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Summary

Multiple-input-multiple-output (MIMO) channels are extensively proposed as a means to over-

come the random channel impairments of frequency-flat wireless communications. Based upon

placing multiple antennas at both the transmitter and receiver sides of the communication, their

virtues are twofold. On the one hand, they allow the transmitter: i) to concentrate the transmit-

ted power onto a desired eigen-direction, or ii) to code across antennas to overcome unknown

channel fading. On the other hand, they permit the receiver to sample the signal on the space

domain. This operation, followed by the coherent combination of samples, increases the signal-

to-noise ratio at the input of the detector. In fine, MIMO processing is able to provide large

capacity (and reliability) gains within rich-scattered scenarios.

Nevertheless, equipping wireless handsets with multiple antennas is not always possible or

worthwhile. Mainly, due to size and cost constraints, respectively. For these cases, the most

appropriate manner to exploit multi-antenna processing is by means of relaying. This consists

of a set of wireless relay nodes assisting the communication between a set of single-antenna

sources and a set of single-antenna destinations. With the aid of relays, indeed, MIMO channels

can be mimicked in a distributed way. However, the exact channel capacity of single-antenna

communications with relays (and how this scheme performs with respect to the equivalent

MIMO channel) is a long-standing open problem. To it we have devoted this thesis.

In particular, the present dissertation aims at studying the capacity of Gaussian channels when

assisted by multiple, parallel, relays. Two relays are said to be parallel if there is no direct

link between them, while both have direct link from the source and towards the destination.

We focus on three well-known channels: the point-to-point channel, the multi-access channel

and the broadcast channel, and study their performance improvement with relays. All over

the dissertation, the following assumptions are taken: i) full-duplex operation at the relays, ii)
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transmit and receive channel state information available at all network nodes, and iii) time-

invariant, memory-less fading.

Firstly, we analyze the multiple-parallel relay channel, where a single source communicates to

a single destination in the presence of N parallel relays. The capacity of the channel is lower

bounded by means of the achievable rates with different relaying protocols, i.e. decode-and-

forward, partial decode-and-forward, compress-and-forward and linear relaying. Likewise, a

capacity upper bound is provided for comparison, derived using the max-flow-min-cut Theo-

rem. Finally, for number of relays growing to infinity, the scaling laws of all achievable rates

are presented, as well as the one of the upper bound.

Next, the dissertation focusses on the multi-access channel (MAC) with multiple-parallel re-

lays. The channel consists of multiple users simultaneously communicating to a single desti-

nation in the presence of N parallel relay nodes. We bound the capacity region of the chan-

nel using, again, the max-flow-min-cut Theorem and find achievable rate regions by means of

decode-and-forward, linear relaying and compress-and-forward. In addition, we analyze the

asymptotic performance of the obtained achievable sum-rates, given the number of users grow-

ing without bound. Such a study allows us to grasp the impact of multi-user diversity on access

networks with relays.

Finally, the dissertation considers the broadcast channel (BC) with multiple parallel relays.

This consists of a single source communicating to multiple receivers in the presence of N

parallel relays. For the channel, we derive achievable rate regions considering: i) dirty paper

encoding at the source, and ii) decode-and-forward, linear relaying and compress-and-forward,

respectively, at the relays. Moreover, for linear relaying, we prove that MAC-BC duality holds.

That is, the achievable rate region of the BC is equal to that of the MAC with a sum-power

constraint. Using this result, the computation of the channel’s weighted sum-rate with linear

relaying is notably simplified. Likewise, convex resource allocation algorithms can be derived.



Resumen

Los canales múltiple-entrada-múltiple-salida (MIMO) han sido ampliamente propuestos para

superar los desvanecimientos aleatorios de canal en comunicaciones inalámbricas no selectivas

en frecuencia. Basados en equipar tanto transmisores como receptores con múltiple antenas,

sus ventajas son dobles. Por un lado, permiten al transmisor: i) concentrar la energı́a trans-

mitida en una dirección-propia determinada, o ii) codificar entre antenas con el fin de superar

desvanecimientos no conocidos de canal. Por otro lado, facilitan al receptor el muestreo de

la señal en el dominio espacial. Esta operación, seguida por la combinación coherente de

muestras, aumenta la relación señal a ruido de entrada al receptor. De esta forma, el proce-

sado multi-antena es capaz de incrementar la capacidad (y la fiabilidad) de la transmisión en

escenarios con alta dispersión.

Desafortunadamente, no siempre es posible emplazar múltiples antenas en los dispositivos

inalámbricos, debido a limitaciones de espacio y/o coste. Para estos casos, la manera más

apropiada de explotar el procesado multi-antena es mediante retransmisión, consistente en

disponer un conjunto de repetidores inalámbricos que asistan la comunicación entre un grupo

de transmisores y un grupo de receptores, todos con una única antena. Con la ayuda de los

repetidores, por tanto, los canales MIMO se pueden imitar de manera distribuida. Sin em-

bargo, la capacidad exacta de las comunicaciones con repetidores (ası́ como la manera en que

este esquema funciona con respeto al MIMO equivalente) es todavı́a un problema no resuelto.

A dicho problema dedicamos esta tesis.

En particular, la presente disertación tiene como objetivo estudiar la capacidad de canales Gaus-

sianos asistidos por múltiples repetidores paralelos. Dos repetidores se dicen paralelos si no

existe conexión directa entre ellos, si bien ambos tienen conexión directa con la fuente y el

destino de la comunicación. Nos centramos en el análisis de tres canales ampliamente conoci-
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dos: el canal punto-a-punto, el canal de múltiple-acceso y el canal de broadcast, y estudiamos

su mejora de funcionamiento con repetidores. A lo largo de la tesis, se tomarán las siguientes

hipótesis: i) operación full-duplex en los repetidores, ii) conocimiento de canal tanto en trans-

misión como en recepción, y iii) desvanecimiento sin memoria, e invariante en el tiempo.

En primer lugar, analizamos el canal con múltiples repetidores paralelos, en el cual una única

fuente se comunica con un único destino en presencia de N repetidores paralelos. Derivamos

lı́mites inferiores de la capacidad del canal por medio de las tasas de transmisión conseguibles

con distintos protocolos: decodificar-y-enviar, decodificar-parcialmente-y-enviar, comprimir-

y-enviar, y repetición lineal. Asimismo, con un fin comparativo, proveemos un lı́mite superior,

obtenido a través del Teorema de max-flow-min-cut. Finalmente, para el número de repetidores

tendiendo a infinito, presentamos las leyes de crecimiento de todas las tasas de transmisión, ası́

como la del lı́mite superior.

A continuación, la tesis se centra en el canal de múltiple-acceso (MAC) con múltiples repeti-

dores paralelos. El canal consiste en múltiples usuarios comunicándose simultáneamente con

un único destino en presencia de N repetidores paralelos. Derivamos una cota superior de

la región de capacidad de dicho canal utilizando, de nuevo, el Teorema de max-flow-min-cut,

y encontramos regiones de tasas de transmisión conseguibles mediante: decodificar-y-enviar,

comprimir-y-enviar, y repetición lineal. Asimismo, se analiza el valor asintótico de dichas

tasas de transmisión conseguibles, asumiendo el número de usuarios creciendo sin lı́mite. Di-

cho estudio nos permite intuir el impacto de la diversidad multiusuario en redes de acceso con

repetidores.

Finalmente, la disertación considera el canal de broadcast (BC) con múltiples repetidores

paralelos. En él, una única fuente se comunica con múltiples destinos en presencia de N

repetidores paralelos. Para dicho canal, derivamos tasas de transmisión conseguibles dado:

i) codificación de canal tipo dirty paper en la fuente, ii) decodificar-y-enviar, comprimir-y-

enviar, y repetición lineal, respectivamente, en los repetidores. Además, para repetición lineal,

demostramos que la dualidad MAC-BC se cumple. Es decir, la región de tasas de transmisión

conseguibles en el BC es igual a aquélla del MAC con una limitación de potencia suma. Uti-

lizando este resultado, se derivan algoritmos de asignación óptima de recursos basados en teorı́a

de optimización convexa.
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seré. A ella le dedico esta tesis: a mi madre por confiar siempre en mı́, y por todo el amor que

me da; a mi padre, por ser mi referente en la vida, enseñarme el camino y permitirme tener un
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Chapter 1

Introduction

1.1 Motivation

Multiple-antenna processing is widely used to boost performance of telecommunications sys-

tems: from remote sensing, radar and radio-astronomy to wireless communications and media

broadcasting. Serve as example the stunning Very Large Array (VLA) that the National Radio

Astronomy Observatory (NRAO) owns in New Mexico to explore the confines of the universe.

Virtues of deploying multiple antennas are many and wide. First, it allows the transmitter to

concentrate the transmitted power onto a desired spatial direction; thus, augmenting the re-

ceived signal-to-noise ratio at the intended receiver and drastically reducing the interference

onto non-desired ones. This processing is referred to as beamforming, for which channel

knowledge is required on transmission [2, Chapter 5]. With line-of-sight (LoS) propagation, it

consists of conjugating the steering vector of the desired direction. In contrast, with non-LoS

and rich-scattering, the beamforming consists of transmitting along the eigen-vectors of the

channel matrix [3]. Unfortunately, the source node is not always aware of the channel values.
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For those cases, multi-antenna processing takes the form of space-time coding [4–6], consist-

ing of coding the transmitted message along different antennas and channel uses. Examples

of these codes are space-time (orthogonal) block codes and space-time trellis codes [7]. With

them, deep fading on several antennas can be overcome by good channels on others. Thus,

extra diversity is introduced into the system (referred to as spatial diversity), which makes

communication more reliable.

On the other side, having multiple antennas at the receiver allows to coherently combine the

received samples, increasing the signal-to-noise ratio at the input of the detector [7, Chapter 5].

This is referred to as coherent detection, and receive channel knowledge is required. Likewise,

multiple receive antennas can be used for parameter estimation such as e.g., direction of arrival.

In fact, with multiple antennas, the receiver samples the signal onto two dimensions: time and

space. Accordingly, the number of available samples increases, thus boosting the performance

of detectors and/or estimators [8]. The outstanding feature of this technology is that gains come

without sacrificing additional degrees of freedom as time or frequency.

When applied to wireless communications, multi-antenna processing augments the channel ca-

pacity in two manners: on the one hand, with transmit and receive channel knowledge, beam-

forming and coherent detection increases the available power at the receiver node, thus allowing

for higher data rates. On rich-scattering scenarios, this is translated into the parallelization of

the communication onto its eigen-channels [3]. On the other hand, without channel knowledge

at the transmitter, space-time coding overcomes fading by stabilizing the received power at the

destination. Thus, it increases the set of rates that can be reliably transmitted. Unfortunately,

for this case, the more reliability required, the lower the transmitted rate can be, and viceversa.

This concept is known as the diversity-multiplexing tradeoff [9].

Nonetheless, deploying multiple antennas at the wireless handsets (e.g. mobile telephones,

GPS receivers, WLAN cards) is not always possible due to size constraints. Likewise, in some

cases, their deployment is not worthwhile regarding a cost-performance criterion. For these

cases, the most suitable manner to exploit spatial diversity is by means of relaying [10–12].

Relay channels consist of a set of wireless relay nodes assisting the communication between a

set of single-antenna sources and a set of single-antenna destinations. With such a setup, multi-

antenna processing can be thus performed distributedly [13, 14]. As an example, consider the

network in Fig. 1.1 where a user S wants to transmit a message to user D, and makes use of
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Figure 1.1: Relay channel.

relay nodes R1 and R2. The node R1 helps the source to transmit the message by means of

e.g. distributed beamforming. On the other hand, relay R2 helps node D to receive it using

e.g., distributed coherent detection. For such a communication with relays, a fundamental

query rapidly comes up: how close are the capacity and robustness of this setup to those of

the equivalent MIMO channel?. Or, in other words, can MIMO communications be mimicked

using distributed antennas?. Answering this question is the main aim and motivation of this

dissertation.

Indistinctively, the relay nodes can be either infrastructure nodes, placed by the service provider

in order to enhance coverage and rate [15], or a set of users that cooperate with the source and

destination, while having own data to transmit [16]. Nonetheless, in order to apply relaying to

current wireless networks, still a number of practical issues need to be addressed. Those issues

are out of the scope of this dissertation, which is focused on the theoretical performance only.

However, for completeness, we briefly highlight some of them:

1. How to synchronize spatially separated antennas: beamforming and space-time coding

require symbol synchronization among the transmit antennas. When building them up

using physically separated relays, this leads to a distributed synchronization problem

that implies serious difficulties in practice. Indeed, for single carrier communications

with high-data rates, synchronization becomes unfeasible. However, the problem can

be softened resorting to OFDM modulation, due to the higher length of the multicarrier

symbol.
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2. How to implement distributed channel state information acquisition: when decoding a

space-time signal, the receiver must be aware of the channel with all the transmit an-

tennas. In relay-based transmissions, this forces the receiver to know a priori the set of

relays involved in the communication. This is an unlike scenario for relaying, which gen-

erally takes an opportunistic approach: relays transmit or do not transmit based on local

decisions, without centralized control [17]. To solve the problem, and decode without

channel knowledge, differential space-time codes can be utilized [18]. However, those

have a 3 dB penalization.

3. How to merge routing and PHY layer forwarding: the optimum selection of nodes per-

forming layer 3 routing, and the selection of nodes performing PHY layer relaying is an

involved cross-layer research topic.

4. How to provide incentives for cooperation among selfish nodes: incentive mechanisms

must be put in place in order to make egoistic nodes relay each others’ messages, and to

ensure a fair, reciprocal exchange of communication resources.

1.2 Previous Work

The study of relay channels dates back to the 70s, when Cover, El Gamal and Van der Meulen

introduced the three-terminal network [10, 19, 20]. This is composed of one source, one relay

and one destination, all three with a single antenna. For the network, the authors presented sev-

eral relaying techniques (namely, decode-and-forward D&F and compress-and-forward C&F)

and compared their achievable rates with the max-flow-min-cut capacity bound [21]. Years

later, other relaying protocols such as partial decoding PD, amplify-and-forward A&F and lin-

ear relaying LR, helped to widen the analysis [22–24]. Among all,D&F and C&F turned out to

be asymptotically optimal for the relay infinitely close to source and destination, respectively,

while PD was shown to outperform all other techniques for the half-duplex relay [22]. The

capacity of the channel, however, remained an open problem.

The extension of the results in [10] to multiple relays also attracted a lot of attention [11,25–34].

Two main approaches have been followed: the multi-level relay model1 [25] and the multiple-
1Multi-level relaying has been referred to as Information-theoretic multi-hopping in [27]
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parallel relay model [26]. The former considers every relay node receiving information from

the source and/or a subset of relays and forwarding it to the destination and/or another subset

of relays. Every subset of relays is referred to as a level-set, across which information flows in

the network [28]. Intuitively, it brings down classical multi-hop transmission to the physical-

layer. The capacity of the multi-level channel is also unknown. However, an achievable rate

with decode-and-forward is derived by Xie and Kumar in [25, Theorem 1], and with compress-

and-forward and superposition coding schemes by Kramer et. al. in [11, Theorems 3 and

4]. Moreover, as for the single relay case, decode-and-forward is capacity-achieving for the

degraded multi-level relay channel [25, Theorem 3.2].

On the other hand, themultiple-parallel relay channel arranges all the relay nodes into a unique

set. That is, relays receive information only from the source, and retransmit directly to the des-

tination. This channel was pioneered by Schein and Gallager in [26, 35] and accounts for

scenarios where relays have directional antennas to the destination (as e.g., cellular uplink

channels with relays) or where delay constraints do not allow multi-hop transmission. The ca-

pacity of the channel is unknown, and few achievable rates have been reported so far: for N

relays with orthogonal components, decode-and-forward and amplify-and-forward were stud-

ied by Maric and Yates in [29] and [30], respectively. Moreover, decode-and-forward with

half-duplex relays is considered in [31]. Finally, the multiple-parallel relay channel capacity,

although unknown, is shown by Gastpar to scale as the logarithm of the number of relays [32],

given Rayleigh fading. A variant of the channel, where relays are independently connected

to the destination via lossless links of limited capacity, is considered by Sanderovich et. al.

in [36–38]. For such a network, authors present achievable rates with compress-and-forward,

assuming ergodic and block-fading, respectively, and considering distributed Wyner-Ziv com-

pression at the relays [39]. We build upon this result to derive the multi-relay compress-and-

forward results of the dissertation.

The application of all previous results to schemes with multiple sources (MAC) and multiple

destinations (BC) recently witnessed an immense growth of interest [11, 40–44]. First, the

MAC assisted by a relay is presented in [11, 40] where, assuming time-invariant fading and

channel state information (CSI) at the sources, the rate regions with D&F and Wyner-Ziv C&F

are derived. Additionally, A&F is analyzed in [41] for the MAC without CSI at the sources,

and shown to be optimal at the high multiplexing gain regime. On the other hand, the BC with
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relay is first studied by Liang et al. in [42]. A network with a single source and two receivers,

one acting as relay of the other, is considered and rate regions derived using D&F and PD.

In parallel, A&F for the two-hop BC (i.e., no connectivity between source and destinations) is

studied by Jafar et al. in [43]. In that work, the optimal power allocation on relays is presented,

as well as the celebrated MAC-BC duality. In this dissertation, we extend this duality result to

the BC with direct link between the transmitter and the receivers.

1.3 Organization of the Dissertation

This dissertation aims at studying the capacity of Gaussian channels when assisted by multiple,

parallel, relays. Two relays are said to be parallel if there is no direct link between them, while

both have direct link from the source and towards the destination. In particular, our analysis

focuses on three well-known channels: the point-to-point channel, the multi-access channel

and the broadcast channel. For them, we present achievable rates and capacity outer regions.

All over the dissertation, we assume transmit and receive channel state information available at

all network nodes, and time-invariant, memory-less fading. The research contributions of this

dissertation are presented in Chapters 3-5. Additionally, Chapter 2 introduces the necessary

mathematical background to follow the derivations, and Chapter 6 summarizes conclusions

and outlines future work.

Research results are organized as follows:

Chapter 3. This part of the dissertation analyzes the multiple-parallel relay channel, where a

single source communicates to a single destination in the presence of N parallel relays. All

network nodes have a single antenna. The capacity of the channel is upper bounded using the

max-flow-min-cut Theorem, and lower bounded by means of the achievable rates with decode-

and-forward, partial decode-and-forward, compress-and-forward and linear relaying. Addi-

tionally, for N →∞, the asymptotic performance of all achievable rates is presented. Finally,
results are extended to relay nodes under a half-duplex constraint.

The contributions of this chapter are published in part on:

• A. del Coso and C. Ibars, ”Achievable rates for the AWGN channel with multiple parallel
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relays”, submitted to IEEE Trans. on Wireless Communications, Feb., 2008.

• A. del Coso and C. Ibars, ”Distributed antenna channels with regenerative relaying: relay
selection and asymptotic capacity” , EURASIP Journal on Wireless Communications and

Networking, vol. 2007, Nov.

• A. del Coso and S. Simoens, ”Distributed compression for the uplink channel of a co-
ordinated cellular network with a backhaul constraint”, in Proc. 9th IEEE International

Workshop on Signal Processing Advances for Wireless Communications (SPAWC2008),

Recife, Brazil, Jul. 2008

• A. del Coso, and C. Ibars, ”Partial decoding for synchronous and asynchronous Gaussian
multiple relay channels”, in Proc. IEEE International Conference in Communications

(ICC07), Glasgow, UK, Jun. 2007

• A. del Coso, C. Ibars, ”Achievable rate for Gaussian multiple relay channels with linear
relaying functions”, in Proc. IEEE International Conference on Acoustics, Speech, and

Signal Processing (ICASSP 2007), Hawai’i,USA, Apr., 2007

• A. del Coso, C. Ibars, ”Capacity of Decode-and-forward Cooperative Links with full
channel state information”, in Proc. 39th Asilomar Conference on Signals, Systems and

Computers, Pacific Grove, CA, Nov. 2005

Furthermore, while developing the material of this chapter, I co-authored the partial exten-

sion of previous results to the MIMO relay channel. Such an extension belongs to the Ph.D.

dissertation of Mr. Sebastien Simoens:

• S. Simoens, O. Muñoz, J. Vidal and A. del Coso, ”Capacity bounds for Gaussian MIMO
relay channel with channel state information”, in Proc. 9th IEEE International Work-

shop on Signal Processing Advances for Wireless Communications (SPAWC2008), Re-

cife, Brazil, Jul. 2008.

• S. Simoens, O. Muñoz, J. Vidal and A. del Coso, ”Partial compress-and-forward cooper-
ative relaying with full MIMO channel state information”, submitted to IEEE Globecom

2008, New Orleans, Nov. 2008
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Chapter 4. This part of the dissertation focusses on the multi-access channel with multiple-

parallel relays. It consists of multiple users simultaneously communicating to a single desti-

nation in the presence of N parallel relay nodes. We bound the capacity region of the chan-

nel using, again, the max-flow-min-cut Theorem and find achievable rate regions by means of

decode-and-forward, linear relaying and compress-and-forward. We omit partial decoding as

it is shown in Chapter 3 to perform exactly as D&F for large number of relays. Additionally,

we study the asymptotic achievable sum-rates of the channel when the number of users grows

to infinity, thus estimating the impact of multi-user diversity on relay-based access networks.

The research results of this chapter are published in part on:

• A. del Coso and C. Ibars, ”Linear relaying for the Gaussianmultiple access and broadcast
channels”, submitted to IEEE Trans. on Wireless Communications, Mar., 2008.

• A. del Coso and S. Simoens, ”Distributed compression for the uplink of a backhaul-
constrained coordinated cellular network”, submitted to IEEE Trans. on Wireless Com-

munications, Jun. 2008

• A. del Coso, and C. Ibars, ”Multi-access channels with multiple decode-and-forward re-
lays: rate region and asymptotic sum-rate”, in Proc. 9th IEEE International Workshop on

Signal Processing Advances for Wireless Communications (SPAWC2008), Recife, Brazil,

Jul. 2008

• A. del Coso and C. Ibars, ”The amplify-based multiple-relay multiple-access channel:
capacity region and MAC-BC duality”, in Proc. IEEE Information Theory Workshop

(ITW2007), Bergen, Norway, Jul., 2007

• Z. Ahmad,A. del Coso, and C. Ibars, ”TDMA network design using decode-and-forward
relays with finite set modulation”, in Proc. IEEE International Symposium on Personal,

Indoor and Mobile Radio Communications (PIMRC2008), Cannes, France, Sep. 2008

Chapter 5. In this final part, we consider the broadcast channel with multiple parallel relays.

This consists of a single source communicating to multiple receivers in the presence of N

parallel relays. We derive achievable rate regions for the channel considering: i) decode-and-

forward, linear relaying and compress-and-forward, respectively, at the relays and ii) dirty
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paper encoding at the source. Interestingly, we demonstrate that, for linear relaying, MAC-BC

duality holds, which simplifies the computation of the BC weighted sum-rate.

The results of this Chapter are published in part on two publications mentioned for Chapter 4:

• A. del Coso and C. Ibars, ”Linear relaying for the Gaussian multiple access and broadcast
channels”, submitted to IEEE Trans. on Wireless Communications, Mar., 2008.

• A. del Coso and C. Ibars, ”The amplify-based multiple-relay multiple-access channel:
capacity region and MAC-BC duality”, in Proc. IEEE Information Theory Workshop

(ITW2007), Bergen, Norway, Jul., 2007

Research results not included in the Dissertation. At the very beginning of my graduate

studies, I chose wireless cooperative networks to be the major subject of my research. In

particular, I thought of e.g., outage analysis for cooperative wireless sensor networks (WSN),

diversity-multiplexing trade-off in cooperative multicasting, OFDM relay networks, distributed

receiver architectures, code design, etc.

However, once I became more and more involved with cooperative communications (and af-

ter attending a masterly class from Pr. Abbas El Gamal) I realized that Information Theory

needed to be the mandatory minor to be pursued. At the end, the minor has transmuted into

the major. Nonetheless, during the transmutation, I got time to research on cooperative sensor

networks. In particular, under the kind support of Prof. U. Spagnolini, I derived the diversity

order of virtual MIMO channels in cluster-based sensor networks. Additionally, I studied re-

source allocation strategies for those networks under energy constrains. Results are published

in:

• A. del Coso, U. Spagnolini and C. Ibars ”Cooperative distributed MIMO channels in
wireless sensor networks”, IEEE Journal on Selected Areas in Communications, Vol. 25,

no. 2, pp.402-414, Feb. 2007

• A. del Coso, S. Savazzi, U. Spagnolini and C. Ibars, ”Virtual MIMO channels in coop-
erative multi-hop wireless sensor networks”, in Proc. 40th Annual Conference in Infor-

mation Sciences and Systems (CISS), Princeton, USA, Mar. 2006.
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• A. del Coso and C. Ibars, ”Spatial diversity of cluster-based cooperative wireless sensor
networks”, in Proc. MSRI Workshop on Mathematics of Relaying and Cooperation in

Communication Networks, Berkeley, USA, Apr. 2006

Finally, while on intern in New Jersey, I analyzed cooperative multicast networks under the

guidance of Prof. Y. Bar-ness and Dr. O. Simeone. The results derived therein are published in

part on:

• A. del Coso, O. Simeone, Y. Bar-ness and C. Ibars, ”Space-time coded cooperative mul-
ticasting with maximal ratio combining and incremental redundancy”, in Proc. IEEE

International Conference in Communications (ICC07), Glasgow, UK, Jun. 2007

• A. del Coso, O. Simeone, Y. Bar-ness and C. Ibars, ”Outage capacity of two phase space-
time coded cooperative multicasting”, in Proc. 40th Asilomar Conference on Signals,

Systems and Computers, Pacific Grove, CA, Nov. 2006
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Chapter 2

Background

2.1 Channel Capacity

Claude E. Shannon presented his Mathematical Theory of Communications [1] in 1948 and

launched digital communications as understood nowadays. Pioneering modern times, Shannon

addressed the fundamental problem of communication: how to reproduce at one point either

exactly or approximately a message selected at another point, regardless of its meaning [1, p.

379]. His theory involved a big bang on communications, whose direct and indirect contri-

butions (incredibly huge and wide) have boosted telecommunications, signal processing and

network design. In particular, the two fundamental starting points of digital communications

are the result of Shannon’s imagination:

1. The differential entropy as the measure of the uncertainty of a continuous random vari-

able

H (x) = −
∫ ∞

−∞
p (x) log2 p (x) dx. (2.1)
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Figure 2.1: Schematic diagram of a communication system. Source: C.E. Shannon [1].

With such a selection, Shannon aimed at finding a continuous measure on p (x) with

maximum uncertainty for the uniform distribution (subject to a give support set). How-

ever, it is the relationship between the entropy and the number of ”typical” sequences

generated from independent realizations of this variable, what makes the measure so

useful [21, Theorem 9.2.1].

2. The schematic diagram of a general communication system (see Fig. 2.1). This con-

sists essentially in five parts [1, Section 1]: i) an information source, which produces a

message or sequence of messages to be communicated to the receiving terminal, ii) a

transmitter, which operates on the message to produce a sequence of signals suitable for

transmission over the channel. We refer to this operation as encoding. iii) The chan-

nel, which is merely the medium used to transmit the signal from transmitter to receiver.

iv) The receiver, which performs the inverse operation of that done by the transmitter,

decoding the message from the signal, and v) the destination, to whom the message is

intended.

Two main reasons brought Shannon to these two concepts. On the one hand, he aimed at

validating symbolic communications. That is, the process of mapping the messages to be

transmitted onto symbols, which are random under the receiver glance and has to be deciphered

by him (as for e.g. telegraphy or Morse). On the other hand, by measuring the uncertainty of

random variables, he responded to the necessity of quantifying the unawareness at the receiver

of the random symbol transmitted by the source. Merging both concepts, Shannon put the

foundations of digital communications, introducing the concept of reliable transmission: how

many messages can be transmitted from a source towards a destination without errors.

In the following, we revisit three important results derived by, or due to, Shannon’s work.
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2.1.1 Gaussian Channel

Consider a single source communicating to a single destination. Assume that, for every signal

x transmitted by the transmitter, the receiver receives:

y = h · x + z, (2.2)

where z ∼ CN (0, No) is additive white Gaussian noise, and h is a non-random complex scalar.

This is referred to as Gaussian channel with time-invariant fading.

Let the source randomly select message ω ∈ W =
{
1, · · · , 2nR

}
for transmission, given

pW (ω) = 1
2nR , ∀ω. As stated by Shannon, the message is then passed from the source to the

transmitter, which encodes it using the mapping:

f : W → X n, (2.3)

where X is the transmitter signal space and n the number of symbols within the transmitter

signal sequence. In general, the mapping is constrained to satisfy:

1

n

n∑
t=1

|xt (ω) |2 ≤ P, ∀ω. (2.4)

The signal sequence xn = f (ω) is then plugged onto the channel, and received at the des-

tination following (2.2). Finally, the receiver attempts to recover the message using the de-

mapping:

g : Yn →W, (2.5)

and an error occurs whenever g (yn) 	= ω.

The mapping and de-mapping functions, f and g, together with the message setW =
{
1, · · · , 2nR

}
and the signal spaceX , are compactly referred to as

(
n, 2nR

)
channel code. A transmission rate

R [bits/symbol] is said to be achievable if there exists a sequence of channel codes
(
n, 2nR

)
for

which

lim
n→∞

1

2nR

∑
ω

Pr {g (yn) 	= ω|ω was sent} = 0. (2.6)

That is, if there are no errors (on average). This is what we refer to as reliable communication.

Finally, the capacity of the channel is the supremum of all rates that are achievable.
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Proposition 2.1 [1, Theorem 17] The capacity of the Gaussian channel with time-invariant

fading, given a source power constraint P and noise power No is

C = max
p(x):

�∞
−∞

|x|2p(x)dx=P
I (x; y) (2.7)

= C
(
|h|2 P

No

)
.

As thoroughly explained in [21, Section 10.1], the capacity is achievable using a random code-

book at the transmitter, with codewords of length n →∞, generated i.i.d. from x ∼ CN (0, P ).

At the receiver, joint typical decoding is capacity-achieving.

2.1.2 Gaussian Multi-access Channel

Consider now two independent sources communicating simultaneously to a single destination.

Assume that, for every signal x1 and x2 transmitted by user 1 and user 2, respectively, the

receiver receives:

y = h1 · x1 + h2 · x2 + z, (2.8)

where z ∼ CN (0, No), and h1, h2 are non-random complex scalars. This is referred to as

Gaussian multi-access channel (MAC) with time-invariant fading.

The sources select messages ω1 ∈ W1 =
{
1, · · · , 2nR1

}
and ω2 ∈ W2 =

{
1, · · · , 2nR2

}
for

transmission, respectively. Then, they pass them to their transmitters, who put the messages

onto the channel as explained in the previous subsection. However, in this case, the transmitters

use a MAC channel code
(
n, 2nR1, 2nR2

)
, which is defined by: i) the two independent sets of

messagesW1 andW2; ii) two signal spaces X1 and X2, iii) two transmit mappings f1 and f2,

one per each user:

fu : Wu → X n
u , u = 1, 2, (2.9)

where each mapping satisfies the per-user power constraint:

1

n

n∑
t=1

|xt
u (ωu) |2 ≤ Pu, ∀ωu, u = 1, 2. (2.10)

And, iv) a receiver demapping g

g : Yn →W1 ×W2. (2.11)

14



2.1. Channel Capacity

In the channel, an error occurs whenever g (yn) 	= (ω1, ω2). A transmission rate duple (R1, R2)

[bits/symbol] is said to be achievable if there exists a sequence of codes
(
n, 2nR1 , 2nR2

)
for

which:

lim
n→∞

1

2nR12nR2

∑
ω2,ω2

Pr {g (yn
d ) 	= (ω1, ω2)|(ω1, ω2) was sent} = 0. (2.12)

That is, if the communication is reliable for both users. The capacity region is the closure of

all rate duples that are achievable.

Proposition 2.2 [21, Section 14.3.6] The capacity region of the Gaussian MAC with time-

invariant fading, given a source power constraints P1 and P2, and noise power No is

C = coh

⎛
⎜⎜⎜⎝

⋃
px1 ,px2 :

�∞
−∞

|x|2pxu(x)dx≤Pu, u=1,2.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

R1,2 :

R1 ≤ I (x1; y|x2)

R2 ≤ I (x2; y|x1)

R1 + R2 ≤ I (x1, x2; y)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎞
⎟⎟⎟⎠

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

R1,2 :

R1 ≤ C
(
|h1|2 P1

No

)
R2 ≤ C

(
|h2|2 P2

No

)
R1 + R2 ≤ C

(
|h1|2 P1

No
+ |h2|2 P2

No

)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.13)

This proposition points out one of the most interesting features of the MAC: while for the

Gaussian channel we search for the distribution p (x) that maximizes the mutual information

(2.7), for the MAC we consider the union over all possible distributions px1, px2 that satisfy

the power constraint. This is common for all multi-access networks as e.g., with multiple

antennas [45], with memory [46], etc. Nevertheless, here, all distributions are outperformed

by the Gaussian distribution. Indeed, as noted in [21, Chapter 14], any point of the region is

achievable using random codebooks at the transmitters, generated i.i.d. from xu ∼ CN (0, Pu),

u = 1, 2, respectively. At the receiver, joint typical decoding is again optimal.

2.1.3 Gaussian Broadcast Channel

Let a single source communicate simultaneously with two destinations, transmitting different

messages to each other. Assume that, for every signal x transmitted by the transmitter, the two

15



2.1. Channel Capacity

receivers receive:

y1 = h1 · x + z1, (2.14)

y2 = h2 · x + z2,

where zu ∼ CN (0, No) and hu is non-random complex scalar, for u = 1, 2. This is referred

to as Gaussian broadcast channel (BC) with time-invariant fading. Consider hereafter, without

loss of generality, that |h1| > |h2|.

The source selects two messages ω1 ∈ W1 =
{
1, · · · , 2nR1

}
and ω2 ∈ W2 =

{
1, · · · , 2nR2

}
,

for transmission to destination 1 and destination 2, respectively. The transmitter sends them

over the channel using a BC channel code
(
n, 2nR1 , 2nR2

)
, which is defined by: i) the two

independent sets of messagesW1 andW2 ; ii) a unique signal space X ; iii) a unique transmit
mapping:

f : W1 ×W2 → X n, (2.15)

that satisfies the source power constraint:

1

n

n∑
t=1

|xt (ω1, ω2) |2 ≤ P, ∀ω1, ω2. (2.16)

And, iv) two receiver demappings g1 and g2, one per each destination

gu : Yn
u →Wu, u = 1, 2. (2.17)

In the channel, an error occurs whenever g1 (yn
1 ) 	= ω1 or g2 (yn

2 ) 	= ω2. A transmission

rate duple (R1, R2) [bits/symbol] is said to be achievable if there exists a sequence of codes(
n, 2nR1 , 2nR2

)
for which no errors occur:

lim
n→∞

1

2nR12nR2

∑
ω2,ω2

Pr

{ ⋃
u=1,2

gu (yn
u) 	= ωu|(ω1, ω2) was sent

}
= 0. (2.18)

The capacity region is then the closure of all achievable rate duples.

Proposition 2.3 [21, Example 14.6.6] The capacity region of the Gaussian BC with time-

invariant fading, source power constraint P and noise power No at both receivers is

C =
⋃

0≤α≤1

⎧⎨
⎩R1,2 :

R1 ≤ C
(
|h1|2 α·P

No

)
R2 ≤ C

(
|h2|2 (1−α)·P

No+|h2|2α·P

)
⎫⎬
⎭ (2.19)
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2.2. Constrained Optimization

There are two different coding schemes that are able to achieve any point of the capacity region.

The first one assumes all the processing efforts at the receivers, while the second one centralizes

the processing at the transmitter:

1. Superposition coding at the transmitter plus successive interference cancellation (SIC)

at the receivers [21, Section 14.1.3]: the transmitter generates two random codebooks,

with codewords of length n → ∞, generated i.i.d. from x1 ∼ CN (0, αP ) and x2 ∼
CN (0, (1− α) P ), respectively. It maps message ω1 using the first codebook and ω2

using the second codebook. Finally, the source transmits the superposition of both map-

pings. Receiver 2 decodes message ω2 using joint typicality, considering the codeword

intended to user 1 as interference. In contrast, receiver 1 first decodes ω2; then, it re-

moves the ω2 contribution onto the received signal, and decodes ω1 without interference.

This is referred to as SIC.

2. Dirty Paper coding at the transmitter and independent joint typical decoding at the re-

ceivers [47]: The source encodes ω2 as if destination 2 were alone in the network, i.e.,

using random coding. Next, the source encodes the message ω1 utilizing the (non-causal)

knowledge of the interference that the signal intended to user 2 is going to make on user

1. It was shown by Costa in [47] that such a coding allows the first user to decode ω1,

using joint typical decoding, as if it had not interference from the second user. In con-

trast, the second receiver decodes ω2 suffering the interference of the signal intended to

the first user.

2.2 Constrained Optimization

In a wide range of communication problems, designers aim at maximizing a network cost

function given a constraint on the network resources. This is referred to as constrained opti-

mization [48, Chapter 3], and is of capital importance on the research, design and development

of wireless communications. In this section, we review its main results, which are used along

the dissertation.
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2.2. Constrained Optimization

Consider an optimization problem of the form

max
x1,··· ,xN

f (x1:N) (2.20)

s.t. gi (x1:N) ≤ Ri, i = 1, · · · , m,

where f (·) and gi (·) are continuously differentiable functions, not necessarily convex or con-
cave. The union of all points x1:N where the constraints are satisfied, i.e. gi (x1:N) ≤ Ri,

i = 1, · · · , m, is denoted by feasible set X . Every point of the feasible set is referred to as
feasible point.

The problem consists in finding the maximum value of the function f (·) within the feasible set
X . Usually, many local maxima are found in the function. The objective of the search is to find
the greater of these, which is called the global maximum. It can occur that the function is not

uniquely attained: that is, the global maximum is achieved at more than one feasible point. As

an example, the function x2 takes maximum value within the feasible set X = [−1, 1] at the

points x = 1 and x = −1. This will have no implications on the theory.

In order to solve such a constrained maximization, a parameterized function, which is always

an upper bound on f (·) within the feasible set, is defined: the Lagrangian function. It is
constructed using Lagrange multipliers λ1, · · · , λm ≥ 0 and reads as follows:

L (x1:N , λ1:m) = f (x1:N)−
m∑

i=1

λi · (gi (x1:N)−Ri) . (2.21)

As mentioned, it satisfies

L (x1:N , λ1:m) ≥ f (x1:N) , ∀x1:N ∈ X . (2.22)

since for all the feasible points: gi (x1:N) ≤ Ri, i = 1, · · · , m. This is indeed the reason-of-
existence for the Lagrangian: it is born to upper bound the function at hand, allowing thus to

upper bound its maximum value and, in cases, to obtain it. Consider the non-convex maxi-

mization: f (x) = x3 − ex constrained to x2 ≤ 25. The function and its associated Lagrangian

(parameterized for λ = 1 and λ = 1.2) is plotted in Fig. 2.2 with respect to the feasible set.

The relationship (2.22) is clearly shown: the Lagrangian upper bounds the function.

Making use of the Lagrangian, many results regarding the maximum value of the function

can be derived [48]. Here, we present the two most important. First, the necessary condition

that the maximum of (2.20) must satisfy: the Karush-Kuhn-Tucker (KKT) conditions. Later,
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Figure 2.2: Lagrangian function.

the general sufficiency condition for a feasible point to attain the maximum. We will show

that, for convex problems, both are equivalent and thus KKTs are necessary and sufficient for

optimality.

Proposition 2.4 (Karush-Kuhn-Tucker Necessary Conditions [48, Proposition 3.3.1]) Letx∗1:N
be a local maximum of (2.20). Then, there exist a unique Lagrange multiplier vector λ∗1:m for

which the KKT conditions:

∂L (x∗1:N , λ∗1:m)

∂xi

= 0, i = 1, · · · , N (2.23)

λ∗j ≥ 0, j = 1, · · · , m

λ∗j · (gj (x∗1:N)− Rj) = 0 j = 1, · · · , m.

hold.

Being the condition necessary, it is not sufficient. It can occur, thus, that a feasible point

satisfies the KKTs and it is not a local maximum of the function. Therefore, it is not the global

either. In order to be it, it must also satisfy the sufficient condition for optimality.

Proposition 2.5 (General Sufficiency Condition [48, Proposition 3.3.4]) Consider the problem

(2.20). Let x∗1:N be a feasible point which, together with a Lagrangemultiplier vectorλ∗1:m ≥ 0,
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2.2. Constrained Optimization

satisfies

λ∗j · (gj (x∗1:N)− Rj) = 0, j = 1, · · · , m. (2.24)

and maximizes the Lagrangian L (x1:N , λ∗1:m) over the feasible set:

x∗1:N ∈ arg max
x1:N∈X

L (x1:N , λ∗1:m) . (2.25)

Then, x∗1:N is the global maximum of the problem.

Mixing both Propositions, a generic strategy to solve constrained optimizations is as follows:

first, we search for all feasible points that satisfy the KKT conditions. That is, find all points

for which (2.23) has a unique solution on λ1:m. Among all, we next find out one for which

the general sufficiency condition holds. This will be the global maximum of the problem.

However, many and wide drawbacks can be drawn on this procedure: i) there can be∞ points

satisfying the KKTs, making the computation tedious. ii) Usually, these points are obtained

resorting to iterative algorithms, making the computational time excessively long. iii) The

general sufficiency condition is not easy to demonstrate when the Lagrangian is not a concave

function on x1:N .

