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Abstract 
 
Tomato rootstocks are becoming an important non-chemical method 
to control diseases worldwide. Grafting improves plant growth and 
vigor and allows the cultivation of appreciated tomato varieties in 
pathogen infested soils. Due to these advantages, the use of 
rootstocks has increased in detriment of tomato cultivars. Despite the 
adaptability of tomato rootstocks to different conditions and their 
high tolerance to stress, little information is available about the 
ability of tomato rootstocks carrying the Mi-1 resistant gene to 
control root-knot nematodes of the genus Meloidogyne under 
different agronomic conditions. The objective of this thesis was to 
determine the suitability of the Mi-1 tomato rootstocks to manage 
tomato infections by M. arenaria, M. incognita and M. javanica and 
their effectiveness was compared with that of resistant tomato 
cultivars.  
 

The response of 10 Mi-1 tomato rootstocks to a Mi-avirulent 
population of M. javanica was determined in pot tests conducted in a 
greenhouse in spring (March to July) when temperatures remained 
below the Mi-1 functionality resistance threshold (28 °C), and in 
summer (July to September) when daily average temperatures 
exceeded the temperature threshold for Mi-1 expression. These same 
rootstocks were additionally evaluated in field conditions by 
exposing them to high population densities of the nematode (March 
to July). Results on infectivity and reproduction below 28 °C for pot 
tests and field trials indicated a wide variability in the resistance 
response of the rootstocks ranging from highly or intermediate 
resistance (PG-76, Gladiator, MKT-410; Brigeor, 42851, 43965, Big 
Power and He-man) to fully susceptible (Beaufort and Maxifort). At 
high temperature conditions, only two rootstocks (PG-76 and He-
man) were able to inhibit the reproduction of M. javanica. Rootstocks 
PG-76, Brigeor, Beaufort and Maxifort were challenged to different 
populations of M. arenaria, M. incognita and M. javanica. Rootstock 
PG-76 was highly resistant to all the populations tested, whereas the 
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response of Brigeor ranged from highly to moderate resistance; 
rootstocks Beaufort and Maxifort showed reduced resistance or 
complete inability to suppress nematode reproduction. In addition, 
the response of the latter rootstocks varied according to the 
population tested. Thus, Beaufort and Maxifort were susceptible to 
the two tested populations of M. javanica and Maxifort also was to 
one of M. incognita.  
 

Molecular characterization of the resistance phenotype was 
performed for all the tomato hybrid rootstocks and cultivars 
previously tested. The markers PM3, PMi, Mi23, designed for the 
characterization of the Mi-locus of hybrid tomato rootstocks (S. 

lycopersicum × S. habrochaites and S. lycopersicum × S. chilense) 
were used for PCR reactions. In silico analyses were done with 
specific markers for the Mi-1.2 gene (Mint-up/do, C1/2, C2S4, IMO-
F1/R1, and VIGS). Results indicated that markers PMi and Mi23 
were polymorphic for the Mi-1 locus in wild Solanum species (S. 

chilense, S. habrochaites and S. peruvianum) and for S. lycopersicum 
(marker Mi23). Marker PM3 was able to detect the Mi-1.2 gene in S. 

lycopersicum × S. habrochaites hybrid rootstocks (Beaufort and 
Maxifort), but not in the S. chilense hybrids (Tyrmes). As marker 
PM3 is located outside the coding sequence (CDS) of the Mi-1.2 

gene, expression of this homolog could not be determined in Beaufort 
and Maxifort. In silico results indicated that none of the currently 
available specific markers for the Mi-1.2 gene could distinguish this 
homolog from the other Mi-homologs present in both S. 

lypcopersicum and S. peruvianum species. A new marker Pau-Do, in 
combination with C2S4, was designed to amplify a 1,494 bp 
fragment in the CDS of the Mi-1.2 gene. Amplification with Pau-Do 
and C2S4 primers of cDNA from roots and leaves of Beaufort and 
Maxifort indicated that the Mi-1.2 gene was expressed in both 
rootstocks, despite their susceptible phenotypic response to some 
Meloidogyne populations. 
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The durability of the Mi-1 gene after repeated cultivation of 
resistant tomato rootstocks was determined through field trials 
performed along three consecutive years using rootstocks PG-76 and 
Brigeor. Results indicate that rootstock PG-76 responded as highly 
resistant after the first cropping cycle, although it showed 
intermediated resistance and became fully susceptible after the 
second and the third cropping cycles, respectively. Rootstock Brigeor 
and the resistant tomato cultivar Monika used as control, retained 
intermediate resistance levels at the end of the third year, although 
bioassays confirmed that selection of virulence occurred more rapidly 
in plots with rootstock PG-76 followed by Brigeor, and the resistant 
tomato cultivar Monika in the third place. Data shown that virulent 
nematode isolates were rapidly selected from an original avirulent M. 

javanica population after repeated cultivation of resistant tomato 
rootstocks in the field.  
 

Determination of the virulent phenotype of the selected M. 

javanica populations in the field experiments was performed at the 
molecular level using the MVC marker. This marker was designed to 
distinguish selected from naturally virulent populations of root-knot 
nematodes. The populations analyzed included two Japanese selected 
virulent populations of M. incognita and M. javanica, the three 
Spanish virulent populations selected in the field trials, and one 
naturally virulent population and one avirulent population, both of the 
M. javanica species. DNA samples were obtained from individual 
juveniles (J2) or adult females from all the selected virulent 
populations. Experiments included water samples free of nematodes 
(5-µm filtered), obtained from the draining-water of a plant infected 
by a Japanese selected virulent population. Amplification of DNA 
only occurred in samples of filtered water, but not in those containing 
only nematode genetic material. Sequencing and BLAST of the DNA 
fragments amplified by the MVC molecular marker, established a 
strong correlation of the amplified bands with several proteins from 
the betaproteobacteria species Acidovorax avenae spp. citrulli, 
Verminephrobacter eiseniae and the genus Diaphorobacter spp. 
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Overall, these results showed that the MVC marker is not related to a 
nematode virulence gene (avr) but to betaproteobacteria.  

 
Finally, a search for new root-knot nematode resistant Mi-

homologs in accessions of the wild Solanum species S. chilense, S. 

habrochaites, S. peruvianum and S. huaylasense was done. From the 
nine accessions analyzed, only the S. huaylasense accession LA-1358 
was able to inhibit reproduction of a population of M. arenaria to 
similar levels than the resistant tomato cultivar Anairis. Nevertheless, 
the resistance response of S. huaylasense accession LA-1358 was 
nematode-species specific, as it was resistant to M. arenaria, but 
susceptible to M. javanica. Reproduction of M. incognita was highly 
variable and did not differ from reproduction on resistant or 
susceptible tomato cultivars.  
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Resumen 
 

Los patrones de tomate se han convertido en un importante método 
no químico para el control de diversas enfermedades que afectan a 
este cultivo a nivel mundial. El injerto mejora el crecimiento de las 
plantas y aumenta su vigor, permitiendo el cultivo de variedades de 
tomate apreciadas por el consumidor en suelos infestados por 
diversos patógenos. Gracias a estas ventajas, el uso de los patrones ha 
incrementado a lo largo de las últimas décadas en detrimento del de 
los cultivares de tomate tradicionales. A pesar de la elevada 
capacidad de adaptación de estos patrones a distintas condiciones 
ambientales y de su alta tolerancia al estrés, existe poca información 
sobre la capacidad de los patrones resistentes de tomate portadores 
del gen Mi-1 para controlar nematodos fitoparásitos del género 
Meloidogyne en distintas condiciones agronómicas. Por lo tanto, el 
objetivo de esta tesis fue determinar la idoneidad del uso los patrones 
de tomate resistentes como herramienta para el manejo de las 
infecciones causadas por M. arenaria, M. incognita y M. javanica, y 
la de comparar su efectividad respecto a la de los cultivares de tomate 
resistentes.  

 
Se determinó la respuesta de resistencia de 10 patrones de 

tomate a una población avirulenta de Meloidogyne javanica en 
ensayos en maceta. Éstos se llevaron a cabo en primavera (marzo-
julio), cuando las temperaturas permitían la expresión fenotípica de la 
resistencia proporcionada por el gen Mi-1 (28 °C) y en verano (julio a 
septiembre), cuando las temperaturas diarias promedio superan dicho 
umbral. Los mismos patrones resistentes también se evaluaron en 
campo durante los meses de marzo a julio mediante su exposición a 
altas densidades poblacionales del nematodo. Los resultados sobre 
inefectividad y reproducción en los ensayos en maceta y campo 
efectuados a temperaturas inferiores a los 28 °C, revelaron una gran 
variabilidad en la respuesta de resistencia de los patrones que osciló 
entre altamente resistente o moderadamente resistente (PG-76, 
Gladiator, MKT-410; Brigeor, 42851, 43965, Big Power y He-man), 
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hasta completamente susceptible (Beaufort y Maxifort). Cuando las 
temperaturas excedieron los 28 °C, únicamente dos patrones (PG-76 
y He-man) fueron capaces de inhibir la reproducción de M. javanica. 
La respuesta de resistencia de los patrones PG-76, Brigeor, Beaufort 
y Maxifort también se evaluó frente a distintas poblaciones de M. 

arenaria, M. incognita y M. javanica. El patrón PG-76, fue altamente 
resistente a todas las poblaciones analizadas, mientras que la 
respuesta de Brigeor osciló entre altamente resistente y 
moderadamente resistente; los patrones Beaufort y Maxifort 
mostraron menor resistencia que los anteriores o fueron totalmente 
incapaces de inhibir la reproducción del nematodo. Además, la 
respuesta de los dos últimos patrones varió en función de la 
población analizada; así, Beaufort y Maxifort fueron susceptibles a la 
infección causada por las dos poblaciones de M. javanica estudiadas 
y Maxifort también lo fue a una población de M. incognita.  

 
Se llevó a cabo una caracterización a nivel molecular de 

resistencia proporcionada por el gen Mi-1 en todos los patrones 
híbridos y cultivares de tomate previamente estudiados. Para, ello, se 
emplearon los marcadores moleculares PM3, PMi y Mi23, diseñados 
específicamente para la caracterización del locus Mi en patrones 
híbridos de tomate (S. lycopersicum × S. habrochaites; S. 

lycopersicum × S. chilense), mediante técnicas de PCR. También se 
realizaron análisis bioinformáticos empleando marcadores 
específicos (Mint-up/do, C172, C2S4, IMO-F1/R1, y VIGS) para 
determinar la presencia del gen Mi-1.2 en los patrones estudiados. 
Los resultados mostraron que los marcadores de PMi y Mi23 son 
capaces de amplificar numerosos homólogos del gen Mi-1 en 
diversas especies de tomate salvaje (S. chilense, S. habrochaites y S. 

peruvianum) y también en S. lycopersicum (marcador Mi23). El 
marcador PM3 amplificó el gen Mi-1.2 en los patrones Beaufort y 
Maxifort (híbridos de S. lycopersicum × S. habrochaites) pero no 
resultó efectivo para los híbridos de S. chilense. Debido a que el 
marcador molecular PM3 se halla ubicado fuera de la secuencia 
codificadora (CDS) del gen Mi-1.2, no se pudo determinar la 
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expresión de este homólogo en Beaufort y Maxifort. Análisis 
bioinformáticos indicaron que ninguno de los marcadores específicos 
diseñados para amplificar el gen Mi-1.2 disponibles en la actualidad, 

es capaz de distinguir este homólogo de otros homólogos presentes 
en las especies S. lypcopersicum y S. peruvianum. El nuevo marcador 
molecular Pau-Do fue diseñado para amplificar de forma específica, 
en combinación con el primer C2S4, un fragmento de 1.494 pb en la 
secuencia codificadora del gen Mi-1.2. El empleo de ambos 
marcadores permitió la amplificación del gen Mi-1.2 en el cDNA 
procedente de raíces y hojas de Beaufort y Maxifort. Este hecho 
indicó que el gen de resistencia Mi-1.2 se expresa en ambos patrones, 
a pesar del fenotipo de susceptibilidad que Beaufort y Maxifort 
presentan frente a algunas poblaciones de Meloidogyne. 

 
La durabilidad de la resistencia proporcionada por el gen Mi-1 

después del cultivo reiterado de patrones de tomate se determinó 
mediante experimentos de campo realizados a lo largo de tres años 
consecutivos en los que se emplearon los patrones resistentes PG-76 
y Brigeor. El patrón PG-76 fue altamente resistente al nematodo 
después del primer ciclo de cultivo, mostró una respuesta de 
resistencia intermedia y resultó susceptible al finalizar el segundo y el 
tercer año de cultivo, respectivamente. El patrón Brigeor y el cultivar 
de tomate resistente Monika empleado como control, mantuvieron un 
nivel de resistencia intermedio al final del tercer ciclo de cultivo, a 
pesar de que ensayos posteriores realizados en maceta confirmaron la 
aparición de dicha virulencia, la cual se produjo más rápidamente en 
las parcelas cultivadas con el patrón PG-76, seguidas por aquellas 
sembradas con el patrón Brigeor y con el cultivar resistente Monika, 
en tercer lugar. Estos resultados mostraron que el cultivo reiterado de 
los patrones de tomate resistentes en el campo dio lugar a una 
selección rápida de aislados virulentos a partir de una población 
avirulenta de M. javanica.  

 
El fenotipo virulento de las poblaciones del M. javanica 

seleccionadas en los experimentos de campo se analizó a nivel 
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molecular utilizando el marcador de virulencia MVC. Este marcador 
se diseñó para distinguir poblaciones virulentas de Meloidogyne 
seleccionadas tras el uso reiterado de variedades resistentes de tomate 
de los aislados naturalmente virulentos. Se analizaron dos 
poblaciones japonesas de M. incognita y M. javanica cuya virulencia 
había sido seleccionada mediante el uso repetido de cultivares 
resistentes de tomate, las tres poblaciones españolas virulentas 
seleccionadas en los ensayos de campo y una población naturalmente 
virulenta y una avirulenta, ambas de la especie M. javanica. Las 
muestras de ADN se obtuvieron de individuos juveniles (J2) o de 
hembras adultas. En los experimentos se incluyeron muestras de agua 
sin nematodos (previamente filtradas por un filtro de 5-µm), 
procedentes del drenaje recogido después del riego de una maceta 
que contenía una planta infectada por una población virulenta 
japonesa. La amplificación de ADN mediante el marcador MVC sólo 
se produjo en las muestras de agua filtrada y sin embargo, no se 
produjo en aquellas que contenían únicamente el material genético de 
los nematodos. Las secuencias de ADN obtenidas, fruto de la 
amplificación con el marcador MVC, se compararon con las 
secuencias disponibles en las bases de datos públicas mediante el 
programa informático BLAST. Los resultados mostraron una estrecha 
correlación de las secuencias MVC con las de diversas proteínas de 
las especies de betaproteobacterias Acidovorax avenae spp. citrulli, 
Verminephrobacter eiseniae y del género Diaphorobacter spp. Estos 
experimentos revelaron que el marcador de MVC no está relacionado 
con un gen de virulencia del nematodo (avr) sino con 
betaproteobacterias. 

 
Finalmente, se estudió la existencia de homólogos del gen Mi de 

resistencia a nematodos en las especies de tomate silvestre Solanum 

chilense, S. habrochaites, S. peruvianum y S. huaylasense. De las 
nueve variedades analizadas, sólo la variedad LA-1358 de la especie 
S. huaylasense fue capaz de inhibir la reproducción de una población 
de M. arenaria a niveles similares a los del cultivar de tomate 
resistente Anairis, empleado como control. La respuesta de 
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resistencia de la variedad LA-1358 de S. huaylasense varió en 
función de la especie del nematodo estudiada ya que ésta se comportó 
como resistente frente a M. arenaria, pero fue susceptible frente a M. 

javanica. En cambio, la reproducción de M. incognita fue muy 
variable y no difirió de la reproducción alcanzada en ambos 
cultivares de tomate empleados como control. 

 

 

 

 

 

 

 

 

 

 

 



 

 Evolution of the area under protected cultivation in southeastern 
Spain: Aerial image of the plastic houses of Campo de Dalias 

County from 1974 to 2004. In the last 20 years the area covered 
by plastics has increased in 300% 
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omato is one of the most important horticultural crops worldwide. It 

represents an important source of iron (2%) and vitamin A (5%) in the 

world’s basic diet (FAO, 2001). Deficiencies of vitamin A and iron are 

of greatest public health significance in the world today (Chadha and Oluoch, 

2003).  

According to the Food and Agricultural Organization (FAOSTAT, web 

site), China was the first tomato world producer in 2007 closely followed by 

India, Iran and Turkey. Far behind these Asiatic countries, appear the 

productions of America, Europe, Africa and Oceania. In the European Union 

(EU), tomato is the first vegetable crop in terms of quantities (around 15.3 

million t in 2007) (EUROSTAT, 2008a). The tomato production has remained 

quite stable from 2001 to 2006, although a slight decrease occurred between 

2006 and 2007. Within the EU, tomato is of special relevance in the 

Mediterranean region where more than 60% of the production comes from Italy 

and Spain (EUROSTAT, 2008a). Although Spain (3,664 million t) is the second 

producer after Italy (6,026 million t), it is the first European exporter to 

countries like United States of America, Russia, Norway, Greece or Germany 

(Figure 1a). The most outstanding importations to Spain are those proceeding 

from Morocco (13 thousand t). The production of this country is concentrated 

and exported to Europe at the same time that the Spanish tomato production, 

turning Morocco into the most direct competitor for the Spanish producers 

(Text Box 1). The remaining importations represent a minority and mainly 

come from other European countries (Figure 1b). The final EU net trades for 

tomato in 2007 were positive, and exportations (710 thousand t) widely 

exceeded the foreign importations (246 thousand t) (EUROSTAT, 2008a).  

Provisional data provided by the Ministry of Environment, Rural and 

Marine Affairs of Spain in 2007 (MARM, 2007) indicates that Spain dedicated 

56, 7 thousand hectares to tomato production, which was the smallest surface 

area for this crop since 1990. Nevertheless, the reduction of the cultivated area 

was compensated by the highest average yield increases (6.77 t/ha) in the last 

decade. 
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The investment on mechanization of the farms would be the main reason 

for the increased productivity. From the total surface area (ha) cultivated in 

Spain, 99% is occupied by irrigated areas and the production of tomato is 

mainly performed outdoor (64.2%) and the rest, under plastic houses (35.8%). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. World map of the commercial relationships of Spain with other countries related to 

tomato during 2005. (a) Exportations. (b) Importations (FAOSTAT). 
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According to the Statistics of the Marine and Rural Area Yearbook 

(MARM, 2008), production of tomato in Spain is specially concentrated from 

June to September with a total production of more than 2,000 thousand t for this 

period. Productions obtained from January to May (984 thousand t) and those 

from October to December (705 thousand t) are less significant.  

