
UNIVERSITAT POLITÈCNICA DE CATALUNYA

Programa de Doctorat:
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(2021). Convolutional neural network for wind turbine failure classification based
on SCADA data. Renewable energy and power quality journal, 19, 447-451.
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Abstract

In recent decades, large amounts of fossil fuels (coal, oil, gasoline, and natural gas) have
been used in energy production, generating an environmental impact and global warming.
This unsustainable situation has led to the search for alternative energy sources with
low environmental impact. In recent years, wind power, which has been presented as
a reliable and emission-free energy source, has become the fastest growing renewable
source worldwide. According to the Global Wind Report 2021 of the Global Wind Energy
Council (GWEC), the wind industry in 2020 was growing by 13% compared to the
previous year. Furthermore, the recent war between Russia and Ukraine has increased
the urgency of Europe to transform its energy system to end its dependence on fossil
fuels, which prompted the European Commission (EC) to further increase its support
for the development and deployment of renewable energy in general, and wind energy in
particular (since the EC requires 50% of the energy mix of the European Union in 2050).

Wind turbines are huge structures (e.g., rotor diameters higher than 120 m are com-
mon), with technological and industrial development on land and at sea. These structures
are located in remote areas of difficult access with extreme environmental conditions
such as high and low temperatures, as well as stochastic wind speed, which cause differ-
ent operating regions in the wind turbines. All of these factors greatly increase the cost
of operation and maintenance (O&M). In addition, low reliability directly reduces the
availability of wind power due to turbine downtime. For an onshore wind farm the O&M
is estimated between 20-25% of the levelized cost of energy (LCOE), while for offshore
ones it can account for up to 30% of the LCOE. Although larger turbines can reduce
the O&M cost per unit of power, the cost of failure and damage increases. Therefore, it
is crucial to create and apply strategies for early damage and failure detection. On the
one hand, structural health monitoring (SHM) addresses wind turbine structural damage
detection by monitoring parameters indicative of the condition of the examined struc-
ture. On the other hand, condition monitoring (CM) addresses the detection of faults in
rotating components of the wind turbine, such as shafts, bearings, gearbox, or generator,
among others. The main objective is to identify any abnormal change in condition or
specific events that may indicate an incipient damage/failure. This thesis states different
techniques for wind turbine SHM (first part of the thesis) and CM (second part of the
thesis).

The first overall objective of this doctoral thesis is to propose and validate different
SHM strategies for the detection and diagnosis of damage in jacket-type offshore support.
The development of the SHM system uses a laboratory down-scaled jacket-type support,
positioning this research at the technology readiness level (TRL) 4 (technology validated
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in a lab). The main contributions in this area correspond to (i) the conversion of the
vibration signals to multichannel grayscale images with as many channels as the number
of sensors, (ii) the experimentation is carried out for all the operating regions of the
wind turbines, (iii) the comparison between convolutional neural networks and Siamese
networks is made, where in the first case an increase in data is presented, and for the
second case a small amount of data is used, and (iv) its viability is demonstrated through
different metrics.

It may be surprising that many wind turbines do not have specific CM systems. Cur-
rently, CM systems are installed on new wind turbines on the first day of operation.
However, many older wind turbines do not have these types of system installed that in-
volve high-frequency sensors specifically tailored to monitor the condition of the rotating
machinery in the drive train. In wind turbines close to their life expectancy, a techno-
logical update (to install newly specific tailored sensors for condition monitoring) is not
economically viable for the owners. This is relevant because 38 GW of wind farms in Eu-
rope are expected to reach their life expectancy in the next five years. Based on current
trends, it is estimated that around 2.4 GW will be decommissioned for re-powering and
7 GW will be fully decommissioned. The remaining 29 GW will continue to operate and
will be considered for lifetime extension services. With this background, the second over-
all objective of this thesis is to develop early fault prediction strategies based only on real
SCADA data (available in all industrial-sized wind turbines). This is a cost-effective ap-
proach that does not require the installation of expensive sensors. This research is placed
at the TRL 7 level (system prototype demonstration in an operational environment).
The main contributions are: (i) Early detection is achieved using only SCADA data. (ii)
The proposed methods only require healthy data to be developed; therefore, they can be
applied to any wind farm, even where no faulty data have been recorded. (iii) Normality
models that avoid the imbalance problem in the data are developed and contrasted using
artificial neural networks and gated recurrent unit (GRU) neural networks. And (iv) the
validity and performance of the established methodologies are demonstrated in a real
in-production wind farm. The results obtained show that early detection strategies based
solely on SCADA data can predict failures several months before fatal failure occurs and,
thus, allow wind turbine operators to plan their maintenance operations.
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Resumen

En las últimas décadas se han utilizado grandes cantidades de combustibles fósiles
(carbón, petróleo, gasolina y gas natural) en la producción de enerǵıa, generando un
impacto ambiental y el calentamiento global. Esta situación insostenible ha llevado a la
búsqueda de fuentes de enerǵıa alternativas con bajo impacto ambiental. En los últimos
años, la enerǵıa eólica, se ha presentado como una fuente de enerǵıa fiable y libre de
emisiones, convirtiendose en la fuente renovable de mayor crecimiento a nivel mundial.
Según el Global Wind Report 2021 del Global Wind Energy Council (GWEC), la indus-
tria eólica en 2020 creció un 13% respecto al año anterior. Además, la reciente guerra
entre Rusia y Ucrania ha aumentado la urgencia de Europa de transformar su sistema
energético para acabar con su dependencia de los combustibles fósiles, lo que llevó a
la Comisión Europea (CE) a aumentar aún más su apoyo al desarrollo y despliegue de
enerǵıas renovables, y la enerǵıa eólica en particular (ya que la CE demanda el 50% del
mix energético de la Unión Europea en 2050).

Las turbinas eólicas son estructuras enormes (por ejemplo, los diámetros de rotor
superiores a 120 m son comunes), con un desarrollo tecnológico e industrial en tierra y
mar. Estas estructuras están ubicadas en áreas remotas de dif́ıcil acceso, con condiciones
ambientales extremas como altas y bajas temperaturas, aśı como velocidades estocásticas
del viento, que provocan diferentes regiones de operación en los aerogeneradores. Todos
estos factores aumentan en gran medida el costo de operación y mantenimiento (O&M).
Además, la baja confiabilidad reduce directamente la disponibilidad de enerǵıa eólica
debido al tiempo de inactividad de la turbina. Para un parque eólico terrestre, el O&M
se estima entre un 20-25% del costo nivelado de la enerǵıa (LCOE), mientras que para los
marinos puede suponer hasta un 30% del LCOE. Aunque las turbinas más grandes pueden
reducir el costo de operación y mantenimiento por unidad de potencia, el costo de fallos
y daños aumenta. Por lo tanto, es crucial crear y aplicar estrategias para la detección
temprana de daños y fallos. Por un lado, el monitoreo de la salud estructural (SHM)
aborda la detección de daños estructurales en aerogeneradores mediante el monitoreo de
parámetros indicativos del estado de la estructura examinada. Por su parte, el monitoreo
de la condición (CM) se ocupa de la detección de fallos en los componentes giratorios
del aerogenerador, como ejes, rodamientos, caja de cambios o generador, entre otros.
El objetivo principal es identificar cualquier cambio anormal en la condición o eventos
espećıficos que puedan indicar un daño/fallo incipiente. Esta tesis establece diferentes
técnicas para aerogeneradores en SHM (primera parte de la tesis) y CM (segunda parte
de la tesis).

El primer objetivo general de esta tesis doctoral es proponer y validar diferentes es-
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trategias de SHM para la detección y diagnóstico de daños en cimentaciones marinas
tipo chaqueta. El desarrollo del sistema SHM utiliza una cimentación tipo chaqueta a
escala en laboratorio, lo que posiciona esta investigación en el nivel de preparación tec-
nológica (TRL) 4 (tecnoloǵıa validada en un laboratorio). Las principales contribuciones
en esta área corresponden a: (i) La conversión de las señales de vibración a imágenes
multicanal en escala de grises con tantos canales como sensores. (ii) La experimentación
se realiza para todas las regiones de operación de los aerogeneradores. (iii) Se realiza la
comparación entre redes neuronales convolucionales y redes neuronales siamesas, donde
en el primer caso se presenta un aumento de datos, y para el segundo caso se utiliza
una pequeña cantidad de datos. Y (iv) se demuestra su viabilidad a través de diferentes
métricas.

Puede resultar sorprendente que muchas turbinas eólicas no tengan sistemas CM
espećıficos. Actualmente, los sistemas CM se instalan en los aerogeneradores nuevos
el primer d́ıa de funcionamiento. Sin embargo, muchas turbinas eólicas más antiguas
no tienen instalados estos tipos de sistemas que involucran sensores de alta frecuencia
diseñados espećıficamente para monitorear la condición de la maquinaria giratoria en
el tren de transmisión. En turbinas eólicas cercanas a su vida útil, una actualización
tecnológica (instalar nuevos sensores especificos personalizados para el monitoreo de
condición) no es económicamente viable para los propietarios. Esto es relevante porque
se espera que 38 GW de parques eólicos en Europa alcancen su esperanza de vida en
los próximos cinco años. Según las tendencias actuales, se estima que alrededor de 2,4
GW se repotenciarán y 7 GW se desmantelarán por completo. Los 29 GW restantes
continuarán operando y se considerarán para servicios de extensión de vida. Con estos
antecedentes, el segundo objetivo general de esta tesis es el desarrollo de estrategias de
predicción temprana de fallos basados únicamente en datos SCADA reales (disponibles
en todos los aerogeneradores de tamaño industrial). Este es un enfoque rentable que no
requiere la instalación de sensores costosos. Esta investigación se sitúa en el nivel TRL
7 (demostración del prototipo del sistema en un entorno operativo). Las principales con-
tribuciones son: (i) La detección temprana se logra utilizando solo datos SCADA. (ii)
Los métodos propuestos solo requieren que se desarrollen datos saludables; por lo tanto,
se pueden aplicar a cualquier parque eólico, incluso donde no se hayan registrado datos
defectuosos. (iii) Los modelos de normalidad que evitan el problema de desequilibrio en
los datos se desarrollan y contrastan utilizando redes neuronales artificiales y redes neu-
ronales de unidades recurrentes (GRU). Y (iv) se demuestra la validez y rendimiento
de las metodoloǵıas establecidas en un parque eólico real en producción. Los resultados
obtenidos muestran que las estrategias de detección temprana basadas únicamente en
datos SCADA pueden predecir fallos varios meses antes de que ocurra una fallo fatal y,
por lo tanto, permitir que los operadores de aerogeneradores planifiquen sus operaciones
de mantenimiento.
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Chapter 1

Introduction

Economic growth and industrialization have led to an increase in the use of fossil
fuels. The growing production and consumption of fossil fuels has had several adverse
environmental impacts on the planet, including global warming, air pollution, and in-
creased health risks. Fossil fuels are expected to continue to dominate the energy supply
for the foreseeable future because of their higher energy density and the time it takes to
innovate. Environmentally related technological progress can lead to significant reduc-
tions in energy consumption and increased energy efficiency. These technologies can help
reduce the negative effects of energy use and encourage nations to rethink how energy
is consumed in all activities [1]. Renewable energy is a type of energy technology that
uses nature as an energy source and is found in almost all the planet, unlike fossil fuels,
which are concentrated in specific countries. The use of renewable energy democratizes
the use of energy and can help resolve complex situations such as Europe’s current gas
crisis with Russia due to the war in Ukraine. Additionally, it brings considerable benefits
from a consumer, environmental, and economic perspective. According to WindEurope,
the European Commission forecasts show that renewable energy-based electricity will be
essential to achieve climate neutrality in Europe by 2050 [2].

Renewable energies favor environmental sustainability towards a more desirable nature-
climate balance. They include solar energy, wind, gravity-falling water, heat from the
earth (geothermal), plant materials (biomass), ocean waves and currents, temperature
differences in the oceans, and tide energy [3]. Among these sources, wind as an essential
source of global energy has taken a leading position among renewable sources. This source
can be considered one of the cleanest forms of energy generation.

The wind energy sector has grown significantly in the last two decades due to its great
opportunity for future electricity production. Consequently, installed wind capacity has
increased by more than 30% per year [4]. However, two trends endanger the fulfillment of
this global role. The first corresponds to the aging of existing wind turbine (WT)s, which
have already reached their estimated useful life of 20 years, which requires additional
maintenance [5]; and the second, the technological evolution to ever larger WTs in remote
offshore locations, which poses new accessibility problems for inspection and maintenance

3
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[6]. For wind power, the levelized cost of energy (LCOE) represents the sum of all costs
of a fully operational wind power system over the life of the project, with financial flows
discounted to a common year. The main components of the LCOE of wind energy systems
include capital costs, operation, and maintenance costs, and expected annual energy
production [7]. The development of effective strategies for the operation and maintenance
(O&M) of WTs (both onshore and offshore wind farms) must be addressed to keep wind
power financially viable, reducing LCOE costs.

1.1 Motivation

From an engineering point of view, WTs are made up of the following:

(i) static load components.

(ii) moving/rotating parts, necessary to harness the kinetic energy of the wind and
convert it into electricity.

The elements in (i) are generally called support structures. The components of (ii) can
be further divided into slow-rotating elements (blades) and high-speed rotating mecha-
nisms. The latter are all included in the rotor-gondola assembly. These distinctions are
essential, as blades and supporting structures are applications for structural health mon-
itoring (SHM), while condition monitoring (CM), by the standard definition of the term,
is a related term to machinery and rapidly moving components, such as gears, bearings
in the gearbox, and generator [8]. Elements in (i) and (ii) are subject to natural use
and consumption and therefore can develop long-term and short-term damage. Damage
to the external structure (i) will cause collapse (partial and localized or global), while
damage to internal mechanisms (ii) will cause faults, interruptions in energy production,
and, above all, fires, explosions, oil leaks, or other events. In this thesis, the word dam-
age will be used to refer to an issue in the structural part of the wind turbine (WT),
while the term faults will be used for problems related to the internal nacelle components
(bearings, shafts, gearbox, generator, etc.).

WT faults and damage are difficult to detect due to the nature of their evolution and
variable operating conditions. Therefore, maintenance is in demand to reduce operation
and costs. There are three types of maintenance: corrective, preventive, and predictive.
In corrective maintenance, equipment is used to its limit, and repairs are made when
components are damaged or failed. Preventive maintenance is performed at a regular rate
to prevent damage or faults; the problem with this maintenance is that if maintenance
is planned too early, it wastes valuable life, raising expenditures. If damage or faults
can be early predicted (months before the fatal breakdown occurs), maintenance can be
scheduled in advance, which would help managers bridge the gap between corrective and
preventive maintenance by performing maintenance not too late and not too early, but
just in time. This fits the definition of predictive maintenance. Predictive maintenance
can help to detect problems in the equipment in advance, and help identify which parts
need to be repaired [9].
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A system that allows for a significant increase in profitability, reliability, and sus-
tainability in WTs is SHM system. Some of the most well-known roots of structural
damage are moisture absorption, fatigue, wind gusts, thermal stress, corrosion, fire, and
lightning. SHM data can be used to prevent unnecessary replacement of components and
unexpected catastrophic damage, minimize inspection times, keep the wind power sup-
ply chain running smoothly and reliably, support the further development of a WT, and
provide remote side monitoring and remote diagnostics [10].

SHM techniques have been developed over many years. In general, vibration-based
SHM methods are the most widely adopted. The goals of these SHM methods are to
determine the existence of structural damage, identify its location and severity, assess
the safety of the structure, predict the remaining service life of the structure, and make
decisions about maintenance strategy, if possible. The vibration characteristics of a struc-
ture are a function of its physical parameters. Structural damage causes a change in the
physical parameters of the structure, and therefore the change in the physical param-
eters can be used as an indicator of the state of health of the structure. Through the
signal monitored by the sensors installed on the structure, the vibration characteristics
can be extracted, and the corresponding change can be detected and analyzed. In addi-
tion, from the change of vibration characteristics, the change in the physical parameters
of the structure can be further obtained to diagnose the health status of the structure.
Recently, with the rapid development of modern computer technology, the progress of
sensor technology, and signal processing technology, test signals can be accurately and
quickly analyzed and processed [11].

Generally, vibration-based SHM techniques can be classified into three categories:
frequency domain, time domain, and time-frequency domain approaches [12]. The time
domain approach does not require as many computational resources for property ex-
traction as frequency-related approaches do, and thus saves time. Among the dynamic
responses of a structure in the time domain, acceleration is one of the most used, and
it can also be used directly in SHM systems. However, the time history data set for
acceleration is much larger than the frequency data set, so convergence is difficult to
achieve [11]. In recent years, deep learning has proven to be a powerful tool for SHM
applications, to the point that it has made inroads into almost every damage level of
SHM. It has achieved structural damage detection (level 1), damage localization (level
2), damage quantification (level 3), and damage classification (level 4). The evaluation
of structural integrity (level 5) remains a concept for SHM technologies to this day [13].
SHM has matured as a routine practice in aerospace structures for many years. The ap-
proach is still being considered for routine applications for civil infrastructure systems.
A very small number of studies have reported on WT structures, and most of them have
focused on blade control [14]. The field of WTs is more complicated due to the existence
of input excitations (wind, waves, currents), which cannot be imposed. There are several
challenges with the SHM of WTs, such as (1) difficulties in inspection and maintenance
in the field due to the height of the structure, the operation of the blades, (2) the effect of
environmental conditions, especially in high seas, and (3) the remote site of wind farms.

Deep learning can be applied as a supervised or unsupervised learning problem. In the
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unsupervised approach, there is no need to collect damaged data, that is, the machine
learning algorithm is trained with only healthy data. However, it is unfeasible to correctly
identify different states of damage using only the data obtained during a healthy state. In
this framework, detection is applicable, but not a classification according to the type of
damage. On the other hand, the supervised approach addresses, in addition to detection,
classification. Therefore, it requires data from the damaged structure for model training.
In practice, this is achieved by computer models such as the finite element method (FEM)
and the use of experimental scale models. Therefore, the first motivation of the thesis is
to study supervised models for the detection and diagnosis (levels 1 and 4) of different
structural damage to the supports of the WT jackets using a laboratory down-scaled
model.

Over the past decade, there has been a rapid rise in autonomous CM systems to
monitor the performance of equipment, including WTs. The CM strategy can be applied
based on the vibration sensor system, which has vibration sensors, strain gauges, or oil
particle counters matched to turbine subcomponents for localized monitoring. The prob-
lem with this CM strategy is the high cost and that commercial options can have a high
false alarm rate [15]. On the other hand, modern WTs are equipped with sophisticated
supervisory control and data acquisition (SCADA) systems, which broadcast a wealth
of information every 10 minutes: details about wind flow and weather conditions, the
alignment of the turbine with the wind, on the conversion of the kinetic energy of the
wind into active power, on the vibratory and mechanical state of the machine, on the
thermal conditions in the relevant parts of the turbines, etc. [16]. WT CM based on the
use of SCADA data is considered a promising and cost-effective approach, as SCADA
data are available at no additional cost [17]. Currently, it is unavoidable to intervene
on-site, and it is inconceivable to do it in a base condition. Consequently, the rule is
that WT reviews are periodic and, therefore, have little to do with the onset of possible
breakdowns. Based on the above considerations, it would be worth developing SCADA
data analysis methodologies that could be useful in assessing the health status of WTs.
Therefore, the scientific and technological challenge is to address the complexity of the
SCADA data flow and to process it into novel knowledge. It is estimated that a sudden
failure of a 1.5 MW WT during winter causes a loss of production of around €50,000.
This amount is up to five times greater than the production lost due to a wisely planned
maintenance program [16]. This sheds powerful light on the economic impact of CM for
the prediction of WT failures.

The most important challenges of the SCADA data-driven approach stem from the
abundance of operational data and the wide variety of fault types that are predominantly
observable in wind farms. The lack of data with observed failures can result in a strong
class imbalance and potentially a lack of representativeness if supervised methods of fault
detection based on machine learning are sought. Therefore, it is more feasible to rely on a
representation of the normal behavior of the turbine and detect relevant deviations from
this behavior.

In recent years, deep learning approaches have been widely used to solve complex
problems in various disciplines. Given the powerful learning ability, neural networks can
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be trained to obtain models with appreciable accuracy. Furthermore, it does not need
expert knowledge of system evaluation, but instead requires a lot of data extracted from
the real world system [18]. Given a converged deep learning model, the normality model
can be completed instantly and achieve high-fidelity accuracy. Therefore, the second
challenge in this thesis is to propose new deep learning-based models to capture the
normal behavior of a WT, taking into account that WTs work in various regions of
operations under a broad range of wind speed conditions and are affected by seasonality
(e.g., temperature variation between different year seasons).

1.2 Aim and scope

The purpose of this doctoral study is two-fold. First, contribute solutions to the SHM
problem in offshore WT supports, specifically in the jacket-type, for which models based
on deep learning will be stated to detect and diagnose damage. Second, related to the
area of CM, the challenge of early prediction of main bearing faults is faced using SCADA
data. In both challenges, deep learning models are used. The state of the art of SHM in
WT supports (Chapter 2, Section 2.2) and the state of the art of CM in WTs (Chapter
3, Section 3.1) allow us to place the contributions of this doctoral thesis in context. The
two general objectives attained in the doctoral thesis are described below:

• Objective 1: Develop and validate methodologies for the detection and diagnosis of
damage to the structure health of jacket-type supports of offshore WTs.

• Objective 2: Develop and validate early fault detection methodologies based on
SCADA data from wind farms based on deep learning techniques. The fault of the
main bearing of the WT will be analyzed, for which the methodology will be tested
with SCADA data from a wind farm in operation.

The state of the art and the framework addressed in this thesis are shown in Figure 1.1.
The state of the art are the gray boxes, while the contributions done in the investigation
of SHM and CM are indicated in blue (recall that AP-I refers to the first appended
paper, AP-II to the second, and so on). The evolution and order of the investigations are
represented by arrows, which represent the timeline of the SHM and CM investigations.
Within each step, a review of the literature is carried out to choose the best candidate
method most suitable for SHM and CM applications. Subsequently, the feasibility and
limitations of the chosen methods are investigated based on the documents attached to
this thesis. Depending on the degree of development, an analysis of the feasibility and
limitations of the developed methods is carried out. It is important to note that this
thesis aims to investigate the feasibility of CM technology from SCADA data and SHM
technology for damage identification and detection, to provide practical value. Therefore,
the focus is on practical applications rather than theoretical developments. The following
paragraphs state the limitations of each proposed methodology.
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Figure 1.1: Thesis framework. AP-I refers to the first appended paper of the compendium
of publications, AP-II to the second, and so on.
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The framework proposed in the SHM research is applicable to WT supports in general,
however, its validation is limited to jacket supports as they are widely used in practice and
can be expected to be used even more in the future when sites are considered with greater
water depths. In addition, jacket substructures provide some unique practical challenges
that have not yet been adequately addressed in the literature. The SHM methodologies
in jacket-type supports are validated and studied from experimentation in a jacket-type
support model in a laboratory, so its development in the industrial environment would
be pending.

On the other hand, the framework proposed for the investigation of CM from SCADA
data is carried out with data from industrial WTs in operation (in particular from two
wind farms), thus with a high technology readiness level of 7 (system prototype demon-
stration in an operational environment). The study is limited to faults of the main bear-
ing, due to its high cost and long replacement time. Here, it is important to understand
that the terms fault and failure have different meanings in the context of reliability en-
gineering. A fault is a defect or imperfection in a system or component that may or may
not cause a failure. On the other hand, a failure occurs when a system or component no
longer performs its intended function. Thus, a fault may or may not lead to a failure,
and a failure may or may not be preceded by a fault. In this thesis, early fault detection
is addressed by using only SCADA data.

This thesis provides answers to several pertinent research questions that are not only
crucial to achieving the objectives of SHM and CM as stated in the PhD thesis, but also
to the particular data-based methodologies and artificial intelligence (AI) used to achieve
them. The specific research questions addressed in this thesis are as follows:

• How can a deep learning model be created using minimal data?

• How can imbalanced datasets be effectively handled?

• How can time series data be efficiently processed?

The research questions are investigated in the four papers summarized and discussed
in Chapters 2 to 4. The articles and their relationship to the specific boxes of the CM and
SHM framework are indicated in Figure 1.1. Specifically, AP-I and AP-II documents are
related to the detection and diagnosis of damage. The AP-III and AP-IV papers establish
a methodology for the early detection of main bearing faults from SCADA data. In the
following paragraphs, a brief summary of each AP paper is given to highlight its main
contributions.

The AP-I titled Vibration-Response-Only Structural Health Monitoring for Offshore
WT Jacket Foundations via Convolutional Neural Networks, uses damage data from a
jacket-type support of offshore WTs. Four possible cases are addressed: replica bar, bar
with loose bolt, bar with fracture, and healthy bar, relying solely on the vibrational
response collected through accelerometers to monitor the structural health of the support.
The vibratory excitation is obtained from white noise with four different amplitudes.
The data collected from the sensors (accelerometers) are converted into multichannel
grayscale images with as many channels as sensors. A 25200% data augmentation strategy
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is presented to decrease the classification error of the deep convolutional neural network
used to classify the images. The results show metrics higher than 99% in all metrics
(accuracy, precision, recall, and F1-score), where 1196 minutes were needed to train the
convolutional neural network.

The AP-II titled Siamese Neural Networks for Damage Detection and Diagnosis of
Jacket-Type Offshore WT Platforms uses the same data as the AP-I study, but with a
methodology based on two cascaded Siamese convolutional neural networks. The first
Siamese network detects damage (discerns whether the structure is healthy or damaged).
Then, in the case of damage, a second Siamese network determines the damage diagnosis
(classifies the type of damage). The results show that this approach requires very little
data to train. The investigation shows values of 100% in all metrics (accuracy, precision,
recall, and F1 score) of both convolutional networks.

The AP-III titled Wind turbine main bearing fault prognosis based solely on SCADA
data selects the SCADA data located near the main bearing, in addition to the ambient
temperature, the generated power, and the speed of the rotor. The data are preprocessed
to remove outliers, but at the same time, filled by the piecewise cubic Hermite interpolat-
ing polynomial because a time series without missing time gaps is needed. The normality
model is implemented on the basis of an artificial neural network trained only with healthy
data. The validity and performance of the established methodology is demonstrated by
a fault indicator on a real wind farm composed of 12 WTs. The results show that the
methodology based solely on SCADA data can detect main bearing failure in three and
a half months in advance of the fatal breakdown. It is important to recognize that the
terms prediction and prognosis have distinct meanings. Prognosis involves calculating
the remaining useful life of a component and predicting its parameters for a future time
horizon, while also evaluating the accuracy of the prediction and the prognostic horizon.
On the other hand, early prediction, as used in the context of incipient damage detection
and being the focus of this article, refers to detecting small signs of damage to trigger
an alarm before a total or fatal breakdown occurs. Therefore, please, note that the term
prediction would be more suitable than prognosis in this paper title.

The AP-IV titled Early Fault Detection in the Main Bearing of Wind Turbines Based
on gated recurrent unit (GRU) Neural Networks and SCADA Data, continues the main
bearing failure early detection investigation started in AP-III, with the differences that
the failure indicator is based on the exponential weighted moving average (EWMA) and
the normality model is based on a gated recurrent unit GRU neural network. The model
is built entirely from healthy data and is robust against all operational and environmental
variations. The strategy is trained, validated, and finally tested using data from a wind
farm in production consisting of nine WTs. The results show that the system produces
a minimum of false alarms and that the defect in question is predicted two months in
advance.
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1.3 Outline

The rest of the thesis consists of three chapters and four appendices that contain the main
articles published during this thesis. This section provides a summary of the content of
Chapters 2 through 4 (part I of the thesis) and appendices AP-I through IV (part II of
the thesis). The thesis is constructed in a way that aims to describe the entire process for
the stated SHM and CM methodologies according to the framework presented in Figure
1.1.

Chapter 2 starts by reviewing the state of the art in SHM related to WTs. Then, a
comparison between the methodologies proposed in AP-I and AP-II is carried out.
Challenges and limitations associated with the experimentation and the applied
method are indicated.

Chapter 3 begins with a state of the art in CM for WTs. In particular, the use
of only SCADA data for this purpose is extensively reviewed. Then, a comparison
between the methodologies proposed in AP-III and AP-IV is performed.

Chapter 4 concludes Part I of the thesis with a summary and discussion of the
material presented. The main results achieved in the project are described and
suggestions for future work are provided.

AP-I This appendix contains the paper: Puruncajas, B., Vidal, Y., & Tutivén, C (2020).
Vibration-response-only structural health monitoring for offshore wind turbine jacket
foundations via convolutional neural networks. Sensors, 20(12), 3429. First quartile,
Q1. Number of article citations (Wos Core Collection): 23.

This paper proposes a new approach for monitoring the structural health of offshore
wind turbine jacket foundations using vibration-response data and convolutional
neural networks (CNNs).

The collective contribution of this paper is the development of a new monitor-
ing approach that can accurately identify damage in offshore wind turbine jacket
foundations by analyzing the vibration-response data from accelerometers. The
proposed method is tested on a scaled model of a jacket foundation, and the re-
sults demonstrate that the CNN-based approach outperforms traditional damage
detection techniques.

The individual author contributions are as follows: Yolanda Vidal and Christian
Tutivén (supervisors of the PhD thesis) conceived the main conceptual ideas. Bryan
Puruncajas performed the implementation and numerical computation as well as
conceived the data augmentation strategy. All authors discussed the results and
contributed to the final manuscript.

Bryan Puruncajas’s specific role in the paper was critical in developing the method-
ology, conducting investigations, analyzing the data, and drafting the manuscript.
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Additionally, he played an instrumental role in the conceptualization of the data
augmentation strategy and contributed significantly to the writing process.

AP-II This appendix contais the paper: Baquerizo, J., Tutivén, C., Puruncajas, B., Vidal,
Y., & Sampietro, J. (2022). Siamese neural networks for damage detection and
diagnosis of jacket-type Offshore wind turbine platforms. Mathematics, 10(7), 1131.
First quartile, Q1. Number of article citations (Wos Core Collection): 0.

The collective contribution of this paper is the development and validation of a
methodology to detect and classify damage in jacket-type support structures for
offshore wind turbines that uses vibration-response-only accelerometer measure-
ments and is based on two in-cascade Siamese convolutional neural networks (that
can learn from very little data compared to standard machine/deep learning al-
gorithms). The first network detects whether the structure is healthy or damaged,
and the second network classifies the type of damage. The methodology is validated
in a scaled-down experimental laboratory setup and has high accuracy, precision,
recall, and F1 score metrics, making it a feasible option for detecting and classifying
damage in offshore wind turbine support structures.

The individual author contributions are as follows: Yolanda Vidal and Christian
Tutivén conceived the main conceptual ideas and contributed to the writing-review
and editing. Joseph Baquerizo (undergraduate student) performed the data cu-
ration and implementation of the methodology, Bryan Puruncajas contributed the
formal analysis, investigation, validation, and drafting the original manuscript. José
Sampietro (doctor) contributed in the formal analysis.

Bryan Puruncajas played a crucial role in the development of the methodology
presented in the paper, as he not only contributed to the formal analysis, investiga-
tion, and validation but also acted as a supervisor to (at that time) undergraduate
student Joseph Baquerizo, who performed the data curation and implementation
of the methodology. Bryan’s guidance and leadership skills were instrumental in
ensuring the successful implementation of the methodology. Additionally, he was
involved in drafting the original manuscript and contributed significantly to the
writing-review and editing of the paper.

AP-III This appendix contains the paper: Encalada-Dávila, Á., Puruncajas, B., Tutivén,
C., & Vidal, Y. (2021). Wind turbine main bearing fault prognosis based solely on
SCADA data. Sensors, 21(6), 2228. First quartile, Q1. Number of article citations
(Wos Core Collection): 24

The collective contribution of this paper is a data-based methodology for early fault
prediction using SCADA data. The proposed method only requires healthy data
to be collected and works under different operating and environmental conditions.
The established methodology is demonstrated on a real in production wind farm
consisting of 12 wind turbines, showing that advanced predictive maintenance sys-
tems based solely on SCADA data can predict faults several months prior to the
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fatal breakdown of the component, allowing wind turbine operators to plan their
operations.

The individual author contributions are as follows: Yolanda Vidal and Christian
Tutivén conceived the main conceptual ideas and contributed to the supervision
and writing-review and editing. Ángel Encalada (undergraduate student) and Bryan
Puruncajas performed the data curation, investigation, validation, and drafting the
original manuscript. Bryan Puruncajas also contributed to the methodology and
supervision.

Bryan Puruncajas played a crucial role in this paper as he not only contributed to
the methodology, data curation, investigation, validation, and drafting the original
manuscript but also provided supervision to Ángel Encalada, at that time an under-
graduate student who performed the data curation, investigation, and validation.
His role as a supervisor to an undergraduate student highlights his expertise in the
field and his ability to guide and mentor young researchers, which is essential in
promoting the growth and development of future scientists.

AP-IV This appendix contains the paper: Encalada-Dávila, Á., Moyón, L., Tutivén, C.,
Puruncajas, B., & Vidal, Y. (2022). Early fault detection in the main bearing of
wind turbines based on gated recurrent unit (GRU) neural networks and SCADA
data. IEEE/ASME Transactions on Mechatronics. First quartile, Q1. Number of
article citations (Wos Core Collection): 3.