Fortunately, when the function f (·) is concave, and the constraints gi (·), i = 1, · · · , m are

convex, both necessary and sufficient conditions become identical. In fact, for this case the

Lagrangian in (2.21) is concave with respect to x1:N . Thereby, it takes its maximum (2.25) at

the point where:

∂L (x∗1:N , λ∗1:m)

∂xi
= 0, i = 1, · · · , N, (2.26)

which is identical to the KKT condition in Proposition 2.4. Hence, KKTs become sufficient

also. This simplifies notably the search, which is reduced to solving (on x1:N and λ1:N ) the

system of equations defined by the KKT conditions (2.23). Every solution is a global maximum

due to the sufficiency condition. Notice that the KKTs are defined by means ofN+m equations

with N + m variables. Thus, the problem is solvable. However, the solution is not necessarily

unique.
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2.2. Constrained Optimization

2.2.1 Iterative Algorithms

Many times in optimization, the KKT conditions (2.23) cannot be solved in closed-form. That

is, the system ofN +m equations withN +m variables is solvable but an analytical expression

for the solution cannot be given. It has to be obtained, then, resorting to iterative algorithms.

Here, we present two well-known algorithms to solve constrained optimizations iteratively.

Additionally, we provide an extension for the case where the cost function is not differentiable.

Block-coordinate Ascent Algorithm

Let us consider a special case of problem (2.20):

max
x1,··· ,xN

f (x1:N) (2.27)

s.t. gi (xi) ≤ Ri, i = 1, · · · , N

where gi (·) are convex functions on xi. No assumption is taken on the concavity of f (·).
Besides the convexity of gi (·), the main difference with the original problem is that, now,
the optimization variables are decoupled: each constraint only involves one variable. In other

words, being the convex set Xi = {xi | gi (xi) ≤ Ri}, then the feasible set X is the cartesian
product of convex sets:

X = X1 × · · · × XN . (2.28)

The algorithm consists of iteratively optimizing the function with respect to one xi while keep-

ing the other variables fixed:

xt+1
i ∈ arg max

xi∈Xi

f
(
xt+1

1 , · · · , xt+1
i−1, xi, x

t
i+1, · · · , xt

N

)
, i = 1, · · · , N, (2.29)

with t the iteration index. Intuitively, it performs a cyclic best-effort among variables. The

algorithm is also known as Non-Linear Gauss-Seidel algorithm, and makes sense whenever the

optimization (2.29) is fairly more easy to solve than (2.27) [49, Section 3.3.5]. Clearly, each

iteration increases the cost function. Two convergence results and a corollary can be drawn for

it.
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Proposition 2.6 [48, Proposition 2.7.1] Consider (2.27) with f (·) continuously differentiable.
Furthermore, let

max
ξ∈Xi

f (x1, · · · , xi−1, ξ, xi+1, · · · , xN) , i = 1, · · · , N (2.30)

exist and be uniquely attained. Then, the limit point of sequence xt
1:N is a stationary point, i.e.,

xt
1:N → x∗1:N with ∇f (x∗1:N)† · (x1:N − x∗1:N) ≤ 0, ∀x1:N ∈ X .

Remark 2.1 Notice that all local maxima are stationary points, but not all stationary points

are local maxima [48, Proposition 2.1.2]. Therefore, the sequence is guaranteed to converge,

but not necessarily to a local maximum.

Corollary 2.1 [49, Proposition 3.9] Whenever f (·) is also concave, the limit point of se-
quence xt

1:N converges to the global maximum of the problem.

Proof: As mentioned in [48, Proposition 2.1.2], for concave cost function f (·), stationarity
is not only necessary but also sufficient for global-optimality. Thus, the limit point satisfies

Proposition 2.5.

Proposition 2.7 [49, Proposition 3.10] Consider the assumptions in Prop. 2.6, with f (·) not
necessarily concave. Furthermore, let the mapping R (x1:N) = x1:N + γ · ∇f (x1:N) be a

block-contraction1 for some γ. Then, the limit point of sequence xt
1:N converges to a global

maximum of the problem.

Gradient Projection Algorithm

For the previous algorithm, two strong assumptions were taken: i) the feasible set needed

to be defined as the cartesian product of convex sets; ii) the maximization with respect to

one variable, keeping the rest fixed, needed to be uniquely attained. Those two assumptions

restrict the applicability of the algorithm. We thus propose new alternatives to iteratively solve

optimization problems not satisfying i) and/or ii).
1See [49, Section 3.1.2] for the definition of block-contraction, and sufficient conditions to hold.
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Consider now the more general problem (2.20), and let X be the feasible set, closed but not

necessarily convex. The Gradient Projection method searches for the maximum iterating as

follows [48, Section 2.3]:

xt+1
1:N = xt

1:N + γt

(
x̄1:N − xt

1:N

)
, (2.31)

where t is the iteration index, γt ∈ (0, 1] the step-size, and:

x̄1:N =
[
xt

1:N + st · ∇f
(
xt

1:N

)]⊥
. (2.32)

Here, st ≥ 0 is a scalar, ∇f (·) the gradient of f (·) and [·]⊥ the projection onto the feasible
set X . Two important issues must be noted here: i) the projection of a vector x1:N onto the

feasible set X consists of finding a vector a∗1:N ∈ X such that:

a∗1:N ∈ arg min
a1:N∈X

||a1:N − x1:N || ⇒ [x1:N ]⊥ = a∗1:N , (2.33)

given a preselected norm. ii) The algorithm is not, in general, amenable for parallel imple-

mentation. Although the computation of xt
1:N + st · ∇f (xt

1:N) can be easily parallelized, the

computation of the projection requires the solution of a non-trivial optimization involving all

components of x1:N .

The selection of the step size γt and the scalar st is generally crucial to obtain good convergence

properties for the algorithm. Some of the commonly used rules to choose them are brilliantly

revisited by Bertsekas in [48, Section 2.3.1], e.g., limited maximization rule, Armijo’s rule

along the feasible direction, Armijo’s rule along the feasible arc and diminishing step-size. We

refer the reader to that textbook for in-depth discussion.

Proposition 2.8 [48, Proposition 2.3.1] Let xt
1:N be a sequence generated by the gradient

projection method, with γt and st chosen by the limited maximization rule or the Armijo rule

along the feasible direction. Then, every limit point of xt
1:N is a stationary point.

Corollary 2.2 Whenever f (·) is concave, and the feasible set X convex, the limit point of

sequence xt
1:N converges to the global maximum of the problem.

One important property of the algorithm is that, when the feasible set is defined as the cartesian

product of sets, i.e. X = X1 × · · · × XN , the algorithm can be parallelized without loosing
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convergence properties [49, Section 3.3.4]. That is, we can define it as:

xt+1
n = xt

n + γt

(
x̄n − xt

n

)
, n = 1, · · · , N (2.34)

and:

x̄n =
[
xt

n + st · ∇xn
f
(
xt

1:N

)]⊥
, n = 1, · · · , N. (2.35)

where ∇xn
f (·) is the gradient with respect to xn, and the projection is independently carried

out onto each set Xn.

Subgradient Methods

In the previous analysis and algorithms, we assumed that the objective function is continuously

differentiable. In fact, we considered the gradient known and computable in closed-form. How-

ever, this might not be the case for all optimizations in communications; thus, here we propose

an alternative: the subgradient search.

It iterates exactly as the gradient method. However, instead of computing the gradient, a sub-

gradient is utilized. A subgradient is defined as a function h (x1:N) that satisfies:

f (a1:N)− f (x1:N) ≥ h (x1:N)† (a1:N − x1:N) , ∀a1:N 	= x1:N . (2.36)

With it, the algorithm iterates:

xt+1
1:N = xt

1:N + γt

(
x̄1:N − xt

1:N

)
, (2.37)

where t is the iteration index, γt ∈ (0, 1] the step-size, and:

x̄1:N =
[
xt

1:N + st · h
(
xt

1:N

)]⊥
. (2.38)

In contrast with the gradient method, the new iterate may not improve the cost function. How-

ever, as discussed in [49, Section 6.3.1], diminishing step-size rules guarantees convergence to

a stationary point of the cost function.

2.2.2 The Dual Problem

The algorithms introduced in the previous subsection are of wide use in network optimization

for e.g. covariance optimization for MIMO multi-user networks [50] and distortion design for
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multi-source compression [51]. However, there are many other problems where the applicabil-

ity is limited. On one hand, the block-coordinate approach requires the feasible set to be the

cartesian product of convex sets, which is not common. On the other hand, the gradient projec-

tion is built up upon the projection of vectors onto feasible sets. This can be computationally

intensive2, and in some cases, unfeasible. Hence, new approaches are needed. Here, we present

a powerful one: dual decomposition.

Consider the optimization problem

p∗ = max
x1,··· ,xN

f (x1:N) (2.39)

s.t. g (x1:N) ≤ R

For it, the dual problem is defined as follows. First, the Lagrangian function is constructed on

λ ≥ 0 as in (2.21):

L (x1:N , λ) = f (x1:N)− λ · (g (x1:N)− R) . (2.40)

Next, the dual function is obtained as the maximum of each parameterized function

q (λ) = max
x1,··· ,xN

L (x1:N , λ) . (2.41)

Function q (λ) has two main, and fundamental, properties: i) it is convex on λ, since it is the

point-wise maximum of a family of affine functions [52, Section 5.1.2]. This holds even for

non-convex problems. ii) q (λ) ≥ p∗, ∀λ ≥ 0. To demonstrate such an inequality, we can easily

infer from (2.22) that:

L (x1:N , λ) ≥ f (x1:N) , ∀λ ≥ 0, ∀x1:N ∈ X ⇒ maxL (x1:N , λ) ≥ max f (x1:N) (2.42)

Finally, the dual problem is defined as

q∗ = min
λ≥0

q (λ) . (2.43)

The dual analysis has a nice interpretation, that can be grasped from Fig. 2.2. First, the maxi-

mum of each parameterized function is found, aiming at upper bounding the global maximum

of f . Later, the minimum of all upper bounds is selected as the tightest upper bound on the

sought maximum.
2Recall that the projection is defined by means of a minimization.
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In order to estimate how good the bound is, the duality gap is used; it is defined as q∗−p∗ ≥ 0.

An optimization is said to have zero-duality gap if and only if q∗ − p∗ = 0. For those cases,

solving the dual problem solves the primal too.

Proposition 2.9 (Strong Duality Theorem for Convex Problems [48, Proposition 5.3.1]) Con-

sider the problem (2.39), with: f (·) concave, g (·) convex, non-empty feasible set X , and finite
optimal value f ∗. Furthermore, let be there at least one x1:N ∈ X such that g (x1:N) < R. For

such a problem, the duality gap is zero.

With this result, it is demonstrated that convex problems has zero-duality gap. But, what about

non-convex problems?. In general, no claim can be made. However, there is a specific family

of non-convex problems for which p∗ = q∗; the one who satisfies the time-sharing property.

Definition 2.1 (Time-Sharing Property [53, Definition 1]) Let x∗1:N and y∗1:N be the optimal

solutions for problem (2.39) with R = Rx and R = Ry, respectively. An optimization problem

of the form of (2.39) is said to satisfy the time-sharing property if for any Rx, Ry and any

0 ≤ ν ≤ 1, there is always a feasible point z1:N such that g (z1:N ) ≤ νRx + (1− ν) Ry and

f (z1:N) ≥ νf (x1:N) + (1− ν) f (y1:N). That is, if the maximum of (2.39) is concave with

respect to R.

Proposition 2.10 (Strong Duality Theorem for Non-Convex Problems [53, Theorem 1]) Con-

sider the problem (2.39), with f (·) not necessarily concave and g (·) not necessarily convex. If
the optimization satisfies the time-sharing property, the duality gap is zero.

Therefore, convex problems (and a family of non-convex ones) can be solved resorting to

dual decomposition. However, is this really worthwhile? In most of the cases, it is. The

main reason is that the dual function decouples the constraint. In other words, the involved

constrained maximization (2.39) turns into a simple non-constrained one in (2.41). Clearly, the

latter can be straightforwardly solved resorting to iterative algorithms as e.g., unconstrained

block-coordinate algorithm or unconstrained gradient method [48, Chapter 1].

However, it is still necessary to find the minimum of the dual function q (λ). As mentioned, the

function is convex. Therefore, a gradient method can be utilized to efficiently search for the
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minimum with guaranteed convergence. Unfortunately, the dual function is not continuously

differentiable in all cases, and for the cases where it is, the gradient may not be known. We can

thus utilize the subgradient search, which consists of following search direction −h (λ) such

that3:

q (λ′)− q (λ)

λ′ − λ
≥ h (λ) , ∀λ′ 	= λ. (2.44)

Let us now define

x1:N (λ) ∈ arg max
x1,··· ,xN

L (x1:N , λ) (2.45)

x1:N (λ′) ∈ arg max
x1,··· ,xN

L (x1:N , λ′) . (2.46)

Hence, it is clear that

q (λ) = f (x1:N (λ))− λ · (g (x1:N (λ))−R) , (2.47)

q (λ′) = f (x1:N (λ′))− λ′ · (g (x1:N (λ′))− R)

≥ f (x1:N (λ))− λ′ · (g (x1:N (λ))− R)

where inequality follows from the fact that there is no greater value than the global maximum.

Therefore, it is possible to bound

q (λ′)− q (λ) ≥ − (λ′ − λ) (g (x1:N (λ))−R) . (2.48)

As a result, the following choice satisfies the subgradient condition (2.44):

h (λ) = R − g (x1:N (λ)) . (2.49)

2.3 Stochastic Convergence

A sequence of random variables {xn}∞n=1 is said to converge to a random variable x if, at the

limit, both the sequence and x behave equally. Such a convergence is denoted by:

xn → x. (2.50)
3When searching for the minimum, we must follow the opposite direction of the gradient.
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2.3. Stochastic Convergence

However, what does ”behave equally” mean for random variables? It can mean different things,

and each meaning will define a type of convergence. Before reviewing them, let us state that a

non-random sequence {sn} converges to s if and only if:

∀ε > 0, ∃N such that |sn − s| < ε, ∀n ≥ N. (2.51)

With this in mind, four kinds of convergence can be defined for random sequences [54, pp.

40-42]:

• Almost sure convergence, denoted by xn
a.s.→ x, and satisfied whenever Pr {O} = 1,

where O is the event

O = {∀ε > 0, ∃N such that |xn − x| < ε, ∀n ≥ N} . (2.52)

This is the strongest type of convergence, forcing to be 1 the probability of having a

sampled sequence for which (2.51) holds. Nonetheless, notice that the complementary

event Oc can occur (that is, having a sampled sequence which does not converge), but

with probability zero.

• Convergence in mean-square, denoted by xn
m.s.→ x, and satisfied whenever

lim
n→∞

E
{
|xn − x|2

}
= 0. (2.53)

The mean is taken over the probability density function of both xn and x.

• Convergence in probability, denoted by xn
P→ x, and satisfied whenever

lim
n→∞

Pr {|xn − x| < ε} = 1, ∀ε > 0. (2.54)

Clearly, such a convergence is guaranteed whenever almost sure converge holds. How-

ever, the converse is not true.

• Convergence in law, denoted by xn
L→ x. It holds whenever the c.d.f. of x, and that of

xn satisfy, for all y belonging to the support set:

lim
n→∞

Fxn
(y) = Fx (y) . (2.55)
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2.3. Stochastic Convergence

Among all, the convergence in law is the weakest one, holding whenever all others are satisfied.

On the other hand, convergence in mean square and almost sure convergence are the strongest

ones, making all others to hold too. Nevertheless, it can occur that one is satisfied while the

other is not. Finally, as mentioned, convergence in probability is satisfied if almost sure and/or

in mean square hold, and implies convergence in law.

Convergence in probability will be the one used to present the convergence results of this thesis.

Let us introduce four lemmas regarding it.

Lemma 2.1 Let xn > 0 ∀n be a sequence of positive random variables, and 0 < g (n) < ∞,
∀n be a non-random sequence. Then:

xn − g (n)
P→ 0 =⇒ log2 (xn)− log2 (g (n))

P→ 0. (2.56)

Proof: Consider xn − g (n)
P→ 0; from definition (2.54) that means:

lim
n→∞

Pr {|xn − g (n) | < ε} = 1, ∀ε > 0. (2.57)

Such a probability can be rewritten as:

Pr {|xn − g (n) | < ε} = Pr {xn < g (n) + ε} − Pr {xn ≤ g (n)− ε} (2.58)

Clearly, being the logarithm a continuous, non-decreasing function, the first term can be ex-

pressed as:

Pr {xn ≤ g (n) + ε} = Pr {log2 (xn) ≤ log2 (g (n) + ε)} (2.59)

On the other hand, recalling that xn > 0, we can compute the second term as

Pr {xn < g (n)− ε} =

⎧⎨
⎩ 0 ε ≥ g (n)

Pr {log2 (xn) < log2 (g (n)− ε)} ε < g (n)
(2.60)

Defining log2 (0) � −∞, we can compactly write the probability above as:

Pr {xn ≤ g (n)− ε} = Pr
{
log2 (xn) ≤ log2

(
[g (n)− ε]+

)}
. (2.61)

Plugging both (2.59) and (2.61) into (2.58), makes:

Pr {|xn − g (n) | < ε} = Pr
{
log2

(
[g (n)− ε]+

)
< log2 (xn) < log2 (g (n) + ε)

}
≤ Pr {| log2 (xn)− log2 (g (n)) | < δ (ε, n)}

≤ Pr
{
| log2 (xn)− log2 (g (n)) | < max

i
δ (ε, i)

}
(2.62)
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x
n
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log2([g(n)−ε]+)

log2(g(n))

log2(g(n)+ε)

δ(ε,n)

log2(g(n)+ε)−log2(g(n))

log2(g(n))−log2([g(n)−ε]+)

Figure 2.3: Convergence in probability for the log2 function.

where we have defined

δ (ε, n) = max
{
log2 (g (n) + ε)− log2 (g (n)) , log2 (g (n))− log2

(
[g (n)− ε]+

)}
= max

{
log2

(
1 +

ε

g (n)

)
,− log2

([
1− ε

g (n)

]+
)}

(2.63)

The first inequality of (2.62) follows directly from Fig. 2.3. The second one is straightforward,

noticing that augmenting the interval increases the probability. Now, making use of (2.62) and

denoting ε′ = maxi δ (ε, i), given (2.57) the following holds:

lim
n→∞

Pr {| log2 (xn)− log2 (g (n)) | < ε′} = 1 ∀ε > 0. (2.64)

However, this does not demonstrate convergence in probability unless the range of ε′ is (0,∞).

Let then study the possible values of ε′ = maxi δ (ε, i). First, since 0 < g (n) < ∞, it is clear
that:

lim
ε→0

δ (ε, n) = 0 ∀n. =⇒ lim
ε→0

ε′ = 0 (2.65)

Likewise, it is possible to derive that

lim
ε→g(n)

δ (ε, n) =∞ ∀n. =⇒ lim
ε→minn g(n)

ε′ = ∞. (2.66)

Finally, being δ (ε, n) a continuous function on ε ∈ (0,∞), so it is maxi δ (ε, i). Accord-

ingly, ε′ = maxi δ (ε, i) will take all possible values between (0,∞) when ε ranges from
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2.3. Stochastic Convergence

(0, minn g (n)]. Therefore, (2.64) holds ∀ε′ > 0, which demonstrates convergence and con-

cludes the proof.

Lemma 2.2 Let xn, yn be two independent sequences of random variables, and g (n), f (n) be

two non-random sequences. Then:

xn − g (n)
P→ 0

yn − f (n)
P→ 0

⎫⎬
⎭ =⇒ min {xn, yn} −min {g (n) , f (n)} P→ 0. (2.67)

Remark 2.2 The same holds when taking the max instead of the min.

Proof: We follow similar steps as those in Lemma 2.1. However, in this case, we have a two

dimensional mapping T (x, y) = min {x, y} instead of a one-dimensional mapping T (x) =

log2 (x). First of all, being xn and yn independent, and given the individual convergence of

both random sequences we can derive that:

lim
n→∞

Pr {|xn − g (n) | < ε ∩ |yn − f (n) | < ε} = (2.68)

lim
n→∞

Pr {|xn − g (n) | < ε} · Pr {|yn − f (n) | < ε} = 1, ∀ε > 0.

Let us now define the sets X (n) = (g (n)− ε, g (n) + ε) and Y (n) = (f (n)− ε, f (n) + ε),

so that:

Pr {|xn − g (n) | < ε ∩ |yn − f (n) | < ε} = Pr {xn ∈ X (n) ∩ yn ∈ Y (n)} . (2.69)

Notice that, within the cartesian product X (n) × Y (n), the mapping T (x, y) = min {x, y}
takes supremum and infimum values:

sup
(xn,yn)∈X (n)×Y(n)

min {xn, yn} = min {g (n) , f (n)}+ ε. (2.70)

inf
(xn,yn)∈X (n)×Y(n)

min {xn, yn} = min {g (n) , f (n)} − ε.

Therefore,

min {g (n) , f (n)} − ε < min {xn, yn} < min {g (n) , f (n)}+ ε, ∀ (xn, yn) ∈ X (n)× Y (n) .

Accordingly, it is possible to bound:

Pr {xn ∈ X (n) ∩ yn ∈ Y (n)} ≤ (2.71)

Pr {min {g (n) , f (n)} − ε < min {xn, yn} < min {g (n) , f (n)}+ ε}

= Pr {|min {xn, yn} −min {g (n) , f (n)} | < ε} .
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2.3. Stochastic Convergence

First inequality follows from the fact that it might exist (xn, yn) /∈ X (n)× Y (n) such that:

min {g (n) , f (n)} − ε < min {xn, yn} < min {g (n) , f (n)}+ ε.

Finally, considering (2.71) and (2.69), we can claim that:

Pr {|xn − g (n) | < ε ∩ |yn − f (n) | < ε} ≤ (2.72)

Pr {|min {xn, yn} −min {g (n) , f (n)} | < ε} .

Therefore, given (2.68), we obtain:

lim
n→∞

Pr {|min {xn, yn} −min {g (n) , f (n)} | < ε} = 1, ∀ε > 0. (2.73)

which concludes the proof.

Lemma 2.3 Let xn be a sequence of random variables and g (n), f (n) be two non-random

sequences. Furthermore, let

xn − g (n)
P→ 0 and lim

n→∞
g (n)− f (n) = 0. (2.74)

Then, xn − f (n)
P→ 0.

Proof: Let us first state the convergence xn − g (n)
P→ 0 as:

lim
n→∞

Pr {|xn − g (n) | < ε} = 1 ∀ε > 0. (2.75)

Likewise, the limit (2.74) can be rewritten as:

∀ε′ > 0, ∃No such that |g (n)− f (n) | < ε′, ∀n ≥ No. (2.76)

Consider now a fixed value ε′, for which No = No (ε′). It is clear that, for n ≥ No

Xn = (g (n)− ε, g (n) + ε) ⊆ X ′n = (f (n)− ε− ε′, f (n) + ε + ε′) . (2.77)

Accordingly, for n ≥ No:

Pr {|xn − g (n) | < ε} = Pr {xn ∈ Xn} (2.78)

≤ Pr {xn ∈ X ′n}

= Pr {|xn − f (n) | < ε + ε′}

Now, considering (2.78) and (2.75), we can show that

lim
n→∞

Pr {|xn − f (n) | ≤ ε + ε′} = 1 ∀ε > 0. (2.79)

Finally, as ε′ can be arbitrarily chosen within the interval (0,∞), it concludes the proof.
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Lemma 2.4 [55] Let the random sequences xn and yn converge in probability to x and y,

respectively. Then,

• xn ± yn
P→ x± y,

• xn · yn
P→ x · y,

• if yn > 0, ∀n, then xn

yn

P→ x
y
.

2.3.1 The Law of Large Numbers

The law of large numbers is the most relevant representative of convergence in probability.

It will be of definite help when deriving scaling laws for relay networks (as e.g., asymptotic

performance with the number of relays and/or users), and reads as follows:

Law of Large Numbers: Let {an} be a sequence of independent random variables, with mean
μn = E {an} <∞ and bounded variance. Then, for n →∞

1

n

n∑
i=1

an −
1

n

n∑
i=1

μn
P→ 0. (2.80)

Intuitively, it states that the sample mean converges to the average mean. The law can take the

equivalent form, much more useful for the rest of the thesis:

1 +
∑n

i=1 an

n
− 1 +

∑n
i=1 μn

n
P→ 0. (2.81)

From it, and utilizing Lemma 2.1, the following corollary can be derived.

Corollary 2.3 Let χn ≥ 0, ∀n be a sequence of independent random variables with positive,
bounded mean χ̄n = E {χn} ∈ (0,∞) and bounded variance. Then:

log2

(
1 +

n∑
i=1

χi

)
− log2

(
1 +

n∑
i=1

χ̄i

)
P→ 0. (2.82)

Proof: First, applying the law of large numbers (2.81), the following convergence holds:

1 +
∑n

i=1 χi

n
− 1 +

∑n
i=1 χ̄i

n

P→ 0. (2.83)
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That is,

lim
n→∞

Pr
{∣∣∣∣1 +

∑n
i=1 χi

n
− 1 +

∑n
i=1 χ̄i

n

∣∣∣∣ < ε

}
= 1, ∀ε. (2.84)

Next, notice that given χi ≥ 0:

1 +
∑n

i=1 χi

n
> 0, ∀n, and

1 +
∑n

i=1 χ̄i

n
> 0, ∀n

Therefore, the probability above can be transformed as:

Pr
{∣∣∣∣1 +

∑n
i=1 χi

n
− 1 +

∑n
i=1 χ̄i

n

∣∣∣∣ < ε

}
= Pr

{∣∣∣∣∣
1+
�n

i=1 χi

n
1+
�n

i=1 χ̄i

n

− 1

∣∣∣∣∣ · 1 +
∑n

i=1 χ̄i

n
< ε

}

= Pr

{∣∣∣∣1 +
∑n

i=1 χi

1 +
∑n

i=1 χ̄i
− 1

∣∣∣∣ <
ε

1+
�n

i=1 χ̄i

n

}

Let us now define χ̄min = mini χ̄i > 0, since all random variables have non-zero mean. Hence,

it is possible to bound:

1 +
∑n

i=1 χ̄i

n
≥ 1

n
+ χ̄min > χ̄min, ∀n. (2.85)

Therefore,

ε
1+
�n

i=1 χ̄i

n

<
ε

χ̄min

, ∀n, (2.86)

which implies that, for all n:

Pr

{∣∣∣∣1 +
∑n

i=1 χi

1 +
∑n

i=1 χ̄i
− 1

∣∣∣∣ <
ε

1+
�n

i=1 χ̄i

n

}
≤ Pr

{∣∣∣∣1 +
∑n

i=1 χi

1 +
∑n

i=1 χ̄i
− 1

∣∣∣∣ <
ε

χ̄min

}
. (2.87)

Plugging this onto the probability above allows to bound:

Pr
{∣∣∣∣1 +

∑n
i=1 χi

n
− 1 +

∑n
i=1 χ̄i

n

∣∣∣∣ < ε

}
≤ Pr

{∣∣∣∣1 +
∑n

i=1 χi

1 +
∑n

i=1 χ̄i

− 1

∣∣∣∣ <
ε

χ̄min

}

Now, defining ε′ = ε
χ̄min

∈ (0,∞) and considering (2.84), it is clear that

1 +
∑n

i=1 χi

1 +
∑n

i=1 χ̄i
− 1

P→ 0. (2.88)

Therefore, we may apply Lemma 2.1, to derive that

log2

(
1 +

∑n
i=1 χi

1 +
∑n

i=1 χ̄i

)
− log2 (1)

P→ 0. (2.89)

That is,

log2

(
1 +

n∑
i=1

χi

)
− log2

(
1 +

n∑
i=1

χ̄i

)
P→ 0. (2.90)

which concludes the proof.
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Chapter 3

Multiple-Parallel Relay Channel

3.1 Introduction

Relay channels, cooperative communications and distributed multiple-antenna processing are

the philosopher’s stone of wireless communications, called upon to transform wireless into

wired. Like in gold rush, researchers worldwide wrestle to discover their true potential, and...

patent it. Unfortunately, coming up with panaceas (and making them profitable for one’s own

enterprise) can take a lifetime of research and no success is guaranteed. Aiming, thus, at

limiting the scope of my efforts to attainable ventures, this chapter merely focuses on a single

query:

• Howmuch can the point-to-point channel capacity be enlarged by placingN intermediate

relay nodes?

All the contributions in this chapter try to address this question.
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3.1.1 Overview

This chapter studies the multiple-parallel relay channel under AWGN (see Fig. 3.1). We con-

sider single-antenna source, destination and relays, in a time-invariant and memory-less chan-

nel. Transmit and receive CSI are available at the source and destination, respectively, and

all network nodes operate in the same frequency band. Finally, relaying is full-duplex: relays

transmit and receive, simultaneously, using the same frequency.

Our focus is the channel capacity. We first provide an upper bound and then lower bounds by

means of the achievable rates with different relaying techniques. We organize our contributions

as follows:

• First, the max-flow-min-cut Theorem is used to provide an upper bound the capacity of
the channel. The obtained bound turns out to scale as log2 N in Rayleigh-fading (N

is the number of relays). Likewise, it is shown to be reciprocal: source-relay channels

and relay-destination channels can be interchanged without modifying the upper bound.

That is, the bound does not distinguish whether source is transmitting to destination or

viceversa.

• Decode-and-forward (D&F) is the first relaying technique studied. We derive its achiev-
able rate as the generalization, to arbitrary number of relays N , of the single-relay

result [10, Theorem 5]. Moreover, for Rayleigh-distributed fading, we obtain that as

N →∞:

RD&F − C
(

2 ·W0

(√
N

2

)
· P

No

)
P→ 0. (3.1)

This scaling law is shown to be always lower than log2 log N . As argued in the sequel,

this fact comes from the source-relays broadcast limitation.

• Two-level partial decode-and-forward (PD&F) is presented next as a generalized version
of D&F. We derive its achievable rate and show that, for large number of relays, it does

not outperform D&F. Hence, new techniques need to be considered.

• Compress-and-forward (C&F) is studied considering distributedWyner-Ziv compression
at the relays [39]. The achievable rate turns out to be the solution of a non-convex op-

timization problem with 1 +
∑N

i=1

(
N
i

)
= 2N constraints, which becomes untractable
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for large number of relays. As a benchmark to this technique, we thus provide a com-

putable upper bound that can be calculated using known optimization tools. Finally,

we demonstrate that the C&F rate scales as log2 log (N). In this case, it is due to the

relays-destination MAC limitation.

• Linear Relaying (LR) is studied last. It consists of relay nodes transmitting, on every
channel use, a linear combination of previously received signals [24]. We first derive

the source temporal covariance that maximizes the achievable rate. Once the optimum

source signal is obtained, the search for the optimum linear functions at the relays is an

untractable optimization problem. To overcome this limitation, we propose a subopti-

mum approach. Regarding asymptotic performance, Dana et al. have previously shown

that the achievable rate with amplify-based relaying scales as log2(N) [56]. We present

an alternative proof. Finally, we show that the LR rate is also reciprocal, in the same

manner as the max-flow-min-cut, and unlike all other relaying techniques.

• To conclude the chapter, all techniques are adapted to half-duplex operation at the relays.

The remainder of the chapter is organized as follows: Section 3.2 presents the channel model,

main assumptions and the max-flow-min-cut bound. Sections 3.3 and 3.4 study D&F and

PD&F, respectively, while Sections 3.5 and 3.6 are devoted to C&F and LR, respectively. Sec-

tion 3.7 presents numerical results on all techniques. Finally, Section 3.8 extends the analysis

to half-duplex relaying, and Section 3.9 states conclusions.

3.2 Channel Model

The multiple-parallel relay channel (MPRC) is a channel in which there is a single source s

communicating to a single destination d with the aid of a setN = {1, · · · , N} of parallel relay
nodes (see Fig. 3.1). Source, relays and destination transmit/receive scalar signals, and wireless

channels are time-invariant, memoryless, modeled using a complex coefficient. The complex

channel between source and destination is denoted by a, and the channels from source to relay

i ∈ N , and from relay i ∈ N to destination by bi and ci, respectively. Unlike the multi-level

model [25], no wireless connectivity between relays exists in our model: we assume that relays

use transmit directional antennas to the destination.
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Figure 3.1: Multiple-Parallel Relay Channel.

We refer to the signal transmitted by the source as xn
s = {xt

s}n
t=1 ∈ Cn, where xt

s is the

transmitted symbol during channel use t and n the codeword length. This is received at the

relays embedded into observations yn
i = {yt

i}
n
t=1 ∈ Cn, i ∈ 1, · · · , N :

yn
i = bi · xn

s + zn
i , (3.2)

where zi ∼ CN (0, No) is additive white Gaussian noise (AWGN) at relay i. The signal

transmitted by relay i = 1, · · · , N is denoted by xn
i = {xt

i}
n
t=1 ∈ Cn, and is defined by

means of a causal relaying function: xt
i = f ri

(
y1

i , · · · , yt−1
i

)
. Finally, the destination node

yn
d = {yt

d}
n
t=1 ∈ Cn receives the superposition of signals transmitted by source and relays

yn
d = a · xn

s +

N∑
i=1

ci · xn
i + zn

d , (3.3)

with zd ∼ CN (0, No). For the channel, we assume the following:

(A1). Full-duplex operation: relays transmit and receive simultaneously in the same frequency

band. It can be implemented in practice using different, uncoupled antennas for trans-

mission and reception.

(A2). Transmit channel state information (CSI) and receive CSI at the source and destination,

respectively. Channel awareness not only includes the source-destination channel, but
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also the source-relay and relay-destination channels. It may be difficult to satisfy this

assumption in practice. However, distributed knowledge can be obtained in slow varying

channels via channel reciprocity, and feedback, during a set up phase.

(A3). The total transmitted power in the network is constrained to P :

1

n

n∑
t=1

(
E
{
|xt

s|2
}

+

N∑
i=1

E
{
|xt

i|2
})

≤ P. (3.4)

The aim is to provide a fair comparison with the no-relay channel with source power P .

3.2.1 Preliminaries

Definition 3.1 A
(
n, 2nR

)
code for the MPRC is defined by:

• a set of messagesW =
{
1, · · · , 2nR

}
, a signal space Xs and a source encoding function

fs : W → X n
s ,

• N signal spaces Xi, i = 1, · · · , N and N causal relay functions

fri
: Yn

i → X n
i , i = 1, · · · , N,

• a decoding function g : Yn
d →W .

Definition 3.2 A rate R is achievable if there exists a sequence of codes
(
n, 2nR

)
for which

limn→∞ P n
e = 0, where

P n
e =

1

2nR

∑
ω

Pr {g (yn
d ) 	= ω|ω was sent} . (3.5)

Definition 3.3 The capacity of the MPRC is the supremum of all transmission rates that are

achievable. Recently, it has been derived as the mutual information between the source input

and the destination output, maximized over the input distribution and over the relay functions:

C = lim
n→∞

max
pxn

s
,{fri}N

i=1

1

n
· I (xn

s ; yn
d ) , (3.6)

and subject to causal relaying in Definition 3.1 and power constraint (3.4) [57, Theorem 2.1].

However, deriving a single letter expression for the capacity (3.6) is still an open problem. In

this section, we present an upper bound on it.
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3.2.2 Max-flow-min-cut Upper Bound

The max-flow-min-cut theorem defines a necessary (but not sufficient) condition that any trans-

mission rate within a connected network must satisfy in order to be achievable. It is evaluated

here in order to provide an upper bound on (3.6). The condition is expressed using a max min

operation, and for our problem is formulated as follows [21, Theorem 14.10.1]:

C ≤ max
p(xs,x1:N )

{
min

T ⊂{s,1,··· ,N,d}:s∈T ,d∈T c
I (xT ; yT c|xT c)

}
, (3.7)

where maximization is subject to (3.4). The bound can be interpreted resorting to data flows;

clearly, (3.7) states that the maximum transmission rate between the source s and the destina-

tion d is always lower than or equal to the maximum data flow between the set of inputs xT and

the set of outputs yT c , whenever s ∈ T and d ∈ T c. This is, somehow, obvious. Notice that

the minimization in (3.7) is taken over 1 +
∑N

i=1

(
N
i

)
elements, as much as possible subsets T

(also known as network cuts). However, here, we only consider the MAC and BC cuts, which

yields the following bound.

Upper Bound: The capacity of the AWGN multiple-parallel relay channel satisfies

C ≤ max
0≤ρ≤1

min
{
C
((
|a|2 + ρ

∑N
i=1 |ci|2

)
P
No

)
, C
((
|a|2 +

∑N
i=1 |bi|2

)
(1− ρ) P

No

)}
(3.8)

= C
((

|a|2 +

∑N
i=1 |bi|2

|a|2 +
∑N

i=1 |bi|2 +
∑N

i=1 |ci|2
N∑

i=1

|ci|2
)

P

No

)

Remark 3.1 Interestingly, the obtained upper bound is reciprocal. That is, interchanging

channels bi ↔ ci maintains (3.8) unaltered. This has a nice, and democratic, interpretation:

the upper bound does not distinguish whether s is transmitting to d or viceversa. Although yet

undemonstrated, the MPRC capacity (3.6) is expected not to distinguish either and to perform

equally from s to d than from d to s. This is an open question that we are not able to answer in

this dissertation.

Proof: Let us consider only two network cuts at the minimization of (3.7): T = {s, 1, · · · , N}
and T = {s} . With them, we can bound

C ≤ max
p(xs,x1:N )

min {I (xs, x1:N ; yd) , I (xs; yd, y1:N |x1:N)} , (3.9)

where maximization is subject to power constraint (3.4). We build upon [11, Section VII.B] to

evaluate such an upper bound to our network. Firstly, we notice that both parts of minimization
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3.2. Channel Model

are maximized, under AWGN, with p (xs, x1:N) jointly Gaussian. Hence, Gaussian distribution

is the optimum input distribution. Furthermore, it is easy to show that the two elements of the

minimization are individually maximized (and so it is the minimum of them) for x1, · · · , xN

fully correlated: ∣∣∣∣∣ E
{
xix

∗
j

}
√

E {|xi|2}
√

E {|xj |2}

∣∣∣∣∣ = 1, ∀i, j ∈ N . (3.10)

This is due to two facts: i) the multi-access cut I (xs, x1:N ; yd) takes maximum value when

random variables add coherently, i.e. when they are fully correlated. ii) Conditioning reduces

entropy [21, Theorem 2.6.5]. That is, H (A|B) ≥ H (A|B, C), with equality whenever B and

C are fully correlated or A is conditionally independent of C, given B. Therefore, since

I (xs; yd, y1:N |x1:N) = H (yd, y1:N |x1:N)−H (yd, y1:N |xs, x1:N) (3.11)

= H (yd, y1:N |x1:N)−H (zd, z1:N) ,

it is clear that the broadcast cut I (xs; yd, y1:N |x1:N) takes maximum value when all x1, · · · , xN

are fully correlated.

With such an input distribution, and defining ρs,r = |E
{
xsx

∗
j

}
/
√

E {|xs|2}
√

E {|xj|2}|, ∀j ∈
N as the source-relays correlation, we can evaluate:

I (xs; yd, y1:N |x1:N) = C
((

|a|2 +
N∑

i=1

|bi|2
)

E {|xs|2|x1:N}
No

)
(3.12)

= C
((

|a|2 +

N∑
i=1

|bi|2
) (

1− ρ2
s,r

)
E {|xs|2}

No

)

= C
((

|a|2 +

N∑
i=1

|bi|2
)

(1− ρ)
P

No

)
,

where we have defined

(1− ρ) P =
(
1− ρ2

s,r

)
E
{
|xs|2

}
. (3.13)

Furthermore, it is also possible to bound:

I (xs, x1:N ; yd) = I (xs; yd|x1:N) + I (x1:N ; yd) (3.14)

≤ C
(
|a|2

(
1− ρ2

s,r

)
E {|xs|2}

No

)

+ C

⎛
⎝
(
|a|2 +

∑N
i=1 |ci|2

)(
ρ2

s,rE {|xs|2}+
∑N

i=1 E {|xi|2}
)

No + |a|2
(
1− ρ2

s,r

)
E {|xs|2}

⎞
⎠

41



3.2. Channel Model

= C
( |a|2 (1− ρ) P

No

)
+ C

⎛
⎝
(
|a|2 +

∑N
i=1 |ci|2

)
ρP

No + |a|2 (1− ρ) P

⎞
⎠

= C
((

|a|2 + ρ
N∑

i=1

|ci|2
)

P

No

)
,

where second equality is derived by noting that ρ2
s,rE {|xs|2} = E {|xs|2}− (1− ρ) P from de-

finition (3.13), and E {|xs|2}+
∑N

i=1 E {|xi|2} = P from power constraint (3.4). Furthermore,

the inequality has been derived by noting that

I (x1:N ; yd) = H (yd)−H (yd|x1:N) (3.15)

= log2

⎛
⎝|a|2 (1− ρ2

s,r

)
E
{
|xs|2

}
+

(
|a|ρs,r

√
E {|xs|2}+

N∑
i=1

|ci|
√

E {|xi|2}
)2

+ No

⎞
⎠

− log2

(
|a|2

(
1− ρ2

s,r

)
E
{
|xs|2

}
+ No

)

= C

⎛
⎜⎝
(
|a|ρs,r

√
E {|xs|2}+

∑N
i=1 |ci|

√
E {|xi|2}

)2

No + |a|2
(
1− ρ2

s,r

)
E {|xs|2}

⎞
⎟⎠

≤ C

⎛
⎝
(
|a|2 +

∑N
i=1 |ci|2

)(
ρ2

s,rE {|xs|2}+
∑N

i=1 E {|xi|2}
)

No + |a|2
(
1− ρ2

s,r

)
E {|xs|2}

⎞
⎠ .

The second equality comes from the fact that x1, · · · , xN are fully correlated, having all corre-

lation ρs,r with the source. Finally, the inequality holds since maximal ratio combining upper

bounds the square value of the sum.

At this point, it remains to maximize over ρ the minimum of the two cuts. For that purpose,

notice that (3.14) is an increasing function of ρ, while (3.12) is decreasing. Therefore, the

maximum over ρ of the minimum of both is given at the value where both are equal:

ρ∗ =

∑N
i=1 |bi|2

|a|2 +
∑N

i=1 |bi|2 +
∑N

i=1 |ci|2
. (3.16)

This concludes the proof. As a remark, it can be shown that, for N → ∞ and unitary-mean,

Rayleigh fading, the bound converges in probability to C
(

N
2

P
No

)
.

