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Abstract

Cancer is a heterogeneous disease, in which many cell types interact with cancer cells,
forming a complex network. The crosstalk between the cancer cells and the immune
microenvironment is determinant in tumor growth and dissemination. The study of
tumor immunity has improved during the last years thank to the emergence of omics
technologies and immunogenomics approaches. On the other side, tumor
microenvironment varies significantly depending on tumor type, molecular subgroups
and stage of the disease, among others. Understanding the singularities of the tumor
microenvironment in these different contextures will help to improve patients’
management towards a personalized selection of immune treatments. In this thesis,
we have exploited omics data by bioinformatic means for deciphering the molecular
mechanisms underlying tumor progression and metastasis, as well as for the
identification of new immune biomarkers for patients’ stratification that correlates
with clinical outcomes. This thesis provides threeThree comprehensive
immunogenomics studies covering the crosstalk between tumor-immune system and
its association with clinical outcomesare presented. First, we studied the role of the
immune microenvironment in uveal melanoma primary tumors. We performed a
meta-analysis that associates immune infiltration with poor prognosis, and we proved
the additive role of immune activation and angiogenesis in uveal melanoma
progression. Second, we gave new insights in the immunogenic potential of driver
mutations in GNAQ and GNAjj genes in uveal melanoma patients, and proposed a
candidate target for neoantigen vaccine therapy in uveal melanoma patients. Third,
we performed a pan-cancer immune characterization of metastatic samples, and
demonstrated that metastatic samples in the same location share immune phenotypes
regardless of their primary tumor origin. A novel clustering found a subset of
metastases that could be susceptible to respond to immunotherapy, and identified
CDmr expression as a candidate biomarker of high immunogenic metastases. This
thesis provides three comprehensive immunogenomics studies covering the crosstalk
between tumor-immune system and its association with clinical outcomes. The work
presented here can pave the way for future immunogenomics studies towards

precision oncology in solid tumors.
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Resumen

El cdncer es una enfermedad heterogénea, en la que distintos tipos celulares
interaccionan con las células tumorales formando una compleja red de comunicacion.
Esta comunicacion entre el microambiente y las células cancerigenas juega un papel
determinante en el crecimiento tumoral. El estudio de la inmunidad tumoral ha
mejorado en los dltimos afos, gracias a los avances en las tecnologias 6micas y los
métodos de inmunogendmica. Por otro lado, el microambiente tumoral puede variar
significativamente en distintos contextos, dependiendo del tipo tumoral, estadio y
subgrupo molecular, entre otros. Una correcta comprension de estas singularidades es
clave para mejorar el manejo de los pacientes, asi como para el avance hacia
inmunoterapias mas dirigidas y efectivas. En esta tesis, se han usado distintas
herramientas bioinformaticas con el objetivo de descifrar los mecanismos moleculares
asociados con la progresion metastasica, y de identificar nuevos biomarcadores
inmunes que correlacionan con respuesta clinica. Esta tesis contribuye al avance hacia
la oncologia de precision en dos contextos tumorales. En primer lugar, se ha estudiado
el papel del microambiente tumoral en melanoma uveal primario. Mediante un
estudio de meta-analisis, se ha descrito que la infiltracion de células inmunes esta
asociada con un peor prondstico, confirmando el papel divergente del sistema inmune
en esta enfermedad. Asimismo, se ha encontrado que mutaciones recurrentes en los
genes GNAQ y GNAjj pueden generar inmunogenicidad y podrian ser posibles
candidatos para terapias personalizadas en pacientes con melanoma uveal. En
segundo lugar, hemos realizado un estudio pan-cancer en muestras metastdticas que
demuestra que las metastasis en pulmdn tienen un perfil inmune caracteristico
independientemente del tumor primario. Se ha identificado un subgrupo de
metdstasis con alta activacion inmune que podrian responder a inmunoterapia, y se
ha identificado la expresion del gen CDmr como candidato a biomarcador de este
subgrupo. Los resultados presentados pueden servir como punto de partida para
futuros estudios en inmunogenomica hacia la personalizacion de la inmunoterapia en

tumores solidos.



O¥ATNIN VIOUVYD VHANYS :1od jusurreytbip 1eubs juswnooq



O¥ITNIN VIOUVD VIANYVS :1od jusureybip 1eubs juswmooq



INTRODUCTION

L.

OYHTNI VIOUVD VIANVS :1od juswrenbip jeubis jusuwnoo(q



Document signat digitalment per: SANDRA GARCIA MULERO

Immunobiology of cancer

1. Immunobiology of cancer

Carcinogenesis is a complex process in which numerous molecular and cellular
elements are involved (j). The hallmarks of cancer comprise the essential
characteristics of a tumor. Hanahan et al. first defined six capabilities that gives cells
the ability to become malignant. Later on, they were broadening to eight and finally
to a total of jV that were published in VXVV (Figure H) (V). According to the increasing
knowledge about the importance of immune system in cancer disease, two new
hallmarks are related to tumor immunity of the tumor: avoiding immune destruction

and tumor-promoting inflammation.
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Figure (. The hallmarks of cancer. Hanahan D, Weinberg RA. Cell, :;:.

Indeed, the role of the immune system in carcinogenesis was largely demonstrated
during the past century, when its primary function of recognizing and eradicating
malignant cells was described (p). However, it has been over the last decades when an
explosion of knowledge about tumor immunology has emerged, with focus in the
study of the immune contexture and the translation into immunotherapies. Recent
discoveries in cancer immunology have re-defined the basis of tumor growth, and have
provided new insights about the interactions between malignant cells and the immune

system (r).
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1.1. The tumor microenvironment: a complex
network

The tumor microenvironment (TME) is a heterogeneous network comprised by
multiple molecules and cell-types that surround and infiltrate the tumor (Figure R)
(q)- The TME is composed by three principal components, including cells (stromal and

immune cell-types), soluble factors and extracellular matrix.

Soluble factors comprise cytokines, chemokines, interleukins and growth factors.
These factors can be expressed either by the cancer cells or stromal cells within the
microenvironment, and can have pro-tumoral or anti-tumoral effects. Main soluble
factors are cytokines and chemokines, which are secreted proteins that control
immune cells trafficking and determine the nature of the immune responses (n). On
the other side, the extracellular matrix is a dense matrix containing different fibrous
proteins (collagen, elastin and laminin), with the principal functions of structural
scaffold for cells. During carcinogenesis, the components of the ECM are altered and

can play a role promoting tumor growth (n).
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Figure 5. The tumor microenvironment. TME is a complex mass formed by
different components including cancer cells, immune and stromal cell-types.
Original figure by BioRender.
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1.1.1. Immune components of the TME

The immune system is the network of biological processes that protect all organisms
from disease by distinguishing the “non-self” from the host own tissue. It has pivotal
functions for maintenance of the body’s homeostatic conditions (m). The immune
system is a highly plastic and dynamic system, with a wide variety of cell subtypes and
different maturation states. The immune response can be divided into two main levels:

the innate immune response and the adaptive immune response.

The innate immune response, which is the first line of defense of our body against
external pathogens, recognizes conserved molecular patterns in a non-specific and
antigen independent manner. The innate immune cell-types (originated from myeloid
precursors) includes macrophages, mast cells, granulocytes (neutrophils, eosinophils
and basophils), dendritic cells (DCs), natural killers (NK) and myeloid-derived
suppressor cells (MDSCs). The innate immunity uses pattern-recognition receptors
(PRRs) to detect foreign pathogen from damaged tissues that trigger non-specific
killing of infected cells (W).

The adaptive immune response is the second defense line, it is an adaptation to
infection that provides specific response in an antigen-specific and cell-mediated
manner, generating immunological memory and long-lasting protection. Immune
cells that constitute the adaptive immune system (originated from the lymphoid
lineage) comprises T and B lymphocytes, and their subtypes. Adaptive immunity needs
from the activation by antigen presenting cells (APCs) and the recognition of antigens

by specific cell receptors to take place (k).

All immune cell-types can be found within the TME, although the distribution and
abundance can vary between different tumor types and between primary and
metastatic locations (jX). Usually, they are located either in the core of the tumor, in
the invasive margin, or in tertiary lymphoid structures (TLS). The most abundant
immune cell-types within the TME are T cells and B cells, representing up to two thirds
of the total of the immune infiltrating cells, followed by NK cells which are the third
most abundant cell type (jj).

The characteristics and function of the main immune cell-types will be described
through this section, with the focus on their role in cancer development (Table H).

Nevertheless, immune cell-types are highly heterogeneous, and different pro- and
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anti- tumoral effects have been recently described for the same cell-types depending

on the contexture.

Table (. Summary of immune innate and adaptive cell subtypes in the TME and their
anti- or pro-tumorigenic functions. Adapted from Quail DF & Joyce JA, Nat Med, :;l; and
Hinshaw DC et al., Cancer Res, 2019.

Cytokine/chemokine Gene

Cell type Function secretion markers Effect
T cells
CD8+ Detection of abnormal antigens, IFN-y, TNF-a Anti-
cytotoxic T killing of cells ’ granz’ymes p,erforin CDs, CD8 tumorigenic
cells (CTLs) ’
CD4+ Th1 Support CD8+ cells IL-2, IFN-y, TNF-a CD3, CD4 At S
tumorigenic
CD4+ Th? Recruitment of eosinophils, mast IL-4, IL-5, IL-6, IL-10, CD3, CD4 r o
cells, DCs, etc IL-13 tumorigenic
T regulatory ~ Control autoimmunity, secretion IL-6, IL-10, CCL28, CD4, CD25, Pro-
cells (Tregs) of cancer growth factors TGF-B FOXP3 tumorigenic
B cells
. Depends
B cells Aol ECec e IFN-y CD19,CD20  on tumor
cytokines
type
Promote immunosuppressive ~
B regulatory phenotypes of macrophages, IL-10, TGF-B CD19, CD20 Pro N
cells (Bregs) . tumorigenic
neutrophils and T cells
NK cells
NKA Killing tumor cells, produce IFN-y, TNF-a, CCL5, NKp46,CD16, Anti-
inflammatory cytokines IL-6, GM-CSF CD56 tumorigenic
; Pro-
NK2 Anergic phenotype IL-5, IL-13 NKp46, CD16 tumorigenic
Dendritic
cells
. Recognize, capture and present .
Conventional : IL-6, IL-12, IL-23, Anti-
DCs (cDCs) igltllsgens to CD4+ and CD8+ T TNF-a;, IFN-y CD11c, CD103 tumorigenic
Plasmacytoid Secretion of type 1 IFN, respond Type 1 IFN, TNF, Depends
DCs (pDCs)  to viral infection IL-6 CD11e on tumor
type
Macrophages
M1 Activate Th1 responses, IL-1, IL-6, IL-12, IFN-y, CD80, CD86, Anti-
phagocytosis, and AP TNF-a IDO1, CXCL10 tumorigenic
Immunosuppressive phenotype,
inhibit CTLS, promote “_'10, “_'18, CCL17, CD163. VEGF Pro-
M2 angiogenesis and ECM CCL22, TGF-B, VEGF ’ tumorigenic
remodeling
Neutrophils
. TNF-q, I- Depends
Phagocytosis, release of ROS  TNF-q, IL-1, IFNs, ’
Early stages and NETs MMP-8, ROS CAM1, FAS, on tumor
ROS type
Late stages ECM remodeling, and promote  IL-4, MMP-9, CXCL1, Arginase, Pro-
9 local invasion and angiogenesis CXCL8, CCL3, TGF- CCL2,CCL5 tumorigenic
Promotes angiogenesis, IL-10, IL-18, VEGF, Pro-
MDSCs suppression of CTLs and NK CD11b L
IDO1 tumorigenic

cells activation
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Tumor infiltrating lymphocytes (TILs)

Tumor infiltrating lymphocytes (TILs) refers to the T cells that infiltrate into the
tumor, and are associated with better outcome in many cancer types (jV). There are
two main subtypes of T lymphocytes: CDW+ T cells, also called cytotoxic lymphocytes
(CTLs) and CDN+ T helper cells. All T lymphocytes express CDp and T-cell receptors
(TCRs) that recognize specific antigens. They are mainly differentiated by carrying
CDW or CDr surface protein, respectively. Specifically, CDW+ T cells detect the antigens
that are presented by major histocompatibility complex class I (MHC class I), whereas

CDr+ T cells detect antigens presented by MHC class II (jp).

CTLs are the primary effectors of anti-tumor immunity, and their principal function is
the recognition and killing of tumor cells. CTLs are activated following recognition of
tumor antigens presented on tumor cell surface by MHC class 1. Once CTLs are
activated, they kill target cells by the secretion of granzyme, perforin, and through the
FasL-mediated apoptosis induction. They can also secrete some cytokines, such as

IFN-y and TNF-q, that are inducers of cytotoxicity in cancer cells (q).

CDr+ T cells are mainly composed by Thj, ThV, and T regulatory cells (Tregs). The
principal function of CDr+ T helper cells is the activation of other immune cells
through different mechanisms. Thj secrete stimulatory cytokines like IL-V, IFN-y and
CDrX ligand that activates CTLs, NKs and macrophages. ThV produce IL-r, IL-q and
IL-jp that favors humoral immunity by B cells. Tregs function in normal conditions is
to control excessive immune responses. In cancer, their principal role is to suppress
cytotoxic T «cells, B cells and dendritic cells through the expression of

immunosuppressive and pro-inflammatory cytokines (jr).

Natural killers (NKs)

NK cells belong to the innate immune system, although they have a similar role to
CTLs. High infiltration of NK cells is associated with improved prognosis in several
cancer types. NK cells can effectively kill cancer cells through the release of perforin
and granzymes, and induction of apoptosis through the FasL. mechanism. NK cells can
also produce pro-inflammatory cytokines such as IFN-y, TNF, IL-n, GM-CSF and CCLq,

that extend anti-tumor activity (jq).
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NKs activation is independent of antigen recognition and is modulated by the
repertoire of activating receptors (NKGVD, NCRj) and inhibitory receptors “killer
immunoglobulin-like receptor” (KIRs). KIRs are receptors of HLA class I, and are the
main repressors of activation against self-tissues. Under normal conditions, healthy
cells express high levels of HLA class I, that ligates the KIR receptor, in order to evade
NK cell attack. NK cells in the TME are activated through the activating receptors that
bind to tumor cells under stress conditions. Through the activation of these receptors,

NK cells have the ability to detect and attack cells with loss of HLA class I expression

(jn).

B cells

B cells have an anti-tumoral function by antibody production and secretion of
cytokines that promote cytotoxicity. They can also prompt T cell activation by antigen
presentation. B cells are usually located at the margins of the tumor and can also be
found in the tertiary lymphoid structures (TLSs). These are micro-lymphoid organs
formed within the TME, composed predominantly by B cells and dendritic cells, that
later become germinal center areas. TLS are associated with increased cytotoxicity and
improved prognosis in many solid tumors (jm). A subtype of B cell, Bregs, are pro-
tumor cells that express immunosuppressive cytokines like IL-jX and TGF-f, and

promote the infiltration of pro-tumoral immune cells (jp).

Dendritic cells (DCs)

DCs are myeloid-derived cell-types that play a central role as APCs through the process
of antigen capture and presentation to T cells at secondary lymph nodes. DCs are the
bridge between the innate and the adaptive immunity. Once they are mature, DCs can
infiltrate into the TME and activate the recruitment of immune effector cells. DCs can
directly interact with B cells, T cells and NK cells for cross-activation. On the other
side, DCs can be modulated by the cancer cells to a tolerogenic phenotype that rest

non functional (jp).

Dendritic cells are a highly heterogeneous population composed by two main
populations: conventional DCs (cDCs) and plasmacytoid DCs (pDCs), with further
diversity and distinct subtypes. cDCs are subdivided in ¢DCj and ¢DCV; ¢DCj are

considered the cross-presenting DCs, with key function in mediating T cell
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inflammation and secretion of cytotoxic cytokines. The roles of the other DCs are less
stablished, but cDCV are known to play a critical factor as enhancers of CDr+ T cell

response, while pDCs are mainly producers of type-I-IFNs (jX).

Macrophages

Macrophages are monocyte-derived cells and can be categorized as Mj or MV. Mj
macrophages have an essential role of phagocytosis and killing cancer cells, also in
production of pro-inflammatory cytokines and ROS species. Conversely, MV
macrophages are immunosuppressive cell-types that promote tumor growth and
participate in wound healing. They can promote angiogenesis and extracellular
remodeling by expression of TGF-B and other secreted factors. Cancer cells can

promote MV phenotype through the expression of cytokines like IL-r (jW).

Neutrophils

Neutrophils are granulocytes that in normal conditions become the first line of defense
against infections. They are very abundant in the circulation, accounting for up to mX%
of leukocytes in humans. The main mechanism of defense by neutrophils is
degranulation, phagocytosis and release of extracellular traps. Primarily during tumor
evolution, neutrophils act as anti-tumorigenic element, by secreting inflammatory
cytokines and ROS. Later on, they shift to NV phenotype with pro-tumorigenic

functions, such as the ECM modification and stimulation of angiogenesis (jk).

Myeloid-derived suppressor cells (MDSCs)

MDSCs consist of granulocytic and monocytic myeloid derived cells, morphologically
similar to NV neutrophils and macrophages. MV macrophages are the major source of
MDSCs. These cells have been strongly associated to a pro-tumorigenic
microenvironment and bad prognosis. Their main functions are promotion of

angiogenesis, induction of cell migration and inhibition of T cell function (VX).
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1.1.2. Stromal components of the TME

Stromal cells are endogenous cells from the tissue stroma that cancer cells recruit to
support their growth and propagation through secretion of growth factors and
cytokines. Stromal cells composition can vary significantly between different tumor
types, although main components include vascular endothelial cells and fibroblasts
(Vj). Astrocytes, pericytes and adipocytes can also participate in the TME with key
functions in some tumor types, although they are not in the scope of this thesis and

will not be described.

Table R. Stromal cells in the TME.

Cytokine/ Gene
Cell type Function chemokine Effect
. markers
secretion
Endothelial Formation of new blood vessels, CD31, D34, Pro-

L VEGF S
cells promote cancer cells migration VEGF tumorigenic
Cance.r- Stimulates migration and Cytokines, PDGF,
associated . ion. ECM deli th fact EAP Pro-
fibroblasts '"vasion, remodeling, ~ growth factors, , tumorigenic
(CAFs) promotes EMT and angiogenesis TGF-8 FGFR, VDR

Vascular endothelial cells

The vascular endothelium is the inner layer that surrounds blood vessels (veins,
arteries, capillaries and lymphatic vessels), formed by a single layer of endothelial cells.
Endothelial cells have a pro-tumoral effect through the formation of new blood vessels
and promotion of cancer cells migration (Vj). The process of generation of new vessels
in the TME is called angiogenesis, and it is modulated by tumor cells to bring in
nutrients, oxygen and other metabolites into the tumor. Angiogenesis is mostly
regulated by vascular endothelial growth factor (VEGF), which is upregulated under
hypoxia conditions as well as by oncogenic signaling (like Ras and Myc pathways) (VV).

Cancer-associated fibroblasts (CAFs)

CAFs are activated fibroblasts that account for the principal component of the tumor
stroma and play a critical role in tumorigenesis. They can have different origin, like

tissue resident fibroblasts, or other cell-types like endothelial cells, adipocytes,

k
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pericytes, stellate cells, and mesenchymal stem cells. Under injury, fibroblasts activate
to myofibroblasts, which participate in wound healing, produce growth factors and

trigger proliferation and extracellular matrix formation (Vp).

In the tumor microenvironment, cancer cells secrete factors that convert
myofibroblasts into CAFs, which are a heterogeneous population of pro-tumorigenic
cell-types. They dampen anti-tumor immune response through the expression of pro-
inflammatory factors. CAFs also contributes to tumor growth by the expression of
TGF-t, that drives epithelial mesenchymal transition (EMT) (Vr). EMT consists in the
process where epithelial cells lose their cell-cell adhesions and are able to migrate and

invade new stroma.

1.1.3. The dual role of the TME: a context-dependent
function

The different elements comprising the TME are constantly evolving, establishing a
dynamic crosstalk between tumor cells and its surrounding stroma. The TME has a
dual role in tumor progression and metastasis: it can act as a friend or foe for tumor
development (Figure U). In one way, the TME can modulate cancer cells to restrain
tumor proliferation (Vq,Vn). Oppositely, cancer cells are able re-educate its TME as a

means to convert it towards a favorable niche for tumor proliferation (Vm).

Overall, several evidences are giving new insights to the importance of immune
components of the TME in tumor growth, dissemination and therapeutic resistance
(VW,Vk). Cancer cells can hijack the immune system to facilitate tumor growth and
progression. There is also a high contribution of stromal and vascular factors in the
modulation of the TME. Specifically, angiogenic components plays an important role

in tumorigenesis, directly contributing to immune evasion and tumor growth (pX).
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Figure @. TME dichotomous function in the primary tumor niche. High number of CDO+
T cells, CDQ+ ThL and NK cells characterize the anti-tumorigenic niche. Besides, macrophages
ML and fibroblasts can also contribute to cancer cells destruction. Oppositely, a pro-
tumorigenic niche is characterized by high presence of M: polarized macrophages, MDSCs
and Tregs recruited from the circulation into the TME in response to chemokines secreted by
cancer cells. These immunosuppressive cell-types suppress the activity of anti-tumoral cell-
types like CTLs, NKs, DCs and B cells. In this context, TAMs and CAFS can trigger tumor
growth by secretion of extracellular cytokines, growth factors (e.g., EGF, cathepsins), ECM
remodeling factors, and induction of angiogenesis. Quail DF & Joyce JA, Nat Med, : ;LM
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1.2, Tumor immunity and immune evasion

The immunogenicity of a tumor is defined as the ability of the tumors to generate an
immune response (pj). Two main interactions are required for effective immune
response, both involving the antigen presentation process: (i) cancer neoantigens are
presented to naive T cells by activated APCs at the draining lymph nodes to prime
tumor-reactive T cells, and (ii) neoantigens are presented by cancer cells and

recognized by CDW+ T cells that triggers tumor destruction.

A high immunogenicity has been linked with good prognosis in numerous tumor
types, being an essential feature for recognition and attack by the immune system. The
immune surveillance mechanism selects low immunogenic clones, allowing cancer to
evade the immune system and proliferate, in an evolutionary process called
immunoediting (pV). Furthermore, cancer cells can escape the immune system by

triggering different immune evasion mechanisms (pp).
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1.2.1. The cancer-immunity cycle

The cancer-immunity cycle, defined by Chen & Mellman in VXjp (pr), represents the
cyclic process that is required to generate an effective anti-tumor response. It is a
simplified overview of the antitumor immunity, and divides the immune response in

seven steps, from the release of antigens to the destruction of cancer cells (Figure N).

Trafficking of
T cells to tumors
{ 4‘ (CTLs)

Priming and activation
(APCs & T cells) 5 )

\ Infiltration of T cells
into tumors
(CTLs. endaothelial cells)

lymph node

Cancer antigen =
presentation &/
(dendritic cells/ APCs) (B
2/ Recognition of
cancer cells by T cells
(CTLs, cancer celis)

M :
Release of "~ Iy
cancer cell anligens Killing of cancer cells
(cancer cell death) (Immune and cancer cells)

Figure A. The cancer-immunity cycle. (L) Neoantigens are generated by cancer cells, which
are detected and processed by dendritic cells (DCs), that migrate to secondary lymph nodes
and evolve to antigen presenting cells (APCs). (:) APCs present the neoantigens on MHC class
Iand Il to T cell, (M) which triggers T cell priming and activation of effector T cells at the lymph
nodes. (Q) Effector T cells traffic then to the blood vessels and (]) infiltrate into the tumor. (")
TCRs recognize specific neoantigens bound to MHC class I and (_), finally killing the cancer
cells. Chen DS & Mellman [, Immunity, :;IM

Different co-stimulatory signals are required for proper function of the cancer-
immunity cycle. Interaction of CDVW, which is expressed on T cells, with its ligands
CDWX (Bm-j) and CDWn (Bm-V) on APCs is the main co-stimulatory signal. CDVW
activation triggers pathways that upregulate the expression of IL-V, that in turn
upregulates the expression of cytokines like type-I-IFN, amplifies glucose intake and
promote T cell survival and T cell response to stimulation. On the other hand, tumors
express negative feedback regulatory mechanisms, also called co-inhibitory signals,
aimed to evade the immune system. The principal co-inhibitory signals of T cell

priming and activation are immune checkpoints CTLA-r and PD-Ljj, respectively (pq).

p
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1.2.2, Neoantigen presentation and T cell activation

Somatic mutations accumulate during tumorigenesis, mostly as a consequence of
defects in the DNA replication and repair machinery, due to endogenous or exogenous
mutagens. Tumor-specific antigens (TSAs) arise from somatic mutations, and consist
in aberrant amino acid sequences patient-specific and not present in normal cells.
TSAs arise from genomic alterations, including single nucleotide variants (SNV),
insertions and deletions (INDELs), gene fusions, aberrant splicing events and
integration of oncogenic viruses, among others. Point mutations result in single amino
acid changes in the protein, whereas INDELSs and other alterations produce frameshift

peptides that can generate even greater antigenicity (pn).

The emergence of NGS technologies, along with the advances in bioinformatics
algorithms, have allowed scientists to explore the mutational landscape of large omics
datasets. In VXjp, Alexandrov et al. analyzed a total of mXrV cancer genomes and
described the number of somatic mutations by tumor type (Figure P) (pm). Tumor

mutational burden (TMB) is defined as the number of mutations per mega base.
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Figure B. Representation of median number of mutations across cancer types from the
TCGA. Red lines represent the median mutations/mb per tumor type. This study
revealed the high genetic heterogeneity between the different tumor tissues, as well as within
tumor types. ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; CLL, chronic
lymphocytic leukemia. Alexandrov LB et al., Nature, :;ll.

Tumors carrying >jX mutations/mb are usually categorized as ‘hypermutated’.
Hypermutant tumors are usually those that are mostly caused by environmental

factors, such as skin melanoma, caused by UV light, and lung cancers, caused by
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carcinogens in tobacco (pW). In addition, a subset of colorectal, stomach and uterus
cancer samples show extremely high TMB. These patients are catalogued as MSI and
POLE tumors, both characterized by a high number of mutations, due to DNA

mismatch repair deficiency and mutations in the polymerase ¢, respectively (pm).

Tumor neoantigens result from the processing of these genetic alterations through the
antigen processing and presentation machinery (Figure V), that present these
small neoantigens on cancer cell surface and are recognized as foreign by specific
CDW+ T cells, triggering the killing of the tumor cell (pk). MHC class I molecules bind
to small peptides of W-jp amino-acids length, which are presented in the peptide-
binding groove, delimited at both ends by the flanking regions. On the other side,
MHC class II molecules can also present peptides that are recognized by CDr+ T cells,
although they can present peptides up to pX amino-acids long, due to the
conformation of the MHC-II, which is open at both ends allowing binding to extent

out of the groove (rX).
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Figure H. Neoantigen processing and presentation. Somatic mutations are transcribed into
mutant mRNA and translated into proteins which carry the mutated amino acid. By
proteasome degradation, these proteins are degraded into O-LM amino-acids length mutated
peptides, transported into the endoplasmic reticulum (ER) through the transporter associated
with antigen processing (TAP). Peptides are loaded on MHC class I molecules and B:-M
complex. MHC-peptide complex is transported to the cell surface and presents the neoantigen.
CDO+ T cells recognize the MHC-peptide complex via specific TCR, triggering the activation
of T cells against specific cancer cell. Taylor BC & Balko JM, Front Immunol, :;::
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Major histocompatibility complex (MHC) molecules are cell-surface presenters of
antigens to T cells, and allow T cells to differentiate healthy cells from infected or
tumoral cells. Human leukocyte antigen (HLA) genes encode for the proteins that
form the MHC. MHC class I genes include mainly HLA-A, HLA-B and HLA-C and are
expressed by most cells of the body, while MHC class II genes include HLA-DP, HLA-
DQ and HLA-DR and are expressed only by antigen presenting cells (rX). HLA genes
are the most polymorphic region in the human genome, with more than pr, XXX
known alleles, that can be grouped in HLA supertypes (rj). These polymorphisms
cause variations in the peptide-binding specificities, generating a high diversity of

MHC molecules for the recognition of large repertoire of peptides.

Antigen presentation is upregulated under inflammatory conditions, in response to
inflammatory cytokine IFN-y, which triggers the activation of the JAK-STAT signaling
pathway, leading to induction of the expression of the HLA-I heavy chain and beta-V-
microglobulin (BVM), the two main components of the MHC complex (rV). High
expression of HLA-I and HLA-II on tumors and APCs have been associated with better
outcome in several cancer types, and has been used as a surrogate of immune
activation in many studies (rp). Furthermore, higher HLA heterozygosity has been

related to response to immunotherapy in melanoma patients (rr).

Nevertheless, the antigenicity extent of neoantigens remains unclear, since the ability
of the MHC to bind the peptides is an essential part of the peptide presentation. The
complexity of this binding involves several factors: the expression of the neoantigen in
the cell, the percentage of tumor cells that express the neoantigen of interest, the
proteasomal cleavage potential, the potential of transport in the ER, the stability of the
MHC-peptide interaction and the binding potential of the interaction (rq).
Furthermore, not only the expression of the neoantigen by MHC molecules is
important, but also the infiltration of antigen-specific T cells is required for the
immune response to be generated. Thus, even for tumor types with high TMB, T cell

reactivity can be detected only for a small fraction of the somatic mutations (rn).

jn
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1.2.3. The cancer immunoediting process

As described in previous sections, the immune system plays a dual role in cancer,
evolving from inhibiting carcinogenesis towards promoting tumor progression (rm).
Cancer immunoediting is the process by which the immune system shapes tumor
immunogenicity, and consists in three phases: elimination, equilibrium and escape
(Figure O) The process of immunoediting triggers the emergence of tumor sub-clones
with lower immunogenicity. These evasive characteristics can be due to either
immune-adapted phenotype (selection of low antigenic mutations) or immune escape

mechanisms (rW).

