
UPC
UNIVERSITAT POLIT�ECNICA DE CATALUNYA

DEPARTAMENT D'ENGINYERIA TELEM�ATICA

TESI DOCTORAL

EN ENGINYERIA TELEM�ATICA

Fair Allocation of Network

Resources for Internet Users

Director de la tesi:

Prof. Sebasti�a Sallent

Autor:

Albert Banchs

Novembre 2001

To Paola, Francesc, Guillermina and Carles

Contents

1 Introduction 1

2 User Fairness 5
2.1 Review on Fairness Concepts in Computer Networks 6

2.1.1 Utility function . 6
2.1.2 Welfare function . 7

2.2 User Maxmin Fairness . 9
2.2.1 Welfare function composition 9
2.2.2 Inter and Intra User fairness 10
2.2.3 De�nition . 11

2.3 User utility . 13
2.4 Summary . 13

3 User Fair Queuing 15
3.1 User labeling . 16
3.2 Ingress Label Control . 16
3.3 Core dropping . 18
3.4 Ingress Label Control and Excess Service 21
3.5 User Labeling and User Utility 27
3.6 Simulations . 29

3.6.1 Single Flow - One Link 30
3.6.2 Single Flow - Several Links 30
3.6.3 Several Flows - One Link 30
3.6.4 Several Paths - Uniform Level of congestion 31
3.6.5 Several Paths - Heterogeneous Level of congestion . . . 33
3.6.6 Intra-user Di�erentiation 33
3.6.7 Ingress label control 34
3.6.8 Di�erent TraÆc Models - One Link 35
3.6.9 Di�erent TraÆc Models - Several Links 37

3.7 Summary and Discussion . 39

i

4 User Fair Di�erentiation 41
4.1 The Olympic Service Model 42

4.1.1 Olympic Service Model for Elastic TraÆc 42
4.1.2 Sender-based approach 43
4.1.3 Discussion . 44

4.2 The UFD architecture . 45
4.2.1 Proportional Di�erentiation for Bandwidth 45
4.2.2 Inter-domain . 46

4.3 Comparison with existing approaches 49
4.3.1 UFD . 50
4.3.2 User Share Di�erentiation (USD) 51
4.3.3 SIMA . 53
4.3.4 Delay Di�erentiation (DD) 55
4.3.5 Class-Based Allocation (CBA) 56

4.4 Summary and Discussion . 57

5 Extension for Real-Time TraÆc 59
5.1 Step Di�erentiation for Delay 59
5.2 TraÆc Type Separation . 61
5.3 User-based Admission Control 63
5.4 Simulations . 68

5.4.1 Bandwidth and Delay Distribution 68
5.4.2 Pricing for Elastic and Real-Time TraÆc 70
5.4.3 UBAC . 70

5.5 Summary . 76

6 Extension for Multicast TraÆc 77
6.1 Bandwidth Allocation Policy 78
6.2 Multicast UFD . 79
6.3 Layered Multicast . 80
6.4 Experimental Results . 82

6.4.1 Bandwidth Allocation 84
6.4.2 Layered Video . 84

6.5 Discussion and Related Work 87

7 Wireless UFD 89
7.1 State of the Art . 89

7.1.1 The IEEE 802.11 MAC layer 89
7.1.2 Related Work . 91

7.2 Architecture . 93
7.2.1 Real-time traÆc extension 94

ii

7.2.2 Elastic traÆc extension 95
7.2.3 Protocol Operation . 95

7.3 Contention Resolution Algorithm for the Real-time TraÆc ex-
tension (CRA-RT) . 96
7.3.1 Mathematical Analysis 98
7.3.2 Rationale for choosing the CRA-RT scheme 101

7.4 Contention Window Computation for the Elastic TraÆc ex-
tension . 102
7.4.1 Overload . 103

7.5 Simulations . 106
7.5.1 Real-time TraÆc . 106
7.5.2 Elastic TraÆc . 111

7.6 Summary . 122

8 Implementation 123
8.1 Linux network implementation 123
8.2 UFD implementation . 125

8.2.1 Router Performance 125
8.2.2 Router Con�guration 126
8.2.3 Label Location in Packet Header 126
8.2.4 Label Mapping . 126
8.2.5 Rate Estimation at Core Nodes 127

8.3 Experimental Results . 127
8.3.1 CBR traÆc . 128
8.3.2 ON/OFF traÆc . 128

9 Conclusions 131

Acknowledgements 135

Bibliography 137

iii

List of Figures

2.1 Utility function of an elastic traÆc
ow. 7
2.2 Example of inter and intra user fairness. 11

3.1 UFQ architecture. 16
3.2 UFQ algorithm. 20
3.3 Single Flow - One Link. 30
3.4 Single Flow - Serveral Link. 31
3.5 Simulation scenario, Single Flow - Several Links. 31
3.6 Several Flows - One Link. 32
3.7 Several Paths - Uniform Level of congestion. 32
3.8 Simulation scenario, Several Paths - Uniform Level of congestion. 32
3.9 Several Paths - Heterogeneous Level of congestion. 33
3.10 Simulation scenario, Several Paths - Heterogeneous Level of

congestion. 34
3.11 Intra-user di�erentiation. 34
3.12 Ingress label control. 35
3.13 Di�erent TraÆc Models - One Link. 36
3.14 Simulation scenario, Di�erent TraÆc Models - Several Links. . 37
3.15 UDP throughput as a function of the number of congested links. 38
3.16 TCP throughput as a function of the number of congested links. 38

4.1 UFD algorithm. 46
4.2 UFD inter-domain algorithm. 49
4.3 UFD architecture. 49

5.1 Utility function of real-time applications as a function of the
delay. 60

5.2 TraÆc Type Separation. 61
5.3 Utility function of hard real-time applications as a function of

the bandwidth. 64
5.4 Utility function of rate-adaptive real-time applications as a

function of the bandwidth. 64

v

5.5 Network topology used for the simulations. 68
5.6 UBAC. Throughput. 72
5.7 UBAC. Packet Loss Probability. 73
5.8 UBAC. Probability of Reject. 73
5.9 UBAC. Probability of Degrade. 74
5.10 UBAC. Probability of Cancel. 75
5.11 Safety margin. Probability of Reject. 75
5.12 Safety margin. Probability of Degrade. 76

6.1 Core Relabeling in M-UFD. 80
6.2 M-UFD Algorithm. 80
6.3 Static levels policy. 82
6.4 M-UFD Algorithm with Layered Multicast. 82
6.5 Con�guration of the test network. 84
6.6 Bandwidth Allocation with CBR traÆc. 85
6.7 Bandwidth Allocation with video traÆc. 86
6.8 Percentage of delivered packets as a function of the layer. . . . 86
6.9 Perceived video quality. 87

7.1 Basic 802.11 MAC protocol operation 90
7.2 Protocol Operation. 95
7.3 Contention resolution scheme for real-time traÆc. 96
7.4 Inverse delay distribution for 2 real-time stations, CBR, 500

byte packet length. 106
7.5 Inverse delay distribution for 6 real-time stations, CBR, 500

byte packet length. 107
7.6 Inverse delay distribution for 6 real-time stations, CBR, 100

byte packet length. 107
7.7 Inverse delay distribution 64 Kbps with varying numbers of

real-time stations, CBR, 500 bytes packet length. 109
7.8 Inverse delay distribution 64 Kbps with varying numbers of

real-time stations, CBR, 100 bytes packet length. 109
7.9 Inverse delay distribution 64 Kbps for 6 real-time stations,

ON/OFF traÆc, 100 and 500 bytes packet lengths. 110
7.10 Instantaneous Share for Elastic traÆc. 112
7.11 Bandwidth Distribution as a function of the weight. 113
7.12 Bandwidth Distribution as a function of the number of stations.113
7.13 Throughput as a function of c. 115
7.14 Drops as a function of c. 115
7.15 Experienced weight as a function of c. 115
7.16 Impact of 802.11 terminals. 116

vi

7.17 Channel utilization. 117
7.18 Packet drops. 117
7.19 Level of di�erentiation as a function of the error rate 118
7.20 Simulation scenario . 119
7.21 Hidden node . 119
7.22 Sources UDP ON/OFF 1 ms. 120
7.23 Sources UDP ON/OFF 500 ms. 120
7.24 TCP Sources. 121
7.25 TCP vs UDP . 122

8.1 The course of a packet through the system. 124
8.2 UFD implementation in Linux. 125
8.3 Bandwidth Allocation with ON/OFF traÆc. 129

vii

Chapter 1

Introduction

In a commercial Internet, the traÆc behavior is determined by the contracts
between the ISPs and the users, where a user can be a dial-up user, or one
corporate network or a group of individual customers or networks. Since
the user is the entity with whom the contract is signed, it should also be
the unit to which network resources are allocated. However, while much
research in the past has been directed to fair resource allocations for
ows
(see e.g. maxmin fairness [1] and proportional fairness [2]1), much less e�ort
has been invested on fair allocation of resources for users. The work done
in this thesis tries to �ll this gap: we study how to share fairly the network
resources among users, when a user can possibly send several
ows through
di�erent paths. Hereafter we call the concept of fairly distributing resources
among users user fairness.

The �rst issue that has to be solved in order to allocate resources among
users fairly is to de�ne what network resources are. Network resources are of-
ten identi�ed with bandwidth, but there are some applications, like e.g. voice
over IP, whose performance is not determined by bandwidth alone but also
by delay. We conclude that the de�nition of network resources is application-
speci�c.

In this thesis we follow [4] to classify applications according to their dif-
ferent requirements. In [4], applications are divided in two groups: elastic
applications and real-time applications. Examples of elastic applications are
�le transfer, electronic mail and remote terminal, and examples of real-time
applications are link emulation, audio and video. Following this classi�cation,
in this thesis we deal with the problem of fairly sharing resources among users
step by step (i.e. we start with a basic problem and then we incrementally
extend it until solving the whole problem).

1In [3] we provide an overview on this research.

1

We �rst concentrate on the problem of sharing equally resources among
users in a fair way in a single domain with only elastic traÆc. In Chap-
ter 2 we provide a solution to this problem based on the concepts of utility
and welfare developed in the �eld of political science and political economics.
We subdivide the problem in two subproblems: 1) achieve fairness with re-
spect to the utility experienced by the di�erent users (inter-user fairness)
and 2) achieve fairness with respect to the utility experienced by the di�erent

ows of a user (intra-user fairness). The user maxmin fairness criterion we
propose in Chapter 2 is the result of combining the two welfare functions
that solve these two subproblems.

Along with the user maxmin fairness criterion, in Chapter 3 we propose
a mechanism to implement it: the User Fair Queuing (UFQ) mechanism. In
UFQ, a user is allowed to assign any label values to his packets to indicate
their relative priority. At the ingress, an algorithm is used to control these
labels assigned by the user. We show mathematically that: (a) the proposed
label control does not allow the asymptotic throughput of a user to exceed its
fair rate, and (b) if users label their packets in order to maximize their level of
satisfaction or utility, then the resulting bandwidth allocation is user maxmin
fair. The fact that neither admission control nor signaling are required in
UFQ strongly contributes to its simplicity. The fact that no per-user state
is kept at core nodes makes the proposed mechanism scalable. The contents
of Chapters 2 and 3 have been published in [3, 5].

In Chaper 4 we extend the problem solved in Chapters 2 and 3 by adding
service di�erentiation and several domains. We propose a network ar-
chitecture for the Internet: the User Fair Di�erentiation (UFD) architecture,
which extends the UFQ mechanism in such a way that its good features for
resource sharing are preserved. Service Di�erentiation in UFD is based on
the Proportional Di�erentiation Model for bandwidth, which states that the
bandwidth allocated to a user should be proportional to the share contracted
by him. We show that this model �ts the requirements of service di�erenti-
ation for elastic traÆc. This part of the thesis has been published in [6, 7].

Chapter 5 extends the problem solved in the previous chapters by adding
real-time traÆc support. The real-time traÆc extension proposed is based
on the Step Di�erentiation Model for delay, which states that non-dropped
real-time packets should reach their destination with a very low delay. We
show that this model �ts the requirements of real-time traÆc. In order to
account for the higher requirements of real-time traÆc with respect to delay,
in the proposed extension real-time traÆc is assigned a higher price than
elastic traÆc. The part of the thesis corresponding to this chapter has been
published in [8].

The above chapters de�ne the architecture that solves the problem of

2

fairly allocating resources among users. Chapters 6 and 7 provide extensions
to this architecture for multicast traÆc and wireless access respectively.

For the multicast traÆc part, we take up previous work on bandwidth
allocation for unicast and multicast
ows: the Logarithmic Receiver De-
pendent (logRD) policy. This policy encourages the use of multicast traÆc
delivery while providing a good level of fairness between unicast and multi-
cast. In Chapter 6 we propose an extension of the UFD architecture that
implements the logRD policy. In addition, the proposed extension supports
layered multicast transmissions. This part of the thesis has been published
in [9, 10, 11].

In Chapter 7 we propose an extension of the UFD architecture forWire-
less LAN. The proposed extension allocates resources in the Wireless LAN
following the same principles as the architecture described in the previous
chapters for wired networks. The challenge in Wireless LAN is that we do
not have all packets in a centralized queue, like in wired links, but we have
them distributed in the wireless hosts. Therefore, we need a MAC mech-
anism capable of providing the desired scheduling. The proposed wireless
architecture has been published in [12, 13, 14, 15].

The architecture proposed in this thesis has been implemented in a Linux
PC platform. In Chapter 8 we report on implementation experiences. This
part has been published in [9, 16].

Publications of the author highly related with the content of this thesis
can be found in [17, 18, 19, 20, 21, 22, 23, 24].

3

Chapter 2

User Fairness

User fairness in the current best-e�ort Internet is based on TCP fairness [25],
which distributes network resources among users on a
ow basis: with TCP,
each
ows receives a throughput inversely proportional to its round-trip de-
lay. However, not all
ows in the Internet use the TCP protocol and it is
relatively easy for non-adaptive sources to gain greater shares of network
bandwidth and thereby starve other, well-behaved, TCP friendly sources.
For that reason the TCP fairness solution relies on TCP friendly behavior
of the applications in order to fairly share the network resources. In addi-
tion, the fact that TCP fairness assigns resources on a
ow basis makes the
amount of resources received by each user dependent on the number of
ows
sent, which may lead to an unfair overall distribution of the resources.

One approach for user fairness that overcomes the above mentioned prob-
lems of TCP fairness is the pre-allocation of resources on a link-basis. This is
the fairness concept behind fair user-based queuing schemes, such as Weighted
Fair Queuing (WFQ) [26] and Class-based Queuing (CBQ) [27]. These queu-
ing algorithms distribute the link bandwidth among users in a fair way, in-
dependent of the number of
ows that each user is sending through this link
and the aggressiveness of the sources. One of the remaining drawbacks of
these approaches is that since they work on a local basis, they cannot ensure
a fair distribution of the overall network resources.

In the last few years, architectures for providing Quality of Service (QoS)
in the Internet have been the focus of extensive research. These research
e�orts have identi�ed two fundamentally di�erent approaches for QoS: Inte-
grated Services (IntServ) [28] and the Di�erentiated Services (Di�Serv) [29].
The fairness concept behind these architectures is the resource allocation on
demand. With IntServ and Di�Serv, users request a certain amount of net-
work resources; the request is processed by an admission control entity in
order to determine whether the available resources can satisfy the request,

5

and the user is noti�ed of the acceptance or rejection of his request. One
of the important challenges of these architectures is precisely how to per-
form this admission control. With IntServ this was done in a
ow basis,
which leads to unscalability, and with Di�Serv admission control is still an
open issue (in [20] and [21] we study this issue for one-to-one and one-to-any
services, respectively).

In this chapter we introduce a new concept for user fairness that over-
comes the drawbacks of the above mentioned approaches. The proposed
concept distributes resources equally among users taking into account the
overall usage of the network resources, while admission control is avoided.
The goal is to provide two users that pay a same price with the same amount
of resources, independent of the number of
ows and links used by each user
and the aggressiveness of the sources. As discussed in the Introduction, we
focus on elastic traÆc and a single domain.

2.1 Review on Fairness Concepts in Computer

Networks

In the following we provide a review on fairness concepts in computer net-
works. These concepts will be applied in Section 2.2 to the problem of fairly
allocating resources for users, resulting in the user maxmin fairness criterion.

The concept of fairness has been studied in various scienti�c areas. Most
thorough and theory-based approaches arose from the �eld of political sci-
ence and political economics. In this �eld, the concepts of utility [30] and
welfare [31] functions were developed for the purpose of de�ning fairness. In
this section we review this theory from the computer network's viewpoint.
In [3] we provide a more extensive description of the concepts explained in
this section.

2.1.1 Utility function

In order to express the user's satisfaction with the service delivered to him
by the network, network performance must not be measured in terms of
network-centric quantities like throughput, packet drops or delay, but should
be rather evaluated in terms of the degree to which the network satis�es the
service requirements of each user's applications. For instance, if a particu-
lar application cares more about throughput than delay, or vice-versa, the
network service to that application should be evaluated accordingly.

Utility functions in computer networks [4] formalize the above notion
of network performance. Let si describe the service delivered to the i'th

6

U
til

ity

Bandwidth

Figure 2.1: Utility function of an elastic traÆc
ow.

application or user; si contains all the relevant measures (delay, throughput,
packet drops, etc.) of the delivered service. Then, the utility function ui maps
the service delivered si into the performance of the application; increasing
ui re
ects increasing application performance. The utility function, thus,
describes how the performance of an application depends on the delivered
service.

In the following, we elaborate on the utility function for elastic traÆc,
i.e. the traÆc type on which we are concerned in this chapter. Examples
of elastic applications are �le transfer, electronic mail and remote terminal.
These applications are tolerant of delays and their satisfaction is basically
measured in terms of bandwidth. Therefore, bandwidth is the only relevant
measure for this traÆc type and the only one that will be considered in
Chapters 2 and 3.

Elastic applications experience a marginal rate of performance enhance-
ment as bandwidth is increased, so their utility function is strictly concave
everywhere. Following [2], in this thesis we use the logarithmic function to
represent the utility of elastic traÆc (see Figure 2.1). Thus, the utility of an
elastic
ow i will be

ui(ri) = log(ri) (2.1)

where ri is the
ow's throughput.

2.1.2 Welfare function

The basic problem of welfare is to determine which of the feasible resource
allocations should be selected. For this purpose, aWelfare function W (u1; u2;

7

: : : ; un) that aggregates the individual utility functions ui is de�ned. The
resource allocation selected (called the fair resource allocation) is then the
one that maximizes the welfare function:

max(W (u1; u2; : : : ; un)) (2.2)

For di�erent purposes, di�erent welfare functions exist, each correspond-
ing to a di�erent fairness criterion. A fairness criterion, thus, is de�ned by
the welfare function that it maximizes. The most widely used fairness criteria
in computer networks are maxmin fairness and proportional fairness.

Maxmin fairness

Maxmin fairness [1] is the most popular fairness concept in computer net-
works. This fairness criterion corresponds to the welfare function:

W (u1; u2; : : : ; un) = min(u1; u2; : : : ; un) (2.3)

Maxmin fairness, thus, yields a solution u = (u1; u2; : : : ; un) for max(min
(u1; u2; : : : ; un)). A maxmin fair allocation has the property that for all i, ui
cannot be increased without simultaneously decreasing uj for some j with
uj � ui.

The idea behind maxmin fairness is to distribute resources as equally as
possible among the competing entities. As a consequence, with this criterion
the most poorly treated entities are given the greatest possible allocation.

Proportional fairness

The proportional fairness criterion [2] is becoming increasingly popular in the
�eld of computer networks. A proportional fair allocation is the solution to
the welfare maximization problem with the welfare function sum of utilities:

W (u1; u2; : : : ; un) =
X
i

ui (2.4)

and with the individual utility functions ui of Equation 2.1.
Proportional fairness, thus, yields a solution u formax(

P
i ui). A propor-

tional fair allocation has the property that for any other feasible allocation
u�, the aggregate of proportional changes is zero or non-negative, i.e.X

i

(u�i � ui)=ui � 0 (2.5)

The idea behind proportional fairness is to maximize the overall perfor-
mance. With proportional fairness, a worse treated entity may see its utility

8

decreased if this allows a large enough increase to an already better treated
entity.

Weighted Fairness

Both maxmin and proportional fairness criteria can be generalized on in-
troducing weights Wi associated with each entity as a means to express the
relative value of this entity for the system [32]. With weighted fairness,
the utility received by an entity in the fair allocation will increase with its
associated weight Wi.

The introduction of weighting leads to the following welfare function for
weighted maxmin fairness

W (u1; u2; : : : ; un) = min(ui(ri=Wi)) (2.6)

and weighted proportional fairness

W (u1; u2; : : : ; un) =
X
i

Wi � ui (2.7)

Weighted maxmin fairness aims at distributing resources among the com-
peting entities proportionally to their weights. Weighted proportional fair-
ness aims at maximizing the overall performance when some entities have a
higher value than others.

2.2 User Maxmin Fairness

User Fairness deals with the allocation of bandwidth among users, when a
user may send one or more
ows, possibly through di�erent paths. Each
ow
i of user u experiences a certain utility ui, which depends on its allocated
bandwidth ri as de�ned in Equation 2.1.

Following the fairness concepts explained in the previous section, a user
fair allocation is the one that maximizes the welfare function W that aggre-
gates the individual utilities ui, W (ui). In this section we study which is the
appropriate welfare function for the problem of user fairness.

2.2.1 Welfare function composition

According to the de�nition of welfare in Section 2.1, the utility experienced
by a user u, uu, is the result of aggregating with a welfare function the utility
of the
ows of this user (intra-user aggregation). We call Wintra the welfare
function that performs this intra-user aggregation:

9

uu =Wintra
i2U

(ui) (2.8)

where U is the set of
ows of user u.
Similarly, the total welfare experienced in the network is the result of

aggregating the individual utilities of all the users in the network (inter-user
aggregation). We callWinter the welfare function that performs this inter-user
aggregation:

W =Winter
8u

(uu) = Winter
8u

(Wintra
i2U

(ui)) (2.9)

The bandwidth allocation for user fairness, thus, will be the one that
maximizes the welfare function Winter(Wintra(�)), choosing the appropriate
functions for Winter and Wintra. We will choose the functions Winter and
Wintra according to the goal of providing a good level of inter and intra user
fairness as described in the following.

2.2.2 Inter and Intra User fairness

We say that a bandwidth allocation is inter-user fair if the network band-
width is fairly distributed among the di�erent users. Similarly, we say that
a bandwidth allocation is intra-user fair if the bandwidth assigned to a user
is fairly distributed among his
ows. Inter and intra user fairness are better
illustrated in the example of Figure 2.2. In this example we have a network
with three links (a,b,c) and three users (1,2,3). The �rst user (user 1) is
sending three
ows, one through each of the links (a,b,c), the second (user
2) is sending two
ows, one through link a and the other through link b, and
the third user (user 3) is sending only one
ow through link c. All links have
a capacity normalized to 1.

An inter-user fair allocation for the above scenario would be the following:

r1a = 1=2 r2a = 1=2

r1b = 1=2 r2b = 1=2

r1c = 0 r3 = 1

Note that in the above allocation all users get the same total bandwidth
(1 unit of capacity) and therefore the allocation is inter-user fair. However,
if we look on how the bandwidth allocated to user 1 is distributed among
his
ows, we observe an extreme degree of intra-user unfairness. User 1 will
most probably not be satis�ed with the above allocation, since one of his

ows is totally starved.

10

link a

link b

link c

u1 (r 1a), u2 (r 2a)

u1 (r 1c), u3 (r 3)

u1 (r 1b), u2 (r 2b)

Figure 2.2: Example of inter and intra user fairness.

Another possible allocation that corrects the intra-user unfairness of the
�rst one is the following:

r1a = 1=2 r2a = 1=2

r1b = 1=2 r2b = 1=2

r1c = 1=2 r3 = 1=2

The above distribution provides a perfect level of intra-user fairness, since
for each user, all his
ows experience the same throughput. However, the
level of inter-user fairness is poor: in link c, users 1 and 3 are allocated the
same bandwidth, even though user 1 is using more network resources than
user 3 in total. User 3 will most probably not be satis�ed with this allocation.

We conclude that a user fair allocation should provide a good level of
both inter and intra user fairness. In the following we study which welfare
functions Winter and Wintra to choose in order to achieve this goal.

2.2.3 De�nition

The goal of inter-user fairness is to treat the di�erent users as equally as
possible. In Section 2.1.2 we have argued that the fairness criterion that
best meets this goal is the maxmin fairness criterion. As a consequence, we
have chosen to use the welfare function minimum for the aggregation of the
utilities of the di�erent users:

W fairness
inter = min(uu) 8 user u in the network (2.10)

The goal of intra-user fairness is to allocate the bandwidth received by a
user among his
ows as equally as possible to the user's desired distribution.

11

In Section 2.1.2 we have argued that the fairness criterion that best meets
this goal is the weighted maxmin fairness criterion. This is the criterion we
have chosen for intra-user aggregation, as expressed by the following welfare
function:

W fairness
intra = min

i2U
(ui(ri=Wi)) (2.11)

with the constraint X
i2U

Wi = 1 (2.12)

where U is the set of
ows of user u and Wi are the normalized weights that
express the relative value of
ow i for its user.

The normalization of the sum of the weights of a user to 1 (Equation 2.12)
comes from the necessity of being able to compare the W fairness

intra of di�erent
users. Note that with Equation 2.12, two users that get the same total
bandwidth and have this bandwidth distributed proportionally to the weights
Wi experience the same W

fairness
intra .

The combination of W fairness
inter and W fairness

intra leads to the following de�ni-
tion.

De�nition 1 (User Maxmin Fairness) 1 A bandwidth allocation r = (r1;
r2; : : : ; rn) is user maxmin fair when it maximizes

min
8i

(ri=Wi) (2.13)

where ri is the throughput experienced by
ow i and Wi is its normalized
weight.

The proposed criterion for user fairness leads to the following allocation
for the example of Figure 2.2:

r1a = 2=5 r2a = 3=5

r1b = 2=5 r2b = 3=5

r1c = 1=4 r3 = 3=4

which is a good tradeo� between the inter and intra user fair allocations
given in Section 2.2.2.

1Note that in the special case when all users are sending just one
ow, the user maxmin
fairness criterion coincides with the well accepted maxmin fairness criterion for
ows.

12

2.3 User utility

The level of satisfaction of a user depends on the overall performance of his

ows, where some of his
ows may have a higher relative value than others. In
Section 2.1.2 we have argued that the welfare function that best expresses this
level of satisfaction of a user is the weighted sum function, corresponding to
the weigthed proportional fairness criterion. In the following de�nition of user
utility we have used this welfare function to perform intra-user aggregation.
The de�nition of user utility will be used later in the thesis to model the user
behavior.

De�nition 2 (User Utility) The utility of user u, whose
ows experience
a throughput equal to ri, is given by

uu = W utility
intra (�) =

X
i2U

Wi � ui(ri) =
X
i2U

Wi � log(ri) (2.14)

2.4 Summary

User Fairness aims at a fair distribution of network resources among users.
The need for user fairness is motivated by the fact that the user is commonly
the entity to which pricing schemes apply; as a consequence, the user should
also be the unit to which network resources are assigned.

However, while much e�ort has been invested in the past for the de�nition
of fairness among
ows, much less e�ort has been spent to address fairness
among users. A user is an entity that may possibly send di�erent
ows
through di�erent paths.

In this chapter we have proposed the user maxmin fairness criterion with
the goal of fairly distributing the network bandwidth among users when these
users are sending elastic traÆc.

13

Chapter 3

User Fair Queuing

In this chapter, we propose a network architecture, User Fair Queuing (UFQ),
that provides user maxmin fairness as de�ned in the previous chapter.

The proposed scheme avoids keeping per-
ow or per-user state in the core
and is inspired on previous work done in the context of core-stateless fair
allocation of bandwidth among
ows [33, 34, 35, 36]. While these proposals
di�er in details, they are all similar at the architectural level. Per-
ow state
at the core is avoided by having each packet header carry some additional
state information, the label, which is initialized by the ingress node of the
network. Then, core nodes use this information carried by the packet to
decide whether in case of congestion an arriving packet should be enqueued
or dropped.

UFQ is implemented in three steps: user labeling, ingress label control
and core dropping (see Figure 3.1). In the �rst step (user labeling), the
user assigns labels to his packets based on the sending rates of his
ows
and their weights (i.e. per-
ow state is required). The second step (ingress
label control) is performed at the ingress of the network. In this step, the
labels assigned by the user are processed, and in case the user is labeling
his packets with more resources than he should, packets are relabeled. The
algorithm proposed for the ingress label control only requires keeping per-
user state (i.e. it avoids per-
ow state). Finally, the third step is performed
at core nodes, where in case of congestion packets are dropped depending on
their label. Since the core dropping is performed without keeping per-user
or per-
ow state, the proposed architecture scales with the number of users.

15

end-
system

User
Router

Ingress
Router

Core
Router

Per-Flow
state

Per-User
state

No Per-Flow
or Per-User

state

User
Network

Figure 3.1: UFQ architecture.

3.1 User labeling

At the user network, packet k of
ow i is labeled with:

Lk =
rsendi

Wi
(3.1)

where Wi is the weight of
ow i as de�ned in Section 2.2 and rsendi is the

ow's sending rate.

For the estimation of the sending rate of
ow i we use the same exponen-
tial averaging formula as in [33]. Using an exponential averaging gives more
accurate estimation for bursty traÆc, even when the packet inter-arrival time
has signi�cant variance.

Speci�cally, let tk and lk be the arrival time and length of the kth packet
of
ow i. The estimated sending rate of
ow i, rsendi , is updated for every
new packet k sent by
ow i:

(rsendi)k = (1� e�(Tk=K))
lk
Tk

+ e�(Tk=K) � (rsendi)k�1 (3.2)

where Tk = tk � tk�1 and K is a constant. Following the rationale discussed
in [33], we set K = 100ms.

