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Abstract 
This thesis focuses on the detection (counting) of fruits and estimation of their size and weight in apple 

orchards through the application of computer vision techniques. This work seeks to provide fruit growers 

with advanced tools and methodologies to help them make accurate harvest yield predictions. Counting 

(quantifying) and locating fruits represent previous steps to achieve these predictions. By knowing this 

information, fruit growers can schedule in advance the required resources for harvest and post-harvest (labor, 

transportation, storage), design sales strategies and, ultimately, optimize the profitability of their farms. In 

addition, it is also essential to control fruit quality parameters such as size and weight, which have a great 

influence on the market price and decision making for canopy management. On the other hand, today, 

counting, locating and measuring the size of fruits are repetitive tasks that require trained labor and that can 

be affected by fatigue and the subjective criterion of workers. Therefore, the manual execution of these tasks 

in fruit orchards of several hectares is not feasible. These reasons largely explain the current need to develop 

automatic tools that allow accurate in-field fruit detection and sizing. 

The main objective of this thesis is to explore the capacity of RGB-D sensors to estimate the size and weight 

of fruits in apple trees. The main body of this work is made up of four articles that deal in detail with various 

stages throughout the process: i) a review of the state of the art on fruit sizing using artificial intelligence 

techniques and its challenges in field conditions; ii) the development of software tools for data acquisition in 

fruit orchards; iii) the development of algorithms for estimating fruit size and weight using allometric models; 

and iv) an experimental field evaluation of the implemented algorithms, applying combinations of fruit sizing 

methods and allometric models for weight prediction. The results obtained presented errors (MAPE) of less 

than 5 % in the estimation of the size of non-occluded apples and less than 5.1% for the prediction of their 

weight. These results open the possibility of using affordable RGB-D cameras in the short term for real-time 

characterization of fruit plantations. Furthermore, as a result of this thesis, a set of open access software tools 

has been made available to the public for in-field fruit detection and estimate their size and weight. In 

conclusion, the thesis represents a contribution towards the development of affordable tools to facilitate 

decision-making and help optimize fruit orchard management.
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Resumen 
Esta tesis se enfoca en la detección (conteo) de frutos y estimación de su tamaño y peso en plantaciones de 

manzanos mediante la aplicación de técnicas de visión por ordenador. Este trabajo busca proporcionar a los 

fruticultores herramientas y metodologías avanzadas para ayudarles a realizar predicciones de cosecha 

precisas. Contar (cuantificar) y localizar frutos representan pasos previos para lograr dichas predicciones. Al 

conocer esta información, los fruticultores pueden programar con antelación los recursos necesarios para la 

cosecha y poscosecha (mano de obra, transporte, almacenamiento), diseñar estrategias de ventas y, en 

definitiva, optimizar la rentabilidad de sus explotaciones. Además, también es fundamental controlar 

parámetros de calidad de la fruta como su tamaño y peso, los cuales tienen una gran influencia en el precio 

de mercado y en la toma de decisiones para el manejo del dosel. Por otro lado, a día de hoy, contar, localizar 

y medir el tamaño de los frutos son tareas repetitivas que requieren de mano de obra capacitada y que pueden 

verse afectadas por el cansancio y el criterio subjetivo de los trabajadores. Por lo que, la ejecución manual 

de estas tareas en plantaciones frutales de varias hectáreas no es viable. Estas razones explican en gran medida 

la necesidad actual de desarrollar herramientas automáticas que permitan detectar y medir los frutos en campo 

con precisión. 

El principal objetivo de esta tesis es explorar la capacidad de los sensores RGB-D para estimar el tamaño y 

el peso de los frutos en manzanos. El cuerpo principal de este trabajo lo constituyen cuatro artículos que 

tratan en detalle diversas etapas a lo largo del proceso: i) una revisión del estado del arte sobre 

dimensionamiento de frutos utilizando técnicas de inteligencia artificial y sus desafíos en condiciones de 

campo; ii) el desarrollo de herramientas software para adquisición de datos en plantaciones frutícolas; iii) el 

desarrollo de algoritmos para estimación de tamaño y peso de frutos mediante modelos alométricos; y iv) 

una evaluación experimental en campo de los algoritmos implementados, aplicando combinaciones de 

métodos de dimensionamiento y modelos alométricos para la predicción de peso. Los resultados obtenidos 

presentaron errores (MAPE) inferiores al 5 % en la estimación del tamaño de manzanas no ocluidas y 

menores al 5.1 % para la predicción de su peso. Estos resultados abren la posibilidad de utilizar a corto plazo 

cámaras RGB-D asequibles para la caracterización en tiempo real de plantaciones frutales. Además, como 

resultado de esta tesis se ha puesto a disposición pública un conjunto de herramientas software de libre acceso 

para detectar los frutos en campo y estimar su tamaño y peso. En conclusión, la tesis supone una contribución 
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hacia el desarrollo de herramientas asequibles que faciliten la toma de decisiones y ayuden a optimizar la 

gestión de las explotaciones frutícolas.
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Resum 
Aquesta tesi s'enfoca a la detecció (compteig) de fruits i estimació de la seva grandària i pes en plantacions 

de pomeres mitjançant l'aplicació de tècniques de visió per ordinador. Aquest treball busca proporcionar als 

fructicultors eines i metodologies avançades per ajudar-los a fer prediccions de collita precises. Comptar 

(quantificar) i localitzar fruits representen passos previs per assolir aquestes prediccions. En conèixer aquesta 

informació, els fructicultors poden programar amb antelació els recursos necessaris per a la collita i la 

postcollita (mà d'obra, transport, emmagatzematge), dissenyar estratègies de vendes i, en definitiva, 

optimitzar la rendibilitat de les seves explotacions. A més, també és fonamental controlar paràmetres de 

qualitat de la fruita com la mida i el pes, els quals tenen una gran influència en el preu de mercat i en la presa 

de decisions per al maneig del dosser. D'altra banda, avui en dia, comptar, localitzar i mesurar els fruits són 

tasques repetitives que requereixen mà d'obra capacitada i que es poden veure afectades pel cansament i el 

criteri subjectiu dels treballadors. Per tant, l'execució manual d'aquestes tasques en plantacions de fruiters de 

diverses hectàrees no és viable. Aquestes raons expliquen en gran mesura la necessitat actual de desenvolupar 

eines automàtiques que permetin detectar i mesurar els fruits al camp amb precisió. 

L’objectiu principal d'aquesta tesi és explorar la capacitat dels sensors RGB-D per estimar la grandària i el 

pes dels fruits en pomeres. El cos principal d'aquest treball el constitueixen quatre articles que tracten 

detalladament diverses etapes al llarg del procés: i) una revisió de l'estat de l'art sobre dimensionament de 

fruits utilitzant tècniques d'intel·ligència artificial i els seus desafiaments en condicions de camp; ii) el 

desenvolupament d'eines programari per a l’adquisició de dades en plantacions fructícoles; iii) el 

desenvolupament d'algoritmes per a l’estimació de la grandària i pes dels fruits mitjançant models 

al·lomètrics; i iv) una avaluació experimental en camp dels algoritmes implementats, aplicant combinacions 

de mètodes de dimensionament i models al·lomètrics per a la predicció de pes. Els resultats obtinguts van 

presentar errors (MAPE) inferiors al 5 % en l'estimació de la grandària de pomes no closes i menors al 5,1 

% per a la predicció del pes. Aquests resultats obren la possibilitat d’utilitzar a curt termini càmeres RGB-D 

assequibles per a la caracterització en temps real de plantacions fruiteres. A més, com a resultat d'aquesta tesi 

s'ha posat a disposició pública un conjunt de programari de lliure accés per detectar els fruits en camp i 

estimar-ne la mida i el pes. En conclusió, la tesi suposa una contribució cap al desenvolupament d'eines 

assequibles que facilitin la presa de decisions i ajudin a optimitzar la gestió de les explotacions fructícoles. 
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This work has been carried out within the framework of the PAgFRUIT research project (RTI2018-

094222-B-I00) whose objective is the development and application of precision agriculture technologies to 

optimize canopy management and sustainable crop protection in fruit orchards. This thesis focuses on fruit 

detection (counting) and sizing in apple orchards by applying computer vision techniques. This research’s 

ultimate goal is to provide farmers with advanced tools and methodologies to help them in performing 

accurate fruit yield predictions. 

Counting (quantifying) and locating fruits represent previous steps to achieve accurate yield predictions. 

These predictions allow fruit growers to schedule in advance the necessary harvest and postharvest resources 

(labor, transportation, storage), design sales strategies and optimize orchard profitability. In addition to their 

number, it is also essential to monitor fruit quality parameters such as their size and weight, which have a 

great influence on the market price. The knowledge of the aforementioned parameters is also important for 

decision-making in crop load management strategies. 

Nowadays, counting, locating and sizing fruits are repetitive tasks that require trained labor that can be 

affected by fatigue and by the subjective criteria of the workers. Furthermore, the manual execution of these 

tasks in fruit orchards of several hectares is not feasible. These reasons greatly explain the current need for 

developing automatic tools that allow the fruit to be accurately detected and measured. 

1.1 The challenge of fruit detection and yield prediction using computer vision 

Fruit detection deals on finding a region of interest (ROI) in a given image, point cloud, or other type of data, 

and classifying it as fruit or background based on a confidence metric. Fruit location consists of obtaining 

the position of a detected fruit in a local or global coordinate system. Implementation of automatic solutions 

for in-field fruit detection and location is affected by several challenging factors. These factors include 

changes of the fruit shape and colour over the ripening process, the appearance of fruit occlusions, variable 

lighting conditions, among others. Furthermore, depending on the type of sensor and platform (manual, fixed, 

terrestrial) the optimal measurement conditions could be different. It should also be noted that these automatic 

solutions must deal with outdoor and unstructured environments, which adds further difficulty. It is therefore 

evident that the detection, location and sizing of fruits is a complex task that requires detailed study and it is 

currently a topic of great interest for the scientific community. 
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Counting and locating fruits with low or acceptable errors is a necessary step for achieving reliable yield 

predictions. However, this is not an easy task due to the time and resources usually required. Furthermore, 

the question arises as to whether perform the yield prediction through a complete fruit counting through the 

plot or by applying sampling techniques to collect data from only specific points. 

A complete count (sweep) is difficult to be manually performed, even more so given the trend towards ever-

large plots. The automatic systems for fruit orchard monitoring must be robust, deal with occlusions and fruit 

clusters, doing so quickly and, at the same time, lowering the error rate in detection and estimation. 

In practice, farmers and insurance companies have chosen to apply sampling techniques to obtain predictions 

(BOE, 2005). In this case, the challenge is to design an efficient sampling method to reliably estimate the 

fruit load and/or yield (a few weeks before harvest) using reduced sample sizes. In addition to being efficient, 

it should be able to guide the fruit grower in the optimal location of the sampling points (smart points or 

specific areas to be sampled). There is also the added difficulty of developing a sampling method within the 

tree compatible with the computer vision technology developed for fruit detection. 

1.2 Affordable optical sensors for fruit detection 

The sensors used in fruit detection can be classified according to the emission and reception of light, by their 

ability to measure depth values, and by the number of receivers they use. It is possible to classify them 

according to the reception and emission of light (passive, active) and group them by their ability to measure 

depth. Passive sensors are those that make use of the reflection of light from the environment, while active 

sensors are those that use their own light source to obtain information about the distance of objects. 

1.2.1 Passive sensors 

Monocular cameras based on red-green-blue (RGB) sensors have been used in a large number of works due 

to their ease of use, low cost and the variety of devices available on the market. Currently, two technologies 

are present on the market: the charge-coupled device (CCD) and the complementary metal-oxide-

semiconductor (CMOS) (Sarkar and Theuwissen, 2013). Both make use of a two-dimensional array of 

photosensitive units (pixels), which collect light and transform it into electrical signals. The number of pixels 

present in a device is known as resolution, a parameter associated with its quality (Solomon and Breckon, 

2011). In CCDs, the signals from the pixels produce a uniform output and are processed in a conversion node 

to electrical pulses. In CMOSs, the conversion of light to electrical signals is carried out internally in each 
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pixel. The CCD has shown its worth in environments that require high quality images, but at the cost of a 

longer reading time. On the other hand, the CMOS provides a higher reading speed, a lower power 

consumption and a lower manufacturing cost (Pajares et al., 2016). 

Several limitations affect these devices, including changes in lighting, reflections and shadows. In addition, 

these sensors alone do not return information on depth in the scene, an important feature in fruit detection 

and location or in fruit size estimation, among other applications (Zhao et al., 2016). 

Over the years, due to the need for depth information, techniques based on the principle of triangulation have 

been introduced. This involves using trigonometric relationships between the internal parameters of the 

camera (focal length) and a point of known distance to determine the distance of another point in a scene 

(Szeliski, 2011)⁠⁠. Techniques based on this principle include stereo vision, structure-from-motion (SfM) and 

multi-view stereo (MVS) (Furukawa and Hernández, 2015; Klette, 2014; Özyeşil et al., 2017). 

Thermal cameras, which acquire images of the infrared radiation from objects⁠, are another type of passive 

sensor used in fruit detection. They have been used in cases where it is possible to identify objects by their 

thermal inertia in relation to the environment that surrounds them (Narvaez et al., 2017). Atmospheric 

changes strongly influence the data obtained, meaning that constant calibration and correction is required (Li 

et al., 2014)⁠. 

Spectral sensors have also been used in fruit detection. Their operation is based on measuring the reflectance 

of objects at different wavelengths. Each material reflects wavelengths with characteristic values that allow 

it to be differentiated from other materials (Chaudhuri and Kotwal, 2014). Two sensor types can be 

distinguished: multispectral (MS) and hyperspectral (HS). MS sensors capture scene information in a small 

number of, not necessarily contiguous, bands of the electromagnetic spectrum, while HS sensors record 

reflected radiation in multiple contiguous bands, thus providing the spectral signature of the studied object. 

The use of this type of sensor has been limited, largely due to their high cost, ignorance of the technology 

and reduced availability outside of scientific settings (Lu et al., 2020). In addition to the above, the acquisition 

of spectral images, their processing and analysis represent a challenge due to the large volume and high 

dimensionality of the data (Khanal et al., 2020). 
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1.2.2 Active sensors 

Advances in technologies and lower costs have allowed devices to appear on the market that obtain scene 

depth values based on the active emission of light⁠. Three types can be distinguished according to their 

operating principle: time-of-flight (ToF), active stereo vision (ASV) and structured light (SL). A ToF sensor 

is based on the emission of light (pulsed or continuous) and the determination of its round-trip distance. In 

the case of light pulses, this distance is obtained by measuring their time of flight. In the case of amplitude 

modulated continuous emission, the distance is determined from the phase shift between the emitted signal 

and the received signal (Corti et al., 2016). ASV sensors calculate depth using epipolar geometry, observing 

an artificially projected light pattern from multiple cameras (Vit and Shani, 2018). Finally, SL sensors 

combine the projection of known light patterns with the data obtained by a camera and measure depth by 

triangulation (Sarbolandi et al., 2015). 

For the 3D mapping of spaces, various authors refer to the use of light detection and ranging (LiDAR) 

devices. These sensors work under the ToF principle, returning point clouds from the surrounding 

environment as information. LiDAR sensors can detect small objects in noisy environments and enjoy good 

sensitivity for fruit detection tasks, but they cost more than other sensors and are affected by dusty 

environments, fog and humidity (X. Liu et al., 2019; Rosell and Sanz, 2012; Zhang et al., 2020). 

Red-green-blue-depth (RGB-D) sensors constitute an extension to RGB cameras and have proven useful in 

agricultural environments. Their operation, depending on the model, can be included under the ToF, ASV or 

SL principles. Their low cost compared to other technologies and the ability to return color images together 

with depth and infrared information at high acquisition rates (Fu et al., 2020; Gregorio and Llorens, 2021), 

makes them good candidates for adoption in the agricultural sector. As a disadvantage, RGB-D sensors are 

sensitive to lighting in field conditions (Gené-Mola et al., 2020). Table 1 presents a summary of fruit 

detection works with details related to the sensors and platforms used. 
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Table 1.1 - Most used sensors and technologies in fruit detection 

Sensors/ Techniques Output data Lighting conditions Platforms Crops References 

RGB camera Image Daylight Terrestrial platform Mangoes (Qureshi et al., 2017) 
  Daylight Manually Tomatoes (G. Liu et al., 2019) 
  Daylight Tripod Citrus, tomatoes, pumpkin, bitter gourds, towel 

gourds, mangoes. 
(Lin et al., 2020) 

  Daylight Manual Citrus (Dorj et al., 2017) 
      
RGB camera/stereo vision Image/depth Daylight Terrestrial platform Apples (Onishi et al., 2019; Si et al., 2015)  
  Daylight Terrestrial platform Kiwis (Williams et al., 2019) 
      
RGB camera/SfM – MVS Image/depth Controlled Manual Maize, sugar beets, sunflowers (Martinez-Guanter et al., 2019) 
  Controlled Manual Tomatoes (Rose et al., 2015) 
  Daylight Manual Apples (Dong et al., 2018; Häni et al., 2020) 

 
  Daylight Manual Coffee (Avendano et al., 2017) 
  Daylight Terrestrial platform Mangoes (Stein et al., 2016) 
  Daylight Manual Oranges (Liu et al., 2018) 
  Night-time Manual Apples (Liu et al., 2018) 
      

Thermal camera Image/thermal data Daylight Tripod Apples (J. Feng et al., 2019) 

  Daylight Tripod Citrus (Gan et al., 2020, 2018) 

      

Multi-/hyperspectral camera Image/spectral data Controlled Fixed Apples (J. Feng et al., 2019; Zhang et al., 2015) 
  N/M Manual Tomatoes (Q. Feng et al., 2019) 
  Daylight Manual Passion fruits (Tu et al., 2020) 
  Daylight Manual Pomegranates (Zhang et al., 2021) 
  Daylight Terrestrial platform Apples (Gené-Mola et al., 2019b) 

 
RGB-D camera  Daylight Terrestrial platform Grapes (Kurtser et al., 2020) 
  Daylight Terrestrial platform Grapes (Milella et al., 2019) 
  Daylight Tripod Peppers (Vitzrabin and Edan, 2016) 
      
LiDAR sensor 3D point cloud Daylight Terrestrial platform Apples (Gené-Mola et al., 2019a; Tsoulias et al., 2020) 

  Daylight Terrestrial platform Almonds (Underwood et al., 2016) 
  Daylight Manual Oranges (Méndez et al., 2019) 
  Night-time Terrestrial platform Peppers (Eizentals and Oka, 2016) 

      

* References. Manual = includes sticks, phones and cameras operated manually. Fixed = fixed system, Tripod = images taken with tripods. Terrestrial platform = robots and vehicles. Daylight = images in daytime 
conditions. Night-time = images in night conditions. Controlled = images in controlled environments. N/M = not mentioned 
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1.3 The need to develop reliable software to use RGB-D cameras in orchard environments 

In sections 1.1 and 1.2, main challenges in fruit detection and yield prediction have been mentioned and 

promising optical sensors technologies to be applied in these taks have also been reviewed. However, the 

adoption of these new technologies by farmers is currently limited by their cost, the difficulty of use, and the 

lack of data management skills of most potential users. Therefore, there is a need to develop robust, easy-to-

use hardware and software solutions that allow the processing of data collected in the orchard and convert it 

into value-added information to farmers. 

RGB-D sensors are characterized by their low cost and by the multimodal data (RGB image, depth, intensity) 

they provide, which makes them good candidates for fruit detection and sizing applications. Within this 

family of sensors, the Azure Kinect camera (Microsoft, Redmond, WA, USA) is a time-of-flight device that 

has replaced the popular Kinect v2 camera also manufactured by Microsoft. As detailed in Chapter 2, the 

Azure Kinect has proven to offer good performance in outdoor scenarios and it is the RGB-D sensor mostly 

used in this research. However, up to now there was no a specific software for this sensor to facilitate data 

acquisition and processing focused on automatic yield prediction. Thus, it was required the use of scripts or 

different tools whose execution involved excessive steps for the end user. One of the objectives of this work 

is to partially cover this shortage, proposing open source software tools, which can be adapted even for RGB-

D sensors from other manufacturers. 

1.4 Objectives 

The main objective of this thesis is to explore the ability of RGB-D sensors to estimate fruit size and weight 

on the tree. The research focuses on apple orchards, a crop on which the Research Group in AgroICT & 

Precision Agriculture (GRAP) has carried out preliminary work using other types of sensors. 

Specific objectives are listed below: 

i) Carry out an updated bibliographic review on automatic fruit dection and sizing techniques in 

the field using computer vision. 

ii) Develop a software tool for the acquisition and extraction of data recorded with RGB-D sensors 

in field conditions. 

iii) Develop a software tool for benchmarking fruit size estimation and weight prediction 

algorithms. 

iv) Develop a computer vision-based software tool for automatic fruit detection and yield estimation 

in the field. 
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v) Experimentally asses in a fruit orchard the performance of the algorithms proposed and 

implemented in the previous specific objectives. 

1.5 Thesis structure 

his doctoral thesis is presented as a compendium of articles following the Academic Regulations for Doctoral 

Courses at the University of Lleida, where each chapter can be considered a self-contained unit. Fig. 1.1 

shows the structure of the thesis, indicating the published articles and the objectives with which they are 

aligned. Chapter 1 presents introductory aspects, challenges and related technologies. In Chapter 2, the 

applied methodology is briefly described. Chapter 3, corresponding to a review article, presents the state of 

the art on fruit detection and sizing methods. Knowledge of these methos is required to address the objectives 

set out in Chapter 1. Chapters 4 and 5, each one corresponding to a software article, introduce the developed 

software tools as well as the implementations of the fruit size and weight prediction algorithms proposed in 

this thesis. Chapter 6, corresponding to a research article, presents the experimental field evaluation of these 

algorithms. Chapter 7 discusses the results and establishes the lines of future work. Finally, general 

conclusions of this research are summarized in Chapter 8. 

 

Fig. 1.1 Structure of the thesis with different chapters, objectives and articles published in journals. 
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2.1 Azure Kinect DK RGB-D Camera Basics 

A brief introduction to RGB-D sensors was made in Chapter 1, including some ideas about their advantages 

and drawbacks compared to other types of passive sensors. In particular, the Azure Kinect camera (Fig. 2.1) 

was introduced as an important component of the RGB-D family sensors, having also highlighted scientific 

works that have addressed and positively valued the use of this camera(Neupane et al., 2021; Pasinetti et al., 

2023). Generally speaking, the Azure Kinect camera is perceived as a good digital option for fruit detection 

tasks in fruit orchard environments, although further research is still needed to address data acquisition and 

processing from depth cameras in fruit growing. 

 

Fig. 2.1 a) Azure Kinect camera. b) Camera and accessories package. c) Camera mounted on the scene. 

This PhD thesis exclusively addresses the use of the Azure Kinect camera in agriculture, specifically, for the 

purpose of detecting fruits and efficiently estimating yield. The Azure Kinect combines a 1-megapixel time-

of-flight (ToF) camera, a CMOS rolling shutter sensor, an inertial measurement unit (IMU) and a microphone 

array. Regarding configuration of use in field conditions, experiments were carried out by collecting RGB, 

IR and depth data. So, both the operation of the IMU unit and the microphone remained disabled throughout 

our data collection, having set the depth camera mode to the narrow field-of-view (NFOV) unbinned option. 

Additional basic Azure Kinect specifications are shown in Table 2.1 (Microsoft, 2022). 

Table 2.1. Azure Kinect camera specifications provided by the manufacturer. 

RGB frame resolution 1920 × 1080 pixels 
RGB frame rate 30 fps 

RGB field of view 90° × 59° 
Depth frame resolution 640 × 576 pixels 

Depth frame rate 30 fps 
Depth field of view 75° × 65° 

Depth range 0.5 - 3.86 m 
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2.2 Software design bases for the Azure Kinect camera for use in fruit detection, sizing and yield 

prediction 

Acquiring data and extracting analyzable information is the first challenge that must be faced when using a 

depth camera in field conditions. Apart from knowing the state of the art of current technologies in fruit 

production (a review task that has given rise to Chapter 3), this PhD thesis fundamentally first addresses the 

design of several open source tools to acquire data and extract analyzable images using the Azure Kinect 

camera. In a second block of tools, the objective was to apply trained automatic detectors, sizing algorithms 

and allometric models for final weight prediction (yield) in apple trees. Additionally, uncertainty analysis of 

the entire process was also an important goal in order to assess the progress and reliability of the research. 

A computer vision system with versatile use for different sensors (cameras) was the initial idea to achieve. 

This meant facing RGB-D cameras from different manufacturers with different technologies (ToF, stereo 

vision), and the additional requirement of importing georeferenced locations of detected fruits through a 

GNSS receiver. Both a static or mobile platform located in front of the tree canopies allowed the set of 

devices for experimentation to be housed. In the case of the mobile platform, the Azure Kinect camera was 

moved along the alley-ways of the tree plantation taking video records from the side of the apple tree 

canopies. Having collected data from the orchard, dataset creation was the next stage to address. For this, a 

new software module was programmed to allow data extraction functionalities (frames with previously 

labeled apples), thus constituting a separate software from the previous one that is used exclusively for video 

data acquisition. As can be seen later, Chapter 4 shows in greater detail the design, structure and 

functionalities of these tools. 

Data was therefore made available. At this point, the second modular software had the purpose of training 

automatic fruit detectors and fruit sizing algorithms among other functionalities. A first module was 

conceived with the exclusive objective of benchmarking of fruit sizing and yield prediction algorithms. Color 

and depth images were used as inputs, allowing different sizing algorithms and allometric models to be 

combined to estimate the weight of apples. The second software module worked directly with video records, 

allowing different deep learning-based automatic fruit detectors to be implemented. By adding the optimal 

combination of sizing and yield allometric modeling (Chapter 6), plot-scale yield prediction should be 

possible. Previous design of these tools is shown in Chapter 5. 
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2.3 Programming environment 

Once both the camera and the software functionalities were established, attention was focused on the 

programming language and environment. The Azure Kinect camera required a host computer for operational 

functionality under Windows or Ubuntu Linux operating systems, in addition to management drivers and the 

Software Development Kit (SDK). Choosing the programming language was a key point for the development 

of the software used in this thesis. C/C++ language was the default option facing the SDK programming. 

However, it was thought that a cross-platform programming language (adaptable to multiple operating 

systems) was a better option, opening up the possibility of integrating the use of Azure Kinect camera data 

(image data) with artificial intelligence algorithms. 

In addition to the above, support from a broad development community to cover needs that may arise was 

also a quality to consider. For these reasons, the Python language was finally adopted, with multiple and 

valued advantages in syntax, support for libraries (image processing, deep learning, statistics) and online 

documentation. Certainly, the use of Python raised the need to select third-party libraries for acquiring and 

extracting data from the Azure Kinect camera. But, this issue was timely resolved by using Pyk4a (Asselin 

et al., 2021). 

