by the proposed model is here presented and, consequently, the loading effects of congested 

and free flow are compared. The results illustrate that the extreme scenario of free flow traffic is 

equally important for the safety of long-span bridges. 

In the study, 423 daily extreme scenarios (i.e., maximum-per-day event of the effect of cable force, 

Effect 1) of free-flow were obtained from WIM data as the sample for the developed model. The 

times at which these 423 samples achieved the extremes (i.e., the response extremes achieved at 

the points of the day, on a 24-hour basis) were further counted, as shown in Figure 5-7. It can be 

seen that most of the extreme scenarios occur between 20:00 pm and 7:00 am the next day, and 

only a small number of extreme scenarios (86 in total) occur during the daytime hours. Common 

sense dictates that trucks tend to travel at night. At the same time, almost all large cities in the 

vicinity of the WIM-site are closed to truck traffic during daytime hours, even though there are no 

restrictions on truck travel times on highways where the WIM station is located. For example, in 

Shanghai, trucks are banned from the roads in the city area from 07:00 am to 20:00 pm daily. It 

can be seen that for the daily state free traffic flow, the daily extremes tend to occur more often at 

night (i.e., with a higher proportion of heavy vehicles and lower traffic flow characteristics), when 

traffic is less likely to be congested. 
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Figure 5-7 Histogram of occurrence time of the extreme scenarios. 

The 86 extreme scenarios samples that achieved extreme response values during the daytime 

mentioned above were further analyzed. For these samples, the ratio of extreme response to 

Chinese D60 code were calculated, and simultaneous hourly traffic volumes were counted, and 

plotted in Figure 5-8. The attributes of each scenario sample are identified by a marked shape. For 

example, circle represents that the sample belongs to holidays and weekends. The results reveal 

that extreme scenarios with high hourly traffic flow typically have low response values. The 

sample with the highest hourly traffic flow has an hourly traffic flow of 4083 veh/h, while the ratio 

of the response value to the Chinese code D60 is only 0.165. Nonetheless, higher hourly traffic 

volumes pose a potential risk for congestion in free traffic flow. 

 

Figure 5-8 The average hourly traffic and ratio of response to D60 for extreme scenarios during 

daytime. 
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To examine the traffic components in the case of higher hourly traffic volumes, the GVW (gross 

vehicle weight) information associated with the scenarios of hourly traffic volumes above 3000 

veh/h is obtained. For each high-traffic volume scenario, the GVW information within one hour 

before and after the extreme values is collected. Figure 5-9 depicts the GVW distribution of the 

high-traffic volume scenarios. It can be seen that GVW tends to concentrate in vehicles weighing 

less than 4 tonnes for high-traffic volume scenarios. Meanwhile, the number of vehicles weighing 

between 4 to 66 tonnes are relatively rare. 

 

Figure 5-9 The GVW distribution of high hourly traffic volume scenarios. 

In order to obtain enough congestion scenarios as objects for the proposed model to simulate 

congestion scenarios, the micro-simulation model can be used to produce the congested traffic 

suitable for critical long-span bridge-loading scenarios, as presented in Enright et al. (2013). The 

cellular automata (CA) has been used in several fields. With the aid of CA method, complex 

movements of vehicles, such as speed changes, lane changes, etc. (Chen & Wu, 2011; O’Brien et 

al., 2012) can be simulated successfully and the generated long-term traffic flow maximum effects 

can be obtained. Traffic micro-simulation based on CA is applied to obtain the detailed information 

associated with vehicle load, vehicle velocity, headway distance, and lane position (Ruan et al., 

2017). After a vehicle is produced, its movement is controlled by the local rules that determine the 

driving modes (i.e., acceleration, cruising, coasting, and braking). The CA method has been 

verified, as presented in Tian et al. (2016). Thus, the congestion traffic data used in this study are 

obtained by using CA model. 
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(a)                                                                         (b) 

 

(c) 

Figure 5-10 The (a) average speed histogram; (b) traffic flow histogram for each hour; (c) GVW 

distribution histogram of the generated congested traffic. 

An input flow rate of 12,000 vehicles per hour is used for the six lanes. A total of 24 h of congested 

traffic is generated. To implement the bottleneck, each vehicle’s desired velocity is changed to 15-

20 km/h. This arrangement induces homogeneous congested traffic, which is characterized by a 

low average velocity but, in contrast to fully jammed traffic, has relatively high traffic flow 

(Kennedy et al. 1992). The average speed histogram, traffic flow histogram for each hour, and 

GVW distribution histogram of the generated congested traffic are shown in Figure 5-10. It can be 

seen that the level of vehicles with GVW from 4 tonnes to 60 tonnes is magnified in the simulated 

congested flow. 

The extreme scenarios of congestion flow are calculated for the five effects mentioned in the paper:  
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--the axial force of the longest cable (AFC, Effect 1);  

--the vertical deflection at mid-span of the main span (VDMS, Effect 2);  

--the longitudinal displacement at the top of the pylon (LDTP, Effect 3);  

--the bending moment at mid-span of the main span (BMMS, Effect 4);  

--the bending moment at the bottom of the pylon (BMBP, Effect 5).  

For each effect, the extreme response scenario is calculated every second, and the top 100 extreme 

value scenarios with the largest response are selected as simulation samples for further simulation 

based on the proposed model. 

For the extreme response scenarios of the congestion flow, the probability of occurrence of 

vehicles in each cell on the outer lanes is counted as shown in Figure 5-11. It can be seen that in 

the extreme scenarios of congestion, there is still a tendency for the distribution of vehicles along 

the longitudinal direction of the bridge, which varies according to the type of effect. Therefore, the 

simulation of the location of vehicles on the bridge deck can still be performed using a non-

stationary Poisson distribution as proposed in this thesis. 
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Figure 5-11 The probability of occurrence of vehicles in each cell on the outer lanes. 

In the following, the proposed model is applied to simulate the extreme response scenarios of 

congestion flow with Effect 1 as an example. Figure 5-12 depicts the probabilities of a cell being 

occupied by a vehicle in extreme response scenario for the congestion flow. The non-stationary 

characteristics of the outer lane is more pronounced than that of the inner lane. This may be due to 

the fact that for traffic scenarios when heavier vehicles are concentrated in a specific location, it 

tends to lead to response extremes. For congested traffic, the proportion of heavier vehicles is not 

high. Their tendency to drive in the outer lane is more pronounced. Also, the data and GMM fitting 

of GVWs for the congestion extreme response scenarios are given in Figure 5-13, which is the 

basic information for simulating GVW. 
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Figure 5-12 Probabilities of a cell to be occupied by a vehicle in an extreme response scenario 

and congested flow. 

 

(a) 
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(b)                                                                         (c) 

Figure 5-13 Data and fitting of GVW in (a) normal probability paper; (b) inner lanes; (c) outer 

lanes. 

In the simulation of the congestion scenario, other issues that need to be discussed are (1) whether 

light vehicles need to be ignored and (2) the selection of cell scale. Figure 5-14 depicts several 

extreme response scenarios of Effect 1 of the congested traffic flow. 
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Figure 5-14 Samples of extreme response scenarios of congestion flow (load effect 1). 
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A comparison of ignoring or considering light vehicles in the congestion scenario is presented in 

Figure 5-15. If the lighter vehicles are ignored, the effect loss is in the range of 8% to 24% with a 

median of 15%. During congestion, the proportion of light vehicles is higher and the GVWs of 

heavy vehicles is lower compared to the level of normal traffic scenarios. Therefore, the effect of 

light vehicles should not be ignored when performing simulations of congestion extremes 

scenarios.  

On the basis of considering the light vehicles, the length of the cell should be adjusted. The length 

of small vehicles for domestic use is generally greater than 4.5 meters, and the relevant Chinese 

regulations recommend a safe following distance of 10 m when the speed is below 20km/h (The 

State Council of the People’s Republic of China, 2004). Therefore, the cell length is chosen as 10 

meters when simulating congestion scenarios. Then, the extreme response scenarios were 

simulated 104 times by the proposed model. Several samples of simulations for Effect 1 are shown 

in Figure 5-16. 

 

Figure 5-15 Comparison of ignoring light vehicles and not ignoring light vehicles of a 

congestion scenario. 
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Figure 5-16 Samples of simulated congestion scenarios by the proposed model. 
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Figure 5-17 shows the probability density plot of the ratio of LE from the simulated congestion 

scenarios to Chinese code value. The extreme response of the 10,000 simulated congestion 

scenarios is up to 1.4 times the code value. Meanwhile, the extreme response of the selected 

congestion scenarios samples generated by the CA method are distributed between 0.6 to 0.85, 

therefore the simulated results can better cover the results of the CA samples, and extending the 

simulation including many congestion extreme scenarios that are not included in the CA samples. 

 

Figure 5-17 Probability density of the ratio of LE from simulated congestion scenarios to 

Chinese code value. 

As 10,000 simulations is a good representative value of the number of congestion scenarios during 

a period of 100 years, the response extremes generated by congestion are less than 1.4 times of the 

Chinese code value during the 100-year design period. At the same time, the extreme response 

generated by free traffic is extrapolated to 1.3742 times the code value during the 100-year design 

period. Therefore, similar extreme values are obtained under congested and free flow traffic 

conditions depending on the traffic situations along the day. 

Since long-span bridges are managed with appropriate traffic restrictions, it is believed that 

congestion will gradually become less in the future. In summary, congestion is usually caused by 

morning peak, evening peak or abnormal conditions such as holidays and extreme weather, and 

the vehicle composition is generally lighter than normal traffic. Therefore, as shown in the 
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previous example, the extreme response level of free flow may be of the same order than that of 

congested flow. Meanwhile, with the increasing demand for site-specific traffic flow modeling of 

long-span bridges, it is necessary to study the extreme response scenarios for free flow. The 

research of free-flow extremum scenarios can also provide a powerful tool for real-time 

correspondence between response values and traffic scenarios (i.e., real-time damage warning). 

