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Per als que van a pel tot.



Only a crisis - actual or perceived - produces real change. When that crisis occurs, the actions

that are taken depend on the ideas that are lying around. That, I believe, is our basic

function: to develop alternatives to existing policies, to keep them alive and available until

the politically impossible becomes the politically inevitable.

Milton Friedman.



Agraïments

Esta tesi té un paregut raonable amb la tesi que haguera volgut escriure. No perquè siga cap
obra mestra; part del contingut, de fet, està encara a mitges. La raó és menys espectacular:
no és -no en sóc conscient, en tot cas- fruit de cap pacte pragmàtic entre desig i realitat. Hi
ha faena per fer, però no rebaixes d’objectius. Crec que això haguera provocat un somriure
en aquell Pau de fa 6 anys que va abandonar una còmoda vida a Història Econòmica pel
que llavors considerava l’obscur món de l’Economia ortodoxa.

L’empresa no ha sigut estrictament individual. Per això, voldria aprofitar estes línies
per a agrair en veu alta a totes les personetes que d’una forma o altra, conscients o no, han
posat el seu gra d’arena.

L’Albert és un dels responsables més directes. Recorde molt unes paraules de la
Yolanda Blasco quan estudiava el màster d’Història Econòmica a la UB: necessites un
director a qui intel·lectualment respectes molt i hi confies plenament. Això ho he trobat.
Ell m’ha transmès el gust per la rigorositat, i la necessitat d’entendre exactament el que es
diu i escriure exactament el que es pensa. A les reunions he trobat avaluacions sinceres; i
fora de les reunions, una presència imaginada que m’ha fet empentar més sempre... Què
pensaria Albert d’açò? Seré capaç d’explicar-li-ho? Estarà al nivell?

La Marina ha sigut una troballa absolutament contingent però, com les bones con-
tingències, una que fa absolutament inimaginable i indesitjable una altra forma d’haver-
ho viscut. Hem fet que mole un muntó lo que per a altres és una etapa dura. Enmig
d’equacions, dades i algoritmes, no ha parat de recordar-me lo que està bé i lo que és “as-
querós”, empentant sempre una versió més atrevida. Això ens va molt bé per a investigar i,
en general, per a viure.

La tesi s’ha beneficiat de l’ambient d’investigació de la UAB i la BSE. Sempre he
trobat portes obertes i gent disposada a discutir, aprendre i ajudar. He d’agrair en particular
a Luis E. Rojas, per les seues sempre bones discussions que, sortosament, ens han portat a
col·laborar; i a Jordi Caballé, pels comentaris i l’ajuda en el Job Market. He trobat també
companys que treballen i cooperen molt. En particular, l’Adrian Ifrim, amb qui, des de
vision diferents del món, hem establert una productiva col·laboració i la Mridula Duggal,
per aquelles vesprades infinites cara a Python que tant ens han donat.

Una de les coses més divertides de la tesi va ser la visita al Bank of England. L’Eddie
Gerba és responsable de fer que això passara i per això, i tot el que ha vingut després, li estic
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molt agraït. Londres és sinònim de felicitat també pel Pascal Meichtry, amb les converses
de QE i la sambuca, i la Luci Agnoleto, amb qui vam descobrir tants racons.

L’Alfonso Herranz és molt responsable d’este viatge; gràcies per obrir-me els ulls
quan encara no era massa tard. El Ramon Ruiz va ser generós i clar quan res ho era massa.
Amb el Pablo Cervera vaig començar a agarrar gust a això d’investigar, amb un treballet
sobre una crítica de la crítica de Böhm-Bawerk a la teoria del valor de Marx. L’Emilio
Benimeli és, en sentit literal, el culpable últim de canalitzar les meues obsessions cap a
l’Economia; jutgeu-lo a ell.

Els meus pares són sempre responsables de tot el que em passe. M’han donat molta
llibertat, confiança i una sòlida àncora que fa impossible perdre’s, no importa quant lluny
estiga. Ma uela també ha ajudat, regant cada nit rega les meues arrels. Una tesi implica
sacrificar moltes coses, en particular bona part de la vida social. A pesar d’això, molts amics
a Vallà, Barcelona, València i Castelló han ajudat a oblidar els sacrificis sempre que ha fet
falta. Ho celebrarem com toca amb cada un d’ells.

Hi ha qui escriu una tesi per mera curiositat intel·lectual o per accedir a bons llocs de
faena o per prestigi social. No diria que res d’això descriu bé la meua motivació. Quan
tenia 14 anys feia pamflets, pancartes i cançons; ara faig sobretot articles científics, que
m’han semblat -potser pres de la dissonància cognitiva que sempre em recorda la Miren
Etxezarreta- una forma molt més fiable de fer lo mateix. Guanyarem.

Castelló de la Plana, Maig 2023

Pau
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Introduction

This thesis is a compendium of 3 papers about capital markets and economic policies.
Capital markets, particularly the stock market, exhibit large fluctuations, creating and
destroying large amounts of wealth with potentially far-reaching consequences for the
whole society, including the many who do not participate in them. On the other hand,
capital markets are also a source of substantial returns that compound the wealth of the
wealthy, widening inequality. Stock market cycles, risk premiums, and economic policies
to prevent or exploit them are the major themes of this thesis.

Chapter 1 studies the relationship between the Capital Gains Tax (CGT) and stock
price cycles. I propose a theory that challenges the mainstream view, hold for instance
by Stiglitz, that a higher CGT boosts price fluctuations through the supply-side lock-in
effect. Instead, I show that the demand-side capitalization effect is stabilizing because it
reduces the elasticity of prices to subjective beliefs, reducing the likelihood of self-fulfilling
booms and busts. Capitalization dominates lock-in at empirically realistic levels for the tax
elasticity of realization. This theory is derived from a model of learning about prices with
portfolio adjustment costs and taxes on realized capital gains that displays the two effects in
a tractable way. The theory is applied to the United States, suggesting that the recurrence
of asset price cycles in the middle of the Great Moderation, a troubling observation for
many macro-finance models, can be partly explained by the observed decline in CGT.
Indeed, the structural estimation of the model reveals that CGT cuts account for 25%
of the observed rise in stock market volatility. The model also replicates the rise in stock
market valuations and a sizable equity premium. Empirical estimates using survey beliefs
support the model’s prediction of an increase in the sensitivity of prices to subjective
expectations due to lower taxes. Finally, I show that optimal policy prescribes a CGT that
leans against market expectations, preventing belief-driven business cycles. The optimal
policy can be implemented with a CGT = 100% and a subsidy on capital profits.

Chapter 2, joint work with Adrian Ifrim, explores heterogeneous expectations and
their relation to stock market cycles. We present a model of expectations that micro-founds
the heterogeneous extrapolation and the persistent and procyclical disagreement present
in survey data. Extrapolation arises from imperfect knowledge about price formation
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that pushes agents to learn, in a Bayesian sense, from price news. However, not all agents
learn the same way; they have distinct levels of confidence regarding the signal-to-noise
content of price news, such that the more confident extrapolate more. Following survey
evidence, we associate confidence with optimism. As a result, higher prices lead to higher
disagreement, reflecting the data’s pro-cyclicality. Besides, persistent disagreement is re-
lated to idiosyncratic views about long-run asset growth. The subjective belief system is
embedded in an otherwise standard asset pricing framework, which can then quantita-
tively account for the dynamics of prices and trading. In the model, learning from prices
leads to disagreement and trading, which reshuffles the distribution of wealth between
lower- and higher-propensity-to-invest agents, affecting aggregate demand and prices.
This feedback loop complements the expectations-price spiral typical of models with
extrapolation, placing heterogeneity and trading as key drivers of price cycles.

Chapter 3, joint work with Eddie Gerba and Luis E. Rojas, is a theoretical examina-
tion of the role of fiscal distortions in shaping the effects of Quantitative Easing (QE).
The presence of deadweight losses from taxation makes a fiscally supported QE have
effects on prices and allocation since QE gains/losses change the level and volatility of
tax distortions. One of the consequences is that the mean-variance profile of future con-
sumption changes. Then, forward-looking agents incorporate this information into their
current expectations and adjust current goods and assets demands, affecting prices and
risk premiums. In other words, fiscal distortions break Wallace’s neutrality. Under some
conditions, QE can stimulate aggregate demand, but it simultaneously increases the risk
premium. This differs from the standard view that QE stimulates demand precisely by
lowering the risk premium due to the relaxation of financial frictions. A Central Bank
must then manage QE to find the right balance between the efficiency gains of more QE
and the additional risk-taking. Altogether, QE emerges as an alternative way of collecting
resources for the State, more efficient but riskier than taxation, which might be read as
an efficiency-risk trade-off for public finances. The fiscal channel provides a rationale for
targeted QE programs such as the Green Corporate Bond Program or the Transmission
Protection Instrument.



Chapter 1

Capital Gains Taxation, Learning and
Bubbles

PAU BELDA

Abstract

Why have there been more asset price boom-bust cycles since the 1980s despite the drop
in macroeconomic risk? This paper argues that the fall of the Capital Gains Tax (CGT) is
one of the reasons. In a model of learning about prices, I show that a lower CGT make
prices more responsive to changes in investors’ beliefs, thereby elevating the likelihood of
self-fulfilling booms and busts. This novel mechanism dominates the more traditional
lock-in effect -according to which a lower CGT reduce price fluctuations- whenever the tax
elasticity of realization is not too negative. A structural estimation of the model focusing
on the US stock market suggests that CGT cuts account for 25% of the increase in Price-
Dividend fluctuations. The model also replicates the rise in stock market valuations and
a sizable equity premium. Empirical estimates using survey beliefs support the model’s
prediction of an increase in the sensitivity of prices to subjective expectations due to lower
taxes. Finally, I show that optimal policy prescribes a CGT that leans against market
expectations, preventing belief-driven business cycles.

First version: July 2020. This version: May 2023. This chapter is a preliminary version of the paper with the
same title. The most updated version of the paper can be found at https://pau-belda.eu/research/.
I thank Albert Marcet for his guidance. Besides, I have benefited from comments from Klaus Adam, Ricardo
Reis, Nicola Gennaioli, Dirk Krueger, Jordi Caballé, Luis E. Rojas, Wei Cui, Hugo Rodríguez, Alexan-
der Ludwig, Abhay Abhyankar, Ramon Ruiz and participants in seminars at Universitat Autònoma de
Barcelona, Barcelona School of Economics, Universitat de Barcelona, University of Bath, Bocconi University,
Universidad Carlos III, CERGE-EI, Federal Reserve Board, Universitat de les Illes Balears, University of
Mannheim, University of Oxford, 2022 Winter Meeting of the Econometric Society, SAEe2020, SAEe2022,
EconMod2021 conference, ENTER Jamboree.

https://pau-belda.eu/research


4 THREE ESSAYS IN MACROFINANCE

1.1. Introduction

There was no Great Moderation in the stock or housing markets. While many macroeco-
nomic variables exhibited lower fluctuations, the main asset markets followed the opposite
path. Larger booms and busts occurred, such as the Dotcom episode in the late 1990s, the
housing bubble in the early 2000s, or the post-Great Recession joint stock and housing
price boom.1

Is the increase in price fluctuations in the context of lower macroeconomic risk
consistent with the theory? Many models would contend otherwise. Following lower
consumption growth volatility, models based on macroeconomic fundamentals would
predict more stable prices following a less volatile stochastic discount factor (e.g., Campbell
and Cochrane, 1999). Besides, theories that explicitly detach prices from fundamentals, as
some models of learning, would predict lower belief fluctuations and then more stable
prices driven by smaller forecast errors (e.g., Adam, Marcet, and Nicolini, 2016). Even
models that link lower macroeconomic risk with higher demand for risky assets can explain
part of the stock prices’ run-up but not much of their larger swings (e.g., Lettau et al.,
2008). Thus, the negative covariance between macroeconomic and asset price fluctuations
appears as a troubling observation.2

The hypothesis of this study is that the reduction of the Capital Gains Tax (CGT),
resulting from a combination of successive tax reforms and a movement of assets to tax-
free accounts, explains part of the increase in stock price fluctuations observed during the
Great Moderation. However, why would a lower CGT boost price cycles? Two opposite
views coexist. The mainstream claims that a lower CGT would ease price fluctuations by
reducing the supply-side lock-in effect (e.g., Somers, 1948, Stiglitz, 1983); during a boom, a
lower CGT encourages the selling of assets, increasing supply and easing price pressures.
An alternative perspective is that a reduction in CGT may exacerbate price fluctuations
through the demand-side capitalization effect (Haugen and Heins, 1969, Haugen and
Wichern, 1973); in a boom, lower taxes would fuel expected payoffs, leading to an upsurge
in stock demand and prices.

I formalize these points using an asset pricing model with learning about prices and
taxes on realized capital gains that displays endogenous booms and busts.3 Its instability
engine is a feedback loop between expectations and prices that appears when agents
learn about stock prices. Following Adam and Marcet, 2011, this expectations-price spiral

1Understanding these events is critical since they appear to be tied to macroeconomic instability, resource
misallocation, or wealth inequality (e.g., Hall, 2017, Gopinath et al., 2017, Kuhn et al., 2020).

2Using full-information Bayesian techniques, Chen et al., 2019 shows that long-run risks account for less than
25% of the variance of the Price-Dividend ratio and that habit’s contribution is negligible. The non-explained
residual has been particularly large since the 1990s, showing the difficulty of these models to account for the
larger variance of the PD despite more stable aggregate consumption growth.

3Realized capital gains allude to the fact that investors only pay taxes when they sell the asset, as it is the case
in the United States.
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emerges from imperfect knowledge about other agents’ expectations. This information
friction prevents rational agents from deducing the equilibrium pricing function, forcing
them to forecast prices using a statistical model of prices in an otherwise standard Lucas,
1978 setup.4

To model a CGT on realization, I resort to two alternative devices. First, I use a
model with exogenous realization, where investors face the risk of a catastrophic liquidity
shock that forces them to sell all their assets and pay taxes. This first version focuses on the
demand-side capitalization effect exclusively. In this case, a CGT is stabilizing because it
dampens the expectations-price spiral. Consider a good news shock. Other things equal,
investors would become more optimistic, and demand and prices would rise. However,
the translation of higher optimism on a higher stock demand depends on the tax level; the
higher the tax, the lower the net expected returns and the lower the increase in demand
and prices. Thus, taxes reduce the response of demand and prices to a change in beliefs.5
By Bayesian updating, a lower price increase would lead to a weaker upwards revision
of beliefs and a smaller boom. In other words, higher taxes dampen the propagation of
shocks through beliefs such that momentum is shorter and mean reversion is faster. As a
result, a CGT reduces the beliefs elasticity of prices, anchoring expectations around their
fundamental value.

Then, the lock-in effect is included by allowing investors to decide the timing of
capital gains realization. In particular, each investor manages a stock of unrealized capital
gains Gt facing portfolio management costs in line with Gavin, Kydland, et al., 2007
and Gavin, Keen, et al., 2015. When the realization of capital gains is deferred, the cost
function penalizes investors with extra unrealized capital gains, which increase the future
tax liability of households. Then, investors face an additional trade-off: realize capital
gains and pay taxes today or defer the realization to the future and have an additional tax
liability in the future. Through this channel, lower taxes boost the realization of capital
gains, counteracting the capitalization effect. Under some conditions, it is shown that the
lock-in effect dominates only when the tax elasticity of realization is lower than minus 1,
below the empirical estimates.6

This theory provides a qualitative mechanism potentially linking lower taxes to
larger stock price volatility. However, how much of it can it really explain? To answer

4This expectations-prices spiral follows a long tradition in finance (e.g., Keynes, 1936, Minsky, 1976), replicates
the extrapolation and underreaction that characterize survey expectations (e.g., Greenwood and Shleifer,
2014, Coibion and Gorodnichenko, 2015) and can account for price excess volatility (e.g., Adam, Marcet,
and Beutel, 2017).

5This mechanism is consistent with the empirical evidence in Giglio et al., 2021, which points out that the
elasticity of stock holdings to beliefs decreases with taxes. Moreover, it also provides a rationale for the
finding in Dai, Shackelford, et al., 2013, that document an increase in stock returns volatility following CGT
cuts.

6In a recent study, Agersnap and Zidar, 2021 estimate an elasticity between -0.3 and -0.5. Besides, the US
Congress uses an elasticity of -0.7.
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this question, the model is estimated to replicate a list of facts about the US stock market
for the 1946-2018 period. The main statistic is the variance of the Price-Dividend (PD)
ratio. As customary in the literature, I use the Campbell and Shiller, 1988’s equation,
extended with capital taxes, to understand the most proximate drivers of this variance. It
turns out the direct effect of CGT changes is rather small, with the main driver being a
divorce of stock returns from dividend growth, signalling the surge in capital gains. This
decomposition suggests that, if any, the role of CGT on volatility must be indirect, in
line with the mechanisms outlined above.7 On top of the increase in the volatility along
with the fall in aggregate consumption and dividends growth standard deviation, the list
includes a set of standard facts such as the equity premium, the procyclicality of survey
expectations and the mean level of the PD ratio. Finally, I also include the increase in the
beliefs elasticity of prices, first documented by Adam, Marcet, and Beutel, 2017, which is
in line with the model’s mechanism.

Computationally, the model is solved using a novel application of the Parameterized
Expectations Algorithm with a theory-based approximating function that allows for
closed-form solutions. Given the observed path of capital tax cuts and the empirical
dividend process, I estimate the remaining structural parameters using the Simulated
Method of Moments. Then, I formally test the hypothesis that the model statistics differ
from their empirical counterpart.

The central result is that tax cuts account for between 25% and 34% of the increase
in the PD variance. These numbers arise from a counterfactual analysis that compares the
increase in the variance produced by the model with the one that would have been observed
if post-1980s tax cuts had been avoided. If only the capitalization effect is considered, the
numbers are much higher, between 38% and 62%. Importantly, the model produces this
increase in the variance while changing the elements of the variance decomposition in the
right direction and generating at least one-half of the increase in the beliefs elasticity of
prices.

In addition, the model matches well the increase in the mean PD ratio, its persistence
and its positive correlation with beliefs. Finally, the model delivers a remarkable equity
premium along with a low and stable risk-free rate, realistic consumption and dividend
growth processes, a non-negative discount factor, and low risk aversion. The reason is
twofold. First, the learning model generates high volatility from beliefs, increasing average
returns by Jensen’s inequality.8 Additionally, the inclusion of taxes imparts a trend in the

7There is a more traditional way of thinking of the role of taxes on asset prices volatility: tax changes induce
price changes. Note the theory proposed above emphasizes the role of the tax level; if capitalization dominates,
an environment with constant but low taxes would be more volatile than a high tax regime.

8The fact that high beliefs volatility helps to get a high stock return was already exploited by Adam, Marcet,
and Nicolini, 2016. This volatility coming from subjective beliefs avoids using a too volatile income process
or a too high risk aversion.
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PD ratio that helps in getting high returns without exaggerating its volatility. Crucially,
these two factors do not affect the risk-free rate.

The last part of the paper digs into the normative side of capital gains taxation. In
this family of models, asset markets are informationally inefficient (Adam, Marcet, and
Beutel, 2017). The extra volatility arising from the learning process can be interpreted
as a pecuniary externality.9 For this pecuniary externality to have significant welfare
consequences, excess volatility in asset prices is connected to aggregate consumption
fluctuations. I use a tractable two-sector growth model with investment adjustment
costs and learning about capital prices. The model links the capital market price to
investment decisions, in line with the Q-theory (Tobin, 1969). With subjective beliefs, two
feedback loops operate: the first, the one between the stock and price of capital, which is
self-correcting; the second, the price-expectations loop, which is self-reinforcing. Their
interaction gives rise to large and persistent cycles of over- and under-accumulation of
capital.

In such a world, a Social Planner is asked to deliver the best possible competitive
equilibrium by choosing a tax on unrealized capital gains and lump-sum transfers. She
is endowed with all the relevant information, including investors’ beliefs. The optimal
policy prescribes using the CGT to counteract too optimistic/pessimistic beliefs about
capital gains. In this way, the planner closes the gap between the market price and the
shadow price of capital, restoring the First Best allocations.

The optimal CGT is a nonlinear function of the deviations of subjective expecta-
tions from its Rational Expectations counterpart (call it β∗). A shortcoming is that the
optimal CGT is unbounded, inherits the dynamic properties of subjective beliefs and it is
informationally demanding. Since tax volatility might not be desirable and mean subjec-
tive beliefs can be difficult to measure, an alternative implementation is suggested.10 On
the one hand, the CGT is set equal to 100% to eliminate the influence of subjective price
beliefs (i.e., the source of the externality) on market prices. Since such a high tax depresses
the market price a little, a subsidy for capital rents is introduced to restore efficient prices.
The subsidy only depends on β∗ and then is fairly stable and only requires a notion of
fundamental value.

Related literature. The paper speaks to different literature on capital taxation,
asset pricing, learning, business cycles and macroprudential policy. In what follows, I
highlight the main contributions to each field.

This paper is the first to propose a theory of how a CGT regulates excess price volatil-
ity in a general equilibrium model. According to the dominant view, a CGT increases

9Since excess volatility emerges from the inability of agents to internalize the equilibrium price formation
due to imperfect information about other market participants.

10This implementation uses a decomposition between fundamental and non-fundamental price volatility in
the spirit of the trading decomposition used by Dávila, 2020.
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volatility due to the supply-side lock-in effect (e.g., Somers, 1948, Somers, 1960, Stiglitz,
1983). An alternative viewpoint contending that a CGT stabilizes prices through the
demand-side capitalization effect is on Haugen and Heins, 1969 and Haugen and Wich-
ern, 1973.11 My work builds upon these last two papers; while they use exogenous beliefs, I
highlight the critical role of endogenous beliefs.12

This novel theory is embedded in a quantitative model to show that tax cuts ex-
plain a significant portion of the rise in excess price volatility in the US. This evidence
complements the model-based works by McGrattan and Prescott, 2005 and Brun and
González, 2017 and the econometric approach of Sialm, 2009, that pointed out that lower
taxes can account for the rise is asset valuation levels. Besides, Dai, Shackelford, et al.,
2013 document a new statistical negative relationship between taxes and returns volatility
exploiting the cross-sectional variations in accrued capital gains and dividend distributions
of stocks around the CGT cuts of 1978 and 1997.13 My paper suggests a theory that can
rationalize this evidence and present time-series evidence.

The paper focuses on the excess volatility puzzle, highlighting its time-varying nature.
Theoretically, the model deals with the puzzle by bringing up an additional source of
variation (beliefs) in line with the Adaptive Learning literature (e.g., Timmermann, 1993,
Bullard and Duffy, 2001, Cogley and Sargent, 2008). In particular, I follow the Internal
Rationality framework, a microfoundation of learning proposed by Adam and Marcet,
2011. Adam, Marcet, and Nicolini, 2016 and Adam, Marcet, and Beutel, 2017 presented
quantitative versions, accounting for many asset pricing facts. The inclusion of taxes in
this kind of models solves some of their shortcoming and allows to address new facts as the
rise in excess volatility. Empirically, I present a version of the Campbell and Shiller, 1988’s
PD variance decomposition with taxes. Additionally, I argue that tax cuts help explain
the equity premium puzzle. Thus, the paper provides quantitative evidence backing
McGrattan and Prescott, 2003.

The model used for optimal policy analysis relates to papers dealing with joint stock
market and business cycles (e.g., Boldrin et al., 2001). In particular, recently some papers
have considered the impact of learning about capital prices on business cycle through
labour demand (Adam and Merkel, 2019), collateral constraints (Winkler, 2020) and
wealth effects (Ifrim, 2021). This paper considers another possibility: learning about
capital prices directly affect physical investment when there are investment adjustment
costs.
11See Dai, Maydew, et al., 2008 for an explanation of the lock-in and capitalization effect and a literature

review about their empirical relevance.
12In fact, applying Rational Expectations to Haugen and Heins, 1969 and Haugen and Wichern, 1973’s model

delivers a constant PD ratio so that taxes play no role in excess volatility whatsoever.
13Building upon the idea that CGT are a risk-sharing device with the government that affect the level of stock

returns (e.g., Lerner, 1943, Stiglitz, 1975, Sikes and Verrecchia, 2012), Dai, Shackelford, et al., 2013 suggests
CGT cuts reduce the risk-sharing, rising volatility. This point is comparable to that of Gemmill, 1956’s. The
theory I propose can accommodate this income effect, but rely primarily on a substitution effect.
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While a CGT has been studied as a tool to raise revenue (e.g., Agersnap and Zidar,
2021, Sarin et al., 2022), this paper looks at it from a macroprudential standpoint. The
recent literature on macroprudential policy has dealt chiefly with collateral constraints
and taxes on borrowing (e.g., Lorenzoni, 2008, Jeanne and Korinek, 2010, Dávila and
Korinek, 2018, Jeanne and Korinek, 2019) and nominal rigidities (Farhi and Werning,
2016). This paper shares the emphasis on pecuniary externalities with most of the literature
but departs from its origin (i.e., information rather than financial frictions).14 Besides,
while this recent literature has focused on constrained efficiency, Benigno et al., 2019
showed that a superior allocation is attainable with the same instruments. Following
them, I study the optimal use of a CGT to restore unconstrained efficiency.

The findings of this study have significant policy implications. Firstly, it highlights
the potential of a CGT to serve as a viable alternative to the widely debated Financial
Transactions Tax (or “Tobin tax”).15 Secondly, the research demonstrates that, instead
of relying solely on monetary policy to regulate asset prices, the implementation of an
appropriate CGT can facilitate the disentanglement of interest rate policy from financial
stability considerations.16

The rest of the paper proceeds as follows. Section 2 explores how Capital Gains
Taxes can stabilize asset prices using a model with learning about prices. Section 3 presents
a quantitative application of the theory to the US stock market. Section 4 derives an
optimal CGT in a two-sector growth model. Section 5 concludes, pointing out some
avenues for future research.

1.2. Theory

This section explores theoretically the role of a CGT in determining the level and volatility
of stock prices. Section 1.2.1. sets up the basic model, with an exogenous realization of
capital gains, focusing on the capitalization effect. In Section 1.2.2., the effects of CGT
on both the asset price level and volatility are analyzed. Section 1.2.3. endogeneizes the
realization of capital gains, giving rise to the lock-in effect. It shows how this counteracting
effect influences the results in Section 1.2.2..
14Di Tella, 2019 and Kurlat, 2018 focus on the inefficiencies arising from financial frictions when the planner

is informationally constrained. Farhi and Werning, 2020 incorporates extrapolation into the optimal
macroprudential analysis, showing that it plays a rather secondary role. In contrast, the analysis in the paper
puts it at the forefront.

15See, for instance, Buss, Dumas, et al., 2016, Buss and Dumas, 2019 or Dávila, 2020 for theoretical analysis
and Umlauf, 1993 or Cappelletti et al., 2017 for empirical results that challenge the ability of the Tobin tax
to stabilize asset prices.

16Asset pricing targetting has been shown to be appropriate in Nisticò, 2012, Gambacorta and Signoretti,
2014 or Ifrim, 2021.
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1.2.1. The model

In this section, the model is set up. Its basic layer is the Lucas, 1978’s tree model, extended
with a general probability measure, as Adam and Marcet, 2011, and taxes on dividends
and realized capital gains.

Demographics. The economy is populated by a unit mass of infinitely living identical
investors.

Technology. This is an stochastic exchange economy. There is a single perishable
good. There exists a single risky asset, called stock S, in the form of a contract that each
period promises Dt units of the good in the form of dividends, following this process

Dt

Dt−1
= βD + εdt (1.1)

with a being the permanent component and εdt ∼N (0, s2
d
) an i.i.d. innovation and D−1

given. When the time starts, each investor is endowed with one unit of stock (Si−1 = 1).
Every period, investors face some risk of being hit by a very bad shock. zit ∼ Bernoulli(π)
is a random variable indicating that possibility with π being the probability of that catas-
trophic event occurring. If the event materializes (zit = 1), investor i sells all her stock
holdings.

Institutions. There are markets for goods and stocks. Short selling is not allowed,
and there is an upper bound on the amount of stock holdings 0 ≤ Sit ≤ S̄ . There is
a linear tax τD ∈ [0, 1) on dividends and a tax τK ∈ [0, 1) on realized capital gains.17,18

Capital gains and losses are treated symmetrically. The revenues from dividend taxes are
transferred in a lump-sum way; the revenues from capital gains taxes are transferred back
individually, according to each individual contribution. These two terms are gathered in
the variable T i

t , standing for idiosyncratic transfers.
Information. Investors take τD, τK and T i

t as given and know the stochastic process
followed by Dt and zit . Investors beliefs are not common knowledge. The underlying
probability space is given by (Ω, B, Pi) where Ω is the state space with ω = {Dt , zt , Pt}∞t=0
as a typical element, B denotes the σ -algebra of Borel subsets of Ω and Pi agent’s i
subjective probability measure over (Ω, B).19

Rational behavior. Each investor faces a consumption-savings problem: she chooses
sequences of consumption, stock holdings and stock purchases {C i

t , S
i
t , X

i
t }∞t=0 by solving

17Note realization is exogenous, driven by the liquidity shock. In section 2.3, I endogeneize π by including
portfolio adjustment costs. The introduction of this liquidity shock is equivalent to assume that investors
expect that a fixed proportion of the capital gains will be realized as in Sialm, 2009.

18In equilibrium, a fraction π of agents sells their assets and pay taxes (let Zt = 1
n

∑n
i=1 z

i
t ; by the LLN,

Zt
p
−→ π); hence, the effective rate on total capital gains is πτK .

19I follow here the Internal Rationality approach of Adam and Marcet, 2011.
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the following optimization program:

max
{C i

t ,S
i
t ,X

i
t }∞t=0

EP
i

0

∞∑︁
t=0

δtU (C i
t ) (1.2)

subject to the budget constraint

C i
t + PtX i

t ≤ (1 − τD)DtS
i
t−1 + zit

(
Sit−1Pt − τKGi

t

)
+ T i

t (1.3)

the stock holdings law of motion

Sit = (1 − zit)Sit−1 + X i
t (1.4)

the capital gains law of motion

Gi
t = Gi

t−1(1 − zit−1) + (Pt − Pt−1)Sit−1 (1.5)

and the stock holdings bounds specified above, given the initial individual stock holdings.
The utility function is a time-separable continuous, increasing in consumption

U ′(C i
t ) > 0 but concaveU ′′(C i

t ) ≤ 0 function. In this section, I assume risk-neutrality.20

δ ∈ (0, 1) is a discount factor. Lower and upper bounds onSit are assumed for convenience:
economically, the lower bound rules out short-selling strategies aimed at avoiding taxes;
mathematically, these bounds ensure that the feasibility set is compact.

Model Equilibrium. The investor’s program consists of maximizing a bounded
continuous function over a compact non-empty feasible set.21 By the Weierstrass extreme
value theorem, these are sufficient conditions for the existence of a maximum. More-
over, the convexity of the feasible set implies the first-order conditions are necessary and
sufficient to characterize the optimum by the Kuhn-Tucker (KT) theorem.

Investor i’s optimality conditions for an interior solution boil down to the following
one-period ahead Euler Equation

Pt = δEP
i

t

[
(1 − τD)Dt+1 + Pt+1 − zit+1τ

K (Pt+1 − Pt)
]

(1.6)

along with a transversality condition and the sequence of budget constraints and
market clearing conditions. Note that agents cannot proceed in a conventional way -iterate
forward, use the Law of Iterated Expectations (LIE) and apply a transversality condition-
to recover Pt as a discounted sum of dividends. LIE fails to be useful as the probability
measure of the marginal agent in future periods Pj is unknown for i, potentially different

20Risk aversion is introduced in Section 3.
21See Adam, Marcet, and Beutel, 2017 for a proof in a similar setup.
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from Pi. Hence, equilibrium prices must be characterized by equation (1.6). It can be
rewritten as

Pt = δ(1−τD)EPi

t

[Dt+1

Dt

]
Dt+δEP

i

t

[Pt+1

Pt

]
Pt−δ2τKEP

i

t

[Pt+1

Pt
zit+1

]
Pt+δτKEP

i

t

[
zit+1

]
Pt

(1.7)
Solving the previous expression for Pt and dividing both sides byDt , the PD ratio reads as

Pt
Dt

=

δ(1 − τD)EPi

t

[
Dt+1
Dt

]
1 − δEP

i

t

[
Pt+1
Pt

]
+ δτK

(
EP

i

t

[
Pt+1
Pt
zit+1

]
− EPi

t

[
zit+1

] ) (1.8)

Since agents are aware of the true stochastic processes forDt and zit , EP
i

t

[
Dt+1
Dt

]
= βD

and EPi

t

[
zit+1

]
= π. However, EPi

t

[
Pt+1
Pt

]
and EPi

t

[
Pt+1
Pt
zit+1

]
are unknown. To determine

them and then obtain the equilibrium PD ratio, I employ two models of price expectations.
From here on, the superindex i is removed to save notation.

First, as a benchmark, consider the special case with full information in which
investors are perfectly aware of the economic structure, including other investors’ be-
liefs. Full information and rationality give rise to the Rational Expectations Equilibrium
whereby prices are equal to

PREt
Dt

=
δ(1 − τD)βD

1 − δ(1 − πτK )βD − δπτK
(1.9)

Note that for the PD ratio to be positive δβD < 1−δπτK
1−πτK > 1, where the last inequality

follows from δ < 1; this is assumed throughout the paper. From equation (1.9), it is clear
that the implicit price model under Rational Expectations is given by

PREt
PREt−1

=
Dt

Dt−1
= βD + εdt (1.10)

The belief system, captured by P, includes the stochastic processes characterizing Dt

and zt and the price model. Under Rational Expectations, the price model is simply
redundant.