Figure 2.2 shows the flow chart of the development of the software tools and the milestones reached with 

each of them. AKFruitData_1 intended to be the tool focused on data acquisition using the Azure Kinect 

camera. Specifically, fruit tree canopies were recorded laterally providing videos for later processing. In a 

next step, AKFruitData_2 was intended to solve the problem of extracting frames and make available the 

necessary data to later apply fruit (apples) sizing algorithms. The second software tool package 

(AKFruitYield, Chapter 5) was conceived as a complement to the functionalities of AKFruitData (Chapter 

4). Starting from the tree canopy images and having manually labeled apples within the frames, the 

AKFruitYield_1 tool was proposed to benchmark different sizing algorithms to analyze the best strategy for 

non-occluded apples and occluded apples. Allometric models to predict apple weight were then proposed 

using the geometric sizing parameters as input variables. In fact, benchmarking of algorithms and models is 

the topic discussed in Chapter 6. Finally, AKFruitYield_2 was conceived as an informed results delivery 

software, allowing automatic apple detectors and optimized sizing and yield prediction algorithms to be 

implemented together and making it possible to use the Azure Kinect camera at the plot level. The latter 

software was intended as a tool to provide, nested with AKFruitData_1 software, real-time results based on 
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videos recorded along the alley-ways. In short, this is the final purpose of the set of tools that have been 

developed in this Doctoral Thesis. 

 

Fig. 2.2 Workflow of the proposed software solutions. 
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Abstract 

Fruit size at harvest is an economically important variable for high-quality table fruit production in orchards 

and vineyards. In addition, knowing the number and size of the fruit on the tree is essential in the framework 

of precise production, harvest, and postharvest management. A prerequisite for analysis of fruit in a real-

world environment is the detection and segmentation from background signal. In the last five years, deep 

learning convolutional neural network have become the standard method for automatic fruit detection, 

achieving F1-scores higher than 90 %, as well as real-time processing speeds. At the same time, different 

methods have been developed for, mainly, fruit size and, more rarely, fruit maturity estimation from 2D 

images and 3D point clouds. These sizing methods are focused on a few species like grape, apple, citrus, and 

mango, resulting in mean absolute error values of less than 4 mm in apple fruit. This review provides an 

overview of the most recent methodologies developed for in-field fruit detection/counting and sizing as well 

as few upcoming examples of maturity estimation. Challenges, such as sensor fusion, highly varying lighting 

conditions, occlusions in the canopy, shortage of public fruit datasets, and opportunities for research transfer, 

are discussed. 

Keywords: artificial intelligence, fruit detection, fruit measure, image processing, deep learning, fruit quality 
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3.1 Introduction 

Agricultural production of fresh fruit and vegetables must substantially increase to address the food demand 

due to the growing population, which is expected to reach 9.7 billion people by mid-century (UN, 2022). 

However, the production needs to respect the environment and meet the requirements of social and economic 

sustainability (FAO, 2017). Avoiding food waste is a major concern in all these aspects. Food waste in the 

fruit supply chain can be caused by lack of fruit safety and decay of fruit, as well as rejection of fruit on the 

market due to insufficient product quality (Nicastro and Carillo, 2021). Product decay is addressed by 

postharvest technologies to keep fruit at marketing quality. On the other hand, achieving the desired fruit 

quality is left to the farmers, but demanded by the actors of the value chain (Saitone and Sexton, 2017). If 

the market value is considered, the appearance represents the most important quality parameter that needs to 

be achieved (Musacchi and Serra, 2018). The main variable of complex appearance is the fruit size. Size as 

well as other variables of appearance such as colour, shape or absence of defects are addressed by means of 

inline grading, sorting fruit according to the different market needs. However, too large fruit are difficult to 

market, since they frequently show reduced storability (Paul and Pandey, 2014), whereas consumers prefer 

large, but not uncommonly large fruit (Iwanami, 2011). Similarly, it is difficult to find an economically 

reasonable market for small fruit, due to unfavourable ratio of edible to residual parts of the fruit. 

Size is considered a “search characteristic” that can be assessed before purchasing (Yeo and Edwards, 2006). 

It plays a role in the consumer’s decision to buy. Consumers preference for apples varies depending on 

country, region, type of market, gender, family income, education, age, food safety factors (i.e. pesticide use) 

and memory of previous eating experiences (Harker et al., 2003; Bonany et al., 2013; Bavay et al., 2013; 

Favre et al., 2022). A study conducted in Canadian territories reported the ideal size for dessert apple ranges 

between 74 and 76 mm considering various ages (Hampson et al., 2002). Sorting machines in packing lines 

are commonly dividing fruit in size classes and the class obtained influences the fruit price. Apple size is 

frequently included in trading standards or regional producers’ standards. In the European market, cultivar-

specific fruit size of 60 mm has been requested (OECD, 2021). However, such requests have been becoming 

less binding due to introduction of kids’ apples and other specific products. Nevertheless, for sweet cherry, 

but also European plum and other stone fruits, the size of fruit is directly affecting the market price, e.g. in 

sweet cherry cultivar 'Celeste' even selective harvesting appears as economically vital. It was shown that at 

red ripening stage 55 days after full bloom (DAFB), 35 % of cherries reached >28 mm, whereas after 60 

DAFB another 40 % more passed this value-creating threshold. Selective harvesting was reasonable in this 
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case, since the higher size class gained 20 % increased market price (Heim and Zude-Sasse, 2014; He et al., 

2015). However, for drawing harvest conclusions, the information on fruit size is requested in real-time. 

Strategies to produce the desired fruit size are captured in the concept of crop load management (Robinson 

et al., 2017), which requires the feedback on actual fruit number and fruit size in the field (Delong et al., 

2004). High crop load, beyond the fruit bearing capacity may result in small fruit considering the MaluSim 

approach from Lakso (Penzel et al., 2020). Low crop load situation obviously results in reduced yield per 

area, however, yield can be even further reduced due to an increased risk of storage disorders appearing in 

large fruit. In control and 1-MCP treated 'Gala' apples flesh breakdown in storage increased with enhanced 

fruit size (Lee et al., 2013). In nectarine, fruit size served as an input variable to model fruit development and 

storability (Casagrande et al., 2021). Furthermore, in non-destructive quality sensing of citrus fruit, it was 

shown that fruit size affects the non-destructive spectral-optical analysis in the short-wave near infrared 

(NIR) wavelength range (Miller and Zude-Sasse, 2004; Sun et al., 2021). Fraser et al. (2003) has shown that 

the distribution of light varies within citrus fruit. Consequently, information on fruit size and fruit size 

distribution in the canopy may support development of more robust sensor calibrations. 

Automatic detection, location and sizing of fruit in the field are agricultural problems in which computer 

vision and geo-positioning play a fundamental role. Fruit detection consists of finding a candidate region of 

interest (ROI) in a given image, point cloud or other type of data, and classifying it as fruit or background. 

The fruit location problem goes even one step further by locating the fruit in a local or global coordinate 

system (e.g. the position of the fruit in an image or on the Earth, respectively), and making a coordinate 

conversion to transfer fruit position detected in images onto the real world coordinate system. In-field fruit 

sizing consists of measuring the fruit (e.g. diameter, length, volume, etc.) on the tree to obtain morphological 

data. 

Systems applied to fruit detection and sizing must deal with data acquired under a variety of lighting 

conditions (Chaivivatrakul and Dailey, 2014), and their performance may be affected by factors such as 

shadows, reflections, backlights, background colour, inclusion and occlusions (Fig. 3.1a,b). Other factors 

such as coinciding structures or the slope in an orchard (Fig. 3.1c) affect the open view to the fruit object and 

require geometric correction of sensor raw data. The combination of these factors influences the accuracy of 

the detection result. According to the lighting conditions, it is useful to mention work carried out in night-

time conditions (Fig. 3.1d), with the help of artificial lighting rigs used both to lighten the scene and to reduce 
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the undesirable effects of variable lighting. Fruit clustering, occlusions and shading (Fig. 3.1e,f) are other 

factors that need to be taken into consideration in fruit detection (Jarvinen et al., 2019). 

 

 

         (a)             (b)           (c) 

 

            (d)    (e) (f) 

Fig. 3.1. Examples of fruit detection challenges under several conditions. (a) Fuji apples with shadows (Gené-Mola et al., 
2020e). (b) Golden Delicious apples (colour similar to the background) with reflections and backlights. (c) Slope in an apple 
tree orchard. (d) Apple tree in night-time conditions (Gené-Mola et al., 2019b). (e) Cluster of grapes (Arnó, 2008). (f) 
Peaches, occlusions and shading. 

Regarding fruit growing stages, changes in colour and shape along the growing season affect the performance 

of the fruit detection system. Depending on the purpose of the study, measurements are taken at different 

stages: mapping of flower and fruit distributions for yield prediction (Underwood et al., 2016), or detection 

of fruit at several stages of growth to monitor the evolution of the orchard (Tian et al., 2019; Tsoulias et al., 

2022). Nevertheless, most studies have been carried out at harvest time, when the objective is, for example, 

to predict the yield, map the production or for automatic harvesting purposes (Gené-Mola et al., 2019a; Wang 

et al., 2019). In this stage, the fruit has reached maximum size and frequently changed colour from green to 

yellow or red, which is less challenging compared to detection of small, green objects in green foliage 

(Tsoulias et al., 2020, 2023). 

With respect to the algorithms used, two aspects need to be considered: 1) obtaining a high-performance fruit 

detection, which means having high detection rates and a low number of false positives; 2) the development 

of computationally efficient algorithms to achieve low processing times (Häni et al., 2020a). In this regard, 
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the application of deep learning in computer vision and the use of 3D sensors have revolutionized fruit 

detection (Koirala et al., 2019a). However, the shortage of public fruit datasets, as well as the diversity of 

lighting conditions and capture devices, makes it difficult to compare the fruit detection algorithms that have 

been published (Qureshi et al., 2017). Nonetheless, efforts have been carried out to collect and classify 

specialized agricultural datasets that include different sensor types, fruit varieties, and field conditions (Lu 

and Young, 2020). In addition, it should be noted that fruit detection and sizing systems usually deal with 

complex, unstructured and changing agricultural environments, in contrast to the generally clearly defined 

targets that detection systems work on in industrial applications (Bechar and Vigneault, 2016; Zhao et al., 

2016a). Although promising results have been achieved in industry environments, it is still cumbersome to 

determine the fruit load when these techniques are implemented in the field. All the reasons set out above 

explain why fruit detection and sizing appears an interesting application of AI and is currently a focal point 

of interest. 

This work presents a review of the state-of-the-art of computer vision-based fruit detection and sizing 

methods. The present review work is structured in six main sections. Section 3.1 comprises this introduction. 

Sections 3.2 and 3.3 deal with fruit detection, reviewing the handcrafted computer vision and deep learning 

methods, respectively. Section 3.4 covers the field of fruit size analysis and maturity estimation that can be 

later applied in crop load management and yield estimation. In section 3.5, the challenges to be faced when 

applying fruit sizing are discussed. Final conclusions are presented in section 3.6. 

3.2 Fruit detection based on handcrafted features 

3.2.1 Background 

Before the advent of deep learning, most of the computer vision algorithms relied on the identification and 

extraction of image features such as corners, edges and blobs, and the subsequent classification of these 

features that defined the image or parts of the image. The design of the methodology to extract these features 

was done manually (handcrafted) based on human vision insights and intuitions (Nanni et al., 2017); this is 

why these algorithms are known as handcrafted feature-based methods. Previous reviews of these methods 

are thoroughly described in Gongal et al. (2015) and in Zhao et al. (2016a). While there is no single recipe 

to frame all the handcrafted methods, the aim of this section is to provide an up-to-date review. 



27 
 

27 
 

Fruit detection algorithms, as a special case of general object detection (Fig. 3.2), can follow approaches 

based on two main steps (Wang and Zheng, 2019; Ward et al., 2019): (1) candidate region proposals 

generation; and (2) detection and recognition. 

 

 

Fig. 3.2. Pipeline for fruit detection based on handcrafted features. 

3.2.2 Candidate region proposals 

The generation of candidate region proposals is the step of the process in which potential regions of interest 

are identified from data received by sensors. As sub-tasks, this can be divided into region selection and region 

description. Thresholding has been one of the most commonly used methods to classify fruit and background 

regions (Fig. 3.3). This method aims to binarize data by setting a numerical threshold into a discriminative 

feature that describes the object of interest. A common feature used has been the colour (Maldonado and 

Barbosa, 2016; Qian et al., 2018), although other types of data have been considered such as the area of pixels 

(Liu et al., 2019), the depth (Tao and Zhou, 2017), and the temperature using thermal imaging (Pedraza et 

al., 2019). Fruit reflectance and geometric features are also applied to define the fruit ROI (Gene-Mola et al., 

2019a; Tsoulias et al., 2020). 
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Fig. 3.3. Example of colour conversion and intensity thresholding applied to fruit segmentation. (a) RGB image. (b) Image 
converted to the HSV colour space. Colour scale corresponds to the hue (H) value. (c) Histogram of hue values for apple 
(red) and background (green) pixels. The vertical dash-dotted line corresponds to the selected threshold. (d) Segmented 
apples after applying the hue threshold. 

Another possibility for region selection is to apply machine learning classifiers. Classification methods allow 

objects within a space to be distinguished by specific features. The most used classifiers include the 

unsupervised k-means algorithm (Wang et al., 2018a; Shi et al., 2020), and different supervised methods 

such as Bayesian (Lin et al., 2019), the k-nearest neighbours (KNN) (Qureshi et al., 2017) and support vector 

machine (SVM) procedures (Zhang et al., 2020). With regard to 3D point clouds, there are many methods 

that allow their segmentation (Grilli et al., 2017). Two of the most commonly used methods in fruit detection 

are Euclidean clustering (Nguyen et al., 2016) and density-based spatial clustering of applications with noise 

(DBSCAN) (Eizentals and Oka, 2016). 

Region description is a step prior to detection and recognition in which the identified regions are described 

with features to refine the selection according to their appearance and geometry. The result can be a multi-

dimensional numeric vector or a set of pixels or point cloud with candidate labels (fruit, background, etc.). 

Colour, shape, texture and multiple features are used to describe regions. 

Colour-based radiometric features mostly comprise the statistical data about channels in colour spaces. For 

example, in Syal et al. (2014) features were extracted by using the mean colour of the ‘a’ and ‘b’ components 

in L*a*b space. Using light detection and ranging (LiDAR) at 660 nm provides information on the 

chlorophyll content of fruit, which can support the segmentation (Tsoulias et al., 2023). 
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Shape-based techniques are useful in cases where the fruit and the background have the same colour. These 

are ideal for detecting fruits whose shape differs from leaves and branches. In fruit detection, the most 

relevant shape-based techniques are the Hough transform (HT) and the histogram of oriented gradients 

(HOG). One of the main variants of HT is the circular Hough transform (CHT), which has been widely used 

to locate spherical fruit in orchards (Wang et al., 2018a; Chen et al., 2021). Other shape-based techniques 

include analysis of convexity (Kelman and Linker, 2014), three-point circle fitting (Sun et al., 2019), or 

random sample consensus (RANSAC) (Nguyen et al., 2016). 

Textures are small patterns with fluctuations of the intensity between groups of neighbouring pixels. Texture-

based methods are used to detect fruit of the same colour as the background, taking advantage of the invariant 

characteristics of textures to changes in lighting and the smoother surfaces of the fruits. Among the texture-

based methods used in fruit detection can be cited oriented FAST and rotated BRIEF (ORB), speeded-up 

robust features (SURF), scale-invariant feature transform (SIFT) and local binary patterns (LBP) 

(Chaivivatrakul and Dailey, 2014; Wang et al., 2018a). Multiple feature combinations have been preferred 

by some authors to improve the detection success rate. Li et al. (2016) and Qureshi et al. (2017) present 

examples of this approach for the detection of immature citrus and mango fruit, respectively. 

3.2.3 Detection and recognition 

Once a set of candidate regions and a list of features that describe each of these regions have been obtained, 

the next step is to classify them into true (fruit) or false (background) detection. For this purpose, a variety 

of classifiers have been used such as SVM (Gené-Mola et al., 2020a; Wu et al., 2020), KNN (Li et al., 2016; 

Nyarko et al., 2018), Adaboost (Wang et al., 2018a; Mekhalfi et al., 2020), random forest (Yu et al., 2021), 

backpropagation neural network (BPNN) (Cheng et al., 2017), and Gaussian mixture model (GMM) (Roy et 

al., 2019). 

A common source of error in fruit counting systems is the presence of multiple detections (more than one 

detection of a single fruit), which results in an over-counting error. To prevent multiple detections, some 

authors have applied the non-maximum suppression (NMS) algorithm, which consists of discarding the 

overlapped detections with non-maximum confidence values (Yu et al., 2021)⁠. 

Handcrafted detection algorithms are still applied due to their lower use of resources (computer power and 

memory) (Zhang et al., 2020) and the relatively minor amount of data required to train them compared to 

blackbox methods such as deep neural networks. They are used in cases where the object has a high contrast 
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with the background and can be easily distinguished. These methods have also been implemented on 

platforms where high computational power is not available (Fu et al., 2018; Habib et al., 2020). The 

disadvantage of handcrafted detection algorithms is the lack of generalization in detecting fruit in other 

acquisition conditions for which specific algorithms were not designed. In addition to this, the functions need 

to be optimized manually, which is time consuming (Farjon et al., 2020). 

3.3 Fruit detection based on deep learning 

3.3.1 Background 

Deep learning has meant a breakthrough in computer vision and, consequently, in fruit detection. Koirala et 

al. (2019a) reviewed the use of deep neural networks for fruit detection. Prior to 19/01/2019 they found a 

total of 9 papers in the Scopus data base (www.scopus.com) using the keywords: ‘deep’ + ’learning’ + ’fruit’ 

+ ’detection’. Four years later (on 31/07/2023), a total of 347 articles were found in Scopus on the same 

search basis, showing that the use of deep learning for fruit detection is a highly active research field with a 

rapid increase in scientific production (Fig. 3.4). 

 

Fig. 3.4. Number of articles (conference proceedings not included) published per year in Scopus data-base containing 
keywords ‘deep’ + ’learning’ + ’fruit’ + ’detection’. 

The most commonly used deep neural networks in computer vision are the so-called convolutional neural 

networks (CNN), where the neurons of each unit are organized in three-dimensional matrices (feature maps). 

Consecutive units are connected by means of convolutional layers, pooling layers and fully connected layers 

used to process the input data and extract features at different scales (LeCun et al., 2015). 
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CNNs have demonstrated a level of performance similar to that of the human eye in tasks such as image 

classification, object detection, and semantic and instance segmentation (Voulodimos et al., 2018). Image 

classification refers to the problem of classifying the whole image in a specific class, for instance an image 

of a fruit in the fruit class or variety (Fig. 3.5a). Object detection refers to the problem of identifying the 

regions (bounding boxes) that contain the objects of interest, for instance locating the fruit that appear in an 

image (Fig. 3.5b). Semantic segmentation refers to the problem of classifying each pixel in the image, for 

instance labelling each pixel as fruit, trunk, branch or background (Fig. 3.5c). Finally, instance segmentation 

combines object detection and semantic segmentation: first objects of interest are located in the image and 

then the objects are segmented, identifying which pixels of the image correspond to each detected object 

(Fig. 3.5d). 

 

(a) (b) (c) (d) 

Fig. 3.5. Common computer vision tasks. Examples of apples on trees in field conditions: (a) classification, (b) object 
detection, (c) semantic segmentation, (d) instance segmentation. 

A comparative table of the results reported in different deep learning-based fruit detection works is shown in 

Table 3.1. The F1-score metric was selected as it is the most commonly used in fruit detection papers. Other 

metrics such as average precision (AP) or accuracy (ACC) are reported when the F1-score results were not 

available. It should be noted that the reported results depend not only on the CNN structure and its parameters 

but also on the difficulty of the dataset. Thus, works assessing different structures with different datasets are 

not comparable. 
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Table 3.1. A comparative table of results reported in different deep learning-based fruit detection works. Results are reported in terms of F1-score and processing time per image. Accuracy (ACC), 
Pearson’s R value and Average Precision (AP) are provided when the F1-score value is not available. 

Approach Data type Method Backbones Crop F1-score Processing time  
(seconds per image) 

Reference 

Image classification RGB ResNet50 N/A Apples 0.978 (ACC) N/M (Häni et al., 2020a)  
 RGB CountNet VGG-16 Apples 0.962 (R) N/M (Bhattarai and Karkee, 2022) 
Object detection RGB Faster-RCNN VGG-16 Mangoes 0.881 N/M (Stein et al., 2016) 
 RGB Faster-RCNN VGG-16 Mangoes 0.908 0.13 (Bargoti and Underwood, 2017a) 
 RGB CNN + WS Self-developed Apples 0.861 0.24 (Bargoti and Underwood, 2017b) 
 RGB Faster-RCNN ResNet-50 Strawberries 0.842 0.113 (Chen et al., 2019) 
 RGB MangoYOLO(pt) N/M Mangoes 0.968 0.015 (Koirala et al., 2019b) 
 RGB YOLOv2-M1 Darknet-19 Apples, pears 0.79 0.05 (Bresilla et al., 2019) 
 RGB YOLOv3dense Darknet-53 Apples 0.864 0.304 (Tian et al., 2019) 
 RGB Faster-RCNN Inception v2 Avocados 0.84 (AP) 0.217 (Vasconez et al., 2020) 
 RGB Faster-RCNN Inception v2 Cherries 0.733 N/M (Villacrés and Auat Cheein, 2020) 
 RGB Faster-RCNN ResNet v2 Atrous Apples 0.919 N/M (Apolo-Apolo et al., 2020b) 
 RGB DY3TNet Darknet-53 Kiwis 0.903 (AP) 0.034 (Fu et al., 2021) 
 RGB ATSS ResNet50 Apples 0.925 (AP) N/M (Biffi et al., 2021) 
 RGB YOLOv4dense DenseNet Cherries 0.947 0.467 (Gai et al., 2021) 
 RGB YOLOv5s-pruned Modified CSPDarknet Apple fruitlets 0.915 0.008 (Wang and He, 2021) 
 RGB YOLOv5s-attention Modified CSPDarknet Apples 0.875 0.015 (Yan et al., 2021) 
 RGB YOLOv4 CSPDarknet-53 Bananas 0.941 0.045 (Fu et al., 2022) 
 RGB+Thermal Faster-RCNN + CHT VGG-16 Oranges 0.929 N/M (Gan et al., 2018) 
 RGB+ NIRC+Depth Faster-RCNN VGG-16 Apples 0.898 0.074 (Gené-Mola et al., 2019c) 
 RGB+Depth MS-FRCNN ResNet101 Passion fruits 0.946 0.175 (Tu et al., 2020) 
 RGB+Depth NT-FFN Self-developed Citrus 0.934 0.026 (Sun et al., 2022) 
Semantic segmentation HyperSpectral Hyperspectral CNN N/A Mangoes 0.989 N/M (Wendel et al., 2018) 
 RGB FCN-8S VGG-16 Kiwis 0.878 0.25 (Williams et al., 2019) 
 RGB MangoNet+CCL N/A Mangoes 0.844 N/M (Kestur et al., 2019) 
Fruit edge segmentation RGB Self-developed ResNet 50 Apples 0.531 0.075 (Wang et al., 2020) 
Instance segmentation RGB Mask-RCNN ResNet50+FPN Strawberries 0.956 0.125 (Yu et al., 2019) 
 RGB Mask-RCNN ResNet101 Grapes 0.847 N/M (Santos et al., 2020) 
 RGB Mask-RCNN ResNet101-FPN Apples 0.858 0.15 (Gené-Mola et al., 2020d) 
 RGB Mask-RCNN-suppression ResNet101-FPN Apples 0.905 0.25 (Chu et al., 2021) 
 RGB Mask-RCNN-attention ResNet50+FPN Apples 0.964 0.25 (Wang and He, 2022) 
Multitask RGB DaSNet-v1 ResNet-101 Apples 0.832 0.072 (Kang and Chen, 2019) 
 RGB DaSNet-v2 Darknet-53 Apples 0.873 0.070 (Kang and Chen, 2020) 
Point cloud segmentation Point cloud PointNet PointNet Grapes 0.91 (ACC) N/A (Kurtser et al., 2020a) 
 Point cloud LFPNet PointNet Apples, pears, grapes 0.802 (ACC) N/A (Yu et al., 2022a) 
 Point cloud Mask-RCNN F-PointNet Pomegranates 0.845 N/A (Yu et al., 2022b) 

N/A = not applicable. N/M = not mentioned. NIRC = Near-infrared (range-corrected intensity). 



  
  

3.3.2 Fruit detection using image classification CNNs 

The structure of image classification CNNs is based on an input layer (the image to classify) connected with 

a group of convolutional layers that act as feature extractors (feature maps), ending with a group of fully 

connected layers that act as classifiers. The convolutional layers encode image features into more 

discriminative features by convolving the feature maps with filters (learned weights). Finally, fully connected 

layers are placed at the end of the CNN to classify feature maps in one of the classes of the output layer.  

The use of classification CNNs for fruit counting is marginal because these architectures classify the entire 

image in a unique class and do not locate the objects inside images. Wang et al. (2021) proposed a modified 

version of the VGG16 network (Simonyan and Zisserman, 2014) to count the number of apple flowers in an 

image. The total number of flowers in the image was considered the image class, and the network was trained 

to directly estimate the number of flowers visible in the image, without locating them. A similar approach 

was used in Bhattarai and Karkee (2022), who modified the classification block of the VGG16 architecture 

to regress the number of flowers or fruits in apple tree images. 

3.3.3 Fruit detection using object detection CNNs 

Object detection CNNs are formed with two main structures: backbone and head. The backbone usually uses 

the first layers of an image classification CNN as feature extractor to encode the data into feature maps. Then, 

the head structure uses the feature maps provided by the backbone to predict the object locations and their 

class. Depending on the head structure, object detection networks can be classified as one- or two-stage 

networks.  

The first CNNs used for fruit detection were two-stage networks type, with a structure based on two main 

modules: (1) a region proposal module used to propose ROIs likely to contain a fruit; (2) a classification 

branch used to classify the proposed regions into fruit or background and refine the detection bounding box. 

The most commonly used two-stage CNN for fruit detection is the Faster-RCNN (Ren et al., 2017), which 

has been used to detect apples (Apolo-Apolo et al., 2020b; Kang and Chen, 2020; Tian et al., 2019), oranges 

(Apolo-Apolo et al., 2020a, Biffi et al., 2021), mangos (Bargoti and Underwood, 2017a; Koirala et al., 

2019b), kiwis (Gan et al., 2018), and strawberries (Chen et al., 2019), among others. 

One-stage CNNs (or single shot detectors) simultaneously predict object class and bounding box without the 

need of a region proposal branch. Single shot detectors (SSD) used for fruit detection include the single shot 

multibox detector (Liu et al., 2016) and the You Only Look Once (YOLO) (Redmon and Farhadi, 2018) and 
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its variants v2, v3, v4 and v5. The SSD was used in Vasconez et al. (2020) with the MobileNet backbone for 

detection of apples, avocadoes and lemons. YOLOv2, YOLOv3 and YOLOv4 were used with DarkNet-19 

and DarkNet-53 backbones, respectively, in different fruit detection works for apples, pears, kiwis, mangoes, 

bananas and grapes (Bresilla et al., 2019; Fu et al., 2021, 2022; Koirala et al., 2019b; Santos et al., 2020; Tian 

et al., 2019). 

To enhance the performance of fruit detection systems, some authors have proposed the use of multi-modal 

deep neural networks to fuse different image modalities such as colour (RGB), depth or infrared (IR) 

intensity. Using a red-green-blue-depth (RGB-D) camera, Gené-Mola et al. (2019c) showed an increase of 

4.46 % in the F1-score when combining colour, range-corrected IR intensity and depth images for apple 

detection with Faster-RCNN. Similarly, colour and depth images were combined for passion fruit detection 

in Tu et al. (2020), and colour and thermal images were combined in Gan et al. (2018) for orange detection. 