The above result is also an upper bound on the capacity of the multi-level relay channel, as we

did not take any assumption on the inter-relay connectivity. Likewise, notice that Gastpar also

considers the MAC and BC cuts in [32]; however, in that work, both are optimized separately

over the input distributions, resulting in a less tight bound than (3.8).
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3.3. Decode-and-forward

3.3 Decode-and-forward

Decode-and-forward (D&F) is the first relaying technique considered in this chapter. With it,

the relay nodes fully decode the source message. Then, they re-encode it and retransmit it

coherently to destination. The relays, thus, help the source by mimicking a transmit antenna

array towards the receiver. This technique is presented for a single relay in [10, Theorem

5] and extended here to multiple relays. The extension is based upon a key fact: the higher

the cardinality of relays that decode the source message, the higher the multiple-antenna gain

towards the destination. However, the more relays, the lower the source’s rate that all can

decode. Clearly, then, there is an optimum subset of relays to be active: the one who better

trade among the two effects.

Theorem 3.1 The AWGN multiple-parallel relay channel achieves the rate

RD&F = max
1≤m≤N

max
0<η≤1

min

{
C
((

|a|2 + (1− η)
m∑

i=1

|ci|2
)

P

No

)
, C
(
|bm|2η

P

No

)}
(3.17)

= max
1≤m≤N

C
(
|bm|2 min

{
1,
|a|2 +

∑m
i=1 |ci|2

|bm|2 +
∑m

i=1 |ci|2
}

P

No

)

with decode-and-forward. The source-relay channels have been ordered as:

|b1| ≥ · · · ≥ |bm| ≥ · · · ≥ |bN |. (3.18)

Proof: Let the N relay nodes be ordered as in (3.18), and assume that only the subsetRm =

{1, · · · , m} ⊆ N is active. The source selects message ω ∈
{
1, · · · , 2nR

}
for transmission,

and splits it into B sub-messages of κR bits, with κ = n
B
, i.e., ω =

[
ω1, · · · , ωB

]
. The

submessages are then pipelined into B +1 channel blocks, with κ channels uses per block. We

consider n, κ, B � 1, so that B
B+1

≈ 1.

The source encodes the message using a block-Markov approach [21, Sec. 14.7]: on every

block b, it transmits the sub-message ωb to the relays and destination. Simultaneously, it coop-

erates with the relays inRm to retransmit its previously transmitted sub-message ωb−1. To that

end, source and relays transmit

xκ
s [b] = sκ

(
ωb
)

+
a∗√

|a|2 +
∑

i∈Rm
|ci|2

vκ
(
ωb−1

)
,

xκ
i [b] =

c∗i√
|a|2 +

∑
i∈Rm

|ci|2
· vκ

(
ωb−1

)
, ∀ i ∈ Rm.
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3.3. Decode-and-forward

Here, we have selected sκ (·) to be a random Gaussian codebook, generated i.i.d. from s ∼
CN (0, ηP ). In turn, vκ (·) is a randomGaussian codebook, generated from v ∼ CN (0, (1− η)P ).

Being 0 < η ≤ 1, we notice that the power constraint (3.4) is satisfied with equality. The re-

ceived signal at the relays and destination thus reads:

yκ
i [b] = bi · sκ

(
ωb
)

+
bi · a∗√

|a|2 +
∑

i∈Rm
|ci|2

vκ
(
ωb−1

)
+ No, ∀ i ∈ Rm

yκ
d [b] = a · sκ

(
ωb
)

+

√
|a|2 +

∑
i∈Rm

|ci|2 · vκ
(
ωb−1

)
+ No.

On every block b, all nodes inRm are able to decode ωb and therefore retransmit it coherently

during block b + 1 iff (assume they have all estimated ωb−1 correctly):

R ≤ min
i∈Rm

I (s; yi|v) (3.19)

= C
(
|bm|2η

P

No

)
,

The equality is due to ordering (3.18). Next, consider the decoding at the destination in the

same block b. Assume that sub-message ωb−2 has been successfully decoded. Then, using

parallel channel decoding as in [58, Sec III.B], the destination uses signals yκ
d [b− 1] and

yκ
d [b] to estimate message ωb−1. It can do so reliably iff

R ≤ I (s; yd|v) + I (v; yd) (3.20)

= I (s, v; yd)

= C
((

|a|2 + (1− η)

m∑
i=1

|ci|2
)

P

No

)
.

where I (s; yd|v) is the mutual information that destination extracts from yκ
d [b− 1] to decode

ωb−1, given a priori knowledge of ωb−2. In turn, I (v; yd) is the mutual information extracted

from yκ
d [b] to decode ωb−1. Now, considering both (3.19) and (3.20) we obtain the minimiza-

tion in (3.17), which shows the maximum achievable rate for a given set Rm and η. However,

note that (3.19) is a strictly decreasing function with η, while (3.20) is an increasing function.

Hence, the maximum over η of the minimum of the two is given at the η∗ that makes both

equal, i.e.,

η∗ =
|a|2 +

∑m
i=1 |ci|2

|bm|2 +
∑m

i=1 |ci|2
. (3.21)

However, η∗ has to be lower than or equal to one. Hence, second equality in (3.17) holds.

Finally, we may arbitrarily choose the decoding setRm from {R1, · · · ,RN}.
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As mentioned in the proof, parameterm in Theorem 3.1 denotes the cardinality of the decoding

set, that is, the number of relays that the source node selects to decode and retransmit. Notice

that C
(
(|a|2 + (1− η)

∑m
i=1 |ci|2) P

No

)
, increases with the cardinality m, while C

(
|bm|2η P

No

)
decreases. Therefore, for the optimum number of relaysm∗ both quantities will be similar. Or,

in other words,m∗ is the cardinality of active relays that better trades among the two of them.

3.3.1 Asymptotic Performance

Consider unitary-mean, Rayleigh fading1 within the network: a, bi, ci ∼ CN (0, 1), i = 1, · · · , N .
The following convergence in probability can be proven for the rate in Theorem 3.1.

Theorem 3.2 LetW0 (x) be the branch zero of the Lambert W function2. Then, for N →∞:

RD&F − C
(

2 ·W0

(√
N

2

)
· P

No

)
P→ 0. (3.22)

Proof: We focus on the first equality in (3.17). For N � 1, it can be re-stated as:

RD&F = max
k∈(0,1]

max
0<η≤1

min

{
C
((

|a|2 + (1− η)
kN∑
i=1

|ci|2
)

P

No

)
, C
(
|bkN |2η

P

No

)}
, (3.23)

where, as mentioned, |bkN |2 is the kN th ordered channel as in (3.18). Firstly, considering

η 	= 1, we can apply Corollary 2.3 to show that:

C
((

|a|2 + (1− η)

kN∑
i=1

|ci|2
)

P

No

)
− C

(
(1 + (1− η) kN)

P

No

)
P→ 0. (3.24)

Furthermore, we can use Lemma 2.3 to derive:

C
((

|a|2 + (1− η)

kN∑
i=1

|ci|2
)

P

No

)
− C

(
(1− η) kN

P

No

)
P→ 0. (3.25)

Now, recall that the non-ordered source-relay channels |b|2 are i.i.d., unitary-mean, exponen-
tially distributed. Therefore, they all share cdf F (x) = Pr {|b|2 < x} = 1 − e−x, whose

inverse function is Q (y) = F−1 (x) = − log (1− y). Hence, we may apply ordered statistics

to show the following convergence in probability, for N →∞ [60, Section 10.2]:

|bkN |2 P→ Q (1− k) = − log (k) . (3.26)
1Channels are time-invariant and memory-less.
2The function is defined asW0 (x) = {y ∈ R : yey = x}. It satisfiesW0 (x) < log (x) ∀x > e [59].
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Due to Lemma 2.1, we thus show:

C
(
|bkN |2η

P

No

)
P→ C

(
− log (k) η

P

No

)
(3.27)

Now, notice thatmax andmin functions keep convergence unaltered (see Lemma 2.2). There-

fore, we can plug (3.25) and (3.27) into definition (3.23) to derive

RD&F − max
k∈(0,1]

max
0<η≤1

min

{
C
(

(1− η) kN
P

No

)
, C
(
− log (k) η

P

No

)}
P→ 0. (3.28)

It is easy to notice that the optimum value of η in (3.28) yields (1− η∗) kN = − log (k) η∗, i.e,

η∗ = kN
kN−log(k)

. Therefore, we can rewrite:

RD&F − max
k∈(0,1]

C
(
− log (k) kN

kN − log (k)

P

No

)
P→ 0. (3.29)

Finally, using standard arguments for non-convex optimization, the maximization over k is

shown to be attained at k∗ =
{

k : − log (k) =
√

kN
}

= 4
W0(

√
N/2)

2

N
. As a result,

RD&F − C
(
− log (k∗) k∗N

k∗N − log (k∗)

P

No

)
P→ 0. (3.30)

Now, the following can be derived:

C
(
− log (k∗) k∗N

k∗N − log (k∗)

P

No

)
= C

( √
k∗Nk∗N

k∗N +
√

k∗N

P

No

)
(3.31)

= C
( √

k∗N

1 + (k∗N)−
1
2

P

No

)

= C

⎛
⎜⎝ 2W0

(√
N/2

)
1 +

(
2W0

(√
N/2

))−1

P

No

⎞
⎟⎠ ,

where first equality comes from definition of k∗ and third from its closed form expression.

Therefore, noting that limN→∞
(
2W0

(√
N/2

))−1

= 0, we can claim that

lim
N→∞

C
(
− log (k∗) k∗N

k∗N − log (k∗)

P

No

)
− C

(
2W0

(√
N

2

)
P

No

)
= 0 (3.32)

Hence, considering (3.32) and (3.30) on Lemma 2.3, it concludes the proof.

This result shows that RD&F performs worse than C
(
log

(
N√
2

)
P
No

)
. Hence, for large N , it is

far from the max-flow-min-cut bound, which scales as C
(

N
2

P
No

)
. This fact is explained by the
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source-relays broadcast limitation: the maximum transmission rate with D&F is constrained by

the maximum rate at which the source can communicate with relays. This rate is lower than, or

equal to, the source to the best-relay channel capacity. It is well-known that the highest capacity

of a set of N i.i.d. Rayleigh-faded capacities scales as C
(
log (N) P

No

)
< C

(
N P

No

)
[61,

Lemma 2]. This result suggests that other techniques may be more effective for large N .

3.4 Partial Decode-and-Forward

Partial decode-and-forward (PD&F) was introduced in [10] for the single-relay channel and

is a generalization of decode-and-forward. The relays are only required to partially decode

the source data, which is useful given that the amount of decoded data can be adapted to the

source-relay channel quality.

In this dissertation, we consider two-level partial decoding, which is defined as follows: the

source splits its transmitted message ω into two independent messages, and simultaneously

transmits them using superposition coding. The first message is directly sent to the destination.

The second message is transmitted through the relays using block-Markov encoding. The

destination, in turn, estimates both messages using successive decoding. The performance

of PD&F is optimized by optimally allocating power on the two messages. Previous results

regarding partial decoding for a single relay can be found in [11, 22, 57] and in the original

work [10]. We extend these results here to the multi-relay case.

Theorem 3.3 The AWGN multiple-parallel relay channel achieves the rate

RPD&F = max
1≤m≤N

max
0≤(η,β)≤1

min

{
C
((

|a|2 + β (1− η)
m∑

i=1

|ci|2
)

P

No

)
,

C
( |bm|2βηP

No + |bm|2 (1− β)P

)
+ C

(
|a|2 (1− β)

P

No

)}
(3.33)

with two-level partial decode-and-forward. The source-relay channels have been ordered as in

(3.18).

Remark 3.2 As previously, m denotes the cardinality of the decoding set. Additionally, pa-

rameter 1 − β is the fraction of power dedicated to the non-relayed message, and 1 − η the
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correlation between the source and relays. The maximization is not convex on η, β and shall

be solved using exhaustive two-dimensional algorithms.

Proof: The proof follows equivalent arguments to the proof of Theorem 3.1. First, let the N

relay nodes be ordered as in (3.18) and assume that only the subset Rm = {1, · · · , m} ⊆ N
is active. The source divides its transmitted message ω ∈

{
1, · · · , 2nR

}
into two independent

messages ωd ∈
{
1, · · · , 2nRd

}
and ωr ∈

{
1, · · · , 2nRr

}
, and transmits them using superpo-

sition coding. The total transmission rate is R = Rd + Rr. Each of the messages is then

split (as for D&F) into B sub-messages, and pipelined onto B + 1 channel blocks. The first

message is directly sent to destination, while the other is transmitted through the relays using

block-Markov encoding. On a given block b, source and relays transmit:

xκ
s [b] = uκ

(
ωb

d

)
+ sκ

(
ωb

r

)
+

a∗√
|a|2 +

∑
i∈Rm

|ci|2
vκ
(
ωb−1

r

)
,

xκ
i [b] =

c∗i√
|a|2 +

∑
i∈Rm

|ci|2
· vκ

(
ωb−1

r

)
, ∀ i ∈ Rm

where we have selected uκ (·) to be a random Gaussian codebook, generated i.i.d. from

u ∼ CN (0, (1− β)P ) and sκ (·) to be a random Gaussian codebook, generated i.i.d. from s ∼
CN (0, βηP ). In turn, vκ (·) is also randomGaussian, generated from v ∼ CN (0, β (1− η) P ).

Since 0 ≤ β ≤ 1,0 ≤ η ≤ 1, notice that the power constraint (3.4) is satisfied with equality.

On block b, all relay nodes in Rm attempt to decode ωb
r. They can (all) do so iff (assume ωb−1

r

has been detected correctly):

Rr ≤ min
i∈Rm

I (s; yi|v) (3.34)

= C
( |bm|2βηP

No + |bm|2 (1− β) P

)
,

where the inequality is due to the ordering in (3.18). At the same block b, the destination is able

to decode ωb−1
r from yκ

d [b − 1] and yκ
d [b] iff (assuming ωb−2

r detected correctly) [58, Section

III.B]:

Rr ≤ I (s; yd|v) + I (v; yd) (3.35)

= I (s, v; yd)

= C
(

βη|a|2 + β (1− η) (|a|2 +
∑m

i=1 |ci|2)
No + |a|2 (1− β)P

P

)
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Moreover, once decoded ωb−1
r , the destination removes its contribution onto yκ

d [b − 1] and

decodes message ωb−1
d (assumed ωb−2

r well estimated). It can do so iff :

Rd ≤ I (u; yd|s, v) (3.36)

= C
(
|a|2 (1− β) P

No

)
.

Finally, the transmission rate equals R = Rr + Rd. Thus, adding (3.35) and (3.36) we obtain

the left part of minimization in (3.33), while by adding (3.34) and (3.36) we obtain the right

part. This shows the achievable rate for a given Rm. However, notice that we may arbitrarily

choose the decoding set Rm from {R1, · · · ,RN}. So we can do with the power allocated on
codes.

3.4.1 Asymptotic Performance

The main result of this subsection is that, assuming Rayleigh-fading, Theorem 3.2 also holds

for RPD&F:

RPD&F − C
(

2 ·W0

(√
N

2

)
· P

No

)
P→ 0. (3.37)

That is, the rates with D&F and with two-level partial decoding are asymptotically equal.

In order to explain this result, let us briefly discuss the impact of |a|2 on the achievable rate.
On the one hand, it is clear that, when the source-destination channel |a| is of similar mag-
nitude than the source-relay channels |bm| , the two-level approach provides a gain of almost
C
(
|a|2 (1− β) P

No

)
with respect to D&F. On the other hand, when the source-destination chan-

nel is much weaker than the source-relay channels (i.e. |a|2 � |bm|2), it is possible to show
that:

C
(
|bm|2 (1− β)

P

No

)
− C

(
|a|2 (1− β)

P

No

)
≈ C

(
|bm|2 (1− β)

P

No

)
. (3.38)
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Therefore, we can approximate:

C
( |bm|2βηP

No + |bm|2 (1− β)P

)
+ C

(
|a|2 (1− β)

P

No

)
= (3.39)

C
(
|bm|2 (1− β + βη)

P

No

)
− C

(
|bm|2 (1− β)

P

No

)
+ C

(
|a|2 (1− β)

P

No

)
≈

C
(
|bm|2 (1− β + βη)

P

No

)
− C

(
|bm|2 (1− β)

P

No

)
=

C
( |bm|2βηP

No + |bm|2 (1− β)P

)
,

where we assumed η 	= 0. That is, the contribution of the direct link |a|2 (1− β)P is negligi-

ble compared to the interference caused: |bm|2 (1− β)P . Hence, considering (3.39), the rate

optimization (3.33) remains:

max
0≤(η,β)≤1

min

{
C
((

|a|2 + β (1− η)

m∑
i=1

|ci|2
)

P

No

)
, C
( |bm|2βηP

No + |bm|2 (1− β)P

)}

which is clearly attained at:

β∗ = 0

η∗ = min

{
1,
|a|2 +

∑m
i=1 |ci|2

|bm|2 +
∑m

i=1 |ci|2
}

,

yielding an identical rate as that of D&F. Accordingly, PD&F does not provide gain. Intuitively,

this is easy to explain: the weaker the source-destination channel is with respect to source-

relays channels, the less worthy is to transmit data directly to destination and the better is to

transmit it via coherent beamforming among relays. Hence, relays do not partially but totally

decode the source message.

Taking this into account, we can derive the asymptotic performance of RPD&F. Consider, as

previously, unitary-mean, Rayleigh fading within the network: a, bi, ci ∼ CN (0, 1). For such

a channel distribution, we showed in subsection 3.3.1, equation (3.26), that the ordered channel

bm can be approximated (for sufficiently large N) as

|bm|2 ≈ − log
(m

N

)
(3.40)

Hence, for smallm � N , the source-relay channel satisfies |bm|2 � |a|2 and partial decoding
does not provide gain. Using this fact, it is demonstrated that Theorem 3.2 also holds forRPD&F.

We omit the complete proof as it does not provide new arguments. Therefore, D&F and PD&F

are asymptotically equivalent.
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Figure 3.2: Comparison of the max-flow-min-cut bound and the achievable rates with D&F

and PD&F. Transmit SNR = 5dB. Wireless channels are i.i.d., unitary-power, Rayleigh distrib-

uted. The expected value of the achievable rate, averaged over the joint channel distribution, is

shown.

Nonetheless, asymptotical equivalence does not mean that two-level PD&F and D&F perform

always equal. As an example, both achievable rates are plotted in Fig. 3.2 versus the total

number of relays, and compared with the max-flow-min-cut bound. We clearly notice that

for low number of relays, PD&F indeed provides significant gains, being a very competitive

approach for N = 1. However, for increasing number of relays both grow following the same

Lambert W scaling law (as derived in Theorem 3.2). Hence, both diverge from the upper bound

that scales as log2 N . This suggests that non-regenerative techniques shall be studied in order

to improve performance at the large N regime.
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3.5 Compress-and-Forward

Unlike previous techniques, with compress-and-forward (C&F) the relays mimic a receive an-

tenna array [10]: they send their received signals yn
i , i = 1, · · · , N to the destination, which

makes use of them (within a coherent detector) to estimate the source’s message. Note that

relays do not decode the source signal; hence, the broadcast limitation discussed earlier is elim-

inated. However, the communication is indeed constrained by the relay-destination channels:

since they are of limited capacity, relays need to compress their signals before transmitting

them to destination.

Operation is as follows. Let yn
i , i = 1, · · · , N be the observations at relays of the signal trans-

mitted by the source, following (3.2). The relays perform two consecutive steps: first, they

compress their observations, in a distributed manner and without cooperation among them.

This is referred to as multi-source compression [62]. Later, they send the compressed sig-

nals towards the destination; to do so, they map them onto a multiple-access channel (MAC)

code. In turn, the destination performs three consecutive tasks: first, it decodes the MAC code

and estimates the compressed signals transmitted by the relays. Next, it decompresses the

signals using its own received signal yn
d as side information; and, finally, the destination coher-

ently combines the de-compressed vectors, along with its own received signal, to estimate the

source’s message.

Notice that the proposed strategy imposes source-channel separation at the relays, which is not

shown to be optimal [63]. However, it includes the coding scheme that, to the best of author

knowledge, has largest known performance: DistributedWyner-Ziv (D-WZ) coding [39]. Such

an architecture is the direct extension of Berger-Tung coding to the decoder side information

case [64]. In turn, Berger-Tung can be thought as the lossy counterpart of Slepian-Wolf lossless

coding [65]. D-WZ is thus the coding scheme proposed to be used.

We start by defining the multiple-source compression code. Then, we present recent results on

the minimum compression rates with D-WZ coding [39]. Finally, we derive the achievable rate

of the MPRC with C&F at the relays.

Definition 3.4 (Multiple-source compression code) A
(
n, 2nφ1, · · · , 2nφN

)
compression code

with side information yd at the decoder is defined by N + 1 mappings, f i
n(·), i = 1, · · · , N ,
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and gn(·), and 2N + 1 spaces Yi, Ŷi, i = 1, · · · , N and Yd, where

f i
n : Yn

i →
{
1, · · · , 2nφi

}
, i = 1, · · · , N

gn :
{
1, · · · , 2nφ1

}
× · · · ×

{
1, · · · , 2nφN

}
×Yn

d → Ŷn
1 × · · · × Ŷn

N .

Proposition 3.1 (Distributed Wyner-Ziv Coding [39]) Consider yi defined in (3.2), and let

the random variables ŷi, i = 1, · · · , N , have conditional probability p (ŷi|yi) and satisfy the

Markov chain (yd, y
c
i , ŷ

c
i ) → yi → ŷi. Then, considering a sequence of compression codes(

n, 2nφ1, · · · , 2nφN
)
with side information yd at the decoder, the following holds:

lim
n→∞

1

n
I
(
xn

s ; y
n
d , gn

(
yn

d , f 1
n (yn

1 ) , · · · , fN
n (yn

N)
))

= I (xs; yd, ŷ1, · · · , ŷN) (3.41)

if:

• each compression codebook Ci, i = 1, · · · , N consists of 2nφi random sequences ŷn
i

drawn i.i.d. from
∏n

t=1 p (ŷi), where p (ŷi) =
∑

yi
p (yi) p (ŷi|yi),

• for every i = 1, · · · , N , the encoding f i
n (·) outputs the bin-index of codewords ŷn

i that

are jointly typical with the source sequence yn
i . In turn, gn (·) outputs the codewords ŷn

i ,

i = 1, · · · , N that, belonging to the bins selected by the encoders, are all jointly typical

with yn
d ,

• the compression rates φ1, · · · , φN satisfy

I
(
yG; ŷG|yd, ŷ

c
G
)
≤
∑
i∈G

φi ∀G ⊆ {1, · · · , N} . (3.42)

Proof: The proposition is proven for discrete sources and discrete side information in [39,

Theorem 2]. Also, the extension to the Gaussian case is conjectured therein. The conjecture

can be proven by noting that D-WZ coding is equivalent to Berger-Tung coding with side

information at the decoder [64]. In turn, Berger-Tung coding can be implemented through time-

sharing of successive Wyner-Ziv compressions [66], for which introducing side information yd

at the decoder reduces the compression rate as in (3.42).

We are now able to derive the achievable rate with such a compression scheme at the relays.
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Theorem 3.4 The AWGN multiple-parallel relay channel achieves the rate

RC&F = max
γs,γ1:N ,ρ1:N

C
((

|a|2
No

+

N∑
i=1

|bi|2
No + ρi

)
γs

)
(3.43)

s.t. C

⎛
⎝ γs

∑
u∈G

|bu|2
No+ρu

1 + γs

(
|a|2
No

+
∑

j /∈G
|bj |2

No+ρj

)
⎞
⎠+

∑
u∈G

C
(

No

ρu

)
≤

C
(∑

u∈G

|cu|2γu

No + |a|2γs

)
, ∀G ⊆ N .

γs +

N∑
i=1

γi ≤ P

with D-WZ compress-and-forward relaying.

Remark 3.3 In the maximization, ρi and γi, i = 1, · · · , N stand for the compression noise and

power allocated to relay i = 1, · · · , N , respectively. In turn, γs denotes the power allocated

to the source. Clearly, the optimization is not convex, and needs to be solved using exhaustive

search. The search is, unfortunately, unfeasible for large N .

Proof: Let the source select message ω ∈
{
1, · · · , 2nR

}
for transmission, and divide it

into B sub-messages of κR bits each, with κ = n
B
: ω =

[
ω1, · · · , ωB

]
. The sub-messages

are then pipelined onto B + 1 channel blocks, of κ channel uses each, and transmitted using

block-Markov encoding as in [21, Sec. 14.7]. First, on every block b, the source transmits

sub-message ωb to relays and destination

xκ
s [b] = sκ

(
ωb
)
, (3.44)

where we have selected sκ (·) to be a random Gaussian codebook, generated i.i.d. from s ∼
CN (0, γs). The signal is received at the relays following (3.2):

yκ
i [b] = bis

κ
(
ωb
)

+ zκ
i , i = 1, · · · , N. (3.45)

The signals are then distributedly compressed at the relays using a compression code as that in

Proposition 3.1. That is, each relay maps yκ
i [b] using functions

f i
κ : Yκ

i →
{
1, · · · , 2κφi

}
, (3.46)
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where φi is the compression rate of relay i. On the next block b + 1, the relays send to the

destination (via the MAC channel) the indexes si[b] = f i
κ (yκ

i [b]), i = 1, · · · , N . To do so, they
map them onto multi-access channel codebooks vκ

i (·), i = 1, · · · , N :

xκ
i [b + 1] = vκ

i (si[b]) , i = 1, · · · , N. (3.47)

Gaussian codebooks are well known to be optimal for the AWGN MAC. In this case, we

generate them i.i.d. from vi ∼ CN (0, γi), i = 1, · · · , N . The received signal at the destination
on this block thus follows (3.3):

yκ
d [b + 1] = asκ

(
ωb+1

)
+

N∑
i=1

civ
κ
i (si[b]) + zκ

d . (3.48)

Let us now define the decoding at the destination in block b + 1. First, it recovers indexes

s1:N [b] from its received signal yκ
d [b + 1].The destination can do so iff transmission rates φi lie

within the capacity region of its MAC channel (being sκ
(
ωb+1

)
interference):

∑
u∈G

φu ≤ C
(∑

u∈G |cu|2γu

No + |a|2γs

)
, ∀G ⊆ N . (3.49)

Once the indexes s1:N [b] has been estimated, destination removes their contribution on yκ
d [b+1]:

y
′κ
d [b + 1] = yκ

d [b + 1]−
N∑

i=1

ci · xκ
i [b + 1] (3.50)

= asκ
(
ωb+1

)
+ zκ

d .

After that, the destination decompresses indexes s1:N [b] using its received signal y′κd [b] as side

information. Following Proposition 3.1, the indexes are then de-mapped by means of function

gκ :
{
1, · · · , 2κφ1

}
× · · · ×

{
1, · · · , 2κφN

}
× Y ′κd → Ŷκ

1:N . (3.51)

Finally, the de-mapped vectors ŷκ
1:N [b] = gκ

(
s1[b], · · · , sN [b], y

′κ
d [b]

)
are used, along with

y
′κ
d [b], to decode message ωb, which is correctly estimated iff [38, 67]:

R ≤ lim
κ→∞

1

κ
I
(
xκ

s ; y
′κ
d , gκ

(
f 1

κ (yκ
1 ) , · · · , fN

κ (yκ
N) , y

′κ
d

))
(3.52)

= I
(
xs; y

′

d, ŷ1, · · · , ŷN

)
.

The second equality follows from (3.41) in Proposition 3.1. However, equality only holds for

compression rates satisfying the set of constraints (3.42):

I
(
yG; ŷG|y

′

d, ŷ
c
G

)
≤
∑
u∈G

φu ∀G ⊆ N . (3.53)
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Therefore, taking into account the constraints (3.53) and (3.49) and the rate (3.52), the maxi-

mum achievable rate R with C&F is:

RC&F = max�N
i=1 p(ŷi|yi),γs,γ1:N ,

I
(
xs; y

′

d, ŷ1:N

)
(3.54)

s.t. I
(
yG; ŷG|y

′

d, ŷ
c
G

)
≤ C

(∑
u∈G |cu|2γu

No + |a|2γs

)
, ∀G ⊆ U ,

γs +
N∑

i=1

γi ≤ P,

where the last constraint accounts for the power constraint (3.4). As mentioned, the source

signal is Gaussian xs ∼ CN (0, γs). Despite that, the solution of maximization in (3.54) is

still an open problem, which has remained unsolvable for us. We propose, thus, a suboptimum

approach, which is p (ŷi|yi) i = 1, · · · , N to be Gaussian too: p (ŷi|yi) = 1√
πρi
exp

(
− |ŷi−yi|2

ρi

)
,

where ρi is hereafter referred to as compression noise. With such a codebook distribution, we

can derive:

I
(
xs; y

′

d, ŷ1:N

)
= C

((
|a|2
No

+

N∑
i=1

|bi|2
No + ρi

)
γs

)
. (3.55)

Furthermore, it is possible to evaluate:

I
(
yG; ŷG|y

′

d, ŷ
c
G

)
= H

(
ŷG|y′d, ŷc

G
)
−H

(
ŷG|yG, y′d, ŷc

G
)

(3.56)

= I
(
xs; ŷG|y

′

d, ŷ
c
G

)
+ H

(
ŷG|xs, y

′
d, ŷ

c
G
)
−H

(
ŷG|yG, y′d, ŷc

G
)

= I
(
xs; ŷG|y

′

d, ŷ
c
G

)
+ H

(
ŷG|xs, y

′
d, ŷ

c
G
)
−H

(
ŷG|xs, yG, y

′
d, ŷ

c
G
)

= I
(
xs; ŷG|y

′

d, ŷ
c
G

)
+ I

(
yG; ŷG|xs, y

′
d, ŷ

c
G
)

= I
(
xs; y

′

d, ŷ1:N

)
− I

(
xs; y

′

d, ŷ
c
G

)
+ I

(
yG; ŷG|xs, y

′
d, ŷ

c
G
)

= C
((

|a|2
No

+
N∑

u=1

|bu|2
No + ρu

)
γs

)
− C

((
|a|2
No

+
∑
u∈Gc

|bu|2
No + ρu

)
γs

)

+
∑
u∈G

C
(

No

ρu

)

= C

⎛
⎝ γs

∑
u∈G

|bu|2
No+ρu

1 + γs

(
|a|2
No

+
∑

j /∈G
|bj |2

No+ρj

)
⎞
⎠+

∑
u∈G

C
(

No

ρu

)
.

where the second equality follows from the definition of mutual information and the third from

the Markov chain in Proposition 3.1. Finally, the fifth equality comes from the chain rule for

mutual information. Plugging (3.55) and (3.56) into (3.54), and optimizing overρ1:N concludes

the proof.
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As mentioned, the maximum achievable rate with C&F (3.43) is the solution of a non-convex

optimization problem with 1 +
∑N

i=1

(
N
i

)
constraints. Its computation, thus, requires non-

convex algorithms that (for large N) become unfeasible. The next subsection proposes an

upper bound on the C&F achievable rate that can be easily computed using known approaches

in the literature. This will be used as a benchmark for C&F.

3.5.1 Upper Bound

In Theorem 3.4, the relay compression rates have been constrained to lie within the MAC

capacity region of the destination, thus forced to satisfy
∑N

i=1

(
N
i

)
constraints. In order to

relax the problem and provide a computable upper bound, we consider the compression rates

satisfying the sum-rate constraint only. This model applies to scenarios where relays are not

connected to the destination via a wireless medium but via e.g., common wired Ethernet [51].

Let us then eliminate
∑N

i=1

(
N
i

)
− 1 constraints of (3.43) to define:

R̄C&F = max
γs,γ1:N ,ρ1:N

C
((

|a|2
No

+

N∑
i=1

|bi|2
No + ρi

)
γs

)
. (3.57)

s.t. C
(

γs

∑N
u=1

|bu|2
No+ρu

1 + γs
|a|2
No

)
+

N∑
u=1

C
(

No

ρu

)
≤ γs +

N∑
i=1

γi ≤ P

Clearly, R̄C&F is an upper bound onRC&F. Moreover, notice that optimization variables γ1, · · · , γN

only appear at the right hand side of the first constraint, for which is easy to show:

max
γ1,··· ,γN

N∑
u=1

|cu|2γu = (1− β)P ·max |cu|2 (3.58)

s.t
N∑

u=1

γu ≤ (1− β)P

Let us then define j = arg max |cu|2. Considering (3.58) into the maximization in (3.57), it is
clear that the optimum point of the latter γs∗, γ∗1:N , ρ∗1:N satisfies γ∗i = 0, ∀i 	= j. Accordingly,

the following equality holds:

R̄C&F = max
β,ρ1:N

C
((

|a|2
No

+
N∑

i=1

|bi|2
No + ρi

)
βP

)
(3.59)

s.t. C
(

βP
∑N

u=1
|bu|2

No+ρu

1 + βP |a|2
No

)
+

N∑
u=1

C
(

No

ρu

)
≤ C

( |cj|2 (1− β)P

No + |a|2βP

)
, 0 < β ≤ 1
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We have then reduced the problem in (3.57) to a simpler computable one. Now, the optimiza-

tion over ρ1:N , for a fixed value of β, can be solved using a dual decomposition approach.

Afterwards, the maximization over β can be carried out using a simple one-dimensional ex-

haustive search. The algorithm is described in the next subsection.

Iterative Algorithm to Compute the Upper Bound

Let us rewrite R̄C&F = maxβ∈(0,1] r (β), where:

r (β) = max
ρ1:N

C
((

|a|2
No

+

N∑
i=1

|bi|2
No + ρi

)
βP

)
(3.60)

s.t. C
(

βP
∑N

u=1
|bu|2

No+ρu

1 + βP |a|2
No

)
+

N∑
u=1

C
(

No

ρu

)
≤ ΦT ,

with ΦT = C
(
|cj |2(1−β)P

No+|a|2βP

)
. We first notice that maximization (3.60) is not concave in standard

form: although the constraint defines a convex, regular set, the objective function is not concave

but convex. Therefore, KKT conditions become necessary but not sufficient for optimality.

In order to solve the optimization, we need to resort to other strategies. In particular, we

proceed as follows: first, we show that the duality gap for the problem is zero. Afterwards, we

propose an iterative algorithm that solves the dual problem, thus solving the primal problem

too. As mentioned in Chapter 2, the interesting property of the dual problem is that the coupling

constraint in (3.60) is decoupled.

First of all, let us rewrite the objective function of (3.60) as:

C
((

|a|2
No

+
N∑

i=1

|bi|2
No + ρi

)
βP

)
= C

( |a|2
No

βP

)
+ C

(
βP

∑N
u=1

|bu|2
No+ρu

1 + βP |a|2
No

)
. (3.61)

Therefore, the Lagrangian of (3.60) can be thus defined on ρ1:N ≥ 0 and λ ≥ 0 as:

L (ρ1, · · · , ρN , λ) = (1− λ) C
(

βP
∑N

u=1
|bu|2

No+ρu

1 + βP |a|2
No

)
− λ

(
N∑

u=1

C
(

No

ρu

)
− ΦT

)
. (3.62)

The dual function g (λ) is, thus, constructed for λ ≥ 0 following subsection 2.2.2:

g (λ) = max
ρ1,··· ,ρN≥0

L (ρ1, · · · , ρN , λ) . (3.63)

Finally, the solution of the dual problem is then obtained from

C′ = min
λ≥0

g (λ) . (3.64)
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Lemma 3.1 The duality gap for optimization (3.60) is zero, i.e., the primal problem (3.60) and

the dual problem (3.64) have the same solution.

Proof: As derived in Proposition 2.10, the duality gap for problems of the form of (3.60),

and satisfying the time-sharing property, is zero [53, Theorem 1]. Time-sharing property is

satisfied if the solution of (3.60) is concave with respect to the compression sum-rate ΦT . It is

well known that time-sharing of compressions can neither decrease the resulting distortion [21,

Lemma 13.4.1] nor improve the mutual information obtained from the reconstructed vectors.

Hence, the property holds for (3.60), and the duality gap is zero.

We then solve the dual problem in order to obtain the solution of the primal. First, consider

maximization (3.63). As expected, the maximization can not be solved in closed form. How-

ever, as the feasible set (i.e., ρ1, · · · , ρN ≥ 0) is the cartesian product of convex sets, then

a block coordinate ascent algorithm can be used to search for the maximum (see subsection

2.2.1). The algorithm iteratively optimizes the function with respect to one ρn while keeping

the others fixed, and it is defined for our problem as:

ρt+1
n = arg max

ρn≥0
L
(
ρt+1

1 , · · · , ρt+1
n−1, ρn, ρt

n+1, · · · , ρt
N , λ

)
, (3.65)

where t is the iteration index. As shown in Proposition 3.2, the maximization (3.65) is uniquely

attained.

Proposition 3.2 Let the optimization ρ∗n = arg maxρn≥0 L (ρ1, · · · , ρN , λ) and define

s =
|bn|2βP

1 +
(
|a|2
No

+
∑

i�=n
|bi|2

No+ρi

)
βP

+ No. (3.66)

The optimization is uniquely attained at

ρ∗n =

([
1

λ

(
1

No
− 1

s

)
− 1

No

]+
)−1

. (3.67)

Remark 3.4 Within the proposition, we consider the definition 1
0

�∞.
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3.5. Compress-and-Forward

Proof: First, let us expand the function under maximization as:

f (ρn) = L (ρ1, · · · , ρN , λ) (3.68)

= (1− λ) C
(

βP
∑

i�=n
|bi|2

No+ρi

1 + βP |a|2
No

)
− λ

(∑
i�=n

C
(

No

ρi

)
− ΦT

)

+ (1− λ) C
(

s−No

No + ρn

)
− λC

(
No

ρn

)
.

Clearly, only the last two terms depend on ρn. Therefore, it is enough to maximize the function:

f̃ (ρn) = (1− λ) C
(

s−No

No + ρn

)
− λC

(
No

ρn

)
.

which is continuous, but neither concave nor convex. However, for λ ≥ 1, it is clear that

f̃ (ρn) ≤ 0, ∀ρn, and therefore ρ∗n = ∞.

On the other hand, for λ < 1, we can change variables ρn = a−1
n ≥ 0 and transform:

f̃ (an) = (1− λ) C
(

an
s−No

anNo + 1

)
− λC (anNo) (3.69)

= (1− λ) C (ans)− C (anNo) .

For which is can be shown that there is no more than one stationary point:

df̃

dan

= 0→ a∗n =
1

λ

(
1

No

− 1

s

)
− 1

No

. (3.70)

For the stationary point, we can prove that its second derivative exists and is lower than zero;

accordingly, it is a local maximum of the function, unique because there is no other. Moreover,

it is easy to obtain that: i) f̃ (0) = 0, and ii) since λ < 1, then liman→∞ f̃ (an) = −∞. That
is, an = ∞ is the global minimum of the problem. Making use of i) and ii), we can claim that

the local maximum a∗n is the global maximum. However, we restricted the optimization to the

values an ≥ 0. Hence, function f̃ (an) takes maximum at:

a∗n =

[
1

λ∗

(
1

No
− 1

s

)
− 1

No

]+

. (3.71)

Finally, we change variables again to recover ρ∗n as (3.67) which concludes the proof. Notice

that for λ ≥ 1, (3.67) evaluates as η∗n = ∞ which was the optimum value derived above.

Therefore the solution is valid for all λ.

The function L (ρ1, · · · , ρN , λ) is continuously differentiable, and the maximization (3.65) is

uniquely attained. Hence, the limit point of the sequence {ρt
1, · · · , ρt

N} is proven to converge
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3.5. Compress-and-Forward

to a stationary point of L (·) (see Proposition 2.6). However, in order to demonstrate con-
vergence to the global maximum (that is, to g (λ)), it is necessary to show that the mapping

T (ρ1, · · · , ρN ) =
[
ρ1 + γ ∂L

∂ρ1
, · · · , ρN + γ ∂L

∂ρN

]
is a block-contraction for some γ (Proposi-

tion 2.7). Unfortunately, we were not able to demonstrate the contraction property on the

Lagrangian, although simulation results suggest global convergence of our algorithm always.

Once g (λ) is obtained through the Gauss-Seidel Algorithm3, it must be minimized on λ ≥ 0.

First, recall that g (λ) is a convex function, defined as the pointwise maximum of a family

of affine functions [52]. Hence, to minimize it, we may use a subgradient approach [68].

As mentioned in Section 2.2.1, the subgradient search consists on following search direction

−h (λ) such that

g (λ′)− g (λ)

λ′ − λ
≥ h (λ) ∀λ′. (3.72)

Such a search is proven to converge to the global minimum for diminishing step-size rules [69,

Section II-B]. Moreover, given the analysis in Section 2.2.2, the following h (λ) satisfies (3.72):

h (λ) = ΦT − C

⎛
⎝βP

∑N
u=1

|bu|2
No+ρu(λ)

1 + βP |a|2
No

⎞
⎠− N∑

u=1

C
(

No

ρu (λ)

)
. (3.73)

where ρ1:N (λ) is the limiting point of algorithm (3.65) for λ. This is used to search for the

optimum λ as:

increase λ if h (λ) ≤ 0 or decrease λ if h (λ) ≥ 0. (3.74)

Consider now λ0 = 1 as the initial value of the Lagrange multiplier. For such a multiplier, it is

easy to show that the optimum solution of (3.63) is {ρ∗1. · · · , ρ∗N} = ∞. Hence, the subgradient
(3.73) is h (λ) = ΦT . Following (3.74), the optimum value of λ is then strictly lower than one.

Algorithm 1 takes all this into account in order to solve the dual problem, hence solving the

primal too. Recall that we can only claim convergence of the algorithm to a stationary point.

