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“Always go too far,  

because that's where 

you will find the truth.”  

 

— Albert Camus. 
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The analysis of the bacterial microbiome has become routine, but the study of the 

fungal microbiome, or mycobiome, is still hindered by a lack of robust databases 

and bioinformatic pipelines. To address this challenge, we developed FunOMIC 

and its updated version, a pipeline with built-in taxonomic and functional 

databases for identifying fungi from the human microbiome using shotgun 

sequencing. The pipeline includes raw sequence quality control, removal of 

human and bacterial DNA, and comprehensive taxonomic and functional 

mycobiome profiling. We validated the pipeline using in silico-generated mock 

communities and over 2,600 real human metagenomic samples. Our findings 

show that shotgun sequencing combined with FunOMIC outperforms the 

commonly used internal transcribed spacer (ITS) sequencing in terms of accuracy 

and cost-effectiveness. We proposed the application of shotgun sequencing with 

a new enrichment protocol to provide a cost-effective approach to perform gut 

mycobiome profiling at the species level. 

 

We also investigated the relationship between microbial diversity, composition, 

and functions with habitual diet composition. Our study showed that microbial 

diversity and composition were associated with specificdiet composition instead 

of driven by global dietary changes. 

 

Furthermore, we proposed a web server called MycoDM, which provides 

searching of mycobial markers, online data analysis, and visualization platform to 

investigate the relationship of human gut mycobiome with various diseases using 

shotgun metagenomic data. This platform will help researchers study the role of 

the fungal community associated with disease, which is still unclear. But growing 

evidence suggests that mycobiome dysbiosis can be related to various conditions 

and human immune function and metabolism malfunction. 

 

Our work provides a comprehensive description of the inter-kingdom interaction 

between bacteria and fungi integrating dietary data. We believe that our proposed 

workflow will be a valuable resource for mycobiome studies. 



 

20 
 

 
  



 

21 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RESUMEN 



 

22 
 

El análisis del microbioma bacteriano se ha vuelto rutinario, pero el estudio del 

microbioma fúngico, o micobioma, aún se ve obstaculizado por la falta de bases 

de datos y pipelines bioinformáticos robustos. Para abordar este desafío, 

desarrollamos FunOMIC y su versión actualizada, un pipeline con bases de datos 

taxonómicas y funcionales integradas para identificar hongos del microbioma 

humano utilizando secuenciación shotgun. El pipeline incluye control de calidad 

de secuencias en bruto, eliminación de ADN humano y bacteriano, y perfilado 

taxonómico y funcional completo del micobioma. Validamos el pipeline utilizando 

comunidades simuladas in silico y más de 2.600 muestras de metagenómica 

humana reales. Nuestros hallazgos muestran que la secuenciación shotgun 

combinada con FunOMIC supera a la secuenciación del espacio transrito interno 

(ITS) comúnmente utilizada en términos de precisión y rentabilidad. Propusimos 

la aplicación de la secuenciación shotgun con un nuevo protocolo de 

enriquecimiento para proporcionar un enfoque rentable para realizar el perfilado 

del micobioma intestinal a nivel de especie. 

 

También investigamos la relación entre la diversidad, composición y funciones 

microbianas con la composición habitual de la dieta. Nuestro estudio mostró que 

la diversidad y composición microbiana se asociaban con una composición de 

dieta específica en lugar de estar impulsadas por cambios dietéticos globales. 

 

Además, propusimos un servidor web llamado MycoDM, que proporciona la 

búsqueda de marcadores micobiales, análisis de datos en línea y plataforma de 

visualización para investigar la relación del micobioma humano con diversas 

enfermedades utilizando datos de metagenómica shotgun. Esta plataforma 

ayudará a los investigadores a estudiar el papel de la comunidad fúngica asociada 

con la enfermedad, que aún no está claro. Pero hay evidencia creciente que 

sugiere que la disbiosis del micobioma puede estar relacionada con diversas 

condiciones y el mal funcionamiento del sistema inmunológico y del metabolismo 

humano. 
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Nuestro trabajo proporciona una descripción integral de la interacción entre los 

reinos bacteriano y fúngico, integrando datos dietéticos. Creemos que nuestro 

flujo de trabajo propuesto será un recurso valioso para los estudios de micobioma. 
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1.1 Human microbiome 

1.1.1 Definition 

The term “microbiome” was first introduced by Legerberg and McCray in 2001, to 

describe the ecological community of all the microorganisms that inhabit a specific 

niche, such as the human body. Since then, during the past decades, this word 

has been mostly defined as the collection of genes and genomes of members of 

the assemblage of microorganisms present in a defined environment. 

Recent discussions have argued that the term “biome” refers to the combination 

of both biotic and abiotic members of a habitat; thus, the surrounding conditions 

of the microorganisms should also be taken into account (1). In 2020, Berg et al. 

proposed a more comprehensive definition of the human microbiome and 

microbiota (1).  

“The human microbiome is defined as a characteristic microbial community 

occupying different sites of human bodies. The microbiome not only refers to the 

microorganisms involved but also encompasses their theatre of activity, which 

results in the formation of specific niches. The microbiome, which forms a dynamic 

and interactive micro-ecosystem prone to change in time and scale, is integrated 

into macro-ecosystems, including the hosts, and hence crucial for their functioning 

and health. 

The human microbiota consists of the assembly of microorganisms belonging to 

different kingdoms (Prokaryotes [Bacteria, Archaea], Eukaryotes [e.g., Protozoa, 

Fungi, and Algae]), while “their theatre of activity” includes microbial structures, 

metabolites, mobile genetic elements (e.g., transposons, phages, and viruses), 

and relic DNA embedded in the human bodies.” (Fig. 1) (1) 
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Figure1. Schematic definition of the microbiome.  

 

1.1.2 Bacterial community in the human microbiome 

As defined above, the human microbiota contains microbes from different 

kingdoms – Archaea, Bacteria, Fungi, Protozoa, etc. The size of the bacterial 

community overwhelmingly outnumbers other microbial members (2, 3). The total 

wet weight of the bacteria in the human body is about 0.2kg, and the ratio of 

bacterial cells to human cells is around 1.3 - 2.3 depending on different gender 

and life circumstances (4). It was estimated that the vast majority of the bacterial 

community inhabits the large intestine or colon, with a proximate order of 

magnitude of 1014 bacterial cells, followed by dental plaque, which is around 1012 

bacteria. The bacterial communities present in the ileum, saliva, and skin are 

approximately bound by the same order of magnitude, which is 101111. The 

stomach and the upper small intestine (duodenum and jejunum) harbor the least 

number of bacteria, with an order of magnitude around 107 (1, 4, 5, 6, 7, 8). 

As the physiological condition varies widely in different body sites, it is intuitively 

that the compositions of the bacterial microbiome also differ greatly.  
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1.1.2.1 Gastrointestinal (GI) tract 

The compartments of the human GI tract, including the oral cavity, esophagus, 

stomach, duodenum, jejunum, cecum, colon, and rectum, have variable 

physiology, therefore, it is not surprising that the GI tract consists of a 

heterogeneous collection of distinct habitats (9, 10). 

  
Figure 2. Compartments of the GI tract along the rostral-caudal axis.  (10)  

 

The oral cavity is a complex ecosystem that harbors a diverse community of 

around 700 bacterial species (11). The conditions in the oral cavity, including 
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physical and chemical parameters, are subject to continuous change due to 

external environmental exposure. The primary source of nutrition for indigenous 

microbes is saliva, along with food consumed by the host and byproducts 

produced by interspecies interactions, which support their growth and 

multiplication. However, saliva has poor nutrient availability and variable flow 

rates. Thus, the bacterial microbiome of the oral cavity mainly comprises microbes 

with the ability to adhere to surfaces like gums and teeth, thus resisting removal. 

Non-adherent microbes are removed by mechanical flushing of the mouth, which 

occurs during chewing and talking and are subsequently destroyed in the 

stomach. However, defining the exact composition of the oral microbiome is 

challenging due to the mouth's exposure to exogenous bacteria in food, water, 

and air. Social contact and kissing can also result in changes in the microbial 

community (12). The populations of invading microbes initially consist mostly of 

aerobes and obligate anaerobes, mainly related to the genera Streptococcus, 

Actinomyces, Veillonella, and Neisseria. Later, after the eruption of teeth, 

anaerobic forms such as Prevotella, Fusobacterium, and others dominate due to 

the presence of an anaerobic environment between gums and teeth. 

Streptococcus spp., such as S. parasanguis and S. mutans, grow on enamel and 

colonize gingival epithelial surfaces and saliva by producing various adherence 

factors that facilitate their attachment and colonization (13). 

Gene expression and metabolic pathways of the oral bacterial microbiome play a 

crucial role in maintaining oral health and preventing oral diseases. Individuals 

who have not suffered from dental caries possess genes responsible for 

antimicrobial peptides and quorum sensing (14). Fusobacterium nucleatum is a 

keystone species in periodontal disease, and lysine fermentation is the major 

metabolic pathway in the diseased condition, as F. nucleatum degrades lysine into 

butyrate. Transcriptome-based analysis in periodontal disease showed increased 

expression of butyrate production genes in F. nucleatum, resulting in disease 

promotion (15). Microbes in periodontal disease can produce intracellular toxins 

that accumulate in periodontal pockets due to reduced ability for their 

decomposition (16). 
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The oral cavity acts as a gateway to different organs of the body and acts as a 

reservoir for different diseases associated with various organs. Many studies have 

reported on the direct influence of the oral microbiome on prominent systemic 

diseases such as cardiovascular diseases (17), diabetes (17), stroke (18), and 

pneumonia (19). 

 

Under normal physiologic conditions, the esophagus acts as a conduit and does 

not retain food contents, which is in contrast to the oral cavity or the stomach and 

colon(20). Culture studies based on washings from the esophagus suggested that 

bacteria obtained from the esophagus were either swallowed from the oral cavity 

or reached the distal esophagus during reflux from the stomach (20, 21). A study 

of the bacterial microbiome of the oral cavity and the upper and lower esophagus, 

obtained by esophageal brushings and biopsy samples, revealed that 

Streptococcus viridans is the most common bacterium (22), with the most 

prevalent organisms being Streptococcus, Prevotella, and Veillonella (10, 23, 24, 

25). 

Several studies have reported changes in the microbiota of the lower esophagus 

in a variety of diseases, including reflux disease, Barrett’s esophagus (BE), and 

esophageal carcinoma, in addition to eosinophilic esophagitis in a pediatric 

population. For example, one group suggests that the pathogenesis of 

gastroesophageal reflux disease (GERD) might be driven by alterations of the 

esophageal microbiome with increasing gram-negative bacteria in esophagitis and 

BE (26). With this increase in gram-negative bacteria, their lipopolysaccharide can 

upregulate gene expression and, through the TLR4 and NFLB pathway, 

proinflammatory cytokine production can also be increased. 

 

The stomach environment is extremely acidic and detrimental for the colonization 

by most of the bacteria, which for a long time led people to believe that it was 

sterile. In 1982, Marshall and Warren introduced Campylobacter pyloridis, which 

was later renamed Helicobacter pylori in 1989. This discovery had a significant 

impact on how we understand the role of bacteria in the stomach (27).  
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The bacterium H. pylori has adapted to survive in the low pH environment of the 

stomach by producing urease and ammonia (28, 29), which help it to alkalinize the 

immediate surroundings. This enables H. pylori to survive through the variable 

acidity of the gastric juice and reach the higher pH of the mucous layer in close 

apposition to the surface epithelial cells. In response to H. pylori infection, the 

acute inflammatory response initiates the release of interleukin-8 and the 

recruitment of inflammatory cells, leading to a chronic active gastritis (30, 31). 

Although H. pylori is the most well-known and studied of the gastric bacteria, other 

bacteria have been identified in the stomach, such as Veillonella, Lactobacillus, 

and Clostridium, soon after the discovery of H. pylori (32). Lactobacillus species 

convert lactose to lactic acid, acidifying the surface of the gastric mucous layer 

(33), which explains its adaptation to the acidic environment and colonization of 

the stomach (34, 35, 36). Yersinia enterocolitica and Vibrio cholera are two 

additional species that survive gastric acidity, with Yersinia having an acid-

activated urease mechanism and Vibrio expressing an acid tolerance mechanism 

that maintains the cytoplasm at a pH of 4 to 5, although growth does not occur 

(33, 37). 

With the development of culture-independent methods, other bacteria have been 

identified in the stomach, including Neisseria, Haemophilus, Prevotella, 

Streptococcus, and Porphyromonas (38, 39, 40). In healthy individuals, the 

predominant bacteria are Actinobacteria (Rothia, Actinomyces, and Micrococcus), 

Bacteroidetes (Prevotella species), Firmicutes (Streptococcus and Bacillus), and 

Proteobacteria (which include H. pylori as well as Haemophilus, Actinobacillus, 

and Neisseria). The predominant genus is Streptococcus, which may originate 

from the oral cavity (38, 40, 41). 

 

The colon is a highly anaerobic environment that serves as the final site of 

digestion and absorption in the human gastrointestinal tract (10). Digesta that pass 

through the colon consist of complex polysaccharides and fibers that could not be 

digested by host processes, as well as trace nutrients and any remaining bile acids 

that were not absorbed in the ileum. Motility in the colon is much slower, with a 
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typical transit time of up to 30 hours, creating an optimal environment for microbial 

growth and metabolism (10, 42). 

Microbes thrive in the colon due to the anaerobic environment and abundance of 

fibrous substrates, which are ideal conditions for fermentative metabolism, a 

widespread process in bacteria. Additionally, the slow transit time through the 

colon allows microbes plenty of time to adhere, consume, multiply, and expand in 

physical space, resulting in higher levels of microbial accumulation (10). 

One of the most important physiological functions of the gut microbiome is the 

microbial synthesis of short-chain fatty acids (SCFAs) through fermentative 

metabolism of complex polysaccharides. This process releases SCFAs like 

acetate, proprionate, and butyrate (43), which are salvaged by host tissues and 

contribute to an estimated 5-15% of the total caloric requirement for humans (44). 

Butyrate, in particular, serves as the preferred energy source for colonocytes (45, 

46), which oxidize butyrate into CO2, promoting an anaerobic state that is 

important for pathogen resistance, immune homeostasis, and the growth of 

butyrate-producing anaerobic microbial populations, in a classic positive feedback 

loop (44, 45, 47, 48).  

The microbial composition, and therefore fermentation and metabolism, in the 

colon can be dramatically affected by the components of the host's diet. Studies 

have shown that microbial composition changes rapidly and reversibly in response 

to dietary components (49), with high-fat diets shifting communities towards a 

greater ratio of Firmicutes:Bacteroidetes taxa (50). Recent research has shown 

that administration of specific complex polysaccharides can promote the growth 

of specific Bacteroides species, indicating that the host diet can have a significant 

impact on the microbial composition and function in the colon (51, 52). 

The availability of resources in the colonic lumen, which is the open space within 

the colon, varies depending on dietary intake. However, many colonic microbes 

reside in and consume host-derived components of the mucosa, which may 

remain more stable across dietary behavioral patterns (52). 

The glycoprotein Mucin 2 (MUC2) is the major component of the colonic mucus, 

which is a gel-like substance that protects the underlying epithelial cells from 
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mechanical and chemical damage. MUC2 is coated with a diverse assortment of 

O-linked glycans, which can be cleaved from MUC2 and metabolized to support 

the growth of various specialized microbial taxa, such as Akkermansia muciniphila 

(53, 54). Different microbes vary in their ability to penetrate and adhere to the 

mucus layer, as well as in their tolerance to antimicrobial peptides (AMPs) and 

oxygen that diffuse outward through the mucus from the underlying epithelial cells. 

As a result, the mucosal niche experiences unique selective pressures compared 

to the luminal niche in the colon and supports an enrichment of aerotolerant, 

asaccharolytic protein-metabolizing species from the phyla Actinobacteria and 

Proteobacteria compared to the lumen (55, 56). Researchers have also 

documented further spatial niche partitioning within the mucosa. For example, 

Acinetobacter species are particularly effective at navigating through the mucus 

layer and its associated biochemical gradients to bind directly to the intestinal 

epithelial cells (IECs) of the colonic crypts (57).  

In addition to the mucosa, the lumen itself harbors significant spatial 

heterogeneity, with distinct "inter-fold" regions in the intestinal lumen that are 

enriched for certain taxa in the families Lachnospiraceae and Ruminococcus. 

These taxa are thought to benefit both from the local accumulation of mucus from 

the epithelia and from an environment that is relatively protected from the flow of 

other luminal contents (58, 59). By contrast, the central lumen is dominated by 

strictly anaerobic, saccharolytic taxa from the families Bacteroidaceae, 

Enterococcaceae, Prevotellaceae, and Rikenellaceae (59). It is worth noting that 

much of this heterogeneity has been overlooked by the use of fecal sampling in 

the majority of colonic microbiome studies, which may not accurately reflect the 

microbial composition of different niches within the colon (10). 

The interplay between the host's immune system and the colonic microbiome is 

critical in maintaining a healthy gut. Commensal microbes have evolved various 

strategies to evade the immune system and avoid triggering inflammation (10). 

For instance, some commensal strains have modified their outer membrane to 

evade host-derived antimicrobial peptides (60), while others employ 

immunomodulatory strategies to colonize the mucosal niche. A component of the 
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polysaccharide capsule of Bacteroides fragilis, for example, stimulates regulatory 

T cells to produce immunosuppressive interleukin-10, allowing B. fragilis to 

colonize the mucosal niche (61, 62).  Dysbiosis and inflammation are 

interrelated, with inflammatory conditions resulting in a microbiome characterized 

by reduced Firmicutes and Bacteroidetes phyla and increased Actinobacteria and 

Proteobacteria (63, 64, 65, 66). The mucus degrader A. muciniphila has been 

linked to wound healing by promoting enterocyte proliferation and migration, while 

inflammatory bowel diseases (IBD) are associated with a compromised mucosal 

barrier and inappropriate immune activation by commensals. B. fragilis biofilms 

have been observed in IBD patients, although it remains unclear whether this is a 

cause or effect of the disease (61, 62). Moreover, mucus-consuming bacteria with 

increased prevalence in IBD patients may play an essential role in mucus 

utilization, mucosal proximity, and disease. 