Now consider the more general case where beliefs’ homogeneity is not common
knowledge. Since LIE does not help rational agents to deduce equilibrium prices from their
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optimality conditions, agents need some model to forecast future prices. The proposed
subjective model is

Pt
Pt−1

= bt + εPt (1.11)

bt = bt−1 + ϑt (1.12)

with εPt ∼ i.i.N (0, s2P) and ϑt ∼ i.i.N (0, s2
b
). The permanent component of

price growth bt is unobserved and has to be estimated from the history of states. For
that purpose, investors use a Kalman filter. The posterior, conditional on the observed
price history, is given by bt |It ∼ N (βt , σ2) where σ2 is the steady state Kalman filter
uncertainty and the posterior mean βt evolves recursively following22

βt = βt−1 + g
( Pt−1

Pt−2
− βt−1

)
(1.13)

where g = σ2+s2
b

σ2+s2
b
+s2P

is the steady-state Kalman gain. It follows that subjective price expecta-
tions are given by

EPt

[Pt+1

Pt

]
= βt (1.14)

Thus, with the information friction, price growth beliefs become non-degenerated such
that the model of prices is a non-redundant element of the beliefs system.

The reason for choosing this subjective model among the many possible alternatives
is threefold. Theoretically, it encompasses RE beliefs as a special case; when s2

b
= 0 and

investors’ initial prior is b0 = βD with probability 1, βt = βD ∀t. Empirically, it gives
rise to persistent deviations of price growth from dividend growth in line with the large
swings of the empirical PD ratio. Besides, it is consistent with microevidence on investors’
beliefs, in particular of extrapolation and under-reaction (Kohlhas and Walther, 2021).

The last object to be determined is EPt
[
zt+1

Pt+1
Pt

]
. Given the subjective model of

prices,

EPt

[
zt+1

Pt+1

Pt

]
= EPt

[
zt+1(βt + ut + ϑt+1 + εPt+1)

]
= EPt

[
zt+1

]
βt = πβt (1.15)

Where ut ∼ i.i.N (0, σ2) is the Kalman forecast error. Plugging the subjective price expec-
tations in the pricing function (1.8), the equilibrium PD ratio with imperfect information
and Learning reads as

PLt
Dt

=
δ(1 − τD)βD

1 − δ(1 − πτK )βt − δπτK
(1.16)

22As it is standard in the literature, equation (1.13) contains lagged price growth. The reason is that it is assumed
agents observe in period t information about the lagged transitory component εPt−1. This assumption
avoids multiplicity of equilibria and turns out to perform better. See Adam, Marcet, and Beutel, 2017 for a
discussion.



14 THREE ESSAYS IN MACROFINANCE

The dynamics of this variable are completely determined by {βt}. Combining equi-
librium prices (1.8) with the beliefs updating equation (1.13), it can be shown that {βt} is
determined by the following second-order nonlinear difference equation:

βt = βt−1(1 − g) + g
(

1 − δ(1 − πτK )βt−2 − δπτK

1 − δ(1 − πτK )βt−1 − δπτK

)
(βD + εDt−1) (1.17)

The steady state of the equation corresponds to the Rational Expectations (βt = βD for all
t). Out of the steady state, beliefs orbit around the RE equilibrium, giving rise to beliefs
booms and busts (see Adam, Marcet, and Nicolini, 2016). In the next section, I show the
implication of taxes for beliefs and price dynamics.

1.2.2. The effect of CGT on the price level and volatility

In this section, the impact of capital taxes on the PD ratio is explored. The literature has
conceptualized two opposite effects of CGT on the price level (see Dai, Maydew, et al.,
2008). On the one hand, a capitalization effect lowers the price since buyers discount
future tax liabilities, reducing demand. On the other hand, a lock-in effect increases the
price since the value option of selling goes down, reducing supply. I derive its consequences
for the price volatility too. In this section, I focus on the capitalization effect; the lock-in
is introduced in the next section.

Let’s start with RE. Given the pricing formula for RE (1.9),

dPREt /Dt

dτK
= −

δ(1 − τD)βDδπ(βD − 1)
(1 − δ(1 − πτK )βD − δπτK )2 < 0 (1.18)

if βD > 1. Thus, the model predicts a negative relationship between capital taxes and stock
market valuations under RE, in line with McGrattan and Prescott, 2005 or Sialm, 2009.23

As for learning, τK has an extra effect through subjective beliefs dynamics. Thus,

dPLt /Dt

dτK
=
PLt /Dt

τK
+

PLt /Dt

βt

dβt

dτK︸        ︷︷        ︸
Learning Amplification

(1.19)

Like under RE, PLt /Dt

τK
< 0 when agents expect positive capital gains (i.e., βt > 1).

Moreover,

dβt

dτK
= βDεDt−1

−δπΔβt−1(1 − δ(1 − πτK )βt−1 − δπτK ) − δ(1 − πτK )Δβt−1δπ(βt−1 − 1)
(1 − δ(1 − πτK )βt−1 − δπτK )2

(1.20)
23This contrast with the results in Sialm, 2006, according to which the tax level is irrelevant to the PD ratio

level under CRRA utility. A consumption tax on the purchasing of new stocks drives his result. On the
contrary, capital income taxes deliver results more aligned with the empirical observations.
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which turns out to be negative provided Δβt−1 > 0 and βt−1 > 1. Since PLt /Dt

βt
> 0, τK

dampens the PD ratio during booms. Hence, with learning, the negative effect of τK on
the PD ratio level is reinforced through its effect on capital gains beliefs.24

What about the PD variance? Under Rational Expectations, the PD ratio is a con-
stant and then taxes play no role.25 However, with information frictions and learning, a
CGT dampens price fluctuations coming from beliefs; it depresses prices during booms
and increases prices during bursts. The following proposition explores this ability formally.
For notational convenience, I denote Pt/Dt = PLt /Dt from now on.

Assumption 1. Assume: i) g ∈ (0, ḡ) with ḡ =
1−δ (1−πτK )βD−δπτK

δ (1−πτK )βD ; ii) πτK < τ̄ =

2δβD−1
2δβD−δ .

The first condition says that agents update their expectations in the direction of
the difference between current price growth and expectations but the learning process is
sluggish.26 The second condition puts an upper bound on effective taxes, which is close
to 1 for δ close 1, as typically assumed, and then it is a rather lax condition. Under this
reasonable assumption, the following proposition holds:

Proposition. Up to a linear approximation around Rational Expectations, the vari-

ance of the PD ratio is decreasing on the CGT level, that is,

dVar[Pt/Dt]
dτK

< 0 (1.21)

Proof. Appendix B.

The proposition shows that when subjective beliefs are close to Rational Expecta-
tions, the variance of the PD ratio is given by the sensitivity of prices to beliefs times the
variance of subjective beliefs

Var
[ Pt
Dt

]
≈ ω2 × Var(βt) (1.22)

24This suggests that capital gains taxes are particularly important to explain the rise in stock market valuations,
complementing the role of dividend taxes pointed out by McGrattan and Prescott, 2005.

25This is the result of the i.i.d. dividends growth assumption. In Appendix C I explore a case with persistent
growth, in the spirit of Bansal and Yaron, 2004. Then, a CGT affects negatively the variance of the PD ratio
only by reducing ω (i.e., it has no effect on the variance of the growth process that originates the movements
in the PD ratio). Thus, learning is sufficient but not necessary for a CGT to reduce the PD variance; it is an
amplification mechanism.

26A small g is consistent with the empirical evidence on underreaction pointed out by Coibion and Gorod-
nichenko, 2015.
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with ω = Pt/Dt

βt

���
βt=β

D
. It turns out that a CGT reduces both the transmission of belief

fluctuations to prices (ω) and the variance of beliefs:

dVar[Pt/Dt]
dτK

≈ Var[Pt/Dt]
ω2︸         ︷︷         ︸
>0

dω2

dτK︸︷︷︸
<0

+ Var[Pt/Dt]
Var[βt]︸         ︷︷         ︸

>0

dVar[βt]
dτK︸     ︷︷     ︸
<0

< 0 (1.23)

The proposition can be illustrated by plotting the belief dynamics, that fully charac-
terize the PD dynamics, at different tax levels. The second-order difference equation (1.17)
can be represented in a two-dimensional phase diagram on the (βt−1, βt) plane (keeping the
dividend shock at its mean values). Starting from the Rational Expectations Equilibrium
(call it β∗), figure 1.1 shows the dynamic response of beliefs to a shock (to dividends). When
a positive news shock hits the market, prices become higher than expected, and investors
review their beliefs upward following Bayes’ Law. If this revision is strong enough, prices
would rise further, feeding into even higher beliefs. Thus, for some periods, there is mo-
mentum in the sense of a rise in optimism that is self-reinforcing. At some point, prices do
not grow as much as expected, so investors start correcting their beliefs downward; this is a
bust. It is through a sequence of booms and busts that beliefs revert to their fundamental
value. In line with the proposition, these oscillations around β∗ are smaller the higher
the CGT. In other words, momentum is shorter and mean reversion faster the higher the
CGT such that a CGT anchors expectations closer to its fundamental value.

1.2.3. The lock-in effect

In this section, the realization of capital gains is endogeneized by introducing portfolio
adjustment costs. This endogenous realization gives rise to the lock-in effect. An old
proposition is that the lock-in effect makes CGT a destabilizing tool, restricting supply
during booms due to the lower value of selling and increasing supply during bursts, to
realize losses and receive a subsidy (e.g., Somers, 1948, Somers, 1960, Stiglitz, 1983). Now,
I include this effect and study the conditions under which it dominates the stabilizing
capitalization effect.

The liquidity shock zit is replaced by a choice of the timing of realization. Following
Gavin, Kydland, et al., 2007 and Gavin, Keen, et al., 2015, each investor manages a stock
of unrealized capital gains Gt facing portfolio management costs. G follows this law of
motion

Gt+1 = Gt + (Pt − Pt−1)St−1 − gt + ACt (1.24)

with gt are the realized capital gains, and ACt stands for adjustment costs. It is assumed
ACt = gt − Gt − ϕ(π̄t)Gt for π̄t ≡ gt/Gt , with ϕ′(·) > 0, ϕ′′(·) < 0. It follows that
when the realization of capital gains is deferred, the cost function penalizes investors with
extra unrealized capital gains, increasing the future tax liability of households. With these
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Figure 1.1. Shock propagation at different levels of the Capital Gains
Tax with the capitalization effect. The graph illustrates the dynamics of subjective capital
gains expectations (β) given by the second-order difference equation (1.17) when shocked by a one-off
dividend shock. It considers Δβt+1 = f (βt , βt−1 ) with {εDt−1 } = {0.01, 0, 0, ...}. β∗ = βD, the Rational Expectations
Equilibrium.

adjustment costs, investors face an additional trade-off: realize gt capital gains and pay
taxes τKgt today or defer the realization and face an extra tax liability in the future.

Altogether, the investor’s problem consists now in choosing sequences of consump-
tion, stock holdings, stock purchases, realized and unrealized gains {Ct , St , Xt , gt , Gt}∞t=0
to maximize lifetime welfare (1.2), subject to the stock bounds, the stocks law of motion
(1.4), the unrealized capital gains law of motion (1.24) and the budget constraint

Ct + PtXt ≤ (1 − τD)DtSt−1 − τKgt + Tt (1.25)

Let the cost function be ϕ(π̄t) = (τK )1+ξ ln(π̄t). Keeping the assumption of risk neutral-
ity, the first-order conditions boil down to

Pt = δEPt

[
(1 − τD)Dt+1 + Pt+1 − µt+1(Pt+1 − Pt)

]
(1.26)

π̄t = µt (τK )ξ (1.27)

µt = (τK )1+ξEPt

[
δµt+1

(
1 − ln(π̄t+1)

)]
(1.28)

Equation (1.26) replaces equation (1.6). They differ only in one detail: the liquidity
shock that determined the payment of taxes zt+1τ

K is replaced by the Lagrange multiplier
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associated with the capital gains accumulation equation (1.24). The presence of µ points
out that the additional burden unrealized capital gains represent diminishes the one-
period ahead payoffs. In turn, according to equation (1.27), the optimal realization of
capital fraction π̄t depends on two terms: positively on the shadow price of unrealized
gains µt indicating that the more costly non-realizing gains is the more agents realize them;
and on the tax level τK . If ξ < 0, a higher τK lowers the optimal realization, expressing
the lock-in effect. From this equation is clear that ξ is the tax elasticity of realization

π̄t
τK

τK

π̄t
= µtξ (τK )ξ−1 τK

µt (τK )ξ
= ξ (1.29)

which is a structural parameter of the model that can be directly estimated from the data.
Finally, equation (1.28) is a first-order stochastic difference equation determining the
shadow price of unrealized capital gains. Shifting it one-period ahead:

µt+1 = (τK )1+ξEPt+1

[
δµt+2

(
1 − ln(µt+2(τK )ξ )

)]
= (τK )1+ξMt+1 (1.30)

Then, opening up and operating on the Euler Equation (1.26), it becomes

Pt = δ(1− τD)EPt
[Dt+1

Dt

]
Dt + δEPt

[Pt+1

Pt
(1− (τK )1+ξMt+1)

]
Pt + δ(τK )1+ξPtE

P
t

[
Mt+1

]
(1.31)

Let mt ≡ EPt
[
Mt+1

]
. Using the subjective model of prices,

EPt

[Pt+1

Pt
Mt+1

]
= EPt

[
(βt + ut + ϑt+1 + εPt+1)Mt+1

]
≈ βtmt (1.32)

under the assumption that Cov(Mt+1, xt) ≈ 0 for xt = (ut , ϑt+1, ε
P
t+1) where ut is the

Kalman prediction error. Under that approximation, the PD ratio with endogenous
capital gains realization satisfies

Pt
Dt

=
δ(1 − τD)βD

1 − δβt (1 − (τK )1+ξmt) − δ(τK )1+ξmt

(1.33)

This formula embeds the one under exogenous realization (1.16) for mt = π and ξ =

0. Consider mt as given for a moment. Then, this formula says that the lock-in effect
dominates when ξ < −1, that is

ξ ≶ −1 ⇒ Pt/Dt

τK
≷ 0 (1.34)

However, for equation (1.33) to be an equilibrium equation,mt must be characterized.
Equation (1.28) does not have an analytical solution but can be computed numerically.27

27The algorithm to do so combines the Parameterized Expectations Algorithm with numerical integration.
See Appendix X.
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Figure 1.2. Shock propagation at different tax levels with both the
capitalization and the lock-in effect. The graph illustrates the dynamics of subjective
capital gains expectations (β) when shocked by a one-off dividend shock. The blue (red) line uses
τK = 0.1(= 0.4) . The LHS (RHS) graph uses ξ = −0.5 (ξ = −1.2).

Since mt is a function of the state variables, including Pt/Dt , now there is no closed form
for equilibrium prices. Hence, the effects of taxes on the PD level and variance with the
lock-in must be explored via simulations.

Figure 1.2 plots the propagation of a one-off dividend shock, as figure 1.1 but with
the lock-in effect. When ξ > −1, the capitalization effect dominates and thereby, a higher
τK reduces the fluctuations, as proven analytically in Section 2.2 for ξ = 0, mt = 1.
Nonetheless, ξ < −1 makes the lock-in effect to dominate resulting in a destabilizing effect
of a higher τK in line with Stiglitz, 1983.28

1.3. Quantitative Analysis

This section uses the theory to understand the increase in the US stock market aggregate
fluctuations in the middle of the Great Moderation, relating them to the decline in capital
taxes. In Section 1.3.1., asset pricing facts for the 1946-2018 period are presented, including
a novel version of the Campbell and Shiller, 1988 PD variance decomposition with capital
taxes. Section 1.3.2. adds some ingredients to Section 2’s models and introduces a novel
application of the Parameterized Expectations Algorithm to solve it. Section 1.3.3. describes
the parameterization procedure, which involves structural estimation via the Simulated
Method of Moments. Section 1.3.4. and Section 1.3.5. reports the estimation results and

28When numerically computingmt , it turns out that the influence ofPt/Dt on it is small. Thus, the intuition
of the dominance of the lock-in when ξ < −1 appeared in expression (1.34) is approximately correct.
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their robustness to several alternative choices. Finally, Section 1.3.6. examines why the
model can generate a significant equity premium.

1.3.1. Facts

This section documents asset pricing facts using US data from 1946 to 2018. It splits
the observations into two halves to highlight the changes that have occurred since the
1980s. I report standard statistics involving excess volatility, the equity premium, and
macroeconomic risk. Besides, I include statistics related to the theory, such as capital
taxes, an extended version of the Campbell and Shiller, 1988 variance decomposition that
includes capital taxes, and the sensitivity of prices to survey beliefs.

Fact 1: Decline in capital taxes. Personal taxes on investment income went down
in the last decades ( McGrattan and Prescott, 2005, Sialm, 2009). Investment income
is affected by taxes on dividends, capital gains and interests. As it is customary in the
literature, I measure them using effective average marginal rates, that is, a value-weighted
mean of the marginal tax rates of investors in the various income brackets once adjusting
for the features of the tax code (as maximum and minimum taxes, partial inclusion of
social security or phaseouts of the standard deduction).29 Thus, the dividends tax rate is

τDt = τdt (1 − ηt) (1.35)

the capital gains tax
τKt = (ϕτskgt + (1 − ϕ)τlkgt ) (1 − ηt) (1.36)

and finally, the interest tax
τBt = τbt (1 − ηt) (1.37)

In the previous expressions, τdt , τskgt , τlkgt and τbt are the effective average marginal
rates on dividends, short, long capital gains and interest income respectively; ϕ is the
average weight of short capital gains on total capital gains; ηt is the non-taxable share. Data
sources are in Appendix A; computation details on the non-taxable share are in Appendix
C. As illustrated in figure 1.3, taxes exhibited a substantial decline which, although with
different timing, represented a movement towards a generally lower tax environment. This
overall tax decline was the result of the joint action of tax reforms along with regulatory
changes involving pensions savings vehicles that led to a massive change in asset holdings

29These rates are provided by the TAXSIM program of the NBER and can be accessed on his website. Before
1960, τdt , τskgt and τlkgt rates are taken from Sialm, 2009. See Appendix A for details.

https://taxsim.nber.org/marginal-tax-rates/
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from taxable to non-taxable accounts (see McGrattan and Prescott, 2005).30,31

1950 1960 1970 1980 1990 2000 2010 2020
0.05

0.10

0.15

0.20

0.25

0.30

0.35
Dividends tax

Interests tax

Capital Gains tax

Figure 1.3. Capital taxes rates along the postwar period. The graph plots the
capital taxes on dividends (blue), interest income (yellow) and capital gains (red) as defined by equation
1.35, 1.36 and 1.37. Annual series 1946-2018. See Appendix A for data sources and Appendix C for details on
the computations.

Fact 2: Rise in stock valuations. The mean PD ratio almost doubled after the
1980s. This fact has been extensively documented in the literature (e.g., Shiller, 2000,
McGrattan and Prescott, 2005, Brun and González, 2017) and is illustrated in 1.4. The
accounting reason is that the increase in price growth (from a quarterly average of 0.48%
to 1.48%) has exceeded by far a slightly higher dividend growth (from 0.49% to 0.75%).
Thus, a higher PD ratio is a result of the sharp rise in capital gains. A related observation
is that mean returns have mildly decreased, giving rise to some reduction in the equity
premium.

Fact 3: Rise in the variance of the PD ratio.32 The PD ratio standard deviation
became two and a half times higher after 1982 than before. The Campbell and Shiller,

30Important reforms were the reduction of capital gains by Carter in 1978 and Clinton in 1997, partially
counteracted by Reagan in 1986. When it comes to dividends, Reagan 1982 and Bush 2001 and 2003
represented substantial tax cuts.

31According to my estimates, the share of equity income paying taxes drop from 87% in 1946 to just 30% in
2018. This sharp decline is in line with the literature estimations ( McGrattan and Prescott, 2005, Sialm,
2009, Rosenthal and Austin, 2016)

32In the paper, I focus on the unconditional variance. However, the rise in volatility is also observed for the
conditional variance. See Appendix H.
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1988’s "dynamic accounting equation" provides the standard framework to understand
the most proximate drivers of its variance. It reads as

pt − dt ≈ constant +
∞∑︁
j=1

ρj−1Δdt+j −
∞∑︁
j=1

ρj−1rt+j (1.38)

where lowercase letters mean log-variables (xt = lnXt), ρ = PD/(1 + PD), with PD
being the mean PD ratio in the sample. Thus, the accounting fact is that the log PD ratio
is approximately equal to the difference between the discounted sum of future dividend
growth and stock returns escalated by a constant; a higher PD ratio must be due to higher
dividends or lower returns in the future.

Taxes can be included in this equation by decomposing pre-tax returns into net
returns and taxes. Following a standard procedure, the version of the Campbell-Shiller
equation with taxes is

pt − dt ≈constant +

≡d̄t︷            ︸︸            ︷
∞∑︁
j=1

ρj−1(Δdt+j) −

≡r̄t︷         ︸︸         ︷
∞∑︁
j=1

ρj−1(r̃t+j)

+
∞∑︁
j=1

ρj−1ρln(1 − υτKt+j)︸                    ︷︷                    ︸
≡τ̄Kt

+
∞∑︁
j=1

ρj−1ρ̃ln(1 − τDt+j)︸                   ︷︷                   ︸
≡τ̄Dt

(1.39)

with
r̂t+1 = (1 − υτKt+1)

(Pt+1 − Pt
Pt

)
+ (1 − τDt+1)

Dt+1

Pt
(1.40)

ρ =
(1−υτK ) PD

(1−υτK ) PD+1−τD , ρ̃ = ρ 1−τD
(1−υτK ) PD

with all the variables being evaluated at their
means and υ standing for the share of short capital gains expected to be realized next
period.33 Then, a higher PD ratio must come from higher dividends, lower after-tax
returns or lower taxes in the future. Following a standard computation, the variance of
the log PD ratio can be expressed as follows:

Var(pt − dt) ≈ Cov
(
pt − dt , d̄t

)
− Cov

(
pt − dt , r̄t

)
+ Cov

(
pt − dt , τ̄t

K
)
+ Cov

(
pt − dt , τ̄t

D
) (1.41)

33For the computations, υ = 0.016 computed using data from the IRS and the US Financial Accounts.
The estimation uses the synthetic capital gains tax as defined by (1.36), to be consistent with the model
specification. Using τskgt barely changes the numbers.
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Table 1.1 shows the estimation of this equation.34 An initial observation is that about 1/4
of the PD ratio variance typically attributed to movements in discount rates seems rather
related to changes in capital taxes, especially dividend tax cuts. But the main utility of
this decomposition is to figure out the sources of the increase in the PD ratio volatility.
Basically, it is due to four factors: i) an increase in the covariance between the PD ratio
and future returns; ii) a change from negative to positive covariance between the PD
ratio and future dividends, signalling that returns and dividend growth varied in opposite
directions since the 1980s; iii) tax cuts;35 iv) a greater discount factor due, in part, to lower
taxes.
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Figure 1.4. Change in the mean and standard deviation of the
Price/Dividend ratio. The graph plots the evolution of the PD ratio in the 1946:I-2018:IV period. The
continuous lines plot the mean of each subperiod 1946:I-1982:II and 1982:III - 2018:IV. The dotted bands shows
± one standard deviation.

Fact 4: Rise in the sensitivity of prices to expectations. An important link
between low taxes and high volatility is the sensitivity of prices to beliefs changes. It
was shown that the model with liquidity shocks predicts an increase in this sensitivity
following a fall in CGT. One way of capturing this change is by running the following

34To empirically implement the previous equation, one has to deal with infinite sums, which are not observ-
able. To that end, I follow the VAR approach first outlined by Campbell and Shiller, 1988 with short-run
restrictions, with the variable ordering being dividends, taxes, returns and the PD ratio.

35Notice it does not mean that investors anticipated tax cuts necessarily. The present value of taxes is a
projection from past data through the lens of the VAR. It turns out the correlation between the present
value of taxes at time t ¯τK t and time t taxes τKt is -0.91 and -0.92 for each sample, respectively; for dividends,
it is -0.99 in both samples. In other words, the present value of taxes approximately follows the path of
current taxes.
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Table 1.1. Variance Decomposition of the Price-Dividend ratio. The table

reports Cov
(
pt − dt , x̄t

)
with x̄ being the present value of dividend growth, stock returns, a capital gains tax

factor and a dividend tax factor as specified in equation (1.41). The smaller gray values shows
Cov(pt−dt ,x̄t )
Var (pt−dt ) × 100 for the same variables. Present values are computed using a VAR, estimated separately for

each subsample; see the main text for more details.

1946-2018 1946-1982 1982-2018

Returns
-18.89 -13.28 -8.53 -9.19 -13.18 -11.43

98.85% 69.49% 118.54% 127.79% 93.67% 81.21%

Dividend growth
1.58 2.77 -1.01 -2.00 1.65 2.35

8.27% 14.51% -13.98% -27.94% 11.73% 16.85%

Capital Gains tax
- 0.7 - -0.06 - 0.35

- 3.87% - -0.82% - 2.47%

Dividend tax
- 3.92 - 0.36 - 1.01

- 20.53% - 5.00% - 7.15%

Total Approximation
20.47 20.72 7.52 7.49 14.83 15.15

107.12% 108.40% 104.56% 104.03% 105.40% 107.67%

Var(pt − dt) 19.11 7.20 14.07

Discount factor ρ 0.9784 0.9729 0.9816

regression for each subperiod

PDt = α + ζ lnβst + εt (1.42)

where βst are survey expectations about capital gains.36 As shown by Adam, Marcet, and
Beutel, 2017, ζ goes up by a factor of 3 after the 1980s and the test of equality of pre- and
post-1982 coefficients is strongly rejected.37,38 Figure 1.5 illustrates the change towards a

36Following Adam, Marcet, and Beutel, 2017, I extend the UBS Gallup survey for the whole period using an
updating equation in line with the implied by the Kalman filter.

37The null of ζpost − ζpre = 0 is clearly rejected when using this statistic t =
ζ̂post−ζ̂pre

(σ̂2
pre+σ̂2

post )0.5 with σ̂ being

Newey-West standard errors, which yields a value of 8.04.
38To the best of my knowledge, Adam, Marcet, and Beutel, 2017 were the first to report this fact, focusing on

the pre- and post-2000s and relating it to lower interest rates. I stress that the change can be placed earlier
and be related to lower taxes.
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Figure 1.5. PD ratio against capital gains survey expectations, pre and
post-1982. The graph plots the quarterly PD ratio of the SP500 against the log real mean price growth
expectations implied by an extended version of the UBS Gallup survey. The time periods are 1946:I - 1982:II
and 1982:III-2018:IV.

steeper relationship between beliefs and prices.
Relation to the theory. Can the theory exposed in Section 2 account for these

facts altogether? The model predicts that lower taxes would increase the price level, as
expected payoffs would soar, linking Fact 1 and Fact 2. This is in line with McGrattan and
Prescott, 2005 and Brun and González, 2017. Additionally, it also predicts an increase in
the PD variance following CGT cuts if the capitalization effect dominates over the lock-in
effect, potentially linking Fact 1 and Fact 3, although noting the counteracting effects
of both lower macro-risk and the relaxation of the lock-in effect. The key mechanism
behind this outcome is the increase in the beliefs elasticity of prices, which is in line with
Fact 4. By raising expected payoffs and their influence on prices, lower taxes would boost
capital gains, reducing the correlation between returns and dividends, in line with the
variance decomposition reported as part of Fact 3. The next section explores how much
this hypothesis can account for the facts.

1.3.2. Extended model and a new solution algorithm

This section extends the model set up in Section 2 to better equip it to replicate the stylized
facts reported in the previous section. Moreover, it introduces a new algorithm to solve
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Table 1.2. Facts. US Stock Market changes: 1946-1982 vs. 1982-2018.
This table reports U.S. stock market moments using the data sources described in Appendix A. Growth rates
and returns are annualized.

1946-1982 1982-2018

Fact 1: Decline in capital taxes

Capital Gains tax E(τKt ) 0.15 0.09

Dividends tax E(τDt ) 0.29 0.12

Received Interest tax E(τBt ) 0.20 0.11

Fact 2: Rise in asset price levels

PD level E(PDt ) 25.48 47.09

Dividend growth E(Dt/Dt−1 − 1) 0.49 0.75

Stock price growth E(Pt/Pt−1 − 1) 0.48 1.84

Quarterly real bond returns E(rbt ) 0.42 0.38

Quarterly real stock returns E(rst ) 4.73 4.34

Fact 3: Rise in PD volatility

PD volatility Var (pt − dt ) 7.20 14.07

Comovement PD - dividends Cov(pt − dt , d̄t ) -2.00 2.35

Comovement PD - returns Cov(pt − dt , r̄t ) -9.19 -11.43

Comovement PD - Capital Gains tax Cov(pt − dt , τ̄
K
t ) -0.06 0.34

Comovement PD - Dividends tax Cov(pt − dt , τ̄
D
t ) 0.36 1.00

Stock returns volatility σ (rst ) 7.87 7.41

Dividend growth volatility σ (Dt/Dt−1 − 1) 2.52 1.97

Consumption growth volatility σ (Ct/Ct−1 − 1) 1.13 0.60

Fact 4: Higher sensitivity of prices to beliefs

Sensitivity of prices to beliefs ζ 0.84 2.63

the model based on the Parameterized Expectations Algorithm.
The two versions of the model, either with liquidity shocks are with portfolio adjust-

ment costs, are modified along four dimensions. First, the assumption of risk neutrality
is abandoned. In this version, investors are allowed to dislike risk in a Constant Relative
Risk Aversion (CRRA) sense, with γ regulating its risk aversion level. Second, an addi-
tional source of exogenous income is introduced to avoid a too-high correlation between
dividends and consumption at odds with the data. Following Adam, Marcet, and Beutel,
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2017, it is assumed agents get a wage endowment Wt each period, following this process:

ln
(
1 + Wt

Dt

)
= (1 − p)ln(1 + ρ) + pln

(
1 + Wt−1

Dt−1

)
+ lnεwt (1.43)

Dt are aggregate dividends, 1 + ρ is the average wage-dividend ratio and p ∈ [0, 1) is
its quarterly persistence. The innovations are jointly distributed with dividend shocks
following (

lnεDt
lnεWt

)
∼ iiN

(
− 1

2

(
σ2
D

σ2
W

)
,

(
σ2
D σDW

σDW σ2
W

) )
Third, stochastic taxes are introduced. It is assumed that each of the taxes on invest-

ment income follows a unit root process, that is

τ
j
t = τ

j
t−1 +

τj

t (1.44)

where τj
t ∼ iiN (0, s2τj ), for j = K, D, B.39 Tax shocks are assumed to be orthogonal to

dividend and consumption shocks. Finally, risk-free bonds and taxes on bond interest are
introduced in order to deal with the equity premium. The informational assumptions are
as before, such that prices cannot be deduced from individual optimal computations, and
investors use the subjective price model determined by equation (2.38) and (2.39), with
the updating equation (1.13).

State variables. The state space is made of income sources and taxes/transfers, the
stock of unrealized capital gains, previous stock holdings and current aggregate stock
supply and, due to information incompleteness, current price and price growth beliefs,
that is, Xt = (Dt ,Wt , τt , Tt , Gt , St−1, Pt , βt), with τ being the vector of dividends, capital
gains and interest taxes. For the model with liquidity shocks, it also includes zt . Given
the homogeneity property of the CRRA function, the state vector can be reduced to
Xt = (Wt

Dt
, τKt , τ

D
t , τ

B
t ,

Tt
Dt
, St−1,

Gt

Dt

Pt
Dt
, βt). In this way, the model is rewritten in terms of

non-explosive ratios.
Recursive Solution via the Parameterized Expectations Algorithm. A recursive

solution boils down to a time-invariant stock demand function St = S (Xt).40 The main
difficulty in deriving such an invariant function is that optimality conditions include an
unknown subjective conditional expectation. For the exposition, I focus on the version
with liquidity shocks. The solution to the version with portfolio adjustment costs follow

39When the observed tax time series is fit into an AR(1) model, the estimated coefficients are not statistically
different from 0 (intercept) and 1 (slope). Thus, the unit root process constitutes a realistic representation
of the tax process. Moreover, their residuals behave as Gaussian white noise. Normality has been tested via
the Shapiro-Wilk Normality test.

40See Adam, Marcet, and Beutel, 2017 for a proof of the existence of a recursive equilibrium in the same
model without taxes. It continues to hold with taxes.
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similar steps, extended along the lines described in Section 2.3. The optimal Consumption-
Dividends ratio must satisfy

Ct
Dt

=

{
δEPt

[(
Pt+1

Dt+1
+1−τDt+1−zt+1τ

K
t+1

( Pt+1

Dt+1
− Pt
Dt

Dt

Dt+1

))Dt

Pt

( Ct+1

Dt+1

)−γ (Dt+1

Dt

)1−γ
]}−1/γ

(1.45)
In equilibrium, the previous conditional expectation is a function E of the state

variables, hence
Ct
Dt

=

(
δE(Xt)

)− 1
γ ≡ Ē(Xt) (1.46)

To solve the model, Ē(Xt) must be computed somehow. The Parameterized Expecta-
tions Algorithm (PEA), initially proposed by Marcet, 1988, is one of the alternatives. PEA
consists of replacing the conditional expectation E(Xt) with some parametric function ψ .
ψ is not unique; popular possibilities are polynomials, splines or neural networks. In this
model, there is no practical difference between approximating the conditional expecta-
tion E(Xt) and approximating the policy function Ē(Xt). Exploiting that, I propose an
approximating function rooted in economic theory. The idea is that of homotopy: start
with a version of the model that has an analytical solution and keep the structure of the
policy function as an approximating function.41 For a model with exogenous i.i.d. returns,
Hakansson, 1970 proved that the policy function consisted of consuming a constant
fraction of wealth, with the constant propensity to consume given by one minus the
expected utility of returns. Keeping that structure, I propose the following ψ :

C∗
t

Dt
= Ē(Xt) ≈ ψ (Xt ; χ) = c

y
tYt + cwt

Pt
Dt

St−1 (1.47)

where cyt ≡ 1 − χδ(1 − τDt )βD is the time-varying propensity to consume out of
income, Yt collects all the income sources (wages, dividends, net transfers) normalized by
dividends, cwt ≡ 1 − χδ(1 − τKt )βt is the propensity to consume out of wealth, and χ is
a parameter of ψ to be estimated. The stock policy function can be obtained using the
budget constraint, such that:

S∗t = S (Xt) ≈
(
(1 − c

y
t )Yt + (1 − cwt )

Pt
Dt

St−1

)Dt

Pt
(1.48)

This demand function indicates that investors save a time-varying fraction of their current
resources, driven by discounted expectations. Thus, a rise in optimism would increase
demand, but such an increase would be smaller the higher the tax. This mechanism

41Homotopy has already been applied to PEA problems. The difference here is that the form of the policy
function is maintained instead of using arbitrary order polynomials or other functions.
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is aligned with the empirical evidence reported by Giglio et al., 2021. As a result, the
magnitude of the price change decreases with the tax level. This is an illustration of the
Section’s 2 Proposition that explicitly uses investors’ demand as a mediator. Figure 1.6
illustrates these mechanics.
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Figure 1.6. Response of stock demand to an increase in optimism at
different tax levels. The graph plots the stock policy function (equation (1.48)), keeping everything
constant except prices. Then, as βt increases, the curve moves rightward. This displacement is shown at three
different tax levels: low (blue), moderate (the baseline, in red) and high (yellow).