More recently, Sun et al. (2022) developed a new multi-modal network termed noise-tolerant feature fusion 

network (NT-FFN) which merged colour and depth features by means of attention modules, resulting in a 

better fruit detection performance: from F1-score of 0.910 (using RGB) to 0.934 (fusing RGB-D through 

NT-FFN). 

The introduction of edge computing applications and the need of deploying real-time fruit detection in 

embedded computers, such as NVIDA Jetson products, has shifted the attention of researchers to the 

development of smaller object detection CNNs (Roy and Bhaduri, 2022; Zhang et al., 2021b; Zhang et al., 

2022a). In consequence, many fruit detection papers published during the last two years are focused on 

achieving faster inference speeds in low power devices by means of light-weight and fast CNNs such as 

YOLOv5s and other YOLO-based tiny variants (Gai et al., 2021; Wang and He, 2021; Yan et al., 2021). 

3.3.4 Fruit detection using semantic and instance segmentation CNNs 

The fully convolutional network (FCN) (Long et al., 2015) is one of the most used architectures for fruit 

segmentation. FCN uses the first convolutional layers of CNN image classification as a backbone to encode 

data in discriminative feature maps. Then, the last feature map from the backbone is up-scaled by means of 

skip connections that combine information from shallower layers (finer but less discriminative) and deeper 

layers (coarser but more discriminative). FCN was used to detect kiwi fruits (Williams et al., 2019), oranges 

and apples (Chen et al., 2017; Liu et al., 2018). 
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Other authors have opted to develop new architectures specifically designed for fruit segmentation. The 

MangoNet architecture, developed by Kestur et al. (2019), replaced the last 3 convolution layers of FCN with 

a single convolution layer, obtaining a similar performance to that of FCN but reducing network complexity. 

Wang et al. (2020) developed a new architecture to adapt ResNet-50 for apple edge segmentation. Bargoti 

and Underwood (2017b) proposed a sliding window approach, which classified each pixel by means of a 

self-developed multilayer perceptron (MLP) and a CNN. 

A disadvantage of semantic segmentation CNNs is that it is not possible to directly count fruits from a 

segmented image because all fruits appearing in an image are segmented under the same class. Instance 

segmentation CNNs overcame this issue by combining object detection and semantic segmentation. The most 

popular instance segmentation CNN used for fruit detection is Mask-RCNN (He et al., 2017), which is an 

extension of Faster-RCNN that includes a segmentation branch to mask detected objects. Mask-RCNN was 

used with VGG-19 backbone for apple detection (Kang and Chen, 2020), with ResNet-50 backbone for 

strawberry detection (Yu et al., 2019) and with ResNet-101 backbone for apple (Gené-Mola et al., 2020d) 

and grape detection (Santos et al., 2020). More recently, some authors have proposed modifications in the 

Mask-RCNN architecture in order to achieve a better fruit detection performance (Chu et al., 2021; Wang 

and He, 2022) or a faster inference speed (Jia et al., 2021). 

Kang and Chen (2019) developed a multi-task architecture termed “Detection and Segmentation Network” 

(DaSNetv1). This architecture combines a segmentation branch used to segment apples, trunks and branches, 

and a detection branch to locate fruits. This network was specifically designed for harvesting robots, allowing 

the detection of fruits and obstacles (branches) in a single network. Later, the same authors presented an 

improved version (DaSNetv2) (Kang and Chen, 2020) which replaced the previous detection branch with an 

instance segmentation architecture, allowing detection and instance segmentation to be performed on fruits, 

and semantic segmentation on branches in one step. 

So far, the reviewed architectures were designed for working with image data. However, the evolution of 

photonics has led to the deployment of 3D sensors for robotic applications and, thus, to an increasing interest 

in using deep learning architectures to work with 3D data such as point clouds. Kurtser et al. (2020a) proposed 

the use of PointNet (Qi et al., 2017) for grape segmentation in 3D point clouds acquired with RGB-D sensors. 

The best results were obtained when combining RGB and XYZ data, reporting an average accuracy of 65 % 

in field conditions. Inspired by PointNet, Yu et al. (2022a) developed a new lightweight architecture for 
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apple, pear and lemon point cloud segmentation that reported a mean accuracy of 80.2 %. Recently, Yu et al. 

(2022b) have tested the F-PointNet (Qi et al., 2018), a variant of the PointNet in which the frustrum between 

the camera shooting and the detected fruits is used for point cloud segmentation. An F1-score of 0.845 and 

AP score of 0.952 were obtained for mature pomegranate fruit detection. 

3.3.5 Datasets for training fruit detection CNNs 

The main disadvantage of using deep learning methods is the high amount of annotated data required for 

training models. The existence of large datasets such as ImageNet (Deng et al., 2009), Pascal VOC 

(Everingham et al., 2010) or COCO (Lin et al., 2014) enables CNN pre-training with publicly available data 

and fine-tuning of the network for fruit detection with new annotated images, reducing significantly the 

amount of images required to train the CNN. Nevertheless, the annotation of new data continues to be an 

intensive time-consuming task (Koirala et al., 2019b).  

Some authors have analysed the correlation between dataset size and CNN performance. Tian et al. (2019) 

reported that performance improved with the number of fruit training images, reaching convergence around 

3000 images. A similar analysis was performed by Koirala et al. (2019b) and Bargoti and Underwood 

(2017a), who reached convergence at around 400 training images and 500 000 annotated instances, while 

Wang et al. (2022) showed that 2500 annotated objects were sufficient for single-class fruit training. 

Lu and Young (2020) reviewed publicly available datasets that could be of interest for training future fruit 

detection CNNs. Table 3.2 provides details of the ten datasets included in Lu and Young (2020) and seven 

additional datasets for fruit detection, classification and segmentation. 

 



37 
 

37 
 

Table 3.2. Publicly available datasets for fruit detection. Data can be accessed by clicking on the corresponding title (highlighted in blue). 

Title Year Image type Images * 
(instances) 

Image size ** Annotation type Crops References 

ACFR-orchard fruit dataset 2016 RGB 3704 308×202/ 500×500 Bounding boxes Almonds, apples, mangoes (Bargoti and Underwood, 2017a) 

DeepFruits 2016 RGB 586 Different sizes  Bounding boxes 7 different fruits (Sa et al., 2016) 

MangoNet semantic dataset 2018 RGB 49 4000×3000 Segmentation masks Mangoes (Kestur et al., 2019) 

Date fruit dataset 2019 RGB 
Videos 

8079 
15 

Different sizes Length, weight, maturity Dates (Altaheri et al., 2019) 

Embrapa WGISD 2019 RGB 300 (4432) 2048×1365/ 5184×3456 Instance segmentation Grapes (Santos et al., 2020) 

ISARLab_counting_dataset 2019 RGB 1560 300×300/ 606×403 Fruit number per image Almonds, olives, apples (Bellocchio et al., 2019) 

Kfuji-RGB-DS dataset 2019 RGB+Depth+NIR 967 (12839) 548×373 Bounding boxes Apples (Gené-Mola et al., 2019b) 

MangoYOLO data set 2019 RGB 1730 612×512 Bounding boxes Mangoes (Koirala et al., 2019b) 

MinneApple 2019 RGB 1000 (41000) 1280×720 Instance segmentation Apples (Häni et al., 2020b) 

WSU apple dataset 2019 RGB 2298 Different sizes Bounding boxes Apples (Bhusal et al., 2019) 
 

Apple_detect dataset 2020 RGB 5969 1024×1024 Apple centre point Apples (Biffi et al., 2021) 

FruitsGB: Top Indian fruits with quality 2020 RGB 12000 256×256 Quality label 6 different fruits (Meshram et al., 2020) 

Fuji-SfM dataset 2020 RGB  
Point cloud 

288 (1749) 
1 (1455) 

1024×1024 
10.5 Mpts 

Segmentation masks 
3D bounding boxes 

Apples (Gené-Mola et al., 2020e) 

LFuji-air dataset 2020 Point cloud 88 (1444) 235 kpts 3D bounding boxes Apples (Gené-Mola et al., 2020b) 

Scifresh-apple-RGB-images 2020 RGB 800 1920×1080 Bounding boxes Apples (Gao et al., 2020) 

Mango fruit on tree image collection 2021 RGB 250 4752×3168 Fruit number per image Mangoes (Walsh et al., 2021) 

PFuji-Size dataset 2021 Point cloud 4 (615) 9.1 Mpts 3D instance segmentation + fruit  
centre location + diameters 

Apples (Gené-Mola et al., 2021b) 

In the case of point cloud based datasets: *number of point clouds provided in the dataset, ** number of points per point cloud (average). 
 

http://data.acfr.usyd.edu.au/ag/treecrops/2016-multifruit/
https://drive.google.com/open?id=1CmsZb1caggLRN7ANfika8WuPiywo4mBb
https://github.com/avadesh02/MangoNet-Semantic-Dataset.git
https://ieee-dataport.org/open-access/date-fruit-dataset-automated-harvesting-and-visual-yield-estimation
https://doi.org/10.5281/zenodo.3361736
http://sira.diei.unipg.it/supplementary/ws-count/ISARLab_counting_dataset.tar.xz
https://doi.org/10.5281/zenodo.3715991
http://hdl.cqu.edu.au/10018/1261224
http://rsn.cs.umn.edu/index.php/MinneApple
http://hdl.handle.net/2376/17721
http://gg.gg/totalfiles
https://ieee-dataport.org/open-access/fruitsgb-top-indian-fruits-quality
https://doi.org/10.5281/zenodo.3712808
http://hdl.handle.net/10459.1/68782
https://github.com/fu3lab/Scifresh-apple-RGB-images-with-multi-class-label
https://doi.org/10.4226/145/59c9b2448242c
https://doi.org/10.5281/zenodo.4723302


  
  

When a CNN model trained with a given dataset do not generalize well with new data, semi-automatic 

labelling is an option for better annotation efficiency. Semi-automatic labelling consists of automatically 

detecting fruits in new images with a pre-trained network (or an unsupervised method) and generating the 

ground truth by manually correcting the detections (dos Santos Ferreira et al., 2019). Another option is to use 

weakly supervised methods: Bellocchio et al. (2019, 2020) proposed a deep learning approach that only 

required a simple image binary labelling; Biffi et al. (2021) proposed a deep learning approach based on an 

adaptive training sample selection (ATSS) method that only requires annotation of the centre point of the 

objects; while Bhattarai and Karkee (2022) proposed a regression network (CountNet) which only requires 

the ground truth of the number of fruits per image. 

When the number of empirical data is limited, different strategies have been applied to increase the capability 

of the network to generalize. Data augmentation techniques use annotated images to create new images by 

means of image transformations such as image flipping, rotation, and colour perturbations. This is a common 

practice employed in fruit detection works (Koirala et al., 2019a). Another option is to use synthetic data. 

Bresilla et al. (2019) generated synthetic images with random elliptic dark-green shapes (leaves) and light-

green and light-red circles (fruit). More recently, the introduction of cycle generative adversarial networks 

has shown an improvement of the realism of synthetic images (Zhang et al., 2021a), increasing the 

performance of trained networks by more than 8 % (Barth et al., 2020). 

3.3.6 Fruit tracking and counting 

A common source of error when estimating fruit load is the double counting of fruit. The easiest method to 

prevent this is to acquire data along the orchard without overlap between consecutive frames (Bargoti and 

Underwood, 2017a; Apolo-Apolo et al., 2020a). However, since the ratio of visible to occluded fruit is not 

always constant, the use of multi-view approaches is sometimes required to increase fruit detectability 

(Hemming et al., 2014). Hence, to prevent double counting, fruit need to be tracked during scanning. 

Two different strategies have been applied to track fruit across consecutive frames: video multi-object 

tracking (MOT) and the use of 3D data to locate the position of detections in the 3D space (Fig. 3.6). So far, 

the method most commonly used for video fruit tracking has been the Kalman filter (Anderson et al., 2021a; 

Itakura et al., 2021; Liu et al., 2018; Wang et al., 2019). Alternatively, Das et al. (2015) used optical flow, 

while Stein et al. (2016) used epipolar geometry by projecting the epipolar lines of the detected fruits centre 

onto consecutive frames. Recently, deep learning has demonstrated a good performance for solving MOT 
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tasks (Dendorfer et al., 2020), being DeepSORT (Wojke et al., 2017) the deep learning-based tracking 

method most used for fruit counting in videos (Osman et al., 2021; Parico and Ahamed, 2021; Villacrés et 

al., 2023). A different approach was implemented in Roy and Isler (2016), who used calibrated cameras to 

register images through affine transformation. Similarly, Apolo-Apolo et al. (2020b) and Chen et al. (2019), 

applied affine transformations to build an orthomosaic of the entire orchard and subsequently detected fruits. 

Another method involves utilizing image stitching, as demonstrated by Zhang et al. (2022b), who used a 

SIFT-based image matching technique to form unique panoramic image of the captured fruit trees. 

 

 

Fig. 3.6. Summary of methods used to prevent fruit double counting. Multi-object tracking (top) and 3D projection 
(bottom) procedures. 

An alternative approach to reduce double-counting issues is the detection of fruit in the 3D space by means 

of RGB-D cameras, LiDAR sensors, or structure-from-motion (SfM). Wang et al. (2013) used a stereovision 

system synchronized with two global navigation satellite system (GNSS) receivers in order to transform 

apple locations into the global coordinate system. Then, fruit detected in consecutive frames closer than 0.16 

m were automatically merged. Other works proposed the use of SfM to merge fruit detected from different 

camera positions (Gené-Mola et al., 2020d; Häni et al., 2020a; Liu et al., 2018, 2019; Santos et al., 2020). 

Taking advantage of the 3D data generated with SfM photogrammetry, fruits are previously detected in 

images and subsequently projected onto the 3D space for pair-wise association (Table 3.3). 
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Table 3.3. A comparative table of results reported in different fruit counting works. Results are reported in terms of R2. 

Tracking method Sensors Fruit detection method Backbone Crops R2 * Reference 
Images without overlap RGB MLP + CHT N/A Apples 0.83 (Bargoti and Underwood, 2017b) 
       
Epipolar geometry RGB + LiDAR Faster-RCNN VGG-16 Mangoes 0.90 (Stein et al., 2016) 
       
Kalman RGB SSD Mobilenet Avocado, apples, lemons 0.77 (Vasconez et al., 2020) 
       
 RGB MangoYolo Not specified Mangoes 0.62 (DR) (Wang et al., 2019) 
       
DeepSORT RGB YOLOv4 CSPDarknet53 Pears 0.755 (MOTA) (Parico and Ahamed, 2021) 
       
Orthomosaic RGB Faster-RCNN Resnet V2 Atrous Apples 0.80 (Apolo-Apolo et al., 2020b) 
 RGB Faster-RCNN Resnet-50 Strawberries 0.84 (DR) (Chen et al., 2019) 
       
3D projection RGB HSV thresholding N/A Apples 0.12 (ADRE) (Wang et al., 2013) 
 RGB Faster-RCNN Not specified Mangoes 0.78 (Liu et al., 2019) 
 RGB Mask-RCNN ResNet-101-FPN Apples 0.80 (Gené-Mola et al., 2020d) 

* Average detection rate error (ADRE), detection rate (DR) and MOT accuracy (MOTA) are provided when the R2 coefficient is not available. 

 



  
  

3.4 Fruit size and maturity estimation 

3.4.1 Size estimation from 2D images 

This group includes the set of works carried out by Stajnko et al., where apple fruit diameters were estimated 

throughout their growing season using RGB (Stajnko and Čmelik, 2005; Stajnko et al., 2009) and thermal 

images (Stajnko et al., 2004). A high coefficient of determination was obtained when comparing the 

estimated fruit diameter growing curves with the actual ones (R2 of 0.89 and 0.96 for RGB and thermal 

images, respectively). The tests with thermal cameras also showed that it is more difficult to detect the 

thermal gradient of the fruits inside the crown; this is because they heat up less than fruit located on the 

outside part. Likewise, Wang et al. (2020) used a spherical video camera for monitoring the apple growth 

from fruit thinning to their ripening. Estimates of the horizontal diameter of apples were made by applying 

ellipse and circular fitting methods and with the help of calibration balls. Ellipse fitting estimates yielded a 

mean average absolute error of 0.90 mm, much less than the 2.80 mm error obtained using a circular fitting. 

The size of citrus fruit was also estimated by Apolo-Apolo et al. (2020a), in this case using images taken 

from an unmanned aerial vehicle (UAV) and considering a wood ruler of known dimensions as the calibration 

object. Recently, Lu et al. (2022) proposed a near real-time apple fruit detection and sizing method from 

images taken by a low-cost smartphone in various growth stages. To estimate the fruit size, a red artificial 

apple was placed as a reference in the middle of the target area during the data collection stage. Estimated 

fruit sizes achieved R2 values of 0.68 and 0.66 in fruit height and fruit width, respectively. 

Another alternative is based on knowing the distance to the camera of each of the fruit that appear in the 

image. In their pioneering work, Regunathan and Lee (2005) combined colour images with distance 

information obtained with ultrasound sensors and, using trigonometry, estimated the dimensions of citrus 

fruit. In this line, Wang et al. (2017) used the images and depth data provided by an RGB-D camera to 

estimate the size of mango fruits in trees by applying the thin lens theory. Root-mean-square errors (RMSE) 

of 4.9 and 4.3 mm were obtained in the fruit length and width estimates, respectively. Gongal et al. (2018) 

estimated apple sizes from distances provided by a time-of-flight (ToF) camera using a regression model that 

converts pixels (digital camera) to millimetres. The mean absolute percentage error (MAPE) was 15.2 %, 

lower than the 30.9 % obtained when the size was derived from the point clouds provided by a ToF camera. 

Another approach to estimate the fruit size from two images taken at different positions was presented by 

Rakun et al. (2019). This procedure uses image registration and similar triangles, known the distance between 
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the two camera positions. Average diameter errors of 7 and 8 mm were obtained for peach and apple fruits, 

respectively. 

3.4.2 Size estimation from 3D point clouds 

As mentioned, fruit size estimation based on 2D images require the use of calibration targets or to merge the 

image data with ancillary distance information that adds complexity and computational costs to the 

processing. These limitations can be overcome using 3D sensing techniques (Rosell and Sanz, 2012; Gregorio 

and Llorens, 2021), such as LiDAR, structured-light, binocular stereo vision, multi-view stereo (MVS) or 

RGB-D cameras, among others, which allow the generation of three-dimensional reconstructions of the fruits. 

Regarding LiDAR-based techniques, Méndez et al. (2019) used a 3D laser scanner with RGB data and 

applied the k-means algorithm to estimate the number and size of oranges. The computed diameters did not 

show significant differences in relation to those measured manually (p=0.35). As the authors point out, this 

is a time-consuming method, but given its high accuracy it can serve as a reference for other faster and more 

economical methods. For their part, Tsoulias et al. (2020) used a mobile terrestrial LiDAR scanner to monitor 

apples at different growth stages. Fruit diameter was estimated from each point cluster identified as apple 

and the resulting R2 with RMSE was 0.46 with 10.8 % and 0.67 with 7.7 %, 42 DAFB and at harvest, 

respectively. 

Structured-light principle was used by Rist et al. (2019), who tested a hand-held high-resolution scanner for 

3D phenotyping of grape bunches under field conditions. These are high cost, high precision devices with 

acquisition speeds of about 1 million points/s. The authors achieved R2 values of 0.70 to 0.91 in the prediction 

of several phenotypic traits (number and diameter of grapes; bunch width, length and volume). The RMSE 

values were 13.51 and 19.24 mm for bunch width and length, respectively, and 28.09 mL for the volume. 

Binocular stereo vision was applied in harvesting robots under outdoor conditions by Luo et al. (2016). The 

authors proposed a method to detect the cut-off point of the peduncle and estimate the volume of grape 

bunches. As a result of their work, they obtained errors of less than 17 mm and 19 mm in bunch height and 

diameter, respectively. Herrero-Huerta et al. (2015) applied MVS for vineyard phenotyping and determined 

the grape bunch volume using an automatic method that fit a convex hull to the point cloud and a semi-

automatic method that generated a CAD model. In both methods, similar coefficients of determination were 

obtained (0.76 and 0.77) when comparing the estimates with the actual bunch volumes. MVS was also applied 

in vineyards by Rose et al. (2016), who determined berry diameter by fitting spheres to point clouds. 
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Estimates were highly accurate with differences of about 2 mm with respect to manual measurements. Recent 

studies (Gené-Mola et al., 2021a; Grilli et al., 2021) have applied MVS and SfM to carry out in-field diameter 

estimation of apple fruit. Gené-Mola et al. (2021a) compared the performance of four different size estimation 

methods under several fruit visibility/occlusion levels (Fig. 3.7). The least squares method was concluded to 

be the most efficient in terms of computational cost, while the MAE ranged from 4.5 to 7.8 mm depending 

on the visibility. These errors were lower than those obtained with the largest segment method and similar to 

those obtained with the M-estimator sample and consensus (MSAC) method and template matching. For their 

part, Grilli et al. (2021) developed a procedure for on-tree automatic apple fruit counting and sizing using 

videos acquired with a smartphone. Apple size estimation was performed by fitting spheres (RANSAC 

method) on the point cloud. 

 

Fig. 3.7. Pipeline proposed by Gené-Mola et al. (2021a) to obtain in-field diameter estimation of apple fruit. 

RGB-D sensors have been applied in vineyard yield estimation by Hacking et al. (2019). In their study, RGB-

D measurements were used to create one mesh per grape bunch and determine its volume and mass. Also in 

vineyards, Kurtser et al. (2020b) used point clouds generated by an RGB-D camera to detect the grape 

clusters. These authors proposed three methods based on fitting geometric shapes to estimate the grape cluster 

size, obtaining the best results using percentile bounding boxes. Also using RGB-D sensors, Yu et al. (2022b) 

performed 3D sphere fitting to estimate the position and size of pomegranate fruits. Estimates of the fruit 

radius presented an RMSE of 2.35 mm and R2 of 0.826 when compared to the actual radius, while the 

position error was less than 5 mm.   

As seen in this section, fruit size estimations have been carried out in a limited number of studies, many of 

them focusing on a few species. It is difficult to compare the performance of the different techniques due to 
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the diversity of metrics used for their evaluation (Table 3.4). It is therefore advisable that future works 

include, at least, the mean absolute error (MAE) and the coefficient of determination (R2) when comparing 

estimated and actual size values. 

3.4.3 Advancing fruit maturity estimation 

In addition to the fruit size, knowing their maturity is essential for proper crop load management as well as 

for subsequent postharvest processes. Although automatic methods for fruit maturity estimation are less 

developed than sizing methods, some pioneering works have been carried out. Since many fruit species 

exhibit specific change of shape during fruit development, the fruit maturity can be estimated by means of 

the shape of the singularized, segmented fruit data. In apple, the shape of fruit was modelled by means of 

statistical approach (Danckaers et al., 2017) or Fourier signature (Rogge et al., 2015; Tapia Zapata et al., 

2022). Such approaches provide the next step of extracting information describing the maturity of fruit. In 

mango, the change around the shoulder of the fruit in dicates maturity, which was analysed by means of RGB 

imaging (Sahu and Potdar, 2017). 

Beside the shape of fruit also the pigment content and distribution provide information on the fruit maturity. 

The pigment contents have been addressed by means of colour analysis and spectral-optical data with 

enhanced resolution providing information on the reflectance intensity altered by absorption of pigments at 

their specific wavebands (Merzlyak et al., 2003; Walsh et al., 2020). Measurements were carried out in 

contact to the fruit to avoid stray light or with passive RGB sensors being not reliable in varying lighting 

conditions. However, the intensity measured by means of RGB-D and LiDAR sensors was employed 

previously to analyse the pigments of whole canopies employing LiDAR sensors emitting at 532 nm (green) 

or 660 nm (red), the latter to measure the leaf chlorophyll content (Eitel et al., 2010). Accordingly, 3D fruit 

segmentation and chlorophyll analysis were recently shown on apples in the orchard (Tsoulias et al., 2023) 

and banana fruit in postharvest (Saha and Zude-Sasse, 2022). Employing the return signal strength intensity 

of LiDAR sensor requests the radiometric calibration referencing the lowest and highest measurable intensity 

as well as curvature correction (Saha and Zude-Sasse, 2022). Classification of different measuring dates 

during fruit development were shown for apple as well as banana fruit, providing an interesting alternative 

to multispectral 2D readings. 



  
  

Table 3.4. Sensing techniques and methods for in-field fruit size estimation reporting coefficient of determination (R²), 
absolute error (AE), mean absolute error (MAE), mean bias error (MBE), root mean square error (RMSE), mean 
average percentage error (MAPE). 

Techniques Size estimation method Fruits Size parameters Performance References 
Binocular stereo 
vision 

Calibration object. 
Regression model to predict 
pixel sizes. 

Grape Bunch diameter/ height AE < 18.6 mm / 16.2 mm  (Luo et al., 2016) 

High resolution 3D 
scanner 

Sphere fitting. Grape Bunch length /  
width / volume 

R2 = 0.70 / 0.71 /0.91 (Rist et al., 2019) 

LiDAR-based 
sensor 

Sphere fitting. Apple Fruit diameter R2=0.38 - 0.95 
RMSE: 4.1 % – 15.8 % 
MAE= 3.5 mm – 12.4 mm 
MBE=-10.7 mm – 7.5 mm. 

(Tsoulias et al., 2020)  

MVS Pixel conversion. 
Image registration. 

Apple 
Peach 

Fruit diameter 
Fruit diameter 

MAE=8 mm 
MAE=7 mm 1 

(Rakun et al., 2019)  

 Convex hull. CAD 
generation. 

Grapes Bunch volume R2 = 0.77  / 0.76 (convex hull 
/ CAD model) 

(Herrero-Huerta et al., 
2015) 

MVS, SfM Sphere fitting. Apple Fruit diameter R2 = 0.91 
RMSE = 5.1 mm 
MAE=3.7 mm 
MBE = -1.9 mm 
MAPE=5.9 % 

(Gené-Mola et al., 2021a) 

RGB + ultrasonic 
sensor 

Distances with ultrasonic 
sensors. Pixel conversion. 

Apple Fruit diameter RMSE=0.4 cm. (Regunathan and Lee, 
2005) 

RGB camera Calibration object. 
Pixel conversion. 

Avocado 
Mandarin 
Navel orange 
Apple 
Mango 
Mango 

Fruit diameter 
Fruit diameter 
Fruit diameter 
Fruit diameter 
Fruit length 
Fruit width 

RMSE=3.4 mm 
RMSE=3.8 mm 
RMSE=2.4 mm 
RMSE=2.0 mm 
RMSE=5.3 mm / 5.5 mm 
(controlled/ambient light) 
RMSE=3.7 mm / 4.6 mm. 
(controlled/ambient light) 

(Wang et al., 2018b) 

  Calibration object. 
Pixel conversion. 

Apple Fruit diameter  
growing curve 

R2=0.96 (Stajnko et al., 2009) 

 Pixel conversion. Apple Fruit diameter r = 0.55 – 0.80 (harvest stage) (Stajnko and Čmelik, 2005) 

 Calibration object. 
Pixel conversion.  
Ellipse/ circle fitting. 