CANCER INITIATION ELIMINATION EQUILIBRIUM ESCAPE
Tumor progression
Suppression of transformed cells Immunosupressive microenvironemnt
Non- IFN, TNF, IL-1 2 and perforins Tumor dormancy Upregulation of surface mol. (PD-L1,
malignant Recogpnition effector molecules Selective immune pressure CD115/CD112, CD47, CD36/CD73)
“cells (NKG2D, CD226, TRAIL) Dysregulation of signaling molecules

(TTGFB, L CCL4, TCCL2, LIL-12,
LIL-2, LIL-15, TIL-10)
Carcinogenesis,
viral infection,
chronic inflammation
radiation, mutations,
etc

CD8+ T cell

®

(@
Cancer—‘ =3 =N {.‘ ,:A v
cell - /\ i » \3\_/4\4 4

Dendritic cell @

Macrophage CD8+ T cell NK cell

Figure J. Immunoediting process. In the first phase, elimination, the immune system is
correctly recognizing and killing malignant cells. If this phase succeeds, all transformed cells
would be eliminated and the tumor would not progress. However, if a few tumor clones are
able to survive the elimination phase, they will progress into the equilibrium phase. In this
phase, there is a constant pressure of the adaptive immune system over the tumor, and it is
when low immunogenic sub-clones are selected for its advantage for evading the immune
recognition. These immunoedited sub-clones can enter in the escape phase, in which the
tumors progress and growth without immune pressure Adapted from O'Donnell JS, et al., Nat
Rev Clin Oncol, :;La.
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1.2.4. Mechanisms of immune evasion

Cancer cells can escape the immune system by triggering different immune evasion
mechanisms. Resistance mechanisms can be primary or acquired during therapy, and
are mostly based in lack of antigen presentation and the modulation of the
microenvironment through different molecules like oncogenic pathways or the

expression of checkpoints (pp).

Impaired antigen presentation

Given the paramount importance of neoantigen presentation and recognition for an
effective immune response, the main mechanisms of immune evasion are devoted to
avoid immune recognition through defects in the antigen presentation machinery
(rk). Different mechanisms can lead HLA class I downregulation; mutations in HLA
and BVM genes, HLA class I loss of heterozygosity, and transcriptional repression of
HLA-coding loci have been observed as innate and acquired mechanisms of resistance
to immunotherapy (gX). Additionally, deleterious mutations or loss of [B-V-
Microglobulin (BVM), the invariant chain of the MHC, has been shown to generate
defects in the antigen presentation pathway (qj). Other mutations can occur in other
genes such as TAPj, TAV, CALR and PDIAp (qV).

HLA loss of heterozygosity (LOH) is an important mechanism of immune escape in
immune hot tumor types. The loss of the HLA repertoire has been associated with
different sub-clonal neoantigen burden, upregulated mutagenesis and higher PD-L;
expression in non-small cell lung cancer (qV). In a similar way, in lung cancer patients
it was seen that relapsed tumors lost m to jW putative neoantigens, and those that were
lost were the ones with higher affinity to be presented by MHC that could elicit a T
cell response (qp).

Disruption of IFN-y signaling

Another principal feature of immune evasion is the impairment of IFN-y signaling
pathway. An important function of IFN-y is the upregulation the antigen presentation
machinery upon the recognition by IFN-y receptors (IFNGRj/V) on tumor cells, which
triggers upregulation of MHC molecules through the JAKj and JAKV signal
transducers. Functional mutations in the JAKj and JAKV of the IFN-y pathway have

W
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been described as a mechanisms of resistance in melanoma, making tumor cells less

susceptible to the attack by T cells and resistance to the antiproliferative effects

(qr,qqQ).

Nevertheless, defects in the IFN-y signaling and loss of HLA triggers NK cells
infiltration and attack, as a safeguard of T cell inhibition. Using CRISP-R screening
methods, a recent study uncovered how cells that undergo these mechanisms are
highly sensitive to destruction by NK cells (qn). In stage II CRC patients, our group has
recently demonstrated the positive correlation between HLA-A downregulation and
increase of NK cells infiltration. This phenotype was associated with better survival,

evidencing the role of NK cells against resistant cancer cells (qm).

Oncogenic signaling

Oncogenic pathways can also influence the immune evasion by limiting the
infiltration of cytotoxic lymphocytes into the tumor core and therefore generating an
immune-excluded microenvironment. Some oncogenic pathways, like WNT-B-
catenin, PTEN and MYC have been associated with lower T cell infiltration through
the production of immunosuppressive cytokines, higher PD-Lj expression and failed

infiltration of antigen presenting cells (APCs) (qW).
Expression of immunosuppressive molecules

Finally, the expression of mechanisms of immunosuppression includes the immune
checkpoints (PD-Lj and CTLA-r) and other markers of T cell exhaustion, such as the
expression of co-inhibitory receptors (T cell immunoglobulin and mucin-domain
containing-p; TIM-p), lymphocyte-activation gene; LAG-p), and immunoregulatory
molecules (indoleamine-V,p-dioxygenase; IDO). These molecules trigger loss of
effector functions (| IFN-y, IL-V and TNF-«) and loss of proliferative capacity of T and
B cells (gk).

jk
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1.3. Tumor immune microenvironment
heterogeneity

Cancer is a highly heterogeneous disease, with great variability across tumor types,
stages of the disease, anatomical location and even among patients sharing location
and histopathological features. The role and proportion of the immune components
in the tumor niche is an important source of heterogeneity between cancers with

implications in prognosis and therapy response (nX).

The classification of cancers based on their immune contexture has gained importance
during last years (nj). Different immune profiles in solid tumors were first described
in VXXk by Camus et al. in a cohort of primary colorectal cancer (CRC) (nV). They were
able to discriminate between hot, altered (excluded) and cold immune phenotypes.
The principal difference between these three groups is the presence and location of
cytotoxic T cells infiltration (np). These distinct groups have differences in the risk of
relapse and response to ICls, and must be tackled through different treatment

strategies (Figure W) (nr).

Inflamed tumors (so-called hot tumors) have high presence of TILs, functional CDW+
cells, high expression of immune checkpoints (PD-Lj, CTLA-r, LAGp, TIMp, etc), high
levels of pro-inflammatory cytokines and high TMB. Advanced stage melanoma, renal
cell carcinomas, and non-small-cell lung cancer (NSCLC) are examples of hot tumor
types, where the administration of immunotherapies have been approved successfully.
Hot tumors are more prone to benefit from immunotherapies, with durable responses

in many cases.

Altered tumors (also named immunosuppressed or excluded) show high TMB, but
increased immunosuppressive factors (angiogenesis, Tregs, TAMs and MDSCs), which
prevents T cells from infiltrating the tumor. They also show high levels of hypoxia,
expression of inhibitory cytokines, and ECM remodeling factors that creates a physical
barrier. Some tumor types are being studied for its exclusion characteristics, like stable
colorectal cancer, prostate cancer, bladder cancer, breast cancer, or head and neck
squamous carcinoma. Altered tumors usually do not benefit from immunotherapies,

and need treatment strategies to make them more susceptible to respond.
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Finally, non-inflamed tumors (cold tumors) are characterized by low TMB, low TILs
infiltrate, incorrect antigen presentation and lack of T cell priming and activation.
These are the most challenging tumor type for immunotherapy, since they lack pre-
existing immunity and they are not responders. Examples of cold tumors are ovarian

cancer, pancreatic cancer, glioblastomas and uveal melanoma.

A Optimal: high Immunoscore (inflame:

d, hot) Absent: low Immunoscore (non-inflamed, cold)

Altered: intermediate Immunoscore Altered: intermediate Inmunoscore
Excluded Immunosuppressed

B
Absent Altered Optimal
Low Immunoscare Intermediate Immunoscore High Immunoscore
Cold Excluded Immunosuppressed Hot
Non-inflamed CT-Lo, Hi-IM Inflamed

Response to T cell checkpoint inhibition

Figure M. The immune landscape of solid tumors. A) DAB staining (brown) on tumor
slides represents CDM+ T cells, and alkaline phosphatase (blue) stains for homogenous tissue.
B) The different immune phenotypes correlate with the gradual increase in response rate to
ICIs. Figure from Galon ] et al, Nat Rev Drug Discov, :;la.
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1.3.1. Uveal melanoma as a divergent tumor type

Uveal melanoma (UM) is the most common ocular malignancy in adults, with an
annual incidence of q cases per million in Europe (nq). It is considered a rare tumor
due to its low incidence. Current treatments of primary UM are mainly based on
radiotherapy and enucleation. Despite the success in the management of primary
tumors, UM prognosis is bad, with up to gX% of patients developing metastasis, mostly
to the liver (Wk%) (nn). In these cases, median survival time is approximately jV
months. The main reason for this low survival rates is the lack of therapeutic options
for advanced disease since targeted therapies or immunotherapies have slightly

improved results compared to chemotherapy (nm).

Clinical prognostic factors (sex and age), tumor thickness, location, cell morphology,
vascularity, and molecular factors (chromosome p monosomy, chromosome W
polysomy, and BAPj loss) are usually used as prognosis factors of metastatic relapse
(nW). UM originates in the melanocytes of the uveal tract (Figure S). Iris and ciliary
body UM grow in the acellular corpus vitreous, protected by the blood-retinal barrier,
which provides an immune privileged niche. In the case of UM growing in the choroid,
it is separated from the retina by a membrane, so the immune privilege in this location

is under revision (nk).

S Choroid
Sclera
Gt 2 Melanoma
Ciliary body = of the choroid
Melanoma ———-’ Macula
of the iris
Lens \'/llreous Optic
humour
nerve
Melanoma of the 4 Retina
ciliary body

Figure P. Main locations of uveal melanoma within the eye. UM arises
from melanocytes from the choroid (O]%), ciliary body (]-O%) and iris (M-
1%). Jager MJ, Nat Rev is Primers, :;:;.
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Up to Wq% UM patients carry driver mutations at GNAQ/jj genes and rX% carry
recurrent alterations in BAPj. GNAQ and GNAHH encode the « subunit of the
heterotrimeric G proteins located in the inner surface of the cell membrane, which
activate intracellular signaling (Figure HQ) (mX). GNAQ and GNAjj mutations are
mutually-exclusive and are most frequently mutated at codon QVXk (Wq%), followed
by codon RjWp (q%) and exceptionally codon GrW. CYSLTRV gene, a cell-surface

leukotriene receptor of the G proteins is also mutated in about jX % of UM patients

(nn).
CYSLTR2
™)
PIP, DAG
\u s’ k
Go
aQ/iz
G
G
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Figure (R. G-protein pathway alterations. Mutations at QQ:;a hotspot of genes GNAQ or
GNALL activates the Gog pathway, leading to a constitutive signaling that activates different
pathways like YAP, MAPK and APL pathways, stimulating cell proliferation. De Lange MJ, Mol
Biomed, :;:L.

Although it shares the cellular origin with cutaneous melanoma (CM), the biology and
molecular mechanisms of UM are significantly different to those of CM. The principal
differential characteristic of UM is the low antigenicity. In a study by H. Bailey et al.
where they performed a pan-cancer analysis across jX,XXX samples from pV different
cancer types from the TCGA, UM was the third lowest cancer type in TMB, only after
rare tumor pheochromocytoma and paraganglioma, and thyroid carcinoma (mj). Other
aspects where UM differs from CM is the dissemination via hematogenous spread. UM
grows in one of the most capillary-rich tissues in the body and expression of angiogenic
factors is considerably higher than in CM (mV). The expression of high levels of VEGF
and fibroblasts growth factors facilitate tumor growth and blood dissemination, and

is associated with worse prognosis and recurrence (mp).
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Since the eye must maintain a low immunogenicity for protecting the ocular tissue
and evading overreactions of the immune system, it develops special mechanisms for
immune protection (mr). This ocular immune privilege is mainly conferred by low HLA
class I levels and inhibition of NK cells via expression of pro-inflammatory macrophage
migration inhibitory factor (MIF) cytokine. Also, recent studies have found infiltration
of Tregs in healthy aqueous humor, which triggers expression of TGF-f{ and an

immunosuppressive microenvironment (mq).

UM hijacks this immunosuppressive milieu of the eye in order to evade the immune
system and promote tumor growth. UM cells can also generate evasion mechanisms
by the expression of pro-oncogenic molecules such as indoleamine dioxygenase-j
(IDO-j) and immune checkpoints (PD-Lj, LAG-p, TIMp, etc). UM protects from
apoptosis by production of soluble FasL, which blocks the FasL-induced apoptosis by
lymphocytes. Finally, it shows loss of allele specific HLA, which is a known mechanism

of immune evasion (mn).

All these distinguishing features of uveal melanoma make it a distinctive tumor type.
Therefore, it must be studied with a different perspective than most solid tumors,
included skin melanoma (mm). The reasons underlying this negative prognostic role of

immune infiltration remains unsolved so far.
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1.3.2. The metastatic microenvironment

Metastasis is a complex process, which involves several changes that allow the
migration of cancer cells from primary tumors to distant secondary organs (mW,mk). To
propagate, malignant cells must undergo the ‘metastatic cascade’, which consists in a
series of steps: invasion, systemic circulation, evade immune attack in the circulation,

extravasation, and finally seeding to secondary organ (mW).

This cascade includes the immunoediting process, already described, which allows low
immunogenic cells to evade the attack by the immune system and disseminate.
Metastasis is a very inefficient process; the vast majority of cancer cells that migrate
from the primary tumor are unable to colonize secondary organs and are eliminated
by the immune system in the blood circulation. A small proportion, otherwise, survive
in a latent state in blood or host tissues. This evolutionary pressure selects clones with

best fitness to metastasize in distant organs (mk).

1.3.2.1. Organ-specific patterns of metastatic colonization

Metastatic organ-specific colonization (also called organotropism) is a process
regulated by multiple factors like molecular features of cancer cells, circulation
patterns and the secondary host tissue (WX). The concept of organotropism was
classically explained by the ‘seed and soil’ hypothesis, first described by Stephan Paget
in JWWZKk, which hypothesized that metastatic organ-specificity is a result of favorable
interactions between cancer cells (the ‘seed’) and the microenvironment of the host

organ (the ‘soil’) (Wj).

The patterns of metastatic colonization are characteristic for each cancer type (WV,Wp)
(Figure HH). Some cancer types have one principal metastatic site (e.g., uveal
melanoma to liver and prostate cancer to bone), while others metastasize to two or
more metastatic sites in different frequency. For example, CRC metastasize
predominantly to the liver, comprising about WX% of CRC metastasis, being lung the
second organ in frequency with about jX to jq% of metastasis. Another case would be
breast cancer, which metastasizes preferentially to bone (qX%), followed by liver,

lungs, bone and brain in lower frequency (WV).
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Aggressive disease course
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Figure ((. Different cancer types show divergent patterns of metastatic spread. The
length of the arrows corresponds to the latency time. The first organ of each cancer type is the
most frequent. Most cancer types have a specific metastatic patter, which diverge in latency
period, organotropism and the type of metastasis. Most frequent sites of metastasis are bone,
brain, liver and lung. Obenauf AC & Massagué ], Trends Cancer, :;l].

Anatomical location of the primary tumor can partially explain the patterns of
metastasis, as in the case of liver metastasis from colorectal cancer. Liver processes the
blood from the gut through the portal venous, so it is the first organ where cancer cells
arrive when they enter the blood circulation in the gut (Wr). However, organotropism
cannot be explained by anatomical characteristics in other patterns. For example,
brain metastases from breast and skin would not be their primary site. Therefore, there
are other components that act as key players in this metastatic organotropism, which

are still not completely understood.

Vn
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1.3.2.2. The microenvironment of metastatic niches

Primary tumors are able to engage the formation of pre-metastatic niches in
secondary organs by different mechanisms, such as primary tumor-derived factors
(exosomes, vesicles and cytokines), bone marrow-derived cells (BMDCs), and stromal
components (Figure HR) (Wq). Pre-metastatic niches promote a chronic inflammatory
and immunosuppressive state on distant organs that facilitates future metastatic

colonization (Wn).

Metastatic cells need an immune tolerant microenvironment in order to succeed in
the seeding process. Metastatic-associated macrophages (MAMs) derive from
circulating monocytes, and are the main supporters of cancer extravasation and cell
growth in metastatic sites. Tregs in the metastatic niche can also promote metastatic

homing by overexpression of cytokines and growth factors (Wm) (Figure HR).
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Figure (5. Immunosuppressive cells promote tumor metastasis through multiple
mechanisms in primary tumor and in the pre-metastatic niche. In the primary tumor,
TAMs, MDSCs and CAFs accumulate at the invasive margin of the tumor, and promote EMT
and cell-cell contact loss on cancer cells, allowing the acquisition of an invasive phenotype. At
the intravasation step, macrophages help tumor cells to cross the vessel barriers. In circulation,
tumor cells evade the attack of the immune system by attaching to platelets and coagulation
components. Primary tumors can modulate the secondary niche towards an immune tolerant
environment to succeed in the seeding process through different mechanisms such as
exosomes that modulate the stromal components of the pre-metastatic niche. Quail DF & Joyce
JA. Nat Med, ;I
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The pre-metastatic niche composition differs between different host organs (WW). In
liver, the formation of pre-metastatic niches includes tumor-secreted factors, BMDCs
recruitment and ECM remodeling factors. In lung, the oxygen-rich environment
dampens T cells response and promotes and immunotolerant environment that makes
it favorable to metastatic formation. Brain metastasis is the most challenging
metastatic organ because it is located in an immune-privileged organ. One of the
mechanisms that has been observed in the pre-metastatic niches in the brain is the
glucose metabolism. In the bone, by contrast, the pre-metastatic niche can be
different depending on the type of colonization. In osteolytic bone metastasis, ECM
regulators, IL-n and MMPs are the regulators of the pre-metastatic niche. In
osteoblastic, the mechanisms are not well defined, but could be influenced by tumor-

derived factors like VEGF-A and fibroblast growth factor (Wq)
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2. Immuno-oncology for cancer management

In the last years, massive knowledge has been reported about the role of immune
system in cancer progression. In turns, immuno-oncology has emerged offering

potential therapeutics and new biomarkers for cancer management.
2.1. Cancer immunotherapy

Immunotherapies are aimed to stimulate and restore the patients’ immune system to
attack malignant cells (Vk). In the last decades, the development of immunotherapies
has represented a shifting point in patients’ management. The most successful
immunotherapies are immune checkpoint inhibitors (ICIs), although the rapid
evolution on the field in the last years has yielded to the emergence of next-generation

immunotherapies with comparable results (Wk).

2.1.1. Immune checkpoint inhibitors (ICIs)

IClIs are based on antibodies that block the interactions of immune checkpoints CTLA-
r and PD-j/Lj in order to re-activate T cell responses. The discovery of ICIs was one of
the major advances in cancer care in the last decades (kX). Indeed, James P. Allison
and Tasuku Honjo were recognized with the Nobel Prize of physiology and medicine

of VXjW for their contributions in the discovery of ICIs.

Ipilimumab (anti-CTLA-r) was the first checkpoint inhibitor to demonstrate good
response rates in a Phase II clinical trial in patients with metastatic melanoma in VXjX
and it was approved in VXjj by the American Food and Drug Administration (FDA)
(kj). Few years after, pembrolizumab (anti-PDj) demonstrated better progression-free
survival compared to ipilimumab, being approved by the FDA in VXjq as first-line

agent in advanced metastatic melanoma (kV) (Figure HU).
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Figure (@. A) Mechanisms of action of anti-CTLA-A. In the lymph nodes, CTLA-Q binds to
the co-stimulatory molecule CDO”, leading to CD:O inhibition and decrease of T cell
expansion. The anti-CTLA-Q antibody blockades this interaction, allowing the co-stimulatory
binding, which increase the activation and expansion of naive T cells. B) Mechanism of
action of anti-PD-(/L(. The binding of PD-L to its ligand PD-LL happens when peripheral T
cells become quiescent because of prolonged antigen exposure. Monoclonal antibodies
targeting PD-L and PD-LL blockade the interaction between these molecules. Once the
interaction between PD-LL and PD-L is blocked, exhausted TILs can restore their function of
cancer cells killing.

Over the last decade, a plethora of clinical trials on ICIs have been carried out in
numerous tumor types, with heterogeneous responses (kp). In VXjm, the FDA approved
immunotherapy as first-line treatment in hypermutated tumors harboring
microsatellite instability (MSI-high) irrespective of tissue of origin, including some

subtypes of colorectal, endometrial and gastric cancer.

In VXVV, a successful study was published in MSI-high locally advanced rectal cancer,
in which they were able to generate overall response in all patients enrolled in a clinical
trial with immunotherapy, evidencing the achievements of these treatments (kr). In
the same line, results on a clinical trial in dMMR colon cancer was presented at this
year’s ESMO congress, where preoperative combinatory ICI treatment achieved
pathologic response in kq% and disease-survival rate of jXX% (kq). Altogether, these

impressive results are a proof-of-concept of the efficacy of immunotherapies.

pX
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2.1.2. Other immunotherapy-based treatments

Other immunotherapies, such as adoptive cellular therapies (ACTs), oncolytic viruses
and neoantigens-based vaccine products are a growing field of research and have

already reported promising results and improved responses in clinical trials (Table U)
(kp).

Table @. Summary of current immunotherapy-based agents approved.

Class Mechanism Example Tumor indication
Immune Ipilimumab (aCTLA-4), Melanqma, Iur)g, Kidney,

. Monoclonal . urothelial carcinoma,
checkpoint oo . Pembrolizumab (aPD-1),
o antibodies against . bladder, renal, stomach,
inhibliors checkpoints Nivolumab (aPD-L1), squamous cell carcinoma
(ICls) P Atezolizumab (aPD-L1) 9 ’

MSI-high tumors
Adoptive cell  Genetically
transfer engineered
(ACTs): T cells targeting
CAR-T cells CD19

Vaccines loaded
with patients’ tumor  NeoVax

Tisagenlecleucel Leukemias and B-cell
lymphoma

Personalized Melanoma, glioblastoma,

vaccines : endometrial
neoantigens
Genetically
Oncolytic modified virus I;VEC (S el Melanoma,
virus ll??;}?n and lyse of ICOVIR (Adenovirus) Neuroblastoma

ACTs consists in the transfusion of immune cells to the patients. There are different
types: TILs transfusion (where immune-reactive T cells are expanded and infused back
to the patients), chimeric antigen receptor (CAR)-T cells (T cells are engineered to
express specific costimulatory molecules), and TCR-modified T cells, among others.
Approved treatments with CAR-T cells have shown impressive results in the treatment
of hematologic malignancies like leukemia and lymphoma, although it is still a

challenge for solid tumors (kn).

Adoptive NK cell transfer has recently emerged as an alternative with therapeutic
potential. NK cells can suppress tumor immune evasion mechanisms against T cells,
thus targeting NK cells could be a proper strategy to overcome the resistance
mechanisms to ICIs (qn). In solid cancers, pre-clinical models have demonstrated
efficacy in ovarian cancer, glioblastoma and metastatic CRC. Current clinical trials
with CAR-NK cells and allogenic NK cell transplantation in different tumors types are

currently underway and results will be soon available (km).

pj
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Vaccine-based immunotherapies is another novel strategy for targeting the immune
system and consists in the use of vaccines with the goal of amplifying the response of
tumor-specific T cell. There are different approaches of vaccine immunotherapies;
based on personalized neoantigen, dendritic cells, autologous cells or oncolytic virus
vaccines (kp). Personalized vaccines with patient-specific neoantigens were first used
in clinical trials for melanoma and prostate, where they have demonstrated
encouraging results. Neoantigen vaccines therapies have a principal advantage
compared to other immunotherapies; since they are targeted to tumor-specific
neoantigen, which are not expressed by non-malignant cells, they can trigger tumor-

specific immune response and reduce toxicities (kW).

2.1.3. Current challenges of immunotherapy

Despite the outstanding results of immunotherapies in a variety of advanced
malignancies, its clinical benefit is still very limited to a certain subset of patients, and
response varies across tumor types as well as between individual patients. Currently,
ICIs have become the standard of care for melanoma and lung cancers, and generate
durable responses in many cases. Unfortunately, only approximately VX% to pX% of
patients respond to treatment (kk). Furthermore, the failure of immunotherapy for
some of the most frequent and deadliest tumor types like pancreatic cancer, breast

cancer and stable colorectal cancer is a major challenge for clinicians in the field (kX).

Currently, one of the main challenges in immuno-oncology is how to enlarge the
number of patients that can benefit from immunotherapies. Many efforts are devoted
to transforming non-responder tumors (immune cold) into responders (immune hot),
as well as to overcome resistance mechanisms to ICIs (jXX). Recent advances in
combination therapies have become a new opportunity to overcome this issue and are
improving clinical responses. Some examples are combination of ICIs with
chemotherapy, radiotherapy, oncolytic adenoviruses, targeted therapies, or with other
immunoregulatory antibodies (PD-Lj, PD-j, CTLA-r, LAGp, TIMp, TIGIT, IDO, etc.)
(X}, jXV).

Other challenges of immunotherapies include the need for standardized protocols for
the optimal dose, the surrogate endpoints, schedule and duration of therapy, the
appropriate use of immunotherapies as adjuvant therapy, and the proper use of

biomarkers for patient selection (jXj).
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2.2, Immune biomarkers for cancer management

Biomarkers are defined as measurable indicators of biological processes or disease
states that can aid clinical decisions. Biomarkers are very useful in oncology for several
application like diagnosis, prediction of response to treatment and monitoring disease
progression, among others. Recent advance in prognosis and prediction biomarkers
based on omics data are improving the clinical management of cancer patients, for

example in the use of targeted therapies (jXp).

In immuno-oncology, the identification of predictive response biomarkers is more
challenging due to the multifactorial modulation of the immune response. Finding
robust biomarkers for immunotherapy is especially necessary due to the potential
toxicities and the high costs of these treatments. The advances of biomarkers discovery
from NGS technologies will improve the screening of patients for an accurate selection

of the patients who are more likely to benefit from immunotherapies (jXr).

2.2.1. Current setting of immune biomarkers in
oncology

To date, several response biomarkers for immunotherapy have been described (Table
N). PD-Lj and MSI status are the only biomarkers approved by the FDA to guide clinical
decisions, although none of them is well stablished in the clinical practice. New
approaches are focused in the combination of multiple biomarkers, intending to
generate more accurate predictions. These biomarkers will integrate the information

from tumor intrinsic (PD-Lj, MSI, TMB) and extrinsic (TILs, cytokines) factors (jXp).

Table A. Biomarkers of response to immunotherapy.

Biomarker Biological Assay method Cancer types
component

PD-L1 Tumor intrinsic IHC Multiple cancer types

TMB Tumor intrinsic DNA gene panels, WES Multiple cancer types

MSI-H/ Tumor intrinsic PCR/IHC Colorectal, endometrial,

MMRd gastric, renal carcinoma,

etc.

Immunoscore  Tumor Digital pathology Colorectal cancer
microenvironment

GEP Tumor intrinsic, PCR, expression panels, Melanoma, NSCLC
microenvironment microarray, RNA-seq

Cytokines Circulating factors Blood assay and count Melanoma

LDH Circulating factors Blod assay Melanoma

pp
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PD-L1/PD-1 expression

The expression of PD-Lj is the most rational biomarker since it is the main target of
immunotherapies. The expression level of PD-Lj on tumor cells is measured by
immunohistochemistry (IHC), a technique that consists in the measure of protein

expression levels using antibodies that bind to the protein of interest (Figure HN) (jXq).

L .'3
»»»»»

L e T : ’ ‘ -,“'r
PD-L1 Negative - PD-L1 Weak-Positive —————— PD-

Figure (A. PD-L( IHC staining in NSCLC tumor samples. This staining process is used for
anti-PDL/LL treatment for patient selection. Sorensen SF, et al. Transl Oncol, ;;LA.

Tumor infiltrating lymphocytes

The presence of T cells infiltration has clinical impact on prognosis (jXX). In VXjr,
Galon et al. defined the “Immunoscore” assay as a prognostic marker in colorectal
cancer based on the presence, density and localization of CDW+ and CDp+ T cells
infiltrating in the tumor, measured by digital pathology (Figure HP) (jXm). The
“Immunoscore” was validated in a big cohort with more than VnXX stage II-I1II CRC
patients, with supporting evidence of its usefulness to include it for classifying CRC. A

number of studies are trying to transfer this biomarker to other tumor types (jXW).

Tumor regions (CT & IM) Immunostainings Immunoscore (CT+IM)

QOO0 O 1
QOO0
Lt} ) 12
@ 11

o

Digital Pathology

Figure (B. Immunoscore biomarker methodology. The immunoscore ranges from I; (cold)
to IQ (hot) by combining the information from cell density of CDM and CDO in the core tumor
(CT) and invasive margin (IM). Galon et al., ] Pathol, :;LQ.
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Tumor mutational burden

TMB is highly variable across the different tumor types, and a higher TMB has been
associated with better response to ICIs in several studies (kW). In a review by Yarchoan
et al. from VXjm, they showed the direct relationship between TMB and objective
response rate (ORR) to anti-PD-j/Lj across Vm cancer types or subtypes (linear
regression p<X.XXj, r=X,mq) (Figure HV) (jjX). This meta-analysis demonstrated the

strong association between TMB and response to ICIs across many cancer types.
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Figure (H. Correlation plot between OOR to anti-PD-(/L( and TMB in somatic mutation
per mega base in 5] different tumor types. Yarchoan et al., N Engl ] Med, :;L_.