Furthermore, congested traffic flow is simulated by calibrated CA in this study, as no real 

congestion data is available for the bridge. With the improvement of detection technology different 

from WIM, more accurate model parameters can be obtained based on the acquisition of real 

congestion data. This issue will be addressed in future research. 

5.4 Conclusions 

This chapter presents a detailed validation of the extreme response scenario model proposed in the 

thesis and discusses the accuracy of the simulated extreme response scenarios compared to the 

corresponding parameters of the original measured data from WIM information. Based on this, the 

proposed model is applied to construct an extreme response scenario for congested traffic, whereby 

the significance of the free-flow and congested-flow states for the structural safety assessment of 

long-span bridges is discussed, and the wide range of applications and flexibility of the proposed 

extreme response scenario model for different application scenarios is demonstrated. 
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CHAPTER 6 Site-specific traffic load model of long-span 

bridges via Bayesian updating 

6.1 Introduction 

This chapter proposes a site-specific traffic load model to derive the maximum LEs within a 

reference period for long-span bridges and develops a Bayesian inference-based approach for its 

updating according to the actual traffic conditions (annual average daily traffic volume (AADT) and 

distribution of GVW). The model is better suited for free-flow traffic conditions, which are also 

critical to long-span bridge assessment, and not congested situations. The process of building the 

site-specific traffic load model and the updating methodology is illustrated in Figure 6-1. As can 

be seen in the figure, this thesis revolves around the construction of a site-specific traffic load 

model. The probabilistic model of extreme scenario section proposes a method that can simulate 

the distribution of heavy vehicle locations on bridge decks for extreme response scenarios and can 

describe the uneven distribution of bridge load levels (corresponding to the uniformly distributed 

line load of Load form 4). The application of this method together with the Monte Carlo method 

allows a large number of simulated extreme response scenarios to be generated, providing the basis 

for the construction of a site-specific traffic load model. The site-specific load model updating 

section provides a method for updating the site-specific traffic load model based on newly 

observed traffic data. Case studies of all the proposed methods and models are also presented. A 

probabilistic model for heavy vehicle location scenarios on the deck leading to extreme LEs is 

developed in Chapter 3. The definition of these vehicle scenarios is the vehicle spatial distribution 

when the maximum effect is obtained. To this end, the bridge deck is divided into cells to simulate 

the vehicles distributions deriving on extreme scenarios. Once the load model based on extreme 

scenario is built as presented in chapter 3, a Bayesian inference based on PF (Maruyama & Hoshiya 

2008; Li, Fang & Shi 2021; Lin & Jiao 2021) is developed for the model updating according to 

the traffic status.  
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Figure 6-1 Flowchart of the modeling procedure of site-specific traffic load model. 

6.2 Definition of the site-specific traffic load model 

When defining a site-specific traffic load model, to obtain the extreme LEs is an important issue 

(Ruan et al. 2017). The focus of this chapter is also to obtain a model for maximum LEs in long-
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span bridges and to compare it with the traffic load models available in some bridge codes. The 

extreme LE is the one that the bridge will never see within a reference period with an acceptable 

probability. Based on the defined probability of occurrence and the corresponding reference period, 

these extreme responses can be associated to a certain return period. According to Zhou’s (2018) 

study, the daily extreme response scenario is obtained to carry out subsequent research. For the 

site-specific traffic load model proposed in this thesis, daily extreme responses for specific effects 

were simulated and chosen as samples of the maximum daily effect. With the extrapolation method, 

the simulated daily extreme responses can be extrapolated to obtain the effect for a certain return 

period, making possible the comparison with the traffic model in relevant codes where the 

associated return period is given.  

A traffic load model is a simplified tool to obtain relevant traffic LEs in the design and assessment 

of bridges. When proposing a traffic load model, the following requirements should be considered: 

1) The extreme load responses due to traffic for each effect in the reference period should be 

modelled with a certain reliability level. 

2) Allowing to engineering application, the traffic load model must be as simple as possible but 

still leading to accurate results always in the safe side. 

The primary concern is how to strike a balance between these factors (Ruan et al. 2017). The 

balance in the traditional load models is typically achieved taken into account the following 

important variables: 1) load form (the shape of the load: uniformly or non-uniformly distributed, 

one punctual load, several punctual loads, etc.), 2) loading pattern (how the load should be placed 

in the bridge to get the maximum/minimum effects), 3) load intensity (the value of the load). The 

definition of these variables for the load model proposed here is justified in the following sections. 

6.3 Effect of the shape of influence line of long-span bridges in the load 

model 

As a numerical representation of the structural responses to vehicle loads, influence line has been 

widely used in the study of vehicle LEs on long-span bridges. By analyzing the shape of the 

influence line (i.e., positive and negative influence value, positive and negative influence area, 
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trend, distribution complexity, and effective influence area, etc.), the structural effect of the 

vehicular load can be well studied. 

As a complex structural system, long-span bridges have various types of effects. For traffic load 

assessment, some effects only show a noticeable response when the location of the vehicle is within 

a limited region in the longitudinal direction. However, other effects have significant responses 

for the total available length of the loading area. As an example, Figure 6-2 shows the influence 

lines of three typical effects of a cable-stayed bridge with a main span of 1088 m, and the maximum 

absolute value of each influence line is used to normalize the influence values. It can be seen that 

the influence value of the longitudinal displacement at the top of the pylon (LDTP) varies 

significantly along the longitudinal axis of the bridge. For instance, the lengths of the negative part 

and positive part of influence line are on a similar level, and the same situation appears in the 

maximum absolute values of these two parts. This implies that a large response can be produced 

when a vehicle is applied anywhere along the whole loaded length. 

 

Figure 6-2 Configuration of the Sutong bridge with the influence lines of three effects (Unit: m). 

On the contrary, the effective loading region for the effect of bending moment at the mid-span of 

the main span is only around the middle of the main span, as the influence values in other regions 

are negligible. In addition, there are significant differences in the extrema and loading regions of 

the positive and negative portions of the influence value for this effect. This implies that a large 

response can only be produced when positioning a vehicle in the effective region of the loaded 

length, which is considerably less than the total length. Based on the shape characteristics of 
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influence lines, the effects of long-span bridges can be classified as global effects, partial effects, 

etc., for more efficient and refined structural assessments (Ruan et al. 2017). 

Furthermore, Zhou et al. (2019) proposed an efficient approach for modeling the traffic load of 

long-span bridges according to the characteristics of the effects. In the approach, macro- and 

micro-simulation method of traffic load were used in different regions of the influence line effect 

to get high calculation efficiency without sacrificing accuracy. The mathematical criteria and 

classification method for different regions of influence lines were proposed and validated. For 

sensitive regions, the value of the influence line is high, and a loss of accuracy would result if 

using a simplified macro-simulation method. In insensitive regions, where the value of influence 

line is small, it is unnecessary to use a complex and ineffective micro-simulation method for traffic 

simulation. Therefore, focusing on sensitive areas of the influence lines becomes a feasible and 

efficient method for traffic load modeling. 

As for the loading pattern, in the present traffic load models, e.g., D60 (General code for design of 

highway bridges and culverts. JTG D60-2015, Beijing), BS5400, AASHTO, ASCE loading, 

Eurocode, etc., the load forms are supposed to be placed on the influence regions with the same 

sign of influence value, in order to produce the most unfavourable load response (EN 1991-2 2010; 

AASHTO 2002; BS 5400-2 2006; Buckland 1981; Ministry of Communications and 

Transportation 2015). However, this arrangement commonly presents a low occurrence probability 

in real situations. To illustrate this, Figure 6-3 depicts the occurring probability of heavy vehicles 

over 10 tonnes appearing in the real extreme scenarios on the outer lane for different effects of a 

long-span cable-stayed bridge with a main span of 1088 m (the Sutong bridge, presented as 

example in Chapter 5) based on the data gathered by WIM data along 423 days. As seen in the 

figure, the distribution law of the vehicle load under the real extreme effect scenarios is 

substantially different from those setting in the bridge codes. In fact, the vehicle distribution 

pattern that causes extreme response for certain effects is strongly related to the shape of the 

influence lines. The occurring probability of heavy vehicles in Figure 6-3 demonstrates that the 

influence line will lead to different distribution of vehicle densities along the bridge in extreme 

scenarios. Therefore, it is feasible and necessary to determine the appearance of the traffic load 

form for different effects according to the different shape of influence lines.  
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Figure 6-3 Occurring probability of heavy vehicle in the extreme scenarios on the outer lane for 

different effects of a long-span cable-stayed bridge with a main span of 1088 m. 

6.4 Selection of the form of the site-specific load model 

According to Zhou’s (2018) research, Table 6-1 lists the load form in various design codes. In 

general, for overall effects, three kinds of common load forms are frequently used: 1) uniformly 

distributed line load with concentrated load, 2) uniformly distributed line load, and 3) uniformly 

distributed surface load with concentrated load. The concentrated load typically simulates a heavy 

vehicle that can produce a significant response if placed in a zone with a high influence line value. 

The uniformly distributed loads are widely advised in designing bridges with long loaded lengths 

as they represent the essential average load level for response calculation. 
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Table 6-1 Load forms for the overall design in different codes. 

Design codes Load form 

D60 Uniformly distributed line load with concentrated load 

Eurocode Uniformly distributed surface load with concentrated loads 

BS5400 Uniformly distributed line load with concentrated load 

ASSHTO 
Uniformly distributed line load or uniformly distributed line load with concentrated 

loads 

ASCE loading Uniformly distributed line load with concentrated load 

 

Figure 6-4 illustrates various possible load forms for vehicle sequence with decreasing 

fidelity/accuracy. The vehicle sequence is an arrangement of several vehicles with headways or 

gaps in a queue, which is commonly considered for global structural effects. Load form 1 is 

composed of several sets of axle weight loads. Load form 2 comprises several sets of GVW loading, 

and load form 3 is a uniformly line distributed GVW loading. Furthermore, the vehicle sequence 

loading can be modeled by a distributed line load with variable intensity (load form 4). A traffic 

load model with a uniformly distributed line load (load form 5) can be utilized when this 

simplification is at an acceptable level. In this case, the variability associated with weight density 

is disregarded. Instead, the total weight of the vehicle sequence is reflected by an average line load. 