Apple Fruit diameter MAE=0.90 mm / 2.80 mm 
(ellipse/circle fitting) 

(Wang et al., 2020) 

 Calibration object. 
Pixel conversion. 

Grapes Berry diameter R2= 0.88 (Roscher et al., 2014) 

RGB camera + ToF Calibration object. 
Regression model to 
 predict pixel sizes. 

Apple Fruit diameter MAPE: 15.2 % (RGB) / 30.9 
% (ToF) 

(Gongal et al., 2018) 

RGB-D camera Bounding box/ 
 ellipsoid/  
cylinder fitting. 

Grapes Bunch length /  
width 

MAE=∼2.9 cm /∼3.6 cm. (Kurtser et al., 2020b) 

 Pixel conversion units. Mango Fruit length /  
width 

RMSE=4.9 mm / 4.3 mm. (Wang et al., 2017) 

 Sphere fitting. Pomegranate Fruit radius RMSE=2.35 mm, R2 = 0.826 (Yu et al., 2022b) 

Thermal cameras Pixel conversion units. Apple Fruit diameter  
growing curve 

R2 = 0.89 (Stajnko et al., 2004) 
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3.5 Discussion and future trends 

3.5.1 The importance of data acquisition 

Sensors are the first stage of detection/counting and size estimation of fruit and, thus, are critical for 

the performance of the entire process. Limitations of up-to-date available sensors are transferred to 

the obtained measurements which feed up the subsequent applied algorithms, thus limiting their 

effectiveness. Changes in environmental lighting affects RGB and RGB-D cameras’ performance 

(Gené-Mola et al., 2020c; Fu et al., 2020). In addition, structured light sensors usually fail to 

characterize the contours, what is especially problematic in small objects, such as fruit. Also, in 

contours of objects, LiDAR’s mixed pixels phenomenon (Sanz-Cortiella et al., 2011) leads to distorted 

points clouds and filtering is often required. 

Some more advanced and affordable new sensors, which are expected to achieve great advances in 

this field, are being already tested for fruit detection and sizing. Thus, multi-beam as well as solid state 

LiDAR sensors are a great step forward. There are also LiDAR + RGB systems that allow obtaining 

coloured point clouds, although the correct colour assignment needs further improvement, especially 

in the outlines of small objects. The possibility of using two LiDAR systems at different wavelengths 

to simultaneously determine the normalized difference vegetation index (NDVI) of fruit in addition to 

the fruit number and size has recently been demonstrated (Tsoulias et al., 2023). Some companies 

have developed systems that merge different sensing principles (sensor fusion) with AI and post 

processing algorithms in the same product (Zheng et al., 2021). Also, the use of smartphones’ 

embedded sensors (GNSS, RGB cameras, LiDAR …) allows much more compact systems with post 

processing capabilities in the same hardware.  

Some ideas for next steps towards fruit’s detecting and sizing systems can be outlined, such as the 

combination of multiple sensors, with the same or different sensing principles (sensor fusion). In 

addition, the application of stereo vision, SfM and MVS principles to thermal cameras can also be 

assessed, in order to obtain point clouds in the thermal range of the electromagnetic spectrum. The 

same can be applied to multispectral (MS) cameras, which are commercially available at affordable 

prices: systems similar to those based on RGB cameras but with MS cameras can be developed, 

allowing to obtain 2D images of fruits/trees/crops including IR and, from these, obtain 2D images of 
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vegetative indices (VI), such as NDVI or the normalized difference red edge index (NDRE), among 

others. Likewise, progress can be made in obtaining 3D point clouds in the IR and in these VI. In the 

case of MS cameras with multiple optical objectives (one for each spectral band), it is necessary to 

address the effect on the measurements of not having a single common optical objective. 

Apart from the sensors themselves, it is also necessary to delve into the measurement system as a 

whole: vehicle, supports and optimal location of the sensors (Xie et al., 2022). The GNSS receiver 

system associated with the sensors is also important, since the more precise it is, the better, because it 

affects the accuracy of the measurements, especially with regard to the location of the fruit, which 

must allow mapping the size of fruit both in the tree and in the plot. 

Another aspect is the optimization of the resolution of the images and point clouds obtained by the 

sensors, so that they do not compromise the processing speed and allow progress towards real-time 

detection. Progresses must also be made in the implementation of systems that are increasingly plug 

and play, to facilitate their effective implementation in the sector, without the need to be an ICT expert. 

Finally, more studies are needed to know how external variables - apart from lighting conditions - 

such as temperature, dust, fog, vibrations etc., influence sensors' performance. 

3.5.2 Fruit counting 

Fruit growers still often use manual fruit counts on trees sampled within the plot to estimate orchard 

fruit yield. The fruit grower's experience helps to make this task more efficient, but since fruit counting 

is manual, it is always very laborious and expensive. AI application is expected to become the new 

paradigm in providing fruit growers with fast and reliable fruit counting methods for yield estimation. 

However, different strategies can be proposed, some of which still require new advances to be applied 

in a practical way. As demonstrated in this review, getting to automate fruit counting is not a simple 

matter, when occlusions, varying background, changing lighting exposure, unstructured canopies, and 

variable crop-load level are some of the challenges to face (Bhattarai and Karkee, 2022). If this were 

not enough, different steps must be addressed in the overall fruit counting process adding even more 

computational complexity. To give an example of the difficulty involved, it is known that only object-

level annotation takes a substantial amount of manual annotation hours to create large labelled datasets 

(Pawara et al., 2020). The regression-based fruit counting approach has also been raised in some 
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research (Bhattarai and Karkee, 2022; Pawara et al., 2020). In contrast to detection-based, annotation 

of only the total number of fruits at image level is used to train a neural network for counting. Thus, 

there is no need for explicit individual detection and localization resulting in a computationally simpler 

process. Another particularly interesting strategy is the one mentioned in Hobbs et al. (2021), where a 

deep learning-based density estimation approach is applied to count the number of flowering pineapple 

plants. By combining the latest advances in remote sensing and computer vision, counting is then 

affordable in orchards with high planting density. Indirect yield prediction, more than fruit count, has 

also been implemented for years by developing models that relate yield to features from environment 

(meteorological information) and/or features from canopy or tree physiology (management mode, 

plant growth state) (He et al., 2022). 

The automatic fruit detection with computer vision algorithms is a key task for fruit counting systems. 

From 2016, the introduction of deep learning stablished object detection convolutional neural 

networks as the standard method to detect fruit in images, achieving F1-scores higher than 90 %, 

similar to the human eye. The tendency of the used CNN architectures is being the following. First 

(from 2016 to 2018, approximately), importance was given to improve accuracy. In this period, 

architectures such as Faster-RCNN demonstrated to be more accurate than the previous methods. Later 

(from 2018 to 2021, approximately), efforts were focused on improving efficiency and speed (Table 

3.1). During this period, one-stage networks such as YOLO and its variance became the most popular, 

demonstrating real-time processing speeds and similar accuracy than the previous architectures. The 

current trend is to develop lightweight CNN to be implemented for edge computing purposes 

processed in embedded computers. It is expected that this will facilitate the deployment of commercial 

and affordable fruit counting devices (Zhang et al., 2021b).  

Future research in fruit detection is expected to introduce emerging machine learning methods such 

as vision transformers (Carion et al., 2020), which are promising deep learning architectures based on 

attention mechanisms which could be more efficient and accurate than the popular CNNs. On the other 

hand, it is also expected an advance on point cloud-based object detection algorithms, which so far, 

have shown a lower performance compared with 2D algorithms based on CNNs. In this regard, further 

research should be done in order to test 3D machine learning methods that have not been applied for 
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fruit detection such as the use of graph neural networks (Zhou et al., 2020) or PointPillars (Lang et al., 

2019). 

Based on the revised literature, authors consider the detection problem a quite mature problem at the 

level of computer vision. The handcrafted methods have been largely superseded by those based on 

deep learning. The lack of generalization in the detection of fruits together with variable conditions of 

the acquisition process (lighting changes, noise, background colours, etc.) are the main factors that 

directly affect handcrafted methods. Nevertheless, there are still environments (e.g. high-contrast fruit 

compared to the background) where methods based on handcrafted features could continue to be 

advantageous given their low computational cost. In order to advance to the development and 

deployment of commercial devices, future works should apply and evaluate the methods for in-field 

counting. Having high detection rates in the images does not ensure a high performance of these 

systems for yield estimation and mapping, since there are other factors that affect the systems 

performance such as the structure of trees, the amount of fruit occlusions, the use of multi-view 

methods, the strategies to prevent fruit double counting (such fruit tracking), etc. During the literature 

review we found that there are many works that evaluate the detection performance in images, but few 

works comparing the number of fruits detected in the images with respect to the actual number of 

fruits on trees or orchards. In addition, very few fruit counting and mapping methods were evaluated 

at different growth stages and different scanning conditions to ensure that systems generalize well at 

different environments. Thus, further efforts should be done to confront the challenges not related with 

the detection and evaluate the generalization of the models on larger datasets including different 

orchards scanned at different conditions.  

Finally, authors involved in future research should also consider making publicly available the codes 

and the datasets with detailed explanations about how to implement and use them. This will facilitate 

that the scientific community advances efficiently and collaboratively. In other research fields such as 

Computer Science it is a common practice to make codes and data available. This, for example, 

explains the rapid advances in deep learning during the last decade. However, in the field of fruit 

detection and counting there is still a reluctance for the open science, which makes difficult to 

reproduce the methods and makes it difficult collaborative and additive research. Counting fruits is a 
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task in which AI has allowed great advances. But, thinking of applying sensors and processes 

punctually within the plots, the combined use of AI together with efficient sampling cannot be ruled 

out, this being a still pending issue. 

3.5.3 Fruit sizing and characterization 

The fruit sizing task has not received as much attention as fruit detection, but several advances have 

been achieved during the last decade. Most of the revised works measure the fruit size in pixels in 

images and then apply a conversion from pixels to millimeters. Methods based on 2D images require 

the usage of calibration targets placed at the same distance to the cameras than fruit, which limits the 

efficiency of the data acquisition process. However, more advanced methods are based on 3D data, 

which can directly measure the fruit size in millimeters, or on RGB-D data, which allow the conversion 

from pixels to millimeters by applying the pinhole camera model.  

So far, the dimensions of fruit at advanced ripening stages have been estimated, but there is also an 

interest in earlier maturity stages. For instance, the measurement of apple fruitlets is of interest for 

precisely adjusting the dose when applying chemical thinning. Thus, while accurate fruit sizing results 

have been reported in the revised literature, further research should be done for measuring young fruit 

to take appropriate actions in crop load management.  

One of the major challenges when measuring fruit size with sensors is the presence of fruit occlusions. 

Although a high percentage of fruits are partially occluded, some fruit sizing works found in the 

literature limit the evaluation of their methods on fully visible fruits. From the authors’ opinion, to 

transfer the fruit sizing research methods needs to deal with occlusions. Consequently, future works 

should provide fruit sizing results at different degrees of occlusion. In addition, further research should 

be carried out to automatically estimate the percentage of visibility of detected fruits, which would 

allow to identify the most occluded detections and limit the measurement to the most visible fruits, 

which are likely to be better measured.  

The authors consider that future works will involve the development of methods capable of real-time 

monitoring the fruit temperature (sunburn risk), estimating fruit maturity (section 3.4.3), early 

detecting its defects and diseases, etc. Ultimately, current size estimation methods should evolve 
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towards fruit characterization methods to allow a more complete knowledge of the different variables 

that affect fruit growth. 

3.5.4 Opportunities for research transfer 

Considering in-field fruit size estimation (necessary to monitor growth and estimate fruit weight), new 

research and commercial opportunities are emerging with the priority of developing robust and low-

cost systems, and also under the premise of having to process large amounts of data when applied to 

large farms with large number of trees. Currently, there are a few companies that detect and count 

blossom and fruits and, in some cases, estimate fruit dimensions to estimate yield (Anderson et al., 

2021b). Fruit detection and sizing would unlock the possibility to estimate per tree crop load and adjust 

the number of fruits on a tree and quality bases. It is well-known that crop load influences fruit quality 

(Serra et al., 2016; Embree et al., 2007). Together with crop load, irrigations strategies but also fruit 

location in the canopy, mainly according to height, are also affecting quality parameters (Alcobendas 

et al., 2013). In-field fruit location and sizing systems allow fruits to be georeferenced on a per tree 

basis and also to register their position in the canopy. An early detection and sizing solution would 

allow the farmers to apply thinning strategies within the same season considering the number of 

fruitlets per tree or even per branch or according to height. Several measurements along the season 

would provide him/her feedback about fruit growth uniformity and expected fruit quality. Late 

measurements, right before harvesting, would provide feedback on the applied strategy and 

information for the next season. When use in a whole farm approach instead of in a sampling approach, 

those systems would allow farms to better plan their logistics (labor force hiring, distribution within 

the field, transport and storage capacity, etc.) and also accurately estimate their yield and benefit 

according to fruit size classifications. In addition, when fruit size distribution is obtained for a whole 

plot, real-time or even map-based selective harvesting strategies could also be applied after a cost-

benefit analysis according to fruit size or even to fruit colour (when such information is also gathered). 

Summarizing, having information on the number of fruit, their size and their location within the trees 

and throughout the plot on a continuous, non-discreet, bases, will allow farms apply fruit quality and 

or cost-benefit -oriented strategies and make more informed decisions in the framework of Precision 



  
  

52 
 

Agriculture or Precision Fructiculture resulting in enhanced fruit quality and reduced fruit size 

distribution. 

3.6 Conclusions 

From the analysis of previous research in fruit detection and sizing, it can be concluded that, although 

very significant advances have been achieved in the recent past (in particular since the development 

of deep learning algorithms), it remains as an open field of study, which is currently a focal point of 

great interest. 

Fruit load management and yield estimation in fruit orchards is still usually done by manual/visual 

fruit counting and sizing. However, this is always a costly task in terms of time and labour. For this 

reason, automatic counting using fruit detection systems is becoming a feasible option for the fruit 

sector. 

Actually, both leaf area and fruit size can be estimated with LiDAR, RGB and RGB-D sensors-based 

systems, enabling the tree-individual analysis of fruit bearing capacity. Such precise management 

avoids errors and, therefore, can contribute to more sustainable fruit production. In postharvest, the 

fruit size determines the fruit value in some crops such as sweet cherry. In other crops such as apples, 

the storability of fruit can be affected by fruit size. 

Both active and passive electromagnetic (EM) radiation-based sensors are being used for detection 

and sizing of fruits, most of them in the visible, IR or thermal region of the EM spectrum. Hopeful 

future advances are expected from new emerging sensor, electronics and post processing systems as 

well as sensor fusion, which should lead to achieving this goal in a practical and affordable way in a 

few years. Optimizing measurements’ size files, GNNS accuracy and systems’ simplicity of use no 

doubt will help greatly to the adoption of the commercially products that will gradually appear in the 

coming years. 

Hand in hand with these advances in sensors, a key point has also been the developments made in the 

applied algorithms, taking special relevance those based on artificial intelligence techniques and 

specifically deep learning based on convolutional neural networks, CNNs. Most fruit detection and 

sizing recent approaches use image classification, object detection or semantic and instance 
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segmentation CNNs. However, near future advances are also linked to the availability of high quality 

and size datasets to train the algorithms that will be developed from now on. 
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Abstract 

The emergence of low-cost 3D sensors, and particularly RGB-D cameras, together with recent 

advances in artificial intelligence, is currently driving the development of in-field methods for fruit 

detection, size measurement and yield estimation. However, as the performance of these methods 

depends on the availability of quality fruit datasets, the development of ad-hoc software to use RGB-

D cameras in agricultural environments is essential. The AKFruitData software introduced in this work 

aims to facilitate use of the Azure Kinect RGB-D camera for testing in field trials. This software 

presents a dual structure that addresses both the data acquisition and the data creation stages. The 

acquisition software (AK_ACQS) allows different sensors to be activated simultaneously in addition 

to the Azure Kinect. Then, the extraction software (AK_FRAEX) allows videos generated with the 

Azure Kinect camera to be processed to create the datasets, making available colour, depth, IR and 

point cloud metadata. AKFruitData has been used by the authors to acquire and extract data from apple 

fruit trees for subsequent fruit yield estimation. Moreover, this software can also be applied to many 

other areas in the framework of precision agriculture, thus making it a very useful tool for all 

researchers working in fruit growing. 

Keywords: RGB-D camera, data acquisition, data extraction, fruit yield trials, precision fructiculture. 
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Metadata 

Nr Code metadata   

C1 Current code version 1.0 

C2 Permanent link to code/repository used 

for this code version 

https://github.com/GRAP-UdL-AT/ak_acquisition_system 

https://github.com/GRAP-UdL-AT/ak_frame_extractor 

C3 Permanent link to reproducible capsule  NA 

C4 Legal code license MIT license (http://opensource.org/licenses/MIT) 

C5 Code versioning system used Github 

C6 Software code languages, tools and 

services used 

Python 3.8 or later 

Required packages managed with pip: requeriments_win.txt, 

requirements_linux.txt 

Azure Kinect SDK, Stereolab ZED SDK, Pyk4a 

C7 Compilation requirements, operating 

environments and dependencies 

Windows 10 or Ubuntu Linux 20.04, Azure Kinect SDK, 

Python 3.8 or later. 

C8 If available, link to developer 

documentation/manual 

https://github.com/GRAP-UdL-

AT/ak_acquisition_system/blob/main/README.md 

https://github.com/GRAP-UdL-

AT/ak_frame_extractor/blob/main/README.md 

C9 Support email for questions juancarlos.miranda@udl.cat 
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4.1 Motivation and significance 

Over the coming years, a significant food production increase will be required to meet the demand of 

a world population that could reach 9.7 billion people by mid-century [1]. To achieve this, 

environmentally friendly techniques must be applied, being at once socially and economically 

sustainable [2]. Advances in agricultural robotics [3], artificial intelligence [4], sensor integration [5], 

and big data [6], together with the application of precision farming techniques [7,8] promise to be 

essential to overcome these challenges. 

In the fruit growing domain, the need for productivity improvement and sustainable resource 

management is currently driving the development of automatic methods for fruit detection and sizing, 

as well as for yield estimation [9–11]. These tasks are commonly performed by visual counting or 

manual measuring in certain trees sampled within the plot. The labour requirements are a clear 

weakness of this process, as well as the error (bias) that tends to be associated to what is a basically 

repetitive and subjective task under field conditions [12,13]. 

To test the usability of depth cameras (particularly RGB-D cameras) for the above purposes of 

detecting, measuring and quantifying fruit yield in apple trees, the Precision Agriculture research 

group of the University of Lleida (Catalonia, Spain) has launched a specific task on this topic within 

the PAgFRUIT national project. More specifically, the Azure Kinect camera (Microsoft, Redmond, 

WA) has been assessed to, in a first stage, acquire data on apples and, in a second stage, to extract 

information on their geometry and create a database for later analysis. Hence the dual structure of two 

different software tools, while also making use of deep learning algorithms in combination with a 

global navigation satellite system (GNSS) so that data captured during the field test can be 

georeferenced. Fig. 4.1a shows a diagram of the assembly mounted on a terrestrial platform that can 

be moved along the rows. 
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Fig. 4.1. Fruit yield estimation using computer vision methods. a) Sensor assembly scheme in field tests. b) Proposed 
stages of data acquisition and extraction. 

Fig. 4.1b shows the two stages mentioned above, i) data acquisition and, ii) dataset creation. The 

developed software therefore focuses on these two stages, which are considered previous and essential 

to facilitate the use of RGB-D cameras for testing in field trials. With a complete database made 

available, the user can then train and validate artificial intelligence algorithms for detection, size 

measurement and yield estimation in apple trees. More specifically, the software for the acquisition 

stage (AK_ACQS) allows different sensors, such as time-of-flight (ToF) and stereo vision cameras, 

combined with a GNSS receiver to be activated simultaneously. The second extraction software 

(AK_FRAEX) allows videos generated with the ToF camera to be processed to create the 

aforementioned datasets. The selected ToF camera is the Azure Kinect DK, currently one of the most 

reputable RGB-D sensors used for commercial projects [14] and outdoor agricultural applications [15]. 

Color images, IR images, depth data and IMU motion data are examples of the multimodal information 

supplied by this camera. The ZED 2 camera (Stereolabs, San Francisco, CA) and the SimpleRTK2B 

Basic Starter Kit (Ardusimple, Lleida, Spain) are, respectively, the stereo vision camera and the GNSS 

receiver used in this work. 

With respect to the first software (AK_ACQS), challenges posed by the PAgFRUIT project include 

acquisition from different sensors with different technologies, the georeferencing of data and the 

synchronization of the entire process. This has meant additional challenges such as: i) manufacturer 

software development kits that use different operating systems and programming languages, ii) sensors 

that require high processing demands, iii) sensors that must be used separately for reasons of hardware 

compatibility, and iv) sensors that require minimal hardware for operation and data recording. Fig. 4.2 

helps to understand the difficulties involved in this multilevel acquisition using two different sensors 

together with the additional signal from the satellite receiver. The appropriate selection of libraries, 
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recording formats and programming languages is especially important to meet the above requirements, 

aiming to provide a robust and easy-to-use solution even when real-time acquisition is performed by 

moving the ground platform during the acquisition stage. 

 

Fig. 4.2. Challenges posed by the use and synchronization of different sensors from different manufacturers and using 
different technologies in the first stage of fruit data acquisition. 

As for the second software (AK_FRAEX), the user will have access to video frame information that 

can be extracted and stored in different directories, making available metadata involving colour, depth, 

IR and point clouds of the scenes. The generated metadata is labelled using external tools for their 

subsequent transformation by the software, at the request of the user, to train neural networks for yield 

detection and estimation. More specifically, conversion is from comma-separated values (.CSV) to 

extensible mark-up language (.XML) formats. 

4.2 Software description 

The tools developed under the PAgFRUIT research project are AK_ACQS and AK_FRAEX. The 

programming language used is Python 3.8 with GUIs based on Tkinter, which allows cross-platform 

execution on Windows 10 or later, and Linux operating systems. 

4.2.1 Description of the AK_ACQS software 

AK_ACQS is a software solution for data acquisition in fruit orchards using a sensor system mounted 

on a terrestrial vehicle (Fig. 4.3a). It allows the coordination of computers and sensors through the 

sending of remote commands via a GUI. At the same time, it adds an abstraction layer to the library 

stack of each sensor, facilitating its integration. 
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This software solution is supported by a local area network (LAN), which connects computers and 

sensors from different manufacturers (cameras of different technologies, GNSS receiver) for in-field 

fruit yield testing. 

 

Fig. 4.3. Setup for data acquisition: (a) sensor system that is boarded on a terrestrial vehicle; (b) AK_ACQS software 
architecture showing the connectivity between the system components. 

4.2.1.1 AK_ACQS software architecture 

AK_ACQS is based on a client-server architecture (Fig. 4.3b) and uses the representational state 

transfer (REST) style to exchange messages over the HTTP protocol [16]. It is made up of a REST 

API server, remote clients and a management console. 

The REST API server acts as an intermediary in the management of messages between remote clients 

and the management console, and stores information about the status of the instructions sent and 

received in the SQLite database [17]. The services are consumed by other components through APIs 

in JSON format [18] (Fig. 4.4a), assembled with the Django REST framework [19]. 
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Fig. 4.4. Software components of the data acquisition and dataset creation tools. (a) REST API central server. (b) 
Management console. (c) Remote client ZED camera. (d) Remote client Azure Kinect camera. (e) AK_FRAEX data 
extraction tool. 

The management console (Fig. 4.4b) offers the user the possibility of sending instructions to the 

devices and displaying the system status on the screen through the “Desktop GUI” package. It is 

networked with the server to send and receive messages, making use of the “Remote connection” class. 

The initial settings are read by the console from a text file. Remote clients listen to instructions from 

the server and interpret the commands to be applied to a given sensor. They are responsible for storing 

the recording sessions, configuring the devices and communicating with the hardware through the 

manufacturer's libraries. 

The architecture of the remote clients (Fig. 4.4c, d) consists of the components "Remote client ZED" 

and "Remote client Azure Kinect". The processes are launched by "Main client ZED" and "Main client 

Azure" respectively, invoking the classes "Remote client ZED" and "Remote client Azure", which are 

containers of the function loop to make calls to the REST APIs. These classes interpret the commands 

and transfer them to the low-level libraries, and are also responsible for managing the stored 

configurations (connection data, registration parameters for each type of sensor). Communication with 

the sensors is done through the "Job thread ZED", "Job thread GNSS" and "Job thread Azure" classes, 

which group calls to the SDK functions of each manufacturer and launch parallel activities for data 

collection. 
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At the lowest level are the libraries of the manufacturer of each sensor and the specific drivers that 

access the hardware. In the case of the ZED 2 camera [20] and the Ardusimple SimpleRTK2B – Basic 

Starter Kit receiver [21], the programming kits are offered with development support for the Python 

language in the operating systems Ubuntu Linux 18/20, Windows 10/11 and NVIDIA JetPack. In the 

case of the Azure Kinect camera [22], initial support is oriented to C/C++ languages for Ubuntu Linux 

18/20 and Windows. In this work, the third-party library called pyk4a [23] has been used, which is a 

Python wrapper over the original functions of the SDK. 

Each manufacturer records data from their devices under a different format. The ZED 2 camera uses 

the proprietary format called SVO [24]. Videos produced with the Azure Kinect DK camera record 

data in Matroska (MKV) format [25], and GNSS receiver data is saved in text files. 

Under the aforementioned architecture, the components can be hosted on different computers. Each 

computer connected to the network synchronizes its internal clock to Universal Time Coordinated 

(UTC) with Network Time Protocol (NTP) [26]. The time values of the synchronized clocks are used 

in the post-processing of the videos captured in the field. 

The ACQS software architecture has been designed to be able to add other types of devices. Therefore, 

a generic remote client (remote_client_generic/) is included in the source code, which can be 

programmatically extended to support other types of devices or cameras. This option is beyond the 

scope of this work, but is left open for future applications. 

4.2.1.2 AK_ACQS software functionalities 

The functionalities of AK_ACQS consist of remotely enabling and disabling clients, taking snapshots 

and starting and stopping video recordings, as well as logging latitude and longitude coordinates 

during the video recording time. 

• “ENABLE REMOTE CLIENTS” allows the user to send an attention call to the devices to 

configure them in the initial state of listening to orders. 

• “TAKE CAPTURES” makes it easy for the user to capture short videos, automatically 

starting and stopping video or snapshot recording. 
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• “START RECORDING”/ “STOP RECORDING” is the functionality that allows to send start 

and stop recording messages to all connected clients. Remote clients managing a GNSS 

receiver will start/stop operations for coordinated capture. 

• "DISABLE REMOTE CLIENTS" allows user to remotely turn off the devices. These will 

stop operating when receiving and processing the message. 

The recorded files are stored on the host computers, just like the data collected by the GNSS receiver. 

4.2.2 Description of the AK_FRAEX software 

AK_FRAEX is a desktop tool created for post-processing tasks after field acquisition. It enables the 

extraction of information from videos recorded in MKV format with the Azure Kinect camera. 

Through a GUI, the user can configure initial parameters to extract frames and automatically create 

the necessary metadata for a set of images. 