3.2 Ingress Label Control

The probability of dropping a packet of
ow i should decrease with the
relative value of this
ow for its user (Wi) and should increase with the
ow's
sending rate (rsendi). As a consequence, the lower the value of the packet's
label Lk, the better treatment this packet should be given. If there was no
control on the labels assigned by a user, a user could exploit the system by

16

assigning to his packets labels with lower values than Equation 3.1. The goal
of the ingress label control is not to allow a user to bene�t from labeling his
packets with too low values.

Note that keeping per-
ow information at the ingress (namely, Wi and
rsendi) label control could easily enforce Equation 3.1. However, this would
introduce a considerable complexity at ingress nodes and would require the
user to signal the values of Wi to the ingress. The algorithm we propose for
label control avoids per-
ow state and only requires per-user state.

The ingress label control algorithm is based on the observation that the
following equality holds for a user who is labeling his packets as in (3.1):

Su =

avg
k2Uk

�
lk
Lk

�
avg
k2Uk

(lk)
rsendu =

X
i2Ui

Wi = 1 (3.3)

where Uk is the set of packets of user u, Ui is the set of his
ows, lk is the
length of packet k, Lk is its label and Su (the state of user u at the ingress)
is de�ned by the �rst equality of the above equation.

Having too low labels would lead to Su being larger than 1. In order to
avoid too low labels, we enforce

Su � 1 (3.4)

Su is estimated using the following formula upon receiving the kth packet
of user u:

(Su)k = (1� e
�(

lk

rsendu �K
)
)
rsendu

Lk
+ e

�(
lk

rsendu �K
)
� (Su)k�1 (3.5)

where rsendu is estimated using Equation 3.2. The reason for using this esti-
mation for Su is that it allows us to bound the excess service that a user can
achieve, as discussed in Section 3.4.

The ingress label control enforces Equation 3.4 in the following way: if
the arriving packet of a user has a label Lk that would lead to (Su)k > 1,
then we relabel the packet with a new label Lnew

k > Lk such that (Su)k = 1.
Thus,

Lnew
k = max

0@Lk;
(1� e

�(
lk

rsendu �K
)
)rsendu

1� e
�(

lk

rsendu �K
)
� (Su)k�1

1A (3.6)

Note that a user who is labeling his packets as in (3.1) will not have his
packets relabeled, since according to Equation 3.3, the labels Lk of this user
will never lead to (Su)k greater than 1.

17

Note that the above algorithm for the ingress label control only requires
to keep per-user state at the ingress (namely, two values have to be stored
for each user: Su and rsendu). The e�ectiveness of the proposed scheme will
be discussed in Sections 3.4 and 3.5.

3.3 Core dropping

In a congested link in which there is not enough bandwidth to serve all
incoming packets, some packets must be dropped. Our goal is to drop packets
in such a way that the resulting bandwidth distribution is user maxmin fair.

In UFQ, packets in a congested link l are dropped depending on their
label with the following probability:

dk =

�
0 Lk � Lfair

1�
Lfair
Lk

Lk > Lfair; L
new
k = Lfair

(3.7)

where dk is the probability of dropping packet k, Lk is its label and Lfair is
the fair label estimation in the congested link. Note that the non-dropped
packets of a
ow that experiences losses in a link are relabeled with a new
label Lnew

k .
The following theorem binds the algorithms proposed for user labeling

and core dropping with the user maxmin fairness criterion of Section 2.2.

Theorem 1 The bandwidth allocation resulting from the user labeling of
(3.1) and the core behavior of (3.7) is user maxmin fair.

Proof: The core dropping of (3.7) leads to the following value for the
outgoing rate at link l of a
ow i competing for bandwidth in this link:

routi = rini (1� dk) = rini
Lfair

Lk
(3.8)

Substituting the relabeling Lnew
k = Lfair in the above equation leads to

the following relationship between the outgoing rate of
ow i at link l, routi ,
and the label values of its outgoing packets, Lnew

k :

routi

Lnew
k

=
rini
Lk

(3.9)

According to the above equation the relationship between the rate of
a
ow and its label values is kept constant when crossing a link. Thus, the

18

initial value of this relationship (user labeling, Equation 3.1) will be preserved
in all links:

routi

Lnew
k

= Wi (3.10)

Combining Equations 3.8 and 3.10 leads to the following outgoing rate of

ow i at link l:

routi = Wi � Lfair (3.11)

From the above equation it can be observed that with the dropping algo-
rithm of Equation 3.7, bandwidth in a congested link is distributed among
two competing
ows i and j proportionally to their weights:

routi

Wi
=

routj

Wj
= Lfair (3.12)

If we increase ri for some
ow i crossing link l, this will force to decrease
rj for some other
ow j that also crosses link l. Hence, for all i ri cannot
be increased without decreasing

rj
Wj

for some j for which
rj
Wj

� ri
Wi
. As a

consequence, the minimum ri
Wi

is maximized, which leads to user maxmin
fairness.

One remaining challenge is the estimation of the fair label Lfair. Lfair

should be such that, in case of congestion, the rate of enqueued packets,
F , equaled the link's capacity C. For scalability reasons, Lfair should be
estimated without storing any per-user or per-
ow information at the core
nodes. Di�erent solutions to the problem of estimating Lfair without core
state have been proposed in [33, 34, 36, 37]. The algorithm that we have
used is the one proposed in [33].

To compute Lfair, [33] keeps two aggregate variables: A, the estimated
aggregated arrival rate, and F , the estimated rate of the accepted traÆc.
Then, Lfair is updated every K time units according to the following algo-
rithm:

if A � C then flink congestedg
(Lfair)new = (Lfair)old � C=F

else flink uncongestedg
(Lfair)new = largest Li observed

end if

The UFQ architecture resulting from the user labeling, ingress label con-
trol and core dropping algorithms is described in pseudocode in Algorithm 1
and illustrated in Figure 3.2.

19

ingress?

relabel
(Eq. 19)

read
Lk

update
Lfair

Lk<Lfair?
unif(0,1)<

Lfair/Lk?
Enqueue
packet

outgoing
packet k

new label
Lk = Lfair

Drop
packet

Yes

No

Yes

No No

Yes

congested?
Yes

No

user?incoming
packet k

label
Lk = r i

send/W i

ri
send,
Wi

Yes

No

ru
send,
Su

Figure 3.2: UFQ algorithm.

Algorithm 1 UFQ pseudocode
User labeling:
on receiving packet k
rsendi = (1� e�(Tk=K)) lk

Tk
+ e�(Tk=K)rsendi

Lk =
rsendi

Wi

write label(Lk)

Ingress Label Control:
on receiving packet k
read label(Lk)
rsendu = (1� e�(Tk=K)) lk

Tk
+ e�(Tk=K)rsendu

Lk = max

Lk;

(1�e
�(

lk

rsendu �K
)

)rsendu

1�e
�(

lk

rsendu �K
)

�Su

!
Su = (1� e

�(
lk

rsendu �K
)
) r

send
u

Lk
+ e

�(
lk

rsendu �K
)
� Su

write label(Lk)

Core dropping:
on receiving packet k
read label(Lk)
estimate Lfair

prob = max(0; 1�
Lfair
Lk

)

if prob > unif rand(0; 1) then
drop(packet k)

else
enqueue(packet k)

end if
if prob > 0 then
write label(Lfair)

end if

20

3.4 Ingress Label Control and Excess Service

The service data received by a user who is labeling his packets as in (3.1)
during a time interval T is:

F = T
X
i2U

ri = T
X
i2U

Wi � L
i
fair (3.13)

where Li
fair is the fair label of
ow i's bottleneck andX

i2U

Wi = 1 (3.14)

F as de�ned above is the service to which a user is entitled. We call any
amount above this the excess service.

The ingress label control presented in Section 3.2 has been designed with
the goal of avoiding that a user can obtain more service than he is entitled
to. In this section we study how well the scheme we have proposed meets
this goal.

We cannot study the above issue with full generality, but we can analyze
a simpli�ed situation where the fair label Lfair of all links is held �xed. In
addition, we assume that when a packet arrives a fraction of that packet
equal to the
ow's forwarding probability is transmitted.

Theorem 2 (at the end of this section) gives an upper bound to the excess
service received by a user in this idealized setting. This bound is independent
of the arrival process, the incoming labels and the time interval. The bound
does depend crucially on the maximal rate R at which user's packets can
arrive at the ingress (limited, for example, by the speed of the user's access
link); the smaller this rate R the tighter the bound.

By bounding the excess service, we show that in the idealized setting the
asymptotic throughput received by a user cannot exceed the throughput he
is entitled to. Thus, users can only exploit the system over short time scales;
the ingress label control limits their throughput e�ectively over long time
scales.

Lemma 1 Consider a user sending all his
ows through one bottleneck link
with a constant fair label Lfair. Then, the excess service Fexcess received by
this user, that sends at a rate no larger than R, is bounded above by

Fexcess < lmax + Lfair �K

�
2 + ln

R

Lfair

�
(3.15)

where lmax represents the maximum length of a packet and K is the averaging
constant of Equation 3.2.

21

Proof: Without loss of generality assume that during the target time
interval T the user sends exactly n packets. Let tk be the arrival time of
the kth packet, lk its length and Lk its label. Since in case the label Lk is
smaller than Lfair the packet is always forwarded, and in case it is larger it is
forwarded with probability Lfair=Lk, the service received by the user during
the interval can be expressed as

F =
nX

k=1

min

�
lk; lk

Lfair

Lk

�
(3.16)

The problem of bounding the service received by a user can be reformu-
lated as to maximizing F.

Assume that the user becomes active for the �rst time at t1. Let tm be
the �rst time when his rate estimator rsend exceeds for the �rst time Lfair

and m the number of packets sent during the interval (t1; tm). We �rst bound
the service received in the interval (t1; tm), which we denote by F1.

With the restriction imposed by the ingress label control

Sk = (1� e
�(

lk

rsend
k

�K
)
)
rsendk

Lk
+ e

�(
lk

rsend
k

�K
)
� Sk�1 � 1 (3.17)

it can be easily shown that F is maximized with Lk � Lfair for 1 � k � n,
since a packet with Lk < Lfair will contribute to F as much as with Lk =
Lfair but with the restriction of (3.17) will force larger labels on the other
packets, resulting in a lower F . Then,

max(F) = max
Lk�Lfair

nX

k=1

lk
Lfair

Lk

!
(3.18)

Let us de�ne

G =
nX

k=1

lk
Lfair

Lk
(3.19)

Isolating lk=Lk in Equation 3.17

lk
Lk

=
Sk � e

�(
lk

rsend
k

�K
)
Sk�1

1� e
�(

lk

rsend
k

�K
)

lk
rsendk

; 1 � k � n (3.20)

and substituting it in G leads to

@G

@Sk
=

lk
rsendk

1� e
�(

lk

rsend
k

�K
)
�

lk+1

rsendk+1

e
�(

lk+1

rsend
k+1

�K
)

1� e
�(

lk+1

rsend
k+1

�K
)
; 1 � k < n (3.21)

22

and
@G

@Sn
=

ln
rsendn

1� e
�(ln

rsendn �K
)

(3.22)

Since x=(1� e�x) � 1 and xe�x=(1� e�x) � 1 for any x � 0, we have

@G

@Sk
� 0 ; 1 � k � n (3.23)

We now focus on the interval (t1; tm). From Equation 3.23 we conclude
that F is maximized when Sk achieves its maximum value for 1 � k � m.
The maximum Sk is given when the values of the labels Lk are minimum,
subject to the ingress label control of Equation 3.17 and the condition Lk �
Lfair given before.

Since the minimum value of Lk allowed by the last condition, Lk = Lfair,
satis�es Equation 3.17, we have that F is maximized with Lk = Lfair for
1 � k � m. In this case,

F1 =
mX
k=1

lk (3.24)

Thus, the problem of bounding F1 can be reformulated as to �nd the
maximum

Pm
k=1 lk under the restriction that imposes the assumption that

in the interval (t1; tm) the rate estimator r
send
k does not exceed the fair label

Lfair. The solution to this problem is given by Lemma 1 of [38], which states
that the maximum service received in the above conditions is achieved when
rsendk = Lfair for 1 � k � m and is bounded above by:

F1 < lmax + Lfair �K + (tm � t1)Lfair (3.25)

As said above, tm is the time when the rate estimator exceeds for the �rst
time Lfair. If such time tm does not exist, according to the above the excess
service is bounded by lmax+Lfair �K which concludes the proof for this case.
In the following we consider the case when tm exists.

Next, we show that the service received by a user is maximized when
rsend(t) � Lfair 8 t > tm. The proof goes by contradiction. Assume there
is an interval (t0; t00) such that t0 > tm and rsend(t) < Lfair. Then, using an
identical argument as in the interval (t1; tm), it can be easily shown that the
service received by the user is maximized when rsend(t) = Lfair 8 t 2 (t0; t00).

Now, we bound the service received in the remaining interval (tm; tn), F2,
for which we have shown that rsend(t) � Lfair.

F2 =
nX

k=m+1

min

�
lk; lk

Lfair

Lk

�
(3.26)

23

Taking only the second term of the minimum gives an upper bound to
F2,

F2 � G2 =
nX

k=m+1

lk
Lfair

Lk
(3.27)

Using the same argument as for G, it can be easily shown that

@G2

@Sk
� 0; m+ 1 � k � n (3.28)

As a result, G2 is maximized when Sk achieves its maximum value. The
ingress label control limits Sk to 1. Hence, G2 will be maximized when

Sk = 1 ; m+ 1 � k � n (3.29)

Combining the above with Equation 3.17 leads to

lk
Lk

=
lk

rsendk

; m + 2 � k � n (3.30)

For k = m+ 1 we have (Equation 3.20 with Sm+1 = 1)

lm+1

Lm+1
=

1� e
�(

lm+1

rsend
m+1

�K
)
Sm

1� e
�(

lm+1

rsend
m+1

�K
)

lm+1

rsendm+1

�
1

1� e
�(

lm+1

rsend
m+1

�K
)

lm+1

rsendm+1

(3.31)

Further, by assuming K � lm+1=r
send
m+1 we obtain

lm+1

Lm+1
� K (3.32)

The combination of the above results gives the following upper bound for
F2:

F2 � Lfair �K +
nX

k=m+2

lk
Lfair

rsendk

(3.33)

Lemma 2 of [38] shows that the term
Pn

k=m+2 lk
Lfair
rsend
k

is bounded above by

Lfair �K � ln(R=Lfair)+(tn�tm+2)Lfair when r
send
k � Lfair form+1 � k � n.

Using this result yields

F2 < Lfair �K + Lfair �K � ln

�
R

Lfair

�
+ (tn � tm)Lfair (3.34)

24

Finally, combining the bounds found for F1 and F2 yields

F = F1 + F2 < lmax + Lfair �K

�
2 + ln

R

Lfair

�
+ (tn � t1)Lfair (3.35)

Since (tn� t1)Lfair represents exactly the number of bits that the user is
entitled to send during the interval (tn � t1), the proof follows.

Theorem 2 Consider a user sending n
ows through n bottleneck links, all
links with a constant fair label Li

fair. Then, the excess service Fexcess received
by this user, that sends at a rate no larger than R, is bounded above by

Fexcess <

 X
i2U

Li
fair �Wi

!
�

lmax

Lmin
fair

+K

2 + ln

R

Lmin
fair

!!
(3.36)

where U is the set of
ows of the user, Lmin
fair = min

i2U
(Li

fair) andX
i2U

Wi = 1 (3.37)

Proof: From Lemma 1 it follows that

max
�P

k2T min
�
lk; lk

Lfair
Lk

��
=

= max
Lk�Lfair

�P
k2T lk

Lfair
Lk

�
=

= Lfair � max
Lk�Lfair

�P
k2T

lk
Lk

�
<

< lmax + Lfair �K
�
2 + ln R

Lfair

�
+ (tn � t1)Lfair

(3.38)

which yields

max
Lk�Lfair

 X
k2T

lk
Lk

!
<

lmax

Lfair

+K

�
2 + ln

R

Lfair

�
+ (tn � t1) (3.39)

The service received by a user is

F =
X
k2T

min

lk; lk

Li
fair

Lk

!
(3.40)

where Li
fair is the fair label of packet k's bottleneck link and T is the set of

packets sent by the user in the interval (t1; tn).

25

Using the same argument as in the �rst part of the proof of Lemma 1 it
can be easily shown that F is maximized with Lk � Li

fair. Thus,

max(F) = max
Lk�L

i
fair

 X
k2T

Li
fair

lk
Lk

!
(3.41)

De�ning U as the set of
ows of the user and I as the set of packets of

ow i in the interval (t1; tn) we haveP

i2U

P
k2I

lk
LkP

k2T
lk
Lk

= 1 (3.42)

Let us de�ne

Wi =

P
k2I

lk
LkP

k2T
lk
Lk

(3.43)

Then according to Equation 3.42 we haveX
i2U

Wi = 1 (3.44)

Grouping the sum of Equation 3.41 into
ows

max(F) = max
Lk�L

i
fair

 X
i2U

Li
fair

X
k2I

lk
Lk

!
(3.45)

and multiplying and dividing by
P

k2T
lk
Lk

yields

max(F) =

 X
i2U

Li
fair �Wi

!
�

max

Lk�L
i
fair

X
k2T

lk
Lk

!
(3.46)

Since the condition Lk � Lmin
fair is less restrictive than Lk � Li

fair,

max
Lk�L

i
fair

 X
k2T

lk
Lk

!
� max

Lk�L
min
fair

 X
k2T

lk
Lk

!
(3.47)

and Equation 3.39 provides a bound for this term, we can give the following
upper bound for the service received by the user in the interval (t1; tn) X

i

Li
fair �Wi

!
�

lmax

Lmin
fair

+K

2 + ln

R

Lmin
fair

!
+ (tn � t1)

!
(3.48)

Since
�P

i L
i
fair �Wi

�
(tn� t1) represents the number of bits that the user

is entitled to send during the interval (tn� t1) (see Equation 3.13), the proof
follows.

26

3.5 User Labeling and User Utility

The UFQ architecture is built around the assumption that users label their
packets with Lk = rsendi =Wi, where Wi is the weight of
ow i in the user's
utility function (user labeling, Equation 3.1). However, a user is allowed to
label his packets with any label Lk with the only restriction of the ingress
label control, which is much less restrictive on account of avoiding per-
ow
state at the ingress. A natural concern is whether a user can possibly bene�t
from labeling his packets with Lk di�erent than rsendi =Wi.

We cannot answer the above question with full generality, but we can an-
alyze the same simpli�ed situation as for Theorem 2 with the additional as-
sumption that the sending rate of all
ows is constant. Theorem 3 states that,
in these conditions, a user sending n
ows, all of them su�ering from conges-
tion, maximizes his utility when labeling his packets with Lk = rsendi =Wi.

We conclude that, considering that all
ows are susceptible to su�er from
congestion, it is reasonable to assume that users label their packets with
Lk = rsendi =Wi, using an accurate estimation of
ow i's sending rate rsendi

such as the one in Equation 3.2.

Theorem 3 Consider a user sending n
ows at a constant bit rate rsendi

through n bottleneck links, all links with a constant fair label. Then, the user
maximizes his utility when labeling the packets of
ow i with Lk = rsendi =Wi,
where Wi is
ow i's weight in the user's utility function.

Proof: We �rst use Theorem 2 to show the user's utility can be max-
imized with Li constant (i.e. assigning the same label to all packets of
ow
i). Theorem 2 concludes that a user cannot obtain additional asymptotic
throughput by labeling the packets of a
ow with di�erent labels. In addi-
tion, labeling
ows with Li constant gives enough
exibility to the user to
freely divide among his
ows the bandwidth allocated to him. As a conse-
quence, the user's utility function can be maximized with Li constant. In
the following we take Li constant.

Since the sending rates of all
ows are constant, the restriction imposed
by the ingress label control can be approximated byX

i2U

rsendi

Li
� 1 (3.49)

where U is the set of
ows of the user.
With the above, the problem of maximizing the user's utility can be

expressed as the following optimization problem:

27

maximize
P

i2U Wi � log(ri) (3.50)

subject to
P

i2U
rsendi

Li
� 1 (3.51)

over Li � 0 (3.52)

With the change of variable �i = 1=Li, the objective function (3.50) is
di�erentiable and stricty concave and the feasible region (3.51),(3.52) is com-
pact; hence a maximizing value of �i exists and can be found by Lagrangian
methods. Consider the Lagrangian form:

L(�i; �) =
X
i2U

Wi � log(ri) + �

 X
i2U

rsendi � �i � 1

!
(3.53)

From Equations 3.8 and 3.9 we have

ri = rsendi

Li
fair

Li

= rsendi � Li
fair � �i (3.54)

where Li
fair is the fair label of
ow i's bottleneck link.

Thus,

L =
X
i2U

Wi � log(r
send
i � Li

fair � �i) + �

 X
i2U

rsendi � �i � 1

!
(3.55)

Then

@L

@�i
=
Wi

�i
+ � � rsendi (3.56)

Hence, at the maximum the following condition holds:

Wi

�i
+ � � rsendi = 0 (3.57)

The combination of Equations 3.57 and 3.51 yields

� = �1 (3.58)

As a consequence, the maximum utility is achieved by

�i =
Wi

rsendi

(3.59)

Finally, undoing the previous change of variable, we have that the utility
of a user is maximized when he labels his packets with

Lk =
rsendi

Wi
(3.60)

which proofs the theorem.

28

3.6 Simulations

In this section we evaluate our algorithm by simulation. To provide some
context, we compare UFQ's performance to three additional mechanisms for
sharing resources: FQ per-user, FQ per-
ow and TCP.

Fair Queuing (FQ) [26] is a queuing algorithm that aims at equally dis-
tributing the bandwidth of a link among traÆc aggregates. In the FQ per-
user approach, FQ is con�gured such that each traÆc aggregate corresponds
to the traÆc generated by one user, in such a way that the link's band-
width is divided equally among the users sending through this link. The
FQ per-user approach is the basis of the User Share Di�erentiation (USD)
architecture [39]. Note that USD, in contrast to UFQ, stores information for
each user at core nodes, which results in a higher complexity.

In the FQ per-
ow approach, FQ is con�gured such that each traÆc
aggregate corresponds to one
ow, in such a way that the link's bandwidth
is divided equally among the
ows sending through the link. [33, 34, 35, 36]
provide FQ per-
ow without the need of storing per-
ow state in core nodes.

The mechanism used for bandwidth sharing in the current Internet is the
TCP protocol, which relies on the responsive behavior of the end-hosts to
congestion. Active queue management schemes such as RED (Random Early
Discarding) [40] aim at smoothening the behavior of TCP by providing early
noti�cation of congestion. Unless stated otherwise, simulation results for
TCP will be provided using RED in the routers.

We have examined the behavior of UFQ under a variety of conditions,
comparing its bandwidth allocations with the theoretical user maxmin fair
(UMMF) distributions. Simulations 3.6.1 to 3.6.5 study the features of user
maxmin fairness for bandwidth sharing and compares them with the other
mechanisms. These simulations have been performed with constant bit rate
UDP sources. Simulations 3.6.6 and 3.6.7 study some features of the UFQ
mechanism. Finally, the support of di�erent traÆc models (TCP and ON-
OFF sources) is analyzed in simulations 3.6.8 (one link) and 3.6.9 (several
links).

All simulations have been performed in ns-2 [41]. Unless otherwise spec-
i�ed, we use the following parameters for the simulations. All the
ows of a
user have the same weight. Each output link has a capacity of 10 Mbps, a
latency of 1 ms and a bu�er of 64 KB. In the RED case, the �rst threshold
is set to 16 KB and the second to 32 KB. The fair queuing (FQ) discipline is
implemented with the weighted round-robin (WRR) scheduler. The packet
size is set to 1000 bytes.

29

UFQ FQuser FQflow TCP

1 Mbps

2 Mbps

3 Mbps

user 1

user 2

user 3

user 4

Bandwidth

UMMF

Figure 3.3: Single Flow - One Link.

3.6.1 Single Flow - One Link

Figure 3.3 shows the resulting bandwidth distribution with the various mech-
anisms when a 10 Mbps link is congested by four users sending a single
ow
each. It can be seen that the user maxmin fairness criterion (UMMF) dis-
tributes the link's bandwidth among the four users equally. The results pro-
vided by the UFQ mechanism are very close to the ideal results (UMMF).
Note that in this simple scenario the other three approaches (FQ per-user,
FQ per-
ow and TCP) distribute the link's bandwidth similarly to UFQ.

3.6.2 Single Flow - Several Links

Figure 3.4 shows the bandwidth distribution when four users are sending one

ow through a di�erent number of equally congested links (see Figure 3.5).
Also in this case, UFQ distributes the bandwidth such that the four users
receive the same throughput.

FQ per-user and FQ per-
ow distribute the bandwidth in the same way
as UFQ. In contrast, TCP gives a better treatment to those
ows with a
lower number of hops.

3.6.3 Several Flows - One Link

Figure 3.6 shows the bandwidth distribution when one link is congested by
four users transmitting each a di�erent number of
ows (user i transmits i

ows). With UFQ all users receive the same throughput.

With FQ per-user the throughput distribution is the same as with UFQ.
In contrast, FQ per-
ow and TCP favor those users who are sending more

ows, giving to each user a throughput proportional to his number of
ows.

30

UFQ FQuser FQflow TCP

1 Mbps

2 Mbps

3 Mbps

user 1

user 2

user 3

user 4

Bandwidth

UMMF

Figure 3.4: Single Flow - Serveral Link.

u1 u2 u3 u4 u5 u6 u7

Figure 3.5: Simulation scenario, Single Flow - Several Links.

This is because FQ per-
ow and TCP distribute the bandwidth on a per-
ow
basis.

3.6.4 Several Paths - Uniform Level of congestion

Figure 3.7 shows the bandwidth distribution for the case of users sending
through di�erent paths, when the level of congestion of all the links is the
same (see Figure 3.8). UFQ provides all users with the same throughput.

In contrast to UFQ, the other approaches (FQ per-user, FQ per-
ow and
TCP) favor those users who are sending through more paths, giving them
a throughput proportional to their number of paths. This is because these
approaches distribute the bandwidth locally (either on a per-link basis { FQ
per-user, on a per-
ow basis - TCP, or both { FQ per-
ow). The fact that
UFQ works with overall network resources instead of locally is one of its key
aspects, as compared to other existing approaches.

31

UFQ FQuser FQflow TCP

1 Mbps

2 Mbps

3 Mbps

user 1

user 2

user 3

user 4

Bandwidth

4 Mbps

UMMF

Figure 3.6: Several Flows - One Link.

UFQ FQuser FQflow TCP

5 Mbps

link 1

link 2

link 3

Bandwidth

15 Mbps

10 Mbps

u1

u2 u3 u4

u1

u2 u3 u4

u2 u3 u4u1

u1

u2 u3 u4

UMMF

u2 u3 u4u1

Figure 3.7: Several Paths - Uniform Level of congestion.

u1, u3
link 2

u1, u2

link 1

u1, u4link 3

Figure 3.8: Simulation scenario, Several Paths - Uniform Level of congestion.

32

UFQ FQuser FQflow TCP

5 Mbps

10 Mbps

15 Mbps

link 1

link 2

link 3

link 4

Bandwidth

20 Mbps
u1

u1 u1

u2

u3

u4

u2 u2

u3 u3

u4 u4

u1

u2

u3

u4

UMMF

u1

u2

u3

u4

Figure 3.9: Several Paths - Heterogeneous Level of congestion.

3.6.5 Several Paths - Heterogeneous Level of conges-
tion

Figure 3.9 shows the bandwidth distribution for the case of users sending
through di�erent paths, when the level of congestion of the links is variable
(see Figure 3.10).

In the results of Figure 3.9 it can be seen that, with UFQ, user i receives
a larger throughput than user i + 1. This is because user i is sending his

ows through less congested links (in average) than user i+ 1.

With the other approaches (FQ per-user, FQ per-
ow and TCP) user i
also receives a larger throughput than user i + 1. However, with these ap-
proaches the di�erence between the throughputs is larger. The reason is the
same as for the previous simulation: while these three approaches distribute
the bandwidth on a local basis, UFQ takes into account the overall network
resources. For example, with FQ per-user, FQ per-
ow and TCP, bandwidth
in link 1 is distributed such that all users receive 2.5 Mbps. Instead, UFQ
gives four times more bandwidth in this link to user 4 (4.8 Mbps), than to
user 1 (1.2 Mbps), on account of the fact that user 4 is sending only through
this link, while user 1 is sending to three additional links.

3.6.6 Intra-user Di�erentiation

In UFQ, a user expresses the relative value of his
ows with the use of weights.
In order to study this feature we repeated the experiment of simulation 3.6.3
assigning di�erent weights to the two
ows of user 2: W1 = 0:33 and W2 =
0:66 (note that W1 +W2 = 1).

Figure 3.11 plots the receiving rates averaged over 1 second interval for

33

u1, u2, u3

link 2

u1, u
2, u

3, u
4

lin
k 1

u1link 4

u1, u2
link 3

Figure 3.10: Simulation scenario, Several Paths - Heterogeneous Level of
congestion.

0

0.5

1

1.5

2

2.5

3

3.5

0 20 40 60 80 100

B
an

dw
id

th
 (

M
bp

s)

Time (sec)

Total
Flow 1
Flow 2

Figure 3.11: Intra-user di�erentiation.

ow 1,
ow 2 and the total of user 2. It can be observed that the throughput
received by
ow 2 is twice as much as the received by
ow 1, which matches
the user's preferences.

3.6.7 Ingress label control

In order to assess the e�ectiveness of the ingress label control algorithm
described in Section 3.2, we repeated the previous experiment but with the
weights W1 = 3:33 and W2 = 6:66. Note that in this case W1 +W2 = 10,
i.e. user 2 misbehaves and assigns lower labels than he should.