1.1.2.2 Skin 

As the largest and most exposed organ in humans, the skin has the feature of very 

low dispersal limitation, niche differentiation, and high perturbation. The human 

skin is also a complex ecosystem that provides diverse microenvironments, such 

as variation in pH, moisture, temperature, and sebum content (67). The 

composition of microbial communities was found to be primarily dependent on the 

physiology of the skin site in sequencing surveys of healthy adults (67, 68, 69, 70). 

Changes in the relative abundance of bacterial taxa were associated with moist, 

dry, and sebaceous microenvironments, with lipophilic Propionibacterium species 

dominating sebaceous sites, while bacteria such as Staphylococcus and 

Corynebacterium species, which thrive in humid environments, were preferentially 

abundant in moist areas such as the bends of the elbows and the feet. 

Individuals were found to be colonized by different multi-phyletic communities of 

Propionibacterium acnes and Staphylococcus epidermidis strains across body 

sites (68). Compared with the richer environment of our intestines, skin lacks many 

nutrients beyond basic proteins and lipids. However, the resident microbiota of our 

skin has adapted to utilize the resources present in sweat, sebum, and the stratum 

corneum to survive in such a cool, acidic, and desiccated environment (71). 
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For instance, the facultative anaerobe Propionibacterium acnes thrives in the 

anoxic sebaceous gland by using proteases to liberate the amino acid arginine 

from skin proteins (72) and lipases to degrade triglyceride lipids in sebum (73), 

releasing free fatty acids that promote bacterial adherence (74, 75, 76). Sebum 

levels of the cheek were shown to positively correlate with Propionibacterium spp. 

abundance in facial samples (77).  

Auxotrophic Corynebacterium species that are unable to produce their own lipids 

utilize the lipids of sebum and the stratum corneum to generate the corynemycolic 

acids that coat their cell surface (71). Staphylococcus spp., on the other hand, 

have evolved many strategies for surviving on the skin, including the ability to be 

halotolerant (withstanding the high salt content of sweat) and utilize the urea 

present in sweat as a nitrogen source. Moreover, various Staphylococcus spp. 

can produce adherens that promote attachment to the skin and proteases that 

liberate nutrients from the stratum corneum to further promote colonization (71). 

1.1.2.3 Vagina 

The human vaginal mucosa is a stratified squamous nonkeratinized epithelium 

covered by cervicovaginal secretion, which acquires oxygen, glucose, and other 

nutrients from underlying submucosal tissues through diffusion due to the limited 

blood supply (78, 79). In women of reproductive age, physiological changes, such 

as fluctuations in hormone levels, cause marked differences in the vaginal 

microbiome (80, 81). Notably, pregnant women experience a sharp decline in the 

diversity and abundance of the vaginal microbiome, with the predominance of 

Lactobacillus spp., Actinomycetales, Clostridiales, and Bacteroidales. In contrast, 

non-pregnant women display the predominance of Lactobacillus spp., 

Actinobacteria, Prevotella, Veillonellaceae, Streptococcus, Proteobacteria, 

Bifidobacteriaceae, Bacteroides, and Burkholderiales (82). However, the vaginal 

microbiome differs largely among individuals, with variations in sexual activity (83), 

douching (84), chronic stress (85), regional disparity (86), race (87), and other 

factors (88). High-throughput sequencing studies have identified five community 

state types (CSTs) of the vaginal microbiome. These configurations can be 

represented by five CSTs, four of which are dominated by single species of 
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Lactobacillus (CST I-L. crispatus, CST II-L. gasseri, CST III-L. iners, CST V-L. 

jensenii). A fifth configuration, CST IV, represents the more proportionally even 

collection of facultative and obligate anaerobes, including Gardnerella, 

Atopobium, Prevotella, Candidatus Lachnocurva vaginae, Sneathia, 

Peptoniphilus, Finegoldia, and Megasphaera (89, 90). CSTs I, III, and IV are the 

most prevalent and account for around 90% of reproductive-age women (87). 

Lactobacillus species flourish in the vaginal anaerobic environment and produce 

various antimicrobial compounds, such as lactic acid, hydrogen peroxide (H2O2), 

and bacteriocins, thereby contributing to a healthy vaginal microbiome and 

establishing a defense against invading pathogens. Lactobacillus species are the 

main source of l-lactic acid and d-lactic acid that keep the pH value of the habitat 

lower than 4.5 (91, 92). The dominant Lactobacillus species determines the extent 

of vaginal ecosystem protection. For instance, dysbiosis and low stability are 

usually related to the vaginal microbiota dominated by L. iners. On the contrary, 

health and high stability of the vaginal community are enhanced by L. crispatus 

that provides d- and l-lactic acids (93). Different from other Lactobacillus species, 

L. iners cannot generate d-lactic acid, which plays a more important role than l-

lactic acid (91, 94, 95). 

The composition of the vaginal microbiota has been associated with increased risk 

for non-sexually transmitted infections, including urinary tract infections (96, 97), 

vulvovaginal candidiasis (98, 99, 100), and pelvic inflammatory disease (101, 102, 

103). There is evidence supporting an association between the composition of the 

vaginal microbiota and reproductive health, including the risk for spontaneous 

preterm birth. 

1.1.3. Mycobiome 

The term “mycobiome” was first introduced in 2010 by Ghannoum (104), which 

referred to the fungal community of the microbiome. Compared with the bacterial 

community in the human microbiome, the mycobiome has only been partially 

investigated. The fungal species only make up a small proportion of all the 

microbes residing in the human body. The cultivable fungi in feces range from 102 

to 107 cfu/g (105, 106, 107), indicating that the ratio of the fungal cells against the 
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bacterial cells is between 10-9 and 10-4 (4). Moreover, the proportion of the fungal 

genes in the human gut is reported to be less than 0.08% of the whole microbiome 

based on metagenome analysis (108, 109, 110). In general, this numerical 

inferiority, making the human gut mycobiome a subdominant community, places 

more obstacles for scientists to study due to the high sequencing costs in the 

shotgun metagenomic approach.  

1.1.3.1 Gastrointestinal (GI) tract 

The oral cavity is home to a diverse mycobiome, with Candida species being the 

most prevalent and responsible for various oral infections. Candida albicans, a 

normal inhabitant of the oral cavity, can form biofilms on solid surfaces and invade 

adjoining cells, leading to infections. Culture-independent studies carried out in 20 

healthy hosts have reported the presence of 85 fungal genera in the oral cavity, 

with the main species observed being those belonging to Candida, Cladosporium, 

Aureobasidium, Saccharomycetales, Aspergillus, Fusarium, and Cryptococcus (3, 

104, 111, 112, 113). However, further studies are needed to confirm the presence 

of these genera in the mouth and determine whether they are transient or 

permanent members of the normal microbiota.  

While C. albicans is isolated in association with oral candidiasis 70-80% of the 

time, other Candida species such as C. glabrata and C. tropicalis are associated 

with a minority of such infections (114). Other invasive fungal organisms that have 

been identified as potential members of the oral mycobiota may cause oral 

disease, albeit rarely. For instance, C. neoformans may produce oral lesions in 

the form of superficial ulcerations, nodules, or granulomas (114). Aspergillus 

species may cause palatal or other oral disease, which often appear as black or 

yellow necrotic lesions following progression from infection in the maxillary 

sinuses. Additionally, saprophytic Mucoraceae has been cultured from healthy 

oral cavities and may cause necrosis or ulceration of the palate in 

immunocompromised individuals via extension from paranasal infection (114). 

Geotrichum is an uncommon oral mycobiota member and has been reported to 

cause oral disease in immunocompromised patients or diabetics (115). 

The oral microbiome mainly exists in the form of a biofilm, which plays a crucial 
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role in maintaining oral homeostasis, protecting the oral cavity, and preventing 

disease development. Streptococci associated with Candida in oral biofilms may 

promote the invasive properties of the latter (116, 117, 118). Candida species 

typically cause most infections of the oral mucosa, mainly in immunocompromised 

individuals due to local overgrowth of the organisms (116). The common 

underlying link between all known host systemic conditions associated with oral 

Candida overgrowth is a functional immunodeficiency in the Th17 CD4+ cell 

subset (116). 

 

The mycobiome of the human esophagus has received relatively little attention 

compared to other body sites. However, recent studies have shown that fungi such 

as Candida albicans, Candida glabrata, and Saccharomyces cerevisiae are 

commonly found in the esophagus of healthy individuals (119). The presence of 

these fungi in the esophagus can lead to various diseases such as oral and 

esophageal candidiasis when there is a deficiency of CD4+ Th1 lymphocytes and 

reduced formation of proinflammatory cytokines (IL-12, INF-gamma) that prevent 

effective defense against fungi (120, 121). In a study of 69 eosinophilic esophagitis 

(EoE) patients and 10 non-EoE healthy controls (122), fungal taxa commonly 

present in esophageal samples included Candida, Cladosporiaceae, and 

Malassezia. Interestingly, Agaricomycetes, Candida, Cladosporiaceae, and 

Peniophora were seen most often in healthy samples. Another study of 106 

subjects who underwent upper gastrointestinal endoscopy using shotgun 

sequencing found Candida albicans, Candida glabrata, Saccharomyces 

cerevisiae, and other fungi (0.0097–1.08%) in approximately 20% of subjects 

(119). These findings suggest that the fungal microbiome of the esophagus may 

play a role in health and disease, and further research is needed to fully 

understand its composition and function. 

 

The human stomach, as discussed before, which was previously thought to be 

hostile to microorganisms due to its acidic environment, has been found to harbor 

Candida and Phialemonium. These two groups of fungi are able to colonize and 
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survive in the low pH environment in gastric fluids (111). Within the stomach, the 

growth of Candida can be antagonized by the presence of Lactobacillus (123). In 

some cases, erosions and ulcerations of the mucosal surfaces in the stomach and 

intestinal tract can create a favorable environment for C. albicans to colonize and 

grow (124). C. albicans has been associated with gastric ulcers in humans, 

although its role as an etiologic agent of gastric ulceration is not widely recognized 

(125).  

 

The colon harbors a more diverse and highly variable mycobiota compared with 

other body sites, which makes it difficult to define a standard healthy composition 

(126, 127). However, two dominant phyla, Ascomycota and Basidiomycota (3, 

126, 128), are prevalent in the gut. Candida, Saccharomyces, Galactomyces, 

Penicillium, Aspergillus, Malassezia, and Debaryomyces are among the most 

frequently identified genera, although some may not be permanent colonizers of 

the gut. An individual's lifestyle plays a significant role in the variability of their gut 

mycobiota (127, 129). Ascomycota encompasses several classes, including 

Saccharomycetes, Dothideomycetes, Sordariomycetes, and Eurotiomycetes, with 

Saccharomycetaceae, Aspergillaceae, Cladosporiaceae, Debaryomycetaceae, 

Dipodascaceae, and Pichiaceae dominating at the family level (127, 130). Other 

families, such as Ceratocystidaceae, Hypocreaceae, Metschnikowiaceae, 

Nectriaceae, Thermoascaceae, or Microascaceae, are less abundant. The most 

commonly described fungi genus are Candida and Saccharomyces (3, 126, 131, 

132, 133, 134, 135, 136, 137), but various other genera have been reported, 

including Debaryomyces, Meyerozyma, Toluraspora, Pichia, Clavispora, 

Cyberlidnera, Hanseniaspora, Geotrichum, Galactomyces, and 

Zygosaccharomyces (3, 127, 130). Filamentous genera such as Paecilomyces, 

Cladosporium, Aspergillus, and Penicillium are also prevalent (126, 131, 134, 136, 

137, 138), with some studies reporting Claviceps, Fonsecaea, Exophiala, 

Eurotium, Phialophora, and Scopulariopsis (127, 129, 131, 139). In 

Basidiomycota, the most common yeasts in the gut are from the families 

Malasseziaceae, Cryptococcaceae, Corticiaceae, Sporidiobolaceae, and 
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Erythrobasidiaceae. Malassezia, Cryptococcus, and Rhodotorula are the most 

commonly described genera, but Filobasidium and Trichosporon have also been 

reported. The least abundant phylum, Mucoromycota, is represented by the class 

Mucoromycetes, family Mucoraceae, and filamentous genera Mucor and 

Rhizopus (127, 130, 131). A previous study has suggested that the gut mycobiota 

can be classified into two mycotypes, with Mycotype 1 characterized by a high 

abundance of Saccharomyces and other unclassified genera and Mycotype 2 

predominantly consisting of Penicillium, Malassezia, and Mucor (137). 

Throughout life, the diet is a crucial factor that can influence the gut mycobiome, 

as numerous food products harbor food-borne fungi, such as vegetables, fruits, 

fermented dairy products, meat, and fermented beverages (49, 140, 141). 

Abundances of several fungal taxa have been reported to be related with food 

categories. For example, the genera Saccharomyces and Hannaella have positive 

correlations with butter and animal fats, while the genus Aspergillus shows a 

positive correlation with eggs and refined grains. In contrast, Saccharomyces and 

Aspergillus are negatively correlated with whole grains, while Hannaella is 

negatively correlated with fish and shellfish (141). Additionally, the genus 

Fusarium is identified in 88% of vegetarians but only in 3% of omnivores (142, 

143). A switch to a strictly animal-based diet for a short period increases the 

relative abundance of the genus Penicillium but decreases the genera 

Debaryomyces and Candida (49). Of the microscopic fungi that colonize the gut, 

only approximately 20% permanently inhabit this environment, such as the genus 

Candida and species Geotrichum candidum and Rhodotorula mucilaginosa. The 

other 80% are considered allochthonous environmental and food-borne fungi, 

such as Aspergillus and Penicillium (127, 143). 

Various fungal taxa show positive and negative correlations with lipid and 

carbohydrate metabolism, which can alter the gut mycobiome. Lipid metabolic 

factors, including body mass index, body fat mass, fasting triglycerides, serum 

total cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein 

cholesterol, can shape the gut mycobiome (130). Carbohydrate metabolic 

parameters, such as fasting glycated hemoglobin, insulin, and fasting glucose, 
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also play a role in determining the gut mycobiome composition (130, 144). The gut 

mycobiomes of overweight and obese individuals differ from those of healthy 

eutrophic controls and have their specific composition (130, 131). Overweight 

patients tend to have yeast Candida and Pichia and filamentous Bipolaris, 

Beauveria, Exophiala, Syncephalastrum, and Helminthosporium as the 

predominant genera (131). In contrast, obese patients tend to have Candida, 

Nakaseomyces, Penicillium, Chaetomium, and Emmonsia as the dominant 

genera (130, 131). 

Identifying and influencing the onset of pathogenic processes is crucial for 

maintaining a healthy body state. Intestinal dysbiosis can affect microbial 

penetration across the gut barrier and is associated with various conditions such 

as IBD, IBS, colorectal cancer, obesity, diabetes, multiple sclerosis, atopic 

dermatitis, Parkinson's disease, and schizophrenia. The gut mycobiome 

composition differs in these conditions, and certain species like C. albicans, C. 

glabrata, and C. tropicalis are more abundant in patients with IBD (128, 145, 146). 

Overweight and obese individuals show decreased biodiversity, while anorexic 

patients have unique mycobiome species (147). Modulating gut microbial 

colonizers through diet could have anti-diabetic effects (148). In multiple sclerosis 

patients, there is higher alpha diversity and over-representation of 

Saccharomyces and Aspergillus (149). Fungal dysbiosis may contribute to various 

disorders, and understanding fungal-bacterial interactions could lead to novel 

therapeutic strategies in the future. 

1.1.3.2 Skin 

In contrast to the diverse bacterial microbiome inhabiting different niches of skin, 

the fungal community present a more homogenous pattern regardless the 

versatile physiology (68, 150). Malassezia species predominate the majority of the 

skin, while foot sites host a more diverse combination of Malassezia spp., 

Aspergillus spp., Cryptococcus spp., Rhodotorula spp., Epicoccum spp., and 

others (150). This fungal community composition was found to be similar across 

core body sites regardless of physiology, unlike bacterial communities which can 

vary greatly depending on the location. Malassezia species, which are auxotrophic 
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and rely on the lipids of sebum and the stratum corneum, are enriched for lipase 

genes and depleted for carbohydrate-utilizing enzyme genes compared to other 

sequenced fungi, which may explain their predominance in the adult skin 

mycobiome (71, 151). 

In a cohort of diabetic foot ulcers (DFUs), fungal diversity was explored using 

amplicon sequencing of the ITS1 region (152), revealing fungi in 80% of the 100 

DFUs analyzed. Cladosporium herbarum and Candida albicans were identified as 

the most abundant species. Interestingly, chronic wounds with poor clinical 

outcomes had increased fungal diversity and commonly exhibited polymicrobial 

biofilms of fungi and bacteria. These findings highlight the importance of 

understanding the fungal component of the skin microbiome in the context of 

disease and wound healing (152). 

1.1.3.3 Vagina 

Until recently, research on the vaginal mycobiome has predominantly focused on 

Candida albicans, a leading cause of vaginal infection (153). However, recent 

studies have revealed that other non-albicans species (153), including C. krusei, 

C. parapsilosis, C. tropicalis, C. glabrata, C. guilliermondii, C. pseudotropicalis, 

and C. stellatoidea (153), along with Saccharomycetales, Davidiellaceae, 

Cadosporium, and Pichia, are also present in the vaginal mycobiome, albeit in 

smaller numbers (154, 155). Strain tropism for Candida-induced infections has not 

been supported by existing studies, as identical strains have been isolated from 

patients with and without vulvovaginal candidiasis (VVC). It has been estimated 

that 10-20% of healthy women have commensal Candida fungal colonies in the 

vaginal area that do not cause physical symptoms (156, 157). 

A 2012 study using 18S rRNA gene clone sequence libraries identified three phyla 

of fungi in the vaginal area: Ascomycota (78.6%), Basidiomycetes (17.8%), and 

Oomycetes (3.6%) (158). Candida was the primary genus of Ascomycota. The 

study concluded that women with recurrent vaginal candidiasis (RVC) and allergic 

rhinitis (AR) had higher populations of C. albicans in the vaginal area than healthy 

women, and women with RVC had lower populations of S. cerevisiae than healthy 

women. The study also found a general increase in the diversity of vaginal fungal 
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flora in women with RVC and AR, indicating that allergic reactions in the vagina 

could alter the fungal flora of affected patients (158). 