Microsatellite instability (MSI)

Mismatch repair deficient (MMRd) status is defined by the lack of expression of
different proteins from the DNA mismatch repair machinery. If those proteins are
inactivated by mutational changes causing a large number of mutations, MSI-h status
is defined. This molecular characteristic causes high mutational burden due to the lack
of repair of the somatic mutations in the tumor. The use of MSI/MMRJ status as
biomarker of immunotherapy response has been demonstrated to have good
prognosis power. MSI/MMRd status can be measured by different methods; PCR
detection of MSI-H, IHC of dMMR and DNA sequencing. Detection by PCR and IHC
are widely used in the clinics, for example for Lynch syndrome screening, while NGS

methods are being used for research use only (jjj).
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2.2,.2, Immune signatures as response biomarkers

Transcriptomic technologies measure the expression levels of the mRNA of different
genes at the cytoplasm of the cells. The main technologies for transcriptomics profiling
are microarrays and RNA-seq. Transcriptomics profiling from bulk tumors have many
applications in oncology, such as molecular subtyping, biomarkers discovery, gene
expression signatures, and many more. Over the last years, numerous biomarkers from
gene expression signatures have emerged as a result of the increase in the use of
sequencing technologies, bioinformatics and improved statistical methods. These
signatures are usually obtained by differential expression or other statistical methods

and are markers of a specific phenotype (jjV).

Latest studies have demonstrated the efficacy of immune signatures from
transcriptomics profiling as biomarkers for diagnosis, prognosis and response to
immunotherapy across many cancer types (jjp). Immune signatures were first defined
by Bindea et al., where they defined for the first time VW different immune cell-types,
generating an “immune landscape” of solid tumors associated with clinical outcomes
in a dataset of colorectal cancer (jjr). An example of immune response profile is the
jW-genes T-cell inflamed signature (TIS). This transcriptomics profile was
demonstrated to be highly associated to clinical response to anti-PD-Lj therapy across
a wide variety of tumor types (jjq). TIS signature integrates genes of response to IFN-
Y, from the functional status of the immune infiltrate (T cells, HLA-E, CDZA and CD8];
NK cells, NKH]), antigen presentation (PSMB!=, HLA-DQA!, HLA-DRB!, CMKLR!),
chemokine expression (CXCR', CCLF, CXCL?) and adaptive immune resistance (PD-
L!, PD-L8, TIGIT, LAGy, IDO!, CDVmn, STATj) (Figure HO).

Other groups have reported a variety of gene signatures related to the inflammatory
process and T-cell response in different tumor types, such as the “tumor immune
dysfunction and exclusion” (TIDE) signature (jjn) and the “immune-predictive score”
(IPRES) signature (jjm). More recently, our group has also participated in a study on
early-stage CRC, where immune profiles showed good prediction affinity of disease

relapse (jjW).
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Figure (J. T-Cell inflammatory signature. A) LO-genes TIS signature validation on a”
samples from HNSCC treated with immunotherapy. B) AUC values from TIS score showed
better prediction than AUC of PD-LL expression by IHC. Ayers M et al., ] Clin Invest, :;L.

Machine learning techniques can be used to identify biomarkers from large-scale
transcriptomics data and can improve the identification of gene signatures associated
with response to ICIs with higher accuracy than current signatures. Litchfield et al.
performed a meta-analysis of more than jXXX patients from seven different tumor
types treated with ICls, with available WES and transcriptomics data and machine
learning methods. They found that a multivariate predictor combining TMB and
CXCLk/CXCLjp expression to be a better prediction model of response to
immunotherapy (AUC=X.Wn), outperforming the prediction power of TIS score (jjk).

Overall, immune signatures from transcriptomics have demonstrated to outperform
classical biomarkers in the prediction of clinical responses (jVX). The principal
limitation of these immune signatures is the translation into the clinical setting.
Molecular assays of gene expression are still not included in the daily routine of most
hospitals, thus making it difficult to do a screening for these high number of genes.
Another limitation is that most of these signatures have been generated using datasets
from hot tumors, mostly melanoma and lung, and the predictive values decrease when

they are inferred to other cancer types or tumor stages (VW).
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3. Immunogenomics for the study of tumor
immunity

Bioinformatics consists in the use of computational methods to study biological data.
The emergence of omics data, along with the advances in bioinformatics methods to
analyze them, have transformed the study of tumor biology.
Currently, bioinformatics is gaining applicability in the oncology clinical setting by its
use in genetic diagnosis of hereditary cancer, molecular profiling for risk prediction,

subgroups stratification and liquid biopsies, among other applications (jVj).

A new field is the study of the of the host-tumor interactions by bioinformatic
tools. This approach is called immunogenomics and is revolutionizing the study of
cancer immunity (kj,kp). Immune phenotyping enables the classification of tumors
based on their TME and the identification of biomarkers of response to
immunotherapy (Figure HW). Useful omics data for immunogenomics studies are
genomics (WES), transcriptomics (microarrays, RNA-seq), single cell RNA-seq,
peptidomics, and Immunoseq for the direct T-cell (TCR) and B-cell receptors (BCR)
sequencing (kr, kq).

Bioinformatic Immunogenomic
analyses analyses

? Cell tvpe.s
deconvelution
i

Immune
characterization

Data types

el e ——

b/.

Clustering of
samples

Bulk sequencing > HLA-| typing Putative necantigens
Somatic variant 3 Driver and passanger
calling mutations and indels
Tumor mutational
burden

Figure (M. Overview of the main data types and the bioinformatics analysis for

1
P
]

interrogating tumor immunity. Transcriptomics data allows to deconvolute cell fractions,
characterize the gene expression of immune markers, and cluster samples based on immune
features. Analysis of WES data is used to extract somatic mutations and indels, as well as to
predict the class I HLA, for prediction of putative neoantigens.
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3.1. Cancer omics databases as a source of
biological data

Human cancer databases have become an extraordinary source of biological data for
researchers, allowing the use of these data for the generation of new hypotheses,
validation of experimental results, the discovery of new biomarkers and many other
analyses (Figure HS) (jVq). One of the biggest human cancer databases is The Cancer
Genome Atlas (TCGA), which includes data from more than jj,XXX primary
tumors across pp tumor types (jVn). This database is of great interest because it
includes several omics data types and clinical data for most cancer types, allowing

multi-omics and data integration analyses (jVm).

Apart from TCGA, one of the largest databases of cancer omics is the Gene
Expression Omnibus (GEO). It is an open repository for gene expression profiles
that includes thousands of experiments from different species and diseases submitted
by the research community (jVW). Finally, metastasis databases have also been
developed during the last years. The Human Cancer Metastasis Database (HCMDB)
(jVk) is an integrated database of metastatic samples collected from TCGA and
the GEO. Currently, it contains Vk different cancer types, more than pX metastatic

sites and jVr datasets.
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Figure (P. Omics data bases for omics integration analysis gives the possibility to tailor
treatments in a personalized way. Adapted from Weinstein JN et al., Nat. Genet, :;LM.
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3.2. Computational tools for immune
characterization

A plethora of computational tools for dissecting the immune landscapes of tumors
have been published in the recent times. Bioinformatics methods allows exploiting

existing human omics databases for new discoveries in immunogenomics.

3.2.1. Quantification of immune infiltrates

The tumor microenvironment can be dissected into specific cell-types from
transcriptomics data. This process of quantification is widely used in
immunogenomics and many statistical methods have been developed for
quantification of immune and stromal cell-types from bulk expression data (RNA-seq
and microarrays) (jVr). Quantification tools can be divided in two categories based on
the statistical method used for inferring cell-types: marker gene-based or

deconvolution-based (Table P) (jpX).

Table B. Description of some of the most used quantification methods from
transcriptomic profiles. Adapted from Sturm G et al., Bioinformatics, :;la.

Tool Approach Fraction Cell-types  Good for Technology
CIBERSORT cl?r:aconvoluh Relative 22 Not specified Microarray
ZIESERSORT g)r?convoluu Absolute 22 Not specified Microarray
6 immune + Bcells, TCD4+, T
EPIC Deconvoluti Absolute fibroblasts CD8+, NK cells, RNA-seq
on + macrophages /
endothelial  monocytes
8 immune + Bcells, T CD8+,
MCPcounter  Marker Relative  foroblasts  NK cells, RNA-seq,
genes + macrophages / microarray
endothelial  monocytes
Deconvoluti T CD4+ non-reg, T )
quanTlseq on | Absolute 10 regs, T CD8+ RNA-seq
TIMER Deconvoluti  pojative 6 Not specified RNA-seq,
on microarray
64 immune
xCell HELLE) Relative and non- G, 1] (Cbn=s RNA-seq,
genes immune non-reg, T regs, microarray
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Marker gene-based methods are based on enrichment analysis of a list of genes. These
methods are very useful for comparisons between phenotypes, but are not able to
quantify inter-sample differences between cell-types abundance (jpj). Deconvolution
tools require an a priori defined reference matrix consisting of the expected values of
gene expression for each cell type, that are used to dissect the contribution of each
signature profile to the aggregated bulk level of signals through linear regression
methods (Figure RQ) (jpV). These methods are more specific and allow comparison
between cell-types within samples, but are more susceptible to the background
fraction (jpp).
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Figure 5R. Overview of immune deconvolution algorithms (example is based on
deconvolution-based approach). All methods require the gene expression matrix (m).
Reference-based methods use an a priori defined reference matrix of expected values (S). The
contribution of each cell type (f) is estimated as the result of the linear regression model to
dissect the contribution of each cell type to the bulk signal.

Additionally, quantification methods can also be divided into two groups based on the
abundance level: relative fraction or absolute fraction. Relative scores only recaps
the immune fraction of the samples, while absolute scores account for the total
fractions in the sample (jpV). Absolute scores can be compared between samples and
between cell-types, although they are not always necessary and might not be the
optimal choice depending on the objective of the study.
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The principal limitation of quantification tools is that the performance of these
methods depends directly on the quality of the reference signatures, which can be
highly divergent between tools. For instance, reference signatures can be generated
using different platforms (single cell RNA-seq, immunohistochemistry, flow
cytometry, etc). Moreover, cell-types profiles are generated using different tissues
(blood or tumor tissue), as well as different tumor models. Another limitation is the
possible multicollinearity caused by the fact that different immune cells can express

the same genes under different conditions (jVp).

In addition to deconvolution methods, gene signatures that infer the immune
contexture of the samples from transcriptomics data have been published during the
last years. The ESTIMATE function (Estimation of STromal and Immune cells in
MAlignant Tumor tissues using Expression data) (jpr) is an algorithm to infer the
fraction of immune infiltration, stromal infiltration, and tumor purity in the tumor
tissue. This algorithm was implemented for microarray and RNA-seq data, and the

results of the resultant scores for all TCGA samples are freely available at their website.

Charoentong et al. generated a signature called Immunophenoscore (jpq), based on
four gene signatures related to the immune activation and exclusion states (Antigen
presentation, Suppressor cells, Effector cells and Checkpoints), and giving them
different weights. This method is based on a machine learning algorithm (random
forest) for selection of the best predictor genes in each cancer type. The function
returns a z-score summarizing the global immune profile of the tumor sample, which

was also described to be associated with response to ICI in melanoma.

3.2.2. HILA typing and neoantigen prediction

Advances in sequencing technologies and the improvements in cancer genomes
analysis have provided a new procedure for targeting cancer-specific neoantigens
generated from somatic mutations by in silico methods. This new strategy to target
cancer cells can be exploited for personalized immunotherapy, including vaccines and
adoptive cell transfer therapies (jpn). The identification of neoantigens from omics
data (usually WES) is a multi-step analysis of high complexity that needs good quality
data and specialized tools. The analysis can be divided in three main steps (Figure RH):
(i) the mapping and variant calling, (ii) the generation of aberrant peptides from the

mutated sequences, and (iii) the MHC-peptide binding prediction(jpm).
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Figure 5(. Overview of the pipeline for neoantigen prediction. In the optimal situation,
available RNA-sequencing, blood WES and tumor WES from patient are sequenced and
analyzed. WES from blood is used to remove germline variants and to perform HLA typing.
Besides, somatic mutations (point mutations, insertions and deletions) are obtained from
tumor WES. Germline mutations are filtered out from normal WES. RNA-seq is used for
filtering out the neoepitopes that are located in genes that are not expressed in the sample.

The HLA genotype is the combination of HLA alleles of each individual. Every person
carries V alleles of each of the p HLA class I genes, and it is unique for each individual
(most people are heterozygous and express two different forms for each gene). The
majority of HLA alleles are partially sequenced for the peptide-binding region (exons
V and p) (jVk). HLA haplotypes nomenclature consists of a set of digits (e.g. HLA-
A*XV:Xj) that are representative of these alleles (jpW). More levels of resolution can be
added, but prediction tools only cover up to four-digit resolution. HLA haplotype can
be inferred from omics data (RNA-seq and WES) with good accuracy, although the
read length and coverage are key factors due to the high homology between different
alleles. Multiple tools have been developed for this purpose, one of the most useful is

Optitype, which works by alignment to an HLA refence sequence (jpk).

Somatic variant calling is the most critical step in neoantigen prediction, and can be
further divided in several steps: (i) alignment to a reference genome, (ii) variant calling
of SNVs and INDELs, and (iii) translation of mutated sequences into aberrant
peptides. Many factors can influence the performance of this step as the type of
genome, tumor purity, sequencing depth, and the software of use. Numerous
algorithms have been developed for variant calling, and bioinformatics protocols have
been generated to aid researchers through the pipeline. The neoepitopes can be
manually generated from the list of mutations, or with the help of other tools for this

purpose.
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Finally, the binding affinity prediction of the MHC-peptide complex can be performed.
Affinity prediction tools are based on artificial neural networks algorithms that
generate accurate predictions, trained with data from mass spectrometry. The lower
this binding affinity score, the stronger is the binding (jrX). One of the resources that
shows better performance is NetMHCcons (jrj), which combines the three state-of-

the-art prediction methods for high accurate predictions (Figure RU).
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Figure 55. NetMHCcons web resource for HLA binding affinity prediction from
neoantigens. A) The list of neoantigens is loaded, the length of the peptides is selected
(usually amers), and the specific HLA haplotype of the sample is selected (or the super
representative haplotype if it is not available). B) The output of the algorithm generates a table
with all possible amers, the strength of the binding in nM IC];, the prediction scores and the
% rank. If the % rank is below :% it is considered weak binding and if it is below ;.]%0 is
considered strong binding.

Current challenges in neoantigens prediction are focused in determining which
neoantigens are eventually recognized by infiltrating T cells. Latest studies unveil that
only q% of the in silico predicted neoantigens are eventually recognized by COW+ T
cells (jVn). Therefore, new tools need to improve the accuracy in the prediction of the
binding and the stability of presentation of the HLA-peptide complex are needed.
Another challenge is to improve HLA class II predictions (jrV).
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3.3. New approaches in immunogenomics

Immunogenomics is a rapidly evolving field. The emergence of omics technologies and
more powerful computational methods are allowing scientists to visualize the tumors
in a way that was difficult to imagine only a few years ago. These technologies are
opening new ways to study intra-tumor heterogeneity and can give deeper insights in
the immunological components of the tumors for understanding tumor development

and resistance to immunotherapies (jpm).

Single cell RNA-seq is a technology that allows the profiling of the transcriptomes of
single cells within the tumor microenvironment and has revolutionized the field of
cancer transcriptomics during the last years (jrr). Furthermore, spatial
transcriptomics also incorporate the information of the spatial position of cells in the
slide (jrq), allowing to stablish spatial domains in the diverse anatomical regions of
the sample, and to perform in-deep characterization of the biological processes within
the tumor microenvironment (jrn). Another emerging technology for understanding
intra-tumoral heterogeneity is multiplex imaging (jrm). This approach allows to cover
several protein markers within their spatial context and visualize them in high

resolution in a single image.

Another recent advance in immunogenomics is the TCR (and BCR) profiling consists
in the sequencing of the genes encoding for the a and B chain that generate the
diversity of antigen-specific receptors from TILs (jrW). TCR sequencing allows
measuring and characterizing the lymphocyte’s receptors to study the abundance and
clonality of TCR and BCR repertoires. The clonality of receptors consists of an index
that represents the number of distinct populations of T cells or B cells that carry
identical receptors. Recently, our group leaded a study that revealed the association of
T cell clonality with progression in colorectal cancer stage Il patients (jrk). Single cell
RNA-seq TCR profiling can give a better understanding of the interplay between the
expression activity and the clonal evolution of different T cells in the tumor

microenvironment (jrr).

On the other side, statistical methods to analyze cancer genomics are also rapidly
evolving. Computational algorithms are shifting from classical statistics towards the

use of methods based on artificial intelligence (AI) (jgX). These new approaches to
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handle large omics datasets are paving the way to a more comprehensive view of the
tumor biology and present improved solutions for effective patients’ management and

personalization of therapies.

In cancer transcriptomics, numerous Al models have emerged, most of them based on
machine learning and deep learning methods. Supervised machine learning has many
applications in oncology research, such as classification of cancer subtypes,
biomarkers discovery, identification of novel targetable molecules and treatments
design. Unsupervised algorithms based on Al are used to perform regression models,
dimensionality reduction and for clustering tasks (jqj). Genomics studies based on
machine learning algorithms are already improving the performance for prediction of

response to therapies (jqV).
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1. Hypothesis

1.1. Rationale of the project

Cancer is a heterogeneous disease, in which many different cell types are involved
besides neoplastic cells. Tumor cells interact with the tumor microenvironment
(TME), composed by stromal and immune cells, in a crosstalk implicated in key
functions such as immune evasion, tumor progression and therapeutic resistance. The
identification of biomarkers for precision oncology in solid tumors have improved
during last years in parallel with the emergence of omics technologies and
bioinformatics methods. However, there is still a need to better characterize the TME
among different tumor niches, in order to discover new immune biomarkers that

improve oncology patient’s management.

1.2, General hypothesis

Immunogenomics studies are a useful approach for deciphering the molecular
mechanisms underlying the complex crosstalk between patients’ immune system and
cancer cells, as well as for the identification of biomarkers that could be exploited for

therapeutic purposes and patients’ management.

W
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1.3. Specific hypothesis

Study H | Dissecting the immunity of uveal melanoma

Since the eye is an immune-privileged organ, uveal melanoma is considered a cold
tumor with low immunogenicity, that promotes an immunosuppressive
microenvironment. In this study, two independent hypotheses have been proposed

regarding the role of the immune system in prognosis and therapeutics, respectively.

An important distinctive characteristic of uveal melanoma is the hematogenous
dissemination, with a crucial role of angiogenic factors. We hypothesize that the
crosstalk between the immune activation and angiogenesis is associated with

disease progression in uveal melanoma patients.

On the other side, the lack of immune infiltration in uveal melanoma explains the
absence of the immunoediting process, which can be exploited for therapeutic
purposes. Hence, we hypothesize that driver mutations in GNAQ and GNAHH genes

could be antigenic and elicit T cell response in uveal melanoma patients.

Study R | Role of the immune microenvironment in metastatic homing

The metastatic spread patterns to distant organs are determined by molecular
interactions between cancer cells and the target organ. Partially explained by the seed
and soil hypothesis, the molecular factors that influence this organ-specific
colonization are not completely understood yet, although it is well-known that the

immune microenvironment of the host tissue plays a crucial role in this process.

Since the microenvironment of metastatic samples diverge from that of the primary
tumors, we hypothesize that metastatic tumors from the same secondary location
share immune characteristics and immune evasion mechanisms regardless of

primary tumor origin.

rk
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2. Objectives

The main aim is to study the immune microenvironment of solid tumors, and to assess
its association with tumor progression and metastatic homing. For this purpose,

immunogenomics approaches will be used to exploit existing omics data.

Specific objectives:

Objective H | To decipher the role of the immune system in uveal melanoma

H.H. To assess the additive value of immune infiltration and angiogenesis in the

prognosis of uveal melanoma patients, using gene expression data.

H.R. To evaluate the antigenicity of driver mutations in GNAQ and GNAjj genes in

uveal melanoma patients.

Objective R | To identify immune factors that modulate metastatic spread to

specific organs

R.H. To characterize the immune microenvironment and immune system activation
of metastatic samples in bone, brain, liver and lung from six different primary
sites based on transcriptomics data, and to describe differences and similitudes

across the different metastatic sites.

R.R. To generate a novel subgrouping of metastases based on their immune

phenotypes and correlate them with clinical features.
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Results

Study 1 | Dissecting the immunity of uveal melanoma

1.1. Additive role of immune system infiltration and
angiogenesis in uveal melanoma progression

Article: Sandra Garcia-Mulero, Maria Henar Alonso, Luis P. Del Carpio, Rebeca Sanz-
Pamplona, Josep Maria Piulats. Additive Role of Immune System Infiltration and
Angiogenesis in Uveal Melanoma Progression. International Journal of Molecular

Sciences. VV; Vnn (VXVj). https://doi.org/jX.ppkX/ijmsVVXqVnnk

Objective and main results:

The objective of this publication was to decipher the role of immune system activation
and the tumor microenvironment in uveal melanoma prognosis, and to understand
the crosstalk between immune system activation and angiogenesis and its role in
disease progression. For that, we performed a characterization of the immune
microenvironment of Vjp UM samples from q different public datasets, and assessed
the association of non-tumoral infiltration with prognosis by univariate Cox regression
models independently for each dataset. We found association of immune infiltration
with worse prognosis. Specially, robust association across different quantification
methods was found for cytotoxic cell-types (CDW+ T cells and NK cells), and
macrophages Mj and MV. On the other side, B cells infiltration was associated with
good prognosis. Interestingly, low HLA levels were also associated with better
prognosis, suggesting a possible role of NK cells attack. Additionally, we found a
cluster of samples with additive inflammatory and angiogenic functions, conferring a
phenotype associated with extremely bad prognosis. This cluster of patients was
enriched in KRAS signaling, and metabolic pathways such as PIpK-AKT-MTOR
signaling and glycolysis.
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Abstract: Uveal melanoma (UM) is a malignant tumor that arises in the melanocytes of the uveal tract.
It is the most frequent eye cancer, and despite new therapeutic approaches, prognosis is still poor, with
up to 50% of patients developing metastasis with no efficient treatment options available. In contrast
to cutaneous melanoma, UM is considered an “immune-cold” tumor due to the low mutational
burden and the unique immunosuppressive microenvironment. To gain insight into the role of the
UM microenvironment in regard to prognosis and metastatic progression, we have performed a pool
analysis characterizing the UM microenvironment by using a bioinformatic approach. A variety of
scores based on gene expression measuring stromal infiltration were calculated and used to assess
association with prognosis. As a result, the highest immune and stromal scores were associated with
poor prognosis. Specifically, stromal cells (fibroblasts and endothelial cells), T cells CD8+, natural
killer (NK) cells, and macrophages M1 and M2 infiltration were associated with poor prognosis.
Contrary to other tumors, lymphocytic infiltration is related to poor prognosis. Only B cells were
associated with more favorable prognosis. UM samples scoring high in both angiogenesis (Angio)
and antigen presentation (AP) pathways showed a poor prognosis suggesting an additive role of
both functions. Almost all these tumors exhibited a chromosome 3 monosomy. Finally, an enrichment
analysis showed that tumors classified as high Angio-high AP also activated metabolic pathways
such as glycolysis or PI3K-AKT-MTOR. In summary, our pool analysis identified a cluster of samples
with angiogenic and inflammatory phenotypes exhibiting poor prognosis and metabolic activation.
Our analysis showed robust results replicated in a pool analysis merging different datasets from
different analytic platforms.

Keywords: uveal melanoma; angiogenesis; immune system; pool analysis; prognosis; gene expression

1. Introduction

Uveal melanoma (UM) is a malignant tumor arising at the melanocytes of the uveal
tract [1]. It is the most frequent cancer in the eye, and is considered a rare tumor (10 cases per
million incidence in Europe) [2]. Prognosis in UM is poor, with median overall survival (OS)
of less than one year in most cases, and up to 50% of patients developing metastasis (M1),
mostly in the liver. Currently, metastatic UM (MUM) does not have an effective standard
treatment available and survival rates have not improved in the last decades [1,3-5]. Recent
meta-analysis reviews on progression-free survival (PFS) and overall survival (OS) from

Int. J. Mol. Sci. 2021, 22, 2669. https:/ / doi.org/10.3390/ijms22052669
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different clinical trials have shown that none of the different novel treatments carried
out in recent years has improved the prognosis of UM patients, reinforcing the need for
further research.

Immunotherapy has shown extraordinary results on cutaneous melanoma (CM).
Monoclonal and combined therapies with anti-programmed death ligand 1 (PDL1) and anti-
cytotoxic T-lymphocyte antigen-4 (CTLA-4) checkpoint inhibitors are already a standard
therapy for CM. However, these results have not been reproduced in UM [6,7], which
differs from CM at the genetic and molecular level and should be treated with specific
treatments [8]. One important difference is the tumor mutational burden (TMB), which
is very high in CM, which generates a great amount of neoantigens that renders high
immunogenicity and attracts T CD8+ lymphocytes. By contrast, UM has a low TMB, and
therefore is considered a tumor with low antigenicity [9].

Tumors with microsatellite instability (MSI) phenotype or harboring mutations in
mismatch repair (MMR) genes are highly mutated. A recent study analyzing the frequency
of MMR genes in three independent cohorts of UM patients showed that mutations in
these genes were extremely rare [10]. Also explaining the low TMB, a work by Cross et al.
analyzing microsatellite instability in UM demonstrated that, in contrast to CM, MSI not
occurring in UM [11]. A study by Johansson et al. analyzing 103 UM by whole-genome
sequencing from different sites of the uveal tract demonstrated that only patients with
tumors located in the iris showed high TMB. This phenotype is associated with ultraviolet
radiation signature, common in CM. However, only 8 out of 103 analyzed tumors were
located in the iris [12]. Furthermore, UM is located in an immune-privileged organ with
an immunosuppressive microenvironment, protected by the blood-ocular barrier, and an
absence of lymphatic vessels that prevent the traffic of immune cells to the eye [13].

Molecular profiling has provided a new perspective of the biology of UM. The Cancer
Genome Atlas (TCGA) recently performed the analysis of 80 UM primary tumors and
identified four different molecular subtypes [14]. Molecular subgroups 1 and 2 are asso-
ciated with disomy of chromosome 3 (D3) and better prognosis, whereas subgroups 3
and 4 are associated with monosomy of chromosome 3 (M3) and have worse prognosis.
The immune profiling of TCGA-UM analysis is scarce and limited to the association of
M3 tumors with higher levels of CD8+ T cells, Interferon gamma signaling, and immune
suppressor factors. Therefore, the immune microenvironment of UM seems to be related
to the genomic alterations, mostly to mutations in BAP1 gene, rather than to response
to immune signaling [15]. In this regard, it has been recently described that UM tumors
harboring mutations in BAP1 gene showed upregulation of several genes associated with
suppressive immune responses [16].

Dissemination in UM is hematogenous, suggesting an important role of tumor angio-
genesis (the development of new blood vessels) in tumor growth and metastasis. Indeed,
we have previously shown that enrichment in pro-angiogenic factors was related to worse
prognosis in UM but not in CM [17]. Angiogenesis is directly associated with immune eva-
sion and resistance to immunotherapy by suppressing dendritic cell maturation, inhibiting
T-cell effector response and recruiting myeloid derived suppressor cells. Thus, therapeutic

strategies combining immunotherapy with anti-angiogenic factors could modulate the
tumor microenvironment to make it more susceptible to the immune checkpoint inhibitors.

In this study, we perform a bioinformatics analysis using public gene expression data
in order to perform an in-depth characterization of the tumor microenvironment of UM
primary tumors and assess its association with prognosis.

2. Results
2.1. Clinical Description

A total of 213 primary UM patients from 5 datasets were included in the meta-analysis,
described in Table 1. The median age was 62.3, with 41.3% female and 58.7% males. Up to
56% of patients had recurred with a median disease-free survival (DFS) of 38.6 months. Dif-
ferences between the different datasets were evaluated for continuous variables (Kruskal-
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Wallis test) and categorical variables (Chi-squared test of proportions). No differences were
found for age, sex and recurrence status, while strong differences between datasets were
found on chromosome 3 status, cell type and DFS. Due to the differences between datasets
for DFS, all survival analyses were performed stratified by dataset.