The results obtained from the above con�guration are plotted in Fig-
ure 3.12. We can observe that the ingress control is e�ective since user 2
does not gain any excess service by misbehaving. In addition, the intra-user

34

0

0.5

1

1.5

2

2.5

3

3.5

0 20 40 60 80 100

B
an

dw
id

th
 (

M
bp

s)

Time (sec)

Total
Flow 1
Flow 2

Figure 3.12: Ingress label control.

TCP Bursty UDP CBR UDP

sources RTT avg. rate avg. rate

user 1 - - - 10 Mbps

user 2 - - - 15 Mbps

user 3 - - 15 Mbps -

user 4 10 20 ms 10 Mbps -

user 5 5 20 ms - 10 Mbps

user 6 5 20 ms - -

user 7 10 50 ms - -

user 8 10 20 ms - -

Table 3.1: Single Flow - One Link

di�erentiation feature is lost.

3.6.8 Di�erent TraÆc Models - One Link

So far we have only considered constant bit rate UDP traÆc. We now study
the behavior of UFQ under di�erent traÆc models. We consider a 40 Mbps
link congested by 8 users sending a mixture of constant bit rate UDP, bursty
UDP and endless TCP traÆc. The bursty UDP traÆc consists of an aggre-
gate of ON/OFF sources, with ON periods following a Pareto distribution
(average 50 ms), OFF periods exponentially distributed (average 50 ms) and
a sending rate in the ON period of 2 Mbps. Table 3.1 shows the charac-
teristics of the traÆc sent by each user. For those users sending both TCP
and UDP traÆc, weights are set to equally distribute the user's bandwidth
between TCP and UDP.

Figure 3.13 shows the resulting bandwidth distribution according to the
user maxmin fairness criterion (UMMF), UFQ scheduling, a standard FIFO

35

2.5 Mbps

5 Mbps

UDP

TCP

Bandwidth

UMMF UFQ RED FIFO

7.5 Mbps

u1 u2 u3 u4 u5 u6 u7 u8

u1 u2 u3

u4 u5
u6

u7

u8

u1

u2
u3

u4
u5

u6 u7 u8

u1

u2

u3

u4

u5

u6 u7 u8

66
 %

72
 %

85
 %

63
 % 89

 %

Figure 3.13: Di�erent TraÆc Models - One Link.

router and a RED router.
From these results we conclude that the bandwidth received by a user with

the UFQ architecture depends on the level of responsiveness of his traÆc.
All users sending non-responsive UDP traÆc receive the same throughput,
independent of the sending rate and level of burstiness. In contrast, the
throughput received by TCP traÆc depends on the level of responsiveness
of this traÆc, determined by the number of TCP sources and their RTT1.
However, from the results obtained it can be observed that TCP behaves
reasonably well; in all cases TCP receives a throughput between 60% and
90% of its fair share rate, both when competing with UDP traÆc of the same
or a di�erent user. Note that with FIFO and RED TCP traÆc is starved.

The FBA-TCP architecture [42] has been proposed in the context of core
stateless fair queuing for
ows (speci�cally, within [33]) to improve the level
of fairness between TCP and UDP. This is achieved by setting the maximum
congestion window of TCP to the product of the RTT and Lfair. This
approach could also be used within UFQ simply by adding the
ow's weight
Wi to this product.

In [24] we proposed a scheme based on control theory that improves the
performance of TCP in the context of Di�Serv networks by early marking
some packets as out. This idea could be applied to UFQ by marking some
packets with higher labels (note that high labels in UFQ is equivalent to out

1The RTT has two opposite e�ects: small RTTs give higher speeds for increasing
the congestion window, which contributes to increase the throughput; at the same time,
though, small RTTs increase the level of synchronization between TCP sources, which
leads to a lower throughput. We have observed the same type of behavior for TCP in the
context of Di�Serv networks [22].

36

Sources

. . .

. . .

UDP-11 UDP-K1UDP-1

Gateway GatewayGateway Gateway

UDP-10 UDP-20 UDP-K10

UDP-K1 - UDP-K10UDP-1 - UDP-10

SinkSource
TCP/UDP-0 TCP/UDP-0

Sinks

Figure 3.14: Simulation scenario, Di�erent TraÆc Models - Several Links.

in Di�Serv). The advantage of this approach as compared to FBA-TCP is
that it does not require to modify the TCP protocol.

3.6.9 Di�erent TraÆc Models - Several Links

We now analyze how the behavior of UFQ when a user is sending through
more than one congested link. For this purpose we performed the experiment
shown in Figure 3.14. In this experiment the target user is sending two
ows,
one TCP and one UDP (UDP-0) sending at its fair share rate. All links have
a 10 Mbps capacity and are congested by 10 UDP
ows (UDP-K1 to UDP-
K10) sending at 1.5 Mbps each.

Figures 3.15 and 3.16 show the fraction of the
ow's fair share rate re-
ceived by the UDP and TCP
ows of the target user. The behavior of the
UDP
ow is very close to the ideal: its throughput always keeps very close to
its fair rate, independent of the number of congested links traversed. TCP
performs reasonably well, even though its throughput decreases with the
number of congested links: after traversing 5 congested links the throughput
decreases from 70% to 60% of the source's fair share rate.

Note that with FIFO and RED the throughput of UDP decreases sharply
with the number of congested links, while TCP is starved.

37

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5

A
llo

ca
te

d
B

w
dt

h.
 /

Id
ea

l B
w

dt
h.

Number of Congested Links

UMMF-UDP
UFQ-UDP
RED-UDP
FIFO-UDP

Figure 3.15: UDP throughput as a function of the number of congested links.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5

A
llo

ca
te

d
B

w
dt

h.
 /

Id
ea

l B
w

dt
h.

Number of Congested Links

UMMF-TCP
UFQ-TCP
RED-TCP
FIFO-TCP

Figure 3.16: TCP throughput as a function of the number of congested links.

38

3.7 Summary and Discussion

In this chapter we have proposed the User Fair Queuing (UFQ) mechanism.
This architecture is inspired by previous work on core stateless queuing.

In UFQ, a user is allowed to assign any label values to his packets to
indicate their relative priority. At the ingress, an algorithm is used to control
these labels assigned by the user. We have shown that the proposed label
control does not allow the asymptotic throughput of a user to exceed its fair
rate.

The bandwidth distribution resulting from UFQ depends on the way users
label their packets. We have shown that, if users label their packets in order
to maximize their level of satisfaction or utility, then the resulting bandwidth
allocation is user maxmin fair.

The fact that neither admission control nor signaling are required strongly
contributes to the simplicity of UFQ. The fact that no per-user state is kept
at core nodes makes the proposed architecture scalable.

39

Chapter 4

User Fair Di�erentiation

In the previous chapter we dealt with the problem of distributing bandwidth
equally among users. In this chapter we extend the problem to provide service
di�erentiation, i.e. to allocate more bandwidth to those users that pay more.

Research on service di�erentiation is proceeding along two di�erent direc-
tions: those proposals that use admission control and those that do not. In
the approach with admission control [29], it is possible to control the amount
of traÆc allowed inside the network. In this way, traÆc that would decrease
the network service to a level lower than a desired limit can be stopped and
an admitted user can be assured of his requested performance level. This
approach, which we refer to as Absolute Service Di�erentiation, can be con-
sidered as trying to meet the same goals as IntServ, i.e. absolute performance
levels, but pushing complexity admission control and traÆc policing to the
edge and to the Bandwidth Broker [43] and thus avoiding per-
ow state in
the core routers.

The second approach, which we refer to as Relative Service Di�erenti-
ation, cannot prevent
ooding of the network using admission control, and
the only option to provide service di�erentiation is to forward packets in the
network nodes with a quality according to their relative priority. Therefore,
absolute performance levels are not guaranteed and only relative ones can
be provided. The advantage of Relative Service Di�erentiation is that it is
easier to deploy and manage (in Chapter 2 we have already mentioned the
diÆculties of admission control in Di�Serv).

One of the models proposed for the Relative Service Di�erentiation is the
Olympic Service Model [44]. The User Fair Di�erentiation (UFD) architec-
ture proposed in this chapter extends the User Fair Queuing mechanism of
Chapter 3 to provide service di�erentiation according to the Olympic Service
Model.

41

4.1 The Olympic Service Model

In this section we describe the Olympic Service Model and discuss its validity
and limitations.

The Olympic Service Model consists of three service classes: in order of
increasing priority, bronze, silver, and gold. Packets are assigned to these
classes according to the service contracted by their sender. Then, packets
assigned to the gold class experience a better treatment than packets assigned
to the silver class, and the same type of relationship exists between the silver
and bronze classes. The Olympic Service Model must be strongly coupled
with a pricing scheme that makes the gold class more costly than the silver
class and the silver class more costly than the bronze class.

4.1.1 Olympic Service Model for Elastic TraÆc

In the following, we justify the validity of the Olympic Service Model for
Elastic TraÆc. We will base the study on utility functions. As explained
in Chapter 1, applications are divided into two groups: elastic applications
and real-time applications. The utility function for elastic traÆc has been
discussed in Chapter 2; even though elastic applications bene�t from an
increasing amount of resources, they can still work with a low amount of
network resources (see Figure 2.1 in Chapter 2).

In the Olympic Service Model the amount of network resources received
by each user is not de�ned but depends on the level of congestion in the
network. This uncertainty about the amount of network resources associated
to a class is not particularly harmful in the case of elastic applications since,
as said above, this kind of applications can still work with a low amount of
network resources. Also, with the Olympic Service Model, the higher the
priority of the class contracted by a user, the more network resources this
user will receive. As a consequence, a higher priority class will always lead
to a higher utility for elastic traÆc, independent of the level of congestion in
the network:

ui = f(congestion); 8 congestion; pi > pj) ui > uj (4.1)

where pi is the class priority (i.e. bronze, silver or gold) and ui is the utility
experienced.

Since with the Olympic Service Model, elastic applications always expe-
rience a positive performance, and this performance increases with the class
priority, we conclude that this model provides a valid service for elastic traf-
�c. Note that, with this approach, admission control can be avoided while
still providing a good service for this type of traÆc.

42

Real-time applications, in contrast to the elastic ones, need a minimum
amount of network resources to perform well, and perform badly with an
amount of resources lower than this threshold. Examples of such applications
are link emulation, audio and video. In Chapter 5 the requirements of real-
time traÆc are more thoroughly studied.

The uncertainty about the amount of network resources associated to a
class in the Olympic Service Model may lead to a high priority class receiving
a lower amount of resources than the minimum required and, consequently,
experiencing a null performance. Also, with this model, an increase in the
class priority will not always be bene�cial: it will only be bene�cial if it leads
to an amount of network resources higher than the minimum required.

We conclude that the Olympic Service Model is not appropriate for real-
time applications. This kind of applications would be better handled with
admission control: without admission control, the level of congestion of the
network cannot be controlled, and, as a consequence, utility cannot be guar-
anteed to applications that need a certain amount of resources to work prop-
erly. The Expedited Forwarding of IETF's Di�Serv architecture [45] handles
real-time traÆc in this way. In Chapter 5 we provide a real-time traÆc ex-
tension for the UFD architecture presented here. This extension relies on a
user-based admission control scheme to guarantee that a real-time applica-
tion receives the required minimum amount of resources.

4.1.2 Sender-based approach

The fact that the Olympic Service Model is sender-based imposes some lim-
itations to its functionality. With a sender-based approach, a user can in-

uence the treatment experienced by the packets he is sending, but not the
treatment experienced by the packets he is receiving.

The services that �t best the nature of a sender-based approach such
as the Olympic Service Model are the one-to-one and one-to-any services
for sending. An example of the one-to-one case could be a VPN service that
connects two networks of a company; if the gold service class is contracted for
both networks, the VPN service will experience a good quality. An example
of the one-to-any case could be a company that does its business on the web
and is willing to pay an additional price to provide its users with a fast feel
of its web site. If this company contracts the gold service class, its users will
experience a good service quality.

While the one-to-one service for sending can be relatively easily provided
by IETF's Di�Serv architecture [20], the one-to-any service for sending is
much more complex and it is still an ongoing e�ort [21].

A one-to-one service for receiving does not match the nature of the

43

Olympic Service Model, which is sender-based, but it still could be indi-
rectly provided. An example of such a service could be a user that frequently
accesses a speci�c video server to download movies [46]. With the Olympic
Service Model, this user could contract a high quality service with the video
server, which would in turn contract the gold service class with the network
for the delivery of movies to this speci�c user. This would result in a good
service quality experienced by the user when using this service. Note that
in this case the money transaction consists of two steps: a �rst step from
the user to the video server and a second step from the video server to the
network operator.

Finally, the any-to-one service for receiving cannot be supported by the
Olympic Service Model. An example of such a service could be a user willing
to pay an extra price for high speed Internet access. Due to the usefulness of
this service, the lack of support for it is an important limitation. The problem
with any-to-one services is that they necessarily require some kind of signaling
between the user and the ingress point of the packets received by him. Since
the lack of signaling strongly contributes to the simplicity of an architecture,
we conclude that the Olympic Service Model trades o� functionality with
simplicity. Note that within the IETF's Di�Serv architecture, the support
of any-to-one services has not been addressed yet.

4.1.3 Discussion

The Olympic Service Model is a pricing scheme that provides more network
resources to those users who pay more. With this model users are not given
absolute guarantees but relative ones: with the gold service class the quality
experienced is better than with the silver service class, but this quality is left
unde�ned and depends on the network conditions. Same kind of relationship
exists between silver and bronze service classes.

The main advantage of the Olympic Service Model is its simplicity. The
fact that the model is sender-based avoids the need for signaling, and its
relative nature eliminates the need for admission control. However, this sim-
plicity comes together with some limitations. With a sender-based approach,
there are some services like Internet access that cannot be provided. The rel-
ative guarantees provided by the Olympic Service Model are well suited for
elastic traÆc, but not for real-time traÆc, which requires of a more complex
scheme with some kind of admission control providing absolute guarantees.

We conclude that the Olympic Service Model trades o� functionality by
simplicity, but still solves some major of the current Best E�ort model. Given
the current diÆculties in the deployment of IETF's Di�Serv and IntServ mod-
els, mainly due to their complexity, a pricing scheme like the Olympic Service

44

Model could �nd its application as the next step after the Best E�ort model
in the evolution of the Internet. In the following we propose an extension for
elastic traÆc of the UFQ architecture presented in Chapter 3 based on this
model. In Chapter 5 we propose an extension for real-time traÆc based on
a di�erent model.

4.2 The UFD architecture

The User Fair Di�erentiation (UFD) architecture extends the User Fair
Queuing (UFQ) mechanism to implement the Olympic Service Model. This is
done using the Proportional Di�erentiation criterion for bandwidth sharing.

4.2.1 Proportional Di�erentiation for Bandwidth

In the UFD architecture, each class of the Olympic Service Model (bronze,
silver and gold) is mapped to a share, in such a way that the bandwidth
experienced by a user is proportional to the share that he has contracted.
The share associated with each class is chosen by the network operator and
depends on the desired level of di�erentiation between classes; however, the
gold class should be mapped to a higher share than the silver, and the silver
to a higher than the bronze. This proportional di�erentiation for bandwidth
sharing is expressed by the following equation:

rg
sg

=
rs
ss

=
rb
sb

(4.2)

where rg is the bandwidth that a user would experience if he contracted the
gold service class, rs the bandwidth that he would experience with the silver
class and rb with the bronze, and sg, ss and sb are the shares associated with
each class (sg > ss > sb).

In order to implement this proportional di�erentiation, the UFD archi-
tecture modi�es the user labeling and the ingress label control of Chapter 3
as described in the following. With these modi�cations, the good features
of UFQ for bandwidth sharing are preserved, while service di�erentiation is
provided. The resulting algorithm is illustrated in Figure 4.1.

Let su be the share contracted by user u. Then, the packets of this user
are labeled at the user network (user labeling) with:

Lk =
rsendi

Wi � su
(4.3)

45

ingress?

relabel
(Eq. 4.4)

read
Lk

update
Lfair

Lk<Lfair?
unif(0,1)<

Lfair/Lk?
Enqueue
packet

outgoing
packet k

new label
Lk = Lfair

Drop
packet

Yes

No

Yes

No No

Yes

congested?
Yes

No

user?incoming
packet k

label
(Eq. 4.3)

ri
send,

Wi,su

Yes

No

ru
send,

Su,su

Figure 4.1: UFD algorithm.

and at the ingress they are relabeled (ingress label control) according to:

Lnew
k = max

0@Lk;
1

su
�

(1� e
�(

lk

rsendu �K
)
)rsendu

1� e
�(

lk

rsendu �K
)
� (Su)k�1

1A (4.4)

The remaining functionality is left as described in Chapter 3. With the
above, the rate experienced by
ow i of user u is equal to:

ri = su �Wi � L
i
fair (4.5)

where Li
fair is the fair label of
ow i's bottleneck link.

The total rate experienced by user u, ru, is:

ru =
X
i2U

ri =

 X
i2U

Wi � L
i
fair

!
su (4.6)

From the above equation, it can be seen that, with the approximation
that Li

fair is held constant, the rate received by a user u increases linearly
with the contracted share su. We conclude that the bandwidth experienced
by a user is proportional to the share of the class contracted by this user (sg,
ss or sb), which is the objective that we stated for the UFD architecture in
Equation 4.2.

4.2.2 Inter-domain

Since the Internet consists of di�erent domains, in order to provide end-to-
end QoS, domains are required to cooperate. Thus, the QoS behavior when
crossing domains (inter-domain part) is an essential aspect of any service
di�erentiation architecture. In the UFD architecture, the inter-domain part
is, as the intra-domain, based on shares; but in this case it is not a user who
contracts a share to his domain (where the share contracted by a user is a

46

function of his service class, i.e. bronze, silver or gold), but it is a domain that
contracts a share with a neighboring domain. This share that one domain
contracts with another will be divided among all the users sending from the
�rst domain to the second. So, for example, if a domain has 100 users sending
to another domain, and wants them to experience the same quality as one
user of the other domain with a share of 1 contracted within that domain,
then the �rst domain will have to contract a share of 100 to the second
domain.

When crossing domains, for scalability reasons users have to be some-
how aggregated. As it has been explained in the intra-domain part of the
architecture, per-user state needs to be maintained at the edges in order to
measure each user's rate. If users are not aggregated, boundary routers also
need to keep state for every user crossing the router. The number of users
crossing edge routers will always be relatively small, but this does not have
to hold true for boundary routers between domains. Therefore, if users are
not aggregated, boundary routers may need to keep a very large state and
will then become bottlenecks concerning scalability.

The design goals for the inter-domain part of the UFD architecture are
the following:

1. Neither per-user nor per-
ow state, but only per-domain state should
be kept in the boundary routers between domains.

2. The desired level of di�erentiation between the users of a domain (ex-
pressed by the shares contracted by these users) should be preserved
when crossing domains.

3. The aggregated amount of resources received by the users of a �rst
domain in a second domain should correspond to the share contracted
by the �rst domain to the second.

In order to preserve the desired level of di�erentiation when crossing
domains, the packets in the new domain should preserve the ratios between
the labels they had in the old domain. This condition is expressed in the
following equation:

Lnew
1

Lold
1

=
Lnew
2

Lold
2

= : : : =
Lnew
k

Lold
k

= � (4.7)

where Lnew
k is the label of packet k in the new domain and Lold

k is its label in
the old domain.

To ensure that the �rst domain is not labeling its packets with more re-
sources than the amount contracted (condition 3), label control is performed

47

at the ingress of the second domain (Equation 4.4 with su = sd, where sd is
the share contracted by the �rst domain to the second). The combination of
this with condition 2 leads to relabeling packets at the egress of a domain
such that: a) the ratios between labels is preserved, and b) packets are not
relabeled by the label control.

Condition b is satis�ed by enforcing the following:

avg
�

lk
Lnew
k

�
avg (lk)

rsendd = sd (4.8)

where rsendd is the sending rate from the �rst domain to the second.
Combining the above equation with Equation 4.7 (condition a) leads to

the following expression for �:

� =
rsendd

sd
�
avg

�
lk
Lold
k

�
avg (lk)

(4.9)

For the estimation of the above expression we use the following exponen-
tial averaging formula. Let tk and lk be the arrival time and length of the k

th

packet from the �rst domain to the second. The estimation of � is updated
for every new packet k:

�k = (1� e�(Tk=K))
lk

Tk � Lold
k � sd

+ e�(Tk=K) � �k�1 (4.10)

where Tk = tk�tk�1 andK is a constant (as in Chapter 3, we setK = 100ms).
The above value of �k is then used to relabel packet k at the egress of the

�rst domain with the following label value:

Lnew
k = �k � L

old
k (4.11)

Figure 4.2 illustrates the UFD algorithm for inter-domain communica-
tion. This algorithm is an addition to the UFD intra-domain algorithm of
Figure 4.1.

Note that the proposed algorithm does not require to keep neither per-
user nor per-
ow state at the boundary routers between domains, which
satis�es the remaining design goal (condition 1). As we argued above, this
condition is necessary in order to provide scalable inter-domain communica-
tion (see Figure 4.3).

48

ingress?

relabel
(Eq. 4.4)

algorithm
Figure 4.1

outgoing
packet k

Yes

No

egress
domain?

incoming
packet k

relabel
(Eq. 4.11)

Yes

No

rd
send,

Sd,sd

ingress
domain?

 ,sd

Figure 4.2: UFD inter-domain algorithm.

end-
system

User
Router

Ingress
Router

Core
Router

Per-Flow
state

Per-User
state

No Per-Flow
or Per-User

state

User
Domain 1

Ingress
Router

Core
Router

Per-Domain
state

No Per-Flow
or Per-User

state

Domain 2

Egress
Router

Figure 4.3: UFD architecture.

4.3 Comparison with existing approaches

In this section, we compare via simulation our architecture with the existing
approaches also based on the Olympic Service Model. This comparison is
done according to the two following targets:

Isolation In order to avoid that non-adaptive UDP sources can gain greater
shares of network bandwidth while starving other, well-behaved, TCP
sources, some form of traÆc isolation inside the network is needed.

Di�erentiation According to the design principle of the Olympic Service
Model, the users who have contracted the gold class should experience
a larger bandwidth than the users who have contracted the silver class,
and the same type of relationship between the silver and bronze classes.

The purpose of the simulations is to show the validity of the concep-
tual approach of the UFD architecture for isolation and di�erentiation as
compared to the other Olympic Service Model architectures.

For this purpose, we simulated a simple scenario with three users sending
through one bottleneck link of 10 Mbps: user 1 with a share of 3 (gold class),
user 2 with a share of 2 (silver class) and user 3 with a share of 1 (bronze
class). This scenario re
ects the level of isolation and di�erentiation achieved
by users belonging to di�erent service classes.

49

We also simulated another scenario with a variable number of users for
each service class: three users for the gold class, two for the silver class and
one for the bronze class. This second scenario re
ects the level of isolation
between the di�erent users of the same class, and the impact of the load in
a class.

Finally, we simulated a scenario with a two-domain network topology with
a bottleneck link of 10 Mbps in the second domain, in order to study the level
of isolation and di�erentiation provided by the di�erent architectures when
crossing domains.

For the above scenarios we used both UDP CBR sources sending at 5
Mbps and endless TCP sources, hereafter referred as UDP and TCP respec-
tively.

4.3.1 UFD

Tables 4.1 and 4.2 show the level of isolation and di�erentiation provided by
the UFD architecture for both the one-user-per-class and several-users-per-
class cases. The bandwidth experienced by each user is given in Kbps; in
parenthesis this bandwidth is expressed as a percentage with respect to the
user's fair share of bandwidth.

Simulation results show that, when all
ows are UDP (tests 3 and 6),
UFD provides the desired level of di�erentiation independent of the number
of users per class. However, when the packet drops of the UFD architecture
interact with the congestion control of TCP, results deviate from the desired
ones. Nevertheless, the resulting bandwidth allocations are still fairly good;
in all cases, users obtain more than 75% of their fair share of bandwidth.

Note that the solutions to improve TCP performance in UFQ explained
in Section 3.6.8 ([42] and [24]) could also be applied to improve TCP perfor-
mance in UFD.

To test the inter-domain part of the UFD architecture we simulated a
scenario in which the users of Table 4.2 are sending their
ows to a second
domain with which the �rst domain has contracted a share of 5, and in this
second domain they are competing with a user that has contracted a share

TEST 1 TEST 2 TEST 3

user share source Kbps source Kbps source Kbps

1 3 TCP 4311 (86%) UDP 4969 (99%) UDP 4917 (98%)
2 2 TCP 3399 (102%) TCP 3006 (90%) UDP 3389 (102%)
3 1 TCP 2253 (135%) UDP 1979 (119%) UDP 1693 (102%)

Table 4.1: UFD. One user per class

50

TEST 4 TEST 5 TEST 6

user share source Kbps source Kbps source Kbps

1 3 TCP 2200 (103%) UDP 2351 (110%) UDP 2154 (101%)
2 3 TCP 2051 (96%) UDP 2317 (108%) UDP 2155 (101%)
3 3 TCP 2029 (95%) TCP 1755 (82%) UDP 2160 (101%)
4 2 TCP 1342 (94%) UDP 1583 (111%) UDP 1437 (101%)
5 2 TCP 1551 (109%) TCP 1166 (82%) UDP 1405 (98%)
6 1 TCP 790 (110%) UDP 781 (109%) UDP 683 (96%)

Table 4.2: UFD. Several users per class

TEST 7 TEST 8 TEST 9

user share source Kbps source Kbps source Kbps

1-d1 3 TCP 1688 (94%) UDP 1935 (108%) UDP 1782 (100%)
2-d1 3 TCP 1606 (90%) UDP 1965 (110%) UDP 1778 (99%)
3-d1 3 TCP 1723 (96%) TCP 1394 (78%) UDP 1794 (100%)
4-d1 2 TCP 1187 (100%) UDP 1293 (109%) UDP 1190 (100%)
5-d1 2 TCP 1237 (104%) TCP 944 (79%) UDP 1190 (100%)
6-d1 1 TCP 680 (114%) UDP 661 (111%) UDP 602 (100%)
d1 5 TCP 8121 (97%) TCP-UDP 8192 (98%) UDP 8336 (100%)
7-d2 1 TCP 1657 (99%) UDP 1812 (109%) UDP 1663 (100%)

Table 4.3: UFD. Inter-domain

of 1 with the second domain. In the simulation results of Table 4.3 we can
see that the di�erentiation between the users of the �rst domain is preserved
in the second domain, and in total these users get approximately the share
that their domain has contracted with the second domain. These were the
objectives of the inter-domain architecture explained in Section 4.2.2.

4.3.2 User Share Di�erentiation (USD)

The User Share Di�erentiation (USD) architecture [39] also maps each service
class into a share. The share corresponding to each user is stored by the core
nodes of the network. The core nodes use this share to give the packets of
the corresponding user their fair part of the forwarding capacity (using e.g. a
WFQ scheduler). Note that since USD stores information for each user at
core nodes, it has the problem of poorly scaling with respect to the number
of users, and might result in implementation problems when applied to core
routers in large domains.

The results for the intra-domain simulations (Tables 4.4 and 4.5) show
that USD provides the required isolation and ensures the necessary di�eren-
tiation according to the service classes. This perfect isolation can be achieved
because in USD, in contrast to UFD, per-user state is stored at core routers.

51

TEST 1 TEST 2 TEST 3

user share source Kbps source Kbps source Kbps

1 3 TCP 4999 UDP 4994 UDP 4996
2 2 TCP 3333 TCP 3336 UDP 3336
3 1 TCP 1666 UDP 1668 UDP 1667

Table 4.4: USD. One user per class

TEST 4 TEST 5 TEST 6

user share source Kbps source Kbps source Kbps

1 3 TCP 2142 UDP 2142 UDP 2142
2 3 TCP 2142 UDP 2142 UDP 2142
3 3 TCP 2142 TCP 2142 UDP 2142
4 2 TCP 1428 UDP 1428 UDP 1428
5 2 TCP 1428 TCP 1428 UDP 1428
6 1 TCP 714 UDP 714 UDP 714

Table 4.5: USD. Several users per class

For the inter-domain simulations of the USD architecture, we imple-
mented user aggregation as suggested in [39], i.e., in the second domain, the
users from the �rst domain are aggregated in classes with identical shares.
In this case, users 1, 2 and 3 (gold class) are aggregated in a class in domain
2 with share 3, users 4 and 5 (silver class) in a class with share 2 and user 6
(bronze class) in a class with share 1. Note that since in USD users are stat-
ically assigned to a class, such a situation in which one class is more crowded
than another can easily occur. The simulation results of Table 4.6 show that
USD fails to guarantee proper di�erentiation due to user aggregation when
crossing domains: all users receive the same treatment, independent of their
service class. In addition, the inter-domain part of USD also fails to provide
proper isolation, again due to aggregation e�ects: in test 8 we can see that
TCP
ows starve when sharing a class with UDP
ows in the second domain.

TEST 7 TEST 8 TEST 9

user share source Kbps source Kbps source Kbps

1 3 TCP 1672 UDP 2485 UDP 1667
2 3 TCP 1672 UDP 2504 UDP 1669
3 3 TCP 1655 TCP 3 UDP 1662
4 2 TCP 1665 UDP 3248 UDP 1666
5 2 TCP 1667 TCP 48 UDP 1666
6 1 TCP 1666 UDP 1666 UDP 1666

Table 4.6: USD. Inter-domain

52

4.3.3 SIMA

The Simple Integrated Media Access (SIMA) architecture [47, 48] de�nes
di�erent levels of service based on the Nominal Bit Rate contracted by the
user. SIMA provides two types of services, one for real-time traÆc and the
other for non-real-time. Since the focus of this chapter is on elastic traÆc,
we will only consider the latter.