4.2.2.1 AK_FRAEX software architecture 

The AK_FRAEX tool (Fig. 4.4e) presents the functionalities of the application to the user via the 

"Desktop GUI Tkinter" package. Here, the functions are grouped together to offer the user the 

possibility to easily extract data, which would otherwise have to be done programmatically by calling 

functions from the manufacturer's SDK API. 

The GUI makes use of the methods programmed in the "Video extraction manager" package, which 

contains primitives that are transferred to the pyk4a base library to access the MKV-type files. The 

functions included in this package are: obtaining information about the video, exporting frames to files 

with and without size transformations, exporting frames to point cloud files, helpers for colour format 

conversion. 

The tasks that involve access to the file system and directory management are grouped in the "Dataset 

manager". The functions included in this package are: creation of the dataset hierarchy, parsing of file 

formats and data migration. 
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4.2.2.2 AK_FRAEX software functionalities 

In AK_FRAEX it is possible to select one or several video files (batch of files) and extract RGB, 

depth, IR images, and cloud point data. The datasets created with this tool can be used in image 

analysis and/or object detection tasks. 

The software functionalities were grouped into three main tabs, in order to intuitively guide users 

through the extraction process. 

• “DATA SET CREATION” allows the user to create a new metadata hierarchy. This consists 

of subfolders that will be filled with data extracted from the videos. Providing the user with 

an organised structure for storing RGB images, depth data, IR images, segmentation masks 

and annotation files in CSV and XML format of the PASCAL-VOC type [27]. 

• “DATA EXTRACTION" offers the user the possibility to select a working folder and extract 

data from a batch of files, or from a specific video. The user can configure the starting frame 

and the number of frames to be exported by entering values in the data fields. It is also possible 

to extract cloud points by selecting a check button. This functionality can only be enabled for 

videos captured under the BGRA recording mode of the Azure Kinect camera. 

• “DATA MIGRATION” allows the user to select a folder with files in CSV format and convert 

them into XML files under PASCAL-VOC format. This functionality was intended to be used 

in conjunction with the Pychet Labeller tool [28], to convert the data labelled by this software 

to XML format. 

4.3 Illustrative examples 

4.3.1 AK_ACQS: capturing data from fruit orchards 

The configuration of this example consists of a ToF camera (Azure Kinect DK), a stereo vision camera 

(ZED 2) and a GNSS receiver (SimpleRTK2B – Basic Starter Kit). The devices are connected to two 

computers via a USB connection. Computer 1 is a Modern 15 A10RBS-484XES (MSI, New Taipei, 

Taiwan) laptop running Windows 10 and is used to host the management console and Azure Kinect 

camera functions. Computer 2 is a Jetson Xavier NX (NVIDIA, Santa Clara, CA) embedded computer 

using Ubuntu Jetpack and its purpose is to manage the GNSS receiver, the ZED 2 camera and host 



  
  

88 
 

REST API central server. Both computers receive IP addresses through Dynamic Host Configuration 

Protocol (DHCP) [29] and synchronize their clocks to UTC servers. The aforementioned elements 

come together in a vehicle-mounted Wi-Fi LAN network, where a Redmi Note 8T (Xiaomi, Beijing, 

China) mobile phone performs the functions of router and DHCP and enables requests to NTP 

services. 

Assuming that the software components (REST API server, remote management console, remote 

clients) are in the running state and with network visibility, it will be necessary to establish the IP 

address of the server so that the components can now direct their requests to this central server 

remaining operational. The configuration used in this example can be seen in Fig. 4.5, which also 

shows the management console and the hardware used. 

Once the software and hardware requirements are ready, the user can start the operations from the GUI 

of the management console. The first step is to enable the remote clients so that they remain listening 

for new instructions, using the “ENABLE REMOTE CLIENTS” button. From this moment onwards, 

the user can choose to take short video captures with the “TAKE CAPTURE” button, or proceed to 

make recordings using the “START RECORD” and “STOP RECORD” buttons. Finally, all operations 

can be stopped with the “DISABLE REMOTE CLIENTS” button, a function that disconnects the 

remote clients from all the computers. 

 

Fig. 4.5. Capturing fruit data using the AK_ACQS software. a) Console manager screen. b) Hardware setup elements 
used in field trials. 
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4.3.2 AK_FRAEX: creating datasets for fruit yield analysis 

Using other tools mentioned below, it is possible to build datasets with labelled objects for neural 

network training processes. An example of this can be seen in Fig. 4.6, in which AK_FRAEX 

(information extraction) interacts with Pychet Labeller (object labelling), MATLAB Image Segmenter 

(mask creation) [30] and CloudCompare (cloud points processing) [31] through a series of steps. 

First, a frame extraction from videos in MKV format (Fig. 4.6a) is applied to automatically create a 

base directory hierarchy with the exported data (Fig. 4.6b). Then, the objects are labelled using the 

Pychet Labeller tool, the data of which is stored in CSV format (Fig. 4.6c). Binary masks are then 

created in portable network graphics (PNG) format (Fig. 4.6d). Finally, the conversion of the generated 

metadata to XML format is applied, thus leaving a database ready with objects and their references 

for further analysis (Fig. 6e). The data can be read by scripts of different programming languages (Fig. 

4.6f) and the extracted cloud point of each frame can be visualized (Fig. 4.6g). 

Source codes in MATLAB, R and Python languages are provided as supplementary material in the 

AK_FRAEX software to further manage the exported data using different procedures. Test videos are 

also attached to serve as tutorial examples for users of the software. 

 

Fig. 4.6. Example of the functionality of the AK_FRAEX software together with external tools: (a) video data 
extraction, (b) automatic creation of directory hierarchies, (c) object labelling, (d) creation of binary masks, (e) 
conversion to XML format, (f) export for use with other programming languages, (g) visualization of cloud points of 
the scenes. 
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4.4 Impact 

The impact of the AKFruitData software is expected to be important in agriculture as a tool that allows 

different optical sensors to be tested and validated for agronomic use in fruit orchards. Two basic 

research domains can take advantage of the use of ToF cameras and GNSS receivers through 

AKFruitData, namely i) for total fruit load estimation to adjust subsequent thinning operations, and ii) 

for fruit yield estimation just before harvest. Moreover, AKFruitData can be applied in multiple 

precision agriculture domains including, among others, leaf canopy phenotyping, fruit tree disease 

detection, branch detection or tree growth monitoring. 

Primarily intended for fruit yield forecasting with red apple cultivars, AKFruitData could also serve 

as data acquisition and extraction software for other fruit crop species. Fruit growers and advisors are 

aware of the importance of accurately estimating fruit yield, with this currently being a key task to 

ensure the proper logistical arrangements of a harvesting process that usually covers a limited time 

window. 

While aiming at a medium-long term economic impact associated to better farm management, 

AKFruitData is expected to become a highly useful tool for researchers working in fruit growing in 

the short term. Ultimately, AKFruitData aims to bring detailed digital information about fruit tree 

canopies, serving as a bridge between researchers, application developers and fruit growers. Through 

the use of this software, different data sources are made available so that, with suitable formats, 

different methods of analysis and the simulation of trees, fruits, sizes and distribution can be 

subsequently applied. With the development of this possibility of applying optical sensing in fruit 

growing, progress is expected and a positive impact is anticipated. 

4.5 Conclusions 

AKFruitData software has been developed for the primary use of Azure Kinect cameras in outdoor 

agricultural environments such as fruit orchards. Based on a modular concept, the software includes a 

first AK_ACQS module for data acquisition and a second AK_FRAEX module to extract information 

from videos recorded in MKV format. The main challenges overcome through the software design 

involve the simultaneous use and synchronization of different cameras and sensors, and the need to 
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georeference data when acquisition is performed on-the-go within the plot to obtain mappable spatial 

information. The Python programming language has been used with Tkinter GUI, making it possible 

to run the software on Windows 10 and GNU/Linux operating systems. Although future improvements 

are planned under a concept of continuous updating of functionalities, the software presented provides 

RGB, depth, IR and point cloud data to test computer vision methods for efficient fruit detection, 

allowing estimation of fruit load and productivity. Other applications, such as leaf canopy phenotyping 

to optimize many other agricultural tasks, could also be addressed. In short, AKFruitData is presented 

as open-source software, with an essential focus on facilitating the use of the Azure Kinect cameras in 

agricultural research. 
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Abstract 

AKFruitYield is a modular software that allows orchard data from RGB-D Azure Kinect cameras to 

be processed for fruit size and fruit yield estimation. Specifically, two modules have been developed: 

i) AK_SW_BENCHMARKER that makes it possible to apply different sizing algorithms and 

allometric yield prediction models to manually labelled colour and depth tree images; and ii) 

AK_VIDEO_ANALYSER that analyses videos on which to automatically detect apples, estimate their 

size and predict yield at the plot or per hectare scale using the appropriate algorithms. Both modules 

have easy-to-use graphical interfaces and provide reports that can subsequently be used by other 

analysis tools. 

Keywords: RGB-D camera, fruit detection, apple fruit sizing, yield prediction, allometry. 
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Metadata 

Nr Code metadata description   

C1 Current code version 1.0 

C2 Permanent link to code/repository used 

for this code version 

https://github.com/GRAP-UdL-AT/ak_sw_benchmarker 

https://github.com/GRAP-UdL-AT/ak_video_analyser 

C3 Permanent link to reproducible capsule  

 

https://pypi.org/project/ak-sw-benchmarker/ 

https://pypi.org/project/ak-video-analyser/ 

C4 Legal code license MIT license (http://opensource.org/licenses/MIT) 

C5 Code versioning system used Github 

C6 Software code languages, tools and 

services used 

Python 3.8 or later 

Required packages managed with pip: requeriments_win.txt, 

requirements_linux.txt 

Azure Kinect SDK Pyk4a 

C7 Compilation requirements, operating 

environments and dependencies 

Windows 10 or Ubuntu Linux 20.04, Azure Kinect SDK, 

Python 3.8 or later 

C8 If available, link to developer 

documentation/manual 

https://github.com/GRAP-UdL-

AT/ak_sw_benchmarker/blob/main/README.md 

https://github.com/GRAP-UdL-

AT/ak_video_analyser/blob/main/README.md 

C9 Support email for questions juancarlos.miranda@udl.cat 
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5.1 Motivation and significance 

In a recent article, Miranda et al. [1] developed AKFruitData, a dual software application available to 

users to facilitate the use of RGB-D (Azure Kinect) cameras in apple orchard environments. With this 

initial software, tree data acquisition (videos) was performed to allow a second phase of the creation 

of datasets for further analysis. Videos were recorded under field conditions containing information 

about colour, depth and IR data from the scene. In the attempt to give continuity to the previous 

application, this paper focuses on presenting a second software (AKFruitYield) that complements the 

previous one, now seeking a double research and agronomic objective: i) to allow the benchmarking 

of different apple fruit sizing algorithms and allometric models with the aim of providing 

recommendations for the future; and ii) to develop a video analysis tool for RGB-D cameras that, 

including fruit detection and sizing, allows for a reliable prediction of fruit yield in apple orchards (per 

hectare or within a plot). 

In order to better organize logistics at the farm level, obtaining reliable early yield estimates is an 

objective that the use of these new technologies can help to achieve [2–4]. Even efforts have been 

carried out by publishing software packages in open access to better understand and manage the soil-

crop-yield continuum within the framework of Precision Agriculture [5–7]. The use of photonics and 

computer vision in fruit growing to achieve the aforementioned objective is becoming increasingly 

popular [3]. The detection, measurement and estimation of fruit size are tasks that can be carried out 

using different methodologies that include those based on 2D images from those that provide 3D point 

clouds [8–11]. In the first case, it is necessary the use of calibration targets (known dimensions) that 

must be located close to the object (fruit) that is aimed to be sized. On the other hand, 3D techniques 

(e.g., structure-from-motion, LiDAR sensors, RGB-D cameras) generate 3D point cloud 

reconstructions of the scene. This avoids the use of calibration targets and allows simultaneous 

estimate the size of all the fruits in the image. Among 3D techniques, RGB-D cameras are a very 

interesting option given their low cost and the varied and extensive information they offer in each 

capture [12–15]. Computer techniques together with the use of RGB-D cameras have been applied to 

different crops [16–22] that are of interest both to the scientific community and industry. However, 

the pending issue is to have friendly computer applications (automated algorithms) to process the large 
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amount of field data and convert it to useful information for fruit growers and managers. This is the 

goal of the AKFruitYield software presented in this paper. 

The significance of the software that is presented lies in its addressing both fruit size estimation and 

allometric yield prediction following a comprehensive approach and allowing, at the same time, 

benchmarking of different algorithms in search of the best combined strategy (detection-sizing-

yielding). Unlike certain commercial applications, the fact that information on estimation errors is 

provided at each stage is a very useful feature, especially for researchers and managers. Briefly, 

AKFruitYield software can be used as a research tool (increasing knowledge about automatic 

algorithms in fruit growing) or, from a more applied point of view, as a yield prediction tool covering 

a need that is increasingly in demand on the part of the fruit sector. 

All the data used for the development of this software come from a field test carried out in an 

experimental apple orchard (cultivar Story® Inoredcov) located in Mollerussa, Lleida, Spain. 

Specifically, trees were arranged according to a 3.6 x 1 m plantation pattern with a canopy height of 

about 3.5 m (latitude: 41.617465 N; longitude: 0.870730; 246.3 m a.s.l. ETRS89). As mentioned, fruit 

data was acquired using the Azure Kinect camera (Microsoft, Redmond, WA, USA) on which the 

development of this software is focused. 

5.2 Software description 

The modular structure of AKFruitYield arises from a double requirement: i) to provide a tool for 

scientific use (AK_SW_BENCHMARKER), in this case a module to design and test different sizing 

and yield prediction algorithms for apple fruits; and ii) to complement the first with another second 

more applied tool (AK_VIDEO_ANALYSER) for automatic fruit detection (based on deep learning) 

on videos recorded with the Azure Kinect camera to then automate fruit sizing and yield prediction 

algorithms on the detected apples. Both modules (AK_SW_BENCHMARKER and 

AK_VIDEO_ANALYSER) were developed using the Python 3.8 programming language with 

Tkinter-based graphic user interfaces (GUIs), making it easier to use the applications on Windows 10 

or later and Linux operating systems. In addition, image processing made use of the OpenCV library, 

with Numpy, Scikitlearn and Pandas being the libraries used for data management. With respect to the 

implementation of object detectors, PyTorch making use of Mask R-CNN [23] and Faster R-CNN 
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[24] models trained on own apple data from the experimental orchard was the open source learning 

library used in the video analyser module. 

Fig. 5.1 shows the proposed data acquisition and extraction stages on which the design of AKFruitData 

and AKFruitYield was based. AKFruitData was designed exclusively for the acquisition and 

extraction of data from fruit orchards. Once the orchard data is obtained and conveniently organized 

(Fig. 5.1a), the AKFruitYield software can be put into operation to, after algorithm training, perform 

fruit detection, sizing and yield prediction. Interoperability between the specific modules of each 

software (AKFruitData and AKFruitYield) is shown in Fig. 5.1b. While the AK_ACQS module is 

responsible for data acquisition in video format from the orchard (complemented by the 

AK_SM_RECORDER [25]), the AK_FRAEX module allows extracting RGB images (frames) with 

additional depth information in different formats [1]. At this point the AKFruitYield software comes 

in, with the purpose of complementing the functionalities after the acquisition. Using the 

AK_SW_BENCHMARKER module on extracted frames (PASCAL-VOC format, [26]), different 

sizing algorithms and allometric models can be combined with final testing of results. In parallel, the 

AK_VIDEO_ANALYSER module implements the most appropriate sizing and yield prediction 

algorithms on video records (Matroska MKV format [27]), having previously trained fruit detection 

deep learning models on frames extracted in COCO format [28]. 

 

Fig. 5.1 a) Proposed stages of data acquisition and extraction for AKFruitData and AKFruitYield. Dashed green 
lines correspond to processes related to acquisition, red lines to processes related to data creation and training, and 
black lines to processes for performance estimation. b) Interoperability between the data acquisition (AK_ACQS; 
AK_SM_RECORDER), data creation (AK_FRAEX), algorithm benchmarking (AK_SW_BENCHMARKER) and video 
analysis (AK_VIDEO_ANALYSER) modules. The processes proposed in Figure 5.1 are expanded and represented by 
the developed software. 
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5.2.1 AK_SW_BENCHMARKER module 

As mentioned, the AK_SW_BENCHMARKER module was designed for algorithm comparison tasks. 

Using the interface shown in Fig. 5.2, the software user can select between different size estimation 

algorithms that provide geometric measurements of the fruit (apple width and height). These size 

parameters are then used as inputs in different selectable allometric models for the final fruit yield 

prediction (weight in g). 

 

Fig. 5.2. AK_SW_BENCHMARKER module user interface. a) 'Dataset metrics' tab to select data (frames) and 
configure the sizing and yield prediction algorithms. b) 'Metric comparisons' tab to report results and error statistics. 

The AK_SW_BENCHMARKER module offers the user two main tabs with grouped functionalities 

(Fig. 5.2): ‘Dataset metrics’ (Fig. 5.2a) and ‘Metric comparisons’ (Fig. 5.2b). Using the software starts 

with the selection of the dataset (labelled image in PASCAL-VOC format created by the previous 

AK_FRAEX module in the AKFruitData software), with the 'Dataset metrics' tab open (Fig. 5.2a). 

Once the camera parameters are pre-configured (Azure Kinect in our case), the user must establish the 

region of interest (ROI) selection method to be applied to the images. Two approaches are available 

(‘ROI selector’ in Fig. 5.2a): assigning bounding boxes to the detected fruits (BBOX method) or 

delimiting the fruit region by a binary mask (MASK method). 

The next phase is to estimate the size in pixels of the perpendicular axes that define the geometry of 

the fruit (width or caliber and height). In the case of delimiting the ROI by means of the BBOX 
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method, the caliber and height are obtained by adjusting the bounding boxes (BBs) to the labelled 

fruit. If, instead, a binary mask is used to delimit the ROI, the user can select between four different 

options (‘Size estimation selector’ in Fig. 5.2a) for adjusting geometric figures taking the ROI mask 

as a reference: circle enclosing (CE), circle fitting (CF), ellipse fitting (EF), and rotated rectangle (RR).  

‘Depth selector’ (Fig. 5.2a) is the drop-down menu where the distance from the fruit to the RGB-D 

camera (depth) can be estimated by calculating a metric on the ROI pixels. Available metrics are the 

average depth (AVG), the modal depth (MOD) or the minimum depth (MIN). This data is then used 

to convert the geometric measurements of the fruit (pixels) to measurements of width and height in 

mm (thin lens theory). The final step is to choose an allometric model from those proposed in the drop-

down menu below (‘Weight prediction method’ in Fig. 5.2a). 

The functionalities developed in the AK_SW_BENCHMARKER module (Fig. 5.2) are listed below. 

In either case, summary information is presented on screen ('User info' section), and reports are stored 

as files in an output directory. 

• “Analyse dataset” allows benchmarking to be performed with a final report in CSV format of 

size estimates and weight prediction. The user has the option of introducing a file with values 

of real dimensions of fruits (ground truth) to compare with the set of images that it is desired 

to be analysed. A final report with results (size and weight) grouped by image and fruit will 

be presented according to the selected parameters in addition to the following error metrics: 

root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage 

error (MAPE). 

• “Export images” makes it possible to visualize the geometric fitting of the ROIs on the objects 

(fruits) to be measured. Outputs are colour images including binary masks of selected objects 

and fruit labeling. This functionality adds value to the software since the user can observe 

how sizing algorithms are applied to the images, enabling corrective adjustments in the 

algorithm configuration if necessary. 

• “Run tests in dataset” calculates the test metrics. The user must first select the ‘Metric 

comparisons’ tab (Fig. 5.2b) and then, indicate the estimate to be analysed (Report selector in 

Fig. 5.2b), namely the major geometric axis of the fruit (A1), the minor axis (A2) or the weight 
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(WEIGHT). Since all sizing-yielding combinations are analysed, this functionality allows the 

method with least error to be determined, also obtaining a final ranking of sizing algorithms 

or ranking of sizing-allometric model combinations. 

5.2.2 AK_VIDEO_ANALYSER module 

The AK_VIDEO_ANALYSER software module is focused on analysing RGB-D Azure Kinect 

camera videos. Automatic detection of fruits, sizing of detected fruits and yield prediction (fruit 

weight) based on allometry are the tasks it performs. Under the same concept as the benchmarking 

module, a GUI (Fig. 5.3a) facilitates configuration of the parameters, allowing: i) setting the start and 

end of the video fragments; ii) filtering by zones and depth; iii) choice of object detector; and iv) 

choice of sizing and yield prediction methods. In real time, information about counted fruits and yield 

is displayed to the user as the frames of the video fragments are analysed (Fig. 5.3b). 

 

Fig. 5.3. AK_VIDEO_ANALYSER module user interface. a) Main GUI. b) Output screen showing detected fruits and 
report of results in real time. 

Computerized tasks in the AK_VIDEO_ANALYSER module for processing information from video 

records to final yield results are shown in greater detail in Fig. 5.4. Now, the RGB-D videos (MVK 

format) are the starting point for the software. These were previously acquired in orchard environments 

(in static or from mobile platforms) through the AK_ACQS module that is part of the AKFruitData 

software [1]. Considering a frame of a set of video fragments, the software module requires certain 

image filtering settings to be set (‘Depth and coordinates filtering’ in Fig. 5.3). In this way, the user 
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can filter a certain spatial location within the frame (filtering by coordinates) or a range of depth, 

discarding those objects that exceed a certain distance from the Azure Kinect camera. By making 

appropriate settings from the GUI, objects in the depth image can therefore be discarded by distance 

to obtain a 'thresholded depth image' (Fig. 5.4) which, merged with the original colour image, provides 

the filtered RGB image that serves as input to the detector in further processing. ‘Coordinate filtering’ 

will then be used to delimit the detection zone. 

 

Fig. 5.4. Tasks that are performed sequentially by the AK_VIDEO_ANALYSER module that is part of the 
AKFruitYield dual software. 

‘Object detection’ uses a trained model (Mask R-CNN or Faster R-CNN) that is applied to the depth-

filtered RGB image (Fig. 5.4). As objects (fruits) are being detected, size determination (fruit axes) 

using the ROI data (BBOX or MASK, depending on the method) serves to then enter the geometric 

measurements of the apples in the allometric model. Reports in CSV format are activated at the end 

of the analysis. Each fruit (apple) is matched to the measurements of the major axis and the minor axis 

in pixels, the estimated values in mm, and the predicted weight in g. 

The functionalities developed in the AK_VIDEO_ANALYSER module (Fig. 5.3) are listed below. 

• “Analyse video” allows the user to configure video analysis parameters. Examples are the 

number of frames to analyse, filters to apply, or detection, sizing and weight prediction 

models to be implemented. Results are displayed on screen and conveniently organized in a 

CSV file. 

• “Preview video” helps to configure detection zone dimensions and distance filters on colour 

images. 
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• “Export frames” provides the user with a set of analysed images and the information obtained. 

It is a useful functionality to observe how algorithms are applied on the frames. 

• “Reset settings” allows the user default values in the GUI to be reset. 

• “Run in command line” allows video analysis using the command line without the need for a 

GUI screen. Useful functionality in carrying out scriptable processes. 

5.3 Illustrative examples 

An example of sizing algorithm benchmarking for final yield prediction is shown in Fig. 5.5. First 

(Fig. 5.5a), selection of the appropriate options in the GUI of the AK_SW_BENCHMARKER module 

causes binary masking to achieve ROIs of labelled apples to be bounded, to then fit ellipses (EF) to 

the ROIs over the colour image. A detail of the operation for the apple with label 2136 is shown in 

Fig. 5.5b. Red points on the edge of the ROI serve as a guide for fitting the ellipse (in green) and 

obtaining the semi-major and semi-minor axes of the apple marked in blue and green, respectively. 

 

Fig. 5.5. Example of the operation of the functionalities of the AK_SW_BENCHMARKER module. 

Extracts in Fig. 5.5c work as follows. Ground truth data of size and weight per labelled apple (c.1) are 

shown together with the intermediate results (prediction data, c.2). Final report (c.3) includes the 
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compared ground truth and predicted data of geometric length (major axis 01 or minor 02) or weight 

at the request of the software user. The last piece of information in Fig. 5.5d shows an overview report. 

In the case of the figure, the user can view the results of the error metrics which, by assessing the 

major axis (A1), have been obtained according to different sizing and depth algorithms on the set of 

labelled apples for which real size data are available. In this way, the user has comparative information 

between methods (algorithms). It is worth mentioning that preliminary tests with the 

AK_SW_BENCHMARKER have provided fruit size estimates (non-occluded fruits) with MAPE < 

5%. These results values are comparable to those obtained with other state-of-the-art 3D sensing 

techniques [9]. The AK_SW_BENCHMARKER have allowed to identify the best combinations of 

sizing algorithms and allometric models for which fruit weight predictions with a MAPE < 6 % were 

achieved, lower than the 10 % of error threshold usually accepted in yield predictions. 

As for the other software, the AK_VIDEO_ANALYSER module, some of its features can be seen in 

Fig. 5.6. Use of the module is initially argued for analysis of videos recorded with the Azure Kinect 

camera on trees within an apple orchard. However, the module has the possibility of being adapted 

and used in other orchards if detection algorithms and weight prediction models are made available. 

 

Fig. 5.6. Example of some functionalities of the AK_VIDEO_ANALYSER module. 

Capture of three apple trees in a given row are shown (Fig. 5.6a). Note that apples belonging to trees 

in the back row are detected (orange box) by coordinates and distance filtering (Fig. 5.6b) and are not 
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counted. This is a very useful functionality to delimit the fruits to be detected and processed, avoiding 

errors in final yield predictions at a spatial plot scale. As the AK-VIDEO_ANALYSER module works, 

three detection zones are shown to the user corresponding to: i) fruits already counted (in light blue); 

ii) fruits being counted and real use phase of sizing and weight algorithms (in light green); and iii) 

detected fruits that will be analysed shortly (in dark blue). 

Real-time informative data is displayed in the upper left-hand part of the screen. At the end of the 

analysis, a report (information shown in Fig. 5.6c) summarizes size (in pixels and mm), distance 

location (depth in mm) and weight (in g) for each detected fruit. In addition to these tests, algorithms 

have been applied to foam spheres (visible in Fig. 5.6). Consequently, different examples of apples 

and foam spheres are included in the software repository to check the applicability of the 

AK_VIDEO_ANALYSER software module on two different types of objects. 

5.4 Impact 

With the development of the AKFruitYield software (AK_SW_BENCHMARKER and 

AK_VIDEO_ANALYSER modules), functionalities of other related and open access software 

(AKFruitData [1]) are complemented. Two tools are therefore made available to the user to allow the 

use of RGB-D Azure Kinect cameras to, in a first step, acquire data in orchards and create analysable 

datasets (AKFruitData) and, in a second step, to process the data (videos and images) and provide 

reliable fruit yield predictions (AKFruitYield). 

The impact of AKFruitYield (in combination with AKFruitData) is expected to be important for two 

main reasons: i) by providing fruit growers and, especially, managers in fruit growing an application 

that can significantly reduce the time and cost of a task still carried out manually in many farms; and 

ii) by promoting the introduction of low-cost accessible technologies under a strategic framework of 

digitizing the fruit sector. 