Table 1. Baseline characteristics of samples included in the analysis by dataset. p-values for categorical variables indicate

results from Chi-Squared Tests. p-values for continuous variables indicate results from Kruskal tests. DFS: disease-free

survival.
. Entire Cohort  GSE22138 GSE27831 GSE73652 GSE84976 1EGA -Value
Variable 14
n=213 n=63 n=29 n=13 n=28 n=280
Age 62.3 61.0 66.0 61.6 62.2 0.411
Sex 0.801
Female 71 (41.3%) 24 (38.1%) 12 (41.4%) 0 (0.0%) 0(0.0%) 35 (43.8%)
Male 101 (58.7%) 39 (61.9%) 17 (58.6%) 0(0.0%) 0 (0.00%) 45 (56.2%)
NA 41 0 (0.0%) 0 (0.0%) 13 (100%) 28 (100%) 0(0.0%)
Chr 3 status <0.001
Disomy 64 (32.2%) 18 (28.6%) 11 (37.9%) 0(0.0%) 14 (50.0%) 21 (26.2%)
Partial 0 0 0 0 0 0
monosomy 5(2.5%) 5(7.94%) 0(0.0%) 0 (0.0%) 0(0.0%) 0(0.0%)
Monosomy 94 (47.2%) 32 (50.8%) 17 (58.6%) 0 (0.0%) 14 (50.0%) 31 (38.8%)
NA 36 (18.1%) 8 (12.7%) 1(3.5%) 13 (100%) 0(0.0%) 28 (35.0%)
Cell type <0.001
Epithelioid 40 (18.7%) 21 (33.3%) 6 (20.7%) 0(0.0%) 0(0.0%) 13 (16.2%)
Mixed 72 (33.8%) 23 (36.5%) 12 (41.4%) 0 (0.0%) 0(0.0%) 37 (46.2%)
Spindle 39 (18.3%) 0 (0.0%) 9 (31%) 0 (0.0%) 0(0.0%) 30 (37.5%)
NA 60 (28.2%) 19 (30.2%) 0 (0.0%) 13 (100%) 28 (100%) 0(0.0%)
Recurrence 0.245
Non-recurrent 119 (55.9%) 28 (44.4%) 18 (62.1%) 8 (61.5%) 15 (53.6%) 50 (62.5%)
Recurrent 94 (44.1%) 35 (55.6%) 11 (37.9%) 5 (38.5%) 13 (46.4%) 30 (37.5%)
DFS Months 38.6 411 37.2 77.8 23.2 <0.001

2.2. Stromal and Immune Cell Infiltration Is Associated with Poor Prognosis in Uveal
Melanoma (UM)

A variety of scores based on gene expression measuring stromal and immune cell
infiltration were calculated and used to assess association with prognosis. First, we used
the ESTIMATE (Estimation of Stromal and Immune Cells in Malignant Tumor Tissues
Using Expression Data) tool to measure tumor purity and immune cell/stromal infiltration.
The four resulting scores were used as global indicators since the tool does not deconvolute
between different cell lineages. The tumor purity score had a trend toward better prognosis,
although it was not significant (HR = 0.99 [0.97-1.01]). On the contrary, The ESTIMATE
score, which is a measure of non-tumoral cell infiltration was associated with worse
prognosis (HR =1.01 [1-1.03]). The ESTIMATE score was calculated based on both immune
and stromal scores, both associated with bad prognosis (immune score HR =1.02 [1-1.05];
stromal score HR = 1.04 [0.99-1.08]), Figure 1A. Thus, highly infiltrated tumors (with both
stromal and immune cells) showed a poor prognosis. In other words, the more tumor
purity the better the prognosis. Table S1 shows the ESTIMATE scores in each sample.
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Figure 1.. Forest plot show:ing. sur vi.val p901analysls using immwue and strornal infi:ltratiop.seores. Hmizontal bars ind:icate
tti.e 95% eori.fidence in'llilrva!s (CI) oi the haz.ard ratio (H:R). Each score was evaluated indivi.dually and ordered based on the
sutrnnary effect. Unjvaridte:Cox HR analy is wete perfotmed using the disease-free survival time. (A) HR based on -1:he
ESTIMATE se:ores. (B) HR based on the Inummophenoscore indi vid u.al seores and Aggregated smre. (C) HR bnsed on.
imrnune.cell [nfillrate sco{'es rom MCP-comlte.r. (U) HR based on the imwul le infu rutes from Qw111tis g .inalys-is, (E) 1--1B
based Qn11;:;1rkeri,; of immune infiltrates fromCt;msen.su.sTME.

Next, immunophenoscore (IPS) seores were used asan indicatot of immune systern
ac.tivation (Hgwe 1B). Toe aggreg..ated score, a c.omposite se.ore asuring the overall
immunogenicity of a I'umor, was associatcd wifu poo:r prognosis (HR =1.01 [L01-1.02]).
IntereStingly, when rndividual seores were intettogated, effector cellis (HR ="1.02 [1.01-

-uJ3]) and afitigen presentation {I-ffi = UJI [1-J .OJJ) scorés were associated with poor
prognosJs. On the contrary; checkpoints mark.ers (HR = 0.99 [0.98-T1) and suppressor cell
seores (HR :< 0.99 [0.98---1]) were associated with better prognosis (Fi-gure 1B). florest plots
showing separated ESTLMATE and IPS analysis for-each dataset are <1-vailable in Figure SI.
In summary, tiru:nunogenic tumors (Ulose scoring h:ighel1 in IPS) were associa ted with poor
prognosis. Moreover, i.f samples were divided between high and -low i.nfiltrated acco.ljcling
to the ESTIMATE score, those included M. the high tat.egory scored higher in Antigen
presentation and effector telJs (figure S2A). Also, they sh.ow a trend toward poor prognosis
(Log-rankp-value = 0.07) (Figure S2B).

FinaUy, since ESTiN\IATE onJ y per.form a global estima tion of nOJ1..tumoral ceU infil-
Ira.tion, a ceTI-type detaHed anal sis wa_s do.lile usin.g quan tification methods 1;,ased on gene
expression. A genera] trend towards infiltration as.sociation with pOor prognosis was ob-
served. However, exceptions in severa! cell line iges emerged in the anru:ysis (Figure 1C-E).
The MCP-counter (M..ic:ooenvironment Cell Populations-countet) method selected B cells
as rhe only cells associated with beUer prognosis (HR = 0.76 [0.49-1.19]). By contrast,
cytotoxic lymphoc:yte (HR =-1.31[1.05-1.631), fib.toblasts (HR = 1.35[1.11-1.66]), and
endoth lial ce.lis (HR =1.66 11.04-2.67]), wertc' significantly associate-d with po r prognosis
(Figure IC). Toe Quanb.seq method, measuring additional cell lineages, showed CD4
T'--cell (HR = 0.87[0.70-1.07]), B-cell (HR =0:89 [0.77-1.Dl))fand dendritic cell (I-ffi=0.93'
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[0.86-1.02.1), were associated with better prognosis On the contrary, macrophages M1
(HR =1.12[0.93-1.36]), mac.rophages M2 (HR = 1.05[1.02-1.09]), and NK cells (HR =1.25
[1.08-1.45]) were as ociated with poor prognosis. Additionall the Consens-usTME {Consen-
sus Tumor Mictoenviron.ment) method also selected B-cells (HR = 0.98 [0.96-1]}, as good
prognosis biomarkers along with eosi.noph.iIs (HR = 0.99 [0.98-11).Jnconsistent results were
fow,d across different qua.ntilication methods when den.dritic cells (DC) were inte.rrngated.
Since this is aJleterogenous group of cells, we use additional signatures to discriminate
between immatu.re OC (iDCs) and activated DC (aDCs). However, we did not observe an
association between i.DCs -and/ or aDCs with prognosis (Figure S3). Toe genes induded in
all signatures used in the analysis are listed in Tuble S2.

In summary; alJ] methods indkated that B cell's are associated with bette.r prognosis.
By colltrast, stromal cells (fibroblasts and endothelial cells), T cells CDS+, NK cells, and
macropha.ges Ml and M2 were associated with poo.r prognosis in at lea.st two out of the
three rnethods eval uated. Interestingly, B cells actas APCs through 1-fLA class D whereas
NK and CD8+ T cells destroy cells not e.xpressing HLA class 7 or cells presenting antigens
through HLA c.lass I, respectively. Sin.ce the later are :infl.anunation-reJated pathways
classically associa:ted with better prognosis in other salid tumors, we speculated that UM
is a divergent type of tumor in Hus regard.

TIlus, to ee whether anti.gen presentatiOl1.genes were prognosis biomarker' in Iflvf, a
survlval analysis was done. Kapla.n-Meler plots in Figure 2 showed that tumors showing
high expression levels of genes re.lated to the antigen presental:ion pathway were associated
w;ith poor prognosis. Tapasin 1 (TAPI) (Figme2A), beta-2-mitroglobulin (B2M) (Figure 1C),
human le-ukocyte antigen-B (HI.A-B} (Figure 2.P),1-fLA-E(Figure.,,-1) and J-fLA-F Pigwe 2n
were the more signi.ficant gen€!s with Log-rank p-values < 0.0001. Regarding cytotoxidty,
tumors sh.owing high expression of CDSA, GZMA and P.RPI were associated with poo-r
prognosis (Figure 54).
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Figure. 2. Kaplan.-Me.ier survival curves with gene related to antigen processing and presentation machinery in uveal
.mela.noma (UM) samples (ri"' 200} . Cenes included are (A) tapasi..n-1 (TAP-]), (B) TAP-2, (C) beta-2-nucroglobufui (B2M),
(D)<'alreticulin (CALR), (E) human lel.Ikocyte antigen-A (HLA-A), (F) HLA-B, (G)HLA-C, (H) HLA-E, (I) HLA G, G) HL<\-F.
Patients were dlvided in.to 1-Tigh ami Low groups by th.e median value within .each dataset and jorned afterwa.rd.s. p-values
of Log--rank tests are indi.cated. High expression is painted in. red wh.ereas low expression is pa.inted jn bhte.
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Mutational data was only available in the TCGA dataset. To see if the number of
mutations was associated with prognosis, we calculated the tumor mutational burden
(TMB). As expected in a cold tumor, only a median of 16 mutations per sample were found.
TMB was not associated with prognosis.

2.3. Combination of Angiogenesis and Antigen Presentation Confers Poor Prognosis

Results showed that endothelial cells, fibroblasts (stromal cells) and immune cells
(specifically cytotoxic ones) were associated with poor prognosis. Across these three mi-
croenvironmental factors, overlapping genes are scarce providing strength to the analysis.
Only one gene (HIF1A) has been found in common between fibroblasts and Angiogen-
esis signature. Consensus™F signatures measuring immune cell infiltration overlap with
angiogenesis signature in: B cells (PRKCB), monocytes (HIF1A and ARNT), Macrophages
M2 (FLT1), T cells CD4+ (EIF2B5 and PLCG1), T cells CD8+ (FLT4 and PLCG1).

Apart from fibroblasts, endothelial cell infiltration was strongly associated with re-
lapse; in agreement with previous results in the group. Thus, we wonder if these two
features were additive and confers a particularly aggressive phenotype. To do this, we used
angiogenesis (Angio) and antigen presentation pathways (AP) as reporter ones. Antigen
presentation pathway was used as a surrogate of immune system activation. First, we
assessed if a correlation between these two features existed. A statistically significant
but moderate correlation was found when all samples were taken together (R = 0.42,
p =2 - 10719, black line in the Figure 3A) and also when stratifying between relapsing
(R=0.24, p=0.021, dark grey line in Figure 3A) and non-relapsing patients (R = 0.44,
p =9.4 107, light grey in Figure 3A). Next, we classified the samples based in the com-
bination of the scores, obtaining four groups (High Angio-High AP, High Angio-Low AP,
Low Angio-High AP, Low Angio-Low AP). As can also be seen in Figure 3A, the bar plot in
Figure 3B showed that High Angio-High AP group includes the high number of recurrent
samples, whereas Low Angio-Low AP group includes the higher number of non-recurrent.
Phenotypes High Angio-Low AP and Low Angio-High AP exhibited an intermediate,
similar numbers of recurrent samples (Chi-squared test, p = 4.5 - 107).

Indeed, a survival analysis shows strong differences in DFS probability between the
four groups (Log-rank test, p < 0.0001), being the High Angio-High AP the group with
worse prognosis in opposition to Low Angio-Low AP group (p-value = 4.4 - 108) which
is the group showing better survival (Figure 3C). Because intermediate phenotypes (High
Angio-Low AP and Low Angio-High AP) have intermediate survival probability and those
tumors classified as High Angio-High AP were more prone to metastasize, we think these
two features had an additive role in prognosis. We tested the hypothesis that differences in
recurrence time could exist between group of samples, being Low Angio-Low AP patients
those relapsing later. Although no statistical differences were found, Figure S5 showed a
trend towards High Angio-High AP tumors as the earlier relapsing ones.

Finally, we performed an unsupervised hierarchical clustering using Angio and AP
scores that reflected the four groups previously described, as expected. The High Angio-
Low AP and Low Angio-Low AP were separated clusters. A mixture in the dendrogram
was observed between Low Angio-High Ap and High Angio-High AP groups (Figure 3D).
It is worth mentioning that there is an enrichment in samples harboring disomy in chromo-
some 3 in the Low Angio-Low AP cluster. On the contrary, almost all High Angio-High Ap
exhibited a chromosome 3 monosomy.
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Figure 3. Cornbinatio.1'l of enrichment seores from ang:i.ogenesi.s (Angio) and anti.gen presentation (Af') s.ignatu.res. (A) Cor-
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indi.cate the cut-off used for generating the fom' groups. (B) Bar plot showing thé frequency of recun-ent sampies in the
differen:t grol.lps of Angio-AP combi:nations. (C) Kaplan-Meiet survival curves of fiie four groups from combination of

Angio and AP .seores. Log-rank p-value is indica ted. Cox proportional hazard ratio test between the Low Angio-Low AP
reJerence group a.1:1d the other three groups was ca.lculated, and p-values are al:so indicated. (D) Hi.erarchlcal clusterin.g of al]

UM amples (n = 213) using the.Angio and AP seores. Bars on top reprnsent chromosome-3 status, dataset, recurren.ce and

combin.ed score.

Next, we consjderwhether the poorprognosisgrouprnightbesusceptible totreatment
wifii immunotherapy. To answer this question, .samples were seored using a genetic pro file
repo.rted as a good predictor of clinkal response to anti-PDLI pembrolizumab (T-cell
in:flammatory signature (TTS) score). As expected, tumors wjth inflammatory phenotype
High A.rlgio-High AP showed high TIS score values. Also, Low Angio-Low AP tumors
showed very low values. Howeve:r, it is jnteresting to note tbat there was High A11gio-High
Al' .samples with low TIS srnre. On the contrary, a group of Low Ang:io-H.igh AP _samples
showed high TIS score thus was suscept:ib]e to be treated v,rith inummotherapy {Figure 4).
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Figure 4. Boxplot showing T ell in.flmnmatory signalure (TIS) score acros s the four AngiorAP
cumbination groups.

Finally, we wonder if fibroblasts (Fibro) also h<l e an additive effect onprognosis,
along with. AP. Firsf, ¢ assessed correlati.on between. fibroblasts m.1d endothelial cells
infiltration finding a strong correlation (R=0.7, Figure S6A). Tllerefore, we expected similar
results with Ahgl0/ AP than with Fibra/ AP. Indeed, -the correlalion beh-veen .Flbro/ AP
is very simifar to corr lation bel:"ové n Angi 1/ AP (stal:istically ignificant but moderate
R =0.44, Figure S6B). When tumors were stratified i_n four groups (High AP-High Fibra,
High Ap-Low Fibro, Low AP-High Fibro and Low AP-Low Pibro}, hlmors in Low AP-Low
Fibrn showed the better pTognosis (Figure S6C).

2.4. Metabolic rmd Tyrosirr.C' KirJ;fiSe Pathway Are Activatccl in Voor-Prognosu 1lirnors

Jn order to deepen 01,1r knowledge of the biologica] behavior of tumors wit:h poor
prognosis, a functional a:nalysis comparing relapsing tumors between extreme phenotype®
wa.s conducted. As expected, the eruichment analysis (Figure 5A) showed an angioge.nesis
and inflammatory response in High AP-High Angi0 tumon;, along with imrn.urle-related
pathways such as complement, tumor nea-osis. factor a'l-plla (TNF-a) and intedeukin-
2 (IL2) signaling. However, other non-Infilttation-telated pathways emerged, such as
glycoiysis, epithelial-mesendlyrnal transifion, KRAS signalingrmTORCI sLgnali:n.g; and
PJ3K-AKT-MTOR signaiing. Thls suggested a crosstalk between immune infiltration,
angiogene i and metabolic pathway . Similar re ults were achieved whe:n the permuting-
labels method wm, u -Jiied instead ofthe pre-ranked ge.ne set enrichmerit ana\ysfo (GSEA}.
An altemative rnetbod, using the most dffferentially expressed genes reported signal
transdu,;:tion pathways and metal;iolis.ms-related pathways as the most significant ones, as
well as the a:nfigen pr,esentation pathway (Figure 5B).
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Figure 5. Funclional analysis of recurrent tumors within phenotypes "High Angio-HJgh AP" (11=45)
versus "Low Angio-Low P" (n =16). (A) Bar plot of enric.hed H,lllmarks frorn pre-r,mked GSEA
analysis, ordered by NES and colored by p-values. (B) Dt plot of errriched pathways [rom DEGs
iJ.1. "High Anglo-High AP" p!lenotype, colornd by adjustedp-values. GenéRalfo correspond t.o the
frequenty of gene from -the gene etin tlle list o.f DEGs. Count represeilts the tota I number of ge.nes .
GSEA: Gene Sét Enrid.unent Analy is, NES: Normalized Enrichme.nt Sco:rl", DEGs: Oifferenhally
Expressed Genes.

3. Discussion

To show the .importa,nce of i.nflamrnation and other stromal eells, we have performed
a pool analysis of 5 datasets containing prognostic, and transcriptomic jnformatio.n from
213 primary M sru:nples available iti the literature ["].J,18 21]. We bave identHied a clus-
ter of sam.ples with. angiogenic ru;id inflru:nm.atory phenotypes exbfiiiting poor prognosis
(Figure 6.). ContrMy towh;)t is found in oiller tumors, lymphocytic infiltrati.cm is related
to poor prognnsis. In a sunilal ein, a study by Luo afid Ma 221 in 1JNI also assod-
ated CDS lymphocytic irtfiltration with poor prognosis (urt.ivariate analysis), and B-cell
nlfi.ltratién with better prognosis (rnultivariate analysis). Th.is assdciation bétweeninflam-
:mation and poor prognosis in uveal melanoma ha already been desctihed in ind1.vidual
studles [14,23--".15].
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Figure 6.. Hypoth.esi.s. Our results sugg t acombinatory .Futru:tion of angiogen!;'Si!-and inflammati{)n
in UM h).mors. Infil tration of macr-qphages, fibroblasts and natural killer (NK) cellsis associated with
pobr prognosis, whereas i.nfiitration oi B ceUs is assodated with good prognosis, In.A over-cxpression
.;:m.ild trigger a mechanisrn to evade the NK-cells rnediated-attac.k. This bnmul'lusuppres.sive envi-
ronment, together with the high levels of stromal activily and éheckpoints block.ade, ;,11lows UM
cclls to dissminate and Oletastasize. 'ew tberap utic strategies such as, combinin:g immune che-
point inhibitors (ant:i-programmed death ligand1 (PDII) or rul 1:i-cytotoxic T-Iymphocyte anti,gen---4
(CTLA4)) withanti-angiogenit uu-geted therapy (anti-vascular e.ndothelial growth factor (VEGF))
coL1ld improve patien s' response. Figure crealed with BioRender.wm.

Tumor :tn.fiJtrating Lymphocytes (TILs) in primary UM are main.ly CD8+ cytotoxic T

cells and weve present in all 43 cases analyzed by fiionkhorst et al. [2 ]. fu addHion, CD4+

-helper cells could aJso be found in 91% of the samples, and appi:oxjmately half of these
were FoxP3+ reguiatory T cells. It is also noteworthy that a well-characterized prognostic
factor in UM, such as: chroroosome 3 monosomy, seerns to be strongly correlated with larger
lymphocytic infiltra.te. The key question here is why TILs lead to poor prognosis. One of the
hypotheses is that metastatic d.issemin-ation is required to create a I=ceU response due to the
peculiar immune ocular characteristics 251 If that hypot:hesis is true, only the UM that dis-
seminates outside the eye should have TILs in tbe primary tumor. The immunosuppressive
microenvir(mment of theprimary si.te, alongwithinhibitory d1aracteristics displayed by
UM ce]lJs, wouldrender this infiltra te non-effective when it comes to immune-surveillance.
Another, more intrigufog, pos,ibility is that TILs not onl.y fail to elicninate tm:nor cells but
also help tumor growth [26]. Many examples demonstrate that inflammation can prnmote
praliferation <Ind survivalJ of cal;lce.r cells ['.?.7]. Activated TILs would produce inflanunatory
mediators, generating a cancer-related in.flamn.,.atory mic;roenvironm.ent. The cell-type
detailed analysis performed using gtrnntificationmethods based on gene expression found
cytotoxic lymphocytes, macro-phages and NK cells associated wilh poot prognosis in at
leas two of the three methods evahiatéd. On the ofilier hand, B cells were found to be
cotrelated with better prognosis with all bioinformatic.toDI$ tested.

Thel'e ate no previous reports a ‘sociating B ceUs wHh better prognosis in uveal
melanotna, but recently different studi.es J:iave assoc.iated the pre.sence of B cells with
sw-vival and immunotherapy response in diffe:rent tumors [2f..-311].

The cetl-detailed arniiysis al.so revealed Ubroblasts and endothelial cell signatu,res a.sso-
ciated with poor prognosis. UM arises in one of the most capiUary-rich Hssues of th.e body
and disseminates hE:matogenously. Highly vascularized 1JM tumors are more aggressive
an:d i.ndicate a worse progno is. Recently, we have shown that p:rimaty UM inch.tded in the
TCGA that relapses Sy tenucally shows dmuch h.igher angiogenesis eruichment score than
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non-relapsed patients [17]. Differences in disease-free survival (DFS) when comparing
high vs. low angiogenesis enrichment scores were statistically significant in UM patients
but did not show significance when we compared signature high vs. low using primary
tumors included in the CM dataset from the TCGA.

We next sought to study if there was association between T-cell activation and an-
giogenesis signatures. We identified a group of patients with extremely poor prognosis
characterized by high levels of activation of both signatures and 82.9% 5-year relapse
rate. On the other hand, tumors with low activation showed good prognosis with only
31.5% of patients relapsing at 5 years. VEGF, along with other angiogenic factors, plays
a crucial role in modulating the immune system and fostering an immunosuppressive
microenvironment by directly suppressing dendritic cell maturation, inhibiting T-cells by
enhancing PD-1 and other inhibitory checkpoints, disrupting the normal differentiation
of hematopoietic precursor cells, and recruiting immunosuppressive cells such as T-cells
and myeloid derived suppressor cells [31,32]. Thus, a pro-angiogenic environment could
be a reason why immunotherapy with checkpoint inhibitors has not been very effective
in metastatic uveal melanoma compared to other tumors. Angiogenesis activation has
been a hallmark of tumors resistant to checkpoint inhibitors and is associated with more
immune-suppressed stroma in different cancers probably due to the close relationship
between aberrant cancer angiogenesis and immunosuppression [33,34].

Several antiangiogenic drugs have been used to treat MUM [17]. It is difficult to reach
a full conclusion because most of the trials are small and lack a comparator arm, but from
the results we can assume that although no objective responses are seen, clinical trials with
antiangiogenic drugs usually show slightly higher PFS and OS than clinical trials with con-
ventional chemotherapy. Based on these observations, it would be of special interest to test
the activity of antiangiogenic drugs combined with checkpoint inhibitors and see if we can
reproduce results observed in other diseases where checkpoint inhibitors in monotherapy
do not work such as endometrial cancer. Interestingly, hepatocellular carcinoma, another
disease with liver involvement, has become a target for this combination strategy after the
IMbravel50 (Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma)
study showed the superiority of atezolizumab and bevacizumab vs. sorafenib in terms
of OS [35].

In order to find other weaknesses that could arise due to therapeutic interventions, we
compared primary UM tumors with high angiogenic and antigen presentation activation,
with tumors with low activation of both pathways. Interestingly, glycolysis and the PI3K-
AKT-MTOR pathways were among the non-infiltration-related pathways. These metabolic
pathways have already been linked to immune-resistance to checkpoint inhibitors in
different studies [34,36-38]. Interestingly, a recent study has shown that UM is among the
tumors with the highest oxidative phosphorylation gene expression and correlates with
prognosis in primary UM [39]. Our group has recently made the same observation in MUM
patients [40]. We evaluated glucose metabolism in liver metastasis using positron emission
tomography (PET-CT) with [18F]-fluorodeoxyglucose (FDG). Increased metabolic activity
in liver metastases was found to be an independent predictor of overall survival even in
patients with small lesions (M1a).

Our analysis showed robust results replicated in a pool analysis merging different
datasets from different analytic platforms. However, this study has limitations. Because it is
an in-silico analysis using public data, we have no control over initial stages of the analysis
such as sample selection or RNA extraction. Transcriptomic data in each dataset has been
analyzed and normalized separately. Also, clinical information is scarce. Specifically, anti-
tumoral treatments could affect stromal and immune infiltration. Unfortunately, therapy
information was not available and/or detailed. Thus, further experimental validation is
needed in order to validate the hypothesis in Figure 6.
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4. Materials and Methods
4.1. Patients and Samples

Gene expression, mutations, and clinical data from 80 UM primary tumor samples
from the TCGA-UM dataset were collected from the cBioPortal. RNA-seq was downloaded
in fragments per kilobase per million (FPKM), then converted to log2 scale. Also, a total of
133 UM primary samples analyzed using microarrays were downloaded from the Gene Ex-
pression Omnibus (GEO) repository; accession numbers GSE27831 (n = 29) [18], GSE22168
(n = 63) [19], GSE73652 (n = 13) [20], GSE84976 (n = 28) [21]. Gene expression data from
GEO was log?2 scaled. To control for the batch effect, an adjustment was performed using
Combeat function from R package “sva”. All datasets include information of progression-
free survival (PFS), except GSE73652 which only includes the recurrence status. Table S3
includes a detailed description of the datasets.

4.2. Microenvironment Characterization

Gene expression data was used to characterize the immune microenvironment of
samples, using a variety of bioinformatics tools. The immunophenoscore (IPS) function
was used to measure the immune state of the samples [41]. IPS uses a number of markers
of immune response or immune toleration to quantify four different immune phenotypes
in a tumor sample (Antigen Presentation, Effector Cells, Suppressor Cells and Checkpoint
markers). It also generates an aggregated z-score summarizing the global immune state of
the samples. Then, the ESTIMATE R package was used to predict the purity from the sam-
ples. ESTIMATE is a tool that predicts the tumor purity and infiltrating stromal/immune
cells from gene signatures [42]. ESTIMATE calculates four scores. The Stromal score and
the Immune score were calculated using gene expression signatures. Then, a combination
of both generates the ESTIMATE score, a measure of the global infiltration of non-tumoral
cells in a sample. Finally, the ESTIMATE score is used to calculate the score called Tumor
purity, a measure of the number of tumor cells in a sample that are inversely correlated with
the ESTIMATE score. The higher the ESTIMATE score, the lower the Tumor purity score.

Three different methodologies of quantification were used; MCP-counter, Quantiseq,
and Consensus™E, We have followed the recommendations by Strum et al. [43] and used
three different methods to obtain robust results. However, each methodology analyzes a
different number of cell types and with different levels of detail that can generate ambiguity
when comparing results. The Inmunedeconv R package was used to infer cell infiltration
using MCP-counter and Quantiseq methods [43]. MCP-counter is a method based on
marker genes that quantifies the relative fraction of 10 cell types, including two stromal
cell types. Quantiseq is a deconvolution method that infers the absolute fraction and
shows a more detailed picture of the immune cell subtypes. Finally, a list of the total 18
gene markers from Consensus™F was used to perform the enrichment analysis with gene
set variation analysis (GSVA) [44]. All analyses were performed independently for the
different datasets and resultant scores matrices were joined for further analysis.

In addition, we have searched for gene expression signatures discriminating between
dendritic cells. Specifically, immature dendritic cells (iDC) and activated dendritic cells
(aDC) were extracted from Tamborero et al. [34].

4.3. TMB (Tumor Mutational Burden)

Mutational data was only available in the TCGA data and were used to calculate
tumor mutational burden (TMB) per sample.

4.4. Angiogenesis and Antigen Presentation Enrichment Analysis

Angiogenesis (Angio) and antigen presentation (AP) gene sets were manually selected
from the curated gene set collection of the Molecular Signatures Database (MSigDB) (BIO-
CARTA_VEGF_PATHWAY and REACTOME_ANTIGEN_PRESENTATION, respectively).
The GSVA R packages were used to perform Gene Set Variation Analysis [45]. This function
performs a non-parametric, unsupervised analysis for estimating variation of the given
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gene sets through the samples in the expression matrix, returning an enrichment score
for each sample. The GSVA function was performed with 1000 bootstraps and arguments
as default. GSVA was performed independently on the different datasets and resultant
matrices were joined for further analysis. The association between the two scores was
evaluated with the Spearman correlation test for all samples, recurrent and non-recurrent.
Samples were divided into “High” and “Low” groups for each score, with a zero value
as cut-off. Next, samples were divided into four groups based on the combination of
the two scores (High Angio-High AP; High Angio-Low AP; Low Angio-High AP; Low
Angio-Low AP). The frequency of recurrence between the four groups was evaluated with
a Chi-squared test.

4.5. Hierarchical Clustering

Samples were clustered by agglomerative hierarchical clustering on the basis of the
GSVA enrichment scores on the two selected gene sets. Sample distances were computed
via the R function “dist”, with Euclidean distance. Next, the “hclust” function generated a
clustering from the distances, with the “average” linkage method. Finally, a heatmap was
plotted and a dendrogram was drawn for distance-tree visualization purposes.

4.6. Functional Analysis

To identify enrichment in specific cellular functions and pathways, a GSEA was per-
formed comparing the recurrent samples from extreme phenotypes (‘High Angio-High
AP’ vs. ‘Low Angio-Low AP’) [46]. GSEA analysis was performed with the clusterProfiler
R package. Gene sets Hallmarks and Canonical pathways from MSigDB were interro-
gated. Samples were scored with the GSVA method using the T-cell inflammatory (TIS)
signature [47].