In SIMA, the sending rate of user u, rsendu , is estimated at the ingress of
the domain, and, based on this estimation, packets are labeled according to
the following formula1:

Lk =

8<:
6 ifx � 6
int(x) if0 < x < 6
0 ifx � 0

(4.12)

where x is

x = 4:5�
ln(rsendu =NBR)

ln(2)
(4.13)

being int(x) the integer part of x and NBR the user's Nominal Bit Rate.
Then, in case of congestion, packets are dropped at core nodes depending

on their label Lk. The dropping is performed using the Weighted Random
Early Detection (WRED) [49] active queue management algorithm, which is
con�gured with seven separate thresholds (one for each label value).

In the simulations of SIMA, we assigned a NBR of 3 Mbps to the users
of the gold service class, 2 Mbps to the users of the silver service class and 1
Mbps to the bronze. Simulation results for the intra-domain case are shown
in Tables 4.7 and 4.8. These results show that SIMA provides a good level
of di�erentiation in the case of responsive TCP sources (tests 1 and 4), even
though the throughputs obtained are not proportional to the NBRs. When
dealing with non-responsive UDP sources, however, this feature is lost. In
tests 2, 3, 5 and 6, we can see that the bronze service class starves when
competing with the gold and silver service classes. This is due to the fact
that packet drops in SIMA are not probabilistic but based on thresholds: a
user sending too much, thus, will see all his packets dropped. Also in tests
2, 3, 5, and 6, the UDP silver sources receive the same treatment as the gold
ones. This is due to the coarse granularity of SIMA, which comes from the
small number of label values used: a user sending at 5 Mbps receives the
same label both for a NBR of 2 and 3 Mbps, since

1Note that since Lk can only take 7 di�erent values, three bits are enough to store its
value.

53

TEST 1 TEST 2 TEST 3

user NBR source Kbps source Kbps source Kbps

1 3 Mbps TCP 5325 UDP 4977 UDP 4944
2 2 Mbps TCP 3063 TCP 4721 UDP 4922
3 1 Mbps TCP 1572 UDP 287 UDP 132

Table 4.7: SIMA. One user per class

TEST 4 TEST 5 TEST 6

user NBR source Kbps source Kbps source Kbps

1 3 Mbps TCP 2330 UDP 2579 UDP 1991
2 3 Mbps TCP 2331 UDP 2561 UDP 1978
3 3 Mbps TCP 2357 TCP 1206 UDP 1985
4 2 Mbps TCP 1140 UDP 2567 UDP 2015
5 2 Mbps TCP 1128 TCP 1076 UDP 1995
6 1 Mbps TCP 693 UDP 0 UDP 34

Table 4.8: SIMA. Several users per class

int

�
4:5�

ln(5=2)

ln(2)

�
= int

�
4:5�

ln(5=3)

ln(2)

�
= 3 (4.14)

Finally, in test 5 it can be observed that the level of isolation provided
by SIMA between UDP and TCP is not perfect but reasonable.

For the inter-domain simulations, we simulated a scenario in which the
users of Table 4.8 are sending their
ows to a second domain with which the
�rst domain has contracted a NBR of 5 Mbps, and in this second domain
they are competing with a user that has a NBR of 1 Mbps. In the simulation
results of Table 4.9 we can see that SIMA does not provide proper di�eren-
tiation when crossing domains: in tests 7 and 9 all users receive the same
treatment, independent of their NBR in the �rst domain. In test 8 it can be

TEST 7 TEST 8 TEST 9

user NBR source Kbps source Kbps source Kbps

1-d1 3 Mbps TCP 1420 UDP 1991 UDP 821
2-d1 3 Mbps TCP 1596 UDP 2014 UDP 848
3-d1 3 Mbps TCP 2023 TCP 1 UDP 819
4-d1 2 Mbps TCP 818 UDP 1995 UDP 837
5-d1 2 Mbps TCP 1622 TCP 0 UDP 826
6-d1 1 Mbps TCP 1238 UDP 2006 UDP 834
d1 5 Mbps TCP 8717 TCP-UDP 8007 UDP 4985
7-d2 1 Mbps TCP 1210 UDP 1991 UDP 5011

Table 4.9: SIMA. Inter-domain

54

seen that the inter-domain part of SIMA does not provide proper isolation
either, since the TCP
ows starve. This inter-domain behavior of SIMA is
caused by the fact that the users from the �rst domain are treated like an
aggregate in the second domain.

4.3.4 Delay Di�erentiation (DD)

In [50, 51, 52] di�erent schedulers for proportional di�erentiation in delay
are proposed. These schedulers basically schedule packets in such a way that
the waiting time in the queue is inversely proportional to the share assigned
to the corresponding service class.

In order to better understand the performance of this type of schedulers
we ran the simulations corresponding to Tables 4.10 and 4.11 using the sched-
uler implementation of [53]. We can observe from the simulation results that
delay di�erentiation provides a good level of di�erentiation for TCP traÆc
alone (tests 1 and 4), since the throughput obtained by a TCP
ow is in-
versely proportional to its round-trip delay. For UDP traÆc alone (tests 3
and 6), no di�erentiation in throughput is obtained; however, for this kind
of traÆc the delay alone may suÆce to provide meaningful di�erentiation2.
The main drawback of the delay di�erentiation approach, however, is ex-
pressed by the results of tests 2 and 5. We can observe in these tests that
TCP sources almost starve when competing with UDP, which shows that the
queuing delay as di�erentiation parameter cannot provide proper isolation.

We conclude that, even though delay can be an important di�erentia-
tion parameter for delay sensitive (i.e. real-time) applications, it needs to be
combined with bandwidth di�erentiation in order to provide proper isolation.
This is the approach we have taken in the real-time extension of the UFD
architecture that we have proposed in Chapter 5.

Inter-domain simulation results for the Delay Di�erentiation approach
have not been provided since they do not di�er from the intra-domain ones.

TEST 1 TEST 2 TEST 3

user share source Kbps source Kbps source Kbps

1 3 TCP 4884 UDP 4784 UDP 3266
2 2 TCP 3370 TCP 398 UDP 3360
3 1 TCP 1745 UDP 4842 UDP 3376

Table 4.10: DD. One user per class

2Actually, delay is not very relevant for elastic traÆc. It is relevant for real-time traÆc,
but, as we have argued in Section 4.1.1, the Olympic Service Model does not �t well the
requirements of this traÆc type.

55

TEST 4 TEST 5 TEST 6

user share source Kbps source Kbps source Kbps

1 3 TCP 2125 UDP 2481 UDP 1708
2 3 TCP 2132 UDP 2489 UDP 1643
3 3 TCP 2130 TCP 84 UDP 1676
4 2 TCP 1444 UDP 2455 UDP 1679
5 2 TCP 1444 TCP 20 UDP 1652
6 1 TCP 733 UDP 2469 UDP 1640

Table 4.11: DD. Several users per class

4.3.5 Class-Based Allocation (CBA)

A Class-based allocation approach, such as the one in [44], assigns a speci�c
capacity to each service class. Each network
ow that belongs to a certain
class, therefore, shares a common set of resources with other
ows in that
class. This approach has the drawback that the service quality associated
with a class is unde�ned, since it depends on the arriving load in that class:
as the traÆc in the Internet is extremely bursty [54], the load in each class
and consequently its service quality
uctuates.

This behavior is shown in the simulation results of Tables 4.12 and 4.13.
These simulations have been performed with the Weighted Round Robin
implementation of [55], with a di�erent queue for each class with a weight
equal to the share of the class (3 for the gold class, 2 for the silver and 1 for
the bronze). Table 4.12 shows that when the load in each class is uniform,
the level of di�erentiation obtained is the desired. However, when the load
in the higher priority classes is larger, the di�erentiation feature is lost: in
the example of Table 4.13 we can see that all users get the same throughput,
independent of the service class they have contracted (bronze, silver or gold).
In addition, isolation is not provided inside each class, so the most aggressive
sources eat up all the available bandwidth in a class (see test 5 in Table 4.13).

Inter-domain simulation results have not been provided for this approach
either, since also in this case they do not di�er from the intra-domain ones.

TEST 1 TEST 2 TEST 3

user share source Kbps source Kbps source Kbps

1 3 TCP 4999 UDP 4994 UDP 4996
2 2 TCP 3333 TCP 3336 UDP 3336
3 1 TCP 1666 UDP 1668 UDP 1667

Table 4.12: CBA. One user per class

56

TEST 4 TEST 5 TEST 6

user share source Kbps source Kbps source Kbps

1 3 TCP 1666 UDP 2496 UDP 1666
2 3 TCP 1665 UDP 2498 UDP 1670
3 3 TCP 1664 TCP 2 UDP 1663
4 2 TCP 1665 UDP 3284 UDP 1670
5 2 TCP 1667 TCP 48 UDP 1662
6 1 TCP 1666 UDP 1666 UDP 1666

Table 4.13: CBA. Several users per class

4.4 Summary and Discussion

The User Fair Di�erentiation (UFD) architecture extends the UFQ mecha-
nism to provide service di�erentiation in a multi-domain environment. Ser-
vice di�erentiation is based on the Olympic Service Model. We have shown
that this model provides a valid service for elastic traÆc but not for real-time.

The UFD approach to the Olympic Service Model is based on the Pro-
portional Di�erentiation criterion for bandwidth. This criterion allocates a
�xed number of times more bandwidth to a user of the gold service class
than to a user of the silver service class, and the same for the silver and
bronze service classes. This level of di�erentiation between service classes is
preserved when crossing domains. The simulation results presented in this
section show that UFD is e�ective in achieving these objectives.

Simulation results have also validated the isolation and di�erentiation
features of the UFD architecture. These features have been compared, also
via simulation, with other architectures that also implement the Olympic
Service Model, namely, User Share Di�erentiation (USD), Simple Integrated
Media Access (SIMA), Delay Di�erentiation (DD) and Class-Based Alloca-
tion (CBA). From the results obtained, we conclude that the UFD architec-
ture is the only one that provides the isolation and di�erentiation features
for both the intra-domain and the inter-domain cases.

57

Chapter 5

Extension for Real-Time TraÆc

The applicability of the UFD architecture presented in the previous chapter
is limited to elastic traÆc. The main relevant parameter for this traÆc type
is bandwidth. In this chapter we extend the UFD architecture to support
real-time traÆc. We study the delay and bandwidth requirements of real-
time applications and propose the Real-Time User Fair Di�erentiation (RT-
UFD) extension to satisfy these requirements. The proposed extension has
two aspects:

Delay Requirements The Step Di�erentiation model for delay we propose
satis�es the delay requirements of real-time traÆc. In UFD-RT, this
model is implemented with the traÆc type separation mechanism.

Bandwidth Requirements In order to satisfy the bandwidth requirements
of real-time traÆc we propose the User-based Admission Control (UBAC)
scheme.

5.1 Step Di�erentiation for Delay

While the delay has a small impact on elastic applications, it is of key im-
portance for the performance of real-time applications. In real-time trans-
missions, the source takes some signal, packetizes it, and then transmits it
over the network. The network inevitably introduces some variation in the
delay of each delivered packet. This variation has traditionally been called
jitter. The receiver depacketizes the packet and the attempts to faithfully
play back the signal. This is done by bu�ering the incoming data to remove
the network induced jitter and then replaying the signal at some designated
play-back point. Any data that arrives before its associated play-back point
can be used to reconstruct the signal; data arriving after the play-back point

59

Packet
Delay

Utility

play-back
point

Figure 5.1: Utility function of real-time applications as a function of the
delay.

is useless in reconstructing the real-time signal. This dependency of the per-
formance of real-time applications on packet delay is illustrated in the utility
function of Figure 5.1.

For delay di�erentiation in the RT-UFD extension, we have chosen the
Step Di�erentiation model, in contrast to the Proportional Di�erentiation
model for bandwidth of Section 4.2.1. The Step Di�erentiation model states
that delay should be such that real-time packets either su�er a very low delay
or an in�nite delay (i.e. get dropped) depending on the share that has been
assigned to their user. So, if Dk is the delay experienced by a packet k of
user u, and su is the share contracted by user u, then the step di�erentiation
imposes:

Dk =

�
very low su high enough
1 otherwise

(5.1)

The choice of the step di�erentiation model for delay is justi�ed by the
utility function of Figure 5.1: since for real-time application packets have to
arrive within a given delay bound (the play-back point) or otherwise they
provide no utility to the user, only the amount of real-time traÆc that can
be transmitted by the network with a delay lower than the delay bound is
accepted, and the rest of the real-time traÆc is discarded.

60

traffic
separator

packet

dropper

packet

dropper

packet

scheduler

real-time

elastic

high priority queue

low priority queue

Figure 5.2: TraÆc Type Separation.

5.2 TraÆc Type Separation

In this section, we propose the traÆc type separation mechanism to imple-
ment the Step Di�erentiation model for delay. This mechanism is inspired by
the Two-Bit Architecture [56] in that we have one bit in the packet header in-
dicating whether the packet belongs to a real-time or an elastic application,
and for each link we have two queues: a high priority queue for real-time
traÆc and a low priority queue for elastic traÆc.

The incoming packets are separated according to their type, i.e. elastic
or real-time, at the traÆc separator. The traÆc separator then inputs the
packet to the corresponding packet dropper. This mechanism is depicted in
Figure 5.2.

For both traÆc types, a fair label is calculated, i.e. Lel
fair for elastic

traÆc and Lrt
fair for real-time traÆc. Elastic packets are allocated to the

low priority queue if their label Lk is low enough (Lk � Lel
fair). Otherwise

they are dropped with probability dk = 1 � Lel
fair=Lk. Note that this is the

dropping mechanism described in Section 3.3.
The same mechanism for dropping packets is used for real-time packets:

they are allocated to the high priority queue if their label Lk is low enough
(i.e., Lk � Lrt

fair) and they are dropped with probability dk = 1 � Lrt
fair=Lk

otherwise.
With the queuing mechanism presented, elastic and real-time traÆc are

separated in such a way that the capacity of the link, C, is divided among
them. A key point of RT-UFD is to choose the right proportion of the
available capacity to be assigned to each traÆc type. This assignment is
enforced by means of the packet droppers (i.e. by adjusting properly the
values of the fair labels for real-time and elastic traÆc, Lrt

fair and Lel
fair).

If too much capacity is assigned to real-time traÆc, the packet dropper
of the real-time traÆc will not be aggressive enough and we run the risk of

61

accepting bursts of real-time traÆc that �ll up the real-time queue. This can
result in real-time packets missing their delay bound due to queuing delay.
Consequently, the part of the link's capacity used by real-time traÆc needs
to be limited to a maximum value, 1

k
� C, to ensure small forwarding delays.

1
k
is a constant that has to be chosen by the network operator as a function

of the amount of real-time traÆc that has to be supported by the network
and the desired service quality for this real-time traÆc.

In order to limit real-time traÆc to 1
k
�C, Lrt

fair is computed according to
the following algorithm:

Every K time units:
if Art � C=k then

(Lrt
fair)new = (Lrt

fair)old �
C=k
F rt

else
(Lrt

fair)new = largest Lrt
k observed

end if

where Art is the estimated aggregated arrival rate for real-time traÆc, and
F rt is the estimated rate of the accepted traÆc for real-time traÆc.

Elastic traÆc gets assigned the remaining capacity of the link, C � F rt.
Note that F rt will at maximum equal 1

k
� C; therefore elastic traÆc is never

starved. Also, elastic traÆc will be allowed to use up to the full capacity of
the link when there is no higher-priority real-time traÆc. This is achieved by
computing the fair label for elastic traÆc, Lel

fair, according to the following
algorithm:

Every K time units:
if Ael � C � Frt then
(Lel

fair)new = (Lel
fair)old �

C�F rt

F el

else
(Lel

fair)new = largest Lel
k observed

end if

where Ael is the estimated aggregated arrival rate for elastic traÆc, and F el

is the estimated rate of the accepted traÆc for elastic traÆc.
Delay di�erentiation is provided by means of the two level simple priority

queuing shown in Figure 5.2. Whenever there are packets in the high priority
queue, they will be forwarded by the packet scheduler �rst, and whenever
there are no high priority packets to be forwarded, packets are forwarded
from the low priority queue for elastic traÆc. By assigning real-time packets
to the high priority queue, we achieve a very low delay for those real-time
packets that are not dropped, as stated by the Step Di�erentiation model for
delay described in the previous section.

Since traÆc marked as real-time gets prioritized treatment compared to

62

elastic traÆc, the cost to use the high priority queue, which is represented
by the fair label Lrt

fair above which we start having losses, should always be

higher for real-time traÆc than for elastic traÆc. However, Lrt
fair and Lel

fair

are computed independently as a function of the o�ered load of real-time
and elastic traÆc, respectively. Therefore, in the case when there is a much
higher density of elastic traÆc than real-time traÆc in the network, we have
a situation where Lel

fair < Lrt
fair | i.e. elastic traÆc would be more expensive

even though it receives a poorer service1. In order to correct this undesirable
situation, we de�ne a new fair label for real-time traÆc,

gLrt
fair = min

�
Lrt
fair; L

el
fair=p

�
(5.2)

where p is a constant greater than 1, which is used to express the di�erence in
price between a real-time packet and a packet marked as elastic traÆc: thus,
for the same price, a user will be able to send p times more traÆc marked as
elastic than traÆc marked as real-time2. This is the price that the user has
to pay in order to guarantee a low delay.

5.3 User-based Admission Control

So far we have concentrated on the impact of delay into the performance of
real-time applications. In the following we focus on the bandwidth require-
ments.

Traditionally, video and audio applications have been designed with hard
real-time requirements. Such applications have an intrinsic bandwidth re-
quirement and the performance degrades badly as soon as the bandwidth
share becomes smaller than the intrinsic generation rate. This is illustrated
in the utility curve of Figure 5.3.

There is another type of real-time applications. Rate-adaptive applica-
tions adjust their transmission rate to the available bandwidth. The per-
formance of these applications increases with bandwidth. However, there
is a minimum bandwidth below which the signal quality is unbearably low
and, as a consequence, utility is practically null. Also, there is a maximum
bandwidth above which the marginal utility of additional bandwidth is very
slight because the signal quality is much better than humans need. This is
illustrated in the utility curve of Figure 5.4.

1Note that in this situation real-time traÆc would not starve elastic traÆc, since real-
time traÆc is restricted to use a maximum capacity of 1

k
� C, but it would be eating up

bandwidth at a lower cost than elastic traÆc.
2The idea of giving a better treatment in terms of delay but worse in terms of bandwidth

to real-time traÆc has also been used in the Asymmetric Best-E�ort Service proposal [57].

63

Bandwidth

Utility

required
bandwidth

Figure 5.3: Utility function of hard real-time applications as a function of
the bandwidth.

Bandwidth

Utility

minimum
required

bandwidth

maximum
bandwidth

Figure 5.4: Utility function of rate-adaptive real-time applications as a func-
tion of the bandwidth.

64

The problem of transmitting real-time streams over the Internet has tra-
ditionally been dealt with two di�erent approaches.

One approach is to adapt application behavior to the best e�ort service
provided by the network, i.e. to the time-varying characteristics of the chan-
nel over which the application data packets are sent. We call this approach
adaptive applications. This adaptation is done by incorporating to the appli-
cation control mechanisms that attempt to minimize the negative impact of
channel characteristics on the quality of the data delivered at the destination.
Examples of such mechanisms include playout adjustment (to control delay
jitter), rate control (to match bandwidth requirements to available band-
width), error recovery (to control the impact of packet loss on quality), etc.
The drawback of this approach is that, since it is not possible to enforce that
bandwidth is above the minimum required, we risk a null performance (see
Figure 5.4).

The other approach is to augment the best e�ort service with other ser-
vices providing various degrees of performance guarantees. This is done by
accepting only those requests that can be served with the desired quality,
while rejecting the others. We call this approach controlled access. This
approach is the one taken by IntServ and Di�Serv. The drawback of these
architectures is that, in order to provide performance guarantees (e.g. a given
bandwidth), they need some kind of network-based admission control, which
leads to a high level of complexity, as we have already mentioned before in
this thesis.

In this section we propose an approach to the problem of bandwidth
allocation for real-time traÆc in RT-UFD that combines the two solutions
described above. We have called the proposed approach User-based Admis-
sion Control (UBAC). The novelty of UBAC is that it is user-based instead of
network-based. The fact that the network is unaware of the admission control
makes things much simpler, overcoming thus the complexity of network-based
admission control schemes such as Di�Serv or IntServ.

The proposed mechanism relies on measurement-based admission control.
Lfair, which is used at each link to determine the throughput that each user
receives, provides a natural basis for measurement-based admission control:
the throughput of a user's
ow is determined by the most restrictive (i.e.
lowest) Lfair on the
ow's path: the minimum fair label.

In order to convey the information of the minimum fair label to the sender
we use a similar procedure to [42]. We let another piece of information, in
addition to the packet's label Lk, travel with the packets: Lmin

fair. Lmin
fair is

initialized at the sender with a value equal to 13 and is updated on each

3An1 value of Lmin
fair is actually represented by 0. Note that a Lmin

fair value of 0 is never

65

congested link according to the following equation:

Lmin
fairnew = min(Lmin

fairold
; Lfairlink) (5.3)

where Lmin
fairold

is the value of Lmin
fair carried by the packet before reaching the

link, Lmin
fairnew

is the value of Lmin
fair after having passed the link and Lfairlink is

the link's fair label.
With the above, the minimum fair label information, contained in the

Lmin
fair �eld of each received packet, reaches the receiver. This information is

then piggybacked to the sender using the next control packet sent to him4.
The sending user can then use that minimum fair label information for

each
ow to adaptively assign to the
ows the necessary weight Wi to reach
their destinations without drops:

Wi �
rsendi

su � Lmin
fair

(5.4)

Note that the weights Wi of a user su�er the restrictionX
i2U

Wi � 1 (5.5)

Using Equation 5.5, a user can perform admission control in such a way
that if a rate rsendi is requested for a path that requires a weight Wi that
violates Equation 5.5, then the request is rejected5.

The main advantage of the UBAC scheme is its simplicity. This simplic-
ity results from the fact that it is user-based and therefore does not require
complex network mechanisms. However, a restriction is that a user-based
admission control scheme like the proposed cannot control the absolute con-
gestion level of the network. As a consequence, it is not possible to guarantee
that the bandwidth committed to a
ow will be available during the whole

ow's lifetime. Note that this restriction is inherent to all measurement-based
admission control schemes.

With UBAC, a new request is accepted only when the current level of
congestion is low enough. This relates to the controlled access approach
described above. However, the congestion level may increase after the request

used otherwise.
4UBAC requires some exchange of control packets between the sender and the receiver

before the sender can decide whether to accept or not a request towards this receiver. The
protocol used between the sender and the receiver for requesting resources and notifying
the acceptance/rejection of the requests could be based, for example, on RSVP [58].

5Note that a safety margin can be used in the admission control decision. The impact of
the safety margin on the resulting quality has been studied via simulation in Section 5.4.3.

66

has been accepted. In order to adapt to the varying bandwidth available for
him, a user needs to be able to modify the sending rate of his applications.
This relates to the adaptive applications approach.

The fact that with the proposed user-based admission control scheme
a new request is only accepted when the current level of congestion is low
enough guarantees that the probability that the bandwidth available for an
application decreases below its minimum bandwidth required is very low.
This guarantee represents a fundamental advantage with respect to the adap-
tive applications approach. In Section 5.4.3 we study this issue via simulation.

In the literature, a number of distributed measurement-based admission
control schemes have been proposed [59, 60, 61, 62]. These schemes, like
UBAC, also accept or reject a new request based on the measured level of
congestion. A fundamental di�erence between these schemes and ours is that
these schemes, in contrast to UBAC, require some degree of participation of
the network. For example, with these schemes signaling is usually performed
by the network. Also, billing is necessarily performed on a usage or reser-
vation basis, since otherwise a user could have permanent reserved paths at
no cost by constantly sending useless traÆc through them. Note that, in
contrast, with our approach, billing is performed on a
at rate basis, based
on the share contracted. To the knowledge of the author, the UBAC scheme
is unique in that it can provide a service commitment to
ows without the
network participation.

It is also important to note that the solution presented in this section in-
troduces a new reservation paradigm. With traditional reservation schemes,
a call request from a user in a channel with capacity for 5 calls would be
rejected if these 5 calls are currently occupied by a second user. This raises
the fairness issue of whether it is fair that a user's request is rejected because
of another user's resource-hungry behavior. In addition, this leads to an un-
fair resource distribution, since one user is not allowed to consume network
resources because of another user who is consuming a lot of them. In contrast
to traditional reservation schemes, with UBAC, the above situation would
be solved in such a way that the call of the �rst user is accepted and served
with full quality, at the expense of decreasing the quality of the 5 calls of the
second user.

Finally, note that the use of the UBAC solution proposed in this section
is optional for the user. Using UBAC, a user can concentrate his contracted
share among a few prioritized
ows upon congestion, in order to provide them
with the required bandwidth, and thus avoid distributing the share among
too many
ows. However, it is up to the user how to use the resources that
he has been contracted through his share. The user can choose to use some
policy for user-based admission control to provide service commitment to

67

a bc

Figure 5.5: Network topology used for the simulations.

some of his
ows while rejecting service to others, or can just choose to use
the resources in a best-e�ort way.

5.4 Simulations

In this section we evaluate via simulation the performance of the RT-UFD
extension presented in this chapter.

5.4.1 Bandwidth and Delay Distribution

To evaluate the resulting bandwidth and delay distributions with RT-UFD,
we simulated the proposed extension on a network as shown in Figure 5.5.
This network has three 10 Mbps inter-node links, with a propagation delay
of 1ms each. There are twelve users, each sending one
ow. The
ows travel
along di�erent network paths (paths a, b and c illustrated in Figure 5.5). We
simulated three di�erent scenarios: one with real-time users sending CBR
traÆc, another with bursty traÆc and a third with mixed CBR and bursty
traÆc. All elastic users sent background CBR traÆc. The traÆc charac-
teristics for each simulation are given in Table 5.1. TraÆc of bursty users
consisted of an aggregation of 10 ON/OFF sources. The active periods of
the ON/OFF sources were Pareto distributed with 50 ms average, while idle
periods were exponentially distributed with 50 ms average. The values of k
and p used were k = 2 and p = 10, meaning that real-time traÆc was twice as
expensive as elastic traÆc and that the bandwidth used by real-time traÆc
in a link was limited to one tenth of its capacity.

Table 5.2 shows the throughput (r), average delay (md) and standard
deviation of the delay (�d) experienced by each of the users. Simulation
results demonstrate that the expected behavior is reasonably achieved.

For real-time traÆc, delays are close to propagation and transmission
delays; queuing delays and, consequently, jitters, are negligible6. In contrast,

6Note that queuing delay is the only variable component of delay and thus the only

68

scenario 1 scenario 2 scenario 3
avg. avg. avg.

user type share path source rate source rate source rate
(Mbps) (Mbps) (Mbps)

1 real-time 1 a CBR 0.5 bursty 0.5 bursty 0.5
2 real-time 1 b CBR 0.5 bursty 0.5 CBR 0.5
3 real-time 1 c CBR 0.5 bursty 0.5 bursty 0.5
4 real-time 2 a CBR 0.5 bursty 0.5 CBR 0.5
5 real-time 2 b CBR 0.5 bursty 0.5 bursty 0.5
6 real-time 2 c CBR 0.5 bursty 0.5 CBR 0.5
7 elastic 1 a CBR 5 CBR 5 CBR 5
8 elastic 1 b CBR 5 CBR 5 CBR 5
9 elastic 1 c CBR 5 CBR 5 CBR 5
10 elastic 2 a CBR 5 CBR 5 CBR 5
11 elastic 2 b CBR 5 CBR 5 CBR 5
12 elastic 2 c CBR 5 CBR 5 CBR 5

Table 5.1: TraÆc Characteristics.

scenario 1 scenario 2 scenario 3
user rtheoretical r md �d r md �d r md �d

(Kbps) (Kbps) (ms) (ms) (Kbps) (ms) (ms) (Kbps) (ms) (ms)
1 167 167 2.08 0.34 172 2.21 0.39 247 2.41 0.66
2 167 198 3.99 0.31 198 3.91 0.27 204 4.02 0.47
3 167 163 6.28 0.63 155 6.28 0.55 198 6.49 0.54
4 333 339 2.62 0.64 340 2.48 0.58 414 2.77 0.63
5 333 374 4.30 0.50 359 4.06 0.41 381 3.98 0.42
6 333 321 7.09 0.84 320 6.68 0.71 354 6.76 0.75
8 1500 1540 22.30 11.78 1541 33.83 11.67 1577 52.39 6.93
7 1500 1507 36.89 8.92 1516 32.14 10.39 1498 53.45 6.27
9 1500 1440 59.97 13.48 1459 66.59 16.88 1425 106.35 9.76
10 3000 3019 22.65 11.77 3040 33.98 11.72 3131 52.64 6.90
11 3000 3008 37.43 8.86 2972 32.55 10.55 2943 53.84 6.27
12 3000 2918 60.61 13.59 2923 67.32 16.61 2730 106.67 9.78

Table 5.2: Bandwidth and Delay Distribution.

jitter for elastic traÆc is much higher (approximately, one order of magnitude
higher). We conclude that the UFD-RT extension is e�ective in implementing
the Step Di�erentiation model for delay.

The throughput experienced by each user is approximately proportional
to his share, as stated by the Proportional Di�erentiation model for band-
width. Simulation results, however, show a favorable treatment for those

ows traversing shorter (a) and less congested (b) paths. Bandwidth be-
tween real-time and elastic traÆc is shared according to the k value chosen:
9 Mbps for elastic traÆc and 1 Mbps for real-time traÆc in each link.

one that has e�ect on the jitter.