The collective contribution of this paper is the development of a methodology to
detect faults in wind turbine main bearings using a gated recurrent unit (GRU)
neural network. The GRU can identify data in a time series that is crucial enough to
preserve or forget, allowing for early diagnosis of faults in the bearings before they
cause significant downtime and replacement costs. This methodology only requires
healthy SCADA data and can be deployed to both old and new wind parks. The
strategy was trained, validated, and tested using SCADA data from a nine-turbine
wind park currently in production.

The individual author contributions are as follows: Bryan Puruncajas and Chris-
tian Tutivén conceived the main conceptual ideas, designed the study and played
a supervisory role, Yolanda Vidal contributed the formal analysis, Ángel Encal-
ada (undergraduate student) and Luis Moyón (undergraduate student) analyzed
the data, performed the implementation and numerical computation. All authors
contributed to writing and revising the manuscript.

Bryan Puruncajas played a key role in the success of the study by conceiving the
main conceptual ideas, designing the study, and playing a supervisory role for the
undergraduate students involved in the research. Bryan proved his management
and mentorship abilities, which is a vital achievement in the academic and research
communities.
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Chapter 2

Structural Health Monitoring

In this chapter, the WT is first presented in Section 2.1. Then, an SHM state of
the art for offshore WT substructures is addressed in 2.2. Next, the two stated and
validated methodologies comprehensively exposed in AP-I and AP-II, for the detection
and diagnosis of damage in jacket-type offshore supports, are compared to each other in
Section 2.3.

2.1 The Wind Turbine

The WT is an electromechanical system that converts the kinetic energy developed in
the blades into electrical energy. Energy conversion is done in two steps. First, the kinetic
energy of the wind captured in the blades is converted into mechanical energy, and second,
the conversion of mechanical energy into electrical energy by the WT generator [19]. The
principle of capturing wind energy is the same as that used more than two centuries ago,
with the difference that today aesthetics and technology have changed WTs.

The basic parts of a WT are the foundation, tower, nacelle, and rotor with three
blades, see Figure 2.1.

Wind energy is collected in wind farms (set of WTs). Currently, these farms are
found in two different types: onshore wind farms (see Figure 2.2), which are large WT
installations located on land, and offshore wind farms, which are facilities located on
the sea. Onshore wind farms are the most popular type of wind farm today, but there
is growing interest in the development of offshore wind farms in developed countries
[21]. A key difference between onshore and offshore wind farms is the consistency of
the power they can generate. Offshore wind farms generate more electricity than their
onshore counterparts, due to higher and more constant wind speeds offshore [22]. Another
difference is the location of offshore wind farms that are much easier to find and have
less visual and sound impact on people. In addition, restrictions in activity policies on
and around offshore wind farms benefit replenishing fish populations and helping fish
farming [23]. By comparison, onshore wind farms require careful analysis to ensure that
wind speeds are sufficient and environmental impact is reduced. Some benefits of onshore

15
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Figure 2.1: Basic structure and main components of the WT [20].

wind farms are their easier accessibility on land and their easy connection to local power
grids.

(a) (b)

Figure 2.2: Wind farm classification. (a) Offshore wind farm [24]. (b) Onshore wind farm
[25].

Another important point for a meaningful comparison is the cost. Currently, onshore
wind farms are much cheaper to build and maintain than offshore wind farms [26]. How-
ever, technologies are improving and it is likely that at some point the cost of offshore
wind farms will be similar to or cheaper than onshore wind farms, at which point their
larger capacity will likely make them more attractive.

In general, the main components of an industrial WT (see Figure 2.1) are: the torque-
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generating blades connected to the hub, which is an integral part of the nacelle; the main
shaft, gearbox, and generator are housed in the nacelle; electrical cables descend from
the gondola through the tower to the foundation. The main difference between onshore
and offshore WTs is how they are structurally supported. Offshore WTs, in addition to
the tower and the foundation, have a substructure that connects the transition tower to
the foundation at seabed level [23]. A further classification is shown in Section 2.2.

In more detail, the nacelle houses all the components that are essential to operate
the turbine efficiently. It is fitted at the top of a tower and includes the gearbox, low-
and high-speed shafts, generator, controller, and brakes. A wind speed anemometer and
weather vane are mounted on the nacelle, among other possible sensors. Figure 2.3 shows
the principal components of a conventional WT.

Figure 2.3: Principal components inside the nacelle of a conventional WT [27].

2.1.1 Structural parts in a wind turbine

The structural parts of the WT that suffer damage, as already defined in Section 2.1,
and thus fall into the SHM objective are the following.

• The blades.- They are generally made of polymeric materials reinforced with fiber-
glass or carbon. The blade design is quite complex, with several components and
materials. This complexity makes them particularly susceptible to manufacturing
defects, which account for 51% of all damage (with detachment and voids in the
skin core being the most common defects at 20% and 18%, respectively). From
a geometric perspective, the cross-sectional profile varies from root to tip, often
rotating around its main axis. The structural integrity of the WT blades is of the
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utmost importance due to the possible impacts of the totally or partially detached
blades on the neighboring structures [28].

• The rotor.- The rotor is a crucial component of the WT. It is the most expensive
mechanical component, up to about a fifth of the total cost. Its design is one of
the most critical and delicate phases, especially in terms of expected performance.
Therefore, the economic viability of the entire system depends on these aspects.
The diameter of the rotor governs the height of the tower and thus the overall size
of the structure, including the foundations. A larger rotor will result in a consequent
increase in power output but, on the other hand, will require a wider tower cross
section and more massive and/or deeper foundations, thus increasing construction
costs[29].

• Support structure.- The basic function of the support structure is to hold the
WT in place. This means that it must be built to withstand the loads of sea
currents, waves, and wind, acting both on the supporting structure and on the
turbine in operation. There are a variety of WTs available on the market, designed
by different turbine manufacturers, in a range of power ratings. Each WT has
different characteristics. The environmental conditions offshore can also vary from
site to site. Therefore, the support structures are designed specifically for each case.
It is not uncommon for an offshore site to have several variations of one type of
support structure for one type of turbine [30].

Normally, the support structure is divided into two main parts (the tower and the
foundation) for onshore WTs and three main parts (the tower, the substructure,
and the foundation (see Figure 2.4)) for offshore WTs:

– The tower.- The tower is the main component of the supporting structure.
The main parameter of the tower is its height. This is usually around 1.5
times the diameter of the rotor; it is usually never less than 20 meters and can
reach up to 150 meters or more (for 10-12 MW outputs). In absolute terms,
the taller the tower, the better the wind conditions in terms of strength and
consistency. The diameter of the tower (maximum at its base and minimum
at its top) increases with the height of the tower. For example, a typical 50
m tall WT will have a tower diameter ranging from 3.5 meters to 0.4 meters
[31].

– The substructure.- It is worth mentioning that offshore WTs, unlike their
onshore counterparts, include an additional group of structural elements, which
are located below the platform and above the seabed. These components are
especially exposed to risks because of their location underwater or in the splash
zone, immediately above or below the mean water level, and are highly exposed
to corrosion. Furthermore, being submerged, they cannot be easily inspected
visually without the use of divers or manned or unmanned underwater in-
spection robots. They are also subject to marine growth and other potentially
damaging environmental conditions, such as waves, tides, and currents [8].
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Figure 2.4: Structural components of a fixed offshore WT.

– The foundation.- Onshore and offshore foundations differ markedly. How-
ever, in both cases, the choice of a specific structural design depends on loca-
tion and site conditions. For example, soil quality and strength are the main
determinants that precipitate the size and shape of the onshore foundations,
while the depth of water and distance from the shore are the key factors for
offshore turbines [8].

Different types of foundations-substructures of offshore wind farms are shown in Fig-
ure 2.5. The function of the substructure and foundation is to direct the loads toward
the seabed. Essentially, the following types are the most used:

• Gravity base.- Gravity base foundations are placed on the seabed, and their sta-
bility is ensured by dead weight. They are built almost exclusively as solid structures
or shell structures, using reinforced or prestressed concrete. They are the most com-
mon type of foundation for onshore WTs and were therefore chosen for the first
offshore WTs located in very shallow water. One of the drawbacks of gravity-based
substructures is that they require soil preparation prior to installation, as well as
extensive scour protection.

• Suction bucket.- The suction bucket foundation is a large cylindrical structure
that is open at the bottom and closed by the bucket lid at the top. During in-
stallation, the bucket is lowered to the bottom of the sea, and the skirt slightly
penetrates the ground due to its weight. Then, water is pumped out of the bucket,
drawing a vacuum under the lid, causing the skirt to go deeper into the seabed
until the bucket lid rests on it.
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• Monopile.- It consists of a single, large-diameter steel pile that is driven into
the seabed to provide a stable base for the WT tower. The monopile is typically
installed using a pile driver, and can be up to several meters in diameter and over
100 meters in length, depending on the size of the WT. Monopile foundations are
commonly used for offshore wind farms due to their relatively simple design and
ease of installation, but may not be suitable for deeper waters or more challenging
seabed conditions.

• Tri- o tetrapod.- The tri- or tetrapod type consists of three or four concrete legs,
respectively, which extend from a common base and taper upwards to support the
tower of the WT. This type of foundation is designed for shallow waters to withstand
the environmental loads and support the weight of the WT while minimizing the
environmental impact and installation costs.

• Jacket.- The Jacket-type base is a square network of steel rods, anchored at four
points, and the entire steel construction can be assembled in a single piece. The use
of a three-dimensional reinforcement such as the jacket base substantially increases
the rigidity. Although more expensive than a monopile or gravity base, the jacket
base is more cost-effective at greater depths.

• Floating.- Many proposed floating concepts use designs borrowed from the oil
and gas industry. An example is the HyWind concept, installed in June 2009 by
Siemens and StatoilHydro; this is the first megawatt floating turbine. It is designed
for depths of 120-700 m and has a capacity of 2.3 MW. The structure consists of a
steel float filled with ballast water and rocks. Extending 100 m below the surface,
it is attached to the seabed by three steel anchor cables.

As shallower sites are developed, facilities will naturally move into deeper water.
Increasing depth leads to an increase in overall offshore project costs [33]. The cost of an
offshore structure at a specific site is a function of the depth of the water and the distance
from the shore. For example, the total costs of foundations at water depths ranging from
40 to 50 m are 1.32 and 1.13 times higher than the cost for water depths of 20 - 30 and
30 - 40 m, respectively. Therefore, the right foundation plays an important role, as it can
efficiently reduce the total cost of wind projects [34]. Consequently, this thesis focuses
on SHM studies with a focus on jacket foundations because it is the validated option as
offshore wind farms transition to deeper waters and before floating foundations become
economically feasible.

2.2 SHM state of the art for offshore wind turbine

substructures

SHM can generally be defined as a strategy for early detection of damage, deterioration,
or boundary condition changes of a structure or system through pattern recognition of
measured values or damage-sensitive parameters calculated from recorded sensor values.
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Figure 2.5: Types of substructures-foundations of offshore wind farms [32].

Figure 2.6 shows a general SHM process, which comprises operational evaluation, data
acquisition, feature extraction, and diagnosis/prognosis [35].

Operational evaluation, being the first step in developing an SHM system, sets the
boundaries by answering basic questions about the safety and economic importance of
the planned SHM system, possible damage that are of concern, under which they set the
environmental and operational conditions (EOC) to operate, and the effect of EOCs on
limiting data collection. The second stage, data acquisition, deals with the selection of
suitable sensors and data acquisition equipment based on the responses from the first step.
The feature extraction step deals with the processing of the collected data by selecting
an appropriate technique relevant to the particular application. Finally, the diagnosis
and prognosis step uses modeling for feature discrimination, in which statistical models
and/or machine learning (ML) approaches are used to separate features from damaged
and undamaged states through pattern recognition [36].

The level of detail of the last diagnosis and prognosis step depends on the monitoring
concept, the sensitivity of the monitoring system, and the data analysis technique used.
The diagnosis of damage and quantification of its severity, as well as its effect on the re-
maining useful life of the structures, can be carried out through the damage identification
levels. Each level requires that the previous levels be known, as they are hierarchically
in increasing the knowledge about damage [37].

i. Damage detection (level 1): Is there any indication of damage?

ii. Damage localization (level 2): If there is evidence of damage, where is it located?

iii. Damage quantification (level 3): How severe is the indicated damage?
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Figure 2.6: SHM flowchart process [35].

iv. Damage classification (level 4): What kind of damage is it?

v. Evaluation of structural integrity (level 5): How much service life is left?

For offshore WTs, due to their dynamic sensitivity, the rotating mass at the top,
and the EOC to which they are exposed, the damage identification procedure is more
complicated. In particular, the monitoring of substructures is challenging due to their va-
riety and the installation of these systems during construction. Installing a sensor system
during construction may require additional coordination between the builder (often local
companies) and SHM system technicians. Finally, the durability and accessibility of the
sensor are a concern. If such a sensor fails, it is impractical to access it for maintenance
because the sensors must be submerged in salt water, which requires special packaging
and diver-based maintenance [38].

In a global SHM concept, the sensors used in SHM are few and strategically located.
They continuously record the response of the structures from which the damage-sensitive
parameters are directly obtained or calculated. Especially in the marine environment,
robust sensors suitable for harsh and corrosive environments are used. Additionally, as far
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as possible, the sensors are placed in accessible places. Among the most commonly used
structural (vibration) sensors for marine structures are acceleration sensors, displacement
transducers, inclination sensors, and others.

SHM in WT substructures can be achieved by measuring signals from sensors and
evaluating changes in the characteristics of the signal measurements. The vibration-based
SHM technique, also known as global method, is common in monitoring offshore WT
structures. This method uses the global vibration characteristics (dynamic properties)
of a structure, where each structure has a unique vibration signature. If the healthy
state vibration signature (dynamic property) is correctly determined, then the deviation
from these healthy state references will serve as an indicator of damage or change in the
boundary condition. For optimal results, the local and global methods should be com-
bined. Global concepts with their scattered sensors need local non-destructive techniques
during inspection to take a closer look at the location and assessment of damage before
a decision to repair it can be made. Similarly, local methods need prior knowledge of
potential damage. In our approach, offshore WT substructure damage can be obtained
from global approaches [39].

With the rapid advancement in computing power and the availability of vast amounts
of data, artificial intelligence plays an important role in the development of new tech-
nologies. Specifically, machine/deep learning, which is a part of the broad field of AI,
uses historical data to develop and enable tools to learn, predict, and make decisions
without being programmed to perform such specific tasks. Like most other disciplines,
the SHM field has also been making use of machine/deep learning capabilities to im-
prove damage detection and diagnosis strategies. Typically, damage-sensitive parameters
or characteristics are extracted from monitoring data. For SHM vibration-based tech-
niques, the basic idea of using automatic learning is to train the model using measured
responses or extracted features for different damage scenarios and the undamaged case
so that it knows how the structure responds to different damage and damage levels. For
such training, measurement data, model experiments, numerical simulation, or a combi-
nation of these are used. Machine/deep learning can assist in the automation of the SHM
process, in particular by mapping the damage-sensitive characteristics and/or parame-
ters of offshore WT substructures in detection and diagnosis to minimize expert human
intervention.

In general, monitoring the health of offshore WT substructures is currently limited to
research activities and specific applications. As an example, Strainstall company installed
SHM systems consisting of strain gauges, displacement sensors, and accelerometers. The
efforts in the supports are monitored and the fatigue life of the critical areas is calculated.
In addition, the natural frequencies of the tower are tracked, since a change in the tower
frequencies could indicate a foundation problem, and some systems also use inclinome-
ters to track the angle [40]. An extensive monitoring system has been installed at the
Belwind offshore wind farm in the North Sea. The system includes foundation corrosion
control using Zensor sensors, load and displacement control of grouted connections, and
dynamic control of the overall structure [41]. Brincker and Ibsen instrumented a Vestas
3 MW turbine with accelerometers to help a FEM perform fatigue analysis on a new
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offshore “cube” foundation design to aid in the design process and installation of the
foundation [42]. Strainstall has a scour monitoring system that tracks the progress of a
magnetic collar along a metal pipe embedded in the seabed, to detect excessive scour in
the substructure-pile foundation. As the soil erodes, the collar slides down, triggering an
alert each time one of the sensors along the tube passes [38].

In the following sections, a review of the different sensors used in SHM in general
(Section 2.2.1) and the ones that can be used in the specific application of offshore
structures (Section 2.2.2) will be carried out, as well as a classification of the different
vibration-based SHM methodologies (Section 2.2.3).

2.2.1 Overview of sensor technologies for SHM in general

SHM damage detection methodologies can be classified according to the nature of the
sensor used or according to the main physical parameter studied. Hereby, an overview of
different sensor technologies used in general for SHM is given.

• By fiber-optic sensors .- Optical fiber (OF) itself is a conduit for light that
transmits information, but it can also be sensitive to changes in the external envi-
ronment surrounding the fiber. The main purpose of using fiber optics is usually for
strain and temperature measurements. The common advantages of all types of fiber
optic sensors arise from their small size and non-electrical nature, making them im-
mune to electromagnetic interference and electrical noise [43]. For SHM, fiber bragg
gratings (FBG) are widely used. FBGs are recognized as having many advantages
compared with conventional electrical resistance foil gauges due to their corro-
sion resistance, immunity to electromagnetic interference, light weight and small
physical dimensions facilitating embedded deployment of FBGs into structures for
long-term strain monitoring purposes [44]. This is still an open field of research, and
significant efforts are being made to analyze the behavior of FBGs when subjected
to these phenomena and to obtain the actual strain field applied to the network by
demodulating its spectral information.

• By piezoelectric sensors .- Piezoelectric sensors can be found on different prin-
ciples. The first is based on acoustic emission (AE) while the other is based on
acousto-ultrasonics (AU).

AE is mainly used to study the physical parameters and damage mechanisms of a
material, but it is also used as a non-destructive testing technique. The phenomenon
is based on the release of energy in the form of transient elastic waves within a
material that undergoes dynamic deformation processes. The waves, of different
types and frequencies, propagate in the material and detect possible modifications
before reaching the surface of the studied sample [45]. Once the system has detected
and located the occurrence of damage, the system performs an acousto-ultrasonic
test throughout the impact to rate the severity of the damage. Traditional AE
parameter analysis allows for simple, fast, and cost-effective inspection or damage
detection.
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The AE described in the previous paragraph makes use of piezoelectric sensors
attached or embedded in a structure passively. The same type of attached sensors
can also be used to actively produce and detect high-frequency vibrations. The
AU uses a transmitter to send diagnostic stress waves through the structure and
a receiver is used to measure the signal, which has changed due to the presence
of damage to the structure. This wave propagation approach is very effective in
detecting damage in the form of geometric discontinuities [46]. AU is generally used
for 2D type structures (plate structures for example), and although some work has
been done for 3-D parts, volume waves are usually used in that case.

• By electrical impedance .- The goal of impedance-based damage detection is
to measure overall electrical resistance. This seems to be a valuable technique to
monitor fiber fractures in unidirectional materials and the delamination process con-
nected with a modification of the resistive tracks in the laminates. The impedance
based damage detection method uses electromechanical coupling of lead-zirconium-
titanium oxide (PZT) patches. When a PZT transducer is attached to a structure,
it forms a co-located sensor and actuator, often referred to as an auto-sensing
actuator. When a voltage is applied across the PZT, the structure is displaced,
and conversely, when the structure is displaced, a voltage is developed in the PZT
transducer. Therefore, the PZT transducer can act on the surrounding area of the
structure and detect the resulting structural response [47].

• By low-frequency electromagnetic techniques .- Using electromagnetic meth-
ods, a family of electromagnetic techniques has been developed that allows obtain-
ing thoroughly information on the health of composite structures. These techniques
consist of determining the state of health of a structure by measuring its main elec-
trical parameters, electrical conductivity, and/or dielectric permittivity since dam-
age induces locally significant variations in these two or three parameters. There
are three possible techniques: the magnetic technique, the electrical technique, and
the hybrid technique. Which of these methods is most suitable depends on the type
of material [48].

• By capacitive methods .- The principle of the capacitive method consists in
placing two (or more) electrodes on the outer surface of the samples and applying a
voltage between them. This system forms a capacitor, and changes in capacitance
are indicative of internal constituents (such as the nature of the materials or their
moisture content). The capacitance value is found using a resonant circuit that
provides an alternating voltage. The resonant frequency shift is obtained simply
by using a frequency analyzer. This type of monitoring has been used primarily to
monitor historic buildings.

• Vibration-based .- Vibration-based methods use vibration measurement sensors
(piezoelectric, accelerometers,...) to detect vibrations in the structure. These meth-
ods assume that the vibration characteristics of the structure change due to damage,
and by identifying the new characteristics and comparing them with those of the
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healthy structure, the existence of damage can be detected. The reliance on vi-
bration signals gives this method additional advantages, such as the ability to be
automated and reasonably low-cost signal acquisition and measurement technolo-
gies [49].

In WTs, environmental and operational variations of WTs significantly alter the dy-
namic response characteristics, these include wind conditions, sea state, temperature,
humidity, operating states, rotation speeds, yaw angles, etc. The vibration-based method
fits with the aforementioned variations of WTs because this method does not require
knowledge of the excitations of the structure, which is why is the one used in this doctoral
thesis. Therefore, Section 2.2.3 is fully devoted to a comprehensive review of vibration-
based techniques for SHM.

2.2.2 Overview of sensor technologies for SHM in offshore struc-
tures

To design an SHM system, one of the critical missions is to discover how to determine an
appropriate type of sensor that can cope with operating and environmental conditions
efficiently and also meet the scopes of the designed detection system. Recall that as the
structure is submerged under the sea level, robust sensors suitable for harsh and corrosive
environments are required. Therefore, this section aims to present a brief review of the
different types of sensors for offshore structural health monitoring [50].

• Accelerometer .- There are several different types of accelerometers. Further-
more, accelerometers can measure in 1, 2, or 3 directions, and they have different
properties with respect to sensitivity, resolution, and noise characteristics. Com-
mon types of accelerometers are forcebalanced, micro-electromechanical systems
(MEMS), variable capacitance, piezo-electric or piezo-resistive.

Limitations: The sensitivity, resolution, and noise characteristics of accelerometers
must be considered with respect to the expected structural response and loading to
produce usable data. When attached to structural members they are in principle
both measuring the components and systems accelerations.

Possible applications: System identification (natural frequencies, mode shapes and
damping), measurements of global displacements, measured fatigue accumulation,
model and load calibration, uncertainty assessment, detection of anomalies (dam-
age).

• AE sensor .- The purpose of AE sensing is detection of anomalies in materials.
In the offshore industry, the technique is primarily used to detect fatigue crack
initiation and the monitoring of crack growth. Modern AE sensors and systems are
accurate and can detect crack initiation and early stages of propagation.

Limitations: The system can be prone to background noise which can affect its
accuracy and reduce probability of detection. The system can be partially sensitive
to any activity such as maintenance works in the local sensor vicinity.
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Possible applications: Identification of crack initiation and crack growth.

• Electrical resistance (ER) probe .- ER probes and instruments determine metal
loss from corrosion or erosion by the electrical resistance method.

Limitations: The ER method allows only the measurement of uniform corrosion
but cannot identify localised corrosion phenomena.

Possible applications: Quantification of corrosion impact.

• Inclinometer/tilt sensor .- Inclinometers, also called tilt sensors, measure the
slope/angle/tilt of objects based on gravity in various applications.

Limitations: The position relative to other sensors must be known to provide mean-
ingful results.

Possible applications: Identification of platform tilt due to, e.g., subsidence.

• Light detection and ranging (LiDAR) sensor .- LiDAR sensing is a method
for determining ranges (variable distance) by targeting an object with a laser and
measuring the time for the reflected light to return to the receiver.

Limitations: High costs. Unable to measure distances through heavy rain, fog and
snow.

Possible applications: Scanning of surfaces, identification of distances/contours.

• Load cell .- A load cell measures mechanical force, mainly the weight of objects.

Limitations: Calibration/accuracy and maintenance (over time).

Possible applications: Monitoring of topside weight and mooring tendons on tension-
leg platform (TLP).

• Scour sensor (acoustic) .- Scour sensors are typically covered by echo sounders
and sonars. Scour sensors can be used to perform scour depth measurements in an
area around a bottomfixed structure. When excessive sediment transport occurs,
the sensor will indicate a change in elevation.

Limitations: See AE sensors.

Possible applications: Identification of scour depth.

• Strain gauge .- A strain gauge is a sensor used to measure strains on an object,
as the resistance in the sensor varies with applied force. The strain gauge converts
force, pressure, tension, weight, etc., into a change in electrical resistance which can
then be measured.

Limitations: The performance of a strain gauge can be affected by the change in
temperature and humidity. The sensor must be installed on a clean surface. The
robustness of strain gauges can be limited.

Possible applications: Measurements of strain/stress in structural members, strain
levels in bolts and flanges.
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• Video camera .- Video cameras are e.g., used for surveillance of the subsea system.

Possible applications: Video surveillance.

• Wind and humidity sensor .- A wind sensor (anemometer) is an instrument
used to measure the speed or velocity of gases in e.g., unconfined flows, such as
atmospheric wind. Humidity sensors (hygrometers) work by detecting changes that
alter electrical currents or temperature in the air.

Limitations: Anemometers may get damage during strong winds.

Possible applications: Identification of meteorological properties such as wind speeds
and directions.

In this thesis, taking into account that vibration-based methodologies are the focus
of the PhD research in the area of SHM, accelerometers are used due to their ability to
measure mechanical vibrations and accelerations in structures with high accuracy and
sensitivity.

2.2.3 Vibration-based SHM methodologies

Structural damage detection techniques can be broadly classified as either global or lo-
cal methods [51]. While vibration-based methods are typically considered global, local
methods focus on detecting and measuring damage on a smaller scale without relying on
vibration responses. Since the detection range of local methods is relatively small, most
non-destructive testing and evaluation (NDTE) methods are mostly considered local
methods [52]. Local methods employ various tools such as ultrasonic testing (UT), AE,
infrared thermography (IRT), radiographic testing (RT), magnetic flux leakage (MFL),
magnetic particle testing (MT), digital image correlation (DIC), fluid penetrant testing
(PT), laser testing methods (LMs), ground penetrating radar (GPR), leak testing (LT),
visual testing (VT), and numerous optical methods to inspect, test, and evaluate struc-
tural components and assemblies in local infrastructure areas. It is important to note
that while these methods are useful for detecting damage on a smaller scale, they are
insufficient for SHM of large-scale civil structures on their own. To gain a comprehensive
understanding of the structural condition of a large structure, an effective SHM system
should integrate both local and global damage detection techniques [53].

In contrast, global (i.e., vibration-based) structural damage detection methods utilize
the vibration response of the monitored structure to assess its overall condition. Damage
detection methods through vibration response of structures has been an area of research
over the decades. Researchers focused on the time, frequency and modal domains search-
ing for the presence, location and the severity of damage on engineering structures [54].
These methods involve the placement of a network of accelerometers at strategic locations
on the structure to capture its vibratory response. Subsequently, advanced algorithms
are utilized to convert the recorded acceleration signals into indicators that indicate the
presence of damage, identify its location, and estimate its severity [55]. Compared to
local methods, vibration-based structural damage detection techniques provide several
advantages, including [56]:
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1. Vibration-based methods offer an advantage in that they do not require a dense net-
work of sensors. Even with a limited number of accelerometers, dynamic properties
can be accurately identified in large and complex structures.

2. Unlike local methods, vibration-based methods do not require prior knowledge of
the location of the damage. This makes them particularly useful for detecting dam-
age in structures with complex geometries.

3. Another advantage of vibration-based methods is that the equipment required for
monitoring can be easily transported, handled, and attached to the monitored struc-
ture. This ease of use allows for efficient and cost-effective monitoring of large-scale
structures.

The subsequent subsections present a categorization of vibration-based SHM tech-
niques, organizing them into three distinct groups: AI-independent, ML-based, and deep
learning (DL)-based methodologies.

2.2.3.1 Vibration-based SHM methods AI-independent

Depending on the information extracted from the measured signals, vibration-based
structural damage detection methods that are not based on ML or DL can be categorized
into parametric and non-parametric methods [57].

• Parametric vibration-based.- The term ”parametric” as an adjective refers to
something that is related to or expressed in terms of parameters. In parametric
vibration-based structural damage detection methods, vibration signals obtained
from the detection interface are used to estimate unknown dynamic parameters of
the structural system, including modal frequencies, modal mass, modal damping,
stiffness, and mode shapes [58]. Parametric methods aim to detect structural dam-
age by comparing the dynamic parameters of the undamaged structure with those
of the damaged structure. Any changes in these parameters relative to a predefined
reference condition can be used as indicators of the location, severity, and extent
of the damage [59].

Previous parametric methods have mainly relied on correlating structural damage
with changes in modal characteristics. One approach involves applying a known
input excitation to the undamaged structure and measuring the vibration response
using a set of accelerometers. This can be achieved using a modal sledgehammer
or an electro-dynamic shaker [60]. The input/output signals are then processed
by a modal identification algorithm to determine the modal parameters of the
undamaged structure. To evaluate the condition of the structure over time, the
same procedure is repeated, and the extracted modal parameters are compared
with those of the reference condition [61].

It is not feasible to experimentally excite civil structures [62]. However, seismic exci-
tation can serve as natural experimental data if appropriate identification methods
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are used, despite the fact that the seismic input excitation is mostly unmeasur-
able and non-stationary due to structure interaction effects, making traditional
output-only methods ineffective. The following shortcomings of structural damage
detection methods based on parametric vibrations are identified below [63]:

1. Recent research suggests that changes in global dynamic characteristics, specif-
ically those corresponding to the lowest vibration modes, cannot always be
associated with certain types of structural damage. Local structural damage,
on the other hand, primarily affects higher frequency modes, which can be
challenging to identify using output-only methods.

2. Modal parameters can be influenced by various factors, including tempera-
ture, humidity, and measurement noise, in addition to damage. Therefore,
changes in these parameters do not necessarily indicate the presence of actual
structural damage.

3. Output-only parametric methods rely on sophisticated system identification
algorithms to solve inverse problems, estimating modal parameters based on
environmental and structural response. However, implementing such algo-
rithms is often impractical, making them unsuitable for real-time damage
detection applications.

4. Parametric methods of damage detection are centralized, requiring that all
signals be transferred to a central processing unit for damage identification.
However, when wireless sensor networks are used, the transfer and synchro-
nization of a large number of measurements can be problematic. As a result,
centralized methods are not resilient to sensor failures, as they require full
operation of all sensors in the network.

• Non-parametric vibration-based .- Unlike parametric approaches based on
system identification, non-parametric vibration-based structural damage detection
methods use statistical means to detect structural damage directly from measured
accelerations and can extract damage characteristics that cannot be easily at-
tributed to physical changes to the structure. Non-parametric methods combine
time-series modeling with statistical classification [64]. The first step is extracting
damage-sensitive features from raw signals using a time-series modeling technique.
The extracted features are then processed by a classifier or an outlier detector to
assess the current state of health of the structure [53].

2.2.3.2 Vibration-based SHM based on ML

This section will review vibration-based structural damage detection methods based on
ML methods, particularly supervised ML algorithms. The field of AI has made remark-
able progress in developing data-driven training techniques. Once trained, these methods
offer a versatile and adaptable solution that is fine-tuned by the underlying training
method for the specific task at hand [65]. Over time, as the system parameters change,
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the model can be incrementally improved (retrained). Recent literature has introduced
several approaches that achieve expert-level, or even superior, performance for a variety
of problems. These methods are both speedy and cost-effective to implement. Moreover,
a data-driven method originally trained for a specific problem can often be repurposed
for other challenges, even unrelated ones, through a process known as transfer learning
[66].

Traditional ML algorithms typically require data to be represented in a fixed number
of features. Therefore, a feature extraction step is necessary, which involves preprocessing
the data to extract relevant attributes that capture the most significant information. To-
gether with data labels, processed data samples, expressed in terms of extracted features,
are used to train the ML system using a specific training method, allowing it to learn
how these features correlate with various data patterns [67]. Vibration-based structural
damage detection methods based on ML can also be categorized as either parametric or
non-parametric. The classification is explained in detail below [68].

• ML methods for parametric vibration-based SHM.- Various parametric
SHM methods based on ML have been proposed, where the feature extraction
process involves identifying key modal parameters of structural systems using input-
output or output-only modal identification techniques. Once the modal parameters
are extracted, a well-trained ML classifier processes them to evaluate structural
integrity [69]. The most commonly used parametric ML approaches rely on modal
features, such as natural frequencies and mode shapes, as the extracted features.
Common ML classifiers used in these approaches include artificial neural networks
(ANNs), multilayer perceptrons (MLPs), fuzzy neural networks (FNNs), Bayesian
networks, support vector machines (SVMs), principal component analysis (PCA),
probabilistic neural networks (PNNs), among others [53].

• ML methods for non-parametric vibration-based SHM.- ML algorithms
are increasingly used to develop new non-parametric methods for vibration-based
structural damage detection. Unlike traditional ML approaches, these methods em-
ploy signal processing techniques to extract damage-sensitive features without re-
lying on modal identification [70]. The extracted features are then fed into an ML
algorithm, which performs structural damage detection and localization. Among
the commonly used ML classifiers in the literature for non-parametric vibration-
based structural damage detection are ANNs, factor analysis, Mahalanobis distance,
singular value decomposition (SVD), support vector data description (SVDD), K-
Nearest Neighbors, SVMs, and adaptive neuro-fuzzy inference system (ANFIS),
among other combinations. Feature extraction methods found in the literature in-
clude auto regressive (AR) modeling, maximum and variance acceleration signals,
PCA, wavelet decomposition, interval modeling, self-organizing maps (SOMs), and
others [53].