A study conducted in Estonia, found the prevalence of Candida to be significantly 

higher (36.9%) than in earlier studies, with 64.5% of women showing vaginal 

colonization with Candida. The study identified two phyla of fungi: Ascomycota 

(58%) and Basidiomycota (3%). Of the Ascomycota OTUs identified as Candida, 

82% belonged to C. albicans. A large portion of the data (38%) was comprised of 

unspecified OTUs, highlighting the low number of fungal species represented in 

reference databases, which is a significant issue in the study of mycobiota (154, 

159). 

The human vaginal microbiota, including the mycobiome, is a crucial aspect of 

women's health. Intrauterine adhesion (IUA) disease has been linked to certain 

fungal genera, such as Filobasidium and Exophiala, which are enriched in IUA 

samples versus healthy subjects (160). Furthermore, studies have demonstrated 

correlations between certain fungal and bacterial genera in the cervical canal. 

Ascomycota and Basidiomycota, for instance, have been found to correlate with 

Proteobacteria, while a negative association was observed between Prevotella 

bivia and Candida maltose (160). In healthy subjects, but not IUA subjects, a 

negative correlation was found between C. parapsilosis and Cutaneotrichosporon 

jirovecii (160). Interestingly, it has been observed that the presence of certain 

fungal strains, such as C. parapsilosis, has a protective effect against IUA 

progression (160). A reduction in inflammation and fibrosis was observed in a rat 

model of IUA in the presence of C. parapsilosis (160). In addition, C. parapsilosis 

has been shown to protect against Candida albicans-induced damage in intestinal 

epithelial cells (161). The role of fungi in the pathogenesis or protection of IUA 

could have significant implications for women's health, as IUA is linked to infertility, 

pregnancy terminations, hypomenorrhea, and amenorrhea (160, 162). 

Changes in the vaginal mycobiome composition can lead to the destruction of 

important bacterial normal flora, such as Lactobacilli, which have antifungal 

properties and antagonistic competition (155). Such changes can lead to the 

development of candidiasis and other complications. Dysbiosis and synergistic 
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bacterial interactions with native vaginal Candida, specifically with Streptococcus 

group B and E. coli, have been linked to preterm birth, low birth weight, and sepsis 

(163, 164). Lactobacilli-containing probiotics have been proposed as a potential 

treatment and preventative supplement for fungal vaginal dysbiosis, as they have 

proven useful for bacterial vaginosis. However, more research is needed before 

they can be widely adopted in the pharmaceutical industry (158). 

1.1.4 Interaction between the fungal and bacterial microbiome 

In a healthy microbiome, bacteria and fungi coexist in balance and contribute to 

various essential functions, such as digestion, nutrient absorption, and immune 

system regulation. However, disruptions in this balance, such as an overgrowth of 

harmful fungi or bacteria, can lead to dysbiosis, which is known to associate with 

a variety of diseases, including inflammatory bowel disease, diabetes, irritable 

bowel syndrome, obesity, etc (165). Members of the human microbiome, 

especially in the vaginal or GI tract, interact with each other as well as with the 

host to maintain homeostasis. It has been reported that commensal or pathogenic 

bacteria can modulate the pathogenicity of fungi by affecting their ability to thrive 

in the host. For example, the abilities of C. albicans to adapt to various 

environmental perturbations can be influenced by their interactions with the 

bacterial community. Lactic acid, which is secreted by Lactobacillus spp., helps to 

maintain the vaginal pH at a level unfavorable to the growth of potentially 

pathogenic microorganisms such as C. albicans (166, 167). Lactobacillus spp. 

were also found to secrete cyclic dipeptides and hydrogen peroxide, which are 

thought to have a direct inhibitory effect on C. albicans (168, 169). The interaction 

between different kingdoms, as observed in these cases, appears to play a crucial 

role in preserving a healthy physiological condition. Those who have lower levels 

of colonization by certain Lactobacillus spp. are more susceptible to developing 

vulvovaginal candidiasis (170, 171). 

One notable interaction between fungi and bacteria in the gut is cross-feeding, 

where fungi and bacteria exchange nutrients and byproducts, promoting the 

growth and survival of each other. For instance, certain bacteria can break down 

complex carbohydrates into smaller molecules that are then consumed by fungi. 
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In turn, fungi can also induce the production of byproducts of bacteria such as 

short-chain fatty acids (172, 173). On the other hand, some bacteria and fungi can 

also compete for resources in the gut, leading to an imbalance in their populations. 

For example, the overgrowth of certain fungi, such as C. albicans, can lead to the 

suppression of beneficial bacteria, which can result in the development of gut 

dysbiosis (125, 174, 175). Overall, the interaction between fungi and bacteria in 

the human microbiome is a dynamic and intricate process that plays a crucial role 

in maintaining health.  

1.2. Metagenomics in studying the microbiome 

Taxonomic and functional profiling of the microbial communities is the most 

important step to study the human microbiome. When this discipline was in its 

infancy, the culture-dependent method was the most utilized tool. However, the 

ability of this technique was limited due to the high risk of contamination, high 

requirements for researchers’ skill level, and the difficulty to implement with high 

throughput. In recent decades, since the Sanger sequencing technique was 

invented in 1977, DNA sequencing technologies have developed rapidly, which 

enables researchers to study human microbiome in a high-resolution and culture-

independent manner. Other new techniques, such as culturomics and in vitro 

modeling approaches, also contribute to elaborate the complexity of the study of 

the human microbiome. Metagenome is the recovery and sequencing of targeted 

or whole genetic material extracted from all biological samples in an environment, 

and this process of creating a metagenome is referred to as metagenomics. 

Metagenome analysis is usually carried out by either the amplicon or shotgun 

metagenomic sequencing. 

1.2.1 Amplicon metagenomic sequencing 

Amplicon metagenomic sequencing is the most popular approach in the 

microbiome field because of its low-cost and low-complexity approach (Fig. 3). In 

the typical workflow of amplicon sequencing, DNA is first extracted, then a specific 

region, mostly inside the ribosomal DNA (the 16S rRNA gene (16S) for bacteria, 

the internal transcribed spacer (ITS) region for fungi), is amplified, sequenced, and 
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then identified by mapping to a reference database, such like Greengenes 

database (176) for 16S and UNITE database (177) for ITS. However, amplicon 

sequencing has its major limitations: first, the primers used for amplification can 

introduce bias as they bind to regions that are not 100% conserved across all taxa, 

especially in the fungi kingdom; second, in most cases, the profiling resolution can 

be accurate until genus level due to high intraspecific similarity between 16S rRNA 

gene or ITS region; third, the copy numbers of the ribosomal region in different 

bacterial or fungal clade are not unique, for example, in one of our unpublished 

study, we found that the ITS copy numbers of 32 tested Saccharomyces 

cerevisieae strains range from 15 to 137. This high variation challenges the 

quantitative taxonomic profiling of the human microbiome. Furthermore, this 

method is not able to provide functional information about the microbes, given the 

fact that it only sequences the ribosomal region. 

  
Figure 3. Cost comparison of metagenomic techniques (178). 

 

1.2.2 Shotgun metagenomic sequencing 

Shotgun metagenomic sequencing provides the solution to most of the 

deficiencies of amplicon sequencing. Instead of sequencing only the ribosomal 

DNA region, the shotgun metagenomic method sequences the DNA fragments 

generated by randomly breaking the long DNA molecules, such as complete 
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genomes. Consequently, it provides the full genome data for functional profiling 

and also avoids the bias introduced by non-universal primers. By mapping the 

sequencing reads to a single-copy marker gene reference database, it also 

circumvents the bias of variable copy numbers (3). Moreover, the decreasing cost 

of sequencing has resulted in the trend of shifting from amplicon analyses towards 

shotgun metagenomic sequencing, shotgun sequencing has been used 

substantially more recent years in the analysis of bacterial microbiome. However, 

due to the numerical inferiority of the fungal community, potential source of bias 

when using shotgun sequencing to recover fungal sequences has to be 

considered. To address this problem, either deep shotgun sequencing should be 

applied or the fungal community has to be enriched.  

1.2.3 Databases and pipelines for the human mycobiome profiling 
when applying shotgun metagenomic sequencing 

While many bioinformatics tools have been developed to identify the bacterial 

community compositions from metagenomic data, such as Metaphlan (179), 

HuMANn (180), mOTUs (181), few of them focus on the fungi present in the 

human microbiome. There are currently only a few databases and bioinformatics 

pipelines that are specifically designed for the analysis of the mycobiome using 

metagenomic reads from shotgun sequencing data. 

FindFungi (182), published in 2018, is the earliest pipeline designed for the 

identification of fungal species in shotgun metagenomics datasets without relying 

on rDNA amplicons. Its built-in database includes whole genomes of 949 fungal 

species for taxonomic profiling. It integrates read identification through the use of 

Kraken (183) with an analysis of how the reads are distributed across the target 

genome. Then in 2019, Soverini et al. announced the tool HumanMycobiomeScan 

(184), which leverages a fungal database that includes 265 fungal genomes to 

assign reads to specific fungal species with greater accuracy and speed, more 

than 10,000 times faster than BlastN (185) and MG-RAST (186). The tool was the 

first human mycobiome profiling pipeline that embedded a decontamination step 

to remove the bacterial reads. 

The above two pipelines use the whole fungal genomes as the content of their 
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reference databases. Whole genome databases provide a comprehensive catalog 

of the genomes of different microorganisms. However, these databases have 

several drawbacks that can limit their utility. High computation time is one of the 

major problems; the analysis of microbiome samples, which typically involves the 

simultaneous analysis of multiple genomes, can be particularly computationally 

intensive. This is due to the large amounts of data generated by high-throughput 

sequencing, and the need to compare the genomes of thousands of organisms to 

identify their presence and relative abundance. Another drawback of the whole 

genome databases is the bias of the relative abundance quantification. Since not 

all of the DNA regions are single-copy, the multi-copy genes, such as the 

ribosomal DNA, mentioned above, are likely to wrongly drive the estimated 

abundance of an organism from the real world.  

Single copy marker genes (SCMGs) databases can be the alternative that solves 

the drawbacks of the whole genome marker genes. SCMGs are genes that are 

present in only one copy per genome and are, therefore, useful for quantifying the 

relative abundance of different species in a sample. The SCMGs also substantially 

reduce the database size, which utterly saves computational time and resources. 

In 2021, Pollard et al. published the pipeline EukDetect, which includes 214 

SCMGs from 2010 fungal sequences. However, this pipeline was designed for 

detecting the microbial eukaryotes in the microbiome, instead of targeting the fungi 

kingdom specifically. Besides, all the aforementioned pipelines only aimed at 

taxonomic profiling, ignoring the seeking of the functional potential of the human 

mycobiome. Therefore, as the first section of this thesis, we have developed the 

first version of FunOMIC (3), which is the bioinformatics pipeline with built-in 

databases for profiling the human mycobiome. FunOMIC contains both the 

taxonomic database FunOMIC-T which consists of more than 1.6 million fungal 

SCMGs that covers 1916 fungal species and the functional database FunOMIC-P 

which encompasses more than three million fungal proteins sequences. In 2022, 

we have updated the FunOMIC to expand the FunOMIC-T to more than 2 million 

of SCMGs that covers 3062 fungal species, and the FunOMIC-P to more than 21 

million of fungal protein sequences. The pipeline of FunOMIC2 was also upgraded 
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to involve a bacterial contamination removal step by discarding the sequencing 

reads that mapped to the UHGG database (108). 

 

Table 1. Sumary of the existing reference databases and pipelines for 
annotating mycobiome. 

 

Tool Number of 

fungal 

species 

Type Algorithm 

included 

Functional 

databse 

Reference 

FindFungi 949 Genomes k-mers No (182) 

HumanMycobiomeScan Not specified Genomes Alignment No (184) 

EukDetect 1904 SCMGs Alignment No (187) 

FunOMICv1 1916 SCMGs Alignment Yes (3) 

FunOMICv2 3062 SCMGs Alignment Yes Unpublished 
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2. HYPOTHESIS  
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Hypothesis 

The human mycobiome, and its interaction with the human bacterial microbiome 

is still understudied due to various reasons including the challenge associated with 

unculturable microorganisms, the extremely low abundance among the human 

microbiome community, inter-individual variability, and the lack of a 

comprehensive database. This PhD thesis was based on the hypothesis that 

promoting the fungal taxonomic and functional profiling through experimental and 

bioinformatics methods will help to unravel the role of human mycobiome in the 

human microbiome context.  
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3.1 Main objective 

The major objective of this thesis is to develop databases and pipelines for the 

simultaneous analysis of bacterial and fungal components of the microbiome. 

These databases will allow the realization of applying shotgun sequencing to 

comprehensively and unbiasedly analyze the human mycobiome. 

 

3.2 Secondary objectives 

• To develop experimental method to enrich the proportion of the fungal 

community in human fecal samples as an assistant step to be combined 

with the application of shotgun sequencing.  

• To explore the fungal-host-microbiome interplay by integrating both 

bacterial and fungal components in the human microbiome. 

• To evaluate whether specific fungal or bacterial signatures in the GI tract 

correlate with host health status. 
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4.1 Construction of the FunOMIC databases and pipeline for 

human mycobiome profiling using shotgun metagenomics 

4.1.1Collection of fungal genomes  

In total, 9,401 publicly available strain-level fungal genomes or draft genomes 

were downloaded from NCBI (https://www.ncbi.nlm.nih.gov/) and JGI 

MycoCosm (https://mycocosm.jgi.doe.gov/mycocosm/home) (188) before 

January 25th, 2021. All fungal genomes with more than 500 contigs and N50 < 

10 kbp were filtered out (189), which led to a final set of 4,331 high-quality 

genomes and draft genomes. Genomic shotgun data from 508 Candida isolates 

were downloaded from 30 unique bioprojects from the NCBI SRA before 

February 4th, 2021 (https://www.ncbi.nlm.nih.gov/sra/). The accession 

numbers of the 4,839 combined reference fungal genomes are listed in 

Supplementary Table 1. 

4.1.2 Construction of the taxonomic and functional FunOMIC 

database 

4.1.2.1 Identification of marker genes for establishing a taxonomic fungal 

database 

Assembling genomic sequencing reads of the 508 Candida isolates was 

performed as described in the study of Montoliu-Nerin et al (190). Basically, 

each of the Candida genomic sequencing reads was normalised by BBNorm 

v38.9021 of BBtools (https://jgi.doe.gov/data-and-tools/bbtools/) with a target 

average depth of 100x. Then, normalized data were assembled by SPAdes 

v3.15.2 (191)(https://cab.spbu.ru/software/spades/). BUSCO (Benchmarking 

Universal Single-Copy Orthologs) version 5.0.0 (105) was used to identify 

marker genes using Fungi OrthoDB version 10.1 (106) in the pool of 4,839 

fungal genomes. BUSCO made use of 758 HMMs (hidden Markov models) of 

fungal single-copy marker genes and was run using default parameters with the 

AUGUSTUS gene predictor (105). Genomes with less than 30 single-copy 

https://mycocosm.jgi.doe.gov/mycocosm/home
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marker genes identified were discarded, resulting in a final set of 4,816 

genomes. Clustering with a 99% identity threshold (107, 187) was applied using 

CD-HIT (192) to remove redundancies, which led to a final set of 1.69 million 

fungal marker genes, referred here as FunOMIC-T. 

4.1.2.2 Establishment of a functional fungal database.  

A protein database for fungal functional analysis was also constructed by 

collecting the corresponding amino-acid sequences that were available for 

2,967 of the 4,331 genomes cited above and the 35,360 reviewed fungal 

proteins from UniProt (https://www.uniprot.org/), both before January 2022. 

Then, the proteins without an explicit annotation were discarded (1.5 million), 

leading to a total of 4.9 million genes. Redundancy was removed with a 95% 

identity clustering using CD-HIT (2). Finally, 3,413,239 non-redundant fungal 

proteins, referred to as FunOMIC-P, were obtained for fungal functional 

profiling. These protein accessions (from JGI, NCBI, UniProt) were then linked 

to EC numbers and KEGG pathways. 

4.1.3 Validation of the FunOMIC databases and the pipeline 

To verify the absence of bacterial contamination [14] in the fungal database and 

to ensure specificity for fungal detection, we applied three different validation 

methods. Firstly, we mapped the 1.69 million fungal single-copy marker genes 

to the Unified Human Gastrointestinal Genome (UHGG), which is a gene 

catalog that comprises 204,938 non-redundant genomes from 4,644 gut 

prokaryotes (108) using bowtie2. Because of the memory limitation of our 

computers (44 CPUs), we simulated sequencing reads of all the marker gene 

sequences (22 million paired reads, 1-fold coverage, 11.2 GB out of 4.6 GB) to 

perform the alignment to the UHGG. Secondly, we simulated Illumina formatted 

sequencing output reads from a set of 903 bacterial genomes from 458 species 

that inhabit the human body collected from the NCBI to create a mock 

community for a bacterial community (Supplementary Table 2). The simulation 

was carried out by ART, a set of simulation tools that generate synthetic next-
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generation sequencing reads (109). The simulated reads were then aligned to 

FunOMIC-T. Thirdly, another mock community was created with the top 20 

fungal species and top 20 bacterial species identified in the 2,679 human 

metagenomes collected (cited below). The genomes of these 40 species were 

used to simulate Illumina formatted sequencing output reads, which were then 

mapped to the constructed database. The lists of genomes used for creating 

the mock communities and the number of simulated reads can be found in 

Supplementary Table 2. 

To validate the FunOMIC-P database, a mixed mock community was created 

with the available coding gene sequences of the aforementioned top fungal and 

bacterial species. Again, the coding gene sequences collected from NCBI were 

used to simulate Illumina formatted sequencing output reads, which were then 

mapped to the FunOMIC-P database using Diamond blastx function v2.0.8 with 

an e-value < 10e-10 to recover the fungal functional profiling. To optimize the 

alignment parameters, we tested nine different combinations using three 

different percentages of coverage (>90%, >95%, >99%) and three different 

percentages of identity (>90%, >95%, >99%). 