69

scenario 1 scenario 2 scenario 3
user rtheoretical r md �d r md �d r md �d

(Kbps) (Kbps) (ms) (ms) (Kbps) (ms) (ms) (Kbps) (ms) (ms)
1 79 75 2.19 0.39 78 2.01 0.29 77 2.12 0.41
2 79 89 4.19 0.37 77 3.87 0.26 91 3.97 0.24
3 79 76 6.44 0.56 74 6.22 0.49 75 6.32 0.63
4 159 160 2.43 0.56 156 2.13 0.41 154 2.38 0.57
5 159 160 4.33 0.47 169 3.95 0.34 170 4.05 0.35
6 159 156 6.86 0.70 154 6.40 0.59 148 6.30 0.69
7 1587 1570 26.64 10.22 1573 31.45 8.86 1600 41.36 7.98
8 1587 1611 25.02 10.97 1641 32.82 11.19 1633 32.30 10.42
9 1587 1557 52.30 14.49 1508 64.91 14.27 1564 74.35 14.62
10 3175 3225 25.41 10.93 3241 33.01 11.23 3253 32.51 10.35
11 3175 3173 27.34 10.23 3207 31.88 8.92 3201 41.91 7.96
12 3175 3108 53.28 14.53 3132 65.74 14.27 3067 74.87 14.37

Table 5.3: Pricing for Elastic and Real-Time TraÆc.

5.4.2 Pricing for Elastic and Real-Time TraÆc

In a second experiment, we used the same scenarios as in the previous ex-
periment to simulate how well it is guaranteed in RT-UFD that real-time
packets are priced p times higher than elastic packets. For this purpose, we
increased the shares of the users sending elastic traÆc from 1 and 2 to 10
and 20, respectively (i.e. we increased the money paid by the elastic users).
The other parameters used in the second experiment are identical to the
corresponding ones in the �rst experiment.

Table 5.3 shows the resulting values from the second experiment. It can
be seen that both delay and delay deviation expose a very similar behavior
as in the �rst experiment. The throughput distribution however di�ers. The
reason for this is that real-time traÆc cannot keep consuming 1=k of the link's
capacity while still being priced at least p times more than elastic traÆc. As a
consequence, the bandwidth assigned to real-time traÆc is decreased in order
to ensure that the ratio s=r (share divided by the rate, which represents the
price paid for a unit of bandwidth) is p times higher for real-time traÆc than
for elastic (0.012 for real-time traÆc and 0.006 for elastic). We conclude that
the proposed mechanism is e�ective in pricing real-time traÆc higher than
elastic traÆc.

5.4.3 UBAC

In a third experiment, we evaluated the performance of the User-based Ad-
mission Control (UBAC) scheme proposed in Section 5.3. For this purpose
we used scenario 3 of Table 5.1 (mixed CBR and bursty traÆc scenario) but
with users 3 (share of 1) and 6 (share of 2) sending voice traÆc and applying

70

UBAC as described in the following.
Both users 3 and 6 have 10 voice traÆc sources. The duration of each

voice call is exponentially distributed with average 1=� = 120 s, and the time
elapsed between a call end or a failed attempt and the next call attempt is
also exponentially distributed with average 1=� s. Voice sources adapt to the
available bandwidth in the following way. When there is enough bandwidth
available, they send full voice quality at a rate of 64 Kbps. Upon congestion,
a user reduces the rate (and consequently quality) of some of his calls to 32
Kbps (we consider in this simulation that this is the minimum bandwidth
required for an acceptable audio quality). A call that sees its sending rate
reduced to 32 Kbps keeps sending at this rate for the rest of its lifetime. If
the bandwidth available for a user is such that it is not enough to reduce
the sending rate of all his calls to 32 Kbps, some calls are cancelled. Note
that this is obviously an undesirable situation that should be avoided with
UBAC.

User-based Admission Control (UBAC) is performed by each user accord-
ing to Algorithm 2 (based on Equation 5.5), where N is the number of active
calls from the user and m the safety margin. Unless otherwise speci�ed, we
take m = 0.

Algorithm 2 UBAC Algorithm.
For every new request:
a =

P
Wi = (N + 1) 64Kbps

Lmin
fair

�su

if a(1 +m) � 1 then
accept request

else
reject request

end if

Lmin
fair is the last minimum fair label received via the control packets. The

receiver sends a control packet with the last update of the minimum fair label
for every 10 data packets received from the sender.

We de�ne the o�ered load (L) as the average rate at which a user would
be sending if all his call attempts were accepted. That is,

L = 10 �
�

�
� 64Kbps (5.6)

All simulations described in this section have a duration of 1800 s, 100 s
of which correspond to warm-up time.

Figure 5.6 shows the throughput experienced by users 6 (share 2) and 3
(share 1) as a function of the o�ered load. We can observe that at low loads

71

0

50

100

150

200

250

300

350

100 150 200 250 300 350 400 450 500

T
hr

ou
gh

pu
t (

K
bp

s)

L (Kbps)

share = 1
share = 2

Figure 5.6: UBAC. Throughput.

(L = 100 Kbps) all calls are accepted and the experienced throughput equals
approximately the o�ered load. At higher loads, some calls are rejected and,
as a consequence, the throughput is lower than the o�ered load. However,
the throughput tends asymptotically to user's fair share of bandwidth, which
is 167 Kbps for user 3 and 333 Kbps for user 6. We conclude that UBAC
allows users to make a reasonably eÆcient use of their share of bandwidth,
while still providing a good service quality to the accepted calls as shown in
the following.

Figure 5.7 shows the packet loss probability as a function of the o�ered
load. Since the goal of UBAC is to only accept those calls that can be served
with no packet loss, this probability should be kept low. We can observe from
the results obtained that this probability is always kept very small (below
1%).

The share contracted by a user should re
ect the quality experienced by
this user. With elastic traÆc, service quality is expressed by the bandwidth,
as it has been explained in other chapters. With real-time traÆc, assuming
that all accepted requests are served with a reasonable quality, the service
quality is expressed by the request acceptance rate. Figure 5.8 shows the
probability that a request is rejected for the two users (user 3 with a share
of 1 and user 6 with a share of 2). Since this probability is much higher with
the lower share, we conclude that RT-UFD is e�ective in delivering a better
service quality to those users who pay more (i.e. contract a higher share).

Another parameter that expresses the delivered service quality is the ratio
of calls that are served with full quality (64 Kbps) and calls whose quality is
degraded during their lifetime (i.e. that are forced to reduce their sending rate
to 32 Kbps). Figure 5.9 shows the probability that a call is forced to degrade

72

0

0.002

0.004

0.006

0.008

0.01

100 150 200 250 300 350 400 450 500

P
ac

ke
t L

os
s

P
ro

ba
bi

lit
y

L (Kbps)

share = 1
share = 2

Figure 5.7: UBAC. Packet Loss Probability.

0

0.2

0.4

0.6

0.8

1

100 150 200 250 300 350 400 450 500

P
ro

ba
bi

lit
y

of
 R

ej
ec

t

L (Kbps)

share = 1
share = 2

Figure 5.8: UBAC. Probability of Reject.

73

0

0.2

0.4

0.6

0.8

1

100 150 200 250 300 350 400 450 500

P
ro

ba
bi

lit
y

of
 D

eg
ra

de

L (Kbps)

share = 1, UBAC
share = 2, UBAC

share = 1, no UBAC
share = 2, no UBAC

Figure 5.9: UBAC. Probability of Degrade.

its quality as a function of the o�ered load. To better understand the level
of e�ectiveness of UBAC, we compared these results with the results that we
would obtain with the same adaptive sources but no UBAC (i.e. accepting
all calls).

It can be observed from the results of Figure 5.9 that the probability that
a call is forced to degrade its quality is lower with a higher share, i.e. also in
this case a higher share implies a better service quality. Also, this probability
is much higher when no UBAC is used, which shows the usefulness of UBAC.

As we have explained before, if the bandwidth available for a real-time
application is lower than the minimum required (in our case 32 Kbps), the
quality is unacceptable and the call must be cancelled. This is obviously
highly undesirable. With UBAC, we never observed a cancelled call in all
the simulations performed. In contrast, the probability that a call is cancelled
without UBAC can be considerably large at high loads, as can be observed
in Figure 5.10.

So far all simulations have been run taking the UBAC parameter safety
margin m equal to 0. As it can be seen from Algorithm 2, m expresses the
excess available bandwidth margin: a call is only accepted if after accepting
it there is still a portion m

1+m
of the available bandwidth for this user unused.

The objective of keeping this excess available bandwidth is to be able to
absorve new situations of congestion without harming the quality of the
ongoing calls.

The parameter m, thus, represents a tradeo� between the probability of
having a request rejected and the probability of having the quality of an
ongoing call degraded. This tradeo� has been studied via simulation by
increasing m from 0 to 1 in the previous scenario when the o�ered load

74

0

0.2

0.4

0.6

0.8

1

100 150 200 250 300 350 400 450 500

P
ro

ba
bi

lit
y

of
 C

an
ce

l

L (Kbps)

share = 1, UBAC
share = 2, UBAC

share = 1, no UBAC
share = 2, no UBAC

Figure 5.10: UBAC. Probability of Cancel.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
ro

ba
bi

lit
y

of
 R

ej
ec

t

m

share = 1
share = 2

Figure 5.11: Safety margin. Probability of Reject.

is of 300 Kbps. The results obtained are shown in Figures 5.11 and 5.12.
We can observe that, as we expected, when increasing m the probability of
reject increases, while the probability of degrade decreases. Note that the
value of m, as all other UBAC parameters and policies, is chosen by the user
depending on his preferences.

75

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
ro

ba
bi

lit
y

of
 D

eg
ra

de

m

share = 1
share = 2

Figure 5.12: Safety margin. Probability of Degrade.

5.5 Summary

UFD-RT extends the UFD architecture with real-time traÆc support. This
is done in two steps: in a �rst step we solve the delay issue while in a second
step we deal with the bandwidth requirements.

Real-time applications require their packets to arrive earlier than the
play-back point in order to be played. To adapt to this requirement we
have proposed the Step Di�erentiation criterion for delay. This criterion has
proved to be e�ective in meeting the delay requirements of real-time traÆc.

Since real-time packets receive a higher priority treatment than elastic
traÆc with respect to delay, they should have a higher cost. The traÆc type
separation mechanism we propose implements this price di�erentiation by
allocating (p times) more bandwidth to a user sending elastic traÆc than
to a user sending real-time traÆc, when both users pay the same price for
network resources. The parameter p depends on the pricing policy and is
chosen by the network operator.

The bandwidth requirements of real-time applications are met with the
User-based Admission Control (UBAC) scheme. This scheme combines two
traditional approaches for supporting real-time applications in packet net-
works: the adaptive applications and the controlled access. The novelty of
UBAC as compared to existing distributed admission control schemes is that
no participation from the network is required and signaling between the user
and the network is avoided. These features strongly contribute to the sim-
plicity of UBAC.

76

Chapter 6

Extension for Multicast TraÆc

Using multicast delivery to multiple receivers reduces the aggregate band-
width required from the network compared to using unicast delivery to each
receiver. Multicast routing establishes a distribution tree that connects the
source with the receivers. The multicast tree is rooted at the sender and the
leaves are the receivers. Multicast delivery sends data across this tree to-
wards the receivers. As opposed to unicast, data is not copied at the source,
but is copied inside the network at branch points of the tree. The fact that
only a single copy of data is sent over a link that leads to multiple receivers
results in a bandwidth gain of multicast over unicast whenever a sender needs
to send simultaneously to multiple receivers.

During the last decade, multicast routing and delivery have evolved from a
pure research topic [63] to being experimentally deployed in the MBONE [64]
to being supported by major router manufacturers. Despite the widespread
deployment of multicast capable networks, multicast is rarely provided as
a service. Among the reasons that slow down the use of multicast we �nd
the lack of a valid service model that de�nes how to fairly allocate network
resources among multicast and unicast
ows.

In this chapter we take up previous work on bandwidth allocation for
unicast and multicast
ows: the Logarithmic Receiver Dependent (logRD)
policy [65]. This policy gives more bandwidth to a multicast
ow as compared
to a unicast
ow that shares the same bottleneck link, however without
starving the unicast
ows. We propose an extension of the UFD architecture,
the Multicast UFD (M-UFD) extension, that implements the logRD policy.

77

6.1 Bandwidth Allocation Policy

For the case when all
ows are unicast, the UFD architecture distributes
bandwidth in link l among two competing
ows i and j of users u and v
according to the following equation:

rli
su �Wi

=
rlj

sv �Wj

(6.1)

where rli denotes the bandwidth allocated for
ow i in link l.
The above criterion, however, is not appropriate when some of the
ows

are multicast: it does not seem fair to give the same amount of bandwidth
to a
ow serving one receiver than to another serving one hundred receivers.
We conclude that, in case multicast traÆc is present, the UFD architecture
should be extended taking into account the number of receivers of each
ow.

When choosing a strategy for bandwidth allocation of multicast and uni-
cast
ows, our goals are:

Multicast Incentive Since multicast results in bandwidth savings, users
should be given an incentive to use it. In general, users want high
satisfaction, but do not care whether unicast or multicast is used to
deliver the content. If we give more bandwidth to multicast, a multicast
user will experience a higher satisfaction than a unicast user, which
results in an incentive to use multicast.

Fairness Multicast should not be encouraged at the detriment of the level
of fairness among users. In other words, multicast users should not
be rewarded in such a way that unicast users see their share of band-
width drastically reduced, since this would lead to an unfair bandwidth
allocation.

In [65] the Logarithmic Receiver Dependent (logRD) policy is proposed
for bandwidth allocation of unicast and multicast
ows. With logRD, the
share of bandwidth allocated to
ow i at link l depends logarithmically on
the number of receivers Rl

i of
ow i that are downstream of link l1. Applying
this policy to the bandwidth allocation of Equation 6.1 results in the following
allocation2:

rli
su �Wi � (1 + ln(Rl

i))
=

rlj
sv �Wj � (1 + ln(Rl

j))
(6.2)

1We say that a receiver r of
ow i is downstream of link l if the data sent by the source
of
ow i to receiver r crosses link l.

2Equation 6.2 is valid for multicast and unicast
ows. In the case of unicast
ows, Rl
i

is taken as 1, since, by de�nition, unicast
ows only have one receiver.

78

Since with Equation 6.2 multicast receivers are rewarded with more band-
width than unicast receivers, the logRD strategy gives an incentive to use
multicast. In addition, [65] shows via analytical studies and simulations that
the logRD policy achieves a good tradeo� between multicast incentive and
fairness.

6.2 Multicast UFD

In order to implement the bandwidth allocation of Equation 6.2, the M-
UFD extension introduces ingress and core relabeling for multicast packets
as described in the following.

As we can see in Equation 6.2, the bandwidth allocated to a multicast

ow depends on the number of downstream receivers that this
ow is serving.
At the ingress, after the label control, we introduce the information of the
number of receivers of a
ow i, Ri, to the label of its packets according to
the following relabeling formula:

Lnew
k =

Lold
k

1 + ln(Ri)
(6.3)

As a packet is forwarded towards the leaves of the multicast tree, the
number of downstream receivers served by the packet changes, and we update
the packet label accordingly. Let l be the parent link of a multicast
ow at
node n, where the multicast packets are copied to c child links l1; : : : ; lc (see
Figure 6.1). Let Rl

i be the number of downstream receivers of
ow i at link
l, and Rlj

i the number of downstream receivers at link lj. Then, the label
of a multicast packet that is forwarded by node n from a parent link l to a
child link lj is updated according to the following formula:

Llj
k =

1 + ln(Rl
i)

1 + ln(Rlj
i)
� Ll

k (6.4)

The M-UFD algorithm, resulting from adding the above ingress and core
relabeling functionality to UFD, is illustrated in Figure 6.2. With this algo-
rithm, bandwidth in a congested link l is distributed among two
ows i and
j competing for bandwidth in this link according to:

rli
su �Wi � (1 + ln(Rl

i))
=

rlj
sv �Wj � (1 + ln(Rl

j))
= Ll

fair (6.5)

where Ll
fair is the fair label of link l. Note that the above allocation cor-

responds to the bandwidth distribution stated by the logRD policy (Equa-
tion 6.2).

79

node n
parent
link l

Ri
l downstream
receivers

flow i

child
link l1

Ri
l1 downstream

receivers.
.
.

child
link lc

Ri
lc downstream

receivers

Figure 6.1: Core Relabeling in M-UFD.

ingress?

 ingress
label control

(Eq. 4.4)Yes

No
user?incoming

packet k

user
labeling
(Eq. 4.3)Yes

No

multicast?

 ingress
relabel

(Eq. 6.3)Yes

No

Ri

multicast?

core
relabel

(Eq. 6.4)Yes

No

Ri
l

packet
dropper

Drop
packet

Enqueue
packet

outgoing
packet k

Figure 6.2: M-UFD Algorithm.

In the algorithm of Figure 6.2 it is important to note that M-UFD requires
to keep per-
ow state for the multicast
ows: the estimation of the number
of downstream receivers3 and the multicast routing information. The �rst is
inherent to the logRD policy and the second to multicast. In contrast, no
per-
ow state is required for unicast
ows (this was a design goal of UFD).
We argue that, since we expect the number of multicast
ows crossing a node
to be much smaller than the number of unicast
ows, keeping per-multicast-

ow state does not harm the eÆciency of the resulting architecture.

6.3 Layered Multicast

The fact that in M-UFD the bandwidth experienced by a receiver depends
on the level of congestion of the links in the path from the sender to the
receiver results in an heterogeneity on the amount of bandwidth experienced
by the di�erent receivers of the same multicast
ow. To cope with this
heterogeneity, which is a general problem in multicast transmissions, layered
multicast schemes have been proposed.

Layered coders produce a set of streams or layers such that layer 0 pro-
vides a minimum quality stream and each layer i + 1 adds more quality to

3The estimation of the number of downstream receivers is feasible, for instance, with
the Express multicast routing protocol [66].

80

layer i. This feature allows to gracefully adapt the multicast
ow's quality to
the bandwidth available for each individual receiver, by delivering a di�erent
subset of layers to each one.

In this section we extend the M-UFD algorithm to support layered mul-
ticast transmissions. In order to have the higher layers dropped �rst, we
introduce a new per-multicast
ow variable for each link: the layer threshold
yli. The challenge of M-UFD Layered Multicast is to drop layered packets
such that:

1. At link l, layers of multicast
ow i below the threshold yli are enqueued
and layers above are dropped. This leads to having only the lower
layers of each multicast
ow delivered, which is the objective when
using layered schemes.

2. The bandwidth obtained by a multicast layered
ow does not exceed
the
ow's fair share of bandwidth. The
ow's fair share of bandwidth is
the bandwidth that a
ow would receive with the algorithm presented
in Section 6.2.

3. Oscillations of the layer threshold yli are minimized. In [10] we have
shown that oscillations on the number of layers received harm the re-
sulting video quality.

4. The algorithm to compute yli is eÆcient and the number of per-multicast

ow variables required is minimized.

A traditional approach to ensure that a
ow does not exceed its assigned
bandwidth is the Token Bucket algorithm. The algorithm we propose for
packet dropping of layered multicast is based on this algorithm. Tokens are
substracted from the bucket when a packet that would have been dropped
according to the algorithm of Section 6.2 is enqued. In the opposite case (i.e. a
packet that would have been enqueued with the algorithm of Section 6.2 is
dropped) tokens are added to the bucket. Then, by not enqueuing any packet
when there are not enough tokens in the bucket for it, we ensure that a
ow
cannot exceed its fair share of bandwidth (condition 2). As long as there are
enough tokens in the bucket, we enqueue layers below yli and drop the rest
(condition 1).

The policy we use to compute the value of yli is based on the static levels
policy that we proposed in [10]. With this policy, the layer threshold is set
such that a packet of multicast
ow i that belongs to layer y is only enqueued
if the bucket occupancy Bi does not exceed a static level By (see Figure 6.3).
In [10] we have shown that, with a proper con�guration of the bucket size

81

B y-1

B y-2

B y-3

y

y-1

y-2

Static levels

number of
enqueued layers Bi < By

Bi > By

layer l enqueued

layer l dropped

Figure 6.3: Static levels policy.

ingress?

 ingress
label control

(Eq. 4.4)Yes

No
user?incoming

packet k

user
labeling
(Eq. 4.3)Yes

No

multicast?

 ingress
relabel

(Eq. 6.3)Yes

No

Ri

multicast?

core
relabel

(Eq. 6.4)Yes

No

Ri
l

packet
dropper

Drop
packet

Enqueue
packet

outgoing
packet k

layered?

Yes

No

lith, Bi

Algorithm
3

Figure 6.4: M-UFD Algorithm with Layered Multicast.

Bmax, the static levels policy does not result in excessive oscillations on the
received number of layers (condition 3).

The resulting algorithm for dropping layered packets is described in Fig-
ure 6.44 and Algorithm 3. This algorithm only requires to keep one per-
multicast variable, the bucket occupancy Bi, in addition to the layer thresh-
old yli (condition 4).

6.4 Experimental Results

To evaluate the performance of the M-UFD architecture for bandwidth allo-
cation and layered multicast, we performed some tests with the implementa-
tion explained in Chapter 8.

We used the following con�guration that is shown in Figure 6.5. The
testbed comprised a PC as core router (AMD-K6 CPU at 350 MHz), two PCs
as sender/ingress (Pentium CPU at 200 MHz) and one PC as receiver (AMD-

4In the algorithm of Figure 6.4, the information of whether a multicast packet is layered
or not and, in the former case, the layer to which the multicast packet belongs, is carried
by the RTP header extension that we propose in [10].

82

Algorithm 3 Dropping Algorithm for Layered Multicast Flows.
Upon receiving packet k:
yk = read layer(packet k)
Lk = read label(packet k)
lk = get length(packet k)
estimate Lfair

prob = max(0; 1�
Lfair
Lk

)

yli = layer threshold(Bi)
if prob > unif rand(0; 1) then
drop = 1

else
drop = 0

end if
if yk > yli then
drop(packet k)
if drop = 0 then
Bi = max(Bi + lk; Bmax)

end if
return

else
if drop = 1 then
if Bi < lk then
drop(packet k)
return

else
Bi = Bi � lk

end if
enque(packet k)
return

end if
end if

83

Sender A
Pentium @ 200 MHz

Sender B
Pentium @ 200 MHz

Router
AMD-K6 @ 350 MHz

Receiver
AMD-K6 @ 300 MHz

Ethernet
100 Mbps

Ethernet
100 Mbps

Ethernet
10 Mbps

Figure 6.5: Con�guration of the test network.

K6 CPU at 300 MHz). The network was build of separate Ethernet segments
(two 100 Mbps and one 10 Mbps). The latter segment, that connected the
router with the receiver, was the bottleneck link.

6.4.1 Bandwidth Allocation

The bandwidth allocated to a multicast
ow with the logRD policy increases
logarithmically with the number of receivers. In order to evaluate the level of
accuracy achieved by the M-UFD architecture in the bandwidth allocation,
we performed the following test. Senders A and B consisted of one user each
(user A and user B) sending a multicast and a unicast
ow respectively at a
constant rate equal to 10 Mbps. The number of receivers for the multicast

ow (user A) varied from 1 to 100. Both users had a share of 1. The packets
length was set to 1000 bytes.

Figure 6.6 shows the results obtained for the above test (throughput ob-
tained by the multicast
ow). It can be observed that the results obtained are
surprisingly accurate. We conclude that the M-UFD architecture provides
the desired bandwidth allocation.

6.4.2 Layered Video

In Section 6.3 we have proposed a dropping algorithm for the transmission of
layered
ows that adapts the quality of the delivered stream to the bandwidth
available for each receiver. The design goal was to �nd a dropping algorithm
that lead to a graceful degradation of the
ow's quality while preserving the
original bandwidth allocation.

In order to evaluate the performance of the proposed approach we ran
some experiments with layered video. We compared the quality of the re-

84

2

3

4

5

6

7

8

9

10

1 10 100

al
lo

ca
te

d
ba

nd
w

id
th

 (
M

bp
s)

number of downstream receivers

theoretical
experimental

Figure 6.6: Bandwidth Allocation with CBR traÆc.

ceived video when using the dropping algorithm explained in Section 6.3,
which we refer to as layered dropping, and the dropping algorithm of Sec-
tion 6.2, which we refer to as uniform dropping. Experiments were done
using the DCT-based layered video codec described in [10]. The original
video was coded using 10 layers.

To quantify the level of corruption of the received videos due to packet
losses, we used the QMeasure metric described in [67]. This measure tries to
estimate the distortion perceived by the human visual system and is known
to be more precise than objective measures like the PSNR or the MSE.

In the test we performed, Sender A consisted of one user transmitting a
multicast layered video
ow, while Sender B consisted of N�1 users sending
one CBR
ow each. The aggregate rate of the CBR
ows was of 15 Mbps.
All
ows had only one receiver and all users had a share of 1. The size of the
bucket at the router was set to Bmax = 100 Kbits.

Figure 6.7 shows the resulting bandwidth allocation with uniform and
layered dropping. This result validates the dropping algorithm we proposed
in Section 6.3, since the bandwidth obtained is the same for both dropping
algorithms. This bandwidth is approximately the
ow's fair share of band-
width.

Figure 6.8 shows how the bandwidth delivered for the video
ow is dis-
tributed among the di�erent layers with both dropping algorithms when
N = 20. It can be observed that layered dropping algorithm achieves a good
level of discrimination among layers, as desired. Note that with uniform
dropping, there is no discrimination since the dropping does not distinguish
between layers.

Figure 6.9 shows the bene�t obtained with layered dropping as com-

85

200

300

400

500

600

700

10 20 30 40 50

B
an

dw
id

th
 V

id
eo

 (
kb

ps
)

N

theoretical
layered dropping
uniform dropping

Figure 6.7: Bandwidth Allocation with video traÆc.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9

%
 o

f d
el

iv
er

ed
 p

ac
ke

ts

layer

layered dropping
uniform dropping

Figure 6.8: Percentage of delivered packets as a function of the layer.

86

0

1

2

3

4

5

6

7

10 15 20 25 30 35 40 45 50

Q
M

ea
su

re

N

uniform dropping
layered dropping

Figure 6.9: Perceived video quality.

pared to uniform dropping. In this �gure, video quality is measured with
the QMeasure metric explained above. This metric is such that the lower
the QMeasure, the higher the video quality. We can observe that, with lay-
ered dropping the perceived quality is degraded gracefully (i.e. the QMeasure
keeps lower) as the number of competing users (N) increases. In contrast,
with uniform dropping the quality su�ers a sharp degradation when the band-
width allocated to the multicast layered
ow becomes smaller than the
ow's
sending rate.

The results reported by the QMeasure match our subjective perception
of the videos. With the uniform dropping, when reducing the allocated
bandwidth, we observed a jerky display where the movement of objects was
corrupted (because of the loss of entire frames), overlapping of images and
frequent changes of de�nition within the same frame. In contrast, with the
layered labeling, we only observed a smooth decrease in the de�nition. This
can be observed in the videos that have been made available at http://www.
ccrle.nec.de/projects/mufd/.

6.5 Discussion and Related Work

One of the reasons why multicast is not currently available in the Internet is
because users lack an incentive to use it. The logRD policy for bandwidth
allocation provides a solution to the problem of encouraging the use of mul-
ticast while keeping a good level of fairness between unicast and multicast.

In this chapter we have proposed a multicast extension to the UFD archi-
tecture based on the logRD policy: the M-UFD extension. M-UFD preserves

87

the feature of UFD of avoiding per-
ow or per-user state at core nodes for
unicast
ows. In contrast, multicast
ows require inherently some per-
ow
state at core nodes. However, since the number of multicast
ows is expected
to be small as compared to unicast, the resulting architecture still scales well.

M-UFD has been designed to allow a multicast layered
ow to accommo-
date its quality to the available bandwidth of each receiver. The advantage
of layered multicast support in M-UFD as compared to other approaches is
that it does require neither signaling nor the interaction of the receiver, it
reacts immediately upon changing networks conditions and it does not su�er
from stability problems.

A related work that extends core stateless fair queuing architectures
(speci�cally CSFQ [33]) to multicast is mCorelite [68]. There are a num-
ber of fundamental di�erences between the approach taken by M-UFD and
mCorelite. The �rst di�erence is in the service model. mCorelite allocates in
a link the same bandwidth for all
ows, regardless whether they are unicast
or multicast and the number of receivers. We argue that, in order to encour-
age the use of multicast, users should be given an incentive to use it. The
second di�erence is architectural: mCorelite receivers are required to signal
the number of layers to be received. We believe that the complexity involved
with the signaling is a main a drawback of mCorelite as compared to our ap-
proach. Finally, mCorelite has only been evaluated via simulations and not
with a real implementation. The experimental results reported in this chap-
ter, including the test with layered video, are one of the main contributions
of the M-UFD extension.

A well known approach for layered multicast is the receiver-driven lay-
ered multicast (RLM) [69]. With RLM, the number of layers delivered by the
network is updated dynamically with join and leave experiments according
to the behavior experienced by the receiver. Some important drawbacks of
RLM as compared to our solution are its slow response to network conges-
tion and its instability problems (see [70] for a detailed explanation of these
drawbacks).

[71] proposes an alternative bandwidth allocation criterion to the logRD
policy for multicast and unicast
ows. [71], however, does not give users an
incentive to use multicast.

88

Chapter 7

Wireless UFD

Resource Allocation in wireless networks has a special relevance due to the
scarce resources available in such networks. Since wireless networks may be
considered as just another technology in the communications path, it is desir-
able that the architecture for resource allocation follows the same principles
in the wireless network as in the wireline Internet, assuring compatibility
among the wireless and the wireline parts.

In this chapter we address this issue by extending the MAC protocol of
the IEEE 802.11 Wireless LAN standard. The challenge in Wireless LAN is
that we do not have all packets in a centralized queue, like in wired links, but
we have them distributed in the wireless hosts. Therefore, we need a MAC
mechanism capable of providing the desired scheduling.

The architecture we propose for Wireless LAN, the Wireless UFD archi-
tecture, allocates resources in the Wireless LAN following the same principles
as the UFD architecture for wired links.

The rest of the chapter is structured as follows. We �rst introduce the
state of the art; we recall the basics of the IEEE 802.11 standard and present
a review on related work. Then, we introduce the proposed architecture as
an extension of the 802.11 standard. The performance of the architecture is
thoroughly evaluated via simulation. The chapter closes with a summary.