3.5.2 Asymptotic Performance

The C&F achievable rate (3.43) is, as pointed out previously, a computationally untractable

optimization problem for N → ∞. Deriving, thus, its asymptotic performance in closed form
3Assume hereafter that the algorithm has converged to the global maximum of L (ρ1, · · · , ρN , λ).
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3.5. Compress-and-Forward

Algorithm 1 Computation of the Upper Bound

1: for β = 0 : 1 do

2: Define ΦT = C
(
|cj |2(1−β)P

No+|a|2βP

)
3: Initialize λmin = 0 and λmax = 1

4: repeat

5: λ = λmax−λmin

2

6: Obtain {ρ1 (λ) , · · · , ρN (λ)} = arg maxρ1:N
L (ρ1, · · · , ρN , λ) from Algorithm 2

7: Evaluate h (λ) as in (3.73).

8: If h (λ) ≤ 0, then λmin = λ, else λmax = λ

9: until λmax − λmin ≤ ε

10: r (β) = L (ρ1 (λ) , · · · , ρN (λ) , λ)

11: end for

12: R̄C&F = max r (β)

is mathematically unfeasible. However, it is indeed possible to use the upper bound in the

preceding subsection to bound the asymptotic performance of the achievable rate.

In particular, assuming unitary-mean, Rayleigh fading within the network: a, bi, ci ∼ CN (0, 1),

the following convergence in probability can be proven.

Theorem 3.5 LetRC&F be defined in (3.43), and consider R̂C&F = C
(
maxi=1··· ,N {|a|2, |ci|2} P

No

)
.

Then:

RC&F ≤ R̂C&F, (3.75)

and for N →∞:

R̂C&F − C
(

log (N + 1)
P

No

)
P→ 0. (3.76)

Remark 3.5 This result demonstrates that the achievable rate with C&F is always upper

bounded by the sum-capacity of the destination’s MAC, given the sum-power constraint among

transmitters.

Proof: The first part of the proof relies directly on the optimization in (3.59). Let β∗, ρ∗1:N
be the optimum values for this optimization, and recall that j = arg max |cu|2. Then, we can

62



3.5. Compress-and-Forward

Algorithm 2 Block Coordinate Algorithm to Obtain g (λ)

1: Initialize ρ0
n = 0, n = 1, · · · , N and t = 0

2: repeat

3: for n = 1 to N do

4: Compute

s =
|bn|2βP

1 +
(
|a|2
No

+
∑

i<n
|bi|2

No+ρt+1
i

+
∑

i>n
|bi|2

No+ρt
i

)
βP

+ No.

5: Update ρt+1
n = 1/

[
1
λ

(
1

No
− 1

s

)
− 1

No

]+

.

6: end for

7: t = t + 1

8: until The sequence converges {ρt
1, · · · , ρt

N} → {ρ∗1, · · · , ρ∗N}
9: Return {ρ∗1, · · · , ρ∗N}

show that:

RC&F ≤ R̄C&F (3.77)

= C
((

|a|2
No

+

N∑
i=1

|bi|2
No + ρ∗i

)
β∗P

)

= C
( |a|2β∗P

No

)
+ C

⎛
⎝β∗P

∑N
i=1

|bi|2
No+ρ∗i

1 + |a|2
No

β∗P

⎞
⎠

≤ C
( |a|2β∗P

No

)
+ C

( |cj|2 (1− β∗) P

No + |a|2β∗P

)

= C
( |a|2β∗P

No
+
|cj|2 (1− β∗) P

No

)

≤ C
(

maxu=1,··· ,N {|a|2, |cu|2}P

No

)
,

where the second inequality follows from the fact that, at the optimum β∗, ρ∗1:N , the constraint

of (3.59) is satisfied. The third inequality is explained by noting that β ∈ (0, 1]. Furthermore,

we repeatedly use the equality C (a + b) = C (a) + C
(

b
1+a

)
. This proves (3.75). Now, we need

to prove (3.76). This can be done by first proving the following convergence in probability:

lim
N→∞

Pr

{∣∣∣∣maxu=1,··· ,N {|a|2, |cu|2}
log (N + 1)

− 1

∣∣∣∣ < ε

}
= 1, ∀ε > 0. (3.78)
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To prove the limit, we first expand:

Pr

{∣∣∣∣maxu=1,··· ,N {|a|2, |cu|2}
log (N + 1)

− 1

∣∣∣∣ < ε

}
= (3.79)

Pr

{
[(1− ε) log (N + 1)]+ < max

u=1,··· ,N

{
|a|2, |cu|2

}
< (1 + ε) log (N + 1)

}

Notice that a, c1, · · · , cN are independent, unitary mean, Rayleigh distributed. Therefore, all

share the same cdf, F (x) = 1 − e−x, x ≥ 0, which allows to compute the c.d.f. of the

maximum as Pr {maxu=1,··· ,N {|a|2, |cu|2} ≤ x} = (1− e−x)
N+1. Accordingly,

Pr

{∣∣∣∣maxu=1,··· ,N {|a|2, |cu|2}
log (N + 1)

− 1

∣∣∣∣ < ε

}
= (3.80)

(
1− e−(1+ε) log(N+1)

)N+1 −
(
1− e−[(1−ε) log(N+1)]+

)N+1

.

Now, it is possible to show that

(
1− e−(1+ε) log(N+1)

)N+1
=

(
1−

(
1

N + 1

)1+ε
)N+1

ε>0,N→∞→ 1 (3.81)

(
1− e−[(1−ε) log(N+1)]+

)N+1

=

⎧⎨
⎩
(
1−

(
1

N+1

)1−ε
)N+1 N→∞→ 0 ε ∈ (0, 1)

0 ε ≥ 1
(3.82)

Therefore, plugging (3.81) and (3.82) into (3.80) demonstrates that (3.78) holds. That is,

maxu=1,··· ,N {|a|2, |cu|2}
log (N + 1)

− 1
P→ 0. (3.83)

Now, let us upper bound:

Pr

{∣∣∣∣maxu=1,··· ,N {|a|2, |cu|2}
log (N + 1)

− 1

∣∣∣∣ < ε

}
(3.84)

= Pr

{∣∣∣∣∣
P
No

maxu=1,··· ,N {|a|2, |cu|2}
P
No

log (N + 1)
− 1

∣∣∣∣∣ < ε

}

= Pr

{∣∣∣∣ P

No

max
u=1,··· ,N

{
|a|2, |cu|2

}
− P

No

log (N + 1)

∣∣∣∣ < ε · P

No

log (N + 1)

}

= Pr

{∣∣∣∣1 +
P

No
max

u=1,··· ,N

{
|a|2, |cu|2

}
−
(

1 +
P

No
log (N + 1)

)∣∣∣∣ < ε · P

No
log (N + 1)

}

≤ Pr

{∣∣∣∣1 +
P

No
max

u=1,··· ,N

{
|a|2, |cu|2

}
−
(

1 +
P

No
log (N + 1)

)∣∣∣∣ < ε ·
(

1 +
P

No
log (N + 1)

)}

= Pr

{∣∣∣∣∣1 + P
No

maxu=1,··· ,N {|a|2, |cu|2}
1 + P

No
log (N + 1)

− 1

∣∣∣∣∣ < ε

}
,
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where the inequality comes from the fact that, augmenting the interval, increases the probabil-

ity. Therefore, given (3.78) and inequality (3.84), the following convergence is proven

1 + P
No

maxu=1,··· ,N {|a|2, |cu|2}
1 + P

No
log (N + 1)

− 1
P→ 0. (3.85)

Finally, making use of Lemma 2.1, we thus claim that

log2

1 + P
No

maxu=1,··· ,N {|a|2, |cu|2}
1 + P

No
log (N + 1)

− log2 1
P→ 0. (3.86)

Or, in other words,

C
(

max
u=1··· ,N

{
|a|2, |cu|2

} P

No

)
− C

(
log (N + 1)

P

No

)
P→ 0, (3.87)

which concludes the proof.

As mentioned, Theorem 3.5 demonstrates that compress-and-forward is limited by the relays-

destination MAC. This has a straightforward cause: after the compression step, the signals

transmitted by the relays are independent and uncorrelated. Therefore, among them, no coher-

ent transmission is possible, and they all have to compete for the power resources P and for

access to the destination. Such an access architecture is known to have a sum-capacity scaling

law equal to log2 log (N) [70].

Aiming, thus, at making relaying more spectrally efficient, we turn now to amplify-based re-

laying. In particular, we consider linear relaying.

3.6 Linear Relaying

Linear relaying (LR) consists of relay nodes transmitting, on every channel use t, a linear

combination of previously received signals, i.e. xt
i =

∑t−1
j=1 φi (t, j) yj

i , where φi (t, j) is the

amplifying factor at the relay i of received signal yj
i .

This technique was proposed by Zahedi and El Gamal in [24] as the natural extension of

amplify-and-forward to full-duplex operation. From a practical standpoint, is the simplest and

most easily deployed scheme: it only requires buffering and amplifying capabilities. In this

section, we will show that it is also effective, mainly because it is constrained neither by the

source-relays broadcast channel nor by the relays-destination multiple access channel.
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It operates as follows: let the source select message ω ∈
{
1, · · · , 2nR

}
for transmission and

map it onto codeword xn
s . The codeword is then transmitted intoB channel blocks of κ = n/B

channel uses each. On every block b, the source transmits the sequence of symbolsxκ
s [b], which

is received at the relays and destination following (3.2) and (3.3), respectively. Simultaneously,

the relays linearly combine the received signal during this block, and transmit the sequence of

symbols xκ
i [b], i = 1, · · · , N , which can be compactly written as:

xκ
i [b] = Φi · yκ

i [b]

= Φi · (bi · xκ
s [b] + zκ

i ) , (3.88)

where Φi ∈ Cκ×κ
SLT

is referred to as the linear relaying matrix. It defines the linear combina-

tion of inputs, and is strictly lower triangular to preserve causality. The received signal at the

destination is given by4:

yκ
d = a · xκ

s +

N∑
i=1

ci · xκ
i + zκ

d (3.89)

=

(
a · I +

N∑
i=1

biciΦi

)
· xκ

s +

(
zκ

d +

N∑
i=1

ciΦiz
κ
i

)
.

As for previous relaying techniques, the communication is constrained to satisfy (3.4). This can

be stated as follows: let Qκ = E
{

xκ
s (xκ

u)
†
}
� 0 be the source temporal covariance matrix,

and Qκ
i = E

{
xκ

i (xκ
i )
†
}

= |bi|2ΦiQ
κ
Φ
†
i + NoΦiΦ

†
i , the relays temporal covariance matrix.

Then, the total transmitted power in the network is:

P (Qκ,Φ1:N) =
1

κ

(
tr {Qκ}+

N∑
i=1

tr {Qκ
i }
)

(3.90)

=
1

κ
tr

{
Qκ

(
I +

N∑
i=1

|bi|2Φ†
iΦi

)
+ No

N∑
i=1

Φ
†
iΦi

}
,

which is enforced to satisfy (3.4), i.e., P (Qκ,Φ1:N) ≤ P . Clearly, the signal model (3.89) is

equivalent to that of the Gaussian channel with block memory and colored noise [71]. Using

this analogy, its maximum achievable rate can be derived as the maximum mutual information

between the sequences transmitted and received by source and destination, respectively, when
4For clarity of exposition, we remove index b.
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the number of channel uses per block κ→∞ (see e.g., [24, 71]). That is:

RLR = lim
κ→∞

max
Φ1:N∈C

κ×κ
SLT

max
pxκ

s
:P(Qκ ,Φ1:N )≤P

1

κ
· I (xκ

s ; y
κ
d ) (3.91)

= lim
κ→∞

max
Φ1:N∈C

κ×κ
SLT

max
Qκ0:P(Qκ ,Φ1:N )≤P

1

κ
· log2 det

(
I + HeQ

κH†
e

)
where

He =
1√
No

(
I +

N∑
i=1

|ci|2ΦiΦ
†
i

)− 1
2
(

a · I +
N∑

i=1

biciΦi

)
. (3.92)

The second equality is derived using standard arguments for Gaussian channels in [21, Section

10.5] [71]. Unfortunately, unlike the Gaussian channel with memory, no closed-form expres-

sion can be given for optimization (3.91). In fact, the optimization onQκ is convex and can be

solved. However, the other one is not convex onΦ1:N and no solution can be given. Therefore,

in order to tackle the problem, we proceed in two steps: first, we analyze the optimum source

signalling, considering fixed κ and a fixed (not necessarily optimum) setΦ1:N . We refer to this

result as conditional capacity with LR. Afterwards, we propose suboptimum relaying matrices.

3.6.1 Design of the Source Temporal Covariance

The conditional capacity of LR, given κ and the set Φ1:N ∈ Cκ×κ
SLT
, is the supremum of all

rates that are achievable when the relay nodes use the fixed set of relaying matrices Φ1:N . It is

defined from (3.91) as :

Rκ
LR

(Φ1:N) = max
Qκ0

1

κ
· log2 det

(
I + HeQ

κH†
e

)
(3.93)

s.t. P (Qκ,Φ1:N) ≤ P

Notice that we have defined it as a capacity since it is the maximum transmission rate that is

achievable when relays can only transmit by means of amplifyingmatricesΦ1:N . The optimiza-

tion is clearly convex in standard form: the objective function is concave and differentiable, and

the constraint defines a convex, regular set. It can be thus solved by means of KKT conditions,

obtaining the optimum source signalling.

Theorem 3.6 Let us defineA =
(
I +

∑N
i=1 |bi|2Φ†

iΦi

)
, and compute the SVD-Decomposition

HeA
− 1

2 = UΛ
1
2 V † with Λ = diag(λ1, · · · , λκ). Then:

Rκ
LR (Φ1:N) =

1

κ
·

κ∑
j=1

C (λjψj) (3.94)
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where

ψj =

[
1

μ
− 1

λj

]+

, so that tr
{
No

∑N
i=1 Φ

†
iΦi

}
+
∑κ

j=1 ψj = κP. (3.95)

The conditional capacity is attained with source covariance Qκ
opt = A− 1

2 V ΨV †A− 1
2 , being

Ψ = diag(ψ1, · · · , ψκ).

Remark 3.6 Surprisingly, the optimum covariance does not diagonalize the equivalent He,

but its modified formHeA
− 1

2 . This is computed from

HeA
− 1

2 =
1√
No

(
I +

N∑
i=1

|ci|2ΦiΦ
†
i

)− 1
2
(

a · I +
N∑

i=1

biciΦi

)(
I +

N∑
i=1

|bi|2Φ†
iΦi

)− 1
2

.

From it, we clearly notice that the source-relay channels bi impact on the conditional capacity

in the same manner than the relay-destination channels ci do. Thereby, both can be inter-

changed (i.e., bi ↔ ci) without modifying the achievable rate. This has an important interpre-

tation in practice: with LR, the achievable rate from s to d is equal to that from d to s. Linear

relaying is thus reciprocal, as the max-flow-min-cut bound and unlike D&F, PD&F and C&F.

Proof: We first write the Lagrangian for optimization (3.93):

L (Qκ,Ω, μ) = log
(
det

(
I + HeQ

κH†
e

))
+ tr {ΩQκ} − μ (κP (Qκ,Φ1:N)− κP )

where μ ≥ 0 and matrix Ω � 0 are the Lagrange multipliers for the power and semi-definite

positive constraints, respectively. The KKT conditions for the problem, which are sufficient

and necessary for optimality (due to convexity, and regularity of the feasible set) are [52]:

i) μ

(
I +

N∑
i=1

|bi|2Φ†
iΦi

)
−Ω = H†

e

(
I + HeQ

κH†
e

)−1
He (3.96)

ii) μ
(
tr
{

Qκ
(
I +

∑N
i=1 |bi|2Φ†

iΦi

)
+ No

∑N
i=1 Φ

†
iΦi

}
− κP

)
= 0, (3.97)

iii) tr {ΩQκ} = 0

Let us now defineA =
(
I +

∑N
i=1 |bi|2Φ†

iΦi

)
, which is clearly singular and Hermitian, semi-

definite positive. Also, consider the change of variables Q̃ = A
1
2 QκA

1
2 and Ω̃ = A− 1

2 ΩA− 1
2 ,

both Hermitian, semidefinite positive. With them, we can turn the KKT conditions into:

i) μ− Ω̃ = A− 1
2 H†

e

(
I + HeA

− 1
2 Q̃A− 1

2 H†
e

)−1

HeA
− 1

2 (3.98)

ii) μ
(
tr
{
Q̃ + No

∑N
i=1 Φ

†
iΦi

}
− κP

)
= 0,

iii) tr
{
Ω̃Q̃

}
= 0
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Considering the SVD-decompositionHeA
− 1

2 = UΛ
1
2 V †, it can be derived (as for the capacity

of MIMO channels [3]) that Q̃∗ = V ΨV †, with ψj =
[

1
μ∗
− 1

λj

]+

, j = 1, · · · , k satisfies
KKTs. μ∗ is such that

∑k
j=1 ψj +Notr

{∑N
i=1 Φ

†
iΦi

}
−κP = 0, and Ω̃

∗ computed from KKT

i) as: Ω̃
∗ = V

(
μ−Λ

1
2

(
I + Λ

1
2ΨΛ

1
2

)−1

Λ
1
2

)
V †, which is semidefinite positive. Finally,

we recover the optimum source temporal covariance as

Qκ
opt = A− 1

2 Q̃∗A− 1
2 , (3.99)

for which we evaluate log2 det
(
I + HeQ

κ
optH

†
e

)
.

3.6.2 Linear Relaying Matrix Design

In the previous subsection, we presented the optimum source temporal covariance, given the

fixed set Φ1:N . Now, in order to search for the optimum set of relaying matrices, we need to

solve (3.91):

Φ
∗
1:N = lim

κ→∞
arg max

Φ1:N∈C
κ×κ
SLT

Rκ
LR

(Φ1:N) . (3.100)

As mentioned above, such a maximization is not convex. To solve it, we need to resort to

non-convex optimization algorithms that, for N � 1 and κ →∞, become unfeasible.

A suboptimum approach is thus considered. In particular, we propose the relays to use the

suboptimum set of relaying matrices, Φ̄1:N , based upon amplify-and-forward extended to κ >

2: on every channel use t, relays only amplify and retransmit the signal received on previous

channel use t − 1. With them, the required memory at the relays is reduced to one sample.

They are defined as:

Φ̄i = ηiΦ0, i = 1, · · · , N. with (3.101)

[Φ0]p,q �

⎧⎨
⎩
√

β p = q + 1; 1 ≤ q ≤ κ− 1

0 elsewhere.
,

where ηi ∈ C are the beamforming weights and satisfy
∑N

i=1 |ηi|2 = 1. Notice that β in (3.101)

needs to satisfy κP > Noβ (κ− 1) so that
∑κ

j=1 ψj > 0 in (3.95). That is, β < P
No

κ
κ−1
.

We need now to select the beamforming weights ηi that maximize the achievable rate. Unfor-

tunately, as relays not only amplify the source signal but also thermal noise, the beamforming
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3.6. Linear Relaying

optimization turns out be non-convex, and unsolvable for us. To simplify the framework, we

propose a suboptimum solution, which we callMaximal Ratio Transmission (MRT). It consists

of relays beamforming towards destination as if they were a transmit antenna array, regardless

of noise amplification:

ηi �
b∗i · c∗i√∑N
i=1 |bi · ci|2

. (3.102)

This is indeed the optimum beamforming with high SNR at the relays. Let us now apply

Theorem 3.6 to the Φ̄1:N proposed in (3.101). Firstly, we define A = 1 +
∑N

i=1 |bi|2|ηi|2β and
B = 1 +

∑N
i=1 |ci|2ηi|2β. Then, it is easy to show that for k →∞:

I +

N∑
i=1

|bi|2Φ̄†
iΦ̄i = diag ([A1k−1, 1]) ≈ AIk (3.103)

I +

N∑
i=1

|ci|2Φ̄iΦ̄
†
i = diag ([1, B1k−1]) ≈ BIk

where T ≈ R stands for limκ→∞ ||T − R||/||T || = 0. Therefore, HeA
− 1

2 in Theorem 3.6

satisfies:

[HeA
− 1

2 ]p,q ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(NoAB)−
1
2 · a p = q, p = 1, · · · , κ

(NoAB)−
1
2 ·
√

β
∑N

i=1 |bici|2 p = q + 1; 1 ≤ q ≤ κ− 1

0 elsewhere

(3.104)

With it,HeA
−1H†

e can be approximated by a Toeplitz matrix of the form:

[HeA
−1H†

e ]p,q ≈
tp−q

NoA · B
, (3.105)

with t−1 = a∗
√

β
∑N

i=1 |bici|2, t0 = |a|2 + β
∑N

i=1 |bici|2, t1 = a
√

β
∑N

i=1 |bici|2 and tp = 0

elsewhere. Let us now denote by Λ the eigenvalues of HeA
−1H†

e , and compute the Fourier

Transform of tp
NoA·B :

f (ω) = 1
NoA·B ·

∑p=1
p=−1 tpe

−jωp (3.106)

=

|a|2 + β
∑N

i=1 |bici|2 + 2Re

{
a
√

β
∑N

i=1 |bici|2e−jω

}

No

(
1 +

∑N
i=1 |bi|2|ηi|2β

)(
1 +

∑N
i=1 |ci|2|ηi|2β

) .

Thereby, we can make use of [72, Theorem 4.1] to show that, for large κ, the eigenvalue
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3.6. Linear Relaying

distribution of (3.105) coincides with the Fourier transform of tp
NoA·B . As a result:

λn ≈ f
(
2π

n

κ

)
(3.107)

=

|a|2 + β
∑N

i=1 |bici|2 + 2Re

{
a
√

β
∑N

i=1 |bici|2e−j2π n
κ

}

No

(
1 +

∑N
i=1 |bi|2|ηi|2β

)(
1 +

∑N
i=1 |ci|2|ηi|2β

) , n = 1, · · · , κ.

We can now introduce (3.107) in Theorem 3.6 to derive the achievable rate for a given value of

β. Finally, optimizing over β ∈ [0, P
No

κ
κ−1

), we obtain the maximum transmission rate with the

proposed linear relaying functions. Last optimization can be carried out using one-dimensional

exhaustive search.

3.6.3 Asymptotic Performance

Let us analyze now the asymptotic performance of LR. As for previous sections, we consider

unitary-mean, Rayleigh-fading within the network: a, bi, ci ∼ CN (0, 1). For such a channel

distribution, D&F, PD&F and C&F were shown to be limited by the source-relays broadcast

channel and by the relays-destination multiple-access channel, respectively. Both limitations

constrain their achievable rates to scale even slower than log2 log N . In this section, we will

show that LR is not constrained by none of them; therefore, its achievable rate is able to scale

as log2 N , seizing all the beamforming gain of the network:

lim
N→∞

RLR

log2 N
P
= K, (3.108)

with K a constant. This result has been previously published by Dana et. al. in [56]. Upper

and lower bounds are used therein to demonstrate the scaling law. In the following, we provide

a more intuitive proof so that the reader can internalize the result; however, we refer to [56] for

the first mathematically rigorous proof.

Consider the linear relaying functions Φ̄1:N presented in (3.101)-(3.102). With them, the

achievable rate follows (3.94) in Theorem 3.6. The rate is computed therein in terms of the

eigenvalues of the matrixHeA
−1H†

e , which (for κ � 1) can be approximated using (3.107):

λn =

|a|2 + β
∑N

i=1 |bici|2 + 2Re

{
a
√

β
∑N

i=1 |bici|2e−j2π n
κ

}

No

(
1 +

∑N
i=1 |bi|2|ηi|2β

)(
1 +

∑N
i=1 |ci|2|ηi|2β

) , n = 1, · · · , κ, (3.109)
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Notice that, from the specific values of ηi in (3.102) we compute:
N∑

i=1

|bi|2|ηi|2 =

∑N
i=1 |bi|4|ci|2∑N

i=1 |bici|2
and

N∑
i=1

|ci|2|ηi|2 =

∑N
i=1 |ci|4|bi|2∑N

i=1 |bici|2
. (3.110)

Let us now show some convergence results related to (3.109) and (3.110). First, we notice that

random variables |bici|2 = |bi|2|ci|2, i = 1, · · · , N , are unitary mean. Therefore, applying the
law of large numbers we claim that, for N →∞:∑N

i=1 |bici|2
N

P→ 1. (3.111)

Furthermore, notice that E {|bi|4|ci|2} = E {|bi|4} since bi, ci are independent and Rayleigh

distributed. Likewise:

E
{
|bi|4

}
=

∫ ∞

0

x2e−xdx (3.112)

= −x2e−x
]∞
0

+ 2

∫ ∞

0

xe−xdx

= 2. (3.113)

Therefore, E {|bi|4|ci|2} = E {|ci|4|bi|2} = 2, i = 1, · · · , N , and making use of the law of
large numbers allows we obtain:∑N

i=1 |bi|4|ci|2
N

P→ 2 and
∑N

i=1 |ci|4|bi|2
N

P→ 2. (3.114)

Accordingly, we can plug (3.111) and (3.114) into (3.110), and apply Lemma 2.4 to derive:
N∑

i=1

|bi|2|ηi|2 P→ 2 and
N∑

i=1

|ci|2|ηi|2 P→ 2. (3.115)

Thereby, introducing (3.115) in (3.109), along with (3.111), we can obtain:

λj(
βN

No·(1+2β)2

) P→ 1, j = 1, · · · , κ. (3.116)

Finally, plugging such an asymptotic performance of the eigenvalues into Theorem 3.6, the

log2 N scaling law of Linear Relaying is quickly grasped.

3.7 Numerical Results

The achievable rates of the four relaying schemes presented in this chapter are evaluated in

a block-fading environment. We assume the channel fading to take a zero-mean, complex,
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Figure 3.3: Achievable rates versus source-relay distance d. We consider transmit SNR = 5dB

and N = 2 relays. Wireless channels are Rayleigh faded.

Gaussian distribution and to be time-invariant. In particular, defining ds,d = 1 the source-

destination distance and d the source-relays distance, the channel gains are distributed as a ∼
CN (0, 1), bi ∼ CN (0, d−α), and ci ∼ CN

(
0, (1− d)−α), i = 1, · · · , N . We have set α = 3,

the path-loss exponent. All plots in this section show the expected value of the achievable rate,

averaged over the joint channel distribution via Monte-Carlo.

Relaying strategies are compared in Figs. 3.3-3.5 with respect to the source-relays distance d,

for number of relays N = 2, 8 and 32, respectively. We have considered P
No

= 5 dB. In the

case of C&F, only the upper bound derived in subsection 3.5.1 is plotted. Moreover, the max-

flow-min-cut bound and the source-destination direct link capacity are depicted as reference.

Additionally, the achievable rate versus the number of relays are depicted in Figs. 3.6-3.7, for

distances d = 0.05 and d = 0.95, respectively. Interesting conclusions can be drawn from the

plots:

• Decode-and-forward. Surprisingly, and despite its asymptotic performance, it is one of
the most competitive approaches. To start with, for low number of relays (e.g. N = 2 in
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Figure 3.4: Achievable rates versus source-relay distance d. We consider transmit SNR = 5dB

and N = 8 relays. Wireless channels are Rayleigh faded.
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Figure 3.5: Achievable rates versus source-relay distance d. We consider transmit SNR = 5dB

and N = 32 relays. Wireless channels are Rayleigh faded.
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Figure 3.6: Achievable rates versus the number of relays N . We consider transmit SNR = 5dB

and d = 0.05. Wireless channels are Rayleigh faded.
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Figure 3.7: Achievable rates versus the number of relays N . We consider transmit SNR = 5dB

and d = 0.95. Wireless channels are Rayleigh faded.
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Fig. 3.3) it is the dominant technique5 on the 60% of the distance range: 0 ≤ d ≤ 0.60.

Likewise, for short-mid distances (0 ≤ d ≤ 0.2 in Fig. 3.3), it perfectly mimics a

transmit antenna array, having an achievable rate identical to themax-flow-min-cut upper

bound. Thus, it is capacity-achieving for a wide range of distances.

Unfortunately, for increasing number of relays (e.g. N = 8 and N = 32 in Fig. 3.4 and

3.5, respectively) such a promising features are gotten worse. In particular, it remains the

best technique only for the 20% of the range closer to the source. This is consistent with

the analysis carried out in Section 3.3.1, where significant losses are shown for N � 1.

In fact, when analyzing D&F for increasing number of relays, we notice that: i) even for

very low source-relay distances (d = 0.05 in Fig. 3.6) the broadcast-limitation moves

the D&F rate further away from the capacity upper bound (on its defense, we must say

that more than 15 relays are needed to glimpse the Lambert W asymptotic performance)

ii) the worst scenario for D&F is jointly having high source-relay distances and high

number of relays (see d = 0.95 in Fig. 3.7). For it, D&F performs substantially far apart

from all other techniques.

• Partial decoding. It is the most disappointing technique among all considered in this
dissertation. Numerical results show that, in general, it produces negligible gains with

respect to D&F. As derived in the chapter, for large N ( e.g. for N = 8 and N = 32

relays in Fig. 3.4 and 3.5 respectively) both regenerative techniques perform exactly

equal. In fact, via simulation, we realize that partial decoding is only worthwhile within

a unique scenario: low number of relays plus large source-relays distance (see e.g., the

range 0.7 ≤ d ≤ 1 in Fig. 3.3 and N ≤ 8 in Fig. 3.7). Within such a setup, it produces

moderate gains since the source-destination channel is of similar magnitude to that from

source to relays (|a| ≈ |bm|). For all other cases, it is reveled useless (see e.g. Fig. 3.6
with d = 0.05).

• Linear relaying. Interestingly, it is at the same time the head and the tails of the coin. On
the one hand, it has an extremely poor performance with low number of relays; e.g., Fig.

3.3, where it is outperformed by all other relaying techniques, and Fig. 3.6-3.7, where

it presents the worst performance for N = 1 and N = 2 relays. This can be easily un-

derstood: the most important feature of LR is its capability to seize all the beamforming
5Along with PD&F.

76



3.8. The Half-duplex Model

gain of the system. In contrast, its main drawback is the noise amplification. With low

number of relays, the degree of noise amplification is not compensated by the beamform-

ing gain obtained from relays, which is small for N ≤ 2. Hence, it performs poorly. On

the other hand, with high number of relays the beamforming gain is large and powerful

enough to overcome noise amplification. Hence, LR becomes the most profitable relay-

ing techniques, outperforming all others, as shown in e.g. Fig. 3.5 and Fig. 3.7. Finally,

it is clearly shown in Fig. 3.3-3.5 that linear relaying is reciprocal with respect to the

source-relay distance, as shown in Theorem 3.6.

• Compress-and-forward. As expected, it is the better relaying technique for large d (see

Fig. 3.3-3.5). However, the range of distances for which it is optimal is much smaller

than that of D&F, and only collapses with the upper bound for exactly d = 1. In this

sense, we can claim that D&F mimics more perfectly a transmit antenna array than C&F

mimics a receive one. Additionally, the log2 log N scaling law of C&F is clearly grasped

from Fig. 3.7. It is shown therein that, even for large d, C&F is optimal only for small

number of relays.

3.8 The Half-duplex Model

In previous sections, it was assumed that the relays transmit towards the destination and receive

from the source simultaneously, and in the same frequency band. This mode of operation is

known as full-duplex. We justified it assuming that relays use different antennas to transmit

and receive, both perfectly isolated. However, such an assumption is not always realistic in

practice, mainly, due to two reasons:

1. Transmit and receive antennas are, normally, not perfectly isolated. Therefore, the self-

interference can be much stronger than the useful signal received from the source. The

reception at the relay would be thus limited by its own interference, and not by AWGN

as we assumed up to now. As an example, consider a relay transmitting with power 23

dBm. Assume an isolation among antennas of 80 dB. Hence, the self-interference level

is

Pint = 23− 80 = −57 (dBm). (3.117)
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Figure 3.8: Multiple-Parallel Relay Channel

On the other hand, consider a typical noise power at the relay of−110 dBm, and a signal-

to-noise-ratio for the source signal of SNR = 20 dB. Therefore, the power received at the

relay from the source is

Ps = −110 + 20 = −90 (dBm). (3.118)

Hence, the signal-to-interference ratio is SIR = −90 + 57 = −33 dB, much weaker than

the SNR = 20 dB that we assumed for analysis.

2. It is not always possible, or worthwhile, to use two antennas at the relays. When a

single antenna is used, the transmit and receive chains are usually isolated by a circulator.

Typical state-of-the-art circulators have an isolation of up to 70 dB. Hence, considering

the previous example, it is clear that self-interference limits the performance.
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When the conditions for full-duplex operation are not met, relays must transmit and receive us-

ing a multiplexing mode, either time-division (TD) or frequency-division (FD). This is referred

to as half-duplex operation. In this section, we consider a TD scheme at the relays, although

results are perfectly applicable to FD. We arrange the communication in two consecutive time

slots, of q and n − q channel uses, respectively (see Fig. 3.8). During the first slot, the source

node transmits the sequence of symbols xq
s[1] to the set of relays and destination:

y
q
i [1] = bix

q
s[1] + z

q
i , i = 1, · · · , N. (3.119)

y
q
d[1] = axq

s[1] + z
q
d, (3.120)

where zi, zd ∼ CN (0, 1). During the second slot, relays switch to transmission mode and send

to destination the signals x
n−q
i [2], i = 1, · · · , N . Simultaneously, the source transmits a new

sequence of symbols xn−q
s [2]. The superposition of signals is then received at the destination

as

y
n−q
d [2] = axn−q

s [2] +

N∑
i=1

cix
n−q
i [2] + z

q
d, (3.121)

Finally, the destination attempts to decode making use of the signal received during the two

phases.

Our analysis is constructed upon the same assumptions (A2)-(A3) presented in Section 3.2.

However, in this case, the power constraint is rewritten as:

1

n

(
q∑

t=1

E
{
|xt

s[1]|2
}

+

n−q∑
t=1

(
E
{
|xt

s[2]|2
}

+

N∑
i=1

E
{
|xt

i[2]|2
}))

≤ P. (3.122)

In the sequel, we derive the achievable rates of D&F, PD&F and C&F with such a TD scheme.

The main difference with the full-duplex mode is that, now, block-Markov coding is not neces-

sary as relays transmit and receive in different time-slots. This simplifies the practical imple-

mentation. We will not derive the achievable of LR, as it can be directly obtained by applying

the results in Section 3.6, setting κ = 2. This is referred to as amplify-and-forward (A&F).

Finally, let us remark that we have assumed a fixed slot structure. That is, the number of channel

uses per time-slot, q and n − q, are fixed and designed before transmission. Recently, Kramer

has shown that when the relays receive and transmit randomly, the point-to-point achievable

rate is increased [73]. We omit this possibility.
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3.8.1 Decode-and-Forward

Theorem 3.7 The AWGN multiple-parallel relay channel achieves the rate

RD&F = max
1≤m≤N

max
α,P1,P2

min

{
α · C

(
|a|2 P1

No

)
+ (1− α) · C

((
|a|2 +

m∑
i=1

|ci|2
)

P2

No

)
,

α · C
(
|bm|2

P1

No

)}
s.t. αP1 + (1− α)P2 ≤ P,

with half-duplex decode-and-forward. The source-relay channels have been ordered as in

(3.18).

Remark 3.7 The optimization above is not jointly convex on P1, P2 and α. However, it can be

easily transformed into a convex, differentiable one by first changing variables E1 = αP1 and

E2 = (1− α)P2 and then substituting the minimum of functions by its equivalent epigraph

form [52]. To solve such an optimization we propose dual decomposition, constructed through

Gradient Projection to obtain the dual function, and subgradient search to minimize it.

Proof: Let the N relay nodes be ordered as in (3.18), and assume that only the subset

Rm = {1, · · · , m} ⊆ N is active. The message ω ∈
{
1, · · · , 2nR

}
is encoded and transmitted

to relay, entirely, during time slot 1. We denote the transmitted signal by:

xq
s[1] = sq (ω) , (3.123)

where we have selected sq (·) to be a random, Gaussian codebook generated from s ∼ CN (0, P1).

At the end of the slot, all relay nodes inRm are able to decode ω iff :

R ≤ q

n
· min

i∈Rm

I (s; yi) (3.124)

=
q

n
· C
(
|bm|2

P1

No

)
,

where the equality is due to the ordering in (3.18). Once the message has been decoded, both

relays and source re-encode it and send it coherently to the destination. To that end, they

transmit as an antenna array with optimum beamforming:

xn−q
s [2] =

a∗√
|a|2 +

∑
i∈Rm

|ci|2
vn−q (ω) ,

x
n−q
i [2] =

c∗i√
|a|2 +

∑
i∈Rm

|ci|2
· vn−q (ω) , ∀ i ∈ Rm,
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where vn−q (·) is a random, Gaussian codebook, generated from v ∼ CN (0, P2). Notice that

whenever

q

n
P1 +

n− q

n
P2 ≤ P, (3.125)

the power constraint (3.122) is satisfied. At the end of slot 2, the destination attempt to estimate

the transmitted message ω from y
q
d[1] and y

n−q
d [2]. Consider now that codebooks sq (·) and

vn−q (·) form an incremental redundancy code, built up using e.g., parity forwarding [74].

With such a codebook design, the destination error-free decodes the message iff :

R ≤ q

n
· I (s; yd[1]) +

n− q

n
· I (v; yd[2]) (3.126)

=
q

n
· C
(
|a|2 P1

No

)
+

n− q

n
· C
((

|a|2 +
m∑

i=1

|ci|2
)

P2

No

)
.

Defining α = q
n
, we obtain minimization in Theorem 3.7 from (3.124) and (3.126). Finally,

P1, P2 as well as the slot duration can be arbitrarily designed. So it can the number of active

relays, which concludes the proof.

3.8.2 Partial Decode-and-Forward

Theorem 3.8 The AWGN multiple-parallel relay channel achieves the rate

RPD&F = max
1≤m≤N

max
α,β,P1,P2

min

{
α · C

(
|a|2 P1

No

)
+ (1− α) · C

((
|a|2 + β

m∑
i=1

|ci|2
)

P2

No

)
,

α · C
(
|bm|2

P1

No

)
+ (1− α) · C

(
|a|2 (1− β)P2

No

)}
s.t. αP1 + (1− α)P2 ≤ P

with half-duplex partial decode-and-forward. The source-relay channels have been ordered as

(3.18).

Proof: Let the N relay nodes be ordered as in (3.18), and assume that only the subsetRm =

{1, · · · , m} ⊆ N is active. The source selects message ω ∈
{
1, · · · , 2nR

}
for transmission,

and splits it into two independent messages ωr ∈
{
1, · · · , 2nRr

}
and ωd ∈

{
1, · · · , 2nRd

}
, with

R = Rr +Rd. The first message is sent to relays and destination during slot 1, encoded using a

Gaussian codebook, sq (·), generated from s ∼ CN (0, P1). The transmitted signal is denoted
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by:

xq
s[1] = sq (ωr) . (3.127)

All the relays inRm can decode the message at the end of the slot iff :

Rr ≤ q

n
· C
(
|bm|2

P1

No

)
. (3.128)

During slot 2, source and relays re-encode ωr and send it coherently to destination. In parallel,

the source transmits message ωd using superposition coding. The transmitted signals are thus:

xn−q
s [2] = un−q (ωd) +

a∗√
|a|2 +

∑
i∈Rm

|ci|2
vn−q (ωr) ,

x
n−q
i [2] =

c∗i√
|a|2 +

∑
i∈Rm

|ci|2
· vn−q (ωr) , ∀ i ∈ Rm,

where we have selected un−q (·) and vn−q (·) to be random, Gaussian codebooks, generated
from u ∼ CN (0, (1− β)P2) and v ∼ CN (0, βP2), respectively. At the end of the second

slot, the destination first makes use of y
q
d[1] and y

n−q
d [2] to estimate ωr. As previously, we

consider that sq (·) and vn−q (·) form an incremental redundancy code. Hence, decoding is
performed with arbitrary small error probability if:

Rr ≤ q

n
· I (s; yd[1]) +

n− q

n
· I (v; yd[2]) (3.129)

=
q

n
· C
(
|a|2 P1

No

)
+

n− q

n
· C
(

(|a|2 +
∑m

i=1 |ci|2) βP2

No + |a|2 (1− β)P2

)
.

ωr can be removed from y
n−q
d [2] after it has been decoded, and then ωd can be estimated iff :

Rd ≤ n− q

n
· I (u; yd[2]|v) (3.130)

=
n− q

n
· C
(
|a|2 (1− β)P2

No

)
.

The transmission rate is R = Rr + Rd. Thus, adding (3.129) and (3.130) we obtain the left

part of minimization in Theorem 3.8, while by adding (3.128) and (3.130) we obtain the right

part. This shows the achievable rate for a given Rm. Finally, notice that we may arbitrarily

choose the decoding set Rm from {R1, · · · ,RN}. Moreover, the power and slot duration can
be arbitrarily allocated on codes.

As in D&F, the resource optimization is not convex. Moreover, the achievable rate in Theorem

3.8 cannot be transformed into a convex problem. Therefore, we resort to exhaustive search to

solve it.
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3.8.3 Compress-and-Forward

Theorem 3.9 The AWGN multiple-parallel relay channel achieves the rate

RC&F = max
α,γ

(1)
s ,γ

(2)
s ,γ1:N ,ρ1:N

α · C
((

|a|2
No

+

N∑
i=1

|bi|2
No + ρi

)
γ(1)

s

)
+ (1− α) · C

(
|a|2γ(2)

s

No

)

s.t. C

⎛
⎝ γ

(1)
s

∑
u∈G

|bu|2
No+ρu

1 + γ
(1)
s

(
|a|2
No

+
∑

j /∈G
|bj |2

No+ρj

)
⎞
⎠+

∑
u∈G

C
(

No

ρu

)
≤

1− α

α
· C
(∑

u∈G

|cu|2γu

No + |a|2γ(2)
s

)
, ∀G ∈ N .

αγ(1)
s + (1− α)

(
γ(2)

s +

N∑
i=1

γi

)
≤ P,

with half-duplex D-WZ compress-and-forward relaying.