The main tomato producers among the Spanish regions are: Andalusia, 

Extremadura, Murcia, Canary Islands, Castile–La Mancha, Aragon, Navarre 

and Catalonia (Fig. 2). Almeria and Murcia are the major provinces for 

production of fresh tomato in greenhouses, and both are mainly focused on 

exportation. Production in Almeria is characterized by small-scale family farms 

and the use of simple plastic structures called “parral”. Cultivation is mostly in 

“enarenado”, which consists on a 30-cm layer of soil placed on top of the 

natural soil, 2-3 cm of organic compost and a 10-cm top-layer of sand. In this 

province, the area under protected cultivation (plastic multi-tunnels) has largely 

increased but the glasshouse area is relatively small. In Murcia, the production 

systems are characterized by large-scale fields owned by companies with 

modern greenhouses (Costa and Heuvelink, 2007). 

 

 

Figure 2. Percentual distribution of the total tomato production in the Spanish regions. 
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The genus Meloidogyne Goeldi, 1892 

 

The phylum Nematoda comprises a large number of species adapted to several 

habitats, ranging from free living nematodes to obligate parasitic species. 

Within this phylum, sedentary endoparasitic nematodes from the Heteroderide 

family are responsible for a reduction of 12% of the annual worldwide 

production, estimated in more than 1 billion dollar per year (Sasser and 

Freckman, 1987).  

Two major groups can be distinguished within the Heteroderidae 

family, the cyst-nematodes and the root-knot nematodes. The cyst-nematodes 

comprises those species where the adult endoparasitic female that contains the 

fully embrionated eggs inside their hardened cuticle-body, is visible at the 

Text Box 1: The controversy with the Moroccan tomato 
 
 

Tomato production in Morocco represents a threat for the Spanish producers of cherry 

tomato, especially those from Almeria and Murcia. This fact has been attributed to the 

high increases of the African exportations and the low prices of the tomato in Morocco 

which is exported to the UE coinciding with the Spanish tomato production (Nantes, 

2009; http:www.abc.es). An agreement reached in 2001 between the EU and the 

Kingdom of Morocco established a maximum quota for the Moroccan exportations, 

although Morocco has been systematically breaking the UE trading agreements 

(Anónimo, 2009; http:www.elpais.com). The European Group of Tomato Producers 

(EGTP), which includes France, The Netherlands, United Kingdom, Poland and Spain, 

has publicly denounced the irregularities committed by Morocco over the last years 

concerning to these exportation quotes. In addition, the price of the Moroccan tomato is 

far below (0.36 €/kg) the preferential duty fees established by the UE to this country 

(0.46 €/kg) (COAG, 2009; http://www.agroinformación.com). Nevertheless, African 

producers regret the critics received arguing that most producers working right now in 

Morocco are from EU countries, especially from Spain and France (Fernandez, 2009). 

Displacement of tomato production to developing countries is mainly attributed to 

lower salaries, cheaper farm lands and relaxed policies concerning the use of pesticides. 

The European Anti-Fraud Office (EAFO) has confirmed the irregularities related to 

tomato exportations from Morocco, and has demanded an increased control of these 

exportations to “verify the observance of the EU legislation about hygiene, food security, 

traceability, and those related with environmental issues, requested for the European 

producers”.  
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external surface of the root. When infection occurs, the response of the host 

cells to nematode feeding is the formation of a syncytium that consists of the 

union of the infected cells to their adjacent through cell wall degradation and 

protoplast fusion. The most damaging species within this group belong to the 

genus Globodera and Heterodera. The potato cyst-nematodes, G. pallida and 

G. rostochiensis are becoming increasingly dominant in intensive potato 

production areas; H. avenae affects wheat producing millionaire economic 

losses in USA, Australia, Europe or India, and H. glycines is considered a 

major threat for production of soybean worldwide (Manzanilla-López et al., 

2004).  

In the root-knot nematodes group, the mature sedentary females remain 

inside the root tissue and lay their eggs in a gelatinous egg mass. When the 

second-stage juvenile (J2) infects the plant and feeds on a cell, it produces an 

abnormal cell growth followed by multiple acytokinetic mitosis that lead to the 

formation of a large multinucleate giant cell (Williamson and Hussey, 1996). 

The most damaging species of Meloidogyne are M. arenaria (Neal) Chitwood, 

M. incognita (Kafoid and White) Chitwood and M. javanica (Treub) 

Chitwood, as they can infect more than 2,000 different hosts including 

horticultural and extensive crops, ornamental plants and fruit trees (Hussey, 

1985). They have a broad geographic distribution in temperate and tropical 

regions in a latitudinal range comprised between 40 ˚N and 33 ˚S. The species 

M. arenaria infects a wide range of crops and is specially relevant to peanut 

crops of the African continent; M. incognita is highly pathogenic to basic 

crops for human consumption as rice, maize, potato, soybean, banana or yam, 

and also for added-value crops like tobacco, coffee, sugar cane, sugar beet or 

cotton (Lamberti, 1997); M. javanica is extremely polyphagous and mainly 

affects vegetables, cotton and tobacco. Among these three species, M. 

javanica is the most abundant in the Mediterranean basin, followed by M. 

incognita and M. arenaria (Ibrahim, 1985; Ornat and Sorribas, 2008).  

In Spain, other species of Meloidogyne have been recorded in addition 

to those already cited (Andrés et al., 1998). Species such as M. hapla, M. 

artiella, M. hispanica and M. baetica are important pests for several 

horticultural crops and fruit trees. Although M. hapla is present in the 

Mediterranean area it is more commonly found in northern regions of Europe 

infecting winter crops. Nevertheless, M. hapla has been identified in Spain 

infecting strawberry (Fragaria vesca) and kiwifruit (Actinidia deliciosa) 

(Abelleira and Mansilla, 1993). M. artiella is mainly distributed in the 

Mediterranean area infecting leguminous crops like chickpea (Cicer 



Tomato rootstocks for the control of Meloidogyne spp. 

 
6 

M.  arenaria
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M.  hapla
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M.  javanica

M.  lusitanica

M.  silvestris

arietinum) or durum wheat (Triticum durum), cereals like barley (Hordeum 

vulgare) or sorghum (Sorghum vulgare) and crucifer crops such as cabbage 

(Brassica oleracea) or radish (Raphanus sativus) among others (Greco et al., 

1992; Hernández et al., 2005); M. hispanica was first described infecting 

peach rootstocks (Prunus persica silvestris) although it can also infect tomato, 

pepper and watermelon (Hirschmann, 1986); finally, M. baetica was described 

in southern Spain infecting wild olive trees (Olea europaea spp. sylvestris) 

(Castillo et al., 2003). Additional Meloidogyne species have been found in the 

Iberian Peninsula infecting herbaceous and woody dicotyledonous plants: M. 

silvestris n. sp. was reported parasitizing the European holly (Ilex aquifolium) 

(Castillo et al., 2009); M. dunensis is a parasitic specie of the European sea 

rocket (Cakile maritima) (Palomares Rius et al., 2007); and M. lusitanica has 

been described infecting the olive tree (Olea europaea) in Portugal (Abrantes 

et al., 1991). The geographic distribution of these Meloidogyne species in the 

Iberian Peninsula can be observed in Figure 3. Other Meloidogyne species that 

affect crops of local economic interest are described in Table 1.  

 

 

Figure 3. Geographic localization of the ten Meloidogyne species described in the Iberian 

Peninsula.  
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Table 11. Other Meloidogyne species recognized as important pest for crops of economic interest. 

Species Plant hosts Geographic distribution 

M. acronea Cotton, sorghum Southern Africa 

M. africana Coffee Africa 

M. arabica Coffee Costa Rica 

M. brevicultata Tea India 

M. chitwoodi Cereals, potatoes, sugar beet Australia, Europe, North and South America 

M. coffeicola Coffee South America 

M. decalineata Coffee Africa 

M. exigua Coffee South America 

M. graminicola Rice North America, South America, South-east Asia 

M. fallax  Alfalfa, carrot, potatoes, sugar beet Australia, Europe, South Africa 

M. konaensis Coffee Hawaii  

M. mayaguensis Coffee, guava, Solanaceae Cuba, Puerto Rico, Senegal, South Africa 

M. naasi Grasses Europe, New Zealand, North America 

M. oryzae Wheat, potatoes, rice, tomatoes Surinam 

M. salasi Rice Costa Rica, Panama 

M. mali Cherry trees, apple trees Japan 

1Adapted from Manzanilla-López et al. (2004). 

 

Identification of root-knot nematodes at the species level is essential, 

particularly when more than one crop is grown and Meloidogyne control is 

planned using rotation of susceptible and resistant crops. Nevertheless, this may 

not be sufficient as some of these species like M. arenaria or M. incognita 

appear as races with a specific range of hosts (Hartman and Sasser, 1985) 

(Table 2). Although Meloidogyne races have been established, recent 

diferencial host tests, including a wider range of hosts, indicate that there can be 

an enormous variability on reproduction of populations of different geographic 

origin, beyond what is described in Table 2 (Noe, 1992; Robertson et al., 2006).  
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Table 2. Differential host range test for four species of the Meloidogyne. 

Nematode 

specie 
Cotton Tobacco Pepper 

Water-

melon 
Peanut Tomato 

Meloidogyne 

incognita 
      

Race 1 - - + + - + 

Race 2 - + + + - + 

Race 3 + - + + - + 

Race 4 + + + + - + 

Meloidogyne 

arenaria 
      

Race 1 - + + + + + 

Race 2 - + - + - + 

Meloidogyne 

javanica 
+ + - + - + 

Meloidogyne 

hapla 
- + + - + + 

 
Symbol (+) indicates that the host supports nematode reproduction and (-) indicates absence of 
reproduction. The plant species used to perform this test are: cotton (Gossipum hirsutum) cv. 
Deltapine 61, tobacco (Nicotiana tabacum) cv. NC 95, pepper (Capsicum annuum.) cv. Early 
California Wonder, peanut (Arachis hypogea) cv. Florunner; watermelon (Citrullus vulgaris) cv. 
Charleston Grey, and tomato (Solanum lycopersicum) cv. Rutgers (Hartman and Sasser, 1985). 

 

Life cycle, Symptoms and Pathogenesis 

 

The Meloidogyne spp. life cycle consists of four developmental stages. 

Nematodes emerge from the eggs as second-stage juveniles (J2) (Fig. 5g). After 

hatching, the infective J2 migrate into the root and penetrate through the 

elongation area, the lateral roots or the adjacent areas of the pre-infected tissues. 

Inside the roots, J2 migrate through the intercellular space to the vascular 

cylinder to establish a feeding site. Once established, J2 initiate the growing 

process shedding to the 3rd and 4th molt and becoming adult females or males 

(Fig. 4 b to h). Males migrate outside of the root while sedentary females 

remain feeding on it. Adult females are pear-shaped and lay a gelatinous matrix 

which remains attached to the posterior end of the female body (Fig. 5f). Eggs 

are deposited within an egg mass of about 500 to 1,500 eggs (Ornat and 

Sorribas, 2008) which sometimes can be visible at the external surface of the 

root (Fig. 5a-5d). In normal conditions, the presence of males is not necessary 
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for reproduction as M. arenaria, M. incognita, and M. javanica reproduce by 

obligatory parthenogenesis (Tyler, 1944). The life cycle occurs between 10 ˚C 

(basal temperature) and 32 ˚C. Meloidogyne needs about 600 to 700 

accumulated degree-days (DD˚) of soil temperature to complete one generation 

(Ferris et al., 1985). Nematode survival in the absence of a host is also 

conditioned by temperature: the optimum temperatures for survival of eggs and 

juveniles ranges from 5 ˚C to 10 ˚C (Ornat and Sorribas, 2008).  

Nematode secretions (Text Box 2) injected into a plant cell, interact with 

the citoplasmatic receptors to initiate a series of proteomic modifications in the 

infected cell (Hussey et al., 2002). Few hours after nematode infection, the cell 

undergoes several morphological, physiological and molecular changes to 

become a giant cell (Fig. 6). Transformed cells are metabolically very active 

and have a dense cytoplasm with abundant organelles, ribosomes and 

mitochondria. The numerous invaginations that appear in the cell wall 

contribute to increase the contact area between the cell and the rest of the 

vascular tissues, enhancing the nutrient flux to the giant cell (Abad et al., 2003). 

 

 

 

Figure 4. Diagram of the life cycle of Meloidogyne. (1) Penetration of second-stage juveniles (J2) 

in the plant (a) through the apical root tip. (2) Development of juveniles of third-stage (J3) to 

females (b) or males (c) after the establishment of the feeding site, and the formation of the giant 

cells (green), inducing the formation of the root gall. (3) Development of the fourth-stage 

juveniles (J4) to females (d) and males (e). (4) Final maturation of the female (f) and formation of 

the gelatinous egg mass at the external surface of the root (g); migration of adult males (h) 

outside of the gall (Figure adapted by V. Vermaerke and K. Spruyt from Niebel et al., (1994). and 

reprinted with permission from Elsevier). 
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Figure 5. Roots of a susceptible tomato infected by Meloidogyne javanica. (a) General view of 

the infected root system of a tomato. (b) Closer view of the circled area and observation of blue 

egg masses on the external surface of the root. Egg masses were stained in blue with erioglaucine 

for easy counting. (c) Detail of the distortion of the root tissue (galls) caused by nematode 

infection. (d) Close-up view of a gall that contains an adult sedentary female with an egg mass 

attached to the posterior end of the body. (f) Pear-shaped female with an attached egg mass. (g) 

Second-stage juvenile emerged from an egg. 

 

c 



Introduction 

 
11 

Figure 6. Interaction model of Meloidogyne spp. to the infected cell. This figure shows the 

molecular mechanism used by the nematode to alter the metabolism of the feeding cell through 

the interaction of the nematode secretions with the citoplasmatic receptors. Cell wall (CW)-

modifying proteins (endoglucanases, pectolytic enzymes, xylanases and expansins) may be 

secreted to aid the migration of infective juveniles through host plant tissues. Other nematode 

gland cell secretions might have multiple roles in the formation of specialized feeding cells by 

the nematode, including: effects on host cell metabolism by secreted chorismate mutase (CM); 

signaling by secreted nematode peptides such as homologs to plant CLAVATA3/ESR-related 

(CLE) peptides; selective degradation of host proteins through the ubiquitin (UBQ)-proteasome 

pathway by UBQ, S-phase kinase-associated protein 1 (Skp-1) and RING-H2 secreted from the 

nematode; and potential effects of secreted nematode proteins that contain nuclear localization 

signals (NLS) within the host cell nucleus (Figure reprinted from Davis et al. (2004) with 

permission from Elsevier). 
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Individual root-knot nematodes are able to induce the formation of five to 

seven giant cells that can contain about 100 nuclei each. Due to the hyperplasia 

of the cortical cells, the root tissue becomes distorted and forms the root galls 

which are a characteristic symptom of Meloidogyne spp. infection (Figs. 5c, d 

and 7). Nematode damage can be assessed according to a gall rating scheme. 

For instance, the Zeck index (Zeck, 1971) classifies damage to the root system 

in a scale from 0 to 10, where 0 represents a complete and healthy root system 

(no galls observed) and 10 indicates plants and roots death.  

The presence of root-knot nematodes in a crop may not be apparent as the 

aerial symptoms of Meloidogyne infection in a plant are unspecific and very 

similar to those caused by nutrient deficiencies or to other diseases caused by 

pathogens that attack the root system (e.g. Fusarium spp.). Root galling 

constricts the absorption of nutrient and water uptake by the plant, producing 

leaf chlorosis (Fig. 8a), stunting and wilting especially at the hottest hours of 

the day. Infection by root-knot nematodes increases plant susceptibility to other 

pathogens and reduces growth and yield (Fig. 8b and c). In severe attacks, 

plants may finally die. In addition, water stress caused by nematodes alters the 

quality of the tomato fruits (Roberts and May, 1986). 

Sedentary endoparasitic nematodes have evolved a feeding strategy that allows them 

to feed from a single cell or a group of cells for prolonged periods of time. The 

formation of the syncytia (cyst nematodes) and the giant-cells (root-knot nematodes) 

implies a dramatic modification of the cell gene expression. The evolutionary 

adaptations for sedentary parasitism imply the acquisition of a stylet and the 

development of a complex oesophageal glandular system. The secretory gland cells 

from the nematode oesophagus are the main source of secretions involved in plant 

parasitism and it has been suggested that some genes that encode oesophageal gland 

secretions of plant-parasitic nematodes were acquired via horizontal gene transfer 

from prokaryotic microbes (i. e. β-1,4-endoglucanases) (Davis et al., 2000). In the 

oesophagic glands, secretion proteins are stored as secretory granules that vary in 

size, morphology and content among nematode species and between the 

different glands of a nematode (one dorsal and two subventrals) within a specific 

life stage: subventral glands are more active in second-stage juveniles when 

nematodes have to penetrate and establish their feeding site, while the activity of the 

dorsal gland predominates during the sendentary parasitic stages (i.e. adult females). 

Variation in the composition of the secreted proteins of the glands also occurs. Both 

glands remain active during infection and removal of a nematode during the parasitic 

interaction results in the degradation of the feeding cells (Hussey et al., 2002). 

Text Box 2: Nematode secretions 
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Figure 7. Root symptoms of infection caused 
Meloidogyne javanica in tomato. (a) General 
view of the galls in an infected root system. (b) 
Detail of galls and egg masses present in the 
lateral roots. (c) Severly infected roots of the 
tomato plant indicate a heavy soil infestations.  

a 

b 

c 
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Figure 8. Aerial symptoms of 
root-knot nematode infection in 
tomato. (a) Susceptible tomato 
plants at the front show an 
evident leaf chlorosis compared 
to the resistant plants at the back. 
(b) Susceptible tomato plants 
(left) have reduced growth and 
yield compared to resistant plants 
(right) which have more biomass 
and produce more tomatoes. (c) 
Resistant tomato plants (left) 
produce more tomatoes than 
susceptible plants (right) which 
in addition, present a retarded 
ripening.  
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Control methods 

 

The constant advance of the Mediterranean agriculture in the last forty years 

entailed a large number of initiatives to increase agricultural yields. Along the 

past decades, the use of chemical compounds became essential to maintain the 

productivity of agriculture around the world. The use of chemicals to control 

nematodes was first reported in 1881 when carbon disulfide was used against  

H. schachtii in sugar beet (Rich et al., 2004). The following chemical 

compound used was chloropicrin in the early 1920s. This gas was an efficient 

broad spectrum biocide employed regularly for more than eighty years. The 

next step forward in the use of chemicals for nematode control occurred during 

the 1940s, when the great majority of synthetic molecules were discovered. By 

that time, three of the most used products were synthesized: the D-D mixture  

(1,3-dichloropropane and 1,2-dichloropropene), ethylene dibromide (1,2-

dibromoethane) and methyl bromide (bromomethane) (Rich et al., 2004). Since 

the 19th century more than sixteen different chemical products had been used as 

nematicides. A list of the main substances and their effects upon human health 

are presented in Table 3. 