4.1.4 Collection of metagenomic data 

We downloaded 2,679 public human shotgun metagenomic sequencing data 

from NCBI SRA before February 4th, 2021 (193) 

(https://www.ncbi.nlm.nih.gov/sra/). The 2,679 public human metagenomic 

data derive from 27 unique bioprojects, two of which were published in our 

previous studies (PRJNA514452, PRJEB1220). The metadata of all the human 

metagenomic data can be found in Supplementary Table 3. This metadata 

contains available information such as continent, country, city, latitude, 

longitude, sample source, gender, age, extraction procedure, and use of 

mechanical lysis during extraction. 
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4.1.5 Aligning human metagenomic sequencing reads onto the 

FunOMIC database 

After quality control and decontamination using KneadData v0.7.7-alpha 

(https://huttenhower.sph.harvard.edu/kneaddata/), Bowtie2 v2.3.4.3 was used 

to map the 2,679 metagenomic data to the FunOMIC-T database for fungal 

taxonomic annotation. Mapped reads were kept if more than 80% of the length 

aligned to the reference sequence with a q-score of over 30 (2, 187, 194) by 

using Samtools v1.9. Diamond blastx function v2.0.8 was used to map the 

metagenomic data to the FunOMIC-P database (read coverage > 95% and 

identity percentage > 99%, and e-value < 10e-10) for fungal functional 

annotation. An in-house script, which is freely available on our GitHub 

(https://github.com/ManichanhLab/FunOMIC), was used to recover the final 

fungal taxonomic and functional profiling.  

4.1.6 Prokaryotic taxonomic and functional profilings of human 

metagenomic data  

After quality control and decontamination using KneadData v0.7.7-alpha 

(https://huttenhower.sph.harvard.edu/kneaddata/), we used MetaPhlAn v3.0.9 

for profiling the composition of prokaryotic communities in the 2,679 human 

metagenomic data. Then, the HUMAnN v3.0 (180) 

(https://huttenhower.sph.harvard.edu/humann/) and the UniRef90 database 

(195) were used to profile the abundance of prokaryotic metabolic pathways 

and other molecular functions. 

4.1.7 Statistical Analysis 

All statistical analyses, except for SparCC correlation, were performed using R 

software 4.1.2 (2021-11-01). Alpha and beta diversity were calculated using the 

Phyloseq package. Beta diversity was compared between different disease 

groups using the UniFrac distance metric with permutational multivariate 

analysis of variance (PERMANOVA) to identify significance (p ≤ 0.05). The 
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associations between fungal profiling with variables from the metadata were 

measured using the MaAsLin2 package with age as the random effect (results 

were considered significant if FDR (false discovery rate) < 0.05). The 

correlations of taxonomic profiling or functional profiling between bacteria and 

fungi were performed using the Python script SparCC (196). 

 

4.2 Update of the FunOMIC and establishment of the MycoDM 

web server 

4.2.1 DATABASES CONTENT AND CONSTRUCTION 

4.2.1.1 Expansion and update of the FunOMIC database 

The update of the FunOMIC database is split into two works: update of the 

taxonomic database FunOMIC-T and update of the functional database 

FunOMIC-P. For the second version of FunOMIC-T, we collected 3847 newly 

published high-quality fungal genomes or draft genomes until June 2022 from 

NCBI (https://www.ncbi.nlm.nih.gov/) and JGI MycoCosm 

(https://mycocosm.jgi.doe.gov/mycocosm/home). Single-copy marker genes of 

each genome were extracted following the method of the previous version, 

which is based on HMM (3). For the expansion of the FunOMIC-P, the available 

amino acid sequences of the coding genes of the newly collected fungal 

genomes were appended to the first version of FunOMIC-P. Then, both the 

newly collected single-copy marker genes and the amino acids were 

concatenated to the previous version of the FunOMIC databases. After this, 

clustering was performed by CD-HIT (192) to remove redundancies with a 99 

% identity threshold (3). 

Consequently, the updated version of FunOMIC-T, namely FunOMIC2-T, 

included more than 2 million fungal single-copy marker genes, while the 

FunOMIC2-P included more than 21 million fungal protein sequences. The 

newly constructed database covers twelve fungal phyla, among which three 
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(Ascomycota, Basidiomycota, and Mucoromycota) represented more than 98% 

of the genomes. At lower taxonomic levels, they encompassed 1,080 genera, 

3,032 species, and 8,686 strains. The taxonomy of the FunOMIC database was 

based on the NCBI taxa system, with manual curation for the unknown 

taxonomic levels and revised fungal names. 

4.2.1.2 Construction of the phylogeny 

Together with the updated FunOMIC2, we constructed the phylogeny of all the 

fungal species included in the database, to let users conveniently perform the 

diversity analysis, for example, calculating an UniFrac distance (197). For this 

purpose, we translated the 758 single-copy BUSCO genes into amino acid 

sequences as described in the method section of Chapter 1 for each of the 

3,032 fungal species. We then aligned each of the 758 groups of amino acid 

sequences using MAFFT v7.471 (198) with options “—auto –maxiterate 1000.” 

The regions that were suitable for inferring phylogenetic trees were selected 

from each multiple sequence alignment (MSA) using BMGE with the command: 

bmge -i input -t AA -h 0.4 -m BLOSUM62 -of output (199). The trimmed 

alignments of these 758 BUSCO genes, of which 96.6% (732 out of 758) had 

more than 50% of taxon occupancy, were then concatenated into one MSA. 

The inference of the phylogeny was then performed by Fasttree v2.1.10 using 

CAT+IG model (200).  

4.2.1.3 Update of the FunOMIC pipeline 

A step of prokaryotic reads removal was newly implemented in the FunOMIC 

pipeline by using the Unified Human Gastrointestinal Genome (UHGG) 

prokaryotic database (108). For more accurate taxonomic and functional 

profilings, the quality-controlled metagenomic reads were mapped to the 

UHGG prokaryotic database using Bowtie2 v2.3.4.3 with default settings to 

remove the prokaryotic contamination. The unmapped reads were kept as the 

non-prokaryotic reads in each of the metagenomic samples and used as input 

in the FunOMIC profiling pipeline. By testing this step using the mixed mock 
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community, which we used in the previous paper (3), we noticed that more than 

80% of the prokaryotic reads were removed without affecting the fungal reads. 

4.2.1.4 Collection of the human gut shotgun metagenomic data 

We used a subset of 1,147 public human shotgun metagenomic sequencing 

data from the aforementioned 2,679 collected human metagenomes (29) 

(https://www.ncbi.nlm.nih.gov/sra/). The 1,147 public human metagenomic 

data were all collected from gut samples of healthy controls or patients in CD, 

UC, T1D, T2D, ESRD, and PSO. These samples were from six unique 

bioprojects, one of which was published in our previous studies 

(PRJNA514452,). The metadata of all the human metagenomic data can be 

found in Supplementary Table 9. This metadata contains available information 

such as continent, country, city, latitude, longitude, sample source, gender, age, 

extraction procedure, and use of mechanical lysis during extraction.  

4.2.1.5 Statistical Analysis 

All statistical analyses were performed using R software 4.1.2 (2021-11-01). 

Alpha and beta diversity were calculated using the Phyloseq package. Beta 

diversity was compared between different disease groups using the UniFrac 

distance metric with permutational multivariate analysis of variance 

(PERMANOVA) to identify significance (p ≤ 0.05). The associations between 

microbiome profilings with different diseases from the metadata were measured 

using the MaAsLin2 package with country, study, and BMI as the random 

effects (results were considered significant if FDR (false discovery rate) < 0.05).   

4.2.2 Design and construction of the Web server 

The MycoDM web server uses JavaScript as client language, PHP (v7.2.24-0; 

http://www.php.net) as server language and MySQL (v15.1 Distrib 10.1.48-

MariaDB; http://www.mysql.com) for storing data. The web pages were written 

in Hypertext Markup Language (HTML), JavaScript, and PHP. They provide a 

user-friendly interface for locating and retrieving information from the database. 

The interactive APPs embedded were created using R (https://www.r-
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project.org) code and the Shiny package (https://shiny.rstudio.com), and were 

hosted using Shinyapps.io servers (https://www.shinyapps.io). 

The web server includes a total of four subpages: Home, Downloads, 

DiseaseMarker, and online analysis platform. The website features a prominent 

header that makes it easy to explore and discover relevant information.  

 

 
Figure 4. The workflow of constructing the MycoDM web server. The raw 

shotgun sequencing reads were annotated to get the taxonomic and functional 

profilings using FunOMIC2 database and pipeline. Then, the generated 

profiling together with the metadata were used for performing the differential 

abundance analysis. Finally, the FunOMIC2 database and the detected 

significant mycobial taxonomic and functional markers associated with 

diseases were implemented into the MycoDM web server. 

4.3 Robust integration of fungal and bacterial gut microbiome 

with dietary data in a longitudinal setting 

4.3.1 Fungal genomes collection 

All species and strains used in this project were collected from the FunOMIC-T 

database (3) in order to use the marker genes. Similar to the analysis of the 

human gut bacterial microbiome, studies of the human gut mycobiome have 
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typically used amplicon sequencing of ribosomal DNA, particularly the internal 

transcribed spacer (ITS) region. However, it has been shown that the copy 

numbers of the ribosomal DNA in fungi can vary widely at the species and strain 

levels. This high variation poses a challenge to the quantitative taxonomic 

profiling of fungal communities in an environment. Additionally, ITS or 18S 

sequencing methods have been criticized for having low phylogenetic 

resolution at the species level and for not providing functional information. To 

address these issues, we evaluated the ITS copy numbers of a set of fungal 

genomes. To analyze the ITS copy number, 260 fungal strains covered by 

seven species (Aspergillus flavus, Candida albicans, Candida glabrata, 

Cryptococcus neoformans, Rhizopus oryzae, Rhodotorula mucilaginosa and 

Saccharomyces cerevisiae) were chosen, as explained in the Results section. 

For each of the selected strains, both its genome assembly and its 

corresponding raw shotgun sequencing reads were downloaded from the NCBI 

(201) or JGI (188) databases. Moreover, genome assemblies of the 14 most 

abundant species in the human healthy gut mycobiome were also downloaded 

to create in silico mock communities (3). 

4.3.2 Estimation of the ITS copy numbers 

Two methods were used to estimate copy numbers of fungal ITS regions: 

hidden Markov models (HMM) and mapping depth (202, 203). To determine the 

ITS copy numbers using HMM, we created two HMMs respectively for 

predicting the flanking sequences of the two ends of the whole ITS region. 

These two HMMs are located separately in the large subunit (LSU) and small 

subunit (SSU) of the rRNA gene. For creating the HMM of the LSU, a total of 

97 sequences in FASTA format were obtained from NCBI (Supplementary 

Table 10), which were then aligned using the "MUSCLE" tool (204) in 

Stockholm format. This alignment was then used to create the HMM profiles 

with the hmmbuild function in UNIX (Wheeler and Eddy, 2013; Baum and 

Petrie, 1966, doi: 10.1214/aoms/1177699147). For creating the HMM of the 
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SSU, 100 sequences (Supplementary Table 11) were recovered and used 

through the same process as with the LSU. The resulting hmm profile had a 

length of 588 bp for LSU and 142 bp for SSU. With the obtained HMM profiles, 

we searched the DNA homologies of the beginning and the ending of the ITS 

regions in each of the 260 genome assemblies mentioned above, then 

estimated the number of copies by using the nhmmer function. Then, we 

applied a filtering step to eliminate those matches that presented an E-value 

greater than 0.001 (205). The copy number was then determined using an in-

house Python script that evaluated the distance between the start and end of 

the ITS region. As most ITS lengths were reported in a range of 400 and 800 

bp with an average of 550 bp (206, 207), the script accepted a distance between 

400 and 800 bp. Moreover, if there was an HMM match for one end of the ITS 

but not the other, the script determined whether the prospective ITS sequence 

was at the end of a chromosome/scaffold, in which case the other end of the 

region could not be found, thus the script counted another copy. Once the copy 

number was determined for a genome, the complete ITS sequence was 

extracted by means of the BEDTools tool, which will be used in the mapping 

depth method mentioned below (208). The resulting file contained three 

columns for each genome: genome ID, ITS copy number, and ITS sequence. 

Summary statistics were calculated for the seven species analyzed. 

To estimate CNV using the mapping depth approach, we calculated the ratio of 

the ITS depth against the single-copy marker genes’ depth (203, 209). The ITS 

sequence for each genome was obtained from the HMM method mentioned 

above, while the single-copy marker genes were obtained from the FunOMIC-

T database (3). The raw reads of the 260 genomes previously downloaded from 

the NCBI and JGI were filtered and trimmed using Trimmomatic (version 0.36) 

with the default settings (210) to obtain reads with higher qualities. The filtered 

reads were then mapped respectively to the corresponding ITS sequence and 

the set of single-copy marker genes by using Bowtie2 (211). Once the mapping 
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was finished, samtools (38, 212) was used to convert the resulting SAM file into 

a BAM file. Next, those reads mapped with a q-score inferior to 30 were filtered 

out, and the depth at each base was calculated. The resulting file was then 

analyzed using R (version 4.0.2), where the mapping depth, which was 

determined as the mean depth of all the bases of each gene, was calculated 

and normalized by gene lengths. Prior to calculating the mean, the positions at 

the two ends (which present fewer reads and lead to a bias on the real mapping 

depth) were trimmed by deleting the first and last 50 base pairs, as done in the 

report of Lofgren et al. The copy number was finally estimated as the ratio of 

the mapping depth of the ITS region by the median of the mapping depths of 

all the single-copy marker genes. We used the median in order to avoid a bias 

of outlier single-copy genes that had a higher-than-usual mapping depth. The 

whole pipeline for this analysis is summarized in Fig. 12a. 

To validate the above mapping pipeline, we selected 10 S. cerevisiae genome 

assemblies out of the 260 assemblies downloaded from NCBI. We recovered 

the ITS sequences from each of these assembled genomes using the CN-HMM 

method. Then we queried the ITS sequences in the chromosome XII of each 

genome assembly to get the total number of hits, which is used as the reference 

ITS copy numbers. Then for each of the 10 assemblies, we generated 15 million 

sequence reads using the InSilicoSeq tool (213). Those reads were then 

mapped to their respective ITS and single-copy fungal marker genes’ 

sequences using the read mapping pipeline to identify the copy number 

estimated by mapping depth (CN-MD). The student t-test was done to compare 

the CN-MD with the references, with a significant threshold p-value < 0.05. 

4.3.3 In silico comparison of ITS and shotgun methods 

To compare the accuracy of the ITS and shotgun methods in detecting the 

relative abundance of fungi at strain, species, or genus level in environmental 

samples, genomes assemblies from 27 strains were used, for which the ITS 

sequences (obtained by CN-HMM method) and copy numbers of ITS (CN-MD) 
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were extracted. These were used as artificial genomes for creating mock 

communities. Five different in silico mock fungal communities were generated 

with randomly selected strains for each species. The strains and their randomly 

attributed abundances are shown in Supplementary Table 12. With the 

InSilicoSeq tool, we created 15 million reads (214) from the whole genomes 

(for the shotgun simulation) and another 15 million from the ITS sequences (for 

the ITS sequencing simulation) for each community (Supplementary Figure 5). 

After obtaining the reads, the shotgun reads were mapped to the FunOMIC-T 

database, while the ITS reads were mapped to an in-house ITS database (Fig. 

5). The ITS database was created by integrating the UNITE version 8.2 (215) 

and the RefSeq database (data downloaded before 09/12/2020) (216), as well 

as the sequences extracted from the HMM, in total 96,388 sequences. The 

post-mapping processing was the same as the CN-MD pipeline. Then, an extra 

filtering step was taken: the filtering of those genes that presented less than 15 

mapping depth, as they were possible off-target mappings and could be a 

cause of bias. This filtering was based on previous publications (217, 218), 

where various tests were undertaken to determine the optimal filtering value.  
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Figure 5. Workflow of generating simulated sequencing reads for mock 

communities. The colored dots represent the species in the in silico mock 

community. The genomes of the species were used directly as the input of 

InSilicoSeq for mimicking the shotgun sequencing. The ITS sequences of the 

species were replicated with their corresponding CN-MD before input to the 

InSilicoSeq for mimicking the ITS sequencing. 

  

A lower mapping depth filter would result in the introduction of more off-target 

species, while a higher filtering depth would reduce low-abundant but relevant 

species (217, 218). Relative abundance for each mapping hit inside each mock 

population was calculated by dividing the mean depth of each hit by the sum of 

all mean depths. Then, the relative abundance of each species was retrieved 
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by summing all the hits that corresponded to the relevant species; all other 

species were marked as off-target. The expected and observed relative 

abundances were then compared using R (v4.0.2), as described in the 

statistical analysis section.  

To further evaluate a more diverse fungal community and to mimic a gut 

microbiome sample, an additional mock community, consisting of the 14 most 

prevalent fungal species with their relative abundance found in healthy gut 

controls, was created (Supplementary Table 12) (3). 

4.3.4 Fungal enrichment protocol 

Centrifugation was used to separate fungal and bacterial cells based on their 

heterogeneous cell sizes. Stoke’s law was used to estimate the centrifugation 

speed and time, in which D is the particle diameter (cm), η is the fluid viscosity 

(poise), Rf and Ro are the final and initial radius of rotation respectively (cm), 

ρp and ρf are the density of the particle and fluid respectively (g/ml), ω is the 

rotational velocity (radians/sec) and t is the required time for sedimentation from 

Ro to Rf (sec) (equation 1).  

(1) 
Briefly, 15 ml of 1X PBS solution was added to 500 mg fecal samples together 

with 10 1mm glass beads to homogenize the feces into fecal suspension. The 

suspension was then passed through a 40-micron cell strainer to remove large-

size undigested particles. We then centrifuged the filtered suspension for 3 

minutes at 201 g using an Eppendorf A-4-62 centrifuge. The supernatant was 

collected in a 50 ml falcon tube, and the pellet was resuspended in 15 ml of 1X 

PBS. The resuspended solution was centrifuged again for 3 min at 201 g with 

the same centrifuge to reduce the remaining number of bacterial cells from the 

fungi-enriched fraction, then the supernatant was collected and combined with 

the previous supernatant. We then resuspended the pellet with 1 ml of 1X PBS 

and centrifuged it for 20 min at 10000 g using an Eppendorf Centrifuge 5427R 
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to collect the pellet containing the enriched fungal cell fraction. The combined 

supernatant was centrifuged parallelly in Fiberlite™ F14-6 x 250LE for 30 min 

at 10000 g, the pellet was collected as the enriched bacterial cell fraction.  