4.7. Statistical Methods

All statistical analyses were performed with R version 3.5.0 (R Foundation for Sta-
tistical Computing, Vienna, Austria). For homogenization of methods, all comparisons
between continuous variables were analyzed using non-parametric tests (Wilcoxon test
and Kruskal-Wallis test). For all tests applied, differences were considered statistically
significant when p-value < 0.05. The Cox proportional hazard regression model was used
to assess the prognostic effect of the different scores. Cox analysis was performed inde-
pendently for the different cohorts. A random-effects model was used to summarize the
effect for each of the different scores with the “metagen” function from R package meta.
This function performs a meta-analysis based on hazard ratio estimates and their standard
errors. The overall effect is calculated with the inverse variance method. The results were
plotted in a forest plot. For the pool analysis, all samples were joined and a Cox regression
model stratified by dataset was performed. Results were summarized and plotted with a
forest plot. Survival probabilities were plotted with the Kaplan-Meier method, and the
Log-rank test was used to compare the survival proportions among different groups. For
categorical variables, samples were divided into “High” and “Low” groups based on the
cut-off points (zero value for scores, median value for gene expression).

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/1422-006
7/22/5/2669/sl. Figure S1: Meta-analysis of immune markers by dataset for the different scores of
ESTIMATE (A) and Immunophenoscore (B). Figure S2: A. Boxplots of scores of antigen presentation,
effector cells, suppressor cells and checkpoint markers for High (n = 106) and Low (n = 107) Immune
groups. B. Kaplan-Meier survival curves for High and Low groups. Patients were divided into High
and Low groups by the median value of the ESTIMATE score. Figure S3: Meta-analysis of dendritic
cell markers by dataset for Activated dendritic cells (aDCs) (A) and Immature dendritic cells (iDCs)
(B). Figure S4: Kaplan-Meier survival curves for cytotoxic markers CD8A (A), GZMA (B) and PRF1
(C). Patients were divided by the median expression value for each dataset and joined afterwards.
Figure S5: Boxplots showing time to recurrence by Angio-AP groups. Figure S6: (A) Fibroblasts and
endothelial cells correlation plot (Spearman correlation). (B) Correlation plot between Fibroblasts
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and Antigen Presentation signatures colored by recurrent (light grey) and non-recurrent (dark grey)
status. Black line represents correlation for all samples, regardless of recurrence status. Spearman
correlation is indicated (C) Kaplan-Meier survival curves for the four groups combining Fibroblasts
and AP scores. Table S1: Resultant scores of the ESTIMATE method and immune groups generated
from the ESTIMATE score. Table S2: Gene signatures of the different methods used in the analysis.
Table S3: Detailed clinical and molecular information for each dataset.
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aDC activated dendritic cell
Angio Angiogenesis

AP Antigen Presentation
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CTLA-4 Cytotoxic T-Lymphocyte Antigen-4
D3 Disomy of Chromosome 3
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GSEA Gene Set Enrichment Analysis
GSVA Gene Set Variation Analysis
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HLA Human Leukocyte Antigen
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iDC immature dendritic cell
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IL2 Interleukin-2

IPS Immunophenoscore

KM Kaplan-Meier

M1 liver metastasis

Mla small lesion liver metastasis
M3 Monosomy of Chromosome 3

MSigDB  Molecular Signatures Database
mTORC1 Mammalian target of rapamycin complex 1

MUM Metastatic Uveal Melanoma
NES Normalized Enrichment Score
NK Natural Killer

(O3] Overall Survival

PD-1 Programmed Cell death protein 1
PDL1 Programmed Death Ligand 1
PET-TC Positron emission tomography
PFS Progression Free Survival
PIBK Phosphoinositide 3-kinase

PRF Perforin

TAP Tapasin

TIL Tumor Infiltrating Lymphocyte
TIS T-cell Inflammatory Signature
TMB Tumor Mutational Burden
TME Tumor microenvironment

TNF-J Tumor Necrosis Factor alpha
UM Uveal Melanoma
VEGF Vascular Endothelial Growth Factor
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1.2. Driver mutations in GNAQ and GNA11 genes are
likely to be antigenic in uveal melanoma patients

Article: Sandra Garcia-Mulero, Marco Punta, Roberto Fornelino Stefano Lise, Mar

Varela, Rafael Moreno, Marcel Costa-Garcia, Ramon Alemany, Josep Maria Piulats,
Rebeca Sanz-Pamplona. Driver mutations in GNAQ and GNA!! genes as a tentative

cancer vaccine in uveal melanoma patients.

Objective and main results:

The second objective of the Study j on uveal melanoma was to evaluate the antigenicity
of driver mutations in GNAQ and GNAjj genes taking into account HLA genotype, to
describe differences in the immune profile between samples harboring QVXkP or
QVXKkL amino acid changes, and to assess their association with clinical phenotypes.
In this study, we have evaluated the immunogenic potential of GNAQ/jj QVXkL and
GNAQ QVXkP mutations through in silico methods, in order to find novel potential
targets for immunotherapeutic approaches in uveal melanoma. The antigenicity of
driver mutations GNAQ/jj QVXKL and QVXkP in uveal melanoma was assessed by
bioinformatic tools. QVXkL peptide showed stronger binding affinity to HLA class I
than QVXkP peptide, and was more likely to be presented by HLA class I than most
driver mutations. The HLA haplotypes with higher binding affinity to QVXkL were
defined. We found that HLA-C*Xm:XV was the best candidate for presenting QVXkL
mutation, since it shows a strong binding affinity (BR<V) and high frequency (Vq%) in
the general population. Results from gene expression analysis showed that samples
harboring expressed higher HLA class I levels and high infiltration of CDW+ T cells and
NK cells. The functional analysis showed enrichment of hypoxia, mTOR signaling,
oxidative phosphorylation and fatty acid metabolism for QVXkP mutated patients.
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Abstract

Uveal melanoma (UM) is the most common ocular malignancy in adults. Nearly 95% of UM patients carry the mutually
exclusive mutations in the homologous genes GNAQ (aminoacid change Q209L/Q209P) and GNAI11 (aminoacid change
Q209L). UM is located in an immunosuppressed organ and do not suffer immunoediting. Therefore, we hypothesize that driver
mutations in GNAQ/11 genes could be recognized by the immune system. Genomic and transcriptomic data for primary uveal
tumors was collected from TCGA-UM dataset (n=80). The immunogenic potential for GNAQ/GNA11 Q209L/Q209P
mutations was assessed using a variety of tools and HLA types information. The immune microenvironment was characterized
using gene expression data. All prediction tools showed stronger GNAQ/11 Q209L binding to HLA. The immunogenicity
analysis revealed that Q209L is likely to be presented by more than 73% of individuals in 1000G database whereas Q209P is
only predicted to be presented in 24% of individuals. GNAQ/11 Q209L showed higher likelihood to be presented by HLA-I
molecules than almost all driver mutations analyzed. Samples carrying Q209L had a higher immune-reactive phenotype: (i)
expression of antigen presenting genes HLA-A (p=0.009) and B2M (p=0.043); (ii) immunophenoscore (p=0.008); (iii)
infiltration of immune system cells NK (p=0.002) and CD8+ T lymphocytes (p=0.02). Results suggest a high potential
immunogenicity of the GNAQ/11 Q209L variant that could allow the generation of novel therapeutic tools to treat UM like
neoantigen vaccinations.

Keywords: uveal meelanoma, driver mutations, antigenicity, immunotherapy.

At the molecular level, UM is very different from
1. Introduction cutaneous melanoma. Both arise from melanocytes, but they
do not share somatic mutations driving carcinogenesis. UM
shows exclusive mutations in the GNA gene family. Nearly
95% of UM patients carry the mutually exclusive mutations
GNAQ/GNAT1I in the hotspot Q209. These mutations change
the conserved catalytic glutamine for a Proline, P, or Leucine,
L, leading to the constitutive activation of the GTPase domain
(3). These oncogenic mutations in G protein-coupled receptor

Despite being considered a rare tumor (10 cases per million
incidence in Europe), uveal melanoma (UM) is the most
common ocular malignancy in adults (1). Prognosis is still
poor, with up to 50% of patients developing metastasis, mostly
in the liver. Metastatic UM does not have an effective standard
treatment available and survival rates have not improved in the
last decades (2).
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(GPCR) activates pathways including MPAK, PI3K/AKT or
YAP/TAZ promoting tumor progression (4).

Unlike cutaneous melanoma, UM do not respond to
immune checkpoint inhibitors (5,6). This could be due to
several molecular and anatomical differences. UM is located
in an immune-privileged organ, protected by the blood-ocular
barrier and exhibits an immunosuppressive
microenvironment. Because of that, it does not suffer
immunoediting (7). Moreover, the tumor mutational burden
(TMB) is very high in cutaneous melanoma but low in UM
(8). Thus, UM generates low levels of neoantigens and is
considered a tumor with low antigenicity (3). Also, we and
others showed that immune cell infiltration is associated with
poor prognosis in UM (9) (10,11).

Although driver mutations are normally catalogued as non-
immunogenic, recent work support the possibility to develop
immunotherapeutic drugs against neoantigens derived from
recurrent mutations in cancer driver genes in some cases (12).
We hypothesize that recurrent mutations in GNAQ and
GNAI11 genes could elicit T-cell responses. Given the
predicted low immune selective pressure in UM, it could
represent an attractive target for immunotherapeutic
interventions. Also, we hypothesize that different mutations
(Q209P or Q209L) could have different antigenicity and
response from the immune system. Our objective is to
computationally analyze the antigenicity of tumors harbouring
GNAQ/11 mutations, to characterize their microenvironment,
and to assess their association with clinical phenotypes. Our
results suggest that Q209L mutation is more immunogenic
than Q209P mutation, irrespectively of the mutated gene
(GNAQ or GNALI1).

2. Methods

2.1 Samples

Clinical and mutational data of paired primary uveal tumors
and blood samples from patients was collected from TCGA-
UM dataset (n=80 pairs). Annotated mutational data was
downloaded from the cBioPortal (13). RNA-seq was
downloaded in fragments per kilobase per million (FPKM),
then converted to log2 scale. Supplementary Table 1 includes
a detailed description of patients included in the dataset.
Comparison between groups were performed by Chi-squared
test for categorical variables and Wilcoxon test for numerical
variables. For survival analysis validation dataset, a series of
a uveal melanoma from Universitary Hospital of Bellvitge
(n=73) with clinical and mutational status information was
used.

2.2 Immunogenicity prediction of neoantigens GNAQ-L,
GNAQ-P and GNA11-L

First, for each mutation, 19 mers amino acid sequences
were extracted using an in-house script. Mutated amino acids
were in the center of the sequence. Wild type sequences were
also generated. The immunogenic potential for GNAQ-L,
GNAQ-P and GNA11-L was assessed in a variety of binding
prediction tools (NetMHC, NetMHCpan, NetMHCcons,
NetMHCpanstab, MHCSeqNet and MHCflurry) using HLA
supertypes and all 9mer combinations from the two mutated
sequences as input (14-21).

Apart from solo binding prediction, NetCTL tool was used
to predict proteasomal C terminal cleavage and TAP transport
efficiency (22). The proteasome cleavage event is predicted
using the version of the NetChop neural networks trained on
C terminals of known CTL epitopes as described for the
NetChop-3.0 server (23). The TAP transport efficiency is
predicted using the weight matrix-based method described by
Peters et al (22). NetCTL predicts MHC peptide binding using
neural networks in NetMHC server and then calculates a
combined score for the three measures. As an input, fasta files
with GNAQ and GNA11 protein sequence was used.

2.3 HLA presentation scores

All HLA-presentation scores were defined starting from
eluted ligand likelihood percentile ranks of peptides with
respect to HLA allotypes obtained from the NetMHCpan-4.0
prediction method (15). NetMHCpanl were run (HLA type I
only predictions) on all neopeptides of length 8 to 11
generated by each of the 3 mutations (GNAQ-L, GNAQ-P and
GNA11-L) against a set of 195 HLA(-A/-B/-C) types found in
the >1,000 individuals of the 1000Genomes project. For each
individual there was information about 6 HLA types.

Each mutation was mapped to a protein sequence and
associated to a set of 38 mutated peptides using an in-house
Python script to generate all possible peptides of length 8 to
11 that spanned the mutation. A wild type peptide was
associated to each specific mutant peptide that was identical
to the mutant peptide except that the mutated amino acid is
reverted to the wild type one. For each peptide in this set, the
program NetMHCpan-4.0 (57) was used to calculate the
eluted ligand likelihood percentile rank and predict the
interaction core peptide (Icore) with respect to all HLA
allotypes. The elution rank takes values in the range from 0 to
100, with lower values representing higher presentation
likelihoods. We defined the presentation score of a mutation
with respect to a specific HLA allotype as the minimum
elution rank among all associated peptides but excluding those
with a wild type Icore. We called this presentation BR score.

PHBR score (Patient Harmonic-Mean Best Rank) was
calculated by combining the six best rank socres of the six
HLA allotypes using a harmonic mean. Also, we calculated
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Table 1. Number of predicted bindings. WB: weak binding, SB:

our Population-Wide Median Harmonic-Mean Best Rank
(PMHBR) as the median of the PHBR scores of a mutation
calculated over a set of individuals. Lower PMHBR scores
correspond to higher likelihoods for the mutation to be
presented across our 1000G or TCGA populations (24).

2.4 Immune microenvironment characterization

The immune microenvironment of the samples was
characterised using gene expression data and a variety of
bioinformatics tools. The immunophenoscore (IPS) function
was used to measure the immune state of the samples by the
quantification of four different immune phenotypes in a given
tumor sample (Antigen Presentation, Effector Cells,
Suppressor Cells and Checkpoint markers), using gene
markers. Also, it computes an aggregated z-score
summarizing the four immune phenotypes (26). Finally,
samples were scored using the gene set variation analysis
(GSVA) method with 18 gene markers lists from
ConsensusTME (27) and the T-cell inflammatory (TIS)
signature (28).

2.5 Survival analysis

A survival analysis was done with a cohort of patients from
the Bellvitge University Hospital (n=73). Progression free
survival (PFS) was assessed between patients harboring
Q209P (n=25) and Q209L (n=48) mutation. Kaplan-Meier
curves were plotted to represent the result and log-rank test
was computed.

3. Results

3.1 GNAQ/GNA11 mutations in TCGA-UM dataset

GNAQ and GNAI1 were the most frequent missense
mutations in TCGA-UM dataset and were mutually exclusive
(Figure 1A). Out of 80 TCGA-UM patients, 34 patients
carried GNAI11 p.Q209L (hereafter GNA11-L), 10 patients
carried GNAQ p.Q209L (hereafter GNAQ-L), and 27 patients
GNAQ p.Q209P (hereafter GNAQ-P). The other 9 samples
were wild type at the position of interest; two patients carried
GNAQ p.R183Q mutation, one more patient carried GNAQ
p.G48V, one patient GNAI11 p.R183C, and one patient
GNAT11 p.R166H. Two individuals were mutant at the same
time for GNAQ and GNA11 but the second hit was not in
position 209 (one case at positions GNAQ p.Q209L and

strong binding.

GNAL11 p.R166H; second case at positions GNAQ p.R183Q
and GNA11 p.R183C) (Figure 1B).

Despite being located in different chromosomes (Chr. 9 and
Chr. 19, respectively), GNAQ and GNA11 genes are highly
homologous and so are the resulting proteins. A BLAST
alignment showed 90% identity between the two proteins
(Supplementary Figure 1). GNAQ-L and GNAIlI-L
suffered the same amino acid change in position 209 (from Q
-Glutamine- to L -Leucine-), and given the high homology
between these two proteins, the resulting 19-mer peptide in
which the mutation is centred were identical. On the other
hand, GNAQ-P changed from Q (Glutamine) to P (Proline).
Because of this, and since we planned to study the potential
immunogenicity of those mutations rather than protein
function, we decided to compare patients harboring P mutated
vs. patients harboring L mutated, irrespectively of the gene of
origin (Figure 1B). In total, 71 (89%) patients carried the
Q209P/L amino acid change, of which 44 (62%) carry amino
acid change p.Q209L and 27 (38%) carry change p.Q209P.

To see whether there was any association between the
different change Q209P or Q209L and the different clinical
variables in the dataset, we performed a statistical test by
mutation change (Supplementary Table 2). No association
was found with age, sex, overall survival time and status,
progression free survival status, recurrence, fraction of
genome altered, SCNA subtype cluster, BAP1 mutation,
Chromosome 3 status (disomy or monosomy), Chromosome
8 status (disomy or polysomy) or immune cluster. The only
significant association was the mutation count (Wilcoxon test,
p-val=0.028), indicating that patients with Q209L mutations
have a slightly higher number of mutations (a mean of 13.3 vs.
11.1). However, this is not significant when multitesting
correction was applied.

3.2 Binding dffinity prediction of neoantigens GNAQ-L,
GNAQ-P and GNA11-L

The 19 length peptides for GNAQ-L/GNA11-L (Q209L)
(IFRMVDVGGLRSERRKWIH) and GNAQ-P (Q209L)
(IFRMVDVGGPRSERRKWIH) were used to test the
antigenicity of these mutations using a total of 7 different
binding prediction tools, to avoid any bias related to similar
Machine Learning algorithms or datasets used for the training.
Most of these prediction tools focus on scoring the affinity of
the inputted peptides for a specific HLA. However,
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Figure 1. GNAQ and GNA11 mutations in TCGA UM samples A) Mutational status of GNAQ and GNA11 genes. Barplot shows
mutated patients in blue and wild type in grey. Frequency of alterations are 50% for GNAQ and 45% for GNA11. B) Lollipop
plot showing GNAQ and GNA11l mutations across the proteins and resulting peptides harbouring Q209P and Q209L

mutations. Aminoacidic changes are marked in red.

NetMHCstabpan, which calculates a combined score for the
affinity and stability of the binding was also used. As input,
tools used all possible 9mer combinations from the two 19mer
mutated sequences studied. Apart from the peptide sequences,
we used all the HLA superfamilies for the predictions.

The outputs of the different tools were diverse. The
NetMHC tools and MHCflurry calculate an affinity value
measured in nM, which is used to filter the binders or no
binders. These affinity values are also shown as a logaritmic
tranformations, called %Rank. Only the 9mers with a value of
500nM and below are considered binders. On the other hand,
the output of MHCSeqNet is a probability value between 0.0
and 1.0, where 0.0 refers to a non-binder and 1.0 to a strong
binder. Only those with more than 60% probability of binding
were taken. Lastly, MixMHCpred does not provide affinity
value, instead, it calculates a Score and a %Rank value for
each HLA allele. For a single allele, scores larger than 0
correspond to %rank smaller than 1%. Therefore, in the case
of this tool, we only choose the 9mers in which the best allele
score is higher than 0 (Supplementary Table 3).

In summary, all methods predicted Q209L mutation as
being more inmunogenic (assuming the higher binding values
the more immunogenic) than Q209P, except for NetMHCPan
that predicted equal number of peptides with binding affinity
(Figure 2). A total of 12 non-unique bindings with different
HLA types were found for Q209P variant whereas a total of
29 bindings were found for Q209L. Although only 4 out of the
7 tested tools give information about the strength of the
binding, no Q209P neoantigen was predicted as strong binder.
However, 5 putative neoantigens were classified as strong
binders in the case of Q209L (Table 1). The HLA haplotypes

giving rise to strong bindings with Q209L mutation were
HLA-A*03:01, HLA-B*27:05 and HLA-B*39:01. For Q209P
mutation, the HLA with strong bindings were HLA-A*03:01
and HLA-B*07:02 (Supplementary Table 3).

To know if these mutations would be likely to be presented
by any individual from the 1000Genomes database, as a
sample of healthy population, we calculated how many
individuals have at least one mutant peptide (length 8 to 11)
that has presentation likelihood below a given threshold for at
least one of the HLA types of the individual. For threshold %
rank <0.5 (Strong binding), up to 73% of individuals were
predicted to present Q209L peptide, while only 24% of
individuals were predicted to present Q209P peptide.
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Figure 2. HLA-Q209L and HLA-Q209P binding prediction.
Barplot showing the number of successful bindings predicted
of Q209L change (in orange) and Q209P (in green) across
seven prediction tools (in x axes), using HLA supertypes
genotypes.
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Figure 3. PMHBR score of a list of driver mutations across 1000 Genomes individuals. The lower PBHBR score the higher
probability to be presented. Q209L shows higher likelihood to be presented by HLA molecules than Q209P and most driver
mutations in cancer. Asterisks marks Q209P and Q209 L mutations.

Looking at threshold %rank <2 (Weak binding), 88% of
individuals were presenting Q209L peptides and 74% of
individuals present Q209P. Moreover, we generated a BR
score for each sample carrying Q209L by taking the minimum
BR score of all 6 BR per patient. The 69.7% of samples have
at least one strong binding (BR<0.5), while 16.3% have a
weak binding (0.5<BR<2) and 14% have no binding (BR>2).

Next, the percentage rank score of mutant peptides were
compared to the percentage rank of their corresponding wild
type (WT) peptides. This may be relevant because given the
similarity between WT and mutants (a single aa difference) it

is possible that if the WT is presented, the mutant (even if
presented) may be subjected to tolerance mechanisms and thus

not be immunogenic. For % rank < 0.5 threshold, in 59% of

individuals the mutated peptide Q209L is predicted to
presented with strong binding while the Q209L WT is not. On
the other side, only 8% of individuals are predicted to present
the Q209P mutated peptides and not the Q209P WT peptide.
So, mutation Q209L has the most encouraging differences
with respect to WT.

Finally, the HLA binding affinity was predicted through a
score of antigenicity for the two mutations Q209P and Q209L.
This score is calculated based on the "Best rank" score of
NetMHCpanl for the 100Genomes population. As explained,
the BR score is the Best Rank for each individual, while the
PMHBR is the median population BR score. The PMHBR
score of Q209P is 3.66, while the PMHBR score of Q209L is
0.62. Then, we have compared these scores to other driver
mutations, and we see that Q209L mutation has one of the
lowest scores, meaning that it has higher likelihood to be
presented across the population than most of the driver
mutations of different cancer types (Figure 3).

Apart from binding to HLA, for a neoantigen to be
presented it needs to be processed by the proteasome and
transported by the TAP mechanism. We used NetCTL to
predict proteasomal C terminal cleavage and TAP transport
efficiency. As a result, for Q209L we got 3 putative

neoantigens whereas we got only 2 in the case of the Q209P.
For Q209L, NetCTL selected 9 mer FRMVDVGGL as a good
candidate to be presented by HLA-B*27:05 and HLA-
B*39:01 and RMVDVGGLR to be presented by HLA-
A*03:01. These two peptides were also predicted to be binders
by all the other tools. The former as a strong binder and the
later a weak binder.

Taking together, all these results points to Q209L mutation
to be more immunogenic, being predicted to be properly
processed and presented with good affinity and stability.

3.3 HLA haplotypes frequencies with uveal melanoma
risk and survival

Next, we wanted to assess if having different HLA
haplotypes (implying different binding affinity for Q209L)
has an impact on uveal melanoma risk or survival. First, we
wonder if there was a relationship between HLA haplotype
frequency and the BR scores. In the general population, the
BR score of Q209L mutation is not correlated with HLA
frequency for HLA-A and HLA-B genes (Figure 4A), while
BR score and HLA-C exhibited a non-significant trend
towards negative correlation. For UM patients, the negative
correlation between HLA-C haplotype frequency and the BR
score is stronger (Spearman correlation, p=0.057, Figure 4B).
Results from 1000G population pointed to HLA-C*07:02 as
the allele with the more frequency and lower BR score. On the
contrary, HLA-A*24:02 is an example of frequent allele with
no predicted binding affinity for Q209L (Figure 4C).

HLA frequencies between uveal patients and general,
healthy population (1000G) were compared by binomial test
and resulting frequencies were plotted in a radar plot (Figure
S5A, Supplementary Table 4). As a result, 10 haplotypes
showed differences at FDR<0.05 between uveal and
population frequency, of which 9 showed higher frequency in
uveal melanoma patients; HLA-A*01:01 , HLA-A*02:01,
HLA-B*08:01, HLA-B*15:01, HLA-B*18:01, HLA-
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B*44:02, HLA-C*01:02, HLA-C*05:01, HLA-C*07:01,
HLA-C*12:03. Of those alleles, only HLA-C*07:01 and
HLA-A01:01 have BR score of high antigenicity (BR<2),
while the other seven with higher frequency in uveal
melanoma have high BR value scores (BR>2; low antigenicity
scores), suggesting a genetic selection in uveal melanoma
patients made neoantigen Q209L to be hidden.

The same analysis was performed for comparing the HLA
frequencies between patients harbouring Q209L or Q209P
mutations (Supplementary Figure 2). In this case, no
statistical differences were found between the frequencies.
Finally, to find out whether there could be selection towards
lower antigenic binding in patients carrying the highly
antigenic Q209L change and relapsing, we compared the HLA
frequencies in patients carrying Q209L mutation, between
recurrent and non-recurrent uveal melanoma samples. As in
the previous comparison, none of the HLA haplotypes
compared by binomial test showed statistically significant
differences. On the contrary, there is a tendency towards
higher frequency in HLA-B*44:02, HLA-B*(07:02 and HLA-
B*18:01 in non-recurrent samples, which are three haplotypes
with low binding affinity to Q209L. (Figure 5). Also, we
wonder if HLA haplotypes with higher chances of presenting
Q209L were absent in uveal melanoma patients. However,
there are not statistically significant differences in BR score
between haplotypes present and missing in uveal melanoma
patients (Supplementary Figure 3).

Finally, a survival analysis was done in a total of 73 human
samples from the Bellvitge University Hospital (n=73)
between Q209L and Q209P. As a result, Q209L patients
showed slightly better progression free survival (PFS) than
Q209P patients (Log-rank test p=0.038). (Supplementary
Figure 4). However, in TCGA data, we have not found any
relationship between P/L mutations and prognosis.

In summary, no clear associations have been found between
HLA haplotypes and risk of suffering uveal melanoma neither
between HLA frequency and survival. It is important to point
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out that there is a possibility that we do not find statistical
differences between recurrent (n=17) and non-recurrent
(n=26) Q209L patients due to the low sample size.

3.4 Samples harboring GNAQ-P or GNA-L mutations
showed differences in the tumor microenvironment

We used expression data to characterize the immune state
of samples carrying Q209L mutation or Q209P mutation.
First, we evaluated whether there were differences in the
levels of antigen processing and presentation genes (Figure
6A). All genes related to MHC class I showed higher gene
expression in patients carrying Q209L mutation (Wilcoxon
test; HLA-A, p=0.009; HLA-B, p=0.039; HLA-C, p=0.034,
B2M, p=0.043).

Next, we used a number of tools to characterize the immune
system activation status of samples. The T-cell inflamed
signature (TIS score) was estimated and showed no
differences between Q209L and Q209P mutated patients
(Figure 6B). The Immunophenoscore, that is used as global
score of the immune state of the samples, was significantly
higher in Q209L mutated patients (p=0.0081) (Figure 6C).
This score is based on four sub-scores that represent the
activation of Antigen presentation, Effector cells, suppressor
cells and checkpoint markers (neither of those showed
statistically significant differences, although there is a
tendency to higher antigen presentation and effector cells
activation in Q209L patients).

To explore the infiltrate in detail, we used Quantiseq
method for estimating the infiltration of immune cells in the
tumour microenvironment (Figure 6D). We found higher
infiltration of T cells CD8+ (p=0.03) and NK cells (p=0.0016)
in Q209L patients. To validate these results, we estimated the
scores with a second method, called ConsensusTME
(consensus tumor microenvironment) (Supplementary
Figure 5). In agreement with the previous method, we found
that patients carrying Q209L mutations tended to higher
infiltration scores for CD8 T cells (p=0.065). In contrast, we
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Figure 5. HLA frequency association with UM risk and survival. Radar plots comparing frequencies in HLA haplotype for
HLA-A gene, HLA-B gene and HLA-C genes A) Between UM patients (green) and 1000 Genomes individuals (purple), and
between recurrent (red) and non-recurrent (green) patients harbouring Q209L (B). Asterisks correspond to haplotypes with
statistical differences by Binomial test (FDR p-adjusted < 0.05). Only haplotypes which are present in uveal melanoma

patients are depicted.

found no differences in NK cells. No differences were found
for the other cell types with this method, although there was a
trend towards higher scores of B cells in Q209P patients.
Despite the variability between the methods, all results
suggest a distinct immune microenvironment modulation,
indicating a high immune reactive phenotype in tumours
harbouring Q209L mutations.

Finally, to look at differences in activated biological
pathways, a differential expression followed by gene-set
enrichment analysis between Q209L carriers and Q209P
carriers was performed. A total of 12 genes were found at p-
value<0.05 and absolute values of logFC>1, of which 9 were
overexpressed in Q209L patients and 3 were overexpressed in
Q209P patients (Supplementary Table 5). In the functional
analysis, as expected, most enriched gene sets for Q209L
patients were related with immune system (IFN-y, p-
adj=1.38e-12; IFN-0, p-adj=3.06e-8, IL6/JAK/STATS3, p-
adj=1.4e-3). Also, other pathways related with tumour growth
and metabolism emerged (mTOR signalling, p-adj=5.16e-5;
hypoxia, p-adj=0.011, oxidative phosphorylation, p-adj=0.03,

and fatty acid metabolism, p=0.04) (Supplementary Figure
6, Supplementary Table 6). Otherwise, there was not any
pathways enriched in Q209P patients. This result suggests a
crosstalk between immune infiltrate and other components of
the tumour biology in Q209L carriers.

4, Discussion

Activating mutations in the Gaq signaling pathway at the
level of GNAQ and GNA11 genes are considered alterations
driving proliferation in UM. Lot of research has been devoted
to understanding molecular mechanisms behind these
alterations, which transfer signaling from GPCRs to
downstream effectors by activating the pathway
constitutively. Also, to develop blocking drugs (29). Despite
these efforts, no novel treatment targeting this pathway has
improved the prognosis of UM patients. Due to the exclusive
immune microenvironment of UM, here we propose to study
these driver mutations from an immunogenic point of view.
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Figure 6. Characterization of immune state in patients carrying Q209L variant and Q209P variant. A) Levels of expression
of antigen presenting genes B2M, HLA-A, HLA-B and HLA-C. B) T cell Inflammatory signalling (TIS) score. C)
Immunophenoscore (IPS), antigen presentation, effector cells, suppressor cells, and checkpoints scores. D) Immune cell
infiltration. Wilcoxon test were used to calculate statistically significant differences (p-value < 0.05).