 

Figure 6-4 Different vehicle sequence load forms. 

Because a probabilistic approach is followed to derive the maximum LEs, when choosing the load 

form, the accuracy and the computational cost of a simulation process should be considered. To 

deduce the characteristic values of LEs for the assessment of the bridge over their lifetime, a huge 

amount of traffic loading scenarios must be simulated to consider the high randomness of traffic 

load in both spatial and temporal domains. 

In the modeling of a vehicle sequence for overall bridge effects, a relatively accurate loading can 

be achieved by load forms 1 to 3, while load form 5 exhibits high simplicity and efficiency but 

Load form 3

Load form 1

Load form 2

Load form 4

Load form 5
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low accuracy as well. Theoretically, load form 5 provides a highly efficient simulation due to the 

fact that only load intensities are sampled other than generating individual vehicles and pass them 

through the bridge. The LEs can be calculated directly by multiplying the load intensity and the 

area of the influence line. However, owing to the low loading precision of this type of load form, 

it is rarely used in research. Nevertheless, in most design codes (e.g., D60 and AASHTO), load 

form 5 is adopted due to its simplicity as a crude illustration of traffic loading.  

Generating vehicle sequences similar to load forms 1 to 3 by micro-simulation method, will result 

in a high computational cost. In fact, these load forms were utilized as the current traffic simulation 

criterion for long-span bridges by some authors at a high computational cost (O’Brien, Lipari & 

Caprani 2015; Caprani, O’Brien & Lipari 2016; Carey, Caprani & Enright 2018). In conclusion, 

to achieve a balance between computational speed and accuracy, in the present research load form 

4 is selected to develop the traffic load model for the design and assessment of long-span bridges 

based on the vehicle extreme scenario probabilistic model. (Declaration: Much of the content in 

this section is drawn from Zhou's (2018) research, which the author introduces as the basis for 

subsequent research in this thesis). 

6.5 Selection of load intensity 

Load intensity of the site-specific traffic load model is calibrated based on the extreme value of 

the response effect, aforementioned load forms, and loading patterns (Zhou et al. 2019). Since the 

bridge responses show a strong correlation with traffic parameters and on-bridge traffic conditions, 

and different types of LEs have different influence line shapes, the load intensity should be able to 

express the change of the traffic flow condition over time. In addition, the value should be updated, 

and quantified separately for different effects. 

The response to traffic of a long-span bridge is directly related to the basic parameters of traffic 

flow, such as the AADT, distribution of GVW, etc. Considering the convenience of engineering 

applications, the influence parameters should be as simple as possible. For this reason, for the 

proposed site-specific load model, the above-mentioned influencing parameters are expressed in 

the form of correction factors, as shown in Equation (6-1). 

𝑅𝑘
(𝑖) = 𝜂1

(𝑖)𝑟𝑘
(𝑖) 𝑜𝑟 𝑅𝑘

(𝑖) = 𝜂2
(𝑖)𝑟𝑘

(𝑖)
 (6-1) 
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where 𝑅𝑘
(𝑖)

 denotes the ratio of the actual traffic load response to code D60 for the i-th effect. 

Taking into account the traffic characteristics (AADT, GVW); 𝑟𝑘
(𝑖)

 is the ratio of the traffic load 

response for i-th effect corresponding to the original extreme scenario model to code D60. The 

original extreme scenario is defined based on the WIM data available, representative of a specific 

traffic condition (AADT and GVW distribution). As the characteristic value in the code D60 

corresponds to a return period of 1950 years, the defined ratios only make sense if the traffic load 

response also corresponds to the same return period. Therefore, by Monte Carlo simulation (MCS), 

105 daily extreme responses for a certain effect are obtained. Then, by a generalized extreme value 

(GEV) based extrapolation method, the extreme response with the same return period as D60 can 

be extrapolated; 𝜂1
(𝑖)

 denotes the correction factor for the traffic parameters associated with AADT 

(different from original scenario) for i-th effect; 𝜂2
(𝑖)

 represents the correction factor for the i-th 

effect associated to the distribution of GVW (different from original scenario) in the traffic flow. 

In Chapter 5, the above parameters will be calculated as shown in Table 6-2 for the example bridge. 

Table 6-2 Correction factors for different LEs and traffic conditions. 

The i-th effect AFC VDMS LDTP BMMS BMBP 

Standard ratio value 𝑟𝑘
(𝑖)

 1.374 1.191 0.628 2.363 0.575 

Response value 𝑟𝑘
(𝑖)

 1191 kN -1.40 m 0.234 m 185801 kNm -210542 kNm 

AADT 𝜂1
(𝑖) 40000 1.015 0.999 1.005 1.039 1.000 

60000 1.269 1.257 1.216 1.221 1.185 

80000 1.449 1.437 1.507 1.340 1.375 

100000 1.599 1.601 1.811 1.414 1.821 

GVW distribution 𝜂2
(𝑖) Sample 1 1.568 1.421 1.444 1.434 1.403 

Sample 2 0.999 0.991 0.991 0.926 0.932 

*Note: The axial force of the longest cable (AFC, Effect 1), the vertical deflection of main girder at mid-

span of the main span (VDMS, Effect 2), the longitudinal displacement at the top of the pylon (LDTP, 

Effect 3), the bending moment of main girder at mid-span of the main span (BMMS, Effect 4), and the 

bending moment at the bottom of the pylon (BMBP, Effect 5). 

6.6 Bayesian approach for updating traffic scenarios 

The traffic flow parameters evolve over time. Therefore, the modeling of vehicle load scenarios 

leading to extreme effects scenarios needs to consider such evolution, as for instance, the growth 

of AADT. Therefore, a particle filter (PF) method was utilized to conduct the updating and 

optimization of the model of vehicle scenarios when new observed information is obtained. The 
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traffic flow with different AADTs and GVW distributions, used as new observed information, 

were simulated by employing the CA method. CA has been used in several fields. In the traffic 

domain it was used to analyze the vulnerability of road networks for dangerous goods 

transportation (RNDGT) under cascading failure considering intentional attack (Huang et al. 2021). 

In order to simulate the traffic flow based on measured WIM data, the CA method was introduced 

and developed rapidly in terms of theory and tools (Ruan et al. 2017; Tian et al. 2016). With the 

aid of CA method, complex movements of vehicles, such as speed changes, lane changes, etc. can 

be simulated successfully and the generated long-term traffic flow maximum effects can be 

obtained (Chen & Wu 2011; Ruan et al. 2017). In the thesis, the CA method was introduced to 

generate new traffic flows as observation information for use in the update. The description and 

details of the method can be found in the research of Ruan et al. (2017). 

The response of LEs are highly correlated with the location of heavy vehicles on the bridge deck, 

especially for long-span bridges (Caprani, O’Brien & McLachlan 2008; Caprani 2013; Chen & 

Wu 2011; O’Brien, Hayrapetova & Walsh 2012; Xu, Chen & Xia 2012). Therefore, the load 

distribution changes with time due to changes in the traffic composition should also be considered. 

As a result, modifications to the traffic environment must be regularly observed and considered 

when predicting traffic loads (Kim & Song 2021). Based on new observations and data gathered 

from ongoing monitoring of the traffic environment of the bridge, many updating and optimization 

approaches for the traffic load model were proposed to predict the extremes of traffic LEs (O’Brien 

et al. 2015; Yu & Cai 2019). However, the distribution of heavy vehicles on the bridge deck when 

the extreme response is obtained is not explicitly considered in these methods. For the probabilistic 

model of extreme scenarios, a new updating method for the spatial distribution of vehicle load is 

required. Many surrounding conditions, such as the construction of new bridges or factories in the 

vicinity or the temporary closing of alternative routes, can affect the vehicle composition within 

the traffic flow and the parameters causing extreme scenarios. Therefore, the traffic load scenario 

of extreme LEs corresponds to a spatial random variable which parameters change over time. 

Given that 𝑿 = [𝒙𝟏, 𝒙𝟐, … , 𝒙𝒎, … , 𝒙𝝑] is a set of random fields, where 𝒙𝒎 is a random variable 

simulated by the probabilistic model presented in Chapter 3 (𝒙𝒎 represents one extreme scenario 

under stationary traffic conditions), and 𝝑 is the total number of MCS for extreme scenarios (in 

this paper, 105 MCS is taken). Then, 𝑿 is a spatial stochastic process that varies with time and 
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describes the vehicle load distribution on the bridge deck for extreme scenarios for similar traffic 

conditions. However, the characteristics of 𝑿 along time can be highly affected by the evolution 

of the traffic flow and configuration of the heavy vehicles and, therefore, deriving in non-stationary 

traffic conditions and in a non-stationary stochastic process. Many efforts have been devoted to 

investigate the non-stationary nature of traffic varying with time. Many prediction methods and 

derivation functions were developed to study the impacts of the constant growth of truck weight 

and the growing traffic volume on structural performance (Yu et al. 2019; Leahy, O’Brien & O 

Connor 2016; O’Brien, Bordallo-Ruiz & Enright 2014). Accordingly, the extreme scenarios 

prediction can be expressed by a function 𝑓(∙) as Equation (6-2): 

𝑿(𝑡) = 𝑓(𝑿(𝑡−1), 𝝍(𝑡)) (6-2) 

where 𝝍(𝑡) represents the system error generated during the prediction process, t is the time state. 

Considering a time period where traffic flow and composition can be considered as constant, 𝑿 is 

assumed to be stationary, that is, 𝑓(∙) represents a linear equality relationship. Subsequently, with 

PF method, the spatial load model for extreme scenarios can be updated using new-observed data. 