Proof: Let the source select message ω ∈
{
1, · · · , 2nR

}
, and split it into two independent

messages ωr ∈
{
1, · · · , 2nRr

}
and ωd ∈

{
1, · · · , 2nRd

}
, with R = Rr + Rd. During slot 1, the

source transmits ωr to relays and destination; during slot 2, it transmits message ωd. We denote

the transmitted signals by:

xq
s[1] = sq (ωr) (3.131)

xn−q
s [2] = un−q (ωd) ,

where we have selected sq (·) and un−q (·) to be random, Gaussian codebooks, generated i.i.d.
from s ∼ CN

(
0, γ

(1)
s

)
and u ∼ CN

(
0, γ

(2)
s

)
, respectively.

At the end of the first slot, the received signals at the relays yq
i [1], i = 1, · · · , N are compressed

using a D-WZ code as that in Definition 3.4 and Proposition 3.1. As a results, yq
i [1] are mapped

using compression functions

f i
q : Yq

i →
{
1, · · · , 2nφi

}
, (3.132)

where φi is the compression rate of relay i. On the following time slot, the relays send to the

destination (via its MAC channel) indexes si = f i
κ (yq

i [1]), i = 1, · · · , N . Indices are mapped
onto multi-access channel codebooks v

n−q
i (·) as follows:

x
n−q
i [2] = v

n−q
i (si) , i = 1, · · · , N. (3.133)
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We select the MAC codebooks to be Gaussian, generated from vi ∼ CN (0, γi), i = 1, · · · , N .
Notice that the power constraint is satisfied if

q

n
γ(1)

s +
n− q

n

(
γ(2)

s +
N∑

i=1

γi

)
≤ P, (3.134)

The received signal at the destination during the second time slot is (3.121):

y
n−q
d [2] = aun−q (ωd) +

N∑
i=1

biv
n−q
i (si) + zκ

d . (3.135)

Let us define the decoding at the destination at the end of slot 2. First, it estimates the transmit-

ted indexes s1:N . This can be done with arbitrary small error probability iff the transmission

rates φi lie within the capacity region, given by:

∑
u∈G

φu ≤
n− q

n
· C
(∑

u∈G |cu|2γu

No + |a|2γ(2)
s

)
, ∀G ⊆ U . (3.136)

Once the indexes s1:N have been estimated, their contribution on y
n−q
d [2] can be removed:

y
′n−q
d [2] = y

n−q
d [2]−

N∑
i=1

ci · xn−q
i [2] (3.137)

= aun−q (ωd) + z
n−q
d .

Hence, ωd can be correctly decoded iff :

Rd ≤
n− q

n
· C
(
|a|2γ(2)

s

No

)
. (3.138)

Afterwards, the destination decompresses indexes s1:N using y
q
d[1] as side information. the

decompression is carried out by means of the demapping function (Proposition 3.1)

gq :
{
1, · · · , 2nφ1

}
× · · · ×

{
1, · · · , 2nφN

}
× Yq

d → Ŷq
1:N . (3.139)

The de-mapped vectors ŷ
q
1:N = g (s1, · · · , sN , yq

d[1]) are then used, along with y
q
d[1], to decode

message ωr, which is correctly decoded iff [67]:

Rr ≤ q

n
· I (s; yd[1], ŷ1, · · · , ŷN) , (3.140)

where the inequality follows from (3.41) in Proposition 3.1. However, (3.140) only holds for

compression rates satisfying the set of constraints (3.42):

q

n
· I
(
yG; ŷG|y

′

d, ŷ
c
G

)
≤
∑
u∈G

φu ∀G ⊆ N . (3.141)
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Therefore, taking into account the constraints (3.141) and (3.136) and the rate (3.140), the

maximum achievable rate R = Rr + Rd with C&F is:

RC&F = max�N
i=1 p(ŷi|yi),γs,γ1:N ,

q

n
· I
(
s; y

′

d, ŷ1:N

)
+

n− q

n
· C
(
|a|2γ(2)

s

No

)
(3.142)

s.t.
q

n
· I
(
yG; ŷG|y

′

d, ŷ
c
G

)
≤ n− q

n
· C
(∑

u∈G |cu|2γu

No + |a|2γs

)
, ∀G ⊆ U ,

q

n
γ(1)

s +
n− q

n

(
γ(2)

s +

N∑
i=1

γi

)
≤ P.

We may now define α = q
n
, and apply the same arguments in (3.55)-(3.56) to conclude the

proof.

3.8.4 Numerical Results and Comparison

In this subsection, we briefly compare the performance of techniques with and without half-

duplex (HD) constraint. Unfortunately, we are not able to compare the achievable rates with

C&F due to the non-convexity of the optimization in Theorem 3.9. For simulation purposes,

the setup and channel distribution are the same as those in Section 3.7.

Fig. 3.9 compares full-duplex (FD) relaying versus HD versus de source-relay distance d. We

assume N = 2 relays and transmit SNR = P/No of 5 dB. We notice the following:

• All relaying techniques substantially get worse performance, penalized by the transmit-
receive multiplexing at the relays.

• The one with greatest penalization is D&F. In particular, it losses the most of its gains
when relays are close to the source. As an example, for d = 0.4, the HD constraint

induces a 0.8 bps/Hz loss.

• The same analysis holds for PD&F. However, with the HD constraint, PD&F outperforms
D&F within a wider range (0.45 ≤ d ≤ 1) than with FD: 0.6 ≤ d ≤ 1. This is one of the

main conclusions of this section: PD&F is a more interesting approach for HD relaying

than for FD relaying. This is explained by noting that the message directly transmitted

to destination induces interferences onto relays when working on full-duplex, while it

does not when they work on half-duplex. Likewise, the achievable rate with HD PD&F

85



3.8. The Half-duplex Model

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1.5

2

2.5

3

3.5

4

4.5

5

5.5

d

A
ch

ie
va

bl
e 

ra
te

 [b
ps

/H
z]

Max−flow−min−cut bound
Full−duplex D&F
Half−duplex D&F
Full−duplex PD&F
Half−duplex PD&F
Linear Relaying (κ → ∞)
A&F (κ = 2)
Direct link capacity

Figure 3.9: Comparison of the half-duplex and full-duplex achievable rates versus the source-

relay distance. We consider transmit SNR = 5dB and N = 2 relays. Wireless channels are

Rayleigh faded.

is almost flat with respect to the source-relay distance d. This poses PD&F as a very

good alternative when relays have random, uncontrolled distance to the source.

• A&F (that is, LR with κ = 2) reduces significantly its performance compared to LR. In

particular, with N = 2, A&F never outperforms D&F, not even for relays close to the

destination.

Fig. 3.10 depicts the achievable rates versus the number of relays, for d = 0.5. From the plot,

we infer the following: i) with D&F, the difference between the FD achievable rate and HD

achievable rate augments when increasing the number of relays; that is, FD and HD D&F scale

differently. ii) the A&F achievable rate is shown to be almost half of that achieved with LR

(see blue curve). Therefore, unlike other techniques where losses are lower, the HD constraint

penalizes amplify-based relaying with half of its rate gain. In consequence, HD makes ampli-

fying less worthy. As an example, LR outperforms FD D&F with N > 7 relays, while A&F

needs N > 17 to outperform HD D&F.
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Figure 3.10: Comparison of the half-duplex and full-duplex achievable rates versus the number

of relays N . We consider transmit SNR = 5dB and d = 0.5. Wireless channels are Rayleigh

faded.
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3.9 Conclusions

This chapter has studied the multiple-parallel relay channel (MPRC), where a single source

communicates to a single destination with the aid of N parallel relay nodes. The capacity of

the channel has been upper bounded using the max-flow-min-cut Theorem. The obtained upper

bound turned out to be reciprocal, and was shown to scale as C
(

N
2

P
No

)
under time-invariant

(unitary-mean) Rayleigh fading.

Besides, the capacity of the channel has been lower bounded by means of the achievable rates

with: D&F, two-level PD&F, C&F and LR. The first two consisted of relay nodes totally or

partially decoding the source’s signal. Both achievable rates were shown to perform equally

for low source-relay distances, being capacity achieving. Likewise, for large number of relays,

both follow the same scaling law: C
(
2 ·W0

(√
N
2

)
· P

No

)
. Such a law is shown to diverge from

the upper bound, making both techniques clearly suboptimal. We explained this fact resorting

to the source-relay broadcast limitation.

With C&F, the relay nodes compress their receiving signals using a Distributed Wyner-Ziv (D-

WZ) code, and then send them to the destination. The destination, in turn, utilizes the relay

signals within a coherent detector to estimate the source’s message. The achievable rate of this

technique was presented in terms of a non-convex optimization, which turned out unsolvable

for us. Hence, we proposed a computable upper bound as a benchmark for this technique.

Moreover, we showed that the achievable rate with C&F scales as C
(

P
No

log2 N
)
, in this case

due to the relay-destination MAC limitation.

Finally, we studied LR, which consisted of relay nodes transmitting, on every channel use, a

linear combination of previously received signals. The optimum source temporal covariance for

this technique was derived, and suboptimum linear relaying matrices proposed. Furthermore,

we showed that the achievable rate scales as C
(

N ·P
No

)
, in the same manner as the upper bound

and unlike all previous techniques. Hence, it is the only known technique that seize all the

beamforming gain of the system.

Numerical results have shown that:

1. D&F is a very competitive approach (and in some cases capacity-achieving) for low

number of relays and short/mid source-relay distances. On the other hand, it dramatically
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losses performance with high number of relays and/or relays close to the destination.

2. PD&F does not produce, in general, rate gains with respect to D&F. In particular, for

moderate number of relays N > 5 and/or relays closer to the source than to the des-

tination, it is useless. Only for low number of relays and/or relays extremely close to

destination, it is an interesting approach.

3. Unlike D&F, C&F is not able to mimic a receive antenna array unless relays are ex-

tremely close to destination. Indeed, even for short relay-destination distance, it presents

significant losses with respect to the max-flow-min-cut bound. Furthermore, its behavior

when increasing the number of relays is even worst than that of D&F : it follows the

scaling law more rapidly.

4. LR is, simultaneously, the head and tails of the coin. It performs extremely well when

moderate/high number of relays are available. In such a setup, it rapidly shows the log N

scale, running parallel to the capacity upper bound. On the other hand, with low number

of relays, it performs extremely poor due to the noise amplification, its main drawback.

Finally, it is reciprocal with respect to source and destination.

In this chapter, the extension of results to half-duplex (HD) operation were also performed.

The numerical analysis showed that:

1. All relaying techniques substantially get worse performance with half-duplex constraint.

Among all, D&F is the one with higher penalization. It losses great part of its gains for

short/mid source-relay distances.

2. PD&F produces greater gains with respect to D&Fwhen operating in HD. This is because

the message directly sent form source to destination does not induces interference on the

relays.

3. A&F (i.e., half-duplex linear relaying) looses half of the gains obtained with full-duplex

LR, independently of the number of relays and/or source-relay distance.
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Chapter 4

Multi-Access Channel with

Multiple-Parallel Relays

4.1 Introduction

Relaying has been placed at the forefront of the struggle against multi-path fading, mainly

due to its ability to provide single-antenna communications with extra spatial diversity [14].

However, it has plenty more features besides; among the most significants, its capability to

reduce the harmful impact of static channel impairments i.e. path-loss and shadowing [13,57].

In this sense, relaying is able enlarge the coverage area of access networks or, equivalently,

to increase their throughput per square meter [75]. However, is this worthwhile in multi-user

access?. Or, more specifically: i) how much can the capacity region of the MAC be enlarged

using multiple relays?. ii) Does multiuser diversity undermine relaying diversity?

Let us extend the results in Chapter 3 to multiple sources, trying to address those questions.
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4.1.1 Overview

In this chapter, the Gaussian MAC with multiple-parallel relays (see Fig. 4.1) is studied. As

previously, we consider single-antenna sources, relays and destination, in a time-invariant and

memory-less channel. Also, we assume that transmit and receive CSI are available at the

sources and destination, respectively, and all network nodes operate in the same frequency

band. Finally, relaying is full-duplex.

We define two main goals: 1) to study the capacity region of the channel. 2) To analyze its

sum-capacity when the number of sources U grows to infinity. In other words, to estimate the

impact of multiuser diversity into access networks with relays.

Aiming at keeping exposition simple, we restrain the analysis of the capacity region to the

two-user MAC. Our contributions are organized as follows:

• First, we provide the infinite-letter characterization of the capacity region, which is non-
computable in practice. In order to bound it, we derive a computable outer region using

themax-flow-min-cut Theorem [21, Theorem 14.10.1]. Then, we provide an upper bound

on the asymptotic1 sum-capacity of the channel under Rayleigh-distributed fading. We

show that a greater sum-rate can be obtained even at the asymptote, which encourages to

think that multiuser diversity does not undermine the impact of relaying.

• Next, we derive the achievable rate region of the channel with D&F, as an extension of
the single-relay result in [76]. Additionally, we show that, under Rayleigh-fading, the

achievable sum-rate satisfies:

SRD&F (U)− C
(

U
P

No

)
P→ 0. (4.1)

Therefore, asymptotically, D&F is not capable to increase the sum-capacity of the MAC

without relays. As explained in the sequel, such a result is due to the distributed channel

hardening effect at the relays’ received signal.

• Linear relaying is studied next. The rate region is derived using theory for vector MACs
and characterized using the sum-rate (SR) and weighted sum-rate (WSR) optimization.

Both optimizations are shown to be convex on the transmitter-side signalling, given a
1Asymptotic performance in the number of users, keeping the set of relays fixed.
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fixed set of linear functions at the relays. We solve the optimizations using iterative

algorithms, namely block-coordinate approach for the SR, and gradient projection for

the WSR. After designing the sources’ signals, the optimization of the linear functions at

the relays is not convex. Therefore, we propose a suboptimum approach.

• C&F with distributed Wyner-Ziv coding at the relays is studied last. As with the previ-
ous technique, the rate region is characterized by means of the WSR optimization. The

optimization, though, is not convex and has 2 ·N + 2 optimization variables; numerical

resolution is thus unfeasible. Therefore, we propose a computable upper bound on it that

will serve as benchmark. Finally, an upper bound on the asymptotic performance of C&F

(for the number of users growing to infinity) is found. We show that, unlike D&F, rate

gains can be obtained even at the asymptote.

The analysis of PD&F is omitted as it was shown in the previous chapter to perform exactly

as D&F for moderate/high number of relays. The rest of the chapter is organized as follows:

Section 4.2 presents the channel model and the capacity outer region. D&F is analyzed in

Section 4.3, LR in Section 4.4, and C&F in Section 4.5. Finally, Section 4.6 shows numerical

results and Section 4.7 enumerates conclusions.

4.2 Channel Model

The multi-access channel with multiple-parallel relays (MPR-MAC) is a channel in which two

sources, s1 and s2, communicate simultaneously to a single destination d with the aid of a set

N = {1, · · · , N} of parallel relay nodes (see Fig. 4.1). All network nodes transmit/receive
scalar signals, and wireless channels are time-invariant,memoryless, modeled using a complex

scalar. We denote by au the complex channel between source u and destination, while bu,i and

ci stand for source u to relay i, and relay i to destination channels, respectively. As for the

MPRC in Chapter 3, it is assumed that relays transmit directionally to destination and are not

able to communicate among them.

We denote by xn
u = {xt

u}n
t=1 ∈ Cn the signal transmitted by the source u = 1, 2, where xt

u is

the transmitted symbol during channel use t and n is the codeword length. The received signals
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Figure 4.1: Gaussian MAC with multiple-parallel relays.

at the relay nodes are

yn
ri

=

2∑
u=1

bu,i · xn
u + zn

ri
, i = 1, · · · , N (4.2)

where zri
∼ CN (0, No) is additive white Gaussian noise (AWGN). The signals transmitted by

the relays are xn
ri

=
{
xt

ri

}n

t=1
∈ C

n, i = 1, · · · , N , and are defined by means of causal relaying
functions: xt

ri
= fri

(
y1

ri
, · · · , yt−1

ri

)
. Accordingly, the destination node receives

yn
d =

2∑
u=1

au · xn
u +

N∑
i=1

ci · xn
ri

+ zn
d , (4.3)

with zd ∼ CN (0, No). As for the previous chapter, we assume the following:

(A1). Full-duplex operation: relays transmit and receive simultaneously in the same frequency

band. This can be implemented using different, uncoupled antennas for transmission and

reception.

(A2). Transmit channel state information (CSI) and receive CSI at the sources and destination,

respectively. Channel awareness includes source-destination, source-relay and relay-

destination channels, and can be obtained (and fedback) during a setup phase.
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(A3). The total power used in the communication of user u is constrained to Pu. This can

be arbitrarily distributed among the user and relays. Such a constraint aims at a fair

comparison with the no-relay MAC with per-user constraint Pu.

4.2.1 Preliminaries

In order to present rate results, we define the following:

Definition 4.1 A
(
n, 2nR1, 2nR2

)
code for the MPR-MAC is defined by:

• two sets of messagesWu =
{
1, · · · , 2nRu

}
, u = 1, 2, two signal spaces Xu, u = 1, 2 and

two source encoding functions

fu : Wu → X n
u , u = 1, 2, (4.4)

• N signal spaces Xi, i = 1, · · · , N and N causal relay functions

fri
: Yn

i → X n
i , i = 1, · · · , N, (4.5)

• a decoding function g : Yn
d →W1 ×W2.

Definition 4.2 A rate duple (R1, R2) is achievable if there exists a sequence of codes
(
n, 2nR1 , 2nR2

)
for which limn→∞ P n

e = 0, where

P n
e =

1

2nR12nR2

∑
ω1,ω2

Pr {g (yn
d ) 	= (ω1, ω2)|(ω1, ω2) was sent} . (4.6)

Definition 4.3 The capacity region of the MPR-MAC is the closure of all rates duples that are

achievable. It is characterized by means of the infinite-letter definition:

C = lim
n→∞

coh

⎛
⎜⎜⎜⎝

⋃
pxn

1
pxn

2
,{fri}i=1,··· ,N

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

R1,2 :

R1 ≤ 1
n
· I (xn

1 ; y
n
d |xn

2 )

R2 ≤ 1
n
· I (xn

2 ; y
n
d |xn

1 )

R1 + R2 ≤ 1
n
· I (xn

1 , x
n
2 ; yn

d )

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎞
⎟⎟⎟⎠ ,(4.7)

where the union is taken over the sources distributions and relaying functions that satisfy the

power constraint (A3) and the causal relaying in Definition 4.1, respectively.
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The infinite-letter characterization (4.7) has been obtained using arguments in [57, Theorem

2.1]: Fano’s inequality for the weak converse, and random coding/joint typical decoding for

achievability. Unfortunately, deriving a computable, single-letter expression is still an open

problem. In this section, we present an outer region.

4.2.2 Outer Region

As for the previous chapter, we present a necessary condition that any rate duple (R1, R2)must

satisfy in order to be achievable. The set of rates that satisfy the condition defines an outer

region on the capacity region of the channel.

Outer Region: All rate duples belonging to the capacity region (4.7) satisfy:

R1 ≤ C
((

|a1|2 +

∑N
i=1 |b1,i|2

∑N
i=1 |ci|2

|a1|2 +
∑N

i=1 |b1,i|2 +
∑N

i=1 |ci|2

)
P1

No

)
(4.8)

R2 ≤ C
((

|a2|2 +

∑N
i=1 |b2,i|2

∑N
i=1 |ci|2

|a2|2 +
∑N

i=1 |b2,i|2 +
∑N

i=1 |ci|2

)
P2

No

)
(4.9)

R1 + R2 ≤ max
0≤ρ1,ρ2<1

min

{
C
(

2∑
u=1

(
|au|2 + ρu

N∑
i=1

|ci|2
)

Pu

No

)
, (4.10)

log2 det

(
I +

2∑
u=1

(1− ρu)
Pu

No

huh
†
u

)}

where hu = [au, bu,1, · · · , bu,N ]T , u = 1, 2.

Proof: Achievable rates for user 1 and user 2 must satisfy, separately, the single-user upper

bound presented in Section 3.2.2. Hence, equations (4.8) and (4.9) hold. In order to demon-

strate (4.10), we again resort to the max-flow-min-cut Theorem [21, Theorem 14.10.1]. In

particular, considering the multi-access and broadcast cuts, it is possible to bound:

R1 + R2 ≤ max
p(xr1:N

|x1,x2)p(x1)p(x2)
min {I (x1, x2, xr1:N

; yd) , I (x1, x2; yd, yr1:N
|xr1:N

)} ,(4.11)

where the factorization of the distribution comes from non-cooperative nature of the sources’

signalling; that is, x1 and x2 are independent. As for the single-source case, we can easily show

that: i) a Gaussian distribution is optimal, ii) full correlation among the relays’ signals is also
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optimal, as it maximizes both sides of the minimization simultaneously, i.e.,∣∣∣∣∣∣
E
{
xri

x∗rj

}
√

E {|xri
|2}
√

E
{
|xrj
|2
}
∣∣∣∣∣∣ = 1, i, j ∈ N . (4.12)

Hence, defining

ρu,r =

∣∣∣∣∣∣
E
{
xux

∗
rj

}
√

E {|xu|2}
√

E
{
|xrj
|2
}
∣∣∣∣∣∣ , u = 1, 2, ∀j ∈ N (4.13)

as the source-relays correlation, and taking i) and ii) into account, we evaluate the broadcast

cut as:

I (x1, x2; yd, yr1:N
|xr1:N

) = log2 det

(
I +

2∑
u=1

E {|xu|2|x1:N}
No

huh
†
u

)
(4.14)

= log2 det

(
I +

2∑
u=1

(
1− ρ2

u,r

)
E {|xu|2}

No

huh
†
u

)

= log2 det

(
I +

2∑
u=1

(1− ρu)
Pu

No

huh
†
u

)
,

where hu is defined above, and we have set

(1− ρu) Pu =
(
1− ρ2

u,r

)
E
{
|xu|2

}
, u = 1, 2. (4.15)

Furthermore, for the multiple access cut it is possible to compute:

I (x1, x2, xr1:N
; yd) = I (x1, x2; yd|xr1:N

) + I (xr1:N
; yd) (4.16)

= C
(

2∑
u=1

|au|2
(
1− ρ2

u,r

)
E {|xu|2}

No

)
+ I (xr1:N

; yd)

= C
(

2∑
u=1

|au|2 (1− ρu) Pu

No

)
+ I (xr1:N

; yd) .

Following equivalent arguments to those in (3.15), and considering the power constraint (A3),

we can bound

I (xr1:N
; yd) ≤ C

⎛
⎝
∑2

u=1

(
|au|2 +

∑N
i=1 |ci|2

)
ρuPu

No +
∑2

u=1 |au|2 (1− ρu)Pu

⎞
⎠ , (4.17)

which plugged into (4.16), allows us to obtain:

I (x1, x2; yd, yr1:N
|xr1:N

) ≤ C
(

2∑
u=1

(
|au|2 + ρu

N∑
i=1

|ci|2
)

Pu

No

)
. (4.18)

Finally, to obtain (4.10) the minimum of (4.14) and (4.18) must be maximized over ρ1, ρ2,

which concludes the proof.
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4.2. Channel Model

Notice that, as for the single-user case, the outer region also bounds the capacity region of

MACs with inter-relay connectivity. Indeed, we did not take any assumption on the connectiv-

ity among relays.

4.2.3 Multiuser Diversity and Relaying

Throughout the chapter, we consider the MPR-MAC composed uniquely of two users. How-

ever, results can be extended to U > 2 using standard arguments in [21, Section 14.3.5].

Specifically, the sum-capacity bound (4.10) generalizes for more than two sources as:

U∑
u=1

Ru ≤ SRub (U) � max
0≤ρ1:U<1

min

{
C
(

U∑
u=1

(
|au|2 + ρu

N∑
i=1

|ci|2
)

Pu

No

)
, (4.19)

log2 det

(
I +

U∑
u=1

(1− ρu)
Pu

No
huh

†
u

)}

In this subsection, we derive the scaling law of such a sum-capacity bound for number of users

growing to ∞. In other words, we analyze whether multiuser diversity reduces the potential
gains of relaying or not. In the analysis it is assumed that, when increasing the number of users,

the set of relays remains unaltered, as well as the relay-destination channels.

Consider unitary-mean, Rayleigh fading so that au, bu,i ∼ CN (0, 1). Also, for notational

simplicity, assume Pu = P , u = 1, · · · , U . Then, the following convergence in probability can
be proven.

Theorem 4.1 Consider the MPR-MAC with a fixed set of relays N . Then, for U →∞:

SRub (U)− max
ξ∈[0,U)

min

{
C
(

P

No

(
U +

N∑
i=1

|ci|2ξ
))

, (N + 1) C
(

P

No

(U − ξ)

)}
P→ 0.

Proof: Let us first focus on the definition of SRub (U) in (4.19), and apply Corollary 2.3 to

derive that, for U →∞:

C
(

U∑
u=1

(
|au|2 + ρu

N∑
i=1

|ci|2
)

P

No

)
− C

(
P

No

(
U +

N∑
i=1

|ci|2
U∑

u=1

ρu

))
P→ 0. (4.20)
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For the other part of the minimization, it is possible to compute:

log2 det

(
I +

U∑
u=1

(1− ρu)
P

No
huh

†
u

)
= log2 det

(
I + HQHH

)
(4.21)

=
N+1∑
i=1

C
(
λi

(
HQHH

))
,

where H = [h1, · · · , hU ], Q = diag
(

P
No

(1− ρ1) , · · · , P
No

(1− ρU)
)
and λi

(
HQHH

)
is

the ith eigenvalue ofHQHH . Notice that all the entries ofH are i.i.d., zero-mean, Gaussian

with unit variance. Therefore, we can apply [77, Corollary 1] in order to show that, for U →∞:

λi

(
HQHH

U

)
− tr {Q}

U

P→ 0. i = 1, · · · , N + 1. (4.22)

Such a convergence holds since the elements of diagonal matrix Q are bounded. Notice now

that λi

(
HQHH

U

)
=

λi(HQHH)
U

. Therefore,

λi

(
HQHH

)
U

− tr {Q}
U

P→ 0. i = 1, · · · , N + 1. (4.23)

This can be transformed without modifying convergence

1 + λi

(
HQHH

)
U

− 1 + tr {Q}
U

P→ 0. i = 1, · · · , N + 1. (4.24)

Consider the computation of the trace:

tr {Q} =
P

No

U∑
u=1

(1− ρu) =
P

No

(
U −

U∑
u=1

ρu

)
. (4.25)

It is clear that, being ρu < 1, ∀u, it satisfies

tr {Q} ≥ U
P

No

·
(
min

u
{1− ρu}

)
> 0, ∀U (4.26)

Accordingly, it is possible to reproduce steps (2.83)-(2.89) in Corollary 2.3, to derive that for

U →∞:

C
(
λi

(
HQHH

))
− C (tr {Q}) P→ 0. i = 1, · · · , N + 1. (4.27)

On such a convergence, we can introduce the value of the trace (4.25) to claim

C
(
λi

(
HQHH

))
− C

(
P

No

(
U −

U∑
u=1

ρu

))
P→ 0. i = 1, · · · , N + 1. (4.28)
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4.3. Decode-and-forward

Finally, it is possible to plug (4.28) into (4.21) to derive:

log2 det

(
I +

U∑
u=1

(1− ρu)
P

No
huh

†
u

)
− (N + 1) C

(
P

No

(
U −

U∑
u=1

ρu

))
P→ 0. (4.29)

Let us then denote ξ =
∑U

u=1 ρu, ξ ∈ [0, U). Therefore, i) using convergences (4.20) and

(4.29) into definition (4.19); and, ii) noting thatmax and min keep convergence unaltered (see

Lemma 2.2), it concludes the proof.

An interesting conclusion can be drawn from Theorem 4.1: relays do not provide multiplexing

gain on the sum-rate. This is concluded by noticing that SRub (U) converges to the minimum

of two functions, one of which has pre-log term equal to 1. Since the multiplexing gain of the

system is equal to the pre-log term, this is clearly 1 in our channel [9] [78]. As mentioned,

this result holds even for MACs with inter-relay connectivity. Nonetheless, even though mul-

tiplexing capabilities are not provided by the relays, they increase the sum-capacity bound by

means of an in-log term. This encourages to think that, even with infinite users, relays improve

the sum-capacity of the MAC; or, in other words, multiuser diversity and relaying diversity are

compatible.

4.3 Decode-and-forward

D&F is the first technique considered. As studied in Chapter 3, with D&F the relay nodes

fully decode the users’ messages. Later, relays reencode them and retransmit them coherently

towards destination. The technique was proposed by Cover in [10, Theorem 5], and later

applied by Kramer to the MAC with one relay in [76]. In this section, we extend those results

to the MPR-MAC.

Before deriving the rate region, let us briefly discuss the relevance of relay selection in the

setup. As mentioned in Theorem 3.1, the extension of D&F to multiple relays is based upon

a key fact: the higher the cardinality of relays that decode the users’ messages, the higher

the multiple-antenna gain towards the destination. However, the more relays, the smaller the

rate region that all can decode. Therefore, there is always an optimum subset of relays that

should be be active: the one who better trade among the two effects. As shown below, for the
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4.3. Decode-and-forward

MAC, such an optimum subset is (or may be) different for any boundary point of the region.

Therefore, all possible subsets S ⊆ N must be considered and (possibly) time-shared.

Theorem 4.2 The MPR-MAC achieves the rate region:

RD&F (P1, P2) = coh

( ⋃
S⊆N

⋃
0≤η1,η2≤1

{R1,2 : (4.30)

∑
u∈G

Ru ≤ min {Φ (S, η1, η2,G) , Ψ (S, η1, η2,G)} | ∀G ⊆ {1, 2}
})

,

where

Φ (S, η1, η2,G) = min
i∈S

C
(∑

u∈G
|bu,i|2ηu

Pu

No

)

Ψ (S, η1, η2,G) = C
(∑

u∈G

(
|au|2 + (1− ηu)

∑
i∈S
|ci|2

)
Pu

No

)

with D&F relaying.

Remark 4.1 S is a subset of N , and η1, η2 are the correlations between users’ signals and

relays’ signals.

Proof: : Let only the subset of relays S ⊆ N be active, and let the users select messages

ωu ∈
{
1, · · · , 2nRu

}
, u = 1, 2 for transmission. Each message is divided into B blocks of

κRu bits, with κ = n
B
, i.e., ωu =

[
ω1

u, · · · , ωB
u

]
u = 1, 2. The submessages are then pipelined

into B + 1 channel blocks, with κ channels uses per block. We consider n, κ, B � 1, so that
B

B+1
≈ 1.

Messages are transmitted using a block-Markov approach [21, Sec. 14.7]: on every block

b, users transmit the new sub-messages ωb
u to the relays in S, and to the destination. Si-

multaneously, they cooperate with the relays in S to retransmit their previously transmitted
sub-messages ωb−1

u . To that end, users and relays transmit (consider ω0
u = ωB+1

u = 0):

xκ
u [b] = sκ

u

(
ωb

u, ω
b−1
u

)
+

a∗u√
|au|2 +

∑
i∈S |ci|2

vκ
u

(
ωb−1

u

)
, u = 1, 2 (4.31)

xκ
ri

[b] =
2∑

u=1

c∗i√
|au|2 +

∑
i∈S |ci|2

· vκ
u

(
ωb−1

u

)
, ∀ i ∈ S (4.32)
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4.3. Decode-and-forward

where we have selected vκ
u (·), u = 1, 2 to be Gaussian codebooks, generated i.i.d. from

vu ∼ CN (0, (1− ηu)Pu). In turn, we have chosen sκ
u (·, ·), u = 1, 2 to be multiplexed codes,

generated i.i.d. from su ∼ CN (0, ηuPu). Multiplexed codes consist of
(
κ, 2κR · 2κR

)
codes

indexed by two entries ωt, ωd. A receiver can reliably decode both ωt and ωd if the channel

capacity satisfies C > 2R. However, whenever it knows ωt it can decode ωd if C > R, and,

similarly, if it knows ωd it can decode ωt (see [79, Section III.A] for full details on the code

construction and definition). Notice that, for 0 < ηu ≤ 1, u = 1, 2, the power constraint (A3)

is satisfied, since the power transmitted by user u and by the relays to cooperate with him add

up to Pu.

The received signals at the relays and destination thus read:

yκ
ri
[b] =

2∑
u=1

bu,i · sκ
u

(
ωb

u, ω
b−1
u

)
+

2∑
u=1

bu,i · a∗u√
|au|2 +

∑
i∈S |ci|2

vκ
u

(
ωb−1

u

)
+ No, ∀ i ∈ S

yκ
d [b] =

2∑
u=1

au · sκ
u

(
ωb

u, ω
b−1
u

)
+

2∑
u=1

√
|au|2 +

∑
i∈S
|ci|2 · vκ

u

(
ωb−1

u

)
+ No.

On every given block b, the relay node i ∈ S is able to decode both ωb
u, u = 1, 2 if and only if

(assuming ωb−1
u , u = 1, 2 well estimated) [21, Section 14.3]:

R1 ≤ I (s1; yri
|s2, v1, v2) = C

(
|b1,i|2η1

P1

No

)
(4.33)

R2 ≤ I (s2; yri
|s1, v1, v2) = C

(
|b2,i|2η2

P2

No

)

R1 + R2 ≤ I (s2, s1; yri
|v1, v2) = C

(∑2
u=1 |bu,i|2ηu

Pu

No

)
.

Therefore, all relay nodes in S correctly decode the messages, and then retransmit them in
block b + 1, if and only if:

R1 ≤ min
i∈S

C
(
|b1,i|2η1

P2

No

)
(4.34)

R2 ≤ min
i∈S

C
(
|b2,i|2η2

P2

No

)

R1 + R2 ≤ min
i∈S

C
(∑2

u=1 |bu,i|2ηu
Pu

No

)
.

Next, consider the decoding at the destination node, implemented through backward decod-

ing [58, Sec III.B]. That is, the destination starts decoding from the last block and pro-

ceeds backward. Assume that, on a given block b, the destination has successfully decoded
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4.3. Decode-and-forward

ωb
u, · · · , ωB

u , u = 1, 2. Then, it uses yκ
d [b] to estimate ωb−1

u :

yκ
d [b] =

2∑
u=1

aus
κ
u

(
ωb

u, ω
b−1
u

)
+

2∑
u=1

√
|au|2 +

∑
i∈S
|ci| · vκ

u

(
ωb−1

u

)
+ zκ

d . (4.35)

Being sκ (·, ·) a multiplexed code, and assuming ωb well estimated, the destination reliably

decodes ωb−1
u u = 1, 2 iff :

R1 ≤ I (s1, v1; yd|s2, v2) = C
((

|a1|2 + (1− η1)
∑
i∈S
|ci|2

)
P1

No

)
(4.36)

R2 ≤ I (s2, v2; yd|s1, v1) = C
((

|a2|2 + (1− η2)
∑
i∈S
|ci|2

)
P2

No

)

R1 + R2 ≤ I (s1, s2, v1, v2; yd) = C
(

2∑
u=1

(
|au|2 + (1− ηu)

∑
i∈S
|ci|2

)
Pu

No

)

Now, considering the two limitations in (4.34) and (4.36), we obtain the minimization in (4.30).

However, notice that correlations η1, η2 can be arbitrarily chosen, as well as the subset of active

relays S ⊆ N . Hence, the rate region becomes the union over subsets and 0 < η1, η2 ≤ 1.

Finally, due to time-sharing the convex hull operation is demonstrated.

Notice that the boundary points of the rate region can be attained using superposition coding

(SC), successive interference cancelation (SIC) at the decoders, and (optionally) time-sharing

(TS). In fact, for fixed subset of relays S and fixed correlations η1, η2, the rate region is the

intersection of the capacity regions at the relays in S and at the destination (as shown in the
proof). Since SC, SIC and TS are thus optimal for the individual regions, they are optimal for

the intersection of them as well.

Let us compute now the maximum sum-rate of the rate region (4.30). For G = {1} and
G = {2}, it is clear that:

R1 ≤ R̄1 � max
S⊆N

max
0≤η1,η2≤1

min {Φ (S, η1, η2, {1}) , Ψ (S, η1, η2, {1})} (4.37)

R2 ≤ R̄2 � max
S⊆N

max
0≤η1,η2≤1

min {Φ (S, η1, η2, {2}) , Ψ (S, η1, η2, {2})}

which are the maximum single-user rates of both sources when they are assisted by relays,

which can be computed from Theorem 3.1. Additionally, from the sum-rate constraint (i.e.,

G = {1, 2}):
2∑

u=1

Ru ≤ R̄1,2 � max
S⊆N

max
0≤η1,η2≤1

min {Φ (S, η1, η2, {1, 2}) , Ψ (S, η1, η2, {1, 2})} . (4.38)
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Unfortunately, no closed-form expression can be obtained for R̄1,2. Notice now that, unlike

the sum-rate of the MAC without relays, R̄1,2 can be either greater than, lower than or equal

to R̄1 + R̄2. Therefore, we need to consider both (4.37) and (4.38) in order to compute the

maximum sum-rate of the channel with D&F, which is

SRD&F = min
{
R̄1 + R̄2, R̄1,2

}
. (4.39)

4.3.1 Multiuser Diversity and D&F

We study now the impact of multiuser diversity on the achievable rate region with D&F. In

particular, the scaling law (on the number of users) of its achievable sum-rate is obtained. First,

we trivially extend (4.38) to U > 2:

U∑
u=1

Ru ≤ SRD&F (U) � max
S⊆N

max
0≺ηU�1

min {Φ (S, ηU ,U) , Ψ (S, ηU ,U)} , (4.40)

where U = {1, · · · , U}, and ηU = {η1, · · · , ηU}. The interpretation of (4.40) is as follows: the
maximum sum-rate with D&F is always lower than or equal to the maximum, over the subset

of active relays and over the source-relay correlation, of the minimum of: i) the sum-capacity

towards the active relays, Φ (S, ηU ,U) and ii) the sum-capacity towards the destination with the

aid of the active relays, Ψ (S, ηU ,U). However, as pointed out in (4.39), such a bound does not

necessarily hold with equality. The explanation comes from the fact that relays and destination

may be able to decode the same sum-capacity, but at different points of the rate region (See Fig.

4.2). Accordingly, it may occur that such a sum-capacity cannot be simultaneously maintained

with the relays and with the destination, and therefore it is not achievable.

Assume unitary-mean, Rayleigh-distributed fading coefficients au ∼ CN (0, 1), and bu,i ∼
CN (0, 1), ∀u, i. Also, for simplicity of exposition, assume that all power constraints are iden-

tical: Pu = P , u = 1, · · · , U . Then, the following convergence in probability can be proven.

Theorem 4.3 Consider the MPR-MAC with a finite set of relays N . Then, for U →∞,

SRD&F (U)− C
(

U · P

No

)
P→ 0. (4.41)
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Figure 4.2: Achievable sum-rate with D&F.

Proof: In (4.40), we defined

Φ (S, ηU ,U) = min
i∈S

C
(

P

No

∑
u∈U

|bu,i|2ηu

)
(4.42)

Ψ (S, ηU ,U) = C
(

P

No

∑
u∈U

(
|au|2 + (1− ηu)

∑
i∈S
|ci|2

))
.

First of all, given unitary-mean, Rayleigh fading, we may apply Corollary 2.3 to derive:

C
(

P

No

U∑
u=1

|bu,i|2ηu

)
− C

(
P

No

U∑
u=1

ηu

)
P→ 0.

Furthermore, given the subset of relays S of finite cardinality and noting from Lemma 2.2 that
the min operator keeps convergence unaltered, the following relationship also holds:

Φ (S, ηU ,U)− C
(

P

No

U∑
u=1

ηu

)
P→ 0. (4.43)

Consider now the convergence of Ψ (S, ηU ,U). Using Corollary 2.3 we can derive that:

Ψ (S, ηU ,U)− log2

(
1 +

P

No

(
U +

∑
i∈S
|ci|2

U∑
u=1

(1− ρu)

))
P→ 0, (4.44)
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Therefore, using convergence (4.43) and (4.44) in definition (4.40), and recalling that the max

andmin operators do not altere convergence (see Lemma 2.2), we derive that:

SRDF (U)−max
S⊆N

max
0≺ηU�1

min

{
C
(

P

No

U∑
u=1

ηu

)
,

C
(

P

No

(
U +

∑
i∈S
|ci|2

U∑
u=1

(1− ρu)

))}
P→ 0, (4.45)

However, notice that
∑U

u=1 ηu ≤ U always. Therefore,

SRDF (U)−max
S⊆N

max
0≺ηU�1

C
(

P

No

U∑
u=1

ηu

)
P→ 0, (4.46)

which is evaluated as

SRDF (U)− C
(

U · P

No

)
P→ 0. (4.47)

This concludes the proof.

Theorem 4.3 states that the sum-rate of the MAC with D&F relays and the MAC without

relays are asymptotically equal. Therefore, D&F relaying is not useful, in terms of capacity,

when there is enough multiuser diversity in the network. We can interpret this resorting to the

Distributed Channel Hardening effect [80]. To explain this effect, let us first recall that for D&F

with a single source (see Section 3.3.1), the ordered SNRs at the relays were approximated by

the inverse function of the c.d.f. of the channel distribution: see e.g., (3.26) and (3.27). That is,

SNRrm
≈ − log

(m

N

) P

No
, m = 1, · · · , N. (4.48)

The result was obtained using ordered statistics in [60]; according to it, the relays with low

m � N (i.e., the relays with highest source-relay channels following (3.18)) enjoyed links

with the source of much higher capacity than the destination did. Hence, the virtual antenna

was reliably mimicked and D&F became useful.