Our hypothesis is that different amino acids in the same
position (P or L) activates different immune response in the
patient, rather than being GNAQ or GNA11 mutant. To the
best of our knowledge, little is known about differences
between tumors harboring Q209P or Q209L mutations. A
study by Maziarz et al showed fundamental difference in the
molecular properties of Gq Q209P compared with proteins
harboring Q209L, due to different structural conformations of
the aberrant proteins (30).

Contrary to other driver mutations such as those in p53 or
BRAF, among others; GNAQ and GNA11 are UM-exclusive
mutations. On one hand, these alterations could help cancer
cells to acquire an eye-specific adaptation. On the other hand,
it might be hypothesized that tumoral cells harboring these
mutations in other organs are destroyed by immune system in
early stages of the disease. In this regard, it has been reported
that highly recurrent oncogenic mutations have poor HLA
class I presentation (31). Punta et al reported that the median
PMHBR of highly recurrent driver mutations in TCGA is 1.84
whereas the median PMHBR of passenger mutations in
TCGA is 1.391. Thus, a driver mutation's frequency in cancer
patients negatively correlates with the population ability to
present it (24,31). Our results point to Q209L to be more

immunogenic that Q209P in 1000G population. Despite being
a driver mutation, it was more likely to be presented in
comparison with other recurrent ones. In agreement, all tested
tools except NetMHCPan predicted Q209L derived peptide as
high immunogenic.

Neoantigens shared among groups of patients have become
increasingly popular therapeutic targets. Obviously, non-
recurrent, passenger mutations generating neoantigens needs
personalized logistics to be therapeutically exploited. On the
contrary, public mutations simplifies all this process. In this
regard, several public neoantigens from mutations in KRAS,
BRAF and TP53 genes has been described so far (12). It is
worth to mention a recent work by Samuels et al. describing
the combination of HLA-A*01:01 and driver mutation
RAS.Q61K as potentially immunogenic in 3% of melanoma
patients (39).

We have found differences in immune system activation
and infiltration between Q209L and Q209P tumors, being
Q209L those scoring better in immunophenoscore. In
agreement, Q209L tumors showed higher expression of genes
related to antigen presentation. Interestingly, Q209L tumors
showed higher infiltration of T-cells and NK cells. It has been
reported that normal ocular cells express little or no MHC
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class I molecules in order to avoid recognition by cytotoxic T-
cells. Aqueous humor or eye contains immunosuppressive
factors inhibiting NK cells such as TGF-beta or MIF.
Paradoxically, metastasizing cells in UM upregulate HLA
molecules. Probably, this is because uveal melanoma cells
with lower HLA expression are susceptible to be detected and
eliminated by NK cells (32). In agreement, in-vitro studies
have demonstrated the ability of cytotoxic NK cells to detect
and kill uveal melanoma cells (33,34).

Also, differences at functional level have been found.
Interestingly, Q209L score better in pathways related to
inflammation like interferon alpha and gamma response
reinforcing those tumors to be more immunogenic. However,
no changes in the inflammatory microenvironment neither in
HLA expression has been found in a similar study comparing
Q209L vs. Q209P primary uveal tumors (35).

Although a trend was observed towards more frequent
HLA in UM showing low BR scores, no clear associations
have been found between HLA haplotypes and risk of
suffering uveal melanoma neither between HLA frequency
and survival. These suggest that genetics of patients do not
impact directly on disease initiation or progression through
Q209L presentation, or at least there are other implicated
factors. One could expect HLA alleles showing low BR score
(meaning high likelihood of the neoantigen to be presented by
HLA) in healthy population and HLA alleles showing high BR
score in UM patients. The low number of UM samples
prevented us to discard the hypothesis that people presenting
Q209L neoantigen are at lower risk to develop UM.
Interestingly, a negative correlation has been found between
BR score and HLA-C frequency in both uveal patients and
general population suggesting HLA-C as the best presenting
allele for this specific neoantigen.

In terms of prognosis, mutations in GNA11 have been
moderately associated with poor prognosis and found more
frequently in metastatic UM; in comparison with GNAQ
mutations (36,37). Other analysis, however, found not
differences (35). Looking at amino acidic change, in TCGA-
UM data, a marginal p-value of 0,06 pointed to Q209L to be
associated with high risk of relapse. No differences in survival
status were found. However, in controversy, our results in an
independent dataset of primary UM samples showed Q209P
patients to have poor prognosis (log-rank=0,04). Interestingly,
Terai et al. identified that differences in mutation patterns
(Q209P vs. Q209L) in GNAQ and GNA11, rather than GNAQ
and GNAI11l themselves, might predict the survival of
metastatic UM patients. After development of metastasis,
patients with GNAQ Q209P mutant tumors had a more
favorable outcome than patients with GNA11 Q209L and
GNAQ Q 209L mutant tumors (38). Also controversial, but in
the primary tumor setting, a work by van Weeghel et al found
not differences in prognosis based on Q209P or L mutation
but in Chromosome 3 status (monosomy or disomy), as

previously reported. In our data, there is not association
between Chromosome 3 status and Q209P or L mutation.

This study has several limitations. It has not been validated
in independent datasets because of scarce data about amino
acidic change in GNAQ, GNAI1l mutations. Functional
analysis comparing tumors harboring Q209P and Q209L
could be biased by differences in number of samples between
the two groups. Unfortunately, binding predictors do not
perform well with HLA-II so the role of these genes deserves
further study. Also, prediction binding algorithms could
produce false positive results. The limited sample size is also
a drawback. Finally, the study is primarily computational.

Despite the shortcomings, it is worth to mention that an
existing patent (W02019241666) validates our observations.
It already defines a technology for the development of a
vaccine to treat uveal melanoma based on GANQ/GNALI 1
mutations. It shows how the binding of the mutated peptide
FRMVDVGGL, which was also found in our study, with the
HLA is more immunogenic than the binding with wild type
peptide. Also, they describe that the critical amino acids for
the binding were R in position 2 and Q/L in position 9, located
in MHC pocket acting as an anchor.

Treatment of UM continues to be a challenge, especially in
metastatic patients. Although preliminary, our work paves the
way for future therapeutic options such as NK cell therapy or
neoantigen vaccines. In this study, we report that
GANQ/GNALI11 mutations can generate immunogenigity and
we have proposed a potential candidate for neoantigen vaccine
targeting uveal melanoma.
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Supplementary materials

Supplementary Figure 1. GNAQ and GNAI11 protein alignment. Green square marks
selected peptides for subsequent binding prediction analysis. Q Amino acid changing to L or P
in mutated proteins are marked in red.

Query: sp|PSA14R|GNAD_HUMAN Guanine nucleotide-binding protein G(q) subunit alpha 0SsHomo sapiens OX=96@6 GN=GNAQ PF=1 SV=4 Query Tn: 1cl|Query 55461 Lenglh: 359

»sp|P29992|GNAL1_HUMAN Guanine nucleotide-binding protein subunit alpha-11 05-Homo sapiens OX-9G06 GN-GNAL1 PE-1 SV-2
Sequence ID: Query 55463 Length: 359
Range 1: 1 to 359

Score:sus bits(1768), Expect:é.m,
Method:Compositional matrix adjust.,
Identities:324/350(00%), Positives:345/350(96%), Gaps:@/359(0%)
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MTLESIMACCLSEEAKEARRINDE TERQLARDKRDARRELKLLLLGTGESGKSTFIKGMR
MTLESHMACCLS4E KE+4RIN EIF4+QLARDKROARRELKLLLLGTGESGKSTFIKOMR
MTLESMMACCLSDEVKESKRINAL TEKQLARDKRDARRELKL LLLGTGESGKSTITKOMR

ITHGSGYSDEDKRGFTKLVYQNIF TAMQAMIRAMDT LKIPYKYEHNKAHAQLVREVDVEK
ITHG+GYS+EDKRGF TKLVYQNIFTAMQAMIRAMITLKI YKYE NKA+A LREVDVEK
TTHGAGYSEEDKRGFTKLVYQNTFTAMQAMTRAMETLKTLYKYEQNKANAL | TREVDVEK

VSAFENPYVDALKSLNNOPGLQECYDRRREYQLSDS TKYYLNDLDRVADPAY LP1GQOVL
V4 FE¢ YV AIK+LW DPGIQECYDRRREYQLSDS KYYL D+DR+A  YLPTQQDVL
VTTFEHQYVSATKTLWEDPGIQECYDRRREYQLSDSAKYYLTDVDRIATLGYLPTQQDVL

HVRVVTYGIIiVPerQEWLFRMVDVGGQHS[HRXUI\ FENVTSTMFLVALSEYDQVLY
RVRVPTTGI IEYPFOL &4+ FRMVDVGEORS ERRKWIHE FENVTSTHF LVALSEYDQVLY
RVRVPTTGLIEYPFDLENIIFRMVDVG ERRKWIHCFENVTSINF LVALSEYDOVLY

ESDNENRMEESKALFRTIITYPWFQNSSVILFLNKKDLLEEKIMYSHLVDYFPEYDGPQR
ESDNENRMEESKALFRTTITYPWFQNSSVILFLNKKDLLE 1KT4YSHLVDYFPEIDGPQR
ESONENRMEESKALFRTTITTYPWFQNSSVTL FLNKKDLLEDKTLYSHLVDYFPEFDGPQR

DAQAAREF I LKMFVDLNPDSDKITYSHETCATOTENTRFVEAAVKDT I LQLNLKEVYNLY
DAQAAREF ILKMFVDLNPDSDKIIYSHFTCATDTENLIRFVFAAVKDTILOLNLKEYNLY
DAQAAREFILKMFVDLNFDSDKITYSHFTCATDTENIRFUFAAVKDTILQLNLKEYNLY

https://blast.nebi.nlm.nih.gov/Blast.cgi

Supplementary Figure 2. Radar plots comparing frequencies in HLA haplotype for HLA-
A gene, HLA-B gene and HLA-C genes between patients harbouring Q209L and Q209P.
Asterisks correspond to haplotypes with statistical differences by Binomial test (FDR p-
adjusted < 0.05).
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Supplementary Figure 3. Comparison of BR scores between present and absent
haplotypes in uveal melanoma patients. Not statistically significant differences were
observed.
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Supplementary Figure 4. Survival analysis. Kaplan-Meier curve showing Q209L carriers
having better disease-free survival (DFS) than Q209P carriers.
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Supplementary Figure 5. Cell infiltration using ConsensusTME tool.
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Supplementary Figure 6. Functional enrichment analysis. Plot showing statistically
significant functions over-expressed in in samples carrying Q209L variant. Gene Set
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Enrichment Analysis (GSEA) sere used.

p.Q209L (positive) vs p.Q209P (negative)
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Supplementary Table 1. Baseline characteristics of 80 TCGA-UM samples.

JALL] N
N=80
Age 62.2 (14.0) 80
Sex: 80
Female 35 (43.8%)
Male 45 (56.2%)
Overall Survival Months 26.7 (18.1) 80
Overall Survival Status: 80
Deceased 23 (28.7%)
Living 57 (71.2%)
Progress Free Survival Months 23.2 (17.5) 79
Progression Free Status: 80
Censored 50 (62.5%)
Progression 30 (37.5%)
Disease specific Survival status: 80
Alive or Dead Tumor Free 59 (73.8%)
Dead with Tumor 21 (26.2%)
Recurrence: 80
Non-recurrent 54 (67.5%)
Recurrent 26 (32.5%)
Fraction Genome Altered 0.16 (0.12) 80
Mutation Count 16.9 (42.3) 80
SCNA cluster: 80
1 15 (18.8%)
2 23 (28.7%)
3 22 (27.5%)
4 20 (25.0%)
BAP1 mutation 13 (16.2%) 80
Chromosome 3 status: 80
Disomy 21 (26.2%)
Monosomy 31 (38.8%)
'Missing' 28 (35.0%)
Chromosome 8 status: 80
Disomy 19 (23.8%)
Polysomy 33 (41.2%)
'Missing' 28 (35.0%)
Immune cluster: 80
High 24 (30.0%)
Low 56 (70.0%)
Mutation: 80
GNAI11 p.Q209L 34 (42.5%)
GNAQ p.Q209L 9 (11.2%)
GNAQ p.Q209P 27 (33.8%)
GNAQ,GNAT11 p.Q209L,p.R166H 1 (1.25%)
WT 9 (11.2%)
prot: 80
p.G48V 1 (1.25%)
p-Q209L 44 (55.0%)
p-Q209P 27 (33.8%)
p-R183Q 1 (1.25%)
p-R183Q,p.R183C 1 (1.25%)
WT 6 (7.50%)




Supplementary Table 2. Baseline characteristics of 71 mutated samples from TCGA-UM by
amino-acid change. P-values for categorical variables were calculated by Chi-Squared Tests.
P-values for continuous variables were calculated by Wilcoxon tests.

P.Q209L P.Q209P P-VALUE
N=44 N=27
Age 62.7 (14.7) 62.1 (13.2) 0.850
Sex: 0.399
Female 17 (38.6%) 14 (51.9%)
Male 27 (61.4%) 13 (48.1%)
Overall Survival Months 25.0 (16.7) 27.9 (21.3) 0.549
Overall Survival Status: 0.341
Deceased 14 (31.8%) 5 (18.5%)
Living 30 (68.2%) 22 (81.5%)
Progress Free Survival Months 21.1 (16.5) 25.0 (19.9) 0.405
Progression Free Status: 0.304
Censored 26 (59.1%) 20 (74.1%)
Progression 18 (40.9%) 7 (25.9%)
Disease specific Survival status: 0.260
Alive or Dead Tumor Free 31 (70.5%) 23 (85.2%)
Dead with Tumor 13 (29.5%) 4 (14.8%)
Recurrence: 0.062
Non-recurrent 27 (61.4%) 23 (85.2%)
Recurrent 17 (38.6%) 4 (14.8%)
Fraction Genome Altered 0.15 (0.10) 0.14 (0.11) 0.630
Mutation Count 11.1 (4.17) 13.3 (3.77) 0.028
SCNA cluster: 0.160
1 7 (15.9%) 8 (29.6%)
2 11 (25.0%) 10 (37.0%)
3 13 (29.5%) 3 (11.1%)
4 13 (29.5%) 6 (22.2%)
BAP1 mutation 7 (15.9%) 5 (18.5%) 0.757
Chromosome 3 status: 0.384
Disomy 11 (37.9%) 9 (56.2%)
Monosomy 18 (62.1%) 7 (43.8%)
Chromosome 8 status: 0.598
Disomy 9 (31.0%) 7 (43.8%)
Polysomy 20 (69.0%) 9 (56.2%)
Immune cluster: 1.000
High 13 (29.5%) 8 (29.6%)
Low 31 (70.5%) 19 (70.4%)
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Supplementary Table 3. Peptides predicted to bind to HLA by MHCSeqNet, NetMHC,
NetMHCpan, MHCflurry, MixMHCpred, NetMHCcons and NetMHCpanstab tools. Attached
in excel format.
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Supplementary Table 4. Results from bionomial tests comparing HLA frequencies between
general population and uveal melanoma population, ordered by BR score. HLA haplotypes
with statistical differences and higher frequency in UM are coloured in yellow. Only HLA
haplotypes present in UM patients were compared. BR; Q209L BR score, BR peptide; 9 mer
amino acid of best rank for the allele. Freq_uveal; frequency of haplotype in uveal melanoma
samples, Freq pop; frequency of haplotype in the 1000Genomes population, pval adj; p-
value adjuted by FDR, N; number of UM patients with the HLA allele, diff; frequency
difference.

HLA allele BR BR_peptide Freq_uveal Freq pop pval pval_adj N diff

HLA-A*31:01 0.08 RMVDVGGLR 0.04 0.04 0.52 071  7.00 -0.01
HLA-B*39:01 0.09 FRMVDVGGL 0.01 0.01 0.73 087 1.00 0.01
HLA-C*07:01 0.09 FRMVDVGGL 0.18 0.07 1.00 0.00 28.00 -0.11
HLA-C*06:02 0.09 FRMVDVGGL 0.05 0.08 0.65 0.81 10.00 0.02
HLA-B*14:01 0.17 FRMVDVGGL 0.01 0.01 059 0.77  1.00 0.00
HLA-B*14:02 0.17 FRMVDVGGL 0.04 0.02 0.03 0.13  7.00 -0.03
HLA-C*07:02 0.19 FRMVDVGGL 0.18 0.13  1.00 1.00 21.00 -0.04
HLA-B*27:05 0.21 FRMVDVGGL 0.02 0.02 0.74 087  3.00 0.00
HLA-B*38:01 0.33 FRMVDVGGL 0.03 0.01 0.03 0.15 4.00 -0.02
HLA-C*07:04 0.37 FRMVDVGGL 0.04 0.01 030 055 4.00 -0.02
HLA-A*03:02 0.39 RMVDVGGLR 0.01 0.00 0.32 0.55 1.00 0.00
HLA-A*03:01 0.40 RMVDVGGLR 0.13 0.09 0.10 028 21.00 -0.04
HLA-B*57:01 0.45 GLRSERRKW 0.02 0.02 1.00 .00 3.00 0.00
HLA-A*68:01 0.52 DVGGLRSER 0.03 0.03 1.00 1.00  4.00 0.00
HLA-A*01:01 0.89 MVDVGGLRS 0.13 0.06  0.00 0.02 20.00 -0.06
HLA-A*32:01 1.12  GLRSERRKW 0.05 0.02 0.01 0.08  8.00 -0.03
HLA-A*11:01 1.28 RMVDVGGLR 0.09 0.09 1.00 1.00 14.00 0.00
HLA-B*58:01 1.57 GLRSERRKW 0.01 0.03 0.10 028 1.00 0.02
HLA-A*30:01 2.14 RMVDVGGLR 0.01 0.03 0.19 042 200 0.02
HLA-B*15:01 226 GLRSERRKW 0.09 0.04 0.01 0.04 14.00 -0.05
HLA-A*30:02 236 RMVDVGGLR 0.02 0.02 1.00 1.00  3.00 0.00
HLA-C*05:01 272 MVDVGGLRS 0.06 0.05 0.00 0.02 17.00 -0.02
HLA-A*30:04 2.87 RMVDVGGLR 0.01 0.00 0.17 0.41 1.00 -0.01
HLA-A*29:02 292 RMVDVGGLR 0.04 0.03 021 043  7.00 -0.02
HLA-C*02:02 3.05 FRMVDVGGL 0.05 0.02 0.01 0.08  9.00 -0.03
HLA-B*15:17 3.12 GLRSERRKW 0.01 0.00 0.43 0.65 1.00 0.00
HLA-C*08:02 322 MVDVGGLRS 0.03 0.03 0.07 026  8.00 0.00
HLA-C*12:03 329 FRMVDVGGL 0.08 0.03 0.00 0.03 12.00 -0.05
HLA-B*44:02 3.35 GLRSERRKW 0.12 0.04 0.20 0.00 19.00 -0.08
HLA-C*04:01 3.47 FRMVDVGGL 0.03 0.13  0.10 028 14.00 0.11
HLA-B*18:03 3.80 FRMVDVGGL 0.01 0.00 0.06 022 1.00 -0.01
HLA-A*02:01 3.94 RMVDVGGL 0.29 0.19  0.00 0.02 46.00 -0.10
HLA-B*40:01 4.09 FRMVDVGGL 0.04 0.06 0.51 071  7.00 0.02
HLA-C*17:01 420 RMVDVGGL 0.01 0.02 0.19 042 1.00 0.01
HLA-B*08:01 4.25 LRSERRKWI 0.09 0.04 0.00 0.03 14.00 -0.05
HLA-B*44:03 453 GLRSERRKW 0.04 0.04 1.00 1.00  6.00 0.00
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HLA-C*16:01
HLA-C*03:03
HLA-C*03:04
HLA-A*26:01
HLA-C*16:04
HLA-C*01:02
HLA-C*15:02
HLA-B*44:05
HLA-B*40:02
HLA-A*25:01
HLA-B*37:01
HLA-B*35:03
HLA-B*49:01
HLA-B*35:08
HLA-B*13:02
HLA-A*23:01
HLA-B*35:02
HLA-A*24:02
HLA-B*53:01
HLA-B*52:01
HLA-B*35:01
HLA-B*40:06
HLA-B*55:01
HLA-B*18:01
HLA-B*50:01
HLA-B*07:02
HLA-A*68:02
HLA-B*41:01
HILA-B*45:01
HLA-B*51:01

4.60
4.66
4.66
4.75
4.79
5.18
5.19
541
5.86
5.96
597
6.06
6.46
6.49
6.68
6.95
6.99
7.02
7.04
7.04
7.21
7.70
8.61
9.00
9.40
9.52
10.59
12.56
12.89
15.92

RMVDVGGL
FRMVDVGGL
FRMVDVGGL
DVGGLRSER
FRMVDVGGL
RMVDVGGL
RMVDVGGL
GLRSERRKW
FRMVDVGGL
DVGGLRSER
FRMVDVGGL
MVDVGGLRS
FRMVDVGGL
MVDVGGLRS
RMVDVGGL
IFRMVDVGGL
MVDVGGLRS
IFRMVDVGGL
GLRSERRKW
RMVDVGGL
MVDVGGLRS
FRMVDVGGL
FRMVDVGGL
FRMVDVGGL
FRMVDVGGL
GLRSERRKW
MVDVGGLRS
FRMVDVGGL
VDVGGLRSE
FRMVDVGGL

0.03
0.11
0.11
0.01
0.01
0.01
0.03
0.01
0.02
0.03
0.01
0.03
0.03
0.01
0.02
0.02
0.01
0.09
0.01
0.01
0.03
0.01
0.01
0.08
0.01
0.13
0.01
0.01
0.01
0.03

0.04
0.05
0.08
0.02
0.00
0.08
0.02
0.00
0.02
0.01
0.01
0.01
0.01
0.00
0.03
0.03
0.01
0.12
0.04
0.02
0.06
0.01
0.01
0.03
0.01
0.07
0.02
0.01
0.01
0.05

0.33
0.46
0.66
0.45
0.17
0.70
0.43
0.17
1.00
0.04
0.24
0.08
0.09
0.43
0.80
0.64
0.20
0.27
0.05
0.60
0.14
0.41
0.38
0.00
0.31
0.02
0.78
0.56
1.00
0.29

0.56
0.66
0.81
0.66
0.41
0.00
0.65
0.41
1.00
0.16
0.49
0.28
0.28
0.65
0.91
0.81
0.42
0.53
0.19
0.77
0.36
0.65
0.63
0.02
0.55
0.11
0.90
0.76
1.00
0.55

4.00
10.00
11.00

2.00

1.00

1.00

5.00

1.00

3.00

4.00

2.00

4.00

4.00

1.00

3.00

3.00

2.00
14.00

1.00

2.00

5.00

2.00

2.00
12.00

2.00
20.00

2.00

1.00

2.00

5.00

0.02
-0.06
-0.03

0.01
-0.01

0.06

0.00
-0.01

0.00
-0.02
-0.01
-0.02
-0.01

0.00

0.01

0.01
-0.01

0.03

0.03

0.01

0.03

0.00

0.00
-0.05
-0.01
-0.05

0.01

0.00

0.00

0.02

Supplementary Table 5. Differentially expressed genes between GNAQ and GNA11

samples. Attached in excel.
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Supplementary Table 6. Functional analysis results.

Enrichme

Description setSize nt Score NES pvalue p.adjust qvalue rank
e 198 0.6380  1.6863  0.0000 00000  0.0000 4437
HALLMARK_INTERFERO
N ALPHA RESPONSE 9% 06771 17315 00000 00000  0.0000 4437
HALLMARK _MTORCL SIG o 05482 14486 00000 00001 00000 4769
HALLMARK_ALLOGRAFT
REJECTION 196 05373 14196 00000 00001 00001 4159
HALLMARK_COMPLEME 200 05136 13583 00002 00015 00009 4711
HALLMARK IL6 JAK STA

_IL6_JAK . 87 . . . . .
T3 SIGNALING 05850 14823 00002 00015 00009 3108
HALLMARK_INFLAMMAT 200 05020 13278 00005 00036 00023 5102
HALLMARK PROTEIN SE

9 _ 9% . . . . .
CRETION 05589 14292 00009 00053 00034 6435
HALLMARK_COAGULATI 138 05170 13438 00012 00069  0.0044 1783
HALLMARK_TNFA_SIGNA 199 04889 12927 00021 00103 00065 4152
LING VIA NFKB
HALLMARK_APOPTOSIS 159 05016 13130 00023 00105  0.0066 3642
HALLMARK_HYPOXIA 197 04856 12832 00029 00120 00076 3143
DLl BB LB 110 05168 13288 00069 00266 00168 5050
HALLMARK_OXIDATIVE_
SR 200 04693 12412 00079 00281 00177 6606
e 156 04796 12541 00149 00496 00313 6130
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Results

Study 2 | Role of the immune microenvironment in
metastatic homing

Article: Sandra Garcia-Mulero, Maria Henar Alonso, Julidn Pardo, Cristina Santos,

Xavier Sanjuan, Ramoén Salazar, Victor Moreno, Josep Maria Piulats, Rebeca Sanz-
Pamplona. Lung Metastases Share Common Immune Features Regardless of Primary
Tumor Origin. Journal for Immunotherapy of Cancer. W, EXXXrkj (VXVX)
https://doi.org/jX.jjpn/jitc-VXjk-XXXrkj

Objective and main results:

The objectives of this publication were to characterize the immune microenvironment
across different metastatic locations (bone, brain, liver and lung) from six different
primary sites, and to generate a novel clustering of metastases based on their immune
phenotypes. We used transcriptomics data to infer the immune state of pmr metastatic
samples by quantification algorithms and statistical methods to generate a novel
clustering of the samples based on their immune profiles. The different measures of
immune activation showed strong differences between lung, and the other three sites
of metastasis. The immune infiltration score was higher for lung, followed by bone,
and lower values for liver and brain. Specifically, we found higher infiltration of
adaptive immune components (T cells and B cells) and dendritic cells in lung
metastases compared to bone, brain and liver metastasis. We identified three
subgroups of metastases (High -HIC-, Medium -MIC- and Low -LIC- Immune
Clusters) with differences at the inflammatory and infiltration levels. The High
immune cluster (HIC) was enriched in lung metastasis and was characterized by high
expression of PD-Lj, CTLA-r, HLA class Il and high Immunoscore signature. We found
a signature for HIC metastases, and a decision tree algorithm selected CDmr as the

best predictor of HIC metastases.
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ABSTRACT

Background Only certain disseminated cells are able to
grow in secondary organs to create a metastatic tumor.
Under the hypothesis that the immune microenvironment

of the host tissue may play an important role in this
process, we have categorized metastatic samples based
on theirimmune features.

Methods Gene expression data of metastatic samples
(n=374) from four secondary sites (brain, bone, liver and
lung) were used to characterize samples based on their
immune and stromal infiltration using gene signatures and
cell quantification tools. A clustering analysis was done
that separated metastatic samples into three different
immune categories: high, medium and low.

Results Significant differences were found between
the immune profiles of samples metastasizing in distinct
organs. Metastases in lung showed a higher immunogenic
score than metastases in brain, liver or bone, regardless
of their primary site of origin. Also, they preferentially
clustered in the high immune group. Samples in this
cluster exhibited a clear infammatory phenotype, higher
levels of immune infiltrate, overexpression of programmed
death-ligand 1 (PD-L1) and cytotoxic T-lymphocyte-
associated protein 4 (CTLA4) pathways and upregulation
of genes predicting clinical response to programmed cell
death protein 1 (PD-1) blockade (T-cell infammatory
signature). A decision tree algorithm was used to select
CD74 as a biomarker that identify samples belonging

to this high-immune subtype of metastases, having
specificity of 0.96 and sensitivity of 1.

Conclusions We have found a group of lung-enriched
metastases showing an infammatory phenotype
susceptible to be treated with immunotherapy.

BACKGROUND

Despite extraordinary advances in cancer
research in the last decades, metastasis is the
major cause of mortality in many cancer types
and their complete understanding remains
elusive.! 2 The metastatic process is very inef-
ficient since only few of the many cells that
migrate from the primary tumors successfully
colonize distant sites. This is likely explained
by the fact that circulating cancer cells in
the bloodstream are exposed to the innate

immune system and probably the majority of
them are destroyed.34

Furthermore, once in the secondary organ,
cancer cells are challenged by a hostile
microenvironment with a particular immune
composition so they might be vulnerable to
immune surveillance.5 As example, the liver’s
lymphocyte population is selectively enriched
in natural killer (NK) and T cells, which play
critical roles in first-line immune defense
against invading pathogens, modulation of
liver injury and recruitment of circulating
lymphocytes.® In the brain, the blood-brain
barrier and the brain-resident cell types (ie,
microglia) make this organ an immune-
suppressive environment.” Indeed, only
certain tumor cells within the primary tumor
bulk are compatible with the cellular and
molecular environment of specific secondary
organs. This is likely to be the reason why
although cancer cells are able to escape
from the primary tumor and travel randomly
around the body, their invasive fingerprint
differs among cancer types.8 For instance,
breast cancer metastasizes preferentially in
bone (more than 50%) whereas around 65%
of kidney tumors metastasize in lung and
almost 85% of prostate cancer metastasizes in
bone.? The “seed and soil” hypothesis postu-
lates that the organ-preference patterns of
tumor metastasis are the product of favorable
interactions between metastatic tumor cells
(the “seed”) and their organ microenviron-
ment (the “soil”). In this regard, the focus
of research is currently moving to study the
role of immune system cells in the metastatic
process. The generation of an immunosup-
pressive microenvironment and the engaging
of prometastatic inflammatory processes has
been described to play an important role
in metastatic homing.!0 Also, studies have
proved that systemic signals from primary
tumors can influence the microenvironment
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of distant organs by creating pre-metastatic niches that
recruit supportive stromal cells before the arrival of circu-
lating tumor cells. This pre-metastatic niche promotes
metastasis by generation of inflammation and immuno-
suppression in the target organ.!!