In the context of SHM, both parametric and non-parametric approaches rely on ex-
tracting a fixed set of hand-drawn (i.e. user-defined) features from vibration signals.
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Therefore, the successful performance of ML-based structural damage detection methods
is highly dependent on the quality of the extracted features and the choice of classifier
[71].

Selecting appropriate features is critical to effectively capturing the characteristic
information of the analyzed signals. In addition to feature selection, a suitable classifier
is required to achieve accurate and robust damage detection and localization [72]. The
literature presents various combinations of features and classifiers determined through
trial and error, searching for the optimal combination capable of characterizing structural
damage.

However, several issues plague currently available ML based parametric and non-
parametric SHM methods, including [53]:

1. There is no guarantee that a specific set of features/classifiers will be optimal for all
types of structural damage detection scenarios. In other words, a feature/classifier
combination that works well for a particular type of structure may not be suitable
for other structures.

2. There is no guarantee that a given set of features/classifiers will be optimal for
all types of structural damage. For example, a feature/classifier combination that
works well for detecting stiffness loss may not be effective in detecting changes in
boundary conditions.

3. Using a fixed set of handcrafted features or inappropriate classifiers may result in
poor performance of the feature/classifier combination.

4. Feature extraction techniques can be computationally expensive and complex, mak-
ing real-time SHM challenging when using ML-based methods.

5. Most parametric and non-parametric ML-based methods, with few exceptions, are
centralized. This means that all measured signals must be synchronized and trans-
ferred to a single processing unit before damage detection can be performed.

2.2.3.3 Vibration-based SHM based on DL

Conventional ANNs typically consist of a single hidden layer or two, making them shallow
[73]. In contrast, a neural network with more than three layers is considered a DL network.
Specifically, a deep neural network contains multiple layers between the input and output
[74]. DL is the most recent breakthrough in the field of ML and has emerged as an active
area of research. DL has made significant contributions to our daily lives by addressing
challenging problems that were once considered insurmountable.

The main limitation of conventional ML-based methods is their reliance on hand-
crafted features, which may not optimally represent the measured signal, resulting in
unreliable structural damage detection outcomes [75]. In contrast, DL overcomes this
limitation by utilizing multiple layers that learn abstract representations of the data at
various levels of complexity. With DL, the computational model can learn the entire
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feature extraction process and map raw inputs to final outputs without prior feature
extraction. This ability to break down complex tasks into simpler components allows DL
algorithms to excel in challenging tasks.

DL architectures can be broadly categorized into four main groups: Unsupervised
Pretrained Networks (UPNs), convolutional neural networks (CNNs), recurrent Neural
Networks (RNNs), and Recursive Neural Networks. Within UPNs, there are three ad-
ditional types of architectures: Autoencoders (also known as Deep Autoencoders), deep
Belief Networks (DBNs), and generative Adversarial Networks (GANs) [76]. These cat-
egories and their corresponding architectures are illustrated in the accompanying figure
2.7.

Figure 2.7: Deep-Learning architectures [76]

In particular, in this doctoral thesis, DL models are used to detect faults and damage
in wind turbines. The questions posed in Section 1.2 are promptly addressed and answered
below.

• How can a DL model be created using minimal data?

Creating a DL model with minimal data can be a challenging task, as DL models
typically require large amounts of data to learn meaningful patterns and generalize
well to new, unseen data. However, several strategies can be used to address this
problem:

– Transfer learning: Transfer learning is a technique in which a previously
trained model, trained on a large data set, is used as the starting point for a
new model. The new model can achieve good performance with minimal data
by fitting the previously trained model on a smaller data set [77].

– Data augmentation: Data augmentation involves generating new training
samples from existing data by applying transformations such as rotations,
flips, and scales. This increases the size of the training set and helps prevent
over fitting [78].
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– Bayesian optimization: Bayesian optimization is a technique that can be
used to optimize the hyper-parameters of a DL model with minimal data.
By modeling the model’s performance as a probabilistic function of the hyper-
parameters, Bayesian optimization can efficiently explore the hyper-parameter
space and find suitable configurations [79].

– Siamese neural networks (SNNs): SNNs is a type of DL model that
can be used for tasks such as image recognition, similarity scoring, and text
classification. They are particularly useful for scenarios where there is limited
data available [80].

This thesis presents two different approaches to DL for SHM. The AP-I employs
data augmentation by incorporating accelerometer vibrations in a serial manner
while maintaining a constant sampling time. In contrast, the AP-II uses SNNs in
its architecture, which have demonstrated high efficacy in developing DL models
with limited data. Employing SNNs provides several benefits when working with
minimal data, including:

– They are relatively simple and require minimal data preprocessing. Since the
network is trained on pairs of examples, creating a large set of labeled data is
unnecessary.

– They are easy to train and optimize. Siamese neural networks can be trained
using standard optimization techniques such as Adam or stochastic gradient
descent, and the similarity metric can be chosen based on the specific task.

– They can be easily adapted to new tasks. Siamese neural networks can be
tuned for new tasks by adjusting the weights of the shared network or by
adding new layers on top of the network.

Additionally, the bayesian optimization is explored in the context of CM, particu-
larly in AP-III.

• How can imbalanced datasets be effectively handled?

Unbalanced data sets can present a challenge for ML algorithms, as they tend to
be biased towards the majority class and perform poorly in the minority class.
However, there are several strategies that can be used to handle imbalanced data
sets effectively:

– Resampling: Resampling involves oversampling the minority class or sub
sampling the majority class to balance the data set. Oversampling can be
done by randomly duplicating examples from the minority class, generating
synthetic examples, or both. Sub sampling can be done by randomly removing
examples from the majority class or by selecting representative examples [81].
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– Cost-sensitive learning: Cost-sensitive learning involves modifying the al-
gorithm to give more weight to the minority class or penalize more misclassi-
fications of the minority class. This can be done by adjusting the loss function
or by assigning different costs to different types of errors [82].

– Ensemble methods: Ensemble methods involve combining multiple models
to improve performance. In the case of unbalanced data sets, one approach is
to train multiple models on different subsets of data, with each subset balanced
in terms of class distribution. The models are then combined using techniques
such as majority voting or weighted average [83].

– Anomaly detection: Anomaly detection involves identifying the minority
class as an anomaly or outlier and training a model to detect it. This approach
can be useful when the minority class is inherently different from the majority
class and can be identified using features that are not present in the majority
class [84].

– Transfer learning: Transfer learning involves using a pre-trained model on a
large data set and fitting the unbalanced data set. This approach can be useful
when the imbalanced data set is too small to train a model from scratch [77].

In this thesis, anomaly detection in the context of SHM has not been extensively
explored using an unsupervised approach, and therefore is proposed as a potential
avenue for future research. However, in the field of CM, fault detection is proposed
using anomaly detection models for the AP-III and AP-IV.

• How can time series data be efficiently processed?

Effectively processing time series data in DL requires careful consideration of the
data’s unique characteristics, including time dependencies, variable-length sequences,
and noisy measurements. To this end, the following strategies can be employed to
optimize the processing of time series data in DL:

– RNNs: RNNs are a type of DL model that is specifically designed to handle
sequential data. They have been widely used for time series data due to their
ability to capture temporal dependencies between data points. RNNs process
input data one-time step at a time and use a cache state to maintain a memory
of previous inputs [85].

– Long short term neural networks (LSTMs): LSTMs are a type of RNN
that is designed to address the problem of gradient disappearance that can
occur with traditional RNNs. They have a memory cell that can selectively
remember or forget information, allowing them to handle long-term depen-
dencies on time series data [86].

– CNNs: CNNs are a type of DL model commonly used for image processing
but also for time series data. CNNs can be used to process two-dimensional
time series data by applying convolutions along the time dimension [87].
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– Attention mechanisms: Attention mechanisms allow the model to focus on
specific parts of the input sequence that are most relevant to the task. This
can be useful for time-series data, where certain parts of the sequence may be
more important than others [88].

– Ensemble: Ensemble combines multiple models’ predictions to improve per-
formance. This can be especially useful for time series data, where multiple
models can capture different aspects of the data [89].

This thesis focuses on the SHM approach using CNNs, which are particularly effi-
cient at working with time series data by extracting local features. The application
of this approach is discussed in both AP-I and AP-II, where incipient damage is de-
tected. Prior to feeding time-series data into a convolutional neural network (CNN),
pre-processing may be required to convert the raw vibration measurements into 2D
matrices. Specifically, multiple-channel matrices are used to represent the vibra-
tion data captured by multiple sensors. Additionally, recurrent neural networks are
explored in the context of CM, particularly in AP-IV.

2.3 Comparison of the strategies stated in AP-I and

AP-II

In this chapter, a comparison is conducted between the two strategies proposed in the
two appended papers on SHM. The objective of the comparison is to evaluate the ef-
fectiveness of each strategy in the context of SHM. The comparison is based on a set
of criteria relevant to SHM, including accuracy, efficiency, and robustness. The results
of the comparison provide insights into the relative strengths and limitations of the two
strategies, and may be useful for practitioners in selecting an appropriate strategy for a
given SHM application.

To ensure a fair comparison between the two papers, the same experimental bench-
mark (down-scaled jacket-type support tower) and type of structural states (a healthy
bar, a replica bar, a cracked bar, and a loose bolt) were used. This involved using the
same initial data set for both papers, which ensured that any differences in performance
were due to the specific strategies being evaluated, rather than differences in the under-
lying data. Finally, note that both papers used grayscale images as the primary input
data for their respective approaches. These images were obtained by pre-processing the
raw data in the same manner, that is same image dimension and number of channels (16
× 16 × 24) were used. By using the same experimental setup, raw data, and pre-process,
it was possible to directly compare the effectiveness of the two different approaches in
a controlled manner. Figure 2.8 shows the general framework of the AP-I and AP-II
proposed strategies.

The first paper (AP-I) in this comparison focuses on exploring a data augmentation
strategy. Data augmentation involves generating additional, synthetic data samples from
existing data, and can be used to improve the performance of ML models by increasing
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Figure 2.8: Framework of AP-I and AP-II

the size of the training dataset. By using a data augmentation approach, the accuracy
and robustness of the strategy, based on a deep CNN, are improved. In this case, six
convolutional layers and two fully connected layers at the output for damage detection
and diagnosis are used. In contrast, the second paper (AP-II) focuses on obtaining the
best results with only the available data, which is a common challenge in SHM due
to the typically limited amount of data available. To address this challenge, a siamese
neural network (SNN) is used. A SNN is a type of ML model that uses two (or more)
identical neural networks to process inputs and compare their outputs. Siamese neural
networks are a powerful tool for addressing the problem of having few data in comparison
to other neural networks because they are designed to learn similarity between pairs
of inputs, rather than simply classifying individual inputs. By learning to identify the
similarity between pairs of data points, Siamese networks can effectively leverage the
limited amount of data available to create accurate and robust models. The structure of
an SNN is composed of two identical CNNs connected in parallel, where their outputs
compare the similarity of responses with the euclidean distance. The first SNN (damage
detection) is designed in its architecture with a convolutional layer and a fully connected
layer; while the second SNN (damage diagnosis) comprises two convolutional layers and
a fully connected layer. The reason for the difference in architecture between the first
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SNN (damage detection) and the second SNN (classifying type of damage) is likely due
to the differences in the tasks they are designed to perform. The first SNN is designed
for damage detection, which involves identifying the presence or absence of damage in
a structure. The use of a single convolutional layer and a fully connected layer in the
architecture may be sufficient for this task since convolutional layers are effective at
detecting features in images, and the fully connected layer can learn to map the extracted
features to a binary output indicating the presence or absence of damage. On the other
hand, the second SNN is designed to classify the type of damage present in a structure.
This task is more complex than simple damage detection, as it involves identifying the
specific type of damage present. Therefore, the architecture of the second SNN comprises
two convolutional layers and a fully connected layer, which can extract more complex
features from the input images and learn to map these features to multiple output classes
representing the different types of damage. In summary, the differences in the architecture
of the two SNNs are due to the differences in the complexity of the tasks they are designed
to perform. The first SNN focuses on binary damage detection, while the second SNN
requires the ability to classify multiple types of damage. Figure 2.9 shows the architecture
used in AP-I and Table 2.2 shows the number of parameters. Figure 2.10 and Figure 2.11
show two models of the SNN architectures used in AP-II; Table 2.3 and Table 2.4 show
the number of the SNN architectures. The use of SNNs represents a novel approach to
SHM, and the results of this paper demonstrate the potential of this approach for solving
SHM problems with limited data. Finally, Table 2.1 shows the number of images used in
the AP-I and AP-II papers.

Table 2.1: Number of images in AP-I and AP-II

Number of images

AP-I
1,612,900 Data augmentation
6,400 Initial dataset

AP-II 6,400 Initial dataset

In addition to using different architectures, the two papers in this comparison also
partitioned the image dataset differently. In the first paper, a direct division was made
between the training and validation sets, with 75% of the data being used for training
and 25% being used for validation. This division was based on the data labels, with the
goal of training and evaluating the ML model on distinct sets of data. In contrast, the
second paper partitioned the data into training, validation, and test sets based on pairs
of images. These pairs could be either positive (same labels) or negative (different labels),
resulting in two classes of images (both in the SNN for damage detection and in the SNN
for damage diagnosis). Table 2.5 shows the image division of the AP-I and Table 2.6
shows the image division of the AP-II.

As for the results obtained, table 2.7 shows the results of the AP-I, where the recovery,
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Figure 2.9: CNN architecture used in AP-I

Table 2.2: Number of parameters in each layer of the CNN architecture of the AP-I. The
neural network has a total of 2,176,308 parameters.

Layer Output size Number of parameters

Input (16×16×24) 16×16×24 -
Convolution#1 14×14×32 19,296
Convolution#2 12×12×64 51,392
Convolution#3 10×10×128 205,184
Convolution#4 8×8×256 819,968
Convolution#5 6×6×128 819,712
Convolution#6 4×4×64 204,992
Convolution#7 2×2×32 51,296
Fully connected layer#1 32 4,128
Fully connected layer#2 16 528
Fully connected layer#3 4 68

Table 2.3: Number of parameters in each layer of the SNN model 1 architecture of the
AP-II. The neural network has a total of 81,283,488 parameters.

Layer Output size # of parameter

Input (16×16×24) 16×16×24 -
Convolution 16×16×64 13,888
Fully connected layer 4,960 81,269,600

precision and F1 score are shown. The best results are obtained with data augmentation
where the values of each metric are greater than 99.88%. This methodology shows better
performance for large amounts of data, in this case data augmentation is larger than
initial data set by 25,200%. While for the AP-II, the table 2.8 shows the data for the
damage detection SNN and the damage diagnosis SNN, showing recovery, precision and
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Figure 2.10: SNN architecture of a convolutional layer (model 1) used in AP-II

Figure 2.11: SNN architecture of two convolutional layers (model 2) used in AP-II

F1 score. In this case, the best results are obtained with model 2, where all the metrics
are 100%.

About precision and training time, Table 2.9 shows the results of the AP-I, the drastic
difference in training time between data augmentation and initial data set is evident, the
use of a data set with a greater number of images leads to a greater load of the use of
computational resources due to the number of parameters of the architecture (see Table
2.2) and therefore a greater training time. As expected, the data augmentation leads to
better accuracy results than initial data set. The results of the AP-II are shown in Table
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Table 2.4: Number of parameters in each layer of the SNN model 2 architecture of the
AP-II. The neural network has a total of 40,725,024 parameters.

Layer Output size # of parameter

Input (16×16×24) 16×16×24 -
Convolution#1 16×16×64 13,888
Max pooling - -
Convolution#2 8×8×128 73,856
Fully connected layer 4,960 40,637,280

Table 2.5: Number of images for training and validation in AP-I

Training Validation

# of images (data augmentation) 1,209,675 403,225
# of images (initial data set) 4,800 1,600

Table 2.6: Number of images for training, validation and test in AP-II

Training Validation Test

SNN for damage diagnosis
Positive pair images 6,144 768 768
Negative pair images 6,144 768 768

SNN for damage detection
Positive pair images 2,048 256 256
Negative pair images 2,048 256 256

2.10, where model 2 has better accuracy than model 1. In addition, model 2 has a shorter
training time due to the difference in parameters (see Table 2.3 and Table 2.4).

Table 2.7: Metrics for each label of the diagnosis and detection problem and comparison
between the datasets in AP-I

Dataset label Precision Recall F1-score

Data augmentation

1: Healthy bar 99.89 99.96 99.92
2: Replica bar 99.90 99.87 99.88
3: Crack damaged bar 99.94 99.86 99.90
4: Unlocked bar 99.90 99.86 99.88

Initial data set

1:Healthy bar 97.97 94.14 96.02
2: Replica bar 90.31 94.75 92.48
3: Crack damaged bar 90.31 92.63 91.46
4: Unlocked bolt 92.50 93.38 92.94
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Table 2.8: Metrics for the diagnosis and detection problem and comparison between
models in AP-II

Precision Recall F1-score

Damage detection
model 1 97.66 99.60 98.62
model 2 100 100 100

Damage diagnosis
model 1 94.92 98.78 96.81
model 2 100 100 100

Table 2.9: Accuracy, validation error, training error, and training time when using data
augmentation and initial data set in AP-I

Accuracy Training time # of images

Data augmentation 99.90 1196 min 1,612,800
Initial data set 93.81 11 min 6,400

Table 2.10: Accuracy, validation error, and training error when using model 1 and model
2 in AP-II

Accuracy Training time # of pair of images

Damage detection
model 1 98.63 39.40 min 6,912
model 2 100 22.51 min 6.912

Damage diagnosis
model 1 96.87 27.45 min 2,304
model 2 100 15.75 min 2.304

Finally, a conclusion about which methodology is more suitable for damage detection
will be given in section 4.1.



Chapter 3

Condition Monitoring

3.1 State of the art in wind turbine CM

CM and predictive maintenance (PdM) are related concepts, but they have distinct
meanings and approaches, see [90]. CM is the process of monitoring the condition of
a machine or system in real-time, typically through sensors and other data collection
methods. The goal of CM is to identify potential problems or anomalies as soon as they
occur, so that corrective action can be taken before significant damage or downtime
occurs. CM is typically based on statistical methods and signal processing techniques,
and does not require the use of machine learning or artificial intelligence. On the other
hand, PdM is a broader approach to maintenance that incorporates CM as well as other
techniques, such as machine learning and AI, see [91]. PdM uses historical data and
advanced analytics to make predictions about when maintenance should be performed,
based on the expected lifespan of components or the likelihood of failure. PdM is focused
on maximizing the reliability and availability of assets, while minimizing maintenance
costs and downtime.

• Drivetrain.- This system comprises the slow, multiplier, and high-speed axes.
The low-speed slow shaft of the WT connects the rotor hub to the multiplier, inside
the hydraulic and electrical system run conduits, which actuate the aerodynamic
brakes. The multiplier, at its input, is the low-speed shaft, and through a gearing
system, the high-speed output shaft rots at a higher frequency (between 80 and
50 times faster, depending on the turbine model). The high-speed shaft rotates at
approximately 1,500 revolutions per minute (RPM), allowing the operation of the
electric generator. It is equipped with an emergency mechanical disc brake.

• Hydraulic system.- This system comprises the pressure group, hydraulic lines,
and control valves. The pressure group is responsible for providing hydraulic fluid
at a certain pressure to allow the activation of capture, orientation, or transmission

43



44 Condition Monitoring

systems. Hydraulic lines channel the fluid to the point of use. The control valves
adapt the pressure and flow of the fluid based on the actuator to be actuated.

• Cooling systems.- This system is made up of fans and heat exchangers. The fans
work at the request of the controller to create air circulation. The heat exchang-
ers dissipate the heat from the component to be cooled (generator, multiplier, or
hydraulic unit) towards the air current created by the fans.

• Generation system.- This system is made up of the generator and the trans-
former. The generator converts the mechanical energy produced by the rotor into
electrical energy. In the transformer, the electrical power delivered by the genera-
tor is low voltage. Through the transformer, the voltage is raised to connect to the
medium voltage distribution network.

• Guidance system.- This system is composed of an orientation and rotation
system, an anemometer, and a wind vane. In the orientation and rotation system,
the nacelle rotates on the top of the tower by means of an active yaw and rotation
control system so that the rotor is always in a position transverse to the wind
direction, the orientation of the WT changes based on wind conditions recorded by
sensors located on the nacelle deck. The correct positioning signal is received from
the turbine controller, based on the readings of the vane and the anemometer.

• Control system.- This system consists of the turbine controller, control sensors,
and regulation signals. The turbine controller continuously monitors the conditions
of the WT, collects statistics on its operation, and regulates switches, hydraulic
pumps, valves, and other elements of the WT. Control sensors are used to measure
the physical parameters of turbine operation and monitor turbine operation. The
electronic controller uses the signals to connect the WT when the received signal
is correct. To protect the turbine, the controller would stop the equipment auto-
matically if the information received from the sensors is wrong. The control and
regulation signals of the WT controller, based on the analysis of the sensor data,
generate orders that affect the operation and functioning of the WT.

The most common faults of these systems are mechanical, electrical, or electronic.
Faults can be divided into two large groups: minor corrective, which are faults that
are typically solved in less than 24 hours and that cause small production losses. The
second group is the major corrective, which are serious failures in the main elements,
which can involve an insurance company or the manufacturer of the WT and cause
significant production losses. Of the total problems in WTs, 40% are related to minor
corrective actions, 30% to major corrective actions, 10% to preventive activities, and 20%
to substation incidents [92].

CM in WTs involves analyzing the operating condition parameters or its components.
The objective of CM is to identify any abnormal changes in the condition or events that
may indicate a fault (failure in development) [93]. This type of maintenance is profitable,
optimal, and less expensive than maintenance based on service time. Monitoring of the
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state of the WT is carried out online or offline. In the case of offline CM, it implies peri-
odic inspections where the WT must stop, resulting in a loss of energy production, not
to mention the additional costs incurred during offline inspections. Additionally, offline
CM falls short of detecting and reporting faults between inspection intervals. The above
deficiencies become increasingly severe, especially in offshore wind farms, where inspec-
tion intervals are more extended than in onshore wind farms [94]. On the other hand,
online CM provides a real-time view of the health of the WT or its main components. It
is based on data acquisition systems to obtain continuous measurements of WT compo-
nents. Real-time CM is highly customizable due to the wide variety of sensors and data
acquisition systems available for WT components. Factors such as wind farm environ-
ment, turbine design specifications, type and characteristics, technology limitations, and
costs affect real-time (online) condition monitoring system (CMS) [95].

For successful maintenance management, information on the status of the turbine
is essential. Traditionally, information was acquired through manual on-site inspections.
However, with the increasing number of turbines installed at remote sites, frequent in-
spections are becoming more challenging and expensive. Therefore, new CM strategies
are developed, combining new sensor technology with online and offline data analysis.

3.1.1 Specific CM strategies

In the following paragraphs, a review of specific CM techniques used in the context of
WTs is comprehensively stated.

• Vibration signal analysis .- Vibration analysis is the most widely used technique
to control the state of rotating equipment. Different sensors are required for different
frequencies: position transducers are used for the low-frequency range, velocity
sensors in the middle-frequency and accelerometers in the high-frequency range,
and spectral emitted energy sensors for very high frequencies [96]. In the context of
WT application, vibration monitoring covers the overall drive train of the turbine
where rotating machinery.

Figure 3.1 illustrates a typical accelerometer design for vibration monitoring pur-
poses in a WT drive train with seven acceleration transducers. The collected vi-
bration measurements are typically subjected to frequency-based analysis and the
spectrum obtained provides an explicit indication of a component condition that
facilitates fault diagnosis for specific components.

In case of quality degradation within the component, large harmonics could appear
in the spectrum or increase the energy contained in the sideband of the spectrum.
Very detailed knowledge about the drive train parameters is required, including the
dimensions for each subassembly within the gearbox and the number of gear teeth
for all stages of the gearbox, in order to gain better understanding of which part
of the spectral signal corresponds to normal operation and which part is caused
by the deterioration of the component [98]. In addition to frequency domain-based
techniques, anomaly detection can also be carried out using time series analysis
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Figure 3.1: Structure of WT drive train with seven acceleration transducers installed for
CM [97].

of vibration signals, where the development of imminent gearbox bearing fault is
indicated. through an increasing trend over time.

• Oil debris analysis .- Oil debris analysis is also a potentially useful method of
monitoring gearbox health. Oil analysis is mostly carried out offline by taking sam-
ples (thus, it has a very low sampling rate), despite the fact that online sensors have
(for years) been available at an acceptable price level for monitoring oil tempera-
ture, contamination, and moisture [96]. Sometimes, it is integrated with vibration
analysis to provide a complete gearbox CMS that can achieve a better and more
accurate detection of gearbox faults [99].

Debris found in gearbox lubricating oil can be considered an indication of wear
or damage to gearbox components, where particles of different sizes and materials
imply different types and positions of damage. A commonly used device, the induc-
tion sensor, is used to check the size and amount of ferrous and non-ferrous debris
in lubricating oil. After particle count, oil is typically pumped into the filtration
system to remove debris, before returning to the gearbox [100].

The evolution of gearbox damage in terms of wear particle size is illustrated in
Figure 3.2, from which it can be seen that the detection of large ferrous wear
particles (with a size greater than 100 micron) can provide an early indication of
possible gearbox subassembly wear. However, for small and medium particle size
ranges, the rate of increase of the oil count particles will be more informative than
the absolute value of the cumulant.

• Strain and optical monitoring .- Recently, strain measurement and optical
fiber monitoring for WT structures has received increasing attention, as the fatigue
loads to which the turbine is exposed can be estimated. The measurements of strain
gauges, which can be placed randomly on the structure, are processed with the help
of a finite element method to monitor the effects of high dynamic loads. However,
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Figure 3.2: Evolution of gearbox damage in terms of wear particle size and concentration
[99].

strain gauges are not very durable, and these techniques require expensive measure-
ment equipment. New approaches try to connect available SCADA-data measure-
ments and short-term strain measurements to extrapolate strain estimations. Such
applications might help the technology reach a broader application in the future
[101].

• Temperature monitoring .- Temperature monitoring is one of the most popu-
lar CM tools applied in WT. This can be done with thermometers and infrared
thermography. Since each component has a maximum operating temperature that
is generally exceeded only in the event of abnormally high friction, it is a reliable
criterion for fault detection. Also, the temperatures are measurements that change
slowly due to the thermal inertia of the components. This can be an advantage
when analyzing data with a low sampling rate, for example, 10-minute average val-
ues stored in a SCADA system. For temperature, this may be sufficient resolution
for CM. On the other hand, slowly changing measurements are of limited value in
early fault prediction because they simply indicate a fault too late. However, tem-
peratures are often used as a secondary criterion in the case the vibration control
shows an alarm [101].

• Acoustic emission .- Acoustic emission can detect faults characterized by high-
frequency vibrations ranging from 50 kHz to 1 MHz. Piezoelectric transducers and
optic fiber displacement sensors are often employed in this approach [102]. Acoustic
monitoring consists of two types: passive, where the excitation is produced by the
component itself; and a second type, where the excitation is applied externally.
Acoustic emission monitoring is closely related to vibration monitoring, and some
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recent systems combine the two techniques to obtain a more accurate condition
indicator. Acoustic emission signals are also used to identify potential blade fatigue
in critical areas, such as the blade root [98].

The technologies presented in the previous paragraphs are mainly used to monitor
a specific subsystem within the turbine. Other approaches widen the balance limits and
aim to monitor the global WT system. Different mechanical and electrical faults for
example, lead to disturbances in the mechanical as well as the electrical energy flow.
Consequently, mechanical torque oscillation can also be detected on the electrical side
of the power train through power signal analysis. That way, blade, or rotor imbalances
can be detected. A comparably simple method is the monitoring of process parameters.
There, the values and relationships of temperatures, power, wind, and rotor speed or
blade angles are compared with specifications and limits determined by manufacturers.
For this kind of analysis, SCADA signals can be used.

The importance of CM is expected to increase further in the future due to the de-
velopments mentioned above in the wind industry. The more mature the new techniques
become, the cheaper their application becomes. Also, the cost of condition monitoring can
be compensated with lower premiums for insurance that rewards such systems. Develop-
ing more reliable, cost-effective, integrated, and smart solutions, condition monitoring is
about to become an integral part of modern maintenance strategies.

3.1.2 CM methodologies based on SCADA data

Large-scale WTs operate through a SCADA system. The system usually samples data at
low frequency (typically 1 Hz) with standard practice to store 10-minute averaged values
of the parameters characterizing the operating and environmental conditions. The number
of channels available varies considerably between manufacturers and SCADA services
providers, although the minimum set typically includes wind speed and direction, active
and reactive power, rotational speed, pitch and yaw angles, and ambient temperature. In
the following, CM methodologies based on SCADA data are reviewed.

• Power curve-based modeling- The relationship between the power output of
the WT and the corresponding wind speed experienced by the turbine rotor de-
fines a WT power curve, and this provides a fundamental but important metric
to identify the operational health of the WT. A key attraction for CM purposes is
that power curves can be calculated with an acceptable degree of accuracy using
already available SCADA data from wind farms [103]. To date, power curves have
been used primarily by WT owners (purchasers of the turbines) to ensure that
turbines supplied by original equipment manufacturers meet their specifications, of
which the power curve of the manufacturer is an essential part. With the help of
proper techniques, regularly updated power curves can also provide a convenient
means of identifying whether operating WTs continue to function well.

• Trending- A simple way to determine the health of the WT is to track the trends of
various parameters over time to see if any obvious changes can be observed visually.
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The thinking behind this is that any obvious change in a trend may indicate a
change in the internal physical state of some turbine components and therefore
warrants further investigation to diagnose the source of the change.

In its most basic form, turbine operators can visually observe trends and use domain
knowledge and experience to spot performance deviations or diagnose faults. For
example, the diagnosis of obvious changes in the shape of the power curve during
different periods can indicate problems in the control system. As mentioned above,
this is widely practiced in the industry. However, subtle changes in shape can be
challenging to detect, so a more analytical approach may yield better results.

Looking at general trends in turbine data can show indications of faults before the
fatal failure occurs. These trends can be easy to implement, however, the downside
of such approaches is that they rely on human visual interpretation and domain
knowledge. In addition, specific trends related to different types of faults must
be tracked. This leads to a heavy workload for the operator, with little scope for
automatic alarm generation or automation [104].

• Normality behavior modeling- Different techniques are used to detect anoma-
lies, ranging from simple threshold checks to complex statistical analysis. A common
approach is the application of normal behavior models. On the basis of the inputs
extracted from the SCADA data, the model should be able to predict a target
parameter under normal operating conditions. The real-time signal is compared to
the estimated model output for anomaly detection. The accuracy of the developed
model determines the success of the approach. Here, artificial intelligence methods
have proven to be a sufficient tool for modeling complex systems [101].

Since SCADA systems were not initially designed for CM purposes, the performance
provided is limited, mainly due to the following concerns and shortcomings [94].

• 1. Although SCADA data provides relatively extensive information that can be
useful in identifying abnormal WTs in a wind farm, the data often does not in-
clude all the information necessary for detailed and complete monitoring of WT
subsystems and components.

• 2. The distribution of SCADA data is generally unbalanced, and the extraction
of anomalous data is often insufficient. This means that the amount of normal
data is often much larger than that of anomalous data, which could lead to poor
health monitoring performance, as data-driven models tend to be biased towards
the majority class.

• 3. SCADA data sampling rate is much slower than required for some CM tech-
niques.

• 4. Data quality is often a concern. For example, 10-minute records of SCADA data
are often affected by problems such as missing values, ”NULL” entries, statistical
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outliers, large blocks of consecutively identical values, bad data format, etc. Con-
sequently, any necessary corrections made to the data may lower the required level
of precision.

• 5. Given the variability in operating conditions of modern WTs, the rapid fluctua-
tions in environmental conditions (wind speed and direction, air density, turbulence,
etc.), and the low sampling frequency of typical SCADA systems, it is difficult to
detect, diagnose and forecast incipient faults promptly.

Due to the limitations listed above, SCADA-based CM cannot replace a specifically
purpose-build CMS, which is specially designed for WT CM purposes. Compared to
SCADA systems, the measured signals are sampled at higher frequencies, providing richer
information and allowing greater understanding of the operating state of the WT. This
comes at a higher cost, which depends on the measurement accuracy, sampling rate,
system functionality, and application environment. However, CM based on SCADA data
is a cost-effective solution for WTs that are close to their useful life and do not have CMS,
as its implementation does not imply adaptations and sensors, which makes it attractive
for such situations.

3.2 Comparison of the strategies stated in AP-III

and AP-IV

This chapter compares the strategies proposed in the two appended papers related to
CM. The objective of the comparison is to evaluate the effectiveness of each proposal by
comparing performance and efficiency. The results provide information on the limitations
and strengths of each proposal, which is useful for the selection of appropriate strategies
by professionals. To ensure a fair comparison of the two papers, the same SCADA vari-
ables from the same operating wind farm consisting of 12 WTs, the same fault of interest
(the main bearing fault), the same data preprocessing, and the same splitting of training
and test (see figure 3.4) are used. Figure 3.3 shows the general framework of the AP-III
and AP-IV strategies. Table 3.1 shows the selected SCADA data variables.
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Figure 3.3: Framework of AP-III and AP-IV.

Table 3.1: Selected SCADA variables used to develop the normality model in AP-III and
AP-IV, its description, range of possible values and units.