However, with multiple sources, the received SNR at the relays is the result of the power

contribution from all users, which is (as for the single-user case) random due to fading:

SNRrm
=

P

No

U∑
u=1

ηu|bu,m|2, m = 1, · · · , N. (4.49)
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Nevertheless, with infinite users this sum satisfies the law of large numbers: the received SNR

at the relays converges in probability to a fixed constant, which is indeed equal for all relays:

SNRrm
− P

No

U∑
u=1

ηu
P→ 0, ∀m. (4.50)

Thereby, in this case, the ordered statistics are not able to provide any SNR gain among the

relays, and all have the same received power. Moreover, since ηu ≤ 1 ∀u, the asymptotic
sum-rate of the relays is clearly lower than or equal to that of the destination without relays:

P

No

U∑
u=1

ηu ≤
P

No

U. (4.51)

Therefore, relays become the bottleneck of the network and no rate gain is obtained. This is

what we refer to distributed channel hardening effect. The effect was discovered by Hochwald

et al. in the context of opportunistic MISO-MAC [80], and complemented by Larsson in [81].

Finally, notice that the max-flow-min-cut bound (Theorem 4.1) indeed suggests rate gains even

for high number of users. Therefore, D&F is clearly suboptimal for densely-populated MACs.

4.4 Linear Relaying

With LR, the relays do not decode the users’ signals, but amplify them instead. Therefore, it is

expected that this technique is not affected by the channel hardening effect. At the MPR-MAC,

LR operates as follows [24]: the two sources select messages ωu ∈
{
1, · · · , 2Ru

}
, u = 1, 2 for

transmission and map them onto two independent codewords xn
u, u = 1, 2 of sufficiently large

length n. The codewords are then transmitted into B channel blocks of κ = n
B
channel uses

each. On every block b, the sequence of symbols xκ
u[b], u = 1, 2 are transmitted and received

at the relays and destination following (4.2) and (4.3), respectively. Simultaneously, the relays

linearly combine the received signal during this block, and send the sequence of symbolsxκ
ri
[b],

given by:

xκ
ri
[b] = Φi · yκ

ri
[b]

= Φi ·
(

2∑
u=1

bu,i · xκ
u[b] + zκ

ri

)
, i = 1, · · · , N. (4.52)

As for previous chapter,Φi ∈ Cκ×κ
SLT

is referred to as linear relaying matrix of relay i. It defines

the linear combination of past inputs, and is strictly lower triangular to preserve causality. The
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received signal at the destination is2:

yκ
d =

2∑
u=1

au · xκ
u +

N∑
i=1

ci · xκ
ri

+ zκ
d ,

=

2∑
u=1

(
au · I +

N∑
i=1

bu,iciΦi

)
· xκ

u +

(
zκ

d +

N∑
i=1

ciΦiz
κ
ri

)
. (4.53)

As previously, the communication is constrained to satisfy the per-user constraint (A3), which

can be stated as follows: let Qκ
u = E

{
xκ

u (xκ
u)
†
}
� 0 be the source u = 1, 2 temporal

covariance matrix, and Qκ
ri

= E
{

xκ
ri

(
xκ

ri

)†}
=
∑2

u=1 |bu,i|2ΦiQ
κ
uΦ

†
i + NoΦiΦ

†
i , the relays

temporal covariance. Then, the total transmitted power in the network is computed as:

P =
1

κ

(
2∑

u=1

tr {Qκ
u}+

N∑
i=1

tr
{
Qκ

ri

})
(4.54)

=
1

κ

2∑
u=1

tr

{
Qκ

u

(
I +

N∑
i=1

|bu,i|2Φ†
iΦi

)
+

No

2

N∑
i=1

Φ
†
iΦi

}

Therefore, we can easily infer that the power used in the network to transmit the message of

user u = 1, 2 is:

Pu (Qκ
u,Φ1:N) =

1

κ
tr

{
Qκ

u

(
I +

N∑
i=1

|bu,i|2Φ†
iΦi

)
+

No

2

N∑
i=1

Φ
†
iΦi

}
. (4.55)

Accordingly, assumption (A3) is formulated as Pu (Qκ
u,Φ1:N) ≤ Pu, u = 1, 2. The rate region

with such a relaying architecture is given in the following theorem.

Theorem 4.4 With LR, the achievable rate region of the MPR-MAC is

RLR (P1, P2) = lim
κ→∞

coh

⎛
⎝ ⋃

Φ1:N∈C
κ×κ
SLT

Rκ (Φ1:N)

⎞
⎠ (4.56)

whereRκ (Φ1:N) �

⋃
Qκ

1 ,Qκ
20

Pu(Qκ
u,Φ1:N )≤Pu, u=1,2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

R1,2 :

R1 ≤ 1
κ

log2 det
(
I + R

− 1
2

d H1Q
κ
1H

†
1R

− 1
2

d

)
R2 ≤ 1

κ
log2 det

(
I + R

− 1
2

d H2Q
κ
2H

†
2R

− 1
2

d

)
R1 + R2 ≤ 1

κ
log2 det

(
I +

∑2
u=1 R

− 1
2

d HuQ
κ
uH

†
uR

− 1
2

d

)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(4.57)

andRd = No

(
I +

∑N
i=1 |ci|2ΦiΦ

†
i

)
,Hu =

(
au · I +

∑N
i=1 bu,iciΦi

)
, u = 1, 2.

2For notational simplicity, we remove index b.
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Remark 4.2 Hereafter, we refer toRκ (Φ1:N) as the conditional rate region of the MPR-MAC.

It is defined as the closure of all rate duples (R1, R2) that are achievable when the relay nodes

use the fixed set of relaying matrices Φ1:N ∈ C
κ×κ
SLT .

Proof: Let the sources transmit on blocks of κ channel uses, and the relays use the given

set of matrices Φ1:N . The received signal is given in (3.89), for which the capacity region is

derived using theory of vector MAC [21]:

Rκ (Φ1:N) = coh

⎛
⎜⎜⎜⎝

⋃
pxκ

1
pxκ

2
:Pu(Qκ

u,Φ1:N )≤Pu, u=1,2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

R1,2 :

R1 ≤ 1
κ
· I (xκ

1 ; y
κ
d |xκ

2)

R2 ≤ 1
κ
· I (xκ

2 ; y
κ
d |xκ

1)

R1 + R2 ≤ 1
κ
· I (xκ

1 , x
κ
2 ; y

κ
d )

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎞
⎟⎟⎟⎠ ,

where achievability is proven using random coding arguments with codewords of length n =

Bκ → ∞, generated i.i.d from pxκ
u

u = 1, 2, and joint typical decoding. For the con-

verse, Fano’s inequality applies. Considering Gaussian noise, the rate region above is directly

(4.57) [21, Section 10.5]. This demonstrates the greater achievable rate region with a fixed set

of relaying functions Φ1:N . However, the relaying matrices can be arbitrarily chosen at the

relay nodes; thus, any duple (R1, R2) belonging to
⋃

Φ1:N∈C
κ×κ
SLT
Rκ (Φ1:N) is also achievable.

Furthermore, so is any point at the convex hull of the union through time-sharing of sets of

linear relaying matrices:

Rκ = coh

⎛
⎝ ⋃

Φ1:N∈C
κ×κ
SLT

Rκ (Φ1:N)

⎞
⎠ . (4.58)

Finally, the number of channel uses per block, κ, is also designed arbitrarily. Therefore:

RLR =
⋃
κ

Rκ = lim
κ→∞

Rκ, (4.59)

where the second equality holds from the non-decreasing nature of Rκ with κ [24, Sec. III].

Hence, introducing (4.58) in (4.59), concludes the proof.

In order to evaluate the convex region RLR (P1, P2), we can resort to the weighted sum-rate

(WSR) optimization, which consists of describing the region by means of its bounding hyper-

planes [82, Sec. III-C]:

RLR (P1, P2) = {R1,2 : αR1 + (1− α)R2 ≤ R (α) , ∀α ∈ [0, 1]} , (4.60)
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4.4. Linear Relaying

where R (α) is the maximumWSR of channel, assuming weights α and 1−α for users s1 and

s2, respectively. Notice that given relationship (4.56), R (α) can be expressed in terms of the

WSR of the conditional rate region. Specifically, defining

Rκ (Φ1:N) = {R1,2 : αR1 + (1− α)R2 ≤ Rκ (α,Φ1:N) , ∀α ∈ [0, 1]} , (4.61)

it is clear that:

R (α) = lim
κ→∞

max
Φ1:N∈C

κ×κ
SLT

Rκ (α,Φ1:N) . (4.62)

Hereafter, we refer to Rκ (α,Φ1:N) as the conditional WSR, achieved with equality at the

boundary of (4.57). Clearly, it can be attained using superposition coding at the users, succes-

sive interference cancelation (SIC) at the destination, and time-sharing.

In order to tackle optimization (4.62), we proceed in two steps:

• First, we devise an iterative algorithm to compute Rκ (α,Φ1:N), which is the maximum

value of αR1 + (1− α)R2 when the relays use the fixed set of relaying functions Φ1:N .

• Afterwards, we plug it on (4.62), and study the maximization. This turns out to be non-
convex and not solvable in practice. We thus propose a suboptimum approach.

Let us consider then Rκ (α,Φ1:N). As mentioned, the conditional WSR can be attained using

SIC at the destination. This consists in first decoding the user with lowest weight, then subtract-

ing its contribution on the received signal, and finally decoding the other without interference.

Therefore, assuming w.l.o.g. α ≥ 0.5, the user s1 has higher priority at the SIC and thus is

decoded last. With such a priority, the transmission rates at the users read:

R1 =
1

κ
log2 det

(
I + R

− 1
2

d H1Q
κ
1H

†
1R

− 1
2

d

)
(4.63)

R2 =
1

κ
log2 det

(
I +

(
Rd + H1Q

κ
1H

†
1

)−1

H2Q
κ
2H

†
2

)
Accordingly, the maximum value of αR1 + (1− α)R2 is computed from

Rκ (α,Φ1:N) = max
Qκ

1 ,Qκ
20

2∑
p=1

θp · log2 det

(
I +

p∑
u=1

R
− 1

2
d HuQ

κ
uH

†
uR

− 1
2

d

)
, (4.64)

s.t. Pu (Qκ
u,Φ1:N) ≤ Pu, u = 1, 2

where θ1 = 2α−1
κ
and θ2 = 1−α

κ
. Notice that the objective function is the sum of convex

functions and the constraints define a convex set. Therefore, the optimization is convex in

standard form.
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4.4.1 Sum-Rate Maximization

Let us first consider maximization (4.64) with α = 0.5. For it, θ1 = 0 and θ2 = 1
2κ
:

Rκ (0.5,Φ1:N) = max
Qκ

1 ,Qκ
20

1

2κ
log2 det

(
I +

2∑
u=1

R
− 1

2
d HuQ

κ
uH

†
uR

− 1
2

d

)
(4.65)

s.t. Pu (Qκ
u,Φ1:N) ≤ Pu, u = 1, 2

To solve the optimization, we propose the use of a block-coordinate ascent algorithm (see

Section 2.2.1). It consists in iteratively optimizing the objective function with respect to one

Qκ
u while keeping the other fixed, and is defined for our problem as:

Qκ
u (t + 1) = arg max

Qκ
u0

log2 det
(
I + R

− 1
2

d

(
HuQ

κ
uH

†
u + HūQ

κ
ū (t + 2− ū) H

†
ū

)
R
− 1

2
d

)
,

s.t. Pu (Qκ
u,Φ1:N) ≤ Pu (4.66)

where t is the iteration index, u = 1, 2, and ū = {1, 2} /u. It can be shown that not only

the original maximization (4.65) is convex, but also its feasible set is the cartesian product of

convex sets and (4.66) is strictly convex, i.e. it is uniquely attained. Hence, the limit point of

the sequence {Qκ
1 (t) , Qκ

2 (t)} is guaranteed to converge to the sum-rate (see Corollary 2.1).
The solution of maximization (4.66) is presented in the following Proposition.

Proposition 4.1 Consider the optimization in (4.66), define Au =
(
I +

∑N
i=1 |bu,i|2Φ†

iΦi

)
and compute the SVD-decomposition(

Rd + HūQ
κ
ū (t + 2− ū)H

†
ū

)− 1
2
HuA

− 1
2

u = UuΛ
1
2 V †

u . (4.67)

Then,Qκ
u (t + 1) = A

− 1
2

u VuΨV †
u A

− 1
2

u , where

ψj =

[
1

μ
− 1

λj

]+

, with
κ∑

j=1

ψj = κPu − tr
{

No

2

∑N
i=1 Φ

†
iΦi

}
. (4.68)

Remark 4.3 With such a solution, algorithm (4.66) is equivalent to the iterative waterfilling

algorithm for the MIMO-MAC sum-rate [50]. However, in our case, the SVD decomposition

takes also into account the matrixA
− 1

2
u .

Proof: First, let us rewrite the objective function of (4.66) as:

log2 det

(
I +

2∑
u=1

R
− 1

2
d HuQ

κ
uH

†
uR

− 1
2

d

)
= log2 det

(
I + R

− 1
2

d HūQ
κ
ūH

†
ūR

− 1
2

d

)
(4.69)

+ log2 det
(
I + HeQ

κ
uH

†
e

)
,
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where He =
(
Rd + HūQ

κ
ūH

†
ū

)− 1
2
Hu. Notice that the first term does not depend on Qκ

u.

Hence, the Lagrangian for the optimization is given by [48]:

L (Qκ
u,Ω, μ) = log

(
det

(
I + HeQ

κ
uH

†
e

))
+ tr {ΩQκ

u} − μ (κPu (Qκ
u,Φ1:N)− κPu)

where μ ≥ 0 and matrix Ω � 0 are the Lagrange multipliers for the power and semi-definite

positive constraints, respectively. The KKT conditions for the problem (sufficient and neces-

sary for optimality due to convexity, and regularity of the feasible set) are [48]:

i) μ
(
I +

∑N
i=1 |bu,i|2Φ†

iΦi

)
−Ω = H†

e

(
I + HeQ

κ
uH

†
e

)−1
He (4.70)

ii) μ
(
tr
{
Qκ

u

(
I +

∑N
i=1 |bu,i|2Φ†

iΦi

)
+ No

2

∑N
i=1 Φ

†
iΦi

}
− κPu

)
= 0

iii) tr {ΩQκ
u} = 0

Let us now define Au = I +
∑N

i=1 |bu,i|2Φ†
iΦi, which is singular and semidefinite positive.

Also, consider the change of variables Q̃u = A
1
2
uQκ

uA
1
2
u and Ω̃ = A

− 1
2

u ΩA
− 1

2
u , both semidefi-

nite positive, asQκ
u andΩ. With them, we can turn the KKT conditions into:

i) μ− Ω̃ = A
− 1

2
u H†

e

(
I + HeA

− 1
2

u Q̃uA
− 1

2
u H†

e

)−1

HeA
− 1

2
u (4.71)

ii) μ
(
tr
{

Q̃u + No

2

∑N
i=1 Φ

†
iΦi

}
− κPu

)
= 0

iii) tr
{
Ω̃Q̃u

}
= 0

From the SVD-decomposition HeA
− 1

2
u = UuΛ

1
2 V †

u , we can obtain (as for the capacity of

MIMO channels [3]) that Q̃∗
u = VuΨV †

u , with ψj =
[

1
μ∗
− 1

λj

]+

, j = 1, · · · , k satisfies KKT
conditions. μ∗ is such that

∑k
j=1 ψj + No

2
tr
{∑N

i=1 Φ
†
iΦi

}
− κPu = 0, and Ω̃

∗ computed from

KKT condition i) as: Ω̃
∗ = Vu

(
μ−Λ

1
2

(
I + Λ

1
2 ΨΛ

1
2

)−1

Λ
1
2

)
V †

u , which is semidefinite

positive. Finally, we recover the optimum source temporal covariance as Qκ
u = A

− 1
2

u Q̃∗
uA

− 1
2

u .

4.4.2 Weighted Sum-Rate Maximization

We study now the maximization (4.64) with α > 0.5. In the previous subsection, we showed

that such an optimization can be tackled using a block-coordinate approach. However, in this

case, it is not clear that the maximization over one Qκ
u keeping the other fixed is uniquely

attained. Hence, the algorithm is not guaranteed to converge [48, Proposition 2.7.1]. In order
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to solve the problem with guaranteed convergence, we propose the use of Gradient Projection

(GP), which is detailed in Section 2.2.1. Firstly, we introduce the change of variables Q̃κ
u =

A
1
2
uQκ

uA
1
2
u , u = 1, 2, whereAu � 0 is defined in Proposition 4.1. With it, maximization (4.64)

turns into:

Rκ (α,Φ1:N) = max
Q̃κ

1 ,Q̃κ
20

2∑
p=1

θp · log2 det

(
I +

p∑
u=1

R
− 1

2
d HuA

− 1
2

u Q̃κ
uA

− 1
2

u H†
uR

− 1
2

d

)
,

s.t. tr
{
Q̃u

}
+ No

2
tr
{∑N

i=1 ΦiΦ
†
i

}
≤ κPu, u = 1, 2 (4.72)

Now, the feasible set is defined in terms of a trace constraint, for which the GP method can be

more easily applied. Likewise, notice that the feasible set is the cartesian product of convex

sets.

The algorithm iterates as follows: denote by f
(
Q̃κ

1 , Q̃
κ
2

)
the objective of (4.72), and consider

the initial point
{
Q̃κ

1 (0) , Q̃κ
2 (0)

}
, then

Q̃κ
u (t + 1) = Q̃κ

u (t) + γt

(
Ku − Q̃κ

u (t)
)

, u = 1, 2. (4.73)

where t is the iteration index, γt ∈ (0, 1] the step-size, and

Ku =
[
Q̃κ

u (t) + st · ∇Q̃κ
u
f
(
Q̃κ

1 (t) , Q̃κ
2 (t)

)]⊥
, u = 1, 2. (4.74)

st ≥ 0 is a scalar, ∇Q̃κ
u
f (·) is the gradient of f (·) with respect to Q̃κ

u and [·]⊥ is the projection
(with respect to the Frobenius norm) onto the feasible set. As shown in Corollary 2.2, whenever

γt and st are chosen appropriately (using e.g., the limited maximization rule or Armijo’s rule

[48, Section 2.3.1]), the sequence
{
Q̃κ

1 (t) , Q̃κ
2 (t)

}
is proven to converge to the maximum

of (4.72). In order to make the algorithm work for our problem, we need to: i) compute the

gradient of f (·) and ii) calculate the projection of Hermitian, semi-definite positive, matrices
onto the feasible set. First, the gradient is equal to twice the conjugate of the partial derivative

of the function with respect Q̃κ
u [83]:

∇Q̃κ
u
f
(
Q̃κ

1 , Q̃
κ
2

)
=

⎛
⎜⎝2

⎡
⎣∂f

(
Q̃κ

1 , Q̃
κ
2

)
∂Q̃κ

u

⎤
⎦

T
⎞
⎟⎠
†

(4.75)

=

⎛
⎝2

2∑
p=u

θp ·A
− 1

2
u H†

uR
− 1

2
d

(
I +

p∑
j=1

R
− 1

2
d HjA

− 1
2

j Q̃κ
j A

− 1
2

j H
†
j R

− 1
2

d

)−1

R
− 1

2
d HuA

− 1
2

u

⎞
⎠
†

log2 e

The gradient is Hermitian and semi-definite positive. In order to project it onto the feasible

set, we recall that this is defined in (4.72) by means of two trace constraints. Hence, we can
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make use of [84, Section IV.C.2] to project Hermitian matrices Q̃u � 0, u = 1, 2 (with eigen-

decomposition Q̃u = UuηuU
†
u) as:

[
Q̃u

]⊥
=

⎧⎨
⎩ Q̃u if tr

{
Q̃u

}
+ No

2
tr
{∑N

i=1 ΦiΦ
†
i

}
≤ κPu

Uu [η − δuI]+ U †
u otherwise

(4.76)

where δu ≥ 0 is such that tr
{[

Q̃u

]⊥}
+ No

2
tr
{∑N

i=1 ΦiΦ
†
i

}
= κPu.

4.4.3 Linear Relaying Matrix Design

In the previous subsections, we devised iterative algorithms to compute the conditional SR and

WSR of the system. Now, in order to search for the non-conditioned ones, we need to solve

(4.62). From such a maximization, the optimum linear functions at the relays are obtained.

Unfortunately, the maximization is not convex and requires unfeasible non-convex optimization

procedures to be solved.

We thus propose a suboptimum approach. In particular, and motivated by the convex hull op-

eration and the union at (4.56), we propose that the relays time-share among three suboptimum

sets of relaying matrices: Φa
1:N ,Φb

1:N andΦ
c
1:N . All three based upon the extension of amplify-

and-forward to κ > 2: on every channel use t, relays only amplify and retransmit the signal

received on previous channel use t − 1. As mentioned, with them the required memory at the

relays is reduced to one sample. The resulting relaying matrices are given by:

Φ
ε
i = ηε

i Φ0, i = 1, · · · , N, ε = a, b, c with (4.77)

[Φ0]p,q �

⎧⎨
⎩
√

β p = q + 1; 1 ≤ q ≤ κ− 1

0 elsewhere.

where ηε
i ∈ C are the beamforming weights that allow for coherent transmission and satisfy∑N

i=1 |ηε
i |2 = 1. Notice that β in (4.77) must satisfy 1

κ
tr
{

No

2

∑N
i=1 Φ

ε
iΦ

ε†
i

}
< min {P1, P2}

so that power constraint (4.55) can hold. That is, β < min{P1,P2}
No/2

κ
κ−1
. Finally, we select the

weights ηε
i to be:

ηa
i �

b∗1,i · c∗i
ga

, ηb
i �

b∗2,i · c∗i
gb

, ηc
i �

∑2
u=1 b∗u,i · c∗i

gc
, i = 1, · · · , N. (4.78)

where gε is such that
∑N

i=1 |ηε
i |2 = 1. The idea is that the weights maximize (via Maximal Ratio

Transmission) the individual rates of user 1, user 2 and the sum-rate, respectively. Finally,
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in order to select the optimum value of β, we propose the use of a simple one-dimensional

exhaustive search, considering R1, R2 and R1 + R2 as the objective metrics for ηa
1:N , ηb

1:N and

ηc
1:N , respectively.

4.5 Compress-and-forward

In the previous sections, we studied the two relaying techniques that performed better for the

single-user scenario. We now turn to the third relaying technique: C&F. We extend it to multi-

ple users and show that, unlike the N →∞ case, when U →∞ C&F and D&F have different

scaling laws. Interestingly, C&F is not affected by the distributed channel hardening effect.

As for Section 3.5, we assume that relays distributedly compress their received signals by

means of a distributed Wyner-Ziv code [39]. Later, they send the compressed versions to the

destination, which makes use of them within a coherent detector. See the previous chapter for

a complete operational overview of this technique.

Theorem 4.5 With C&F, the MPR-MAC achieves the rate region

RC&F (P1, P2) = coh

⎛
⎜⎜⎜⎜⎝

⋃
γ1,γ2,γr1 ,··· ,γrN

:

γu+

�N
i=1

γri
2 ≤Pu, u=1,2

⋃
ρ1:N≥0:

ρ1:N∈J(γ1:2,γr1:N )

{R1,2 : (4.79)

∑
u∈G

Ru ≤ log2 det

(
I +

∑
u∈G

γuhuh
†
u

)
| G ⊆ {1, 2}

})
,

where

hu =

[
au√
No

,
bu,1√

No + ρ1

, · · · , bu,N√
No + ρN

]T

, (4.80)

and J (γ1:2, γr1:N
) �⎧⎨

⎩ρ1:N : log2

det
(
I +

∑2
u=1 γuhuh

†
u

)
det

(
I +

∑2
u=1 γuhu (Sc)hu (Sc)†

) +
∑
i∈S
C
(

No

ρi

)
≤

C
(∑

i∈S

|ci|2γri

No +
∑2

u=1 |au|2γu

)
, ∀S ⊆ N .

}
(4.81)
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Remark 4.4 In the theorem, we used notation

hu (S) : [hu (S}]p+1 =

⎧⎨
⎩ [hu]p+1 if p = 0 or p ∈ S

0 elsewhere

Also, γu and γri
denote the power allocated to user u = 1, 2 and relay i = 1, · · · , N , respec-

tively. Finally, ρi stands for the compression noise of relay i.

Proof: Let the two sources select messages ωu ∈
{
1, · · · , 2nRu

}
, u = 1, 2 for transmission.

They divide them it into B sub-messages of κR bits each, with κ = n
B
: ωu =

[
ω1

u, · · · , ωB
u

]
.

The messages are then transmitted using block-Markov encoding within B +1 channel blocks.

On every block b, the sources transmit the new sub-messages ωb
u, u = 1, 2 using signals

xκ
u [b] = sκ

u

(
ωb

u

)
, u = 1, 2, (4.82)

where we have selected sκ
u (·) to be random Gaussian codebooks, generated i.i.d. from su ∼

CN (0, γu). Gaussian signalling has not been shown to be optimal. The signals received at the

relays are given by:

yκ
ri
[b] =

2∑
u=1

bu,is
κ
u

(
ωb

u

)
+ zκ

ri
, i = 1, · · · , N. (4.83)

Those are distributedly compressed using a multi-source compression code as that in Proposi-

tion 3.1, by means of which relays map the signals yκ
ri
[b] using functions

f ri
κ : Yκ

ri
→
{
1, · · · , 2κφi

}
, (4.84)

where φi is the compression rate of relay i. On block b + 1, the relays send the indexes sri
[b] =

f ri
κ

(
yκ

ri
[b]
)
, i = 1, · · · , N to the destination via the MAC channel. To that end, they map them

onto multi-access channel codebooks vκ
ri

(·), i = 1, · · · , N :

xκ
ri

[b + 1] = vκ
ri

(sri
[b]) , i = 1, · · · , N. (4.85)

We select the MAC codebooks to be Gaussian, generated i.i.d. from vri
∼ CN (0, γri

), i =

1, · · · , N . Notice that the power utilized by the relays to cooperate with both users is∑N
i=1 γri

.

Therefore, the power constraint (A3) is satisfied whenever

γu +

∑N
i=1 γri

2
≤ Pu, u = 1, 2. (4.86)
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The received signal at the destination on block b + 1 thus reads (4.3):

yκ
d [b + 1] =

2∑
u=1

au · sκ
u

(
ωb+1

u

)
+

N∑
i=1

civ
κ
ri

(sri
[b]) + zκ

d . (4.87)

Let us now define the decoding at the destination in block b + 1. Indexes sr1:N
[b] are first

recovered from yκ
d [b + 1]. It is possible to do so iff the transmission rates φi lie within its

capacity region (considering sκ
u

(
ωb+1

)
, u = 1, 2 as interference):

∑
i∈S

φi ≤ C
( ∑

i∈S |ci|2γri

No +
∑2

u=1 |au|2γu

)
, ∀S ⊆ N . (4.88)

Once the indexes sr1:N
[b] have been estimated, the destination removes their contribution on

yκ
d [b + 1]:

y
′κ
d [b + 1] = yκ

d [b + 1]−
N∑

i=1

ci · xκ
ri
[b + 1] (4.89)

=
2∑

u=1

aus
κ
u

(
ωb+1

u

)
+ zκ

d .

Afterwards, the indexes sr1:N
[b] are decompressed using the received signal y′κd [b] as side in-

formation. That is, following Proposition 3.1,the destination de-maps by means of function

gκ :
{
1, · · · , 2κφ1

}
× · · · ×

{
1, · · · , 2κφN

}
×Y ′κd → Ŷκ

r1:N
. (4.90)

The de-mapped vectors ŷκ
r1:N

[b] = gκ

(
sr1[b], · · · , srN

[b], y
′κ
d [b]

)
are finally used, along with

y
′κ
d [b], to decode the users’ messages ωb

u, u = 1, 2. Those are correctly estimated iff [21, 38]:

∑
u∈G

Ru ≤ I
(
xG; y

′

d, ŷr1, · · · , ŷrN

)
∀G ⊆ {1, 2} , (4.91)

where the inequality follows from (3.41) in Proposition 3.1. Assume that Gaussian compres-

sion codebooks are used at the relays, although they have not been shown to be optimal. That

is, p (ŷi|yi) = 1√
πρi
exp

(
− |ŷi−yi|2

ρi

)
, where ρi is the variance of ŷri

conditioned on yri
:

ρi = E
{
|ŷri

− E {ŷri
|yri
} |2|yri

}
. (4.92)

Hereafter, is referred to as compression noise. With such a Gaussian codebooks, the rate region

(4.91) equals that of the AWGN SIMO-MAC:

∑
u∈G

Ru ≤ log2 det

(
I +

∑
u∈G

γuhuh
†
u

)
∀G ⊆ {1, 2} , (4.93)

117



4.5. Compress-and-forward

where hu is defined in (4.80). However, this only holds for compression rates satisfying the set

of constraints imposed by the D-WZ coding (3.42), i.e.,

I (yS ; ŷS |y′d, ŷc
S) ≤

∑
i∈S

φi ∀S ⊆ N . (4.94)

Nonetheless, notice that compression rates are also constrained by (4.88), which plugged into

(4.94) makes (4.93) to hold if:

I (yS ; ŷS|y′d, ŷc
S) ≤ C

( ∑
i∈S |ci|2γri

No +
∑2

u=1 |au|2γu

)
∀S ⊆ N . (4.95)

Such a constraint can be evaluated for the Gaussian compression codebook as:

I
(
yS ; ŷS|y

′

d, ŷ
c
S

)
= H (ŷS|y′d, ŷc

S)−H (ŷS |yS , y′d, ŷc
S) (4.96)

= I
(
x1, x2; ŷS|y

′

d, ŷ
c
S

)
+ H (ŷS |x1, x2, y

′
d, ŷ

c
S)−H (ŷS|yS , y′d, ŷc

S)

= I
(
x1, x2; ŷS|y

′

d, ŷ
c
S

)
+ H (ŷS |x1, x2, y

′
d, ŷ

c
S)−H (ŷS|x1, x2, yS , y

′
d, ŷ

c
S)

= I
(
x1, x2; ŷS|y

′

d, ŷ
c
S

)
+ I (yS ; ŷS|x1, x2, y

′
d, ŷ

c
S)

= I
(
x1, x2; y

′

d, ŷ1:N

)
− I

(
x1, x2; y

′

d, ŷ
c
S

)
+ I (yS ; ŷS|x1, x2, y

′
d, ŷ

c
S)

= log2

det
(
I +

∑2
u=1 γuhuh

†
u

)
det

(
I +

∑2
u=1 γuhu (Sc) hu (Sc)†

) +
∑
i∈S
C
(

No

ρi

)
.

where second equality follows from the definition of mutual information and third from the

Markov chain in Proposition 3.1. Finally, fifth equality comes from the chain rule for mutual

information.

Let us now define J (γ1:2, γr1:N
) as the set of compression noises that satisfies (4.95). The

relays may arbitrary choose any codebook design within this set, and also time-share them.

Therefore the achievable rate region remains:

coh

⎛
⎜⎝ ⋃

ρ1:N∈J (γ1:2,γr1:N )

{
R1,2 :

∑
u∈G

Ru ≤ log2 det

(
I +

∑
u∈G

γuhuh
†
u

)
∀G ⊆ {1, 2}

}⎞⎟⎠ .

Finally, the power can be arbitrarily allocated at the sources and relays, which concludes the

proof.

Looking at the rate region (4.79), we clearly notice the parallelism with the SIMO-MAC. From

it, we can show that the boundary points of (4.79) can be attained using SIC at the decoder,

which will be used to compute its weighted sum-rate.
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4.5.1 Weighted Sum-Rate Maximization

As pointed out for RLR, any convex region can be described using its bounding hyperplanes

[82, Sec. III-C]. Therefore, it is possible to resort to the maximum weighted sum-rate (WSR)

in order to characterize the region:

RC&F (P1, P2) = {R1,2 : αR1 + (1− α)R2 ≤ R (α) , ∀α ∈ [0, 1]} , (4.97)

where R (α) is indeed the maximum WSR with C&F, given weights α and 1 − α for users s1

and s2, respectively.

Such a WSR is achieved at the boundary of the rate region, and attained (as mentioned) using

SIC at the destination. Considering, w.l.o.g., priority α ≥ 0.5 the user’s achievable rates thus

read:

R1 = log2 det
(
I + γ1h1h

†
1

)
(4.98)

R2 = log2 det

(
I +

(
I + γ1h1h

†
1

)−1

γ2h2h
†
2

)
.

Therefore, the maximum value of αR1 + (1− α) R2 is

R (α) = max
γ1:2,γr1:N

max
ρ1:N∈J (γ1:2,γr1:N )

2∑
j=1

θj · log2 det

(
I +

j∑
u=1

γuhuh
†
u

)
. (4.99)

s.t. γu +

∑N
i=1 γri

2
≤ Pu, u = 1, 2

where θ1 = 2α − 1 and θ2 = 1 − α. Clearly, the maximization is not concave: the objec-

tive function, which has to be maximized is convex on ρ1:N . Furthermore, the feasible set

J (γ1:2, γr1:N
) is not convex. Therefore, non-convex methods (such as exhaustive search) need

to be used. Unfortunately, the maximization involves 2 · N + 2 optimization variables and

2 +
∑N

i=1

(
N
i

)
constraints, which makes a numerical resolution unfeasible.

For the single-user case (Section 3.5), the impossibility of solving the actual rate was handled

by proposing an upper bound. The upper bound was used to benchmark this technique and

compare it with other relaying protocols. For the MAC, we shall proceed similarly and compute

an upper bound on the weighted sum-rate, which will be used to obtain an outer region on the

achievable rate region. The bound is derived by eliminating all the constrains in (4.81) but

only one: the sum-rate constraint. Such a relaxation models a scenario where relays are not

119



4.5. Compress-and-forward

connected to the destination via a MAC channel, but via a common wired backhaul as e.g.,

ethernet. Let us then define:

R̄ (α) = max
γ1:2,γr1:N

,ρ1:N

2∑
j=1

θj · log2 det

(
I +

j∑
u=1

γuhuh
†
u

)
. (4.100)

s.t. log2

det
(
I +

∑2
u=1 γuhuh

†
u

)
(
1 +

∑2
u=1 γu|au|2/No

) +

N∑
i=1

C
(

No

ρi

)
≤

C
(

N∑
i=1

|ci|2γri

No +
∑2

u=1 |au|2γu

)}

γu +

∑N
i=1 γri

2
≤ Pu, u = 1, 2

This is clearly an upper bound on (4.99), as we have eliminated
∑N

i=1

(
N
i

)
− 1 constraints.

Now, following equivalent arguments to those in (3.57)-(3.60), it is possible to define p =

arg max |ci|2, γrp
= 2β · min {P1, P2}, γ∗ri

= 0, i 	= p and γu = P
′

u � Pu − γrp

2
, in order to

show that:

R̄ (α) = max
0≤β≤1

r (β) , (4.101)

with

r (β) = max
ρ1:N

2∑
j=1

θj · log2 det

(
I +

j∑
u=1

P
′

uhuh
†
u

)
(4.102)

s.t. log2

det
(
I +

∑2
u=1 P

′

uhuh
†
u

)
(
1 +

∑2
u=1 P ′

u|au|2/No

) +

N∑
i=1

C
(

No

ρi

)
≤ ΦT .

We have defined ΦT = C
(
|cp|22β·min{P1,P2}
No+
�2

u=1 |au|2P ′u

)
. Still, the optimization is not convex. However,

(4.102) can be solved using dual decomposition, as shown below, and (4.101) can be solved by

means of a single-dimension exhaustive search.

Iterative Algorithm to Compute the Upper Bound.

This subsection proposes an algorithm to compute R̄ (α). We proceed as follows: First, we

show that the duality gap for the problem (4.102) is zero. Later, we propose an iterative algo-

rithm that solves the dual problem, thus solving the primal too. As mentioned in Section 2.2.2,

the key property of the dual problem is that the coupling constraint is decoupled.
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Let the Lagrangian of (4.102) be defined on ρ1:N ≥ 0 and λ ≥ 0 as:

L (ρ1, · · · , ρN , λ) =
2∑

j=1

θj · log2 det

(
I +

j∑
u=1

P
′

uhuh
†
u

)
(4.103)

−λ

(
log2

det
(
I +

∑2
u=1 P

′

uhuh
†
u

)
(
1 +

∑2
u=1 P ′

u|au|2/No

) +

N∑
i=1

C
(

No

ρi

)
− ΦT

)
.

The dual function g (λ) for λ ≥ 0 follows:

g (λ) = max
ρ1,··· ,ρN≥0

L (ρ1, · · · , ρN , λ) . (4.104)

The solution of the dual problem is then obtained from

R′ = min
λ≥0

g (λ) . (4.105)

Lemma 4.1 The duality gap for (4.102) is zero. That is, r (β) = R′.

Proof: We may apply the time-sharing property in Proposition 2.10 to demonstrate the zero-

duality gap is demonstrated. The procedure is equivalent to that presented for the single-user

case.

The first step in order to solve the dual problem is to compute the dual function g (λ). In

Section 3.5.1, we showed that such an optimization can be performed using a block-coordinate

algorithm. Unfortunately, now, the maximization with respect to a single ρn is not clear to be

uniquely attained. Hence, in order to solve (4.104), we propose to use gradient projection (GP)

as in Section 2.2.1. Consider the initial point {ρ0
1, · · · , ρ0

n} > 0, then, the iterations are defined

as:

ρt+1
n = ρt

n + γt

(
ρ̄t

n − ρt
n

)
, n = 1, · · · , N (4.106)

where t is the iteration index and 0 < γt ≤ 1 is the step size. Also,

ρ̄t
n =

[
ρt

n + st · ∇ρn
L
(
λ, ρt

1, · · · , ρt
N

)]⊥
, n = 1, · · · , N (4.107)

with st ≥ 0 a scalar and∇ρn
L (λ, ρt

1, · · · , ρt
N) the gradient ofL (·)with respect to ρn, evaluated

at ρt
1, · · · , ρt

N . Finally, [·]⊥ denotes the projection (with respect to the Frobenius norm) onto
the positive axis.
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As derived in Proposition 2.8, whenever γt and st are chosen appropriately, the sequence

{ρt
1, · · · , ρt

n} is proven to converge to a stationary of the Lagrangian. However, for global
convergence to hold (i.e., convergence to g (λ)), the contraction property must be satisfied [49,

Proposition 3.10]. Unfortunately, we were not able to prove this property for our optimization.

In order to define the algorithm, we need to: i) compute the projection of a given ρ onto the

positive axis, which is:

[ρ]⊥ = max {ρ, 0} , (4.108)

and ii) obtain the gradient of the Lagrangian with respect to a single ρn:

∇ρn
L (ρ1:N , λ) =

∂L (ρ1:N , λ)

∂ρn

(4.109)

The Lagrangian is defined in (4.103), with hu following (4.80):

hu =

[
au√
No

,
bu,1√

No + ρ1

, · · · , bu,N√
No + ρN

]T

(4.110)

= (NoI + ρ)−
1
2 · gu,

where we have set ρ = diag (1, ρ1, · · · , ρN ) and gu = [au, bu,1, · · · , bu,N ]T . Therefore, in

order to compute its derivative, we can first notice that

det

(
I +

2∑
u=1

P ′
uhuh

†
u

)
= det

(
I + (NoI + ρ)−1 [g1, g2] diag (P ′

1, P ′
2) [g1, g2]

†
)

= det
(
I + (NoI + ρ)−1

GPG†) (4.111)

withG = [g1, g2] and P = diag (P ′
1, P ′

2). Accordingly, it is clear that [83]:[
∂ log det

(
I +

∑2
u=1 P ′

uhuh
†
u

)
∂ρ

]T

=

− (NoI + ρ)−1
GPG† (I + (NoI + ρ)−1

GPG†)−1
(NoI + ρ)−1 . (4.112)

From it, with ρ defined above, we can easily obtain:

∂ log det
(
I +

∑2
u=1 P ′

uhuh
†
u

)
∂ρn

=

[
∂ log2 det

(
I +

∑2
u=1 P ′

uhuh
†
u

)
∂ρ

]
n+1,n+1

. (4.113)

In parallel, the same reasoning can be carried out to derive that

∂ log det
(
I + P ′

1h1h
†
1

)
∂ρn

= (4.114)[
− (NoI + ρ)−1

g1P
′
1g
†
1

(
I + (NoI + ρ)−1

g1P
′
1g
†
1

)−1

(NoI + ρ)−1

]
n+1,n+1

.
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Taking this into account, it is easy to obtain the derivative of the Lagrangian in (4.103) as

∂L (ρ1:N , λ)

∂ρn
= (4.115)(

θ1 ·
[
− (NoI + ρ)−1

g1P
′
1g
†
1

(
I + (NoI + ρ)−1

g1P
′
1g
†
1

)−1

(NoI + ρ)−1

]
n+1,n+1

+(θ2 − λ) ·
[
− (NoI + ρ)−1

GPG† (I + (NoI + ρ)−1
GPG†)−1

(NoI + ρ)−1
]

n+1,n+1

+ λ

(
No

ρn

1

No + ρn

))
log 2 (e) .

(4.115) is used in the GP algorithm to obtain g (λ). Notice that for α ≤ 1
2
, the roles of users

s1 and s2 are interchanged, and user 1 is decoded first. This roles would also need to be

interchanged in the computation of the gradient.

Once g (λ) has been obatined, we still need to minimize it in order to solve the dual problem

(4.105). This can be done following the same sub-gradient approach as that in Section 3.5.1.

In this case, the subgradient is computed following (2.44) as:

h (λ) = ΦT − log2

det
(
I +

∑2
u=1 P

′

uhuh
†
u

)
(
1 +

∑2
u=1 P ′

u|au|2/No

) − N∑
i=1

C
(

No

ρi (λ)

)
, (4.116)

where ρ1:N (λ) are the limiting points of algorithm (4.106), given λ. The subgradient search

is guaranteed to converge to the global minimum, and thus to r (β) [69, Section II-B]. Finally,

we propose an exhaustive search to maximize the bound over β. Algorithm 3 describes all the

necessary steps.

4.5.2 Multiuser Diversity and C&F

Let us study now C&F when the number of users grows without bound. Previously in this

dissertation, we have shown that: i) multiuser diversity makes D&F relaying asymptotically

useless, and ii) D&F and C&F behave equally when N →∞. From both facts, a doubt assails
us here: do C&F and D&F perform equally for U → ∞? or, in order words, is C&F affected
by the distributed channel hardening effect? In this section, we show that the answer is no.