Actually, if the relationship between the random variables in the prediction model and the observed 

data is nonlinear or the random variables distributions are non-Gaussian, it is typically unfeasible 

to use a rigorous theoretical method to update the prediction model. In these conditions, PF is a 

flexible technique for updating random variables that can be applied without any restrictions for 

systems and noise types (Fisher & Tippett 1928; Kitagawa 1996; Chen et al. 2021; Zang et al. 

2021). The updating method of PF for the random fields was proposed and applied by several 

researchers (Maruyama & Hoshiya 2008; Liu et al. 2019; Tulsyan, Bhushan Gopaluni & Khare 

2016). 

According to the state space model (SSM) method (Tulsyan, Bhushan Gopaluni & Khare 2016), 

the observation 𝒀(𝑡) is assumed to be conditionally independent of each other given latent state 

𝑿(𝑡). The dimension of 𝒀(𝑡) is u, which represents the number of cells observed on the bridge deck. 

The dimension of 𝑿(𝑡) is 𝑥 × 𝑥 = 𝜄, where 𝑥  and 𝑥  are the number of cells in the transverse 

and longitudinal direction, respectively. For the spatially observed data 𝒀(𝑡), the interrelationship 

with 𝑿(𝑡) can be expressed as Equation (6-3): 
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𝒀(𝑡) = Λ ∙ 𝑿(𝑡) + 𝒆(𝑡) (6-3) 

where Λ is a function matrix providing measurement locations information with dimensions of 

𝑢 × 𝜄. and 𝒆(𝑡) is the observation error. The dimension of 𝒆(𝑡) is also u. The detail of the dimension 

of each parameter is discussed in the section Application of Bayesian inference for updating the 

vehicle spatial distribution of extreme scenarios. 

State estimation for SSMs in the Bayesian framework is solved by recursively calculating the state 

posterior density as Equation (6-4): 

𝕏(𝑡)|(𝕐(1:𝑡) = 𝕪1:𝑡)~𝑝(𝕏(𝑡)|𝕐(1:𝑡)) (6-4) 

where 𝑝(𝕏(𝑡)|𝕐(1:𝑡)) is the posterior or filtering density and 𝕏(𝑡) is assumed herein to be a Markov 

process, and 1: t means time 1 to time t (Tulsyan, Bhushan Gopaluni & Khare 2016). Based on 

Bayesian theory and the Markov property, the filtering density can be written as Equation (6-5): 

𝑝(𝕏(𝑡)|𝕐(1:𝑡)) =
𝑝(𝕐(𝑡)|𝕏(𝑡))𝑝(𝕏(𝑡)|𝕐(1:𝑡−1))

𝑝(𝕐(𝑡)|𝕐(1:𝑡−1))
 (6-5) 

where 𝑝(𝕐(𝑡)|𝕏(𝑡)) and 𝑝(𝕏(𝑡)|𝕐(1:𝑡−1))are the likelihood and the state prior, and 𝑝(𝕐(𝑡)|𝕐(1:𝑡−1)) 

is a normalizing constant, which is often not explicitly known in state estimation. Therefore, the 

constant can be ignored as Equation (6-6): 

𝑝(𝕏(𝑡)|𝕐(1:𝑡)) ∝ 𝑝(𝕐(𝑡)|𝕏(𝑡))𝑝(𝕏(𝑡)|𝕐(1:𝑡−1)) (6-6) 

Then, using marginalization, 𝑝(𝕏(𝑡)|𝕐(1:𝑡−1)) can be expressed as Equation (6-7): 

𝑝(𝕏(𝑡)|𝕐(1:𝑡−1)) = ∫𝑝(𝕏(𝑡)|𝕏(𝑡−1)) 𝑝(𝕏(𝑡−1)|𝕐(1:𝑡−1))𝑑𝕩𝑡−1 (6-7) 

Meanwhile, for an already generated random field, if the observation is carried out at the site, then 

the newly obtained data can be used to update the above model (Maruyama & Hoshiya 2008). In 

order to get the optimal estimation of random field 𝑿(𝑡) utilizing the spatially observation data 𝒀(𝑡), 

combined with Equation (6-2) the discrete version of the fundamental updating formula for the 

conditional probability 𝑝(𝑿(𝑡) = 𝒙𝑚
(𝑡)|𝒀(𝑡)) can be written as Equation (6-8): 
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𝑝(𝑿(𝑡) = 𝒙𝑚
(𝑡)|𝒀(𝑡)) =

𝑝(𝒀(𝑡)|𝑿(𝑡) = 𝒙𝑚
(𝑡))𝑝(𝑿(𝑡) = 𝒙𝑚

(𝑡))

∑ 𝑝𝜗
 =1 (𝑿(𝑡) = 𝒙 

(𝑡))𝑝(𝒀(𝑡)|𝑿(𝑡) = 𝒙 
(𝑡))

 (6-8) 

where 𝒙 
(𝑡)

 is sampled with equal probability. If the total number of sample realizations is 𝛼 , 

𝑝(𝑿(𝑡) = 𝒙 
(𝑡)) can be written as Equation (6-9): 

𝑝(𝑿(𝑡) = 𝒙 
(𝑡)) =

1

𝛼
 (6-9) 

and 𝑝(𝒀(𝑡)|𝑿(𝑡) = 𝒙𝑚
(𝑡)
)  is the conditional PDF, which is the weight of the observation 𝒀(𝑡) . 

Consequently, according to Equation (6-9), the weight ratio can be derived from Equation (6-8), 

expressed as Equation (6-10): 

𝑝(𝑿(𝑡) = 𝒙𝑚
(𝑡)|𝒀(𝑡)) =

𝜔𝑚
(𝑡)

∑ 𝜔 
(𝑡)𝜗

 =1

 (6-10) 

where: 

𝜔𝑚
(𝑡) = 𝑝(𝒀(𝑡) − Λ ∙ 𝒙𝑚

(𝑡)) (6-11) 

𝜔𝑚
(𝑡)

 denotes the weight for each 𝑿(𝑡) based on 𝒀(𝑡). Since 𝒀(𝑡) and Λ ∙ 𝒙𝑚
(𝑡)

 in Equation (6-11) are 

vectors, 𝑝(𝒀(𝑡) − Λ ∙ 𝒙𝑚
(𝑡)) is computed according to multivariate Gaussian PDF of the observation 

error 𝒆(𝑡). 

The updating process is shown in Figure 6-5, the spatial observed data is 𝒀(𝑡), the spatial load 

distribution is 𝑿(𝑡) = [𝒙𝟏
(𝒕)
, 𝒙𝟐
(𝒕)
, … , 𝒙𝒎

(𝒕)
, … , 𝒙𝝑

(𝒕)
] and the smoothed samples mean the smoothing 

process to pass from the original extreme scenario to the spatial load distribution 𝑿(𝑡) as shown in 

Figure 6-6. The process can be summarized as follows: firstly, the observed spatial data 𝒀(𝑡) is 

used in the calculation of weight ratios for each 𝒙𝑚
(𝑡)

 according to Equations (6-10) and (6-11). 

Secondly, the updated random fields, 𝑿(𝑡) are then obtained by a resampling process using the 

weight ratios. The resampling process is depicted in Figure 6-5. The random fields with small 

weights are eliminated. It should be noted that the random field updating here is only for the load 

form. The extreme value is determined by the extreme scenario model, MCS method and the 
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extrapolation method. Therefore, eliminating the fields with small weights does not result in loss 

of accuracy in the calculation of the extreme value. The resampled index is the serial number of 

the random field samples. Each index corresponds to a certain weight. Figure 6-7 shows a 

schematic explanation of the resampling process. The horizontal arrows represent the equal 

divisions to determine which particles are sampled. For instance, the weight of the sample with 

index 6 is 𝜔𝑚, which is one of the largest. Therefore, the sample with index 6 is selected 3 times 

as instructed by the purple arrows, similar to sample 9 as shown by the red arrows. Samples 1, 3 

and 8 will be sampled once, while samples with index 2, 4, 5 and 7 are not selected because of the 

lower weight. 
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Figure 6-5 Procedure of PF for updating spatial random fields based on observed data. 
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Figure 6-6 Smoothing process of samples for spatial updating. 
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Figure 6-7 Schematic plot of the resampling process. 

6.7 Conclusions 

In this Chapter, a prior site-specific traffic load spatial distribution model and its updated posterior 

version considering actual traffic conditions via Bayesian inference were proposed. MCS is 

adopted to generate the vehicle scenarios that can cause extreme effects. Then, Bayesian inference 

approach is developed for the updating of spatial load distribution in the above scenarios utilizing 

the PF method. The proposed method is able to address complex spatial distribution updating 

problems for traffic load modeling. 
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CHAPTER 7 Application of the site-specific traffic model 

and its Bayesian updating 

7.1 Application of Bayesian inference for updating the vehicle spatial 

distribution of extreme scenarios 

The considered effects AFC (Effect 1), VDMS (Effect 2), LDTP (Effect 3), BMMS (Effect 4), 

BMBP (Effect 5) are the same as defined in the previous chapters. The shape of the influence line 

for each effect is plotted in Figure 7-1. According to the occurring probability of heavy vehicles 

in the extreme scenarios for different effects, the cells in the bridge deck are grouped into several 

areas, as illustrated in Figure 7-1. There are three categories, namely, intensive area, sub-intensive 

area, and non-intensive area. The intensive area and sub-intensive area represent the highest 

intensity level, and they will be used in the updating process as the observed locations. The division 

is based on the occurring probability of a heavy vehicle in the cell in the extreme scenarios. When 

the occurring probability of a heavy vehicle is between 0.9 to 1 times of the maximum value (the 

maxima of occurring probability of all the cells), the cell belongs to the intensive area. If the 

occurring probability is between 0.5 to 0.9 times of the maximum value, the cell belongs to the 

sub-intensive area. Other cells belong to the non-intensive area. This division method greatly 

reduces the number of observation points for the posterior up-dating and allows to focus on the 

areas where heavy vehicles appear with higher probability and producing the higher effects, 

thereby improving the computational efficiency. 
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Figure 7-1 Configuration of the long-span cable-stayed bridge with the influence lines of five 

effects and definition of the 3 different intensity areas (Unit: m). 