Finally, equilibrium prices can be obtained using good market clearing and the equity
market clearing condition: ∑︁

i

S∗i

( Pt
Dt

, ·
)
= S̄ = 1 (1.49)

where the index i was momentarily reintroduced to emphasize the equilibrium condition
of aggregate demand matching aggregate supply S̄. Due to the handy policy function,
this equation can be analytically solved for prices such that prices such that

Pt
Dt

=
χδ(1 − τDt )βD

1 − χδ(1 − πτKt )βt

(
1 + Wt

Dt

)
(1.50)

Altogether, the use of this simple approximating function has some advantages.
First, we are left with a single parameter to estimate as opposed to the potentially large
number of parameters of alternative approximating functions. As a result, multicollinear-
ity problems typically associated with PEA are avoided. Moreover, the procedure delivers
a closed-form solution for equilibrium prices. Of course, a potential cost is that the ap-
proximating function ψ is not very flexible, as compared with arbitrary order polynomials
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or neural networks; however, it turns out to perform very well, with Euler Equation
errors equivalent to $1 out of a million. See Appendix D for a detailed explanation of
the algorithm and its accuracy and the Appendix "Solving Asset Pricing Models with
Learning using PEA" in Chapter 2’s appendix for a more detailed explanation.

1.3.3. SMM estimation

This section explains the simulation strategy. It has to deal with two issues: a discontinuity
in the pricing formula and the parameterization of the model. The former is solved by
introducing a projection facility; the latter follows a mixed strategy, with some parameters
calibrated from the US data and the rest being estimated via the Simulated Method of
Moments.

As is standard in the learning literature, I employ a projection facility that restricts
beliefs to ensure non-negative and non-explosive prices. Following Adam, Marcet, and
Nicolini, 2016, the projection facility starts to dampen belief coefficients that imply a
PD ratio equal to PDL and sets an effective upper bound at PDU . It can be understood
as an approximate implementation of a Bayesian updating scheme where agents have
a truncated prior that puts probability zero on beliefs that imply a too-high PD ratio.
Appendix D contains the details.

On the other hand, the parameterization strategy is twofold. A subset of parameters
related to the income processes, the vector θ̃ = {βD, σD, σW , σWD, p} is picked directly
from US data. I calibrate βD, σD, σW , σWD distinguishing between the two studied subpe-
riods to capture the reduction in macroeconomic volatility. Parameter values are specified
in panel a) of Table 1.3 and data sources are reported in Appendix A. Additionally, for
the model with portfolio adjustment costs, the tax elasticity of realization ξ is set equal
to the lower bound value of the recent estimations in Agersnap and Zidar, 2021, which
represents the less favourable case for the stabilizing effect.

The remaining parameters, collected in the vector θ = {δ, g, γ, π, ρ, PDL, PDU },
are estimated via an extension of the Simulated Method of Moments, following Adam,
Marcet, and Nicolini, 2016. Aiming at testing the power of taxes to explain the various
observed changes, estimated parameters are kept fixed throughout the sample. Hence, a
total of n=7 parameters are estimated to match a subset of M moments from the ones
reported in table 1.2. The vector θ is chosen to minimize the distance between model S̃(θ)
and data Ŝ statistics, that is,

θ̂ =θ∈Θ
[
Ŝ − S̃(θ)

] ′
Σ̂−1
S

[
Ŝ − S̃(θ)

]
(1.51)

where Ŝ an S̃(θ) are Mx1 vectors and Σ̂S is a MxM weighting matrix, which de-
termines the relative importance of each statistic deviation from its target. A diagonal
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weighting matrix whose diagonal is composed of the inverse of the estimated variances of
the data statistics is used. Model-implied statistics are generated through a Montecarlo
experiment with 1000 realizations. I formally test the hypothesis that any of the individual
model statistics differ from its empirical counterpart. Finally, the model is fed with the
empirical time series for capital taxes and dividend growth.42

Table 1.3. Values of the model’s parameters. Panel a) table reports the values of the
parameters calibrated directly from US data, using various data sources specified in Appendix A. Panel b)
reports the estimated parameters when M=22 or M=8 statistics are included in the SMM estimation.

a) Calibrated parameters 1946-1982 1982-2018

Mean dividend growth βD 1.0049 1.0075

Dividends growth standard deviation σD 0.0252 0.0197

Wage shocks standard deviation σW 0.0261 0.0196

Covariance (wage, dividend) σWD -0.0006 -0.0004

Persistence wage-dividend ratio p 0.99

Tax elasticity of realization ξ -0.5

b) Estimated parameters M=22 M=8

Discount factor δ 1.00 1.00

Kalman gain g 0.0233 0.0234

Risk aversion γ 0.55 0.66

Probability of a liquidity shock π 0.0395 0.0382

Average wage-dividend ratio ρ 5.51 5.49

Projection facility starting value PDL 551.04 532.45

Projection facility upper bound PDU 796.22 533.20

42In this way, the simulated series can potentially exhibit the same trajectories and trends as the observed ones.
Instead, if I use a constant tax on each subsample, trends appearing in the PD ratio would not show up,
distorting then the comparison between the observed and simulated data. In other words, by introducing
the empirical time series, I compute the possible transition from high to low taxes instead of just simulating
two long-lasting regimes.
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1.3.4. Estimation results

In this section, the estimation results are reported. The version of the model with liquidity
shocks is estimated using two different subsets of M statistics. On the one hand, M=22
statistics are included, that is, all the statistics reported in table 1.2 except the ones related
to income processes, which are calibrated. A second estimation with the following M=7
statistics {

E(PDt),E(Pt/Pt−1),E(rst),E(rbt ),Var(pt − dt), σ (rst), ζ̂
}

(1.52)

only for the first subsample is also run. The idea is to obtain the parameters that
match the first subsample levels and variances right without any constraint in terms of
the model’s ability to match the changes in levels and volatility happening in the second
subsample. In this second estimation, all the weight of replicating the observed changes
lies upon the exogenous processes and the model’s mechanisms. These two estimations,
whose estimated parameter vector θ̂ is reported in panel b) of table 1.3, are then used
to explore the model that incorporates the lock-in effect, which eventually will serve to
compute the net effect of CGT cuts on the variance of the PD ratio.

Table 1.4 contains the statistics from the US data and the baseline estimation, which
includes M=22 statistics, collected in the upper half of the table. Standard errors and t-
statistics testing the null of equality between data and model statistics are also shown. The
model statistics pass many of the t-tests. The increase in the mean PD ratio, although not
as strong as observed, is substantive, driven by the model’s ability to produce an increase
in mean capital gains above the exogenous increase in dividend growth. The mean stock
return is high enough at the same time that the risk-free rate is pretty low, delivering a
remarkable equity premium. Matching the risk-free rate requires a very low risk aversion,
which would reduce stock returns, other things equal. This force is counteracted by
extra volatility coming through subjective beliefs (in terms of the parameters particularly
observed in the high bounds for the projection facility). The equity premium issue will
be discussed further in Section 3.6.

In terms of the variance, the model delivers an increase equivalent to 45% of the
observed. A small part of the increase is due to tax changes, as in the data, but most of it
comes from an excessive decline in the covariance between the PD ratio and future after-
tax returns. An associated observation is that returns volatility goes up a bit in the second
period, at odds with the data. Importantly, the model misses the role of the covariance
between the PD and future dividends to explain the higher variance. Altogether, the
model generates a non-negligible part of the higher PD variance but misses some factors
and exaggerates others. Besides, there is a sizable increase in the elasticity, as pointed out
in the theoretical analysis. Finally, the model also replicates well the persistence of the PD
ratio and the high procyclicality of survey beliefs.

Table 1.5 shows the results when the lock-in effect is considered. The theoretical
analysis showed that lock-in could counteract the effect of tax cuts by increasing the
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Table 1.4. Baseline estimation results; model with the capitalization
effect only. This table reports moments for the model with Bernoulli liquidity shocks with only the
capitalization effect. The first four columns report the observed statistics along with their Newey-West
standard error for the US data. The next four columns report model-implied statistics and their t-statistics. The
model uses the parameterization described in Table 1.3 for M=22. Rates of growth, variance and covariance
have been multiplied by 100. The top panel reports moments included in the SMM estimation; the bottom
panel non-included moments.

US data Model

1946-1982 1982-2018 1946-1982 1982-2018

Ŝj σ̂Ŝj
Ŝj σ̂Ŝj

S̃j (θ̂) t-stat S̃j (θ̂) t-stat

Included in the SMM estimation

E(PDt) 25.48 1.55 47.09 4.04 27.71 -1.43 40.29 1.68

E(Pt/Pt−1 − 1) 0.48 0.64 1.84 0.63 0.87 -0.62 1.46 0.60

E(rst) 4.73 0.76 4.33 0.76 4.96 -0.31 4.38 -0.06

E(rbt ) 0.42 0.02 0.38 0.03 0.32 5.33 0.48 -4.15

Var(pt − dt) 7.20 1.35 14.07 3.56 8.34 -0.88 11.93 0.57

Cov(pt − dt , d̄t) -2.00 0.60 2.35 0.55 -0.38 -2.68 -0.80 5.71

Cov(pt − dt , r̄t) -9.13 1.47 -11.35 3.24 -8.88 -0.17 -11.80 0.14

Cov(pt − dt , τ̄
K
t ) -0.06 0.06 0.34 0.06 -0.03 -0.50 0.20 2.39

Cov(pt − dt , τ̄
D
t ) 0.36 0.33 1.00 0.33 0.08 0.83 0.58 1.27

σ (rst) 7.87 0.72 7.41 0.81 7.09 1.08 8.15 -0.91

ζ̂ 0.84 0.06 2.63 0.21 0.92 -1.27 2.09 2.53

Non-included in the SMM estimation

E(Dt/Dt−1 − 1) 0.49 0.35 0.75 0.34 0.49 0.00 0.75 0.00

σ (Dt/Dt−1) 2.52 0.46 1.97 0.32 2.52 0.00 1.97 0.00

corr(PDt , PDt−1) 0.96 0.13 0.98 0.07 0.97 -0.06 0.95 0.37

corr(PDt , βt) 0.84 0.11 0.84 0.22 0.83 0.16 0.83 0.04

realization of capital gains and by reducing the volatility of expected future tax liabilities.
The results are in line with this analysis. The increase in the mean PD ratio is lower than
when only capitalization plays out, and, especially, the increase in the PD variance is
considerably smaller. Perhaps remarkably, the changes in the elements of the variance
decomposition go all in the right direction, and the volatility of returns goes down a bit,
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as in the data.

Table 1.5. Model statistics with the lock-in effect. This table reports moments for
the model with portfolio adjustment costs, which has both the capitalization and lock-in effect. The first four
columns report the observed statistics along with their Newey-West standard error for the US data. The next
four columns report model-implied statistics and their t-statistics. The model uses the parameterization
described in Table 1.3 for M=22. Rates of growth, variance and covariance have been multiplied by 100. The
top panel reports moments included in the SMM estimation; the bottom panel non-included moments.

US data Model

1946-1982 1982-2018 1946-1982 1982-2018

Ŝi Ŝi S̃i (θ̂) t-stat S̃i (θ̂) t-stat

E(PDt) 25.48 47.09 27.37 -1.22 38.23 2.19

E(Pt/Pt−1 − 1) 0.48 1.84 0.86 -0.60 1.35 0.78

E(rst) 4.73 4.33 5.00 -0.36 4.34 -0.00

E(rbt ) 0.42 0.38 0.33 5.18 0.48 -4.21

Var(pt − dt) 7.20 14.07 8.26 -0.83 9.43 1.28

Cov(pt − dt , d̄t) -2.00 2.35 -0.48 -2.49 -0.06 4.36

Cov(pt − dt , r̄t) -9.13 -11.35 -8.92 -0.14 -8.93 -0.75

Cov(pt − dt , τ̄
K
t ) -0.06 0.34 -0.04 -0.37 0.15 3.23

Cov(pt − dt , τ̄
D
t ) 0.36 1.00 0.05 0.93 0.56 1.34

σ (rst) 7.87 7.41 7.08 1.09 6.86 0.68

ζ̂ 0.84 2.63 0.91 -1.15 1.78 3.97

E(Dt/Dt−1 − 1) 0.49 0.75 0.49 0.00 0.75 0.00

σ (Dt/Dt−1) 2.52 1.97 2.52 0.00 1.97 0.00

corr(PDt , PDt−1) 0.96 0.98 0.97 -0.06 0.96 0.20

corr(PDt , βt) 0.84 0.84 0.83 0.16 0.87 -0.12

Table 1.6 reports the results when only M=7 statistics are included in the SMM
estimation. In this case, all the included statistics pass their individual t-test. The second
subsample statistics move all in the right direction, delivering a higher PD mean; higher
capital gains; lower stock returns; a higher PD variance with a positive covariance between
PD and dividends, more negative ; lower returns volatility; higher beliefs elasticity. This
signals that the model’s mechanisms produce outcomes that resemble the data indeed.
Quantitatively, all these changes turn out to be too small, pointing out that there are other
important forces that are not in the model but were important to produce the data.
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Table 1.6. Estimation results for M=7. This table reports model-implied statistics when only
a subset of moments is targeted. The first two columns report the observed statistics for the US data. The next
four columns report model-implied statistics and their t-statistics for the model with liquidity shocks. The last
four columns report statistics with the model augmented with portfolio adjustment costs. The model uses the
parameterization described in Table 1.3 for M=7. Rates of growth, variance and covariance have been
multiplied by 100. The top panel reports moments included in the SMM estimation; the bottom panel
non-included moments.

US data Capitalization +Lock-in

1946-1982 1982-2018 1946-1982 1982-2018 1946-1982 1982-2018

Ŝj Ŝj S̃j (θ̂) t-stat S̃j (θ̂) t-stat S̃j (θ̂) t-stat S̃j (θ̂) t-stat

Included in the SMM estimation (only 1946-1982)

E(PDt) 25.48 47.09 27.50 -1.30 39.03 2.00 26.99 -0.97 37.33 2.42

E(Pt/Pt−1 − 1) 0.48 1.84 0.80 -0.51 1.30 0.85 0.78 -0.48 1.27 0.90

E(rst) 4.73 4.33 4.87 -0.19 4.20 0.19 4.90 -0.23 4.25 0.11

E(rbt ) 0.42 0.38 0.40 0.67 0.59 -7.54 0.40 0.48 0.59 -7.52

Var(pt − dt) 7.20 14.07 7.40 -0.19 8.90 1.42 7.03 0.09 7.61 1.79

σ (rst) 7.87 7.41 6.58 1.78 6.34 1.32 6.45 1.95 5.78 2.00

ζ̂ 0.84 2.63 0.88 -0.71 1.75 4.11 0.85 -0.17 1.56 4.99

Non-included in the SMM estimation

E(Dt/Dt−1 − 1) 0.49 0.75 0.49 0.00 0.75 0.00 0.49 0.00 0.75 0.00

σ (Dt/Dt−1) 2.52 1.97 2.52 0.00 1.97 0.00 2.52 0.00 1.97 0.00

Cov(pt − dt , d̄t) -2.00 2.35 -0.42 -2.62 0.08 4.10 -0.51 -2.45 -0.11 4.45

Cov(pt − dt , r̄t) -9.13 -11.35 -7.99 -0.78 -8.13 -0.99 -7.73 -0.95 -7.19 -1.29

Cov(pt − dt , τ̄
K
t ) -0.06 0.34 -0.03 -0.48 0.20 2.29 -0.04 -0.38 0.14 3.38

Cov(pt − dt , τ̄
D
t ) 0.36 1.00 0.08 0.82 0.59 1.25 0.061 0.89 0.56 1.34

corr(PDt , PDt−1) 0.96 0.98 0.97 -0.11 0.97 0.06 0.97 -0.11 0.98 0.01

corr(PDt , βt) 0.84 0.84 0.85 -0.01 0.89 -0.22 0.84 0.00 0.90 -0.27

With this set of estimations, a natural question is: What is then the marginal effect
of CGT cuts on PD volatility? The answer is not immediate as, apart from CGT cuts, the
model includes other tax cuts, a reduction in macroeconomic volatility and an increase in
mean dividend growth, all of them influencing prices. To answer the question, then, I
run a counterfactual analysis. Each of the previous models is simulated again, keeping
τKt = 0.15 for the whole 1982-2018 period, which is the mean of the first subsample and
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also the level in 1989, before starting a continuous decline until reaching the bottom 5% in
2011. In other words, instead of falling, taxes are kept constant at a reasonably high level in
historical terms.

These counterfactual simulations deliver an alternativeVar(pt − dt) for the period
1982-2018, calledVc1, with the superindex c standing for "counterfactual". This number is
then compared with the model-implied variance when the true tax time series are used,
calledV1. The difference between the two is a measure of the absolute marginal effect of
tax cuts in terms of variance points. That measure might be difficult to interpret, though.
Then, it is normalized by the variance level in the first subsample, calledV0, which delivers
the percentual increase in the variance caused by CGT cuts in the model. This number is
then compared with the percentual increase in the PD variance observed in the data. The
ratio of the two is a measure of the CGT cuts marginal effect on the volatility of the PD
ratio.

Table 1.7 collects all these numbers for the two versions of the model and the two
estimated parameter vectors. The model featuring only the capitalization effect and using
the parameterization that includes all the statistics yields a marginal effect of 62%, meaning
that CGT cuts would be responsible for 62% of the observed increase in PD volatility.
That effect drops to 34% when the lock-in effect is considered. If, instead, the parameters
obtained for M=7 are used, the marginal effect is 38% when considering only capitalization
and 25% when also including the lock-in effect.

Table 1.7. Estimations of the marginal effect of CGT cuts on
Price-Dividend volatility. The table reports model-implied variance of the PD ratio under
different periods and scenarios. V stands for Var (pt − dt ) . The subindex 0 (1) indicates the first (second)
subperiod 1946-1982 (1982-2018); Vc1 is the counterfactual variance if τKt = 15% for all t since 1982. V1 − Vc1
shows the effects of post-1982 tax cuts on the absolute level of V, being a measure of an absolute marginal

effect.
(V1−Vc1 )/V0

(Vus1 −Vus0 )/Vus0
compares the counterfactual increase in volatility with respect to the observed increase,

being a measure of a percentual marginal effect. M

V0 V1 Vc1 V1 − Vc1
(V1−Vc1 )/V0
(Vus1 −Vus0 )/Vus0

M=22
Capitalization 8.34 11.93 6.92 5.01 0.62

+ Lock-in 8.26 9.43 6.72 2.71 0.34

M=7
Capitalization 7.40 8.90 6.19 2.71 0.38

+ Lock-in 7.03 7.61 5.91 1.70 0.25
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1.3.5. Alternative assumptions about expectations and taxes

This section explores the robustness of the baseline results along some dimensions. On
the one hand, the model is simulated under the assumption of Rational Expectations to
have a traditional benchmark. Moreover, I simulate the model with tax foresight and top
statutory rates, respectively.

Table 1.8 reports the statistics using the baseline parameterization in the same model
but with Rational Expectations. This version fails in many dimensions. As already
pointed out by Adam, Marcet, and Beutel, 2017, RE is capable of generating neither
enough volatility nor the equity premium. Moreover, despite delivering a sizable increase
in the mean PD ratio, its volatility actually goes down. This last fact emphasizes that higher
prices are not automatically associated with higher volatility and that, indeed, the role of
taxes on the feedback loop between prices and beliefs is crucial to explain the observed
patterns.

Under tax foresight, agents could include future taxes in their subjective model of
prices to forecast future prices better. Consider the following modified subjective model
of prices for the model with liquidity shocks, where equation (2.38) is replaced by

Pt
Pt−1

=
1 − πτKt

1 − πτKt−1
bt + εPt (1.53)

Agents understand that the liquidity shock will hit a fraction π of agents and that
tax rates will change, incorporating that into their price model. Consequently, subjective
beliefs on capital gains become EPt

[
Pt+1
Pt

]
=

1−πτKt+1
1−πτKt

βt . The fraction would cancel out

if τKt+1 is uncertain as EPt
[
τKt+1] = τKt , but not now. Table 1.9’s columns 4-7 show the

model statistics with this alternative model. Results are remarkably similar to the baseline
except for the higher increase in volatility. The larger volatility is related. In other words,
including tax changes in the beliefs model adds volatility to expectations and prices, but
not for the reasons pointed out by the empirical variance decomposition.

Finally, table 1.9’s columns 8-11 show the statistics when the model is simulated using
top statutory rather than average marginal effective rates. Top statutory rates are generally
higher and are not affected by the drop of equities in taxable accounts. As a result, mean
prices are lower, the volatility is also lower, and its increase is very modest, although more
than enough to offset the stabilizing effect of the Great Moderation.

1.3.6. The Equity Premium

This section explores the reasons behind the relatively good equity premium generated by
the learning model using realistic consumption and dividend growth processes, a positive
discount factor and low risk aversion. First, it analyzes the drivers behind mean stock
returns. Second, it explores its relation to the drivers of the risk-free rate.
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Table 1.8. Rational Expectations statistics for the model with only the
capitalization effect. This table reports statistics for the model with liquidity shocks under Rational
Expectations. The first two columns report the observed statistics for the US data. The next four columns report
model-implied statistics and their t-statistics. The model uses the parameterization described in Table 1.3 for
M=22, baseline column. Rates of growth, variance and covariance have been multiplied by 100.

US data Model

1946-1982 1982-2018 1946-1982 1982-2018

Ŝi Ŝi S̃i (θ̂) t-stat S̃i (θ̂) t-stat

E(PDt) 25.48 47.09 64.31 -25.04 81.94 -8.63

E(Pt/Pt−1 − 1) 0.48 1.84 0.61 -0.20 0.90 1.48

E(rst) 4.73 4.33 2.61 2.80 2.49 2.44

E(rbt ) 0.42 0.38 0.28 7.80 0.44 -2.78

Var(pt − dt) 7.20 14.07 1.75 4.00 1.49 3.50

Cov(pt − dt , d̄t) -2.00 2.35 0.98 -4.93 0.77 2.87

Cov(pt − dt , r̄t) -9.13 -11.35 -0.31 -6.00 -0.49 -3.35

Cov(pt − dt , τ̄
K
t ) -0.06 0.34 0.23 -4.92 0.13 3.53

Cov(pt − dt , τ̄
D
t ) 0.36 1.00 0.07 0.88 0.23 2.35

σ (rst) 7.87 7.41 3.85 5.56 3.29 5.08

ζ̂ 0.84 2.63 - - - -

E(Dt/Dt−1 − 1) 0.49 0.75 0.49 0.00 0.75 0.00

σ (Dt/Dt−1) 2.52 1.97 2.52 0.00 1.97 0.00

corr(PDt , PDt−1) 0.96 0.98 0.96 -0.03 0.96 0.20

corr(PDt , βt) 0.84 0.84 - - - -

To articulate the discussion, I use the following decomposition of the stock return
geometric mean43(

N∏
t=1

Pt +Dt

Pt−1

) 1
N

=

(
N∏
t=1

Dt

Dt−1

) 1
N

︸           ︷︷           ︸
R1

(
PDN + 1
PD0

) 1
N

︸          ︷︷          ︸
R2

(
N−1∏
t=1

PDt + 1
PDt

) 1
N

︸               ︷︷               ︸
R3

(1.54)

43It was first suggested by Adam, Marcet, and Nicolini, 2016.
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Table 1.9. Model statistics under alternative assumptions about
capital taxes for the model with only the capitalization effect. This table
reports moments for the model with portfolio adjustments costs when there is tax foresight and when statutory
rather than effective rates are used. The first four columns report the observed statistics along with their
Newey-West standard error for the US data. The next four columns report model-implied statistics and their
t-statistics. The model uses the parameterization described in Table 1.3 for M=22. Rates of growth, variance
and covariance have been multiplied by 100. The top panel reports moments included in the SMM
estimation; the bottom panel non-included moments.

US data Tax Foresight Statutory Rates

1946-1982 1982-2018 1946-1982 1982-2018 1946-1982 1982-2018

Ŝj Ŝj S̃j (θ̂) t-stat S̃j (θ̂) t-stat S̃j (θ̂) t-stat S̃j (θ̂) t-stat

E(PDt) 25.48 47.09 27.91 -1.56 40.54 1.62 22.93 1.65 33.52 3.36

E(Pt/Pt−1 − 1) 0.48 1.84 0.90 -0.66 1.47 0.58 0.66 -0.30 1.17 1.05

E(rst) 4.73 4.33 4.96 -0.31 4.42 -0.11 5.40 -0.89 4.41 -0.10

E(rbt ) 0.42 0.38 0.33 4.87 0.48 -3.96 0.31 5.82 0.47 -3.82

Var(pt − dt) 7.20 14.07 8.32 -0.87 13.17 0.23 4.96 1.62 5.21 2.46

Cov(pt − dt , d̄t) -2.00 2.35 -0.25 -2.89 0.08 4.11 0.04 -3.37 0.01 4.23

Cov(pt − dt , r̄t) -9.13 -11.35 -8.68 -0.31 -12.38 0.32 -5.06 -2.77 -4.74 -2.04

Cov(pt − dt , τ̄
K
t ) -0.06 0.34 -0.02 -0.72 0.21 2.23 0.05 -1.88 0.15 3.18

Cov(pt − dt , τ̄
D
t ) 0.36 1.00 0.20 0.49 0.50 1.54 0.14 0.65 0.51 1.48

σ (rst) 7.87 7.41 6.96 1.25 9.22 -2.23 5.86 2.78 4.80 3.22

ζ̂ 0.84 2.63 0.92 -1.26 1.95 3.20 0.59 3.83 1.22 6.60

E(Dt/Dt−1 − 1) 0.49 0.75 0.49 0.00 0.75 0.00 0.49 0.00 0.75 0.00

σ (Dt/Dt−1) 2.52 1.97 2.52 0.00 1.97 0.00 2.52 0.00 1.97 0.00

corr(PDt , PDt−1) 0.96 0.98 0.97 -0.08 0.94 0.58 0.98 -0.15 0.98 -0.06

corr(PDt , βt) 0.84 0.84 0.84 0.08 0.79 0.22 0.84 0.05 0.88 -0.15

Thus, the mean gross return can be understood as the product of three elements.
The first term (R1) is the mean dividend growth. The second term (R2) is the ratio of the
terminal over the initial PD ratio value, which might be related to the existence of a time
trend. Finally, the last term (R3) is a convex function of period t PD ratio. It increases
with the volatility of the PD time series, but decreases with its mean.

Table 1.10 reports the decomposition using empirical and simulated data. Since the
dividend growth process has been parameterized directly from the data, the models exactly
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replicate R1. Regarding R2, both models show a certain increase in the PD ratio in both
periods, although weaker than the observed. This is a mismatch of the model, partly
due to the pre and post-1982 division; the CGT falls temporarily at the end of the first
subsample and beginning of the second subsample, bringing the PD ratio up during the
final quarter of the 1st subsample and the initial quarters of the 2nd subperiod. As a result,
R2 gets too high (low) in 1946-1982 (1982-2018). R3 is reasonably close to the observed one
in the first subsample, because both models get the PD mean and variance correctly. In
the second subsample, though, both exaggerate R3 due to the fact they produce a too-low
PD mean.

Table 1.10. Decomposition of the stock return geometric mean. The table
shows the stock returns mean decomposition according to expression (1.54). The first column uses U.S. data;
the second, simulated data using the learning model; the third, simulated data using the RE model. The last
row is the stock return geometric mean. Simulated data uses the parameterization shown in table 1.3.

US data Capitalization +Lock-in

1946-1982 1982-2018 1946-1982 1982-2018 1946-1982 1982-2018

R1 0.46 0.74 0.46 0.74 0.46 0.74

R2 -0.27 0.88 0.28 0.44 0.26 0.40

R3 4.10 2.37 4.35 2.97 4.40 3.02

E(rs) 4.30 4.03 5.12 4.18 5.15 4.20

The second part of the equity premium is the risk-free rate. Although it has no
closed-form solution in the quantitative model, it does so for RE when p = 1. This
benchmark is useful to understand why it is not too high. It is given by

rbt =
(
δ−1Et

[(Ct+1

Ct

)−γ]−1
− 1

) 1
1 − τbt

(1.55)

where Et
[(

Ct+1
Ct

)−γ]
= a−γexp

{
γ(σ2

W + σ2
D) (1 + γ)/2

}
exp{σDW γ2}.

Thus, rbt depends essentially on the mean and volatility of the income processes
and the level of risk aversion. As a result, getting a high stock return and a low bond
rate is complicated in many models; the reason is that either high risk aversion or income
volatility is needed. However, the required levels appear unrealistic (Mehra and Prescott,
1985), plus high risk aversion would also lead to a too high risk-free rate (Weil, 1989).
Contrarily, this paper resorts to alternative forces that make returns high enough. The
main driver is non-fundamental volatility coming from beliefs, which makes compatible
realistic income processes with high and volatile stock returns. However, belief volatility
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is unable to do all the job (Adam, Marcet, and Nicolini, 2016, Adam, Marcet, and Beutel,
2017). The second driver is the increase in the PD ratio brought about by stronger income
growth and lower taxes. Thus, R3 > 1 helps to increase mean stock returns. In other
words, relying on beliefs alone would either be insufficient (as in Adam, Marcet, and
Beutel, 2017) or require a too-high beliefs volatility while introducing a trend in the PD
ratio (as the one coming from taxes) helps sort this problem out.

The previous reasoning explains why the model does a decent job matching the
equity premium level. Additionally, its decline is captured by the model too. In reality
as well as in the model, the fall in stock returns is mostly due to the reduction in R3 as a
result of a higher PD ratio, which overcomes the opposite effect via R2. Besides, the mean
risk-free rate is also declining, mostly due to the fall in τb.44 In other words, the fact the
model produces an increase in the PD ratio helps to explain both the level and trajectory
of the equity premium.

1.4. Optimal Capital Gains Taxation

In this section, the normative use of a tax on unrealized capital gains for macrofinancial
stability purposes is studied. Thus, whereas Section 2 pointed out the particular role of
capital gains taxation and Section 3 analyzed the ability of taxes, as historically given, to
explain certain transformations in the US stock market, this section asks: What is the
appropriate capital gains tax to get the best of imperfect capital markets?

The problem in hand is the excess volatility in capital prices which can be read as
a pecuniary externality. The reason is that excess volatility emerges from the inability
of agents to internalize the equilibrium price formation due to information frictions.45

Thus, the lack of knowledge of the true determinants of prices pushes agents to make
decisions using forecasts derived from their subjective models that ignore the effect of
their own forecasts on market prices and everybody else’s predictions. In short, rational
individuals trying to make the best prediction about future prices but missing general
equilibrium effects end up causing excessive volatility.

A precondition to exploring an optimal tax is establishing a connection between asset
prices and consumption fluctuations that is missing from the previous endowment model.
To that end, I set up a tractable two-sector growth model with investment adjustment costs
and learning about capital prices. The model links the capital market price to investment
decisions, in line with the Q-theory. As a result, cycles of over- and under-accumulation
of capital emerge, driven by excessive asset price fluctuations.

44In this case, there is no feedback loop affecting the bond price due to its one-period maturity. Hence,
τb level is neutral and only tax changes have an impact on bond prices. This impact is very small, so the
risk-free rate is very stable.

45This inability is due to the fact investors ignore other investors’ characteristics such that the standard
derivation of equilibrium prices combining individual and aggregate optimality conditions is not possible.
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The section is structured as follows. Section 1.4.1. sets up a centralized two-sector
growth model with investment adjustment costs and a CGT on an accrual basis. Section
1.4.2. decentralizes the economy by introducing efficient capital markets. Contrarily,
Section 1.4.3. decentralized the economy when investors have imperfect market knowledge
and learn about prices. Section 1.4.4. studies an optimal taxation problem. Finally, Section
1.4.5. proposes an alternative implementation of the optimal policy that avoids too volatile
taxes.

1.4.1. The First Best economy

In this section, a model with endogenous consumption is introduced. It consists of a two-
sector growth model with investment adjustment costs. The model is highly simplified,
reduced to the minimum ingredients needed to connect capital prices to output. The
model structure is described next.

Demographics. The economy is populated by a continuum of measure 1 of infinitely
living identical agents.

Goods. There is a perishable consumption good (or simply "good") and a non-
perishable capital good (or simply "capital") that depreciates at a constant rate d each
period. Goods deliver utility whereas capital is used to produce goods.

Production technology. There is a goods production function that uses capitalK with
an inelastically supplied 1 unit of labour in a particular technological environment given
by Z to deliver goods F : (Z,K) → R+. F has neoclassical properties; the technology
level Z is exogenous and stochastic. In addition, capital is produced via a linear function
that converts It +G(It) units of goods into It units of capital;G(It) represents investment
adjustment costs, a convex function, symmetric, with G(0) = 0, G′(0) = 0 and G′′(·) >
046.