4.3.5 Collection and processing of habitual diet information 

Six volunteers, free of diagnosed diseases, were recruited between August 

2021 and October 2021 by disseminating an announcement. The study was 

approved by the local Ethics Committee of the Vall d’Hebron University 

Hospital, Barcelona (Project identification code: PR(AG)84/2020). All 

participants signed a consent form. During two months, each volunteer filled a 

sFFQ that recorded the previous month's dietary information (219); in total, 12 

sFFQs from the six volunteers were collected.  

Nutrients were adjusted by energy using the residual method (220) to control 

the confounding effect of calories. We then used the Wilcoxon test and the 

intraclass correlation coefficient (ICC) (220, 221) to evaluate the reproducibility 

of the sFFQ by comparing both the energy-adjusted nutrient data and the food 

groups extracted from the sFFQ administered on two-time points.  

4.3.6 Sample collection and DNA extraction 

Each of the above-mentioned volunteers donated one fecal sample per week 

for two months, in total, 48 fecal samples were collected. The fecal samples 

were frozen immediately at -20 ℃ then transferred to -80 ℃ within the month. 

For each of the 48 samples, two aliquots of 500 mg were taken, one was used 

directly for the DNA extraction, and the other was separated into the fungal 

enriched partition and enriched bacterial partition by applying the fungal 

enrichment protocol before the DNA extraction. Thus, three partitions per 

sample (enriched in fungi, enriched in bacteria, and control without enrichment), 

in total 143 samples (volunteer No.4 did not provide enough feces for time point 

1, so only one aliquot was obtained for getting the enriched fungal and bacterial 

partitions) were processed for genomic DNA extraction as previously described 

(222). 
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4.3.7 Shotgun metagenomic sequencing and profiling 

Shotgun metagenomic sequencing was applied to the 143 extracted genomic 

DNA using the Illumina Novaseq 6000 platform. The average reading depth 

was 6.45 Giga base pairs. For each of the sequencing samples, we used the 

KneadData v0.7.7-alpha tool 

(https://huttenhower.sph.harvard.edu/kneaddata/) for trimming out low-quality 

reads and decontaminating human sequences. Then, the FunOMIC2 database, 

which contains 2 million single-copy marker genes and 21 million protein 

sequences extracted from more than 3,000 fungal species (3), was used for 

getting the raw reads of taxonomic and functional mycobiome profiling. Then 

the raw reads were normalized with the TMM method (223, 224) using the R 

package “edgeR''. The MetaPhlAn v3.0.9 and the HUMAnN v3.0 (180) 

(https://huttenhower.sph.harvard.edu/humann/) were used respectively for the 

taxonomic and functional prokaryotic microbiome profiling. The functional 

profiling output by HUMAnN was annotated using the MetaCyc pathway 

database (225), while that of FunOMIC2 was using the KEGG pathway 

database (226). To make the annotations consistent, we regrouped the 

prokaryotic functional profiling into the KEGG annotation style by using the 

function “humann_regroup_table” embedded in HUMAnN and the function 

“keggLink” under R package “KEGGREST” (Dan Tenenbaum and 

Bioconductor Package Maintainer (2021). KEGGREST: Client-side REST 

access to the Kyoto Encyclopedia of Genes and Genomes (KEGG).). 

4.3.8 Keystone species analysis 

The network was constructed based on the species-level SparCC correlation 

matrix measured using the SparCC tool which uses logarithmically scaled 

variances to calculate correlations between species (196). We inferred and 

removed the indirect effects from the observed correlation matrix by using the 

network deconvolution algorithm as previously proposed (227, 228). Then 

based on the random matrix theory (RMT), we determined a threshold of rho = 
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0.78. All correlations that had an absolute value lower than 0.78 were discarded 

(229). The p-values for all the correlations were adjusted using the Benjamini 

and Hochberg false discovery rate (FDR), and a cutoff of FDR=0.001 was 

applied to remove the non-relevant correlations. The resulting correlation matrix 

was then used to construct the network using the “igraph” R package (230). 

After network construction, the topological indices, including the degree, 

betweenness centrality, and closeness centrality of each node, were calculated 

by using functions developed in igraph.  

4.3.9 Statistical analysis 

To compare the ITS and the shotgun approaches, weighted UniFrac distances 

(231) were calculated using the phyloseq package (232). Distances were 

compared between methods using a Student t-test (233), as the values 

belonged to a normal distribution, proved beforehand by doing a Shapiro test 

(234). Spearman correlations of dietary data or metadata with microbiome 

alpha diversities or microbiome taxonomic and functional compositions were 

computed using the cor.test from the stats R package (v4.0.2). The p-values 

for all the correlations were adjusted using the Benjamini and Hochberg FDR. 

We considered significant correlations with an FDR < 0.05. In the heatmaps for 

partial correlations, the asterisk indicates that the correlation index for the 

corresponding species metadata pair is significant. 
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5.1 Validation and application of the FunOMIC databases and 

pipeline 

5.1.1 Characteristics of the taxonomic and functional FunOMIC 

database 

To build a database for taxonomic profiling of environmental fungal species, 

more than 1.6 million fungal single-copy marker genes were extracted from 

4,816 fungal high-quality genomes and draft genomes by aligning them to a set 

of 758 fungal universal orthologs from OrthoDB (Fig. 6). The newly constructed 

database, FunOMIC-T, covers eight fungal phyla, among which three 

(Ascomycota, Basidiomycota, and Mucoromycota) represented more than 98% 

of the genomes (Fig. 6A). At lower taxonomic levels, they encompassed 475 

genera, 1,916 species, and 4,537 strains. 

 

 

Figure 6. Workflow of the construction of the FunOMIC database and its 

application in metagenomic analysis. (A) Recovery of fungal single-copy 

marker genes from fungal draft genomes and Candida isolate sequencing 
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reads downloaded from NCBI and JGI. A.1) Distribution of the fungal draft 

genomes at the phylum and species levels in FunOMIC-T (Taxonomy). A.2) 

Distribution of Candida assemblies at the species level. (B) Fungal and 

bacterial taxonomic and functional profiling of the 2,679 metagenomic datasets 

downloaded from NCBI. B.1) Geographical location of the collected human 

metagenomes. B.2) Proportions of the collected human metagenomes by body 

sites. B.3) Proportions of human metagenomes by disease type (HIV=human 

immunodeficiency virus; T2D=type 2 diabetes; CD=Crohn’s disease; 

UC=ulcerative colitis; ESRD=end-stage renal disease; SCZ=schizophrenia). 

B.4) Distribution of the collected human metagenomes by gender. 

 

Table 2. Summary of the characteristics of the 1,950 human 

metagenomes. 
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It has been reported that 99.9% of human metagenome sequences are from 

bacteria (2) and that, bacterial sequences are ubiquitous in eukaryotic genomes 

(187). Validation of the absence of bacterial sequence contamination in the 

fungal database is, therefore, critical. To address this requirement, the 

FunOMIC-T database was mapped to the UHGG dataset, which contains 

204,938 non-redundant genomes from 4,644 gut prokaryotes (109). Only less 

than 0.01% of the fungal marker genes mapped to the UHGG, demonstrating 
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that this fungal taxonomic database was specific enough to detect mostly fungal 

sequences.  

A bacterial environmental mock community was also created. For this, we 

collected 903 genomes from 458 bacterial species found to inhabit human 

bodies (Supplementary Table 2). These genomes were then simulated into 

19,301,201 Illumina formatted sequencing output reads and mapped to the 

FunOMIC-T database. The mapping rate of this artificial community to the 

database was also less than 0.01%. Lastly, a mixed mock community was also 

created comprising the top 20 bacterial species and top 20 fungal species 

identified during the taxonomic profiling of the metagenomes (Supplementary 

Table 4). To better mimic real human metagenomes, the ratio of the number of 

simulated bacterial reads over fungal reads was set to nearly 1,000 (999,021 

bacterial reads and 1,046 fungal reads) (2). As expected, none of the 999,021 

bacterial reads aligned against FunOMIC-T, leading to a specificity (false 

positive / (false positive + true negative)) of 0.9999.  

Given the numerically small proportion of fungal sequences in human 

metagenomes, the fungal functional analysis was not relevant in almost all the 

published human mycobiome studies. To address this knowledge gap, in the 

present work, we also proposed a protein database specifically for 

environmental fungal functional profiling. The FunOMIC-P database consists of 

3,413,239 non-redundant fungal protein sequences integrated from NCBI, JGI, 

and UniProt (see Methods section above, Fig. 6B). Evaluation and validation 

were also performed by a mixed mock community constituted of the top species 

mentioned above. The available coding gene sequences of these species were 

simulated into 439,798 Illumina formatted sequencing output reads and 

mapped to the FunOMIC-P database. We tuned the Diamond blastx function 

with nine different combinations of parameters to optimize mapping 

performance. With the threshold of read coverage > 95%, identity percentage 

> 99%, and an e-value < 10e-10, we obtained the highest mapping rate of the 
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fungal reads, where around 70% of the hits passed this threshold. More than 

50% of the mis-mapped bacterial genes were related to ATP synthase 

(Supplementary Table 2).  

5.1.2 Characteristics of the 2,679 metagenomes 

A set of 2,679 metagenomes, which encompassed a total of 9077.12 Gb, 

collected from 27 bioprojects are listed in Supplementary Table 3. Taxonomic 

profiling of the metagenomes against FunOMIC-T detected fungal DNA 

sequences in 1,950 metagenomes (72.9%) which was much higher than the 

ratio reported in previous shotgun sequencing studies analyzing the human 

mycobiome. Lind et al., reported a detection rate of less than 20%, and Olm et 

al. found 6% in their cohorts (infant) (235). The 1,950 metagenomes were 

collected from 14 countries, 12 body sites, and 19 health and disease 

conditions (Table 1). The average mapping rate was 4.72E-05 (8.16E-09 min, 

1.1E-02 max). 

Gut samples comprised the majority of the dataset (84%), followed by 

conjunctiva (5%), saliva (3%), and throat swab (1.5%). Among the diseases 

evaluated, Crohn’s disease (CD), ulcerative colitis (UC), end-stage renal 

disease (ESRD), type 1 diabetes (T1D), and type 2 diabetes (T2D) accounted 

for 779 fecal samples, whereas 500 fecal samples were obtained from healthy 

individuals. 

All biological specimens were extracted by at least 10 different protocols, for 

which mechanical lysis, previously reported as a crucial step during the DNA 

extraction process to recover an optimum microbial diversity (9), was applied in 

1,049 samples (53.8%).  

5.1.3 Fungal community structure, diversity, and functions of the 

1950 metagenomes 

Five phyla, 232 genera, and 475 species were identified in the 1,950 

metagenomes. More than 80% of the sequences were represented by two 

phyla (Ascomycota and Basidiomycota), two genera (Saccharomyces, 
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Candida), and three species (Saccharomyces cerevisiae, Candida albicans, 

Malassezia restricta) (Fig. 7). Under healthy conditions, the gut mycobiome was 

dominated, in terms of relative abundance, by Saccharomyces cerevisiae, 

which was detected in 52.4% of the samples, while Dacryopinax primogenitus 

was found in 23.6%, Yarrowia lipolytica in 13.6%, and Candida parapsilosis in 

11% of the samples. C. albicans, known as an opportunistic pathogenic yeast 

(6), was found in only 4% of the GI tract samples of healthy individuals. The 

fungal species profiling data can be found in Supplementary Table 4. 

Malassezia predominated conjunctiva samples, whereas Aspergillus 

predominated the saliva mycobiome. 

The number of observed fungal species in the 1,950 metagenomic samples 

ranged from 1 to 40 (median of 2), Chao1 index (236) varied between 1 and 

76.1 (median of 3), and the Shannon index (237) ranged from 0 to 3.36 (median 

of 0.62) (Supplementary Table 5). These three measurements indicated that 

the fungal community in humans is, in general, of very low diversity compared 

with the bacterial community, which could reach an average of 70 in terms of 

the Chao1 index (236). 
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Figure 7. Fungal taxonomic profiling of several human body sites based 

on the 1950 shotgun metagenomic data using the FunOMIC-T database. 

Taxonomic profiling is displayed at the phylum, genus, and species levels. Only 

the mean relative abundance of the genera and species summing 90% of the 

sequence data is exhibited. Gut taxonomic profiling was performed for diseases 

including Crohn’s disease (CD, n=193; from the USA, Europe, and Asia), 

ulcerative colitis (UC, n=79 from Europe and the USA), end-stage renal disease 

(ESRD, n=208, from Asia), type 1 diabetes (T1D, n=60 from Australia), and 

type 2 diabetes (T2D, n=99 from Asia). 468 fecal samples did not have health 

status information in the metadata files. The health status and geo-localization 

of the conjunctiva, nasal, and saliva samples are described in Table 1. 

 

While fungal taxonomic profiling of human microbial communities has 

increased considerably over the last 10 years through the sequencing of 

phylogenetic marker genes such as ITS2/18S, the fungal community function 

was scarcely investigated mainly due to, again, the lack of a comprehensive 
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database. Using FunOMIC-P, we annotated the sequencing reads of the 1,950 

human metagenomes using the DIAMOND aligner. In total, 1,948 

metagenomes were successfully mapped to the database, and the average 

mapping rate was 0.088% (5.42E-04% min, 1.2% max), consistent with that 

previously reported in Qin et al., for eukaryotic DNA (2).  

Sixteen pathway classes and 120 pathways were detected from the 

metagenomes. Five pathway classes (Amino Acid Metabolism, Carbohydrate 

Metabolism, Nucleotide Metabolism, Energy Metabolism, Metabolism of 

Cofactors and Vitamins) and 29 pathways (list in Supplementary Table 6), along 

with unidentified pathways and pathway classes represented more than 80% 

of the sequences. The pattern of fungal functional structure indicated higher 

evenness compared with fungal taxonomic structure, i.e., the relative 

abundances of the pathways are closer instead of being dominated by one or 

two pathways. 

5.1.4 Association between metadata and mycobiome composition 

and functions 

Next, we evaluated the contribution of available variables, collected from the 

metadata files, to the mycobiome variations using the adonis2 function from the 

vegan R package (Fig. 8). These variables included countries, health status, 

body sites, ages, gender, and bead-beating. Individually, countries and health 

status were the factors that contributed most to fungal composition and function 

variations; body sites and the bead-beating step also contributed to these 

variations, but to a lesser extent (FDR< 0.01, Fig. 8). 

Associations between these variables and individual taxa were then examined 

using generalized linear models implemented in the MaAsLin2 (Microbiome 

Multivariable with Linear Models) package. Five fungal species (Aspergillus 

recurvatus, Malassezia restricta, Saccharomyces cerevisiae, uncultured 

Malassezia spp., Yarrowia lipolytica), which were among the 10 most prevalent 

and abundant fungal species (Supplementary Table 4), were found associated 
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with health status, country, and body sites (Supplementary Figure 1A). This 

finding suggests that the high variability of the human mycobiome could be 

linked to these five species. Interestingly, Yarrowia lipolytica was found 

positively associated with the employment of the bead-beating step during DNA 

extraction from the biological specimens (Supplementary Figure 1B), which 

could be explained by its relatively higher fraction of chitin (10.3-18.9%) in the 

cell wall compared with S. cerevisiae, C. albicans, and M. restricta (238, 239, 

240). 

We found that geography, health status, and body sites had marked effects on 

the variability of most of the fungal pathway classes among the 16 that we 

recovered from all samples, yet bead-beating did not impact the compositions 

of fungal pathways, as reported for fungal taxa (Supplementary Figure 1). 

  
Figure 8. Effect size of variables on the mycobiome community. The 

impact of the covariates on mycobiome composition (A) and function (B) was 

tested by performing a univariate analysis (adonis2) on the 1,950 

metagenomes. The effect was considered significant when FDR < 0.05. 
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5.1.5 Core taxonomic fungal microbiomes of different body sites 

and different countries 

To identify groups of key taxa that may influence the microbiome community, 

we applied the concept of core microbiome across body sites and geography, 

taking into account health status. For this purpose, fungal species with an 

occurrence of over 50% in the respective set of metagenomes of interest, in 

which fungi were detected, were defined as the core mycobiome. The 50% 

occurrence threshold was chosen based on the review of the core bacterial 

microbiome published by Neu et al., in 2021 (241), but an abundance cut-off 

was not applied to avoid missing any lowly abundant fungal species. We 

summarized the core mycobiome for body sites (Table 2) and countries (Table 

3). In the human gut mycobiome of non-infants, S. cerevisiae was found to be 

the only member of the core gut mycobiome, except for CD and T1D patients 

who were dominated by Aspergillus recurvatus. The core gut mycobiome of 

infants consisted of only one species from the Malassezia genera, in 

accordance with several previous studies (235, 242). In other body sites, except 

saliva, several Malassezia species were the most detected members of the 

core mycobiome. The saliva mycobiome was driven by Aspergillus recurvatus. 

Table 3. Core fungal species of different body sites. 
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Table 4. Core fungal species of different countries. 

 
Given that geographical difference contributes the most to fungal taxonomic 

structure variations, we also defined the core mycobiome for gut samples 

collected in different countries. We focused only on gut samples, as they 

represented the most available samples. S. cerevisiae appeared as a member 

of the core gut mycobiome in most countries (Table 3), which is in agreement 

with the aforementioned core mycobiome (Table 2). A. recurvatus was the only 

core fungal species among all the gut samples with different health status 

collected from Australia, whereas Y. lipolytica was that of the gut samples 

collected from end-stage renal disease (ESRD) patients in China (Table 3). 

Core biochemical pathways, defined as pathways that have occurrences over 

99% among all the samples with a relative abundance of over 1% (13), were 

also summarized for each body site and country with different health status 

(Supplementary Table 7). For countries, only gut samples, as the most 

available sample type, were considered. The majority of core fungal pathways 

were related to nucleotides, amino acids, energy, and carbohydrate 

metabolisms, which are essential functions, indicating that the functionality of 

the human mycobiome is maintained across body niches and populations. 