Meanwhile, to simulate the changes in traffic flow or traffic composition, the micro-simulation 

method is used. With this tool, it is convenient to use the control variate method to study the load 

model optimization according to different traffic parameters (Hull & White 1988). Traffic micro-

simulation based on CA is applied to obtain the detailed information associated with vehicle load, 

vehicle velocity, headway distance, and lane position (Ruan et al. 2017). The simulation is 

formulated in two steps according to Tian et al. (2016): (1) generate the vehicle sequences at the 

entrance of the simulation section; (2) run the vehicles over the bridge based on the specified rules 

of movement. Traffic volume, traffic composition, lane choice, speed, and weight should be 

modeled probabilistically to perform the vehicle generation. After a vehicle is produced, its 

Sub-intensive area
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Non-intensive area 

Effect of AFC

Effect of VDMS
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Effect of BMMS

Effect of BMBP

Probability distribution of vehicles 

on bridge deck according to 
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movement is controlled by the local rules that determine the driving modes (i.e., acceleration, 

cruising, coasting, and braking). With the vehicle positions available at each point in-time, the 

targeted LE can be calculated by imposing the position of the vehicles on the corresponding 

influence line. The CA method has been verified, as presented in Tian et al. (2016). 

The observed information (i.e., different scenarios generated by CA method) is integrated 

probabilistically with the prior information (i.e., the probabilistic model for the extreme effect 

scenarios) to derive the posterior distribution of the extreme scenarios under the Bayesian 

framework. 

The bridge has six lanes and the deck is divided into 105 longitudinal cells of 20 m length, what 

is determined according to the length statistics of heavy vehicles (105 * 20 = 2100 m, which is 

slightly longer than the total length of the Sutong Bridge). The six lanes are grouped into two: 

outer lanes and inner lanes. Lane 1 and 6 are outer lanes and lanes 2 to 5 are inner lanes, as shown 

in Figure 7-1.  

For each effect, the extreme scenarios were simulated to get 105 samples by the probabilistic traffic 

model and MCS, hereafter referred to as the prior scenario. Then, several extreme scenarios 

calculated from traffic data (generated by CA method) with different AADT (in the present case 

40000, 60000, 80000, 100000) are obtained for the updating process, hereafter referred to as the 

observed scenario. Let us define 𝑆𝑖 as one sample of these scenarios, either prior or observed. 

Either obtained by the prior traffic scenario model or by CA using measured data, the sample 

generated or calculated represents one possible realization of a vehicle distribution scenario 

producing a maximum LE. This single sample is completely random and therefore is not 

appropriate as a component for a random field updating. It is necessary to perform a certain data 

processing of these original samples so that the obtained random field  𝑖 can effectively express 

the evolution of the distribution of vehicles in each cell. Each adjacent 200 samples were gathered 

to have a uniformized process, and the processes are nested with each other. It means that each 

original sample 𝑆𝑖 has been applied 105 times for the prior scenario, thus 105 new samples  𝑖 are 

obtained. The expression of this process is shown as Equation (7-1): 
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 1 = (∑ 𝑆𝑖
 

𝑖=1
) /𝛽 

⋯⋯ 

 𝑘 = (∑ 𝑆𝑖
𝑘  −1

𝑖=𝑘
)/𝛽 

⋯⋯ 

  = (𝑆 +∑ 𝑆𝑖
 −1

𝑖=1
) /𝛽 

(7-1) 

where 𝑆𝑖 (𝑖 = 1,2, … , 𝛼)  represents the original samples and  𝑖 (𝑖 = 1,2, … , 𝛼)  represents the 

newly obtained samples. The total amount of samples is 105, that is 𝛼 = 105. 𝛽 represents the 

number of averaged original elements 𝑆𝑖 contained in the new element  𝑖 (𝛽 = 200 in the present 

case) for both prior and observed scenarios. 

Taking into account the requirement of simplicity for the load model, the two outer lanes are 

averaged and participate in the updating process as one column, and the same is done for the four 

inner lanes. So, the total number of sampling cells is 105 ×  2 = 210 cells. This process of 

transforming from 6 lanes field  𝑖 to 2 columns field  𝑖 are expressed as Equation (7-2): 

𝐿𝑖  𝑖  = 𝑚𝑒𝑎𝑛 (∑ 𝐿𝑖
5

𝑖=2
) 

𝐿  𝑡 𝑖  = 𝑚𝑒𝑎𝑛(𝐿1 + 𝐿 ) 

(7-2) 

The intensive and sub-intensive area represents the area with the highest probability of vehicles 

appearing in extreme scenarios. Therefore, these two areas are selected as the observed locations 

for updating. The location of these two areas in the random field  𝑖 is selected as the observed 

spatial data  𝑖. 

After the above smoothing process of the samples for spatial updating, the PF can be carried out. 

Effect 4 (Effect of BMMS in Figure 7-1) is selected to illustrate this procedure. The intensive and 

sub-intensive areas of Effect 4 are concentrated in the mid-span region of the bridge deck. There 

are four cells in these areas for both the outer and inner lanes, as shown in the green and yellow 
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color blocks for the effect of BMMS in Figure 7-1. With the assumption that the vehicle load 

distribution intensity is acquired at these locations along the lanes, the vector 𝒀(𝑡) in Figure 7-2 

contains eight rows indicating the eight observed values of vehicle load intensity on the bridge 

deck. The matrix Λ illustrated in Figure 7-2 indicates the observed locations on the bridge deck 

corresponding to the observed vehicle load intensity. According to the results obtained in the 

calibration of WIM systems, one can model the observation error 𝒆(𝑡)  for the vehicle load 

measurement as a Gaussian distribution with a zero mean and standard deviation of 3 tonnes. Given 

the Λ, 𝒀(𝑡), and 𝒆(𝑡), the 𝜔𝑚
(𝑡)

 of a random field 𝒙𝑚
(𝑡)

 can be computed as expressed by Equation 

(7-3) according to the multivariate Gaussian PDF (Gonçalves et al. 2022): 

𝜔𝑚
(𝑡) = (2𝜋)− /2 ∙ |Γ|−1/2 ∙ 𝑒𝑥𝑝 [−

1

2
(𝒀(𝑡) − Λ ∙ 𝒙𝑚

(𝑡))
𝑇

Γ−1(𝒀(𝑡) − Λ ∙ 𝒙𝑚
(𝑡))] (7-3) 

where Γ is the covariance matrix of the observation error with dimensions of 𝑢 × 𝑢 (i.e. u = 8). 

With the calculated weight for each random field, the resampling is carried out. 

 

Figure 7-2 Observation vector on the bridge deck and matrix Λ representing the observed 

locations on the lanes. 

The observed data can be obtained under different traffic volumes (i.e., different AADT of 40000, 

60000, 80000, 100000 for example). According to the load form 4, Figure 7-3 shows the spatial 

random field results of outer lane vehicle load intensity updated by four traffic volumes. It can be 
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seen that, when the AADT increases, the updated vehicle load intensity also increases in the 

intensive and sub-intensive areas for Effect 4 (BMMS). Therefore, the updating method can 

effectively describe the load intensity change corresponding to the traffic volume evolution. It 

should be noted that the spatial updating method is only used to update the profile of the load form, 

the updating of load intensity is done. So, the vehicle load distribution intensity shown in Figure 

7-3 is an intermediate result, not the final load intensity value of the updated model. 

 

Figure 7-3 Distribution of vehicle load intensity for outer lane before and after updating using 

four traffic states. 

7.2 Traffic load model updated for different traffic states 

The observed data used in the updating process explained above could be obtained by WIM under 

different traffic volumes. However, owing to the WIM data with significant uncertainty, it is 

difficult to obtain the observation data under a specific traffic condition, so that the control variate 

method cannot be well applied. To solve this problem, the CA method was used to generate the 

different traffic data as observed data for the updating (artificial WIM data). Several traffic states 

(i.e., AADT of 40000, 60000, 80000, and 100000, and two GVWs distribution samples, namely, 

sample 1 and sample 2) were simulated as the observation data. For each simulated traffic state, 

the simulation time is 15 days. Figure 7-4 shows the probabilistic distribution of the ratio of actual 

Cell number
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response to code D60 (η1) of the four simulated traffic states with different AADT for the five 

effects. It can be observed that the response value increases as the AADT grows. Figure 7-5 depicts 

the PDFs of GVWs from observed data with different GVWs distributions generated by the CA 

method. These two GVWs probability densities are significantly different from each other. The 

GVWs of sample 1 are significantly larger than those of sample 2. 

 

(a)      (b) 

 

(c)      (d) 
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(e) 

Figure 7-4 Effect ratio to D60 from observed data with different AADT generated by CA 

method. 

 

Figure 7-5 PDF of GVWs from observed data with different GVWs distribution generated by 

CA method. 

Figure 7-6 shows the load profiles of the traffic model for both outer lane and inner lane for the 

five effects. The load intensity of the inner lane is significantly lower than that of the outer lane. 

Therefore, for the application of the traffic model, the profiles are normalized by assigning a value 

1 to the maximum value of the outer lane. It can be seen that the profiles are quite different. This 

is due to the difference in the distribution of intensive area for each effect.  
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Figure 7-6 Updated load form profile of traffic model for five effects and AADT equal to 

100000. 

For the load intensity of the traffic model, the responses of observed traffic data should be 

calculated to determine the updated load value under different traffic states. This is because the 

updated random field of heavy vehicles on the bridge deck was implemented by comparing the 

similarity of the random field generated by prior distribution and observed spatial data and by 

redistribution of weights associated with the original random field. Therefore, the shape of the 

updated random fields is consistent with the selected original ones. However, the real scenarios of 

the heavy vehicle distribution under the new traffic conditions are not integrated into the updated 

fields. The essence of the updating process is to filter out the field clusters from the original 
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database that are more in line with the new traffic state under a certain error control. Thus, the 

updated results can represent well the scenario of the new traffic state on the load profile, but not 

the load intensity. Therefore, to assign intensity values to the updated profiles under different 

traffic states, it is necessary to analyze the effects of the observed data and the original data. 