Welfare. The utility functionU is time-separable, continuous, at least twice-differentiable
function with U ′(Ct) > 0 and U ′′(Ct) < 0, with Inada properties.

Social Planner’s problem. In the previous economy, the Social Planner faces a
dynamic allocation problem consisting on distribute goods between investment and
consumption to maximize the lifetime social welfare:

max
{Ct ,It ,Kt }∞t=0

E0

∞∑︁
t=0

δtU (Ct) (1.56)

s.t. i) Consumption-goods resource constraint:

Ct + It + G(It) ≤ F (Zt , Kt−1) (1.57)
46This specification implicitly assumes diminishing returns to scale in adjustment costs. In this way, Hayashi,

1982’s theorem does not hold. The violation of the theorem can be avoided by assuming G also depends
negatively on K and it is homogeneous of degree one. However, it complicates the analysis a bit without
adding any crucial insight to the question in hand. See Romer and Romer, 2010 for a discussion.
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ii) Capital-goods resource constraint:

Kt ≤ It + (1 − d)Kt−1 (1.58)

iii) Non-negative consumption:
Ct ≥ 0 (1.59)

First Best (optimal growth path). Given initial capital K−1 and an exogenous
productivity process {Zt}∞t=0, the Social Planner equilibrium consists of sequences of
allocations {Ct , It , Kt}∞t=0 such that:

1. Resource constraints (1.57)-(1.58) are satisfied.

2. First order conditions:
uct = λt (1.60)

1 + GI
t = qt/λt (1.61)

qt

λt
= δEt

[
λt+1

λt

(
F kt+1 + (1 − d)

qt+1

λt+1

)]
(1.62)

where GI
t =

G (It )
It

, uct =
U (Ct )
Ct

, F kt+1 =
F (Zt+1,Kt )

Kt
; λt is the Lagrange multiplier

of the goods resource constraint, reflecting the marginal value of goods; qt is the
Lagrange multiplier of the capital resource constraint and then, qt/λt reflects the
marginal value of capital (in terms of goods).

3. A transversality condition.

lim
j→∞

δjEt

[
uct+j

uct

qt+j

λt+j
Kt+j

]
= 0 (1.63)

Altogether, the model equilibrium is characterized by choices about capital accumu-
lation. It is determined by the intersection of two functions that relate capital stock to its
shadow price. First, combining equations (1.58) and (1.61), a positive relationship between
K and q̄ ≡ q/λ arises. Besides, by the properties of F , the Euler Equation (1.62) gives rise
to a negative K − q̄ relationship. These two curves pin down a unique equilibrium, from
which investment, consumption and output follows. As it is well-known, in dynamic
terms the model is described by two difference equations characterizing the evolution of
K and q̄.47

47See Romer and Romer, 2010 for a textbook treatment.
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1.4.2. Efficient Markets

In this section, investment is decentralized. Thus, on top of the previous elements, markets
are introduced and with them the information atomistic investors possess is specified.

Markets. The economy consists of two markets for capital and goods. In the former,
capital producers and capital users meet to sell and buy new and old capital at price Qt

48.
In the latter, capital producers acquire the inputs they need to produce new capital and
households meet their consumption demand. Goods price acts as the unit of account of
the economy and as such, it is normalized to 1. Markets are competitive.

Information set. Agents have all the structural knowledge about the economy. In
particular, homogeneity is common knowledge and households are aware of firms’ prob-
lem.

Then, we must characterize the problems of the two group of agents: capital pro-
ducers and producing households.

Capital producers. They maximize profits by choosing investment on new capital.
Then, they acquire goods to produce capital (facing the adjustment costs G(It)) that will
be sold at price Qt in capital markets as to maximize their profits Πt . Their static problem
can be stated as

max
{It }∞t=0

Πt = QtIt − It − G(It) (1.65)

Producing households. In this economy, households buy goods to satisfy their
consumption demand and capital to produce goods. Each of them supply a unit of labour
inelastically. Hence, their problem can be written as

max
{Ct ,Kt }∞t=0

E0

∞∑︁
t=0

δtU (Ct) (1.66)

s.t. i) Budget constraint:

Ct + QtKt ≤ F (Zt , Kt−1) + (1 − d)QtKt−1 + Πt (1.67)

48A mapping between capital and stock price can be established along Adam and Merkel, 2019’s lines. Assume
that capital Kt can be securitized via equities St without any cost. In equilibrium, arbitrage is not possible
and then, the ex-dividend equity price must be equal to the market value of capital net of dividends. Thus,
consider that a fraction x ∈ (0, 1) of profits is distributed such that dividendsDt = xKt−1F

k
t . Assume that

the rest is reinvested in new capital (1 − x)Kt−1F
k
t /Qt . Hence, the market value of capital per share after

dividends payments is Pt = Qt ((1 − d)Kt−1 + (1 − x)Kt−1F
k
t Qt). It follows that the PD ratio is given by

Pt
Dt

=
(1 − d)
x

Qt

F kt
+ 1 − x

x
(1.64)

For reasonable x (not too small), the PD is basically a proportion of the Capital-Rent ratio. Therefore, the
connection with the stock market model is that learning about stock prices would be an implicit way of
learning about the market value of capital.
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ii) Non-negative consumption:
Ct ≥ 0 (1.68)

Competitive Equilibrium. Given K−1, a Competitive Equilibrium consists of
sequences of allocations {Ct , It , Kt}∞t=0 and prices {Qt}∞t=0 such that:

1. Capital producers behave optimally, satisfying

Qt = 1 + GI
t (1.69)

2. Households behave optimally, satisfying:

a) The sequence of budget constraints (1.67).

b) The sequence of Euler Equation

Qt = δEt

[
uct+1
uct

(
F kt+1 + (1 − d)Qt+1

)]
(1.70)

c) A transversality condition

lim
j→∞

δjEt

[
uct+j

uct
Qt+jKt+j

]
= 0 (1.71)

3. Markets clear:
Goods: Ct + It + G(It) = F (Zt , Kt−1) (1.72)

Capital: Kt = It + (1 − d)Kt−1 (1.73)

First Welfare Theorem. It is clear that both institutions, the planner and markets,
have to satisfy the same aggregate resource constraints. Besides, in equilibrium, market
and planner’s Euler Equation reads exactly the same

1 + GI
t = δEt

[
λt+1

λt

(
F kt+1 + (1 − d) (1 + GI

t+1)
)]

(1.74)

which implies
Qt = q̄t (1.75)

Thus, the market capital price is equal to its shadow price. By the arguments in the
previous section, it follows that quantities will be those of the First Best.
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1.4.3. Inefficient Markets

In this section, the full information assumption is relaxed. This departure from Rational
Expectations gives rise to an additional uncertainty source, price formation, that adds
new dynamics to the model. First, the new information set is specified:

Information set. Households have structural knowledge about the economy except
they ignore they all are equal. This incomplete information makes them unable to derive
current capital prices from their optimality conditions since they cannot either use market
clearing conditions ex-ante nor apply the Law of Iterated Expectations. This friction
is formalized by introducing a subjective probability measure Pi that reflects investors’
views about productivity, capital and prices.Thus, the underlying probability space is
given by (Ω, B, Pi) with B denoting the corresponding σ -algebra of Borel subsets of Ω
and Pi agent’s i subjective probability measure over (Ω, B). For generality, we include
prices in the the state space Ω, with ω = {Zt , Kt , Pt}∞t=0 as a typical element.

In this world, the problems agents face are the same as in the efficient market case
except now households use their subjective probability measure, that is

max
{Ct ,Kt }∞t=0

EP0

∞∑︁
t=0

δtU (Ct) (1.76)

Hence, the Euler Equation reads as

Qt = δEPt

[
uct+1
uct

(
F kt+1 + (1 − d)Qt+1

)]
(1.77)

To fully characterize equilibrium, the following subjective price model is assumed:

Qt+1

Qt

uct+1
uct

= θt + εPt (1.78)

θt = θt−1 + νt (1.79)

with i.i.d. normally distributed innovations. The posterior of the unobserved component
θ follows a Normal distribution

θt ∼ N (βt , σ2
θ )

where σ2
θ

is the steady state Kalman estimate uncertainty and the posterior mean evolves
recursively following

βt+1 = βt + g
( Qt

Qt−1

uct
uct−1

− βt

)
(1.80)

Hence, EPt
(
Qt+1
Qt

uct+1
uct

)
= βt .
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Investors use this model to forecast capital gains and learn from new information,
responding to their uncertainty about equilibrium price formation. This learning process
adds an additional source of fluctuations to the model. In particular, the model equilib-
rium dynamics are now described by three difference equations: the capital law of motion
(1.73), the Euler Equation (1.77) and the expectations updating equation (1.80). Then,
two feedback loops operate in learning markets. First, the one between the stock and
price of capital, which is self-correcting. Second, the price-expectations loop described
throughout the paper, which is reinforcing and can drive the economy in waves of over
and under capital accumulation.

The expectations loop amplifies the dynamics emerging from the efficient model. To
illustrate it, figure 1.7 plots the response of both the capital stock and price to a transitory
productivity shock in the (Kt , Qt) diagram, starting from the steady state. With efficient
markets, an increase in productivity would move the price and stock of capital up for one
period, surprising the agents. However, since the displacement is known to be temporary,
they find no reason to revise expectations so that the only force at play are lower returns
from a higher stock of capital that brings prices down; then, with prices below and
the capital stock above their steady state levels, the economy enters a path of gradual
disinvestment until reaching the steady state. With learning, the initial price surprise leads
agents to review their forecast upwards which in turn, raises prices and capital feeding back
into a new upward revision. However, there is a counteracting force: as the price boom
leads to accumulate capital, returns decline which pushes prices downwards. Eventually,
declining capital rents overcome the effect of more optimistic expectations, which are
defeated. At that point, the process revert in the form of a bust. It is throughout a sequence
of boom and busts, rather than following an smooth saddle path, that the economy goes
back to the steady state.

1.4.4. A capital gains tax to stabilize inefficient markets

In this section, a tax on unrealized capital gains is introduced and an optimal taxation
problem is analyzed. In line with Benigno et al., 2019, the optimal tax is derived to
implement the First Best49.

Capital gains taxation in a production economy. I first modify the household’s
budget constraint by introducing taxes on capital gains (τK ):

Ct +QtKt ≤ F (Zt , Kt−1) + (1−d)QtKt−1 +Πt − τKt (Qt −Qt−1) (1−d)Kt−1 +Tt (1.81)

Besides, it is assumed the government simply transfers the revenues back in a lump-sum
manner, that is,

τKt (Qt − Qt−1) (1 − d)Kt−1 = Tt (1.82)
49Benigno et al., 2019 argue that while the literature on pecuniary externalities focuses on setting the right

taxes to implement constrained efficiency, it is possible to use better these instruments and implement the
First Best.
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Efficient market

Learning market

K * Kt

P *

Pt

Figure 1.7. Response of capital and capital price to a transitory
productivity shock under Rational Expectations and Learning. The graph
uses a plane with the capital stock on the x-axis and the capital price on the y-axis. Starting in the steady
state, the economy is perturbed by a one-off productivity shock. The blue line shows the response of capital
stock and price under efficient pricing (Rational Expectations). The red line shows that response when agents
learn.

Then, the Euler Equations becomes

Qt = δEPt

[
uct+1
uct

(
F kt+1 + (1 − τKt+1) (1 − d)Qt+1 + τKt+1(1 − d)Qt

)]
(1.83)

The tax distort the intertemporal incentives by influencing the present value of
future payoffs and then the capital price and equilibrium allocations.

Optimal taxation problem. Given K−1 and an exogenous productivity process
{Zt}∞t=0, the paternalistic planner’s problem is to choose both capital gains and lump-sum
taxes to deliver the best competitive equilibrium with learning, that is,

max
{τKt ,Tt }∞t=0

E0

∞∑︁
t=0

δtU (Ct)

s.t. households budget constraint (1.81); the government budget constraint (1.82); the
capital producers’ profits equation; goods and capital market clearing conditions (1.72,
1.73); the investment function (1.69); the households’ Euler Equation (1.83); and the beliefs
updating equation (1.80).
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Solution. To replicate the efficient allocations, it is sufficient for the planner to set
taxes as to equalize the Euler Equation under Rational Expectations and learning and
to transfer the proceeds back to households in a lump-sum manner. If that is possible,
prices in the learning world would be the same as under Rational Expectations. In turn,
lump-sum taxes would undo the income effect triggered by the capital gains tax, leaving
the budget constraint unchanged. Altogether, with prices at the right level and unchanged
resources, the allocations will be the efficient ones as the remainder optimality conditions
are exactly the same in both worlds. In other words, the only difference with efficient
markets is that now there is learning to respond to deal with limited information so that
the planner would like to use taxes to undo the effects of that friction. Agents will continue
to have imperfect knowledge and learn, but that process would not generate excess price
volatility anymore because taxes would avoid the transmission of beliefs deviations from
RE to prices and quantities.

The Rational Expectations’ Euler Equation can be rewritten as:

QRE
t =

δEt

[
uct+1
uct
F kt+1

]
1 − δ(1 − d)β∗t

(1.84)

where β∗t ≡ Et
[
uct+1
uct

Qt+1
Qt

]
. The learning counterpart with taxes reads as

QL
t =

δEPt

[
uct+1
uct
F kt+1

]
1 − τKt+1δ(1 − d)EPt

[
uct+1
uct

]
− (1 − τKt+1)δ(1 − d)βt

(1.85)

Then, the market inefficiency under learning, call it X , boils down to the distance
between the efficient and the learning price, that is, Xt = QRE

t − QL
t (τKt+1). The optimal

taxation problem amounts to find the root of X . In other words, a tax level τ∗ is optimal
if and only if

Xt (τ∗) = 0 (1.86)

The root of Xt can be written as

τ∗t+1 = 1 −
Et

[
uct+1

(
Pt+1 − Pt

)]
EPt

[
uct+1

(
Pt+1 − Pt

)] (1.87)

Thus, the optimal tax is a nonlinear function of the deviation of subjective from
objective expectations about capital gains (adjusted by wealth’s marginal value). Consider
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the limit case with vanishing risk aversion to derive clear intuition. Then, the previous
formula simplifies to

τ∗t+1 = 1 −
β∗t − 1
βt − 1

(1.88)

There are two limit cases that can be derived. First, when subjective beliefs tend
toward the objective ones, the optimal tax is zero:

lim
βt→β∗t

τ∗t+1 = 0

Second, when objective expectations tend to 1, the optimal tax is simply one:

lim
β∗t→1

τ∗t+1 = 1

Beyond these cases, the sign of the tax can be defined by parts:50

τ∗t+1 =


> 0 if

{
βt > β∗t | βt > 1 (A)
βt < β∗t | βt < 1 (B)

< 0 if

{
βt > β∗t | βt < 1 (C)
βt < β∗t | βt > 1 (D)

(1.89)

Intuitively, case A shows that when investors are too optimistic, meaning they expect
prices to rise more than justified by fundamentals, capital gains should be taxed. That can
be the situation in a typical a boom. Taxes should also be positive when investors are too
pessimistic, meaning they expect prices to decrease more than justified by fundamentals
(case B). In this case, typical of a burst, taxes on negative capital gains are actually subsi-
dizing capital losses. Hence, in A (B), taxes dampen the upwards (downwards) hike in
beliefs.

The formula recommends a negative tax in two scenarios. In case C, investors are
not optimistic enough, meaning they expect only a moderate increase in price growth,
below what would be reasonable based on fundamentals. Then, investors would be
actually subsidized to boost their optimism. In case D, investors are not pessimistic
enough, meaning they expect only a soft reduction in price growth, below what Rational
Expectations investors would forecast. Then, a negative tax on negative expected capital
losses would take resources from investors, aiming at making them expecting more losses
until anchoring their beliefs at their fundamental value. Figure 1.8 illustrates these four
cases.
50Cases in which β∗t = 1 or βt = 1 are ignored; the first because leads to a tax equal to 1 as already pointed out;

the second because it yields an undefined fraction.
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Figure 1.8. Optimal capital gains tax. The figure shows the optimal capital gains tax τ∗

as a function of subjective expectations βt for two different values of objective expectations βRE , one above
and one below 1. Letters signal the 4 four cases highlighted in expression (1.89). Shadowed areas sets out the
cases in which investors expect to pay taxes, when expected capital gains are positive (negative) and the
tax is positive (negative).

The optimal tax inherits the subjective expectations dynamics. By the learning
updating rule, βt = β(βt−1, βt−2, τt−1, τt−2, ·) shows high serial correlation (for small
gains). In turn, β∗t is a function of the states (Zt , Kt−1), both obeying AR(1) process. It
follows that optimal taxes would display high serial correlation. Yet, subjective beliefs βt
deviates from RE quite substantially which may generate big movements in taxes. In fact,
the optimal tax is unbounded and then, in some cases, the tax might reach values well
beyond ± 1. From a policy standpoint, that is probably an important shortcoming; next
section deals with it.

1.4.5. An alternative implementation

In this section, an alternative implementation of the optimal policy is presented. It uses
a CGT to eradicate the influence of subjective beliefs on prices and a subsidy on capital
rents to avoid chronic under-investment. To a great extent, this combination avoids tax
volatility.

A CGT equal to 100% can eliminate the influence of beliefs on prices. To illustrate
why, I use a decomposition of total volatility between fundamental and non-fundamental.
Following the procedure in Section 3, the variance of the capital price can be approximated
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by

Var(Qt) ≈ z2Var(Zt) + k2Var(Kt−1)︸                           ︷︷                           ︸
Fundamental

+ b2Var(βt)︸      ︷︷      ︸
Non-Fundamental Volatility ≡ V

(1.90)

where x = Qt/Xt evaluated at the approximation point for x = z, k, b. Then, the
optimal tax must satisfy

τ∗ ⇐⇒ V(τ∗) = 0 (1.91)

Note that the two objects in bVar(βt) depend on taxes. Then, finding a τ that makes
b = 0 would be a sufficient condition. Since

b =
Qt

βt
(Z∗, K∗, 1) =

δ2F (Z∗, K∗) (1 − d) (1 − τKt+1)
(1 − δ(1 − d)τKt+1 − δ(1 − d) (1 − τKt+1))2

(1.92)

with f (Z∗, K∗) being Et (F kt+1) evaluated at the approximation point, it turns out that a
tax equal to 1 eliminate the externality

τ∗ = 1 ⇐⇒ b = 0 ⇒ V = 0

When τKt+1 = 1, the equilibrium capital price becomes

QL
t =

δEt

[
uct+1
uct
F kt+1

]
1 − δ(1 − d) (1.93)

which is exactly the price under Rational Expectations when β∗t = 1. In other
words, this derivation reaches the same conclusion as before but in the other direction: an
optimal tax equal to 1 generates a price equivalent to the efficient when no capital gains
are expected.

Importantly, τ∗ = 1 does not imply a trivial solution consisting of correcting non-
fundamental volatility by killing also fundamental volatility. Thus,

lim
τK→1

x = x̃ > 0

for x = z, k. Put it differently, the volatility implementation of the optimal tax is in the
spirit of the so-called "Principle of Targetting" of Pigouvian taxation (see Dixit, 1985),
according to which a corrective tool has to tax directly the source of the externality. In
this case, the direct source of the externality is the excessive volatility of capital gains
expectations and thus, a tax on capital gains is directly related to it.

The main shortcoming of this approximation is that it might deliver a too low capital
price and then, chronic sub-investment. The question is whether this can be compensated
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by a new instrument, since lump-sum taxes cannot affect the capital price. A tax on capital
rents might be a natural alternative. Thus, suppose the government can tax capital profits
with τr . With this new instrument, equation (1.93) becomes

Qt =

δ(1 − τrt+1)Et
[
uct+1
uct
F kt+1

]
1 − δ(1 − d) (1.94)

Hence, by setting

(τrt+1)∗ = 1 − 1 − δ(1 − d)
1 − δ(1 − d)β∗t

(1.95)

Thus, if RE implies an almost constant capital gains expectations, (τrt+1)∗ would be
almost constant and then, the First Best can be implemented by a constant τK and a not-
too volatile τr along with lump-sum taxes.51 Altogether, the alternative implementation
offers a way of stabilizing capital markets avoiding excessive volatility in taxes and relaxing
the informational requirements.

1.5. Conclusions

This paper has analyzed how a Capital Gains Tax influences asset price cycles. I propose
a theory that challenges the mainstream view, held, for instance, by Stiglitz, 1983, that a
higher CGT boosts price fluctuations through the supply-side lock-in effect. Instead, I
show that the demand-side capitalization effect is stabilizing because it reduces the elasticity
of prices to subjective beliefs, reducing the likelihood of self-fulfilling booms and busts.
This theory is derived from a model of learning about prices with portfolio adjustment
costs and taxes on realized capital gains that displays the two effects in a tractable way.

The theory is applied to the United States, suggesting that the recurrence of asset
price cycles in the middle of the Great Moderation, a troubling observation for many
macro-finance models, can be partly explained by the observed decline in CGT. Indeed,
the structural estimation of the model reveals that CGT cuts account for 25% of the
observed rise in stock market volatility. The model also replicates the rise in stock market
valuations and a sizable equity premium. Empirical estimates using survey beliefs support
the model’s prediction of an increase in the sensitivity of prices to subjective expectations
due to lower taxes.

Furthermore, the last part of the paper has explored the usage of taxes to correct
excess price volatility stemming from investors’ information limitations. While subjective
beliefs are crucial in explaining stock market volatility, the excess volatility they cause can
be seen as a pecuniary externality that can cause undesirable real fluctuations. In such

51 (τrt+1)
∗ would be less volatile than τ∗t+1 as long as β∗t is more stable than βt .
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a case, a tax on unrealized capital gains that corrects too optimistic/pessimistic beliefs
proves able to restore the First Best.

Altogether, the arguments developed in the paper suggest that a CGT can be an
effective tool to prevent asset price booms and the financial and macroeconomic fluctu-
ations associated with them. Thus, while the ability of a Financial Transaction Tax to
prevent excessive price volatility has been widely questioned, a CGT emerges as a sound
alternative.

The research has left some issues opened. On the empirical side, the analysis has
focused on the US aggregate stock market leaving cross-sectional analysis unexplored.
Although the effect of capital gains tax on the cross-section of stocks was analyzed by Dai,
Shackelford, et al., 2013 for two tax reforms, it would be interesting to expand the analysis
using larger time windows. Moreover, the decline in capital taxes since the 1980s was a
global phenomenon. An international analysis of its effects on capital and real markets
and its interaction with financial deregulation and capital flows liberalization appears as
an interesting research avenue.

The paper has abstracted from many other potential drivers of the larger financial
volatility, such as the decline in interest rates or the rise in stock repurchases. Besides, I have
taken payout policies as given, ignoring the possible reaction of firms to tax changes and
its impacts on investment, productivity or employment. I leave them for future research.

From a broader standpoint, the optimal capital taxation literature has not considered
the use of capital gains taxes so far due to their focus on one-sector models.52 Thus, the
optimal use of capital gains taxes to fund government spending is to be explored. Finally, it
is well known that capital gains have important redistributive implications.53 The analysis
in this paper would suggest that a CGT could help not only ex-post (i.e., redistributing
capital gains) but even ex-ante (i.e. avoiding part of the wealth inequality that comes from
asset price dynamics).

52Not even the recent work of Chari et al., 2020 that includes a rich tax system with taxes on dividends,
capital rents or wealth.

53See Fagereng et al., 2022 for a recent analysis.



1.A Appendix

Appendix A: Data Sources

Stock market data. Stock prices, dividends and CPI inflation comes from Robert Shiller
database. They can be downloaded here: http://www.econ.yale.edu/~shiller/
data.htm. The risk-free rate is the 90 days T-Bill, from the FRED database https:
//fred.stlouisfed.org/series/TB3MS.

The data has been transformed into quarterly frequency by taking the last month
of the considered quarter. Besides, the nominal variables have been transformed to real
terms using Shiller’s CPI inflation index. Finally, as is standard in the literature, I have
deseasonalize dividends (by taking the average over the current and past 3 quarters) to
compute the price-dividend ratio.

Macroeconomic data. Consumption data is the BEA real quarterly personal con-
sumption expenditures series. Wages are the BEA compensation of employees. When
computing the Wage-Dividends ratio, I use the Net Dividends from the BEA (Corporate
Profits after tax with IVA and CCAdj: Net Dividends).

Capital tax rates.The base effective average marginal rates on dividends, short
and long capital gains and interests are supplied by the TAXSIM program of the Na-
tional Bureau of Economic Research (NBER). See Feenberg and Coutts, 1993 for a
description of the program. They can be found here https://taxsim.nber.org/
marginal-tax-rates/. These rates are offered on an annual basis from 1960 to 2018
at federal level and from 1979 to 2008 at state level. I took the rates computed using 1984
national data for each state and year.

Following Sialm, 2009, I adjusted for state and local taxes before 1979 and after 2008
as well as for the distinction between qualified and non-qualified dividends from 2003 on
to get a complete series for the 1960-2018 period. Before 1960, τdt , τskgt , τlkgt and rates are
taken from Sialm, 2009. τBt are interpolated.

The weights for the convex combination are computed using the dividend, short
and long capital gains yields offered by Sialm, 2009. They are averaged over the 1954-2006
period. Letting them vary barely change the synthetic rate. For details on the taxable share,
see Appendix C.

http://www.econ.yale.edu/~shiller/data.htm
http://www.econ.yale.edu/~shiller/data.htm
https://fred.stlouisfed.org/series/TB3MS
https://fred.stlouisfed.org/series/TB3MS
https://taxsim.nber.org/marginal-tax-rates/
https://taxsim.nber.org/marginal-tax-rates/
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Capital gains. The total realized capital gains are a 5 year moving average on the
capital gains reported in the adjusted gross income, coming from the IRS. As for total
capital gains, I use a 5 year moving average of the nominal taxable gains, obtained from
the Financial Accounts. I am grateful to Jacob Robbins for providing these data, coming
from his paper robbins2019capital. The portion of capital gains coming from equities
is obtained from the US Financial Accounts, covering the 1951-2018 on a quarterly basis.
Finally, the portion of realized capital gains coming from equities is computed using data
from the IRS for the year 1985 and 1997-2012.

Survey expectations. For the test of the tax indirect effect, I have used the UBS
survey is the UBS Index of Investor Optimism. The quantitative question on stock market
expectations has been surveyed over the period Q2:1998-Q4:2007 with 702 responses
per month on average. To make the data consistent with the model, I have run some
adjustment. First, the series have been deflated by using inflation expectations from the
Michigan Surveys of Consumers, available at https://data.sca.isr.umich.edu/
data-archive/mine.php. Second, I transformed real returns expectations into capital
gains expectations by subtracting the mean dividend growth along the period over each
period price-dividend ratio.

Appendix B: Proof of the Proposition.

Take a linear approximation of equation (1.16) around the Rational Expectations value
(i.e., βt = βD):

Pt
Dt

≈
PREt
Dt

+ ω(βt − βD) (1.96)

with PREt
Dt

=
δ (1−τD )βD

1−δ (1−πτK )βD−δπτK being a constant and ω evaluated at the approximation
point. Taking the variance of both sides

Var
[ Pt
Dt

]
≈ ω2 × Var(βt) (1.97)

as claimed in point i). Assume τD and πτK are both within the [0,1) interval. Then,

ω =
Pt/Dt

βt

���
βt=β

D
=

δ2(1 − τD)βD(1 − πτK )
(1 − δ(1 − πτK )βD − δπτK )2 > 0 (1.98)

Differentiating (1.98) with respect to τK

dω

dτK
=
−δ2(1 − τD)βDπ(1 − δ(1 − πτK )βD − δπτK ) − δ2(1 − τD)βD(1 − πτK )δπ(βD − 1)

(1 − δ(1 − πτK )βD − δπτK )2

(1.99)
The numerator boils down to −δ2(1 − τD)βDπ(1 − δ). Since δ < 1, the numerator

is negative, dω
dτK

< 0 and dω2

dτK
< 0 as claimed.

https://data.sca.isr.umich.edu/data-archive/mine.php
https://data.sca.isr.umich.edu/data-archive/mine.php
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Applying the chain rule to expression (1.97),

dVar[Pt/Dt]
dτK

≈ Var[Pt/Dt]
Var[βt]

dVar[βt]
dτK

+ Var[Pt/Dt]
ω2

dω2

dτK

Note Var[Pt/Dt ]
Var[βt ] = ω2 > 0 and Var[Pt/Dt ]

ω2 = Var[βt] > 0, provided the latter exists.

Given, dω2

dτK
< 0, the only thing left is to characterizeVar[βt] and prove dVar[βt ]

dτK
< 0.

Start with the characterization ofVar[βt]. Equation (1.17) can be linearly approxi-
mated as an AR(2) process around (βt−1, βt−2, ε

D
t−1) = (βD, βD, 1):

βt ≈ βD +A(βt−1 − βD) +B(βt−2 − βD) + C (εDt−1 − 1) (1.100)

with

A =
βt

βt−1

���βt−1=β
D

βt−2=β
D

εDt−1=1

= 1 − g +
gδβD(1 − πτK )

1 − δ(1 − πτK )βD − δπτK
(1.101)

B =
βt

βt−2

���βt−1=β
D

βt−2=β
D

εDt−1=1

= −
gδβD(1 − πτK )

1 − δ(1 − πτK )βD − δπτK
(1.102)

C =
βt

εDt

���βt−1=β
D

βt−2=β
D

εDt−1=1

= gβD (1.103)

If {βt} is stationary, it would have the following variance

Var(βt) ≈
(1 −B)C2σ2

D

(1 +B) (1 −A −B) (1 +A −B) (1.104)

Now I verify the conditions that ensure {βt} is stationary. It is known that for
the process to be stationary, parameters A, B must lie within the region −1 < B < 1,
A + B < 1, B − A < 1. I proceed to verify these conditions. Note B < 0 provided
πτK < 1. B must also satisfy B = − gδ (1−πτK )βD

1−δ (1−πτK )βD−δπτK > −1. Rearranging the terms,
1− δ(1− πτK )βD − δπτK > gδ(1− πτK )βD. The left hand side is positive by assumption
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A. The right hand side is also positive given πτK < 1. Then, a positive but small enough
gain is sufficient for the inequality to hold. In particular,

g <
1 − δ(1 − πτK )βD − δπτK

δ(1 − πτK )βD
≡ ḡ (1.105)

The next condition is A +B < 1. Using expression (1.101) and (1.102), the condition
boils down to A + B = 1 − g + gδβD (1−πτK )

1−δ (1−πτK )βD−δπτK − gδβD (1−πτK )
1−δ (1−πτK )βD−δπτK = 1 − g. Thus,

A +B < 1 holds if
g > 0 (1.106)

Conditions (1.105) and (1.106) requires there is some learning, but not too much. The
final condition is B − A < 1. Since B < 0, proving A > 0 is enough. It requires
1 > g

(
1 − δβD (1−πτK )

1−δβD (1−πτK )−δπτK

)
. Since g > 0, δβD (1−πτK )

1−δβD (1−πτK )−δπτK > 1 is sufficient such that
the element within the parenthesis is non-positive. Rearranging the previous inequality,
0 ≥ 1 − 2δβD(1 − πτK ) − δπτK . The following expression ensures the last inequality to
hold

πτK ≤
2δβD − 1
2δβD − δ

≡ τ̄ (1.107)

Since δ < 1, τ̄ < 1, compatible with πτK < 1. Thus, a not too high effective tax is enough
to ensure A > 0.

The next step is to proveVar[βt] is decreasing on τK . Using the definition of A,B

and the chain rule it turns out

dVar(βt)
dτK

=
Var(βt)

A

dA

dτK
+
Var(βt)

B

dB

dτK
(1.108)

Now I show dVar (βt )
dτK

< 0 holds. First,

Var(βt)
A

= −
2(B − 1)C2σ2

DA

(B + 1) (A −B + 1)2(A +B − 1)2 (1.109)

Given −1 < B < 1 holds, (B − 1) < 0 and B + 1 > 0. A is also positive. Then, this
derivative has a positive sign.

Now, note A is decreasing on τK

dA

dτK
=
−gδβDπ(1 − δ(1 − πτK )βD − δπτK ) − gδβDπ(1 − πτK )δ(βD − 1)

(1 − δ(1 − πτK )βD − δπτK )2 < 0

(1.110)
since the numerator boils down to −gδβDπ(1 − δ) and δ < 1.



CAPITAL GAINS TAXATION, LEARNING AND BUBBLES 59

Now, check the effects of τK through B. The derivative of the variance with respect
to B is given by

Var(βt)
B

=
2C2σ2

D(B
3 − 2B2 +B +A2)

(B + 1)2(A −B + 1)2(A +B − 1)2 (1.111)

Since the denominator and 2C2σ2
D are both positive, the sign is determined by (B3 −

2B2+B+A2). SinceB−A < 1, (B−1)2 < A2. Then, (B3−2B2+B+ (B−1)2) > 0
implies (B3 − 2B2 +B +A2) > 0. Note (B3 − 2B2 +B + (B − 1)2) > 0 is equivalent
to B3 − B2 − B + 1 > 0 which holds for −1 < B < 1 and B > 1. Hence, within the
stationarity region −1 < B < 1, the expression is positive which makes the derivative
positive as well.

The effect of τK on B is given by

dB

dτK
=
gδβDπ(1 − δ(1 − πτK )βD − δπτK ) + gδβDπ(1 − πτK )δ(βD − 1)

(1 − δ(1 − πτK )βD − δπτK )2 (1.112)

which is positive for the same reasons that dA
dτK

< 0.