Variable Description Range Units

Pot Generated real power [0, 2000] kW
TempAmb Ambient temperature [−5, 40] ◦C
TempCojLA Bearing coupling side temperature [0, 120] ◦C
TempCojLOA Bearing non-coupling side temperature [0, 120] ◦C
TempEjeLento Low-speed shaft temperature [0, 120] ◦C
TempGen Generator temperature [0, 175] ◦C
TempRodamMultip Gearbox temperature [0, 120] ◦C
VelRotor Rotor speed [0, 50] rpm

The paper (AP-III) proposes a normality model based on an artificial neural network
(ANN). The stated ANN is shown in Figure 3.5, where the output of the ANN is the
low-speed shaft temperature at time t, and the inputs are the remaining seven variables
at time t− 1 and t. In total, the model comprises 14 inputs and 1 output, with a hidden
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Figure 3.4: WT2 (WT number 2 in the wind farm) data for training and test of AP-III
and AP-IV methodologies.

layer made up of 72 neurons. A weekly fault indicator with a range from 0 to 1 is
proposed, where a function counts the times a threshold is exceeded based on the mean
and standard deviation obtained from the absolute value of the training residuals that
comprise the prediction of the model and the real value. Figure 3.2 shows the number of
parameters of the ANN architecture, it should be noted that this model was trained with
Bayesian regularization, which indicates the number of parameters sufficient for training.

Figure 3.5: ANN of the AP-III method.

In contrast, the paper (APIV) proposes a normality model based on a GRU network,
where the output corresponds to the low-speed shaft temperature at time t and the inputs
are 6 variables detailed in Figure 3.6( note that the temperatures are seasonally adjusted
with the ambient temperature) in 144-time steps, that is, (t − 143, t − 142, ..t − 1, t).
In total, the model has 6 inputs and one output with a hidden layer made up of 128
neurons. The proposed indicator uses the EWMA to predict the trend at time t+1. It is
based on the residuals of the model prediction and the real value, squared. The alarm is
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Table 3.2: Number of parameters in each layer of the ANN architecture for AP-III. The
neural network has a total of 1,153 parameters

Layer Output size # of parameter

Input (1×14) 1×14 -
Linear 1 1×72 1,080
Linear 2 1×1 73

obtained based on the standard deviation and the mean obtained from the EWMA. The
alarm is tuned based on the value of the standard deviation and the number of spans
of the EWMA. Figure 3.6 shows the GRU model, and Table 3.3 shows the number of
parameters.

Figure 3.6: Many-to-one GRU architecture of the AP-IV method.

Regarding the results, Figure 3.7 shows the indicator and residues obtained from AP-
III in the test data set. The first activation corresponds to WT2, this alarm is a true
positive. It was activated on February 4, with the main bearing fault being detected
three and a half months in advance. The second activation shown occurs with WT8. In
this turbine, the normality model detects a maintenance that is bein carried to replace
the gearbox. In a real situation, the park manager knows that this WT is already under
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Table 3.3: Number of parameters in each layer of the GRU architecture for AP-IV. The
neural network has a total of 52,353 parameters.

Layer Output size # of parameter

Input (1×144×6) 1×144×6 -
GRU 1×144×128 52,244
Layer 144×1 129

maintenance. Therefore, it should not be counted as a false positive. Finally, WT9 has
an active alarm, a false positive of the method, as this WT had no major work orders
during 2018. The rest of the park’s WTs were correctly classified as healthy across all
test data sets. In summary, Table 3.4 shows the activated alarms.

Figure 3.7: ANN indicator values (blue line) for test data, and threshold (red line) in the
AP-III method.

With the results of AP-IV, Table 3.5 shows the tuning of the indicator. The aim
is to propose a threshold of the form µ + κσ. To select the value for κ it is proposed
that the false-positive alarms over the training and validation dataset for each WT are
minimized. Note that the selected value for κ is adjusted based only on the observation
of the training and validation dataset where the WTs are healthy. The value of κ is
set to minimize the number of false alarms over these datasets. Therefore, there is no
information from the test set (or from the knowledge of the occurred fault on the test
set) used to decide the κ value. Finally, 1008 spans are chosen because the alarms have
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Table 3.4: Alarm activations over the test dataset for the AP-III methodology.

WT Indicator

WT1
WT2 x
WT3
WT4
WT5
WT6
WT7
WT8 x
WT9 x
WT10
WT11
WT12

zero activation for (µ+ 6σ) and (µ+ 9σ), which means that there are no false positives
over the training dataset. It should be noted that this tuning is done with only training
(healthy) data. Figure 3.8 shows the results over the test dataset in the entire wind farm.
Table 3.6 shows the activations for warning (µ + 6σ) and fault alarm (µ + 9σ). The
first activation corresponds to WT2, which is a true positive, the warning is activated
on March 18, detecting the failure of the main bearing two months in advance. As with
the AP-III, the WT8 presents a warning activation due to gearbox maintenance. Finally,
WT11 presents a warning activation, this is a false positive. The rest of the WTs in the
park were correctly classified as healthy.

Up to this point, the AP-III and AP-IV methodologies present similar results, with a
slight advantage of the AP-III strategy, since it detected the failure of the main bearing a
month and a half earlier than the AP-IV one. Table 3.7 shows the same results regarding
accuracy, precision, specificity, recall and F1-score. However, when comparing the training
time, the AP-IV method shows a much longer training time because the GRU neural
network has much more parameters than the ANN (52,353 parameters versus 1153).

Finally, a conclusion of which methodology is more suitable for the early detection of
main bearing faults will be given in Section 4.1.
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Table 3.5: False-positives alarms (x-mark) over the training and validation datasets in
the AP-IV method.

WT
144 spans 1008 spans

µ+ 3σ µ+ 6σ µ+ 9σ µ+ 3σ µ+ 6σ µ+ 9σ

WT1 x x x
WT2 x
WT3 x x
WT4 x x x
WT5 x x
WT6 x x x
WT7 x x
WT8 x x
WT9 x x x
WT10 x x
WT11 x x
WT12 x x

Table 3.6: Alarm activations over the test dataset for the AP-IV methodology.

WT
1008 spans

µ+ 6σ µ+ 9σ

WT1
WT2 x x
WT3
WT4
WT5
WT6
WT7
WT8 x
WT9
WT10
WT11 x
WT12

Table 3.7: Accuracy, precision, specificity, recall, F1-score and training time of the AP-III
and AP-IV methodologies.

Accuracy Precision Specificty Recall F1-score Training time

AP-III method 91.67 100 100 66.67 80 25 min
AP-IV method 91.67 100 100 66.67 80 47 min
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Figure 3.8: EWMA on residual errors for the WT’s test dataset (using 1008 spans), where
the red line represents a fault warning and the green line indicates a definite fault.
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Chapter 4

Conclusions and future research

4.1 Conclusions

In conclusion, this doctoral study encompasses two main areas of research: structural
health monitoring (SHM) and condition monitoring (CM) of wind turbines.

In regard to the SHM area of research, the results of this PhD provide comprehensive
insights into the SHM of jacket supports of offshore WTs and demonstrate the potential
of vibration response-based monitoring methods. In particular, the comparison of two
strategies (AP-I and AP-II) based on the vibration response of the structural health
of the support of offshore WTs is demonstrated. The overall contribution of this SHM
study of offshore WT jacket supports is: i) how three-dimensional data (derived from
different times, sensors, and experiments) are pre-processed (collected, scaled, reshaped,
augmented, and converted into gray-scale images with as many channels as sensors),
ii) the design of neural networks (CNN for the API and SNN for the APII), whose
architecture and hyperparameters play a key role in the specific application at hand, the
detection and diagnosis of damage, and iii) the comparison of the results obtained from
the AP-I and AP-II. In particular, the comparison of the CNN and the SNN found that
the SNN results have exceptional performance for all the metrics and, in addition, SNN
only needs few data, on the contrary to the case of CNN, where the computational load
is compromised and translates into a greater training time.

In a nutshell, the results of this study suggest that SNN may be an effective tool for
SHM in marine WT supports and offer a recommendation for future research to explore
other machine learning techniques, including CNN, when sufficient data are available.
The study provides valuable insights into the preprocessing and neural network design
for SHM applications and highlights the potential of SNN to perform well even with
limited data.

Regarding the CM area of research, this PhD contributes to the advancement of the
field of wind turbine monitoring and provides valuable insights into early detection of
main bearing faults based on SCADA data. In particular, the two methodologies proposed
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in AP-III and AP-IV, based on normality models from SCADA data, are compared. The
main contributions of this CM study are: i) the use of SCADA data focused on capturing
changes in temperature of the main bearing under different environmental conditions and
operating conditions, ii) the preprocessing of SCADA data, iii) the design of the neural
networks ANN and GRU, and iv) the validation and performance of the AP-III and
AP-IV methodologies established in a real in production wind farm composed of 12 WT
were demonstrated. The results show that the main bearing fault can be detected early,
several months in advance, thus giving the plant operator time to schedule maintenance.
In particular, the ANN and GRU showed the same indicators, except for the difference
in detection time. The ANN detected the fault a month and a half earlier than the GRU.
In addition, the ANN showed a lower computational load.

In a nutshell, the findings indicate that the use of neural networks to process SCADA
data is a promising approach that can effectively detect faults in wind turbines. This
study represents a novel contribution to the field of CM and demonstrates the potential of
using neural networks for this purpose in real-world applications. The results of this study
provide valuable insights into the design and implementation of future neural network-
based models for CM of wind turbines.

4.2 Further research

Future work in the area of SHM will focus on improving the ability to detect and locate
different types of damage to the structure. One challenge in this regard is to incorporate
the effects of environmental conditions, such as wave excitation, in the analysis of scale
jacket-type supports. To address this challenge, the utilization of large-scale simulation
through finite element analysis is proposed as a potential solution. This will enable the
design and validation of SHM methodologies and provide valuable insights into the im-
pact of different types of damage on the overall structural health. By addressing these
challenges and pursuing these research directions, it is expected to achieve significant
advancements in the field of SHM.

As a continuation of this study, future research in the field of CM of wind turbines
could focus on several promising avenues. First, it is suggested to explore the use of
multiple models simultaneously (ensemble methods) to improve the reliability and ac-
curacy of CM. By using two or more models that detect a fault in the same turbine, it
is possible to decrease the probability of false alarms and increase the confidence in the
results. Additionally, it is recommended to explore other deep learning techniques, such
as long-short term memory (LSTM) networks, to further enhance the performance and
capabilities of CM models. This research could also involve the integration of specific
CM data and SCADA data for early fault detection through the use of normality mod-
els. Finally, another important aspect for future research is to expand the study to cover
other types of faults in wind turbines beyond the main bearing one. This will require a
comprehensive and systematic approach to identify and assess various failure modes in
wind turbines.



References

[1] S. R. Paramati, U. Shahzad, and B. Doğan, “The role of environmental technology
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[58] M. Radzieński, M. Krawczuk, and M. Palacz, “Improvement of damage detection
methods based on experimental modal parameters,”Mechanical Systems and Signal
Processing, vol. 25, no. 6, pp. 2169–2190, 2011.

[59] W.-J. Yan, M.-Y. Zhao, Q. Sun, and W.-X. Ren, “Transmissibility-based system
identification for structural health monitoring: Fundamentals, approaches, and ap-
plications,” Mechanical Systems and Signal Processing, vol. 117, pp. 453–482, 2019.

[60] O. Abdeljaber, O. Avci, S. Kiranyaz, M. Gabbouj, and D. J. Inman, “Real-time
vibration-based structural damage detection using one-dimensional convolutional
neural networks,” Journal of Sound and Vibration, vol. 388, pp. 154–170, 2017.



66 References

[61] S. Alabbasi, M. Hussein, O. Abdeljaber, and O. Avci, “A numerical and experimen-
tal investigation of a special type of floating-slab tracks,” Engineering Structures,
vol. 215, p. 110734, 2020.

[62] R. Cantieni, “Experimental methods used in system identification of civil engineer-
ing structures,” in Proceedings of the International Operational Modal Analysis
Conference (IOMAC), pp. 249–260, Citeseer, 2005.

[63] C. R. Farrar and K. Worden, “An introduction to structural health monitoring,”
Philosophical Transactions of the Royal Society A: Mathematical, Physical and En-
gineering Sciences, vol. 365, no. 1851, pp. 303–315, 2007.

[64] Y. Ou, E. N. Chatzi, V. K. Dertimanis, and M. D. Spiridonakos, “Vibration-based
experimental damage detection of a small-scale wind turbine blade,” Structural
Health Monitoring, vol. 16, no. 1, pp. 79–96, 2017.

[65] F. Strieth-Kalthoff, F. Sandfort, M. H. Segler, and F. Glorius, “Machine learning
the ropes: principles, applications and directions in synthetic chemistry,” Chemical
Society Reviews, vol. 49, no. 17, pp. 6154–6168, 2020.

[66] R. Akerkar and P. Sajja, Knowledge-based systems. Jones & Bartlett Publishers,
2009.

[67] S. Khalid, T. Khalil, and S. Nasreen, “A survey of feature selection and feature
extraction techniques in machine learning,” in 2014 science and information con-
ference, pp. 372–378, IEEE, 2014.

[68] X. Kong, C.-S. Cai, and J. Hu, “The state-of-the-art on framework of vibration-
based structural damage identification for decision making,” Applied Sciences,
vol. 7, no. 5, p. 497, 2017.

[69] S. Hakim and H. A. Razak, “Modal parameters based structural damage detection
using artificial neural networks-a review,” Smart Structures and Systems, vol. 14,
no. 2, pp. 159–189, 2014.

[70] S. Sony, “Bridge damage identification using deep learning-based convolutional
neural networks (cnns),” 2021.

[71] A. Gomez-Cabrera and P. J. Escamilla-Ambrosio, “Review of machine-learning
techniques applied to structural health monitoring systems for building and bridge
structures,” Applied Sciences, vol. 12, no. 21, p. 10754, 2022.

[72] R.-C. Chen, C. Dewi, S.-W. Huang, and R. E. Caraka, “Selecting critical features
for data classification based on machine learning methods,” Journal of Big Data,
vol. 7, no. 1, p. 52, 2020.

[73] C. C. Aggarwal and C. C. Aggarwal, “Machine learning with shallow neural net-
works,” Neural Networks and Deep Learning: A Textbook, pp. 53–104, 2018.



References 67

[74] Y. Xu, Y. Zhou, P. Sekula, and L. Ding, “Machine learning in construction: From
shallow to deep learning,” Developments in the built environment, vol. 6, p. 100045,
2021.

[75] A. S. Mohamed, S. Sassi, and M. Roshun Paurobally, “Model-based analysis of spur
gears’ dynamic behavior in the presence of multiple cracks,” Shock and Vibration,
vol. 2018, 2018.

[76] J. Patterson and A. Gibson, Deep learning: A practitioner’s approach. ” O’Reilly
Media, Inc.”, 2017.

[77] L. Torrey and J. Shavlik, “Transfer learning,” in Handbook of research on machine
learning applications and trends: algorithms, methods, and techniques, pp. 242–264,
IGI global, 2010.

[78] S. Yang, W. Xiao, M. Zhang, S. Guo, J. Zhao, and F. Shen, “Image data augmen-
tation for deep learning: A survey,” arXiv preprint arXiv:2204.08610, 2022.

[79] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization of
machine learning algorithms,” Advances in neural information processing systems,
vol. 25, 2012.

[80] D. Chicco, “Siamese neural networks: An overview,” Artificial neural networks,
pp. 73–94, 2021.

[81] O. Arbelaitz, I. Gurrutxaga, J. Muguerza, and J. M. Pérez, “Applying resampling
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Abstract: This work deals with structural health monitoring for jacket-type foundations of offshore
wind turbines. In particular, a vibration-response-only methodology is proposed based on
accelerometer data and deep convolutional neural networks. The main contribution of this article
is twofold: (i) a signal-to-image conversion of the accelerometer data into gray scale multichannel
images with as many channels as the number of sensors in the condition monitoring system,
and (ii) a data augmentation strategy to diminish the test set error of the deep convolutional neural
network used to classify the images. The performance of the proposed method is analyzed using
real measurements from a steel jacket-type offshore wind turbine laboratory experiment undergoing
different damage scenarios. The results, with a classification accuracy over 99%, demonstrate that the
stated methodology is promising to be utilized for damage detection and identification in jacket-type
support structures.

Keywords: structural health monitoring; damage detection; damage identification; offshore wind
turbine foundation; jacket; signal-to-image conversion; convolutional neural network

1. Introduction

Globally, wind power generation capacity has increased exponentially since the early 1990s, and as
of the end of 2019, this capacity amounted to 650 GW [1]. Whereas onshore wind turbines (WTs) have
dominated new wind installations in the past, the growth of offshore WTs is poised to become the new
leader because of steadier wind, in addition to vast regions where its installation is possible. In regard
to the global offshore market, the cumulative installations have now reached 23 GW, representing 4%
of total cumulative installations. Unfortunately, offshore WTs are placed in a harsh environment that
originates from the wind and sea conditions [2]. As a consequence, offshore WTs require rigorous
safety measures because it is extremely complicated to do operation and corrective work on these huge
WTs placed in remote locations. Given that approaches centered on enhancing component reliability
are likely to increase capital expenditures, system design optimization research and development
activities should instead focus on minimizing and, if possible, even eliminating unexpected failures.
In other words, the wind industry must abandon corrective maintenance (remedy failures) and move
toward predictive maintenance (repair immediately before failure) to achieve maximum availability.
Thus, the development of a structural health monitoring (SHM) strategy is particularly necessary to
achieve this goal.
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Onshore and offshore fixed WTs differ mainly in the structure of their respective foundations.
Several types of offshore foundations are used, with foundation choice depending on the water depth.
The most common foundations are shown in Figure 1, see [3]. Note that jacket foundations, which are
the object of study of this work, are preferred for greater depths (usually, between 30 to 90 m).

Figure 1. Fixed bottom wind turbine foundations [3].

The detection of early-stage damage in the foundation is of great importance to avoid the
possible future collapse of the entire structure. As stated in “Long-term research challenges in wind
energy—a research agenda by the European Academy of Wind Energy” [4]:

A defining marine environment main characteristic is that structures are always subject to
excitations. Techniques for structural health monitoring, vibration and data analysis must
be capable of coping with such ambient excitations. As the input is typically not known, a
normal input-output formalism cannot be used.

Thus, to overcome this challenge—which is posed by the fact that the input is typically not
known—in this work, a structural health monitoring strategy for jacket-type foundations is developed
based on a vibration response-only methodology. This is a challenge by itself as many of the works in
the SHM field are based on the principle of guided elastic waves with a given (known) input excitation.
See, for example, the overview of SHM systems for various WT components presented by Liu et al. [5].
In contrast, in this work, a new paradigm is introduced in which a predetermined excitation in
the structure is no longer forced, but rather, the incident wind and waves serve as the exciting
forces in the structure. In this way, the classic pattern recognition paradigm with identical excitation
(e.g., [6]) becomes a problem of pattern recognition with variable excitation. Consequently, the new
paradigm implies greater complexity in the damage detection process. Furthermore, until recently,
few contributions have targeted offshore WT foundations. Notably, work by Weijtjens et al. [7] was
focused on a real WT foundation and contributed an SHM strategy based on the resonance frequencies
of the foundation. However, the results only proved some increased stiffness of the structure and
could not give a final diagnosis about damage detection. Similarly, Oliveira et al. [8] introduced the
main aspects in the development of a vibration-based monitoring system for an onshore 2.0-MW
wind turbine based on identification of the modal properties of the most important vibration modes,
in which detailed attention was given to the statistical procedure based on regression models that was
used to minimize the influence of operational and environmental effects over the features considered
to detect structural changes in the WT. However, only damage detection was pursued with a single
type of damage. Noteworthily, the work by Zugasti [9] used damage estimators to detect damage in
an experimental offshore tower similar to that employed in this work. Nevertheless, only damage
detection was attained. In this work, in contrast to the aforementioned references, several types of
damage are studied, and not only damage detection but also its classification is achieved.
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It is important to note that the SHM standard approach for the problem at hand is usually an
unsupervised one. That is, as no one would purposely damage their assets to train a SHM tool,
only healthy data from the real structure is used. However, it is unfeasible to correctly identify
different damage states using solely data obtained during what is assumed to be a healthy state.
In this framework, detection can be accomplished by using a model of normality or unsupervised
models, but not classification on the type of damage. The approach proposed in this work is the
opposite, that is, a supervised approach. Thus, data from the damaged structure are required to train
the model. In practice, this will be accomplished by means of computer models, as the finite element
method (FEM). The FEM model should be validated with a downscaled experimental tower (as the one
proposed in this work). Then, the full-scale finite element model would be used to generate healthy
(to validate with the real asset) and damage samples. Finally, the stated supervised methodology
proposed in this work can be used. In this work, a satisfactory experimental proof of concept has been
conducted with the proposed strategy and a laboratory downscaled WT. However, future work is
needed to validate the technology in a full-scale and more realistic environment. Some examples of this
type of approach are given in [10], where bridge damage detection is accomplished by a neural network
considering errors in baseline finite element models, and [11] where the stated SHM method for an oil
offshore structure is capable to cope with several types of damage based on a finite element model.

On the one hand, it has been shown that traditional machine learning requires complex feature
extraction processes and specialized knowledge, especially for a complex problem such as WT
condition monitoring [12–14]. Moreover, extracting features with classic machine learning methods
faces the classic bias-variance dilemma from inference theory. The bias–variance trade-off implies
that a model should balance under-fitting and over-fitting; that is, the model should be rich enough
to express underlying structure in the data but simple enough to avoid fitting spurious patterns,
respectively. On the other hand, in the modern practice of deep learning, very rich models are trained
to precisely fit (i.e., interpolate) the data. Classically, such models would be considered over-fit, and
yet they often obtain high accuracy on test data. Thus, this paper proposes to use deep convolutional
neural networks (CNN) for pattern recognition (classification), avoiding the aforementioned usual
problems in the literature—e.g., [12–14]—related to feature extraction and bias–variance trade-off.
In particular, we develop a novel damage diagnosis method for WT offshore foundations based on
transforming condition monitoring multi-vibration-signals into images (with as many channels as
sensors) to be processed afterward using deep CNN.

The paper is organized in the following manner. First, in Section 2, the experimental setup is
introduced. It consists of a steel jacket-type offshore WT laboratory structure undergoing different
damage scenarios. Then, in Section 3, the proposed SHM strategy is described in detail. The approach
can be summarized by the following steps: (i) accelerometer data is gathered, (ii) a preprocess is
designed to extract the maximum amount of information and to obtain a dataset of 24 (that is, the same
number as accelerometer sensors) channel gray-scale images, (iii) 24-channel-input deep CNN is
designed and trained for classification of the different structural states. In Section 4, the obtained results
are conferred, showing an exceptional performance with all considered metrics giving results greater
than 99%. Lastly, the main conclusions are given in Section 5 as well as future work research directions.

2. Experimental Setup

The laboratory experimental setup is described in the following. First, a function generator (GW
INSTEK AF-2005 model) is employed to generate a white noise signal. Then, this signal is amplified
and applied to a modal shaker (GW-IV47 from Data Physics) that induces the vibration into the
structure. The general overview of the experimental setup is shown in Figure 2 (left). The structure is
2.7 m tall and composed of three parts:

1. The top beam (1× 0.6 m), where the modal shaker is attached to simulate a nacelle mass and the
effects of wind excitation;

2. The tower with three tubular sections connected with bolts;
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3. The jacket, which includes a pyramidal structure made up by 32 bars (S275JR steel) of different
lengths, sheets (DC01 LFR steel), and other elements such as bolts and nuts.

It should be noted that different wind speeds are considered by modifying the white noise signal
amplitude (i.e., scaling the amplitude by 0.5, 1, 2, and 3).

Figure 2. The experimental setup (left) detailing the location of the damaged bar (red circle). Location
of the sensors on the overall structure (right).

To measure vibration, eight triaxial accelerometers (PCB R© Piezotronic, model 356A17) are placed
on the structure, see Figure 2 (right). The optimal number and placement of the sensors is determined
according to [9]. The accelerometers are connected to six National InstrumentsTM cartridges (NI 9234
model) that are inserted into the National Instruments chassis cDAQ-9188. Finally, the Data Acquisition
ToolboxTM is employed to configure the data acquisition hardware and read the data into MATLAB R©.

The studied damage states are related to one of the jacket bars, see Figure 3. The damage states
include a 5-mm bar crack and loosening one of the jacket bolts. Furthermore, a pristine replica bar is
also considered.

Figure 3. Different structural state scenarios studied in this work. Replica (healthy) bar (left). Crack
damage, where L is the length of the bar, d = 5 mm is the crack size, and X = L/3 is the location of the
crack in the bar (center). Missing bolt (right).

Finally, note that the purpose of the paper is to verify that the conceived methodology has practical
potential. The laboratory tower is a simplified model, but it is valid for this preliminary study because
it is similar to the laboratory towers used, for example, in [9], where damage detection is accomplished
(but not localization or identification) via damage indicators; in [15,16], where statistical time series are
employed to detect damage; and in [17,18], where damage detection is accomplished through principal
component analysis and support vector machines.
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3. Structural Health Monitoring Proposed Methodology

The proposed SHM strategy follows the steps detailed here. First, the raw time series data are
collected. Second, the data are preprocessed to obtain a dataset of 24-channel gray-scale images. Third,
a 24-channel-input CNN is designed and trained for classification of the different structural states.
The following subsections describe the aforementioned procedure in detail.

3.1. Data Gathering

The data were gathered in different experiments with a sampling rate of 275.27 Hz and a duration
of 60 s each. Table 1 shows the total number of realized experiments for the corresponding structural
state (with its corresponding label) and white noise amplitude. A total of K = 100 experiments were
conducted. Given the k-th experiment, where k is varied from 1 to K = 100, the raw data were then
saved in the matrix X(k) ∈ M16517×24(R)

X(k) =




x(k)1,1 x(k)1,2 · · · x(k)1,24

x(k)2,1 x(k)2,2 · · · x(k)2,24
...

...
. . .

...

x(k)16517,1 x(k)16517,2 · · · x(k)16517,24




. (1)

Note that there are as many rows as the number of measurements in each experiment—that is,
I = 16, 517—and as many columns as the number of sensors, J = 24 (because each column is related
to one sensor). Ultimately, the overall data matrix X ∈ M1651700×24(R) is constructed by stacking the
matrices that arise from each different experiment,

X =




X(1)

...
X(k)

...
X(100)




. (2)

Table 1. Total number of experimental tests for the different white noise (WN) amplitudes and for each
structural state.

Label Structural
State 0.5 WN 1 WN 2 WN 3 WN

1 Healthy bar 10 tests 10 tests 10 tests 10 tests
2 Replica bar 5 tests 5 tests 5 tests 5 tests
3 Crack damaged bar 5 tests 5 tests 5 tests 5 tests
4 Unlocked bolt 5 tests 5 tests 5 tests 5 tests

3.2. Data Preprocessing: Scaling, Reshaping, Augmentation, and Signal-To-Image Conversion

Data preprocessing is both the initial step and a critical step in machine learning. In this work,
data reshaping is employed to guarantee that each sample includes multiple measurements from each
sensor and thus has sufficient information to make a diagnosis regarding the state of the structure.
Furthermore, a data-augmentation strategy is proposed to improve the final test set error of the
prediction model. It is clear that the signal-to-image conversion as well as the architecture and
hyperparameters of the deep CNN will play a key role in the damage detection methodology. However,
the manner in which these data are scaled, augmented, and reshaped will significantly impact the
overall performance of the strategy [19].
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3.2.1. Data Scaling

The importance of preprocessing techniques for image classification by CNN is well known [20].
The main reason for data scaling is to enhance the efficiency of the neural network training process,
significantly decreasing the number of epochs required for the network to learn, and thus leading to a
better predictor. In particular, here, the data are scaled column-wise to fall within the specific range
[0, 255]. This range is selected to later allow for easy conversion into gray-scale images. In particular,
the range is computed as follows. Assuming that there are K experimental tests, I samples per
experiment, and J sensors,

Mj = max
(

x(k)ij

)
, i = 1, . . . , I, k = 1, . . . , K, (3)

mj = min
(

x(k)ij

)
, i = 1, . . . , I, k = 1, . . . , K, (4)

where Mj and mj are the maximum and the minimum values, respectively, of all the measures at
column j, where j = 1, . . . , J. Accordingly, the elements of matrix X are scaled

y(k)ij :=
(

x(k)ij −mj

) 255
Mj −mj

, i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , K, (5)

to create a new matrix Y as

Y =




y(1)1,1 y(1)1,2 · · · y(1)1,24
...

...
. . .

...

y(1)16517,1 y(1)16517,2 · · · y(1)16517,24

y(2)1,1 y(2)1,2 · · · y(2)1,24
...

...
. . .

...

y(2)16517,1 y(2)16517,2 · · · y(2)16517,24

...
...

. . .
...

y(100)
1,1 y(100)

1,2 · · · y(100)
1,24

...
...

. . .
...

y(100)
16517,1 y(100)

16517,2 · · · y(100)
16517,24




=




Y(1)

Y(2)

...

Y(100)




. (6)

3.2.2. Data Reshaping

In this section, data reshaping is employed to guarantee that each sample has multiple
measurements from each sensor and thus has sufficient information to diagnose the state of the
structure. In particular, matrix (6) is reshaped to matrix Z ∈ M(6400)×(256·24), as given in Table 2.
It should be noted that the data in the first 256 columns are related to sensor 1 and define the first
submatrix block, denoted as Z1. Then, the data in columns 257 to 512 are related to sensor 2 and define
the second submatrix block Z2. Next, the columns 513 to 768 are related to sensor 3 and define the third
submatrix block Z3, and so on and so forth, until the last sensor related to Z24 has been accounted for.
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Table 2. Data reshaping. On the one hand, this process can be viewed as the vertical stacking of
K = 100 matrices Z(k), k = 1, . . . , K, where each matrix is associated with a different experiment.
On the other hand, this process can also be viewed as the horizontal concatenation of J = 24 matrices,
Zj, j = 1, . . . , J, where each matrix is associated with a different sensor.

Sensor 1 . . . Sensor 24

Z =




y(1)1,1 · · · y(1)256,1

y(1)257,1 · · · y(1)512,1
...

. . .
...

y(1)16129,1 · · · y(1)16384,1

...
. . .

...

y(k)1,1 · · · y(k)256,1

y(k)257,1 · · · y(k)512,1
...

. . .
...

y(k)16129,1 · · · y(k)16384,1

...
. . .

...

y(100)
1,1 · · · y(100)

256,1

y(100)
257,1 · · · y(100)

512,1
...

. . .
...

y(100)
16129,1 · · · y(100)

16384,1

· · ·

y(1)1,24 · · · y(1)256,24

y(1)257,24 · · · y(1)512,24
...

. . .
...

y(1)16129,24 · · · y(1)16384,24

...
. . .

...

y(k)1,24 · · · y(k)256,24

y(k)257,24 · · · y(k)512,24
...

. . .
...

y(k)16129,24 · · · y(k)16384,24

...
. . .

...

y(100)
1,24 · · · y(100)

256,24

y(100)
257,24 · · · y(100)

512,24
...

. . .
...

y(100)
16129,24 · · · y(100)

16384,24




=




Z(1)

...

Z(k)

...

Z(100)




=
(

Z1 · · · Z24
)

It should be noted that each row of matrix Z contains the information of one sample of our SHM
strategy. Notice that to diagnose a WT, the trained model requires at least one sample. Based on the
aforementioned reshaping process, the expected sample now contains 256 time stamps from each
sensor. In this manner, less than 1 second is required to gather the necessary data when the sampling
frequency is 275.27 Hz. Thus, this process leads to a faster detection time (amount of time that elapses
between fault occurrence and detection). The intuition behind the proposed data reshape is twofold:
(i) it supplies more information to each sample, and (ii) it simplifies the signal-to-image conversion,
as stated in Section 3.2.4, because 256 is a perfect square.

Finally, observe that from matrices Y(k), k = 1, . . . , K in Equation (6), the last samples y(k)i,j
from i = 16385, · · · , 16517, are discarded to reshape the data in the aforementioned new matrices
Z(k), k = 1, . . . , K.

3.2.3. Data Augmentation

Deep convolutional neural networks rely heavily on big data to avoid overfitting, see [21].
Unfortunately, many application domains lack access to big data. In this work, to build a better
deep CNN model, a data augmentation strategy is proposed that artificially expands the size of the
training dataset without actually collecting new data.
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The method consists of using each time stamp as the beginning of a new sample (and
using the subsequent 255 measures to complete the sample), as shown in Table 3. Accordingly,
instead of the previously defined matrices (see Table 2) Z(k) ∈ M(64)×(256·24), k = 1, . . . , K,
augmented matrices with the same number of columns but more rows are obtained, namely,
D(k) ∈ M(16129)×(256·24), k = 1, . . . , K. Thus, from the initial 64 samples per experiment, we increased
to 16,129 samples per experiment. This is an increment of 25,200% in the total number of samples in
the dataset.

Table 3. Synthetic data augmentation for experiment k, k = 1, . . . , K.

Signal 1 Signal 2 . . . Signal 24

D(k) =




y(k)1,1 · · · y(k)256,1

y(k)2,1 · · · y(k)257,1

y(k)3,1 · · · y(k)258,1

y(k)4,1 · · · y(k)259,1
...

. . .
...

y(k)16129,1 · · · y(k)16384,1

y(k)1,2 · · · y(k)256,2

y(k)2,2 · · · y(k)257,2

y(k)3,2 · · · y(k)258,2

y(k)4,2 · · · y(k)259,2
...

. . .
...

y(k)16129,2 · · · y(k)16384,2

· · ·

y(k)1,24 · · · y(k)256,24

y(k)2,24 · · · y(k)257,24

y(k)3,24 · · · y(k)258,24

y(k)4,24 · · · y(k)259,24
...