 

Methyl bromide (MeBr) has been the most effective and widely used soil 

fumigant worldwide. This volatile gas has a wide biocide activity, rapid action 

and can be used to control fungi, bacteria, insects, nematodes and weeds. The 

harmful effects of MeBr on the environment were reported in 1992 when this 

gas was identified as an ozone depleting agent in the Montreal Protocol 

(Watson et al., 1992). The bromines contained in MeBr are fifty times more 

destructive to the ozone layer than the chlorine found in chlorofluorocarbons 

(CFCs) and the United Nations Scientific Panel estimated that MeBr was 

responsible for 5 to 10% of worldwide ozone depletion (UNEP, 2001). Damage 

caused by MeBr to human health includes alterations of the nervous central 

system, respiratory depression, and eye and skin irritation. In cases of acute 

toxicity it can lead to death.  

 

Developed countries committed themselves to reduce progressively the 

consumption of MeBr from the baseline of 1991 until its complete phase out in 

2005, except for critical use exemptions. Developing countries signing the 

Montreal Protocol agreed to freeze consumption in 2002 at the 1995-98 average 

level and to reduce consumption from the baseline by 20% in 2005 and 100% in 

2015. 
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Countries that completely eliminated the use of MeBr in tomato before 

2005 were Australia, Japan, New Zeland, Portugal, Spain and United Kingdom. 

Nevertheless, in other developed countries like Italy, France or USA the use of 

MeBr for critical uses was very important until the end of 2005 (UNEP, 2006). 

Before 1998, Spain was the fourth MeBr consumer in the world, after USA, 

Japan and Italy (UNEP, 2006). At present, only four chemical non-volatile 

nematicides have been maintained in the Annex 1 of the Directive 91/414/CEE 

of the new European Directive on Plant Protection Substances for 2010 (Text 

Box 3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Text Box 3: The approval of plant protection products in the European Union 
 

 
As laid down in Directive 91/414/EEC, in 1993 the European Commission (2009) 

launched a work programme to perform a wide review for all active substances used in 

plant protection products within the European Union. In this review process, each 

substance had to be evaluated as to whether it could be used safely with respect to 

human health (i.e. consumers, farmers, local residents) and the environment. There were 

about 1,000 active substances (or products containing them) on the market at the time 

the Directive was adopted. Decisions taken in 2001 enabled the review programme to be 

finalised in March 2009. The review of existing pesticides has led to the removal from the 

market of those pesticides which cannot be used safely. Of the 1,000 active substances on 

the market in at least one Member State before 1993, 26 % (equivalent to 250 

substances) have passed the EU safety assessment. Nevertheless, 67% of the substances 

have been eliminated because the technical dossiers of these products were either not 

submitted, incomplete or withdrawn by industry. In addition, about 70 substances 

failed the review and have been removed from the market, because the evaluation did 

not show safe use with respect to human health and the environment. This review on 

toxic substances provides assurances that the substances currently available on the 

market are acceptable for human health and for the environment.  
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The aproved substances belong to two main groups of nematicides: the 

oximine-carbamates (Oxamyl) and the organophosphates (Fenamiphos, 

Etoprophos and Fosthiazate). The emulsifiable formulation of these nematicides 

makes them specially indicated for application through drip irrigation systems. 

These nematicides are directly lethal to nematodes and insects and their primary 

action is a result of direct contact. Once these nematicides reach more than 8 cm 

deep into soil, their action is mostly due to sublethal effects, including 

modification of the nematode behavior. Non-fumigant nematicides have been 

successfully used to decrease densities of root-knot nematodes in many regions. 

Nevertheless, repeated applications are needed to maintain reduced nematode 

densities and consistent yield increases. These nematicides brake down in the 

soil or plants by hydrolysis or oxidation, but their properties relative to 

movement and soil persistence vary according to their solubility in water or to 

other ambiental factors like soil moisture, texture, type of irrigation or the 

amount of organic matter in the soil (Verdejo-Lucas and McKenry, 2004).  

 

The increasing awareness of producers and consumers about the risks 

that chemical pesticides represent for human health and the environment has 

stimulated the search of new harmless methods to control pests, weeds and 

pathogens. The non-chemical alternatives that can be used to control root-knot 

nematodes are:  

 

I. Solarization uses the sun energy to control soil pathogens. A 

transparent polyethylene film is used to cover the soil and increase the 

temperature of the first 30 cm up to 45 ˚C. This system is considered 

very effective in arid, humid and temperate regions. Nevertheless, this 

method is more efficient to eliminate sedentary stages of parasitic 

nematodes than mobile stages (Halbrendt and LaMondia, 2004) as they 

migrate deep into the soil escaping from high temperatures and 

afterwards, most of them return to the upper soil layers with plough 

labors (Bello et al., 2001). 

 

II. Biofumigation is based on the use of the resulting volatile substances 

from biodegradation of organic matter to control plant pathogens. 

Biofumigants were included as a non-chemical alternative to MeBr by 

the Methyl Bromide Technical Options Committee (MBTOC) in 1997. 

When biofumigation is used in combination with other techniques (e.g. 

solarization) it is a very useful and efficient method to control root-knot 
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nematodes in integrated pest management programs (Medina-Míguez, 

2002). In addition, biofumigation improves soil characteristics. Any 

organic remain can act as a biofumigant, although the efficiency of this 

method depends on the biofumigant composition, the dosage and 

application system (Bello et al., 2002). The biofumigants most 

commonly used in Spain are goat, sheep and cow manure or crop 

remains from rice, mushroom, olive, brassicas and ornamental gardens.  

 

III. Steaming treatments are of special interests for sterilization of 

greenhouse structures or containers. Pathogens and pests are efficiently 

eliminated when steam rises to lethal temperatures or when physical 

damages are incurred to their resting structures (e.g. cysts), even in 

cases of heavy soil infestations. It has also been reported the beneficial 

effect of steaming in the production and growing of subsequent crops 

(Albajes et al., 1999). In the field, over the chemical treatments, it has 

the advantage that allows fast planting after soil cooling. Although it 

may be a useful technique, it requires exhaustive weed removing and 

soil preparation for a good steam penetration and the efficiency may 

depend on the soil texture. It can also have undesirable effects over soil 

biodiversity (UNEP, 2001). It is also an expensive method that is 

practical only for small areas.  

 

IV. Soil-less artificial substrates were widely used during the decade of 

the 1980s to avoid soil disinfestations. The use of artificial substrates is 

specially recommended to prevent diseases caused by pathogens that 

need the soil or any kind of inert substrate to complete their life cycle. 

The most used substrates are vermiculite, pine bark, coconut bark or 

mineral wools. Although they provide a clean substrate at planting, the 

re-circularized water can be a source for spreading diseases that are 

introduced into the soil-less cultures system (Ploeg and Edwards, 

2008). If plantlets are previously infected by root-knot nematodes, the 

soil-less cultures cannot prevent the spreading of the disease 

(Tzortzakakis, 2004; Hallman et al., 2005). 

 

V. Biological control is based on the use of natural enemies to control or 

reduce population densities of pathogens and pests. The organism that 

has adverse effects on nematode populations are commonly called 

nematode antagonists. They include fungi, bacteria, insects and other 

invertebrates. Parasitism and predation are the main mechanisms of 

action of these antagonists. Among these, the hyperparasite bacterium 



Tomato rootstocks for the control of Meloidogyne spp. 

 
20 

Pasteruria spp. and the egg parasitic fungi have been extensively 

studied and are considered the most important antagonists regulating 

nematode populations in the soil (Chen and Dickson, 2004).  

 
VI. Sanitation: This prophylactic measure prevents nematode introduction 

in new productive areas. Sanitation includes the inspection and 

certification of nematode-free planting material, the cleaning of 

equipment and quarantine measures to minimize inoculum dispersion 

(Halbrendt and LaMondia, 2004).  

 

VII. Cultural practices have been successfully used to control soil-borne 

pathogens and to minimize undesirable effects of continuous 

monoculture. They include:  

 
a. Planting Date: Modification of planting dates can be a useful tool 

for nematode management. Crop displacing when soil temperatures are 

too high or too low for nematode infection and development has been 

used to reduce nematode damage. High temperatures can reduce 

resistance to root-knot nematodes, and therefore planting in hot seasons 

should be carefully considered. This breaking-resistance phenomenon 

has been reported in tomato (Solanum lycopersicum) (Dropkin, 1969), 

alfalfa (Medicago sativa) (Griffin, 1969), cotton (Gossipum hirsutum) 

(Carter, 1982), sweet potato (Ipomoea batatas) (Jatala and Russell, 

1972) and common bean (Phaseolus vulgaris) (Mullin et al., 1991). 

Additionally, planting with low temperatures allows plant establishment 

and a delay in root invasion.  

 

b. Trap Crops: Some short cycle crops like lettuce (Lactuca sativa), 

radish (Raphanus sativus), Chinese-cabbage (Brassica rata subsp. 

pekinensis) and Chinese salt-word (Brassica rata subps. chinensis) can 

be used as trap crops to reduce nematode inoculum in soil (Cuadra et 

al., 2000). In north-eastern Spain, temperatures between the months of 

September and October are high enough to allow lettuce infection by 

root-knot nematodes, although nematodes cannot complete their life 

cycle due to subsequent decrease of soil temperatures in November. In 

January, the crop is harvested reducing the nematode inoculum in the 

soil (Ornat et al., 2001).  

 

c. Root destruction: Nematode populations can remain active in soil 

during warm and humid years in the presence of a plant host. Removing 
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plant roots from the precedent crop interrupt nematode life cycle which 

in turn, reduces nematodes survival and prevents population increases 

of Meloidogyne spp. (Ornat et al., 1999).  

 

d. Fallowing: Reduces nematode population densities in soil by 

starvation. It is more effective when combined with root destruction 

rather than fallowing alone. It has been observed that survival rates of 

nematodes in the field are positively correlated to the length of the 

fallowing periods (Ornat et al., 1999). Nevertheless, it may not be a 

profitable option and sometimes it has detrimental effects on the soil 

such as increased risk of erosion or loss of soil organic matter and 

beneficial flora (e.g. mycorrhizae) (Halbrendt and LaMondia, 2004). 

 

e. Weed control: Is of special importance as hundreds of different 

species are hosts of the nematode, which contribute to preserve 

Meloidogyne populations in the fields during fallow periods or winter 

conditions (Ornat and Sorribas, 2008). 

 

f. Crop Rotation: Non-host crops can be used to remove the food 

source of nematodes from an infested soil. This method is difficult to 

implement in perennial crops. In general terms, the magnitude of the 

benefits is generally positively correlated with the number of cropping 

seasons between planting of susceptible crops. It is effective for those 

nematode species that have a narrow range of hosts (e.g. cyst 

nematodes) but not for those with a wide spectrum of parasitism (e.g. 

root-knot nematodes). Crop rotation can be very useful, although it has 

some disadvantages like the need for accurate identification of the 

nematode species, the host range of the nematode, the ability of the 

nematode to survive in the absence of a host, the presence of alternative 

hosts (e.g. weeds) or the economics of crop rotation (Halbrendt and 

LaMondia, 2004).  

 

VIII. Plant resistance is based on the use of varieties that present resistance 

genes to certain pathogens. Resistant plant suppresses pathogen 

reproduction and is an effective tactic to improve crop yield when 

nematode population densities exceed the damage threshold (Starr et 

al., 2002). Tolerant crops cannot be included within this category, as 

they do not suppress nematode reproduction although they may provide 

sustained yields. A specific use of plant resistance is grafting. This 

technique consists of the union of the aerial part of a susceptible plant 
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(scion) with a root system (rootstock) resistant to fungi, bacteria, insects 

and/or nematodes. This method allows the cultivation of susceptible 

plants in soils severely infested with pathogens. In addition, grafted 

plants provide higher yields and improved tolerance towards stress 

conditions (e.g. salinity, high boron concentrations or low 

temperatures) due to their increased vigor (Edelstein, 2004).  

 

 

 

Plant resistance in tomato 

 
 

Plant resistance to parasitic nematodes is defined as the ability of a plant that 

has one or more resistance genes to inhibit or suppress nematode reproduction 

(Roberts, 2002). In nematology, resistance can be classified as: complete, 

intermediate (partial) or non-resistant (susceptible) (Barker, 1993).  

 

Resistant tomato cultivars inhibit pathogen reproduction when compared 

to susceptible cultivars and increase crop productivity (Philis and Vakis, 1977; 

Rich and Olson, 1999; Roberts, 2002). They do not represent an additional cost 

for farmers and are useful in rotation systems preceded by susceptible crops 

(Hanna et al., 1993; Ornat et al., 1997; Talavera et al., 2009). Moreover, plant 

resistance is compatible with integrated pest management strategies and organic 

farming. According to FAO “resistant cultivars are without doubt the easiest 

and most convenient choice for farmers” (Lamberti, 1997). Resistant tomatoes 

are an economically feasible alternative to MeBr to control populations of root-

knot nematodes in infected soils (Besri et al., 2003; Sorribas et al., 2005). In 

tomato, resistance is associated to the Mi-1 gene. This gene inhibits 

reproduction of three root-knot nematode species, M. arenaria, M. incognita 

and M. javanica, but not of M. hapla (Brown et al., 1997). The most important 

limitation of the Mi-1 gene is that resistance is only phenotipically expressed 

when soil temperature is below 28 ˚C. When temperatures exceed this 

maximum threshold, nematodes reproduce similarly on resistant and susceptible 

cultivars (Dropkin, 1969).  

 

The Mi-1 gene considerably reduces nematode reproduction, although 

differences in the efficiency of the resistant cultivars to control nematode 

populations have been observed (Netscher, 1976; Roberts and Thomason, 1989; 

Tzortzakakis et al., 1998; Sorribas and Verdejo-Lucas, 1999). Such differences 
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could be attributed to a different dosage of the Mi-1 gene, which means that 

homozygous cultivars would suppress nematode reproduction more efficiently 

than the heterozygous ones. Nevertheless, scientific evidence seems to indicate 

that this hypothesis is not a general trend (Tzortzakakis et al., 1998; Jacquet et 

al., 2005). Therefore, differences among resistant cultivars have been usually 

attributed to the high variability within nematode species (Roberts and 

Thomason, 1989; Sorribas and Verdejo-Lucas, 1994; Tzortzakakis and Gowen, 

1996; Eddaoudi et al., 1997; Tzortzakakis et al., 1998) or to the genetic 

background of the resistant cultivars, which are both key factors in the plant-

nematode interactions. A study performed with M. incognita corroborated that 

nematode infection of a plant cell involves the differential expression of more 

than 3,000 genes compared to a non-infected cell, pointing out the great variety 

of cellular mechanisms associated to the Mi-mediated resistant response of a 

plant (Jammes et al., 2005).  

 

 

The Mi-1 gene 

 

The Mi-1 gene was first discovered in Solanum peruvianum accession PI-

128657 and later introduced through embryo rescue in the commercial S. 

lycopersicum (Smith, 1944), and all resistant tomato cultivars commercialized 

nowadays originate from that single resistant hybrid (Ammati et al., 1986). The 

name of the gene refers to M. incognita as pathogenicity assays were initially 

performed with this nematode species. Resistance is conferred by this single 

dominant gene located at the telomeric proximal end in the short arm of 

chromosome 6 (Messeguer et al., 1991) which is transmitted to the progeny 

through Mendelian inheritance segregation (Gilbert and McGuire, 1955). The 

length of the introgressed area that spans the Mi-1 gene varies among resistant 

cultivars and it has been greatly reduced in some lines respect to the original 

hybrid (Messeguer et al., 1991; Ho et al., 1992).  

Several Mi-homolog genes (MiGHs) have been mapped in the vicinity of 

the Mi-1 in S. lycopersicum and S. peruvianum species (Milligan et al., 1998; 

Seah et al., 2007). Clusters that belong to the S. peruvianum introgression are 

described as cluster 1p and 2p and those from S. lycopersicum are named 1e and 

2e (Fig. 9) (Seah et al., 2007a). The Mi-homologs from S. peruvianum are 

designated with a number (e.g. Mi-1.1 or Mi-1.4), to distinguish them from the 
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Text Box 4: Spectrum of resistance of the Mi-1.2 gene 

So far the Mi-1.2 gene is the only known gene that provides 

resistance to three organisms that are phylogenetically very 

distant: nematodes (a), aphids (b), and white flies (c). As 

opposed to what happens when a nematode infects the root 

system of a resistant tomato cultivar, no hypersensitive 

response can be observed on leaf tissues when tomato plants 

are attacked by either insect species. Introgression of the Mi-

1.2 resistance gene in eggplant revealed that the gene confers 

resistance to nematodes but not to aphids, although 

introgression of the Mi-1.2 gene in susceptible tomato 

cultivars gave resistance to nematodes and aphids (Goggin et 

al., 2006). The metabolic pathway that leads to such a 

differential resistant response of the Mi-1.2 gene in these 

species still remains unsolved, although it is known that 

the resistance response in all these species is established by a 

gene-for-gene interaction (Rossi et al., 1998; Nombela et al., 

2003). Several studies have been conducted to determine the 

resistance response of the Mi-1.2 gene to different aphid 

isolates of several geographic origins, and results showed 

that this resistance gene presents both species specificity and 

isolate specificity resistance response (Atkinson et al., 2003).  

homologs from S. lycopersicum that are described with a letter (e.g. Mi-1A or 

Mi-1B). Among all the MiGHs present in both Solanum species, only the Mi-1.2 

gene is able to confer resistance to root-knot nematodes. In addition, this gene 

also inhibits reproduction of the potato aphid Macrosiphum euphorbiae (Rossi 

et al., 1998) and the biotypes B and Q of Bemisia tabaci (Nombela et al., 2003) 

(Text Box 4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Four of these fourteen known MiGHs are considered pseudogenes: two 

in S. peruvianum (Mi-1.3 and Mi-1.5) and two in S. lycopersicum (Mi-1A and 

Mi-1D). These pseudogenes present large insertions and deletions that result in 

a lack of a complete open reading frame (ORF) compared to Mi-1.2. The 

homologs Mi-1.6 and Mi-1C have single nucleotide mutation which also results 

in a truncated ORF. All the MiGHs are transcribed, except for the pseudogenes. 