Altogether, for dVar (βt )
dτK

< 0 it must be

Var(βt)
A︸   ︷︷   ︸
>0

dA

dτK︸︷︷︸
<0

+
Var(βt)

B︸   ︷︷   ︸
>0

dB

dτK︸︷︷︸
>0

< 0 (1.113)

Since A
τK

= − B
τK

, inequality (1.113) boils down to Var (βt )A >
Var (βt )

B , that is,

−
2(B − 1)C2σ2

DA

(B + 1) (A −B + 1)2(A +B − 1)2 >
2C2σ2

D(B
3 − 2B2 +B +A2)

(B + 1)2(A −B + 1)2(A +B − 1)2

Simplifying the previous expression, one gets to−(B−1)A > fracB3 − 2B2 +B +A2B + 1.
It can be shown this inequality holds for −1 < B < 1 and B −B2 < A < 1 −B. Note
−1 < B < 1 and A < 1 −B are stationary conditions already proven; B −B2 < A must
be proven. Using the definition of A,B, it turns out A = 1 − g −B. Using this equality,
B−B2 < 1− g−B or 0 < 1− g +B2 − 2B. Intuitively, B2 and −2B are positive so that,
the inequality would hold if g is not too high. In particular, given g > 0, the inequality
holds if B < 1 − g0.5 which given B < 0 is true if g0.5 < 1. To check this last inequality,

use the upper bound ḡ > g, that is, check if ḡ0.5 =

(
1−δ (1−πτK )βD−δπτK

δ (1−πτK )βD

)0.5
< 1. It boils

down to δ(1 − πτK )βD > 1 − δ(1 − πτK )βD − δπτK which has been already shown to
hold provided πτK < τ̄. Hence, dVar (βt )

dτK
< 0 as claimed in the proposition.



60 THREE ESSAYS IN MACROFINANCE

Appendix C: Capital Gains Tax stabilization properties under RE

Assume that dividends growth contains a persistent component xt in the spirit of Bansal
and Yaron, 2004:

lnDt = lnβD + lnDt−1 + φlnxt + lnεDt (1.114)

lnxt = lnxt−1 + lnϑxt (1.115)

with lnεDt ∼ i.i.N (− σ2
D
2 , σ

2
D) and lnϑxt ∼ i.i.N (−φs2x

2 , s2x). In this setup, the following
proposition holds:

Proposition: A Capital Gains Tax can stabilize the PD ratio under Rational Ex-
pectations. Assume that investors have perfect information, including the dividends

stochastic process (1.114) and (1.115), and agents’ homogeneity. Then, the variance of

the PD ratio is decreasing on the CGT level, that is,

dVar
[
PREt /Dt

]
dτK

< 0 (1.116)

In this setup, forward iteration on the Euler Equation (1.6), the Law of Iterated Expecta-
tions and a transversality condition delivers the following equilibrium PD ratio

PREt
Dt

=
δ(1 − τD)βDxφt

1 − δ(1 − πτK )βDxφt − δπτK
(1.117)

since Et
[
Dt+j
Dt

]
= (βDxφt )j . Following the same steps as in the proposition in the main text,

the unconditional variance of the PD ratio can by approximated around xt = 1 as

v = Var
[PREt
Dt

]
≈ ω2 × Var(xt) (1.118)

It turns out
dVar

[
PREt /Dt

]
dτK

=

Var
[
PREt /Dt

]
ω2

dω2

dτK
< 0

since
Var

[
PREt /Dt

]
ω2 = Var(xt) > 0 and dω2

dτK
< 0.
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Appendix D: Computing the non-taxable share

The evolution of the effective capital tax rates depends essentially on two factors: statutory
rates and regulations. Legal regulations are accounted for by the NBER TaxSim rates.
The important exception is the amount of capital income accruing to non-taxable units,
as pension funds, IRAs or non-profit institutions. The Financial Accounts of the United
States, run by the Fed, report the household share of corporate equity. Some takes that as
a proxy for the taxable share of ownership, but that overestimate it given the inclusion
of IRAs (see Rosenthal and Austin, 2016 for a critical review of the different measures).
Therefore, the goal is to get an estimate of the fraction of equities hold by households in
taxable accounts. I follow Rosenthal and Austin, 2016.

Table 1.11 reports the steps followed to compute the taxable share. Essentially, it
amounts to an adjustment of the Fed’s households equity share, considering IRAs, in-
direct holdings and so on. Here I detail the abbreviations dictionary: CE = corporate
equities; HHNPI = households and nonprofit institutions; RoW = rest of the world;
ETF = exchange traded fund; CEF = closed-end fund; REIT = real estate investment
trust; C-CE = C corporations CE; MF = mutual funds; IRA = investment retirement
accounts. The variables comes from the Federal’s Reserve Financial Accounts of the
United States, except for those variables whose construction is explained in the table.
Besides, as in Rosenthal and Austin, 2016, the stock held in self- directed IRAs is based on
data from the Investment Company Institute. Calculations files are available upon request.

Figure 1.9 plots the estimated taxable share from 1951:IV to 2018:IV. As observed, it
displays a steady decline until the early 2000s, when stabilizes around 30%. In other words,
there was a big structural change in the stock ownership, moving it away from taxable units.

Appendix E: Projection facility

The equilibrium PD ratio given by 1.117 faces a discontinuity. For this reason, simulation
requires to set up the following modified belief updating equation to ensure non-negative
prices

βt+1 = w

(
exp

{
lnβt (1 − g) + gln Pt

Pt−1

})
(1.119)

where

w(x) =
x if x ≤ βLt

βLt +
x−βLt

x+βUt −2βLt
(βUt − βLt ) if x > βLt

(1.120)
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Figure 1.9. Taxable share evolution. The graph plots the taxable share of equity income,
estimated following the procedure explained above. It uses data from 1951:IV to 2018:IV.

and

β
q
t = PDq

{
PDqξδ(1 − πτKt+1)2 + χδ(1 − πτKt+1)

(Wt+1

Dt+1
+ 1 − τDt+1 + πτKt+1

Pt
Dt

Dt

Dt+1

)}−1

(1.121)

for q = L, U . Thus, this projection facility starts to dampen belief coefficients that
imply a price-dividend ratio equal to PDL and sets an effective upper bound at PDU .
Projection facilities are usual devices in this sort of algorithms (see Ljung, 1977); partic-
ularly, (1.120) is similar to the one used by Adam, Marcet, and Nicolini, 2016. It can be
understood in a Bayesian sense, so that agents attach zero probability to beliefs coefficients
implying a PD ratio higher than PDU .

Appendix F: Parameterized Expectations Algorithm

In the spirit of Hakansson, 1970, the proposed approximating function ψ is

C∗
t

Dt
= Ē(Xt) ≈ ψ (Xt ; χ) = c

y
tYt + cwt

Pt
Dt

St−1 (1.122)
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where cyt ≡ 1 − χδ(1 − τDt )βD is the time-varying propensity to consume out of
income, Yt collects all the income sources (wages, dividends, net transfers) normalized
by dividends, cwt ≡ 1 − χδ(1 − τKt )βt is the propensity to consume out of wealth, and χ
is a parameter of ψ to be estimated. To evaluate the performance of this approximating
function, χ must be estimated. To do so, I resort to simulation and Montecarlo integration.
The algorithm involves the following steps:

1. Draw a series of the exogenous processes for a large T.

2. For a given χ ∈ Rn, recursively compute the series of the endogenous variables.

3. Minimize the Euler Equation square residuals using non-linear least squares

G(χ) = argmin
ξ ∈Rn

1
(T − T )

T∑︁
t=T

[
ϕ
(
zPt+1(χ), εt+1, zt (χ)

)
−
ψ (Xt (χ); ξ )−γ

δ

]2

with T are some initial periods burned. ϕ is the interior of the conditional expecta-
tion Ē(Xt), z are the endogenous variables and the exogenous shocks.

Note the interior of the expectation must be computed according to investor’s
beliefs. Since investors know the process for dividends and wage-dividends, the only
problematic objects are next period prices and next period consumption. Using
agents subjective price model

βPt+1 = βitνt+1 ⇒
(Pt+1

Pt

)P
= βitνt+1ε

p
t+1 ⇒

( Pt+1

Dt+1

)P
=

(Pt+1

Pt

)P Dt

Dt+1

Pt
Dt

In turn, expected consumption reads

CP
t+1

Dt+1
= (1−χδ(1−πτKt+1)βPt+1)

(( Pt+1

Dt+1

)P
+1−τDt+1+

Wt+1

Dt+1
−πτKt+1

[( Pt+1

Dt+1

)P
− Pt
Dt

Dt

Dt+1

])
(1.123)

4. Find a fixed point χ = G(χ). For that, update χ following

χj+1 = χj + d(G(χj) − χj) (1.124)

where j iteration number and d the dampening parameter.
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Figure 1.10. Histogram of the Judd Bounded Rationality Measure. The
histogram plots the Judd criterion as defined by equation (1.125) resulting from 10.000 simulations of the
model.

To evaluate how good is the approximation, I explore the size of the errors. The
approximating errors are given by

ut+1 = ϕ
(
zt+1, εt+1, zt

)
−
ψ (χ; xt)−γ

δ

The criterion to determine the degree of accuracy is the Bounded Rationality Mea-
sure (Judd, 1992):

J = log10

(
Et

�����ut+1
Ct
Dt

�����
)

(1.125)

being J a dimension-free quantity expressing that error as a fraction of current consump-
tion, which expresses the results in economic terms. For the baseline model, J = -5.99. It is
equivalent to a mistake of $1 out of a million. The Mean Square Error is 5.71e-06. Figure
1.10 plots the histogram of J for 10.000 simulations of the model.

Solving the model with the lock-in effect

Algorithm to compute mt:
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1. Approximate the conditional expectation determining µt+1 via a function Ψ(Xt),
where Xt is a vector of state variables, that is:

µt+1 = (τK )1+ξMt+1 = (τK )1+ξE(Xt+1) ≈ (τK )1+ξΨ(Xt+1) (1.126)

In particular, I use this linear polynomial:

Ψ(Xt) = α0 + α1βt + α2Gt + α3
Pt
Dt

(1.127)

2. For a given vector α, compute the expectation of µt conditional on the information
at time t, that is

mt = E
P
t (µt+1) = EPt (E(Xt+1)) ≈ EPt (Ψ(Xt+1)) (1.128)

a) Future state variables depend on four shocks:

i. βt+1 is predetermined: βt+1 = βt (1 − g) + g
(
Pt
Dt

Dt

Dt−1

Dt−1
Pt−1

)
ii. Gt+1/Dt+1 depends on εDt+1:

Gt+1

Dt+1
=
Pt/Dt − Pt−1/Dt−1Dt−1/Dt − ϕ(π̄t)Gt/Dt

βD + εDt+1

iii. Pt+1/Dt+1 depends on (according to the subjective price model):

Pt+1

Dt+1
=
Pt+1

Pt

Pt
Dt

Dt

Dt+1
=
Pt
Dt

βt + ut + νt+1 + εPt+1

βD + εDt+1

b) Use the Gauss-Hermite quadrature rule extended to the multidimensional
case:

i. Let {qi , ωi}Ii=1 be a set of Hermite nodes and weights.
ii. Note Ψ(Xt+1) = Ψ(Xt , εDt+1, ut , νt+1, ε

P
t+1).

iii. Using the quadrature, each shock εxt+1 is replaced by
√

2σxqh (shocks are
zero-mean Normally distributed) such that the expectation is computed
as:

mt ≈ EPt (Ψ(Xt+1)) = π−N/2
∑︁
i

∑︁
j

∑︁
k

∑︁
l

Ψ(Xt , qi , qj , qk, ql)ωiωjωkωl

where N is the number of shocks.

3. Note that mt = m(Pt/Dt , ·) such that

Pt
Dt

=
δ(1 − τD)βD

1 − δβt (1 − (τK )1+ξm(Pt/Dt , ·)) − δ(τK )1+ξm(Pt/Dt , ·)
(1.129)

That is a nonlinear equation that can be solved numerically.

4. Estimate α via PEA.
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Appendix G: Alternative measures of the increase in volatility

In this appendix, I present alternative measures of the increase in the volatility of the Price-
Dividend ratio. In the main text, I focus on the unconditional variance. In this appendix,
I show that the the conditional variance also went up. Since taxes are a relatively slow-
moving variable, I concentrate on the long run component of the conditional variance.
First, I present long-run volatility measures based on a GARCH model variant. Second,
I include taxes in the long run component. Finally, I show volatility measures for daily
price growth and stock returns.

G1.- The AR-GARCH-MIDAS model

The long run price-dividend volatility is the permanent component of the conditional
variance. The procedure to obtained it builds upon the GARCH-MIDAS model out-
lined by Engle, Ghysels, et al., 2013. They decompose the conditional variance between
a permanent and a transitory component, where the former is a filter over a number of
lags of the realized volatility. However, they assume a constant conditional mean that is
suitable for stock returns (with a mean close to zero and i.i.d. deviations from the mean)
but not for the PD ratio (which is highly persistent, with time varying mean and, as a
result, serially correlated deviations from the constant long run mean). To adapt the
model for the PD ratio, I introduce an AR(1) model for the conditional mean, in which
case the AR(1) residuals become serially uncorrelated and then the GARCH-MIDAS
procedure can be applied for the variance.

The model boils down to the following list of equations. Unexpected changes in the
price-dividend ratio in quarter q of year t are uncorrelated and normally distributed

Pq,t

Dq,t
− Et−1

( Pq,t
Dq,t

)
= q,t , q,t ∼ iiN (0, σ2

q,t) (1.130)

with the conditional expectation given by an AR(1) process

Et−1

( Pq,t
Dq,t

)
= µ + ρ

Pq−1,t

Dq−1,t

The conditional variance model hypothesizes that there is a short run (or transitory)
g2
q,t and a long run (or permanent) variance v2

t . The permanent component captures an
underlying state which makes equivalent surprises in the PD ratio have different effects.
For instance, better than expected dividends might have a different impact in stock prices
in high or low capital tax environments. As stated by Engle and Rangel, 2008, the long-
memory component can be interpreted as a trend around which the conditional variance
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fluctuates. All in all, the errors standard deviation is the product of the short and long
run components

σq,t = vtgq,t (1.131)

It is assumed that the transitory component follows a GARCH(1,1)

g2
q,t = 1 − α0 − α1 + α0

2
q−1,t

v2
t

+ α1g2
q−1,t (1.132)

In turn, the long run volatility is a MIDAS filter over K past realized volatility

v2
t = ϕ0 + ϕ1

K∑︁
k=1

φk(w)RV
Q

t−k (1.133)

with the realized volatility defined as a moving variance over a fixed window of Q quarters

RV
Q
t =

1
Q − 1

Q∑︁
q=1

( Pq,t
Dq,t

− 1
Q

Q∑︁
q=1

Pq,t

Dq,t

)2
(1.134)

and the weighting scheme given by a beta lag structure, which yields a monotonically
decreasing sequence determined by a single parameter

φk(w) =
(1 − k/K)w−1∑K
j=1(1 − j/K)w−1

(1.135)

Altogether, the parameter vector θ contains a total of 7 parameters θ = {µ, ρ, α0, α1, ϕ0, ϕ1, w},
jointly estimated through Quasi-Maximum Likelihood54.

For the baseline application, I use an intra-annual standard deviation as the measure
of realized volatility (i.e., Q=4) and 10 lags of this realized volatility to compute the long
run component v (i.e., K=10). The financial literature usually works with high frequency
data (often daily variables) and regard the long run component as the underlying monthly
or quarterly trend (e.g., Schwert, 1989, Engle, Ghysels, et al., 2013). Differently, here I
have adopted a low frequency approach closer to macroeconomics, where the long run
frequency tend to go beyond the business cycle. As a result, I have regarded the long run
as a 10-year trend. The reason is that taxes are a much slower evolving variable than prices

54It is well known that the QML estimator is consistent and asymptotically normal for GARCH(1,1), provided
that the innovation distribution has a finite fourth moment, even if the true distribution is far from Gaussian
(e.g., see Lumsdaine, 1996). This is the case here indeed: residuals are non-Gaussian (due to fat tails) but
exhibit an empirical kurtosis of 5.98 so that quasi-maximum likelihood estimators are asymptotically
Normally distributed.
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and dividends. In other words, potentially taxes reflect a long-lasting structure or regime,
which determines the business conditions for long periods.

Table 2.9 shows the estimation results. All the coefficients are significant at usual
confidence levels. As observed in figure 1.11, this estimation yields a long run volatility
with a steep increase since the 1990s. The variable peaks in the aftermath of the Great
Recession but the post-GR volatility is still way above its historical mean. The persistence
of higher volatility turns out to be robust across alternative specifications: the number of
the realized volatility lags considered for the long run filter; the fixed vs. rolling window
specification for realized volatility.

Table 1.12. AR-GARCH-MIDAS model estimation results. The table shows the
QML estimation of all the parameters of the AR-GARCH-MIDAS model for the fixed window realized volatility
with Q=4 and K=10. The data used for the estimation covers the 1940:I-2018:IV period.

Coefficient Std. Errors t-stat p-val

µ 2.91 0.58 5.04 0.00

ρ 0.96 0.01 139.88 0.00

α0 0.26 0.06 4.11 0.00

α1 0.67 0.067 10.08 0.00

ϕ0 10.17 2.60 3.90 0.00

ϕ1 0.66 0.33 1.99 0.05

w 1.03 0.18 5.63 0.00

The left hand side plot of figure 1.11 plots the estimation with the fixed window
for the realized volatility and different number of lags. As expected, the higher the lags
considered, the smoother is the trajectory, without modifying the baseline result. The
case of K=5 results in a volatile series, resembling the one for the conditional variance.
That illustrates two things: probably 5 year are not enough to capture of long-lasting
permanent component; the persistence of volatility is mostly due to the echoes of the
Great Recession (i.e., the short run volatility after the GR has not been particularly high).

The right hand side graph of figure 1.11 compare the fixed to the rolling specifica-
tion for the realized volatility. The former transforms quarter data into annual long run
volatility; the latter keeps the long run volatility at quarter frequency. Both uses 10 years of
data to produce the long run measure. As observed, the gray and the red line display the
same qualitative trajectory. However, the rolling measure fluctuates way more, reaching a
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higher peak and reversion.

Finally, to check for the potential model-dependency of the result, I have computed
alternative measures. On the one hand, the black line (R2) plots a simple 10 year rolling
window standard deviation of the price-dividends deviations from their conditional mean
(i.e., the residuals from equation 1.130). This measure is the one that resembles the most to
the baseline one. On the other hand, the dotted black line (R3) shows a 10 year rolling win-
dow standard deviation of the Hodrick-Prescott cyclical component of the price-dividend
quarterly data. This one follows the rolling window AR-GARCH-MIDAS closely. The
correlation matrix among them gives a quantitative view of this comparison (the baseline
measure displays correlations above 0.9 with all the alternative measures, except for the
medium-term measure).
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Figure 1.11. Time-varying volatility measures. The left hand side graph plot the
baseline model with a Q-fixed window realized volatility (for Q=4) and changes the number of annual lags
used for computing the long volatility (equation 1.133). The red line is the baseline measure (K=10). The right
hand side graph plots the baseline fixed window measure (K=10) against a number of rolling window based
measures: R1 is the AR-GARCH-MIDAS estimate for the case of a 10-year rolling window for the realized
volatility; R2 is a 10-year rolling window standard deviation over the AR(1) residuals of equation 1.130; R3 is a
10-year rolling window standard deviation over the HP cyclical component of the quarterly price-dividend
ratio. The data used for the estimation covers the 1940:I-2018:IV period.

G2.- Taxes as the long run component

One of the contributions of the Engle, Ghysels, et al., 2013’s GARCH-MIDAS model
is allowing for the introduction of macroeconomic variables directly in the long term
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Table 1.13. Volatility measures correlation matrix. The table shows the
contemporaneous correlation among all the long run volatility measures. The labels are as in figure 1.11. All
the correlations are significant at 99% confidence level. The data used for the estimation covers the
1940:I-2018:IV period.

K=10 K=15 K=5 R1 R2 R3

K=10 1.00

K=15 0.97 1.00

K=5 0.50 0.42 1.00

R1 0.94 0.89 0.50 1.00

R2 0.94 0.88 0.53 0.96 1.00

R3 0.97 0.93 0.52 0.94 0.96 1.00

component. That would avoid a two-step approach (as Schwert, 1989) consisting of mea-
suring volatility and estimate VAR models with volatility proxies and macrovariables. The
problem with the 2-step approach is the measurement error in RV that would bias the
coefficient capturing the effect of past volatility on current volatility and on the macroeco-
nomic variables (see Engle, Ghysels, et al., 2013). On the contrary, a single-step procedure
would circumvent this problem by adding the macrovariable directly to the variance
model. That is one of the contributions of the GARCH-MIDAS approach.

In this paper, though, the impact of taxes on volatility is analyzed through a VAR,
that is, via a 2-step approach. The potential cost is the bias effect coming from measure-
ment errors, indeed. However, by assuming that potential cost, I can compare the time
series, which opens the door to a much richer analysis than a coefficient significant test
(for instance, I can explore the dynamic effects of tax cuts via IRFs). Since that seems to
be a substantial gain, the potential measurement error problem is addressed in the VAR
context itself (following Forni et al., 2020). On top of that, the VAR is only used for
descriptive purposes and the causal analysis is left for the structural DSGE model.

Nonetheless, for the sake of completeness, in this appendix I report the results of
the Engle, Ghysels, et al., 2013’s single-step approach. That amounts to modify the long
run component as follows:

v2
t = ϕ0 + ϕ1

K∑︁
k=1

φk(w)τt−k (1.136)

where τ is the capital income tax defined in the paper. Table 1.14 reports the estima-
tion results. Notice that all three coefficients get a decent t-stat value for different number
of lags (for K=5, all of them are significant at standard confidence levels).
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Table 1.14. AR-GARCH-MIDAS model with taxes as the long run
component. The table shows the QML estimation of all the parameters of the model when replacing
equation 1.133 by 1.136, for the fixed window realized volatility with Q=4. t-statistics in parenthesis. The data
used for the estimation covers the 1940:I-2018:IV period.

K=5 K=10 K=15

µ 2.19 3.64 4.62

(3.51) (6.91) (9.94)

ρ 0.99 0.98 0.97

(136.20) (189.46) (238.36)

α0 0.25 0.28 0.28

(2.98) (3.12) (3.46)

α1 0.63 0.63 0.63

(7.33) (7.46) (7.49)

ϕ0 21.29 20.87 22.36

(2.16) (1.51) (1.66)

ϕ1 -3.78 -3.51 -3.93

(-1.83) (-1.17) (-1.31)

w 1.16 3.62 1.02

(3.01) (0.94) (3.81)

G3.- Absolute and Relative Volatility

The baseline volatility measure uses the absolute deviations from the price-dividend con-
ditional mean as the main ingredient (see equation 1.130). In this sense, it can be regarded
as a measure of absolute volatility. That contrasts with schwert2011stock’s view, that
regard volatility as a relative measure (dealing with price percentage changes or rate of
returns). In this section, I comment on the relevance of using price-dividends absolute
deviations as well as on the robustness of the rise in volatility when using high-frequency
relative measures.

One of the concerns of using absolute measures is that they may "exaggerate" the
degree of volatility when the variable level is in high heights. That concern has been
repeatedly expressed by Schwert (Schwert, 1989, schwert2011stock). In this regard, it
is convenient to remember that larger deviations from the mean are not a mechanical
consequence of a higher mean at all; in other words, they carry some useful information.
It suffices to point out the strong positive correlation between absolute price-dividend
fluctuations and investment cycles (Cochrane, 2017, Adam and Merkel, 2019). The fact
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that high-mean times tend to go in hand with high-variance times is not a trivial coin-
cidence but something to be explained. The hypothesis of the paper is that the decline
in capital taxes is an important driver behind not only the rising trend in stock market
valuations (in line with McGrattan and Prescott, 2005 and others) but also the larger
swings around the trend.

For the particular case of price-dividend ratios, it is worthy it to remember that
the variable is a ratio such that pure time-trend effects are accounted for55. Besides, the
variance of the price-dividend is an important object in the price excess volatility literature,
starting with Shiller, 198156.

Finally, the rise in long run volatility is also observed when using high frequency
price percentage changes or rate of returns. Figure 1.12 plots a non-parametric measure of
it, a 10-year rolling standard deviation over the daily series57. In both cases, the long run
measure reveals a gradual increase in volatility since the early 1970s.
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Figure 1.12. Long run volatility of relative variables. The left hand side graph
pictures daily stock returns from French’s website;the right hand side graph pictures daily price growth from
Yahoo’s historical data. Both graphs includes the long run volatility, as the 10-year rolling window standard
deviation of the series. Data is from 1950 to 2020.

55The results hold when using a detrended price-dividend ratio, no matter the detrending method.
56Some of the papers uses the log(PD) and then, focus on percentage changes. However, that is more a

requirement of the log-linearization approach to derive the price-dividend variance decomposition than a
claim in favour of the relevance of the percentage changes.

57Results are robust to detrend the variables.
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The rising volatility phenomenon is masked when using relative variables (as returns,
price growth and even price-dividend growth) at lower frequency. That signals the exis-
tence of some highly volatile but short-lived events, which when aggregated over a month
or quarter they partly offset each other. All in all, the rise in volatility showed consistently
by the different measures is just a statistical way of capturing the increase in the frequency
and magnitude of well known stock market booms since the 1980s (the late 80s crashes,
the Dot-com bubble and the Great Recession and its aftermath).
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Chapter 2

Heterogeneous Expectations and Stock
Market Cycles

PAU BELDA & ADRIAN IFRIM

Abstract

We present a model of expectations that micro-founds the heterogeneous extrapolation
and the persistent and procyclical disagreement present in survey data. Extrapolation arises
from imperfect knowledge about price formation that pushes agents to learn, in a Bayesian
sense, from price news. However, optimists extrapolate more since they are more confident
about the signal-to-noise content of price news. This makes disagreement procyclical.
Besides, agents hold idiosyncratic views about long-run asset growth, which generates
persistent disagreement. The subjective belief system is embedded in an otherwise standard
asset pricing framework, which can then quantitatively account for the dynamics of
prices and trading. In the model, learning from prices leads to disagreement and trading,
which reshuffles the distribution of wealth between lower- and higher-propensity-to-
invest agents, affecting aggregate demand and prices. This feedback loop complements
the expectations-price spiral typical of models with extrapolation, placing heterogeneity
and trading as key drivers of price cycles.
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nary version of the paper with the same title. The most updated version of the paper can be found at
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2.1. Introduction

The purpose of this paper is to provide an asset pricing model with heterogeneous beliefs
that can replicate basic facts about survey beliefs along with aggregate dynamics involving
prices and trading. This framework allows us to shed light on the expectation formation
process at the individual level and how it shapes the aggregate dynamics of the stock
market.

An increasing amount of the recent asset-pricing literature has emphasized the
importance of understanding how investors form beliefs and the implications for asset
pricing. One of the reasons for this focus on expectation formation is the evidence coming
from survey data that shows significant departures from the Rational Expectations (RE)
hypothesis.1 The opening quote is taken from the latest NBER asset pricing program
agenda for future research, which clearly points out the importance of incorporating
realistic belief systems in asset pricing models. We seek to contribute to this enterprise by
presenting empirical facts about survey beliefs, proposing a model of expectations that
replicates them and exploring their implications for asset pricing.

Two deviations from Rational Expectations have been extensively documented:
people tend to extrapolate from recent events (Greenwood and Shleifer, 2014); consensus
beliefs under-react to new information (Coibion and Gorodnichenko, 2015), but indi-
vidual agents over-react (Bordalo et al., 2020). Recently, Giglio et al., 2021 added a third
dimension: investors’ subjective expectations are characterized by persistent heterogeneity
across agents ("individual fixed effects"), which cannot be explained by observables such
as wealth, age, gender or past returns. Thus, the expectations coordination implied by RE
is strongly rejected.

Based on this evidence, we use the cross-section of individuals from the UBS Gallup
survey to build sentiment groups that replicate this persistent heterogeneity and document
several facts. First, all agents extrapolate, but the optimists do it much more. Second,
disagreement is always high without large variations, which we refer to as "perpetual
disagreement". However, it exhibits meaningful dynamics: it comoves positively with
prices and trading (as shown in early research, for instance, Vissing-Jorgensen, 2003, Adam,
Beutel, et al., 2015) and is mostly driven by optimists.

We propose a model of expectations that is consistent with these facts. We conjecture
that agents have imperfect knowledge about price formation, in line with the Internal Ra-
tionality literature (Adam and Marcet, 2011). They cope with this imperfect information
by using a statistical model of prices that generalizes the RE model. They use this model
to form price expectations and, as Bayesian learners, update them when new information
about prices comes up.

Agents differ in two dimensions. First, they hold different views on mean price
growth, which we interpret as beliefs about the long-run asset’s value. Thus, beliefs
1See Adam, Nagel, et al., 2022 for a review.
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fluctuate around this long-run value with the short-run dynamics arising from learning
about prices. This subjective long-run growth is a micro-foundation of the statistical
fixed-effect documented by Giglio et al., 2021 and the perpetual nature of the disagreement.
Besides, investors differ in their speed of learning, reflecting a different way of processing
public information; some are more confident, believing that that information has a high
signal-to-noise ratio, and others are more skeptical about it. This heterogeneity in the
processing of information can be related to two empirical observations: the different
degrees of extrapolation that we document and the comovement between disagreement
and prices.2

We embed this expectation formation process into an otherwise standard Lucas,
1978 model. Apart from the price-expectations spiral typical of models of learning about
prices that generates recurrent price booms and busts, the model features an additional
mechanism: a feedback loop between prices and trading. Price news provoke more dis-
agreement, as agents process the information in a heterogeneous way. This generates
trading, since investors who value stocks relatively more after the price news will buy
them from investors who value them less. Trading triggers a redistribution of wealth
between investors with different propensities to invest, affecting aggregate demand and
prices. Hence, learning connects prices to expectations; heterogeneous learning connects
prices to disagreement and trading; trading changes the distribution of stocks, influencing
aggregate demand and prices. Altogether, trading emerges as a key driver of asset prices,
breaking with the mainstream theory that explains asset pricing without any reference to
trading dynamics.

An example of boom dynamics would be as follows. It starts with an aggregate
exogenous factor (e.g. goods news, extraordinary incomes) that makes some investors
more willing to invest in the stock market. This generates a rise in prices which turns all
investors more optimistic, raising demand and prices further over time in a reinforcing
manner. Nevertheless, not all investors react equally to the rise in prices; some are more
conservative than others, interpreting the news as containing more noise, and forgoing
the wave of optimism. This heterogeneous reaction implies an increase in disagreement,
which leads to trading: optimists will buy from pessimists. Trading moves resources from
lower- to higher-propensity-to-invest agents, which raises aggregate demand and prices,
restarting the process.

Our framework also allows us to investigate the contribution of different sentiment
groups to booms and busts in price cycles. Through the lens of our model, the positive
correlation between disagreement and prices that we observe in booms is driven by opti-
mists becoming more optimistic and not pessimistic agents adjusting their beliefs upward.
In this regard, managing capital gain expectations for the most optimistic agents is crucial

2It turns out optimists are more confident such that, when prices are high, they become even more optimistic
in relation to other groups, widening the disagreement.
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for leaning against the wind policies in reducing the inefficiencies created by belief-driven
cycles.3

To the best of our knowledge, this is the first paper to jointly replicate quantitatively
the distribution of subjective beliefs along with price and trading dynamics in the con-
text of the stock market. The literature on belief heterogeneity and asset pricing is vast.
Nevertheless, most of the literature has not provided a realistic quantitative evaluation
yet. Atmaz and Basak, 2018 is an example of a theoretical model of heterogeneous beliefs
that is able to replicate several of the stylized facts observed in the data. In contrast to
that framework, in which agents possess beliefs about fundamentals (dividends), we work
with expectations on expected return, which allows us to compare the model directly
with survey data and evaluate the quantitative performance of the model. On a similar
note, WR Martin and Papadimitriou, 2022 develop a model with heterogeneous beliefs
about probabilities of good/bad news in which sentiment is another source of risk fully
internalized by agents and which stimulates speculation and volatility. See Simsek, 2021
for a comprehensive review of the literature on heterogeneous beliefs about asset prices.

The rest of the paper is organized as follows. Section 2 presents several stylized facts
regarding the empirical survey’s distribution of beliefs. Section 3 lays out a model of expec-
tations in line with the evidence embedded in a theoretical asset pricing model. Section 4
shows the quantitative performance and the mechanism through which heterogeneous
beliefs drive asset price cycles. Section 5 concludes.

2.2. Stylized Facts about Heterogeneous
Expectations

We use the Gallup survey on future stock market return expectations of individual in-
vestors for the period 1998Q2-2007Q4. We choose this survey because it includes the most
respondents per period (around 700), which should bring more reliability in capturing
the heterogeneous dynamics of expectations.4 We first split the distribution of beliefs
into sentiment groups based on the level of optimism/pessimism of individual investors
regarding future returns. Specifically, we order the distribution of beliefs across agents
at each point in time in three subgroups ranked by their level of optimism and compute
averages for each group. Although our data are not a panel, the evidence from Giglio et al.,
2021 shows that beliefs are persistent over time, meaning that optimists remain optimists
and pessimists remain pessimists without interchanging, which is robust to other surveys,

3Belief-driven asset price cycles can impact the real economy through multiple channels: see Ifrim, 2021 for
demand side inefficient wealth effects, Winkler, 2020 for supply side with financial frictions or Belda, 2023
for supply side due to investment adjustment costs.

4An alternative option is to work with the RAND dataset, which is a panel. One of the shortcomings is that
RAND responses are coded in categories and need some assumptions to convert the answer to a continuous
variable. We are currently working with the RAND dataset to test the robustness of the facts.
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as the RAND panel. Given this fact, we argue that the mean of each sentiment group
captures reasonably well the heterogeneity of expectations of each group and proceed
with this caveat in mind.