5.1.6 Bacterial and fungal microbiome interaction 

Next, we sought to evaluate the correlations between fungal and bacterial 
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taxonomic composition in gut samples under healthy conditions, especially 

concentrating on core fungal species. Because of the failure in detecting the 

core mycobiome under healthy conditions from China, we focused on the 

healthy conditions of Denmark and Spain. To address this aim, we first 

performed bacterial taxonomic and functional profiling of the metagenomic 

data. Due to a very extensive computational time requirement (6 hours/40 

CPUs/sample on average), only a subset of 1,485 of the 2,679 metagenomic 

samples was processed (Fig. 6). We then carried out a correlation analysis with 

the SparCC correlation method, which handles compositional data (196). In 

total, 4,184 significant (p < 0.05) inter-kingdom correlations were found in the 

Danish cohort, while 3,471 significant inter-kingdom correlations were found in 

the Spanish cohort, (Supplementary Table 8). In the Spanish cohort, the two 

core fungal species, S. cerevisiae and D. primogenitus, were found to correlate 

with the bacterial species Haemophilus pittmaniae positively and negatively, 

respectively (Fig. 9A). Beyond that, in the Spanish cohort, C. albicans was 

found to negatively correlate with Megasphaera sp MJR8396C, which was 

positively correlated with D. primogenitus. C. albicans was also found 

negatively correlated with Lactobacillus sanfranciscensis, Bifidobacterium 

scardovii, Desulfovibrio fairfieldensis, Ruminococcus sp CAG563, 

Coprococcus catus, and Roseburia sp CAG309 (Supplementary Table 8, Fig. 

9A), many of which are potential short-chain fatty acid (SCFA) producers (243). 

In the Danish cohort, significant correlations were found between the only core 

fungal species, S. cerevisiae, and seven bacterial species, of which five were 

negative (Tropheryma whipplei, Prevotella sp CAG1124, Firmicutes bacterium 

CAG24, Gemella sanguinis, and Sutterella parvirubra) and two were positive 

(Bacteroides nordii and Prevotella stercorea) (Fig. 9B).  
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Figure 9. Interaction of fungal and bacterial communities in gut 

microbiome under healthy conditions. Correlation network between the 

relative abundance of fungal and bacterial species in the gut mycobiome under 

healthy conditions from Spain (A) and Denmark (B) using the SparCC 

algorithm. Each node represents a fungal/bacterial/archaeal species, and their 

sizes are determined by relative abundances. The colors of the edges 

connecting two nodes represent positive (red) and negative (blue) correlations. 
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For a better visual effect, only correlations with p-values less than 0.001 and an 

absolute correlation coefficient over 0.05 are represented. 

 

We also applied SparCC to analyze correlations between fungal and bacterial 

functions in gut samples under healthy conditions. In the Danish cohort, 93 

significant correlations were detected (Supplementary Table 8, Supplementary 

Figure 2A), of which the strongest was the positive correlation (ρ=0.06, 

p<0.001) between the biosynthesis of secondary metabolites in fungi and the 

endocrine system in bacteria. In the Spanish cohort, 76 significant correlations 

were detected (Supplementary Figure 2B), the strongest was a negative 

correlation (ρ=-0.13, p<0.001) between carbohydrate metabolism in fungi and 

signal transduction in bacteria. These functional inter-kingdom correlations 

could explain how bacteria and fungi interact in the microbiome community. 

 

5.2 Description and usage of MycoDM web server  

5.2.1 Home page 

The home page is split into two sections (Fig. 10A). The upper section consists 

of three compartments. The left includes a list of checkboxes based on the 

metadata of the built-in metagenomes where users can select a subset of the 

samples by checking the boxes. Then the top right panel with an interactive 

world map will show the highlight of the corresponding geographical spots. In 

the meantime, the bottom right panel will display the descriptive summary of 

the selected subset metagenomes, including the distribution of the sequencing 

depth, the number of samples per age zone, the pie chart of different genders, 

and the bar plots of different health status. In the lower section, users can find 

a brief description of the MycoDM web server, the link to our GitHub page, and 

the citation and license information.  
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5.2.2 Download page 

The Download page provides the downloading function of both the taxonomic 

and functional databases of FunOMIC2. The selection bar on the top section 

lets users choose which database they want. The search box beside the 

selection bar allows querying the database by taxon name. The lower section 

is split into two panels. The left one includes a hierarchical file system based 

on the taxonomic tree that allows a simple navigation by clicking the desired 

clade name. Once the user has selected a clade, the right panel will display the 

corresponding pie chart of the lower phylogenetic composition of the selected 

clade. An example is shown in Fig. 10B; by searching “Candida”, all the clades 

that match this string are highlighted in the tree-view file system on the left, and 

all the species under the genera Candida are shown proportionally in the right 

panel. A download button is also provided to let users download the ready-to-

use database as well as the full phylogenetic tree of all the 3,031 fungal species 

that FunOMIC2 covers.  

 

 

Figure 10. Screenshots of the home page, download page, and the 

analysis platform.  
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5.2.3 Analysis platform  

We created a user-friendly web platform (Fig. 10C) for performing statistical 

analysis and visualizing both the fungal and bacterial microbiome features. 

Currently, MycoDM provides three web apps and the underlying R code is 

available on GitHub (https://github.com/ManichanhLab/mycodm), allowing 

users to download and run locally on their own datasets. Users can choose to 

use our built-in dataset from the 1,146 gut metagenomes or upload their own 

dataset and metadata. Once users select a dataset, detailed information will be 

provided, including: 

Taxa bar plots. Stacked taxa bar plots for both fungal and bacterial microbial 

abundance. Users can choose their desired taxonomic level, from phylum to 

species, and choose any one of the metadata variables to group the samples. 

Each stacked bar represents a metagenomic sample, and different colors 

represent different taxa. Users can download the generated taxa bar plot by in 

jpg, peg, or tiff format by clicking the provided download button. 

Alpha diversity. Box plots of alpha diversities of both fungal and bacterial 

taxonomy in different groups based on the selection of metadata variables. Our 

platform provides choices of three alpha diversity indices: observed number of 

species, Chao1, and Shannon. The diversity indices and metadata grouping 

variables are optional so that users can adjust the visualization according to 

their needs to compare the alpha diversity among different groups. Wilcoxon 

test results are also provided under the picture with the corresponding p-value. 

The diversity table and the boxplot of the alpha diversities can be downloaded 

by clicking the provided download button. 

Beta diversity. Principal coordinate analysis (PCoA) plots are displayed for both 

the fungal and bacterial microbiomes. Our platform provides Bray-Curtis 

dissimilarity as the default distance metric. The current computational capability 

does not allow the use of UniFrac distance, however, users can choose to 

https://github.com/ManichanhLab/mycodm
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download the phylogenetic tree from the Download page for calculating the 

UniFrac distance matrix locally. The distance metrics and metadata grouping 

variables are optional so that users can adjust the visualization according to 

their needs to compare the beta diversity among different groups. 

PERMANOVA analysis results are also provided under the picture with the 

corresponding p-value. Users can download the generated PCoA plot by in jpg, 

peg, or tiff format by clicking the provided download button. 

5.2.4 MycobialMarkers page 

We annotated the 1,146 collected human gut metagenomes using FunOMIC2 

and HuMANn3 for the fungal and bacterial microbiome profiling, respectively. 

Then we searched for the fungal markers associated with variables, especially 

health status, from the metadata by using the random models fit by the 

MaAsLin2 and the ANCOMBC R packages. The variables country, study, and 

BMI were used as the random effect for all models. We also sought the 

interaction between fungal and bacterial microbiomes in terms of composition 

and function by performing the SparCC correlations. For both analyses, results 

were considered significant if the false discovery rate (FDR) was lower than 

0.05. All the significant fungal markers associated with a certain disease are 

reported on this MycobialMarkers page. This page provides one home page 

and two sub-pages. The main page provides a short description of the mycobial 

markers and a submission section (Fig. 11A). 

The two subpages were installed with a search engine and interactive tables to 

query detailed information about associations between human mycobiome and 

diseases or human bacterial microbiome. The interactive table has five 

attributes: “Mycobial-Marker”, “Disease”, “Alteration”, “Inter-kingdom”, and 

“Sample source”. “Mycobial-Marker” lists all the significant mycobial markers, 

either taxonomic or functional, “Disease” lists the associated disease with the 

corresponding mycobial marker, “Alteration” lists the change of the certain 

mycobial marker in the microbiome of the patient with the corresponding 
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disease compared to the healthy controls. The “Inter-kingdom” provides links 

to a sub-table which contains the bacterial species that is correlated with the 

mycobial marker if it exists, as well as the correlation coefficient. The “Sample 

source” lists the type of the samples where the specific microbial marker was 

detected. Under each column title, a filtration bar is provided for users to select 

a specific category and check the subset. The search engine also offers the 

possibility to display associations by querying a keyword of a microbe or a 

disease. After entering the input query, a subset of the entries in the database 

will be returned if the search engine finds match with the item. For example, in 

Fig. 11B we show all the associations between ESRD and gut mycobiome 

taxonomy and functions. A download button is also provided for users to get 

the table of the markers. 

 

 

Figure 11. Screenshots of the MycobialMarker page. (A) The main page that 

includes a short description and a submission section. (B) The subpage that 

includes the taxonomic mycobial disease markers. (C) The subpage that 

includes the functional mycobial disease markers. 
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5.3 Robust integration of fungal and bacterial gut microbiome with 

dietary data in a longitudinal setting 

5.3.1 Shotgun metagenomics sequencing provides higher accuracy 

than ITS amplicon sequencing in mycobiome profiling at the 

species level 

Inaccuracy in the genome assembly of the ribosomal region of the fungal 

genomes. To analyze the copy number variability of the ITS region, we 

recovered 260 assembled fungal genomes covering seven fungal species, 

known to be relevant in human microbiome studies: Saccharomyces 

cerevisiae, Aspergillus flavus, Candida albicans, Candida glabrata, 

Cryptococcus neoformans, Rhodotorula mucilaginosa, and Rhizopus oryzae 

(3). From each of these genomes, we calculated the copy number of the ITS 

regions using hidden Markov models (CN-HMM) and an in-house bioinformatic 

pipeline. All species, except S. cerevisiae, presented a very low copy number 

of ITS (average of 2) and this did not vary much across species. This 

observation is not in agreement with a previous study that reported a high 

number of ITS copies, ranging from 14 to 144,216 (Supplementary Table 13). 

Furthermore, we recovered only one copy for most of the C. albicans strains. 

However, C. albicans is well-studied and has been shown to carry 21 to 200 

copy numbers (CN) per genome (244, 245, 246). The other five species 

presented also a very low mean CN-HMM value (Supplementary Table 13). 

Together, these results suggest an inaccuracy in the assembly of fungal 

genomes, at least in the region of the ribosomal genes.  

High inter- and intra-species variability in the ITS copy number. Genomes that 

contain many repetitive sequences have usually been difficult to assemble 

when short sequence reads have been generated. Indeed, during assembly, 

repetitive regions such as the ITS regions are algorithmically collapsed into only 

a few sequences due to their similarity, leading to a potential bias in the CN-

HMM estimation. To circumvent the bias introduced by the incomplete fungal 
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genomes, we used a mapping depth method for estimating ITS copy numbers 

(CN-MD) (Fig. 12a), for which more details are described in the Methods 

section. Before estimating the ITS copy number, we first validated the mapping 

pipeline. Ten genome assemblies of S. cerevisiae were selected for this 

validation, and their ITS copy numbers were retrieved from the NCBI nucleotide 

database to work as the expected ITS copy number. At the same time, we 

generated 15 million simulated shotgun sequencing reads of the 10 assemblies 

using the InSilicoSeq tool (30016412). The simulated reads were then used as 

the input of the mapping pipeline for calculating the CN-MDs for each of the 

genomes. At last, the calculated CN-MDs were compared with the reference 

copy numbers, by applying the Student t-test. The comparison between the two 

values did not show significant differences (Supplementary Table 14, p-value = 

0.28), which indicates that the pipeline could reliably recover the expected ITS 

copy numbers from whole genome shotgun sequencing reads. 

Next, we applied the mapping pipeline to estimate the CN-MDs of the 260 

assembled fungal genomes using their shotgun sequencing reads downloaded 

from NCBI or JGI. The resulting CN-MD ranged from 7 to 170, with an average 

of 60 (Supplementary Table 15). We observed that both the intra- and inter-

species variability was high for the ITS copy numbers of the analyzed genomes 

which cover seven species and three phyla (Figure 1B). The copy numbers of 

the ITS region of the 32 collected S. cerevisiae strains were widely distributed, 

ranging from 15 to 137 (Figure 1C) and those of the 182 C. albicans strains 

varied from 11 to 74. The variance between C. albicans and S. cerevisiae was 

significantly different (p-value = 8e-10; Levene’s test). These findings indicate 

that possible bias could be introduced when profiling the fungal community by 

using ITS amplicons without normalizing by the actual strain level ITS copy 

numbers. 
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Figure 12. Shotgun sequencing provides higher accuracy than ITS 

sequencing in mycobiome profiling at the species level. a, Workflow of the 

mapping depth approach to recover ITS copy numbers. b, The distribution of 
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CN-MD (y axis) of the ITS across the strains of the 7 analyzed species (x axis) 

(n = 260). c, The intraspecific CN-MD of S. cerevisiae (x axis) for the 32 strains 

analyzed (y axis) (n = 32). d, In silico comparison at species level between 

expected abundance (“Expected”) and observed abundance by using the 

shotgun method (“Shotgun observed”) and the ITS method (“ITS observed”).  

 

Shotgun data are more accurate than ITS data for taxonomic profiling at the 

species level. To compare the accuracy of the species-level mycobiome 

profiling generated by ITS sequencing and shotgun sequencing, we created in 

silico mock communities with different groups of fungal species. A total of 27 

artificial fungal genomes with known ITS copy numbers were used to create 

five in silico mock communities. We randomly generated relative abundances 

for the species in each of the five communities (Supplementary Table 12). The 

artificial genomes and their ITS sequences were used to simulate the shotgun 

sequencing reads and the ITS sequencing reads, respectively. An additional 

mock community mimicking the gut mycobiome was also created using the 14 

most abundant gut fungal species and their observed relative abundance based 

on a previous study (3) (Supplementary Table 12). The annotations for both 

sequencing methods were done using QIIME2 and FunOMIC pipelines for ITS 

and shotgun reads, respectively. 

To compare the efficiency of the two methods in performing taxonomic profiling, 

we calculated weighted UniFrac metrics, which then allowed us to test whether 

phylogenetic lineages between samples were significantly different. The 

metrics were calculated between the observed taxonomic profiling generated 

from both sequencing methods and the fixed relative abundances of the six 

mock communities, at the species and genus levels. At the genus level, the 

results showed that the two methods were not significantly different (p-value = 

0.623, Student t-test). The ITS method exhibited a mean distance of 0.263 and 

the shotgun method exhibited a mean distance of 0.213 (Supplementary Table 
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16), which indicates that both methods showed similar accuracy in taxonomic 

profiling at the genus level. However, at the species level, the mapping results 

(Fig. 12d) showed that the two methods differed significantly (p-value = 0.005, 

Student t-test). The ITS method exhibited a mean distance of 0.616 and the 

shotgun method a mean distance of 0.237 (Supplementary Table 16), indicating 

that the shotgun method was able to recover the expected fungal community 

compositions more reliably at the species level. The same analysis at the strain 

level was also employed, however, the results revealed that neither shotgun 

nor ITS sequencing was accurate enough to detect the specific strains.  

5.3.2 A fungal enrichment protocol effectively concentrates fungal 

cells in human fecal samples  

As demonstrated by previous studies (2, 3), the proportion of fungal sequences 

obtained upon shotgun sequencing of DNA prepared from human fecal 

samples consists of less than 0.08% of the total sequences, which would likely 

introduce bias to the shotgun sequencing results if the sequencing depth is not 

high enough. However, the cost of deep shotgun sequencing is still not easily 

affordable by all researchers. We thus proposed an enrichment protocol based 

on a series of centrifugations to separate fungal and bacterial cells prior to the 

regular DNA extraction method.  

To evaluate the practical efficiency of this enrichment protocol, we collected 

fecal samples from six healthy volunteers that included three females and three 

males. Each of the volunteers donated their fecal samples weekly during an 

eight-week span, making up a batch of 48 fecal samples. Then for each of the 

48 samples, two aliquots of 500 mg were kept, from which one aliquot 

underwent the enrichment protocol to be separated into a fungal enriched 

partition and a bacterial enriched partition, while the other aliquot did not pass 

any further operation and was used as the unenriched control. Finally, a total 

of 143 partitions (one of the volunteers did not provide enough feces for two 

aliquots) of fecal samples were sent for shotgun sequencing using the Illumina 
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Novaseq 6000 platform (Fig. 13a). The sequencing provided an average of 6.4 

Gb, and 21.5 million pair reads which are comparable with other studies using 

shotgun sequencing (126, 247, 248). Next, we annotated the bacterial and 

fungal communities for all 143 samples using HUMANn (180)and FunOMIC 

pipelines(3). A total of 411 bacterial species and 208 KEGG pathways were 

found in the bacterial community, and 91 fungal species and 154 KEGG 

pathways were found in the fungal community. To assess whether the 

sequencing depth was sufficient to recover the majority of both fungal and 

bacterial richness, we selected eight samples that had the highest number of 

Gb to perform rarefaction curves. Each sample was subsampled and annotated 

with a gradient of sequencing depths. With the cutoff of the 6.4 Gb, around 80% 

of fungal taxonomic richness, more than 70% of fungal functional richness, 

100% of bacterial richness, and almost 100% of bacterial functional richness 

were recovered, showing that our shotgun sequencing run was able to capture 

most of the microbiome information (Fig. 13B). The plateau was reached at 7.5 

Gb for fungal taxonomy, 15 Gb for fungal functions, and 6.7 Gb for bacterial 

functions. Together, these results showed that a sequencing depth of 15 Gb 

would allow the capture of the entire bacterial and fungal communities. 
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Figure 13. Study design and quality of shotgun sequencing. a, Design and 

workflow of this study. b, Rarefaction curves of the shotgun sequencing, x-axis 

represents the depth of sequencing, y-axis represents the percentage of 

richness. The rows of the panel are different microbial communities, the 

columns of the panel represent the taxonomic or functional level richness. Each 

dot is the average percentage of richness of the 8 samples at the specific depth 

of subsampling. The red solid lines represent the average sequencing depth 

6.4Gb, the blue dotted lines represent the threshold of 80% of richness. 