Excluding these, the identity of the sequences for all the MiGHs is extremely 

high ranging from 92.9% to 96.7%. The MiGHs belong to the family of the 

plant resistance genes know as R genes that interact with pathogens through a 

gene-for-gene model described by Flor (1971) which postulates that “for each 

a 

b 

c 
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gene able to establish in a plant an efficient resistance mechanism there is a 

homolog gene that conditions avirulence in the pathogen”. In addition to the 

Mi-1 gene, several genes have been mapped at the telomeric end of the 

chromosome 6 in tomato in a large cluster of R genes (Grube et al., 2000), that 

includes Ol-1, that confers resistance to powdery mildew (Oidium 

lycopersicum) (van der Beek et al., 1994); Am gene, that confers resistance to 

most strains of alfalfa mosaic virus (AMV) (Parrella et al., 2004); alleles Cf-2 

and Cf-5 for resistance to Cladosporium fulvum (Dixon et al., 1998); the Ty-1 

and Ty-3 alleles that confers tolerance to tomato yellow leaf curl virus (TYLCV) 

(Ji et al., 2007); the Bw-5 allele for resistance to Ralstonia solaracearum 

(Thoquet et al., 1996), and the Cm6 allele for resistance to Clavibacter 

michiganensis (Sandbrink et al., 1995). These R genes confer qualitative or 

quantitative resistance to other pathogens, and all were identified in different 

Solanum species like S. chilense, S. habrochaites, S. peruvianum or S. 

pimpinellifolium (Grube et al., 2000). 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 9. Comparison of the Mi-1 locus located at the telomeric region in the short arm of 

chromosome 6. (a) Introgression of Solanum peruvianum in the genetic background of  

S. lycopersicum. (b) Short arm of chromosome 6 in the susceptible species S. lycopersicum.  

The MiGHs that present a truncated open reading frame (ORF) appear as colored boxes (Adapted 

from Seah et al., 2007). 

 



Tomato rootstocks for the control of Meloidogyne spp. 

 
26 

The R genes are characterized by the presence of a nucleotide binding site 

(NBS) domain that is responsible for the union of the protein to the ATPs and 

interferes in the process of cellular apoptosis, and a leucine-rich repeat (LRR) 

region responsible for the protein interaction and pathogen recognition 

(Williamson, 1999) (Fig. 10). R genes can be classified according to the final 

destiny of their codified proteins inside the cell. The Mi-1 gene belongs to the 

group of proteins that remain into the cytoplasm of the cell. Other R genes like 

Cf-2 and Cf-5 have been cloned, and the sequence of the LRR domain indicates 

that both R proteins are located at the membrane of the cell (Dixon et al., 1998). 

The similarity between the Mi-1 gene and other nematode resistance genes 

(Nem-R) has been proved. This is the case of Hero gene that confers resistance 

to the cyst nematode species G. rostochiensis and partial resistance to G. 

pallida; Gpa2 for resistance to G. pallida, and Gro1-4 that confers resistance to 

a narrow range of pathotypes of G. rostochiensis (Williamson and Kumar, 

2006).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
 

Figure 10. Diagram of the structure of the protein codified by the Mi-1.2 gene located in 
the cytoplasm of the cell. (a) Transcript of the Mi-1.2 gene with introns as solid black bars 
and exons as dotted lines; (ATG) Transcription start and (TAG) transcription stop codons. 
(b) Protein structure of Mi-1.2; (Nt) Protein amino terminus; (Ct) carboxyl terminus; (LZ) 
Indicates the position of a leucine zipper; (NBS) Nucleotide Binding Site; (HD) 
Hydrophobic domain; (LRR) Leucine-rich repeat region (adapted from Williamson, 1998).  

Nt
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The LRR domain in the carboxyl extreme (Ct) of the protein indicates 

that plant-pathogen recognition is located inside the cell once the nematode has 

penetrated to establish the feeding site (Hwang, 2000). In an infected cell, the 

initial recognition of an avirulence gene (Avr) from the pathogen by a R gene 

from the plant, activates a series of metabolic pathways to initiate a 

hypersensitive response (HR) that finally leads to cell death. Cellular necrosis 

occurs 12 h after the infection of the plant roots by the J2 (Williamson and 

Hussey, 1996). This mechanism interrupts giant cell development and prevents 

the establishment of the feeding site in the roots (Fig. 11a). 

 

Cell death is preceeded by several biochemical and molecular responses 

(Melillo et al., 2006; Bleve-Zacheo et al., 2007). An example is the increased 

activity of the anionic peroxidases as a part of the so-called oxidative burst that 

helps to protect the plant from the invasion of nematodes or other pathogens 

(Gheysen and Fenoll, 2002). When no recognition occurs between the Avr-R 

genes (compatible interaction) the absence of the hypersensitive response 

allows the establishment of the feeding site by the J2, leading to plant infection 

(Fig. 11b). 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
Figure 11. Histological section of a tomato root showing the feeding site established 
by a second-stage juvenile (J2) of Meloidogyne incognita. (a) Hypersensitive reaction 
(HR) of a cell infected by an avirulent isolate. (b) Absence of HR in a cell infected by 
a virulent isolate. (HR) Hypersensitive response; (Ne) nematode; (N) cell nucleus; 
(gc) giant cell (Figure reprinted from Melillo et al., (2006) with permission from 
Willey-Blackwell). 
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Tomato rootstocks 

 
 

Although plant resistance is an economical, environmentally safe and a harmless 

control method for human health, fruit characteristics of resistant tomato cultivars 

are not always accepted by consumers. Therefore, grafting is a good alternative 

for producing commercially appreciated tomato varieties in pathogen infested 

soils. In agronomy grafting is defined as the union of two related plants using a 

resistant root system (rootstock) and the aerial part of a cultivar (scion), which 

allows cultivation of certain species susceptible to pathogens in infested soils (de 

la Torre, 2005). In horticulture, grafting is frequently used in intensive cropping 

systems. First reports on grafted vegetable crops are from the seventeenth century 

in Korea although grafting was first used commercially in the 20th century in Asia 

(Edelstein, 2004) when wild Solanum species were used to introduce new 

agronomical traits into hybrid cultivars (Osborn et al, 2007). Efforts have been 

mainly focused on the acquisition of new resistance genes to fungi, virus and 

nematodes.  

 

As the introgression of new resistance genes from wild Solanum species 

into commercial varieties had several difficulties, the use of tomato rootstocks 

became essential to fight against some pathogens (Santos et al., 2004). The first 

pathogen that was controlled using tomato rootstocks was the corky root disease 

caused by the fungus Pyrenochaeta lycopersici (Hogenboom, 1970), followed 

by root-knot nematode resistance. The Solanaceous species most frequently 

grafted are: tomato (Solanum lycopersicum), eggplant (Solanum melongena), 

pepper (Capsicum annuum), cucumber (Cucumis sativus), melon (Cucumis 

melo) and water-melon (Citrullus lanatus). Grafting of eggplants started in the 

1950s, followed by cucumber and tomato around the 1960s and 1970s, 

respectively. In Spain, tomato is the second horticultural crop in the application 

of the grafting technique. More than 45 million of tomato plants are grafted each 

year (de la Torre, 2005), and the trend is towards an increased use in future 

years. Although commercial rootstocks still need to overcome several obstacles. 

Nowadays the percentage of grafting abortions is still too high: the 

incompatibility between the rootstock and the scion results in the formation of a 

callus in the grafting union that interrupts sap transportation from the roots and 

leads to plant death (Text Box 5). In addition, this technique requires especial 

machinery and trained personnel to perform the grafting, that finally increases 

between 2 to 3 times the prices of the grafted plants. 
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Text Box 5: Grafting techniques 
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Grafting involves splicing the fruit-producing shoot (called ‘scion’) of a desirable 

cultivar onto the disease resistant rootstock from another cultivar. The simplest grafting 

technique consists of the cut with a razor of rootstock and scion plants at the same 

angle (images 1 to 4), followed by the matching of the scion with the rootstock. A silicon 

band helps to tight the union between the rootstock and the scion to increase the 

contact of the vascular tissues of the grafted plant (images 5 and 6) and promotes 

cicatrization (image 7). Proper handling and acclimatization are important for grafted 

plants to survive, as plants should be protected from desiccation. Optimum conditions 

are: temperatures from 24 ˚C to 27 ˚C; 95% to 100% of relative humidity and darkness 

for 3-5 days while the cut ends heal together (in picture 8, special grafting carts where 

plants remain under strictly controlled conditions). Finally the union cicatrizes (image 

9) and plants can be moved to the greenhouse. 

 

The two rootstocks most widely used for greenhouse tomato production in 

United States are ‘Maxifort’ and ‘Beaufort’ due to their increased rate of grafting 

success and the high compatibility that both rootstocks offer to scions (UCIM, 2009).  
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Tomato rootstocks are generally hybrid plants between a traditional 

tomato cultivar (S. lycopersicum) and a wild Solanum species, usually  

S. habrochaites or S. chilense. Tomato rootstocks are useful because they 

increase crop yield due to their high vigorous root system (Pogonyi et al., 2005) 

that enhances nutrient absorption of the grafted plants (Leonardi and Giuffrida, 

2006). In addition, rootstocks improve tomato yield under termic-stress 

conditions (Rivero et al., 2003) or in soils with high salinity concentrations 

(Fernández-García et al., 2002; Estañ et al., 2005), and improves fruit quality 

compared to traditional tomato cultivars (Fernández-García et al., 2004). The 

ability of the Mi-tomato rootstocks to suppress Meloidogyne spp. reproduction 

is variable and the response to the nematode has been reported as highly 

resistant (Ioannou, 2001), moderately resistant (Verdejo-Lucas and Sorribas, 

2008) or susceptible (Graf et al., 2001; López-Pérez et al., 2006; Tzortzakakis et 

al., 2006). Such variability in the phenotypic resistant response of tomato 

rootstocks to root-knot nematodes could be attributed to differences in the 

genetic background of the hybrid rootstocks, in the aggressiveness of the 

nematode populations or to differences in inoculum pressure, although no clear 

conclusions can be drown from the literature. 

 

 

Durability of Mi-1 resistance gene 

 

In tomato, the Mi-1 gene confers resistance to root-knot nematodes but it does 

not confer immunity to the plant, that is, there is always a small proportion of 

the nematode population which is able to reproduce successfully on the roots of 

a resistant plant (Roberts and Thomason, 1989). Certain populations of 

Meloidogyne can increase their reproduction rate on resistant tomatoes when 

they are repeatedly maintained under the selection pressure of the Mi-1 gene 

(Jarquin-Barberena et al., 1991; Sorribas et al., 2005; Castagnone-Sereno et al., 

2006). Meloidogyne populations are considered virulent when their 

reproduction on a resistant plant does not differ from reproduction on a 

susceptible cultivar (Roberts, 1995). The increase of the reproduction rate of a 

population can be considered as an indicator of its aggressiveness. Little is 

known about how avirulent parthenogenetic nematodes become virulent after 

selection pressure of the Mi-1 gene. A hypothesis proposes that mutational 

events frequently occur during parthenogenetic mitosis leading to essential 

changes in the genome of the progeny (Castagnone-Sereno et al., 2006). In this 
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way, breaking resistant populations appear when virulent individuals within a 

population are selected displacing the avirulent ones that are unable to 

reproduce in the presence of the Mi-1 gene (Roberts, 1995). On the other hand, 

some populations never become virulent despite they undergo through the same 

selection pressure (Jarquin-Barberena et al., 1991). Natural virulent populations 

also occur without previous exposure to the Mi-1 gene (Ornat et al., 2001; Xu et 

al., 2001).  

The appearance of virulent populations of Meloidogyne spp. has been 

described in commercial fields with a background of cultivation of resistant 

tomato cultivars, although in any case the possibility of an original virulent 

population present in the field could be dismissed (Kaloshian et al., 1996; 

Tzortzakakis and Gowen, 1996; Eddaoudi et al., 1997). Virulent populations of 

Meloidogyne spp. have been selected through continuous cultivation of resistant 

plants in pot tests, although this phenomenon has been detected in field 

conditions to a lesser extent. In a study by Sorribas et al. (2005), a resistant 

cultivar was cropped for three consecutive years in the same experimental plots 

to determine if repeated cultivation selected for virulent populations; at the end 

of the study a significant increase in nematode aggressiveness (eggs/ g of root) 

was observed on the resistant cultivar, although the population was not 

considered as virulent. Although increased aggressiveness may occur in the 

field, some theories suggest that virulence rarely occurs because it implies a 

cost in nematode fitness in the absence of the selection pressure exerted by a 

resistant host (Roberts, 1995; Block et al., 1997; Castagnone-Sereno et al., 

1992, 2006), although no conclusive evidences have been obtained about this 

subject yet (Gleason et al., 2008). Nevertheless, in addition to genetic 

resistance, several environmental factors may have an incidence in the selection 

for virulence, which could explain why the Mi-1 gene has remained durable 

along time in commercial fields. The variability in biological systems is 

expressed through differences in the rates of development and response to 

environmental conditions. Since these differences occur in the field, the status 

of the environmental biotic and abiotic factors select in favor of increased 

reproduction, survival, or fitness of an individual of a particular genetic 

complement (Ferris and Wilson, 1987). Salinity, temperature, or soil texture, 

are abiotic factors that influence Meloidogyne reproduction and alter its 

population dynamics in field conditions (Bird and Wallace, 1965; Edongali et 

al., 1982). Whether the virulence is intrinsic to the population or artificially 

selected through the continuous use or resistant cultivars, once a population 

becomes virulent this character remains genetically stable and will be 
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transmitted to the progeny even in the absence of a resistance host (Bost and 

Triantaphyllou, 1982; Roberts, 1995). 

Virulent populations of M. incognita able to overcome the Mi-1 gene in 

tomato did not reproduce on resistant pepper and vice versa, which suggests a 

strong gene-for-gene interaction between the crop and nematode population 

(Castagnone-Sereno et al., 1996). As resistance genes to Meloidogyne in pepper 

(Me1, Me3) and tomato (Mi-1) belong to the R gene family, there is a chance 

that selection for virulence may be caused by common genetic mechanisms in 

pepper and tomato rootstocks although this hypothesis has not been tested. 

Although the (a)virulence spectrum within nematode isolates is very complex, 

the resistance conferred by the Mi-1 gene is not too unstable genetically to 

invalidate its use to control root-knot nematodes (Roberts, 1995). Until the 

present date, there are no reports on selection for virulence in Meloidogyne spp. 

populations by nematode resistant rootstocks although this phenomenon has 

been reported for resistant pepper rootstocks (C. annum) after cultivation during 

two consecutive cropping seasons (Lacasa et al., 2002; Ros et al., 2004, 2006).  

 

To determine the suitability of tomato rootstocks as a non-chemical 

method to control root-knot nematode populations it will be necessary to fully 

characterize their resistance response to different Meloidogyne spp. and 

establish their effect upon selection for virulence. Preventing the appearance of 

virulent populations of nematodes is essential to preserve the durability of the 

Mi-1 gene and to maintain plant resistance as a feasible alternative to soil 

fumigation through time. 

 

 

 

Additional genes for root-knot nematode resistance and their 

application in tomato 

 

 
The original Solanum species where Mi-1.2 was first identified is  

S. peruvianum. Later studies performed in the 1990s demonstrated that there are 

other Mi genes related to root-knot nematode resistance in the genomic profile 

of this species (Table 4) (Ammati et al., 1986, Yaghoobi et al., 1995; Veremis 

and Roberts, 1996a, 1996b, 2000; Eddaoudi et al., 1997). These genes segregate 

independently form Mi-1 (Cap et al., 1993; Veremis and Roberts, 1996a, 
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1996b) and are mainly located in chromosomes 6 and 12 of tomato, although 

few of them have been mapped. All these MiGHs are monogenic-dominant and 

it has been proved that some induce a similar HR than the Mi-1 gene when 

plants are infected by Meloidogyne spp. Nevertheless, some MiGHs present 

interesting characteristics which makes of them of special interest for their 

ability to inhibit reproduction of virulent nematode isolates or to maintain a 

phenotypic resistance response when soil temperatures are above 28 ˚C (e.g. 

Mi-3 and Mi-5). The most recently discovered MiGH is Mi-9 from S. arcanum, 

which is located in the short arm of chromosome 6 very close to Mi-1 

(Ammiraju et al., 2003; Jablonska et al., 2007).  

 

 

Table 4. MiGH(s) present in wild Solanum species for resistance to root-knot 

nematodes. 

 

 

Stacking of MiGHs in tomato could be a useful strategy to prevent 

nematode reproduction and maintain the durability of the Mi-1 gene. 

Nevertheless, the incompatibility between the germplasm of the wild tomato  

S. peruvianum and edible tomato S. lycopersicum is still the main obstacle for 

Gene 
Meloidogyne 

species 
Chromosome 

Resistance to 

high 

temperatures  

Resistance to 

(a)virulent 

isolates 

Reference 

Mi-2 M. incognita Not mapped Active at 32 ˚C avirulent Cap et al., 1993 

Mi-3 M. incognita 12 Inactive >28 ˚C virulent Yaghoobi et al, 1995 

Mi-4 M. arenaria Not mapped Active at 32 ˚C avirulent 
Veremis and Roberts, 

1996b 

Mi-5 M. incognita 12 Active at 32 ˚C avirulent 
Veremis and Roberts, 

1996a 

Mi-6 M. incognita 6  Active at 32 ˚C avirulent 
Veremis and Roberts, 

1996b 

Mi-7 M. incognita 6 Inactive >28 ˚C virulent 
Veremis and Roberts, 

1996b 

Mi-8 M. incognita 6 Inactive >28 ˚C virulent 
Veremis and Roberts, 

1996b 

Mi-9 
M. arenaria 

M. incognita 

M. javanica 

6 Active at 32 ˚C avirulent 
Ammiraju et al., 2003; 

Jablosnka et al., 2007 
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the introgression of these genes to obtain new resistant hybrids (Ammiraju et 

al., 2003; Veremis and Roberts; 2000). A transgene of Mi-1.2 was successfully 

expressed in a susceptible tomato cultivar resulting in the acquisition of 

resistance to root-knot nematodes and potato aphids (Rossi et al., 1998). In 

order to introduce resistance to root-knot nematodes in susceptible crops like 

tobacco or eggplant, some interesting work has been performed using “bridge 

lines”, embryo rescue and genetically engineering (Williamson, 1998; 

Williamson and Hussey, 1996). Pursuit of this goal seems constrained by the 

fact that some R genes do not function properly in other plants different from 

tomato. Most likely this phenomenon occurs because there is no direct 

recognition between the Avr-R genes, and a pathogen-independent R protein is 

required for the activation in the Mi-mediated resistance pathway (Atkinson et 

al., 2003; Bent and Mackey, 2007) (Text Box 6). Therefore, as Mi-stacking in 

other cultivars different from tomato is not feasible at the moment the only way 

to preserve the durability of tomato resistance and prevent the appearance of 

virulent isolates of Meloidogyne spp. is an accurate management of the Mi-1 

gene.  