7.1 State of the Art

7.1.1 The IEEE 802.11 MAC layer

The basic IEEE 802.11 Medium Access mechanism is called Distributed Co-
ordination Function (DCF) and is based on the Carrier Sense Multiple Access
with Collision Avoidance (CSMA/CA) protocol [72]. CSMA/CA was �rst in-

89

vestigated thoroughly in [73] and [74]. The MAC scheme used in IEEE 802.11
is an extended version of the FAMA protocol [75]. It is slotted, i.e. the access
can happen only at speci�c instants. The 802.11 MAC protocol operation is
shown in Figure 7.1.

In the DCF mode, a station must sense the medium before initiating the
transmission of a packet. If the medium is sensed idle for a time interval
greater than the DCF Inter Frame Space (DIFS), then the station transmits
the packet. Otherwise, the transmission is deferred and a backo� process is
started.

DIFS

Immediate access when medium is
free >= DIFS

Busy Medium

DIFS
PIFS

SIFS
Next FrameBackoff Window

Slottime

Select Slot and decrement Backoff as long
as medium is idle

Defer Access

Contention-Window

Figure 7.1: Basic 802.11 MAC protocol operation

Speci�cally, the station computes the backo� interval as an equally dis-
tributed random value taken from the range of 0 to the so-called Contention
Window (CW), where the backo� time is measured in slot times. This back-
o� interval is then used to initialize the backo� timer. This timer is decreased
only when the medium is idle and is frozen when it is sensed busy. Each time
the medium becomes idle for a period longer than a DIFS, the backo� timer
is periodically decremented, once every slot-time.

As soon as the backo� timer expires, the station starts to transmit. A
collision occurs when two or more stations start transmission simultaneously
in the same slot. To avoid collisions, a Request To Send (RTS) and a Clear
To Send (CTS) can be exchanged between source and receiving stations prior
to the actual frame transmission. In addition, an Acknowledgement (Ack)
is transmitted to the source after successful reception of the frame to detect
collisions. The Ack scheme can additionally be used to control the retrans-
mission of erroneous frames. The RTS/CTS scheme is also used for hidden
node handling.

If a CTS or acknowledgment is not received by the source station, it
assumes that the transmission attempt was not successful and re-enters the
backo� process. To reduce the probability of collisions, the CW is doubled
after each unsuccessful transmission attempt until a prede�ned maximum

90

(CWmax) is reached. After a successful frame transmission, if the station
still has frames bu�ered for transmission, it must execute a new backo�
process.

The second access mechanism speci�ed in the IEEE standard is built
on top of DCF and it is called Point Coordination Function (PCF). It is
a centralized mechanism, where one central coordinator polls stations and
allows them undisturbed, contention free access to the channel. In contention
free access mechanism, collisions do not occur since the access to the channel
is controlled by one entity. This scheme has no practical meaning to this
thesis, except that the access is prioritized due to the shorter PCF Inter
Frame Space (PIFS).

The three Inter Frame Spaces (IFS) serve the purpose of de�ning di�erent
levels of access priorities. They de�ne the minimal time that a station has to
let pass after the end of a frame, before it may start transmitting a certain
type of frame itself. After a SIFS (Short IFS), the shortest interframe space,
only acknowledgements, CTS and data frames in response to poll by the
PCF may be sent. The use of the DIFS and the PIFS has already been
explained. This use of IFS allows the most important frames to be sent
without additional delay and without having to compete for access with
lower priority frames.

7.1.2 Related Work

Current trends in wireless networks indicate a desire to provide a
exible
wireless infrastructure that can support emerging multimedia services along
with traditional data services.

One possible approach for supporting multimedia in Wireless LAN is
based on the Integrated Services architecture proposed for the wireline Inter-
net [76]. In this approach, the control over wireless resources is very strict,
motivated by the argument that strict control, with complex and sophisti-
cated mechanisms and protocols, is required to maintain good quality in the
wireless environment.

Another approach for multimedia support in Wireless LAN is based on
the Di�erentiated Services architecture, which provides service di�erentiation
using more simple mechanisms. There have been several proposals for service
di�erentiation in wireless networks, like in [77]. These mechanisms, however,
rely on centralized control and polling of backlogged mobile hosts. In contrast
to these proposals, the architecture we propose in this chapter is based on
distributed control. We argue that distributed control results in a more
productive use of radio resources.

[78], [79], [80], [81] and [82] are other proposals for service di�erentiation

91

relying on distributed control. These architectures are based on the idea of
modifying the backo� time computation of the 802.11 standard to provide
service di�erentiation, which is also the basis of our elastic traÆc extension.

In [78] the backo� time computation is modi�ed by assigning shorter
CWs to real-time traÆc. The main di�erence between [78] and our proposal
is that [78] does not decouple real-time traÆc from elastic traÆc and, as
a consequence, the service quality of real-time traÆc in [78] is sensitive to
the changing conditions of elastic traÆc. In addition, [78] does not provide
di�erent priorities for elastic traÆc.

[79] and [80] propose the use of di�erent CWs and di�erent backo� in-
crease parameters, respectively, for di�erent priorities in elastic traÆc, and
they do not support real-time traÆc. The fact that the parameters in [79]
and [80] are statically set makes the resulting bandwidth distribution uncer-
tain, as opposed to our proposal, in which the desired bandwidth allocation
is achieved by modifying dynamically the CWs considering both the aggres-
siveness of the sources and their willingness to transmit.

The idea of modifying dynamically the backo� computation parameters
had already been mentioned in [81]. However, [81] provides neither an algo-
rithm nor simulation results for this dynamic adaptation.

[82] provides relative priorities for delay and throughput in a multi-hop
wireless network. This approach piggybacks scheduling information onto
RTS/DATA packets and then uses this information to maintain a scheduling
table in each node. This table is then used to modify the computation of the
backo� times. One major drawback of [82] as compared to our approach is
its complexity. Moreover [82] does not provide backwards compatibility.

The Black Burst scheme in [83] introduces a distributed solution to sup-
port real-time sources over 802.11, by modifying the MAC for real-time
sources to send short transmissions to gain priority. This method can o�er
bounded delay. The disadvantage of [83] is that it is optimized for isochronous
sources, preferably with equal data rates, which can be a signi�cant limita-
tion for applications with variable data rates.

The basic access mechanism of 802.11, the DCF mode, does not guar-
antee anything else than Best E�ort service. The second access mechanism
speci�ed in 802.11, the PCF mode, is intended to support real-time services
by using a central polling mechanism. This mechanism, however, is not sup-
ported in most wireless cards, and it was shown in [84] that the cooperation
between PCF and DCF modes leads to poor throughput performance.

The IEEE 802.11 Working Group has already identi�ed the need for QoS
enhancements, and has created a special Working Group dealing with such
issues. Most of the proposals presented to this Working Group are based
on centralized mechanisms, and rede�ne in one or another way the Point

92

Coordination Function. NEC has participated in this standardization e�ort
with its own proposal [18, 19]. The Wireless UFD architecture of this chapter
is based on this proposal.

In contrast to 802.11, HIPERLAN/1 [85] does support delivery of packets
with di�erent priorities, which is achieved by a scheme similar to the di�erent
IFSs used in IEEE 802.11. The MAC protocol used in HIPELRAN/1 is EY-
NPMA (Elimination Yield { Non-preemtive Priority Multiple Access). The
Contention Resolution Algorithm in our real-time traÆc extension (CRA-
RT) uses concepts of the EY-NPMA protocol.

The HIPERLAN/2 standard has recently been published [86]. It uses
a centrally controlled MAC scheme. An international harmonization of the
IEEE 802.11 and HIPERLAN/2 standards is ongoing at present.

7.2 Architecture

The goal of the Wireless UFD architecture is to extend the resource allocation
of the UFD architecture to the user's Wireless LAN1. In order to provide the
desired resource allocation in a Wireless LAN we have to:

� Ensure that real-time packets corresponding to requests that have been
accepted by the user's admission control are forwarded in the Wireless
LAN with a very low delay.

� Distribute the remaining bandwidth available in the Wireless LAN
among elastic
ows proportionally to the weights Wi assigned to them.

Applying the scheduling de�ned in Chapter 5 at the network layer of the
wireless hosts leads to:

� In a station, real-time packets are always transmitted �rst than the
elastic packets of the same station.

� The bandwidth received by a station is distributed among the
ows of
this station proportionally to their weights.

In order to achieve the desired behavior, we require the following condi-
tions in addition to the ones given above:

1. A station that has a real-time packet to transmit should be given a
prioritized access to the channel with respect to a station with an elastic
packet.

1The reference scenario on which the Wireless UFD architecture is based consists of a
Wireless LAN which is the user's network and a wired network which is the user's ISP.
Note that in this case the entity user is most likely an organization such as a company.

93

2. The bandwidth left by real-time traÆc should be shared among the
elastic traÆc of the di�erent stations according to:

rsP
i2S Wi

=
rrP
i2RWi

8r; s (7.1)

where S is the set of
ows of station s and R the set of
ows of station
r.

In order to satisfy conditions 1 and 2, the MAC protocol of 802.11 has to
be modi�ed. In the following we describe two modi�cations, one to ensure
condition 1 (real-time traÆc extension) and the other to ensure condition 2
(elastic traÆc extension).

7.2.1 Real-time traÆc extension

The only solution in the current 802.11 MAC protocol that allows a pri-
oritized access is the PCF mode. With PCF, the prioritized access to the
medium is achieved by using a shorter IFS. In the Wireless UFD architec-
ture, we rede�ne the PCF function of the current standard into a distributed
scheme to support real-time traÆc. We argue that distributed control is
more eÆcient and
exible than centralized control. The original PCF is not
widely supported in current products, and the only requirement of our solu-
tion is that the original PCF must not be used in a network together with
the extension presented here.

Rede�ning the PCF mode for real-time allows stations with real-time
traÆc to access the channel for the transmission of their packets after the
PIFS, while stations with elastic packets have to wait until the end of the
DIFS. In this way, real-time traÆc receives a prioritized access over elastic
traÆc: whenever there is a real-time packet to be transmitted, it is always
transmitted before any other packet.

The mechanism explained so far solves the contention between real-time
and elastic packets by giving a higher priority to the former. However, di�er-
ent stations with real-time traÆc may still collide when trying to access the
channel after the PIFS. For this reason, a contention resolution algorithm
is needed in order to avoid collisions between stations with real-time traÆc.
This algorithm is explained in detail in Section 7.3.

In order to meet the requirement of real-time traÆc for low delay, the
amount of this type of traÆc admitted should be kept suÆciently low via
admission control. If there is too much real-time traÆc, the resolution of
contention in the rede�ned PCF will take too long and the requirement for
immediate delivery of real-time packets will not be met. Thus, the admission
of a new request in the Wireless UFD architecture consists of two steps:

94

1. Check that there are enough resources for this request in the wireless
part (i.e. the user's Wireless LAN).

2. Check that there are enough resources in the wired part (i.e. the ISP's
wired network).

Thus, a new request will only be accepted if the two conditions above are
met. The evaluation of the second condition (the wired part) is performed
by the user-based admission control (UBAC) scheme (see Section 5.3), while
the �rst condition (the wireless) is evaluated according to the rule we have
obtained via simulation in Section 7.5.1.

7.2.2 Elastic traÆc extension

In the DCF mode, the bandwidth received by a station depends on its CW:
the smaller the CW, the higher the throughput. In our proposal, elastic
traÆc is supported by the DCF function of the current standard with minor
changes in the computation of the CW in order to give to each station a
throughput proportional to the sum of the weights of its
ows (Equation 7.1).
The algorithm for computing the CW for elastic traÆc is explained in detail
in Section 7.4.

7.2.3 Protocol Operation

The combination of the mechanisms for real-time and elastic traÆc explained
above lead to the protocol operation shown in the example of Figure 7.2.

time

previous
transmission

PIFS

real-time
packet

real-time
contention resolution

PIFS

DIFS

Contention slots

PIFS

DIFS

(CW computation algorithm for
weight = 1/2)

elastic packet
with weight = 1/2

SIFS

Ack Ack

SIFS

Contention slots
(CW computation algorithm for

weight = 1/4)

elastic packet
with weight = 1/4

Figure 7.2: Protocol Operation.

In this example, after the end of a previous transmission, one station has
a real-time packet to transmit. It accesses the channel, at the end of the
PIFS. In order to make sure that collisions with other stations accessing the
channel for real-time traÆc are resolved, an additional contention resolution
scheme is applied. After the end of the transmission, the receiver answers
with an acknowledgement after a SIFS.

95

In the next access cycle, there is no real-time traÆc to be transmitted,
so the channel can be accessed by elastic traÆc. In the example, it is station
with a
ow that has a weight of 1/2 that accesses the channel. The packet
waits for the end of the DIFS and another two contention slots before it starts
its transmission. As commented before, this station fully complies with the
existing DCF MAC scheme, but has a di�erent CW, according to the weight
of its
ow. The receiver again answers with an ACK. Finally, a station with
a
ow that has a weight of 1/4 accesses the channel with a larger CW.

7.3 Contention Resolution Algorithm for the

Real-time TraÆc extension (CRA-RT)

The principle of the CRA-RT scheme is shown in Figure 7.3. This scheme uses
principles of the EY-NPMA MAC protocol described in [85], and, according
to [87], has a residual collision rate almost independent from the number of
contending stations. However, the parameters of the contention resolution
(CR) scheme as used in [85] will be adapted to the requirements of the CRA-
RT scheme.

previous
transmission

real-time
packet

Elimination
Burst 1

SIFS

PIFS

slot
duration

Elimination
Burst 2

slot
duration

RTS

SIFS

CTS

SIFS

Figure 7.3: Contention resolution scheme for real-time traÆc.

A station with real-time traÆc starts its contention cycle when a PIFS
has passed after the end of a previous transmission. CRA-RT uses two bursts
for elimination, elimination burst (EB) 1 and EB2. These bursts may consist
of a random data or pseudo-noise pattern. Their only purpose is to occupy
the channel such that stations with elastic traÆc cannot sense the channel
idle for longer than a PIFS duration and, hence, do not interfere an access
attempt for real-time.

The duration of the EBs are multiples of the Slot Duration de�ned in
the 802.11 standard. The duration of EB1 is calculated according to the

96

following probability density:

PE1(n) =

8<:
pn�1E1 (1� pE1) ; 1 � n < mE1

pmE1�1
E1 ;n = mE1;

(7.2)

where n is the number of slot durations EB1 shall last, pE1 is a probability
parameter between 0 and 1 and mE1 is the maximum number of EB1 slots.
Note that the above formula requires that EB1 lasts at least one slot. This
is necessary in order to occupy the channel and keep terminals with elastic
traÆc from making an access attempt.

The duration of EB2 shall be calculated according to the probability
density

PE2(n) =
1

mE2
for 1 � n � mE2; (7.3)

i.e. it is taken from an equally distributed variable in the range between 1
and the maximum number of EB2 slots, mE2. Note that here the duration
is at least one slot for the same reasons as for EB1.

A station that makes an access attempt, �rst chooses the duration of
EB1 and EB2. If it senses the channel free for at least a PIFS, it transmits
its EB1. After this transmission, the station senses the channel for one slot
duration. If the channel is sensed free, it continues to send its EB2 after the
sensing slot. After the transmission of EB2, it senses the channel again. If it
is free, it starts to transmit its RTS after a slot duration and the transmission
continues as de�ned for the data transmission using the DCF. If, however,
the station senses the channel busy after its transmission of EB1 or EB2,
it withdraws its transmission attempt and defers until the channel has been
free for at least a PIFS. Using this mechanism, the station which chooses the
longest EB1 and EB2 among all contending stations wins the contention and
is allowed to transmit.

If two stations happen to have the same EB1 and EB2 durations, they
collide. However, due to the importance of the packets, we use the already
de�ned mechanisms in 802.11 for collision detection, i.e. the RTS/CTS hand-
shake and the transmission of an Ack after the packet reception. In fact, the
Ack will be transmitted in any case if a packet is being transmitted from a
station using the new scheme to a station using the old scheme and, hence,
shall be kept for the sake of backwards compatibility.

The CRA-RT scheme will be analyzed mathematically in the following
section. It will be shown that the performance of the scheme depends on the
values of pE1, mE1 and mE2, but also on the number of stations entering a
contention cycle. The goal of the mathematical analysis is to parameterize

97

the CRA-RT scheme appropriately for the application in the IEEE 802.11
extension. It will also be a basis to justify the selection of this speci�c scheme,
even if there might have been other possible candidates.

7.3.1 Mathematical Analysis

The idea for the analysis has been taken from [87], although the results di�er
signi�cantly.

Assume that N1 stations enter the EB1 period of a speci�c CRA-RT
contention resolution cycle where the duration of the EB1 of each station is
given according to Equation 7.2. Then, the probability that the EB1 period
ends after i slots and exactly k stations survive, is given by:

PE1;i;k(i; k) =8>>>>><>>>>>:

(1� pE1)
k ; i = 1; k = N1�

N1

k

� �
pi�1E1 (1� pE1)

�k
�
�
1� pi�1E1

�N1�k ; 1 < i < mE1�
N1

k

� �
pi�1E1

�k
�
�
1� pi�1E1

�N1�k ; i = mE1

(7.4)

Consequently, the probability that exactly k stations survive EB1, can
be represented as:

PE1;k(k) =

8<:
PmE1

i=2 PE1;i;k(i; k) ; 1 � k < N1PmE1

i=1 PE1;i;k(i; k) ; k = N1

(7.5)

These k stations are the ones that enter the EB2 period. The average dura-
tion �TE1 of EB1 can be calculated as:

�TE1 = E (PE1;i(i)) � Tslot = Tslot �

mE1X
j=1

j � PE1;i(j) (7.6)

where E(�) denotes the expected value, Tslot a slot duration in IEEE 802.11
and

PE1;i(i) =

8<:
(1� pE1)

N1 ; i = 1PN1

k=1 PE1;i;k(i; k) ; 1 < i � mE1

(7.7)

is the probability that the EB1 period ends after i slots.

98

The same calculation is now being performed for the EB2 cycle, cf. Equa-
tion 7.3. Let N2 denote the number of stations entering the EB2 cycle. Then,
the probability that EB2 ends after i slots with k stations left, is given by:

PE2;i;k(i; k; N2) =

8>><>>:
�

1
mE2

�k
; i = 1; k = N2

�
N2

k

� (i�1)N2�k

m
N2
E2

; 1 < i � mE2

(7.8)

The expected duration of an EB2 cycle depends on the outcome of the
EB1 cycle in terms of numbers of surviving stations and can be represented
as:

�TE2(N2) = Tslot �
N1P

N2=1

PE1;k(N2) � E (PE2;i(i; N2))

= Tslot �
N1P

N2=1

�
PES;k(N2) �

mE2P
i=1

�PE2;i(i; N2)

� (7.9)

where

PE2;i(i; N2) =

8><>:
�

1
mE2

�k
; i = 1; k = N2

PN2

k=1 PE2;i;k(i; k; N2) ; 1 < i � mE2

(7.10)

denotes the probability that the EB2 cycle ends after i slots. The overall
collision probability Pc is the situation where more than one station survive
the EB2 cycle and can be calculated as:

Pc =
N1X

N2=2

(1� PE2;k(1; N2)) � PE1;k(N2) (7.11)

with
PE2;k(k;N2) =8>>>><>>>>:

mE2P
i=2

�
N2

k

� (i�1)N2�k

m
N2
E2

; 1 � k < N2

�
1

mE2

�N2

+
mE2P
i=2

�
N2

k

�
(i�1)N2�k

m
N2
E2

; k = N2

(7.12)

as the probability that k out of N2 stations survive the EB2 cycle.
The overhead O1 of a single access attempt depends on three main values:

99

� The expected duration TCRA�RT of a successful CRA-RT cycle, i.e. a
cycle which �nishes without a collision. This is given by the sum of
�TE1, see Equation 7.6, �TE2, see Equation 7.9, and 2 �Tslot for the carrier
sensing slots after EB1 and EB2.

� The time it takes to detect a collision of the CRA-RT scheme, Tcoll. A
collision will be detected if the RTS of the sender is not answered by a
CTS of the receiver. The medium can be accessed again by a real-time
station after a PIFS following the RTS. This time is denoted by TRTS,
and Tcoll = TCRA�RT + TRTS.

� The collision probability Pc according to Equation 7.11.

The overhead for a single access attempt in terms of average duration of
the CRA-RT scheme, then, is calculated as:

O1(mE1; pE1; mE2; N1) = Pc � Tcoll + (1� Pc) � �TCRA�RT (7.13)

Iterating this overhead of a single access cycle for subsequent access cycles,
weighted with the residual collision probability for a single attempt, yields
the average overhead O:

O(mE1; pE1; mE2; N1) = O1 �
1

1� Pc
(7.14)

The overhead O can be interpreted as a function that weighs the overhead
of the collision avoidance scheme against the additional overhead that needs
to be spent if collisions occur. It is clear that, the more overhead is spent for
the collision avoidance, the smaller the collision probability. On the other
hand, each collision adds a certain well-known amount of overhead because
it can be detected due to the RTS/CTS scheme used. Note that O depends
on the parameters given in Equation 7.14. The optimum parameter set for
mE1; pE1 and mE2 is found when the overhead O reaches its minimum for a
given N1, i.e. we seek min(O(mE1; pE1; mE2; N1). The function O has been
computed and has the following properties:

� There is always a dedicated minimum for a given value of N1.

� The minimum is very stable for values of mE1 and mE2 bigger than the
ones for the minimum.

� The value of pE1 can be chosen from a big range around the optimum
value without signi�cant impact on the overhead.

100

� The bigger N1, the bigger the value of the optimum value for pE1. The
optimum values for mE1 and pE1 remain almost unchanged.

� The residual collision probability Pc decreases with increasing values of
mE1; pE1 and mE2. The increase of mE2 has the biggest impact.

The selection of N1 depends on the usage scenario. For the optimization
of the CRA-RT scheme, it was assumed that 10 real-time stations almost
completely occupy the available data rate of the Basic Service Set. This sce-
nario was assumed to be the worst case for the 2 Mbit/s DS modus of IEEE
802.11 and was chosen as the reference scenario. By iteratively performing
simulations and adapting mE1; pE1 and mE2, it was found that in this sce-
nario, on average approximately seven stations enter each CRA-RT cycle.
Therefore, N1 = 7 was chosen. The resulting optimum values for mE1; pE1,
mE2, the resulting overhead O and the residual collision probability Pc are:

pE1 = 0:43
mE1 = 5
mE2 = 4
O = 218:69�s
Pc = 10:4%

(7.15)

All simulations presented in Section 7.5.1 have been performed using this
parameter set.

7.3.2 Rationale for choosing the CRA-RT scheme

The CRA-RT scheme can be compared to other schemes with only one elim-
ination phase. The bursting is necessary because of the carrier sensing of
legacy stations that may interrupt a CRA-RT cycle. Assume the following
very simple scheme with similar overall overhead as the CRA-RT scheme
with the parameters according to Equation 7.15: Each station chooses a ran-
dom number of slots for its elimination burst duration out of 9 possible slots.
After the bursting, the stations sense the channel for 1 slot. If it is free,
they immediately continue with the transmission of an RTS, otherwise they
withdraw their access attempt. Assuming an equal distribution according
to Equation 7.3, the overhead can be calculated according to the equations
given above for the EB2 cycle. The overhead O for the reference scenario,
then, has a value of approx. 226�s at a residual collision rate of Pc = 34:6%.
It is immediately obvious that the overhead is bigger and! the number of
access attempts for a single packet to be transmitted is higher than with the

101

CRA-RT scheme. A similar calculation with similar results can be performed
for a geometric distribution.

It is the combination of the two EB cycles with the probability distribu-
tions according to Equations 7.2 and 7.3 which makes the CRA-RT scheme
very eÆcient. The EB1 cycle has the property that the probability for a low
number of surviving stations entering the EB2 cycle, is high, almost inde-
pendent from the number N1 of contending stations. The EB2 cycle, then, is
well suited to sort out a single station out of a low number N2 of remaining
stations.

7.4 ContentionWindow Computation for the

Elastic TraÆc extension

In the DCF mode of the 802.11 standard, the size of the CW determines the
probability for a station to win the contention. The smaller the CW is, the
higher the probability of getting access to the channel. As a consequence,
there is a direct relationship between the CW assigned to a station and the
bandwidth that this station will receive in a speci�c scenario. Equation 7.1
can therefore be satis�ed by assigning to each station the CW values that
lead to the desired bandwidth distribution for elastic traÆc.

The diÆculty of this approach, however, relies in determining the CW
that will lead to the speci�ed distribution. The approach we have chosen for
the calculation of the CW in Wireless UFD is a dynamic one.

In order to be able to properly adjust the CWs, we introduce a new
variable LMAC

s , the MAC label2, de�ned as:

LMAC
s =

rsP
i2SWi

(7.16)

where rs is the estimated bandwidth experienced by station s, S is its set of

ows and Wi their weight.

With the above de�nition of LMAC
s , the resource distribution expressed

in Equation 7.1 can be achieved by imposing the condition that the MAC
label LMAC

s should have the same value for all the stations:

LMAC
s = L 8s (7.17)

2The MAC label de�ned in this chapter should not be confused with the packet label
Lk of the previous chapters. The two labels serve di�erent purposes, are computed inde-
pendently and travel in di�erent parts of the packet header: while the former is inserted
in the MAC header, the latter travels in the network header.

102

Note that the actual value of L can vary in time (depending on the number
of
ows for example).

Equation 7.17 is ful�lled by using the following algorithm: having cal-
culated its own LMAC

s , each station includes it in the MAC header of the
packets it sends. For each observed packet, if the LMAC

s in the packet's MAC
header is smaller than the LMAC

s of the station, the station increases its CW
by a small amount, while in the opposite case the station decreases its CW
by a small amount. In this way, the LMAC

s of all the stations tend towards a
common value, L.

The above explanation describes the basics of the algorithm. However,
in the adjustment of the CW, there are additional aspects that have to be
taken into account:

� For backward compatibility reasons, we do not want the CW to increase
above the values de�ned by the 802.11 standard, since this would lead
to Wireless UFD stations experiencing a worse performance than 802.11
legacy terminals when competing with them in the same Wireless LAN.

� If the low sending rate of the application is the reason for transmitting
below the desired rate, then the CW should obviously not be decreased.
This can be detected by the fact that in this situation the transmission
queue is empty.

� CWs should not be allowed to decrease in such a way that they nega-
tively in
uence the overall performance of the network. If the channel
is detected to be below its optimum limit of throughput due to too
small values for the CWs (i.e. overload), the CW should be increased.
This aspect will be elaborated in the following section.

The above considerations lead to the Algorithm 4. This algorithm com-
putes a value p which is used to scale the CW values de�ned in 802.11. Note
that, besides this scaling of the CW, the backo� time computation algo-
rithm is left as de�ned in the 802.11 standard (i.e. the Contention Window
is doubled every unsuccessful transmission attempt for a given number of
times).

7.4.1 Overload

Algorithm 4 does not consider one important issue which is the overload. In
fact, due to the nature of our protocol and in particular due to the dynamic
way of adjustment of the size of the CW, a mechanism for controlling the
overload is necessary. As we can see in Algorithm 4, each station adjusts

103

Algorithm 4 CW computation.
For each observed packet:
LMAC
own = get MAC label station()

LMAC
rcv = get MAC label(packet)

�1 = k
���LMAC

own �LMAC
rcv

LMAC
own +LMAC

rcv

���
if LMAC

own > LMAC
rcv then

p = (1 + �1)p
else
if queue empty then
p = (1 + �1)p

else
p = (1��1)p

end if
end if
p = minfp; 1g
CW = p � CW802:11

its CW only on the basis of its own requirements. Such \sel�shness" can
easily be disastrous, due to the following side e�ect of the small CWs. We
have been arguing so far that, the smaller the CW for a given station, the
larger the throughput received by this station. The other, bad consequence
of such a procedure is that the more stations have small CWs, the bigger
the probability of a collision. One can easily see that, for a big number of
stations with
ows of high weight, this can lead to an absolute blockage of
the channel. Once all of the stations start decreasing their CWs in order
to get the desired relative throughput, the number of! collisions will start
increasing, leading to even smaller CWs, and as a consequence, continuous
collisions. A solution to this problem is to extend Algorithm 4 with an
overload condition, as shown in Algorithm 5.

Let us now explain how we actually detect overload. As we have men-
tioned before, a big number of stations trying to transmit with high weight

ows, i.e. decreasing their CWs, leads to an increase of the number of col-
lisions. If we now provide each station with a collision counter3, which de-
termines how many collisions a packet experiences before it is successfully
transmitted, we can write the following simple condition determining over-

3Note that in 802.11 collisions can only be detected through the lack of the Ack.
However, a missing Ack can also be caused by other reasons di�erent than a collision. In
Section 7.5.2 we study the impact into our algorithm of having missing Ack due to errors
in the channel.

104

Algorithm 5 CW Computation with overload avoidance.
For each observed packet k:
if overload then
p = (1 + �2)p

else
if LMAC

own > LMAC
rcv then

p = (1 + �1)p
else
if queue empty then
p = (1 + �1)p

else
p = (1��1)p

end if
end if

end if
p = minfp; 1g
CW = p � CW802:11

load

if (av nr coll > c) then overload = true (7.18)

where c is a constant that has to be properly adjusted. If c is too low, high
priority stations (i.e. stations with
ows of high weight) will not be allowed
to decrease their CWs suÆciently, and as a consequence they will not be able
to achieve the desired di�erentiation. On the other hand, if c is too large,
the number of collisions in the channel will be very high and the overall
performance will be harmed. This constant, therefore, represents a tradeo�
between the level of di�erentiation between high and low priority stations
and the eÆciency (i.e. total throughput) of the channel. These tradeo� has
been studied via simulation (see Section 7.5.2), and an optimum value for c
has been chosen according to simulation results.