 

Then, we mapped each of the 143 samples to fungal and bacterial databases 
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(3, 180) to calculate the enrichment efficiencies and meanwhile get their fungal 

and bacterial, taxonomic, and functional profiling. Notably, the fungal profiling 

was annotated with the unpublished updated version of the FunOMIC database 

that contains 2 million single-copy marker genes and 21 million protein 

sequences extracted from more than 3000 fungal species. In total, we have 

detected fungi in 96 samples out of 143 (67%). We observed that by applying 

the enrichment protocol, the proportion of samples that have fungi detected 

have increased from 58.3% (28 out of 48) to 95.8% (46 out of 48). We then 

calculated the ratio of the reads that were mapped to the fungal database 

against the reads that were mapped to the bacterial database for all 143 

samples. Then, we used this ratio in the fungal partition divided by this ratio into 

their corresponding control partitions to estimate the extent to which the fungal 

sequences have been enriched. The ratio increased on average 18.47 times 

(ranging from 0.07 to 235) after applying the enrichment protocol, and the 

fungal alpha diversity in fungal enriched partitions was found significantly higher 

than in both bacterial (q = 4.3e-5 Shannon index, q = 2e-7 Chao1 index) and 

control partitions (q = 5.2e-5 Shannon index, q = 3.7e-6 Chao1 index) (Fig. 14a, 

b). 
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Figure 14. Enrichment efficiency in fungi. (A), The genus-level taxa bar plot 

of the fungal community compositions in bacterial, control, and fungal partitions. 

(B), Boxplots of the species-level fungal community alpha diversities (Shannon 

and Chao1 indices) in control, bacterial, and fungal partitions (n = 96), ordered 

by their mean from smallest to largest (left to right).  

 

Similar but less significant results were found in the bacterial partitions 

(Supplementary Figure 3a, b). Since bacterial reads were still present in the 

fungal partitions, they were merged with those in their corresponding bacterial 

partitions. After applying a paired Wilcoxon test between the bacterial alpha 

diversities before and after merging, we found the Chao1 index after merging 

had a trend of being higher than that of before merging (p = 0.06, 

Supplementary Figure 3c). This result was not observed for the fungal alpha 

diversity. For the purpose of capturing more information, in the subsequent 

analysis, the merged bacterial microbiome profiling was used to represent the 

bacterial community, and the fungal microbiome profiling in fungal partitions 
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was used to represent the fungal community in each sample. 

5.3.3 Keystone bacterial and fungal species in the human gut 

To determine the keystone species in the human gut microbiome, we 

constructed networks based on the SparCC correlation matrix and the 

corresponding BH-adjusted P-values matrix. In each network, the nodes 

represent the microbial species that were included in this network, and the 

edges connecting the nodes represent the significant correlations (FDR < 

0.001). This network captured 625 associations among 199 microbial species 

which includes 111 bacterial species, 87 fungal species, and one Archaea 

species (Fig. 15a). Among the 625 associations 349 were positive and 276 

negative associations. This network consisted of only one large connected 

group (199 out of 199 microbial species (100%)). The global network had an 

average node degree (number of edges adjacent to the node) of 6.28 (7.66 for 

bacteria and 4.5 for fungi), and it perfectly followed a scale-free degree 

distribution (power law) (Fig. 15b), indicating that most nodes had low-degree 

values, and only a few nodes had the highest degree values, which are often 

called "hubs", and are thought to serve specific purposes in the networks.  

Candida albicans, a known fungal pathogen (9), was found to form in the gut 

microbiome seven cross-domain associations with Ruminococcus gnavus, 

Firmicutes bacterium CAG 110, Streptococcus salivarius, Holdemanella 

biformis, Eubacterium sp CAG 274, Proteobacteria bacterium CAG 139, and 

Alistipes inops. It also had the highest betweenness centrality (the number of 

shortest paths going through a node) (n=945), and high node degree (n=11) 

among the fungal species (Fig. 15c), suggesting a critical role in the gut 

microbial community. From the species analysis (using betweenness centrality 

and node degree), we identified one fungal species and 13 bacterial species as 

potential gut keystone species (Table 1) as they were the species that had both 

the highest node degree and betweenness centrality (top 20).   
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Table 4. Keystone microbial species in the human gut 

Keystone species betweenness 

centrality 

node 

degree 

Faecalibacterium prausnitzii 1199.25 25 

Bacteroides fragilis 864.43 15 

Enorma massiliensis 1100.07 17 

Alistipes inops 995.29 17 

Prevotella sp AM42 24 654.86 18 

Collinsella aerofaciens 789.85 20 

Akkermansia muciniphila 1334.21 22 

Alistipes putredinis 821.04 16 

Dorea formicigenerans 829.1 18 

Coprococcus comes 1286.18 20 

Holdemanella biformis 1279.61 18 

Prevotella copri 817.2 21 

Bifidobacterium pseudocatenulatum 961.73 15 

Debaryomyces hansenii 832.15 16 
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Figure 15. Inter-kingdom network and keystone species. a, Network of the 

SparCC correlation between the fungal and bacterial taxonomic composition, 

at the species level (FDR < 0.01). Each node shows a unique microbial species, 

each edge showing the SparCC correlation between the two nodes linked. The 

edges connecting the nodes represent significant correlations (FDR < 0.001). 

The shape of the nodes represents the kingdom of the specific species, and the 

color represents the phyla. The color of the edges represents the symbol of the 

correlation. b, Degree distribution of the network following a scale-free 

distribution. c, Candida albicans, one of the fungal species that has high node 

degree and the highest betweenness centrality.    
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5.3.4 Short-term dynamics of the human gut microbiome  

To determine the intra- and inter-individual variability of the volunteers’ gut 

microbiome, we measured the pairwise dissimilarities using the Bray-Curtis 

dissimilarity values between longitudinal samples donated by the same 

volunteer and between samples donated by different volunteers for both fungal 

and bacterial microbiomes. The results revealed that both bacterial and fungal 

communities exhibited higher inter-individual than intra-individual dissimilarities 

(Fig. 16a), while this difference was significantly more pronounced in the 

bacterial community. We then compared the dissimilarity between fungal and 

bacterial communities; the variabilities in the fungal community were 

significantly higher than in the bacterial community (Fig. 16b). 
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Figure 16. Dynamics of the human gut microbiome. a, Intra- and inter-

individual beta diversity (Bray-Curtis) in fungal and bacterial communities at 

taxonomic and functional levels. b, Comparison of the beta diversities between 

fungal and bacterial communities intra- and inter-individually at taxonomic and 

functional levels. c, Dynamics of fungal and bacterial communities at taxonomic 

and functional levels. The x-axis represents different time points, the y-axis 

represents Bray-Curtis values. 

 

Then, to investigate the stability of the gut microbiome over time, we considered 
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the first time point as a baseline, and for each of the individuals, we measured 

the Bray-Curtis dissimilarities of other time points against the baseline. In both 

taxonomy and function, despite the high degree of short-term longitudinal 

change in both communities, we found that the fungal community displayed 

increased dynamics as compared to the bacterial community (Fig. 16c). 

Notably, the mean Bray-Curtis values calculated from data of the six individuals 

were significantly higher for the fungal microbiome than bacterial microbiome 

(Wilcoxon, p < 0.01 for both taxonomy and functions). To determine whether 

dietary changes drove the dynamics of the gut microbiome, we correlated the 

pairwise Bray-Curtis dissimilarity of the microbiome (fungal and bacterial, 

taxonomy and function) with the pairwise Bray-Curtis dissimilarity of dietary 

data (nutrient macromolecules and food groups). Unfortunately, no significant 

correlations were found, which may indicate the absence of an effect of the diet 

on the microbiome composition and function at the global level, but does not 

exclude the effect of specific food groups or nutrients.  

5.3.5 Microbial diversity and composition are associated with 

habitual diet 

We then assessed the correlation between habitual diet (nutrients and food 

groups) and the alpha diversity of the human gut microbiome to get a broad 

view of how habitual diet could modulate microbial communities. Interestingly, 

using the Spearman correlation coefficient, we detected 21 significant 

associations (FDR < 0.05) with fungal taxa while no significant associations 

were found with bacterial taxa (Fig. 17a). Furthermore, 31 significant 

associations were found with fungal functions, and five significant associations 

with bacterial functions (Fig. 17b, c). The overlapped associations found with 

fungal taxa and fungal function were all consistent, whereas the overlapped 

associations detected with fungal function and bacterial function were all 

opposite, indicating that fungal and bacterial communities are likely to act 

competitively for some dietary products (Fig. 17d).  
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Next, we calculated the Spearman correlation coefficients between a habitual 

diet and specific gut microbiome components and functional pathways. We 

found 23 fungal species were significantly correlated with one or more dietary 

categories. Among them, the strongest correlations were Lactarius 

pseudohatsudake with biscuits (rho = -0.32, FDR = 0.027), Penicillium 

lancoscoeruleum with fish (rho = 0.31, FDR = 0.027), Candida albicans with 

iron (rho = -0.29, FDR = 0.038) (Fig. 18a). More significant correlations were 

detected in the bacterial community. At a broad level, we found three apparent 

groups of species clustered to a group of foods mainly classified as related to 

more animal-based foods (fish, sauces, sausages, processed food, dairy 

products) and two others related to less animal-based foods (fruit, vegetables) 

(Fig. 18b). Similar but less obvious groupings were also found when correlating 

habitual diet with microbial functions (Supplementary Figure 5, 6). 
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Figure 17. Microbial taxonomic and functional alpha diversities are 

associated with habitual diet. a, Significant (FDR < 0.05) Spearman 

correlations found between the fungal taxonomic alpha diversity and diet 

categories. The x-axis is the value of the correlation coefficient, the y-axis is the 

name of the diet categories. b, Significant (FDR < 0.05) Spearman correlations 

found between the fungal functional alpha diversity and diet categories. The x-

axis is the value of the correlation coefficient, the y-axis is the name of the diet 

categories. c, Significant (FDR < 0.05) Spearman correlations found between 

the bacterial functional alpha diversity and diet categories. The x-axis is the 

value of the correlation coefficient, the y-axis is the name of the diet categories. 

d, Network of the fungal functional alpha diversity, bacterial functional alpha 

diversity, and diet categories detected to be significantly (FDR < 0.01) 

correlated with them. The edges are the Spearman correlation coefficients 

between the two nodes linked. The color of the edges represents the symbol of 

the correlation. 
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Figure 18. Microbial taxonomic compositions are associated with habitual 

diet. a, Heatmap of all the detected significant correlations between fungal 

taxonomic compositions and diet categories. b, Heatmap of all the detected 

significant correlations between bacterial taxonomic compositions and diet 

categories. The asterisk indicates that the correlation index for the 

corresponding species metadata pair is significant. For better visualization, this 

plot with higher resolutions can be found in Supplementary Figure 4. 
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The major objective of this thesis is to develop bioinformatic database and 

pipeline for the analysis of mycobiome and to apply the developed tool to 

characterize the human mycobiome, especially in the context of the interplay 

with the bacterial microbiome. 

 

At the start of this work, very few studies were published in terms of analyzing 

the human mycobiome using shotgun sequencing data, let alone much less 

about the corresponding workflow integrating wet and dry lab works and the 

bioinformatics developed for this field (182, 184). Further, the only two tools we 

could find for profiling human mycobiome, FindFungi and 

HumanMycobiomScan, had a common and serious issue in that they utilize the 

whole fungal genomes as the reference databases, which not only consume 

substantial computational resources but also have the tendency to introduce 

bias when quantifying the mycobiome relative abundance by mapping reads to 

multi-copy reference genes. During the establishment of the database and 

pipeline of our FunOMIC tool, there was a new tool named EukDetect 

published. This tool was also constructed based on SCMG, however, it utilized 

only around 200 SCMGs that were found conserved in all Eukaryotes, which 

was not as comprehensive as our database. Further, this tool did not 

incorporate a protein database for annotating human mycobiome functions. 

Based on several tools designed for profiling the bacterial microbiome, such as 

MetaPhlAn2 (178) and mOTUs2 (194), we designed and implemented our own 

tool FunOMIC, using SCMGs as the content of the reference database. This 

new tool represents a significant improvement over previously published 

mycobiome annotation pipelines, owing to the incorporation of a taxonomic 

database that encompasses the most comprehensive fungal SCMGs available 

at the time of publication, in addition to the first protein reference database for 

functional annotation of mycobiome using shotgun metagenomics. 
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Besides the databases, we also designed and validated the metagenomic 

pipeline that integrates quality control, taxonomic profiling (FunOMIC-T), and 

functional profiling (FunOMIC-P) for a comprehensive analysis of fungi in 

environmental samples, and, particularly, in humans. The FunOMIC pipeline 

exploited the read-mapping approach, which, in brief, is a bioinformatics 

approach to identify and quantify the abundance of microbial species in a 

metagenomic sample. This approach maps the fastq format short reads 

generated from a metagenomic sample to reference genomes or databases. 

The mapped reads and their counts can then be used to estimate the 

abundance of each microbial species in the sample. The approach used in 

FunOMIC has a significant advantage in that it preserves all the information 

from the input files, which would otherwise be lost when using a metagenome-

assembled genomes (MAGs) strategy. This advantage is particularly important 

in metagenomic communities where the amount of fungal DNA is typically low 

relative to bacterial and human DNA. Assembling such communities is a difficult 

task, and this approach helps to overcome that challenge. 

MAGs approach has become a new trend in microbiome studies, especially for 

the profiling of bacterial communities for the ability they can provide insights 

into the unknown of uncultured microbes in the absence of genome isolates 

(249, 250, 251, 252). Despite the fact that successful MAGs provide a more 

comprehensive understanding of the functional capabilities of a microbial 

community, some studies have reported the failure to recover MAGs due to the 

high intrapopulation strain heterogeneity (253). Meziti et al., have demonstrated 

that MAGs recovered from their samples missed 25% to 50% of the population 

core and variable genes on average, which corroborated with another study 

assessing the bias in genome reconstruction from metagenomic data (200, 

254). Beyond that, they also highlighted that the common tools used for 

checking contaminations in MAGs, such as CheckM (255) and MiGA (256), 

failed to estimate the consistent contamination of sequences from other 
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bacterial families recovered by MAGs. We thus doubted the feasibility of 

applying the MAG approach for profiling human mycobiome, considering that 

MAGs may be incomplete or contain errors even for bacterial communities 

which encompass the majority of the sequences. Before the decision of using 

the read-mapping method, we also tested the possibility of applying the MAG 

approach in recovering the fungal genomes from human shotgun 

metagenomics data by using a tool published in 2018 for reconstructing 

eukaryotic genomes from complex natural microbial communities (257). 

However, as we expected, all the tested samples did not have successfully 

recovered fungal MAGs. Our own test proved again our concerns about the 

proper application of the MAG approach to identify and annotate fungal 

communities. Therefore, we have determined the combination of the read-

mapping method with our comprehensive SCMG database as the pipeline to 

study human mycobiome. We then validated the efficiency and accuracy of our 

pipeline in discovering fungal sequences by using different in silico shotgun 

metagenomics mock communities. 

 

To the best of our knowledge, at the time of this writing, FunOMIC offers the 

most comprehensive coverage of the reference fungal species and functions 

compared with other existing databases that we have listed in the introduction 

section for profiling the human mycobiome. Indeed, FunOMIC-T, which 

contains more than 1.6million fungal single-copy marker genes and covers 

1,916 fungal species, exceeds the fungal spectrum of other similar tools. In 

addition to performing taxonomic profiling with FunOMIC-T, another advance is 

that we also proposed FunOMIC-P which includes more than 3 million non-

redundant fungal proteins, which is, to our knowledge, the first protein database 

proposed for analyzing human mycobiome functions. Additionally, via the 

utilization of SCMG, FunOMIC-T provided a smaller-sized taxonomic database 

that requires less computational resources with more accurate taxonomic 
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quantification than the full genome-based fungal reference database. The 

FunOMIC pipeline can also be combined with tools for characterizing bacterial 

reads, such as MetaPhlAn, to jointly study the taxonomic and functional 

association of fungal and bacterial microbiome.  

 

We have shown an example of such analysis by applying it to around 2700 real 

human shotgun metagenomic samples, which represent human microbiomes 

of different body sites from individuals with different health statuses and from 

different geographical regions. We corroborated previous human mycobiome 

results showing that the species S. cerevisiae, C. albicans, and M. restricta 

dominate the fungal communities in different human body sites (104, 258, 259, 

260). We found that geography and health status were the two most important 

factors contributing to the variabilities of human mycobiome taxonomic and 

functional compositions. Five fungal species (A. recurvatus, M. restricta, S. 

cerevisiae, uncultured Malassezia spp., Y. lipolytica) varied along with different 

countries, health status, and body sites. C. albicans, one of the most common 

human fungal pathogens (261), negatively correlated with bacterial species that 

are mainly SCFA producers (243). This finding suggests that therapeutic 

strategies based on SCFA administration or inducing SCFA producers could be 

implemented to control C. Albicans infection. Although we focused on the 

human mycobiome and only applied FunOMIC databases and pipeline to 

human metagenomes, however, the FunOMIC databases cover a wide range 

of fungal genomes including 1566 Sordariomycetes, 1359 Eurotiomycetes, 843 

Dothideomycetes, 681 Agaricomycetes, and 164 Leotiomycetes, which are 

also found to be the major components of soil mycobiome (262, 263) and 

marine mycobiome (264, 265). Moreover, the increasing number of downloads 

(more than five hundreds since 2023) of the FunOMIC databases and pipeline 

from the built-in downloading counter of the FunOMIC website, along with the 

high number of visits to the pipeline github page (more than six hundreds since 
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2023), indicates the growing interest in our database and pipeline. 