. . .
...

y(k)16129,24 · · · y(k)16384,24




Finally, the data matrix D ∈ M1612900×(256·24)(R)—which contains the scaled, reshaped,
and augmented data from all of the experiments—is defined by stacking the data matrices derived
from each different experiment (recall that K = 100),

D =




D(1)

...
D(k)

...
D(100)




. (7)

3.2.4. Signal-To-Image Conversion

The fault diagnosis method converts time-domain signals from the 24 measured variables
into 2D gray-scale images to exploit texture information from the converted images. The data
conversion process was inspired based on reference [13], although the process is enhanced here
by using multichannel images.

The image size used for signal-to-image conversion is 16× 16 (256 pixels) with 24 channels,
constructed as follows. Each row of matrix D, see Equation (7), is converted to one image of size
16× 16 with 24 channels (one channel per sensor), similar to a standard RGB image with 3 channels.
It should be noted that because the sampling time is 1/257 seconds, each image contains approximately
one second of data from each sensor, which is sufficient to capture all of the system dynamics. The total
number of images in the dataset is 1,612,900, because 16,129 images are obtained from each of the
100 experiments. Figure 4 shows one example of such a multichannel image.
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Figure 4. Multichannel gray-scale image corresponding to the 24 sensors (size 16× 16).

3.3. Deep Convolutional Neural Network

CNNs are feed-forward artificial neural networks that use the convolution operation instead of
matrix multiplication. The preprocessing required in a CNN is significantly less than that required
by other classification algorithms because features are not hand-engineered but learned. Typically,
there are three kinds of layers: convolution, fully-connected, and softmax. The main aspects pf the
convolution layer are its sparse local connectivity and filters, which significantly diminish the number
of network parameters while simultaneously increasing its performance. The convolution layer’s last
step is to apply the so-called activation function, which is a nonlinear function. Fully-connected layers
are normal neural network layers in which all the outputs from the previous layer are connected to all
the nodes in the next layer. Normally, these layers go towards the end of the network. Finally, a softmax
layer assigns probabilities to each class and connects to the final output layer that will have the same
number of neurons as classes.

To construct a deep CNN for a particular application is a complex task. In comparison to the
wealth of research related to color images, very little work has been carried out for gray-scale images.
In this work, a CNN is designed for the detection of different structural damage states based on
24-channel gray-scale images.

3.3.1. Data Split: Training Set and Validation Set

To develop the classification model, deep learning methods divide the available data into training
and validation sets. The training dataset is the actual dataset used to train the model (weights and
biases in a CNN). In other words, the training dataset is the sample of data used to fit the model.
In contrast, the validation dataset is the sample of data used to provide an unbiased evaluation of the
model fit on the training dataset while tuning the model hyperparameters.

In this work, the following dataset split ratio has been used: 75% of the whole dataset is assigned
to the training set, and 25% is assigned to the validation set. That is, 1,209,675 images with data
augmentation, or 4800 without data augmentation, are used to train the CNN. Then, 403,225 images
with data augmentation, or 1600 without data augmentation, are used to validate the model.
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3.3.2. Network Architecture

The network presented in Figure 5 was designed in this work.

Figure 5. Architecture of the developed convolutional neural network (CNN).

The input is a 16 × 16 image with 24 channels, all of which are gray-scale. Figure 6 shows
an example of one image in the dataset that was obtained after the preprocess procedure stated in
Section 3.2.

Figure 6. Example of one image in the dataset (24 channels) used as the CNN input.

The input is convoluted by a series of 7 convolutional layers. Each convolution layer is followed
by a batch normalization step, which is used to improve the speed, performance, and stability of the
CNN [22]; and a ReLU (Rectified Linear Unit) activation function ( f (x) = max(0, x)), because this
approach has been shown to speed up the training process in comparison to the classic sigmoid
alternative. The final layers of the network are three fully connected layers and a softmax block,
used to squash the 4-dimensional output into a categorical probability distribution: (1) original healthy
bar, (2) replica bar, (3) crack damaged bar, and (4) unlocked bolt.

The most significant characteristics of the CNN architecture are summarized in Table 4.
It should be noted that the convolutions with a maximum number of parameters are the

intermediate case (convolutions 4 and 5), whereas those with the minimum number of parameters
correspond to the first and last convolutions. Finally, the three fully connected layers have sizes 32, 16,
and 4, respectively, and are followed by the softmax function with four outputs.
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Table 4. Characteristics of the designed CNN. The neural network has a total of 2,176,308 parameters.
The number of output channels in each layer is highlighted in boldface font.

Layer Ouput size Parameters # of Parameters

Input
16 × 16 × 24 images 16 × 16 × 24 - 0

Convolution#1
32 filters of size 5 × 5 × 24 with padding [1 1 1 1] 14 × 14 × 32 Weight 5 × 5 × 24 × 32

Bias 1 × 1 × 32 19,232

Batch Normalization#1 14 × 14 × 32 Offset 1 × 1 × 32
Scale 1 × 1 × 32 64

ReLu#1 14 × 14 × 32 - 0

Convolution#2
64 filters of size 5 × 5 × 24 with padding [1 1 1 1] 12 × 12 × 64 Weight 5 × 5 × 32 × 64

Bias 1 × 1 × 64 51,264

Batch Normalization#2 12 × 12 × 64 Offset 1 × 1 × 64
Scale 1 × 1 × 64 128

ReLu#2 12 × 12 × 64 - 0

Convolution#3
128 filters of size 5 × 5 × 24 with padding [1 1 1 1] 10 × 10 × 128 Weight 5 × 5 × 64 × 128

Bias 1 × 1 × 128 204,928

Batch Normalization#3 10 × 10 × 128 Offset 1 × 1 × 128
Scale 1 × 1 × 128 256

ReLu#3 10 × 10 × 128 - 0

Convolution#4
256 filters of size 5 × 5 × 24 with padding [1 1 1 1] 8 × 8 × 256 Weight 5 × 5 × 128 × 256

Bias 1 × 1 × 256 819,456

Batch Normalization#4 8 × 8 × 256 Offset 1 × 1 × 256
Scale 1 × 1 × 256 512

ReLu#4 8 × 8 × 256 - 0

Convolution#5
128 filters of size 5 × 5 × 24 with padding [1 1 1 1] 6 × 6 × 128 Weight 5 × 5 × 256 × 128

Bias 1 × 1 × 128 819,456

Batch Normalization#5 6 × 6 × 128 Offset 1 × 1 × 128
Scale 1 × 1 × 128 256

ReLu#5 6 × 6 × 128 - 0

Convolution#6
64 filters of size 5 × 5 × 24 with padding [1 1 1 1] 4 × 4 × 64 Weight 5 × 5 × 128 × 64

Bias 1 × 1 × 64 204,864

Batch Normalization#6 4 × 4 × 64 Offset 1 × 1 × 64
Scale 1 × 1 × 64 128

ReLu#6 4 × 4 × 64 - 0

Convolution#7
32 filters of size 5 × 5 × 24 with padding [1 1 1 1] 2 × 2 × 32 Weight 5 × 5 × 64 × 32

Bias 1 × 1 × 32 51,232

Batch Normalization#7 2 × 2 × 32 Offset 1 × 1 × 32
Scale 1 × 1 × 32 64

ReLu#7 2 × 2 × 32 - 0

Fully connected layer#1 1 × 1 × 32 Weight 32 × 128
Bias 32 × 1 4128

Fully connected layer#2 1 × 1 × 16 Weight 16 × 32
Bias 16 × 1 528

Fully connected layer#3 1 × 1 × 4 Weight 4 × 16
Bias 4 × 1 68

Softmax - - 0

classoutput - - 0

It should also be noted that each convolution employs a padding of 1. The main intuition behind
this selection is that normally, the filter is applied by superimposing it on the image from the upper
left edge. Then, a columnar translation is applied until the filter is superimposed with its right edge on
the right edge of the image. This usual way of proceeding has a problem, the edge pixels are never
subjected to the central part of the filter. This is sometimes known as the border effect problem and can
be solved by incorporating so-called padding [23]. That is to apply the filter beginning from outside
the image frame as well as ending also outside the image, in such a manner that edge pixels reach
also the center part of the filter. In this work, a padding of 1 is used to enhance the texture features
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extracted by the CNN for all of the data in the image, regardless of whether the data are located in the
image. Table 5 compares different metrics (see Section 4.1, where a definition of these metrics is given)
with and without padding (without data augmentation). It can be observed that when using padding,
better results are attained.

Table 5. Metrics for different CNN architectures without data augmentation. The best metric results
are highlighted in boldface font.

Strategy Accuracy Precision Recall F1 Score Specificity

ReLu-Padding-L2 regularization 93.81 92.77 93.73 93.22 97.98
Relu-No padding-L2 regularization 93.69 92.73 93.44 93.07 97.92
Relu-Padding-No L2 regularization 93.63 92.73 93.82 93.25 97.89

3.3.3. Network Training

The training of the CNN consists of the minimization of a loss function by means of a numerical
optimization algorithm. In this work, the Adam optimizer [24] is employed to minimize the categorical
cross entropy [25]. The Adam algorithm combines two versions of speeding up gradient descent:
(i) gradient descent with momentum, where the basic idea is to compute an exponentially weighted
average of the gradients, and (ii) root mean square propagation (RMSProp), that makes use of the
gradient second moments. Specifically, the Adam numerical method puts together the exponential
moving average of the gradient and the squared gradient (second moment), and hyperparameters
β1 and β2 handle their decrease rates, respectively. In this work, the Adam optimizer has been tuned
and thus employs an initial learning rate of α0 = 0.01, and values β1 = 0.9, β2 = 0.992, and ε = 10−7

to avoid divisions by zero. Furthermore, here, the learning rate is decreased every 2 epochs by
multiplying with factor 0.5.

Convolutional layer initialization is carried out by the so-called Xavier initializer [26].
Mini-batches of size 75 in the initial dataset and 590 for the augmented dataset are used to update
the weights.

Finally, L2 regularization with λ = 10−6 is employed. Table 5 compares the different metrics
(see Section 4.1 for a definition of these metrics) with and without L2 regularization (without data
augmentation). It can be observed that when using regularization, better results are obtained because
regularization reduces high variance in the validation set.

3.3.4. Network Architecture and Hyperparameter Tuning

To select the best architecture and to tune the different hyperparameters usually requires
significant computational resources. As one of the most critical aspects of computational cost is
the dataset size, in this paper, following the results presented in [27,28], the small dataset (without
augmentation) is used to define the CNN architecture and quickly (coarse) tune the hyperparameters.
Next, the obtained optimal hyperparameters for the small dataset are used as initial values to fine-tune
the hyperparameters with the large dataset (with data augmentation).

3.3.5. Network Implementation

The stated methodology is coded in MATLAB R© using its Deep Learning ToolboxTM on a laptop
running the Windows R© 10 operating system, with an Intel Core i7-9750H processor, 16 GB of RAM,
and an Nvidia GeForce RTXTM2060 graphics card that has 6 GB of dedicated VRAM.

4. Results and Discussion

4.1. Metrics to Evaluate the Classification Model

To measure classification performance, several metrics can be computed from a confusion matrix
such as that shown in Table 6. Normally, these metrics evaluate binary classification problems.
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Note that true positive (TP) is the number of positive samples that are correctly predicted as such,
false positive (FP) is the number of negative samples that are incorrectly predicted, true negative (TN)
is the number of negative samples that are correctly predicted, and false negative (FN) is the number
of positive samples that are incorrectly predicted.

Table 6. Binary confusion matrix.

Predicted Class
Positive Negative

A
ct

ua
lc

la
ss Positive True positive

(TP)
False negative

(FN)

Negative False positive
(FP)

True negative
(TN)

The most common metrics for binary classification problems are the following.

• Accuracy: proportion of true results (both true positives and true negatives) among the total
number of cases examined.

Accuracy =
TP + TN

TP + FP + FN + TN

• Precision: proportion of positive results that are true positive.

Precision =
TP

TP + FP

• Recall: proportion of actual positives that are correctly identified as such.

Recall =
TP

TP + FN

• Specificity: proportion of actual negatives that are correctly identified as such.

Specificity =
TN

TN + FP

• F1-score: harmonic mean of the precision and recall.

F1 = 2 · Precision · Recall
Precision + Recall

In a multiclass classification problem, such as that considered in this work, these metrics are
also applicable using a one-vs.-all approach to compute each metric for each class, see [29]. This is,
essentially, to compute the different metrics for each label as if the problem has been reduced to a
binary ’label X’ versus ’not label X’ situation.

4.2. Results of the CNN Classification Method

To evaluate the developed methodology, this section presents the results obtained from the
proposed SHM strategy. A flowchart of the proposed approach is given in Figure 7. When a WT
must be diagnosed, the accelerometer data are scaled, reshaped, and converted into gray-scale images
that are fed into the already trained CNN, and a classification is obtained to predict the structural
state condition.
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Figure 7. Flowchart to illustrate how the proposed structural health monitoring (SHM) strategy is
applied when a wind turbine (WT) must be diagnosed.

To thoroughly test the functional characteristics of the algorithm, the datasets with and without
data augmentation are considered, as well as comparison with two other methodologies given in [9,17]
that make use of the same laboratory structure. The first methodology, given in [17], is based
on principal component analysis and support vector machines. The second methodology, given
in [9] (page 67), is based on the well-known damage indicators: covariance matrix estimate and
scalar covariance.

Figures 8 and 9 illustrate the confusion matrices for the validation dataset without and with data
augmentation, respectively. The rows represent the true class, whereas columns represent the predicted
class. The precision and false discovery rate are given in the rightmost columns. Finally, the recall and
false negative rate are given at the bottom rows. An examination of both confusion matrices reveals
that some misclassifications come from the model confounding the healthy and replica bars (labels 1
and 2). However, this level of misclassification is acceptable because both bars are in a healthy state. In
contrast, some errors are derived from the model misclassifying the crack and unlocked bolt damages
(labels 3 and 4), which will not correctly detect the type of damage but would at least lead to a damage
alert. Finally, it should be noted that very few damaged samples (labels 3 and 4) are classified as
healthy or replica bar (labels 1 and 2).
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Figure 8. Confusion matrix for the validation dataset without data augmentation.
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Figure 9. Confusion matrix for the validation dataset with data augmentation.

From the confusion matrices, the different metrics to evaluate the classification model,
see Section 4.1, are computed and presented in Table 7.

Table 7. Metrics for each label of the multiclassification problem and comparison between the datasets
without and with data augmentation.

Dataset Label Precision Recall F1-Score Specificity

Without data augmentation

1: Healthy bar 97.97 94.14 96.02 98.61
2: Replica bar 90.31 94.75 92.48 97.61
3: Crack damaged bar 90.31 92.63 91.46 97.59
4: Unlocked bolt 92.50 93.38 92.94 98.13

With data augmentation

1: Healthy bar 99.89 99.96 99.92 99.92
2: Replica bar 99.90 99.87 99.88 99.97
3: Crack damaged bar 99.94 99.86 99.90 99.99
4: Unlocked bolt 99.90 99.86 99.88 99.97
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The impact of the data augmentation strategy can clearly be seen. Although no new experimental
data were collected, nonetheless the metrics were significantly improved. It should be noted that
all of the metrics (precision, recall, F1-score, and specificity) are higher than or equal to 99.86% for
each label when using the augmented dataset in comparison to values between 90.31% and 98.61%
for the initial dataset. Despite all metrics being relevant, considering the specific problem at hand,
the most important metric is recall, which is the proportion of actual damaged cases that are correctly
identified as such. It can be observed that the crack damage and the unlocked bolt, even without data
augmentation, obtain recall values of 92.63% and 93.38%, respectively. When data augmentation is
used, the recall values are all higher than or equal to 99.86% for all of the studied classes. The results
associated with the precision metric are also satisfactory. When the initial dataset is used, precision
values are between 90.31 and 97.97, but with the augmented dataset, such values are all higher than
or equal to 99.89. Finally, it should be noted that the specificity metric is that which experiences less
improvement when using the augmented dataset.

As already mentioned before, here, a comparison is made between our obtained results and
two other methodologies. On the one hand, when using the first approach stated in [17], the crack
damaged bar has a recall of 96.08%, and is thus inferior to the one obtained with the proposed strategy
in this work which attained a value of 99.86%. Note that the crack damage is the most challenging.
In fact, the second approach stated in [9] (page 82) was not capable of detecting this type of incipient
damage when using the scalar covariance or mean residual damage indicators. On the other hand, the
first approach obtains a recall of 99.02% for the unlocked bold damage; whereas with the proposed
strategy, a slightly higher value of 99.86% is obtained. Finally, note that the unlocked bold damage is
not studied in the second approach

The proposed CNN exhibits low bias and variance for both datasets, because the training and
validation errors are small (low bias), as well as the difference between them (low variance), as shown
in Table 8. In particular, when using the initial dataset, the training error is equal to 0.1167 and the
validation error is quite close to this same value, being equal to 0.1692. When using the augmented
dataset, the training error diminishes to 0.0026 and the validation error is only slightly greater at
0.0044. From this table, the significantly increased training time (1196 min) of the augmented dataset in
comparison to that of the initial dataset (11 min) can be seen, which is easily understood due to the size
of each dataset. That is, there are 1, 612, 800 images in the augmented dataset and only 6400 images in
the initial.

Table 8. Comparison of obtained accuracy, validation error, training error, and training time when
using data augmentation with respect to the original dataset.

Accuracy Validation Error Training Error Training Time # of Images

Whitout data augmentation 93.81 0.1692 0.1167 11 min 6400
With data augmentation 99.90 0.0044 0.0026 1196 min 1,612,800

Finally, Figure 10 shows the accuracy and loss curves during training and validation (black dotted
lines) when using the augmented dataset. It should be noted that after 5 epochs, the CNN obtains an
accuracy of 99.90% and a final validation loss of 0.0044, as shown in Table 8.
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Figure 10. Accuracy and loss curve for the augmented dataset.

5. Conclusions and Future Work

In this work, a strategy based solely on vibration response was demonstrated for the structural
health monitoring of offshore WT foundations. The approach was tested on a laboratory setup,
for which four different structural states for a jacket bar were studied: healthy bar, replica, crack
damage, and an unlocked bolt.

The contribution of this work is twofold: (i) how three-dimensional data (derived from
different time, sensors, and experiments) are preprocessed (collected, scaled, reshaped, augmented,
and converted into gray-scale images with as many channels as sensors), and (ii) the design of a deep
CNN, the architecture and hyperparameters of which play a key role in the specific application that
concerns us—damage diagnosis. Furthermore, the proposed method does not require hand-designed
features beforehand because the CNN learns features automatically.

The conceived SHM methodology with data augmentation shows exceptional performance,
with all considered metrics (accuracy, precision, recall, F1-score, and specificity) giving results greater
than 99.8%. In particular, a noteworthy overall accuracy of 99.90% is obtained with data augmentation.
These results show that large (deep) CNNs are promising for the development of SHM strategies for
WT offshore foundations.

Future work will focus on three main areas. First, based on open set domain adaptation [30],
research to render capability of separating unknown damage from known targeted types of damage
will be conducted. Second, not only detection and classification but also the localization of the damage
will be attempted by designing an ensemble of deep CNNs, the main idea being to take advantage of
individual information from each sensor signal. Lastly, to deal with the validation of the proposed
strategy in a more realistic environment, a water tank facility will be used, in which the laboratory
tower will be placed and subjected to the action of regular and irregular waves.
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Abstract: Offshore wind energy is increasingly being realized at deeper ocean depths where jacket
foundations are now the greatest choice for dealing with the hostile environment. The structural
stability of these undersea constructions is critical. This paper states a methodology to detect
and classify damage in a jacket-type support structure for offshore wind turbines. Because of the
existence of unknown external disturbances (wind and waves), standard structural health monitoring
technologies, such as guided waves, cannot be used directly in this application. Therefore, using
vibration-response-only accelerometer measurements, a methodology based on two in-cascade
Siamese convolutional neural networks is proposed. The first Siamese network detects the damage
(discerns whether the structure is healthy or damaged). Then, in case damage is detected, a second
Siamese network determines the damage diagnosis (classifies the type of damage). The main results
and claims of the proposed methodology are the following ones: (i) It is solely dependent on
accelerometer sensor output vibration data, (ii) it detects damage and classifies the type of damage,
(iii) it operates in all wind turbine regions of operation, (iv) it requires less data to train since it is
built on Siamese convolutional neural networks, which can learn from very little data compared
to standard machine/deep learning algorithms, (v) it is validated in a scaled-down experimental
laboratory setup, and (vi) its feasibility is demonstrated as all computed metrics (accuracy, precision,
recall, and F1 score) for the obtained results remain above 96%.

Keywords: offshore fixed wind turbine; jacket structure; damage detection; damage diagnosis;
vibration-based SHM; data-driven; Siamese neural network; convolutional neural network

MSC: 00A69; 68T07

1. Introduction

The world energy system is undoubtedly in transition. The widespread adoption
and use of renewable energy is key to fighting climate change and ensuring a sustainable
future. According to WindEurope [1], the European Commission’s forecasts demonstrate
that renewable-based electricity will be critical to achieving climate neutrality in Europe
by 2050. This will need wind accounting for 50% of the EU’s power mix, with renewables
accounting for 81%. To accomplish this target, offshore wind is a crucial component as it
offers higher and steadier wind speeds and vast possibilities for their placement (easy to
find new locations compared to on-shore).
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The crux of the matter in the advancement of the offshore wind industry is the
reduction in the levelized cost of energy, and a key factor to accomplishing it is through
the optimization of the inspection and maintenance strategies. In particular, structural
health monitoring (SHM) of the support structure has an added value, estimated to be
between 1.93–18.11 M€, see [2]. An effective structural integrity management of offshore
wind farm assets could reduce the number of inspections they need during their lifetime.
SHM has been widely applied to civil infrastructures [3], such as bridges, but there is
a research gap in the area when being applied to hazardous environments, such as the
ones where support structures of offshore wind turbines (WT) are installed. On the one
hand, in this complex environment, the data suffer from noise measurement that must
be removed in deep learning methods. Noise reduction in the data are crucial and can
be accomplished, for example, by a Savitzky–Golay filter and wavelet decomposition,
e.g., [4]. On the other hand, WTs are placed in a marine environment, subject to potential
extreme winds, waves, and currents, which can change rapidly and are initially unknown.
Related to the main challenges of SHM in offshore foundations, as stated in [5]: “A defining
marine environment main characteristic is that structures are always subject to excitations.
Techniques for structural health monitoring, vibration, and data analysis must be capable
of coping with such ambient excitations. As the input is typically not known, a normal
input–output formalism cannot be used”. That is, the standard SHM approach based on
guided waves (where the input excitation is known and imposed to the structure and
then the output vibration is measured), widely used in many areas such as aeronautics [6],
cannot be applied in a straightforward manner to offshore WTs; as the excitation is not
known (wind, waves, currents), neither can be imposed. Thus, an output-only approach
is imperative.

A new paradigm, a vibration-response-only methodology, must be developed that
assumes unknown input excitations and that only the vibration response is measurable by
means of different sensors (accelerometers or fiber Bragg grating, for instance). In recent
years, interest in this type of methodology has grown. For example, in [7], parametric
reduced order models for cracked shells are developed and applied to crack detection
problems, and an output-only scheme is adopted based on transmissibility functions. It is
also noteworthy that the vibration-response-only approach for a jacket structure in [8] where
a comprehensive and critical assessment of the diagnostic performance of five prominent
response-only methods is presented based on incipient, ‘minor’ to ‘mild’, damages on
a lab-scale wind turbine jacket structure. In [9], an SHM method for floating offshore
WTs was tested using operational modal analysis. The results showed that the curvature
mode shape was the most effective modal property to detect damage location and intensity.
Likewise, Ref. [10] contributed an SHM system for real tripod WT supports based on fiber
Bragg grating (FBG) sensors to detect and localize the damage. A meaningful work was
presented in [11], where a time–frequency analysis is proposed based on single mode
function decomposition to overcome the mode-mixing problem. Finally, some publications
using the same test bench as the one used in this study are: [12], where the SHM for
jacket foundations is stated via a signal-to-image conversion of the accelerometer data into
multichannel images and convolutional neural networks, combined with synthetic data
augmentation; Ref. [13] that proposes the fractal dimension as a suitable feature to identify
and classify different types of damage; and Ref. [14], where structural damage classification
is achieved by using principal component analysis and extreme gradient boosting. It is
noteworthy that, in contrast to all aforementioned references, where large datasets with
faulty data are available (or synthetic data need to be generated); in this work, Siamese
neural networks (SNNs) are used, taking advantage of their ability to learn from very little
data. Furthermore, most of the aforementioned references only detect one specific type of
damage but do not face the challenge of detecting and classifying different types of damage,
which is accomplished in this study.

SNNs are made up of two identical artificial neural networks that function in parallel
and compare their outputs at the end, typically using a distance metric. The output of
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the SNNs execution may be thought of as a semantic similarity between the projected
representations of the two input vectors. The ability to learn from very little data has made
SNNs more popular in recent years, being applied in a wide variety of applications. For
example, in [15], SNNs are employed in differential lung diagnoses with CT scans as a key
element of the proposed approach to facilitate the implementation of explainable artificial
intelligence systems. In [16], they are proposed to identify cyber-physical attacks dealing
with the problem of few labeled data and to alleviate the over-fitting issue while enhancing
accuracy. In [17], robust and discriminative gait features for human identification are
automatically extracted based on SNNs and limited training data. However, to the best
of the authors’ knowledge, SNNs have not yet been used in the area of damage detection
and/or diagnosis. In this work, two in cascade Siamese convolutional neural networks are
proposed to detect and classify the faults under study.

This work contributes a vibration-response-only SHM methodology for jacket type
support structures in offshore WTs, based on convolutional SNNs. In contrast to standard
SNNs, which are feedforward neural networks [18], this is proposed to introduce convolu-
tional layers. To avoid the traditional complex feature extraction processes that appear in
machine learning approaches [19], this study advises utilizing deep convolutional SNNs.
Thus, the initial raw accelerometer data will be converted into gray-scale multichannel
images, and then features will be automatically extract by the deep convolutional SNNs.
The methodology then follows the subsequent steps: (i) Vibration data are acquired, (ii)
conversion of the dataset to multichannel gray-scale images, (iii) a first convolutional SNN
discerns between healthy and damaged structural states, and a second convolutional SNN
classifies the samples, detected as damaged by the first network, between crack or unlocked
bolt types of damage. In a nutshell, the contributions of the proposed methodology that
should be highlighted are:

• It is based only on the output vibration data gathered by accelerometer sensors (the
excitation given by the wind is assumed to be unknown). Thus, it is a vibration-
response-only methodology.

• It achieves damage detection and, in case damage is detected, damage type classifica-
tion based on two in-cascade Siamese convolutional neural networks.

• It works under all regions of operation of the wind turbine.
• It needs little data to be trained, as it is based on Siamese convolutional neural networks

that have the ability to learn from very little data in comparison to standard machine
learning approaches.

• It is tested in a downscaled experimental laboratory structure.
• The performance indicators show all results above 96%.

The following is the paper’s outline. The experimental down-scaled setup is intro-
duced in Section 2. Section 3 details the proposed strategy. Finally, findings are discussed
in Section 4, and conclusions are derived in Section 5.

2. Laboratory Setup

The configuration of the experimental test bench is detailed in Figure 1. The process
begins with the white noise signal obtained by the function generator model GW INSTEK
AF-2005. The generated signal is amplified and enters the inertial shaker model Data
Physics GW-IV47, located in the upper side of the scale turbine structure, which simulates
gusts of wind. The vibrations produced by the wind gust simulation are directly related to
the amplitude of white noise, which has factors of 0.5, 1, 2, and 3. Vibration monitoring
is carried out using eight triaxial accelerometers (PCB R Piezotronic, model 356A17),
positioned as shown in Figure 2 (right); there are 24 vibration signals. The sensors are
linked up to six National InstrumentsTM cartridges (model NI 9234) that are attached to
the National Instruments cDAQ-9188 chassis.
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Figure 1. Experimental test bed.

The structure itself is 2.7 m high and divided into three sections (see Figure 2 (left))
shown below.

• The upper section is composed of a bar one meter long and 0.6 m wide; here, the wind
turbine nacelle and the wind speed are simulated using the agitator and different
excitation signals.

• The central section is made up of a tower divided into three parts and bolted together.
• Finally, at the bottom is the jacket section, which is made up of 32 S275JR steel bars,

DC01 LFR steel sheets, and components like screws and nuts. All sections are screwed
in with a torque of 12 Nm.

Figure 2. Components of the scale offshore jacket-type support laboratory model (left); sensor
location on the wind turbine down-scaled model (right).

The approach of the proposed strategy is that it must be able to detect and classify the
types of damage studied, as well as be robust enough to replace a bar with a new healthy
one (avoiding false alarms). The following structural states are presented:

• Bar damaged by a 5 mm crack;
• Bar with unlocked bolt;
• Replica bar.
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Figure 3 shows the different structural states in detail.

(a) (b)

(c)

Figure 3. Different structural states studied: (a) replica bar (Healthy); (b) unlocked bolt; (c) details of
the crack damage. L is the bar length, d = 5 mm is the crack size, and X = L/3 specifies the position of
the crack.

The down-scaled laboratory structure is a simplified but valid model for the practical
study of this work, which aims to be a proof of concept for the detection and diagnosis
of damaged bars in jacket-type platforms. This is demonstrated by the fact that similar
laboratory structures have been previously used in the literature for this aim, such as [8]
and [12].

3. Methodology

The suggested methodology’s stages are all listed below. First, the raw data from the
sensors are collected. Second, an exploratory data analysis process is carried out to validate
the hypothesis of this research. Then, the data are pre-processed to obtain a 24-channel
image dataset. Subsequently, the data are reshaped and divided to be later entered into
the first convolutional SNN. Then, the images classified as damaged are introduced to a
second convolutional SNN to classify the damage between the crack or unlocked bolt types.
Next, subsections comprehensively draw the above-mentioned different stages.

3.1. Data Acquisition

Each experimental test lasts 60 s with an approximate sampling frequency of 275.27 Hz.
As a result, 16,516 measurements were obtained from each of the 24 sensors (24 vibration
signals). Twenty-five experimental tests were carried out for each of the white noise
(WN) amplitudes (0.5, 1, 2, and 3), obtaining a total of 100 experiments. The experiments
performed for each amplitude are detailed below:

• 10 tests with the original bar;
• 5 tests with the replica bar;
• 5 tests with a bar damaged by a 5 mm crack;
• 5 tests with an unlocked bolt damage.

Table 1 presents the number of experiments for each structural state and associated
white noise amplitude factor.

Table 1. Number of experiments for each structural state and white noise (WN) amplitude factor.

Label Structural State 0.5 WN 1 WN 2 WN 3 WN

1 Healthy bar 10 tests 10 tests 10 tests 10 tests
2 Replica bar 5 tests 5 tests 5 tests 5 tests
3 Crack damaged bar 5 tests 5 tests 5 tests 5 tests
4 Unlocked bolt 5 tests 5 tests 5 tests 5 tests
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Table 2 shows the data obtained from each experimental test. The number of times-
tamps (16516) determine the number of rows, and the number of columns reflect the
number of sensors. Take note that the data in the first column is connected to sensor A,
the data in the second column is related to sensor B, and so on and so forth, until all 24
available sensors are covered.

Table 2. Data in each experimental test.

0 1 2 3 4 5 6 7 . . . 23

A1 B1 C1 D1 E1 F1 G1 H1 . . . X1
A2 B2 C2 D2 E2 F2 G2 H2 . . . X2
A3 B3 C3 D3 E3 F3 G3 H3 . . . X3
A4 B4 C4 D4 E4 F4 G4 H4 . . . X4
A5 B5 C5 D5 E5 F5 G5 H5 . . . X5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A16516 B16516 C16516 D16516 E16516 F16516 G16516 H16516 . . . X16516

3.2. Exploratory Data Analysis

Exploratory data analysis is essential to fully comprehend the information available
from the data, and it is very useful when it comes to obtaining insights from the available
data. The role of this process is to explore all the data to answer questions that help validate
the hypotheses raised [20].

In this work, the following concern is stated: How does the distribution of each
sensor signal, associated with a specific state, perform with different white noise amplitude
factors? For this, after the data collection process is implemented, data visualization is
created via a histogram.

As can be observed in Figure 4, there are four plots. On each of these plots, the
statistical distributions for each state (healthy, replica, crack and unlocked bolt) are shown.
On the upper left plot, where the white noise amplitude factor is small (0.5), it can be
noted that the statistical distributions of the default state and the replica state (henceforth
called healthy pair) are similar, as their centers tend to the plot’s right side. Moreover, the
statistical distributions of the crack state and the unlocked bolt state (henceforth called
faulty pair) are similar to each other, but their centers tend to the plot’s left side.

In the upper right of the plot, where the white noise amplitude factor is mid-low (1),
it can be seen that the healthy pair and faulty pair statistical distributions still maintain a
similarity to each other. However, the similarity differs among the pairs, where the centers
of the healthy pair and the faulty pair are close to the right and left of the plot, respectively.
At the lower left plot, where the white noise amplitude factor is mid-high (2), it can be
observed that the pairs of distributions are almost similar to each other—however, with a
slight level of difference. Finally, for the lower right plot, where the white noise amplitude
factor is high (3), it can be noted that the distribution pairs, healthy and faulty, are almost
indistinguishable due to the overlay behavior of each individual distribution. Taking
into account that the different applied white noise amplitude factors represent different
wind-speed regions of operation of the wind turbine, it may be stated that, at greater wind
speeds (region where WTs intended to run the majority of the time), distinguishing whether
a sample belongs to a given structural state becomes more challenging.
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Figure 4. Histograms for each structural state (blue stands for the healthy state, orange for the replica
bar, green represents the crack damage, and pink is related to the unlocked bolt state) and for each
different white noise (WN) amplitude factor.