First, we extend the result in Theorem 4.5 to U > 2. In particular, considering the sum-rate
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Algorithm 3 Computation of the WSR Upper Bound

1: for β = 0 : 1 do

2: Let p = arg max |ci|2 and define ΦT = C
(
|cp|22β·min{P1,P2}
No+
�2

u=1 |au|2P ′u

)
3: Initialize λmin = 0 and λmax

4: repeat

5: λ = λmax−λmin

2

6: Obtain {ρ1 (λ) , · · · , ρN (λ)} = arg maxρ1:N
L (ρ1, · · · , ρN , λ) from Algorithm 4

7: Evaluate h (λ) as in (4.116).

8: If h (λ) ≤ 0, then λmin = λ, else λmax = λ

9: until λmax − λmin ≤ ε

10: r (β) = L (ρ1 (λ) , · · · , ρN (λ) , λ)

11: end for

12: R̄ (α) = max r (β)

constraint only, we can generalize:
U∑

u=1

Ru ≤ SRC&F (U) � max
γ1:U ,γr1:N

,ρ1:N

log2 det

(
I +

U∑
u=1

γuhuh
†
u

)
. (4.117)

s.t. ρ1:N ∈ J (γ1:2, γr1:N
)

γu +

∑N
i=1 γri

U
≤ Pu, u = 1, · · · , U

where in J (γ1:2, γr1:N
) is defined in (4.81) , and:

hu =

[
au√
No

,
bu,1√

No + ρ1

, · · · , bu,N√
No + ρN

]T

, u = 1, · · · , U. (4.118)

As previously, assume unitary-mean, Rayleigh fading. Also, assume identical power con-

straints: Pu = P , u = 1, · · · , U . The following convergence in probability can be proven3.

Theorem 4.6 Consider SRC&F (U) in (4.117), and define

T (U) = C
(

P

No

U∑
u=1

max
{
|au|2, |c1:N |2

})
. (4.119)

Then, SRC&F (U) ≤ T (U), and for U →∞:

T (U)− C
(

U ·
(
max

{
|c1:N |2

}
+ e−max{|c1:N |2}

)
· P

No

)
P→ 0. (4.120)

3As mentioned, when obtaining convergence for U → ∞, we assume that the relay-destination channels ci

are static.
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Algorithm 4 GP to obtain g (λ)

1: Initialize ρ0
n = 106, n = 1, · · · , N and t = 0

2: repeat

3: Compute the gradient gt
n = ∇ρn

L (λ, ρt
1, · · · , ρt

N), n = 1, · · · , N from (4.115).

4: Choose appropriate st

5: Set ρ̂t
n = ρt

n + st · gt
n. Then, ρ̄t

n = max {ρ̂t
n, 0}, n = 1, · · · , N .

6: Choose appropriate γt

7: Update ρt+1
n = ρt

n + γt (ρ̄
t
n − ρt

n), n = 1, · · · , N
8: t = t + 1

9: until The sequence converges {ρt
1, · · · , ρt

N} → {ρ∗1, · · · , ρ∗N}
10: Return {ρ∗1, · · · , ρ∗N}

Remark 4.5 Notice that the function y + e−y > 1 for all y > 0. Therefore, T (U) converges

to a value greater than the sum-capacity without relays: C
(
U · P

No

)
.

Proof: In order to prove the theorem, we first focus on the definition of SRC&F (U) in (4.117).

Specifically, we consider its first constraint ρ1:N ∈ J (γ1:2, γr1:N
), and take its particularization

to S = N :

log2

det
(
I +

∑U
u=1 γuhuh

†
u

)
(
1 +

∑U
u=1 γu

|au|2
No

) +

N∑
i=1

C
(

No

ρi

)
≤ C

(
N∑

i=1

|ci|2γri

No +
∑2

u=1 |au|2γu

)
(4.121)

It is clear that, at the optimum point of maximization (4.117), i.e., γ∗1:U , γ∗r1:N
, ρ∗1:N , the con-

straint is satisfied. Therefore:

log2 det

(
I +

U∑
u=1

γ∗uhuh
†
u

)
≤ C

(
U∑

u=1

γ∗u
|au|2
No

)
+

(
C
(

N∑
i=1

|ci|2γ∗ri

No +
∑U

u=1 |au|2γ∗u

)

−
N∑

i=1

C
(

No

ρ∗i

))

≤ C
(

U∑
u=1

γ∗u
|au|2
No

)
+ C

(
N∑

i=1

|ci|2γ∗ri

No +
∑U

u=1 |au|2γ∗u

)

= C
(∑U

u=1 |au|2γ∗u +
∑N

i=1 |ci|2γ∗ri

No

)

= C

⎛
⎝
∑U

u=1

(
|au|2γ∗u +

∑N
i=1 |ci|2

γ∗ri

U

)
No

⎞
⎠
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where the first inequality follows from basic manipulation of (4.121). Consider now the power

constraint of (4.117):

γ∗u +

∑N
i=1 γ∗ri

U
≤ P, u = 1, · · · , U. (4.122)

It is clear that, making an analogous derivation of that in (3.58), such a constraint forces

|au|2γ∗u +

N∑
u=1

|cu|2
γ∗ru

U
≤ P ·max

{
|au|2, |c1:N |2

}
. (4.123)

Therefore, using (4.123) into (4.122), we can obtain:

log2 det

(
I +

U∑
u=1

γ∗uhuh
†
u

)
≤ C

(∑U
u=1 P ·max {|au|2, |c1:N |2}

No

)
(4.124)

Finally, notice that the sum-rate is defined in (4.117) as

SRC&F (U) � log2 det

(
I +

U∑
u=1

γ∗uhuh
†
u

)
. (4.125)

Therefore, making use of (4.124) and (4.125), we demonstrate that SRC&F (U) ≤ T (U).

Now, it remains to prove the asymptotic convergence of T (U) in the number of users. Re-

call that, when computing the asymptotic performance on U , we assume the relay-destination

channels c1:N fixed. Let us then define the random variables

χu = max
{
|au|2, |c1:N |2

}
, u = 1, · · · , U, (4.126)

so that T (U) = C
(

P
No

∑U
u=1 χu

)
. Notice that, for fixed c1:N , the only randomness on χu

is contributed by |au|2. Hence, the p.d.f. of those random variables can be easily computed
(conditioned on the given realization of c1:N ) as:

fχu|c1:N (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e−x x > max {|c1:N |2}(
1− e−max{|c1:N |2}

)
· δ (x−max {|c1:N |2}) x = max {|c1:N |2}

0 x < max {|c1:N |2}

(4.127)

which is obtained by noting that |au|2 is unitary mean, exponentially distributed. The mean of
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χu, u = 1, · · · , U can be thus computed as

E {χu|c1:N} =

∫ ∞

0

x · fχu|c1:N (x) dx (4.128)

= max
{
|c1:N |2

}(
1− e−max{|c1:N |2}

)
+

∫ ∞

max{|c1:N |2}
x · e−xdx

= max
{
|c1:N |2

}(
1− e−max{|c1:N |2}

)
+

(∫ ∞

max{|c1:N |2}
e−xdx− xe−x

]∞
max{|c1:N |2}

)

= max
{
|c1:N |2

}(
1− e−max{|c1:N |2}

)
+
(
e−max{|c1:N |2} + max

{
|c1:N |2

}
e−max{|c1:N |2}

)
= max

{
|c1:N |2

}
+ e−max{|c1:N |2},

where third equality comes from integration by parts. We realize now that all χ1:N are con-

ditionally independent, given c1:N , and all have the same non-zero mean. Therefore, we can

apply Corollary 2.3 to derive:

C
(

P

No

U∑
u=1

χu

)
− C

(
P

No
UE {χu|c1:N}

)
P→ 0. (4.129)

That is,

T (U)− C
(

U ·
(
max

{
|c1:N |2

}
+ e−max{|c1:N |2}

)
· P

No

)
P→ 0, (4.130)

which concludes the proof.

The obtained result suggests that, unlike D&F, multiuser diversity does not undermine C&F.

In other words, distributed channel hardening is not harmful to this relaying strategy. Unfor-

tunately, the asymptotic performance is only demonstrated for the upper bound T (U), which

reduces the value of our result. Indeed, we were not able to derive any asymptotic convergence

of the true achievable sum-rate: SRC&F (U). However, we conjecture that it will have the same

scaling law as T (U).

4.6 Numerical Results

The rate region of the MPR-MAC with the three relaying techniques analyzed in this chap-

ter are evaluated numerically for fading channels. We model channel fading as zero-mean,
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Figure 4.3: Achievable rate region of the two-user MPR-MAC with DF, N = 3 relays, and

per-user constraint Pu

No
= 5 dB.

complex, Gaussian-distributed and time-invariant. In particular, we consider au ∼ CN (0, 1),

bu,i ∼ CN (0, d−α), and ci ∼ CN
(
0, (1− d)−α), u = 1, 2, i = 1, · · · , N , where ds,d = 1 is

the sources-destination distance and d the users-relays distance. Finally, we set the path-loss

exponent to α = 3.

The rate regions with D&F, LR and C&F are depicted in Fig. 4.3-4.5, respectively. We have

considered N = 3 relays, and per-user constraint Pu/No = 5 dB, u = 1, 2. Moreover, relays

are placed at a distance d = 0.5, and the region is plotted for the following channel realization:

[a1, a2] = [0.68e−j2.47, 0.85e−j0.89], [c1, c2, c3] = [1.63ej0.08, 3.35e−j1.17, 1.54e−j3.01] and

[bu,i] =

⎡
⎣ 5.17ej2.35 0.85ej2.63 2.17ej1.25

3.72ej1.23 5.19ej1.53 5.73ej1.80

⎤
⎦

As reference, we also plot the capacity region of the MAC without relays and the outer region

presented in Sec. 4.2.2. First, Fig. 4.3 plots results for D&F, whose rate region is computed

from Theorem 4.2 as the union of the achievable rate regions with all possible subsets of active

relays S ⊆ N . We notice that the maximum achievable rate for user 1 is given when only the
relay S = {1} is active, while user 2 maximizes its achievable rate with relays S = {2, 3}
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Figure 4.4: Achievable rate region of the two-user MPR-MAC with LR, N = 3 relays, and

per-user constraint Pu
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= 5 dB. κ = 60.

active. Finally, it is shown that the rate region with D&F is closer to the outer bound than to the

capacity region of the MAC without relays, providing more than two-fold gains with respect to

the latter.

Next, Fig. 4.4 depicts the achievable rate region with LR. We compute it as the union of the

conditional rate regions with linear functions Φa
1:N ,Φb

1:N ,Φc
1:N , all three presented in Section

4.4.3. We first notice that LR performs farther from the outer region than D&F does. This can be

seen as a penalty for its simplicity, and a consequence of the noise amplification. However, LR

provides significant gains with respect to the MAC with no relays. Finally, Fig. 4.5 concludes

the analysis depicting the performance of C&F. In particular, the outer region presented in

Section 4.5.1 is plotted, which was derived using the WSR upper bound (4.100). Those upper

bounds on the bounding hyperplanes are also plotted as reference. Again, two-fold gains are

shown with respect to the MAC without relays, which demonstrates that relaying is a valuable

approach to overcome channel impairments in multiuser MAC.

Fig. 4.6 plots the achievable sum-rate of the two-user MPR-MAC with D&F, LR and C&F,
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= 5 dB.

respectively, versus the source-relay distance d. In particular, it depicts the expected sum-rate,

averaged over the joint channel distribution, assuming N = 3 and Pu/No = 5 dB, u = 1, 2.

For the case of C&F, we present the sum-rate upper bound computed in (4.100). Likewise,

the sum-capacity bound in (4.10) and the sum-capacity without relays are plotted as reference.

Results and conclusions are slightly different to those in the previous chapter:

• Now, themax-flow-min-cut bound (4.10) is not reciprocal with respect to the source-relay
distance d. Hence, it does not present its maximum at d = 0.5, but at larger d. It is clearly

shown, thus, that the maximum sum-rate of the MPR-MAC is attained when relays are

closer to the destination than to the users.

• As for the MPRC, D&F perfectly merges the sum-capacity upper bound for low d, thus

being capacity-achieving. However, for increasing source-relay distance d, it signifi-

cantly diverges from the upper bound. Hence, it becomes clearly suboptimal, which can

be explained by the harmful effect of channel hardening on D&F operation.

• LR performs extremely poor. This is due, as for the MPRC, to the low number of relays
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and the harmful impact of noise amplification. Also, we notice that the sum-rate with

LR is reciprocal with respect to d, taking the maximum at d = 0.5. This invites to think

that LR does not distinguish whether the users are communicating with destination or

viceversa. In other words, that the MAC and BC with LR are dual. We demonstrate in

the next chapter that this claim holds.

• C&F presents an extraordinary performance, being the most competitive approach within
half of the distance range: 0.5 ≤ d ≤ 1. In particular, it provides almost three-fold gains

with respect to the no-relay MAC when the relays are close to the destination (d ≈ 1).

Unfortunately, the green curve is only an upper bound on the achievable sum-rate with

C&F. Therefore, definite conclusions cannot be taken.

Finally, the asymptotic analysis in the number of users U is depicted in Fig. 4.7. We have

considered unitary-mean, Rayleigh fading (i.e., path-loss exponent α = 0), and plotted the

asymptotic sum-rates in Section 4.2.3 (outer region), Section 4.3.1 (D&F) and Section 4.5.2

(C&F). The performance of LR is obtained through simulation. From the asymptotes, we
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conclude that: i) The sum-capacity upper bound in (4.20) presents an almost constant gain

with respect to the sum-capacity without relays, independently of the number of users. This

gain has to be shared among all users; hence, the higher the number of users, the lower the

individual rate gain. ii) C&F slightly decreases its impact for higher number of users, and iii)

LR presents a constant gain with respect to the no-relay MAC. That is, it is not affected at all by

the hardening effect. However, as for the max-flow-min-cut bound, the per-user gain decreases

for increasing number of users.

4.7 Conclusions

This chapter has presented an outer region on the capacity region of the MPR-MAC and derived

inner regions by means of the achievable rates with D&F, LR and C&F.

The first achievable rate region consisted of the extension, to N > 1 relays, of the result

presented by Kramer in [76]. We have shown that, in order to attain any point of the D&F
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region, all possible subsets of active relays has to be considered, and possibly time-shared.

The achievable rate region with LR was next derived using theory of vector channels, and

presented by means of its sum-rate and weighted sum-rate optimization. Both optimizations

were shown to be convex on the sources’ signalling, given a fixed set of linear functions at

the relays. We obtain the optimmu osurce temporal covariances using iterative algorithms,

namely: block-coordinate approach for the SR and gradient projection for the WSR. After

designing the sources’ signals, the optimization of the linear functions at the relays was not

convex. To overcome this limitation, we proposed a suboptimum approach.

Last, C&F was studied considering distributed Wyner-Ziv coding at the relays. Again, the rate

region was characterized by means of the WSR optimization. The optimization, though, was

not convex and had 2 ·N + 2 optimization variables; numerical resolution was thus unfeasible.

Thereby, we proposed a computable outer region on it that allowed for benchmarking.

Finally, the achievable sum-rates of the channel were studied when the number of users grew

to infinity. We assumed unitary-mean, Rayleigh-fading, and showed that in the asymptote,

D&F does not provide gain with respect to the no-relay MAC. This was due to the distributed

channel hardening effect. Additionally, the asymptotic performance of C&F was derived and

demonstrated to outperform the no-relay MAC always.

Numerical results for (time-invariant) Rayleigh fading, have shown that:

1. The maximum sum-capacity of the MPR-MAC is attained when relays are closer to the

destination than to the users.

2. D&F is sum-capacity achieving for low source-relay distances. However, it performs

poorly when relays are placed close to the destination and/or the number of users in-

creases.

3. C&F has become a very competitive approach, providing threefold sum-rate gains for

relays located close to the destination.

4. LR has the same characteristics as in the MPRC: i) the achievable sum-rate is reciprocal

with respect to the user/relay distance, ii) it performs poorly with low number of relays,

and iii) it seizes all the beamforming gain of the system with high number of them.
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Chapter 5

Broadcast Channel with Multiple-Parallel

Relays

5.1 Introduction

Broadcasting is one of the most widespread transmission modes in wireless networks. Well-

known examples are the 3G cellular downlink channel and the radio/television broadcasting.

In current times, the required (and commercialized) data rates for broadcasting services are

several orders of magnitude higher than those of the uplink, as e.g. in UMTS and wired XDSL.

Accordingly: i) more capable and reliable links are needed, and ii) more harmful the impact

of fading and shadowing is. In this framework, multi-antenna processing takes paramount

importance to strengthen the performance of the system. However, typical broadcast receivers

are low-size handsets for which having more than one antenna is not always possible. For these

cases, relays can be used in order to combat channel impairments, thus increasing the coverage,

capacity and robustness of the network.
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5.1.1 Overview

The Gaussian BC assisted by multiple-parallel relays (See Fig. 5.1) is studied in this chap-

ter. Single-antenna source, relays and destinations are considered, and the channel is assumed

time-invariant and memory-less. Also, as previously, transmit and receive CSI are available

at the source and destinations, respectively, and all relay nodes operate in full-duplex, using

the same frequency band. Notice that, unlike [43], we assume direct link between source and

destinations.

We aim at analyzing how much the capacity region of the broadcast is enlarged in the presence

of relays. For simplicity of exposition, the analysis is restrained to the two-user case. Unfortu-

nately, we were not able to derive the capacity region of the channel; instead, we provide inner

regions using the achievable rates with D&F, LR and C&F.

In the absence of relays, dirty paper coding is well-known to be the capacity-achieving source

encoding for SISO and MIMO broadcast channels [45, 47, 85]. It consists of encoding the first

user as if it were alone in the network; next, the source encodes the second user, utilizing the

(non-causal) knowledge of the interference caused on it by the user 1 signal. It was shown by

Costa in [47] that such a coding allows the second user to decode as if it had not interference

from the first user. In contrast, the first user decodes with the signal intended to the second user

as interference.

In the presence of relays such an encoding at the source has not been shown to be optimal;

indeed, the MPR-BC capacity region remains unknown and so does the optimal encoding.

Despite that, we select dirty paper coding as the channel encoding for the source, and adapt it

here to the different relaying techniques. The contributions of this chapter can be summarized

as follows:

• An achievable rate region with D&F is provided first. In order to implement D&F, we
propose a source encoding composed of block-Markov plus dirty paper coding. We were

not able to demonstrate the optimality of this approach.

• The achievable rate region with LR is derived next. In particular, we demonstrate that it is
equal to that of the MPR-MAC under a sum-power constraint. That is, MAC-BC duality

holds for LR. This result extends to BCs with direct link between source and users the
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Figure 5.1: Gaussian BC with multiple-parallel relays.

result presented by Jafar et. al. in [43] for two-hop BC. We build upon the MIMOMAC-

BC duality in [45] to prove our result. Intuitively, the obtained duality is explained by the

reciprocity pointed out in Theorem 3.6, where it is shown that LR does not distinguish

whether the source is transmitting to the users or viceversa. Finally, to maximize the

weighted sum-rate and, therefore, characterize the region, we devise iterative algorithms,

based upon dual decomposition.

• C&F is studied, and its rate region derived considering dirty paper encoding at the source,
and distributed Wyner-Ziv compression at the relays.

The rest of the chapter is organized as follows: Section 5.2 presents the channel model. D&F is

analyzed in Section 5.3, LR in Section 5.4, and C&F in Section 5.5. Finally, Section 5.6 shows

numerical results and Section 5.7 enumerates conclusions.
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5.2 Channel Model

The broadcast channel with multiple-parallel relays (MPR-BC) is a channel in which a single

source d transmits simultaneously to two destinations, s1 and s2, with the aid of a set N =

{1, · · · , N} of parallel relays (see Fig. 5.1). All network nodes transmit/receive scalar signals,
and wireless channels are time-invariant, memoryless, modeled using a complex scalar: a∗u

represents the source to user u channel, while c∗i and b∗u,i represent the source to relay i and

relay i to user u channels, respectively. Notice that channels are dual (i.e., complex conjugate)

to those of the MAC, and there is no wireless connectivity between relays.

We denote by xn
d = {xt

d}
n
t=1 ∈ Cn the signal transmitted by the source, where xt

d is the

transmitted symbol during channel use t and n the codeword length. The received signals at

the relays thus read

yn
ri

= c∗i · xn
d + zn

ri
, i ∈ 1, · · · , N (5.1)

where zri
∼ CN (0, No) is additive white Gaussian noise (AWGN). The relays transmit signals

xn
ri

=
{
xt

ri

}n

t=1
∈ Cn, i = 1, · · · , N , which are defined by means of causal relaying functions:

xt
ri

= fri

(
y1

ri
, · · · , yt−1

ri

)
. Accordingly, the received signal at the two destination nodes is

given by

yn
u = a∗ux

n
d +

N∑
i=1

b∗u,ix
n
ri

+ zn
u , u = 1, 2, (5.2)

where zu ∼ CN (0, No), u = 1, 2. Furthermore, the same assumptions made for the MPRC

and MPR-MAC apply in this chapter. Specifically, we assume:

(A1). Full-duplex operation: relays transmit and receive simultaneously in the same frequency

band. This can be implemented using different antennas for transmission and reception,

the latter directly pointed to the source of the broadcast.

(A2). Transmit channel state information (CSI) and receive CSI at the source and destina-

tions, respectively. Channel awareness includes source-destination, source-relay and

relay-destination channels, and can be obtained (and fedback) during a setup phase.

(A3). A sum-power constraint is enforced:

1

n

n∑
t=1

(
E
{
|xt

d|
}

+
N∑

i=1

E
{
|xt

ri
|
})

≤ P. (5.3)
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With such a constraint, we can compare the MPR-BC with a BC without relays and

source power constraint P .

5.2.1 Preliminaries

In order to present achievable rates for the channel, we define the following.

Definition 5.1 A
(
n, 2nR1, 2nR2

)
code for the MPR-BC is defined by:

• two sets of messagesWu =
{
1, · · · , 2nRu

}
, u = 1, 2, one signal space Xd, and a source

encoding function

fd : W1 ×W2 → X n
d , (5.4)

• N signal spaces Xi, i = 1, · · · , N and N causal relay functions

fri
: Yn

i → X n
i , i = 1, · · · , N, (5.5)

• two decoding functions gu : Yn
u →Wu, u = 1, 2.

Definition 5.2 A rate duple (R1, R2) is achievable if there exists a sequence of codes
(
n, 2nR1 , 2nR2

)
for which limn→∞ P n

e = 0, where

P n
e =

1

2nR12nR2

∑
ω1,ω2

Pr

{ ⋃
u=1,2

gu (yn
u) 	= ωu|(ω1, ω2) was sent

}
. (5.6)

Definition 5.3 The capacity region of the MPR-BC is the closure of all rates duples that are

achievable, given the power constraint (5.3) and the causal relaying functions in (5.5). Its

characterization, even using an infinite-letter expression, is still an open problem.

Hereafter, we provide inner regions on the capacity region of the MPR-BC by means of the

achievable rates with D&F, LR and C&F.
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5.3 Decode-and-forward

As mentioned throughout the dissertation, D&F consists of relay nodes fully decoding the

source messages, prior to re-encoding and retransmitting them to the users. In this sense, the

relays cooperate with the source forming a transmit antenna array towards the users. There-

fore, D&F makes the MPR-BC to somehow mimic a MISO BC, which is a widely studied

communication scenario [86, 87].

It is well-known that the capacity region of the MISO BC is achievable using dirty paper coding

(DPC) at the source [47, 85]. However, when mimicking it by means of D&F relays, such a

claim has not been yet demonstrated, and the optimum channel encoding remains unknown. In

this dissertation, we were not able to derive the best source encoding for D&F relaying. Instead

of this, we propose the use of the mixture of block-Markov encoding and DPC. The first is used

to implement full-duplex relaying, while the second is used for the wireless broadcasting.

Theorem 5.1 With D&F, the MPR-BC achieves the rate region:

RD&F (P ) = coh

⎛
⎜⎜⎜⎝

⋃
m=1,··· ,N

⋃
π

⋃
γ1,γ2≥0,g1,g2∈Cm+1×1:
�2

u=1
γu+g

†
ugu≤P

{R1,2 : (5.7)

Rπ(1) ≤ maxα,α′

{
min

{
C
(
|cm|2 γπ(1)

No

)
, T (α, α′)

}
−

max
{

1
2
log2

(
γπ(1)+α2γπ(1)

γπ(1)

)
, log2

(
1 + α

′2
)}}

Rπ(2) ≤ min
{
C
(

|cm|2γπ(2)

No+|cm|2γπ(1)

)
, C
(

|aπ(2)|2γπ(2)+|hπ(2)(m)gπ(2)|2
No+|aπ(2)|2γπ(1)+|hπ(2)(m)gπ(1)|2

)}

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎞
⎟⎟⎟⎠

where

T (α, α′) = log2

( (∑2
u=1 (|a1|2γu + |h1 (m) gu|2)

)2
(γ1 + α2γ2)

(
1 + α

′2
)

(∑2
u=1 |a1|2γu + |h1 (m) gu|2

)
(γ1 + α2γ2)− |a1γ1 + a1αγ2|2

· (5.8)

1(∑2
u=1 |a1|2γu + |h1 (m) gu|2

)
(1 + α2′1)− |h1 (m)g1 + h1 (m) g2α′|2

)
,

π is any permutation of {1, 2} and the source-relay channels have been ordered as:

|c1| ≥ · · · ≥ |cm| ≥ · · · ≥ |cN |. (5.9)

Moreover, we have defined:

hu (m) =
[
a∗u, b∗u,1, · · · , b∗u,m

]
, u = 1, 2, m = 1, · · · , N. (5.10)
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Remark 5.1 In the Theorem,m denotes the cardinality of the decoding set. That is, the number

of relays that are active. γu, u = 1, 2 stand for the power allocated by the source to transmit

new ”user u” data to the relays. In turn, gu is the distributed beamforming performed by the

source and active relays to relay the data to user u. Finally, π is a given order of the dirty

paper encoding.

Proof: First of all, let the N relay nodes be ordered as in (5.9), and assume that only the

subsetRm = {1, · · · , m} ⊆ N is active. Furthermore, consider the source selecting messages

ωu ∈
{
1, · · · , 2nRu

}
, u = 1, 2 for transmission to user 1 and user 2, respectively. Each message

is divided into B blocks of κRu bits, with κ = n
B
, i.e., ωu =

[
ω1

u, · · · , ωB
u

]
u = 1, 2. The sub-

blocks ωb
u are then pipelined into B + 1 channel blocks of κ channel uses, as explained below.

We consider n, κ, B � 1 so that B
B+1

≈ 1.

The source encodes both messages using the combination of block-Markov encoding [21, Sec.

14.7] and dirty paper encoding [47], as follows: on every given block b, the source transmits

the new sub-messages ωb
u, u = 1, 2 to the relays in Rm, and to the users. Simultaneously, it

cooperates with the relays in Rm to retransmit its previously transmitted sub-messages ωb−1
u ,

u = 1, 2. Assume that the source first encodes the messages intended to user 2, and then

encodes the messages for user 1. Notice that such an ordering is arbitrary and can be inter-

changed, as shown at the end of the proof. Let us make the source and relays transmit during

block b:

xκ
d [b] = sκ

2

(
ωb

2, ω
b−1
2

)
+ gd,2 · vκ

2

(
ωb−1

2

)
+ xκ

1 [b], (5.11)

xκ
ri

[b] = gi,2 · vκ
2

(
ωb−1

2

)
+ xκ

i,1[b], ∀ i ∈ Rm. (5.12)

We have generically labeled xκ
1 [b] and xκ

i,1[b] the signals intended to user one, which will be

discussed latter. Focussing on the signals intended to user 2 (who is encoded first) we choose

vκ
2 (·) to be a Gaussian codebook, generated i.i.d. from v2 ∼ CN (0, 1). Likewise, we define

gd,2 and gi,2, i ∈ Rm as the weights used to beamform the codeword vκ
2

(
ωb−1

2

)
towards user

2. On the other hand, sκ
2 (·, ·) is a multiplexed code, generated i.i.d. from s2 ∼ CN (0, γ2). As

mentioned, multiplexed codes consist of
(
κ, 2κR2 · 2κR2

)
codes indexed by two entries ωt, ωd

[79, Section III.A]. A receiver can reliably decode both ωt and ωd if the channel capacity is

C > 2R2. However, whenever it knows ωt, it can decode ωd if C > R2, and viceversa. Until

now, the encoding for user 2 is exactly the same as the encoding for the MPR-MAC.
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Let us define now the encoding of the messages of user 1: that is, the way to create sequences

xκ
1 [b] and xκ

i,1[b]. We consider a dirty paper approach, and follow step-by-step the reasoning

in [47, Section II]. First, we define two random variables s1 ∼ CN (0, γ1) and v1 ∼ CN (0, 1),

independent of s2 and v2, and create two auxiliary variables:

u = s1 + α · s2 ∼ CN
(
0, γ1 + α2γ2

)
(5.13)

u′ = v1 + α′ · v2 ∼ CN
(
0, 1 + α

′2
)

where α, α′ are two given parameters. We construct now two random codebooks uκ (·, ·),
u
′κ (·), generated i.i.d. from u and u′, respectively, and known at the source, relays and des-

tinations. The first one is a multiplexed code of size
(
κ, 2κΦ · 2κΦ

)
, with Φ a given constant,

and has all its codewords grouped into 2κR1 · 2κR1 bins. We denote each bin as iu (m, t), with

m, t = 1, · · · , 2κR1 . The second code is a
(
κ, 2κΦ

)
random code, and has all the sequences

placed into 2κR1 bins; each bin is denoted by iu′ (j), j = 1, · · · , 2κR1 .

Using this codes, the source encodes the message intended to user 1 during block b as follows:

first, it obtains the two bin indexes iu
(
ωb

1, ω
b−1
1

)
and iu′

(
ωb−1

1

)
. Next, within those bins (the

first belonging to code uκ (·, ·) and the second to code u
′κ (·)), the source selects two code-

words (one per codebook) which are jointly typical with sκ
2

(
ωb

2, ω
b−1
2

)
and with vκ

2

(
ωb−1

2

)
,

respectively. As noted by Costa [47], there will be such a joint typical codeword whenever the

number of codewords-per-bin on both codebooks (NU
c.p.b and NU ′

c.p.b) satisfy:

NU
c.p.b ≥ 2κI(u;s2) (5.14)

NU ′

c.p.b ≥ 2κI(u′;v2).

Or, in other words, if the number of bins-per-codebook satisfy

#binsu ≤ 2κΦ · 2κΦ

2κI(u;s2)
= 2κ(2Φ−I(U ;S2)) (5.15)

#binsu′ ≤ 2κΦ

2κI(u′;v2)
= 2κ(Φ−I(U ;V2))

Remember that uκ (·, ·) is a
(
κ, 2κΦ · 2κΦ

)
code, while u

′κ (·) is a
(
κ, 2κΦ

)
code. However, we

have previously set #binsu = 2κR1 · 2κR1 , and #binsu′ = 2κR1 . Therefore, we may restate

(5.15) as:

2R1 ≤ 2Φ− I (u; s2) = 2Φ− log2

(
γ1 + α2γ2

γ1

)
(5.16)

R1 ≤ Φ− I (u′; v2) = Φ− log2

(
1 + α

′2
)
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and, as a result

R1 ≤ Φ−max

{
1

2
log2

(
γ1 + α2γ2

γ1

)
, log2

(
1 + α

′2
)}

. (5.17)

Now, let us denote by uo the codeword that, belonging to bin iu
(
ωb

1, ω
b−1
1

)
, is jointly typical

with sκ
2

(
ωb

2, ω
b−1
2

)
; and by u′o the codeword that, belonging to bin iu′

(
ωb−1

1

)
, is jointly typical

with vκ
2

(
ωb−1

2

)
. Assume that no errors occurred during the joint typical process (i.e., constraint

(5.17) is satisfied). The source then constructs [47]:

sκ
1 [b] = uo − α · sκ

2

(
ωb

2, ω
b−1
2

)
. (5.18)

vκ
1 [b] = u′o − α′ · vκ

2

(
ωb−1

2

)
. (5.19)

Three important remarks must be made here: i) the signal vκ
1 [b] can also constructed by the

relays. Indeed, it only depends on previous ωb−1
1 , ωb−1

2 and not on current ωb
1, ω

b
2, ii) sκ

1 [b] and

vκ
1 [b] are statistically independent of sκ

2

(
ωb

2, ω
b−1
2

)
and vκ

2

(
ωb−1

2

)
, due to the code construction

and the joint typicality expressed before [47], and iii) the power constraint at the codes is

satisfied with high probability: 1
n

∑κ
t=1 |st

1| ≤ γ1 and 1
n

∑κ
t=1 |vt

1| ≤ 1 [47].

Now, taking into account these sequences of symbols, we force the source and relays to trans-

mit:

xκ
d [b] = sκ

2

(
ωb

2, ω
b−1
2

)
+ sκ

1 [b] + gd,2 · vκ
2

(
ωb−1

2

)
+ gd,1 · vκ

1 [b], (5.20)

xκ
ri

[b] = gi,2 · vκ
2

(
ωb−1

2

)
+ gi,1 · vκ

1 [b], ∀ i ∈ Rm, (5.21)

where factors g·,u u = 1, 2 are, as mentioned, beamforming weights. Recall that v2, v1 ∼
CN (0, 1) and su ∼ CN (0, γu), u = 1, 2. Also, let us define gu = [gd,u, g1,u, · · · , gm,u]

T ,

u = 1, 2 the spatial beamforming. Hence, it is easy to show that the power constraint (A3) is

satisfied if

γ1 + γ2 +
2∑

u=1

g†ugu ≤ P. (5.22)

The received signals by relays and users is then given by

yκ
ri

[b] = c∗i ·
(
sκ

2

(
ωb

2, ω
b−1
2

)
+ sκ

1 [b] + gd,2 · vκ
2

(
ωb−1

2

)
+ gd,1 · vκ

1 [b]
)

+ zκ
ri
, ∀ i ∈ Rm.

yκ
u [b] = a∗u ·

(
sκ

2

(
ωb

2, ω
b−1
2

)
+ sκ

1 [b]
)

+ hu (m) ·
(
g2 · vκ

2

(
ωb−1

2

)
+ g1 · vκ

1 [b]
)

+ zκ
u ,
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where hu (m) was defined in (5.10). Consider now the decoding at relay i ∈ Rm during block

b. Assume that the relay has reliably decoded ωb−1
u , u = 1, 2 during the previous block. Hence,

it first decodes ωb
2 from sκ

2 . It can do so, reliably, if:

R2 ≤ I (s2; yri
|v1, v2) (5.23)

= C
( |ci|2γ2

No + |ci|2γ1

)
. (5.24)

Therefore, all relay nodes in Rm can decode the message and retransmit it during the next

block if:

R2 ≤ min
i∈Rm

C
( |ci|2γ2

No + |ci|2γ1

)
. (5.25)

= C
( |cm|2γ2

No + |cm|2γ1

)

where second equality is due to the ordering in (5.9). Next, relays attempt to decode ωb
1 from

sκ
1 [b]. They look for a sequence uo within uκ

(
·, ωb−1

1

)
which is joint typical with yri

given the

knowledge of sκ
2

(
ωb

2, ω
b−1
2

)
, vκ

2

(
ωb−1

2

)
and vκ

1

(
ωb−1

1

)
. Such a codeword can be found (given

multiplexed codes and upon knowing ωb−1
1 ) if:

Φ ≤ min
i∈Rm

I (u; yri
|s2, v1, v2) (5.26)

= C
(
|cm|2

γ1

No

)

where equality is due to ordering, and given the relationship in (5.13). Consider now the

decoding at the users during block b. As for the MPR-MAC with D&F, users utilize backward

decoding [58, Sec III.B]. That is, the users start decoding from the last block and proceed

backward. Assume that, on the given block b, each user u = 1, 2 has successfully decoded

ωb
u, · · · , ωB

u . First, user 2 attempts to decode ωb−1
2 from yκ

2 [b]. It can do so reliably, if and only

if:

R2 ≤ I (s2, v2; y2) (5.27)

= C
( |a2|2γ2 + |h2 (m) g2|2

No + |a2|2γ1 + |h2 (m) g1|2
)

In turn, user 1 attempts to decode ωb−1
1 from yκ

1 [b]. Recall that ωb−1
1 was embedded onto

uκ
(
ωb

1, ·
)
and u

′κ (·). Hence, in order to decode the message, user 1 looks for the codewords
uo and u′o that, belonging to those codebooks, are jointly typical with yκ

1 [b]. It will find only
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one uo and one u′o, whenever the codebooks length satisfy: 2nΦ ≤ 2nI(u,u′;y1). That is:

Φ ≤ I (u, u′; y1) (5.28)

= H (y1)−H (y1|u, u′)

= H (y1) + H (u|u′)−H (y1, u|u′)

= H (y1) + H (u)−H (y1, u|u′)

= H (y1) + H (u)−H (y1|u′)−H (u|y1, u
′)

= H (y1) + H (u)−H (y1|u′)−H (u|y1)

= H (y1) + H (u)− (H (y1, u
′)−H (u′))− (H (y1, u)−H (y))

= 2 ·H (y1) + H (u) + H (u′)−H (y1, u
′)−H (y1, u)

The first equality follows from the definition of mutual information, while the second, forth

and sixth equalities hold due to the chain rule for entropy. The third and firth equalities are

satisfied given that u and u′ are independent.

Recall now that u = s1 + αs2, u′ = v1 + α′v2, and y1 is defined above. Therefore:

H (y1) = log2

(
(2πe)

2∑
u=1

(
|a1|2γu + |h1 (m)gu|2

))
(5.29)

H (u) = log2

(
2πe

(
γ1 + α2γ2

))
H (u′) = log2

(
2πe

(
1 + α

′2
))

H (y1, u) = log2

(
(2πe)2

((
2∑

u=1

|a1|2γu + |h1 (m) gu|2
)(

γ1 + α2γ2

)
−

|a1γ1 + a1αγ2|2 ))

H (y1, u
′) = log2

(
(2πe)2

((
2∑

u=1

|a1|2γu + |h1 (m) gu|2
)(

1 + α2′1
)
−

|h1 (m) g1 + h1 (m) g2α
′|2 ))

where forth and fifth equalities are obtained following [47, Eq. (3)].

Therefore, taking into account both constraints (5.25) and (5.27), the maximum transmission

rate of user 2 is demonstrated. Furthermore, from (5.26) and (5.28), it is shown that:

Φ ≤ min

{
C
(
|cm|2

γ1

No

)
, I (u, u′|y1)

}
, (5.30)
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which plugged in (5.17) allows us to obtain

R1 ≤ max
α,α′

{
min

{
C
(
|cm|2

γ1

No

)
, I (u, u′|y1)

}
− (5.31)

max

{
1

2
log2

(
γ1 + α2γ2

γ1

)
, log2

(
1 + α

′2
)}}

This concludes the proof for a given DPC ordering, as well as for a given power allocation γu,

u = 1, 2 and distributed beamforming gu, u = 1, 2. However, the source may arbitrarily select

the encoding order, and may allocate power arbitrarily. Finally, the set of active relaysRm can

be chosen from {R1, · · · ,RN}, and time-sharing between different sets may be used. This
concludes the proof.

The achievable rate region with D&F is convex. However, we have not been able to charac-

terize it. The reason is that the weighted sum-rate optimization is not convex, and involves the

optimization of two vectors g1, g2, two scalars γ1, γ2, and two dirty paper orderings. Optimiza-

tion turned to be unsolvable for us. Hence, in this chapter, we could not provide numerical

results for D&F.

5.4 Linear Relaying

Throughout the dissertation, we have shown that previous results for vector channels can used

in order to derive achievable rates with LR. In this section, we proceed similarly. In particular,

utilizing the MIMO MAC-BC duality presented by Vishwanath et al. in [45], we prove that

duality also holds for the MPR-BC and MPR-MAC with LR. Afterwards, making use of such

a duality, we characterize the achievable rate region of the BC by means of its maximum

weighted sum-rate.

Let the source of the BC select messages ωu ∈
{
1, · · · , 2nRu

}
for transmission to user u = 1, 2,

respectively, and map them onto two independent codewords xn
u, u = 1, 2. Both codewords

are then transmitted simultaneously, plugged into B = n
κ
channel blocks of κ channel uses

per block. On each block b, the source transmits the sequence xκ
d[b] =

∑2
u=1 xκ

u[b], which is

received at the users and relays according to (5.2) and (5.1). The signals are linearly combined
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at the relays using the set of linear functions Φ1:N ∈ Cκ×κ
SLT
:

xκ
ri
[b] = Φi

(
c∗i ·

2∑
u=1

xκ
u[b] + zκ

ri

)
, i = 1, · · · , N. (5.32)

All transmitted signals are then superimposed at the users, and received under AWGN:

yκ
u[b] = a∗ux

κ
d [b] +

N∑
i=1

b∗u,ix
κ
ri
[b] + zκ

u (5.33)

=

(
a∗uI +

N∑
i=1

b∗u,ic
∗
i Φi

)
·

2∑
j=1

xκ
j [b] +

(
zκ

u +

N∑
i=1

b∗u,iΦiz
κ
ri

)
, u = 1, 2.

Following the same arguments in (4.54), the sum-power constraint (5.3) is restated as:

2∑
u=1

P′u (W κ
u ,Φ1:N) ≤ P, (5.34)

whereW κ
u = E

{
xκ

u (xκ
u)
†
}
� 0 is the temporal covariance matrix of codeword u = 1, 2, and:

P′u (W κ
u ,Φ1:N) =

1

κ
tr

{
W κ

u

(
I +

N∑
i=1

|ci|2Φ†
iΦi

)
+

No

2

N∑
i=1

Φ
†
iΦi

}
, u = 1, 2. (5.35)

The rate region of signal model (5.33) with power constraint (5.34) is presented in the next

theorem.