The average number of collisions, (av nr coll), in Equation 7.18 is calcu-
lated after each successful transmission in the following way

av nr coll = (1� t) � num coll + t � av nr coll (7.19)

where in order to smoothen its behavior, we use some sort of memory, tak-
ing into account the last calculated value of av nr coll (on the rhs of Equa-
tion 7.19). The constant t is a small number playing the role of a smoothening
factor.

105

0.01

0.1

1

0 0.005 0.01 0.015 0.02 0.025 0.03

in
ve

rs
e

de
la

y
di

st
rib

ut
io

n

delay (s)

64 k
128 k
256 k
512 k
704 k

Figure 7.4: Inverse delay distribution for 2 real-time stations, CBR, 500 byte
packet length.

7.5 Simulations

To test the performance of the Wireless UFD architecture presented in this
chapter, we simulated it on a network consisting of a number of wireless
terminals in a 2 Mbps Wireless LAN communicating with a wired node.

7.5.1 Real-time TraÆc

For the purpose of simulating the contention resolution scheme described in
Section 7.3, the existing implementation of the 802.11 MAC protocol in ns-2
was extended by the functions necessary for the real-time traÆc extension. In
all simulations, stations sending elastic traÆc coexist with stations sending
real-time traÆc, in such a way that each station sends either real-time or
elastic traÆc. The elastic traÆc stations always have something to transmit.
The traÆc of the real-time stations is of UDP type, since UDP is usually
applied in conjunction with real-time applications.

As a quality criterion, we set a maximum delay of 25 ms. This limit shall
not be exceeded by 3% or more of the packets. Therefore, the emphasis of
all simulations is on delay. The total number of stations in all simulations is
20, i.e. the number of stations sending elastic traÆc is 20 minus the number
of real-time stations. The stations are located such that they are all within
communication distance of each other.

Simulation results for constant bit rate (CBR) sources with 500 bytes
packet length are shown in Figures 7.4 and 7.5. The simulation results in
Figure 7.6 are obtained for 100 bytes packet length. Each of them shows an
inverse distribution of the delay in seconds for a given number of real-time

106

0.01

0.1

1

0 0.01 0.02 0.03 0.04

in
ve

rs
e

de
la

y
di

st
rib

ut
io

n

delay (s)

64 k
96 k

128 k
192 k
256 k

Figure 7.5: Inverse delay distribution for 6 real-time stations, CBR, 500 byte
packet length.

0.01

0.1

1

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

in
ve

rs
e

de
la

y
di

st
rib

ut
io

n

delay (s)

64 k
80 k
96 k

Figure 7.6: Inverse delay distribution for 6 real-time stations, CBR, 100 byte
packet length.

107

stations with the data rate of a single station as parameter. The interpre-
tation of the graphs is as follows: If one is interested to know how many
percent of the packets have a delay higher than the one selected, one must
pick the time on the x-axis and read the corresponding number on the y-axis.
A number of 0.1 on the y-axis means that 10% of the packets were later than
the selected time.

The simulations show that the air interface can bear a real-time traÆc
saturation throughput of about 1300 Kbps for 500 bytes packet length and
of below 700 Kbps for a packet length of 100 bytes. In general, the satura-
tion throughput decreases with decreasing packet length because each packet
carries a certain, more or less constant overhead. However, it is likely that
some real-time applications, such as voice over IP, use short packet lengths
and, hence, the performance of the CRA-RT scheme for short packets is
important.

As long as the required total data rate of the real-time stations remains
below the saturation throughput, the actual throughput of each real-time
station corresponds to its required data rate. The data rate left is being
used by the elastic traÆc stations. If the required data rate of the real-
time stations exceeds the saturation throughput, the real-time stations share
the maximum data rate equally, whereas the elastic traÆc stations get no
throughput at all.

Figure 7.4 shows the results for two stations sending real-time traÆc. The
data rates range from 64 Kbps up to 704 Kbps per real-time station. As can
be seen, the delay for all data rates up to 512 Kbps remains below 10 ms in
all cases. The data rates achieved by the real-time stations corresponds to
the data rate delivered by the traÆc sources, i.e. they can deliver all o�ered
packets to the destination. The delay increases at a data rate of 704 Kbps but
still remains below the allowed limit. In this case, however, the throughput
of the real-time stations is limited to approximately 650 Kbps, i.e. half of the
saturation throughput for each station. The elastic traÆc stations could not
deliver any packet during this simulation run.

The curves depicted in Figure 7.5 show a similar situation. The delays
are higher than with two stations but still remain in the allowed region. If
each station uses 256 Kbps, the saturation throughput is exceeded and the
delays increase signi�cantly. The same scenario with a packet length of 100
bytes per real-time station is shown in Figure 7.6. The quality criterion can
be met for 6 stations with 64 Kbps each but the saturation throughput is
already reached with a data rate of 96 Kbps per real-time station.

The fact that the delay distribution is almost independent from the data
rate of each terminal is quite in line with the results obtained in [87]. An
interpretation of the results is that, as long as the real-time stations do not

108

0.01

0.1

1

0 0.01 0.02 0.03 0.04 0.05

in
ve

rs
e

de
la

y
di

st
rib

ut
io

n

delay (s)

2 stations
4 stations
6 stations
8 stations

10 stations

Figure 7.7: Inverse delay distribution 64 Kbps with varying numbers of real-
time stations, CBR, 500 bytes packet length.

0.01

0.1

1

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

in
ve

rs
e

de
la

y
di

st
rib

ut
io

n

delay (s)

2 stations
4 stations
6 stations
8 stations

10 stations

Figure 7.8: Inverse delay distribution 64 Kbps with varying numbers of real-
time stations, CBR, 100 bytes packet length.

always have something to transmit, they do almost not interfere with each
other and the transmission delay of the packets plus the waiting time for the
end of an ongoing transmission is decisive. Since the packet length is constant
for all real-time and elastic traÆc stations, all have to wait equally long on
average. Furthermore, the delay depends on the number of elastic traÆc
stations contending for the channel. The dependence of the transmission
delay on the packet length and on the number of elastic traÆc stations is a
subject for further study.

The graphs in Figure 7.7 show the delay distributions for a data rate of
64 Kbps per station at a packet length of 500 bytes and varying numbers
of stations. The same situation for a packet length of 100 bytes is depicted
in Figure 7.7. It can be seen from the graphs that the quality criterion is

109

0.001

0.01

0.1

1

0 0.005 0.01 0.015 0.02 0.025 0.03

in
ve

rs
e

de
la

y
di

st
rib

ut
io

n

delay (s)

6 stations, long, 100 bytes
6 stations, long, 500 bytes

6 stations, short, 100 bytes
6 stations, short, 500 bytes

Figure 7.9: Inverse delay distribution 64 Kbps for 6 real-time stations,
ON/OFF traÆc, 100 and 500 bytes packet lengths.

data rate (kbps)
stations 32 64 128 256 512

2 x x x x x
4 x x x x
6 x x
8 x
10

Table 7.1: Overview which con�gurations meet the quality criterion

met for 6 real-time stations. For 8 real-time stations and more, the quality
criterion can not be met. Whereas the curve for 6 stations with 500 bytes
packet length decreases very rapidly, the curve for 100 byte packets has a
longer tail.

The graph in Figure 7.9 shows the inverse delay distribution for ON/OFF
traÆc for 6 real-time stations with a data rate of 64 Kbps and 100 and 500
bytes packet lengths. The ON/OFF sources have exponentially distributed
burst and idle times. The curves denoted with "long" have an average burst
time of 2 s and idle time of 8 s, whereas the curves with "short" have average
burst and idle times of 500 ms. The data rate is the average data rate of
the real-time stations, i.e. the peak data rate is higher than the average rate.
The curves for 500 bytes packet length are rather steep, whereas the 100
bytes curves have a rather long tail. All scenarios meet the quality criterion.

Table 7.1 shows which combinations of numbers of real-time stations and
data rate per real-time station meet the quality criterion for all possible
scenarios, i.e. for 500 and 100 bytes packet lengths as well as for CBR and

110

ON/OFF traÆc. A cross in the table entry means that the criterion is
met. As a rule of thumb, an admission control derived from this table would
allow not more than six stations and not more than a data rate of 64 Kbps
per station sending real-time traÆc. As can be seen from the delay graphs
above, a more sophisticated admission control scheme would have to consider
additional criteria, such as the packet length and burstiness of real-time
applications.

It can be seen from the simulation results that the contention resolution
scheme described in Section 7.3 can meet the quality criterion reliably for
at least 6 real-time stations with data rates up to 64 Kbps per station for
CBR and ON/OFF traÆc with packet lengths of 100 and 500 bytes. If
the available bandwidth is used by real-time stations up to or close to the
saturation throughput, however, the real-time stations use most or all of the
available bandwidth and the service quality of elastic traÆc stations drops
dramatically.

7.5.2 Elastic TraÆc

For the simulation of the elastic traÆc extension described in Section 7.4,
Algorithm 5 was inserted into the existing implementation of the 802.11
MAC DCF protocol in ns-2.

We chose to use the RTS/CTS mechanism in all cases. This mechanism,
optional in the 802.11 standard, increases bandwidth eÆciency in case of
many collisions, since with this mechanism collisions occur with the relative
small control packets rather than with long data packets. Since our archi-
tecture may lead to larger number of collisions than the normal 802.11 MAC
DCF, this mechanism can be especially bene�cial in our case.

Unless otherwise speci�ed, we use the following parameters for the sim-
ulations: k = 0:01, �2 = 0:25 and t = 0:25. All stations are sending only
elastic traÆc and just one
ow. We refer to the weight of this
ow as the
station's weight.

Instantaneous Bandwidth Distribution

In Wireless UFD the desired bandwidth distribution for elastic traÆc is
achieved by adjusting adaptively the CW of elastic traÆc stations according
to their measured bandwidth. Figure 7.10 shows this dynamic adjustment;
the simulations correspond to a scenario with a total number of 10 stations,
2 of them with a weight of 2W and the rest with a weight of W . All stations
are sending UDP CBR traÆc with a packet size of 1000 bytes. It can be seen

111

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

B
an

dw
id

th
 (

M
bp

s)

Time (sec)

Weight 2
Weight 1

Figure 7.10: Instantaneous Share for Elastic traÆc.

when comparing the instantaneous bandwidth of a high priority and a low
priority station that their ratio oscillates around the desired value (i.e. 2).

The value of W in the above weights is such that the sum of the weights
of all the
ows of the user equals 1, in concordance with the de�nition of
weight Wi in Chapter 2 (Equation 2.12). Actually, the speci�c value of W
has no meaning in this chapter, since the absolute value of the weights has
no impact on the distribution of the Wireless LAN capacity. For the sake of
simplifying the notation, hereafter we will only indicate the relative values
of the weights when describing the simulation scenarios (i.e. we will refer to
a weight of 1 for expressing a weight equal to W , and to a weight of 2 for
expressing a weight equal to 2W).

Bandwidth Distribution as a function of the weight

With Wireless UFD, the throughput experienced by a station should be
proportional to the weight assigned to its
ow. Figure 7.11 shows the ratio
between the throughput experienced by high priority (HP) and low priority
(LP) stations (we refer to this ratio as the experienced weight) as a function
of the weight assigned to the high priority stations when low priority stations
have a weight equal to 1. Ideally, the resulting function should be the identity
(i.e. a diagonal); that is, an experienced weight equal to the weight. In the
�gure it can be seen that the simulated results are quite close to the ideal.
Only in the case of large weights and a large number of stations, the results
obtained di�er noticeably from the ideal case; however, not even in this
case di�erences are too big (e.g. with 50 stations and a weight of 10, the
experienced weight is 8).

112

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

E
xp

er
ie

nc
ed

 W
ei

gh
t

Weight

8 LP,2 HP
25 LP,5 HP

40 LP,10 HP

Figure 7.11: Bandwidth Distribution as a function of the weight.

0

0.5

1

1.5

2

2.5

3

10 15 20 25 30 35 40 45 50

E
xp

er
ie

nc
ed

 W
ei

gh
t

Total number of Stations

2 HP
4 HP
6 HP
8 HP

Figure 7.12: Bandwidth Distribution as a function of the number of stations.

Impact of the number of stations

The proposed algorithm for computing the CW in Wireless UFD relies on
the experienced throughput estimated by each station. Note that the higher
the number of stations, the lower the throughput received by each station.
Since a low throughput is more diÆcult to estimate with exactitude than
a high throughput, a large number of stations may negatively impact the
performance of the algorithm. Figure 7.12 shows this impact when high
priority stations have a weight of 2 and low priority ones have a weight of 1.
Note that, in all cases, the experienced ratio between throughput of high and
low priority stations keeps close to the desired value, which is 2. We conclude
that the number of stations has a negligible impact on the experienced weight.

113

Impact of the parameter c

In Section 7.4.1 the constant c has been de�ned as the maximum average
number of collisions allowed. This limit is needed in order to avoid loss of
eÆciency due to too small CWs.

Since we are using the RTS/CTS mechanism, the number of collisions
will never be bigger than 8 (according to the standard, a packet is dropped
after 8 RTS tries). Therefore, the chosen value for c must be in the range of
0 < c < 8.

In order to analyze the impact of c we chose to use a scenario with a
large number of stations (100 stations), half of them with very high weights
(weight = 6). This scenario leads to many stations with very small CW,
and, therefore a high number of collisions, in such a way that collisions are
controlled by the parameter c. Note that in a scenario without many collisions
the impact of c would be almost null.

Figures 7.13, 7.14 and 7.15 show the total throughput, the number of
drops per successful packet and the experienced weight as a function of c in
the above scenario. In these �gures it can be seen that if the value of c is
too high, the total throughput experienced is very low, and the percentage of
losses very high. In the extreme case (c > 7) the throughput drops to 0 and
the drops increase drastically. The reason for this is that with such values of
c, CWs are allowed to decrease too much and the probability of collision gets
too big. Note that in this case low priority stations totally starve and the
di�erentiation tends to in�nite, since the whole bandwidth is used by high
priority stations.

On the other hand, if the value of c is too low, we obtain a good total
throughput and very low losses, but we do not achieve the desired di�erenti-
ation. In the limit (c = 0) there is no di�erentiation at all and high priority
stations get exactly the same throughput as low priority ones (i.e. experienced
weight = 1). The reason for this is that, with such values of c, CWs are not
allowed to decrease below the values de�ned in the 802.11 standard, and,
therefore, the elastic traÆc extension de�ned in Section 7.4 is deactivated.

As a conclusion, c expresses a tradeo� between eÆciency and di�erenti-
ation, and it can be adjusted via administration depending on speci�c user
preferences. In the simulations of this section we have chosen to use an in-
termediate value: c = 5. With this value of c, a good level of di�erentiation
is achieved while conserving a good overall eÆciency.

114

0

500

1000

1500

2000

0 1 2 3 4 5 6 7 8

T
ot

al
 B

an
dw

id
th

 (
kb

ps
)

c value

100 Stations, 50 Weight=1, 50 Weight=6

Figure 7.13: Throughput as a function of c.

0.0001

0.001

0.01

0.1

1

10

0 1 2 3 4 5 6 7 8

D
ro

pp
ed

 p
ac

ke
ts

/s
uc

ce
ss

fu
l T

x

c value

100 Stations, 50 Weight=1, 50 Weight=6

Figure 7.14: Drops as a function of c.

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8

E
xp

er
ie

nc
ed

 W
ei

gh
t

c value

100 Stations, 50 Weight=1, 50 Weight=6

Figure 7.15: Experienced weight as a function of c.

115

0

0.5

1

1.5

2

2.5

3

10 15 20 25 30 35 40 45 50

E
xp

er
ie

nc
ed

 W
ei

gh
t

Total number of Stations

2 HP
4 HP
6 HP
8 HP

Figure 7.16: Impact of 802.11 terminals.

Backwards Compatibility

Legacy 802.11 stations do not carry in the MAC header the LMAC
s �eld,

and this can have an impact into the overall performance of the Wireless
UFD architecture. This impact is studied in the simulation results shown
in Figure 7.16. In this simulation, the number of stations with the Wireless
UFD architecture is kept to 10, and the rest of the stations are legacy 802.11
terminals. The �gure shows the ratio between the throughput of high priority
stations (weight 2) and low priority stations (weight 1) as the number of
802.11 terminals increases. It can be seen that this ratio is very close to the
desired value, independent of the number of 802.11 terminals.

Channel utilization

Having Wireless UFD stations with a CW smaller than the CW de�ned in the
current standard can impact the channel utilization. Figure 7.17 shows the
channel utilization in the same scenario than the described for Figure 7.12,
and compares it to the channel utilization with the current standard. It
can be seen that the channel utilization keeps always close to the channel
utilization of the current standard.

Packet drops

The algorithm proposed in this chapter for elastic traÆc increases the aggres-
siveness of the MAC protocol, since it makes the CW smaller with respect to
the current standard. This has an impact on the packet drops experienced
at the MAC level, since after a certain number of unsuccessful retries the
MAC protocol decides to drop the packet. The more aggressive we are, the

116

1500

1520

1540

1560

1580

1600

1620

1640

10 15 20 25 30 35 40 45 50

T
ot

al
 B

an
dw

id
th

 (
kb

ps
)

Total number of Stations

0 HP
2 HP
4 HP
6 HP
8 HP

Figure 7.17: Channel utilization.

0

0.005

0.01

0.015

0.02

10 15 20 25 30 35 40 45 50

D
ro

pp
ed

 p
ac

ke
ts

/s
uc

ce
ss

fu
l T

x

Total number of Stations

2 HP
4 HP
6 HP
8 HP

Figure 7.18: Packet drops.

higher is the probability for a retry to fail and, therefore, the probability of
experiencing a packet drop.

We studied this impact in the simulations shown in Figure 7.18. It can
be seen that packet drops at the MAC level increase with the total number
of stations and decrease with the number of high priority stations. This is
because the CW required to achieve the desired di�erentiation for a small
number of high priority stations is very low, and therefore the probability
of having 8 RTS/CTS collisions (i.e. a packet lost) is higher. However, the
number of dropped packets always keeps very low: even in the worst case the
percentage of packet drops is below 1%.

Channel Errors

Considering a non-ideal channel a not received Ack can be due to a channel
error. As discussed in Section 7.4.1 we have introduced a collision counter

117

0

500

1000

1500

2000

0 2 4 6 8 10

B
an

dw
id

th
 (

kb
ps

).

Errors (%)

Total
50 Weight=6
50 Weight=1

Figure 7.19: Level of di�erentiation as a function of the error rate

which counts as a collision every sent packet (RTS) for which an Ack (CTS)
has not been received. The e�ect of the channel errors in the collision counter
would be the interpretation of a channel error as a collision. This could lead
to assume falsely overload in the channel due to channel errors. The result
would be an unnecessary increase of the CW, leading to a lower level of
di�erentiation.

We have studied this impact under an extreme scenario as in Figures 7.13
to 7.15 with a value of c equal to 5. We can observe from Figure 7.19 that
the level of di�erentiation is a�ected by the percentage of errors, as expected.
Note that even in an extreme scenario with a high error percentage (10%)
we still keep a reasonably high level of di�erentiation.

Hidden node impact

In order to study the impact of hidden nodes in Wireless UFD we simulated
the scenario depicted in Figure 7.20. This scenario consists of three groups
of stations (1,2,3) within the coverage area of the Access Point (AP). Group
1 consists of one high priority station with weight equal to 2, and groups 2
and 3 consists of 50 � x � 1 and x stations, respectively, all with a weight
equal to 1. Groups 1 and 3 are hidden from each other.

Note that, since we are using the RTS/CTS mechanism, collisions of data
packets due to the hidden node problem are avoided. However, the higher the
number of stations hidden from the high priority station, the less accurate
the computation of the CW in the high priority station will be. Figure 7.21
shows how this problem impacts the desired bandwidth distribution: the level
of di�erentiation (experienced weight) decreases with the number of hidden
stations. However, even in the extreme case when 80% of the stations are

118

AP

Group 1

1 station

weight=2

Group 2

50-x-1 stations

weight=1

Group 3

x stations

weight=1

Coverage
area

Groups
of nodes

Figure 7.20: Simulation scenario

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25 30 35 40

E
xp

er
ie

nc
ed

 W
ei

gh
t

x stations

Weight=2

Figure 7.21: Hidden node

hidden (x = 40), we still keep a signi�cant level of di�erentiation.

Impact of bursty traÆc

The simulations shown so far correspond to a constant traÆc (UDP CBR
sources). In order to gain a better understanding of the impact of di�erent
traÆc sources to the performance of the elastic traÆc extension, we simulated
it under bursty traÆc (UDP ON/OFF sources).

In order to show the impact of di�erent burst sizes, we performed two
di�erent simulations: one with a small burst (ON/OFF periods of 1 ms in
average), and one with large bursts (ON/OFF periods of 500 ms in average).
The simulation scenario was the same as the described for Figure 7.12.

Figure 7.22 shows the results when the ON/OFF periods are of 1 ms. Note
that these results are very similar to the results of Figure 7.12 (CBR traÆc),
which means that short ON/OFF periods do not impact the performance of
a station. In Figure 7.23 it can be seen that the results for large ON/OFF

119

0

0.5

1

1.5

2

2.5

3

10 15 20 25 30 35 40 45 50

E
xp

er
ie

nc
ed

 W
ei

gh
t

Total number of Stations

2 HP
4 HP
6 HP
8 HP

Figure 7.22: Sources UDP ON/OFF 1 ms.

0

0.5

1

1.5

2

2.5

3

10 15 20 25 30 35 40 45 50

E
xp

er
ie

nc
ed

 W
ei

gh
t

Total number of Stations

2 HP
4 HP
6 HP
8 HP

Figure 7.23: Sources UDP ON/OFF 500 ms.

periods are also very similar to the results of Figure 7.12, with a slightly
higher oscillation.

TCP sources

Figure 7.24 shows the experienced weight of high priority stations for the
scenario of Figure 7.12 with TCP sources. It can be seen that there are
quite high oscillations, specially when the number of stations is high. This
oscillation is due to the congestion control algorithm used in TCP. However,
in average, the results obtained tend to the desired ones.

Note that, in contrast to the previous experiments, in this case we have
downlink traÆc consisting of TCP acknowledgments. Since this traÆc con-
sists of several
ows, we have multiple
ows at the AP. We used the UFD
scheduling at the network level of the AP to handle this case. We assigned

120

0

1

2

3

4

5

10 15 20 25 30 35 40 45 50

E
xp

er
ie

nc
ed

 W
ei

gh
t

Total number of Stations

2 HP
4 HP
6 HP
8 HP

Figure 7.24: TCP Sources.

to the
ow i of TCP acknowledgments the same weight as the corresponding

ow of TCP data packets. This is necessary in order to achieve the desired
bandwidth distribution, since the TCP acknowledgments also impact the
throughput of a TCP connection through the congestion control of TCP.

TCP vs UDP

When TCP and UDP
ows compete with each other, the bandwidth distri-
bution tends to favor UDP. This is because, in case of congestion, TCP backs
o� because of its congestion control mechanism, and UDP, without any kind
of congestion control and therefore more aggressive, consumes the bandwidth
left by TCP. An architecture for bandwidth allocation should overcome this
di�erent level of aggressiveness of the sources and provide all sources with
their fair share of bandwidth independent of the congestion control algorithm
they use.

To study the level of fairness between TCP and UDP achieved by Wireless
UFD, we performed the following experiment: two high priority stations
had a weight of 2, one sending an endless TCP
ow and the other a UDP
CBR
ow. The remaining 8 stations had a weight of 1 (low priority) and
were all sending UDP CBR traÆc. Figure 7.25 shows the instantaneous
bandwidth achieved by the TCP and UDP high priority sources and one
UDP low priority source. It can be seen that, in average, the resulting
bandwidth distribution is the desired.

>From this experiment we conclude that Wireless UFD provides TCP
with a fair treatment with respect to UDP. This is because the CW com-
putation algorithm adapts the CW to the aggressiveness of the source: a
less aggressive source, like TCP, will see its CW reduced until it receives the

121

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

B
an

dw
id

th
 (

M
bp

s)
.

Time (sec)

TCP Weight=2
UDP Weight=2
UDP Weight=1

Figure 7.25: TCP vs UDP

desired relative throughput, while a more aggressive source, like UDP, will
achieve its desired relative throughput with a larger CW.

7.6 Summary

In this chapter we have proposed the Wireless UFD architecture for providing
UFD's resource allocation in Wireless LAN. Wireless UFD consists of two
independent extensions to the IEEE 802.11 standard: the extension for real-
time and the extension for elastic traÆc.

The real-time extension reuses the PIFS of the 802.11 standard in a dis-
tributed manner. We show that distributed control can meet the require-
ments of real-time services. Simulations have proved that with proper ad-
mission control the proposed extension satis�es the requirement for low delay
of real-time traÆc.

The elastic traÆc extension modi�es the CW computation of the DCF
mode of the standard. This modi�cation has been done in such a way that the
proposed architecture is backwards compatible, i.e. terminals conforming to
the current standard are supported. The simulations performed have shown
that the extension proposed for elastic traÆc achieves the desired level of
di�erentiation between elastic
ows in a wide variety of scenarios.

122

Chapter 8

Implementation

In this chapter we present an implementation of the User Fair Di�erentiation
architecture for a PC-based router running under the Linux operating system.
We describe the design and implementation issues of the di�erent components
of the architecture, and validate them by measurements. The evaluation of
these measurements shows that the resource allocation obtained with the
proposed architecture is the desired.

The Linux operating system is a good basis for implementing a router
with the UFD functionality. It runs on standard PC hardware and source
code of the kernel is widely available. In addition, it supports a variety of
queueing disciplines for output queues of network devices, and all functions
for routing are already provided.

To get a deeper inside into our concrete realization of the UFD architec-
ture, understanding how Linux handles basic network functions is important.
Hence, a short overview of the standard Linux implementation is given next.
Afterwards, the implementation of the UFD architecture is presented.

8.1 Linux network implementation

To give a short overview of the Linux IP network implementation, the course
of an IP-packet through the system is described �rst (see Figure 8.1).

After a packet is received by a network interface card, a hardware inter-
rupt is triggered. As a consequence, an interrupt handling routine (named
ei_interrupt()) is invoked and determines the type of interrupt. For in-
terrupts caused by incoming packets a further handling routine is called
(ei_receive()) which simply copies the packet from the network card into
an internal socket bu�er structure and calls a procedure named netif_rx().
The latter queues the packet (represented by a socket bu�er structure) into

123

Network Interface Card

netif_rx()

NET_BH

ip_rcv()

ip_local_deliver()

ip_forward()

Routing

Network Interface Card

hard_start_xmit()

dev_queue_xmit

ip_queue_xmit()

ip_send()

Higher
Layers

Layer 3

Layer 2

Layer 1

Backlog
Queue

Output
Queue

Figure 8.1: The course of a packet through the system.

a central queue (backlog queue) consisting of all packets that arrived on any
network adapter of the system. The �rst time-critical part of the interrupt
routine, called 'top-half' is �nished at this time.

The necessary second part, called 'bottom-half', is handled by the net-
work bottom-half routine (NET_BH) which is regularly invoked by the kernel
scheduler. At �rst, this procedure checks whether there are any packets wait-
ing for transmission in any output queue of any network adapter. If there are
any packets waiting they are processed for a limited period. Subsequently,
NET_BH proceeds with the next packet of the backlog queue and determines
the appropriate protocol to handle the packet which is in our case the Inter-
net Protocol IP. ip_rcv() checks for correctness of the IP header and then
processes any existing options. It also reassembles the original IP packet
from fragments if necessary and if the packet has reached its �nal destina-
tion. In the latter case, the packet is delivered locally, otherwise it is routed
and forwarded towards its destination. ip_forward() tries to �nd the right
network adapter this packet is forwarded to next by use of a routing table. If
there is a valid entry in the routing table ip_queue_xmit() is subsequently
invoked, performing some �nal operations such as decrementing time-to-live
values and recalculating IP header checksums. dev_queue_xmit() queues
the packet into the output queue of the corresponding network device. At
this point a special queueing discipline can be invoked. Thus, each queueing
discipline constitutes one output queue for a device that is not necessarily
served in a FIFO with Drop-Tail basis. Within a queueing discipline, transfer
of a packet onto network media is initiated by calling hard_start_xmit(),
which instructs the network device to send the packet.

The Linux kernel already contains various queueing disciplines apart from
the standard FIFO, like Class Based Queueing, Weighted Fair Queueing or
Random Early Detection to implement di�erent network features like traÆc

124

output queue

Link
 NIC

backlog queue
UFD

LINUX PC
ROUTER

IP
FORWARDING

Link
 NIC

Link
 NIC

unicast / multicast

ROUTING

Figure 8.2: UFD implementation in Linux.

control or di�erentiated services (see e.g. [88, 89]).

8.2 UFD implementation

In our implementation of the UFD architecture, we inserted the algorithm of
Figure 4.1 in the queuing discipline of the output queue. This algorithm de-
cides whether an incoming packet to the output queue is enqued or dropped.
This is illustrated in Figure 8.2.

The UFD queueing discipline was implemented in a kernel module. Ker-
nel modules need not to be present all the time in the kernel, so the kernel
can run without them if they are not actually used. Particularly, instead
of recompiling the whole kernel and restarting the system every time a part
of the module's code was changed, one can simply reload the newly coded
module. This shortens development time drastically.

During the implementation of the UFD queueing discipline, a number of
issues had to be solved. In the following we provide a detailed description of
the various implementation issues we faced.

8.2.1 Router Performance

I/O performance and CPU router performance are crucial for successful op-
eration, because if the PC is too slow, the protocol processing for a packet
is not �nished before a new packet arrives. As a consequence, the imple-
mented UFD algorithm for packet dropping is never used because packets
are dropped already earlier in the backlog queue. Nevertheless, we checked
that a PC with a AMD-K6 CPU running at 350 MHz (the machine we used
as a router) is suÆcient to route incoming traÆc of 20 Mbps at least.