 

 
 

 

Resistance to nematodes has been achieved with the transgenic 

insertion of proteinase inhibitors (PIs), which are proteins that play an important 

Text Box 6: Genetically modified organisms for root-knot nematode control 

 

The inclusion of the Mi-1.2 gene in other crops different from tomato through 

transgenesis has been contemplated by several authors and works have been 

performed in tobacco and eggplant (Goggin et al., 2006). In tobacco, the introduction of 

the Mi-1.2 gene in the genome did not result in any resistance response to Meloidogyne 

spp infection. In eggplant, results were more promising although resistance in this 

species was less efficient than in tomato. Although tobacco and eggplant are both 

Solanaceous species, introgression of the Mi-1.2 gene has not been successfully 

achieved. Similar unsuccessful results were obtained in experiments performed with 

Arabidopsis thaliana (Williamson and Kumar, 2006).  

 

This failure has been mainly attributed to the absence of auxiliary Mi-genes in 

the plants that received the transgenic vector, which would be fundamental to obtain the 

HR of the infected cell. Therefore, the introduction of the Mi-1.2 gene in other 

horticultural crops through transgenic techniques has not been successful for the 

moment. At present, only China is commercializing genetically modified tomatoes with 

resistance to virus (EUROSTAT, 2008b). 
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role in the natural plant defense strategies. The use of engineering techniques to 

control phytopathogenic nematodes is widely reviewed by Atkinson et al. 

(2003). Pot experiments showed that the transgenic insertion of the same PI in 

the genome of Arabidopsis thaliana has different effectors upon pathogen 

reproduction depending on the nematode species. Thus, while the PI insertion 

reduced the number of females that reached to adult maturation for H. schachtii, 

the fecundity of females was also reduced for M. incognita. The effectiveness of 

the PI insertion has been proved in tomato to control G. pallida (Urwin et al., 

2001), in potato for M. incognita and Nacobbus aberrans; in rice for M. 

incognita; and in banana for Rotylenchus reniformis.  

 

Nowadays, the genetically modified (GM) tomato cultivars are resistant 

to pests, pathogens and include new characteristics for consumers (e.g. 

enhanced carotenoids contents). Detrimental effects have been neither observed 

for GM tomatoes expressing the Crystal Protein Cry1Ab from Bathillus 

thuringiensis nor for GM tomatoes expressing the Coat Protein (CP) from the 

cucumber mosaic virus (CMV) in mice (Domingo, 2007). Nevertheless, the 

effects that GM foods have upon the environment and the human health (e.g. 

toxicity, allergenicity) are still largely unknown. Some reviews on the 

toxicologic effects related to the consumption of GMO by different animal 

species, indicates that some of them have a submicroscopic effect in vivo (e.g. 

acceleration of cellular metabolic rates and transmembrane traffic, increase of 

lactic dehydrogenase 1 synthesis), that remains unnoticed when only 

macroscopic variables are observed (Domingo, 2007; Magaña-Gómez and 

Calderón de la Barca, 2009). So far while GMO still need to overcome multiple 

obstacles to become accepted tool to control pests and pathogens, plant 

resistance remains the best strategy to inhibit reproduction of root-knot 

nematodes of the genus Meloidogyne as it is an effective, safe and 

environmentally friendly control method.  
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Adult female of Meloidogyne javanica obtained from an infected root 
of a susceptible tomato cultivar. Note the gelatinous egg mass attached 

at the posterior end of the body. The blue color of the egg mass was 
obtained after root staining with an erioglaucine solution 

. 
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The general objective of the thesis was to evaluate and characterize the Mi-

mediated resistance response in tomato rootstocks as a management strategy to 

control nematodes of the genus Meloidogyne spp. The effectiveness of tomato 

rootstocks to suppress nematode reproduction was compared with traditional 

tomato cultivars. Secondly, the resistance provided by the Mi-gene in tomato 

rootstocks was assessed to determine if rootstocks are a durable strategy to 

control root-knot nematodes in field conditions. For this purpose, the 

pathogenic and agronomic factors that influence the Mi-1 phenotypic response 

were examined. Characterization and the evaluation of the resistance response 

conferred by the Mi-1 in tomato rootstocks have been tackled to determine:  

 

1.- The resistance response of tomato rootstocks and the influence of the 

cropping season on the phenotypic expression of the Mi-1 mediated 

resistance. 

 

To determine the ability of Mi-1 tomato rootstocks to control root-knot 

nematode populations, the phenotypic resistant response of a pool of resistant 

rootstocks was determined under different experimental conditions. In a first 

phase, bioassays were performed in a glasshouse to characterize the response of 

ten Mi-1 tomato rootstocks to one avirulent population of M. javanica when soil 

temperatures were below 28 ˚C (spring crops), and when temperatures 

frequently exceed the phenotypic expression threshold of the Mi-1 gene 

(summer crops) (Chapter 1). Experiments were performed in a plastic house to 

validate the resistance response of the rootstocks in real agronomic conditions 

by subjecting them to a continuous inoculum pressure exerted by an avirulent 

M. javanica population infesting the soil of the plastic house (Chapter 1). 

 

2.- The variability of the Mi-1 mediated resistance related to the infective 

root-knot nematode population.  

 

The variability of the resistance response of Mi-1 tomato cultivars related to the 

root-knot nematode population had been reported, although no information was 

available for Mi-1 tomato rootstocks. Therefore, in a second phase, the specific 
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plant-nematode interaction between the Mi-1 resistant tomato rootstocks and 

seven populations of either M. arenaria, M. incognita or M. javanica species 

was characterized in bioassays conducted in a glasshouse (Chapter 2). 

 

3.-The capacity of the existing molecular markers for the characterization 

of Mi-locus and detection of the Mi-1.2 gene in tomato hybrid rootstocks.  

 

Molecular markers are an important tool for selection of resistant hybrids in 

breeding programs. The REX-1 marker was specifically designed to detect the 

Mi-1 locus in S. lycopersicum × S. peruvianum hybrids and has been commonly 

used to trace Mi-1 resistance in tomato cultivars. The introduction of new 

Solanum species in the genetic background of tomato hybrid rootstocks has 

prevented the utility of the REX-1 marker anymore. To determine the effects of 

the allelic condition of the Mi-1 locus in the resistance response of tomato 

rootstocks, a molecular characterization of this locus was done using markers 

for interspecific tomato hybrids; detection of the Mi-1.2 gene in resistant tomato 

rootstocks was done using molecular markers existing in literature and 

developing new markers (Chapter 3). 

 

4.-The suitability of tomato rootstocks as a long term strategy to manage 

root-knot nematodes of the genus Meloidogyne spp. 

 

Resistant tomato cultivars have proved to be a useful alternative to control root-

knot nematodes, although their repeated cultivation in nematode-infested soil 

has lead to the appearance of virulent populations of root-knot nematodes, both 

in experimental and field conditions. This situation had not been reported for 

Mi-1 tomato rootstocks. Thus, the durability conferred by the Mi-1 resistance 

gene in tomato rootstocks was studied in the long-term under field conditions to 

determine whether repeated cultivation of resistance of tomato rootstocks 

selects virulent nematode populations or not. Experiments were performed in a 

plastic house naturally infected with an avirulent population of M. javanica 

along three consecutive cropping cycles (Chapter 4).  

 

5.-The molecular characterization of selected virulent populations of M. 

javanica after repeated cultivation of Mi-1 tomato rootstocks  

Root-knot nematode virulence has not been precisely characterized at the 

molecular level. The selection of virulent populations of Meloidogyne spp. after 

repeated cultivation of Mi-tomato rootstocks was confirmed by pathogenicity 

assays. The MVC marker was used to characterize at the genetic level the 
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virulent populations of M. javanica in selected the previous study and to 

establish a correlation between the virulence observed in field and this genetic 

marker (Chapter 5). 

6.- The presence of new sources of resistance to root-knot nematodes in 

wild Solanum species. 

The use of new Solanum species as a source for novel resistance genes to root-

knot nematodes is becoming a rising trend. Therefore a screening for new 

resistant Mi-homologs in the genome of wild Solanum species was initiated. 

One accession of a the recently described species Solanum huaylasense was 

challenged to three avirulent populations of either M. arenaria, M. incognita or 

M. javanica species and to one naturally virulent populations of M. javanica to 

determine its resistance response to the nematode (Chapter 6). 
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A gelatinous egg mass observed at the external surface of a galled root. 
The adult female remains protected inside the gall of the root. 
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The response of 10 commercial or experimental tomato rootstocks with the Mi 

resistance gene to an initial inoculum of a Mi-avirulent population of Meloidogyne 

javanica was determined in pot tests conducted in spring and summer. In a field 

test, the rootstocks were subjected to continuous exposure to high initial 

population densities (2,050 ± 900 second-stage juveniles (J2) per 250 cm3 soil of 

the nematode. The presence of the Mi locus in the resistant rootstocks and cultivars 

was confirmed using the PCR co-dominant markers REX-1 and Mi23. Nematode 

infectivity (egg masses) and reproduction (eggs g−1 root) were highly variable in 

the spring tests. Rootstocks PG-76, Gladiator and MKT-410 consistently 

responded as highly resistant, with nematode multiplication rate (Pf/Pi) < 1 and 

reproduction index (RI) < 10%, and they were as efficient as standard resistant 

tomato cultivars at nematode suppression. The relative resistance levels of 

rootstocks Brigeor, 42851, 43965, Big Power and He-Man varied depending on 

the susceptible standard used for reference or the duration of the test. Rootstocks 

Beaufort and Maxifort were susceptible to M. javanica (Pf/Pi > 50 and RI > 50%). 

Rootstocks PG-76 and He-Man, and the resistant tomato cv. Caramba showed high 

levels of resistance in the test conducted in summer, whereas MKT-410 and 42851 

and the resistant tomato cv. Monika were moderately resistant. In the field, seven 

rootstocks showed high levels of resistance and one (He-Man) showed an 

intermediate level, whereas Beaufort and Maxifort were susceptible. 

 

Key words: host-plant resistance, Mi23 marker, REX-1 marker, root-knot 

nematodes, susceptibility, tomato rootstock 
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Introduction 
 

The tomato (Solanum lycopersicum) Mi gene confers resistance to three major 

root-knot nematode species, Meloidogyne incognita, M. javanica, and  

M. arenaria (Roberts and Thomason, 1989). In 1940’s, Mi was identified in the 

wild relative of tomato Solanum peruvianum and later was introgressed into 

cultivated tomato (Smith 1944). The resistance mediated by Mi is heat sensitive. 

At soil temperatures above 28˚C Mi tomatoes display susceptible or reduced 

resistance phenotypes (Dropkin, 1969). The Mi gene was mapped to the short 

arm of tomato chromosome 6 and several molecular markers in this region were 

developed (Kaloshian et al., 1998; Seah et al., 2007a; Seah et al., 2007b). In the 

Mi locus, three genes, Mi-1.1, Mi-1.2 and Mi-1.3, with nucleotide-binding site 

and leucine rich-repeat motifs were identified. One of these genes, Mi-1.2, 

conferred resistance to root-knot nematodes (Milligan et al., 1998). We refer to 

this gene as Mi.  

Tomatoes carrying the Mi gene are effective for controlling Meloidogyne 

spp. as they suppress nematode development and/or reproduction and can be 

cultivated in nematode-infested soils without significant yield reduction (Philis 

and Vakis, 1977; Rich and Olson, 1999; Sorribas et al., 2005). In addition, the 

Mi resistance gene can have a carry over effect on the subsequent crop (Hanna 

et al., 1993; Ornat et al., 1997). Despite these characteristics, the use of resistant 

tomatoes is not widespread as a management strategy. Reasons for this include 

undesirable horticultural traits and the ever increasing demand of growers for 

high yielding and /or specific fruit qualities. 

 

One way to overcome losses caused by plant-parasitic nematodes in 

desirable susceptible genotypes would be grafting these varieties onto rootstocks 

with the Mi resistance gene. At present, cultivation of grafted vegetables is 

expanding in Europe, and has been adopted as a non-chemical alternative to 

methyl bromide in several countries (MBTOC report, 2006). In Spain, grafting 

tomatoes started over a decade ago to reduce incidence of the corky root disease 

(Pyrenochaeta lycopersici), a limiting factor for growing tomatoes at the time 

due to the lack of varieties with effective resistance to the fungus (Santos et al., 

2004). Grafting offers several advantages as growth promotion, yield increases 

or low temperature tolerance when compared to non-grafted plants (Ioannou, 

2001; Miguel, 2002; Lee, 2003). Tomato rootstocks are also suitable for 

cultivation in pathogen-infested soils as they incorporate different resistant 

genes including the Mi gene (Marín Rodríguez, 2005). Nevertheless, 

information on their suppressive effect on Meloidogyne spp. is limited to few 

reports that indicate great differences in terms of nematode infectivity and/or 
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reproduction among the rootstocks. For instance, the resistant rootstock cv. 

Brigeor reduced root galling (Miguel, 2002) and nematode reproduction (Graf et 

al., 2001) but its effectiveness depended on temperature (Ioannou, 2001). The 

resistant rootstock cv. SC 6301 reduced root galling (Miguel, 2002) but showed 

moderate levels of nematode reproduction (Verdejo-Lucas and Sorribas, 2008). 

In contrast, the resistant rootstock cv. Beaufort supported high population 

densities of M. incognita in glasshouse tests (López-Pérez et al., 2006). These 

findings suggest variability in the response of the rootstocks to the nematode 

species could be caused by the genetic background of the rootstocks or to 

changes in the resistant response caused by environmental factors.  
 

This paper reports the response of 10 tomato rootstocks to an initial 

inoculum density of a population of M. javanica in glasshouse tests conducted 

in spring and summer. The response of these rootstocks exposed to high and 

continuous population densities of the nematode in a plastic house field infested 

with M. javanica is also reported.  

 

 

Materials and Methods 

 

 

▌Rootstock response to an initial M. javanica inoculum in spring 

 

 

Ten tomato rootstocks with the Mi resistance gene were exposed to an initial 

inoculum density of a Mi avirulent population of M. javanica (code Mj-05) 

(Ornat et al., 2001) in a glasshouse. Two experiments were conducted. 

Experiment one was run from 6 March to 13 July 2006, allowing the nematode 

to complete two generations (130 days post-inoculation). Each rootstock was 

replicated eight times and plants were arranged at random in a complete block 

design on a glasshouse bench. The main characteristics of the rootstocks are 

described in Table 1. The commercial tomato cultivars cvs. Monika and 

Caramba (resistant) and Durinta and Tyrmes (susceptible) were included as 

standards for reference. Seedlings were transplanted singly into 1.5-L pots 

containing steam-sterilized river sand and were allowed to grow for one week 

before they were inoculated with the nematode. Nematode inoculum was 

obtained from infected tomato (cv. Roma) roots collected from pot cultures 

maintained in a glasshouse. Roots were macerated in a 0.5% NaOCl solution in 

a food blender at ca 1,000 rpm for 5 min (Hussey and Barker, 1973). The eggs 

suspension was passed through a 74-µm-aperture sieve to remove root debris 
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and the dispersed eggs collected on a 25-µm-sieve were used as inoculum. 

Plants were inoculated with approximately 6000 eggs per plant by adding 

aliquots (4-5 mL) of the egg suspension into two holes made in the soil 3 cm 

apart from the base of the plant. Plants were watered as needed and fertilized 

with a slow-release fertilizer (15% N +10% P2O5 +12% K2O + 2% MgO2 + 

microelements). At harvest, tops were cut at ground level and the root systems 

washed free of soil and weighed. Egg masses were stained for ease for counting 

by immersion of the entire root system into a 0.1-g L-1 erioglaucine solution 

(Aldrich Chemical Company) (Omwega et al., 1988) for 2h. The number of 

eggs per plant was determined by extracting the eggs from two 10-g root 

subsamples in a 0.5% NaCOl solution for 10 min. Eggs were expressed per 

gramme fresh root. The multiplication rate of the nematode (Pf/Pi) was 

calculated as the eggs per plant (Pf) divided by the initial inoculum density (Pi). 

The index of infectivity (II) and reproduction (RI) were used to assess the level 

of resistance of the rootstocks. The II was calculated as the number of egg 

masses on the resistant rootstock or cultivar divided by egg masses on 

susceptible cultivar × 100, and the RI as the Pf on the resistant rootstock or 

cultivar divided by the Pf on susceptible cultivar × 100. A rootstock was 

considered as resistant when the II and the RI differed statistically from the 

susceptible standards. Once a rootstock differed from a susceptible standard and 

was considered resistant it was classified as highly resistant or intermediate 

resistant according to their RI (Hadisoeganda and Sasser, 1982). 

 

Experiment two was run from 9 March to 18 July 2006 (132 days post-

inoculation). The same rootstocks were exposed to an initial inoculum density of 

6,000 eggs of M. javanica per plant. Each rootstock was replicated 16 times, and 

eight plants were harvested after completion of one nematode generation (63 

days post-inoculation), and the other eight plants after two nematode 

generations (132 days post-inoculation). Plants were arranged at random 

according to a complete randomized block design. The remaining experimental 

conditions, plant maintenance and assessments of nematode infectivity and 

reproduction were the same as for experiment one.  

 

 

▌Rootstock response to an initial M. javanica inoculum in summer 

 

 

To determine if the rootstocks retained their relative resistance levels when 

cultivated in the hottest season of the year, a pot test was conducted from 19 

July to 5 September 2006 in a glasshouse.  
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The rootstocks were inoculated with 6,000 eggs of M. javanica per plant, 

and they were harvested after completion of one nematode generation (48 days 

post-inoculation).Each rootstock was replicated eight times according to a 

complete randomized block design. Experimental conditions, assessments of 

nematode infectivity and reproduction were similar to those described for the 

spring experiments. 

 

Soil temperatures were registered daily at 30 min intervals by placing soil 

probes into the potted soil. The mean daily soil temperature was calculated as 

the maximum plus the minimum temperatures divided by two. The number of 

degree-days accumulated by M. javanica was calculated using a base 

temperature of 13 ˚C and 343 ˚C as the minimum thermal time requirement for 

one generation (Trudgill, 1995; Tzortzakakis and Trudgill, 1996).  