First, we study the features of these group-level expectations. Figure 2.1 presents
the evolution over time of the sentiment groups, with S1 being the most pessimistic, S2
the average investors and S3 representing the sentiment group of agents with the most
optimistic beliefs. At the top of the dot-com bubble, optimists were expecting as high
as 30% yearly returns, while pessimists only expected 7%. Sentiment groups’ beliefs are
highly correlated with each other (0.8-0.95).

Figure 2.1. Return expectations by sentiment Groups. Each sentiment group
represents the average return expectation at each point in time across agents depending on the position in
the distribution (eg. S1 represents the average of the beliefs between 0 and 1

3 percentiles); shaded bars
denote NBER recessions.

Extrapolation. At first sight, figure 2.1 suggests a positive comovement between
survey expectations and prices: investors are more optimistic during the boom and more
pessimistic at the bust. This eyeball test suggests the existence of extrapolation, possibly
to a different degree for each group. To formally test this possibility, we run the RE test
proposed in Adam, Marcet, and Beutel, 2017 for each group.5The test implies running

5This test is similar to the extrapolation test used by Kohlhas and Walther, 2021. They collapse the two
equations into a single one by subtracting the first from the second line and studying the sign of c − c. We
use the version with two equations as it delivers more information.
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the following two regressions

Est [Rt,t+n] = a + c PDt + ut + µt
Rt,t+n = a + c PDt + t

(2.1)

whereEst represents survey expectations regarding future returns at time t, PDt is the Price
Dividend ratio and Rt,t+n is the realized return between t and t + n. Moreover, ut and t

represent variations in survey expectations and returns due to factors other than the PD
ratio and µt captures measurement error in survey expectations, which is assumed to be
uncorrelated with the previous two exogenous variations. The RE test is basically a test
of equality between c and c. Results from table 2.8 indicate that the RE hypothesis with
respect to survey expectations on capital gains is rejected at the 1% significance level for
each one of the three sentiment groups.6

p-value

c c H0: c= c

p0−33 0.0576*** -0.2423 *** 0.0000
p33−66 0.0545*** -0.2423*** 0.0000
p66−100 0.0809*** -0.2423*** 0.0000

Table 2.1. RE Tests across different sentiment groups: p0−33 denotes the sentiment
group whose expectations lie between the 0 and 1/3 percentile. The data in each group is aggregated by
taking the average of that particular group at each point in time. Data used for this particular test is the
Gallup UBS survey data for all individuals’ expected stock market return. Estimates are based on asymptotic
theory and have been adjusted for small sample bias. *** denotes significance at the 1% level.

However, the point estimates indicate important differences, especially for optimists.
To check this we run a test of equality among the coefficients, cs with s = 1 : 3, among
different sentiment groups and present the p-value in the following table. Results indicate
that the sensitivity of expectations to the PD ratio for pessimists and moderates is statisti-
cally identical. Nevertheless, optimists exhibit a higher coefficient, c3, that is significantly
different from the other two groups, suggesting a higher degree of extrapolation.

H0: c1 = c2 c1 = c3 c2 = c3

p-value 0.3630 0.0160** 0.0000***

Table 2.2. Equality tests for coefficients c across sentiment groups: See
footnote for table 1 for additional details. *** denotes significance at the 1% level and ** at the 5% level

Disagreement dynamics. Our preferred measure of disagreement/dispersion of
beliefs is defined by the difference between the beliefs held by the most optimistic/ pes-
simistic groups.7 For three sentiment groups, this measure is defined as DI33

33 = S3 − S1.
6The results are unchanged if, instead of three sentiment groups, we consider two or four, see Appendix 1 for

results on RE tests based on different partitions of the distribution of subjective returns.
7A similar measure has been used by Giacoletti et al., 2018 to measure disagreement in bond markets.
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Figure 2.2 presents the evolution of disagreement together with the PD ratio. Disagree-
ment about future stock returns tends to be high near the top of the price cycle and highly
correlated with the PD ratio (0.7). Moreover, subjective beliefs are characterized by persis-
tent positive disagreement with a mean of approximately 16%, in line with the evidence
from Giglio et al., 2021 on the existence of individual fixed effects in the cross-section of
beliefs.

Figure 2.2. Disagreement and PD ratio.

The next figure shows disagreement computed both as the inter-group standard
deviation and as the difference between the 90th and 10th percentile (DI 10

10 ). These
measures behave very similarly to our benchmark specification with correlation coefficients
higher than 0.9. This suggests that the dynamics of disagreement is not sensitive on the
exact measure used but instead is fundamentally rooted into the data. Table 2.3 collects
several stylized facts about the heterogeneity of beliefs and their interaction with aggregate
variables.
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Figure 2.3. Alternative measures of disagreement.

Fact Statistic Value
1. Persistence of expectations ρ 0.90
2. Extrapolation of mean capital gains expectations corr(βt , PD) 0.82
3. Heterogeneous extrapolation c1 0.0576

c2 0.0545
c3 0.0809

4. Perpetual disagreement E(DI) 0.04
σ (DIt) 0.0044

5. Disagreement led by i) optimists corr(DIt , S3
t ) 0.73

ii) pesimists corr(DIt , S1
t ) 0.36

6. Disagreement procyclicality corr(DIt , PDt) 0.72
7. Comovement disagreement-trading corr(DIt , TVt) 0.41
8. Correlation among sentiment groups corr(S1, S2) 0.95

corr(S1, S3) 0.87
corr(S2, S3) 0.95

Table 2.3. Facts on Subjective Expectations.
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2.3. A model with heterogeneous expectations

In this section, we present an asset pricing model with heterogeneous beliefs consistent
with the empirical evidence from the previous section. We begin by suggesting a model
of expectations that replicates the previous facts. Then, we embed this piece in an asset
pricing model à la Lucas, 1978, with Internal Rationality following Adam, Marcet, and
Beutel, 2017.

2.3.1. A model of expectations

In light of the previous evidence, we conjecture a model of learning about prices with dif-
ferent layers of heterogeneity. Investors from the sentiment group i possess the following
subjective model about stock prices

lnPt = lnPt−1 + bit + lnεP,it
bit = (1 − ρi)β̄i + ρibit−1 + lnνt

(2.2)

where bit represents the permanent price growth component and εP,it a transitory innova-
tion. The permanent component, bit , follows an auto-regressive process with persistence ρi
and mean β̄i. The latter represents the perceived long-term mean of stock price return of
sentiment group i. We interpret it as a subjective view of the perceived long-term growth
of the asset value. Innovations lnεPt and lnνt are jointly normal but uncorrelated. The
noisy price component is comprised of two independent components

lnεP,it = lnεP1,i
t+1 + lnεP2,i

t . (2.3)

where lnεPj,it ∼ N

(
−σPj

2 ,
(
σ
Pj
)2

)
with j = 1, 2. We assume further that only lnεP1,i

t

is observed at time t. The permanent price growth component, bt , is unobserved and
is estimated optimally using the available information from price signals. Given their
belief system from equation 2.2, the optimal posterior distribution of the permanent
component of prices is

bit ∼ N (βit , (σ i)2) (2.4)

where σ2 is the steady state variance of the posterior, and βit is the conditional mean. The
latter is evolving according to the Kalman updating equation

βit = (1 − ρi) (1 − gi)β̄i + ρiβit−1 + gi (lnPt−1 − lnPt−2 − ρiβ
i
t−1) + gilnε

P1,i
t (2.5)

where gi represents the steady state Kalman gain, entailing different views on the signal-
to-noise ratio of the price signals. The shock lnεP1,i

t will be interpreted as an information
shock to the beliefs of agents from group i.



90 THREE ESSAYS IN MACROFINANCE

Qualitatively, equation (2.5) contains elements that might replicate the key observa-
tions from surveys: the heterogeneous long-run views about the fundamental value of the
asset can be linked to the individual fixed-effects and the perpetual disagreement; the dif-
ferent views about the signal-to-noise ratio of the price signals can lead to different degrees
of extrapolation; the persistence parameter can be directly linked to the persistence from
the survey; the fact that all agents use the same price information would generate a high
comovement between sentiment groups. To quantitatively test whether this equation is a
reasonable description of the survey evidence, we estimate it for each sentiment group.8
We estimate the parameters by NLS for each sentiment band individually and present the
results in the following table.9

Sentiment
group i 1 2 3

gi 0.0139 0.0204 0.0301
(0.0025) (0.0006) (0.007)

ρi 0.90 0.90 0.91
(0.0013) (4.4e-5) (0.0013)

β̄i (in %) -0.50 1.01 4.79
(0.14) (0.11) (0.5)

Table 2.4. Estimated Learning Parameters. Parameters have been estimated by
non-linear least squares; bootstrap standard errors in parentheses calculated by a sieve bootstrap method
over 1000 simulations using AR(p) innovations with order p chosen by the AIC criterion.

Table 2.4 shows that the speed of learning (gi) is increasing with the sentiment band,
with optimists (S3) having the highest learning parameter.10 On the other hand, the
persistence is similar among these groups and the measure of long-term heterogeneity
increases in optimism as expected. Figure 2.4 shows the fit for each sentiment band.

Altogether, the different heterogeneity layers on the expectations formation process
allow for capturing salient features of surveys. First, different long-run views βi give rise to
a perpetual disagreement: optimistic investors are always more optimistic than pessimists.
This is a way of micro-found the statistical fixed-effect reported by Giglio et al., 2021, that
respects the observation that this parameter is unrelated to investors’ profile. Second,
investors extrapolate news at different intensities gi: some react faster, and others are
more conservative. This difference is in line with heterogeneous extrapolation and relates
8We transform the UBS survey return expectations into price growth using the following identity: Rt+1 =
Pt+1
Pt

+ βd Dt
Pt

where βd is the expected quarterly dividend growth which we set equal to 1.0048. The resulting
nominal capital gain data is transformed into real series by subtracting SPF inflation forecasts.

9Appendix 1 presents the bootstrap distributions of these estimated parameters.
10Using the same survey data as us, Adam, Beutel, et al., 2015 show that the constant gain parameter is inversely

related to investors experience of investors with low experience investors having the largest parameter.
According to this evidence, the optimist investors are mostly characterized by low experience while the
reverse is true for pessimists.
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Figure 2.4. Model fit from equation 2.5. The equation has been estimated by non-linear
least squares by minimizing for each sentiment group

∑(Si − βi )2.

disagreement to price dynamics (see Section 4.2.). relates disagreement to price dynamics;
in good times, disagreement will tend to rise, in line with the procyclicality observed in
the data.

2.3.2. An asset pricing model

Consider an endowment economy populated by M types of agents, i ∈ [1,M], who
solve the following utility maximization problem

max
{C i

t ,S
i
t }∞t=0

EPi

0

∞∑︁
t=0

δt
(C i

t )1−γ

1 − γ

s.t.

C i
t + PtSit ≤ (Pt +Dt)Sit−1 +W i

t

S ≤ Sit ≤ S̄

(2.6)
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where C denotes consumption, W income (wages) that agents receive, S the amount
of stock holdings in the risky asset with price P that pays exogenous dividend D. Pi

represents the probability measure of agents of type i. We assume that the risky asset,
which we interpret as stocks, is in fixed supply Ss > 0. The share of each agent in the
population is equal to µi with

∑M
i=1 µi = 1.

Exogenous processes. Following Adam, Marcet, and Beutel, 2017, we specify in
a similar way the exogenous processes for dividend growth and wage-dividend ratio to
obtain empirical plausible processes for dividends, consumption and consumption to
dividend ratio.

1. Dividends: grow at a constant rate a with iid growth innovations lnεDt to be de-
scribed further below

lnDt = lna + lnDt−1 + lnεDt . (2.7)

2. Wage-dividend ratio: follow an AR(1) process with persistence p, mean 1 +WD

and innovation lnεWt

ln
(
1 +

W i
t

Dt

)
= (1 − p)ln(1 +WD) + p ln

(
1 +

W i
t−1

Dt−1

)
+ lnεW,i

t . (2.8)

where innovations are given by the following exogenous processes(
lnεDt
lnεW,i

t

)
∼ N

(
− 1

2

(
σ2
D

σ2
W

)
,

(
σ2
D σDW

σDW σ2
W

))
, (2.9)(

lnεW,i
t

lnεW,−i
t

)
∼ N

(
− 1

2

(
σ2
W
σ2
W

)
,

(
σ2
D σWW

σWW σ2
W

))
. (2.10)

Agents’ Belief System. Agents are endowed with full knowledge of the law of
motions for dividends and wages given by equations (2.7) and (2.8). However, we endow
agents with imperfect knowledge regarding how stock prices evolve and the exact mapping
from fundamentals to prices. To forecast prices, they use the price model (2.2) with
subjective mean beliefs evolving according to (2.5).

Equilibrium. It consists of sequences of prices {Pt}∞t=0 and allocations {Ct , St}∞t=0
such that:

1. Given their belief system and exogenous processes, agents optimally solve their
optimization problem 2.6.
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2. Markets clear

• Goods market:
∑M
i=1 µiC

i
t = DtS

s + ∑M
i=1 µiW

i
t

• Stock market:
∑M
i=1 µiS

i
t = Ss

Recursive Solution via the Parameterized Expectations Algorithm: A recursive
solution boils down to a time-invariant stock demand function St = S (Xt).11 We solve
the model using the PEA approach first proposed by Belda, 2023 and extended in the
appendix of this chapter. The idea is to numerically approximate the stock policy function
via a function grounded on economic theory. Following the solution for exogenous i.i.d.
returns derived in Hakansson, 1970, we propose the following approximation function
for the stock demand function:

Sit ≈ χiβit

(
WDi

t + (PDt + 1)Sit−1

)
PDt

= χiβitZ
i
t , (2.11)

where χ is the unique parameter of the approximating function to be estimated. This
function says that stock demand is the product of two elements: χiβit , which can be read as
a marginal propensity to invest, and Zi

t , which are the resources of the agent i. Appendix
2 contains a detailed explanation of this approach to solving models with learning.

One of the advantages of this approach is that the stock market clearing condition∑︁
i

µiSit

( Pt
Dt

, ·
)
= S̄ (2.12)

can be solved for the P/D ratio in closed-form. Equilibrium prices read as

Pt
Dt

=

∑M
i=1 µ

iχiβit (
W i

t

Dt
+ Sit−1)

S̄ − ∑M
i=1 µ

iχiβitS
i
t−1

, (2.13)

where χi is the only parameter of the approximation function. Thus, equilibrium prices
depend on the distribution of expectations and wealth across agents. Of course, a potential
cost is that the approximating function is not very flexible, as compared with arbitrary
order polynomials or neural networks; however, it turns out to perform very well, with
Euler Equation errors equivalent to $1 out of a million.

11Adam, Marcet, and Beutel, 2017 proved the existence of a recursive equilibrium in the same model with
homogeneous expectations. We assume it continues to hold in this setup.
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Connections to demand-system asset pricing. A recent approach in quantitative
asset pricing, pursued by Koijen and Yogo, 2019, is to estimate characteristic demand func-
tions for different types of investors while allowing for heterogeneity in beliefs. Specifically,
the authors estimate the following equation for each type of investor

δi,t (n) = exp

(
β0,i,tMEt (n) +

K−1∑︁
k=1

βk,i,txk,t (n) + βk,i,t

)
i,t (n) (2.14)

where δi,t (n) is the demand or portfolio share of investor i in stock n,ME denotes market
equity and xk,t is an individual characteristic of the stock amongK − 1 total characteristics
(e.g. book value). The last term from the equation, i,t (n), is interpreted by the authors as
latent demand related to heterogeneous beliefs of each individual investor i. They show
that this last term explains over 80% of the variance of stock returns.

Returning to our asset pricing framework, equation (2.11) can be rewritten as

Sit = exp(zt)βitχi (2.15)

where lower-case variables denote variables in logs. Two observations are in place. First, in
our case, the latent demand is exactly given by the marginal propensity to invest, which
is a scaled version of capital gains expectations. Secondly, the fundamental demand
is determined by the wealth of each investor. One important difference between our
approach and the one in Koijen and Yogo, 2019 is that while the latter focuses on the
portfolio choice among a universe of assets, we focus here on the aggregate stock market.
Nevertheless, the aggregate demand of stocks exhibits a similar functional form in which
latent demand or beliefs multiply fundamental demand.

2.4. Quantitative Analysis

In this section, we evaluate the quantitative performance of the model in replicating the
stylized facts about the heterogeneity of beliefs and stock market cycles and then, use the
model to examine the role of heterogeneity in driving the cycles.

2.4.1. Model performance

We start by calibrating the model parameters. We assume that there are three types of
agents in our model, M = 3 and set their share µi equal to 1

3 . Since our model is an
extension of the one from Adam, Marcet, and Beutel, 2017 we approach the calibration of
most of the parameters in a similar way except for the parameters concerning the dynamics
of the three sentiment groups (ρi, gi and βi), which are set according to the empirical
evidence presented in the previous section. We calibrate the stock supply of stocks, Ss,
such that to obtain a reasonable average price-dividend ratio while the parameter for
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the covariance of income shocks, σWW , implies a correlation of around 0.3 among these
shocks. Table 2.5 gathers the calibrated parameters in our model.

Parameter Symbol Value
Discount factor δ 0.995
Mean dividend growth a 1.0048
Dividends growth standard deviation σD 0.0167
Wage-dividends shocks standard deviation σW 0.0167
Covariance (wage-dividend, dividend) σWD 0.000351
Covariance wage-dividends agents σWW 0.009
Persistence wage-dividend process p 0.96
Average consumption-dividend ratio 1+WD 23
Std of transitory component σ

P1
= σ

P2 0.04
Risk aversion parameter γ 2
Stock Supply Ss 3.3
Expectations persistence ρi Table 2.4
Learning speed gi Table 2.4
Long run view on asset long-run fundamental growth βi Table 2.4

Table 2.5. Benchmark calibration. This table reports the values of the model parameters
used for the quantitative analysis.

We introduce the quantitative performance in table 2.6 for three specifications of
the model. The first one (column 4) represents our benchmark calibration with het-
erogeneous income and information shocks, in the second one (column 5) we shut off
information shocks (lnεP1,i

t = 0), while the third specification (column 6) assumes ho-
mogeneous wages (εW,i

t = εWt ). On top of the statistics regarding the heterogeneity of
expectations from table 2.3 we also present stylized facts about the trading behaviour
(panel III) and aggregate stock market behaviour (panel IV).
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Model
Fact Statistic US data Benchmark lnεP1,i

t = 0 W i
t = Wt

I. Expectation Heterogenity
Expectations persistence corr(βt , βt−1) 0.90 0.91 0.91 0.88
Correlation among sentiment groups corr(β1

t , β
2
t ) 0.96 0.87 1 0.49

corr(β1
t , β

3
t ) 0.87 0.86 1 0.46

corr(β2
t , β

3
t ) 0.95 0.87 1 0.46

Expectations procyclicality corr(PDt , βt) 0.82 0.66 0.66 0.41
corr(PDt , β

3
t ) 0.86 0.66 0.66 0.31

corr(PDt , β
1
t ) 0.7 0.66 0.66 0.34

II. Disagreement
Disagreement driven by beliefs corr(DIt , β3

t ) 0.73 0.94 0.99 0.88
corr(DIt , β1

t ) 0.36 0.63 0.99 0
Perpetual disagreement E(DIt) 0.04 0.04 0.04 0.04

σ (DIt) 0.0044 0.0047 0.0037 0.0032
Disagreement procyclicality corr(DIt , PDt) 0.72 0.53 0.39 0.54
III. Trading
Comovement disagreement-trading corr(DIt , TVt) 0.41 0.24 0.26 0.36
Trading driven by beliefs β̂( |ΔS1

t |, |Δβ1
t |) 0.2* 0.2 0.15 0.04

β̂( |ΔS2
t |, |Δβ2

t |) 0.2 0.012 -0.01 0.14
β̂( |ΔS3

t |, |Δβ3
t |) 0.2 0.047 0.02 0.25

IV. Stock Prices
Mean Price-Dividend E(PDt) 154.86 173 173 159
Price-Dividend volatility σ (PDt) 64.42 55 55 13
Price-Dividend persistence ρ(PDt , PDt−1) 0.98 0.96 0.96 0.96
Mean returns E(rt) 1.89 1.015 1.015 1.01
Returns volatility σ (rt) 7.70 9.2 9.1 3.8

Table 2.6. Model quantitative performance. This table reports the statistics of the
model together with the US data for the period 1973:I-2019:IV for prices and returns and 1998:II-2007:IV for
expectations-related and trading statistics. Model implied statistics are obtained via a long simulation with
T=10.000 periods; β̂(Y, X ) denotes the OLS regression coefficient between Y and X ; *estimate from Giglio
et al., 2021

The benchmark calibration captures well all of the stylized facts, including the
heterogeneity of expectations, the nature of the disagreement, trading behaviour and the
excess volatility of the stock price cycles. Our model produces highly correlated beliefs
among sentiment groups and positive co-movement between expectations and prices.
Expectations shocks contribute to reducing the co-movement between beliefs, as can
be seen when comparing with the calibration excluding sentiment shocks (column 5).
The mean and volatility of disagreement match exactly those observed in the data and
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reproduce the positive correlation with prices.
Moreover, similarly to the data, the expectations of optimists exhibit a stronger

correlation with disagreement compared to the pessimist group. As argued in the next
section, the positive co-movement between prices and disagreement is driven largely by
optimists becoming more optimistic, increasing trading, prices and disagreement. Panel
III shows that disagreement is also positively related to trading and that changes in beliefs
do not lead to trading, consistent with the empirical evidence presented in Giglio et al.,
2021. Finally, panel IV documents that our model replicates closely aggregate stock market
volatility and persistence.

We also run the same RE test on a simulated sample from the model under the
baseline calibration. Table 2.7 which is directly comparable with table 2.1, reveals that the
model is able to replicate the stylized facts from Section 2: high prices predicts negative
future returns but positive beliefs about them; this extrapolation is stronger for the most
optimists (c3 is significantly different from c2 and c1).

p-value

c c H0: c= c

p0−33 0.0147*** -0.1726 *** 0.0000
p33−66 0.0225*** -0.1726*** 0.0000
p66−100 0.0329*** -0.1726*** 0.0000

Table 2.7. RE Tests on model simulated data across different sentiment
groups. The sample consists of 7000 observations simulated from the model under the baseline
calibration; *** denotes significance at the 1% level.

Figure 2.5 plots one simulation arising from the calibrated model. Notice that
although different sentiment groups have persistently different beliefs, stock holdings
vary across agents, and there is not only one group holding the largest/smallest amount of
stocks. Instead, agents with the largest/smallest equity holdings alternate among sentiment
groups over time.12

2.4.2. Dissecting stock market dynamics

In this section, we highlight the key mechanisms behind to joint evolution of prices,
trading and expectations. The cycle starts with an exogenous factor (e.g. particular news
(the "expectations shock") or extraordinary incomes (the "wage shock")) that make some
investors more willing to invest in the stock market. This generates a rise in prices which
turns all investors more optimistic, creating amplification over time. Nevertheless, not all
investors react equally to the rise in prices due to their different expectation formation
processes; some are more conservative than others, interpreting the news as containing

12This is an observation from the UBS dataset that also matches Giglio et al., 2021: there is no clear mapping
between the distribution of wealth and the distribution of expectations. Our model features that.



98 THREE ESSAYS IN MACROFINANCE

0 50 100 150
100

150

200

250

300

PD ratio

0 50 100 150

0.025

0.030

0.035

0.040
Diagreement

0 50 100 150
0.000

0.005

0.010

Trading

0 50 100 150

1.0

1.2

Returns

0 50 100 150

1.00

1.02

1.04

Expectations

optimists
moderates
pessimists

0 50 100 150
0.5

1.0

1.5

2.0

Stock holdings

Figure 2.5. Simulation of 150 periods based on the benchmark model.
In the last two graphs, purple lines are for optimists, red for moderates and orange for pessimists.

more noise and then updating their expectations less. Thus, the heterogeneous reaction
of expectations to prices increases disagreement and trading. Trading reshuffles the wealth
distribution, moving resources from low to high propensity to invest agents, raising
aggregate demand and prices. We first highlight the mechanisms at play and then resort
to simulates to illustrate them.

2.4.2.1. Mechanisms

Three mechanisms intervene in these dynamics.
Mechanism 1: expectations-price spiral. From the equilibrium P/D ratio (equa-

tion 2.13), it follows
Pt−1

Pt−2
= f1

(
{βit−1, β

i
t−2}Mi=1, ·

)
(2.16)

and from the expectations law of motion (equation 2.5) it is clear that

βit = f2

( Pt−1

Pt−2
, ·
)
. (2.17)

Other things equal, these two equations constitute a feedback loop that produces
endogenous price cycles as a result of self-fulfilling prophecies. An increase in optimism
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would raise stock demand and prices which would confirm the initial optimistic expec-
tations (or even overcome them, rescaling the process upwards). This feedback loop is
a mechanism capable of replicating the high observed volatility of stock prices. This
mechanism has been exploited in the learning about prices literature, mostly focusing on
the homogeneous beliefs case (see Adam, Marcet, and Nicolini, 2016).

Mechanism 2: heterogeneous expectations and disagreement. Based on survey
evidence, we introduce idiosyncratic long-run expectations, which are characterized by
two parameters: the long-run view βi and its weight on current expectations ρi. However,
according to survey data, only βi is significantly different among investors, and therefore
we focus here on it. Imposing ρi = ρ and gi = g and the same initial conditions βi0 = β0,
the expectations law of motion can be rewritten as

βit = (1 − ρ) (1 − g)βi
t−1∑︁
j=0

ρ̃j + g
t−1∑︁
j=0

ρ̃jln
Pt−j

Pt−1−j
+ ρ̃t−1β0 (2.18)

where ρ̃ = ρ(1 − gρ). It follows that

βit − βmt = (βi − βm) (1 − ρ) (1 − g)
1 − ρ̃t

1 − ρ̃
, (2.19)

where βmt represents the beliefs of agent m ≠ i. Since ρ̃ < 0, ρ̃t goes to zero relatively
quickly. Thus, disagreement among investors i andmwould be almost constant, reflecting
their perpetual differences in long-run views up to a scale. Altogether, heterogeneous
long-run expectations produce perpetual disagreement, as the one documented in surveys.

However, this idiosyncratic βi does not explain the dynamics of disagreement. In par-
ticular, in the data, we observe a positive covariance between prices and disagreement. To
explain these non-random movements in disagreement, we need additional heterogeneity
in the expectations formation process. As in the data, consider the case of heterogeneous
learning speed gi. In this case, the disagreement between investor i and m can be written
as:

βit − βmt =(1 − ρ)
(
βi
(1 − ρt (1 − giρ)t) (1 − gi)

1 − ρ(1 − giρ) − βm
(1 − ρt (1 − gmρ)t) (1 − gj)

1 − ρ(1 − gmρ)

)
+

t−1∑︁
j=0

ln
Pt−j

Pt−1−j
ρj

(
gi (1 − giρ)j − gm(1 − gmρ)j

)
+ lnβ0(ρt−1(1 − giρ)t−1 − ρt−1(1 − gmρ)t−1)

≈ c(βi − βm) +
t−1∑︁
j=0

ln
Pt−j

Pt−1−j
ρj

(
gi (1 − giρ)j − gm(1 − gmρ)j

)
(2.20)
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where c(βi − βm) is a constant, increasing on the difference of long run views. Hence,
the element determining the sign of the comovement between disagreement and price
growth is the parenthesis of the last line summation. It turns out that

gi (1 − giρ)j

gi

{
> 0 if j < 1/gρ − 1
≤ 0 otherwise

In other words, for relatively recent periods (low j), the higher the learning speed,
the larger the disagreement. That would reverse for higher j, but at that point, ρj becomes
very close to zero, almost cancelling this effect. Hence,

gi > gm ⇒ βit − βmt ≈ f
(
ln

Pt−j

Pt−1−j
(+)

, ·
)
.

Returning to the quantitative model and noting that optimistic investors have higher
learning speeds than pessimistic investors (g3 > g1), an exogenous increase in the beliefs
of the optimists (β3) would imply an increase in price and, via the above equation, in
disagreement producing a positive co-movement among these variables. The impulse
response analysis from figure 2.6 illustrates this mechanism. Notice that an increase
in pessimists’ expectations increases prices but generates a negative co-movement with
disagreement. In Appendix C, we report an equivalent shock to disagreement coming
from different sources: a positive information shock to optimists and a negative shock to
pessimists. In both cases, cases disagreement widens. However, the effects on aggregate
prices are the opposite: when optimists become more optimistic, mean expectations
and prices go up; when pessimists become more pessimist (driving up disagreement),
mean expectations and prices decrease. The effect of heterogeneous ρ is similar to that of
heterogeneous g.
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Figure 2.6. Responses to a positive information shock. The graph shows the
GIRFs of different variables to a positive information shock hitting either the optimists or the pessimists.
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Mechanism 3: price-trading feedback loop. Trading is an aggregate property
of the model that requires a time-varying heterogeneity among agents.13 The model
includes three idiosyncratic features: wage shocks, information shocks and expectation
formation parameters.14 Thus, agents trade in the stock market to insure against income
risk (fundamental motive) or because of their different views about the future evolution
of stock prices (speculative motive).

Differently from income or information shocks, heterogeneity in expectation for-
mation is a mechanism that endogenously produces disagreement and trading. Consider
a price shock that surprises agents positively. Investors will tend to get more optimistic
in general, but to a different degree; some will interpret it as truly fundamental change
updating their beliefs more, while others would think of it mostly as noise, not changing
their beliefs much. Due to this different processing of new information, disagreement will
widen. Other things equal, investors believing the news would buy stocks from the more
skeptical investors. Thus, through the heterogeneous expectation formation, a change in
prices leads to disagreement and trading. On the other direction, trading implies a change
in the wealth distribution; in the previous example, from pessimists to optimists. Thus,
the market share of optimists is increased, which makes the market look more optimistic
on average; since more optimistic agents demand more stocks, trading implies an increase
in the total demand for stocks, moving prices up. Altogether, heterogeneous learning
connects prices to trading, which redistributes wealth, influencing the aggregate stock
demand and prices.

2.4.2.2. Simulated Impulse Response Functions

We resort to simulation to illustrate mechanisms 2 and 3, which emerge from the hetero-
geneous beliefs model. We show four experiments to explore the role of disagreement and
trading.

A permanent disagreement shock. Figure 2.7 shows that a permanent increase in
the optimist’s long-run expectations implies a permanent rise in the level of their expecta-
tions. Following this burst of optimism, prices (and mean expectations) go up and, via
learning, that optimism spills over the expectations of the other groups, reinforcing their
effect on prices. However, the effect across groups is unequal: the impact on optimists’
expectations is much larger, and their propensity to invest out of wealth increases at a
faster rate compared to the ones of the other two groups. This also explains why stock
holdings of pessimists and moderates decrease although their return expectations increase:

13Notice that a constant heterogeneity (for instance, in terms of long run views) would generate inequality
(other things equal, the most optimist would hold more stocks) but not trading.

14The distribution of stock holdings is time-varying, capturing nothing but the joint dynamics of the three
aforementioned variables.
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since prices go up (driven by optimists’ expectations), their wealth increases sufficiently
rapidly to counterbalance the desire to accumulate more equity. Optimists, on the other
hand, experience a rapid increase in expectations (driving up disagreement) and acquire
more stocks, reducing their consumption along the way. Hence, trading increases to
accommodate the stock holdings in line with the expectations distribution. Finally, the
rise in prices gives rise to a temporary spike in returns due to capital gains.
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Figure 2.7. Responses to a long run optimism shock to optimists. The
graph show the GIRFs of different variables to a permanent increase in β3 in period 5. Periods are quarters.
IRFs are computed following these steps: i) simulate the model T =10.000 periods across U=100 different shock
realizations; ii) introduce a shock to the variable/parameter in a particular period p and compute new TxU
series; iii) repeat ii) at different P=5 points, to tackle possible nonlinearities; iv) compute the differences
between shocked and unshocked series at each P and U; v) average the differences across points and
realizations.

A transitory disagreement shock. Define a pure disagreement shock as a shock
that increases disagreement but does not affect mean beliefs on impact. This can be
implemented as a joint shock to optimists’ and pessimists’ beliefs of the same magnitude in
absolute value but different signs. Specifically, we define an x% positive pure disagreement
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shock, DIt , as

DI
t ≡


3
t =

x
2 > 0,

2
t = 0,
1
t = − x

2 .

(2.21)

We consider the dynamic effects of an i.i.d pure disagreement shock for the case in which
other information shocks (P) are absent. These results are illustrated in figure 2.8. It
produces a sharp increase of 1% in disagreement, which exhibits high persistence over time,
remaining positive even after five years. The effects on the other variables are different
compared to the previously analyzed shocks: mean expectations are almost constant
while the expectations of optimists and pessimists have opposite signs and manifest high
persistence over time. Although average sentiment does not move significantly, the PD
ratio jumps on impact and continues to increase for 3 quarters, remaining positive for
the whole horizon considered. These dynamic effects generate a positive co-movement
between disagreement and the PD ratio of approximately 0.8 helping in matching the
high positive correlation between these two variables seen in the data.

A trading shock. To explore the effect of trading on prices, we run the following
experiment. When market-clearing prices are already set up, shock the equilibrium stock
holdings:

St ≡


ΔS3

t = x
2 > 0,

ΔS2
t = 0,

ΔS1
t = − x

2 .

(2.22)

This is a pure redistributive shock that moves assets from pessimists to optimists.
What are the effects? The weight of optimists in the market goes up, which increases
mean beliefs and aggregate demand as they have a larger propensity to invest. Hence,
prices go up. This is the first-round effect. Due to learning, all the agents become more
optimistic, but with different intensities as they process information differently: optimists
will become more optimistic than pessimists. Disagreement goes up, leading to trading;
pessimists will sell assets to optimists, restarting the process. Thus, a transitory shock is
propagated for a while.