Thus, the success of the metastatic growth is determined
by a complex crosstalk between metastatic cells and target
organ microenvironments.!2 In this work, we revisit the
classic hypothesis of seed and soil through a pan-cancer
study from an immune system perspective. Since meta-
static cells must evade target organ immune surveillance
to grow,13 we hypothesize that the immune microenvi-
ronment of the host tissue may play an important role
in the process of metastatic cells selection and homing.
Therefore, metastatic tumors in the same location might
share mechanisms of immune evasion and subsequently
could respond to the same immune treatment. By using
bioinformatics techniques such as cell quantification
algorithms or gene expression profiles, a molecular
characterization of the immune microenvironment of
metastatic samples in four different locations has been
done. Then, a clustering analysis identified a subgroup of
metastases sharing inflammation and immune infiltration
features that might be targeted by immunotherapy drugs.

METHODS

Patients and samples

Gene expression and clinical data from 374 metastatic
samples including brain, bone, liver and lung and 348
normal samples from the same locations were collected.
A total of 16 datasets for metastases (GSE100534,
GSE101607, GSE10961, GSE44660, GSE11078,
GSE12630, GSE14017, GSE14018, GSE43837, GSE46141,
GSE14108.1, GSE14108.2, GSE40367, GSE41258,

GSES50496.1, GSE85258) were downloaded from open
repository Gene Expression Omnibus (GEO). The clin-
ical information and description of datasets is summarized
in online supplementary table 1. Metastatic samples were
originated from six different primary locations (breast,
colon, non-small-cell lung cancer (NSCLC), kidney, pros-
tate and skin melanoma). Frequencies of location of
metastases are in general in agreement with those previ-
ously reported,?® although a slight enrichment in brain
metastatic samples existed due to over-representation in
some of the datasets (online supplementary figure 1).
In addition, a total of 348 samples from normal healthy
tissue were collected from five GEO datasets (GSE7307,
GSE45878, GSE803, GSE3526, GSE1133; online supple-

mentary table 2).

Normalized gene expression data from the 16 data-
sets comprising six different microarray platforms were
joined and transformed to log-2 scale. An adjustment for
reduction of the batch effect was performed with ComBat
function from R package sva. Online supplementary
figure 2 shows a principal component analysis of the
samples based on gene expression data, showing the effi-
cacy of this method to generate a homogenized dataset.

Data were analyzed separately for metastatic and normal
samples.

Immune microenvironment characterization

Gene expression data were used to characterize the
immune microenvironment of samples, using a variety
of bioinformatics tools. The immunophenoscore (IPS)
function was used to measure the immune state of the
samples. IPS uses a number of markers of immune
response or immune toleration to quantify and visualize
four different immunophenotypes in a tumor sample
(antigen presentation, effector cells, suppressor cells
and checkpoint markers). It also generates a z-score
summarizing these four categories. The higher the
z-score of IPS, the more immunogenic the sample.* To
estimate the presence of immune cell populations in the
metastatic tissues, two different tools were used. First, R
package ESTIMATE was used.!®> ESTIMATE (Estimation
of STromal and Immune cells in MAlignant Tumor tissues
using Expression data) is a tool that predicts the tumor
purity from gene signatures and calculates three scores:
(1) stromal score—predicts the presence of stromal cell
types in tumor bulk, (2) immune score—infers the infil-
tration of immune cells in tumor tissue and (3) estimate
score—estimation of the tumor purity. Then, to obtain
a more detailed picture of immune cell type infiltration,
R package MCPcounter was used.1® MCPcounter (Micro-
environment Cell Populations-counter) is a method for
quantification of immune cell’s relative abundances in
heterogeneous tissues using marker genes optimized for
interrogating microarray data. Nine different cell types
were interrogated (T cells, cytotoxic T cells, NK cells,
B lineage, monocytic lineage, myeloid dendritic cells,
neutrophils, endothelial cells and fibroblasts). Data were
also interrogated with QuantiSeq (absolute method)!”
and xCell (relative method)!8 tools that also estimate
immune cell infiltration.

For all the obtained scores, assumptions of normality
and homoscedasticity were interrogated through
statistical tests Levene and Shapiro, respectively. All
comparisons between variables were analyzed using non-
parametric tests (Kruskal-Wallis and Wilcoxon tests), for
homogenization of methods, as variables were either
not normally distributed, or variances were not equally
distributed between groups. For all tests applied, differ-
ences were considered significant when p<0.05. To probe
the lack of correlation of the scores between each meta-
static sample and its related primary site of origin, a
comparison between the different primary sites of origin
was performed, for each metastatic site.

Immune clustering

To make a cluster analysis separating samples on the basis
of their immune status, a total of 25 immunity-related
gene sets covering both innate and adaptive responses
were manually selected from pathways’ databases and
publications (detailed in online supplementary table 3).
Gene Set Variation Analysis from R package GSVA was
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performed to obtain the immune profile of the meta-
static samples. This function performs a non-parametric,
unsupervised analysis for estimating variation of the given
gene sets through the samples in the expression matrix,
returning an enrichment score for each sample. GSVA
function was performed with 1000 bootstraps and argu-
ments as default.

The resulting GSVA enrichment scores were then used
to cluster the samples by agglomerative hierarchical clus-
tering. First, samples distances were computed via the R
function dist, with Euclidean distance. Next, hclust func-
tion generated a clustering from the distances, with “Ward-
D2” linkage method, where dissimilarities are squared for
obtaining more accurate clustering. The same process
was performed for gene set distances. Three categories,
characterized by different immune and inflammatory
enrichments, were defined and named as “Low Immune-
Cluster (LIC),” “Medium ImmuneCluster (MIC)” and
“High ImmuneCluster (HIC).” Function cutree (dendex-
tend package) was used to divide the dedrogram tree
in the three groups. Finally, for visualization purposes,

a heatmap was plotted with the representation of the
374 samples and 25 gene sets scores, previously scaled
and centered. A dendrogram was drawn to visualize the
distance tree for samples and gene sets. Proportions of
the different tumor metastases among the three Immune-
Clusters were tested by 2 test of proportions and plotted
as barplot of percentages. Figure 1 shows a summary of
the analysis performed from sample collection to immune
microenvironment characterization.

Gene expression data from samples in Liu ef al’® were
downloaded for validation purposes. Metastatic samples
(n=111) were classified into the three ImmuneClusters.
Overall survival (OS) after immunotherapy treatment was
plotted using a Kaplan-Meier curve stratifying by HIC,
MIC and LIC.

Healthy tissue gene signatures

To calculate the Normal Tissue Signatures, normalized
and ComBat-adjusted expression data for the 348 healthy
samples were used. A differential expression analysis
among the four healthy tissues was performed with R

1 E tasets — ..
6 GEO datasets Clinical /l':/ICP ; e Immune Cells
data | iz infiltration
e "Ex_pressi;r; '| Immuno- | Immune
S e data | phenoscore phenotype
csrwre o — [ R

ComBat adjustment

it ) Gene set
25 Gene set Variation | _,
signatures Analysis

Immune profile (GSVA)

P

estimation

Hierarchical
clustering

ImmuneCluster

subtypes

Immune
microenvironment
characterization

Figure 1 Analysis overview. Gene expression data from a cohort of 374 samples from four different metastatic locations were
collected from Gene Expression Omnibus (GEO) database. To eliminate the batch effect, data were adjusted using the ComBat
function. For each metastatic sample, tumor purity, proportion of immune cell infltration and immune status were estimated
using the R packages ESTIMATE (Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data),
MCPcounter (Microenvironment Cell Populations-counter) and the Immunophenoscore algorithm. Applying Gene Set Variation
Analysis (GSVA) function, samples were scored according to the level of expression of a comprehensive set of gene signatures
related to immune response. The resulting scores were used to cluster the metastatic samples on the basis of their immune
profle.
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Figure 2

Immunophenoscore (IPS) scores across the four metastatic locations. (A) Boxplot showing the aggregated IPS

z-score. (B) Boxplot showing the antigen presentation, effector cells, suppressor cells and checkpoint scores. Dot shapes
represent the primary tumor origin of each metastatic sample. NSCLC, non-small-cell lung cancer.

package Limma to generate a gene profile exclusive for
each tissue type (brain, bone, liver and lung). All meta-
static samples were scored with these signatures and used
to explore the presence of healthy tissue contamination.
Also, Normal Tissue Signatures were added as a contin-
uous covariate in the model matrix for the Combat func-
tion. The resulting adjusted expression matrix values
were used to recalculate immune scores in all metastatic
samples.

Functional analysis

To identify enrichment in specific cellular functions and
pathways, a Gene Set Enrichment Analysis (GSEA) was
performed comparing samples belonging to the extreme
phenotypes HIC and LIC.20 Gene sets from MsigDB were
interrogated (Hallmarks, Gene Ontologies, Oncogenic

Pathways, Immunologic Pathways and Canonical Pathway

that include the datasets KEGG, Reactome and Biocarta).
Also, to predict their putative response to anti PD-L1
drug, metastatic samples were scored with the GSVA
method using the T-cell inflammatory (TIS) signature.
This is a genetic profile reported as a good predictor of
clinical response to pembrolizumab across a wide variety
of tumor types.2!

Identiication of genes to classify samples into
ImmuneClusters

A classification algorithm was performed to find genes
classifying samples into extreme phenotypes HIC and
LIC. Data were divided into training (75% of samples,
n=137) and test dataset (25% of samples, n=46). The
Training dataset was used for predictor discovery and

4 Garcia-Mulero S, et al. J Immunother Cancer 2020;8:€000491. doi:10.1136/jitc-2019-000491
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Figure 3 Stromal and immune infiltration across the four metastatic locations. (A) Boxplot showing stromal, immune and
ESTIMATE (Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data) scores for each sample.
(B) Boxplot showing stromal and immune cell infiltration using MCPcounter (MicroenvironmentCell Populations-counter) tool.
Shaped dots represent the primary tumor origin of each metastatic sample. NK, natural killer; NSCLC, non-small-cell lung
cancer.

supervised classification to generate a plausible model.
This division was carried out randomly and respecting
the LIC/HIC proportions. The training datasets was used
to identify differentially expressed genes (DEGs) between
LIC and HIC groups. For this, an empirical Bayes analysis

with R package Limma was performed using Benjamini
and Hochberg’s method for false discovery rate correc-
tion. DEGs between these two extreme phenotypes were
selected as those with log2 fold change (log2FC)> abs(2)
and adjusted p-value <0.01. The DEGs identified using
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and the ImmuneCluster. (B) Barplot of metastatic location percentage in each ImmuneCluster. MHC, major histocompatibility

complex; NSCLC, non-small-cell lung cancer.

the training set were used in a binary decision tree with
cross-validation (k=5) to identify an optimal classifica-
tion model for LIC/HIC. The classification was made
with the R package caret. The classification accuracy was
evaluated by calculating the sensitivity, specificity, likeli-
hood ratio (LR) and area under the curve (AUC). Finally,
the predictive power of the selected decision tree was
validated in an independent dataset (GSE51244). This
dataset is compressed by 94 metastatic samples (lung and
liver) from colorectal cancer (CRC). First, samples were
classified into the three ImmuneClusters by our algo-
rithm. Then, the samples were classified as CD74 high/
CD74 low, by the median value of expression. Finally, the
agreement between the CD74 high and HIC category was
evaluated.

Availability of data and code
All data and R code used for the analysis are freely avail-
able at GitHub repository https://github.com/odap-
ubs/mets-immunecluster.

RESULTS

Immune characterization of metastatic samples

Gene expression data were used to categorize metastatic
samples according to their immune status. First, IPS scores
were used as a general indicator of immune system activa-
tion across samples. Metastases in lung showed a higher
IPS z-score than those in bone, brain or liver (p=0.00006),
suggesting a different immune microenvironment modu-
lation (figure 2A). Specifically, lung metastases showed
higher scores for antigen presentation (p=0.00002) and
effector cells (p=0.0002), whereas they showed the lower
score for suppressor cells (p=0.002). Interestingly, no
differences across metastatic locations were found in the
immune checkpoint category (figure 2B).

Next, ESTIMATE software was used to interrogate
samples about their stromal and immune cell infiltra-
tion. Metastasis in lung and bone showed more abun-
dance of stromal cells. In agreement with the IPS results,
lung metastases scored better in the immune category
(p=0.0002; figure 3A). To explore this issue in detail,
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MCPcounter, a tool for the quantification of different
immune cell populations was used. As a result, lung
metastases scored high in B lineage (p=0.0001), cytotoxic
lymphocytes (p=0.001), myeloid dendritic cells (p=0.004),
endothelial cells (p=0.006) and T-cell categories (p=0.03).
No differences were found in NK cells, monocytic lineage
and neutrophil categories. Interestingly, both lung and
bone metastases showed an enrichment in fibroblast in
comparison with brain and liver samples (p=0.00001;
figure 3B). To validate this results, other tools apart from
MCPcounter were used. In agreement with our results,
absolute method QuantiSeq validates B-cell and T-cell
abundance (specifically CD8+ T cells) in lung metastases,
whereas relative xCell algorithm validates lung metastases
enrichment in dendritic and endothelial cells. Neither
QuantiSeq nor xCell validates differences in cancer asso-
ciated fibroblasts (CAF) infiltration. QuantiSeq detected
monocytes as higher infiltrated in lung versus liver metas-
tases (online supplementary table 4).

To exclude the possibility that normal tissue from
surgical margins were biasing our results, profiles for
healthy tissue gene expression in bone, brain, liver and
lung using transcriptomic data were constructed. Strong
differences were found when comparing metastatic
and normal tissues suggesting that little contamination
existed, if any (online supplementary figure 3). Only lung
metastases showed some resemblance with lung normal
tissue. However, no correlation was found between the
IPS score and the normal tissue score in lung meta-
static samples thus excluding the possibility that samples
showing higher immune scores had more normal tissue
contamination (online supplementary figure 4A). More-
over, immune characterization was repeated adjusting all
samples’ gene expression by their normal tissue score and
almost the same results were obtained (online supple-
mentary figure 4B and C).

Finally, we wondered if differences between the seeding
organs existed. Within metastatic samples in brain and
liver, no differences existed in IPS scores neither in infil-
tration composition regardless of their primary site or

origin (online supplementary figure SA and B). This
suggested that, to some extent, immune adaptation
to the new environment is a mechanism shared across
tumors metastasizing in brain and liver. However, differ-
ences existed in lung and bone metastases. In lung, only
slight differences were found in B lineage infiltration
score (p=0.02; online supplementary figure 5C). In bone
metastases, significant and stronger differences existed
since samples from colorectal and kidney primary tumors
have higher levels of antigen presentation and effector
cells score but lower suppressor cells score. Also, they
have more lymphocytes and myeloid dendritic cell infil-
tration (online supplementary figure SD). This result
suggested that the primary origin of bone metastases is
indeed affecting the immune phenotype of their subse-
quent metastases.

Clustering of metastatic samples based on their immune
phenotype

To further explore the existence of metastases with a hot
immune phenotype, manually curated gene sets related
to both adaptive and innate immune responses were used
to perform a hierarchical clustering for the 374 samples.
Three groups emerged categorized as “HIC” (19%)),
“MIC” (51%) and “LIC” (30%) (figure 4A). Online
supplementary figure 6A summarizes the GSVA scores for
each metastatic site, lung being the most immunogenic
one in agreement with previous results. Indeed, when
proportion of metastases for each ImmuneCluster were
represented, the HIC was enriched in lung metastases,
whereas MIC was in brain and LIC in liver (figure 4B).
When primary sites of origin were compared with the
three clusters, kidney cancer type showed an enrichment
of HIC samples (probably reflecting the enrichment of
lung metastatic ones) whereas prostate was the one with
the lower. Finally, normal tissues were also scored using
this approach but pairs of normal-metastatic tissues did
not cluster together (online supplementary figure 6B).

Functional characterization of metastases belonging to the

HIC

One might expect metastases to be immune cold, as being
very aggressive tumors. In agreement, the HIC was the
one comprising the less number of samples. This was an
interesting group of samples characterized by an elevated
expression of the human leukocyte antigen class II (HLA-
II) complex and genes involved in antigen presentation
pathway. Also, they showed high levels of the therapeutic
targets PD-L1 and CTLA4, thus suggesting a hypothetic
treatment with immune checkpoint inhibitors. Supporting
this hypothesis, all samples belonging to HIC scored very
high in the TIS signature reporting to be correlated with
response to anti PD-L1 checkpoint inhibitor pembroli-
zumab (p<0.001; figure 5). Moreover, independent
dataset comprising metastatic samples from patients with
melanoma treated with immune checkpoint inhibitors
were classified into the ImmuneClusters and interrogated
about survival. Interestingly, samples classified as HIC
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ImmuneCluster classification and response to immunotherapy. (A) Kaplan-Meier curve showing survival after

immunotherapy treatment in metastatic melanoma. High ImmuneCluster and Medium ImmuneCluster samples exhibited a
tendency toward better overall survival than Low ImmuneCluster samples (Log-rank test, p=0.084). (B) Frequency of metastases

in each ImmuneCluster by location.

and MIC showed a tendency toward better OS than LIC
samples (figure 6A). Half lung metastases were classified
as HIC (figure 6B). Although number of samples was too
small to reach a conclusion, it is worth that two out of
the total four lung metastases experienced progressive
disease, whereas one experienced stable disease and one
achieved a complete response. On the contrary, six out
of seven brain metastasis suffered progressive disease and
only one exhibited a partial response. Although specula-
tive, these results pave the way to a hypothetic treatment
of the highly inflammatory metastatic tumors (figure 7).

Samples in the three clusters were interrogated about
their level of immune infiltration. As expected, the HIC
scored better in all categories being these tumors highly
infiltrated in all categories both activating and inhib-
iting the immune system. It is interesting to note that all
bone metastasis in the HIC scored very high in the T-cell
category (online supplementary figure 7A). However,
when markers of exhaustion were examined, samples
belonging to HIC showed the higher levels of expression
(online supplementary figure 7B). This result suggested
that although highly infiltrated by T cells, these are not
functional but exhausted.

Then, a functional analysis comparing samples
belonging to the extreme phenotypes HIC and LIC was
done using GSEA. As expected, HIC samples were highly
enriched in immunity-related pathways and in inflam-
mation ones such as interleukin (IL)-2-STATS, IL-6-JAK-
STAT3, interferon, tumor necrosis factor (TNF)-a, TNF-y
and nuclear factor kappa-light-chain-enhancer of acti-
vated B cells (NF-kB), among others. Also, HIC samples
were enriched in antigen presentation, Toll like receptor
4 (TLR4) signaling and CTLA4 pathways. Regarding
cellular functions, inflammatory response and adaptive
immune response emerged as the most significant ones
(online supplementary table 5 and online supplementary

figure 8). Since those samples were initially clustered
on the basis of their immune phenotypes, these results
were not surprising at all. However, the functional anal-
ysis also reported interesting results not directly related
to the immune system. For example, apoptosis and KRAS
signaling pathways were upregulated pathways in HIC
samples.

Identifcation of HIC biomarkers

The more differentially expressed genes (DEG) among
ImmuneClusters were selected (log2FC > abs(2), n=43;
online supplementary table 6, online supplementary
figure 9) and used to search for a biomarker or panel
of biomarkers useful to identify samples belonging to
the HIC. A decision tree algorithm with bootstrapping
selected CD74 as the gene that best categorizes between
the two groups (online supplementary figure 10A). The
model was first validated on the test samples within our
dataset, with good prediction values (sensitivity=1, spec-
ificity=0.96, LR(+)=9.8, LR(-)=0.2, AUC=0.98, receiver
operating characteristic curve in online supplementary
figure 10B). When tested in an external dataset, CD74
showed high accuracy classifying samples into LIC and
HIC (classification error=0.1).

Interestingly, when samples belonging to MIC were
reclassified, 76 out of 191 samples belonging to the
MIC were classified as HIC, whereas 113 were classified
as LIC in our dataset. In the validation dataset, 14 out
of 18 samples belonging to this cluster were classified
as HIC, whereas 4 were classified as LIC. This suggested
that a percentage of metastasis showing and intermediate
phenotype could resemble to the highly infiltrated ones.
Indeed, when interrogated using the TIS score, about half
of metastases classified as MIC scored very high suggesting
a putative response to immunotherapy (figure 5). Thus,
CD74 might be marker of inflammatory metastases.
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DISCUSSION

Disseminated cells must evade immune system response
to complete the metastatic invasion. Many examples
exist in the literature demonstrating the contribution of
immune system cells and molecules in several steps of the
metastatic cascade, apart from other players. Inflamma-
tory response and immune regulatory cells (both myeloid
and lymphoid) have been reported to support spreading
and metastasis.??

Although pan-cancer analyses interrogating immune
cell infiltration in primary tumors have been reported,?3
to our knowledge none has tackled this issue in metastatic
samples. We hypothesized that metastatic tumors in the
same organ from different primary tumors might share
similar immune features and/or mechanisms to escape
immune surveillance. Recently, corroborating our hypoth-
esis, a study on bone metastases remarks the existence
of tissue-specific checkpoint immunotherapy evasion.24
Since brain, bone, liver and lungs are the secondary
sites more prone to be invaded by disseminated cells, we

selected almost 400 metastatic samples in those organs to
work with. By using transcriptomic data, we found signif-
icant differences in markers of immune microenviron-
ment activation among the different metastatic locations.
Lung metastases showed a tendency toward having a
higher immunogenic environment compared with brain,
bone and liver metastases. In agreement, cell lineage infil-
tration analysis revealed higher lymphocytic infiltration
in lungs and also myeloid dendritic cells, whereas there
are no differences for innate immunity components (NK,
monocytic lineage, neutrophils). Interestingly, there is no
association between the organ of origin of the lung metas-
tases and these immune markers, indicating that differ-
ences found are independent of the cancer primary site.
In agreement, a work by Remark et al showed no differ-
ences in T-cell infiltration in lung metastases coming
from CRC or renal primary tumors, although they found
differences in NK infiltration.2>
A cluster analysis identified a percentage of around
20% of metastatic samples classified as high immunogenic
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(HIC). In line with our previous results, there was enrich-
ment in lung metastatic samples in this subtype, mainly
characterized by being highly inflammatory. It has been
reported that immunosuppressive mechanisms that
prevent massive immune reactions to pulmonary alve-
olar macrophages in the lungs are harnessed by tumors
to facilitate metastasis. Therefore, the intrinsic properties
of lung immune homeostasis could be, at least partially,
responsible for the susceptibility of the lungs to metas-
tasis.26 Inquiringly, several reports suggested that in
asthmatic people the use of anti-inflammatory inhaled
corticosteroid is associated with a reduced risk of lung
cancer but not of laryngeal cancer?” 28 thus suggesting an
inflammatory origin of tumors growing in this location.
On the contrary, there is enrichment in liver metastases
in the LIC pointing these metastases as the colder ones.
An explanation could be that a high percentage of these
secondary tumors show a vessel co-option pattern of meta-
static growth. This is a replacement growth in which the
tumor do not generate new vessels or an inflammatory
reaction. As cancer cells grow, substitutes normal liver
cells.29 However, it is interesting to note that not all lung
metastases were categorized in the HIC cluster. Further-
more, some metastases in bone, liver and brain also fell in
this cluster thus sharing phenotypic and immune features.
Although rare, 83% of bone metastases originating from
CRC and kidney tumors belonged to HIC and showed
an increase in immune markers. The osteolytic nature
of these lesions (in contrast with other bone metastasis
coming from other tumors like prostate) might explain,
at least in part, the particular idiosyncrasy of these metas-
tases. Supporting this hypothesis, one of the genes shown
to be significantly increased in HICs, granzyme A, has
emerged as a key proinflammatory molecule regulating
osteoclast differentiation and bone erosion during rheu-
matoid arthritis.30

It is worth to note that metastases belonging to HIC
scored very high when interrogated with the TIS signa-
ture, whereas metastases in LIC scored very low. This is a
gene expression level measuring the level of microenvi-
ronment inflammation. In a clinical trial encompassing
20 cohorts of patients with advanced solid tumors, TIS
was able to predict pembrolizumab response (an anti-
PD-L1 drug).3! Recently, the utility of such signature as an
accurate and independent predictive biomarker has been
validated in a pan-cancer study analyzing anti-PD-1 treat-
ment benefit in primary tumors.32 Thus, we propose to
treat HIC metastases with immune checkpoint inhibitors,
irrespective of their primary site of origin. In agreement,
and close to be statistically significant, melanoma meta-
static samples classified into HIC and MIC showed better
OS than LIC after treatment with anti-PD1 inhibitors
pembrolizumab or nivolumab. Although promising, this
hypothesis needs further study. In the same line, a study
in melanoma and lung tumors reported poor response to
pembrolizumab in liver metastases than in extrahepatic
ones.3? In agreement, most liver metastases belong to LIC
cluster. In breast cancer, triple negative tumors have been

reported to be more susceptible to immune therapeu-
tics.3* We classified breast cancer metastatic samples into
the intrinsic molecular subtypes and interestingly, almost
50% of lung metastases were classified as basal (mostly
corresponding with triple negative tumors). However, no
differences in the TIS score across molecular subtypes
were observed (data not shown).

To classify metastatic samples into the inflammatory
cluster HIC, a decision tree algorithm selected CD74
as a good biomarker. CD74 is a gene coding for a chap-
erone that associates with class II major histocompatibility
complex (MHC-II) and regulates antigen presentation
for immune response.3 Interestingly, MHC-II has been
proposed as a good predictor of response to immune
checkpoint inhibitors in melanoma metastases.!® CD74
also serves as cell surface receptor for the cytokine macro-
phage migration inhibitory factor (MIF) which, when
bound to the encoded protein, initiates survival pathways
and cell proliferation. MIF and CD74 have been shown
to regulate peripheral B-cell survival and were associated
with tumor progression and metastasis.3>

It is worth to mention that among the different markers
of cytotoxic T lymphocytes activation, GZMA was the only
one that reached significance to be included in the HIC
metastases group (online supplementary figure 9). A
priori the appearance of markers of cytotoxic T lympho-
cytes activation in the inflammatory tumors susceptible
to be treated with immunotherapy is not surprising
and might pass unnoticed. However, several indepen-
dent reports have recently identified GZMA as a key
regulator of inflammation in different pathologies,3°
including carcinogenesis, which tempts us to speculate
on the potential significance of this finding. Specifically,
after our recent results indicating that inflammation
induced by GZMA is key for the development of CRC in
vivo and therapeutic inhibition of GZMA reduced gut
inflammation and CRC development in mice (Santiago
et al accepted for publication). Other interesting gene
is C-C Motif Chemokine Ligand 5 (CCL5), a proinflam-
matory chemokine that has been reported to favor the
formation of an immunosuppressive microenvironment
in tumors like gastric or breast, among others.3” CCL5
shifts the balance between different leukocyte cell types
by increasing the presence of deleterious TAMs and by
inhibiting the antitumor T-cell activation.3®

Metastatic samples in HIC showed KRAS activation
suggesting a crosstalk between this pathway in the tumorous
cell and the immune microenvironment. Indeed, a rela-
tionship between KRAS pathway and inflammation has
been described in a mouse lung model harboring KRAS
G12D mutation.3® Kitajima et al demonstrates that KRAS
signaling activates carcinogenesis through upregulation
of IL-6 and CCLS cytokines.® Also in agreement, patients
with KRAS-mutant CRC develop lung metastases more
frequently than KRAS wild-type (WT) counterpart.#! A
recent study found KRAS WT tumors resistant to anti-
epidermal growth factor receptor (EGFR) drugs having
cytotoxic T-cell infiltration and overexpression of PD-L1
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thus susceptible to be treated with immune checkpoint
inhibitors.42

This study has limitations mainly derived to the fact
that results were inferred from public datasets. We had
to normalize data generated by diverse laboratories and,
though we used strategies to reduce batch effects, these
methods may not be fully efficient and may also reduce
biological variability. We have used gene expression signa-
tures to try to control the contamination of tumor tissues
with normal tissues. However, we cannot totally exclude
this possibility and this issue would be considered in
future studies. Also, clinical information was scarce. Asso-
ciation between samples in HIC cluster and prognosis
and/or treatment response in other tumors apart from
melanoma deserves further study.

In conclusion, our results suggest that tumor cells need
to share similar molecular profiles to evade the immune
surveillance and growth in a specific secondary niche,
regardless of their origin. Furthermore, we have found
a cluster of approximately 20% of metastatic tumors
showing an inflammatory phenotype that mainly includes
lung metastatic lesions. These tumors scored very high
when interrogated with TIS signature suggesting a puta-
tive treatment with immune checkpoint inhibitors.
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Discussion

Cancer remains a critical problem for public health and its incidence is increasing
every year. There is an urgent need to improve survival rates. This is particularly
important for the deadliest tumor types as well as for advanced stages of the disease.
New therapeutic strategies, like immunotherapies, are contributing to the
improvement of survival rates in oncology during the last years (Wk). However, due in
part to the high heterogeneity of distinct tumor niches, a critical obstacle of
immunotherapies is the lack of accurate biomarkers for clinical decision making.
Moreover, molecular profiling of tumors has brought innovative perspectives in the
understanding of tumor pathogenesis. Cancer management is progressively shifting
from generalized treatment strategies towards a personalized selection of therapies
based on the classification of patients into molecular subgroups. This new perspective

for treating cancer patients is referred to as precision oncology (jqp).