 

 

▌Rootstock response to continuous exposure to high population densities of  

M. javanica in the field 

 

 

The study was conducted in an unheated plastic house with a history of root-

knot nematode problems caused by M. javanica (Sorribas et al., 2005). The 

plastic house was located at Cabrils, Barcelona, Spain, and the soil was a sandy 

loam with 85.8% sand, 8.1% silt and 6.1% clay, pH 8.1, 0.9% organic matter 

w/w and 0.40 dS m-1 electric conductivity. To determine nematode-infestation 

levels, composite soil samples were collected from each plot before starting the 

study. Individual samples consisted of five soil cores taken to 30 cm deep with 

a sampling tube (2.5 cm diameter). Samples were mixed thoroughly and 

nematodes extracted from a 500-cm3 soil subsample using Baermann trays. 

Second-stage juveniles (J2) that migrated to the water were collected one week 

later, concentrated on a 25-µm-pore sieve, counted and expressed as J2 per 250 

cm-3 of soil. The average infestation levels were 2,050 ± 900 J2 per 250 cm-3 of 

soil. 

 

One-month-old seedlings of each tomato rootstocks (Table 1) were 

transplanted in the field on 15 March and allowed to grow until 26 July 2007. 

Resistant tomato cvs Monika and Caramba and susceptible tomato cv. Durinta 

were included as standards for reference. Plots of 12.30 m2 consisting of four 

rows with six plants per row placed 50 cm and 55 cm within and between rows. 

A total of 24 plants per plot were transplanted; of these, 12 plants corresponded 

to the tested materials and the remaining ones to cv. Durinta. The resistant 
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tomato cultivars and rootstocks were arranged at random within each plot. The 

resistant and susceptible plants were transplanted alternating in a way that each 

resistant tomato was next to two susceptible ones placed either in the same or 

opposite row. The infested soil of the plastic house served as the initial source 

of high nematode inoculum. Continuous inoculum pressure exerted on the 

resistant plants was provided by the susceptible Durinta neighbour plant 

(Esmenjaud et al., 1992, 1996) once the nematode had completed one 

generation on this cultivar (approximately, 6 weeks after transplanting). To 

determine rootstock tolerance to nematode damage, the root gall index of 

tomato plants was assessed at the end of the experiment. Plants were dug from 

the soil, examined and rated on a scale of 0 to 10, where 0 = a complete and 

healthy root system (no galls observed) and 10 = plants and roots dead (Zeck, 

1971). To determine nematode reproduction, roots from each resistant plant 

were chopped individually in 1-cm-long segments and two 10-g sub-samples 

used to extract eggs by blender maceration in a 0.05% NaOCl solution for 10 

min. Roots from 12 susceptible Durinta plants per plot were combined, 

chopped, and two 10-g sub-samples processed. The RI of the nematode was 

calculated as eggs g-1 root on the resistant plant /eggs g-1 root on the susceptible 

cv. Durinta × 100. 

 

 

▌Detection of the Mi resistance gene presence 

 

 

The presence of the Mi resistance gene in the rootstocks was determined using 

the PCR-based co-dominant markers REX-1, commonly used to detect the 

presence of the Mi gene, and the SCAR Mi23 specifically designed to detect 

root-knot nematode resistance in tomato breeding programs (Seah et al., 

2007b). Both genetic markers are located on the short arm of chromosome 6 in 

the vicinity of the Mi resistance gene (Williamson et al., 1994; Seah et al, 

2007a). REX-1 flanks the Mi gene at the telomeric proximal end of the short 

arm of chromosome 6. The chosen marker Mi23 flanks Mi at the centromeric 

proximal end of the short arm of chromosome 6. This co-dominant SCAR 

marker allows the amplification of a 380 bp genomic fragment from the Mi 

region in S. peruvianum (Sp-Mi23-locus), and a fragment of 480 bp from the mi 

region in tomato (Sl-Mi23-locus). The resistant and susceptible cultivars were 

used as controls. DNA was extracted from two leaflets in a plastic bag with 1 

mL extraction buffer (0.35 M Sorbitol, 0.1 M Tris pH 7.5, 0.005 M EDTA and 

0.02 M NaHSO3 added just before use). After sealing the bag, tissue was 

macerated by rolling over a 25-mL-pipette until the leaflets were cleared. The 
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liquid containing the plant cells was spun at 13,800 g at 4 ˚C and the pellet was 

resuspended in 100 µL extraction buffer, 100 µl lysis buffer (0.2 M Tris pH 7.5, 

0.05 M EDTA, 2.0M NaCl, 2 % v/v CTAB) and 40 µL 5% Sarkosyl. The lysed 

cells were extracted with chloroform and precipitated with equal volume of 

isopropanol. The pellet was washed with 70% ethanol and DNA resuspended in 

30 µL TE (10 mM Tris pH 7.5, 1 mM EDTA).  

 

REX-1 primers were: REX-F1 (5’-TCGGAGCCTTGGTCTGAATT-3’) and 

REX-R2 (5’-GCCAGAGATGATTCGTGAGA-3’). The Mi23 primers were: 

Mi23F (5’-TGG AAA AAT GTT GAA TTT CTTTTG-3’) and Mi23R (5’-GCA 

TAC TAT ATG GCT TGT TTA CCC-3’). PCR reaction was carried out in 25-

µL volumes using 50-100 ng DNA template. A Similar PCR mix [buffer (10 

mM Tris pH 9.0, 50 mM KCl, 0.1% Triton X-100); 0.4-1.0 µM of each primer; 

0.25-0.4 mM of each dNTP and 0.5 unit Taq polymerase] was used for both sets 

of primers except 2.5 mM MgCl2 was used for REX-1 and 1.75 mM MgCl2 for 

Mi23. The amplification conditions were: 94 ˚C for 3 min followed by 35 

cycles of 30 s at 94 ˚C, 1 min at 57 ˚C and 1 min at 72 ˚C, followed by 10 min 

at 72 ˚C. REX-1 amplified products were digested with Taqa I (Biolab) 

restriction enzyme according to Williamson et al. (1994). For both REX-1 and 

Mi23 markers, 20 µL of the PCR products were resolved on 1.5% agarose gel 

in 1× TAE buffer. 

 

 

▌Statistical analyses 

 

 

The General Linear Model procedure of SAS version 8 (SAS Institute Inc., 

Cary, NC) was used for statistical analyses. Data on egg masses per plant, eggs 

g-1 root, and Pf/Pi were transformed to log10(x+1) before analysis. To establish 

the host status of the rootstocks, a Tukey’s studentized range test (P <0.05) was 

used to separate means when the statistical analysis was significant (P < 0.05). 

A multiple comparison procedure that compares all treatments with a single 

control was used to identify rootstocks expressing resistance to M. javanica. 

Host suitability of individual rootstocks or cultivars was compared with that of 

the susceptible standard cv. Durinta by Dunnett the t-test (Dunnett, 1955). Data 

on infectivity and reproduction indexes of M. javanica in the pot tests were 

transformed to log10(x +0.001) before analysis. Because results after one or two 

nematode generations did not differ, data were pooled and the new set of data 

analyzed. Data on the RI of the nematode in the field was transformed to 
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log10(x) before analysis. A correlation analysis was done to determine the 

relationship between the index of infectivity and reproduction.  

 

 

Results 
 

 

▌Rootstock response to an initial M. javanica inoculum in spring 

 

Mean daily soil temperatures in the pots from 3 March to 18 July 2006 were 

below 28 ˚C. The minimum soil temperature was 13.5 ˚C and the maximum  

26 ˚C in experiment one (x = 20.2 ˚C), and 13.7 ˚C and 26.4 ˚C, respectively, in 

experiment two (x = 20.7 ˚C).  

 

As expected, number of egg masses and eggs of M. javanica on the 

resistant cultivars were lower (P <0.05) than on the susceptible ones after one 

(Tables 2) or two nematode generations (Table 3). The Pf/Pi values were < 1 on 

both resistant cultivars after one generation (Table 2) but slightly > 1 after two 

generations (Table 3). More (P <0.05) egg masses were produced on susceptible 

cv. Durinta than Tyrmes (Tables 2 and 3). Egg production was similar between 

these two cultivars, although approximately three times more eggs were 

recorded on Durinta than Tyrmes, irrespective of the duration of the tests 

(Tables 2 and 3). The response of the rootstocks to nematode infection and 

reproduction was highly variable after one or two generations. As a result, 

variable numbers of plants became infected after one generation but only one 

out of eight inoculated plants did of rootstocks PG-76, Gladiator and MKT-410 

(Table 2). Eggs g-1 root on rootstocks cvs. PG-76, Gladiator, MKT-410, and 

Brigeor did not differ from both resistant standards. On rootstocks 42851, 

43965, and Big Power, the number of eggs masses and eggs g-1 root did not 

differ from the resistant cultivars. Eggs g-1 root on rootstocks He-man, Beaufort, 

and Maxifort were similar to both susceptible standards (Table 2). The Pf/Pi 

values ranged from 0.02 to 3.8 times the Pi on the rootstocks and population 

increases (Pf/Pi >1) were only recorded on Beaufort and Maxifort. 

 

After two generations, six plants of rootstock PG-76, nine of Gladiator 

and six of MKT-410 out of 16 inoculated plants each became infected (Table 3). 

The number of egg masses on these rootstocks was lower (P <0.05) than on the 

resistant cultivars. A similar number of egg masses was recorded on rootstocks 

42851, 43965, and Brigeor than on the resistant cultivars. Eggs masses on 

rootstocks Big Power and He-man did not differ from those on susceptible 
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Tyrmes. In contrast, numbers of egg masses on Beaufort and Maxifort and 

susceptible Durinta were similar (Table 3). Regarding nematode reproduction, 

eggs g-1 root on rootstocks PG-76 and MKT-410 were lower (P <0.05) than on 

both resistant cultivars (Table 3) whereas eggs g-1 root on rootstocks Brigeor, 

42851, 43965 and Big Power were similar to both resistant cultivars. Rootstock 

He-man and susceptible Tyrmes showed similar eggs g-1 root. Eggs g-1 root on 

rootstocks Beaufort and Maxifort did not differ from both susceptible cultivars. 

Pf/Pi values ranged from 0.1 to 70 times the Pi on the rootstocks and population  

increases (Pf/Pi > 1) were recorded on six out of 10 rootstocks; the highest 

values on Beaufort and Maxifort (Table 3).  

 
Table 2. Numbers of eggs masses per plant, eggs g-1 of root, multiplication rate (Pf/Pi), and 

infectivity and reproduction indexes of a Mi avirulent population of Meloidogyne javanica on tomato 

rootstocks with the Mi resistance gene after one generation of the nematode in a pot test conducted in 

a glasshouse in spring. 

 
 

 

Values were transformed log10(x +1) or log10(x +0.001) before analysis. Values are back-transformed mean ± 

standard deviation of eight replicated plants except for Durinta that only had seven plants. Values in the same 

column followed by different lower-case letters are significantly different according to Tukey’s studentized range 

test (P < 0.05). Values in the same column with * indicate differences between a tomato rootstock or cultivar and 

the susceptible standard cv. Durinta according the Dunnett’s t-test (P < 0.05).  
a Eggs per plant /egg inoculum. 
b Egg masses per plant on the resistant rootstock or cultivar/ egg masses per plant on susceptible standard cv. 

Durinta or Tyrmes × 100. 

Plant 

Material 

Infected 

plants  

Egg masses 

/plant 

Eggs g-1 

root 
Pf / Pia Infectivity index (%)b Reproduction index (%)c 

     Durinta Tyrmes Durinta Tyrmes 

Rootstock         

PG-76 0 0 ± 0 g* 3 ± 5 f* 0.02 ± 0.03 c*  0 ± 0 e  0 ± 0 e 0.7 ± 1 e 2 ± 4 ef 

Gladiator 1 4 ± 1 fg* 12 ± 11 ef* 0.05 ± 0.05 c* 0.2 ± 1 e 1 ± 3 e 2 ± 2 e 7 ± 7 def 

MKT-410 1 0.2 ± 0.7 fg* 5 ± 10 f* 0.02 ± 0.04 c* 0.1 ± 0.4 e 1 ± 2 e 1 ± 1 e 2 ± 5 f 

Brigeor 6 5 ± 5 def* 16 ± 20 ef* 0.1 ± 0.1 c* 3 ± 3 bcd 16 ± 15 bcd 3 ± 4 de 10 ± 13 def 

42851 7 3 ± 2 defg* 22 ± 16 de* 0.1 ± 0.1 c* 2 ± 1 bcd 10 ± 7 bcd 4 ± 3 de 13 ± 10 de 

43965 5 3 ± 3 efg* 32 ± 22 cde* 0.1 ± 0.1 c* 1 ± 2 cde 8 ± 9 cde 6 ± 4 d 19 ± 13 cd 

Big Power 3 2 ± 4 efg* 40 ± 49 de* 0.3 ± 0.4 c* 1 ± 2 de 7 ± 11 de 12 ± 16 cd 38 ± 50 cd 

He-man 7 21 ± 22 cd* 117 ± 81 bcd 0.7 ± 0.5 bc* 11 ± 12 abc 65 ± 70 abc 29 ± 22 bc 93 ± 69 bc 

Beaufort 8 92 ± 76 ab 674 ± 445 ab 3.5 ± 2.6 a 49 ± 40 a 285 ± 236 ab 141 ± 106 a 445 ± 335 ab 

Maxifort 8 90 ± 65 ab 671 ± 311 a 3.8 ± 2.4 a 48 ± 35 a 280 ± 203 ab 154 ± 97 a 485 ± 306 a 

Cultivar         

Caramba  7 5 ± 3 de* 13 ± 11 ef* 0.1 ± 0.1 c* 3 ± 2 abcd 16 ± 10 abcd 3 ± 3 de 10 ± 9 def 

Monika  3 1 ± 2 efg* 10 ± 7 ef* 0.1 ± 0.04 c* 1 ± 1 de 4 ± 5 de 2 ± 2 de 7 ± 5 def 

Tyrmes  8 32 ± 23 bc* 159 ± 66 abc 0.8 ± 0.3 c* 17 ± 12 ab  32 ± 13 b  

Durinta  7 188 ± 81 a 523 ± 385 ab 2.5 ± 1.5 ab  584 ± 251 a  316 ± 196 ab 
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Correlation analyses showed a significant correlation (P <0.05) between the 

index of infectivity and reproduction irrespective of the susceptible cultivar 

used for reference or the duration of the tests (Fig. 1). Rootstocks showed 

variable levels of relative resistance when nematode infectivity or 

reproduction was referred to a single susceptible cultivar; in general, Durinta 

provided lower indexes (Table 2). Variability in the resistance levels was even 

greater after two nematode generations (Table 3). Rootstocks Beaufort and 

Maxifort consistently showed lower (P <0.05) resistance levels than the 

remaining ones or no resistance at all irrespective of the susceptible cultivar 

used for reference or the duration of the tests.  
 

 

Table 3. Number of eggs masses per plant, eggs g-1 of root, multiplication rate (Pf/Pi), and infectivity and 

reproduction indexes of a Mi avirulent population of Meloidogyne javanica on tomato rootstocks with the Mi 

resistance gene after two generations of the nematode in pot tests conducted in a glasshouse  

in spring. 
 

 
Values were transformed log10(x +1) or log10(x +0.001) before analysis. Values are back-transformed mean ± standard deviation of 
16 replicated plants except for Big Power that only had nine plants. Values in the same column followed by different lower-case 
letters are significantly different according to Tukey’s studentized range test (P <0·05). Values in the same column with * indicate 
differences between a tomato rootstock or cultivar and the susceptible standard cv. Durinta according the Dunnett’s t-test (P <0·05). 
a Eggs per plant /egg inoculum. 
b Egg masses per plant on the resistant rootstock or cultivar / egg masses per plant on susceptible standard cv. Durinta or Tyrmes × 
100. 
c Eggs per plant on the resistant rootstock or cultivar /eggs per plant on susceptible standard cv. Durinta or Tyrmes × 100. 

 

  Plant 

  Material 

Infected 

plants  

Egg masses 

/plant 
Eggs g-1 root Pf / Pia Infectivity index (%)b Reproduction index (%)c 

     Durinta Tyrmes Durinta  Tyrmes 

Rootstock         

PG-76 6 2 ± 3 g* 22 ± 18 gh* 0.1 ± 0.1 b* 0.2 ± 0.3 e 2 ± 3 f  0.2 ± 0.2 g 0.9 ± 1 f 

Gladiator 9 2 ± 2 g* 76 ± 63 fgh* 0.3 ± 0.3 b* 0.2 ± 0.2 e 2 ± 2 ef 0.4± 1 fg 2 ± 2 ef 

MKT-410 6 5 ± 12 g* 133 ± 295 h* 0.5 ± 1.2 b* 0.6 ± 1 e 2 ± 4 f 0.7 ± 2 fg 3 ± 6 ef 

Brigeor 15 18 ± 27 f* 170 ± 169 fg* 0.8 ± 0.9 b* 2 ± 3 d 9 ± 9 d 1 ± 1 efg 5 ± 6 def 

42851 14 15 ± 16 f* 271 ± 501ef* 1.2 ± 2.1 b* 2 ± 2 d 15 ± 20 cd 2 ± 3 efg 10 ± 21 de 

43965 16 40 ± 48 ef* 582 ± 514 de* 3 ± 3 b* 5 ± 6 cd 17 ± 13 cd 4 ± 4 d 21 ± 19 cd 

Big Power 9 239 ± 225 cd* 1051 ± 1136 cd* 8 ± 9 b* 28 ± 26 ab 72 ± 67 abc 11 ± 13 cd 42 ± 49 c 

He-man 16 63 ± 40 de* 2225 ± 1402 bc* 13 ± 10 b* 7 ± 5 bc 59 ± 63 de 18 ± 13 bc 95 ± 80 b 

Beaufort 16 350 ± 441 bc* 7863 ± 7662 ab 55 ± 86 a* 41 ± 53 ab 367 ± 676 ab 76 ± 120 a 491 ± 879 a 

Maxifort 16 1411 ± 1394 a 9676 ± 6845 ab 70 ± 64 a* 165 ± 160 a 940 ± 723 a 94 ± 84 a 455 ± 325 a 

Cultivar         

Caramba  15 13 ± 7 f* 245 ± 154 def* 1.1 ± 0.7 b* 2 ± 1 cd 13 ± 12 cd 2 ± 1 efg 9 ± 8 d 

Monika  13 16 ± 15 f* 309 ± 322 def* 2.0 ± 1.5 b* 2 ± 2 d 10 ± 10 de 2 ± 2 ef 9 ± 7 d 

Tyrmes  16 192 ± 171 cd* 3228 ± 1816 abc 15 ± 9 b* 22 ± 20 b  22 ± 12 b  

Durinta  16 850 ± 446 ab 12144 ± 4878 a 73 ± 31 a  740 ± 563 a  550 ± 294 a 
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▌Rootstock response to an initial M. javanica inoculum in summer 

 

 

Mean daily soil temperatures in the pots soil from 19 July to 18 September 2006 

ranged from 20.8 ˚C to 35.1 ˚C (x = 24 ˚C). Mean soil temperatures above 28 

˚C were registered during the first week post-nematode inoculation. High 

infectivity and reproduction values were recorded on the resistant rootstocks in 

summer. Number of egg masses and egg production on resistant cultivar 

Caramba but not on Monika were significantly lower (P <0.05) than on both 

susceptible cultivars (Table 4). The nematode produced similar number of egg 

masses and eggs g-1 root on both susceptible cultivars in this test. The number 

of egg masses and eggs g-1 root on rootstocks PG-76, MKT-410 and He-man 

were lower (P <0.05) than those on the susceptible cultivars.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 11. Pearson Correlation of the Infectivity Index (II) and the Resistance index (RI) referred 

to the susceptible cultivars Durinta (a) and Tyrmes (b), after one (1) and two genetarions (2).  