An income shock. Consider now a transitory shock to optimists’ wages. As with the
previous redistributive shock, it represents an inflow of resources for optimists. However,
now the distribution of stocks is unchanged. The dynamics resemble the ones of a wealth
shock, but responses are notably less persistent. The main difference is that consumption
for pessimists does not go down, as the wage shock represents a net inflow of resources
into the economy while the trading shock redistributes, keeping aggregate resources un-
changed. Appendix C shows the IRFs of an aggregate wage shock. The dynamics are very
similar, except that, initially, that shock raises the stock market participation of pessimists
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Figure 2.8. Responses to a pure disagreement shocks DI . Periods are quarters
and the simulation does not include other information shocks that are present in the baseline calibration. IRFs
are computed as in figure 2.7

and moderates who end up increasing their stock holdings by trading with optimists.

2.4.2.3. An agent with Rational Expectations

While the evidence on the cyclical properties individual investors’ beliefs points out clear
departures from Rational Expectations, the evidence for institutional investors is much
less clear (Adam, Nagel, et al., 2022). Despite the recent surge in retail trading, the
market is still clearly dominated by institutional investors. This individual-institutional
investor composition opens a question about the interaction between extrapolative and
non-extrapolative agents or, in other words, whether investors who make forecast using
wrong models will be kicked out of the market by agents using better models, a prediction
associated with Friedman.

When the persistence of the wage process is close to 1 and all the agents hold Rational
Expectations, the equilibrium PD ratio is a constant and the price growth expectations
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Figure 2.9. Responses to a trading shock that redistributes stocks from
pessimists to optimists. The graph show the GIRFs of different variables to a trading shock.
Periods are quarters. IRFs are computed as in figure 2.7

.

are equal to dividends growth beliefs, which boils down to a constant. However, if
expectations coordination does not take place, an RE agent has to acknowledge the
existence of non-RE agents. Thus, RE is the fixed point of the mapping from perceived
to actual expectations

βREt ≡Et
(Pt+1

Pt

)
=

= Et

[
S̄ − ∑M−1

i=1 µiχiβitS
i
t−1 − µREχREβREt SREt−1

S̄ − ∑M−1
i=1 µiχiβit+1S

i
t − µREχREβREt+1S

RE
t

×
∑M−1
i=1 µiχiβit+1(W i

t+1/Dt+1 + Sit ) + µREχREβREt+1 (WRE
t+1 /Dt+1 + SREt )∑M−1

i=1 µiχiβit (W i
t /Dt + Sit−1) + µREχREβREt (WRE

t /Dt + SREt−1)
Dt+1

Dt

]
(2.23)
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Figure 2.10. Responses to a shock to optimists wages lnεw,3t . The graph show
the GIRFs of different variables to a wage shock to group 3. Periods are quarters. IRFs are computed as in
figure 2.7

.

While solving the previous equation is difficult, it is well-known in the learning
literature that OLS learning converges to RE under certain conditions. Exploiting that
convergence, we conjecture that the RE agents update their expectations following

β̂REt = β̂REt−1 +
1

t − 1

( Pt
Pt−1

− β̂REt−1

)
(2.24)

Figure 2.11 plots expectations and stock holdings of the previous 3 sentiments groups
and the added RE investor after 5000 periods, implying β̂REt ≈ β̂REt−1 ≈ βREt . As expected,
RE beliefs are much more stable than extrapolative beliefs. However, that does not
imply they will take over the whole market. In fact, it turns out that OLS learners are
outperformed in terms of average forecast errors by the moderate extrapolators. This
illustrates that RE might be the best strategy when there is belief coordination but not
otherwise. In this case, in terms of Guesnerie, 2011 , RE is a Nash Equilibrium but not a
dominant strategy.
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Figure 2.11. Model simulations for expectations and stock holdings
with a Rational Expectations agent.

2.5. Conclusions

In this paper, we present a quantitative model that jointly replicates the empirical dynamics
of stock prices, trading, and the heterogeneity of expectations. We place our emphasis
on a model of expectations that allows for different layers of heterogeneity. In particular,
we point out the role of heterogeneous long-run expectations and the signal-to-noise
perceptions that determine the speed at which agents adapt their expectations to new
information. This model captures salient features of recent survey evidence, such as high
and permanent disagreement and the pro-cyclical nature of both individual expectations
and disagreement, which we first document using available survey data on expected
returns.

We show that an otherwise asset pricing framework endowed with this model of
beliefs delivers a remarkable quantitative performance across a wide variety of stylized
facts regarding the joint dynamics of prices, heterogeneous expectations, and trading
patterns. The good quantitative performance legitimizes the use of the model to shed
some additional light on the mechanics of stock market booms. In particular, we point
out that disagreement and trading emerge as key drivers of asset price dynamics, as they
shape the distribution of beliefs and wealth that determines aggregate demand and prices.
This contrasts with mainstream asset pricing, where trading plays a marginal role.

Finally, we point out some shortcomings. First, the data analysis needs to be extended
by using more surveys and including tests on under-reaction. Second, the model of
expectations has to be compared with existing alternatives to RE, to make clear the points
of continuity and divergence, with an eye on the ability to replicate the survey evidence.
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Finally, although the model replicates the joint movement of expectations and trading,
it is completely unable to generate a level of trading similar to that of the real world.
We conjecture that it is related to the type of agents we are modeling ("retail investors"),
characterized by infrequent trading that accounts for a rather small fraction of total
trading volume. The inclusion of institutional investors, perhaps with different mandates
than households, might help in that direction.



2.A Appendix

Appendix A: Additional results

p-value

c c H0: c= c

2 Sentiment groups

p0−50 0.0546 *** -0.2421*** 0.0000
p50−100 0.0744 *** -0.2419 *** 0.0000

3 Sentiment groups

p0−33 0.0576*** -0.2421 *** 0.0000
p33−66 0.0545*** -0.2415*** 0.0000
p66−100 0.0809*** -0.2423*** 0.0000

4 Sentiment groups

p0−25 0.0591 -0.2421 0.0000
p25−50 0.0501 -0.2422 0.0000
p50−75 0.0621 -0.2420 0.0000
p75−100 0.0867 -0.2421 0.0000

Table 2.8. RE Tests across different sentiment groups. p0−50 denotes the
sentiment group which expectations lies between between the 0 and 50th percentile. The data in each
group is aggregated by taking the average of that particular group. Data used for this particular test is the
Gallup UBS survey data for expected stock market return of all individuals. Estimates have are based on
asymptotic theory and have been adjusted for small sample bias

Appendix B: Responses to aggregate shocks

In this section we report the responses of the model main variables to simultaneous
equivalent shocks on investors wages (figure 2.13) and transitory information (figure 2.14).

Appendix C: Solving asset pricing models with learning and
heterogeneous agents with PEA

In this note, we propose a new way of solving asset pricing models with learning under a
range of setups. We apply the Parameterized Expectations Algorithm using an approxima-
tion function rooted in economic theory. We use a one asset representative agent model
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Figure 2.12. Bootstrap densities of estimated parameters from
equation 2.5

as a baseline. Then, we solve that model for heterogeneous investors. Finally, we include
multiple assets.

C.1. Representative Agent Economy

Model structure

Demographics. The economy is populated by an arbitrary number of infinitely living
identical investors with weight µi (such that

∑
i µ

i = 1).

Goods and assets. There is a single perishable good in the economy. Besides, there exist
a single risky asset S in the form of a contract that delivers dividends each period
and is marketable at an uncertain future price, giving rise to capital gains and losses.

Resource processes. This is a pure exchange economy. When the time starts, each investor
is endowed with one unit of stock (Si−1 = 1). Dividends D are exogenous, obeying
a random walk with drift process

lnDt = ln a + lnDt−1 + ln d
t (2.25)

with a ≥ 1 being the permanent component and d
t ∼ logN (1, es2d − 1) the random

unpredictable shock. Shocks are independent and identically distributed. Capital
gains are endogenously determined.
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Figure 2.13. Responses to a general wage shock. The graph show the GIRFs of
different variables to an equivalent wage shock enjoyed by all investors. group 3. Periods are quarters.
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Markets. Financial markets are competitive but incomplete15. A negative amount of
stocks is allowed up to some point (specified below)16. Goods market behaves also
competitively.

Investors’ information set. Investors do not know that they all are identical. They
make decisions using their subjective probability measure Pi. It is a primitive of
the model that sets agents’ perceptions about the processes beyond their control:
dividends and prices. It is assumed they know the stochastic processes for dividends.
However, they are not endowed with knowledge about the pricing function. As a
result, there is an additional uncertainty source that enlarges the sample space Ω,
beingω = {Dt , Pt}∞t=0 a typical element ofΩ. Therefore, the underlying probability
space is given by (Ω, B, P) with B denoting the corresponding σ -algebra of Borel
subsets of Ω and P the agent’s subjective probability measure over (Ω, B).

15Because of the existence of constraints on stock holdings and the nonexistence of contingent claims markets.
16In this case, a negative position would be equivalent to the so-called covered short position, at which an

investor borrows shares and pays a borrowing rate during the time the short position is hold.
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Figure 2.14. Responses to a general information shock. The graph show the
GIRFs of different variables to an information equally received by all investors. Periods are quarters.
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Figure 2.15. Responses to a disagreement shock. The graph show the GIRFs of
different variables to a positive information shock hitting the optimists and a negative shock hitting the
pessimists.
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Investors’ program. Each investor faces a consumption-saving decision, choosing se-
quences of consumption and stock holdings {C i

t , S
i
t }∞t=0 to maximize their lifetime

expected utility with respect to their subjective probability measure Pi:

max
{C i

t ,S
i
t }∞t=0∈Γ

Si−1=1

EP
i

0

∞∑︁
t=0

δt
(C i

t )1−γ

1 − γ
(2.26)

where

Γ =

{
C i
t , S

i
t | C i

t + PtSit ≤ (Pt +Dt)Sit−1; S ≤ Sit ≤ S̄; 0 ≤ C i
t

}
(2.27)

The welfare function U (C i
t ) =

(C i
t )1−γ

1−γ is a time-separable continuous, increasing
in consumption U ′(C i

t ) > 0 but strictly concave U ′′(C i
t ) < 0 function. Inada

conditions hold. This parametric specification ofU represents a risk averse investor,
being γ her risk aversion level. Γ sets up the feasible set, determine by the budget
constraint and some bounds. Lower and upper bounds on Sit are assumed for
convenience; mathematically, these bounds ensure that the feasibility set is compact;
economically, the lower bound rules out Ponzi schemes, which are out of interest
here.

Equilibrium Since the model outlined in the previous section has some non-standard
elements (subjective expectations), we start by pointing out that the problem is well de-
fined. The investors program consists of maximizing a bounded continuous function
over a compact non-empty feasible set17. By the Weierstrass extreme value theorem, these
are sufficient conditions for the existence of a maximum. Besides, since the objective
function is strictly concave, the maximum is unique. Moreover, given the feasible set is
convex, the first order conditions are necessary and sufficient for the optimum by the
Karush-Kuhn-Tucker theorem18. Let us define now the Competitive Equilibrium in
sequential form.

Competitive Equilibrium. Given initial endowments, the income process and
the probability measure {Pi}Ii=1, a Competitive Equilibrium consists of sequences of
allocations {{C i

t , S
i
t }∞t=0}Ii=1 and prices {Pt}∞t=0 such that:

1. Investors behave optimally, satisfying:

17For this setup, it can be shown that the objective function is bounded, following Adam, Marcet, and Beutel,
2017. Besides, a no-trading choice is always an interior feasible possibility

18Standard transversality conditions are also required.
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a) KKT First Order Conditions. They boil down to the following Euler Equa-
tion19

(C i
t )−γ = δEPi

t

(
Pt+1 +Dt+1

Pt
(C i

t+1)−γ
)

(2.28)

and the budget constraint.

b) A Transversality condition:

lim
j→∞

δjEPi
t

[Dt+j

Dt
Pt+jSt−1+j

]
= 0 (2.29)

2. Markets clear:

Equities:
n∑︁
i=1

µiSit =
n∑︁
i=1

Si−1 ≡ S̄ = 1 (2.30)

Goods:
n∑︁
i=1

µiC i
t = Dt (2.31)

Rational Expectations Equilibrium.

In this section, I assume agents possess all the information about the economy,
knowing they all are equal and how dividends map into prices at any contingency. To derive
the CE under RE, I follow the standard procedure: use the market clearing condition
to pin down the allocation path and then, go to the Euler Equation to recover prices.
Thus, to clear the markets C i

t = Dt and Sit = S̃ must hold in every period. Then, iterating
forward on Pt+1, using the Law of Iterated Expectations and applying a transversality
condition, the standard pricing formula comes up:

Pt = Et

[ ∞∑︁
j=1

δj
(Dt+j

Dt

)−γ
Dt+j

]
(2.32)

Given the knowledge of the dividends process, this formula can be solved to derive a more
particular pricing function

Pt =
δa1−γρ

1 − δa1−γρ
Dt (2.33)

where ρ ≡ Et (ε
1−γ
t+n ) = exp{−γ(1 − γ)s2

d
/2}.

19Since Inada conditions hold, we can ignore consumption lower corner. By concavity, the budget constraint
will always bind. Assets lower and upper bounds are large enough to never bind.
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To have a benchmark for the approximating function used later, I specify the implicit
optimal policies in this model. Let Zt ≡ (Pt +Dt)St−1, then the optimal consumption
rule is

C i
t = cZt (2.34)

with c ≡ 1 − δa1−γρ. In other words, it is optimal to consume a constant fraction of
the investor’s resources. This is in line with Hakansson, 1970 results, for a problem with
exogenous i.i.d. returns and it was also pointed out by Williams, 2012. I proceed to verify
that the policy (2.34) is indeed a solution. First, it is consistent with market clearing. Note
that (given St−1 = 1)

C i
t = cZt = (1 − δa1−γρ) (Pt +Dt) = (1 − δa1−γρ)

( δa1−γρ

1 − δa1−γρ
Dt +Dt

)
= Dt

Second, plugging (2.34) in the budget constraint, the stock policy can be derived

Sit = (1 − c)Zt
Pt

(2.35)

Equilibrium prices are recovered using this demand in the stock market clearing condition,

(1 − c)Zt
Pt

= 1 ⇒ Pt = (1 − c) (Pt +Dt) ⇒ Pt =
1 − c

c
Dt =

δa1−γρ

1 − δa1−γρ
Dt

Finally, using the consumption policy and the prices implied by it in the Euler
Equation:

(C i
t )−γPt = δEt

[
(C i

t+1)−γ (Pt+1 +Dt+1)
]

;[
c
( 1 − c

c
+ 1

)
Dt

]−γ ( 1 − c

c

)
Dt = δEt

[ [
c
( 1 − c

c
+ 1

)
Dt+1

]−γ ( 1 − c

c
+ 1

)
Dt+1

]
;

(1 − c)D1−γ
t = δEt

[
D

1−γ
t+1

]
;

(1 − c) = δEt

(
a1−γε

1−γ
t+1

)
= δa1−γρ = 1 − c

where the 2nd line uses the policy and equilibrium prices (Pt = (1 − c)Dt/c).
Notice the policies are a function of the beginning of period portfolio Sit−1, the rele-

vant information about fundamentalsDt and prices Pt , as pointed out by Lucas, 1978. Of
course, if agents know the pricing function, prices would turn informationally redundant.

Equilibrium with imperfect information.
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Consider now a world with some information frictions. On the one hand, homo-
geneity is not common knowledge. As a result, investors cannot mechanically use the
goods market clearing condition because Prob(C i

t+j ≠ Dt+j) > 0. On the other hand,
there is an additional layer of uncertainty: price formation. In particular, investors do not
know the pricing function. As showed by Adam and Marcet, 2011, that extra uncertainty
leads to an extended state space Ω that include price history (with ω = {Dt , Pt}∞t=0 being
a typical element of Ω)20.

The consequence of these information frictions is that market clearing cannot be
mechanically imposed so that equilibrium prices cannot be deduced from the Euler
Equation. In general, agents cannot iterate forward because there exists the possibility
that the marginal agent pricing the asset changes over time (and with her, the probability
measure used to discount future payoffs). Then, the Law of Iterated Expectations cannot
be applied. But even if expectations homogeneity is assumed to be known21, forward
iteration on the Euler Equation yields

Pt = E
Pi
t

[ ∞∑︁
j=1

δj
(C i

t+j

C i
t

)−γ
Dt+j

]
= EPi

t

[ ∞∑︁
j=1

δj
(C (Pt+j , ·)
C (Pt , ·)

)−γ
Dt+j

]
(2.36)

In words: current prices are an unknown function of future expected prices22.
Therefore, decision rules must be computed such that equilibrium prices will equate
those to aggregate supplies. The next steps are: i) set up the subjective probability measure
P; ii) solve the model dealing with the conditional expectation.

Agents’ subjective price model. In this environment, P is a primitive of the model
that must be set up. To do so, the RE implicit price model is taken as a benchmark. From
the RE pricing equation (2.33), it follows that prices mimics the dynamics of dividends:

lnPt = lna + lnPt−1 + lnεdt (2.37)

The proposed subjective price model generalizes that, by allowing price growth to
differ from dividends growth:

lnPt = lnβt + lnPt−1 + lnεPt (2.38)

lnβt = lnβt−1 + lnηt (2.39)

with i.i.d. normally distributed disturbances with known parameters. The persistent
component of price growth βt is unobserved and has to be estimated from price signals.
20Under RE, Ω is just made of the dividends history, being ω = {Dt}∞t=0 a typical element.
21Agents could still differ in other dimensions (risk aversion, discount factors, initial endowments) such that

they still cannot know C it = Dt .
22The two information frictions are needed. If homogeneity is unknown but agents know how prices

are formed, future consumption would not depend on an endogenous variable (prices) but just on the
exogenous state (dividends) such that it could be predetermined. If prices are uncertain but investors know
they all are equal, future consumption is predetermined (just equal to the aggregate endowment).
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For pursuing that task, investors use a Kalman filter. Their prior is centered around the
RE value

lnβi0 ∼ N (lna, (σ i)2) (2.40)

where (σ i)2 is the steady state Kalman variance. Its posterior (conditional on the
observed history) is given by

lnβit ∼ N (lnmi
t , (σ i)2) (2.41)

The expected log price growth lnmi
t evolves recursively (with an information lag23):

lnmi
t = lnmi

t−1 + gi
(
ln
Pt−1

Pt−2
− lnmi

t−1

)
+ gilnεPt (2.42)

where lnεPt ∼ N
(
−(σε )2

2 , (σε)2
)

is an innovation to agents information set that captures
the extra knowledge agents receive about past transitory growth component24. In this
version with homogeneous agents, σ i = σ ∀i so that gi = g and mi

t = mt ∀i.
Solution Strategy via PEA
We start by pointing out the vector of state variables X of the problem. Under RE,

dividends shocks are the only state X i
t = Dt . With information frictions, the state space is

largerX i
t = (Dt , Pt , m

i
t). The inclusion of prices was discussed before (they are exogenous

random variable from the investor’s point of view). The inclusion of mt follows from the
subjective price model (it is a variable that summarizes investors’ view of the future).

The difficulty of the solution is that optimality conditions includes an unknown
conditional expectation. The one-period ahead Euler Equation can be rewritten as:

C i
t =

{
δEPi

t

(
Pt+1 +Dt+1

Pt
(C i

t+1)−γ
)}−1/γ

(2.43)

To solve the model, it must be computed somehow. The Parameterized Expectations
Algorithm (PEA)25 is one of the alternatives26. In general, the conditional expectation is a

23To impart recursiveness to the expectations-price relationship (avoiding multiplicity of equilibria) I follow
Adam, Marcet, and Beutel, 2017 and assume agents observe in period t information about the lagged
transitory component lnεPt−1.

24In the model quantitative analysis, I always set lnεPt = 0 for all agents and assets.
25I
26The first use of this approach was due to Wright and Williams, 1982a, Wright and Williams, 1982b, Wright

and Williams, 1984. My application builds on the version outlined by Marcet, 1988.
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function of the states X i
t

EPi
t

(
Pt+1 +Dt+1

Pt
(C i

t+1)−γ
)
= EPit

[
ϕ
(
zit+1, ε

i
t+1, z

i
t

)]
= EPi

[
ϕ
(
zit+1, ε

i
t+1, z

i
t

)
|X i

t

]
= E(X i

t )

where z are the model endogenous variables (prices and consumption in this case) and
the exogenous shocks (dividend shocks here). Therefore, the consumption decision rule
must be

C i
t = C (X i

t ) =
(
δE(X i

t )
)− 1

γ ≡ Ē(X i
t ) (2.44)

PEA consists of replacing the conditional expectation E(X i
t ) by some parametric

function ψ . The choice of the approximating functions ψ is not obvious and not unique.
Popular possibilities are polynomials, splines, neural networks, etc. In this model (indeed,
in models without occasionally binding constraints), there is no practical difference be-
tween approximating the conditional expectation E(X i

t ) and approximating the policy
function Ē(X i

t ). Exploiting that, I propose a novel approach: approximating functions
rooted in economic theory. The idea is that of homotopy: start with a version of the
model that has analytical solution (in this case, the RE version) and keep the structure of
the policy function as an approximating function. I illustrate this idea for the previous
model. Consider this version of the above RE rules as the approximating function:

C i
t = C (X i

t ; χ) = (1 − χζ (mt)) (Pt +Dt)Sit−1 (2.45)

where ζ is some function of the expected permanent capital gains. Plugging it in the
budget constraint, the stock policy reads as

Sit = C (X i
t ; χ) = χζ (mt)

(Pt +Dt)Sit−1
Pt

(2.46)

Hence, applying the stock market clearing condition Sit = S̃t = 1, equilibrium prices
reads as

Pt =
χζ (mt)

1 − χζ (mt)
Dt (2.47)

Consider ζ (mt) = mt . Since under RE mt = a1−γρ, it would recover the exact
pricing function for χ = δ. That provides a reasonable range of starting values for χ.

Note the advantages of the approach: we are left with a single parameter to estimate
(χ) as opposed to the potentially large number of parameters of traditional approximating
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function; this rules out any multicollinearity problem typically associated with PEA27;
we have a closed-form solution for equilibrium prices; the approximating function yields
a policy function with economically interpretable properties (for instance, it shows that
the price-elasticity of stock demand is function of expectations. See Belda, 2023 for an
economic analysis).

To evaluate the performance of this approximating function, χ must be estimated.
To do so, I resort to simulation and Montecarlo integration. To simulate the model,
first I perform some normalization to ensure the variables are stationary. In particular, I
normalize the problem by dividends, such that the states become Xt =

(
Pt
Dt
, mt

)
. Second,

I need to impose a projection facility to ensure that beliefs fall in an acceptable range
(avoiding both negative and explosive prices). Note that at mt = 1/χ prices faces a
discontinuity. Then, the expectations updating equation is modified as:

lnmt = w

[
lnmt−1 + g

(
ln
Pt−1

Pt−2
− lnmt−1

)]
(2.48)

with

w(st) =
{
st if mt ≤ m̄

st = st−1 if mt > m̄
(2.49)

where m̄ = (1 − c)/χ, where c is the minimum propensity to consume. In the application,
I set c = 0.01.

Third, let the interior of the conditional expectation be

ϕ
(
zt+1(χ), εt+1, zt (χ)

)
=

Pt+1
Dt+1

(χ) + 1
Pt
Dt
(χ)

( Ct+1

Dt+1
(χ)

)−γ
Finally, the next-period endogenous variables should be computed with respect to the
subjective probability measure. The following box summarizes the algorithm.

PEA implementation

1. Draw a series of the exogenous processes
{
εdt

}T
t=1

, for a large T.

2. For a given χ ∈ Rn, recursively compute the series of the endogenous variables
{{C i

t (χ), Sit (χ)}ni=1, Pt (χ)}Tt=1.

3. Minimize the prediction error.

27Although that can also be solved in other ways (e.g., using Chebyshev polynomials. See Christiano and
Fisher, 2000).
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a) ϕ() must be consistent with agents’ expectations P. Therefore:
i) Expected prices:

mP
t+1 = mtνt+1 ⇒

(Pt+1
Pt

)P
= mtνt+1ε

p
t+1 ⇒

( Pt+1
Dt+1

)P
=

(Pt+1
Pt

)P Dt

Dt+1

Pt
Dt

ii) Expected consumption:( Ct+1
Dt+1

)P
= (1 − χmP

t+1)
(( Pt+1
Dt+1

)P
+ 1

)
St

b) Nonlinear least square regression

G(χ) = argmin
ξ ∈Rn

1
(T − T )

T∑︁
t=T

[
ϕ
(
zPt+1 (χ), εt+1, zt (χ)

)
−
ψ (ξ ;Xt (χ)−γ

δ

]2

with T are some initial periods burned.

4. Update χ
χj+1 = χj + d(G(χj) − χj)

until reaching a fixed point χf = G(χf ).

Solution accuracy
To evaluate how good is the approximation, I explore the errors size. Recall approxi-

mating errors are given by

ut+1 = ϕ
(
zt+1, εt+1, zt

)
−
ψ (χ; xt)−γ

δ

Then, we need a criterion to determine the degree of accuracy. One of the most
popular one is the Bounded Rationality Measure (Judd, 1992):

J = log10

(
Et

�����ut+1
Ct
Dt

�����
)

(2.50)

being J a dimension-free quantity expressing that error as a fraction of current consump-
tion, which expresses the results in economic terms. The following table contains some
statistics of interest from the PEA estimation.

Table 2.9. PEA estimation results.

T χ̂ J Jmax Jmin MSE

100.000 0.9691 -3.33 -3.11 -3.61 4.67e-04
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The model was simulated for a very long horizon (T=100.000 periods) as a safety
horizon (the model relies on a single long simulation to compute the expectations, ex-
ploiting ergodicity). Anyway, if one looks for speed, even for T=10.000 the estimation
delivers equal χ̂ up the 8th decimal when using different sequences of random shocks in
the simulations, which more than fulfils Creel, 2005’s criterion28. The estimated coeffi-
cient χ̂ is 0.969, indeed relatively close to the discount factor δ, which was calibrated at
0.995. Turning to accuracy, Judd’s measure shows a good performance, with an average
mistake of $0.47 out of $1.000 (and a maximum error of $0.78 out of $1.000). Figure
2.16 shows the histogram of Judd’s measure. The use of other metrics just confirms the
good accuracy of the approximation (for instance, the mean square error turns out to be
negligible).
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Figure 2.16. Histogram of the Judd’s Bounded Rationality Measure for
χ̂.

C.2. Endogenous production

We modify the economic environment to allow for endogenous production. We keep the
dividends process exogenous, as before. To endogenous this we need to add monopolistic
competition with time-varying markups, an extension we consider later on.
28Creel suggests that "the coefficients of the function that approximates expectations should be the same at

the second decimal place across all replications of the PEA solution that use different sequences of random
numbers in the simulations". For T=10.000 and good starting values, the estimation takes no longer than
20min. In addition, χ̂ is robust to different starting values χ0 up to 3 decimals.
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Consumers

max
{C i

t ,S
i
t }∞t=0∈Γ

Si−1=1

EP
i

0

∞∑︁
t=0

δt
(C i

t )1−γ

1 − γ
− λ

(Lit)1+ϕ

1 + ϕ (2.51)

where

Γ =

{
C i
t , S

i
t | C i

t + PtSit ≤ (Pt +Dt)Sit−1 + wtLit ; S ≤ Sit ≤ S̄; 0 ≤ C i
t

}
(2.52)

where λ controls the magnitude of the disutility of labour, Lit and wt is the wage for
supplying 1 unit of labour and ϕ the inverse of the Frisch elasticy of labour supply.

On top of the Euler equation for stock, the intra-temporal optimality condition for
labour supply is given by

(CDi
t)−γ = δEPt

((Dt+1

Dt

)1−γ (PDt+1 + 1)
PDt

(CDi
t+1)−γ

)
= Ψ(X i

t ; χ)−γ

λL
ϕ
t = wtC

−γ
t

(2.53)

where we have already imposed that the labour market clears.
We assume for now also that the individual agent has perfect information about the

production technology and the problem of the firm to which we turn next.
Firm
Assume the firms have production technology that depends only on labour, Yt =

AtL
α
t where At is the productivity assumed to be exogenous. The problem of the firm is

to maximize profits
max
Lt

AtL
α
t − wtLt (2.54)

with FOC
wt = αAtL

α−1
t (2.55)

PEA algorithm. We adapt the previous algorithm to the case of endogenous labour
supply and production. First, we need to modify the functional form used for the param-
eterized expectations since we have an additional state variable: technology shocks. This
problem does not allow close form solution or at least I could not find one but a technol-
ogy shock should increase (in RBC framework) both wages, labour and consumption
and therefore can be seen as a shock in wealth.
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In this case:

CDt = Ψc = Ψc (St−1, PDt , At , β
i
t) = B(βt)

(
(PDt + 1)St−1 + χ2

At

Dt

)
(2.56)

where
Bt = B(βt) = 1 − χ1βt . (2.57)

Combining the wage equation 2.55 with the optimality condition on wages 2.53, we
obtain

Lt =
( α
λ
AtΨcD

−γ
t

) 1
1+ϕ−α

. (2.58)

The consumption policy function at t + 1 under subjective beliefs reads

CD(χ)i,Pt+1 = (1 − χ1)βPt+1)
[(( Pt+1

Dt+1

)P
+ 1

)
St + χ2At+1

]
(2.59)

and the stock holding can be recovered from the budget constraint

St =
(1 − Bt)

(
(PDt + 1)Sit−1

)
+ wtLt−B(βt )χ2At

Dt

PDt
. (2.60)

Given a positive technology shock coupled with high subjective capital gains expec-
tations we should expect a higher demand for stock.

The equilibrium PD becomes

Pt
Dt

=
(1 − Bt)
Bt

+
wtLt − B(βt)χ2At

DtBt
(2.61)

D.3. Heterogeneous Agents

Consider the economy described in the main body of Chapter 2.

Solution algorithm for one asset.
The concavity of the objective function and the convexity set guarantee the suffi-

ciency of the first-order conditions for an interior optimal plan. The optimal condition
for the household plan is given by the Euler equation:

(CDi
t)−γ = δEPt

((Dt+1

Dt

)1−γ (PDt+1 + 1)
PDt

(CDi
t+1)−γ

)
= δE(X i

t ) (2.62)

where X i
t are the state variables. The problem is that this Euler Equation includes

an unknown conditional expectation. To solve the model, it must be computed some-
how. The Parameterized Expectations Algorithm (PEA) is one of the alternatives. PEA
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consists of replacing the conditional expectation E(X i
t ) by some parametric function

ψ (Marcet, 1988). The choice of the approximating functions ψ is not obvious and not
unique. Popular possibilities are polynomials, splines, neural networks, etc. We follow
the approach outlined by Belda, 2022: use approximating functions rooted in economic
theory. Among the advantages of that approach is the possibility of getting closed-form
solutions. Altogether, we follow the next steps

1. Approximate the consumption policy using a

CDi
t = CD(Sit−1, PDt ,WDt , β

i
t) = B(βit)

(
WDt + (PDt + 1)Sit−1

)
(2.63)

Bit = B(βit) = 1 − χiβit (2.64)

where χi is an unknown parameter which will be estimated via PEA to be discussed
below. The consumption policy function is linear in wealth and the propensity to
consume depends negatively on expectations.

2. Obtain the stock holdings policy function by plugging the consumption policy in
the budget constraint:

Sit = (1 − Bit)

(
WDi

t + (PDt + 1)Sit−1

)
PDt

. (2.65)

3. Determine market-clearing prices by adding individual demands, equating them
to the aggregate supply and solving for prices. In this case,

Pt
Dt

=

∑M
i=1 µi (1 − Bit) (Sit−1 +

W i
t

Dt
)

Ss − µi
∑M
i=1(1 − Bit)Sit−1

. (2.66)

The only unknown at this point is the parameter χi from equation 2.73. To obtain
this parameter we make use of PEA on the first order condition of the agent which we
rewrite as

(CDi
t)−γδ−1 = EPt

((Dt+1

Dt

)1−γ (PDt+1 + 1)
PDt

(CDi
t+1)−γ

)
. (2.67)

Then, we run the previous PEA algorithm to estimate χ.

Solution algorithm for two assets.
We consider now the case in which there is another asset, a risk free bond on top of

the risky asset. We provide below an efficient algorithm to solve for the equilibrium in the
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economy with two assets. Let qt be the price of a bond that pays 1 unit of consumption
with certainty at time t + 1. Letting BDt =

Bt
Dt

, the budget constraint of the households
becomes (after normalizing by dividends, Dt)

CDt + qtBDi
t + PDtSt = PDt (St−1 + 1) + BDi

t−1ΔDt +WDt (2.68)

The optimal condition for the households’ consumption plan is as before :

(CDi
t)−γ = δEPt

((Dt+1

Dt

)1−γ (PDt+1 + 1)
PDt

(CDi
t+1)−γ

)
= δE(X i

t ) (2.69)

where X i
t are the state variables. On top of this we have the optimal condition for

bond holdings

qt = δEPt

((
CDi

t+1

CDi
t

ΔDt+1

)−γ)
(2.70)

Notice that this equation must hold true for each individual agent and if we would
parameterize directly this equation the system would be over-determined and we could
not solve for prices and bond portfolios.

The bond Euler equation can be re-written as

(CDi
t)−γ = δ

EPt

((
CDi

t+1ΔDt+1

)−γ)
qt

. (2.71)

Notice that this additional condition together with 2.69 implies that under the
subjective probability measure, P, the discounted returns (under subjective SDF) on
bonds and stocks must be the same. I am afraid (almost sure) that in this case we will
get unusually high volatility of interest rates. One way to break this is to consider also
subjective beliefs for bond prices which will be the next natural extension.