The response ratio of updated results of different AADT to original data are shown in Figure 7-7. 

The GVW distribution used in Figure 7-7 is the same as the one of the original probability vehicle 

scenario models. The correction factor in Figure 7-7 refers to the factor 𝜂1
(𝑖)

 in Equation (6-1). 

The updated responses increase as the AADT grows for all five effects. Figure 7-8 presents the 

response ratio of updated results of different GVWs samples to original data. It can be seen that 

the response of sample 1 is much higher than that of sample 2 for all five effects. For the lighter 

traffic (sample 2), the ratio is close or less than 1. The correction factor in Figure 7-8 refers to the 

factor 𝜂2
(𝑖)

 in Equation (6-1). 

 

Figure 7-7 Response ratio of updated results to original scenario for different traffic states. 

Using the observed data under different traffic states, the spatial distribution of traffic load 

intensity can be updated by the Bayesian inference method. The response ratio of updated results 

to original data can be obtained. As outlined in Chapter 2, they are all given as the ratio of response 

to code D60 and in the format of a correction factor. 
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Figure 7-8 Influence of GVW statistical distribution on the response ratio of updated results to 

original scenario. 

Table 7-1 depicts the load model response correction factors for different traffic states as well as 

the standard ratio values 𝑟𝑘
(𝑖)

. The standard ratio value 𝑟𝑘
(𝑖)

 is the ratio of the response of the 

original probabilistic model of traffic scenarios to the D60 load value. The response ratio 𝑟𝑘
(𝑖)

 has 

already been extrapolated with a return period of 1950 years. It can be seen that the correction 

factors for different traffic states vary greatly depending on the LEs. For instance, for the case of 

AADT 100,000, the correction factors for effects 3 and 5 are 1.811 and 1.821, respectively, while 

the correction factor for Effect 4 (BMMS) is 1.414. At the same time, it can be observed that 

effects with similar effective loaded lengths have similar trends in the values of the correction 

factor.  

Table 7-1 Correction factors for different LEs and traffic conditions. 

The i-th effect AFC VDMS LDTP BMMS BMBP 

Standard ratio value 𝑟𝑘
(𝑖)

 1.374 1.191 0.628 2.363 0.575 

AADT 𝜂1
(𝑖)

 40000 1.015 0.999 1.005 1.039 1.000 

60000 1.269 1.257 1.216 1.221 1.185 

80000 1.449 1.437 1.507 1.340 1.375 

100000 1.599 1.601 1.811 1.414 1.821 

GVW distribution 

𝜂2
(𝑖)

 

Sample 1 1.568 1.421 1.444 1.434 1.403 

Sample 2 0.999 0.991 0.991 0.926 0.932 
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For the most unfavourable conditions with 100000 AADT, the response value ratio for Effect 4 

(BMMS) is 2.363 × 1.414 = 3.341, indicating that the maximum load effect by the proposed model 

is more than 3 times higher than the load effect predicted by code D60. However, the response 

values for Effect 3 (LDTP) and 5 (BMBP) are almost in the same level as D60 (0.628 × 1.811 = 

1.137 and 0.575 × 1.821 = 1.047). In this case, the code D60 provides quite accurate results, but 

still on the unsafe zone. Taking into account these results, it seems rational to develop a site-

specific traffic load model for different effects as done in this research.  

According to the above results and the load profile for each effect, the load intensity can be 

calibrated as shown in Table 7-2. 𝑞𝑘
(𝑖)

 represents the maximum load intensity for the outer lane for 

each effect. The intensity value for other location on the outer lane and for all the location on the 

inner lane are taken according to the shape scale shown in Figure 7-6. The load form profile in 

Table 7-2 is a schematic diagram. It means that for different effect of the investigated bridge, the 

shape of load form profile is different. It is un-uniformly distributed as corresponds to the load 

form 4 adopted. Based on the traffic model given in Table 7-2, the total load on the six lanes due 

to the traffic model for each case was calculated as shown in Table 7-3 and Figure 7-9. The total 

load corresponding to Effect 3 (LDTP) and 5 (BMBP) are much higher than that of code D60, 

while the extrapolated response ratio of these two effects to code D60 under AADT of 100000 are 

only 1.137 and 1.047, which are at the same response level as code D60. The total load 

corresponding to Effect 4 (BMMS) is slightly lower than that of code D60 while the extrapolated 

response ratio of this effect to code D60 is 3.341. Again, this result indicates that the load model 

of code D60 cannot account for the vehicle load spatial distribution on the bridge deck. A similar 

conclusion is of application to other codes that adopt similar load model profiles as AAHSTO, BS 

and Eurocode. The proposed model addressed this shortcoming and can build targeted load models 

for different effects. 
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Table 7-2 Load intensity and load form schematic diagram of traffic model for different 

structural effects. 

The i-th effect AFC VDMS LDTP BMMS BMBP 

Load intensity 𝑞𝑘
(𝑖)

 

(Unit: kN/m) 

 
AADT 40000 24.07 22.89 18.85 29.54 17.21 

60000 30.59 28.72 23.32 34.89 20.15 

80000 35.30 33.08 28.74 38.07 24.07 

100000 39.70 37.29 35.19 40.36 32.65 

GVW 

distribution 

Sample 1 39.72 33.17 28.85 41.41 25.21 

Sample 2 23.13 22.30 18.48 25.43 15.94 

 

 

Figure 7-9 Total load on the bridge deck of the proposed traffic model and D60. 

Table 7-3 Total load on bridge deck of proposed traffic model. 

Total load on bridge deck (Unit: tonnes) AFC VDMS LDTP BMMS BMBP 

Code D60 loading results 3397 2560 4171 3204 2560 

AADT 40000 3650 3949 6327 2494 6181 

60000 4476 4941 7624 2880 7309 

80000 5058 5592 9404 3136 8428 

100000 5461 6161 11243 3267 11106 

GVW distribution Sample 1 5343 5522 8977 3282 8547 

Sample 2 3620 3945 6251 2267 5777 
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7.3 Conclusions 

This chapter proposes a Bayesian method for updating the spatial distribution of vehicle load level 

of the proposed site-specific model under time-varying traffic flow conditions. An engineering 

application example is given based on a natural bridge. The results show that the proposed traffic 

model update method based on Bayesian inference can update the random field of the spatial 

distribution of vehicles on bridge decks when extreme values are obtained using new WIM 

observations, and has advantages in describing the spatial distribution of complex traffic loads. 

The load form of the proposed load model is a non-uniform line load distribution, which facilitates 

the identification of the actual distribution of heavy vehicle loads on the bridge deck when different 

effects reach extreme values.  

The site-specific load model presented in this chapter is only responsible for the sample WIM data. 

If the model is used for the feasibility assessment of new bridges, it is necessary to make a 

reasonable prediction of the traffic flow information at the bridge site. Based on the predicted 

traffic flow parameters obtained from the assessment, the CA method is applied to simulate the 

future traffic flow and further applied to the structural assessment of the new bridge.  

The application of the updating method of the site-specific model proposed in this chapter for 

existing bridges can provide timely information on changes in the distribution tendency of heavy 

vehicles on the bridge deck. By timely learning the actual level of vehicular load distribution on 

the bridge deck, the changes in the structural performance induced by vehicular loads in can be 

assessed in real time. The structural performance assessment information can be further compared 

with the real-time monitored structural response to analyse the structural performance degradation 

or structural damage. 
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CHAPTER 8 Conclusions and future research 

8.1 Conclusions 

In this thesis, we present a probabilistic model for assessing extreme LEs on long-span bridges 

using a GMM method under free-flow traffic, based on WIM data. The proposed model is applied 

to a double-tower cable-stayed bridge case study, and its accuracy and efficiency are validated 

through numerical calculations using WIM data and the CA method. 

The Monte Carlo method enables probabilistic modeling of complex heavy vehicle spatial 

distributions. Excluding light vehicles (less than 10 tonnes) from the simulation reduces 

computational effort without significant loss of accuracy (errors below 5%). 

As neighbouring GVWs correlation increases, extreme LEs become more likely, emphasizing the 

importance of accurate vehicle spatial distribution modeling. The non-stationary Poisson process 

offers an efficient, feasible, and conservative method for this purpose. 

The proposed model's results for various LEs display varying agreement with values from existing 

traffic load models in certain codes. This highlights the need for developing separate load models 

for different effects based on actual extreme response vehicle scenarios. 

The developed site-specific model accurately considers extreme LEs for a specific return period, 

with substantial reductions in computation time compared to traditional simulations (a ratio of 

2520:1 in required time). 

The proposed probabilistic model's feasibility and advantages for long loaded length vehicle 

scenarios are demonstrated. However, due to assumptions in vehicle centroid reallocation and 

location simulation processes, the model may not be suitable for shorter loaded length bridge types. 

The appropriate load model pattern for designing or assessing long-span bridge effects can be 

explored based on this study's findings. 

Additionally, a Bayesian inference method is proposed for updating vehicle load spatial 

distributions on long-span bridge decks, resulting in maximum LEs under time-varying free traffic 

conditions. A site-specific traffic load model is developed for different effects, along with a 
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probabilistic model for heavy vehicle spatial distribution, load profile updating, and load intensity 

calibration, based on WIM data and the CA simulation method. An application example is 

presented. The Bayesian inference-based traffic model updating method effectively updates on-

bridge vehicle spatial distribution random fields using WIM monitoring data and is superior in 

describing complex spatial distributions. The proposed non-uniform distributed load shape for the 

traffic model enables accurate heavy vehicle load distribution recognition on the bridge deck when 

different effects reach extreme values, addressing limitations in traditional code models and 

offering insights for constructing targeted load models for various LEs. 