Theorem 5.2 With Linear relaying, the achievable rate region of the MPR-BC is

RLR (P ) = lim
κ→∞

coh

⎛
⎝ ⋃

Φ1:N∈C
κ×κ
SLT

R′κ (Φ1:N)

⎞
⎠ (5.36)

where

R′κ (Φ1:N) =
⋃

P1,2:P1+P2=P

Rκ

(
Φ

�
1:N

)
(5.37)

Remark 5.2 Operator [·]� stands for the conjugate transpose with respect to the opposite diag-
onal (see the Notation). Notice that ifA is strictly lower triangular, so is A�. Also, recall that

Rκ (Φ1:N) is presented in Theorem 4.4, and is the conditional rate region of the MPR-MAC

with LR.

Remark 5.3 We refer toR′κ (Φ1:N) as conditional rate region of the MPR-BC. It is the closure

of rate duples that are achievable when the relays use the fixed set of linear functions Φ1:N .
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Clearly, we notice that the MPR-BC is dual to the MPR-MAC with a sum-power constraint.

Hence, Theorem 5.2 generalizes the duality presented by Jafar in [43] to BCs with direct link

between source and destinations. Duality can be interpreted resorting to the well-known reci-

procity of LR. Indeed, as mentioned for the MPRC (see Section 3.6.1), LR does not distinguish

whether the source is transmitting to the users or viceversa.

Proof: We first prove (5.37) following two steps: i) show that the MPR-MAC performance is

the same with functionsΦ�
1:N and with functionsΦ

†
1:N (notice that the latter functions are non-

causal, i.e. they are strictly upper-triangular matrices, and therefore non-usable in practice). ii)

demonstrate that the MPR-MAC with linear functions Φ†
1:N and sum-power constraint has the

same performance than the MPR-BC with functions Φ1:N . To prove it, we will make use of

results presented by Vishwanath et al. in [45].

Let us consider step i. Assume that the two sources transmit symbol sequencesxκ
u = [x1

u, · · · , xκ
u]

T

u = 1, 2, when relays use functions Φ
�
1:N . Also, consider that the two sources transmit a

time-reversed version of previous sequences, i.e., x̃κ
u = [xκ

u, · · · , x1
u]

T , when relays use the

non-causal functionsΦ†
1:N . It is clear that the received signals in both cases are equal, but time-

reversed. Hence, their rate performance is identical. Consider now the proof of step ii. First, at

the MPR-MAC with functionsΦ†
1:N , the received signal at the base station reads (4.53):

yκ
d =

2∑
u=1

Hux
κ
u + z̃κ

d , (5.38)

where the equivalent channels and noise are Hu =
(
auI +

∑N
i=1 bu,iciΦ

†
i

)
, u = 1, 2, z̃κ

d =

zκ
d +

∑N
i=1 ciΦ

†
iz

κ
ri
. The noise temporal covariance at the destination is thus evaluated as

Rd = E
{

z̃κ
d (z̃κ

d )†
}

= No

(
I +

∑N
i=1 |ci|2Φ†

iΦi

)
. (5.39)

As established in Theorem 4.4, the rate region for signal model (5.38) is (4.57). Such a region

Rκ

(
Φ
†
1:N

)
is shown to be achievable through superposition coding at the users and SIC at the

destination. Let us now consider the BC with linear functions Φ1:N . The received signal at the

users follows (5.33):

yκ
u =

2∑
j=1

H†
ux

κ
j + z̃κ

u , u = 1, 2 (5.40)

whereHu is defined above and the equivalent noise is z̃κ
u = zκ

u +
∑N

i=1 b∗u,iΦiz
κ
ri
. Therefore,

Ru = E
{
z̃κ

u (z̃κ
u)†
}

= No

(
I +

∑N
i=1 |bu,i|2ΦiΦ

†
i

)
. (5.41)
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Clearly, signal model (5.40) is equivalent to that of the MIMOBC, for which dirty paper coding

(DPC) is capacity achieving [85]. Hence, the same holds for the MPR-BC: DPC achieves the

conditional rate regionR′κ (Φ1:N), defined as the set of all rates that are achievable when relays

use the fixed set Φ1:N .

Hence, in order to prove (5.37), we first need to show thatR′κ (Φ1:N) ⊇ ⋃
P1,2:

�2
u=1 Pu≤P Rκ

(
Φ
†
1:N

)
.

In words: show that for every set of covariances Qκ
1,2 at the MAC, there exists a set of co-

variance at the BC W κ
1,2, that achieves the same rate duple and satisfies the same sum-power

constraint. Let us focus on the MAC, where rate duples are achieved using SIC. Assumew.l.o.g

that user 1 is decoded first:

RMAC

u = 1
κ

log2 det

(
I +

(
Rd +

∑2
j=u+1 HjQ

κ
j H

†
j

)−1

HuQ
κ
uH

†
u

)
(5.42)

= 1
κ

log2 det

(
I +

(
I +

∑2
j=u+1 ĤjQ̂

κ
j Ĥ

†
j

)−1

ĤuQ̂
κ
uĤ

†
u

)

with Ĥu = R
− 1

2
d HuR

− 1
2

u and Q̂κ
u = R

1
2
u Qκ

uR
1
2
u , u = 1, 2. Consider now the BC with DPC, and

select user 1 to be encoded last and user 2 first. The rates achieved by the users are [45, Section

III-B]:

RBC

u = 1
κ

log2

(
det

(
I +

(
Ru +

∑u−1
j=1 H†

uW
κ
j Hu

)−1

H†
uW

κ
u Hu

))
(5.43)

= 1
κ

log2

(
det

(
I +

(
I +

∑u−1
j=1 Ĥ†

uŴ
κ
j Ĥu

)−1

Ĥ†
uŴ

κ
u Ĥu

))

where Ĥu is defined above and Ŵ κ
u = R

1
2
d W κ

u R
1
2
d . As mentioned, the BC rate duple must

be achieved satisfying the same sum-power constraint of the MAC. Recall that the power con-

sumed by the the MPR-MAC is computed in (4.55) and the power consumed by the MPR-BC

in (5.34). Hence, the following must hold:

∑2
u=1 P′u (W κ

u ,Φ1:N) ≤ ∑2
u=1 Pu

(
Qκ

u,Φ
†
1:N

)
⇔∑2

u=1 tr
{

W κ
u

(
I +

∑N
i=1 |ci|2Φ†

iΦi

)}
≤ ∑2

u=1 tr
{
Qκ

u

(
I +

∑N
i=1 |bu,i|2ΦiΦ

†
i

)}
⇔∑2

u=1 tr {W κ
u Rd} ≤ ∑2

u=1 tr {Qκ
uRu} ⇔∑2

u=1 tr
{
Ŵ κ

u

}
≤ ∑2

u=1 tr
{
Q̂κ

u

}
. (5.44)

Now, we can directly apply the duality derivation for MIMO channels in [45, Eq. (8)-(11)].

It is shown therein that given Q̂κ
1,2, it is possible to define Bu =

(
I +

∑2
j=u+1 ĤjQ̂

κ
j Ĥ

†
j

)
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and Au =
(
I +

∑u−1
j=1 Ĥ†

uŴ
κ
j Ĥu

)
, and to take the SVD-decomposition B

− 1
2

u ĤuA
− 1

2
u =

FuΛuG
†
u, in order to demonstrate that matrices1

Ŵ κ
u = B

− 1
2

u FuG
†
uA

1
2
u Q̂κ

uA
1
2
uGuF

†
uB

− 1
2

u →W κ
u = R

− 1
2

d Ŵ κ
u R

− 1
2

d , u = 1, 2. (5.45)

satisfies that RBC
u = RMAC

u , u = 1, 2, and for them the power constraint (5.44) holds. This

demonstrates that any rate duple at the MAC can be achieved at the BC. Now the converse

should be proven. That is, R′κ (Φ1:N) ⊆ ⋃
P1,2:

�2
u=1 Pu≤PT

Rκ

(
Φ
†
1:N

)
. This is shown using

equivalent arguments as those for the MAC-to-BC. We skip the proof as it does not provide

new ideas. This concludes the proof of equality (5.37).

Finally, to demonstrate (5.36), we apply arguments in Theorem 4.4: linear relaying functions

can be arbitrarily chosen and time-shared, and the region is non decreasing with κ.

In order to describe the region in Theorem 5.2, we can again resort to the WSR optimization.

That is, characterize it by means of its bounding hyperplanes [82]:

R′ (PT ) = {R1,2 : αR1 + (1− α)R2 ≤ R′ (α) , ∀α ∈ [0, 1]} . (5.46)

We refer to R′ (α) as the maximum WSR of the broadcast channel with LR. It is clear that,

given the relationship (5.36), R′ (α) can be computed in terms of the maximum WSR of the

conditional rate region. In particular, defining:

R′κ (Φ1:N) = {R1,2 : αR1 + (1− α)R2 ≤ R′κ (α,Φ1:N) , ∀α ∈ [0, 1]} , (5.47)

we can state that:

R′ (α) = lim
κ→∞

max
Φ1:N∈C

κ×κ
SLT

R′κ (α,Φ1:N) . (5.48)

At this point, we proceed into two consecutive steps:

• First, we provide an iterative algorithm to compute the conditional WSR R′κ (α,Φ1:N),

which is the maximum value of αR1 + (1 − α)R2 when the relays use the fixed set

Φ1:N . Due to duality in Theorem 5.2, R′κ (α,Φ1:N) is equal to the conditional WSR of

the MPR-MAC with a sum-power constraint and linear functionsΦ�
1:N .

1See [45, Sect. IV-B] for full details.
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5.4. Linear Relaying

• Next, we study the optimization in (5.48). As it turns out to be non-convex and non-
solvable, we propose a set of suboptimum linear functions.

Let us then study R′κ (α,Φ1:N), considering w.l.o.g. α ≥ 0.5. As mentioned, due to duality,

the weighted sum-rate of the BC is equal to that of the MAC (4.64), but in this case with a

sum-power constraint:

R′κ (α,Φ1:N) = max
Qκ

1 ,Qκ
20

2∑
p=1

θp · log2 det

(
I +

p∑
u=1

R
− 1

2
d HuQ

κ
uH

†
uR

− 1
2

d

)
(5.49)

s.t.
2∑

u=1

Pu

(
Qκ

u,Φ
�
1:N

)
≤ P

where we have defined θ1 = 2α−1
κ
, θ2 = 1−α

κ
, and Rd = No

(
I +

∑N
i=1 |ci|2Φ�

i

(
Φ

�
i

)†)
,

Hu =
(
au · I +

∑N
i=1 bu,iciΦ

�
i

)
, u = 1, 2. The optimization is continuously differentiable and

convex, and the feasible set regular. Hence, it can be solved using standard convex methods.

However, the constraint couples both optimization variables, preventing the direct application

of the algorithms presented in Section 4.4.

Hence, if we wish to iteratively solve the optimization, we first need to decouple the constraint.

We do so by using dual decomposition, consisting of solving the dual problem. As the opti-

mization is convex, it has zero duality-gap and the dual problem solution solves the primal too

(see Proposition 2.9). Let then the Lagrangian of (5.49) be defined on μ ≥ 0 and Qκ
1 , Q

κ
2 � 0

as:

L (μ, Qκ
1 , Q

κ
2) =

2∑
p=1

θp · log2 det

(
I +

p∑
u=1

R
− 1

2
d HuQ

κ
uH

†
uR

− 1
2

d

)
(5.50)

−μ

(
2∑

u=1

Pu

(
Qκ

u,Φ
�
1:N

)
− P

)

The dual function is then computed as:

g (μ) = max
Qκ

2 ,Qκ
20
L (μ, Qκ

1, Q
κ
2) . (5.51)

For which the constrains are now decoupled. Finally, the solution of the dual problem is

R′κ (α,Φ1:N) = min
μ≥0

g (μ) . (5.52)
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5.4. Linear Relaying

5.4.1 Sum-Rate Maximization

Consider first both users having the same priority α = 0.5. For this case, θ1 = 0, and θ2 = 1
2κ
in

(5.50). The first task in order to obtain (5.52) is to solve maximization (5.51). For that purpose,

we propose the use of a block-coordinate ascent algorithm, which iterates:

Qκ
u (t + 1) = arg max

Qκ
u0
L (μ, Qκ

u, Q
κ
ū (t + 2− ū)) , u = 1, 2, ū = {1, 2} /u. (5.53)

The maximization above is uniquely attained, as shown in the next proposition; also, the La-

grangian is convex and the feasible set a cartesian product of semidefinite cones. Hence, the

limit point of the sequence {Qκ
1 (t) , Qκ

2 (t)} is proven to converge to g (μ), as demonstrated in

Corollary 2.1.

Proposition 5.1 Consider the problem (5.53), defineAu =

(
I +

∑N
i=1 |bu,i|2

(
Φ

�
i

)†
Φ

�
i

)
and

compute the SVD-decomposition(
Rd + HūQ

κ
ū (t + 2− ū) H

†
ū

)− 1
2
HuA

− 1
2

u = UuΛ
1
2 Vu. (5.54)

Then, the maximization is uniquely attained atQκ
u (t + 1) = A

− 1
2

u VuΨV †
u A

− 1
2

u , where

ψj =

[
θ2 · log2 e

μ
− 1

λj

]+

, j = 1, · · · , κ. (5.55)

Proof: Consider the convex problem arg maxQκ
u0 L (μ, Qκ

u, Q
κ
ū). The function L (·) is

defined in (5.50), where we have set θ1 = 0 and θ2 = 1
2κ
. First, as for (4.69), we can rewrite

the objective function as:

L (μ, Qκ
u, Q

κ
ū) = θ2 log2 det

(
I + R

− 1
2

d HūQ
κ
ūH

†
ūR

− 1
2

d

)
(5.56)

−μ

(
2∑

j=1

Pj

(
Qκ

j ,Φ
�
1:N

)
− P

)
+ θ2 log2 det

(
I + HeQ

κ
uH

†
e

)
.

whereHe =
(
Rd + HūQ

κ
ūH

†
ū

)− 1
2
Hu. Notice that the first term in (5.56) does not depend on

Qκ
u. Hence, we may state the Lagrangian for the optimization as:

J (Ω, Qκ
u) = θ2 log2 det

(
I + HeQ

κ
uH

†
e

)
− μ

(
κPu

(
Qκ

u,Φ
�
1:N

)
− κPT

)
+ tr {Ω, Qκ

u} ,

where Ω � 0 is the Lagrange multiplier for the semidefinite constraint. The KKT conditions

for the problem are thus:

i)
μ

θ2 · log2 e

(
I +

N∑
i=1

|bu,i|2
(
Φ

�
i

)†
Φ

�
i

)
− Ω

θ2 · log2 e
= H†

e

(
I + HeQ

κ
uH

†
e

)−1
He

ii) tr {ΩQκ
u} = 0 (5.57)
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which are exactly identical to those in (4.70), except for the second one. Therefore, we can

easily reproduce the steps (4.71) and thereafter, to prove the theorem.

Once the dual function has been obtained through the block-coordinate approach, it must be

minimized over μ. As the function is convex by definition, it can be optimized using a subgra-

dient search [68]. The search consists of following direction −h (μ), where:
g (μ′)− g (μ)

μ′ − μ
≥ h (μ) , ∀μ′ 	= μ. (5.58)

Such a search is proven to converge for diminishing step-size rules [48]. Considering the

definition of g (μ), and revisiting Section 2.2.2, the following h (μ) satisfies the subgradient

condition (5.58):

h (μ) = P −
2∑

u=1

Pu

(
Qκ

u (μ) ,Φ�
1:N

)
, (5.59)

where Qκ
1 (μ) , Qκ

2 (μ) are the limiting points of (5.53). Therefore, we use it to search for the

optimum μ:

Increase μ if h (μ) ≤ 0 or decrease μ if h (μ) > 0. (5.60)

5.4.2 Weighted Sum-Rate Maximization

Consider now (5.52) for α > 0.5. As previously, we first focus on solving (5.51). In this case, a

block-coordinate ascent algorithm is not guaranteed to converge, as the individual optimization

of the function with respect to a single covariance matrix is not proven to be uniquely attained.

Thereby, in order to solve it with proven convergence, we propose the use of Gradient Pro-

jection. The algorithm is similar to that presented for the WSR of the MAC, and iterates as

follows: let the initial point
{
Q̃κ

1 (0) , Q̃κ
2 (0)

}
, then

Qκ
u (t + 1) = Qκ

u (t) + γt (Ku −Qκ
u (t)) , u = 1, 2. (5.61)

where t is the iteration index, γt ∈ (0, 1] the step-size, and:

Ku =
[
Qκ

u (t) + st · ∇Qκ
u
L (μ, Qκ

1 (t) , Qκ
2 (t))

]⊥
, u = 1, 2. (5.62)

As previously, [·]⊥ denotes the projection onto the feasible set. In this case, onto the cone of
semidefinite positive matrices. As mentioned, whenever γt and st are chosen appropriately,

the GP converges to the maximum2, and hence obtains g (μ) (see Corollary 2.2). In order to
2Recall that the optimization is convex.
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implement the algorithm, we need to compute the gradient of the Lagrangian with respect to

Qκ
u [83]:

∇Qκ
u
L (μ, Qκ

1 , Q
κ
2) =

(
2

[
∂L (μ, Qκ

1, , Q
κ
2)

∂Q̃κ
u

]T
)†

(5.63)

=

⎛
⎝2

2∑
p=u

θp ·H†
uR

− 1
2

d

(
I +

p∑
j=1

R
− 1

2
d HjQ

κ
j H

†
j R

− 1
2

d

)−1

R
− 1

2
d Hu

⎞
⎠
†

· log2 e

−μ · 2

κ

(
I +

N∑
i=1

|bu,i|2
(
Φ

�
i

)†
Φ

�
i

)†
.

The gradient is Hermitian. Finally, we need to project a Hermitian matrix S (with eigen-

decomposition S = UηU †) onto the semidefinite positive cone. This can be done from [88,

Theorem 2.1] as:

[S]⊥ = U [η]+U †. (5.64)

Once obtained g (μ) through GP, weminimize it using the same subgradient approach described

for the sum-rate. The conditional WSR is thus obtained with guaranteed convergence.

5.4.3 Linear Relaying Matrix Design

As previously, in order to obtain the non-conditioned WSR, R′ (α), we need to solve (5.48).

However, the optimization is not convex, and no solution can be given. We thus consider a sub-

optimum approach. In particular, we propose the relays to time-share among the suboptimum

linear functions defined for the MPR-MAC in (4.77) and (4.78):

Φ
ε
i = ηε

i Φ0, i = 1, · · · , N, ε = a, b, c with (5.65)

[Φ0]p,q �

⎧⎨
⎩
√

β p = q + 1; 1 ≤ q ≤ κ− 1

0 elsewhere.

As in the previous chapter, ηε
i ∈ C are the beamforming weights among relays, which allow

for coherent transmission and satisfy
∑N

i=1 |ηε
i |2 = 1. Notice that β in (5.65) need to satisfy

1
κ
tr
{
No

∑N
i=1 Φ

ε
iΦ

ε†
i

}
< P so that power constraint (5.34) can hold. That is, β < P

No

κ
κ−1
. We

select the weights ηε
i to be:

ηa
i �

b∗1,i · c∗i
ga

, ηb
i �

b∗2,i · c∗i
gb

, ηc
i �

∑2
u=1 b∗u,i · c∗i

gc
, i = 1, · · · , N. (5.66)
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where gε is such that
∑N

i=1 |ηε
i |2 = 1. The beamformings aim at maximizing (via Maximal

Ratio Transmission) the individual rates of user 1, user 2 and the sum-rate, respectively. Now,

the optimum value β must be selected. For that purpose, we propose the use of a simple one-

dimensional exhaustive search considering R1, R2 and R1 + R2 as the objective metrics for

ηa
i , η

b
i and ηc

i , respectively.

5.5 Compress-and-forward

Unlike previous techniques, with C&F the relay nodes mimic a receive antenna array with the

users, helping them to decode the base station signal. Hence, the MPR-BC performs as a SIMO

BC, for which dirty paper coding is the optimal source encoding strategy.

There is a fundamental difference between the implementation of C&F at the MPR-BC and the

implementation at the MPRC or MPR-MAC: in the broadcast case more than one destination

have to decompress the relay signals. As mentioned in Section 3.5 and Section 4.5, C&F is

constructed using distributed Wyner-Ziv (D-WZ) compression codes at the relay nodes [39].

Those codes are decompressed at the destination using its own received signal as side infor-

mation (See Proposition 3.1). Therefore, when having two different destinations (that is, two

different decoders of the compressed signals) the one with worst side information will limit

the operational point. In other words, the relays must select compression codes that can be

simultaneously decompressed by both users.

Theorem 5.3 With D-WZ C&F, the MPR-BC achieves the rate region:

RC&F (P ) = coh

⎛
⎜⎜⎜⎝

⋃
γ1,γ2,γr1 ,··· ,γrN

:
�2

u=1
γu+
�N

i=1
γri
≤P

⋃
π

⋃
ρ1:N≥0:

ρ1:N∈Ju(γ1:2,γr1:N ), u=1,2

{R1,2 : (5.67)

Rπ(1) ≤ log2 det
(
I + γπ(1)qπ(1)q

†
π(1)

)
Rπ(2) ≤ log2 det

(
I +

(
I + γπ(1)qπ(2)q

†
π(2)

)−1

γπ(2)qπ(2)q
†
π(2)

)
⎫⎪⎬
⎪⎭
⎞
⎟⎠ ,

where

qu =

[
a∗u√
No

,
c∗1√

No + ρ1

, · · · , c∗N√
No + ρN

]T

, (5.68)
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π is any permutation of {1, 2} and Ju (γ1:2, γr1:N
) �⎧⎨

⎩ρ1:N : C

⎛
⎝ (γ1 + γ2)

(∑
i∈S

|ci|2
No+ρi

)
(γ1 + γ2)

(
|au|2
No

+
∑

i/∈S
|ci|2

No+ρi

)
⎞
⎠ +

∑
i∈S
C
(

No

ρi

)
≤

C
(∑

i∈S

|bu,i|2γri

No + |au|2 (γ1 + γ2)

)
, ∀S ⊆ N .

}
(5.69)

Proof: Let the messages ωu ∈
{
1, · · · , 2nRu

}
, u = 1, 2 be selected for transmission to user 1

and user 2, respectively. It divides them it into B sub-messages of κR bits each, with κ = n
B
:

ωu =
[
ω1

u, · · · , ωB
u

]
. The messages are then pipelined using block-Markov encoding within

B + 1 channel blocks.

On each block b, the source transmits the sub-messages ωb
u, u = 1, 2 to the users and relays. To

do it, the source maps them onto a dirty paper code ( similar to that explained for D&F). First,

it encodes ωb
2 using a random codeword sκ

2 (·) generated i.i.d. from s2 ∼ CN (0, γu). Later, it

encodes ωb
1 utilizing non-causal knowledge of the interference that signal sκ

2

(
ωb

2

)
produces in

user 1 [47, Section II]. The procedure follows equivalent arguments to those in (5.13)-(5.18),

and outputs a signal sκ
1 . The source thus transmits

xκ
d[b] = sκ

2

(
ωb

2

)
+ sκ

1 [b]. (5.70)

The elements of sκ
1 [b] are distributed following s1 ∼ CN (0, γ1), as shown in the proof of D&F

[47]. Notice that the encoding order at the DPC is arbitrary and can be reversed. Furthermore,

the Gaussian codebook, although used, has not been shown to be optimal. The two transmitted

codewords are then received at the relays under AWGN:

yκ
ri
[b] = c∗i

2∑
u=1

sκ
u

(
ωb

u

)
+ zκ

ri
, i = 1, · · · , N. (5.71)

Upon receiving the signals, relays distributedly compress them using a multi-source compres-

sion code as that in Proposition 3.1. Therefore, signals yκ
ri
[b] are mapped at the relays using

functions

f ri
κ : Yκ

ri
→
{
1, · · · , 2κφi

}
, (5.72)

where φi is the compression rate of relay i. The mapping consists of finding the bin-index of

compression codewords that are jointly typical with yκ
ri
[b] (see Proposition 3.1 for full details).
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On the next block b + 1, the relays send to the users (via their MAC channels) the indexes

tri
[b] = f ri

κ

(
yκ

ri
[b]
)
, i = 1, · · · , N . To that end, the indexes are mapped onto multi-access

channel codebooks vκ
ri

(·), i = 1, · · · , N :

xκ
ri

[b + 1] = vκ
ri

(tri
[b]) , i = 1, · · · , N. (5.73)

We select the MAC codebooks to be Gaussian, generated i.i.d. from Vri
∼ CN (0, γri

), i =

1, · · · , N . Notice that the power utilized by the relays in order to cooperate with the source is∑N
i=1 γri

. Therefore, the power constraint (A3) is satisfied whenever:

γ1 + γ2 +

N∑
i=1

γri
≤ P. (5.74)

The received signal at the two users during the block b + 1 is given by:

yκ
u[b + 1] = a∗u

2∑
p=1

·sκ
p

(
ωb+1

p

)
+

N∑
i=1

b∗u,iv
κ
ri

(tri
[b]) + zκ

d , u = 1, 2. (5.75)

Let us now explain the decoding at the users in block b + 1. First, they recover indexes tr1:N
[b]

from its received signal yκ
u[b + 1], u = 1, 2. Both users can do so iff the transmission rates φi

lie within their capacity region (being sκ
p

(
ωb+1

)
, p = 1, 2 interference):

∑
i∈S

φi ≤ C
( ∑

i∈S |bu,i|2γri

No + |au|2 (γ1 + γ2)

)
, ∀S ⊆ N , u = 1, 2. (5.76)

Once the indexes tr1:N
[b] have been estimated, the two users remove their contribution on yκ

u [b+

1]:

y
′κ
u [b + 1] = yκ

u[b + 1]−
N∑

i=1

bu,i · xκ
ri
[b + 1] (5.77)

= au

2∑
p=1

sκ
p

(
ωb+1

p

)
+ zκ

d .

Afterwards, each user decompresses the indexes tr1:N
[b] using its own received signal y

′κ
u [b]

as side information. As shown in Proposition 3.1, the decompression step consists of finding

compression codewords ŷr1:N
that, belonging to the bins selected by the compression encoders,

are jointly typical with y
′κ
u [b]. Each user can find at least one typical codeword if and only if

(see Proposition 3.1)

I (yS ; ŷS|y′u, ŷc
S) ≤

∑
i∈S

φi ∀S ⊆ N , u = 1, 2. (5.78)
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Therefore, taking into account constraints (5.76) and (5.78), both users can decompress the

relays signals if and only if:

I (yS ; ŷS|y′u, ŷc
S) ≤ C

( ∑
i∈S |bu,i|2γri

No + |au|2 (γ1 + γ2)

)
∀S ⊆ N , u = 1, 2. (5.79)

Once decompressed, vectors ŷκ
r1:N

[b] are used by the receivers, along with their own signals

y
′κ
u [b], to decode their intended messages. Let us select the compression codebooks at the

relays to be Guassian (even though they have not been shown to be optimal). That is, p (ŷi|yi) =

1√
πρi
exp

(
− |ŷi−yi|2

ρi

)
, where we refer to ρi as the compression noise of relay i. Therefore, given

the dirty paper encoding, the users can correctly estimate their messages iff [45, Section III]:

R1 ≤ log2 det
(
I + γ1q1q

†
1

)
(5.80)

R2 ≤ log2 det

(
I +

(
I + γ1q2q

†
2

)−1

γ2q2q
†
2

)
(5.81)

where qu is defined in (5.68). This is equivalent to the achievable rates of the AWGN SIMO

BC. Let us now particularize the constraint (5.79) for the Gaussian compression codewords. In

particular, using equivalent arguments to those in (3.56), it is possible to derive that:

I (yS ; ŷS |y′u, ŷc
S) = I

(
xd; y

′

u, ŷr1:N

)
− I

(
xd; y

′

u, ŷ
c
S

)
+ I (yS ; ŷS |xd, y

′
d, ŷ

c
S)

= C

⎛
⎝ (γ1 + γ2)

(∑
i∈S

|ci|2
No+ρi

)
(γ1 + γ2)

(
|au|2
No

+
∑

i/∈S
|ci|2

No+ρi

)
⎞
⎠ +

∑
i∈S
C
(

No

ρi

)
(5.82)

Therefore, plugging (5.82) into (5.79), the rates (5.80) are achievable if: ρ1:N ∈ J1 (γ1:2, γr1:N
)

and ρ1:N ∈ J2 (γ1:2, γr1:N
). However, the relays may arbitrary choose any codebook design

belonging to both Ju (γ1:2, γr1:N
), u = 1, 2 and also time-share them. Therefore the achievable

rate region remains:

coh

⎛
⎜⎝ ⋃

ρ1:N∈Ju(γ1:2,γr1:N ),u=1,2

⎧⎪⎨
⎪⎩R1,2 :

R1 ≤ log2 det
(
I + γ1q1q

†
1

)
R2 ≤ log2 det

(
I +

(
I + γ1q2q

†
2

)−1

γ2q2q
†
2

)
⎫⎪⎬
⎪⎭
⎞
⎟⎠ .

Finally, the power can be arbitrarily allocated at the sources and relays. Moreover, the dirty

paper encoding order can be arbitrarily set.

As for D&F, it was impossible for us to derive the weighted sum-rate of region (5.67), not even

to upper bound it. Indeed, the WSR optimization is not convex. Therefore, we are not able to

characterize and draw the region.
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Figure 5.2: Rate region of the MPR-BC with LR. We considerN = 3 relays, and overall power

constraint P
No

= 8 dB. κ = 60.

5.6 Numerical Results

As mentioned previously, we have not been capable to evaluate the rate regions with D&F and

C&F. We thus evaluate in the section the one with LR. Equivalently to Section 4.6, we model

the channel fading as zero-mean, complex, Gaussian-distributed and time-invariant. Defining

ds,u = 1 the source-users distance and d the users-relays distance, we assume au ∼ CN (0, 1),

bu,i ∼ CN (0, d−α), and ci ∼ CN
(
0, (1− d)−α), u = 1, 2, i = 1, · · · , N . Finally, the path-

loss exponent is set to α = 3.

The achievable rate region of the MPR-BC with LR is depicted in Fig. 5.2. We consider

N = 3 relays, and overall transmit power constraint P/No = 8 dB. Relays are placed at a

distance d = 0.5, and the region is plotted for the given realization of the channel: [a1, a2] =

[0.68e−j2.47, 0.85e−j0.89], [c1, c2, c3] = [1.63ej0.08, 3.35e−j1.17, 1.54e−j3.01] and

[bu,i] =

⎡
⎣ 5.17ej2.35 0.85ej2.63 2.17ej1.25

3.72ej1.23 5.19ej1.53 5.73ej1.80

⎤
⎦

As explained in Section 5.4.3, the LR region is approximated by time-sharing of the conditional

rate regions with Φ
a
1:N ,Φb

1:N ,Φc
1:N . Results show that both users increase significantly their
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transmission rates, and, particularly user 2 doubles it. Besides, the sum-rate of the system is

achieved when no rate is allocated to user 1, as in BC without relays. However, this claim may

not hold for all the channel realizations.

Notice that for N = 3, the LR achievable rates in the MPRC and MPR-MAC were clearly

outperformed by those of D&F and C&F. It is expected then that so they do in the MPR-

BC. Accordingly, given the two-fold gains with LR (which are expected to be improved with

the other two techniques) we conclude that relaying (even with low number of relays) is very

powerful approach to increase coverage of broadcast networks.

5.7 Conclusions

This chapter studied the BC assisted by multiple-parallel relays and presented its achievable

rate regions with D&F, LR and C&F, respectively. The region with D&F was derived con-

sidering block-Markov plus dirty paper encoding at the source. Mixing both encodings, the

full-duplex relaying and the wireless broadcasting were simultaneously implemented. Unfortu-

nately, we were not able to draw the region since the weighted sum-rate optimization remained

unsolvable for us.

The achievable rate region with LR was next presented, and shown to be equal to that of the

MPR-MAC with a sum-power constraint. That is, the MPR-MAC and MPR-BC are dual chan-

nels with LR. This results extended to BCs with direct link between source and users the duality

presented by Jafar et. al. in [43] for two-hop MAC/BC. To prove duality, we made use of du-

ality results for vector channels [45]. Furthermore, in order to characterize the rate region, we

resorted to the sum-rate and weighted sum-rate optimizations. To compute them, we devised

iterative algorithms, based upon dual decomposition.

Finally, the BC with C&F was studied. Its rate region was derived considering dirty paper

encoding at the source, and distributed Wyner-Ziv compression at the relays. As for D&F,

the region could not be drawn since the weighted sum-rate optimization were not convex, and

remained unknown.
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Chapter 6

Conclusions

This dissertation has studied the capacity of Gaussian channels with multiple, parallel1, re-

lays. In particular, our analysis has focused on three well-known channels: the point-to-point

channel, the multi-access channel and the broadcast channel. For them, we have presented

achievable rates and capacity outer regions. All over the dissertation, we have assumed: i)

full-duplex operation at the relays, ii) transmit and receive channel state information available

at all network nodes and iii) time-invariant, memory-less fading. The research results has been

presented as follows:

Chapter 3 has studied the multiple-parallel relay channel (MPRC), where a single source com-

municates to a single destination with the aid of N parallel relay nodes. The capacity of the

channel has been upper bounded using the max-flow-min-cut Theorem. The obtained bound

is shown to scale as C
(

N
2

P
No

)
under time-invariant (unitary-mean) Rayleigh fading. Besides,

the capacity has been lower bounded by means of the achievable rates with: D&F, two-level
1As previously defined, two relays are said to be parallel if there is no direct link between them, while both

have direct link from the source and towards the destination.
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PD&F, C&F and LR. The first two consisted of relay nodes totally or partially decoding the

source’s signal, respectively. Partial decoding was shown to outperform D&F for low number

of relays; on the contrary, for large number of them, both were shown to follow the same scal-

ing law: C
(
2 ·W0

(√
N
2

)
· P

No

)
. Such a law diverged from the upper bound, which made both

techniques clearly suboptimal; we explained this fact resorting to the source-relay broadcast

limitation. Finally, D&F and PD&F also performed equally for low source-relay distances,

being both capacity-achieving.

C&F consisted of relay nodes transmitting towards destination a compressed version of their

received signals. In turn, the destination utilizes the compressed signals in order to estimate

the source’s message via coherent detection. Distributed Wyner-Ziv (D-WZ) compression was

assumed at the relays. The achievable rate of this technique was presented in terms of a non-

convex optimization, which turned out unsolvable for us. Hence, we proposed a computable

upper bound as a benchmark for it. Moreover, we showed that the achievable rate with C&F

scales as C
(

P
No

log2 N
)
, which is due to the relay-destination MAC limitation.

Finally, we studied LR, which consisted of relay nodes transmitting, on every channel use, a

linear combination of previously received signals. The optimum source temporal covariance for

this technique was derived, and suboptimum linear relaying matrices proposed. Furthermore,

we showed that the achievable rate scales as C
(

N ·P
No

)
, in the same manner as the upper bound

and unlike all previous techniques. Hence, LR was shown to be the only known technique that

seizes all the beamforming gain of the system.

Numerical results for Rayleigh-faded networks showed that: i) D&F is capacity achieving for

short/mid source-relay distances and low number of relays, ii) PD&F only outperforms D&F

for low number of relays and large source-relay distances, iii) C&F provides small rate gains,

unless the relays are extremely close to the source, and iv) LR is clearly the best technique

for large number of relays, given that its beamforming capability allows to overcome noise

amplification. On the contrary, for low number of relays, the degree of noise amplification is

not compensated by the beamforing gain, and thus, it performs poorly.

Chapter 4 extended previous results to the multi-access channels with multiple-parallel relays

(MPR-MAC). On it, multiple sources communicate simultaneously to a single destination, in

the presence of N parallel relay nodes. For the channel, we first provided a capacity outer
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region based upon the max-flow-min-cut Theorem. Likewise, we presented achievable rate

regions with D&F, C&F and LR. The first was derived as the extension to N relays of the

single-relay result [76]. The second was obtained assuming D-WZ compression at the relays.

Finally, the latest was derived using theory of vector MAC channels, and further characterized

by means of the weighted sum-rate maximization. Such a maximization allowed us to derive

the optimum sources’ temporal covariance for every boundary point of the rate region. In order

to design the linear functions at the relays, we proposed a suboptimum approach.

In parallel, we also carried out the asymptotic analysis of the channel, considering the number

of users U growing to infinity. The analysis aimed at studying the impact of multi-user diversity

onto the sum-capacity of the MPR-MAC. First, we showed that D&F does not provide sum-rate

gains when U → ∞. This was explained resorting to the distributed channel hardening effect
at the input of the relays. In contrast, we demonstrated that the max-flow-min-cut upper bound

indeed suggests gains even at the asymptote. Therefore, D&F is clearly suboptimal with large

number of users. Finally, we presented the scaling behavior of C&F. This was shown not to be

affected by the channel hardening effect and to provide rate gains.

Numerical results for Rayleigh fading showed that: i) the sum-capacity upper bound is maxi-

mized for relays close to the destination. This result invites us to think that placing relays close

to the base station is more interesting in terms of achievable sum-rates. ii) With multiple users,

C&F presents an improved performance compared to that of the single-user case, and iii) D&F

is sum-capacity achieving for low/mid source-relay distances.

Finally, Chapter 5 ended the analysis by considering the broadcast channel with multiple-

parallel relays. For the channel, we presented achievable rates with D&F, C&F and LR, all

three based upon dirty paper encoding at the source.

The most significant result of this chapter is that MAC-BC duality holds for linear relaying.

Such a claim was demonstrated using duality arguments for MIMO channels, and with it, we

extended the duality presented by Jafar et al. in [43] to MPR-BCs with direct link between

source and destinations.
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6.1. Future Work

6.1 Future Work

The interference channel with multiple-parallel relays (MPR-IC) is the great absent of this

dissertation [89, 90]. With it, our work would have covered the four main channels found in

wireless networks. It is, thus, at the top of the future-work stack.

The MPR-IC is a channel in whichM independent sources communicate, simultaneously and

independently, to M different destinations with the aid of a set N = {1, · · · , N} of parallel
relay nodes. The capacity region of the interference channel is a long standing open problem.

So is, then, the capacity when assisted by multiple relays. Accordingly, a huge field of research

appears at a first glance: from capacity outer regions and sum-capacity upper bounds, to achiev-

able rate regions (with e.g. decode-and-forward, compress-and-forward, linear relaying, etc.)

and asymptotic achievable sum-rates. This task has not been undertaken in this dissertation due

to two main reasons:

• Partial knowledge of the Interference Channel. The IC is one of the most unknown chan-
nels within the field of Information Theory. Even in the absence of relays, its capacity

region (as well as the optimum encoding at the sources) is still an open problem. Thus,

unlike the point-to-point, multi-access and broadcast channels, we did not find a clear

framework to benchmark the gains obtained via relaying with.

Besides, the tightest inner bound on the capacity region of the IC without relays, the Han-

Kobayashi achievable rate region [90], requires a computationally prohibitive source en-

coding. This makes it unfeasible in practice, and hard to be extended to the IC with

multiple relays.

• Time. As mentioned, the extension of the MPRC results to the MPR-IC is not straight-
forward and requires a separate analysis. On it, we need not only to address different

relaying protocols, but also different sources’ encoding functions. In addition, the state-

of-the-art on the topic is emaciated. Hence, the analysis of the MPR-IC would take, at

least, another year of research. We decided, then, to leave it for post-doc research.

The research line that next leads the yet-to-do list is: Extension to MIMO channels of the

single-antenna results presented in this dissertation. MIMO relay channels are introduced,
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among other references, in [91, 92] and consider all network nodes equipped with multiple

antennas. Throughout the thesis, we have not assumed multi-antenna nodes mainly due to:

• Effectiveness. Clearly, the impact of relays is most significant in networks with single-
antenna sources and single-antenna destinations, where neither spatial diversity nor beam-

forming capabilities are available in the absence of relays. We thus concentrated our

efforts on the setup for which relaying is more profitable.

• Simplicity. Placing multiple antennas at the network nodes introduces new degrees of
freedom: the spatial covariances at the source and relays [91]. Those has to be optimized

in order to obtain highest achievable rates. Regarding channels with relays, such an

optimization is not convex in most of the cases. Moreover, for the cases where it is,

the computation is generally exhaustive and no closed-form expression can be given.

Aiming, thus, at eliminating the collateral damage of not been able to provide closed-

form expressions for the optimum covariances, neither for the achievable rates nor for

the asymptotic performance, we decided to consider single-antenna nodes only.

Finally, regarding the results presented in this dissertation, the most important loose ends have

been:

1. Resource allocation within the compress-and-forward setup. The achievable rate of the

MPRC with C&F is presented in Theorem 3.4 in terms of a non-convex optimization. We

have not been able to provide its solution i.e., the optimum power allocation among relays

and the optimum compression noises at them. Instead, we devised an iterative resource

allocation algorithm based upon a rate upper bound, yielding a suboptimum solution.

The same happened for the weighted sum-rate of the MPR-MAC with C&F (see Section

4.5.1). New efforts shall be, thus, invested in order to solve the optimizations and to

devise the correct resource allocation algorithm.

2. Design of spectral efficient linear relaying matrices. This dissertation was not able to

derive, for linear relaying, the optimum linear functions at the relays, neither for MPRC

(Section 3.6), nor for the MPR-MAC or MPR-BC (Section 4.4 and Section 5.4, respec-

tively). This was due to the non-convexity of the matrices optimization. Instead, we pro-

posed suboptimum approaches, based upon: i) amplify-and-forward extended to more
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than two channel uses, and ii) maximal ratio transmission among the relays. New ap-

proaches shall be thus studied in order to improve performance, specifically at the low

number of relays regime.

3. Characterization of the MPR-BC achievable rate regions. We could not characterize

of the achievable rate regions of the channel with D&F and C&F. For both cases, the

weighted sum-rate was a non-convex optimization with unmanageable number of opti-

mization variables. Thus, it turned unsolvable for us. Research need to be carried out to

characterize the achievable weighted sum-rate with both techniques.
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