1. Approximate the consumption policy using a

CDi
t = Ψi

c = Ψc (Sit−1, PDt ,WDt ,
Bt−1i

Dt
, βit) = Bi (βit)

(
WDt+(PDt+1)Sit−1+

Bit−1
Dt

)
(2.72)

where
Bit = B(βit) = 1 − χi1β

i
t (2.73)

where χi1 are unknown parameters (N parameters) that will be estimated via PEA
to be discussed below. The consumption policy function is linear in wealth and
the propensity to consume depends negatively on expectations.
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2. Approximate the FOC with respect to bond holdings. The latter is given by 2.81 and
holds for each agent i. If we would approximate the same conditional expectation
for each agent the system would be over-identified and we would not be able to
solve for Bit or prices which we need to simulate the model. Instead, following
Marcet and Singleton, 1999, we rewrite the FOC for some agents in the following
way (for the case of N = 3 agents)

qte
B1
t = δEP1

t

((
CD1

t+1

CD1
t

ΔDt+1

)−γ
eB

1
t

)
= Ψ1

b

qte
B2
t = δEP2

t

((
CD2

t+1

CD2
t

ΔDt+1

)−γ
eB

2
t

)
= Ψ2

b

qt = δEP3
t

((
CD3

t+1

CD3
t

ΔDt+1

)−γ)
= Ψ3

b

(2.74)

where

Ψi
b = Bib(β

i
t)
(
WDt + (PDt + 1)Sit−1 +

Bit−1
Dt

)
,

Bib = Bb(βit) = 1 − χi2β
i
t .

(2.75)

Dividing the first equation in 2.74 by the second and second by the third we obtain

B1
t = log

(
Ψ1
b

Ψ2
b

)
B2
t = log

(
Ψ2
b

Ψ3
b

)
B3
t = −(B1

t + B2
t )

(2.76)

where the last equation follows from the marketing clearing for bonds and voila
we hae bond holdings. Bond prices, qt , are obtained from

qt = δEP3
t

((
CD3

t+1

CD3
t

ΔDt+1

)−γ)
= Ψ3

b . (2.77)

Now we are back to the main algorithm.
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3. Obtain the stock holdings policy function by plugging the consumption policy in
the budget constraint:

Sit =
(1 − Bit)

(
WDi

t + (PDt + 1)Sit−1 +
Bit−1
Dt

)
− qtBD

i
t

PDt
. (2.78)

4. Determine market-clearing prices by adding individual demands, equating them
to the aggregate supply, imposing 0 net supply in the bond market and solving for
prices. In this case,

Pt
Dt

=

∑M
i=1 µi (1 − Bit) (Sit−1 +

W i
t

Dt
+ Bit−1

Dt
)

Ss − µi
∑M
i=1(1 − Bit)Sit−1

. (2.79)

The only unknown at this point are the parameters from equation 2.73 χij , j =
1, 2; i = 1 : N which we gather in the vector χ. To obtain this parameter vector we
make use of PEA on the first order conditions of the agent which we rewrite as

(CDi
t)−γδ−1 = EPt

((Dt+1

Dt

)1−γ (PDt+1 + 1)
PDt

(CDi
t+1)−γ

)
, (2.80)

qt = δEPt

((
CDi

t+1

CDi
t

ΔDt+1

)−γ)
. (2.81)

The PEA algorithm involves the following steps:

1. Draw a series of the exogenous processes for a large T.

2. For a given χ ∈ 2XRN , recursively compute the series of the endogenous variables.

3. Minimize the Euler Equation square residuals

G(χ) = argmin
χ

∑︁
i

∑︁
t

[((DP
t+1
Dt

)1−γ (PDP
t+1 + 1)
PDt

(CD(χ)i,Pt+1)
−γ

)
−

(CD(χ)it)−γ

δ

]2

+[
qt (χ) − δ

[
CD(χ)i,Pt+1

CDi
t (χ)

ΔDt+1

]−γ]2

(2.82)
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Note the interior of the expectation must be computed according to investor’s
beliefs. Since investors know the process for dividends and wage-dividends, the
only problematic objects are PDt+1 andCDt+1. Using agents subjective price model

βi,Pt+1 = βitνt+1 ⇒
(Pt+1

Pt

)P
= βitνt+1ε

p
t+1 ⇒

( Pt+1

Dt+1

)P
=

(Pt+1

Pt

)P Dt

Dt+1

Pt
Dt

In turn, expected consumption reads

CD(χ)i,Pt+1 = (1 − χβi,Pt+1)
[
WDi

t+1 +
(( Pt+1

Dt+1

)P
+ 1

)
Sit +

Bit
Dt+1

]
Notice that given consumption policy function 2.72 the price of the bond will
depend on the subjective expectations of marginal consumption at t + 1 which will
depend on Bit .

4. Find a fixed point χ = G(χ). For that, update χ following

χj+1 = χj + d(G(χj) − χj) (2.83)

where j iteration number and d the dampening parameter.
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The Fiscal Channel of Quantitative Easing
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Abstract

This paper is a theoretical examination of the role of fiscal distortions in shaping the effects
of Quantitative Easing (QE). The presence of deadweight losses from taxation breaks
Wallace’s neutrality since QE influences the level and volatility of such losses. Under some
conditions, QE can stimulate demand by removing tax distortions, but it increases the risk
premium. This differs from the standard view that QE stimulates demand precisely by
lowering risk premiums due to the relaxation of financial frictions. A Central Bank must
strike the right balance between the efficiency gain of more QE against the additional
risks it entails. By exploiting the risk premium from capital ownership, QE emerges as an
alternative to costly taxation, suggesting an efficiency-risk trade-off for public finances.
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3.1. Introduction

This paper is a theoretical examination of the role of fiscal distortions in shaping the effects
of Quantitative Easing (QE). The presence of tax deadweight losses breaks Wallace, 1981’s
irrelevance, making asset purchases capable of influencing aggregate demand and risk
premiums but in a different way than commonly thought. Our goal is to uncover this
fiscal channel and study its consequences for the conduct of QE.

Fiscal policy is paramount to determining the Central Bank’s ability to affect the
economy via asset purchases (Wallace, 1981, Leeper and Leith, 2016, Benigno and Nisticò,
2020). This is because asset purchases originate gains and losses that enter the consolidated
budget constraint of the State and must be balanced out by movements in other fiscal
or monetary items. How fiscal variables react determines then the autonomy degree of
monetary policy and the ultimate effects of asset purchases.

Following Wallace, 1981, a common assumption in the literature is that fiscal policy
offsets QE gains/losses by using lump-sum taxes. Thus, the differences in interest earnings
implied by QE are paid out in the form of taxes to the asset-holders that participate in the
QE program. In this way, the allocation of resources is unchanged; the same agents get
the same flow of resources, although under a different cover -a fiscal transfer instead of an
asset payoff. As a result, the change in the public portfolio does not affect the competitive
equilibrium. In other words, full fiscal support (in the sense of Del Negro and Sims, 2015)
implemented via lump-sum taxes makes QE irrelevant.

Some papers deviate from Wallace’s fiscal policy by assuming that fiscal deficits do
not react to QE flows.1 Without fiscal adjustment, there is a reallocation of resources and
risk between the private and public sectors that impacts the equilibrium. For instance,
in the event of a loss that is transferred to a Treasury with a given path of deficits, public
debt must buffer it out, representing a wealth transfer to the private sector and a potential
need for an alternative monetary policy path to stabilize the debt, both factors inducing
inflation.2 The role of sticky taxes in shaping QE outcomes has been studied in detail by
Benigno and Nisticò, 2020 and also in Hollmayr and Kühl, 2019; and has been used to
study issues such as debt sustainability (Elenev et al., 2021) or QE’s exit strategies (Airaudo,
2022).3

1This is the case, for instance, of some active fiscal policy, in the sense of leeper1991equilibria. However,
active fiscal policy does not break neutrality by itself, as there exist fiscal rules that qualify as active but still
fully react to QE flows, as shown by Benigno and Nisticò, 2020.

2Alternatively, the loss can be kept within the Central Bank, perhaps as a deferred asset. This can be simply
viewed as another form of public debt, backed by seignorage. If the debt is big enough, it might need an
alternative monetary policy to be stabilized, breaking neutrality. Given this equivalence, in the paper, we
assume full fiscal support; see Benigno and Nisticò, 2020 for deviations from this.

3Elenev et al., 2021 is the only that considers distortionary taxes. As a result, there is a fiscal channel of QE
since it affects debt, taxes and then the allocation of labour. However, they don’t really explore this channel,
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Nonetheless, what if the Government fully support the Central Bank but finds it
easier to cut spending rather than to raise taxes in the event of a loss? Or to finance a
targeted public program instead of transferring the resources back to the investors? What
if, despite wanting to pass the gains or losses to the asset-holders that participated in the
program, lump-sum taxes are not available? If public spending is adjusted and the public
goods financed or defunded are not perfect substitutes for the private consumption of the
asset-holders, QE ends up causing a reallocation of resources between the public sector
and the investors. Besides, adjustments in costly taxes can influence tax deadweight losses,
factor allocations, etc. Both adjustments imply the non-neutrality of asset purchases.
They are the focus of this paper.

To study these cases, we use a two-period endowment stochastic economy, with a
Lucas tree, a society of identical investors and an institutional framework characterized by:
i) an independent Central Bank that is fully supported by the Government, in the sense of
Del Negro and Sims, 2015; ii) a Government that uses costly taxes to finance valuable public
goods. We abstract from inflation and nominal variables, such that all the adjustments
are in terms of goods. This, along with the risk-free nature of the public debt, implies a
passive fiscal policy.4 The Central Bank can only choose its balance sheet, that is, it chooses
the holdings of the private risky asset financed by issuing risk-free public liabilities.5 The
independence of the Central Bank is reflected in the timing; it is a Stackelberg leader that
decides its balance sheet policy in the first period. Given that policy, investors save and
consume, and later, in the second period, the Government chooses taxes and spending in
a discretionary way, after observing the gains or losses originated by QE.

The setup differs from the literature in one key dimension. Instead of imposing an
exogenous public spending and forcing tax adjustments or, alternatively, conjecturing
some ad-hoc fiscal rules, we endogenously derive the fiscal reaction functions by asking
the Government to achieve the best possible equilibrium. Thus, fiscal policy functions
depend on the structure of the economy in a precise way. To make this problem interesting,
we add two important ingredients. First, tax deadweight losses. Following Bohn, 1992, we
use a reduced-form formulation whereby some resources are lost in taxation, alluding to
various possible reasons such as collection costs, allocation distortions, resources devoted
to tax evasion activities and the likes. Second, public goods are valuable. This introduces
a trade-off between costly taxation and desirable spending that might resemble the one
actually faced by governments.

which operates together with several financial frictions and changes between active-passive regimes. We do
the opposite, focusing exclusively on this channel.

4Our mix of passive fiscal policy and full fiscal support is one of the examples of neutrality used by Benigno
and Nisticò, 2020. We show how non-neutrality can emerge even within this setup, which, for instance,
closely follows the institutional arrangement in the UK.

5This particular definition of QE facilitates some of the derivations. However, it is not crucial at all for our
results, which holds as long as the Central Bank finance the program by issuing liabilities that are less riskier
than the assets it acquires.



136 THREE ESSAYS IN MACROFINANCE

A new non-neutrality result emerges in this economy, related to the effects triggered
by fiscal adjustment to QE.6 Consider a QE program originating some gains. A rational
government facing costly taxes and certain demand of public goods would rationally
choose to react to the gains by lowering taxes and increasing spending, with an intensity
depending on the severity of tax costs. Lower taxes reduce the tax deadweight losses; this
efficiency gain is distributed between private and public spending, increasing ex-post
welfare in the last period.

What are the consequences for period-1 variables? Forward-looking investors adjust
their expectations on future consumption, becoming more optimistic, which leads to an
increase in first-period consumption due to a consumption smoothing motive. On the
downside, the efficiency gain increases the exposure of future consumption to output
fluctuations; this generates a precautionary savings motive. Depending on the relative
strength of each effect, QE can stimulate or depress the private goods demand and then
deflate or inflate asset prices. Finally, the risk premium is also affected since QE increases
the covariance between private consumption and the asset payoff. Thus, if QE deflates
asset prices, the higher covariance would deflate risky prices further, widening the risk
premium. Altogether, QE moves the economy to a new equilibrium with a higher mean-
variance consumption profile, with effects on aggregate demand, asset prices and risk
premiums.

This channel implies a boost (dampening) of aggregate demand, asset price deflation
(inflation) and risk premium widening (narrowing) simultaneously. This differs strongly
from standard views of QE, whereby the reduction of long-run interest rates (and risk
premiums) cohabits with higher aggregate demand. In fact, popular models conjecture
that QE reduces risk premiums due to market segmentation or other financial frictions,
boosting then aggregate demand (e.g., Gertler and Karadi, 2011, Vayanos and Vila, 2021).
On the contrary, in our model, aggregate demand is stimulated by removing tax distortions
from the economy, but at the cost of increasing the risk, which eventually affects the risk
premiums. In this sense, the fiscal channel is a complementary transmission channel
that might counteract some of the effects of the financial channels, perhaps helping
to understand the lasting uncertainty about QE’s effects. Additionally, the relevant
dimension of QE is the stock rather than the flow, as in Harrison, 2017, due to its relation
with the level of tax deadweight losses.

If swapping risk-free for riskier assets impacts the competitive equilibrium simply
due to the presence of costly taxation and valuable public goods, a natural question is:
How much QE should be done? We answer the question by asking the Central Bank to
choose the quantity Q of risky asset purchases to maximize the expected social welfare
taking into account the optimal reactions of all the other agents to its policy. It turns out
6Note this is different from an active tax rule that does not react to QE flows and forces monetary policy

to act. Here fiscal policy acts and this action triggers the effects in the model. In this sense, this is a fiscal
transmission channel of QE, rather than a monetary policy channel induced by fiscal inaction.
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that under linear tax costs, the efficiency gain always dominates the higher risk. More QE is
always better: less distortions without too much additional risk (Q∗ = 1). On the contrary,
introducing quadratic costs delivers a Q∗ < 1. The key factor is the marginal productivity
of tax cuts. With linear costs, it was constant; every additional unit of QE generates the
same efficiency gain such that it always dominates the additional risk brought up by a
larger QE program. With quadratic costs, however, the efficiency gains are decreasing with
QE such that, at some point, QE begin to deteriorate the mean-variance consumption
equilibrium.

All in all, QE emerges as an alternative way of collecting resources for the State:
exploiting the risk premium from capital ownership rather than imposing costly taxes on
households. In this vein, it shares with Farhi, 2010 the exploration of capital ownership
as an optimal alternative to taxation. In our economy, ownership is more efficient but at
the price of increasing risk-taking. Thus, the paper suggests an efficiency-risk trade-off for
public finances.

Practically, fifteen years of widespread QE employment (or more than twenty for
Bank of Japan) has opened up the prospect of a more permanent or conventional use of QE.
As normalization of monetary policy takes hold, there is a reasonable challenge regarding
which of the unconventional measures may end up in the conventional monetary toolkit
of the future. This paper provides a rationale and goal for a more conventional use of
QE. Looking ahead, we show how QE can be used to finance valuable public goods,
complementing the view described in Reis, 2017. This has sometimes been called the
“Fiscal QE” (Selgin, 2020). Recent targeted QE programs, such as Bank of England’s
and ECB’s Green Corporate Bond Programs or the ECB’s Transmission Protection
Instrument, can be seen as examples of this use.

The rest of the paper is structured as follows. Section 2 sets out the model and
solves the fiscal and savings-consumption problems. Section 3 deals with the Central Bank
problem.Section 4 concludes pointing out some promising extensions.

3.2. QE and Fiscal Policy

In this section, we describe a two-period model economy and use it to study QE. The
model abstracts from all sorts of frictions considered in the QE literature, and focuses
on fiscal elements that allude to tax collection costs and the utility of public goods. QE
consists of purchasing risky private assets by issuing risk-free public assets.7 The problem
is set in two stages and solved backwards. In the last stage, the consolidated government
observes QE gains or losses and decides how to adjust taxes and spending to satisfy the

7We assume QE buys risky private assets instead of long bonds, but the results go through with long-term
public bonds as well. We key is to buy an asset with a higher mean-variance profile.
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budget constraint. In the second stage, investors solve a consumption-savings problem
before knowing QE gains or losses but anticipating how the government would eventually
react to them. We analize the cases that make QE (non-)neutral and uncover a fiscal
channel related to the efficiency gain of QE due to the removal of tax deadweight losses.

3.2.1. The model

The economy is populated by a continuum of measure 1 of identical investors. They last
for 2 periods, indexed by t = 0, 1, 2. There is a single perishable good in the economy that
also acts as the numeraire of the economy. There exist two assets: a single risky asset, call
it "stock" S, in fixed supply in the form of a contract that delivers Dt goods each period
and is marketable at an uncertain price P; a safe public bond B, that is issued at discount
1/R and delivers 1 unit of goods with certainty. When the time starts, each investor is
endowed with one unit of the stock (Si−1 = 1). Payments Dt are exogenous and stochastic,
following a Normal distribution with mean µ and standard deviation σ . This is the only
source of risk in the economy.

Financial markets are competitive but incomplete, as output D can materialize in a
continuum of outcomes, but there are only two assets available. The goods market behaves
also competitively. Investors possess full information about the economy’s structure and
are rational.

We consider a State that participates in the economy by determining monetary and
fiscal variables. In particular, it is in charge of public spending Gt ; costly taxes Tt with an
associated tax cost function H : T → Rwith 0 < H ′(T ) < 1 such that the government
has to collect 1+H(T) units of goods from the private sector to be able to spend 1 unit with
H (T ) = αT for α > 0;8 risk-free government debt B; and purchases of risky assets QE.
Assume that the economy starts without debt. Thus, the State budget constraints read as:

G0 + QP = T0 +
B

R
(3.1)

G1 + B = T1 +D1QE (3.2)

These constraints can be collapsed into this intertemporal constraint

Q

(
P − D1

R

)
︸        ︷︷        ︸

QE losses

= T0 +
T1

R
− G0 −

G1

R︸                  ︷︷                  ︸
Primary Surplus

(3.3)

8This is a reduced form for distortionary taxes that simplifies some computations. Bohn, 1992 shown its
equivalence with labor income taxes. It can also be broadly related to the Okun’s "leaky bucket", whereby
resources spent by the government are less than the ones collected, due to all sort of potential inefficiencies,
distorted decisions, etc. The reduce-form remains silent about the sources of such inefficiencies.
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that points out that the present value of the primary surplus must offset QE losses.
Note this model implies there is fiscal support in the sense of Del Negro and Sims, 2015
and fiscal policy is passive since it adjusts surpluses given the actions of the Central Bank.
In the literature, typically (G0, G1) are exogenous, for instance (0, 0), such that passive
government must adjust taxes. On the contrary, we allow the government to choose G,
giving rise to infinitely many possible combinations of taxes and spending adjustments
satisfying the intertemporal budget constraint.

Private investors solve a standard savings-consumption problem. We assume welfare
depends on current consumption and a convex combination of utility derived from future
consumption and public spending, with y denoting the weight attached to the utility
derived from consumption. Utility is given by a CARA function u(x) = −1

γ exp(−γx),
with γ being the parameter of absolute risk aversion.

Competitive Equilibrium. Given Si−1 = 1, a Competitive Equilibrium is a vector of
non-negative asset prices {P, 1/R} and allocations {C i

0, C
i
1 , S

i , Bi} indexed by an economic
policy made of a fiscal policy {G0, G1, T0, T1} and a balance sheet policy {B, QE} that
satisfies:

1. Investor’s Euler Equations for stocks and bonds.

2. Investor’s budget constraints.

3. The State’s intertemporal budget constraint.

4. Assets market clearing conditions∫ 1

0
Sidi + QE = 1;

∫ 1

0
Bidi = B (3.4)

There are 12 endogenous variables and 7 optimality conditions. It follows that
economic policy needs to target 5 variables out of {G0, G1, T0, T1, B, QE}. Without loss
of generality, assume there is no public spending and tax collection in period 0. QE is
defined as the vector {B/R,QE} = {QP,Q}. The remaining two fiscal variables, T1 and
G1, will be set optimally by the government to absorb the flows originated by QE.

3.2.2. The fiscal problem

QE originates a flow of funds in the government’s consolidated budget constraint. Let
X = Q(D1 − PR) be such flow. Standard practice is to assume G1 = 0 such that the
period-1 budget constraint would impose T1 = −X . Instead, we allow the government
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to select how to react to QE rationally once all the outcomes have been observed. The
rational response, call it T ∗ and G∗, is given by

T ∗, G∗ = arg max
{T,G}

yu(C1) + (1 − y)u(G) (3.5)

subject to
G + B = T + QD1 (3.6)

C1 + T +H (T ) = SD1 + B (3.7)

Given S = 1 − Q, B = QPR, P and R. Thus, fiscal policy exhibits no commitment;
it is selected to maximize ex-post social welfare subject to period-1 restrictions and taken
as given period-0 equilibrium outcomes.

The FOC determining optimal taxes is equal to:

y(1 + α)exp{−γC1} = (1 − y)exp{−γG} (3.8)

Manipulating this expression a bit using investor’s and gov’s budget constraints:

ln[y(1+α)]−ln(1−y) = −γ(G−C1) = −γ(X+T−D1+X+T (1+α)) = −γ(2X+(2+α)T−D1)
(3.9)

Solving for T:

T ∗ =
1

2 + αD1 −
2

2 + αX −
ln[y(1 + α)] − ln[(1 − y)]

γ(2 + α)︸                           ︷︷                           ︸
≡a

(3.10)

In words, taxes should increase with output D1, decline with QE gains X (as QE gains are
an alternative way of financing G), decline with distortions α (the more costly taxation
is, the less it should be used) and increase with the social weight on public goods (1 − y).
Using the government’s budget constraint:

G∗ = X + T ∗ =
1

2 + αD1 +
α

2 + αX − a (3.11)

It is optimal for the government to raise spending to offset part of the QE gains, but
less than one-to-one (as α > 0). If taxes are costless (α = 0), T ∗/X = −1 and G∗/X = 0 as
in Wallace, 1981 and the literature following him. If public spending is useless (y = 1), the
government would not spend anything before QE, and then all the adjustments would go
through taxes as well.9

9Imagine that for some reason, G1 = Ḡ before QE and y = 1. In this case, QE losses would be optimally
absorbed by cutting G, and QE gains by lowering T .
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3.2.3. The investor’s problem

The representative investor solves the following consumption-savings problem at period-0
(superindex i has been eliminated to save notation):

max
{C0,C1,S,B}

u(C0) + δE0{yu(C1) + (1 − y)u(G)} (3.12)

subject to

C0 + PS +
B

R
= (P +D0)S−1 (3.13)

C1 + T +H (T ) = D1S + B (3.14)

Optimality conditions boil down to two Euler Equation for bonds and stocks.

1
R

= δyE0

(
exp{−γC1}
exp(−γC0}

)
(3.15)

P = δyE0

(
exp{−γC1}
exp(−γC0}

D1

)
(3.16)

In equilibrium, individual and aggregate consumption coincide such that {C0, C1} =

{D0, C
∗
1 } . Given the rational reaction of the government in period-1,

C∗
1 = D1 − G∗ − αT ∗ =

1
2 + αD1 +

α

2 + αX + a(1 + α) (3.17)

Equilibrium consumption grows with output, and QE gains. Notice there is a constant
gap between private and public consumption determined by C∗

1 − G∗ = (ln[y(1 +
α)] − ln[(1 − y)])γ−1. Intuitively, the gap increases with both the private consumption
weight and the cost of taxation. Apart from that, consumption and public spending react
symmetrically to output and QE gains.

Using this expression in the Euler Equations and operating, it can be shown that
equilibrium asset prices are given by

1
R∗ = δyexp

{
− γ

(
a(1 + α) +

µ

2 + α +
γσ2

2(2 + α)2 (α
2Q2 − 1) −D0

)}
(3.18)

and

P∗ =
µ − γ

(
1+αQ
2+α

)
σ2

R∗ (3.19)
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From these expressions, we can evaluate the effect of QE on demand, asset prices
and the risk premium. To begin with,

1/R∗

Q
= δyexp

{
− γ

(
a(1+ α) +

µ

2 + α +
γσ2

2(2 + α)2 (α
2Q2 − 1) −D0

)} (
−
γσ2α22Q
2(2 + α)2

)
< 0

(3.20)
The effect of QE on bond prices is unambiguously negative. To understand the

reason behind it, rewrite the bond price as

1
R

=δyE0

(
exp{−γC∗

1 }
exp(−γC∗

0}

)
= δyexp(γD0)E0

(
exp{−γ(C∗

1 )}
)

=δyexp(γD0)exp{−γµc +
γ2σ2

c

2
}

(3.21)

Hence, the effect of QE on bond prices is transmitted through its effects on consumption
mean and variance. How is this effect? Using the equilibrium period-1 consumption (3.17),
it turns out

E(C∗
1 ) ≡ µc =

µ

2 + α +
αγσ2Q(1 + αQ)

(2 + α)2 + a(1 + α) (3.22)

Var(C∗
1 ) ≡ σ2

c =

( 1 + αQ
2 + α

)2
σ2 (3.23)

QE pushes the mean-variance consumption equilibrium up. A higher mean pushes bond
prices down, as higher future consumption leads to reduce savings today (consumption
smoothing). On the contrary, a higher variance pushes bond prices up due to a boost in
precautionary savings. Which effect does dominate? It turns out the distance between
the mean and the risk-weighted variance that determines the QE effect on bond prices
increases with Q:

(µc − γσ2
c /2)

Q
=

α2γσ2

(2 + α)2Q (3.24)

Therefore, a larger QE increases the expected future consumption more than its risk, with
the net effect of reducing savings and asset prices in period 0.

Behind the increase in mean consumption, there is a reduction in the tax deadweight
loss αT . This is easy to check since C∗

1 = D1 − G∗ − αT ∗, and the dividend mean and
the gap between consumption and public spending are both unaffected by Q. A lower
tax deadweight loss implies investors and government enjoy a larger amount of goods,
becoming both more exposed to goods’ volatility.
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To understand the effect of QE on stock prices, equation (3.19) can be rewritten as

P =
1
R∗ µ − Cov(exp{−γ(C1 − CO)}, D1) (3.25)

with

Cov(exp{−γ(C1 − CO)}, D1) =
γ
(

1+αQ
2+α

)
σ2

R∗ (3.26)

Thus, the effect of QE on stock prices can be decomposed into two terms. First, stock
and bond prices comove positively such that QE deflates stock prices for the same reasons
it reduces bond prices. Additionally, the stock price decreases more than the bond price
with Q because QE increases the covariance between consumption and the asset payoff.
The asymmetric asset price deflation leads to a widening of the risk premium.

All the previous derivations can be summarized in the following two results:

Result 1: QE non-neutrality with tax deadweight losses. If {C0, C1, B, S, P, 1/R}
is an equilibrium for the policy {G0, G1, T0, T1, B/R,QE} = {0, G, 0, T, QP, Q}, then
{C0, C1, B̂, Ŝ, P, 1/R} is an equilibrium for the policy {0, Ĝ, 0, T̂ , Q̂P, Q̂} only if α = 0
(Neutrality with lump-sum taxes). For α > 0, {0, Ĝ, 0, T̂ , Q̂P, Q̂} implies a different equi-
librium {Ĉ0, Ĉ1, B̂, Ŝ, P̂, 1/R̂} (Non-neutrality with tax collection costs).

Result 2: The fiscal channel of QE. A program of asset purchases Q financed by
issuing risk-free public debt B/R = QP in an economy where collecting taxes is costly
(α > 0) and public goods are of some utility (y < 1) has the following consequences:

• Efficiency gain. QE reduces the tax deadweight loss, increasing expected future con-
sumption. This increases consumption at time 0 due to a consumption smoothing
motive.

• Higher risk. The gain in efficiency increases the consumption exposure to output
fluctuations; this generates a precautionary savings motive at time 0.

• Private demand stimulus. The efficiency gain dominates the higher risk, and its dis-
tance increases with Q. The increase in consumption dominates the precautionary
savings motive.

• Asset price deflation. The precautionary savings motive is dominated.

• Risk premium widening. QE increases the covariance between consumption and
the asset payoff.
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3.3. The Central Bank problem

The previous section showed that swapping risk-free for riskier assets impacts the com-
petitive equilibrium in the context of costly taxation. A natural question is: with that
knowledge, how much QE should be done? We answer the question by posing an optimal
policy problem for the agency determining QE. It turns out that linear tax collection costs
lead to a corner solution. We then explore the question with quadratic collection costs,
which poses a true trade-off for QE.

3.3.1. Linear tax collection costs

AssumeH (T ) = αT , as in the previous section. In this context, a public agency (typically,
a Central Bank) would choose the optimal QE, call it Q∗ such that

Q∗ = arg max
Q
E0{yu(C1) + (1 − y)v(G1)} (3.27)

given the equilibrium policy functions C∗
1 , G

∗, T ∗ and the equilibrium pricing functions
P∗, R∗. In words, the Central Bank chooses Q to maximize the expected welfare in the
last period taking into account the optimal reactions of all the other agents to its policy.

From the previous section, we know that both C∗
1 and G∗ are normally distributed

as they depend only onD1. The mean and variance of equilibrium consumption are given
by () and (). Likewise, for public spending they read as

E(G∗) ≡ µg =
µ

2 + α +
αγσ2Q(1 + αQ)

(2 + α)2 − a = µc − a(2 + α) (3.28)

Var(G∗) ≡ σ2
g =

( 1 + αQ
2 + α

)2
σ2 = σ2

c (3.29)

Note that maximizing

−
y

γ
exp

{
− γµc +

γ2σ2
c

2

}
−

1 − y

γ
exp

{
− γµg +

γ2σ2
g

2

}
(3.30)

is equivalent to maximize

−
y

γ

(
− γµc +

γ2σ2
c

2

)
−

(1 − y)
γ

(
− γµg +

γ2σ2
g

2

)
=µc −

γσ2
c

2
+ (1 − y)a(2 + α)

(3.31)

where the second line uses the equivalences between the mean and variances of C and G.
Altogether, the Central Bank’s problem boils down to choosing the Q that maximizes the
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distance between the consumption mean and variance, accounting for the level of risk
aversion

Q∗ =arg max
Q

µc −
γσ2

c

2

=arg max
Q

γσ2

2(2 + α)2 (α
2Q2 − 1)

(3.32)

where the last equality uses the expressions for µc and σ2
c . Then, it is optimal for the

Central Bank to do as much QE as possible; in our economy,Q∗ = 1 (since the total stocks
in the economy are normalized to 1). The reason was apparent already in the previous
section: the more the QE, the more the efficiency gain dominates the increase in risk-
taking; the more the QE, the larger the risk premium so that the more the taxes can be
reduced and the more efficient the economy gets. QE represents a more efficient way
of funding public goods, trading a larger government’s balance sheet with a lower tax
economy.

3.3.2. Quadratic tax collection costs

Consider H (T ) = αT 2, capturing the possibility that tax collection is increasingly costly,
perhaps due to the complexity of managing a higher volume of resources. The introduc-
tion of quadratic costs makes the closed-form solution infeasible but enrich the properties
of the model. The key factor is the marginal productivity of tax cuts. With linear costs, it
was constant; every additional unit of QE generates the same efficiency gain such that it
always dominates the additional risk brought up by a larger QE program. On the contrary,
with quadratic costs, the efficiency gains are decreasing with QE such that, at some point,
QE begin to deteriorate the mean-variance consumption equilibrium, reverting the sign
of the effects summarized in Result 2; more QE increases precautionary savings, driving
asset prices up and spreads down.

Figure 3.1 plots many of the model’s variables as a function of Q, illustrating Result

2 and its reversion with quadratic deadweight losses. As shown analytically for the
linear case, Q∗ is the one that delivers the best mean-variance equilibrium for private
future consumption, balancing the gains from lower taxes against the . For quadratic tax
collection costs, that point is reached forQ∗ < 1, given the decreasing marginal gains from
lower taxes. Interestingly, for the quadratic case, this point coincides with a minimum for
asset prices but not with a maximum for the expected consumption and risk premium
(that peak at Q > Q∗). In simulations, we found that Q∗ decreases with the asset’s payoff
risk and the weight of private consumption on the welfare function but increases with
the level of risk aversion.
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Stock price Bond price E(Risk premium)

E(Spending and Taxes)

G
T -Quadratic

-Linear

E(QE gains) Tax deadweight loss

0.0 0.5 1.0
Q

E(Consumption)

0.0 0.5 1.0
Q

Mean - Variance spread

0.0 0.5 1.0
Q

E(Welfare)

- Quadratic- Linear

Figure 3.1. Effects of Quantitative Easing with Linear (blue) and
Quadratic (red) tax collection costs.

3.4. Conclusions

This paper explores the effects of public risky asset purchases financed by risk-free public
liabilities in the context of fiscal distortions. These distortions break Wallace’s neutrality
even in the context of monetary dominance since the profits from these purchases affect
taxes and their associated deadweight loss. However, the effects of asset purchases are
different from the ones emerging from models with financial frictions. Typically QE
relaxes some financial constraints, lowering risk premiums and then, boosting aggregate
demand. Differently, through the fiscal channel, QE reduces tax distortions but increases
the consumption risk, potentially boosting demand but also risk premiums.

The fiscal channel poses an efficiency-risk trade-off for QE: more QE removes inef-
ficiencies from the economy but increases private risks. Central Banks can exploit this
trade-off to deliver the optimal mean-variance equilibrium. From a broader perspective,
QE can be viewed as an alternative to taxation to fund public goods, based on capital
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ownership and the exploitation of risk premiums.
We presented these arguments in a stylized two-period model that isolates the fiscal

channel as much as possible. In this enterprise, we abstract from conventional monetary
policy and all the intricacies of monetary economics. The presence of nominal variables
and rigidities would introduce additional adjustment mechanisms, such as inflation or
output, that might potentially change some of the outcomes. Additionally, an exploration
of the interaction between the fiscal channel and other transmission channels seems
pertinent towards a holistic evaluation of the possibilities of QE. Moreover, the model
misses dynamics, which would make the game between Government and Central Bank
more complex. Finally, from a public finance standpoint, the model raises questions for
optimal debt management under QE as well as the right mix of capital taxes and capital
ownership to fund public goods. We are currently exploring some of these issues.
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