The proposed model has been applied to other representative cable-stayed bridges apart from the 

one presented in the case study, with span-lengths between 200 and 1000 meters. The information 

of the bridges, the application process and a brief analysis of the results can be found in Appendix 

3. From the study, it can be concluded a similar pattern of load distribution on the bridge deck for 

the extreme response scenario, although with a different load intensity, which increases as the 

span-length decreases. The smaller the span- length, the larger the peak load value and average 

load per bridge length for the same effect on the cable-stayed bridge. In contrast, the average load 

per bridge length under code D60 does not show significant differences between the span-specific 

scenarios and is not consistent with the extreme scenario case of the actual WIM data. These 

findings reveal the characteristics of the load levels of extreme response scenarios for different 

span bridges under different effects and can further guide bridge design and maintenance. In 

practical applications, for different long-span bridge types and spans, targeted load model can be 

built according to the specific loading conditions to ensure the safety of the bridge, and the extreme 

response scenario load model presented in this thesis can provide a powerful tool for this purpose. 

Although the proposed approach is also applicable for congested traffic scenarios, the main traffic 

condition considered in the present paper is free-flow not congested traffic. The congestion 

situation is a worst-case scenario most of the time, but it is rare to occur, and daily traffic flow 

does not pattern in this manner. Therefore, the extreme effect value scenarios under free-flow, 

which occur more frequently and also can produce larger extreme effect values, are of equal value 

importance in the daily management and safety assessment of long-span bridges. For the safety of 

long-span bridges, the extreme effect scenarios generated by free-flow should not be ignored. 
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8.2 Future research 

The proposed probabilistic model of traffic scenarios for long-span bridges is highly site-specific 

and can only account for the traffic sample of the bridge location. Owing to the lack of monitoring 

data, real-time correspondence of response and traffic scenario is not involved in the study. 

Likewise, due to the lack of actual congestion measurement data, the modeling of the congestion 

scenario is not carried out in detail in this work. The model is proposed for long-span bridges; 

therefore, it is not applicable to the analysis of effects with short loading length (e.g., fatigue 

effects). Meanwhile, the proposed model has some limitations in considering the correlation of 

GVWs between adjacent lanes, the consistency and variability of the scenario in terms of time and 

space, as well as dynamic vehicle loads. In addition, the validation of the model has been 

performed under free traffic flow conditions. Although also of application to congested traffic 

scenarios, a full study under such situation should be addressed in future research. In the thesis, 

only the static loading responses of vehicles are considered, and further research will be carried 

out on the effects of dynamic vehicle-structure interactions on the performance of long-span 

bridges. 

The proposed traffic load model and its Bayesian inference-based approach are appropriate to 

obtain the maximum values of different bridge effects for long-loaded lengths under different 

traffic conditions in non-congested situation. These maxima correspond to critical load scenarios 

representing actual traffic flow conditions and they depend on the AADT and characteristics of 

GVW. However, the proposed model cannot depict the spatio-temporal properties of on-bridge 

vehicle load, as it does not consider dynamic characteristics of traffic flow, which needs further 

study. At the same time, distinguishing congested flow and free flow in the spatial distribution 

traffic model and building the corresponding updating methods is also a key content that needs 

attention in the future to analyze congested traffic situations and free traffic states including 

dynamic effects (relevant for fatigue limit state). 
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Appendix 1. List of acronyms 

 

Acronyms Significance 

 

AADT 

AASHTO 

AFC 

BMBP 

BMMS 

BS 5400 

CA 

CDF 

D60 

GEV 

GMM 

GVW 

IID 

IL 

LDTP 

LE(s) 

MCS 

PDF 

PF 

RNDGT 

SSM 

VDMS 

WIM 

 

 

Annual average daily traffic volume 

Highway Bridge Design Specifications of America 

Axial force of the longest cable (Effect 1) 

Bending moment at the bottom of the pylon (Effect 5) 

Bending moment at mid-span of the main span (Effect 4) 

Specification for Loads of Britain 

Cellular automata 

Cumulative distribution function 

General code for design of highway bridges of China 

Generalized extreme value distribution 

Gaussian mixture model 

Gross vehicle weight 

Independent and identically distributed 

Influence line 

Longitudinal displacement at the top of the pylon (Effect 3) 

Load effect(s) 

Monte Carlo simulation 

Probability density function 

Particle filter 

Road networks for dangerous goods transportation 

State space model 

Vertical deflection at mid-span of the main span (Effect 2) 

Weigh-in-motion 
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Appendix 2. Results for each effect in the case study 

 

 

Figure A-1 Structural effects and influence lines in Sutong bridge. 
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Figure A-2 Extreme response scenario load model of AFC. 

 

Figure A-3 Extreme response scenario load model of VDMS. 

 

Figure A-4 Extreme response scenario load model of LDTP. 
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Figure A-5 Extreme response scenario load model of BMMS. 

 

Figure A-6 Extreme response scenario load model of BMBP. 
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Figure A-7 Distribution of vehicle load intensity for outer lane before and after updating using 

four traffic states for AFC. 

 

Figure A-8 Distribution of vehicle load intensity for inner lane before and after updating using 

four traffic states for AFC. 
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Figure A-9 Distribution of vehicle load intensity for outer lane before and after updating using 

four traffic states for VDMS. 

 

Figure A-10 Distribution of vehicle load intensity for inner lane before and after updating using 

four traffic states for VDMS. 
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Figure A-11 Distribution of vehicle load intensity for outer lane before and after updating using 

four traffic states for LDTP. 

 

Figure A-12 Distribution of vehicle load intensity for inner lane before and after updating using 

four traffic states for LDTP. 
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Figure A-13 Distribution of vehicle load intensity for outer lane before and after updating using 

four traffic states for BMMS. 

 

Figure A-14 Distribution of vehicle load intensity for inner lane before and after updating using 

four traffic states for BMMS. 
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Figure A-15 Distribution of vehicle load intensity for outer lane before and after updating using 

four traffic states for BMBP. 

 

Figure A-16 Distribution of vehicle load intensity for inner lane before and after updating using 

four traffic states for BMBP. 
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Figure A-17 Updated extreme response scenario load model under AADT = 100000 of AFC. 

 

Figure A-18 Updated extreme response scenario load model under AADT = 100000 of VDMS. 

 

Figure A-19 Updated extreme response scenario load model under AADT = 100000 of LDTP. 
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Figure A-20 Updated extreme response scenario load model under AADT = 100000 of BMMS. 

 

Figure A-21 Updated extreme response scenario load model under AADT = 100000 of BMBP. 
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Table A-1 The parameters of Poisson processes for vehicle location model of AFC (veh). 

𝜆 of Poisson process 
Cell number 

1-49, 59-105 50-52, 54-58 53, 54 

Outer lanes 
Stationary 4.6537 

Non-stationary 3.6820 13.2221 29.3900 

𝜆 of Poisson process 
Cell number 

1-49, 59-105 50-52, 54-58 53, 54 

Inner lanes 
Stationary 1.9356 

Non-stationary 1.4658 6.0453 14.1579 

where outer lanes include lane 1 and 6, inner lanes include lane 2 to lane 5. 

Table A-2 The parameters of Poisson processes for vehicle location model of VDMS (veh). 

𝜆 of Poisson process 

Cell number 

1-30,32,35-45,62-

105 

31,33,34,46-52,55-

61 
53,54 

Outer lanes 
Stationary 4.8593 

Non-stationary 3.5690 8.9435 25.6294 

𝜆 of Poisson process 

Cell number 

1-29,31,32,34-

41,43,45,47,48,61-

67,70,71,73-105 

30,33,42,44,46,49-

51,55-60,68-69,72 
52-54 

Inner lanes 
Stationary 2.0491 

Non-stationary 1.4258 3.5664 11.1082 

where outer lanes include lane 1 and 6, inner lanes include lane 2 to lane 5. 

Table A-3 The parameters of Poisson processes for vehicle location model of LDTP (veh). 

𝜆 of Poisson process 

Cell number 

1-15,19,23-

43,58,77-95,97-105 

16-18,20-22,44-

47,49,52-57,59-

76,96 

48,50,51 

Outer lanes 
Stationary 5.2128 

Non-stationary 3.1498 8.2225 14.4799 

𝜆 of Poisson process 

Cell number 

1-13,23-

44,56,58,78-105 

14-22,45-49,53-

55,57,59-65,69-77 
50-52,66-68 

Inner lanes 
Stationary 2.2252 

Non-stationary 1.2507 3.4222 5.9988 

where outer lanes include lane 1 and 6, inner lanes include lane 2 to lane 5. 
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Table A-4 The parameters of Poisson processes for vehicle location model of BMMS (veh). 

𝜆 of Poisson process 
Cell number 

1-50, 56-105 51, 52, 54, 55 53 

Outer lanes 
Stationary 4.2139 

Non-stationary 3.4082 14.4592 43.8121 

𝜆 of Poisson process 
Cell number 

1-50, 56-105 51, 52, 54, 55 53 

Inner lanes 
Stationary 1.7169 

Non-stationary 1.3584 5.9885 20.4787 

where outer lanes include lane 1 and 6, inner lanes include lane 2 to lane 5. 

Table A-5 The parameters of Poisson processes for vehicle location model of BMBP (veh). 

𝜆 of Poisson process 

Cell number 

1-32,34-38,57,79-

95,97-105 

33,39-56,58-64,66-

70,72-78,96 
65,71 

Outer lanes 
Stationary 5.2459 

Non-stationary 3.1339 8.2774 13.7145 

𝜆 of Poisson process 

Cell number 

1-37,39,42,44,53,55-

59,61,78-95,97-105 

38,40,41,43,45-

52,54,60,62-64,72-

77,96 

65-71 

Inner lanes 
Stationary 2.2553 

Non-stationary 1.4550 3.5579 6.2500 

where outer lanes include lane 1 and 6, inner lanes include lane 2 to lane 5. 