 

Along the course of this dissertation, we have noticed a great increase in the 

public deposition of new fungal genomes. To keep the database up-to-date and 

to adapt to the newly emerged analysis requirements, we have generated an 

updated version of the databases and pipeline, FunOMIC2. In this version, the 

taxonomic database is increased to more than 2 million fungal SCMGs, while 

the functional database is increased to more than 21 million fungal protein 

sequences. After the expansion, the FunOMIC2 database now covers more 

than 3000 fungal species. This great expansion makes the FunOMIC2 not only 

the more powerful tool for profiling human mycobiome but also broadens its 

possibility of application to other ecological shotgun metagenomic samples. 

Along with the updates of the databases, we also included a new step in the 

pipeline to remove as many bacterial reads as possible prior to the carry out of 

the mycobiome profiling. Through this step, we can further ensure that the 

contamination that may be caused by the bacterial sequence in subsequent 

steps is removed. We also launched the corresponding web server MycoDM at 

the same time. This web server contains a visualization and tree download 

page for the FunOMIC2 database, our collection of disease-associated fungal 

markers discovered through analysis of human metagenomics, and an online 

analysis platform. We also encourage researchers in the same field who want 

to cooperate with us to upload their metagenomic data accession numbers to 

the submission platform of our server, so that we can utilize more shotgun 

metagenomic data to validate the existing mycobial markers and to discover 

novel human disease-associated mycobial markers. As far as we know, 

MycoDM is the first server focused on discovering and sharing fungal markers, 

and with the upcoming collaboration, we look forward to building a fungal 

marker retrieval platform with the widest coverage of related diseases in the 

world.  
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Among the detected mycobial markers 

(https://manichanh.vhir.org/mycodm/taxa_marker.php), Saccharomyces 

pastorianus and Saccharomyces paradoxus have been found to be negatively 

correlated with CD, which supports previous findings that the depletion of 

Saccharomyces has been observed in feces from patients with inflammatory 

bowel disease (IBD). In these patients, Saccharomyces was positively 

correlated with the abundance of bacteria depleted in IBD, such as the butyrate-

producing Roseburia, Blautia, and Ruminococcus genera (266, 267). This inter-

kingdom correlation was also confirmed in Chapter 1 of this thesis. Additionally, 

S. cerevisiae, which is closely related to S. paradoxus, has been shown to have 

anti-inflammatory effects (267), which may explain the negative correlation 

between S. paradoxus and CD. Our findings show positive associations 

between several Aspergillus species and ESRD, which is a risk factor for 

developing fungal infections such as invasive aspergillosis. These results were 

reported previously (268, 269). In addition, Candida albicans, which can trigger 

in vivo inflammatory responses, was found to be enriched in patients with ESRD 

and T2D, as previously reported by multiple studies (270, 271, 272). In terms 

of mycobial functional markers 

(https://manichanh.vhir.org/mycodm/functional_marker.php), our study found 

an increase in the glutamate metabolism pathway in CD. Glutamate, which is 

the immediate product of glutamine metabolism (273), plays multiple roles in 

cells such as being an excitatory neurotransmitter, participating in oxidative 

metabolism, and regulating metabolic pathways (274, 275, 276, 277). In an 

inflammation model, the glutamate was demonstrated to improve intestinal 

barrier function, alleviate inflammation, and inhibit protein degradation through 

various signaling pathways (278). Given its unique role in the gastrointestinal 

tract, glutamate may be an adjuvant treatment for IBD with broad application, 

as confirmed by Li et al (189). These findings suggest that gut fungal 

https://manichanh.vhir.org/mycodm/taxa_marker.php
https://manichanh.vhir.org/mycodm/functional_marker.php
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communities may play an important role in reducing the inflammatory response 

in CD. 

 

Due to the relatively high cost of shotgun sequencing service, most scientists 

that study mycobiome are still using ITS sequencing metagenomics for 

research. Also, because of the high variability of ITS copy numbers, we had 

planned to build an ITS reference database containing different species-

specific copy numbers and the corresponding profiling pipeline that includes the 

normalization of the read counts based on the copy number. However, we have 

realized that this plan was not feasible since we have evidenced the high intra- 

and interspecific variabilities of the fungal ITS region at the strain level. Similar 

results have been reported previously, where 14 to 1,442 ITS copies were 

found in 91 fungal taxa (203), 22 to 227 copies across the 788 S. cerevisiae 

isolates (209), and 38 to 91 18S rRNA gene copies in 8 Aspergillus fumigatus 

strains (279). Given that the highest resolution of the ITS region barely reaches 

the species level (280), normalization of the ITS counts cannot reach the strain 

level, thus, accurate quantification of the fungal community in a complex 

ecology is impossible. Then based on a series of in silico simulations, we have 

concluded that shotgun sequencing provides higher accuracy than ITS 

sequencing in mycobiome profiling at the species level. Indeed, the shotgun 

metagenomic sequencing plus the annotation using FunOMIC2 databases and 

pipeline offers a relevant alternative. Our comparison of the performance of the 

ITS sequencing and the shotgun sequencing with in silico simulated mock 

community reads has supported this hypothesis. Though ITS sequencing is 

always considered a more cost-effective approach in performing taxonomic 

profiling, with the rapid development of next-generation sequencing 

technologies, the cost of shotgun sequencing has dropped to a more affordable 

level, taking into account that shotgun sequencing skips the amplification and 

amplicon purification steps. In sum, the total cost of both sequencing methods 
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can differ slightly, while shotgun sequencing is able to capture more 

information, including the functions of the fungal communities, and the 

taxonomy and functions of the bacterial communities. Thus, we strongly 

recommend that researchers in this field switch to the usage of shotgun 

metagenomic sequencing when studying the fungal microbiome in the future, 

not only in basic research but also in clinical studies. 

 

The scarcity of fungal populations in the environment has always been a thorny 

issue in the study of human mycobiome. In addition to the aforementioned 

method of utilizing the removal of bacterial reads in the post-experimental step, 

we also performed experimental methods to remove bacteria. To reduce the 

bias introduced by the low proportion of fungal cells in human fecal samples, 

we proposed a fungal enrichment protocol, based on a centrifugation approach, 

that effectively concentrated fungal cells. This protocol successfully increased 

the detected fungal counts and richness. A membrane filter approach was also 

tested parallelly when testing the centrifugation method. Both methods utilized 

the nature that most bacterial cells are smaller than fungal cells. Several 

cellulose nitrate filters with different pore sizes (0.65 microns, 3 microns, and 5 

microns) were used individually to intercept the fungal cells and let go of the 

bacterial cells. Nonetheless, practically the membrane method was time-

consuming and burdensome to implement, for the intercept fungal cells and 

other impurities that failed to be removed immediately blocked the pores. We 

therefore terminated and discarded the trial of membrane enrichment. 

 

By implementing a final optimized mycobiome research workflow including 

centrifugation-based enrichment methods, shotgun metagenomics, and the 

FunOMIC2 database and pipeline on human fecal samples, we found that our 

method outperformed other methods in the sensitivity of detecting fungi. For 

example, in another study that compares amplicon sequencing with shotgun 
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sequencing (281), the authors only detected fungi in 3.83% of the samples 

when using MetaPhlAn4 pipeline. When applying the FindFungi pipeline, they 

recovered more fungal reads, however, most of the mapped reads were later 

evaluated as bacterial contamination. Furthermore, the tool FindFungi identified 

most of the reads as belonging to Melampsora pinitorqua Mpini7, which is a 

probable contaminant found commonly in public genome assemblies. This was 

further investigated and revealed that most of these reads were actually 

bacterial, specifically those of the genus Bacteroides. Therefore, the output of 

FindFungi is likely inaccurate (281). In contrast, our results detected fungi in 

58.3% of the samples without enrichment, and 95.8% of the samples with 

enrichment. 

 

To the same cohort, we have also applied the HuMANn3 pipeline to get the 

bacterial taxonomic and functional profiling for studying the interkingdom 

correlation. The network analysis has suggested candidate keystone microbial 

species, including 13 bacterial species and 1 fungal species in the human gut 

environment. The only fungus identified as the keystone species, 

Debaryomyces hansenii, has been implicated as a fungus that is found in 

Crohn’s disease tissue and can lead to dysregulated healing. Crohn’s disease 

is usually characterized by the dysbiosis of the gut microbiome. Bacterial 

species correlating with D. hansenii might play crucial roles in keeping the gut 

microbiome in a healthy balance. Faecalibacterium prausnitzii, Enorma 

massiliensis, Collinsella aerofaciens, and Prevotella copri were also identified 

as the keystone bacterial species correlating with D.hansenii. F. prausnitzii is 

well known as one of the most abundant and important bacterial species and is 

also an important butyrate and other short-chain fatty acid producer in the gut 

microbiome.  

 

We found that the mycobiome was much more dynamic than the bacterial 
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community at the taxonomic and functional levels, which is consistent with the 

results found in other studies (126, 282), indicating that the fungal compositions 

in human gut shift rapidly instead of level off to a stable status like the bacterial 

community. Since the habitual diet was found to have an influence on the 

composition of the fungal microbiome in both human and mice models (49, 129, 

141, 144), we sought the relationship between the dynamics of habitual diet 

and the dynamic of the gut microbiome. Although the microbiome changes were 

not driven by global dietary changes, we showed that microbial diversity, 

composition, and functions were associated with specific habitual diet 

composition. We found that bacterial and fungal alpha diversity were oppositely 

correlated with three diet categories: sweets, protein, and iron. The level of iron 

in the habitual diet was found to correlate negatively with the fungal functional 

alpha diversity. To the best of our knowledge, this is the first observation of the 

effect of iron on the fungal functional alpha diversity, though some studies have 

discussed that high iron levels promote the growth of specific fungal species 

(283). Our study highlights a competitive inter-kingdom interaction between 

bacteria and fungi for nutrients utilization. This finding aligns with a recent study 

that suggests potential inhibitory actions between gut fungal and bacterial 

communities during low-carbohydrate diet-induced weight loss (284). 

 

However, it is essential to consider the limitations of this study when interpreting 

the results, engaging in discussions, and drawing conclusions. Therefore, it is 

advisable to approach the findings with caution. Important limitations of the 

FunOMIC pipeline remain in the efficiency of the DNA extraction method and 

the quality of single-copy marker genes. The latter limitation relies on the 

completeness of the available fungal genomes, which may result in a lower 

coverage of fungal taxonomies compared with the fungal amplicon databases 

(107, 215). Also, one has to be aware that only fungal species with sequenced 

genomes can be detected. According to the study of Lloyd et al., in 2018, which 
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claimed that phylogenetically novel uncultured microbial cells dominate earth 

microbiomes, we have reason to think that the FunOMIC databases does not 

cover the full fungi kingdom. Improvements in MAGs approach of eukaryotes 

from human metagenomic samples would enhance the portrayal of un-cultured 

fungi species in genome databases. As FunOMIC incorporates universal 

genes, expanding its database as more genomes are sequenced would be a 

simple process. Another limitation comes from the high inter-kingdom 

conservation of a portion of protein-coding genes. As a consequence, bacterial 

contamination was not totally preventable, even after applying an exceedingly 

strict mapping threshold to the fungal functional annotation with the filtration to 

remove the majority of bacterial reads before functional annotation. Beyond 

that, in this study, FunOMIC was only applied to human microbiome data; in the 

future, applications with soil microbiome, marine microbiome, or other different 

environmental samples will be launched with FunOMIC to test its ability to 

handle other environmental data. 

 

Overall, in this dissertation we have assessed the existing analysis approaches 

for the research of the human mycobiome and its interaction with the human 

bacterial microbiome. The databases, pipeline, enrichment protocol, and web 

server that we proposed have together filled the blank of a robust workflow for 

integrating bacterial and fungal shotgun metagenomics data to characterize the 

human microbiome and its modulation by dietary components. 
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7. CONCLUSION  
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The results obtained in this dissertation allowed us to address the 

following conclusions: 

 

1, We developed FunOMIC databases and pipeline for the human mycobiome 

profiling. Our taxonomic database, FunOMIC-T, stands out as the most 

comprehensive fungal database for mycobiome profiling. Additionally, we have 

provided the FunOMIC-P, the first database designed specifically for functional 

mycobiome analysis. 

 

2, By integrating the enrichment protocol, shotgun sequencing, and FunOMIC 

pipeline, we have successfully expanded the scope of fungi detection within the 

population and enhanced the alpha diversity of the recovered mycobiome. This 

workflow has proven to be highly effective in increasing the overall 

understanding of fungal communities and their impact. 

 

3, Combining the aforementioned workflow with an analysis of bacterial 

microbiome and dietary data collected using our food frequency questionnaire, 

allowed us to establish an efficient routine for studying the human gut 

microbiome integrating robustly fungal, bacterial, and dietary data. This 

integrated workflow provides a valuable tool for the new era of human 

microbiome investigation, enabling researchers to gain insights into the 

complete context rather than solely focusing on the bacterial community. 
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8. FUTURE LINES 
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The future directions for this thesis can be focused on three aspects that align 

with the three main achievements of this thesis. 

 

First, when considering fungal species, it will be important to note that virulence 

is often limited to specific strains within a given species (285, 286, 287). This 

highlights the need to focus on strain-level analysis in the study of fungal 

communities, which can be challenging when using culture-independent 

metagenomics. However, as similar attempts have been made for bacterial 

microbiomes, there is potential for developing new pipelines and algorithms to 

enable strain-level annotation of the fungal microbiome, utilizing the 

comprehensive collection of the strain-level fungal genomes in FunOMIC 

databases. Therefore, in the future, an upgraded version of the FunOMIC tool 

could be developed to provide feasible solutions for the analysis of mycobiome 

at the strain-level. 

 

Second, the current enrichment protocol has only been tested to a small group 

of samples collected from human feces. As the field of human mycobiome 

research continues to grow, there will likely be a need for enrichment protocols 

suitable for other types of samples, particularly those with low fungal biomass 

such as vaginal swabs and blood. Therefore, the development of such 

experimental protocols will be necessary to further expand our understanding 

of the human mycobiome. 

 

Last, the MycoDM web server will be improved to enhance the ease and user-

friendliness of extracting mycobial markers. Strategies include bolstering 

computational capabilities, updating MycoDM and FunOMIC annually, and 

incorporating newly discovered markers or fungal genomes. The advancement 

of high-throughput sequencing technologies will also be incorporated, and 

additional links between human mycobiome, diseases, and relevant resources 
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will be provided. Data visualization and analysis platforms will be refined, and 

new apps such as differential abundance analysis will be added. Mining and 

integrating metatranscriptomics, metabolomics, or other meta-omics data of 

human mycobiome to the FunOMIC tool and the MycoDM web server will also 

be a focus. These results will constitute a first step toward a full-featured, open-

source web platform for a systemic view of fungal communities and their 

interactions with bacterial communities. 

 

We believe these advancements will enhance our understanding of the human 

mycobiome and its implications in health and disease. 
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ANNEX 1. Link to all the supplementary tables 

For better visualization, all supplementary tables are stored in drive, and 

can be freely accessed through this link: 

https://drive.google.com/drive/folders/1j-

7m73_koRJWuW2EVlHwtyayhJsRH3-s?usp=sharing  
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ANNEX 2. Fungal species and pathway classes in different 

groups of mycobiomes. 

 
 

ANNEX2, Supplementary Figure 1. Fungal species (A) and pathway classes 

(B) associated with different countries, health status and body sites. The 



 

163 
 

colours represent the sign of the association (red means positive, blue means 

negative). The intensity of the colours represents the degree of association 

(darker means stronger association). Spain, healthy and gut were set as the 

reference level for each of the models, respectively. (C) Significant differences 

in Yarrowia lipolytica abundances or log10 transformed abundances between 

bead-beaten samples and non-bead beaten samples. 
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ANNEX3. Interaction of fungal and bacterial functions in the gut. 

microbiome of healthy individuals. 

 

 
 

ANNEX3, Supplementary Figure 2. Significant correlation (p<0.05) network 

between the relative abundance of fungal and bacterial functions in the gut 

mycobiome of healthy individuals from Spain (A) and Denmark (B) using 

SparCC algorithm. Each node represents a fungal/bacterial pathway class and 

their sizes are determined by the relative abundances. The colors of the edges 

connecting two nodes represent the positive (red) and negative (blue) 

correlations. For a better visual effect, only the correlations with p-values 

smaller than 0.001 and absolute correlation coefficient over 0.05 are 

represented 
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ANNEX4. Enrichment efficiency in bacteria. 

 

ANNEX4, Supplementary Figure 3. a, The genus-level taxa bar plot of the 

bacterial community compositions in bacterial, control, and fungal partitions. b, 

Boxplots of the species-level bacterial community alpha diversities (Shannon 

and Chao1 indices) in fungal, control, and bacterial partitions (n=143) ordered 

by their mean from smallest to largest (left to right). c, Boxplots of the species-

level bacterial community alpha diversity (Chao1 index) before and after 
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merging bacterial reads in the bacterial and fungal partitions (n=48) ordered by 

their mean from smallest to largest (left to right). 
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ANNEX5. Bacterial taxonomic compositions are associated 

with habitual diet. 

 
ANNEX5, Supplementary Figure 4. Heatmap of all the detected significant 
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correlations between bacterial taxonomic compositions and diet categories. 

The asterisk indicates that the correlation index for the corresponding species 

metadata pair is significant. 
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ANNEX6. Fungal functional compositions are associated with 

habitual diet. 

 

ANNEX6, Supplementary Figure 5. Heatmap of all the detected significant 

correlations between fungal functional compositions and diet categories. The 
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asterisk indicates that the correlation index for the corresponding species 

metadata pair is significant.  
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ANNEX7. Bacterial functional compositions are associated 

with habitual diet. 

 
ANNEX7, Supplementary Figure 6. Heatmap of all the detected significant 

correlations between bacterial functional compositions and diet categories. The 
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asterisk indicates that the correlation index for the corresponding species 

metadata pair is significant. 
  



 

173 
 

ANNEX8. Publication related to this thesis: Xie Z, Manichanh C. 

FunOMIC: Pipeline with built-in fungal taxonomic and 

functional databases for human mycobiome profiling. Comput 

Struct Biotechnol J. 2022;20:3685-94.  
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