3.3. Data Preprocessing: Reshape

In this section, a feature engineering technique, data reshaping, is applied to ensure
that each one of the samples to be processed by the SNNs have sufficient information
from each sensor to determine the state of the structure. Initially, each experiment had
24 columns and 16,516 rows, representing the source of the data (sensors) and the data
acquired over time, respectively (see Table 2).

In this study, images (samples) that contain the information of approximately one
second of data are created. Recall that the sample rate is 275.27 Hz. Thus, the first 256 values
from each column (approximately one second of data) were reshaped into 16 × 16 matrices.
Then, the next 256 values from each column were reshaped into 16 × 16 matrices, and so on,
as can be seen in Figures 5 and 6. At the end, the final target images’ shapes were 16 × 16
for each sensor. Note that, in Figures 5 and 6, the values Ai, Bi, · · · , Xi are measurements of
the different sensors that correspond to the same time step—that is, acquired at the same
time instant. In other words, in general, Ai, Bi, . . . , and Xi all correspond to the same time
step i.

0 1 2 3 4 5 6 7 … 23

A1 B1 C1 D1 E1 F1 G1 H1 … X1

A2 B2 C2 D2 E2 F2 G2 H2 … X2

… … … … … … … … … …

A256 B256 C256 D256 E256 F256 G256 H256 … X256

A257 B257 C257 D257 E257 F257 G257 H257 … X257

… … … … … … … … … …

A511 B512 C512 D512 E512 F512 G512 H512 … X512

A512 B513 C513 C513 E513 F513 G513 H513 … X513

… … … … … … … … … …

… … … … … … … … … …

A16516 B16516 C16516 D16516 E16516 F16516 G16516 H16516 … X16516

256 values

256 values

Figure 5. Selection of 256 sequential values for each row.
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Figure 6. Reshape of the 256 values into 16 × 16 size matrices.

The last 132 values from each column were not considered because they could not
complete the 256 values required to build a (16 × 16) matrix. Once the two-dimensional
matrices were obtained, the process was continued with the creation of the 16 × 16 × 24
size images. For each experiment, the first matrices formed by the 256 first values of their
respective columns were time-related. Meaning that each value from a specific position
on each matrix was sampled at the same time as the values occupying the same position
on the rest of the 23 matrices. Basically, the first 24 matrices were grouped together to
maintain this relation provided by this new feature. The same was applied to the second
group of matrices, and so on and so forth, until 64 groups of matrices were obtained from
each experiment (see Figure 7).
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Figure 7. Shape of the images obtained from experiments.
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At the end of the process, 1280 images were obtained from each of the replica bar,
cracked, and unlocked bolt bar experiments, while 2560 images were obtained from the
healthy bar experiments.

3.4. Data Split: Train, Validation, and Test Sets

For the data split process, 80 percent of the data was considered for the training set,
10 percent of the data for the validation set, and the remaining 10 percent was put on hold
to be used only for testing. This applies to both the damage detection and the damage
diagnosis SNN models. For the damage detection SNN, the data were grouped in such a
way that the healthy and the replica structure state images were grouped into the first class
(healthy), while the crack and the unlocked bolt structure state images were grouped into
the second class (faulty). On the other hand, for the damage diagnosis SNN, the data were
grouped into following two classes: crack structural state and unlocked bolt structural state.

Once the images were in their assigned classes, various subsets were created in order
to separate the images, as per the structural state and white noise level. After this process,
the following subsets were obtained per state: white noise level of 0.5, white noise level
of 1, white noise level of 2, and white noise level of 3. Finally, recall that 80, 10, and the
remaining 10 percent of each one of the obtained subsets are used in the training, validation,
and test set, respectively. Thus, a data balance is ensured per structural state and white
noise level, as can be seen in Tables 3 and 4.

Table 3. Number of images used in the train, validation, and test sets per white noise (WN) amplitude
factor and per studied class for damage detection.

0.5 WN 1 WN 2 WN 3 WN

Train
Healthy & Replica 768 768 768 768

Crack & Unlocked Bolt 512 512 512 512

Validation
Healthy & Replica 96 96 96 96

Crack & Unlocked Bolt 64 64 64 64

Test
Healthy & Replica 96 96 96 96

Crack & Unlocked Bolt 64 64 64 64

Table 4. Number of images used in the train, validation, and test sets per white noise (WN) amplitude
factor and per studied class for damage diagnosis.

0.5 WN 1 WN 2 WN 3 WN

Train
Crack 256 256 256 256

Unlocked Bolt 256 256 256 256

Validation
Crack 32 32 32 32

Unlocked Bolt 32 32 32 32

Test
Crack 32 32 32 32

Unlocked Bolt 32 32 32 32

3.5. Siamese Neural Network (SNN)

The SNN algorithm was developed by Bromley et al. [21] in 1994 to verify signatures
written on a touch-sensitive pad. The SNNs consist of two identical neural network
architectures capable of learning and extracting the hidden representation of their respective
inputs [18].

In this work, the two neural networks are both convolutional neural networks [22] and
employ back-propagation during training [23]. The basic idea of this methodology is that
both networks work in parallel and finally compare their outputs. The comparison function



Mathematics 2022, 10, 1131 10 of 20

is the Euclidean distance. The output generated by an SNN execution can be considered
the semantic similarity between the projected representation of the two input matrices [24].

Two models were deployed for the damage detection and diagnosis problems to
compare their performance. The first model (model 1) consisted of an SNN with a feature
extraction stage of one convolutional layer (see Figure 8), while the second model (model 2)
implemented two convolutional layers in its feature extraction stage (see Figure 9). The
rest of this section details each step in the methodology:

Sigmoid

Input Layer
Conv2D Flatten

Dense Layer

Input 1

Input 2

Euclidean distance

Image Pair Creation 
& Input Stage

Feature 
Extraction Stage Semantic Similarity & Output Stage

𝒙𝒙𝒊𝒊

𝒙𝒙𝒋𝒋

Figure 8. One convolutional layer SNN’s architecture.

Sigmoid

Input Layer
Conv2D Flatten

MaxPooling2D Dense Layer

Input 1

Input 2

Euclidean distance

Image Pair Creation 
& Input Stage

Feature 
Extraction Stage Semantic Similarity & Output Stage

𝒙𝒙𝒊𝒊

𝒙𝒙𝒋𝒋

Figure 9. Two convolutional layer SNN’s architecture.

1. Image pair creation Stage: The SNN has a pair of images input, where this pair can
be positive or negative. A positive pair consists of two images that belong to the
same class, while a negative pair consists of two images from different classes [25].
For the training, validation, and test sets, positive and negative pairs were created.
For explanation, the two classes are noted as class A and class B. First, an empty
array for the pair of images is set as well as an empty array of labels, which help to
indicate by index if a pair of images (from the pair of images array) is positive (1) or
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negative (0). Next, an iterative process is performed through the set of images that
belong to class A. For each image, a random image is selected from the same class.
Next, a positive pair is created by the image that is being iterated, and the random
image selected from the same class (this pair is added to the image pair array). Then,
a label with the value of one is added to the labels array previously created, so the
image pair added, and the label are related by position through both of the arrays.
This process can be observed in Figure 10.
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Figure 10. Positive pairs’ creation process.

For the creation of negative pairs, a similar process is carried out, but the random
image is chosen from class B. Then, a label with the value of 0 is added to the labels
array previously created in order to maintain the index relation between the pair and
the label. This iterative process is carried out also for class B (the negative image
comes from class A and positive image comes from class B), so it can be ensured that
all the images are used. This process can be observed in Figure 11.
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Figure 11. Negative pairs’ creation process.
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If the sets of images are not of the same length, then the difference is resolved by
iterating a quantity of images equal to this difference on the lower length set. At the
end, a set X is composed by N sample pairs

(
xi, xj

)
, which are two images from

the same or different classes. Remember, for both creations’ processes (positive and
negative), both states’ groups in each case are used. For example, for the damage
detection stage, first, the healthy and replica images are used as class A and positive
pairs are created. Then, the other group class (crack and unlocked bolt) is used as class
A, and the other positive pairs are created. The same process is used for the negative
pairs creation and the damage diagnosis stage. Tables 5 and 6 detail the number of
image pairs used for training, validation, and test datasets.

Table 5. Number of pairs of images used for training, validation, and test in the damage detection
model.

Training Validation Testing

Positive pair images 6144 768 768
Negative pair images 6144 768 768

Table 6. Number of pairs of images used for training, validation, and test in the damage diagnosis
model.

Training Validation Testing

Positive pair images 2048 256 256
Negative pair images 2048 256 256

2. Input Stage: In the proposed methodology, two two-dimensional CNNs are used
to extract hidden representation (spatial feature vectors), so the input is the matrix
mentioned in Section 3.3, in the shape of 16 × 16 × 24.

3. Feature extraction: A Siamese network architecture is employed at this stage to
extract features from the input sample pairs. The Siamese network is made up of two
identical CNNs with the same network topology and one fully connected layer at the
end. Tables 7 and 8 indicate the different feature extraction layers, their configurations,
and their dimensions for the two studied models noted as model 1 (shallow NN with
only one CNN layer) and model 2 (NN with two CNN layers).

Table 7. One convolutional layer SNN (model 1).

Layer Kernel Size Stride Padding Filters Output Size

Convolutional 2D 3 1 1 64 16 × 16 × 64
Flatten - - - - 1 × 16,384

Fully connected 4960 - - 1 1 × 4960

Table 8. Two convolutional layers SNN (model 2).

Layer Kernel Size Stride Padding Filters Output Size

Convolutional 2D 3 1 1 64 16 × 16 × 64
MaxPooling 2D - - - - 8 × 8 × 64

Convolutional 2D 3 1 1 128 8 × 8 × 128
Flatten - - - - 1 × 8192

Fully connected 4960 - - 1 1 × 4960

4. Similarity measurement: The output vectors obtained from both fully connected lay-
ers are introduced to a new function layer to compute the similarity (distance) between
them. This process can be carried out by metrics such as Euclidean distance, cosine
distance, or Manhattan distance [26] because it highlights the geometric differences



Mathematics 2022, 10, 1131 13 of 20

between two elements. In this work, the Euclidean distance is used as the similarity
matrix. The similarity between the input vectors is calculated by the formula

Sk
i,j =

√
F
(
xk

i
)
− F

(
xk

j

)
, (1)

where F(x) represents the feature vector obtained by one of the CNNs, x refers to the
input, and k denotes the k-th sample for a pair

(
xi, xj

)
.

5. Output stage: After the similarity Sk
i,j is calculated, this value enters a last fully

connected layer to convert it to a similarity scalar value Ok
i,j. Because the idea is

to calculate a similarity probability between 0 and 1, a sigmoid function is used as
activation function

Pk
i,j = σ

(
Ok

i,j

)
, (2)

where σ is the sigmoid function [27]

σ(x) =
1

1 + e−x . (3)

Note that Pk
i,j is a value between 0 and 1. The closer this value is to 1, the greater the

probability that the two matrices are of the same class. Likewise, the closer this value
is to zero, the lower the probability that the two matrices are of the same class.

6. Hyperparameters: The SNNs are configured with the following hyperparameters’
selection. The Adams optimizer with learning rate 0.05, β1 = 0.9, β2 = 0.999, ε = 10−7

is used. The used cost function is the binary cross entropy, and the batch size is set
to 32. Hyperparameter tuning did not change the obtained results much, except for
the value of the learning rate, where lower values improved the accuracy.

4. Results

To recognize whether a model is overfitting, the loss curves of the training set and
the validation set are first presented. Overfitting implies that the model is too closely
aligned with a limited set of data points (training data) [28], thus reducing its predictive
power. In Figure 12 (left), it can be observed that, for the damage detection stage, model 1
is overfitting (from epoch 2, the validation loss starts to increase while the training loss
continues to decrease). On the other hand, Figure 12 (right) shows that model 2 has an
appropriate fitting.

Figure 12. Loss curves for damage detection models 1 (left) and 2 (right).

The same performance is observed in the damage diagnosis stage. As can be seen in
Figure 13, model 1 (left) is overfitting, while model 2 (right) is able to adapt properly to
previously unseen data.
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Figure 13. Loss curves for damage diagnosis models 1 (left) and 2 (right).

Additionally, to measure the performance of detection and diagnostic models, the
results of a confusion matrix can be used to determine the accuracy, precision, recall, and
F1 score of the predictions made on the test data set [29]. As can be seen in Figure 14,
a confusion matrix is an array that shows the predictions of the true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN) made by a classification
model [30]. Note that, in this work, the output of the model is a probability of similarity
between two images. In other words, the algorithm states whether the two samples are
similar (labeled as 0) or not (labeled as 1). For the binary problem at hand, a TP occurs when
both samples in the pair (images) are similar (positive pair), and the algorithm predicts
accordingly. A TN occurs when both images in the pair are not similar (negative pair)
and the algorithm predicts correctly. An FP results when the samples are similar, but the
algorithm predicts that they are not similar. Finally, an FN occurs when both samples are
not similar, but the algorithm predicts the opposite. The aforementioned metrics can be
obtained from Equations (4)–(7).
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Figure 14. Confusion matrix.

• Accuracy: proportion of true results among the total number of results:

Accuracy =
TP + TN

TP + TN + FP + FN
. (4)

• Precision: positive predictive value:

Precision =
TP

TP + FP
. (5)

• Recall: proportion of true positive predictions made out of all positive predictions that
could have been made:

Recall =
TP

TP + FN
. (6)
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• F1-score: harmonic mean of precision and recall:

F1 = 2· Precision·Recall
Precision + Recall

. (7)

The confusion matrices obtained from the implementation of the two models, model 1
and model 2, in both stages (damage detection and damage diagnosis) are shown in
Figures 15 and 16. For the first model, the failed predictions consist of 18 FPs and 3 FNs for
the detection stage, and 13 FPs and 3 FNs for the diagnosis stage. As it can be observed,
adding an extra convolutional layer to the SNN feature extraction stage can improve the
performance of the model in both stages, since the confusion matrices show neither FPs nor
FNs. Figures 17 and 18 demonstrate the same confusion matrices, but using a 70%, 15%,
and 15% data split (for the training, validation, and testing sets, respectively). The results
are shown to be comparable to those obtained with the 80%, 10%, and 10% data split.
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Figure 15. Confusion matrices for damage detection models 1 (left) and 2 (right).
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Figure 16. Confusion matrices for damage diagnosis models 1 (left) and 2 (right).
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Figure 17. Confusion matrices for damage detection models 1 (left) and 2 (right) when using a data
split of 70% training, 15% validation, and 15% for testing.
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Figure 18. Confusion matrices for damage diagnosis models 1 (left) and 2 (right) when using a data
split of 70% training, 15% validation, and 15% for testing.

A follow-up was conducted on the performance of model 1, according to the different
levels of WN amplitude factors (0.5, 1, 2, 3) for the initial 80%, 10%, and 10% data split. The
purpose was to find how many failed predictions are made for each of the different WN
amplitudes. Figure 19 (left) shows the results for the damage detection stage. Specifically,
it can be seen that, for the case of WN with amplitude factor 0.5, there are no wrong
predictions. Similarly, for the WN amplitude factor 1, there is only one incorrect prediction
that is at least identified as belonging to amplitude 1. In the case of WN amplitude factor
2, there are seven incorrect predictions that are assigned as similar to amplitude factor
0.5. Finally, for WN with factor 3, there are 10 incorrect predictions that map to WN with
factor 0.5, and two incorrect predictions where the model assimilates them to samples
in WN factor 1. Figure 19 (right) shows similar results but for the damage diagnosis
stage. These results can be summarized in the following manner. When an image comes
from a WT operating at higher wind speeds (simulated in the experimental tower with a
higher white noise amplitude factor), the model has far more failed predictions, which is
in good agreement with the insight obtained in the exploratory data analysis performed
in Section 3.2.

Figure 19. Damage detection (left) and damage diagnosis (right) number of failed predictions per
WN combination for model 1. Rows are related to the true amplitude factor and columns to the
predicted amplitude factor.

In Tables 9–12, a deeper exploration of the results is shown to gain an insight on how
many FP or FN outputs are obtained, according to the structural state, among the images
by model 1. It is shown that the predictions given by model 1 (one convolutional layer) for
both cases, damage detection and damage diagnosis, output a higher number of FNs than
FPs. Furthermore, model 2 (two convolutional layers) outperformed model 1 with no false
predictions.

Table 9. False positives for damage detection (model 1).

Class 1 Class 2 False Positives

healthy unlocked bolt 1
healthy crack 2



Mathematics 2022, 10, 1131 17 of 20

Table 10. False negatives for damage detection (model 1).

Class 1 Class 2 False Negatives

healthy replica 2
healthy healthy 4
crack unlocked bolt 4
crack crack 5

unlocked bolt unlocked bolt 3

Table 11. False positives for damage diagnosis (model 1).

Class 1 Class 2 False Positives

crack unlocked bolt 3

Table 12. False negatives for damage diagnosis (model 1).

Class 1 Class 2 False Negatives

crack crack 10
unlocked bolt loose bolt 3

Eventually, the accuracy, precision, recall, and F1 score for both stages and models
are detailed in Tables 13 and 14. The results show that the damage detection and damage
diagnosis results are promising, as they achieved great performance on different structural
state samples.

Table 13. Performance of damage detection models.

Models Accuracy Precision Recall F1 Score

1 conv 98.63 97.66 99.60 98.62
2 conv 100.00 100.00 100.00 100.00

Table 14. Performance of damage diagnosis models.

Models Accuracy Precision Recall F1 Score

1 conv 96.88 94.92 98.78 96.81
2 conv 100.00 100.00 100.00 100.00

Finally, to thoroughly test the functional characteristics of the algorithm, a comparison
is made with four other methodologies given in [31], [32], [13], and [12] that use the same
laboratory structure. The first methodology, given in [31], is based on principal component
analysis and support vector machines. The second methodology, given in [32] (page 67),
is based on the well-known damage indicators: covariance matrix estimate and scalar
covariance. The third methodology, given in [13], is based on machine learning methods
and the fractal dimension feature. The last methodology, given in [12], utilizes a signal-to-
image conversion of the accelerometer data into multichannel images and convolutional
neural networks (CNN), combined with synthetic data augmentation. First, when using the
first approach stated in [31], the crack damaged bar has a recall of 96.08% and is therefore
inferior to the one obtained with the strategy proposed in this work, which reached a value
of 100%. Note that the crack damage is the most challenging. In fact, the second approach
stated in [32] (page 82) was unable to detect this type of incipient damage when using scalar
covariance or mean residual damage indicators. Furthermore, the first approach obtains a
recall of 99.02% for the unlocked bold damage, while, with the proposed strategy, a slightly
higher value of 100% is obtained. Note that the unlocked bold damage is not studied
in the second approach. The third approach [13] requires hand-made feature extraction,
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and the performance metrics obtained are inferior to those obtained in the present study.
Furthermore, the machine learning methods proposed in [13] need a large data set to
achieve good performance, while Siamese neural networks have the ability to learn from
very little data, which is crucial in the specific application faced in this work. Finally, the
fourth approach [12] requires a deep CNN as well as a data augmentation of 25,200% in
the total number of samples to achieve 99% accuracy, while, with the proposed strategy,
a better accuracy is obtained using much fewer data and a much simpler neural network
architecture.

5. Conclusions

In this work, the proposed test bench consists of a WN generator, connected to an am-
plifier that simulates different wind speed regions of the operation of the WT. Subsequently,
triaxial accelerometers are connected to obtain the vibration signals. Different simulations
were carried out, taking into account four types of structural states, such as the healthy bar,
the replica bar, the crack damaged bar, and the unlocked bolt. It was concluded that, when
wind speeds are higher (regions where turbines operate or are desired to operate most of the
time), it is more challenging to distinguish when a sample belongs to a specific state. The
main contribution of this work is informing the use of SNNs for the damage detection and
damage diagnosis stages. Increasing the number of convolutional layers to extract features
from the data increased the performance of the model. The conceived SHM methodology
with two convolutional layers showed exceptional performance, demonstrating results
of 100% for all considered metrics. These findings indicate that SNNs are promising for
developing SHM techniques for offshore platforms.

Note that this study is a proof-of-concept contribution, as the data were obtained
in a controlled laboratory environment. Therefore, as future work, it is proposed to
incorporate other environmental conditions, such as the wave excitation, by placing the
experiment in a water tank facility to simulate the effect of regular and irregular waves.
Finally, it is important to note that environmental and operational conditions (EOC) play
an important role when dealing with long-term monitoring because they can complicate
damage detection. Large variations in EOCs make EOC monitoring almost as important
as structural monitoring itself. Therefore, its influence should be compensated. Several
methods for EOC compensation for WTs have been developed to make SHM possible. For
example, in [33], affinity propagation clustering is used to delineate data into WT groups of
similar EOC. In [34], covariance-driven stochastic subspace identification is used. Finally,
in [35,36], fuzzy classification techniques are used for EOC compensation. However, as
noted previously, this work is an experimental proof of concept, and EOC compensation is
left as future work using pattern recognition techniques in a more realistic environment.
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Abbreviations
The following abbreviations are used in this manuscript:

SHM Structural Health Monitoring
SNN Siamese Neural Network
WN White Noise
TP True Positive
TN True Negative
FP False Positive
FN False Negative
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Abstract: As stated by the European Academy of Wind Energy (EAWE), the wind industry has
identified main bearing failures as a critical issue in terms of increasing wind turbine reliability
and availability. This is owing to major repairs with high replacement costs and long downtime
periods associated with main bearing failures. Thus, the main bearing fault prognosis has become an
economically relevant topic and is a technical challenge. In this work, a data-based methodology
for fault prognosis is presented. The main contributions of this work are as follows: (i) Prognosis is
achieved by using only supervisory control and data acquisition (SCADA) data, which is already
available in all industrial-sized wind turbines; thus, no extra sensors that are designed for a specific
purpose need to be installed. (ii) The proposed method only requires healthy data to be collected; thus,
it can be applied to any wind farm even when no faulty data has been recorded. (iii) The proposed
algorithm works under different and varying operating and environmental conditions. (iv) The
validity and performance of the established methodology is demonstrated on a real underproduction
wind farm consisting of 12 wind turbines. The obtained results show that advanced prognostic
systems based solely on SCADA data can predict failures several months prior to their occurrence
and allow wind turbine operators to plan their operations.

Keywords: fault prognosis; wind turbine; main bearing; normality model; real SCADA data

1. Introduction

Energy is a key pillar of human evolution. Currently, the challenge of obtaining energy
while minimizing costs, and pollution is a matter of concern owing to climate change and
global warming, as well as the need to democratize the extraction of energy worldwide. In
this regard, renewable energy, i.e., energy collected from renewable resources, is an excellent
option, as they are clean and exist over a wide geographical area, unlike fossil-fuel energy
sources, which are air pollutants and are concentrated in a limited number of countries.
Among renewable energy sources, the wind-energy sector has grown significantly in
the last two decades. In 2019, wind energy generated enough electricity to meet 15% of
Europe’s electricity demand [1] and was the leading source of new capacity in Europe, the
U.S., and Canada, as well as the second largest in China. However, unleashing the massive
potential of wind energy is crucial for reducing the levelized cost of electricity (LCOE) [2].
Increasing the size of wind turbines (WTs) and moving offshore, where steadier and higher
wind speeds are available, are the two key factors in decreasing the LCOE. However, these
two factors have accelerated the need for better condition monitoring strategies.

Sensors 2021, 21, 2228. https://doi.org/10.3390/s21062228 https://www.mdpi.com/journal/sensors
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Condition monitoring is the process of monitoring a signal indicating the condition of
machinery (vibration, temperature, etc.) to identify a deviation from the normal operation
behavior, which is indicative of a developing fault. Condition monitoring is the crux of
the matter to move from time-based preventive maintenance, which is still the current
mainstream practice for WTs, to predictive maintenance, as it relies on the actual condition
of the equipment rather than the average or expected life statistics. Because a failure is a
process rather than an event, the earlier the process is detected, the more the flexibility that
exists to manage it. Fault detection strategies usually warn about the appearance of a fault
too late, and the fault is already mature when it is detected, which prevents proper planning
of the maintenance operation [3–5]. Meanwhile, prognosis strategies provide a predictive
maintenance option that gives the decision-maker the flexibility to decide whether and
when to act before the subsystem or turbine fails. Thus, WT downtime is minimized, and
the component lifetime is maximized. A significant amount of research on fault prognosis
for WTs exists, some of which are reviewed in Reference [6]; the main subsystems that
the majority of the research focus on include: blades (e.g., References [7,8]), gearboxes
(e.g., References [9,10]), and bearings (e.g., References [11–13]). These aforementioned
studies use data from specific and costly condition monitoring sensors, as they are mainly
based on high-frequency vibration analysis, acoustic emission signals, or oil analysis
sensors. In contrast, in this work, the proposed predictive maintenance strategy is achieved
without needing to invest in additional hardware; it only requires the already available
supervisory control and data acquisition (SCADA) data.

Although SCADA data have not been developed specifically for the purpose of
condition monitoring, being able to extract relevant information from it could result in
rapid deployment and modest set-up costs. SCADA data have been collected for long, but
owing to the lack of appropriate data interpretation tools, they have not been considered for
condition monitoring purposes. SCADA data are highly variable owing to the constantly
changing operational conditions caused by the fluctuation of environmental conditions
(such as wind speed and direction, turbulence intensity, ambient temperature, etc.), which
are affected by seasonality. Furthermore, these parameters have a lower sampling rate
(usually once every 10 min) compared to the kHz frequency of traditional condition
monitoring strategies, they are rarely standardized, and the description of work orders
is generally not clear. Thus, it is challenging for researchers to contextualize SCADA
data for fault prognosis [14]. However, recent research has focused on this approach, and
there are some success stories about using only SCADA data from real WTs for condition
monitoring. It is important to note that using just SCADA data means that no extra sensors
are used; however, some information from the SCADA alarm logs might be used but with
limited fault detection and diagnosis, and no prognosis or functionality. Additionally,
work orders could also be used for data labeling. For example, in Reference [15], the
diagnosis and prediction of WT faults from SCADA data were accomplished using support
vector machines (SVM), and, in Reference [16], a fault prognosis procedure was proposed
using an a priori knowledge-based adaptive neuro-fuzzy inference system. By using a
priori knowledge about faults (the data of six known WT pitch faults are used to train the
system), the proposed system improves fault diagnosis. In Reference [17], a framework
for automatically identifying periods of faulty operation using rules applied to the turbine
alarm system are presented and applied to perform fault classification.

The aforementioned studies used SCADA data and validated their approach on real
WTs; however, all of them required faulty data (historical fault data). Historical SCADA
data must be accurately labeled with the periods when the turbines are down due to a
fault, as well as with the cause of the fault. However, this is time-consuming, error-prone,
and likely to result in a set of labeled vectors with an unbalanced number of classes. In
contrast, in this work, there is no need for historical fault data; thus, the proposed strategy
can be applied to any wind farm, even when no faulty data have been recorded. In this
work, a normal behavior model is proposed, i.e., the model is built using normal (healthy)
operation data. Heretofore, this introduction has focused on wind turbine fault diagnosis
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related references, but it is also important to note that analogous concepts to the ones
proposed in this work are used in other areas of application. For example, error estimation
and accuracy of machine learning methodologies have been performed on real datasets
in different applications, e.g., Reference [18] (vessels). Likewise, the use of solely healthy
data to diagnose non-previously occurred failures is used for cross-domain fault diagnosis
problems in rotating machines, e.g., Reference [19].

This work deals with the main WT bearing faults. There are two main reasons for
this selection. First, as stated by the European Academy of Wind Energy (EAWE) [20], the
wind industry has identified main bearing failures as a critical issue in terms of increasing
WT reliability and availability, as they lead to major repairs with high replacement costs
and long downtime periods. Second, the authors had access to two years of SCADA data
from a real underproduction wind farm (composed of 12 WTs), where main bearing failure
occurred in one of the WTs; thus, it could be used to verify the performance of the proposed
strategy in a real-life situation.

Most models in literature use simulated SCADA (e.g., Reference [21]) or experimental
data but rarely real data. Furthermore, when dealing with real data, only one or two WTs
are tested. For example, in Reference [22], an ensemble approach was proposed to detect
anomalies and diagnose faults; however, it was only tested on two WTs and the warning
was only given less than a week before failure, thus not leaving adequate time to plan the
operation and maintenance action. In Reference [23], data from one WT in the South-East
of Ireland were used to validate the proposed strategy; fault and alarm data were filtered
and analyzed in conjunction with the power curve to identify periods of nominal and
faulty operation. In contrast, this study used a wind farm composed of 12 WTs to test the
proposed strategy.

The remainder of this paper is organized as follows: A brief description of the wind
farm is provided in Section 2. The main bearing types and their faults are reviewed in
Section 3. A description of the SCADA data is provided in Section 4. The proposed fault
prognosis methodology is described in Section 5. The obtained results are presented and
discussed in Section 6. Finally, the conclusions and future work are presented in Section 7.

2. Brief Wind Farm Description

The wind farm is located in Spain and was commissioned in 2006. The WTs can
generate 1500 kW of power and have a diameter of 77 m. Figure 1 shows the major
components of these WTs. These are pitch-controlled WTs that not only use the pitch
mechanism to brake, but also have an independent fail-safe piston accumulator on the
blades. Additionally, they were equipped with a mechanical brake on a high-speed shaft.
These turbines can also brake electromechanically using a generator to stop the rotation.
Power production starts at a wind speed of 3.5 m/s. At 25 m/s, an automatic stopping
occurs. The optimal performance can be achieved at a comparatively low wind speed
of 11.1 m/s. This plant was certified according to IEC IIa. A summary of the technical
specifications of the WTs is given in Table 1.

It is noteworthy that these WTs use a double-spherical main roller bearing. These
types of bearings are suitable for large radial loads and low to medium speeds, thus
compensating for misalignment. Spherical roller bearings have two rows of symmetrical
rollers, a common spherical outer ring raceway and two spherical inner ring raceways
inclined at an angle toward the bearing axis. The center point of the sphere in the outer
ring raceway is at the bearing axis. Figure 2 shows a spherical roller main bearing used in
the WTs. As the main bearing is the component of interest in this work, a brief review on
the main bearing types and their faults is given in the next section.
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Figure 1. Main components of the wind turbine (WT) [24].

Table 1. Technical specifications of the WTs in the park.

Number of blades 3
Nominal power 1500 kW
Rotor diameter 77 m

Wind class IEC IIa
Swept area 4657 m2

Nominal rotation speed 18.3 rpm
Cut-in wind speed 3.5 m/s

Cut-out wind speed 25 m/s
Bearings Double spherical roller bearings

Power regulation Independent pitch (variable speed)

outer ring

inner ring

cage

rolling 

element

Figure 2. Spherical roller main bearing used in WTs. Courtesy of SKF.

3. Main Bearing Faults

The main bearing is a large component inside a WT, and it can be damaged in a variety
of ways. In this section, the main parts of this component and their different and various
failure modes are discussed. The objective of this section is to show that there is no single
pattern to predict a fault in this component, but rather a large number of possible patterns.
This supports the idea of using unsupervised normality-based methods to predict the main
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bearing faults owing to the inability of supervised methods to predict failures outside their
training dataset. However, should a supervised method be chosen, it would require a great
variety of faulty data covering all failure types. Rolling bearings are composed of machine
elements that permit the rotary motion of shafts for a wide range of applications, such
as electric motors, aircraft gas turbines, gyroscopes, power transmissions, and WTs [25].
A typical rolling bearing consists of four elements: an inner race, an outer race, rolling
elements that are in contact under heavy dynamic loads and relatively high speeds, and a
cage around these rolling elements, as shown in Figure 2. Any of these parts are at risk of
failure [26].

The SKF company classified the different failure modes of bearings by considering
the ISO 15243 standard. This classification introduces the following failure modes [27]:
(i) fatigue, (ii) wear, (iii) corrosion, (iv) electrical erosion, (v) plastic deformation, and
(vi) fracture and cracking. These modes have different causes and behaviors, causing
stress, deformation, micro-geometry destruction, cracking or spalling, shallow depressions,
greyish-black patches, craters, and fractures. The objective of this work is to predict
failures several months in advance, and, because all these failures develop progressively
(i.e., develop through slow degradation), each one is briefly explained.

First, there are two types of fatigue: subsurface-initiated fatigue and surface-initiated
fatigue. Subsurface-initiated fatigue occurs beneath the contact surfaces of the raceways
and rolling elements (see Figure 3, left). In contrast, surface-initiated fatigue occurs due to
damage to the rolling contact surface asperities, which is generally caused by inadequate
lubrication (see Figure 3, right).

Figure 3. Fatigue failure. Subsurface-initiated (left) and surface-initiated (right) [27]. Courtesy
of SKF.

Second, wear failure can be divided into two types: abrasive wear and adhesive
wear. Abrasive wear is a degenerative process with the progressive removal of material, as
shown in Figure 4 (left). In contrast, adhesive wear is a type of lubricant-related damage
that occurs between two mating surfaces sliding relative to each other. It is characterized
by the transfer of material from one surface to the other (called smearing). It is typically
accompanied by frictional heat, which can sometimes temper or reharden the mating
surfaces (see Figure 4, right).

Figure 4. Wear failure. Abrasive wear (left) and adhesive wear (right) [27]. Courtesy of SKF.