Immunogenomics studies have contributed to the change of paradigm in our
understanding of cancer biology. Indeed, several pan-cancer immunogenomics
profiles from omics data have been reported during the last years (jqr,jqq). However,
most studies are centered in immune hot (inflamed) tumor types, like cutaneous
melanoma and lung carcinomas (jgn). Immunogenomics studies in cold tumors are
still scarce, highlighting the need to deepen the knowledge of the tumor biology of
these tumor contexts in order to find new strategies to make them more prone to

respond to immunotherapies.

In uveal melanoma, one of the coldest tumor types, we performed an
immunogenomics study of Vjp uveal melanoma primary samples from q different
datasets. From all revised articles to date, our study includes the largest number of

patients with available clinical and transcriptomics data.

On the other side, metastases known for being less immunogenic compared to primary
tumors. This is due to the fact that metastatic cells have gone through the
immunoediting process, must survive in blood stream and succeed to stablish in
secondary organs (Vm). Immunogenomics studies on metastatic samples are usually
centered either on analyzing one metastatic location from different primary tumors
(jgm) or on different metastatic locations from one cancer type (jgW). Here though, we
were able to collect a total of pmr metastatic samples from the four most frequent sites
of metastasis from jn different datasets. To our knowledge, this is the first pan-
metastasis study of a large cohort of samples from different primary and metastatic

locations coupled with clinical and transcriptomics public data.
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Over the last years, a plethora of computational and biostatistical methods have been
developed for suitable analysis of large volumes of omics data. The correct analysis
workflow and appropriate application of bioinformatics tools is a crucial aspect in
immunogenomics studies (jgk). A wide variety of bioinformatics tools for
characterization of the immune phenotypes were used through the different studies,
in order to generate a complete landscape of the immune profiles of the samples.
Further, a high number of statistical methodologies were performed, such as Cox
models and meta-analysis for association with prognosis, hierarchical clustering for
the generation of novel clusters, and supervised machine learning for biomarkers

discovery, among others.

From the methodological point of view, all analysis performed were selected carefully
and with the support from expert statisticians to ensure an accurate use of the
methods. We addressed this question by using a tool to remove batch effects and
generate homogenized datasets (jnX). Another challenging analysis was the cell-types
deconvolution, since results vary strongly between the different algorithms published.
For this reason, we selected the methods based on a benchmark that provides a
guideline for method selection based on the study design, type of data and the purpose
of the study (jnj). We also performed various methods on the same data and matched
between the different algorithms to achieve more robust results. A method that has
been widely used through the different projects of this work for the functional analysis
is the GSVA (Gene Set Variation Analysis) (jnV), which is a computational tool that
performs unsupervised analysis for enrichment analysis. An advantage of this
approach is that the enrichment scores can be generated in a sample by sample basis,

meaning that scores are independent, which can be useful for clinical management
(jVr).

A central aspect of this work has been the data mining of publicly available databases.
Sequencing data from thousands of tumor samples are currently available for
downloading from open databases, and these numbers are increasing exponentially. It
is worth to mention how valuable it is to make data resources available to carry out
biomedical research, being this work a suitable example (jnp). Accordingly, a Github

repository has been generated where all code and data are freely available for the

research community (https://github.com/odap-ubs).

We acknowledge the limitations of the project, the most relevant caused by the nature

of transcriptomics data. Transcriptomics profiling offers a good perspective to
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understand tumor biology, but it does not reflect the intrinsic heterogeneity of the
different cell-types within the tumor bulk. Also, transcriptomics data can be highly
variable depending on the platform used, the quality of the data, and the
bioinformatics workflow performed. Since we used data that was already pre-
processed and normalized separately, it is important to take into account this
variability. Additionally, we could not avoid the technical challenges regarding the
tissue sampling, since FFPE tissues can contain RNA that is degraded and fragmented,

and this can generate lower quality RNA-seq (jnr).

Finally, proper data mining of the clinical information is critical when working with
open repositories. Data is annotated in different formats in the different studies and it
requires an effort for standardization. And the lack of clinical variables is a problematic
aspect when working with open databases. For example, the information about the
time of biopsy was not described for some of the datasets. This information is critical
since previous treatments can have an effect on the immune biology of the tumor.

Furthermore, the follow-up and survival data are not available for many studies.

Overall, bioinformatics methods have been applied to study the role of the immune
microenvironment in different tumor tissues and its association with clinical
outcomes and tentative immunotherapy options. In the next sections, the most
relevant aspects of the two studies included in the thesis will be discussed, with
particular focus on the translational potential of the results and recent discoveries in
the field. Finally, last advances and future perspectives in personalized oncology will

be shortly discussed.
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1. Dissecting the immunity of uveal melanoma

To date, there is no effective treatment for metastatic patients and there is an urgent
need to find biomarkers for prognosis prediction and therapeutic strategies (nW). In
uveal melanoma the infiltration of inflammatory cell-types is associated with tumor
progression and metastasis alike other tumor types, where a high immune activation
is associated with better clinical outcomes (mn). This special immune modulation is
partially explained by the low immunogenicity of this tumor and the

immunosuppressive milieu of the eye (nn).

1.1. Additive role of immune system infiltration and
angiogenesis in uveal melanoma progression

Molecular and immune profiling of UM are giving new insights in the immune
modulation of this malignancy for improving treatment responses (mm,jnq). Over the
last years, studies have been published aimed to deciphering the immune landscape
of UM and generating signatures for response prediction. In a meta-analysis study
comprising more than VXX UM patients, we have found association of immune
infiltration with worse prognosis, especially for cytotoxic lymphocytes (CDW+ T cells,
NK cells) and macrophages Mj and MV. These results are in the same line as previous

studies based on transcriptomics data.

UM phenotype is characterized by low infiltration of stromal and immune
components. In a pan-cancer study by Thorsson et al. (previously described), UM was
shown as the lowest leukocyte infiltrated tumor type compared to other pV tumor
types from the TCGA (jnn). Specifically, UM is characterized by a dominant infiltration
of macrophages over T cells and NK cells. Paradoxically, a higher infiltration of
inflammatory cell-types, like CDW+ T cells and NK cells, is associated with increased
risk of metastasis (jnm). The molecular analysis of the TCGA dataset revealed further
sub-classification into four molecular subgroups with differences at the genetic,

transcriptomic and immune level (jnq).
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We identified B cells to be highly associated with better prognosis. This result is in
agreement with other studies that found high expression of B cells and humoral
immune activation in responders (mn). Expression of B cells and the presence of
tertiary lymphoid structures have been reported to be enriched in patients who

respond to ICIs in various tumor types (melanoma, renal cell carcinoma) (jnW).

There are several reasons that could explain the peculiar context and modulation of
UM microenvironment. Some studies have pointed to the pro-inflammatory
cytokines, such as IFN-y, to induce upregulation of HLA class I, which in turn
promotes high expression of IDO-j, PD-Lj, and most importantly, triggers a
mechanism of evasion from attack by NK cells (jnk). We also evaluated the levels of
HLA class I and II expression as a marker of prognosis. High HLA class I levels are
associated with poor prognosis, as seen in previous studies (jmX). NK cells have been
reported to eliminate tumor cells lacking HLA class I expression but not cells that
express HLA (jmj). Thus, upregulation of HLA expression is a pivotal mechanism of

immune evasion and can lead to metastatic dissemination.

Another potential cause for the distinctive role of the immune microenvironment in
UM is the high vascularization of the eye. Our analysis showed higher infiltration of
endothelial cells correlate with relapse. The main function of endothelial cells is blood
vessels formation, so they are directly related to angiogenesis. In a previous study, we
reported the strong association of angiogenesis with poor outcome in UM but not in
CM (mV). Angiogenesis drives immunosuppression by inhibiting T cell function,
suppressing antigen presentation, and promoting MDSCs and Tregs (jmV). In this
regard, we have found a cluster of samples with additive inflammatory and angiogenic

functions, which confers extremely poor prognosis.

Based on these results, we hypothesize that immune response could happen after
cancer cells have broken the blood-retinal barrier and disseminated to secondary
organs due to the peculiar immunosuppressive microenvironment in the eye. This
would explain the association of a high infiltration of cytotoxic lymphocytes and high

angiogenesis with worse prognosis and recurrence.

Witnessing the central role of angiogenesis in modulating the immune
microenvironment, treatments based on a combination of anti-angiogenic drugs with
immunotherapy seem a promising strategy in order to make cold tumors more

susceptible to respond to immunotherapies (jmp). Combinatory approaches for
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targeting include the combination of bevacizumab (IgGj antibody targeting VEGF-A)
with ICIs which have been tested in clinical trials with promising results in some
tumor types like renal cell carcinoma, hepatocellular carcinoma, colorectal cancer and
others (VV). In uveal melanoma, however, results from clinical trials have been
disappointing thus far (mV). In this regard, and based on the evidences from this and
other studies on UM, a new clinical trial has been approved for metastatic UM patients
from Bellvitge University Hospital that will be led by Dr. Josep Maria Piulats and will

start to enroll patients shortly.

In summary, we have performed a pool analysis of uveal melanoma patients and have
identified a subset of patients with high values of inflammation and angiogenesis that

could be responders to combination immunotherapy targeting both functions.

1.2. Driver mutations in GNAQ and GNA11 genes are
likely to be antigenic in uveal melanoma patients

Driver mutations have historically been described to generate low antigenic
neoantigens compared to passenger mutations (rq,jmr). Nevertheless, in the last years,
neoantigens from driver mutations have been proposed for immunotherapy-based
treatments such as neoantigen vaccines. The rationale for studying the
immunogenicity of recurrent mutations for cancer treatment is clear: these mutations
are shared across patients. This is an opportunity to develop off-the-shelf vaccines for
large subsets of patients rather than patient-specific vaccines. These vaccines would
also reduce the likelihood of escape since driver mutations are shared by most clones

within the tumor (jmq).

In this regard, a seminal work by Steven Rosenberg (VXjn), they effectively treated a
colorectal cancer metastatic patient with adoptive TILs targeting KRAS GjVD mutation
expressed by HLA-C*XW:XV (jmn). The same neoantigen has been recently used to treat
metastatic pancreatic cancer with autologous T cells genetically engineered to clonally
express HLA-C*XW:XV restricted TCRs (jmm). In the same trend, Yardena Samuels et al.
(VXVj) have reported the combination RAS QnjK/HLA-A*Xj:Xj to be highly
immunogenic in melanoma and to elicit reactivity of patients’ TILs against this
mutation (jmW). Other studies have been performed identifying and targeting driver

mutations at BRAF, EGFR, NRAS and TPqp, among others (jmq).
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GNAQ/jj QVXKL and GNAjj QVXkP genetic alterations have been identified as early
driver mutations in up to Wq% of UM patients, driving activation of MAPK pathway
(nn). Most research interest has been focused in understanding its functionality and
trying to find actionable targets against the downstream signaling of GNAQ/jj
activating mutations (ERKj/V and MEK inhibitors), with disappointing results
(jmk,jWX). So far, little is known about the immunogenicity of GNAQ and GNAjj
mutations. As it was explained in previous sections, UM grows in an immune
privileged milieu and driver mutations GNAQ and GNAjj do not go through the
immunosurveillance process. Thus, we hypothesize that these mutations could be

immunogenic in UM patients.

(jWj)Comparing the clinical and histopathological differences between QVXKL vs
QVXkP mutations, we found no differences with most clinical variables, in agreement
with previous studies. Interestingly, we found differences for total mutational count,
being QVXKL patients associated with higher number of mutations. This observation
suggest that the two mutations have different consequences at the genomic level. To
our knowledge, it the first time this observation is described; thus, it should be

validated in other datasets

The binding affinity analyses of seven different predictive tools showed that QVXkL
peptide has greater probability of being presented by HLA superfamily haplotypes
than QVXKkP peptide, with higher affinity and stability. Moreover, QVXkL mutations
were shown to have higher likelihood to be presented by HLA molecules than most
driver mutations across cancer types. This analysis was based on a recent study by
Marco Punta and Stefano Lise et al. (VXVX), where they calculated the antigenic
potential of several driver and resistance mutations across cancers (jWV). We identified
HLA-C*Xm:XV as a candidate for presenting QVXkKL with high affinity. In total, jj
patients (jp,mq%) have the combination GNAQ/jj QVXkL and HLA-C*Xm:XV.

HLA alleles with high affinity are thought to be hidden by cancer cells, since they are
the main mediators of immune surveillance during early stages of tumor development.
In our results, UM did not show lower frequency of high affinity haplotypes, unless we
found higher frequency of k low affinity haplotypes, suggesting a possible genetic
selection towards low affinity haplotypes in order to hidden QVXkL neoantigen. In this
regard, the immune pressure against high antigenic neoepitopes can also drive loss of

heterozygosity (LOH) of specific HLA haplotypes by cancer cells(qV). Assessing the
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LOH in uveal melanoma patients would be an interesting analysis to elucidate whether

there is a differential LOH between QVXkL and QVXkP mutated patients.

The association of the different GNAQ and GNAjj mutations with prognosis is a
controversial issue so far. In a dataset from the Bellvitge University Hospital we found
that patients carrying QVXkL mutation to have better prognosis compared to QVXkP
patients. This result is inconsistent with results from TCGA, where we found QVXkL
patients slightly associated with worse prognosis. The same trend was observed by
Terai et al. (VXVj), where they found that QVXkP patients showed longer time to death
compared with QVXKL patients (jnj). In another study by Van Weeghel et al. (VXjk)
they did not find any effect of the type of change in prognosis (jWj). The survival

association should be assessed in extended data for clarifying this issue.

The recognition of immunogenic antigens might trigger the activation and infiltration
of cytotoxic lymphocytes. The deconvolution analysis showed higher infiltration of
CDW+ T cells and NK cells in patients harboring QVXKkL. Additionally, results from
gene expression analysis showed higher HLA class I expression in QVXkL mutated
patients. The functional analysis showed enrichment of hypoxia, mTOR signaling,
oxidative phosphorylation and fatty acid metabolism for QVXkP mutated patients.
These results suggest different strategies of tumor growth, being tumors with QVXkP
mutation more metabolic, whereas tumors with QVXkL mutations are more

immunogenic.

This project has some limitations that are worth noting. One of them is the small
sample size, which can affect the frequencies estimation and bias the results. The
GNAQ)/jj status is still missing in many datasets, since the information about these
mutations is not useful for either targeted therapies selection nor for association with
clinical outcomes. Another limitation is that the binding affinity analyses have been
performed only for HLA class I, since the prediction power for HLA class II binding
affinity tools do not get enough robustness for being reliable. Finally, this is an in-silico
approach and results should be validated experimentally in order to demonstrate the

immunogenicity of the mutation in patients.

As a proof of concept of our results, a recent study for patent request for a GNAQ-
QVXKL DNA therapeutic vaccine demonstrate that QVXkL mutation is presented by
HLA-A*XV:Xj molecules and it is able to trigger specific T cell activation (jWr). HLA-
A*XV:Xj is the most common haplotype, representing up to qX% of UM patients. This
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suggests that not only HLA-C*Xm:XV, but also other frequent alleles with stronger
binding affinity than HLA-A*XV:Xj (like HLA-A*Xj:Xj, HLA-A*Xp:Xj and HLA-C*Xm:Xj)
could be good candidates for screening. This patent for vaccine is the evidence that

QVXKL mutation generates T cell reactivities and that further efforts are necessary for

elucidating the possibilities of targeting GNAQ and GNAjj mutations.

The generation of neoantigen vaccines from recurrent mutations can bring the
development of personalized immunotherapies in a time and cost-effective manner
and make it feasible for the clinical setting (jWq),jrq). We have demonstrated that
QVXkKL mutation shows strong binding prediction to HLA class I molecules and
samples carrying QVXkL mutations have a higher immune phenotype. Based on this,
we have proposed that this neoantigen could be a good candidate for off-the-shelf

neoantigen vaccine therapies in UM.
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2. Role of the immune microenvironment iIin
metastatic homing

Metastasis represents the principal cancer-related cause of death and one of the major
challenges in cancer research, since current treatments remain ineffective in most
cases (jWn). Organ-specificity of metastatic spread is partially explained by the ‘seed
and soil’ hypothesis, which postulates that molecular interactions between the host
and neoplastic cells favor metastasis to certain organs (jWm). Nevertheless, the
mechanisms that regulate these patterns of metastatic spread remain poorly

understood.

The contribution of both the innate and the adaptive immune system in metastatic
seeding to distant organs is already well-known, and increasing evidences are
emerging pointing to the importance of the immune component in this process
(rm,jWW). We have dissected the organ-specificity of metastasis from an immune point
of view, to provide a comprehensive characterization of the tumor microenvironment
among different tumor niches, compressing brain, bone, liver and lung. We used
transcriptomics data to infer the immune state of pmr metastatic samples by
quantification algorithms and statistical methods to generate a novel clustering of the

samples based on their immune profiles.

2.1. Lung metastases share common immune
features regardless of primary tumor origin

As mentioned before, each primary tumor shows an specific pattern of metastatic
colonization to certain organs (mX,jnn). In our dataset, the metastatic frequencies for
each cancer type in the collected data agrees with the frequencies defined by the
literature. This indicates that data collection was performed properly and that the

database was not biased by tissue location.

We have found that lung metastases share a high immunogenic microenvironment,
regardless of their primary tumor of origin. Specifically, we found higher infiltration
of adaptive immune components (T cells and B cells) and dendritic cells in lung

metastases compared to bone, brain and liver metastasis. In the current clinical
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setting, the decision of treatment strategies for most metastatic patients is based in
their primary cancer type, but is has already been demonstrated that metastasis differ
significantly from their primary tumors (jkX). These results show evidences for
considering the selection of treatments based on the immune context of the metastatic

location rather than in the primary tumor type.

A clustering of samples based on immune profiles were performed generating three
novel clusters (High -HIC-, Medium -MIC- and Low -LIC- Immune Clusters), with
differences at the inflammatory and infiltration levels. As expected, the High Immune
Cluster (HIC) was enriched in lung metastase. This cluster showed high immune
infiltration, suggesting a possible target by immunotherapeutic drugs. Indeed, we
interrogated the TIS score and found that all samples belonging to the HIC scored
significantly higher for this signature. In a recent publication, TIS signature was shown
to be highly associated with clinical response to anti-PD-j treatment across a wide
variety of tumor types, and demonstrated the utility of this signature as an

independent predictive biomarker for pan-cancer studies (jkj).

Our results on the immune clusters were validated in an external dataset of different
metastatic locations from skin melanoma tumors treated with anti-PDj (jkV). patients
belonging to the HIC had better overall survival compared to those from MIC or LIC.
Recent studies on clinical trials have been published that confirm our hypothesis. In
metastatic castration-resistant prostate cancer, Powles et al. showed that patients with
high PD-Lj expression and CDW+ T cell infiltration were associated with better survival
to ICIs (jkp). In the same line, Yang et al. (VXVj) performed a pan-cancer
immunogenomics study on mp metastatic patients across different primary tumors and
showed high signatures of T cell activation and B cell receptor signaling associated

with clinical benefit to pembrolizumab (jkr).

Regarding the markers of High Immune Metastases, different immune-related genes
emerged as potential candidates after a differential expression analysis. Among them,
CDmr was selected by a decision tree algorithm as the best candidate biomarker to
differentiate between HIC and LIC samples. CDmr is an essential chaperon for
regulation of the antigen presentation to the immune system. It associates to MHC
class II, forming a complex that directs the transport of the neoantigens. During last
years, CDmr has been associated to metastasis in certain cancer types. CDmr and HLA-
DR expression have recently been shown to contribute to anti-cancer immune

microenvironment in renal cancer (jkq). In brain metastatic patients, CDmr has been
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found in circulating tumor cells and was suggested as a biomarker for metastatic

events (jkn).

significantly enriched in HIC samples is C-C chemokine ligand q (CCLq). This pro-
inflammatory cytokine is involved in cancer progression in many solid tumors (jkm).
CCLq can be secreted by cancer cells or by components of the TME, and has been
associated with ECM remodeling, angiogenesis and promotion of an
immunosuppressive environment via MV macrophages polarization. In a recent study
by Litchfield K et al. (VXVj) in more than m different cancer types, the CCLq receptor,
CCRq, and CXCLjp (a T cell exhaustion marker) were found to be highly expressed in

neoantigens-reactive T cells, and strongly associated with better response to ICIs (jjk).

It is important to mention Granzyme A (GZMA), since it is a direct marker of T cells
cytotoxic activity and is highly expressed in the HIC group. Besides the main function
of target cell lyses by CTLs and NKs; the role of GZMA in the modulation of
inflammation is controversial, since it has been shown to contribute to immune
evasion (jkW). For instance, Santiago L et al. (VXVX) showed that GZMA enhance gut

inflammation in a CRC mouse model, consequently promoting CRC development
(jkk).

The functional analysis reported interesting results of enrichment of molecular
pathways in HIC patients, specifically for KRAS signaling. This result suggests a
crosstalk between KRAS activation in tumor cells and the immune modulation in the
niche microenvironment. This connection has been already supported by several
studies, and current preclinical studies are trying to modulate KRAS induced

inflammation in order to overcome KRAS mediated resistance (VXX).
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2.2, Distinctive immune microenvironment across
metastatic locations

In our study, lung metastases (accounting for the Vp% of the samples) come from
kidney, breast, colorectal and melanoma. Lung pre-metastatic niche is characterized
by high inflammatory microenvironment (VXj). When lungs are infected, a
mechanism driven by endotoxins induces vascular permeability, activating a flux of
inflammatory cytokines that leads to an increase infiltration of lymphocytes,
macrophage, neutrophils and monocytes (VXV). These innate cells can be hijacked by
the primary tumor towards promotion of the pre-metastatic niche, and this could

explain the inflammatory phenotype observed in lung metastases in our study.

On the other hand, liver was the coldest metastatic location. Liver metastases
represent the Vm% of the patients in our cohort and they come largely from colorectal
cancer, followed by breast cancer and melanoma. Liver metastatic niche have been
previously described to be highly immunosuppressed and tolerogenic milieu (Wr). This
immunosuppressive landscape can be partially explained by the co-option pattern of
metastatic growth in the liver, which consists in the replacement of normal liver cells
by cancer cells, and does not generate an immune reaction. Accordingly, various
clinical trials from different primary tumors have shown poorer responses to ICIs of

liver metastases compared to extrahepatic metastases (WX,jkW).

Bone (accounting for the VV% of metastases) is a recurrent site of metastasis from
prostate, and in lower proportion from breast cancer. Bone metastases were the only
metastatic location that showed high differences in the immune landscape between
the distinct primary tumors. Bone metastases can be osteoblastic (preferentially
coming from prostate cancer) osteoclastic (coming from other cancer types) or, which
have different molecular interactions with their host tissue (VXr). In our clustering,
more than WX% of bone metastases coming from breast, CRC or kidney belonged to
HIC, whereas bone metastases from prostate were mainly belonging to the MIC and
LIC, in agreement with previous results that show that osteoclastic metastases are
more immunogenic than osteoblastic metastases (Wp). Thus, osteoclastic metastases

could be susceptible to be treated with immunotherapy.

Finally, brain metastases represent the higher number of samples in the cohort (Vk%

of the samples), and are a common metastatic site from lung cancer, breast cancer and

jVX



Document signat digitalment per: SANDRA GARCIA MULERO

Discussion

melanomas. Brain metastases are the deadliest metastatic location and current
treatments fail to improve survival, representing an unmet clinical need. Due to blood-
brain barrier, brain is considered an immune privileged organ, with a distinctive TME
composition and low inflammatory infiltration (VXq). In our clustering, most brain
metastases belong to LIC or MIC subgroup, and show the lowest values of immune
activation. In the same line as our results, Biermann et al. (VXVV) compared melanoma
brain versus extracranial metastases by single cell and showed that brain metastases
express higher levels of metabolic factors and higher infiltration of macrophages and

dysfunctional T cells, reinforcing the evasive features of brain metastasis (VXn).

On the other side, we found a small group of brain metastasis belonging to the HIC
that could potentially respond to immunotherapy. In a study led by Manuel Valiente
(VXjW), they found an immune escape mechanism in brain metastases that involves
CDmr, the gene marker proposed by our analysis as best biomarker of high
immunogenic metastases. They described a mechanism by which brain metastasis
induce a pro-metastatic niche through the activation of STATp in a subpopulation of
reactive astrocytes. These astrocytes have a direct effect on the TME by decreasing
CDW+ T cells infiltration and increasing macrophages through CDmr (VXm). This study
provided a proof-of-concept of a novel treatment targeting the microenvironment of

brain metastases through CDmr.

In metastases from breast cancer, we assessed whether differences existed between the
different molecular subtypes, but found no differences (data not found). This
observation was recently replicated in a study leaded by Dr. Aleix Prat (VXVV), where
they analyzed the immune profiles of jWr breast cancer metastatic samples across jj
different metastatic sites (VXW). They found no differences in the molecular subtypes
across organs. Similar to our results, they found TIS score, CDW+ T cells, B cells and
macrophages over-expressed in lung and pleural metastases, while they were under-
expressed in brain, bone and liver metastasis. Thus, suggesting that the immune
modulation of metastatic cells is more dependent on secondary tumor tissue than in

the intrinsic molecular features of the cancer cells.

3. Future perspectives of personalized oncology
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Molecular profiling of tumors has brought an unprecedented change in the
understanding of tumor biology and the mechanisms of tumor growth. It has been a
turning point in treatment of cancer, which is changing to a more personalized
selection of treatments with the focus in the profiling of patients and the classification
into different subgroups based on their molecular characteristics (Figure RN) (VXk).
Massive volumes of molecular data have been generated during the last years.
Terabytes of data are stored at big supercomputing centers and institutional servers.
The availability of these omics datasets and open databases will be a key resource for
deciphering the underlying causes of resistance to therapy and for identification of

response biomarkers (VjX).

The advances in artificial
intelligence approaches will
allow solutions improvement

Molecular profiling enables
patient stratification for
treatment selection
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of cancer research

Figure s@. Graphical overview of the different factors influencing the advances in
precision oncology. Adapted from Cirillo D et al., Mol Oncol, :;:L.

Witnessing the high heterogeneity of tumors, forthcoming studies on immuno-
oncology will focus in the understanding of tumor biology from a pan-cancer
perspective, regardless of tumor location. Many evidences demonstrate that there can
be higher similarities between molecular subtypes of different tumor locations than
between tumors from the same tissue location. As a proof of concept, the studies on
the singularities of MSI-high tumors across several tumor types have resulted in the

identification of the first pan-cancer biomarker for immunotherapy (jXr).

The breakthrough in the generation of large omics datasets has led to an exponential
increase in the use of bioinformatics and Al. This change needs of large computational
resources and interdisciplinary teams to analyze large amounts of data, including

scientists with a background in bioinformatics, computational programming and
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machine learning. Moreover, the multi-omics integration (like genomics, proteomics,
immunomics and transcriptomics) will optimize the molecular profiling of tumors
(Vjj). We live in the era of big data, and the efficient and proper use of the data is a

challenge at the same time than an opportunity for the future of research.

On the other side, the integration of precision oncology into the clinical routine seems
more challenging to achieve. The inclusion of molecular profiling into the clinical
practice requires accessibility to sequencing platforms, standardized protocols with
expert’s consensus, bioinformaticians to carry out the analyses, and an infrastructure
that is difficult to stablish in most hospitals at the moment. Furthermore, specific
training programs for clinicians and collaborative efforts between researchers,

agencies and oncologists are needed for implementation of precision oncology (jgp).
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H.

Immunogenomics studies are a suitable approach for deciphering the role of the
microenvironment in tumor progression and metastasis. The use of public omics

databases can contribute to the advances towards precision immuno-oncology.

In uveal melanoma, high infiltration of immune and stromal cell-types is

associated with disease progression.

Gene expression of HLA class I and II are associated with poor prognosis,

suggesting a mechanism of evasion from NK cells attack in uveal melanoma.

Overexpression of genes in antigen presentation and angiogenesis pathways
confers an extremely bad prognosis in uveal melanoma tumors. Combination of
immunotherapies with antiangiogenic factors could improve therapeutic

responses in this group of patients.

In uveal melanoma, driver mutations in GNAQ and GNAjj genes at QVXk hotspot
generate two peptides (QVXkP and QVXKkL) located in homologous amino acid

sequences.

Prediction tools show that GNAQ/jj QVXKL neoantigen binds with stronger
affinity to HLA class I molecules and can generate higher immunogenicity than
GNAQ QVXKkP neoantigen.

Uveal melanoma patients carrying GNAQ/jj QVXKL mutation show higher
infiltration of CDW T cells and NK cells, and higher HLA class I expression than to
patients harboring GNAQ QVXKkP neoantigen, suggesting a role of this mutation

in microenvironment remodeling.

GNAQ/jj QVXKL neoantigen is a potential candidate for neoantigen vaccine

therapy in uveal melanoma.

S. Lung metastases show a high immunogenic phenotype compared to brain, bone

and liver metastases regardless of primary tumor origin.

HQ. A clustering analysis classified metastatic samples into three subgroups of

jVn

metastases: High, Medium and Low Immune Clusters. The High Immune Cluster
mainly includes lung metastases, whereas in the Low Immune Cluster liver

metastases are the predominant ones, followed by brain and bone.
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Conclusions

HH. Metastatic samples classified as High Immune could be susceptible to be treated

with immunotherapy.

HR. CDmr expression was identified as a candidate biomarker for selection of high

immunogenic metastases.
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