AKFruitYield is open source software designed to allow future updates. New detectors can be 

implemented, sizing algorithms improved and allometric models refined as its use adds more 

knowledge and users demand new specifications (other apple tree cultivars, including other fruit 

species, or applications in earlier stages of fruit development as a scouting tool). For the present, 
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AKFruitYield provides a practical solution in terms of yield prediction (and not simple fruit counting) 

in apple orchards. Additionally, a powerful benchmarking module is made available to test other 

detection, sizing and yield allometry options that may be implemented as a result of its use. Multi-

Object Tracking and Segmentation (MOTS) [29] is another powerful option for greater precision that 

could be implemented in the future, once testing and the required adaptations were made in the current 

version of the software. 

AKFruitYield (presented here) and AKFruitData [1] have been designed to encourage the use of the 

Azure Kinect camera (and depth cameras in general) by end users working or doing research in fruit 

growing. Ease of use is a key aspect and, for this reason, video examples and image datasets to verify 

the operation of the software are attached as supplementary material to the source code. It is possible 

to use this software with RGB-D sensors other than the Azure Kinect camera. However, implementing 

specific data extraction routines (wrappers) according to the selected devices would be required. 

5.5 Conclusions 

AKFruitYield is presented in a modular format since it includes two separate but complementary 

modules focused on processing fruit data acquired through RGB-D Azure Kinect cameras in apple 

orchards. The first module (AK_SW_BENCHMARKER) makes it possible to apply different sizing 

algorithms and allometric yield prediction models on colour and depth tree images containing 

previously detected and manually labelled apples. The second module (AK_VIDEO_ANALYSER) is 

a video analysis software that allows automatic apple detection, size estimation and yield prediction 

to be performed by applying the best ranked algorithms resulting from the previous benchmarking. A 

special objective has been to develop easy-to-use graphical interfaces for end users working in 

research as well as fruit growers and advisory technicians who require new digital tools for better 

management of fruit farms. 

Future works are planned to expand the current functionalities and provide support under the concept 

of continuous development and improvement. In short, with the AKFruitYield software, the cycle that 

started with the AKFruitData software is successfully completed, thus meeting the initial objectives 

of acquiring and processing data from Azure Kinect cameras in apple orchards for yield prediction. 
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Abstract 

Data acquired using an RGB-D Azure Kinect DK camera were used to assess different automatic 

algorithms to estimate the size, and predict the weight of non-occluded and occluded apples. The 

programming of the algorithms included: i) the extraction of images of regions of interest (ROI) using 

manual delimitation of bounding boxes or binary masks; ii) estimating the lengths of the major and 

minor geometric axes for the purpose of apple sizing; and iii) predicting the final weight by allometric 

modelling. In addition to the use of bounding boxes, the algorithms also allowed other post-mask 

settings (circles, ellipses and rotated rectangles) to be implemented, and different depth options 

(distance between the RGB-D camera and the fruits detected) for subsequent sizing through the 

application of the thin lens theory. Both linear and nonlinear allometric models demonstrated the 

ability to predict apple weight with a high degree of accuracy (R2 greater than 0.942 and RMSE < 16 

g). With respect to non-occluded apples, the best weight predictions were achieved using a linear 

allometric model including both the major and minor axes of the apples as predictors. The mean 
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absolute percentage error (MAPE) ranged from 5.1% to 5.7% with respective RMSE of 11.09 g and 

13.02 g, depending to whether circles, ellipses, or bounding boxes were used to adjust fruit shape. The 

results were therefore promising and open up the possibility of implementing reliable in-field apple 

measurements in real time. Importantly, final weight prediction error and intermediate size estimation 

errors (from sizing algorithms) interact but in a way that is not easily quantifiable when weight 

allometric models with implicit prediction error are used. In addition, allometric models should be 

reviewed when applied to other apple cultivars, fruit development stages or even for different fruit 

growth conditions depending on canopy management. 

Keywords: Azure Kinect, fruit sizing, allometric weight models, apple tree, digital fruit growing. 

6.1 Introduction 

Fruit size and weight are important quality parameters which strongly affect the final price of fruit. 

Monitoring these parameters throughout the season provides invaluable information (such as. growth 

curves) to support decision making in fruit crop management (Alibabaei et al., 2022). Knowledge of 

fruit size and weight is also key to making accurate yield predictions which allow fruit growers to plan 

the resources required (labour, transport, cold rooms) during harvesting, design marketing strategies 

and, ultimately, contribute to optimizing orchard profitability (Anderson et al., 2021; He et al., 2022). 

At present, estimates of fruit size tend to be based on manual measurements, involving the use of 

Vernier callipers or sizing rings on a sample of trees. This is a labour-intensive and time-consuming 

approach whose practical application is both difficult and susceptible to errors. To overcome these 

limitations, several automatic methods for in-field fruit size estimation have been proposed, which can 

be classified depending on the type of data used (2D images and 3D point clouds). Information about 

fruit size can be extracted from 2D images, either by using calibration targets of a known size in situ 

(Wang et al., 2020) or by measuring the distance between the camera and the fruits in a given image 

(Gongal et al., 2018). More recently, it has become possible to generate point cloud reconstructions of 

fruits and to measure their size by applying 3D sensing techniques, such as light detection and ranging 

(LiDAR), photogrammetry techniques, or RGB-D cameras (Hacking et al., 2019; Tsoulias et al., 2020; 

Gené-Mola et al., 2021). 
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Of these 3D techniques, RGB-D cameras stand out for their transfer potential to the sector, due to their 

low cost and the ability to simultaneously provide colour, depth and infrared images at high acquisition 

rates (Fu et al., 2020; Gregorio and Llorens, 2021). One limitation is that they tend to provide poorer 

results under direct sunlight (Rosell-Polo et al., 2015; Gené-Mola et al., 2020a). RGB-D cameras have 

been used for in-field fruit sizing in crops including mango (Neupane et al., 2022; Wang et al., 2017), 

grape (Kurtser et al., 2020), apple (Mengoli et al., 2022) and pomegranate (Yu et al., 2022). 

Over the years, different models have been proposed for assessing fruit weight, based on predicting 

fruit growth patterns (in weight) as a function of days after bloom (Mitchell, 1986; Lakso et al., 1995). 

The performance of these models has, however, often been affected by variability in meteorological 

conditions and management strategies. Another conventional approach is based on allometric 

relationships between fruit weight and geometric features. Amongst others, these features include: 

apple (Welte, 1990; Stajnko et al., 2013; Marini et al., 2019) and pear (Mitchell, 1986) diameter, the 

minor diameter in apple (Tabatabaeefar and Rajabipour, 2005) and pomegranate (Khoshnam et al., 

2007), the perimeter in peach (Dalmases et al., 1998), and the length, maximum width and maximum 

thickness in mango (Spreer and Müller, 2011). An excellent summary of allometric relationships 

between fruit weight and linear dimensions can be found in Neupane et al. (2023). 

In the current work, an automatic methodology is proposed for the in-field prediction of apple fruit 

size and weight. Colour and depth images, provided by an RGB-D camera, were used to study a set of 

apples that were manually labelled, simulating a perfect detector. The proposed methodology has a 

modular structure and allows the combined use of: different fruit-shape fittings; different methods for 

estimating fruit to camera distance; and different allometric weight models. As well as counting fruits, 

there is an increasing demand for ways of providing reliable estimates of yield per plot or per hectare. 

Hence the need for, and purpose of, this research, whose aim is to evaluate different sizing algorithms 

and allometric models and to provide the best possible way to complement currently available fruit 

detectors. The difficulty lies in combining the two tasks of lineal dimensions’ estimation and weight 

prediction from lineal dimensions within a single, reliable, sequential automatic procedure. 
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6.2 Materials and methods 

Fig. 6.1 provides a schematic view of the information flow between the three blocks on which the 

present research is based: i) data acquisition, ii) dataset creation, and iii) fruit size and fruit weight 

prediction. Data acquisition was carried out in an apple orchard, after previously selecting 12 trees in 

a given row. Before harvesting, video records were taken on three of the twelve trees (specifically, 

those numbered 1 to 3) using an RGB-D camera from a fixed platform (‘fruit trees data acquisition’,  

Fig. 6.1). Then, at harvest, the fruits from the 12 selected trees were collected and characterized in the 

laboratory, with their size and weight being individually determined (‘fruit characterization in 

laboratory’, Fig. 6.1). The second block is related to the creation of the data set. Videos recorded in 

trees 1 to 3 mentioned above were processed to obtain images and create a dataset (n=26) with 

manually labeled apples ('dataset construction and manual annotation', Fig. 6.1). In parallel, several 

allometric models for apple weight prediction were obtained based on the rest of the laboratory data 

(i.e., using information on fruits from trees 4 to 12) (‘allometric weight modeling’, Fig. 6.1). The third 

block involved applying the sizing algorithms and the proposed allometric models. This was first done 

separately and then combined sequentially (‘prediction algorithms’, Fig. 6.1). In a final step, the 

performance of the proposed algorithms was evaluated by contrasting several different statistical 

metrics (‘evaluation and testing’, Fig. 6.1). 

 

Fig. 6.1. Sequential methodology for the prediction of apple fruit size and weight using data collected with an RGB-
D camera under field conditions. The three blocks (delimited by dotted lines) make up the global procedure, with 
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each one including the different steps performed (rounded boxes) and highlighting the input and output data required 
and provided in each case. 

6.2.1 Fruit-tree data acquisition 

Field tests were carried out at an experimental apple orchard (cultivar Story® Inoredcov) located in the 

municipality of Mollerussa, Catalonia, Spain (latitude: 41.617465 N; longitude: 0.870730; 246.3 m 

a.s.l. ETRS89) and owned by the Institut de Recerca i Tecnologia Agroalimentàries (IRTA). The trees 

in this orchard were trained as a fruiting wall, with a planting spacing of 3.6 × 1 m, and a maximum 

canopy height of 3.5 m. A set of 12 consecutive trees was selected for the study (Fig. 6.2a,b). RGB-D 

data acquisition was performed on three of them (trees 1 to 3), while the fruits from the remaining 

trees (4 to 12) were used to create allometric weight models. 

 

Fig. 6.2. Field experimental set-up. a) A perspective representation of the scene, showing the relative position of the 
sun throughout the experiment. b) Plan view of the layout. c) View of the tree alley, showing the planting pattern and 
camera position. d) View of the captured scene (trees 1 to 3). e) Azure Kinect camera. f) Calibration foam spheres 
and digital light meter placed on the trees. 

The RGB-D camera used in these tests was the Azure Kinect DK (Microsoft Corporation, Redmond, 

WA, USA). This device combines a 1-megapixel time-of-flight (ToF) camera, a CMOS rolling shutter 

sensor, an inertial measurement unit (IMU) and a microphone array. In our experiment, the Azure 

Kinect camera was configured to save RGB, IR and depth data, while the IMU sensor and the 
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microphone were disabled. The selected depth camera mode was narrow field-of-view (NFOV) 

unbinned, with the specifications shown in Table 2.1 (Microsoft, 2022). 

Table 6.1. Azure Kinect camera specifications provided by the manufacturer. 

RGB frame resolution 1920 × 1080 pixels 
RGB frame rate 30 fps 

RGB field of view 90° × 59° 
Depth frame resolution 640 × 576 pixels 

Depth frame rate 30 fps 
Depth field of view 75° × 65° 

Depth range 0.5 - 3.86 m 
 

The Azure Kinect camera was positioned so that it faced westward, with view of the canopy of a north-

south oriented tree row. It was mounted on a tripod, at a height of 1.38 m, and it was positioned 1.50 

m from the tree row axis (Fig. 6.2c,d,e). A Modern 15 A10RBS-484XES laptop (MSI, New Taipei, 

Taiwan), running Windows 10, was used as the host for the camera operation and data storage. As 

shown in Fig. 6.2f, two calibration foam spheres (60 and 120 mm diameter) were hung from a steel 

wire between trees 2 and 3, as was a DVM1300 digital light meter (Velleman, Gavere, Belgium), 

which was used to measure the illuminance throughout the experiment. 

Data were acquired from 11:40 to 19:24 (UTC +2) on September 27, 2021, when the fruit trees were 

at an advanced ripening growth stage BBCH 85 (Meier, 2018). The apples had starch indexes of 8-9 

(1-10 scale), soluble solids contents of 8.2º Brix, and firmness values of 14.6 kg/cm2. A total of 25 

video recordings (one every 15-20 minutes), each with a duration of 4 seconds, were recorded, using 

AK_ACQS software (Miranda et al., 2022). The illuminance was registered for each video capture, 

with prevailing sunny conditions in the morning and slightly cloudy conditions throughout the 

afternoon. 

On September 29, 2021, after data acquisition, the fruits from the 12 selected trees were labelled in 

the field (Fig. 6.3a), using adhesive paper stickers (Fig. 6.3b). Several videos, identification notes and 

photos were also taken as ancillary data, in order to keep evidence of fruit positions within each tree 

(Fig. 6.3c). The fruits were hand-picked on September 30 and October 1, 2021 and placed in different 

collapsible plastic storage boxes (one for each tree). 
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Fig. 6.3. Apple labelling. a) Overall view of the selected trees with labelled fruits. b) Detail view of the apples with 
their adhesive paper stickers. c) Front view of a single tree, used to identify the position of each labelled apple. 

6.2.2 Fruit characterization in the laboratory 

A total of 1321 apples were harvested and stored in a cold room at 4 ºC to conserve their organoleptic 

characteristics. In the following days, the boxes of fruit were moved out of the cold storage room and 

transported to the laboratory for fruit characterization (Fig. 6.4a). 

The dimensions of each apple were measured, using Vernier callipers, placing the stem upwards and 

recording its calibre (or width) (𝐶𝐶) and height (𝐻𝐻) (Fig. 6.4b). A CB 501 weighing machine (Adam 

Equipment, Oxford, CT, USA) was used to measure fruit weight (W) (Fig. 6.4c). Then, the size 

measurements of each apple (𝐶𝐶 and 𝐻𝐻) were then compared to each other to create two new data fields, 

in which the largest measurement was recorded as 𝐷𝐷1 and the smallest as 𝐷𝐷2. The resulting fruit size 

and weight data (𝐷𝐷1, 𝐷𝐷2, 𝑊𝑊) were used to create a database organized using tree and apple identifiers. 

 

Fig. 6.4. Characterization of fruits in the laboratory. a) Fruits in storage boxes, identified by tree. b) Apple size 
measurement: calibre (horizontal axis) and height (vertical axis). c) Measured and weighed fruits used to create an 
organised database. 
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6.2.3 Allometric weight modelling 

Linear and nonlinear models were fitted, taking the geometric measurements of the apples (𝐷𝐷1 and 

𝐷𝐷2) as predictors and the weight of the apples (W) as the response variable. Mathematically speaking, 

one very general form for the model would be: 𝑊𝑊 = 𝑓𝑓(𝐷𝐷1 ,𝐷𝐷2) + 𝜀𝜀, where 𝑓𝑓 is an unknown function 

and 𝜀𝜀 is the error term (or residual). Linear models were considered amongst the different possible 

functions, primarily because of the empirical nature of the research. 

The first model considered using only the largest measured dimension of the fruit (axis 𝐷𝐷1) as a 

predictor. A simple linear regression was therefore tested as: 𝑊𝑊 = 𝛽𝛽0 + 𝛽𝛽1𝐷𝐷1 + 𝜀𝜀, with 𝛽𝛽0 and 𝛽𝛽1 as 

the unknown parameters of the model. The addition of polynomial terms in this same single-predictor 

case (predictor 𝐷𝐷1) allowed us to test a second model: 𝑊𝑊 = 𝛽𝛽0 + 𝛽𝛽1𝐷𝐷1 +⋯+ 𝛽𝛽𝑑𝑑𝐷𝐷1𝑑𝑑 + 𝜀𝜀 for a more 

flexible relationship. The exponent d was chosen until we obtained a term d+1 that was not statistically 

significant. 

The third model tested was also linear, but used the two geometric measures (𝐷𝐷1 and 𝐷𝐷2) as predictors: 

𝑊𝑊 = 𝛽𝛽0 + 𝛽𝛽1𝐷𝐷1 + 𝛽𝛽2𝐷𝐷2 + 𝜀𝜀. It was expected that this model would improve the predictions with 

respect to the first one. However, problems of collinearity, leading to imprecise estimates of 𝛽𝛽, were 

also expected using this model given the almost certain relationship between the two geometric fruit 

measurements (𝐷𝐷1 and 𝐷𝐷2) that were used as predictors. To check whether the two predictors should 

be used together, the variance inflation factor (VIF) �1−𝑅𝑅𝑗𝑗2�
−1

 was calculated (in which 𝑅𝑅𝑗𝑗2 is the 

coefficient of determination of the linear regression between 𝐷𝐷1 and 𝐷𝐷2). Statistically speaking, a high 

value of this factor would make it advisable to remove one of the predictors from the model (Faraway, 

2016), with it being more reasonable to predict the weight of the apples from a single geometric 

measurement of the fruit. 

The fourth and fifth models, although linear in terms of their parameters, included a specific 

combination of the 𝐷𝐷1 and 𝐷𝐷2 measurements as the sole predictor, considering that apples, as 3D 

objects, could be roughly adjusted to the volume of a sphere or an ellipsoid. Seeking to combine the 

two diameters in order to achieve a magnitude that could be measured as a unit of volume (the 

magnitude of cubic length), the simplest possible models were: 𝑊𝑊 = 𝛽𝛽0 + 𝛽𝛽1(𝐷𝐷12𝐷𝐷2) + 𝜀𝜀, and 𝑊𝑊 =
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𝛽𝛽0 + 𝛽𝛽1(𝐷𝐷1𝐷𝐷22) + 𝜀𝜀. Finally, the respective nonlinear models: 𝑊𝑊 = 𝛽𝛽0 × 𝐷𝐷1
𝛽𝛽1 + 𝜀𝜀 and 𝑊𝑊 = 𝛽𝛽0 ×

𝐷𝐷1
𝛽𝛽1 ×𝐷𝐷2

𝛽𝛽2 + 𝜀𝜀, were taken as the sixth and seventh options to be assessed. By applying the appropriate 

transformation, both nonlinear models were linearized in order to better estimate their 𝛽𝛽 parameters. 

A least squares estimation was used to estimate the 𝛽𝛽 parameters for the seven allometric models cited 

above, while the goodness-of-fit was assessed using the coefficient of determination R2 in each case. 

To avoid relying solely on R2 as a measure of fit, the root mean square error (RMSE) was also used. 

To be more specific, models were obtained from a training dataset (568 apples) in order to 

subsequently check the RMSE obtained when the models were applied to a test dataset (489 apples) 

which had been constructed using the rest of the 1057 fruits which had been collected from trees 4 to 

12 (see Figs. 6.1 and 6.2). In addition to all of the above, we also performed diagnostics on the 

assumption of homoscedasticity and normality of the residuals for each of the proposed models. The 

associated allometric modelling was carried out using RStudio version 1.4.1717 software. 

6.2.4 Dataset construction and annotation (manual annotation) 

As previously stated, the goal of this work was to propose and assess different fruit size and weight 

prediction algorithms based on RGB-D data. As a result, and with the aim of avoiding potential errors 

that could arise from the object detection process, the fruits were manually labelled to emulate high 

accuracy detection. The creation of the labelled dataset was divided into four steps: 1) frame 

extraction; 2) object annotation and file conversion; 3) binary mask creation; and 4) the checking of 

fruit label location. 

Firstly, five video recordings made in the morning (11:40, 11:59, 12:18, 12:35, 12:53 UTC +2) were 

selected together with one that was made in the late afternoon (19:24 UTC +2). The morning videos 

corresponded to the best lighting conditions of the scene (trees 1 to 3) considering that it was east 

facing. The afternoon video was selected in order to assess how backlighting conditions (sunset) 

affected RGB-D measurements. One frame per video (taken 1 s after the video starting) was extracted 

using the AK_FRAEX software (Miranda et al., 2022). From it, RGB, IR and depth registered images 

were obtained. 
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Secondly, object annotation was performed on the RGB images. The positions of 26 apples and 2 

calibration foam spheres were labelled on each of the images using the Pychet Labeller tool (Bargoti, 

2016) configured for bounding box markings (Fig. 6.5). Apples within the field of view of the depth 

camera were considered to construct a dataset including non-occluded and occluded fruits, depending 

on whether they were completely visible (or almost) or only partially visible, respectively. Decision 

on which occluded fruits could be labeled was made by two technical specialists in this area, that is, 

based on their experience and without setting any maximum level of occlusion. Then, file conversion 

from plain text to PASCAL-VOC format (Everingham et al., 2010) was done to create correspondence 

files between each frame (image) and its annotations. 

 

Fig. 6.5. Fruits selected and labelled from trees 1 to 3, in an image taken at 19:24 UTC +2. The hexagonal area 
indicates the field of view of the Azure Kinect depth camera for the NFOV operating mode, with RGB and image 
depth overlapping.  

Thirdly, a binary mask was generated from each RGB image, using the Matlab Image Segmenter 

tool (version R2021a, MathWorks Inc., Nastick, MA, USA) to delimitate the object regions in pixels. 

Then, fruit label location in images was checked by comparison with a photogrammetry-based 3D 

reconstruction. To do this, a 3D point cloud of the scene (trees 1 to 3) was created using a Canon EOS 

60D DSLR Camera (Canon Inc., Tokyo, Japan), following the methodology proposed by Gené-Mola 

et al. (2020b). Ancillary video data for labelling verification was provided by a Redmi Note 8T mobile 

phone (Xiaomi, Beijing, China). As a result of the previous steps, a hierarchical metadata folder 

containing RGB, IR and depth images, object annotations and binary masks was created for each frame 

extracted from the initial video set. 

On the basis of the laboratory measurements (Section 6.2.2) and the fruits identified in the labelling 

process (Section 6.2.4), actual size and weight data for all the apples in the sample was created and 
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saved in a general set (ALL). As shown in Fig. 6.1, apples within the dataset were grouped into two 

subsets, non-occluded apples (n=9) and occluded apples (n=17). 

6.2.5 Prediction algorithms 

Fig. 6.6 provides an overview of the algorithms for fruit size and weight prediction developed in this 

work. Image datasets in PASCAL-VOC format (Section 6.2.4), which include RGB images, depth 

images and binary masks, were used as input for the prediction algorithms (Fig. 6.6a). Two different 

approaches were then used to identify the regions of interest (ROI): i) bounding boxes (BBOX) (Fig. 

6.6b.1); and ii) binary masks (MASK) (Fig. 6.6b.2). Both approaches included the following steps: 1) 

size estimation in pixels; 2) depth estimation; and 3) fruit size estimation. Finally, the allometric 

models inferred in Section 6.2.3 were applied to predict fruit weight (Fig. 6.6c). 

 

Fig. 6.6. Overview of the size and weight prediction algorithms applied. a) Input for prediction algorithms. 
Approaches for identifying regions of interest (ROI): b.1) bounding box (BBOX), b.2) binary masks (MASK). Size 
estimation: bounding box (BB), circle enclosing (CE), circle fitting (CF), ellipse fitting (EF), rotated rectangle (RR). 
Depth estimation: average (AVG), minimum (MIN), modal (MOD). 

The prediction algorithms were implemented using Python 3.8, Tkinter, and OpenCV for image 

processing, and also other open source libraries/packages, such as Numpy, Scikitlearn and Pandas. As 

result, a software package with graphic user interfaces was published as Python package containing 

the pipeline implemented (Miranda et al., 2023). 
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6.2.5.1 Size estimation in pixels 

At this step, pixel lengths of the major (𝐷𝐷1) and minor (𝐷𝐷2) axes of each fruit were extracted from 

images. In the bounding box approach, the box sides were used to estimate the lengths of the fruit axes 

(Fig. 6.7). This is a pixel-sizing method that has the advantage of being directly applicable when used 

with the most common bounding box-based object detectors. 

In contrast, in the binary mask approach, the images were first smoothed, by applying morphological 

erosion and dilation operators (5 iterations and a 3×3 kernel), and fruit region contours were then 

detected. Once the contour points had been identified, the following shape-fitting techniques were 

assessed to estimate fruit size (𝐷𝐷1, 𝐷𝐷2) for both non-occluded and occluded fruits (Fig. 6.7). 

• Circle enclosing (CE): this computes a circumscribed circle that covers all the contour points 

within a minimum area. 

• Circle fitting (CF): this fits a circle around the full list of contour points, using the least squares 

technique. 

• Ellipse fitting (EF): this fits an ellipse to the contour points. 

• Rotated rectangle (RR): this computes a rectangle with a minimal area which includes the 

contour points and considers the angle of its rotation. 
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Fig. 6.7. Size and weight estimates of: (TOP) non-occluded apple # 2167, 𝐶𝐶 = 63.68 𝑚𝑚𝑚𝑚, 𝐻𝐻 = 66.07 𝑚𝑚𝑚𝑚, 𝑊𝑊 =
136.4 𝑔𝑔; (BOTTOM) occluded apple # 2171, 𝐶𝐶 = 64.43 𝑚𝑚𝑚𝑚, 𝐻𝐻 = 54.57 𝑚𝑚𝑚𝑚, 𝑊𝑊 = 102.3 𝑔𝑔. The first row 
corresponds to the RGB images and the second to the binary mask. a) Original fruit images (taken at 12:35 UTC +2). 
b) Bounding box (BB). c) Circle enclosing (CE). d) Circle fitting (CF). e) Ellipse fitting (EF). f) Rotated rectangle 
(RR). In BB and RR, the 𝐷𝐷1 axis is in blue and the 𝐷𝐷2 axis in green. For CE and CF, the radius is in green. In EF, the 
𝐷𝐷1 axis is in blue and the 𝐷𝐷2, or minor axis, is in green. Depth estimation was obtained by averaging the depth values 
for the selected ROI; fruit weight was predicted using allometric model (3) in Table 6.3. 

6.2.5.2 Depth estimation 

To estimate actual fruit sizes (in mm) from measurements in pixels (Section 6.2.5.1), it was necessary 

to know the distances (depth) between the Azure Kinect camera and the fruits on the trees. Depth 

images provided by the RGB-D camera were used to compute an estimated depth, in mm (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ), for 

each fruit. In the bounding box approach, the depth was directly estimated based on the pixels in the 

depth image inside the box. In contrast, in the binary mask approach, only the pixels within the fruit 

region were considered. This region was identified by overlapping the depth image a with a binary 

mask (bitwise matrix multiplication). In both approaches, the depth estimation of each fruit was 

provided for three statistical metrics related to the selected ROI: the average (AVG), modal (MOD) 

and minimum (MIN) values. To avoid errors, pixels from the depth images with values of zero 

(resulting from reflections, multipath errors, or fading, etc.) were excluded from the calculation. 

Fig. 6.7 shows the estimations of depth (average value) for apple # 2167, applying both the bounding 

box (BB) and binary mask (CE, CF, EF, RR) approaches. For the same apple, Fig. 6.8a represents the 

regions used for depth estimation (RGB image and binary mask), while Fig. 6.8b shows the 3D plots 

of the depth values in the selected regions for the BBOX and MASK approaches. When using a 
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bounding box, outlier values (high red values in these figures) appeared due to the presence of leaves 

and other vegetative elements within the ROI. In the case of the mask, most of the outliers were 

removed, which should have yielded a more accurate depth estimation. 

 

Fig. 6.8. Depth estimation of apple #2167 (taken at 12:35 UTC+2), 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ = 1209.73 𝑚𝑚𝑚𝑚, 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ = 1185.99 𝑚𝑚𝑚𝑚. a) RGB image and binary mask selected by bounding box rectangle. b) 
Depth values within the bounding box and mask region. 