Third, corrosion failures are divided into moisture corrosion, fretting corrosion, and
false brinelling. Moisture corrosion occurs when a machine bearing is exposed to the
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ingress of water and other liquids as part of the operational process, resulting in greyish-
black patches coinciding with the rolling element pitch, as shown in Figure 5 (left). Fretting
corrosion occurs when there is relative movement between a bearing ring and its seat on a
shaft or in a housing (see Figure 5, middle). Finally, false brinelling occurs in the contact
area owing to the micromovements and/or resilience of the elastic contact under cyclic
vibrations. The root cause is vibration during standstill (see Figure 5, right).

Figure 5. Corrosion failures. Moisture (left), fretting (middle), and brinelling (right) [27]. Courtesy
of SKF.

Fourth, there are two types of electrical erosion: excessive current erosion and current
leakage erosion. Excessive current erosion occurs when an electric current flows from
one ring to the other via the rolling elements, causing damage. At the contact surfaces,
the process is similar to that of electric arc welding (high current density over a small
contact surface). The material is heated to temperatures ranging from tempering to melting
levels, as shown in Figure 6 (left). However, in the initial stage of current-leakage erosion
damage, the surface is typically damaged by shallow craters that are closely positioned and
smaller in diameter compared to those from the damage from excessive current erosion
(see Figure 6, right).

Figure 6. Electrical erosion failures. Excessive current (left) and current leakage (right) [27]. Courtesy
of SKF.

Fifth, plastic deformation can occur due to an overload or indentations from debris.
Overload deformation can be caused by static overloading, shock loads, or improper
handling, as shown in Figure 7 (left). In the case of indentations from the debris failure
type, solid contaminants are introduced into a bearing via the seals or lubricant. They
can also be the result of wear or damage to an adjacent component, such as a gear (see
Figure 7, right).

Finally, a bearing can be affected by forced fracture, fatigue fracture, or thermal
cracking. A forced fracture occurs when the stress concentration exceeds the tensile
strength of the material (see Figure 8, left). In contrast, a fatigue fracture starts when the
fatigue strength of a material is exceeded under cyclic bending, as shown in Figure 8 (right).
Finally, a thermal crack can occur when two surfaces slide against each other and generate
frictional heat.
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Figure 7. Plastic deformation failure. Overload (left) and indentation (right) [27]. Courtesy of SKF.

Figure 8. Fracture failure. Forced (left) and fatigue (right) [27]. Courtesy of SKF.

4. Real SCADA Data Description

The SCADA data used in this work were obtained from 12 operational WTs that can
generate 1.5 MW. The continuous operational data were collected from the beginning of
February 2017 till the end of November 2018. The wind farm SCADA datasets contain
different variables that can be broadly grouped into environmental, electrical, component
temperature, hydraulic, and control variables (see Tables 2–6). The mean, maximum,
minimum, and standard deviation of the 10 min averaging period of 1 Hz sampled values
are available for these variables.

Table 2 shows all the environmental related variables of the SCADA data, for example,
ambient temperature, which affects the temperatures of all subsystems (the temperature
of bearings changes significantly between winter and summer). It should be pointed out
that the wind speed, which defines the different operating regions of the WT, is the most
important exogenous variable related to the WT owing to its direct effect on the operation
of the WT [28].

Table 2. Environmental variables.

Variable Description Units

TempAmb Ambient temperature ◦C
TempGond Nacelle temperature ◦C
VelViento Wind speed m/s
IndTurbul Turbulence index -

Table 3 shows the electrical related variables, such as the active power, which is sensi-
tive to wind variations. The electrical energy is measured before it enters the distribution
network to consider the consumption of the WT; therefore, it is considered as power de-
livered to the network. Electrical network frequency measurements and phase voltage
measurements are also obtained to monitor possible fluctuations. Measurements of the
power factor and reactive power are also collected to make adjustments, using capacitors,
in the electrical system.
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Table 3. Electrical variables.

Variable Description Units

Pot Active power kW
TensRed Phase voltage V
CosPhi Power factor -

TotPotReact Reactive power kW
FrecRed Electric network frequency Hz

Table 4 shows the temperature related variables. As stated previously, this work
focuses on the main bearing fault. Thus, it is important to note the low-speed shaft temper-
ature, as this component is close to the main bearing, as well as the bearing temperatures at
the coupling and non-coupling sides. In addition, note the variables related to the gearbox;
the temperature readings were taken from the upper and lower gearbox radiators, and
the lubrication of the gearbox was monitored using the hydraulic group oil temperature.
Additionally, the generator temperature is another relevant variable.

Table 4. Component temperature variables.

Variable Description Units

TempAceiteGH Hydraulic group oil temperature ◦C
TempAceiteMultip Gearbox oil temperature ◦C
TempRodamMultip Gearbox bearing temperature ◦C

TempGen Generator temperature ◦C
TempRodamTrasero Rear bearing temperature ◦C

TempCojLA Bearing coupling side temperature ◦C
TempCojLOA Bearing non-coupling side temperature ◦C
TempRadSup Upper gearbox radiator temperature ◦C
TempRadInf Lower gearbox radiator temperature ◦C

TempEjeLento_1 Low-speed shaft temperature ◦C
TempTrafo1 Transformer 1 temperature ◦C
TempTrafo2 Transformer 2 temperature ◦C
TempTrafo3 Transformer 3 temperature ◦C

The hydraulic variables obtained from the SCADA system are listed in Table 5. They
include the pressure measurement of the general accumulator, the hydraulic group pres-
sure, brake pressure, and general accumulated pressure of the blades. Each blade has an
independent actuator with an accumulator to position the blade according to the mode
of operation.

Table 5. Hydraulic variables.

Variable Description Units

AcumGralPala1 General accumulator blade 1 bar
AcumGralPala2 General accumulator blade 2 bar
AcumGralPala3 General accumulator blade 3 bar
PresAcumGral Accumulated general pressure bar

PresFreno Brake pressure bar
PresGH Hydraulic group pressure bar

Table 6 shows the control related variables. The WTs are equipped with blade pitch
control, which adjusts the blade’s angle of inclination to control the rotor speed and can
execute the rotor brake in the feathered position. Another important control system is the
yaw controller, which ensures that the nacelle is oriented correctly. Additionally, the rotor
and generator speeds are crucial variables to control the WT operation.
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Table 6. Control variables.

Variable Description Units

Pitch1 Blade pitch angle 1 ◦C
Pitch2 Blade pitch angle 2 ◦C
Pitch3 Blade pitch angle 3 ◦C
Yaw Yaw angle ◦C

VelRotor Rotor speed rpm
VelGen Generator speed rpm
SPPitch Pitch system parameter -

ContEnerActiva Active energy counter -
NivOscil Oscillation level Hz
NivVibra Vibration level Hz
date_time Date and time of the sample -

ld_id Wind turbine ID -

Note that, apart from the SCADA data, information regarding maintenance and repair
actions (work orders) were also available. This data provided information on the failures
that occurred when they occurred, when the work was carried out, and information about
the subsystem that was repaired or replaced. From this information, WT number 2 in the
wind farm (WT2, from now on) had a main bearing fault on 21 May 2018. This information
was used in this work to test whether the proposed methodology is capable of predicting
the appearance of this fault months in advance.

5. Fault Prognosis Methodology

In this section, the proposed methodology is comprehensively described. First, the
data preprocessing, which is performed to deal with real data that contains outliers and
missing data, is thoroughly explained in Section 5.1. Second, the data split into training
and test sets is given in Section 5.2. In this section, emphasis is placed on why the usual
strategy of data shuffle must never be used in the context of time-series data. It will also
explain how it is ensured that the anomalies detected are not just a change in seasonality.
Furthermore, it is urged that almost one whole year of data is used for the training set.
Then, in Section 5.3, the normality model for each WT is constructed based on an ANN.
The ANN was trained to obtain a model that, from the input variables (at different time
steps), can estimate the value of the main shaft temperature (at a specific time step), as a
virtual sensor, when healthy data are provided. Fourth, in Section 5.4, the specific details
of the ANN architecture are provided. Fifth, in Section 5.5, the application of Bayesian
regularization, where the weights are regularized to improves the generalization without
requiring a validation set, is discussed. Sixth, Section 5.6 discusses how to ensure that the
data used to construct the normality model are healthy. Finally, a fault prognosis indicator
is introduced in Section 5.7 to minimize the number of false positives (false alarms).

5.1. Data Preprocess

In Section 3, the diverse main bearing failure modes are described, stating that, in
many cases, they lead to an increase in temperature. For this reason, to build the normality
model, the temperatures of the components located close to the main bearing are selected
together with the ambient temperature, as it affects the temperatures of all subsystems.
Additionally, the generated power and rotor speed provide information about the region
of operation of the WT. The selected variables are shown in Figure 9 and are detailed in
Table 7. Note that these variables are filtered through a range of realistic values for each
sensor. Table 7 lists the specific ranges used for each sensor.
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Figure 9. Plot example of the selected supervisory control and data acquisition (SCADA) variables used to develop the
normality model. All of them are related to the mean value over a 10-min period.

Table 7. Selected SCADA variables used to develop the normality model, its description, range of
possible values, and units. All of them are related to the mean value over a 10-min period.

Variable Description Range Units

Pot Generated real power [0, 2000] kW
TempAmb ambient temperature [−5, 40] ◦C

TempCojLA Bearing coupling side temperature [0, 120] ◦C
TempCojLOA Bearing non-coupling side temperature [0, 120] ◦C
TempEjeLento Low-speed shaft temperature [0, 120] ◦C

TempGen generator temperature [0, 175] ◦C
TempRodamMultip Gearbox temperature [0, 120] ◦C

VelRotor Rotor speed [0, 50] rpm

Data cleaning is an important step prior to the application of data analysis because
noisy data is removed that could cause interference in the study. Furthermore, when the
study is based on real data, missing data and outliers are unavoidable (unlike when the
work is based on simulated/synthetic data). In this work, extreme values (outliers) are
not systematically removed because, as stated in Reference [29], it could lead to loss of
information related to fault prediction. Conversely, the use of manually defined ranges
based on realistic values that can be obtained by different sensors could be a better strategy.
In this work, out-of-range values are first set as a missing value and then filled using the
same strategy as that used for the original missing values. Figure 10 shows an example of
the values outside the range for the low-speed shaft temperature.

As out-of-range values are removed, the number of missing values is increased;
thus, there is a need for a data imputation strategy. Imputations with mean, median,
and mode are simple techniques; however, this can introduce a bias in the mean and
deviation [30]. In this work, a single imputation, while avoiding complex mathematical
calculations, is proposed by using the piecewise cubic Hermite interpolating polynomial
(pchip) [31]. This polynomial works for the given data points with specified slopes at
the interpolation points. A meaningful property of this strategy is that the obtained
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polynomial preserves the shape of the data and respects monotonicity, and guarantees that
at least the first derivative is continuous. This interpolation strategy has been used in a
variety of applications, such as calculating the signal-to-noise ratio in scanning electron
microscopy (SEM) images [32], sampling smoothly predefined kinematic grids in high-
energy particle collision problems [33], and decomposing nonlinear and non-stationary
electromagnetic interference signals [34]. Figure 11 shows the original and imputed data,
where the polynomial is computed and traced between the data points, considering the
shape and continuity of the curve. Note that, for missing values that are at the beginning
or at the end of the dataset, the closest value after or before the missing values is used.

Figure 10. Out-of-range values are detected as outliers (red crosses) and assigned as missing values
from the raw signal.

Figure 11. Cont.
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Figure 11. Low-speed shaft temperature raw data (without outliers) versus imputed data (top) and
zoom in of the imputed data (bottom).

Finally, data from selected variables have different sources; therefore, the values have
different orders of magnitude. Thus, it is highly recommended to scale the data prior to
use in any machine learning approach. In this work, max-min scaling is selected to scale
the data. Considering that the Bayesian regularization algorithm is used (see Section 5.5),
the best results are obtained if the training data are first mapped into the range [−1, 1]
(or some similar region) [35]. Thus, max-min normalization was selected instead of the
standard Z-score. Max-min normalization guarantees the data into the range [0, 1]. It is
a simple technique, and its only disadvantage is coping with outliers, which has already
been solved by using range filtering of the data.

5.2. Data Split: Train and Test Sets

The basic steps in all neural network based models are: (1) divide the data into training
and test datasets, (2) use the training dataset to train the neural network, and (3) evaluate
the model using the test dataset to determine how well it predicts (generalizes). In this
section, we focus on the first step.

How available data are split into training and test sets plays a fundamental role in the
construction of ANNs and has a significant impact on the obtained model. In this work,
a fault prognosis methodology that is insensitive to both operating and environmental
conditions is sought; therefore, the training and test datasets must have data from all the
working conditions.

It is noteworthy that, in this work, the training and test datasets have not been shuffled,
as this can cause data leakage owing to the presence of strong time-series effects in the
data [36]. Consequently, the training and test datasets were split in such a way that each
set had one year of data. This approach ensures that the detected anomalies are not due to
seasonality [37], and the model can cope with various operating and environmental condi-
tions. Therefore, the available SCADA data were divided as follows: data corresponding
to 2017 (47,232 samples) were used for training, and data from 2018 (43,920 samples) were
used for testing. This data split was carried out for the entire wind farm. For example,
Figure 12 shows the training and test data associated with WT2 (which had a main bearing
fault on 21 May 2018).
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Figure 12. WT2 (WT number 2 in the wind farm) data for training and test.

As can be seen, in this work, there is no validation set because Bayesian regularization
is used to train the ANN, as shown in Section 5.5.

5.3. Normality Model Based on an Artificial Neural Network (ANN)

The ANN model structure is proposed in this section and is based on the eight selected
variables shown in Table 7. The output of the ANN is considered to be the temperature of
the low-speed shaft (variable of interest) at time t, and the inputs are the remaining seven
variables shown in Table 7 at time t− 1 and t. Thus, referring to the structure of the ANN,
there are 14 inputs and 1 output with a hidden layer comprising 72 neurons. Figure 13
shows the ANN structure.

TempEjeLento(t)

Output Layer

        (1)

Pot(t–1)

Pot(t)

TempCojLA(t–1)

VelRotor(t)

Input Layer

      (14)

Hidden Layer

       (72)

Figure 13. ANN model with 14 inputs, 72 neurons in the hidden layer, and 1 output.

The next sections provide a detailed explanation of the optimization method, the
regularization method, and the selection of the number of neurons in the hidden layer.

5.4. Setup of the Proposed ANN

To provide a comprehensive reasoning of the hyper-parameter setup of the proposed
ANN, a brief review of the Levenberg-Marquardt (LM) optimization method is given here
to introduce the notation used.

First, note that the problem to be solved is

argmin
β

F(β) =
1
n

n

∑
i=1

(
Ti − T̂i(β)

)2
,

where β is the vector of parameters (in this work, it includes the weights and biases of the
ANN, i.e., β = (w, b)), n is the total number of samples in the training dataset, Ti is the
temperature value of the low-speed shaft given by the SCADA data for sample i, and T̂i
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is its estimation given by the output of the ANN. In other words, the problem consists of
minimizing the mean squared error, which can be rewritten as

argmin
β

F(β) =
1
n

n

∑
i=1

ri(β)2,

where ri(β) = Ti − T̂i(β) are the residuals. Numerical optimization algorithms are usually
used to address this problem. They are iterative procedures that update the parameters at
each iteration as follows:

βk+1 = βk + δk,

where k is related to the kth iteration of the algorithm, and δk is the increment to be
determined by the specifically selected algorithm. The gradient descent (GD) algorithm
adopted the following increment:

δGD
k = −µJTr(βk),

where µ is the learning rate, JT is the Jacobian matrix transpose of the objective function F,
and r is a column vector containing the residuals at each sample, that is, r = (r1, r2, · · · , rn)

T .
In contrast, the Gaussian Newton (GN) algorithm uses as an increment:

δGN
k = −H−1 JTr(βk),

where H is the Hessian matrix of the objective function F. Alternatively, the LM algorithm
applies an increment:

δLM
k = −(H + µI)−1 JTr(βk),

where I is the identity matrix, and µ is a nonnegative scalar parameter, usually called the
damping parameter. Note that, when µ = 0, the Gauss-Newton method is obtained, and,
when µ is large, the method resembles gradient descent [38,39]. The fundamental idea
behind the LM algorithm is to accomplish a performance similar to gradient descent when
far away from the optimum, and to attain a performance similar to the Gauss-Newton
method when close to the optimal value (to achieve fast convergence when being at the
minimum neighborhood). To obtain this behavior, the damping parameter µ is adjusted at
each iteration of the algorithm. In this work, it is raised by a factor of 10 if the current step
fails to reduce the objective function, and it is decreased by a factor of 0.1 otherwise. The
assigned initial value was µ = 0.005. In this work, the LM algorithm terminates when at
least one of the following conditions are met:

• A maximum number of 1000 epochs (using mini batches of size 128) is reached.
• The magnitude of the gradient, JTr(βk), drops below the threshold ε = 10−7.
• The damping parameter, µ, exceeds its maximum possible value that has been set to

1010.

Note that the network used rectified linear unit (ReLU) activation functions, and
initialization was performed using the Xavier initializer. Finally, to prevent overfitting,
L2 regularization was introduced into the neural network using Bayesian regularization.
Details are provided in the next section.

5.5. Bayesian Regularization

In this study, Bayesian regularization was employed to train the ANN [35]. This
regularization can be applied to multi-layer feed forward ANNs that are used for nonlinear
regression, which is the case at hand. MacKay [40] comprehensively contributed to the
utilization of Bayes’ rule for NN training and regularization. First, in the Bayesian scheme,
the ANN weights are considered as random variables, and their density functions are
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updated according to Bayes’ rule. Second, the training aims to minimize the objective
function. Recall that, in this study, the mean squared error is minimized:

E(w, b) =
1
n

n

∑
i=1

(
Ti − T̂i(w, b)

)2
,

where w and b are the parameters (weights and biases, respectively) of the ANN. When
L2-regularization is used, an additional term is added to the objective function [41].

ER(w) =
m

∑
j=1

w2
j ,

where m is the total number of weights in the ANN. Thus, the objective function F becomes:

F(w, b) = αE(w, b) + λER(w),

where α and λ are parameters whose relative values rule the priority for training and/or
regularization, respectively. For instance, when α >> λ, the training optimization algo-
rithm minimizes errors on the training dataset, but it may lead to overfitting. However,
when α << λ, the training optimization algorithm will give priority to weight size curtail-
ment (in exchange for some errors in the training dataset), thereby generating a smoother
model. The main challenge in adding regularization is to set proper values for these
parameters. To handle this problem, Bayesian regularization considers the application of
Bayes’ rule to optimize their values at each iteration of the numerical optimization [35].
A disadvantage is that this optimization requires the computation of the Hessian matrix
of the objective function F. However, this can be approximated using the Gauss-Newton
approximation, which, as noted in Reference [35], is readily available when the LM op-
timization algorithm is used [42] for training. A brief review of this method is given in
Section 5.4 to introduce the notation used and thoroughly describe the hyper-parameter
setup of the proposed ANN.

One benefit of Bayesian regularization is that it provides the so-called effective number
of parameters, γ, which is a measure of how many network parameters (weights and biases)
are effectively used to reduce the objective function [35,40]. If the final effective number
of parameters is very close to the actual total number of parameters in the network, then
the neural network may not be sufficiently large. In this case, more hidden layer neurons
should be added and retrained; however, if the larger network has the same final γ value,
then the smaller network is sufficiently large. Otherwise, more hidden layer neurons may
need to be added. Finally, when a sufficiently large network has been trained for a sufficient
number of iterations to ensure convergence, γ remains approximately the same, regardless
of the total number of parameters in the network. That is, if an even larger network
was tried, the network response would never overfit the data. This greatly simplifies the
hyper-parameter tuning required to determine the optimum network size. In this study,
as shown in greater detail in Section 6, a value of γ = 1058 was obtained from a total of
1153 parameters in the proposed network (number of weights and biases).

For the sake of completeness, note that the formulas to compute at each iteration, k,
the effective number of parameters, γ, and the objective function parameters α and λ are as
follows [35]:

γk+1 = n− 2αktr(H)−1, αk+1 =
n− γk+1
2E(w, b)

, λk+1 =
γk+1

2ER(w)
,

where tr(·) stands for the trace operator.
Finally, note that Bayesian regularization regularizes the weights and improves the

generalization of the neural network; thus, a validation set is not required (as its main
purpose is to accomplish regularization and generalization of the model).
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In summary, in this work, the LM optimization algorithm was used for training
optimization, and Bayesian regularization was introduced to regularize the weights and
improve the generalization of the constructed model without requiring a validation set.

5.6. Discussion on How to Ensure That Data Used to Construct Normality Model Is Healthy

On the one hand, the proposed normal behavior model relies on the fact that healthy
data are used to train it. From a pure definition point of view, this model is not completely
unsupervised but is semi-supervised, as it is required to ensure that the training data
are healthy. On the other hand, having complete assurance that the data used to train is
healthy is not an easy task, as the absence of work orders does not guarantee that the data
is completely healthy.

At the studied wind farm, there is an extra wind turbine, WT13, which is not included
in the results of our methodology as it had a fault during 2017 (year used for training).
Thus, it is not possible to construct a normality (healthy) model for a WT, as there are faulty
data during the period decided to be used as training. However, in this section, we show
the training error output when a model is built using this WT. The result is a huge training
error of 30.4969, which is clearly inadmissible. Table 8 shows the training error for the rest
of the WTs in the park that have healthy data during the training period (2017).

Table 8. Mean squared error (MSE) of the trained models for each WT. In all cases, the training time
is close to 25 min (±30 s) on a 3.2 GHz 6-Core Intel Core i7 processor.

WT Train Error (MSE)

WT1 0.6984
WT2 1.3104
WT3 6.1074
WT4 0.7227
WT5 5.9989
WT6 5.2275
WT7 0.9214
WT8 1.8503
WT9 0.7373
WT10 3.8815
WT11 4.6074
WT12 4.0173

In summary, the final train mean square error provides an estimate of the validity of
the model. That is, when a WT model is harder to obtain (a much higher train mean square
error is obtained), this could be a signal that the data has some anomalous behavior (it is
not healthy) even if no work orders are reported. In this case, it is highly recommended to
double check whether this turbine had issues during the year used as training.

5.7. Fault Prognosis Indicator

Typically, fault-detection indicators are defined using residuals and establishing a
detection threshold. When a sample has a residual higher than the detection threshold,
an alarm is triggered. However, in this case, if the residual, |T − T̂|, was used directly to
establish a threshold above which it is decided to give the alarm signal, this would lead to
a non-assumable number of false positives (false alarms) that would render the method
useless. This fact is further explained in the results section. However, in this section, an
indicator to overcome this problem is introduced.

As already mentioned, if the indicator is based on the residual of a single sample,
there would be an excessive number of false alarms. Thus, it is important to define an
indicator that considers the persistence of consecutive samples above a specified threshold.
In particular, a threshold was first defined based only on the training data residuals. The
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mean µ and standard deviation σ of the residuals over all training data are computed.
Then, the threshold is defined as follows:

threshold = µ + 6σ. (1)

Next, for each week in the test dataset, the number of samples that had a residual
value greater than the threshold was counted and denoted as nover. It is desired that the
indicator has a range between 0 and 1. Thus, a minimum function is used to define the
indicator in such a way that its value is 0 when no sample exceeds the threshold in that
week, and a value of 1 when 504 samples (remembering that a week has 1008 samples) or
more exceed the threshold in that week. Thus, the implemented weekly indicator is given
as follows:

indicator = min
(

1,
nover

504

)
. (2)

6. Results on a Real Wind Farm

The results of the proposed fault prognosis methodology for the entire wind farm is
presented and discussed in this section.

First, Figure 14 (left) shows the minimization of the MSE, E(w, b), during training for
WT1. The best performance was 0.6984, and it is reached at the last epoch (1000). Recall
that the target value is the low-speed shaft temperature; thus, the MSE has a direct physical
interpretation in degrees Celsius. In addition, Figure 14 (right) shows a histogram (with
20 bins) of the final training error over all training samples for WT1. Note that the four bins
with more counts have an error smaller than or equal to one degree Celsius. Furthermore,
Figure 15 shows the parameter values related to the LM optimization algorithm and
Bayesian regularization for WT1 training. Note that at epoch 1000, the following values
were obtained: The gradients were JTr(β1000) = 0.0421, the damping parameter was
µ = 0.5, and the final number of effective parameters used by the ANN was γ = 1058.
A larger network with an increased number of neurons in the hidden layer led to the
same number for the parameter γ, thus proving that the size of the presented ANN (with
72 neurons in the hidden layer) was large enough.
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Figure 14. Minimization of the MSE, E(w, b), during training of WT1 (left). Error histogram with 20 bins of final training
error over all training samples for WT1 (right).

Next, recall that Table 8 in Section 5.6 shows the final training error for each WT in
the park. There is some variability among the different wind turbines, with minimum and
maximum values of 0.6984 and 6.1074, respectively. These are acceptable values, related
to the real-life variability among WTs due to, for example, different locations in the park.
However, it is important to note that, when the values of the training error are much higher,
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then it should be considered that the training data might not be completely healthy. Most
likely, if the ANN was not capable of significantly reducing the MSE for that specific WT, it
is because the training data have some kind of anomaly. Recall that our main purpose is
to construct a normality (healthy) model; thus, it is essential to have at disposal normal
(healthy) training data.
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Figure 15. Values at each training epoch iteration for the gradient, JTr(β), damping parameter, µ,
and effective number of parameters, γ, for WT1.

Figure 16a,b show the ANN predicted value (T̂) and target (T) value for WT1 over the
train and test dataset, respectively. Recall that this WT is healthy in both the training and
test datasets. The prediction is close to the target in both figures, and only some samples
on the test dataset have disparate values. This performance is shown in Figure 16c,d,
where the absolute difference value between prediction and estimation, |T− T̂|, also called
residual, is shown for WT1 over the training and test datasets, respectively. This residual
has similar values over the training and test sets, and only a few samples have peak
values. As already mentioned in Section 5.6, if the residual, |T − T̂|, was used directly
to establish a threshold above which it is decided to give the alarm signal, this would
lead to a non-assumable amount of false positives. Thus, the importance of defining an
indicator, see Section 5.7, which considers the persistence of consecutive samples above a
specified threshold.

In contrast, Figure 16e,f present the ANN predicted values (T̂) and target (T) values
for WT2 over the training and test datasets, respectively. Recall that this WT had a main
bearing fault on 21 May 2018. These figures show that the prediction over the test set has an
overall performance that is different from that over the training set. Note that Figure 16g,h,
which represent the residuals on the training and test datasets, also contribute to observing
this change in performance over the two sets. It is noteworthy that after the failure (on
21 May 2018), the residual is no longer affected and has a similar performance to the one
on the train set, with only a few isolated peaks.

Finally, the results obtained with the indicator proposed in Section 5.7 are shown in
Figure 17 for the test dataset (2018) over the entire wind park. An alarm is triggered only
when the indicator reaches a value greater than 0.5. The first WT with a triggered alarm
was WT2, which is a true positive. The alarm was activated on 4 February; thus, three
and a half months in advance of the actual breakdown reported on 21 May, where the
low-speed shaft had to be replaced with a new one. The alarm stayed until 12 February
and was then set off. This is because the possible heat created from an initial failure mode
is detected by the fault prognosis methodology, but its appearance is not continuous over
time until the final breakdown. In contrast, when the failure mode advances, for example,
when a crack propagates, the generated heat appears. When the crack remains still, no
further heat is generated; thus, the alarm is set off. However, cracks are already present
and can advance at any time, leading to the possible failure of the component. Thus, in
this methodology, whenever the alarm is on (even when it is set off after a few weeks), it is
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highly recommended to check the specific WT. The second WT with a triggered alarm was
the WT8. This WT has no main bearing damage, but the work orders show that the gearbox
was broken and replaced from 22 March to 11 April. The proposed indicator triggered an
alarm on 1 April. Thus, the method detects this maintenance operation on the gearbox
as an anomaly. In a real situation, the wind park manager knows that this WT is already
under maintenance. Thus, it was not a false positive. The final WT with a triggered alarm
was WT9. This is a false positive of the method, as this WT had no important work orders
during the year 2018. The rest of the WTs in the park were correctly classified as healthy
over all the test datasets. To summarize, the results lead to a precision of 50% and a recall
of 100% in the wind farm under study.
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Train dataset WT1

(a)
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-50

0
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Test dataset WT1 (healthy)
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Figure 16. (a) ANN predicted value (T̂) and target (T) value for WT1 over the train dataset. (b) ANN predicted value (T̂)
and target (T) value for WT1 over the test dataset. (c) Absolute difference value between the prediction and estimation,
|T− T̂|, for WT1 over the train dataset. (d) Absolute difference value between the prediction and estimation, |T− T̂|, for
WT1 over the test dataset. (e) ANN predicted value (T̂) and target (T) value for WT2 over the train dataset. (f) ANN
predicted value (T̂) and target (T) value for WT2 over the test dataset. (g) Absolute difference value between the prediction
and estimation, |T− T̂|, for WT2 over the train dataset. (h) Absolute difference value between the prediction and estimation,
|T − T̂|, for WT2 over the test dataset.

Finally, the obtained results are compared to other approaches in the literature coping
with the same proposed problem. The methodologies stated in References [15,17,23]
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achieved promising results for the diagnosis and prediction of WT faults from SCADA
data. However, the obtained results in this present work surpass the ones given in the
aforementioned references for two main reasons: (i) the prognosis is accomplished months
in advance instead of only hours in advance of the fault, and (ii) as the proposed approach
is unsupervised it does not need previous faulty data to be trained neither has to deal with
the problem of the highly imbalanced nature of fault data (with the no-fault class having
an overwhelming majority of samples).

Figure 17. ANN indicator values (blue line) for test data, and threshold (red line).

7. Conclusions

In this work, an advanced prognostic system was proposed and proven to predict
the main bearing failure before it occurs and let turbine operators plan their operations.
In particular, a fault prognosis methodology that uses solely SCADA data requires only
healthy data to be deployed. Furthermore, the stated strategy works under different
operating and environmental conditions to which WTs are subject. Finally, the validity and
performance of the established methodology were demonstrated on a real underproduction
wind farm composed of 12 WTs. The results show that the time that the early prognosis
can be generated is several months in advance, thus giving time to the plant operator to
schedule maintenance. However, the studied wind farm has only one case with a failure of
interest, which is not sufficient for statistical analysis. To set the expected predictive time
and its confidence level is a future work that can be assessed when more cases appear in
this wind farm, or data from other wind farms with more cases related to this fault are
available. Furthermore, note that the work orders available to the authors of this work
only contain those related to important systems substitutions, such as gearbox, generator,
or main bearing replacement. Thus, preventive maintenance work orders, or minor work
orders are not available. As future work, it would be interesting to check whether values of
the indicator lower than the threshold but close to it are related to some minor work orders.
Finally, other neural networks, such as long short-term memory (LSTM), recurrent neural
network (RNN), or one dimension convolutional neural network (1D-CNN), should be
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studied, as they have interesting properties that, initially, make them appropriate for the
problem under consideration.
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Abstract—Failures in the main bearings of wind turbines
are critical in terms of downtime and replacement cost. Early
diagnosis of their faults would lower the levelized cost of wind
energy. Thus, this work discusses a gated recurrent unit (GRU)
neural network, which detects faults in the main bearing some
months ahead (when the event that initiates/develops the failure
releases heat) the actual fatal fault materializes. GRUs feature
internal gates that govern information flow and are utilized in
this study for their capacity to understand whether data in a time
series is crucial enough to preserve or forget. It is noteworthy
that the proposed methodology only requires healthy Supervisory
Control and Data Acquisition (SCADA) data. Thus, it can be
deployed to old wind parks (nearing the end of their lifespan)
where specific high frequency condition monitoring sensors are
not installed and to new wind parks where faulty historical
data do not exist yet. The strategy is trained, validated, and
finally tested using SCADA data from an in-production wind
park composed of nine wind turbines.

Index Terms—early fault detection, wind turbine, main bear-
ing, gated recurrent unit neural network, anomaly detection,
SCADA data.

I. INTRODUCTION

THE global energy system is undeniably in flux. Re-
newable energy uptake and utilization are critical to

combating climate change and ensuring a long-term future.
Renewable electricity will be key to Europe reaching climate
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neutrality by 2050, according to the European Commission’s
projections [1]. Wind energy is a critical component in achiev-
ing this goal, as it accounts for 50% of the European Union’s
power mix, with renewables accounting for 81%. The core of
the problem in the progress of the wind business, however, is
a decrease in the levelized cost of electricity (LCOE). The
LCOE of a wind park includes many parameters such as
total installed costs, lifetime capacity factor, operation and
maintenance (O&M) expenses, project economic lifespan, and
cost of capital. While all these criteria play a role in calculating
a project’s LCOE, some have a greater influence. Wind energy
O&M expenses, particularly, account for a major portion of
the LCOE (20-25 percent for onshore wind parks and 25-30
percent for offshore wind parks) [2]. Hence, optimizing main-
tenance procedures forms a critical component of achieving
low-cost wind energy.

In any industrial-scale wind park, energy output losses
due to unforeseen asset maintenance, as well as component
replacement costs, can amount up to millions of euros each
year. Hence, it is critical to transition from corrective (re-
placing failed parts) and preventive maintenance (planned at
regular intervals without regard for the asset’s actual state) to
predictive maintenance, which is based on actual and timely
data collected through a network of sensors monitoring the
actual asset (performed using high-frequency data of physical
quantities) and warns operators in advance before the fatal
break-down materializes, enabling them to program, repairs
to match with weather or production windows, thus lowering
costs. To better use the information in the vast quantity of
data (gathered continuously or periodically, online or offline)
from diverse sensors obtained from the assets, digitalization
and artificial intelligence are crucial technologies. The main
concept is to identify changes in the situation that suggest
a growing malfunction and reflect departures from typical
operational procedures.