125

8.2.2 Router Con�guration

One of the parameters of the UFD algorithm that needs to be con�gured is
the capacity of the link C. In order to set this parameter, we measured the
net capacity obtained in the 10 Mbps Ethernet link with a FIFO queue. The
packet lengths considered to compute this capacity included the 42 bytes of
overhead of the UDP, IP and Ethernet headers and the 4 bytes of the Ethernet
checksum, in addition to the packet payload. Considering this overhead, the
net capacity measured was of 9.8 Mbps; this is the value we used for C in
the UFD algorithm.

8.2.3 Label Location in Packet Header

An important issue of the implementation is how to insert the label value
Lk into the packet header. Two possibilities are: (1) introduce a new IP
option, or (2) introduce a new header between layer 2 and layer 3, similar to
the way labels are transported in Multi-Protocol Label Switching (MPLS).
While both of these solutions are quite general and can potentially provide
large space for encoding the label, for the purpose of our implementation we
considered a third option: store the state in the IP header. By doing this,
we avoid the penalty imposed by most IPv4 routers in processing the IP
options, or the need of devising di�erent solutions for di�erent technologies
as it would have been required by introducing a new header between layer 2
and layer 3.

The biggest problem of using the IP header is to �nd enough space to
insert the label. The main challenge is to remain compatible with current
standards and protocols. In particular, we want to be transparent to end-
to-end protocols. One possibility to achieve this goal is to use the type of
service (TOS) byte. However, as we discuss in the following section, the 8
bits obtained with this option is not suÆcient to encode the label with the
desired level of accuracy. Another option is to use IP identi�er �eld, which
has 16 bits. This �eld is unused for non-fragmented packets (fragmented
packets are identi�ed by the pair more fragment and fragment o�set). As
pointed out in [90], very few packets are actually fragmented in the Internet
(0.22%). In the UFD implementation, we have chosen this latter option for
the labeling. Fragmented packets are ignored and forwarded as usual.

8.2.4 Label Mapping

The next issue to solve was how to map the label values (which theoretically
can be any real value) into the 16 bits of the IP identi�er �eld. To represent

126

a wide range of rates in the Internet while maximizing the accuracy, we used
a logarithmic scale to map the labels between Lmin and Lmax to discrete
integer values between 0 and 216� 1. Let L be the original label (real value)
and V its integer representation in the 16 bit �eld. Then,

V =

�
(216 � 1)

log2(L)� log2(Lmin)

log2(Lmax)� log2(Lmin)

�
(8.1)

The above mapping had already been proposed in [35] but with log10
instead of log2. The reason to use log2 is because working in base 2 allows
to perform operations more eÆciently. Speci�cally, the computation of 2x,
which is required at core nodes to unmap label values, can be very easily
performed by shifting x positions the bit representation of 1.

With Equation 8.1, we can map labels between 1 (Lmin) and 232 (Lmax)
with an error bounded by 0.04%. Note that, using the 8 bits of the TOS �eld
instead of the 16 bits of the IP identi�er �eld, this error bound would be of
9.09%, which is unacceptably high.

8.2.5 Rate Estimation at Core Nodes

The last issue we had to solve for the implementation was the rate estima-
tion. For the estimation of A and F at core nodes we decided to use the
Time Sliding Window (TSW) algorithm [91] (Equation 8.2) instead of the
exponential averaging of Equation 3.2. The reason why we chose to use the
TSW algorithm was to avoid expensive exponential computations at core
nodes. The experimental results show that this change does not a�ect the
accuracy of the estimation of Lfair.

rnew =
lk

Tk +K
+

K

Tk +K
� rold (8.2)

8.3 Experimental Results

To validate the Linux implementation and evaluate the performance of the
UFD architecture with a real implementation we performed some tests. For
these tests we used the testbed already explained in Chapter 6 (see Fig-
ure 6.5). Tests were run for two types of traÆc: CBR traÆc and ON/OFF.
Packets had a constant UDP payload length of 1000 bytes.

127

TEST 1 TEST 2 TEST 3
user share S (Kbps) share S (Kbps) share S (Kbps)
user A 1 4904 2 6513 3 7315
user B 1 4895 1 3278 1 2472

Table 8.1: Bandwidth Allocation with CBR traÆc.

8.3.1 CBR traÆc

In order to validate the bandwidth allocation resulting from our implemen-
tation, we �rst ran some tests with CBR traÆc. In these tests, both senders
A and B consisted of one user (user A and user B) sending each a CBR
ow
at a rate of 10 Mbps.

Table 8.1 shows the bandwidth allocation resulting from changing the
share assigned to user A in the above scenario. The results obtained validate
the implementation, since bandwidth is distributed among users A and B
proportionally to their shares.

8.3.2 ON/OFF traÆc

Bandwidth allocation is much easier when dealing with CBR traÆc than
when dealing with bursty traÆc. To show the behavior of the UFD architec-
ture in the latter case, we performed the following experiment.

Sender A consisted of one user sending a CBR
ow at a rate of 10 Mbps.
Sender B consisted of one user sending an ON/OFF
ow with periods ON
and OFF exponentially distributed (average TON = TOFF = T). The sending
rate in the ON period was 10 Mbps. Both users had a share of 1.

Figure 8.3 shows the results of the above tests (throughput obtained by
sender B). For values of T smaller thanK (100 ms), the ON/OFF
ow obtains
its almost full share of bandwidth (i.e. as if it was sending CBR traÆc).
However, for larger values of T , the
ow's throughput tends asymptotically
to a half of the fair bandwidth share.

From the above experiment we conclude that in the UFD architecture,
the averaging constant K expresses the order of magnitude of the accepted
level of burstiness in a user1.

1Note that, in contrast to the results obtained in this section, in the simulation results
presented in Section 3.6.8, bursty users were not penalized for their bursty behavior. This
is because the traÆc of those users consisted of an aggregation of ON/OFF sources, which
results in a much less bursty behavior than the single ON/OFF source of this section.

128

0

1

2

3

4

5

6

0 100 200 300 400 500 600 700 800 900 1000

al
lo

ca
te

d
ba

nd
w

id
th

 (
M

bp
s)

T(ms)

ON/OFF flow

Figure 8.3: Bandwidth Allocation with ON/OFF traÆc.

129

Chapter 9

Conclusions

Over the last decade, a considerable e�ort has been invested to augment
the functionality of the current Best E�ort Internet. For this purpose, the
IntServ and Di�Serv architectures have been proposed. These architectures
provide new functionality by changing the packet switched paradigm of IP
(IntServ emulates circuit switched networks while Di�Serv relies on route
pinning combined with admission control). However, past experiences have
shown diÆculties in changing the packet switched paradigm of the Internet;
nowadays, the deployment of IntServ is almost unanimously discarded, while
the deployment of Di�Serv is highly questionable.

In this thesis we have proposed a novel architecture to augment the func-
tionality of the Best E�ort model that, as opposed to IntServ and Di�Serv,
does not change the paradigm of the current Internet. Keeping the packet
switched paradigm strongly contributes to the simplicity of the architecture,
as re
ected by the following features:

No Signaling The proposed architecture requires no signaling between the
user and the network. The contract between the users and the network
is based on the shares, which are con�gured statically at the network's
ingress.

Routing Independence The architecture does not interact with the rout-
ing; instead, it takes the routing as a given input.

No accounting Since the price paid by the users is based merely on the
shares contracted and is usage independent, there is no need for ac-
counting.

Scalability Since no per-
ow or per-user state is required at core nodes, the
architecture scales well with the number of users.

131

Despite its simplicity, the proposed architecture still adds major func-
tionality to the current Internet architecture:

User fairness Resource allocation in the current Internet is based on TCP
fairness, which allocates network resources on a
ow basis. However,
since the user is the entity to which commonly pricing schemes apply,
resources should be allocated on a user basis. To accomplish this, the
proposed architecture allocates resources in a user fair way.

Service di�erentiation In today's Internet there is a growing demand for
service di�erentiation. For example, there are companies relying on
the Internet for the day-to-day management of their global enterprise.
These companies are willing to pay a substantially higher price for
the best possible service level from the Internet. At the same time,
there are millions of users who want to pay as little as possible for
more elementary services. In the proposed architecture, the contracted
share serves as the basis for service di�erentiation.

Comprehensible charging The price paid by a user depends on the ser-
vice level contracted, expressed by the share, and is �xed. A major
advantage of this
at rate pricing is its comprehensibility.

Real-time traÆc The Internet was originally designed for elastic traÆc
and is not well adapted to support real-time traÆc. In contrast, our
architecture has been designed to satisfy the requirements of this traÆc
type.

Unfriendliness proof The current Internet model relies on the applica-
tions' friendly behavior to fairly share the network resources among
the users. Therefore the cooperation of the end systems (such as pro-
vided by TCP congestion control mechanisms) is vital to make the sys-
tem work. In today's Internet, however, such dependence on the end
systems' cooperation for resource distribution is increasingly becoming
unrealistic. Given the current best-e�ort model with FIFO queueing
inside, it is relatively easy for non-adaptive UDP sources to gain greater
shares of network bandwidth and thereby starve other, well-behaved,
TCP sources. In contrast, this is not possible in our architecture.

Multicast Incentive Even though multicast strongly contributes to save
bandwidth, it is rarely used. Among the reasons that slow down the
use of multicast we �nd the lack of incentive for it. This problem is
corrected in the proposed architecture.

132

We believe that the combination of simplicity |compared to IntServ
and Di�Serv| and functionality |compared to the current Internet| of
the proposed architecture makes it a suitable candidate for the next step in
the evolution of the Internet.

The performance of the architecture and the di�erent extensions (real-
time, multicast and wireless) have been validated via:

� Simulations with the ns-2 tool.

� Experiments with a Linux implementation.

Both simulation and experimental results have shown that the distribu-
tion of network resources achieved with the proposed architecture is fairly
close to the theoretical. We conclude that a real implementation of the
proposed architecture is feasible, can be done eÆciently and provides good
results.

133

Acknowledgements

I gratefully acknowledge the support and collaboration of a number of people
without whom this PhD thesis would not have been possible:

Professor Sebasti�a Sallent, my PhD advisor, gave me the opportunity of
studying my PhD remotely from Germany. We have had many interesting
and fruitful discussions about the technical contents of this thesis, and we
coauthor a number of papers (4). His guidance has been of key importance
for the completion of my thesis.

My boss at NEC, Dr. Heinrich J. Stuettgen, o�ered me the possibility of
combining my job at NEC with my PhD studies, and has been very support-
ive throughout the whole duration of my thesis. The synergy between my
projects at NEC and the contents of this thesis has been extremely helpful.

I had a lot of interesting discussions about fairness issues in computer net-
works with Robert Denda, PhD student at University of Mannheim. Robert
is coauthor of two of the papers on which this thesis is based.

Dr. Christoph Kuhmuench provided the layered video software that has
been used in this thesis. He is coauthor of a paper that studies packet
dropping policies for layered video.

The design of NEC's QoS extensions for Wireless LAN was done together
with Markus Radimirsch from University of Hannover. Markus focused on
the design of the real-time part of the wireless architecture.

Dr. Sandra Tartarelli worked together with me in NEC's Di�Serv simula-
tion project. She has read an earlier draft of this thesis and provided helpful
comments.

A number of students from the Universitat Polit�ecnica de Catalunya have
contributed to the results of this PhD with their Master theses. Olga Leon
studied via simulation the performance of the proposed architecture. Frederic
Raspall worked on packet dropping policies for layered video. Joaquim Esteve
investigated di�erent ways of providing QoS in Wireless LAN. Xavier P�erez
evaluated the wireless part of the architecture via simulation. David Anguera
worked on implementation issues. I coauthor papers with Olga, Frederic,
Xavier and David.

135

I would like to thank all the people mentioned above for their help and
collaboration. It has been a pleasure for me to share my work with them.

136

Bibliography

[1] D. Bertsekas and R. Gallager. Data Networks, chapter 6, pages 524{529.
Prentice-Hall, 1987.

[2] F. P. Kelly. Charging and rate control for elastic traÆc. European
Transactions on Telecommunications, 8(1):33{37, January 1997.

[3] R. Denda, A. Banchs, and W. E�elsberg. The Fairness Challenge in
Computer Networks. In Proceedings of the 1st International Workshop
on Quality of future Internet Services (QofIS 2000), Berlin, Germany,
September 2000.

[4] Scott Shenker. Fundamental Design Issues for the Future Internet.
IEEE Journal Selected Areas Communication, 13(7):1176{1188, Septem-
ber 1995.

[5] A. Banchs. User Fair Queuing: Fair Bandwidth Allocation for Users.
Accepted to IEEE INFOCOM 2002.

[6] A. Banchs, O. Leon, and S. Sallent. The Olympic Service Model: Issues
and Architecture. In Proceedings of the 2nd International Workshop on
Quality of future Internet Services (QofIS 2001), Coimbra, Portugal,
September 2001.

[7] O. Leon. Simulation Study of the Scalable Share Di�erentiation Archi-
tecture. Projecte Final de Carrera, Universitat Polit�ecnica de Catalunya,
September 2001. Supervised by S. Sallent and A. Banchs.

[8] A. Banchs and R. Denda. A Scalable Share Di�erentiation Architec-
ture for Elastic and Real-Time TraÆc. In Proceedings of the Eight
IEEE/IFIP International Workshop on Quality of Service (IWQoS
2000), Pittsburg, PA, June 2000.

[9] A. Banchs, F. Raspall, D. Anguera, and S. Sallent. Fair Bandwidth
Allocation for Multicast and Unicast Flows. Submitted.

137

[10] F. Raspall, C. Kuhmuench, A. Banchs, F. Pelizza, and S. Sallent. Study
of packet dropping policies on layered video. In Proceedings of Packet
Video Workhsop, Korea, April 2001.

[11] F. Raspall. Impact of Packet-dropping Policies into Video Qual-
ity in Layered Transmissions. Projecte Final de Carrera, Universitat
Polit�ecnica de Catalunya, February 2001. Supervised by S. Sallent and
A. Banchs.

[12] A. Banchs, X. P�erez, M. Radimirsch, and S. Sallent. Service Di�eren-
tiation Extensions for IEEE 802.11. In 11th IEEE Workshop on Local
and Metropolitan Area Networks (LANMAN 2001), Boulder, CO, March
2001.

[13] A. Banchs, X. P�erez, M. Radimirsch, and H. Stuettgen. Service Di�eren-
tiation Extensions for Elastic and Real-Time TraÆc in 802.11 Wireless
LAN. In Proceedings of the IEEE Conference on High Performance
Switching and Routing (HPSR 2001), Dallas, Texas, May 2001.

[14] A. Banchs and X. P�erez. Distributed Weighted Fair Queuing in 802.11
Wireless LAN. Accepted to IEEE ICC 2002.

[15] X. P�erez. IEEE 802.11 Multimedia Extensions. Projecte Final de Car-
rera, Universitat Polit�ecnica de Catalunya, November 2000. Supervised
by S. Sallent and A. Banchs.

[16] D. Anguera. Implementation of a Core Stateless Architecture for Band-
width Allocation. Projecte Final de Carrera, Universitat Polit�ecnica de
Catalunya, to be published. Supervised by X. Hesselbach and A. Banchs.

[17] A. Banchs and X. P�erez. Providing Throughput Guarantees in 802.11
Wireless LAN. Accepted to IEEE WCNC 2002.

[18] A. Banchs, X. P�erez, W. Pokorski, and M. Radimirsch. A Proposal for
Wireless MAC Multimedia Extensions. IEEE 802.11-00/205, July 2000.

[19] A. Banchs, W. Pokorski, and M. Radimirsch. Considerations about
Wireless MAC Multimedia Extensions. IEEE 802.11-00/100, May 2000.

[20] S. Sato, K. Kobayashi, H. Pan, S. Tartarelli, and A. Banchs. Con�gura-
tion Rule and Performance Evaluation of Di�serv Parameters. In Pro-
ceedings of the Seventeenth International TeletraÆc Congress (ITC17),
Salvador da Bahia, Brazil, December 2001.

138

[21] M. Brunner, A. Banchs, S. Tartarelli, and H. Pan. A one-to-any Proba-
bilistic Assured Rate Per-Domain Behavior for Di�erentiated Services.
Internet draft, April 2001.

[22] S. Tartarelli and A. Banchs. Performance Evaluation for Di�serv Pa-
rameters Con�guration. Technical report, NEC, March 2001.

[23] J. Esteve. QoS Extensions to IEEE 802.11. Projecte Final de Car-
rera, Universitat Polit�ecnica de Catalunya, April 2000. Supervised by
S. Sallent and A. Banchs.

[24] S. Tartarelli and A. Banchs. Random Early Marking: Improving TCP
Performance in Di�Serv Assured Forwarding. Patent application to the
German OÆce. Also, accepted to IEEE ICC 2002.

[25] V. Jacobson. Congestion Avoidance and Control. In Proceedings of
ACM SIGCOMM'88, pages 314{329, Stanford, CA, August 1988.

[26] A. Demers, S. Keshav, and S. Shenker. Analysis and Simulation of
a Fair Queuing Algorithm. Internetworking Research and Experience,
pages 3{26, October 1990.

[27] S. Floyd and V. Jacobson. Link Sharing and Resource Management
Models for Packet Networks. IEEE/ACM Transactions on Networking,
3(4):365{386, August 1995.

[28] R. Braden, D. Clark, and S. Shenker. Integrated Services in the Internet
Architecture: an Overview. RFC 1633, June 1994.

[29] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An
Architecture for Di�erentiated Services. RFC 2475, December 1998.

[30] H. R. Varian. Intermediate Microeconomics - A Modern Approach. W.
W. North & Company, New York/London, �fth edition, 1999.

[31] H. R. Varian. Distributive Justice, Welfare Economics, and the Theory
of Fairness. Philosophy & Public A�airs, 4(3):223{247, 1975.

[32] L. Massoulie and J. Roberts. Bandwidth Sharing: Objectives and Algo-
rithms. In Proceedings of IEEE INFOCOM'99, New York, NY, March
1999.

[33] I. Stoica, S. Shenker, and H. Zhang. Core-Stateless Fair Queueing:
Achieving Approximately Fair Bandwidth Allocations in High Speed
Networks. In Proceedings of ACM SIGCOMM'98, pages 118{130, Van-
couver, Canada, August 1998.

139

[34] Z. Cao, Z. Wang, and E. Zegura. Rainbow Fair Queueing: Fair Ban-
wdith Sharing Without Per-Flow State. In Proceedings of IEEE INFO-
COM 2000, Tel-Aviv, Israel, March 2000.

[35] A. Clerget and W. Dabbous. TUF: Tag-based Uni�ed Fairness. In
Proceedings of IEEE INFOCOM 2001, Anchorage, Alaska, April 2001.

[36] H. Zhu, A. Sang, and S. Li. Weighted Fair Bandwidth Sharing Using
SCALE Technique. Computer Communications Journal, Special Issue
in QoS, 24(1), January 2001.

[37] M. Nabeshima, T. Shimizu, and I. Yamasaki. Fair Queuing with In/Out
Bit in Core Stateless Networks. In Proceedings of the Eight IEEE/IFIP
International Workshop on Quality of Service (IWQoS 2000), Pittsburg,
PA, June 2000.

[38] I. Stoica, S. Shenker, and H. Zhang. Core-Stateless Fair Queueing:
Achieving Approximately Fair Bandwidth Allocations in High Speed
Networks. Technical report, Carnegie Mellon University, June 1998.
Available at http://www.cs.cmu.edu/~istoica/csfq-tr.gz.

[39] Z. Wang. A Case for Proportional Fair Sharing. In Proceedings of
the Sixth IEEE/IFIP International Workshop on Quality of Service
(IWQoS'98), Napa, CA, May 1998.

[40] S. Floyd and V. Jacobson. Random Early Detection Gateways for Con-
gestion Avoidance. IEEE/ACM Transactions on Networking, 1(1):397{
413, August 1993.

[41] UCB/LBNL/VINT. Network Simulator (ns), version 2. http://www.

isi.edu/nsnam/ns/.

[42] R. Kapoor, C. Cassetti, and M. Gerla. Core-Stateless Fair Bandwidth
Allocation for TCP
ows. In Proceedings of IEEE ICC 2001, Helsinki,
Finland, June 2001.

[43] QBone Bandwidth Broker Advisory Council home page. http://www.

merit.edu/working-groups/i2-qbone-bb.

[44] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski. Assured Forward-
ing PHB Group. RFC 2597, June 1999.

[45] V. Jacobson, K. Nichols, and K. Poduri. An Expedited Forwarding
PHB. RFC 2598, June 1999.

140

[46] C. Kalmanek, D. Shur, S. Sibal, C. Sreenan, and J. Merwe. NED: A
Network-Enabled Digital Video Recorder. In 11th IEEE Workshop on
Local and Metropolitan Area Networks (LANMAN 2001), Boulder, CO,
March 2001.

[47] K. Kilkki. Simple Integrated Media Access. draft-kalevi-simple-media-
access-01.txt, Internet draft, June 1997.

[48] M. Loukola, J. Ruutu, and K. Kilkki. Dynamic RT/NRT PHB Group.
draft-loukola-dynamic-00.txt, Internet draft, November 1998.

[49] CISCO SYSTEMS. Congestion Avoidance Overview. http:

//www.cisco.com/univercd/cc/td/doc/product/software/ios122/

122cgcr%/fqos_c/fqcprt3/qcfconav.htm.

[50] C. Dovrolis, D. Stiliadis, and P. Ramanathan. Proportional Di�erenti-
ated Services: Delay Di�erentiation and Packet Scheduling. In Proceed-
ings of ACM SIGCOMM'99, pages 109{120, Cambridge, MA, Septem-
ber 1999.

[51] T. Nandagopal, N. Venkitaraman, R. Sivakumar, and V. Bharghavan.
Relative Delay Di�erentiation and Delay Class Adaptation in Core-
Stateless Networks. In Proceedings of IEEE INFOCOM 2000, Tel-Aviv,
Israel, March 2000.

[52] Y. Moret and S. Fdida. A Proportional Queue Control Mechanism to
Provide Di�erentiated Services. In International Symposium on Com-
puter System, Belek, Turkey, October 1998.

[53] WTP packet scheduler for ns2. http://www.cis.udel.edu/

~dovrolis/ns-WTP.tar.

[54] A. Feldmann, A. C. Gilbert, and W. Willinger. Data networks as cas-
cades: Investigating the multifractal nature of the Internet WAN traf-
�c. In Proceedings of ACM SIGCOMM'98, pages 25{38, Vancouver,
Canada, August 1998.

[55] Di�serv Model for the ns2 simulator. http://www7.nortel.com:8080/
CTL/.

[56] K. Nichols, V. Jacobson, and L. Zhang. A Two-bit Di�erentiated Ser-
vices Architecture for the Internet. RFC 2638, July 1999.

141

[57] J. Y. Le Boudec P. Hurley. A proposal for an asymmetric best-e�ort ser-
vice. In Proceedings of the Seventh IEEE/IFIP International Workshop
on Quality of Service (IWQoS'99), pages 132{134, London, England,
May 1999.

[58] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource
Reservation Protocol (RSVP) { Version 1 Functional Speci�cation. RFC
2205, September 1997.

[59] L. Breslau, E. W. Knightly, S. Shenker, I. Stoica, and H. Zhang. End-
point Admission Control: Architectural Issues and Performance. In
Proceedings of ACM SIGCOMM 2000, pages 57{70, Stockholm, Swe-
den, August 2000.

[60] G. Bianchi, A. Capone, and C. Petrioli. Throughput analysis of end-
to-end measurement-based admission control in IP. In Proceedings of
IEEE INFOCOM 2000, Tel Aviv, Israel, March 2000.

[61] V. Elek, G. Karlsson, and R. Ronngren. Admission control based on
end-to-end measurements. In Proceedings of IEEE INFOCOM 2000,
Tel Aviv, Israel, March 2000.

[62] F. Kelly, P. Key, and S. Zachary. Distributed admission control. IEEE
Journal on Selected Areas in Communications, 18(12), December 2000.

[63] S. E. Deering. Multicast routing in internetworks and extended LANs. In
Proceeding of ACM SIGCOMM'88, pages 55{64, Stanford, CA, August
1988.

[64] H. Eriksson. MBONE: The Multicast Backbone. Communications of
the ACM, 37(8), August 1994.

[65] A. Legout, J. Nonnenmacher, and E. Biersack. Bandwidth Allocation
Policies for Unicast and Multicast Flows. IEEE/ACM Transactions on
Networking, 9(4), August 2001.

[66] H. W. Holbrook and D. R. Cheriton. IP Multicast Channels: EXPRESS
Support for Large-scale Single-source Applications. In Proceedings of
ACM SIGCOMM'99, pages 65{78, Harvard, MA, September 1999.

[67] C. Kumuench, G. Kuehne, C. Shremmer, and T. Haenselmann. A video-
scaling algorithm based on human perception for spatio-temporal stim-
uli. In Proceedings of SPIE, Multimedia Computing and Networking,
2001.

142

[68] T. Kim, R. Sivakumar, K.-W. Lee, and V. Bharghavan. Multicast Ser-
vice Di�erentiation in Core-Stateless Networks. In Proceedings of In-
ternational Workshop on Networked Group Communication, Pisa, Italy,
November 1999.

[69] S. McCanne and V. Jacobson. Receiver-driven layered multicast. In
Proceedings of ACM SIGCOMM'96, Stanford, CA, August 1996.

[70] A. Flores and M. Ghanbari. Prioritised delivery of layered coded video
over IP networks. ACM Transactions on Multimedia, 2001.

[71] D. Rubenstein, J. Kurose, and D. Towsley. The Impact of Multicast
Layering on Network Fairness. In Proceedings of ACM SIGCOMM'99,
Boston, MA, September 1999.

[72] IEEE. Wireless LANMedium Access Control (MAC) and Physical Layer
(PHY) Speci�cations. IEEE Standard 802.11, June 1999.

[73] F.A. Tobagi and L. Kleinrock. Packet Switching in Radio Channels:
Part I - Carrier Sense Multiple-Access Modes and their throughput delay
characteristics. IEEE Transactions on Communications, 23(12):1417{
1433, 1975.

[74] F.A. Tobagi and L. Kleinrock. Packet switching in radio channels: Part
II - the Hidden Terminal Problem in Carrier Sense Multiple-Access
Modes and the Busy-Tone Solution. IEEE Transactions on Commu-
nications, 23(12):1417{1433, 1975.

[75] C. Fullmer and J. J. Garcia-Luna-Aceves. Floor Acquisition Multiple
Access (FAMA) for Packet Radio Networks. In Proceedings of ACM
SIGCOMM'95, Cambridge, MA, August 1995.

[76] T. Nandagopal, S. Lu, and V. Bharghavan. A Uni�ed Architecture for
the Design and Evaluation of Wireless Fair Queuing Algorithms. In
Proceedings of ACM MOBICOM'99, Seattle, WA, August 1999.

[77] S. Lu, V. Bharghavan, and R. Srikant. Fair Scheduling in Wire-
less Packet Networks. In Proceedings of ACM SIGCOMM'97, Cannes,
France, August 1997.

[78] M. Barry, A. Veres, and A. T. Campbell. Distributed Control Algorithms
for Service Di�erentiation in Wireless Packet Networks. In Proceedings
of IEEE INFOCOM 2001, Anchorage, Alaska, April 2001.

143

[79] A. Ayyagari, Y. Bernet, and T. Moore. IEEE 802.11 Quality of Service
- White Paper. IEEE 802.11-00/028.

[80] A. Imad and C. Castelluccia. Di�erentiation Mechanisms for IEEE
802.11. In Proceedings of IEEE INFOCOM 2001, Anchorage, Alaska,
April 2001.

[81] N. H. Vaidya, P. Bahl, and S. Gupta. Distributed Fair Scheduling in
Wireless LAN. In Proceeding of ACM MOBICOM 2000, Boston, MA,
August 2000.

[82] V. Kanodia, C. Li, B. Sadeghi, A. Sabharwal, and E. Knightly. Dis-
tributed Multi-Hop with Delay and Throughput Constraints. In Pro-
ceedings of ACM MOBICOM 2001, Rome,Italy, July 2001.

[83] J.L Sobrinho and A.S. Krishnakumar. Real-Time TraÆc over the IEEE
802.11 Medium Access Control Layer. Bell Labs Technical Journal, Au-
tumn 1996.

[84] M. A. Visser and M. E. Zarki. Voice and Data transmission over an
802.11 Wireless network. In Proceeding of PIMRC, Toronto, Canada,
September 1995.

[85] ETSI. Broadband radio access networks (BRAN); HIgh PERformance
Radio Local Area Network (HIPERLAN) Type 1; Functional Speci�ca-
tion. European Norm 300 652 (V1.2.1), ETSI, 1998.

[86] J. Khun-Jush, G. Malmgren, P. Schramm, and J. Torsner. HIPERLAN
type 2 for broadband wireless communication. Ericsson Review, no.2
(see http://www.ericsson.com/review), 2000.

[87] S. Chevrel et al. Analysis and Optimisiation of the HIPERLAN Channel
Access Contention Scheme. Wireless Personal Communications 4, pp.
27-39, Kluwer Acadamic Publishers, 1997.

[88] W. Almesberger. TraÆc Control implementation overview. ftp:

//lrcftp.epfl.ch/pub/people/almesber/tcio-current.ps.gz.

[89] K. Wehrle R. Bless. Evaluation of di�erentiated services using an im-
plementation under linux. In Proceedings of the Seventh IEEE/IFIP In-
ternational Workshop on Quality of Service (IWQoS'99), London, Eng-
land, May 1999.

144

[90] I. Stoica and H. Zhang. Providing Guaranteed Services Without Per
Flow Management. In Proceedings of ACM SIGCOMM'99, pages 81{
94, Boston, MA, September 1999.

[91] D. D. Clark and W. Fang. Explicit Allocation of Best E�ort Packet
Delivery Services. IEEE/ACM Transactions on Networking, 6(4):362{
373, August 1998.

145