6.2.5.3 Estimations of fruit size and predictions of fruit weight 

The thin lens theory was applied to convert fruit size from pixels to mm: 

𝐷𝐷𝑖𝑖 = �𝐷𝐷𝑖𝑖𝑖𝑖  × 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ�
𝑓𝑓𝑝𝑝

 ; 𝑖𝑖 = 1,2        (1) 

where 𝐷𝐷𝑖𝑖  is the major/minor axis of the fruit in mm, 𝐷𝐷𝑖𝑖𝑖𝑖 is the major/minor axis of the fruit in pixels, 

and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ is the depth value of the fruit (distance from the camera) in mm. 𝑓𝑓𝑝𝑝 = 1040 is the scaled 

camera focal length (in pixels), which was experimentally determined using calibration spheres. 

The predicted fruit sizes 𝐷𝐷1 and 𝐷𝐷2 were used as input parameters for the allometric models (Section 

6.3.2) to predict fruit weight (𝑊𝑊� ) in grams per fruit. For example, Fig. 6.7 shows size and weight 

predictions (in mm) for the non-occluded apple # 2167 and for the occluded apple # 2171 when the 

BBOX approach and tested shape-fitting techniques (CE, CF, EF, RR) were used. In this example, the 

allometric model 𝑊𝑊� = 𝛽𝛽0 + 𝛽𝛽1𝐷𝐷1+ 𝛽𝛽2𝐷𝐷2 was applied to predict the weight. 

6.2.6 Evaluation and testing 

The reliability of the prediction algorithms was verified using different statistical metrics. In a first 

step (Section 6.3.3), estimates of the geometric measurements of apples (axes 𝐷𝐷1 and 𝐷𝐷2) were tested 

separately. Then, in a second step and using the same metrics (Section 6.3.4), the joint performance 

of the sizing algorithms and adjusted allometric models was tested to predict the weight of the apples; 

this was done using the previously estimated 𝐷𝐷1 and 𝐷𝐷2 axes as inputs. 
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The evaluation metrics are listed in Table 6.2, where 𝑦𝑦�𝑖𝑖  represents the predicted values (axes 𝐷𝐷1 or 𝐷𝐷2 

obtained from the size estimation algorithms or, where appropriate, the weight 𝑊𝑊� ), and 𝑦𝑦𝑖𝑖  the 

corresponding real values obtained from laboratory measurements (Section 6.2.2). 

Table 6.2. Prediction algorithm evaluation metrics. 

Root Mean Square Error (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ) 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
∑ (𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖 )2𝑛𝑛
1

𝑛𝑛
 (2) 

Mean Absolute Error (𝑀𝑀𝑀𝑀𝑀𝑀 ) 𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ |𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖 |𝑛𝑛
1

𝑛𝑛
 (3) 

Mean Absolute Percentage Error (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ) 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛
� �

𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖
𝑦𝑦𝑖𝑖

�
𝑛𝑛

1
 (4) 

 

In the case of estimations of size, up to 15 different predictive options were assessed and then ranked 

from lowest to highest MAPE. These 15 possible results were obtained from combining the different 

pixel size adjustment options (BBOX_BB, MASK_CE, MASK_CF, MASK_EF, MASK_RR) and the 

proposed options for estimating depth (AVG, MIN, MOD) (Fig. 6.6). At the same time, the final 

weight prediction algorithms were ranked from best to worst predictive performance based on their 

metrics (this was done after assessing each of the 15 options for estimating size in combination with 

each of the seven allometric models). In short, it was possible to quantify error propagation for the 

different prediction phases (fruit size and weight) and, more importantly, it was also possible to 

contrast the impact of size prediction errors on predictions of fruit weight according to the different 

allometric models. 

6.3 Results 

6.3.1 Sizing error and image acquisition timing 

Six different moments of video data capture (image acquisition timing), recorded from 11:40 to 19:24 

(UTC +2) on September 27, 2021, were compared to contrast the sizing errors and changing lighting 

conditions registered during a typical day. The illuminance of the canopy as seen by the camera (from 

an east facing light meter) decreased through the monitored period (Fig. 6.9). The six moments of 

capture are marked, with the first five covering the period from 11:40 to 12:53 (UTC +2), under good 

lighting conditions, and the other, registered at 19:24 (UTC +2), relating to late afternoon and very 

different illuminance (Section 6.2.4). For each of these times, sizing algorithms were applied to the 
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captured images of two spheres (balls) of known sizes (60 and 120 mm in diameter) and also to two 

selected apples (#2129 and #2136) with known 𝐷𝐷1 and 𝐷𝐷2 axes. 

 

Fig. 6.9. Variation of illuminance (lux) at different times during the field data capture (September 27, 2021). The 
images of the spheres and apples correspond to the time slot 11:40:12 (UTC +2). Red arrows represent the moments 
(delimiting the capture range or a specific moment) at which measurements were taken with the camera. The light 
meter was positioned to face eastwards, which explains why the values decrease and do not reach their maximum at 
noon. 

Both ROI selectors (bounding box and mask) and the corresponding methods for estimating pixel size 

(BB, bounding box; CE, circle enclosing; CF, circle fitting; EF, ellipse fitting; RR, rotated rectangle) 

were used in this preliminary test. Depth estimations of objects using the average (AVG) method 

allowed estimates of fruit size (expressed in mm) to be obtained for a total of five possible outcomes 

for the spheres and apples. Fig. 6.10 and 6.11 (below) show the errors, comparing estimated and real 

measurements, for the different algorithm options and also for the six different moments of capture 

during the day. 

  

           (a)           (b) 
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           (c)          (d) 

 

Fig. 6.10. Range of errors (estimated diameter – laboratory diameter) relating to the calibration spheres. a-b) 
BALL_060, laboratory diameter: 𝐷𝐷1  = 60.0 mm, 𝐷𝐷2  = 60.0 mm. c-d). BALL_120, laboratory diameter: 𝐷𝐷1  =
120.0 mm, 𝐷𝐷2  = 120.0 mm. The depth was estimated using the average (AVG) method. 
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          (a)           (b) 

  

          (c)          (d) 

 

Fig. 6.11. Range of errors (estimated diameter – laboratory diameter) relating to the non-occluded apples. a-b) Apple 
#2129, laboratory diameter: 𝐷𝐷1  = 69.79 mm, 𝐷𝐷2  = 75.87 mm. c-d) Apple #2136, laboratory diameter: 𝐷𝐷1  = 66.27 
mm, 𝐷𝐷2  = 59.62 mm. The depth was estimated using the average (AVG) method. 

At first sight, the variation in the degree of illuminance did not seem to significantly influence the 

estimations of diameter (size) made for the two spheres, when the sizing methods were applied 

individually (Fig. 6.10). Some methods clearly provided better estimates than others, with this being 

the case for one particular axis, regardless of lighting conditions. The methods that should perform 

better for fitting objects with different diameters 𝐷𝐷1 and 𝐷𝐷2 (ellipses and rotated rectangles) provide 

different errors for both axis. As expected, the methods based on circle fitting and circle enclosing 

provide similar results for both diameters of the calibration spheres. 
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Fig. 6.11 shows the results for the two apples chosen in the scene. As before, it was not possible to 

observe any clear pattern of errors associated with illuminance. In theory, therefore, almost any time 

window within daylight hours could have been chosen to use the RGB-D camera. 

One particularly noteworthy result was that using a mask ROI selector in combination with the ellipse 

fitting (EF) sizing method provided the most reliable measurements for both the 𝐷𝐷1 major axis and the 

𝐷𝐷2 minor axis. In contrast, the circle enclosing (CE) approach was found to be the least accurate sizing 

method (with very marked errors when estimating the minor axis 𝐷𝐷2). This was because the CE method 

tends to fit circles that are outside the contour points, and which would correspond to the major axis 

(𝐷𝐷1); errors were therefore to be expected when estimating the length of the minor axis (𝐷𝐷2). In the 

rest of the sizing methods applied (BB, bounding box; CF, circle fitting; EF, ellipse fitting; RR, rotated 

rectangle), errors ranged between -6 mm and +4 mm for both the 𝐷𝐷1 and 𝐷𝐷2 axes. 

As relative errors may be considered acceptable (when considering the normal size of apples), there 

should have been no major problems involved in using RGB-D cameras while agricultural tasks were 

being performed. In the following sections, in-depth analyses were made of the allometric models and 

the data processing algorithms. 

6.3.2 Allometric models for predicting apple weight 

Table 6.3 shows the linear and nonlinear allometric models that were used to predict apple weight 

using the major and/or minor geometric axes of the fruit as predictors. The fit results were very good 

in all cases, with 𝑅𝑅2 values ranging from 0.942 (simple linear model) to 0.993 (multiple nonlinear 

model). Any a priori choice between one model and another should therefore be based on some other 

criteria.  
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Table 6.3. Allometric models used to predict apple fruit weight based on the major axis (𝐷𝐷1) and minor axis (𝐷𝐷2) 
geometric predictors of the fruit. The models were obtained from laboratory data. 

 Linear models 
Model 
identifier 

 Goodness-
of-fit 
(𝑅𝑅2) 

Training 
dataset 
n=568 

(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ) 
[g] 

Test 
dataset 
n=489 

(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ) 
[g] 

(1) 𝑊𝑊 = 𝛽𝛽0 + 𝛽𝛽1𝐷𝐷1 + 𝜀𝜀     
 𝑊𝑊� = −162.79 + 4.60 × 𝐷𝐷1 0.942 14.98 15.93 
     

(2) 𝑊𝑊 = 𝛽𝛽0 + 𝛽𝛽1𝐷𝐷1 + 𝛽𝛽2𝐷𝐷12 + 𝛽𝛽3𝐷𝐷13 + 𝛽𝛽4𝐷𝐷14 + 𝜀𝜀     
 𝑊𝑊� = −298.4 + 25.47 × 𝐷𝐷1 − 0.78 × 𝐷𝐷12 + 0.01 × 𝐷𝐷13 − 0.000048

× 𝐷𝐷14 
0.979 8.97 9.29 

     
(3) 𝑊𝑊 = 𝛽𝛽0 + 𝛽𝛽1𝐷𝐷1 + 𝛽𝛽2𝐷𝐷2 + 𝜀𝜀    

 𝑊𝑊� = −161.64 + 2.48 × 𝐷𝐷1 + 2.22 × 𝐷𝐷2 0.949 14.01 15.19 
     

(4) 𝑊𝑊 = 𝛽𝛽0 + 𝛽𝛽1(𝐷𝐷12𝐷𝐷2) + 𝜀𝜀     
 𝑊𝑊� = 2.59 + 0.00046 × 𝐷𝐷12𝐷𝐷2 0.985 7.57 7.80 
     

(5) 𝑊𝑊 = 𝛽𝛽0 + 𝛽𝛽1(𝐷𝐷1𝐷𝐷22) + 𝜀𝜀    
 𝑊𝑊� = 4.32 + 0.00048 × 𝐷𝐷1𝐷𝐷22 0.980 8.86 9.13 
 Nonlinear models 

(6) 𝑊𝑊 = 𝛽𝛽0 × 𝐷𝐷1
𝛽𝛽1 + 𝜀𝜀    

 𝑊𝑊� = 0.00065 × 𝐷𝐷12.91 0.989 9.36 9.32 
     

(7) 𝑊𝑊 = 𝛽𝛽0 × 𝐷𝐷1
𝛽𝛽1 × 𝐷𝐷2

𝛽𝛽2 + 𝜀𝜀     
 𝑊𝑊� = 0.00071 × 𝐷𝐷11.80 × 𝐷𝐷21.11 0.993 7.51 7.86 

 

Models which produced low 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 values in the training dataset and similar values to those obtained 

in the test dataset could be recommended. More specifically, the polynomial model had the advantage 

of using a single predictor (major axis 𝐷𝐷1), resulting in the introduction of a single source of error into 

the model (this error related to the estimation of 𝐷𝐷1). However, there was a possibility of amplifying 

the weight prediction error (model noise) as this predictor was used at different powers. Identical 

behaviour could have been expected, albeit to a lesser extent, in linear models based on the use of 

combined predictors, such as 𝐷𝐷12𝐷𝐷2, or - where appropriate - 𝐷𝐷1𝐷𝐷22. As for the nonlinear models, the 

use of both the 𝐷𝐷1 and 𝐷𝐷2 predictors provided the best weight predictions. However, once again, the 

estimation errors associated with these size predictors could have led to an amplified propagation of 

the error, given the potential use of exponents in the model (basically for the 𝐷𝐷1 predictor). 

Models that use the axes of the fruit as linear predictors, without the inclusion of exponents, should 

not, however, be ruled out. Error propagation in weight predictions could be lower in these models, 

even when the predictors are affected by higher regression coefficients. This was the case in models 

(1) and (3). However, we should also be cautious about using linear model (1) due to residual trend 

problems, and about opting for model (3) due to the existing correlation between predictors (VIF factor 

of 28.46) which, being greater than 10, indicates a high correlation and constitutes a cause for concern. 
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6.3.3 Optimal algorithm for apple fruit sizing 

Different methods for estimating the 𝐷𝐷1 and 𝐷𝐷2 axes were compared for the non-occluded apples in 

Table 6.4. The best estimates of the 𝐷𝐷1 major axis were obtained when the ROI was identified using a 

binary mask (MASK), and then using rotate rectangles (RR). The algorithm was completed by 

converting the previous measurements to mm using the most repeated distance between the object and 

the camera (MOD depth). The mean distance (AVG) and the minimum distance (MIN) techniques are 

other options that could be considered. Errors of less than 5% (MAPE) were obtained when applying 

these sizing options, resulting in average deviations from real measurements of between 3 and 3.5 mm 

(MAE). 

Different results were obtained when estimating the 𝐷𝐷2 minor axis. The results obtained when using 

rotated rectangles were improved by fitting bounding boxes (BB, without masks) or even fitting 

ellipses (EF). However, in the latter case, the choice of the depth estimation method proved practically 

irrelevant. As before, errors (MAPE) were below 5%, giving mean deviations (MAE) of about 3 mm. 

The generalised use of the sizing algorithm could therefore be regarded as satisfactory, although 

attention should be paid to the use of different methods depending on whether the major or minor axis 

of the apples is estimated. 

Table 6.4. Ranking of the methods applied to the non-occluded apple dataset (n=9) organised according to major and 
minor diameter. 

D1 D2 
Pixel 
sel. 

ROI Depth RMSE 
[mm] 

MAE 
[mm] 

MAPE 
[% ] 

Pixel 
sel. 

ROI Depth RMSE 
[mm] 

MAE 
[mm] 

MAPE 
[% ] 

MASK RR MOD 3.801 3.156 4.4 BBOX BB MIN 3.427 2.573 3.8 
MASK RR AVG 3.859 3.201 4.4 MASK EF MOD 3.933 2.901 4.3 
MASK RR MIN 4.277 3.527 4.9 MASK EF AVG 3.928 2.958 4.4 
BBOX BB MIN 4.404 3.646 5.0 MASK EF MIN 4.048 3.047 4.5 
BBOX BB MOD 4.606 3.729 5.1 BBOX BB AVG 4.104 3.302 4.9 
MASK CF AVG 4.473 3.865 5.4 BBOX BB MOD 4.009 3.289 4.9 
MASK CF MOD 4.706 4.122 5.7 MASK RR AVG 3.996 3.227 4.9 
BBOX BB AVG 5.029 4.168 5.7 MASK RR MIN 4.203 3.291 5.0 
MASK CF MIN 5.383 4.639 6.5 MASK RR MOD 4.177 3.453 5.2 
MASK EF MOD 8.890 5.955 8.2 MASK CF MIN 4.427 3.638 5.3 
MASK EF MIN 8.562 6.047 8.3 MASK CF MOD 5.106 4.451 6.5 
MASK EF AVG 9.295 6.266 8.6 MASK CF AVG 5.678 4.975 7.3 
MASK CE MIN 10.535 7.545 10.3 MASK CE MIN 13.660 12.072 17.6 
MASK CE MOD 11.511 8.695 11.9 MASK CE MOD 14.966 13.286 19.4 
MASK CE AVG 12.115 9.489 13.0 MASK CE AVG 15.739 14.131 20.7 
            

D1 = Major Diameter. D2 = Minor Diameter. BBOX= Bounding Box. MASK = Mask. BB = Bounding Box. RR = Rotated Rectangle. 
EF = Ellipse Fitting. CE = Circle Enclosing. CF = Circle Fitting. AVG = Average depth. MOD = Modal depth. MIN = Minimum 
depth. 
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Another notable aspect was the poor performance when circles were used that enclosed the fruit region 

(CE method), with the apple sizing procedure producing the largest estimation errors for both the 𝐷𝐷1 

and 𝐷𝐷2 axes (Table 6.4). In contrast to this trend, the rest of the methods seemed to show similar 

characteristics, at least when the maximum estimation error (MAPE) was set at 10%. This can be 

better appreciated through the visual interpretation of Fig. 6.12. In fact, adjusting the ROI using 

properly rotated rectangles (RR) resulted in good estimates of apple size using both axes, without the 

type of depth (mean, modal or minimum) seeming to have any significant influence. The use of 

bounding boxes (BB) was very close in performance (and even better for 𝐷𝐷2). The results of using the 

circle fitting (CF) and the ellipses fitting (EF) methods were also noteworthy, producing somewhat 

larger errors, but without these exceeding 8% (Table 6.4 and Fig. 6.12). 

In the case of the set of occluded apples (Table 6.5 and Fig. 6.13), the results varied considerably in 

terms of the recommended methods, in addition to producing worse estimates (MAPE always 

exceeded 5%). The use of bounding boxes (BB) was the most recommended option. Complemented 

with modal or mean depths, this method was at least able to keep the level of estimation errors (MAPE) 

below the 10% threshold for both 𝐷𝐷1 and 𝐷𝐷2. All the other methods failed in this regard, producing 

larger estimation errors (Fig. 6.13). In this set of methods, which were not as well-adapted to dealing 

with occluded apples, the circle fitting (CF) approach particularly stood out. This contrasted with what 

happened with non-occluded apples. In the case of the occluded apples, circle enclosing (CE method) 

seemed to work better than methods that tried to fit rotated rectangles (RR) or ellipses (EF). As shown 

in Fig. 6.13, it was particularly difficult to estimate minor axis 𝐷𝐷2 on occluded apples, while it was 

possible to use different methods interchangeably to estimate the major axis 𝐷𝐷1 . Whatever the case, 

depth approximation should be carried out using either the modal (MOD) or mean (AVG) method, 

and avoiding the calculation of the minimum depth in occluded apples. 
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Table 6.5. Ranking of the methods applied to the occluded apple dataset (n=17), organised by major and minor 
diameter. 

D1 D2 
Pixel 
sel. 

ROI Depth RMSE 
[mm] 

MAE 
[mm] 

MAPE 
[% ] 

Pixel 
sel. 

ROI Depth RMSE 
[mm] 

MAE 
[mm] 

MAPE 
[% ] 

BBOX BB MOD 7.214 6.177 8.8 BBOX BB MOD 6.612 5.652 8.1 
MASK EF MOD 8.033 6.558 9.2 BBOX BB AVG 7.248 6.170 8.8 
MASK EF AVG 8.169 6.694 9.4 MASK CE MIN 9.664 7.714 11.4 
BBOX BB AVG 7.693 6.707 9.5 MASK CE MOD 10.144 8.379 12.4 
MASK RR MOD 8.417 7.015 10.0 MASK CE AVG 10.247 8.428 12.5 
MASK CE MIN 9.328 7.220 10.0 BBOX BB MIN 11.343 9.173 12.9 
MASK CE MOD 8.794 7.328 10.2 MASK CF MOD 13.271 10.925 15.6 
MASK RR AVG 8.570 7.263 10.3 MASK CF AVG 13.580 11.162 15.9 
MASK CE AVG 8.866 7.405 10.3 MASK RR MOD 12.723 11.075 16.3 
MASK EF MIN 10.492 8.424 11.7 MASK RR AVG 12.959 11.260 16.6 
BBOX BB MIN 10.843 8.801 12.4 MASK EF MOD 14.502 12.614 18.4 
MASK RR MIN 11.841 9.916 13.8 MASK EF AVG 14.724 12.763 18.6 
MASK CF MOD 16.149 14.215 19.7 MASK CF MIN 16.956 14.206 20.2 
MASK CF AVG 16.381 14.397 19.9 MASK RR MIN 16.449 14.448 21.0 
MASK CF MIN 19.665 17.567 24.3 MASK EF MIN 17.998 16.043 23.2 
            

D1 = Major Diameter. D2 = Minor Diameter. BBOX= Bounding Box. MASK = Mask. BB = Bounding Box. RR = Rotated Rectangle. 
EF = Ellipse Fitting. CE = Circle Enclosing. CF = Circle Fitting. AVG = Average depth. MOD = Modal depth. MIN = Minimum 
depth. 

 

 

Fig. 6.12. Comparison of the Mean Absolute Percentage Error (MAPE) between D1 and D2 applied to the set of 
non-occluded apples (n=9). 
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Fig. 6.13. Comparison of the Mean Absolute Percentage Error (MAPE) between D1 and D2 applied to the set of 
occluded apples (n=17). 

6.3.4 Optimal combined sizing algorithm and allometric model for predicting apple weight 

For non-occluded fruits (Table 6.6), sizing the apples using circle fitting (CF) and the subsequent 

application of the linear allometric model (3) (Table 6.3, Section 6.3.2) was found to be the algorithm 

option that provided the best weight predictions, with an error (MAPE) of only 5.1%. Very similar 

results, in terms of reliability, were obtained with options using ellipses (EF), or even bounding boxes 

(BB), as sizing methods before subsequently applying the same linear model (3); these approaches 

produced prediction errors of less than 6%. The results obtained with occluded apples were somewhat 

different (Table 6.6), with the best ranking corresponding to sizing with ellipses (EF) and making 

allometric weight predictions using model (1): a simple linear regression that only uses the 

measurement corresponding to the major axis 𝐷𝐷1 of the apples as a predictor. As expected, the error 

(MAPE) subsequently increased to the very significant level of 18.3% (Table 6.6). 
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Table 6.6. Ranking of the methods applied to the non-occluded and occluded apple datasets for measurements of weight 
using average depth. 

Weight predicted 
Pixel sel. ROI Allometric weight 

prediction model 
RMSE 

[g] 
MAE 
[g] 

MAPE 
[% ] 

      
Non-occluded apple dataset (n=9) 

MASK CF (3) 11.088 9.184 5.1 
MASK EF (3) 12.244 10.100 5.6 
BBOX BB (3) 13.019 10.121 5.7 
MASK CF (1) 15.946 12.829 7.0 
MASK RR (1) 17.970 14.714 8.1 
MASK RR (3) 17.481 14.785 8.1 
BBOX BB (1) 18.374 14.646 8.2 
MASK CF (4) 17.901 14.237 8.3 
MASK EF (5) 20.200 15.101 8.6 
BBOX BB (5) 20.821 16.090 9.0 

      
      

Occluded apple dataset (n=17) 
MASK EF (1) 39.584 31.608 18.3 
BBOX BB (3) 42.489 34.052 18.6 
MASK CE (1) 36.419 29.878 18.8 
BBOX BB (1) 40.913 33.311 18.9 
MASK CE (3) 39.209 32.116 20.6 
MASK RR (1) 47.047 38.802 21.9 
BBOX BB (7) 46.288 39.197 22.9 
BBOX BB (5) 49.471 40.881 23.2 
MASK EF (6) 50.631 40.775 23.5 
BBOX BB (4) 47.627 40.356 23.6 

      
BBOX = Bounding Box. MASK = Mask. BB = Bounding Box. RR = Rotated Rectangle. EF = Ellipse Fitting. CE = Circle 
Enclosing. CF = Circle Fitting. Weight prediction model identifiers from Table 6.3. 

 

Somewhat surprisingly, the sizing methods that provided best results in terms of estimating apple size 

(Section 6.3.3), performed considerably less well when the allometric model was incorporated in order 

to predict the final weight. As allometric models are predictive, it is likely that some sort of 

compensation effect to ameliorate the prediction error would have occurred since estimated (rather 

than actual) measures of size were used as predictors in the models. A clear example of this can be 

seen in the case of non-occluded apples. While the use of rotated rectangles (RR) and bounding boxes 

(BB) seemed to be the best options for estimating 𝐷𝐷1 and 𝐷𝐷2 separately (Section 6.3.3), circle fitting 

(CF) proved the most recommendable sizing option as a first stage in the weight prediction algorithm. 

As shown in the previous section, other sizing approaches ranked better than the use of circle fitting 

(CF). Specifically, it was not among the best options for making estimates of 𝐷𝐷2 (7% error). 

To analyse the influence of allometric models on weight predictions, the best (first) weighting options 

for non-occluded and occluded apples were combined with all the different models listed in Table 6.3. 

The resulting prediction errors are shown in Table 6.7. 
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Table 6.7. Ranking of allometric models (identifier in parentheses) once the best combined sizing-weighting option 
using average depth is selected for the non-occluded and occluded apple datasets. 

Weight predicted 
Pixel sel. ROI Allometric weight 

prediction model 
RMSE 

[g] 
MAE 
[g] 

MAPE 
[% ] 

      
Non-occluded apple dataset (n=9) 

MASK CF (3) 11.088 9.184 5.1 
  (1) 15.946 12.829 7.0 
  (4) 17.901 14.237 8.3 
  (7) 19.164 16.171 9.1 
  (6) 18.938 15.143 9.3 
  (5) 21.162 17.926 9.9 
  (2) 257.367 251.633 138.4 
      
      
Occluded apple dataset (n=17) 

MASK EF (1) 39.584 31.608 18.3 
  (6) 50.631 40.775 23.5 
  (3) 53.724 45.352 25.6 
  (7) 56.481 48.350 27.8 
  (4) 56.776 48.523 27.9 
  (5) 72.018 61.306 34.8 
  (2) 271.061 255.175 140.9 
      
MASK = Mask. EF = Ellipse Fitting. CF = Circle Fitting. Weight prediction model identifiers from Table 6.3. 

 

For weight predictions involving non-occluded apples, linear models were the best options, with 

prediction errors (MAPE) ranging from 5.1% (multiple linear model using 𝐷𝐷1 and 𝐷𝐷2  as predictors) 

to 8.3% (simple linear model using the combined predictor 𝐷𝐷12𝐷𝐷2). The use of nonlinear models 

increased the error (MAPE) to over 9%. The highly deviant polynomial model is an option that should 

be discarded when making this type of prediction. In fact, our research seemed to confirm that the use 

of polynomial models (such as Marini et al., 2019) is a good option when real fruit measurements are 

used as input variables. However, with uncertain values as input variable, a polynomial model may 

generate unacceptable errors. 

6.4 Discussion 

The main contribution of this work is the development of algorithms that can simultaneously predict 

apple fruit size and weight on the tree based on measurements taken using an RGB-D camera. 

However, it is known that RGB-D cameras do not tend to perform particularly well under conditions 

of direct sunlight. In this regard, Gené-Mola et al. (2020a) established 2000 lux as the illuminance 

threshold above which the performance of the Kinect v2 camera is adversely affected. In this work, 

the morning captures were registered with an illuminance of greater than 15,000 lux (Fig. 6.9), using 

an Azure Kinect camera. No significant differences were appreciated in size estimates compared to 
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those registered in the late afternoon (500 lux) (Fig. 6.10 and Fig. 6.11). These results indicate that the 

Azure Kinect was not significantly influenced by sunlight, confirming findings reported by Neupane 

et al.,(2021), who recommended the use of the Azure Kinect based on its robustness under direct 

sunlight and orchard conditions. 