This paper provides an early (months ahead of time) defect
detection technique for the main bearing of a wind turbine
(WT) based on a GRU neural network (NN) that employs just
SCADA data to this framework. As SCADA data is primarily
used for operation and control rather than condition monitoring
(CM), using it for this purpose is a significant issue. SCADA
data contains approximately 200 different variables (i.e., it
is high dimensional), has a low sampling rate (recorded
continuously at 10-minute averaged intervals to minimize data
transmission bandwidth and storage), depends on the WT’s
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region of operation and environmental conditions, and is a
time series with strong seasonality. Furthermore, the benefit
of keeping consistent maintenance work order records with
full fault descriptions was unknown when SCADA systems
were established (as it was not envisioned that AI could
help in this application). Operators and maintenance contrac-
tors record maintenance repair operations in a number of
ways, ranging from handwritten forms that detail any work
done in an unstructured format to highly automated work
orders. Furthermore, most of the data comes from routine
operations, resulting in very imbalanced data sets. Despite
these challenges, the idea of leveraging SCADA data for
predictive maintenance has recently received more attention.
Many obstacles, however, remain to be solved in present and
future studies. The next paragraphs quickly assesses the most
important studies in the field, which demonstrate its potential
while also underlining the research hurdles.

For starters, supervised algorithms are used in a large
percentage of articles (classification methods). For example,
in [3], the main bearing fault is diagnosed using support
vector machine (SVM) classifiers; and in [4], simultaneous
multiple faults are again diagnosed using SVM. Despite the
promising performance of supervised algorithms in research,
their deployment in a real application requires domain adap-
tation techniques that provide the ability to train a model on
one dataset (source) for which label is available and secure
a good performance on another dataset (target) whose label
is not available. Otherwise, it is nearly impossible to apply
supervised approaches, as deriving labeled data sets from
WT operational data is often difficult (because of the lack
of standardization in maintenance records), time-consuming,
and error-prone, resulting in a very imbalanced data set.
Furthermore, domain adaptation techniques are crucial to
deploy supervised approaches to wind parks where the defect
has not already occurred. It is noteworthy that there is a
consistent portion of the literature that fosters the use of
domain adaptation techniques to deal with supervised learning
for WT fault diagnosis, as in [5] where a WT gearbox and
cross-bearing faults are studied through simulated data, and [6]
where a bearing fault is studied through a test bench. Second,
as indicated in the review study [7], a substantial number of
sources confirm the conclusions using simulated SCADA data
(as in [4]) or experimental data (from a test bench) as in [3].
Although this is understandable given that real SCADA data
sets are frequently proprietary and not readily available to the
scientific community, it is a significant disadvantage because
data provided by test rigs or mathematical models may not
generalize well to real-world settings [7]. Third, as indicated
in the highly referenced study [8], where a detailed analysis
regarding utilizing real SCADA data for WT CM is given, the
bulk of the references analyzed based their conclusions on a
very limited quantity of data, typically just 1 to 4 WTs. Again,
this is a significant disadvantage, as it is unclear whether
these tactics would scale successfully throughout the whole
wind park. Forth, certain references, such as [9], offer tactics
that result in a significant number of false alerts, making the
contribution inconvenient in the real world, as it would result
in alarm fatigue for operators. Fifth, a significant number

of studies, such as [10] and [3], detect the fault with less
than a week’s notice, rendering them useless in a real-world
situation where the plant operator needs at least months to
program repair to concur with the availability of replacement
parts as well as weather or production windows to minimize
turbine downtime. Finally, several notable references employ
completely unsupervised techniques that have been tested on
real wind parks. For instance, in [11], the pitch system CM is
stated using isolation forest and validated on ten WTs.

However, with advances in the field of deep learning,
progressively, much of the research is focused on capturing
relevant features using neural networks with deep hidden
layers. Methodologies based on artificial neural networks
(ANN) have been proposed, as in [12] and [13], as well as
different variations of autoencoders (based on ANNs) have
been widely studied. For example, in [14] a gearbox failure
detection method is proposed based on a deep joint varia-
tional autoencoder. In [15] a multi-level-denoising autoencoder
approach is stated and faults at the pitch system and drive
train (vibration anomaly) are detected. In [16] a denoising
autoencoder with temporal information is proposed to detect
anomalies in the generator speed and gearbox filter. Note that
in all aforementioned references time-series data is widely
adopted, where long-term dependency is essential to form
the classifiable features. Because SCADA data is a time
series, temporal data is essential for constructing a prognosis
model. Furthermore, understanding the changes and trends
in variables over time is crucial to constructing the model
architecture. That is, the model learns how previous data
samples impact future data samples, which is the primary
purpose of designing an early defect detection approach. Most
basic designs, such as ANNs, do not take a prior data point
into account when deciding the next; instead, the model learns
from individual samples.

To better address that the traditional ANNs either rely
on expert knowledge and handcrafted features or do not
fully model long-term dependencies hidden in time-domain
signals, recent works focus on the adoption of recurrent
neural networks (RNNs). In this case, the recurrent neural
network (RNN) model may be useful since it has a recurrent
connection and can learn the influence of past and current
inputs while forecasting the outcome. On the other hand,
RNNs suffer from the problem of vanishing gradients that
the LSTM and GRU models solve by employing gates to
determine which information should be kept and which should
be ignored. GRU networks have a few benefits over LSTM
[17] such as a smaller number of parameters and a reduced
computational cost, which are relevant in this application,
which requires training with data over several years. In this
work, the GRU neural network is selected because of its
ability to forecast information from time series data (taking
into account past information) and its simplicity (associated
with a lower computational cost) compared to other types
of RNNs. Finally, there are some relevant works related to
WT fault diagnosis with RNNs. For example, in [18], fault
diagnosis of WT based on long short-term memory (LSTM)
networks (a particular type of RNN) is proposed. However,
not only SCADA but also high-sampling vibration data is used
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and validation is done only with simulated (not real) data. It is
noteworthy the work in [19], where the main bearing failure
(the fault of interest in the present work) is predicted based on
LSTM with more than 90 days on average, but again not only
SCADA data is used but also high-sampling vibration data that
greatly helps to the obtained performance. Finally, the work in
[20] detects the gearbox failure by means of GRU networks,
but the used SCADA data is 1-minute averaged instead of
the standard 10-minute averaged, thus giving extra predicting
capabilities.

All that being said, the novelty of the proposed design
is the following. A novel methodology to detect months
in advance the main bearing failure (when the event that
initiates/develops the failure releases heat) using only standard
10-minute SCADA data and based on a GRU (because of
its ability to forecast information from time series data and
its low computational cost in comparison to other RNNs)
and a novel fault prognosis indicator (FPI) that precludes the
problem of alarm fatigue. Furthermore, the stated methodology
is validated with real (as opposed to simulated or experi-
mental which greatly simplifies the problem) data from an
in production wind farm. The methodology main features are
the following: 1) Semi-supervised and based only on healthy
data (precluding the problem of imbalanced data sets), thus
expanding its range of application to any wind park (although
no faults have yet occurred). 2) Reliable predictions with
minimum false alarms. 3) Early warning months in advance,
providing the plant operator time to program maintenance to
match with replacement part availability, as well as weather or
production windows to minimize turbine downtime. 4) Robust
to seasonality and operating and environmental conditions. 5)
Installing extra costly sensors is not needed, as only SCADA
data is used. Therefore, the method can be applied to WTs
already in operation for life-time extension services (this is
relevant, as it is expected that 38 GW of wind parks in Europe
will reach their life expectancy in the next five years). 6)
Validated on real SCADA data from a wind park composed
by nine WTs in production.

The following is how the rest of the article is structured.
Section II provides a brief description of the wind park.
Following this, the types of main bearing faults are introduced
in Section III. The available SCADA data and work order
records are then presented in Section IV. Section V discusses
the suggested methodology. The findings and discussion in
Section VI are used to analyze and convey the performance
of the stated strategy. Finally, conclusions are drawn and
recommendations for future works presented in Section VII.

II. WIND PARK

The wind park is composed of WTs with a diameter of
101 m and 2300 kW of nominal power. Figure 1 displays the
main elements of the WT. The energy production starts at an
initial wind speed of 3 m/s and reaches its rated power at 12
m/s. Finally, when the wind speed is 20 m/s or more, the WT
automatically stops using its braking system. In Table I, the
technical specifications of these turbines are summarized.

Notably, the main bearing employed by these WTs is a
double-spherical roller type, which are appropriate for applica-

Fig. 1. Wind turbine parts.

TABLE I
WIND TURBINES’ TECHNICAL SPECIFICATIONS.

Technical specification Value
Number of blades 3
Nominal power 2300 kW
Rotor diameter 101 m
Cut-in wind speed 3 m/s
Rated wind speed 12 m/s
Cut-out wind speed 20 m/s

tions involving very low speeds (up to 25 rpm) and high loads
with varying directions; therefore, they are a reliable choice
for the main bearing of a WT. Other characteristics of this
type are robustness to withstanding loads of variable direction
and low friction, which implies a low energy loss and a longer
lifespan.

III. MAIN BEARING FAULTS

Bearings are supports or guides for machine elements such
as shafts that need rotation or oscillation and can handle axial
loads. Many sectors use them, including transportation, medi-
cal (surgical instruments, as well as diagnostic and laboratory
equipment), and energy (wind turbines, and solar panels),
among others. Typically, a bearing comprises four elements:
cage, inner race, outer race, and rolling. During operations,
each of these components is subjected to mechanical stress
by at least one of the following forces: frictional, impact,
centrifugal, and inertial. Therefore, any of them can suffer
a breakdown.

The main bearing, which supports the main shaft of a WT,
is a large component and this section attempts to offer an
insight on the many ways of bearing failure as well as the
enormous number of existing patterns, which make forecasting
a bearing failure in advance difficult. Following the ISO 15243
standard, the SKF company classified a bearing’s different fail-
ure modes as follows [21]: fatigue, wear, corrosion, electrical
erosion, plastic deformation, and fracture and cracking. Each
of these modes has different sources, behavior, and bearing
damage. It is beyond the scope of this paper to elaborately
explain these failure scenarios. However, a brief overview of
some of the aforementioned failure modes is provided in the
next paragraph to promote an understanding of the need for
considering temperature variations while detecting a range of
bearing defects.

First, fatigue is one of the most common failure modes
in bearings. Subsurface-initiated fatigue and surface-initiated
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fatigue are the two types of fatigue. Both submodes have
an accumulation of residual stresses, causing the material to
transition from a randomly oriented grain structure to fracture
planes. This results in microcracks and beginning flaking,
which emit heat. Second, the loss of a bearing surface is
referred to as wear, and frictional heat is frequently present.
Third, corrosion occurs due to the entry of moisture, water and
aggressive contaminating liquids into the bearing. Corrosion
leads to premature and extended spalling, as the material
undergoes structural change and the load zone surfaces are
reduced such that overloading occurs. Thus, the release of
heat due to these three types of failure can be detected using
temperature variables in the fault prediction model. Fourth,
electrical erosion occurs because the electrical current flowing
through the rings via rolling elements causes damage. The
erosion can be divided into two types: excessive current
erosion and current leakage erosion (produced by low-intensity
current). Excessive current erosion heats up the material to
temperatures between tempering and melting levels, forming
craters in the rolling element and deforming the raceways.
Again, the release of heat is the first symptom of this type
of failure. Lastly, the bearing can fracture and crack, where
bearing cracking can be caused by thermal factors. When two
surfaces slide past each other, frictional heat is generated. If the
sliding is considerable, the heat can crack in the perpendicular
direction of the slip. Again, heat release is an initial starting
point that can reveal the developing fault.

In summary, all bearing failures have a starting point from
which an anomalous behavior begins until the end point, which
is when the bearing eventually fails. Symptoms of anomalous
behavior include a change in the main bearing temperature,
among others. Heat release is a widespread symptom, so this
work aims to predict the fault by detecting this first event.
Thus, an early warning can be triggered, notifying that within
a certain number of months, that element will seriously fail.

IV. SCADA DATA

In this study, the SCADA data is obtained from nine in-
production WTs. The available data spans from January 1,
2015, up to December 31, 2018, and shows the continuous
operation of each WT every 10 minutes. The SCADA data
contain a variety of measurements that may be divided into five
categories: environmental (see Table II), electrical, component
temperature (see Table III), hydraulic, and control variables.
The data is obtained with a 1 Hz sampling frequency and
stored on a 10-minute average. The mean, standard deviation,
maximum and minimum values are available for each sensor.
This work focuses only on the mean values; therefore, the
description of the variables in Tables II-III refers to its mean
value. Furthermore, only some exogenous variables (environ-
mental) and some temperature variables are employed by the
proposed strategy; thus, in this section, only these two sets of
variables are explained in depth.

Table II displays various environmental sensors from the
SCADA data. In this, the ambient temperature and the wind
speed can be found. The first one affects the temperature
of all subsystems that change significantly between summer

TABLE II
ENVIRONMENTAL VARIABLES.

Variable Description Units
wtc AmbieTmp mean Ambient temperature °C
wtc PrWindSp mean Primary wind speed m/s
wtc AcWindSp mean Actual wind speed m/s
wtc PriAnemo mean Primary wind speed of anemometer m/s

TABLE III
COMPONENT TEMPERATURE VARIABLES.

Variable Description Units
wtc A1IntTmp mean Internal temperature A1 °C
wtc BrkTmpGn mean Brake generator temperature °C
wtc GenBeRTm mean Generator bearing temperature °C
wtc GeOilTmp mean Gearbox oil temperature °C
wtc HSGenTmp mean HS generator temperature °C
wtc HSRotTmp mean HS rotator temperature °C
wtc HubTemp mean Hub temperature °C
wtc NacelTmp mean Nacelle temperature °C
wtc MainBTmp mean Main bearing temperature °C
wtc HydOilTm mean Oil temperature for hydraulic system °C

and winter. Finally, given its direct impact on the machine’s
operation, wind speed is the most crucial exogenous variable
associated with a WT.

Table III shows some variables related to temperature. The
main bearing defect is the subject of this research. As a result,
it is critical to monitor the temperatures of nearby components,
such as the main bearing temperature itself, the gearbox oil
temperature, and the generator bearing temperature.

Finally, in addition to the SCADA data, information is
available on maintenance and repair actions (work orders)
for the different WTs. These data provide the following
information: failure type, failure date, work order date, affected
subsystems, and actions taken. This information is used in this
work to model and test whether the proposed methodology
can predict the appearance of main bearing faults months in
advance.

V. FAULT DETECTION METHODOLOGY

This section comprehensively describes the stated fault
detection strategy. First, the data preprocess, crucial when
dealing with real data, is described in Section V-A. Next, the
data split is described in Section V-B. This section emphasizes
the GRU model strategy and the way to deal with seasonality.
Then, in Section V-C, the importance of data normalization is
stated, as well as the used normalization technique. Next, in
Sections V-D and V-E, the normal behavior model (NBM)
-WT’s normal/healthy behavior- is constructed based on a
GRU neural network, and the GRU architecture and the
hyperparameter set-up are comprehensively explained. When
healthy data is supplied, the GRU model is trained to predict
the main bearing temperature in a certain time step from
the input variables, functioning as a virtual sensor. Then, the
proposed fault prognosis indicator (FPI) is stated in Section
V-F, which employs a moving average strategy to diminish
the number of false alerts, avoiding alarm fatigue to the wind
park operator.

The proposed methodology can detect any failure asso-
ciated to the main bearing that initiates or develops with
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TABLE IV
SELECTED SCADA VARIABLES.

Variable Description Units
wtc MainBTmp mean Mean main bearing temperature °C
wtc GenBeRTm mean Mean generator bearing temperature °C
wtc GeOilTmp mean Mean gearbox oil temperature °C
wtc PrWindSp mean Mean primary wind speed m/s

an associated heat release. That is because the conceived
methodology relies on SCADA data associated to temperature
variables to detect the failure. Note that the low sampling
rate of SCADA data (10-minute average) hinders information
in variables with a fast dynamic (e.g., vibrations), however
as temperature variables have a slow dynamic their SCADA
data still contains relevant information. Finally, as indicated
in Section III, the vast majority of different main bearing
failure modes are associated to heat release, thus allowing the
proposed methodology to be widely applicable.

A. Data Preprocess

In Section III, the different types of main bearing failure
are described, noting that a wide variety of failure modes
induce an increase in temperature when the fault initiates. Con-
sequently, in this work, the temperatures of the components
near the main bearing are employed in conjunction with the
ambient temperature to preclude data seasonality. The selected
variables are shown in Table IV, namely, the main bearing
temperature, the generator bearing temperature, the gearbox
oil temperature, and the wind speed. It is noteworthy that the
ambient temperature is subtracted from all variables related to
temperature to avoid the problem of seasonality.

Real data is noisy; thus, a data cleaning strategy is required.
Particularly, in this work, a data imputation strategy is used
for missing data. Techniques based on statistical variables
such as mean, median, and mode are not considered because
they could generate a bias in the data’s mean and deviation.
[22]. Alternatively, the use of the piecewise cubic Hermite
polynomial interpolation is proposed [12], as it contributes a
continuous first derivative function and maintains the shape
and monotonicity. Missing data at the beginning and end of
the data set are filled in with their closest value.

B. Data Split: Train, Validation, and Test

To build a deep learning model, the following steps are
taken: i) dividing the data into training, validation, and testing
data sets; (ii) training and validating the model using the train
and validation data sets, respectively; and (iii) evaluating the
obtained model on the test set to investigate the performance
of the model predictions when using the new data (that the
model has never seen before).

The approach used for data splitting is crucial in developing
a machine or deep learning model, as it has a major impact
on the overall model. The following assumptions are made to
separate the data in this work. To begin with, only healthy data
is utilized to train and validate the model because the major
goal is to build WT’s NBM. Additionally, data from the WT’s
entire region of operation (range 1: when the wind speed is

lower than the cut-in wind speed; range 2, when the wind
speed is between the cut-in and rated wind speed and; range
3, when the wind speed is above the rated wind speed) is used
to train and validate the model. Thus, the model generated
is robust to the WT’s varied operating and environmental
conditions. Finally, to make the model resilient to seasonality,
the training and validation data must span at least one full
year. In summary, the data are split in this manner. Data from
January 2015 to September 2017 (144576 samples) are used
for training, data from October 2017 to December 2017 (13248
samples) are used for validation, and data from January 2018
to December 2018 (52560 samples) are used for testing.

C. Data Normalization

The data for the selected variables originate from several
sources; hence, their order of magnitude differs. Scaling the
data is widely advised by machine/deep learning approaches
to achieve higher performance of the employed optimization
algorithm. Based on SCADA data’s nature for the specific
wind park under study, these data have no significant outliers.
Thus, the min-max scaling is directly selected (since there is
no problem with outliers’ sensibility that this kind of scaling
can suffer) that scales data in the [0,1] range using a linear
transformation from the initial set’s range. Thus, this technique
delivers data that are normalized exactly to the same interval
for all used variables.

D. Brief introduction to GRU neural networks

The deep learning model used in this work is a GRU neural
network. Although this paper does not intend to provide a
detailed understanding of GRU networks, they are briefly
explained below to introduce the used notation and render this
paper self-contained and understandable.

Cho et al. [23] proposed GRUs to allow relationships in
an adaptable manner across temporal scales [24]. The GRU
workflow resembles that of a simple recurrent neural network
(RNN). It processes the input vector xt and the hidden state
ht−1 from the previous timestamp through the gates at each
timestamp t. It then produces a new hidden state ht, which
contains both short- and long-term states and is transmitted
to the next timestamp. Regarding the manner in which the
flow of information is regulated by gating units, the GRU is
comparable to a long short-term memory (LSTM) unit and is
often thought of as a simpler version of LSTM. The amount
of gating units and the state vector are the main distinctions
between them. The GRU only has two gating signals (update
and reset), whereas LSTM has three (input, forget, and output).
Therefore, the GRU has fewer parameters and lower computa-
tional cost. Note that the GRU also combines both short-term
and long-term state vectors into a single vector; see [24], [25].

In Figure 2, the gated GRU architecture is shown. The input
and output vectors are xt and yt, the reset and update gates
are rt and zt, and the activation and candidate activation are
ht and h̃t, respectively. The following are the definitions of
the two gates:

zt = σ(Wzxt + Uzht−1 + bz), (1)
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Fig. 2. Architecture of GRU cell.

rt = σ(Wrxt + Urht−1 + br). (2)

The update gate, zt, controls which bits of the long-term
state should be inserted and which parts should be removed.
The reset gate, rt, determines which part of the prior state is
displayed to the main layer or candidate activation, (h̃t). Then,
the GRU model can be formulated as follows:

h̃t = tanh (Whxt + Uh(rt · ht−1) + bh), (3)

ht = (1− zt) · ht−1 + zt · h̃t, (4)

where the candidate activation, h̃t, analyzes the input vector xt

and the previous short-term ht−1, and only the most relevant
parts are stored in the vector ht. On the other hand, the
activation, ht, represents the output state of the model and, as
stated before, it contains the short-term and long-term state.
From the above equations,

• Wz,Wr,Wh are the weight matrices for each of the three
layers in relation to the input vector x.

• Uz, Ur, Uh are the weight matrices for each of the three
layers in relation to the prior short-term state, ht−1.

• bz, br, bh are the bias terms for each of the three layers.
The GRU network architecture utilizes the four variables

displayed in Table IV. The mean main bearing temperature is
the output of the GRU model at time t, and the inputs are
the mean generator bearing temperature, the mean gearbox oil
temperature, and the mean primary wind speed. Thus, there are
three inputs to the network and one output, i.e., the network
is considered as a many-to-one structure. The inputs are given
as a sequence of 144 consecutive time steps, that is, data that
comprise 24 hours (recall samples are given each 10 minutes).

The GRU architecture and selected hyperparameters are
comprehensively explained in the next section.

E. GRU proposed architecture

The GRU architecture requires a set of different hyperpa-
rameters for its optimal performance according to the problem
to be solved. This section describes the selected hyperparam-
eters in detail.

First, the number of hidden layers, that is, the layers
between the input and output of the network, which contain
the GRU cells, is stated. In this work, it is defined as one
single hidden layer, as testing with two layers did not improve

TABLE V
SETUP OF GRU HYPERPARAMETERS.

Hyperparameter Value
Number of hidden layers 1
Number of neurons in the hidden state 128
Batch size 128
Epoch size 50
Initial learning rate 0.001
Loss function MSE

performance in relation to early fault detection and thus did
not justify the additional computational cost.

Second, the hidden size determines the number of features
in the hidden state. In other words, it defines the number of
neurons or GRU cells in the hidden layer. This hyperparameter
determines the learning power of the model. In this paper, 128
neurons are selected in the hidden state due to the amount of
samples that the model has to process.

Third, the batch size is defined in 128 samples, where each
sample contains 144-time steps. An initial learning rate of
0.001 is defined, and 50 epochs is used to train the network.

Finally, a loss function must be defined. In this work, the
mean squared error (MSE) is employed, as large errors are
important (may represent a fault) with respect to small errors
(maybe due to model error). To sum up, Table V details the
hyperparameter values for the proposed GRU architecture.

In a nutshell, the diagram shown in Figure 3 summarizes
the stated approach from the initial data preprocess, through
data imputation, data normalization, and, finally, the training
stage of the GRU model.

F. Fault Prognosis Indicator (FPI)

The FPIs are typically defined using a residual and estab-
lishing a decision threshold. When the residual of a sample
exceeds the threshold, an alert is activated. In this work, the
natural residual to be employed would be the square of the
difference between the real SCADA main bearing temperature,
T , and that predicted by the GRU network, T̂ , i.e., (T − T̂ )2.
However, when using this residual straightforward to define
a threshold, an overwhelming number of false alarms (false
positives) would be triggered, leading to alarm fatigue in wind
turbine operators and rendering the method useless.

To prevent this issue, the long persistence in time of the
residual over the threshold has to be monitored, to discriminate
false alarms from real fault detection alarms. Thus, in this
section, to accomplish this aim, an FPI is stated, which filters
the initial obtained residual with a moving average (MA) to
smooth the original spiky residual.

Remember that a MA of k observations smooths a time
series by computing the average of the k most recent obser-
vations; as a result, each new entering observation drives the
oldest in the group out of the computation [26]. According
to [27], the MA may generate cyclic and trend-like displays
even when the source data are separate random occurrences
with a fixed mean. As a result, this property limits its use as
a control mechanism, and the exponentially weighted moving
average (EWMA) emerges. This has the property of allocating
less weight to data as it ages. A point on an EWMA chart
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Fig. 3. Flowchart for the first phase of the proposed methodology until the training of the GRU model.

can be assigned a long or short memory. The EWMA is
the best depicted one-time position ahead of the most recent
observation; consequently, this statistic may be used to forecast
the future observation. In this work, the EWMA is selected to
be applied to the prediction errors as follows,

EWMA = T̂t+1 = T̂t + λet = T̂t + λ(Tt − T̂t), (5)

where T̂t+1 is the predicted value at time t+1. Similarly, T̂t is
the predicted value at time t, Tt is the measured real SCADA
value at time t, and et = Tt− T̂t is the prediction error at time
t. Finally, λ is a parameter (0 < λ < 1) that determines the
memory depth of the EWMA. This parameter is empirically
selected using its relation with the span (s ≥ 1) [28]. Equation
6 shows this relation:

λ =
2

s+ 1
. (6)

Finally, after averaging the initial residuals with the EWMA,
a threshold is defined using the training and validation data.
In this study, the threshold is the limit where a residual would
be considered within normal behavior, so the mean µh and
standard deviation σh (this must not be confused with the
sigmoid function) of the EWMA residuals of training and
validation data must be taken into account. It is important
to emphasize that, since the aim is to model the WT’s normal
behavior, the µh and σh are obtained only from healthy
data (from training and validation). Finally, the threshold is
designated:

threshold = µh + κσh, (7)

where κ is a constant which establishes the threshold value. In
this work, two values of κ are used, as one defines a warning
threshold and the other a fault alarm threshold. To sum up,
Figure 4 shows the second phase of the proposed methodology,
which details the computation of the warning and alarm
thresholds after the EWMA filtering of the prediction error.

In the next section, an analysis is conducted on how the
selection of the span number, s, and the κ values to deter-
mine the thresholds (warning and alarm) affects the proposed
methodology.
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Fig. 4. Flowchart for the second phase of the proposed methodology,
considering the computation of the threshold.

VI. RESULTS AND DISCUSSION

This section provides and examines the outcomes of the
suggested fault prediction approach for a real-world wind park
in operation.

Figure 5 shows the GRU estimations for two different WTs
over the train and test data sets. Remember that the test data
set contains the data of the year 2018. Figures 5 (a) and (b)
display the estimated value T̂ and the SCADA target of WT1,
a healthy WT. The estimation is close to the real SCADA value
in the two figures, and very few samples have disparate values.
The performance of the GRU for this WT is shown in Figures
5 (c) and (d), where the absolute error between SCADA and
prediction is graphed for the training and test sets. In contrast,
Figures 5 (e) and (f) present the GRU estimated value and
SCADA value for WT2, a WT that suffered a main bearing
fault on June 11, 2018. The prediction over the training set
is close to the target, contrary to the prediction over the test
set. Particularly, in the test set, the prediction does not fit well
for months before the fault occurs, and after it (when the fault
is corrected), this error decreases. Figures 5 (g) and (h) show
the residual on the training and test data sets, confirming the
good performance over the training set, while in the test set,
the residual increases a month before the fault and decreases
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(g) (h)

Fig. 5. (a) GRU estimated T̂ , and SCADA real T , for WT1 over the train set. (b) GRU estimated T̂ , and SCADA real T , for WT1 over the test set. (c)
Error absolute value, |T − T̂ |, for WT1 over the train set. (d) Error absolute value, |T − T̂ |, for WT1 over the test set. (e) GRU estimated T̂ , and SCADA
target value T , for WT2 over the train set. (f) GRU estimated T̂ , and SCADA target T , for WT2 over the test set. (g) Error absolute value, |T − T̂ |, for
WT2 over the train set. (h) Error absolute value, |T − T̂ |, for WT2 over the test set.

after it. As comprehensively explained in Section V-F, the
EWMA is applied over the prediction errors to measure the
behavior and trend of the data as a function of persistence
over time and, thus, to diminish the number of false alerts.
The historical data in this study corresponds to samples taken
every 10 minutes during a year, and even though temperature is
a slow-changing-rate variable by nature, the prediction error
must be filtered with an EWMA to obtain data with better

defined patterns and behaviors. As shown in Equation 5, the
depth of memory must be selected and, as stated in Equation
6, that parameter is established as a function of the span, s.
For this study, two spans are considered and analyzed: s =144
(one day), and s =1008 (one week). These values are chosen
to measure the persistence of the data trend (successive peaks,
monotony) through time. For instance, if the EWMA is weekly
based, perhaps the data trend is more visible and smoother



IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. X, NO. X, FEBRUARY 2022 9

Fig. 6. EWMA filtered prediction errors for a WT, considering the span
values s = 144, and s = 1008.

than if it is daily based. It helps to avoid the noise caused by
isolated hourly peaks, which is very common in real SCADA
data. Actually, this selection is influenced by the findings of
McKinnon et al. [29]. Their research, on the influence of
time history on WT failures using SCADA data, tests three
distinct moving windows (MWs): daily, weekly, and monthly.
In comparison to the others, the weekly MW has the best
performance in identifying failures. On the one hand, a daily
MW contains too much noise, leading to a large percentage of
false alarms. On the other hand, a monthly MW removes much
information and does not allow any specification of when an
anomaly occurred.

Figure 6 shows the EWMA computation considering the
established spans. After the EWMA computation, the defini-
tion of the thresholds is required, as stated in Section V. The
aim is to propose two thresholds: one used as a warning and
another to trigger a fault alarm. Table VI shows the detailed
false-positive alarms over the training and validation dataset
for each WT, considering the two proposed spans’ values and
two values for κ: 12 and 15. Thus, note that the selected values
for κ are just based on the observation of the training and
validation dataset where the WTs are healthy. The value of κ is
set to minimize the number of false alarms over these datasets.
Therefore, there is no information from the test set (or from
the knowledge of the occurred fault on the test set) used to
decide the κ values. The results demonstrate that using 1008
spans no false-positive alarms are reached over the training
and validation datasets.

Finally, Figure 7 shows the results on the test dataset for the
entire wind park, obtained with the proposed FPI. A warning
is triggered when the prediction error crosses µh + 12σh

(green dotted line), while a fault alarm is triggered when the
error exceeds µh + 15σh (red dotted line). Recall that the
aforementioned mean and standard deviation are computed
over the filtered prediction errors from train and validation.
For WT2, both the warning and fault alarm were triggered

TABLE VI
FALSE-POSITIVE ALARMS (X-MARK) OVER THE TRAINING AND

VALIDATION DATASETS.

WT ID 144 spans 1008 spans
µh + 12σh µh + 15σh µh + 12σh µh + 15σh

WT1
WT2
WT3 X
WT4 X
WT5 X X
WT6
WT7 X
WT8 X
WT9 X X

in the first week of June 2018. Considering that for WT2,
the main bearing fault occurred on June 11, 2018, the early
detection through this methodology is accomplished roughly
two months in advance. Additionally, note that there is a
clear trend of residual’s increasing and then a decreasing.
When bearing failure initiates (or develops) there is usually
a brief heat release rendered as temperature increasing. As it
is stated in [21], almost all bearing failure modes (excessive
current, fatigue fracture, thermal cracking, etc.) are driven by
unforeseen heat release. After that, the temperature goes back
to normal i.e. crack is not growing. Thus, the methodology’s
approach is to predict this typical heat release in advance,
before the bearing is entirely damaged. The case for WT3
and WT5 is interesting, as both a warning and a fault alarm
were triggered in a week, but this WTs are healthy during
2018. Thus, they represent a false alarm. However, note that
the alarm has a very short period length (less than a week),
in both cases, in contrast to WT2 where the alarm is activated
for two months. Therefore, in short, the model successfully
detects the expected fault onset on the WT that contains the
main bearing fault. As it has been before-explained, the onset
defines the start point of the component’s degradation through
time. Thus, it is crucial that despite the residuals go back under
the threshold, the triggered alarm must be kept active. It allows
maintenance operators to plan ahead on-site revisions and give
all needed attention to these component and perform required
actions to extend its lifespan and not compromise WTs uptime.

VII. CONCLUSIONS

In this work, an early fault detection approach for main
bearing failures in WTs is devised and verified using a GRU
neural network and just SCADA data. The model is built
entirely from healthy data and is robust to all operational
and environmental variations. The approach has been tested
at a wind park with nine WTs. The findings show that the
system produces minimal false alarms and that the defect of
concern is predicted months in advance. Unfortunately, there
is just one major bearing failure in the investigated wind park
data, which is insufficient for statistical analysis. To investigate
more extensively and draw conclusions such as a predicted
time and confidence level, it is necessary to apply the model to
other cases with this issue. Finally, it is convenient to study and
test other sequential learning models that have been developed
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Fig. 7. EWMA on residual errors for the WT’s test dataset (using 1008 spans), where the green line represents a fault warning and the red line indicates a
definite fault.

in recent years. Specifically, time convolution neural networks
and transformer networks, both of which have shown to be
very powerful for some specific problems.
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