                                                
 
1 This figure does not appear in the published paper of Cortada et al., 2008. 
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The remaining rootstocks did not differ from the susceptible cultivars in the 

number of egg masses or egg production. Pf/Pi values ranged from 3 to 25 

times the Pi on the rootstocks after one generation, and population increases 

(Pf/Pi >1) occurred in all resistant plant materials except PG-76 and He-man 

which maintained the initial inoculum levels.  
 

 

 
Table 42. Number of eggs masses per plant, eggs g-1 of root, multiplication rate (Pf/Pi), and infectivity and 

reproduction indexes of a Mi avirulent population of Meloidogyne javanica on tomato rootstocks with the Mi 

resistance gene after one generation of the nematode in a pot test conducted in a glasshouse in summer. 
 

 

 

Values were transformed log10(x +1) or log10(x +0.001) before analysis. Values are back-transformed mean ± standard 

deviation of eight replicated plants except for Caramba and PG-76 that only had five plants. Values in the same column 

followed by different lower-case letters are significantly different according to Tukey’s studentized range test (P< 0·05). 

Values in the same column with * indicate differences between a tomato rootstock or cultivar and the susceptible standard 

cv. Durinta according the Dunnett’s t test (P< 0·05). 
aEggs per plant /egg inoculum. 
bEgg masses per plant on the resistant rootstock or cultivar / egg masses per plant on susceptible standard cv. Durinta or 

Tyrmes ×100. 
cEggs per plant on the resistant rootstock or cultivar /eggs per plant on susceptible standard cv. Durinta or Tyrmes × 100. 

                                                
 
2 This table does not appear in the published paper of Cortada et al., 2008. 

Plant 

Material 

Infected 

plants 

Egg masses 

/plant 
Eggs g-1 root Pf / Pia Infectivity index (%)b Reproduction index (%)c 

     Durinta Tyrmes Durinta Tyrmes 

Rootstock        

  PG-76 2 4 ± 3 f* 136 ± 109 g* 0.6 ± 0.5 f* 1 ± 1 e 3 ± 2 e 3 ± 3 e 4 ± 4 e 

  Gladiator 8 58 ± 46 bcd* 4334 ± 5582 abcde 7 ± 8 abcde* 20 ± 16 abc 37 ± 29 abcd 40 ± 42 abcd 52 ± 55 abcd 

  MKT-410 6 25 ± 34 cdef* 867 ± 1280 efg* 3 ± 4 def* 9 ± 12 bcde 16 ± 22 cde 15 ± 21 cde 20 ± 28 de 

  Brigeor 8 117 ± 142 abc 4927 ± 2863 abc 16 ± 23 abc 40 ± 49 abc 74 ± 90 abc 89 ± 126 ab 117 ± 165 abc 

  42851 7 24 ± 30 cdef* 1285 ± 1577 def* 5 ± 7 cdef* 8 ± 10 cde 15 ± 19 cde 27 ± 37 bcd 36 ± 49 cd 

  43965 8 125 ± 109 ab 6362 ± 5694 ab 14 ± 7 abc 43 ± 38 ab 79 ± 69 ab 79 ± 38 ab 104 ± 49 abc 

  Big Power 8 194 ± 92 ab 5922 ± 1206 a 21 ± 8 a 67 ± 32 a 123 ± 58 a 116 ± 42 a 153 ± 55 a 

  He-man 3 5 ± 6 ef* 414 ± 300 fg* 1 ± 0.4 ef* 2 ± 2 de 4 ± 3 e 6 ± 2 de 7 ± 3 de 

  Beaufort 8 224 ± 193 ab 5174 ± 3065 abc 22 ± 17 ab 78 ± 67 a 142 ± 122 ab 123 ± 91 a 162 ± 120 ab 

  Maxifort 8 201 ± 107 ab 8277 ± 6081 a 25 ± 18 ab 69 ± 37 a 127 ± 68 a 135 ± 97 a 178 ± 128 ab 

Cultivar 
        

  Caramba  4 10 ± 5 def* 963 ± 601 cdef* 1.6 ± 0.8 ef* 4 ± 2 cde 6 ± 3 de 9 ± 5 de 11 ± 6 de 

  Monika  2 59 ± 60 bcde* 1313 ± 983 bcdef* 5 ± 4 bcdef* 21 ± 21 abcd 32 ± 39 bcde 29 ± 22 abcd 39 ± 29 bcd 

  Tyrmes  8 158 ± 123 ab 4272 ± 3513 abcd 14 ± 11 abcd 55 ± 43 a  76 ± 62 abc  

  Durinta  8 289 ± 124 a 6053 ± 2499 a 20 ± 10 ab  183 ± 78 a  145 ± 69 ab 
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Rootstocks PG-76 and He-man and resistant Caramba showed high resistance 

levels whereas moderate resistance levels were found in rootstock MKT-410 

and 42851, and resistant cultivar cv. Monika. 
 
 

▌Rootstock response to continuous exposure to high population densities 

of M. javanica in the field 
 

 

Mean daily soil temperatures in the plastic house from 15 March to 19 July 2007 

ranged from 15.1 ˚C to 28.5 ˚C (x =23.6 ˚C). Disease incidence on the 

rootstocks, measured as number of infected plants, ranged from one infected 

plant of MKT-410 to all plants infected of Brigeor, Beaufort, and Maxifort with 

two to five out of eight replicated plants for the remaining rootstocks (Table 5). 

Gall ratings on rootstocks and resistant cultivars were lower (P <0.05) than on 

susceptible cv. Durinta. Rootstocks Beaufort and Maxifort showed moderate 

gall ratings. Egg g-1 root was lower (P <0.05) on the resistant than on the 

susceptible plants with the exception of rootstocks He-man, Beaufort, and 

Maxifort that did not differ from susceptible Durinta (Table 5). Remarkable 

differences in the RI of the rootstocks were found, and these ranged from 1% to 

68% (Table 4).  

 

 

▌Detection of the Mi resistance gene 
 

 

The REX-1 amplified product digested with TaqaI from all rootstocks except 

MKT-410 resulted in two bands of approximate 570 bp and 160 bp in size 

indicating that the Mi locus is homozygous resistant in these rootstocks (Fig. 

2a). Rootstock MKT-410 displayed three bands of approximate 750 bp, 570 bp 

and 160 bp in size indicating that the Mi locus is in heterozygous form (Fig. 2a). 

Molecular data were repeated at least twice for all plant material obtaining 

consistent results (data not shown). In addition to the rootstock MKT-410, the 

two root-knot nematode resistant tomato Monika and Caramba were also 

heterozygous for the Mi locus and displayed the three REX-1 bands (Fig. 2a). 

The susceptibles cvs. Tyrmes and Durinta displayed a single band of 720 bp 

indicating that the Mi locus is in homozygous susceptible form (Fig. 2a). The 

REX-1 genotyping data for rootstocks Beaufort and Maxifort disagreed with the 

nematode resistance phenotypic results from both glasshouse and plastic house 

field tests. The REX-1 indicated that these rootstocks have a region similar to 
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the introgressed Mi gene, but the biological assays provided susceptibility 

responses to the nematode.  

 

 
Table 5. Root galling, eggs g-1 of root and reproduction index of Meloidogyne javanica on 

tomato rootstocks with Mi resistance gene subjected to continuous exposure to high 

population densities of the nematode in a field plastic house.  
 

 

Values were transformed log10(x +1) or log10(x) before analysis. Values are back-transformed mean ± 

standard deviation of eight replicated plants except for Durinta that is mean of composite root samples of 

12 plants. Values in the same column followed by different lower-case letter are significantly different 

according Tukey’s studentized range test (P<0·05). Values in the same column with * indicate 

differences between a tomato rootstock or cultivar and the susceptible standard cv. Durinta according the 

Dunnett’s t test (P< 0·05).  
a Based on a scale from 0 (none) to 10 (dead plants). In parentheses, range of gall rating. 
b Eggs g-1 root on resistant tomato /eggs g-1 root on susceptible tomato × 100. 

 

 

Therefore, the Mi23 marker was selected to confirm the genotypes of these 

rootstocks, and the results indicated that except for rootstock MKT-410 and 

42851, all rootstocks were homozygous for the Sp-Mi23 locus as only a single 

band of 380 bp was amplified (Fig. 2b). Rootstocks MKT-410 and 42851 and 

the resistant standards displayed two bands of 380 bp (Sp-Mi23-locus) and 430 

bp (Sl-Mi23-locus) indicating that they were heterozygous for this region. The 

susceptible standards amplified a 480 bp fragment indicating that they were 

homozygous susceptible for this locus. It should be noted that two different 

genotypes were obtained for rootstock 42851 depending on the co-dominant 

Plant 

material 
Transplants 

Infected 

plants 
Gall ratinga Eggs g-1 root 

Reproduction 

index (%)b 

Rootstock     

PG-76 8 2 0.1 ± 0.3 (0-1) d* 358 ± 353 d* 0.6 ± 0.5 d 

Gladiator 6 2 0.2 ± 0.4 (0-1) d* 767 ± 730 cd* 1.4 ± 1.4 cd 

MKT-410 7 1 0.5 ± 1.2 (0-3) d* 1469 ± 2362 cd* 2 ± 4 cd 

Brigeor 7 7 1.9 ± 0.7 (1-3) cd* 6250 ± 7803 bc* 10 ± 12 bc 

42851 8 2 0.5 ± 1.1 (1-3) d* 1245 ± 1442 cd* 2 ± 2 cd 

43965 8 5 1.6 ± 1.3 (1-3) cd* 6209 ± 9375 bc* 10 ± 14 bcd 

Big Power 7 4 1.1 ± 1.2 (1-3) d* 3350 ± 3750 bcd* 6 ± 6 bcd 

He-man 8 3 2.0 ± 1.7 (3-4) bcd* 18800 ± 21496 

ab* 
31 ± 32 ab 

Beaufort 8 7 4.0 ± 0.9 (3-5) b* 37295 ± 25557 a 68 ± 54 a 

Maxifort 7 7 3.6 ± 1.3 (2-5) bc* 34954 ± 19205 a 59 ± 29 a 

Cultivar      

Caramba  8 5 0.9 ± 0.8 (1-2) d* 446 ± 286 cd* 0.8 ± 0.5 cd 

Monika  7 3 1.0 ± 1.0 (1-2) d* 3540 ± 5563 bcd* 6 ± 8 bcd 

Durinta  8 7 6.4 ± 1.7 (3-8) a 56870 ± 25283 a  
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markers used; the REX-1 region in this rootstock was homozygous whereas the 

Mi23 region was heterozygous (Sp-Mi23-locus and Sl-Mi23-locus were 

amplified) indicating the presence of a recombination event between these two 

markers. 

 

 

 
 

Figure 2. Detection of the Mi-1.2 gene in tomato rootstocks and cultivars by molecular 

analyses. (a) REX-1 marker profile in tomato rootstocks (lanes 1-10) and control tomato 

cultivars (lanes 11-14). PCR amplification products with primers REXF1/REXR2 were 

digested with TaqaI enzyme and resolved on 1·5 % agarose gel. (b) Mi23 marker profile in 

tomato rootstocks (lanes 1-10) and control tomato cultivars (lanes 11-14). PCR with primers 

Mi23F/R amplifies the non-coding region between Mi-1.2 and Mi-1.3 in S. peruvianum 

introgressed region (380 bp) and the non-coding region between Mi-1A and Mi-1B in S. 

lycopersicum background (430 bp). Lanes 1, PG-76 (resistant); lanes 2, Gladiator (resistant); 

lanes 3, MKT-410 (resistant); lanes 4, Brigeor (resistant); lanes 5, 42851 (resistant); lanes 6, 

43965 (resistant); lanes 7, Big Power (resistant); lanes 8, He-man (resistant); lanes 9 Beaufort 

(susceptible); lanes 10 Maxifort (susceptible); lanes 11, Caramba (resistant), lanes 12, 

Monika (resistant), lanes 13, Tyrmes (susceptible), lanes 14, Durinta (susceptible).  

 

 

 

Discussion  
 

 

Although molecular analysis confirmed the presence of the Mi resistance gene 

in the studied tomato rootstocks, remarkable differences were shown in 

nematode infectivity and reproduction when they were subjected to an initial 
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inoculum of an avirulent population of M. javanica. Thus, three rootstocks PG-

76, Gladiator, and MKT-410, were consistently highly resistant (Pf/Pi <1 and 

RI <10%) and were as efficient as the resistant cultivars in nematode 

suppression. The relative resistance levels of five rootstocks, Brigeor, 42851, 

43965, Big Power, and He-man, varied depending on the susceptible cultivar 

used for reference or the duration of the test. Nevertheless, Brigeor and 42851 

showed good levels of resistance, whereas Big Power and He-man showed 

much lower resistance levels. Previously, the intermediate resistance of Big 

Power had been described only to M. incognita (Marín Rodríguez, 2005). Two 

rootstocks cvs. Beaufort and Maxifort were susceptible to M. javanica (Pf/Pi 

>50 and RI >50%), and Beaufort was susceptible to M. arenaria (Graft et al., 

2001) and M. incognita (López-Pérez et al., 2006). 

 

The susceptible response of Maxifort does not appear to have been 

reported before. Beaufort and Maxifort (S. lycopersicum × S. habrochaites) 

(Table 1), described as highly resistant to M. arenaria, M. incognita and M. 

javanica (Marín Rodríguez, 2005), should be nematode resistant, according to 

the REX-1 marker. The detection of false positives for root-knot nematode 

resistance in these rootstocks is most likely due to the genetic background of 

Beaufort and Maxifort (Table 1). The molecular marker REX-1 was developed 

to detect the presence of the introgressed Mi region in hybrids of S. 

lycopersicum × S. peruvianum (Williamson et al., 1994), but it might not be 

equally useful for hybrids between S. lycopersicum and other Solanum species. 

This fact was reported by El Mehrach et al. (2005) in tomato hybrid lines with 

introgressions of S. habrochaites and S. chilense on chromosome 6. Therefore, 

the newly developed co-dominant marker Mi23, (Seah et al., 2007b) was used. 

This marker was also been tested with other wild species of Solanum with 

similar results (Seah et al., 2007b). Since only a few accessions of wild 

tomatoes were tested with this marker, it is unclear whether Sp-Mi23 allele is 

universally associated with root-knot nematode resistant genotypes in Solanum 

species. According to Mi23 marker, all resistant rootstocks and cultivars carried 

the Mi resistance gene either in homozygous or heterozygous forms. However, 

the root-knot resistance phenotypic data indicates that Mi23 like REX-1 is 

unable to distinguish between resistant and susceptible genotypes in hybrids of 

S. lycopersicum × S. habrochaites and S. lycopersicum × Solanum spp.  

 

Since nematode resistance in these rootstocks was from Solanum species 

other than S. peruvianum, it was uncertain whether the resistance is conferred 

by the Mi gene or a homologue of Mi. It is also difficult to speculate on the 

genetic distances between the nematode resistance gene and the markers used in 
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this study. Assuming that the genetic distance between the nematode resistance 

gene and SCAR Mi23 in these Solanum species is similar to that between Mi 

and Mi23 in S. peruvianum (Seah et al., 2007a, 2007b), then the nematode 

resistance gene was most likely present in these rootstocks. The nematode 

susceptibility of rootstocks Beaufort and Maxifort could be explained by 

spontaneous mutation in the resistance gene. A single nucleotide change can 

eliminate the function of a gene. In fact, two Mi homologues Mi-1.6 and Mi-1G 

have only single nucleotide mutations which resulted in nonfunctional truncated 

proteins (Seah et al., 2007a). Absence of resistance could also be caused by 

resistance gene silencing by the methylation process (Liharska, 1998). The 

dosage effect of the Mi gene in resistant tomato cultivars was associated with 

variability in root-knot nematode responses, suggesting that homogozygous 

cultivars were more resistant than heterogozygous ones, but with some 

exceptions (Tzortzakakis et al., 1998, Jacquet et al., 2005). The response of 

some rootstocks did not conform to the dosage effect model proposed for 

tomato cultivars with introgressions from S. peruvianum. Several possible 

explanations for this behaviour have been offered in this paragraph. 

Nevertheless, more research is needed to better understand the nature of lack of 

resistance in some rootstocks.  

 
The efficiency of the nematode resistance was greatly reduced in most 

resistant materials in the hottest time of the year. Yet, some rootstocks, e.g. PG-

76, MKT-410 and 42851, still showed high or moderate resistance levels despite 

soil temperatures raised above 28 ˚C in the first week post-nematode 

inoculation, which suggests that the resistance in these rootstocks may be 

conferred by a heat stable gene other than Mi. The response of cv. He-man 

needs further investigation because low numbers of plants were infected in this 

test. Resistant Caramba retained a high relative resistance level, whereas 

Monika only a moderate level suggesting, that the genetic background might 

play a role in the stability of Mi resistance at high temperatures.  

 

The results of the field study conducted under continuous exposure to 

high population densities of M. javanica confirmed the differential response of 

the rootstocks carrying the Mi resistance gene previously identified in the 

glasshouse tests. Seven out of 10 rootstocks showed high levels of field 

resistance (RI <10%). Once more, Beaufort and Maxifort were susceptible (RI 

>50%) but were more tolerant to nematode infection (root galling) than 

susceptible Durinta as they suffered less nematode damage. The variability in 

nematode infection and reproduction on the tomato rootstocks can be largely 

attributed to their genetic background as they were challenged with a single 
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isolate of M. javanica. The field population came from the same M. javanica 

population (MJ-05) as the site had been artificially infested with this isolate in 

2004 by pre-inoculating tomato seedlings before transplanting. Although such 

variability in infectivity and nematode reproduction had been documented on 

tomato cultivars (Roberts and Thomason, 1989, Ornat et al., 2001, Jacquet et al., 

2005) as well as rootstocks (López-Pérez et al., 2006, Graf et al., 2001) such 

large differences were unexpected.  