Table A-6 Parameter of simulated GMM of Effect AFC (tonnes). 

GMM i-th component Mean value of Outer lane Mean value of Inner lane 

1 16.98 17.02 

2 29.60 29.56 

3 60.80 60.66 

4 99.71 101.13 

Table A-7 Parameter of simulated GMM of Effect VDMS (tonnes). 

GMM i-th component Mean value of Outer lane Mean value of Inner lane 

1 16.82 17.18 

2 28.96 29.80 

3 53.02 61.02 

4 78.64 103.81 

Table A-8 Parameter of simulated GMM of Effect LDTP (tonnes). 

GMM i-th component Mean value of Outer lane Mean value of Inner lane 

1 18.04 16.45 

2 45.79 27.69 

3 54.97 59.22 

4 85.25 97.82 
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Table A-9 Parameter of simulated GMM of Effect BMMS (tonnes). 

GMM i-th component Mean value of Outer lane Mean value of Inner lane 

1 17.77 18.09 

2 47.29 51.88 

3 84.83 86.82 

4 105.44 161.91 

Table A-10 Parameter of simulated GMM of Effect BMBP (tonnes). 

GMM i-th component Mean value of Outer lane Mean value of Inner lane 

1 18.24 16.93 

2 46.88 29.60 

3 52.27 59.89 

4 88.06 103.54 
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Appendix 3. Extended application of the proposed extreme 

response scenario probabilistic model 

Five representative long-span cable-stayed bridges with main spans range from 200 to 1000 meters 

are selected as the research objects to study the influence of the span length on maximum values 

of representative load effects and respective loading patterns and load intensities. They are all 

typical cable-stayed bridges with two towers and multiple lanes. A finite element software is used 

to model and analyze these bridges, calculate their influence lines of five effects and to obtain their 

maximum values according to the Chinese code D60 and the actual traffic flow loading. The span 

information and actual size comparison of the bridges are shown in Figure A-22. In the research, 

the following effects are selected as the more representative: the axial force of the longest cable 

(AFC, Effect 1), the vertical deflection of the main girder at mid-span of the main span (VDMS, 

Effect 2), the longitudinal displacement at the top of the pylon (LDTP, Effect 3), the bending 

moment of the main girder at mid-span of the main span (BMMS, Effect 4), and the bending 

moment at the bottom of the pylon (BMBP, Effect 5).  

Based on the extreme response scenario model proposed in the thesis, the values and forms of the 

load models constructed for the five effects of the four other bridges (not included in chapter 5) 

based on the same measured WIM data, with an AADT of 40000 vehicles are shown in Table A-

11, Figures A-23 to A-42. It can be seen that the same effect for different spans of cable-stayed 

bridges has an approximate pattern of load distribution on the bridge deck for the extreme response 

scenario, mainly because of the similarity on the respective influence lines as presented in Figures 

A-44 to A-48. In summary, the extreme response scenario load distribution for the BMMS (Effect 

4) tends to be concentrated near the center of the span, while the LDTP (Effect 3) and BMBP 

(Effect 5) tend to have a more dispersed load distribution. Comparing the load values 𝑞𝑘
(𝑖)

, it can 

be seen that the smaller the span-length, the larger the peak load value for the same effect on the 

cable-stayed bridge. This is in accordance to several traffic load model codes that recommend to 

decrease the load intensity as the span-length increases. 
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Figure A-22 Five long-span cable-stayed bridges with different span lengths (m). 

 

Table A-11 Load intensity and load form schematic diagram of traffic model for different 

structural effects of different bridges (AADT= 40000). 

Bridge and span length AFC VDMS LDTP BMMS BMBP 

Load intensity 𝑞𝑘
(𝑖)

 

(Unit: kN/m) 

 
Bridge 1 1088 m 24.07 22.89 18.85 29.54 17.21 

Bridge 2 806 m 33.83 29.38 11.05 45.56 14.11 

Bridge3 500 m 36.84 31.39 16.61 72.76 23.50 

Bridge4 448 m 37.66 43.37 18.04 85.66 16.27 

Bridge5 210 m 46.39 47.38 37.25 79.13 34.65 

806

1088

500

448

210

Load form profile 

for outer lane
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Figure A-23 Extreme response scenario load model of AFC for Bridge 2. 

 

Figure A-24 Extreme response scenario load model of VDMS for Bridge 2. 

 

Figure A-25 Extreme response scenario load model of LDTP for Bridge 2. 
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Figure A-26 Extreme response scenario load model of BMMS for Bridge 2. 

 

Figure A-27 Extreme response scenario load model of BMBP for Bridge 2. 

 

Figure A-28 Extreme response scenario load model of AFC for Bridge 3. 
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Figure A-29 Extreme response scenario load model of VDMS for Bridge 3. 

 

Figure A-30 Extreme response scenario load model of LDTP for Bridge 3. 

 

Figure A-31 Extreme response scenario load model of BMMS for Bridge 3. 
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Figure A-32 Extreme response scenario load model of BMBP for Bridge 3. 

 

Figure A-33 Extreme response scenario load model of AFC for Bridge 4. 

 

Figure A-34 Extreme response scenario load model of VDMS for Bridge 4. 
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Figure A-35 Extreme response scenario load model of LDTP for Bridge 4. 

 

Figure A-36 Extreme response scenario load model of BMMS for Bridge 4. 

 

Figure A-37 Extreme response scenario load model of BMBP for Bridge 4. 
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Figure A-38 Extreme response scenario load model of AFC for Bridge 5. 

 

Figure A-39 Extreme response scenario load model of VDMS for Bridge 5. 

 

Figure A-40 Extreme response scenario load model of LDTP for Bridge 5. 
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Figure A-41 Extreme response scenario load model of BMMS for Bridge 5. 

 

Figure A-42 Extreme response scenario load model of BMBP for Bridge 5. 
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in the traffic flow are the ones more likely to cause extreme values of structural effects. However, 

heavy vehicle aggregations of less than ten vehicles are relatively common, while heavy vehicle 

aggregations of a dozen or more vehicles are uncommon (except in congestion, and the proportion 

of heavy vehicles in congestion is usually much smaller than in normal free flow). If a specific 

bridge length is used to frame the traffic flow, it is easier for the shorter bridge to obtain a segment 

of traffic where the whole length of the bridge is congested with heavy vehicles, while it is more 

difficult to obtain a segment of traffic where the whole length of the bridge is congested with heavy 

vehicles for longer bridges. Therefore, for long-span bridges of different lengths, the longer the 

bridge length, the smaller the average load of the extreme response scenario. It is important to note 

that the above analyses are all discussed for the site-specific extreme response scenario, which 

represents the extreme scenario when the actual WIM data is applied and is the true load scenario 

that the bridge may be subjected to during operation. In contrast, the average load per bridge length 

under code D60 (Table A-14) does not show significant differences between the span-specific 

scenarios and is not consistent with the extreme scenario case of the actual WIM data. These 

findings reveal the characteristics of the load levels of extreme response scenarios for different 

span bridges under different effects and can further guide bridge design and optimization. In 

practical applications, for different bridge types and spans, targeted load model can be built 

according to the specific loading conditions to ensure the safety of the bridge, and the extreme 

response scenario load model presented in this thesis can provide a powerful tool for this purpose. 

Table A-12 Total load on the bridge deck of D60 (tonnes). 

i-th bridge Span (m) AFC VDMS LDTP BMMS BMBP 

Bridge 1 1088 3397 2560 4171 3204 2560 

Bridge 2 806 3173 2587 3238 1049 2652 

Bridge 3 500 2110 1312 1910 1312 1445 

Bridge 4 448 1777 1511 1844 979 1445 

Bridge 5 210 922 787 1191 384 855 

Table A-13 Total load on the bridge deck of the proposed model (tonnes). 

i-th bridge Span (m) AFC VDMS LDTP BMMS BMBP 

Bridge 1 1088 3650 3949 6327 2494 6181 

Bridge 2 806 4196 4169 3129 3123 3291 

Bridge 3 500 3196 3020 2246 4412 2418 

Bridge 4 448 3167 3036 2370 3967 2432 

Bridge 5 210 1854 2070 2084 2801 1692 
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Table A-14 Load per unit bridge length on the bridge deck of D60 (tonnes/m). 

i-th bridge Span (m) AFC VDMS LDTP BMMS BMBP 

Bridge 1 1088 1.62 1.22 1.99 1.53 1.22 

Bridge 2 806 1.96 1.60 2.00 0.65 1.64 

Bridge 3 500 2.20 1.37 1.99 1.37 1.50 

Bridge 4 448 1.97 1.68 2.05 1.09 1.61 

Bridge 5 210 2.30 1.97 2.98 0.96 2.14 

Table A-15 Load per unit bridge length on the bridge deck of the proposed model (tonnes/m). 

i-th bridge Span (m) AFC VDMS LDTP BMMS BMBP 

Bridge 1 1088 1.74 1.88 3.01 1.19 2.94 

Bridge 2 806 2.59 2.57 1.93 1.93 2.03 

Bridge 3 500 3.33 3.15 2.34 4.60 2.52 

Bridge 4 448 3.52 3.37 2.63 4.41 2.70 

Bridge 5 210 4.63 5.18 5.21 7.00 4.23 

 

 

Figure A-43 Ratio of total load on the bridge deck of the proposed traffic model to D60. 
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Effect 3 and Effect 5 are generally similar, and the influence values are distributed with large 

values in the whole bridge length. In Effect 4, the peak of the influence line appears in the mid-

span area, and the peak area is narrow. 

 

Figure A-44 Influence line shapes of AFC for five bridges. 

 

Figure A-45 Influence line shapes of VDMS for five bridges. 
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Figure A-46 Influence line shapes of LDTP for five bridges. 

 

Figure A-47 Influence line shapes of BMMS for five bridges. 

 

Figure A-48 Influence line shapes of BMBP for five bridges. 