The size estimates for non-occluded and occluded apples are presented in Section 6.3.3. The estimation 

errors for non-occluded apples (Table 6.4: MAPE < 5 %; MAE = 3-3.5 mm; RMSE < 4 mm) were 

similar to those obtained in other studies using 3D sensing techniques such as LiDAR (MAE = 3.5-

12.4 mm) (Tsoulias et al., 2020) or structure-from-motion photogrammetry (MAE = 3.7 mm) (Gené-

Mola et al., 2021). These results were also comparable with those obtained using other RGB-D 

cameras on mango (RMSE = 4.3-4.9 mm) (Wang et al., 2017) and pomegranate (RMSE = 2.35 mm) 

(Yu et al., 2022) crops. As expected, the greatest errors were found when assessing occluded apples 

(Table 6.5: MAPE < 10 %; MAE = 6-8 mm; RMSE < 8 mm). The application of amodal instance 

segmentation to reconstruct the shape of occluded apples may, however, offer a way to improve these 

results (Gené-Mola et al., 2023). 

Regarding fruit weight (Section 6.3.4), accurate estimates were obtained for non-occluded apples 

(Table 6.6, MAPE < 6 %) which were below the threshold of 10 % relative error usually accepted for 

harvest predictions (Uribeetxebarria et al., 2019). For occluded apples, the errors (MAPE) exceeded 

18 % (Table 6.6) as the size estimates were less accurate. Given this result, one could consider the 

possibility of discarding readings for occluded apples, which tend to undermine yield predictions, as 

similar to what Neupane et al. (2022) pose in mango. When selecting the most appropriate 

methodology, a number of practical implementation issues need to be addressed, as well as the 

estimation errors. In this sense, the bounding box (BB) method has certain advantages over mask-

based methods (CF, circle fitting; EF, ellipse fitting; CE, circle enclosing; RR, rotated rectangle), 

particularly in terms of lower computational cost and more direct integration with current object 

detectors. 

In the case of allometric models (Table 6.7), even with good results from the linear model (3), 𝑊𝑊 =

𝛽𝛽0 + 𝛽𝛽1𝐷𝐷1 + 𝛽𝛽2𝐷𝐷2, a degree of caution is required given that problems of multicollinearity may make 

it preferable to use other, more stable, single-predictor models. Models (1), 𝑊𝑊 = 𝛽𝛽0 + 𝛽𝛽1𝐷𝐷1, and (4), 
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𝑊𝑊 = 𝛽𝛽0 + 𝛽𝛽1(𝐷𝐷12𝐷𝐷2), are therefore strong candidates for use, rather than the aforementioned multiple 

model. 

The compensatory effect that seemed to occur between the sizing algorithms and the allometric models 

should be viewed with caution. It may entail certain problems, but these are inherent to the sequential 

use of sizing algorithms obtained via machine vision and properly tested allometric models. In non-

occluded apples, good RR (rotated rectangle)- and BB (bounding box)-based sizing algorithms 

continue to be valid options when their outputs are implemented in the appropriate allometric models 

(Table 6.6). Although the MAPE increased when delimiting non-occluded apples using the CF (circle 

fitting) algorithm, in no case was the threshold value of 10% exceeded. In general, sizing algorithms 

that achieve apple size estimation errors (MAPE) of below 10% (Table 6.4; Fig. 6.12) are also valid 

options and can complement the allometric model and predict yield in an acceptable way (Table 6.6). 

More specifically, with a MAPE of < 8.1%, the results of our research would suggest that any of the 

algorithms (BB, bounding box; RR, rotated rectangle; EF, ellipse fitting; CF, circle fitting) could be 

applied when entering estimates of the major and minor axis of apples in a linear allometric model. 

6.5 Conclusions 

Time-of-flight RGB-D cameras offer a good option for sizing apples using computer vision algorithms 

for subsequent weight predictions made with appropriate allometric models. More specifically, the 

Azure Kinect camera is a relatively cheap device that performs well in agricultural environments under 

variable lighting conditions throughout the day. 

The sizing methods that should be applied will differ depending on whether apples are non-occluded 

or occluded. The MAPE value was generally below 5 % for non-occluded apples (after adjusting their 

shape using rotated rectangles), while it increased to almost 10 % in occluded apples (adjusting the 

shape using bounding boxes). These sizing results were similar to those obtained with other techniques 

(e.g. LiDAR, structure-from-motion) but can be achieved using an affordable RGB-D camera with a 

low computational cost. In the case of depth measurements, for the final millimetric sizing of apples, 

average depths and modal values are equally recommendable options. When expanding the goal to 

weight prediction, in non-occluded apples, the rotated rectangles method should be replaced by fitting 

circles, ellipses or even bounding boxes, to then complement the sizing algorithm with a linear 
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allometric model that uses both the major and minor axes as predictors. When fitting circles, the final 

MAPE (for weight prediction) was only 5.1 %. A non-additive error effect (or compensation) therefore 

occurs, despite the fact that sizing using circles (with a MAPE of 5.4 % on the major axis and of 7.3 

% on the minor axis) and allometric modelling were implemented sequentially. 

These promising sizing and weight prediction results open up the possibility of using RGB-D cameras 

for real-time fruit orchard characterization. Future work will include the implementation of an 

appropriate object detector to complete the acquisition-processing-yield prediction cycle. 
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In this chapter, a general discussion of the doctoral thesis is conducted. The detailed discussion of each 

of the works that conform this thesis can be found in Chapters 3, 4, 5 and 6. 

7.1 Progress in fruit detection and sizing using AI 

In the first part of the thesis (Chapter 3), a review of methods for detecting/counting and measuring 

fruits on the tree has been carried out. In relation to fruit counting, sensors for automatic detection 

have been used for more than 30 years (Plá et al., 1993). With an initial research focus on the 

development of algorithms for object detection in images (Gongal et al., 2015), artificial intelligence 

has recently allowed digital image processing systems with pattern recognition to evolve towards 

systems based on deep learning. Progress in this respect has been impressive, with detection systems 

currently reaching F1-scores higher than 90% (Table 3.1; Chapter 3) and similar to the human eye. 

However, some important issues remain pending such as fruit tracking (required to not double-count 

fruits detected from different sensor positions) and estimation of quality parameters (for better 

harvesting management). Therefore, new research transfer opportunities are emerging with the priority 

of developing robust and low-cost systems, and also under the premise of having to process high 

amounts of data when applied to farms with a large number of trees and a large load of fruits. 

Regarding the in-field fruit size estimation, two methodological approaches have been identified 

(Section 3.4): those based on 2D images and those that use 3D point clouds. 2D image acquisition 

(RGB, thermal) can be carried out using low-cost cameras. However, calibration of these images is 

required (e.g. using targets of known dimensions located in the same plane of the fruit to be measured), 

which restricts their practical application to a few trees. On the other hand, the use of 3D sensing 

systems such as photogrammetric techniques, LiDAR or RGB-D sensors, allows three-dimensional 

reconstruction (point cloud) of the orchard and direct measurement of the fruits. Fruit sizing is at a 

less advanced development stage than fruit counting, although estimates with a mean absolute error 

(MAE) of less than 4 mm (Table 3.4; Chapter 3) have been achieved. In this thesis, the use of RGB-

D sensors has been chosen (Chapters 4, 5 and 6), which simultaneously provide colour and depth data. 

These sensors have a lower cost than LiDAR technology, and reduced computational load compared 

to photogrammetric techniques such as Multi-View Stereo or Structure-from-Motion. Specifically, a 

time-of-flight RGB-D sensor (i.e. Microsoft Azure Kinect DK) has been selected due to its greater 
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robustness under natural lighting compared to RBG-D sensors based on structured light or active 

stereovision (Gregorio and Llorens, 2021). 

From the experience and works analysed in Chapter 3, it would be extremely useful for the scientific 

community to share the datasets, algorithms and models used in fruit detection. The use of standard 

metrics to make methods and results objectively comparable is also necessary and, in our opinion, the 

F1-score for object detection and the MAE (or MAPE) for size estimation are recommended. At the 

same time, there is a need to continue research in computer vision and deep learning techniques applied 

to fruit growing early in the season, especially in the initial phases of fruit growth (before or after 

thinning) and even in flower count (Aggelopoulou et al., 2010). 

The review work presented in Chapter 3 serves as introduction for researchers who wish to delve into 

deep learning techniques and their application to fruit detection and sizing. Foundations of 

convolutional neural networks (CNNs) and main types (image classification CNNs, object detection 

CNNS, semantic and instance segmentation CNNs) are presented. Moreover, its didactic approach, 

together with the special emphasis on fruit size and maturity estimation methodologies, represent the 

main contributions of this chapter to the current literature on fruit detection. 

7.2 Software development for RGB-D cameras in fruit orchards 

The second part of this thesis (Chapters 4 and 5) is focused on the development of software tools to 

use the Azure Kinect RGB-D camera in fruit orchard environments. In Chapter 4, a dual software 

called AkFruitData has been presented, which allows the simultaneous acquisition of data with 

different sensors (AK_ACQS) and the extraction of datasets (AK_FRAEX) from the videos acquired 

by the Azure Kinect camera. In Chapter 5, the AKFruitYield software has been introduced, which 

includes two modules, the AK_SW_BENCHMARKER and the AK_VIDEO_ANALYSER. The first 

of these modules allows the application of different fruit sizing and fruit weighting prediction 

algorithms, while the second is used to count fruits (apples) and predict their yield at plot scale from 

videos captured by the Azure Kinect. 

The software tools developed in this thesis cover all stages ranging from the in-field data acquisition 

to the fruit yield prediction. Although the software has been developed for primary use with the Azure 
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Kinect camera, it can be adapted to be applied to other RGB-D sensor models. Furthermore, as it is a 

modular software, it can also be used when only one of the specific functionalities is required: data 

acquisition, data extraction, fruit detection, size and weight estimation, or yield prediction. 

From the point of view of the software developer, the selection of the Python’s ecosystem and the use 

of open source libraries has the advantage of frequent updates by the community. On the other hand, 

changing versions can lead to incompatibilities between different components of the developed 

software, which translates into a certain fragility of the system. 

To the author's knowledge, this is the first software published in a peer-reviewed, open-access journal 

where fruit yield prediction is addressed using a 3D sensing system. One of the aims of this work is to 

encourage other precision agriculture software developers to publish their work as journal articles, 

which would allow a more rigorous software benchmarking. It should be noted that all the software 

code developed in the framework of this thesis can be found in open-access repositories, hoping its 

adoption can be useful to farmers, technical advisors and researchers. 

7.3 Fruit sizing estimation and weight prediction 

In the third part of this thesis (Chapter 6), experimental works are presented, as well as the fruit size 

and weight predictions resulting from them. Static measurements of apple trees were performed on an 

experimental farm using the Azure Kinect camera together with the AKFruitData software presented 

in Chapter 4. Subsequently, fruit characterization (geometric dimensions and weight) of harvested 

apples was made in the laboratory. These data were used to develop seven allometric models (Table 

6.3; Chapter 6). Using the AK_SW_BENCHMARKER software presented in Chapter 5, different 

combinations of algorithms were evaluated to predict the size and apple fruit weight from the acquired 

colour and depth images. For non-occluded apples, size estimates with MAE values between 3-3.5 

mm were obtained (Table 6.4; Chapter 6), similar to those currently present in the state of the art 

(Table 3.4; Chapter 3). Regarding fruit weight predictions, mean absolute percentage errors (MAPE) 

of less than 6% were achieved (Table 6.6). 

Nowadays, uncertainties of up to 10% in commercial yield predictions are accepted. As seen, results 

of this thesis clearly overcome this threshold, opening the door to RGB-D sensors as an alternative to 
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manual-based fruit sizing and yield prediction methods. Although future work should include in-field 

validations with a greater number of trees (Section 7.4), the potential of this methodology is shown 

both in terms of cost savings (lower labour and temporal costs) and in terms of highly accurate 

estimates (no subjective appreciation errors). 

The developed methodology also presents its own limitations, particularly when measuring occluded 

apples. As shown in Tables 6.5 and 6.6 (Chapter 6), size estimates in occluded apples presented a 

MAE of between 6-8 mm, while the MAPE in weight predictions exceeded 18%. The application of 

amodal instance segmentation (Gené-Mola et al, 2023), which allows reconstruction of the occluded 

parts of the fruit, may be a way to improve these results. Alternatively, occluded apples could be 

discarded in the final estimates, thus minimizing the uncertainties in yield prediction due to them 

(Neupane et al., 2022). Typically, a limiting factor when using RGB-D cameras has been their poor 

performance under sunlight. The results of this thesis demonstrate that the current generation of time-

of-flight RGB-D cameras (Azure Kinect) allows accurate measurements (Figure 6.10 and 6.11; 

Chapter 6) to be carried out in high illuminance conditions (higher than 15000 lux). 

Allometric models used to predict the weight of apples (Chapter 6) deserve a more detailed 

explanation. In the process of obtaining these models, it is worth commenting on a typical problem 

that normally appears with predictors (at least when dealing with linear models). This problem refers 

to collinearity in the case of the linear model that uses the geometric measurements of apple axes 𝐷𝐷1 

and 𝐷𝐷2 as separate but additive predictors. In fact, this model has turned out to be the most accurate 

when estimating the weight of apples (Table 6.6, Chapter 6). As mentioned in Faraway (2016), the 

effect of collinearity can be summarized by the formula, 
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with 𝑅𝑅𝑖𝑖2 the coefficient resulting from the regression of one axis on the other axis. Since a high 

correlation between axes (𝑅𝑅𝑖𝑖2 close to one) is expected, this collinearity would provide imprecise 

estimates of 𝛽𝛽. Faced with this problem, all that remained was to take a sample of apples with a very 

variable range of sizes, spreading the values of the axes as much as possible as has been the case in 
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the research of this part of the thesis. Avoiding the problem of collinearity also involves the option of 

discarding one of the predictors. This has been the idea of adjusting a simple regression model using 

as a predictor the major axis 𝐷𝐷1 of the apple (normally coinciding with the so-called size of the fruit). 

The compensation between the sizing error and that committed in allometric modelling deserves 

special mention. Obviously, an additive compensating effect has occurred. But, this is a consequence 

of the proposed procedure. Error in sizing the apples is introduced into an allometric model that also 

contains its own error term. The result, unpredictable a priori, can lead to a very favourable final 

weight estimation error. Interestingly, the allometric models that provided a greater estimation error 

(RMSE) when they were obtained, have finally been the models with the best performance using the 

sizes (axes) estimated by the sizing algorithms. Probably, they have been the models that have applied 

a greater and more timely compensation effect. 

7.4 Future works 

In the short term, it is planned to apply the RGB-D based methodology developed in Chapter 6 to 

estimate the fruit yield of an entire apple orchard. To do this, a continuous scan of the plantation will 

be carried out, analysing the videos recorded with the AK_VIDEO_ANALYSER software presented 

in Chapter 5. The resulting predictions will be contrasted with the actual harvest (fruit production) 

values.  

In the medium term, even considering the development of fully automated fruit counting systems, their 

use should probably focus on sampling certain areas within an orchard, avoiding the consumption of 

excessive time and resources in generating and processing much more data than necessary. Sampling 

is therefore expected to remain a cornerstone in the process. Random sampling is, in theory, a very 

useful tool to avoid biasing the estimates (Wulfsohn, 2010). However, humans are poor at selecting 

individuals ‘at random’ and farmers do not have the confidence to sufficiently cover the orchard area, 

probably leaving gaps without taking data and then producing less precise estimates (Uribeetxebarria, 

et al., 2019a). To gain precision in the estimates (i.e., make lower errors), systematic sampling (or grid 

sampling) allows this problem to be overcome as the orchard area is more evenly covered (Webster 

and Lark, 2012). An interesting variant of systematic sampling is the so-called multilevel systematic 

sampling. As different studies have shown (Wulfsohn et al., 2012), systematic sampling first between 
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trees and then on branches and shoots within the selected trees achieves improved precision using this 

multistage process compared to a simple random selection of trees. Fig. 7.1 tries to show the procedure 

of this type of nested and systematic sampling within a fruit tree. 

 

(a) (b) (c) 

Fig. 7.1 - A two-stage sampling design applied to a tree: (a) Stage 1. Primary branches are selected serving as 
primary sampling units (all fruits contained in branches 2, 4, 6, 8 and 10 are included in the sample after this first 
stage). Sampling period is set at m1=2 (that is, using a sampling fraction 1⁄m1 =1⁄2), starting randomly the systematic 
selection at branch number 2. (b) Stage 2. Lateral branches (or branch segments) within primary branches are 
selected using also a sampling period m2=2, but starting with sampling unit number 1. The final sample (filled circles) 
contains all fruit on branch segments 1, 3, 5, 7, 9, 11, 13, 15, 17 and 19 within the sampled branches. An unbiased 
estimate of the total number of fruit on the tree is obtained by multiplying the combined sampling period m=m1×m2 
and fruits counted in the sample (adapted from Wulfsohn et al., 2012). (c) Half tree count instead of whole tree count 
when double the number of trees are sampled in random or stratified sampling processes (regulations in Spain; BOE, 
2005). 

More recently, stratified sampling has begun to be used on some farms (Miranda et al., 2019). 

Stratifying the sample normally consists of distributing the trees or sampling points in such a way that 

the different areas (strata) within the orchard with different expected yields are sampled. Ranked set 

sampling has also been proposed for this purpose. Uribeetxebarria et al. (2019b) obtained good results 

using this method in estimating peach fruit load using sample sizes of only 5 trees per plot. In the 

dilemma of which method to use, the so-called coefficient of error (CE) and its probability (confidence 

level) are two widely accepted statistics to aid decision making. Sampling methods certainly have 

limitations. For instance, reliable auxiliary information is necessary in stratified sampling, or the 

setting of appropriate sampling periods at each stage in the multilevel systematic sampling. However, 

it is expected that, by eliminating the manual counting of fruits, detection systems will contribute to 

more efficient samplings by both making it possible to sample a greater number of trees and reducing 

the human error that usually occurs in manual counting (Anderson et al., 2019). 
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Finally, obtaining predictive models of yield (combining fruit counting, size distribution and weight) 

for other fruit varieties beyond apples is another need for the sector. In short, intelligently merging 

fruit detection and sampling is the challenge we face in the coming years.  

7.5 References 

Aggelopoulou, K.D., Wulfsohn, D., Fountas, S., Gemtos, T.A., Nanos, G.D., Blackmore, S., 2010. 

Spatial variation in yield and quality in a small apple orchard. Precis. Agric. 11(5), 538–556. 

https://doi.org/10.1007/s11119-009-9146-9 

Anderson, N.T., Underwood, J.P., Rahman, M.M., Robson, A., Walsh, K.B., 2019. Estimation of fruit 

load in mango orchards: tree sampling considerations and use of machine vision and satellite 

imagery. Precis. Agric. 20(4), 823–839. https://doi.org/10.1007/s11119-018-9614-1 

BOE, 2005. Spanish Ministerial Order PRE/1950/2005. 

https://www.boe.es/eli/es/o/2005/06/17/pre1950/con> Accesed 7.7.21. 

Faraway, J.J., 2016. Linear Models with R. Chapman and Hall/CRC, New York, NY. 

https://doi.org/10.1201/b17144 

Gené-Mola, J., Ferrer-Ferrer, M., Gregorio, E., Blok, P.M., Hemming, J., Morros, J.-R., Rosell-Polo, 

J.R., Vilaplana, V., Ruiz-Hidalgo, J., 2023. Looking behind occlusions: a study on amodal 

segmentation for robust on-tree apple fruit size estimation. Comput. Electron. Agric. 209, 

107854 https://doi.org/10.1016/j.compag.2023.107854. 

Gongal, A., Amatya, S., Karkee, M., Zhang, Q., Lewis, K., 2015. Sensors and systems for fruit 

detection and localization: A review. Comput. Electron. Agric. 116, 8–19. 

https://doi.org/10.1016/j.compag.2015.05.021 

Gregorio, E., Llorens, J., 2021. Sensing crop geometry and structure. In: Kerry, R., Escolà, A. (Eds.), 

Sensing Approaches for Precision Agriculture. Springer, Cham, pp. 59–92. 

https://doi.org/10.1007/978-3-030-78431-7_3.  

Miranda, C., Santesteban, L.G., Urrestarazu, J., Loidi, M., Royo, J.B., 2018. Sampling stratification 

using aerial imagery to estimate fruit load in peach tree orchards. Agriculture 8(6). 



 

 
155 

 

https://doi.org/10.3390/agriculture8060078 

Neupane, C., Koirala, A., Walsh, K.B., 2022. In-Orchard sizing of mango fruit: 1. comparison of 

machine vision based methods for on-the-go estimation. Horticulturae 8, 1223. 

https://doi.org/10.3390/horticulturae8121223. 

Plá, F., Juste, F., Ferri, F., & Vicens, M., 1993. Colour segmentation based on a light reflection model 

to locate citrus fruits for robotic harvesting. Comput. Electron. Agric. 9(1), 53–70. 

https://doi.org/10.1016/0168-1699(93)90029-Z 

Uribeetxebarria, A., Martínez-Casasnovas, J.A., Escolà, A., Rosell-Polo, J.R., Arnó, J., 2019a. 

Stratified sampling in fruit orchards using cluster-based ancillary information maps: a 

comparative analysis to improve yield and quality estimates. Precision Agriculture 20(2), 179–

192. https://doi.org/10.1007/s11119-018-9619-9 

Uribeetxebarria, A., Martínez-Casasnovas, J.A., Tisseyre, B., Guillaume, S., Escolà, A., Rosell-Polo, 

J.R., Arnó, J., 2019b. Assessing ranked set sampling and ancillary data to improve fruit load 

estimates in peach orchards. Comput. Electron. Agric. 164, 104931. 

https://doi.org/10.1016/j.compag.2019.104931 

Webster, R., Lark, R.M., 2012. Field sampling for environmental science and management. In Field 

Sampling for Environmental Science and Management (1st ed.). Routledge. 

https://doi.org/10.4324/9780203128640 

Wulfsohn, D., Aravena Zamora, F., Potin Téllez, C., Zamora Lagos, I., García-Fiñana, M., 2012. 

Multilevel systematic sampling to estimate total fruit number for yield forecasts. Precis. Agric. 

13(2), 256–275. https://doi.org/10.1007/s11119-011-9245-2 

Wulfsohn D., 2010. Sampling Techniques for Plants and Soil. Landbauforschung Völkenrode, Special 

Issue 340, 3–30. 

  

https://doi.org/10.3390/horticulturae8121223


  
 

  
156 
 

 

 



  
  

 

Chapter 8: Conclusions 
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The main conclusions of the Doctoral Thesis are the following: 

I. Concerning methods and challenges posed by fruit sizing using AI 

I.1 Achieving reliable fruit sizing using RGB-D cameras and deep learning algorithms is an emerging 

issue in fruit research, and a challenge to face to consolidate modern, completely digital fruit growing. 

In the coming years, new advances in depth cameras, increasingly optimized algorithms, development 

of process-appropriate software, and greater availability of varied, extensive and higher quality 

training datasets are expected. Achieving fully operational commercial solutions will largely depend 

on success in these intermediate steps. 

I.2 Facilitating fruit sizing to farmers and technical advisors through digital tools such as depth 

cameras is a strategic point for the fruit sector. The use of conventional manual fruit load estimation 

methods should be replaced by others that are less expensive and more reliable. The challenge is not 

easy and, furthermore, the end user is demanding. So efforts should be directed towards the use of 

sensors and AI tools that are easy to use, reliable, and with the possibility of fusing data from various 

sources of information. RGB-D camera like the Azure Kinect is the option that has been chosen given 

its good a priori specifications. 

 

II. Concerning software for acquiring and processing data supplied by the Azure Kinect camera 

II.1 AKFruitData is the open-source software that has been developed for the primary use of Azure 

Kinect cameras in orchard environments. The software includes two independent modules, 

AK_ACQS for data acquisition, and AK_FRAEX to allow images to be extracted from videos 

recorded with the camera for further analysis. 

II.2 Using Python programming, the operation of AKFruitData has been satisfactorily tested including, 

i) simultaneous synchronized acquisition from several different cameras and sensors, ii) possibility of 

georeferencing data to obtain mappable spatial information, and iii) final output of RGB, depth, IR 

and point cloud data. 
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III. Concerning software for fruit detection and operation of sizing algorithms and yield prediction 

models using the Azure Kinect camera 

III.1 AKFruitYield is the open-source software that, also designed in a modular way, allows the user 

to analyze images and videos recorded with the Azure Kinect camera and provided by the 

AKFruitData software. The AK_SW_BENCHMARKER tool makes it possible to apply and evaluate 

performances of different sizing algorithms and allometric yield prediction models on color and depth 

tree images containing previously detected and manually labeled apples. The second tool 

AK_VIDEO_ANALYSER makes it possible to perform sequential analysis of videos recorded at plot 

scale including automatic apple detection, size estimation and final apple yield prediction. 

III.2 Like AKFruitData software, AKFruitYield has been designed under user-friendly criteria, having 

developed easy-to-use graphical interfaces aimed at both fruit growers and fruit consultants as well as 

end users working in research. 

 

IV. Concerning benchmarking of sizing algorithms and allometric models for apple yield prediction 

IV.1 The sizing algorithms to apply in non-occluded apples are varied. With a prediction error below 

5% (MAPE), fitting rotated rectangles to the shape of apples is a good method to recommend. 

IV.2 However, in non-occluded apples and due to a compensatory effect between sizing and allometry 

algorithms, weight prediction is more satisfactory adjusting circles, ellipses or even bounding boxes 

to the detected apples. The linear allometric model that uses the two axes of the apples as predictors 

does not exceed 5.1% error. 

 

V. Final thoughts 

V.1 Time-of-flight RGB-D cameras (like the Azure Kinect) offer a good option for sizing apples using 

computer vision algorithms for subsequent weight predictions made with appropriate allometric 

models. What's more, these are relatively inexpensive devices that perform well in agricultural 

environments under variable lighting conditions throughout the day. 
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V.2 Future works are planned to expand the current functionalities of AKFruitData and AKFruitYield, 

with the aim of consolidating the use of RGB-D cameras in fruit growing. Adjusting the performance 

of RGB-D cameras and processing software to new demands from the productive sector is therefore 

seen as key to extending digital yield prediction in fruit orchards. 

V.3 The promising results of this thesis open up the possibility of using RGB-D cameras for real-time 

fruit orchard characterization in the short term. Efforts must now be directed at making available to 

the sector affordable tools with proven usefulness in improving decision-making and fruit 

management. 
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This thesis focuses on the detection (counting) of fruits and 
estimation of their size and weight in apple orchards through the 
application of computer vision techniques. This work seeks to 
provide fruit growers with advanced tools and methodologies to help 
them make accurate harvest yield predictions. Counting 
(quantifying) and locating fruits represent previous steps to achieve 
these predictions. By knowing this information, fruit growers can 
schedule in advance the required resources for harvest and post-
harvest (labor, transportation, storage), design sales strategies and, 
ultimately, optimize the profitability of their farms. 
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