 

The category of nematode resistance in a plant phenotype can change 

depending on the experimental conditions set for screening since nematode 

resistance is relative to reproduction on a susceptible plant host. Thus, the 

choice of the cultivar used as standard for susceptibility was of great relevance 

and seemed more crucial than the duration of the test (one over two 

generations). Nematode genotype will also affect the categorization of the 

rootstock resistance response, although this factor was not addressed in this 

study. Nematode reproduction on resistant tomato genotypes was explained by 

the interaction between the plant genotype and nematode isolate but not by 

either factor alone (Jaquect et al., 2005). The evaluation of the rootstocks after 

two nematode generations allowed detection of population increases and 

changes in the relative levels of resistance in some rootstocks that were 

otherwise gone unnoticed in tests involving only one generation. Susceptible 

Tyrmes was selected because its agronomic characteristics are similar to those 

of the resistant cultivar Caramba whereas those of susceptible Durinta matched 

resistant Monika. Tyrmes is tolerant to Tomato yellow leaf curl virus (TYLCV), 

and reduced root-knot nematode infectivity on geminivirus resistant plants has 

been reported (Mahajan and Chhabra, 1977). There was a positive correlation 

between the infectivity and the reproduction index, although the RI offered a 

better level of agreement between the seed companies’ descriptions and the 

present results, as the infectivity index can be sometimes misleading (Roberts 

and Thomason, 1989). However, this index would be especially useful in the 

initial steps of the evaluation process; to reduce the duration of the test and save 

labour. 

 

In summary, M. javanica infected and reached high reproduction levels 

on some resistant tomato rootstocks just after two nematode generations in 

spring and a single generation in summer. Cultivation of these rootstocks in 

nematode-infested soil confirmed the differential response of the rootstocks. 

These results are relevant for breeding programs as well as nematode 

management. They emphasize the need for marker-assisted selection to be 

complemented with biological characterization of the resistant response. 
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Different resistant and susceptible cultivars and nematode isolates should be 

included as reference standards to diminish variation due to genetic background 

and inter- and intra-specific variability in the genus Meloidogyne. These results 

raise concerns over the durability of the resistance in tomato rootstocks. The 

appearance of resistance breaking populations may be preceded by increased 

nematode infectivity and reproduction (Sorribas et al., 2005). Therefore, 

attention should be paid to the possible emergence of virulent nematode 

genotypes in areas infested with the nematode and cultivated with resistant 

tomato rootstocks, as selection for virulence has been reported on resistant 

pepper rootstocks only after two cropping cycles (Ros et al., 2004, 2006). 
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Comparison of the vigor of roots of Maxifort (left) and MKT-410 
(right) rootstocks. Despite the number of secondary roots, the length 

and the thickness of the roots, reproduction on Maxifort was 
considerably higher that on resistant roostock MKT-410. Maxifort 

presented a susceptible phenotypic response when plants were 
inoculated with Meloidogyne javanica and M. incognita populations. 
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The response of four Mi-resistance gene tomato rootstocks to seven populations of 

Meloidogyne was determined in pot tests conducted in a glasshouse. Rootstocks PG-

76 (Solanum lycopersicum × Solanum sp) and Brigeor (S. lycopersicum ×  

S. habrochaites) and resistant cultivar Monika (S. lycopersicum) were assessed 

against one population of M. arenaria, three of M. incognita, and three of  

M. javanica. Rootstocks Beaufort and Maxifort were assessed against one population 

of M. arenaria, two of M. incognita and two of M. javanica. Rootstock PG-76 was 

highly resistant (reproduction index < 10%) to all the populations, whereas rootstock 

Brigeor and cultivar Monika were highly to moderate resistant. Rootstocks Beaufort 

and Maxifort showed reduced resistance or inability to suppress nematode 

reproduction and their responses varied according to the population tested. Beaufort 

and Maxifort were susceptible to the two populations of M. javanica as Maxifort was 

to one of M. incognita. The reproduction index of the nematode was higher (P <0.05) 

on Maxifort than Beaufort for all root-knot nematode populations.  

 

Key words: genetic variability, resistance, root-knot nematodes, SCAR-PCR, 

Solanum habrochaites, Solanum lycopersicum. 
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Introduction 
 

Meloidogyne is the most important plant parasitic nematode genus that causes 

serious yield losses in tomato (Solanum lycopersicum, formerly Lycopersicon 

esculentum) worldwide. Meloidogyne javanica and M. incognita are most 

common root-knot nematode found in vegetable production areas in Spain 

whereas M. arenaria is found but to a lesser extent (Sorribas and Verdejo-

Lucas, 1994; Verdejo-Lucas et al., 2002).  

 

The use of new control methods against soil pathogens has increased in 

the last two decades to circumvent the toxicity and environmental impact of 

traditional pesticides used in agriculture (e.g. methyl bromide). Plant resistance 

is an economically, sustainable and environmentally friendly alternative to 

conventional and organic agriculture (Roberts and Thomason, 1996; Besri, 

2003; Sorribas et al., 2005). In tomato, the Mi-resistance gene, introgressed 

from S. peruvianum (Smith, 1944), strongly reduces development and 

reproduction of M. arenaria, M. javanica and, M. incognita at soil temperatures 

below 28˚C (Dropkin, 1969). Tomato cultivars carrying the Mi-resistance gene 

are not immune to root-knot nematodes and support some level of reproduction 

(Roberts and Thomason, 1989). Reproduction on resistant tomatoes has been 

explained by the interaction between plant genotype and nematode isolate, but 

not by either factor alone (Jacquet et al., 2005). The inter- and intra-specific 

genetic variability in the genus Meloidogyne contributes to variation in the 

response of Mi-resistance gene tomatoes with introgressions from S. 

peruvianum which can result in reduced levels of nematode suppression 

(Roberts and Thomason, 1996; Ornat et al., 2001; Castagnone-Sereno, 2002). 

 

At present, grafting vegetables is expanding in Europe, and it is primarily 

used to increase their vigour and yield. In tomato, most commercially available 

rootstocks are interspecific hybrids of S. lycopersicum and S. habrochaites 

(formerly, L. hirsutum) or other wild Solanum species. They incorporate the Mi-

resistance gene in addition to other resistance genes to manage diseases caused 

by bacteria, fungi, and viruses. The response of Mi-resistance gene tomato 

rootstocks against root-knot nematodes varied greatly depending on plant 

genotype and ranged from highly resistant to fully susceptible (Graf et al., 2001; 

López-Pérez et al., 2006; Cortada et al., 2008; Verdejo-Lucas and Sorribas, 

2008). However, little is known on the contribution of the nematode-genotype 

observed variation in levels of nematode suppression. The objective of this 

study was to determine variation in the resistance response of four tomato 
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rootstocks against different populations of M. arenaria, M. incognita and M. 

javanica. 

 

 

 

Materials and Methods 
 

 

The root-knot nematode populations were held on susceptible cv Roma, and had 

never been exposed to the Mi-resistance gene. They included one population of 

M. arenaria (code MA-68), three of M. incognita (codes MI-ALM, MI-CROS 

and MI-26), and three of M. javanica (codes MJ-IBIZA, MJ-05 and MJ-Q21). 

The identity of these populations was confirmed before the start of the study by 

molecular SCAR-PCR markers according to Zijlstra et al. (2000). The tomato 

rootstocks were PG-76, Brigeor, Beaufort, and Maxifort and the resistant 

cultivar Monika. All had been described as highly resistant to M. arenaria, M. 

incognita and M. javanica (Marín Rodríguez, 2005). The susceptible cultivar 

Durinta was included as a reference standard for comparison. The main 

characteristics and resistances of the tomatoes are described in Table 1.  

 

Pot tests were conducted to determine nematode reproduction on 

rootstocks PG-76, and Brigeor, and cultivar Monika. Seedlings were 

transplanted singly into 1.5 l pots containing steam-sterilized river sand, and 

were allowed to grow for one week before inoculation. Nematode inoculum was 

obtained from infected tomato cv. Roma by macerating the roots in a 0.5% 

NaOCl solution in a food blender at 1,000 rpm for 5 min. (Hussey and Barker, 

1973). Therefore macerated roots were passed through a 74-µm-aperture sieve 

to remove root debris, and the dispersed eggs were collected on a 25-µm-sieve. 

Plants were inoculated with approximately 3,000 eggs of M. arenaria MA-68, 

M. incognita MI-ALM, MI-CROS, and MI-26, M. javanica MJ-IBIZA, MJ-05, 

and MJ-Q21. Each tomato-population combination was replicated eight times. 

Plants were maintained in a glasshouse for 8 weeks. They were watered as 

needed and fertilized with a slow-release fertilizer (15% N +10% P2O5 +12% 

K2O + 2% MgO2 + microelements). At the end of each test, the number of eggs 

g-1 of fresh root was determined by macerating two 10-g root sub-samples in a 

0.5% NaCOl solution for 10 min, as described previously.  
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The response of the tomato rootstocks was categorized according to the 

reproduction index (RI) as, highly resistant (RI <10%), moderately resistant (10 

≤ RI < 50%) or susceptible (RI ≥50%) (Hadisoeganda and Sasser, 1982). The 

RI was calculated as number of eggs per plant on resistant rootstock or cultivar 

divided by the number of eggs per plant on the susceptible cv. Durinta × 100. 

Rootstocks Beaufort and Maxifort were inoculated with populations  

M. arenaria MA-68, M. incognita MI-ALM and MI-CROS, and M. javanica  

MJ-IBIZA and MJ-05. It was not possible to test M. incognita MI-26 and  

M. javanica MJ-Q21 populations with Beaufort and Maxifort due to insufficient 

inoculum. Preparation of nematode inoculum and experimental conditions were 

similar to those described previously except for the combinations Beaufort and 

Maxifort with M. incognita MI-CROS and M. javanica MJ-05 that were 

maintained in the glasshouse for 12 instead of 8 weeks.  

 

The general linear model procedure of the SAS software version 8 

(SAS institute Inc., Cary, NC) was used for statistical analysis. The number of 

eggs g-1 of root and eggs per plant were transformed to √x to achieve normality 

of data, and then subjected to analysis of variance. The Tukey’s studentized 

range test was used to compare means when the ANOVA analysis was 

significant (P <0.05). Soil temperatures were registered daily at 30 min intervals 

by placing temperatures probes into the potted soil. Temperatures were below 

28 ˚C for the duration of the tests and ranged from 11.2 to 24.6 ˚C (x = 19.3 ˚C). 

 

 

 

Results and Discussion 
 

 

Resistant rootstocks PG-76 and Brigeor supported lower number of eggs g-1 of 

root (P <0.05) than susceptible Durinta (Table 2). Both rootstocks showed 

similar ability to inhibit nematode reproduction irrespective of the populations 

tested. Egg production was similar on rootstock Brigeor and cultivar Monika, 

but differences between rootstock PG-76 and cultivar Monika were observed 

with populations M. incognita MI-CROS, and M. javanica MJ-05 and MJ-Q21. 

Nematode reproduction (eggs g-1 root) on resistant Monika was lower (P <0.05) 

than on susceptible control Durinta for all combinations. Rootstock PG-76 was 

highly resistant to the seven populations of Meloidogyne as RI values ranged 

from 0.02% (MI-CROS) to 3.3% (MJ-Q21) (Fig. 1). Rootstock Brigeor was 

highly resistant to four nematode populations but moderately resistant to  
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M. incognita MI-26, and two M. javanica populations. The RI values for cv. 

Monika ranged from 4.4% (MI-ALM) to 27.3% (MI-26) (Fig. 1).  

 

The number of eggs g-1 of root on rootstock Beaufort was lower (P <0.05) 

than on susceptible Durinta inoculated with M. arenaria MA-68, and  

M. incognita MI-ALM and MI-CROS, but was not different from the 

susceptible control when inoculated with M. javanica MJ-IBIZA and MJ-05 

(Table 3). Egg production on rootstock Maxifort was lower (P <0.05) than on 

susceptible Durinta inoculated with M. arenaria MA-68, M. incognita MI-

CROS and M. javanica MJ-05, but the number of eggs g-1 of root did not differ 

from the susceptible tomato with the remaining populations (Table 3).  

 

 

 

 
 

 

 

Figure 1. Reproduction index (RI) of one population of Meloidogyne arenaria (MA-68), 

three populations of M. incognita (MI-ALM, MI-CROS, MI-26), and three populations of 

M. javanica (MI-IBIZA, MJ-O5, MJ-Q21) on Mi-resistance gene tomato cultivar Monika, 

and rootstocks PG-76, Brigeor, Beaufort, and Maxifort. RI: eggs per plant on a resistant 

tomato divided by eggs per plant on susceptible control × 100. 
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Rootstock Beaufort was highly resistant (RI <10%) to M. arenaria MA-

68 and M. incognita MI-CROS, moderately resistant to M. incognita MI-ALM 

(RI = 33%), and fully susceptible to both M. javanica populations. Rootstock 

Maxifort responded as moderately resistant to M. arenaria MA-68 and M. 

incognita MI-CROS, and as susceptible (RI >50%) to M. incognita MI-ALM, 

and the two M. javanica populations (Fig. 1). Rootstocks Beaufort and Maxifort 

inoculated with M. javanica MJ-IBIZA and MJ-05 resulted in very high RI 

values that were not significantly different from the susceptible control (P > 

0.05).  
 

 

 

Table 3. Numbers of eggs g-1 root of two populations of Meloidogyne javanica (MJ-IBIZA and  

MJ-05), one of M. arenaria (MA-68), and two of M. incognita (MI-ALM and MI-CROS), on  

Mi-resistance gene tomato rootstocks Beaufort and Maxifort and susceptible cultivar Durinta 

eight or twelve weeks after the inoculation of 3,000 eggs per plant. 

 

 Duration of the tests 

 8 weeks  12 weeks 

 M. javanica M. arenaria M. incognita  M. javanica M. incognita 

Tomato MJ-IBIZA MA-68 MI-ALM  MJ-05 MI-CROS 

Beaufort 9859 ± 2204 a 508 ± 635 c 1197 ± 694 b 
 

6908 ± 3998 ab 2846 ± 4024 b 

Maxifort 15669 ± 6865 a 1627 ± 1079 b 1811 ± 1359 ab 
 

6403 ± 3778 b 4658 ± 3671 b 

Durinta 12511 ± 3310 a 6436 ± 1034 a 3570 ± 1602 a 
 

12239 ± 4881 a 27697 ± 7847 a 

 

Values are back-transformed mean ± standard deviation of seven replicated plants. Values in the 

same column sharing the same letter are not significantly different according to Tukey’s 

studentized range test (P<0.05).  

 

 

 
There was strong effect of the tomato genotype on their response to 

nematode population. A total of 31 nematode population-tomato genotype 

combinations were tested in this study. Of these, 15 combinations resulted in a 

highly resistant response, 11 moderately resistant, and 5 were susceptible 

responses: three involved rootstock Maxifort, and two, rootstock Beaufort. 

Molecular analysis using co-dominant marker REX-1 (Williamson et al., 1994) 

and the PCR-based co-dominant SCAR marker Mi23 (Seah et al., 2007b) had 

been performed. Both indicated that all tomato rootstocks were homozygous 

resistant for Mi-1 locus and that resistant cultivar Monika was heterozygous 
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(Cortada et al., 2008). The marker Mi23 was specifically designed for 

interespecific tomato hybrids lines with S. habrochaites as were rootstocks 

Brigeor, Beaufort and Maxifort. However, the pathogenicity tests showed 

variable results. Tzortzakakis et al. (1998) and Jacquet et al. (2005) have 

suggested that Mi-1 homozygous locus might protect better against the 

nematode compared to the Mi-1 heterozygous locus, but no consistent effect 

was found in this study. For instance, rootstocks Beaufort and Maxifort were 

susceptible to both populations of M. javanica whereas cv. Monika was 

resistant. The molecular markers were unable to distinguish variation in the 

resistant response which emphasizes the need to use different nematode 

populations to characterize plant resistance. High soil temperatures as a cause 

for resistance breaking were discarded because soil temperatures remained 

below 28 ˚C during the tests.  

 

Remarkable changes were revealed in some rootstocks depending on the 

population, and they were best illustrated for rootstock Beaufort which was 

highly resistant to M. arenaria MA-68 and M. incognita MI-CROS, moderately 

resistant to M. incognita MI-ALM, and susceptible to both populations of  

M. javanica. Conversely, highly resistant responses were consistently obtained 

on PG-76 challenged to seven populations.  

 

Several hypotheses could explain the susceptibility of rootstocks Beaufort 

and Maxifort against the two populations of M. javanica. The lack of resistance 

could be attributed to gene silencing by a methylation process (Liharshka, 1998) 

or a spontaneous mutation in the sequence of Mi-1.2 gene that could inhibit 

gene expression (Seah et al., 2007a). The absence or the mutation of genes 

necessary in the signaling pathway of Mi-1.2 gene like Rme1 (Martínez de 

Ilarduya et al., 2004), Hsp90 or Sgt1 (Bhattarai et al., 2007) could also explain 

the susceptible phenotype of Beaufort and Maxifort. Nevertheless, the 

differential responses of both rootstocks were related to the nematode 

population which reinforces the concept that each plant-nematode combination 

has a specific interaction pattern. Changes from resistant to susceptible 

responses have been reported in tomato cultivars with introgressions from wild 

Solanum species when a single plant genotype was challenged to different 

Meloidogyne isolates (Sorribas and Verdejo-Lucas, 1999; Tzortzakakis et al., 

2006). On the other hand, little is known about root-knot nematode avirulence 

effectors (Avr) (Fuller et al., 2008) and the reason why some isolates can 

reproduce on resistant plants whereas others never overcome the resistance of 

the Mi-1.2 gene (Jarquin- Barberena et al., 1991). Virulence could be due to 

lack of or modification of those nematode gene products that activates plant 
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defense genes against nematodes (Nem-R genes) (Williamson and Kumar, 

2006). Nowadays, the specific interaction of the nematode and the Mi-1.2 

resistance signaling pathway remains to be solved. As all nematode-rootstock 

combinations were not tested simultaneously, main effects could not be 

statistically analyzed but differences in the phenotypic expression of the Mi-

resistance gene were apparent as tomato rootstocks and cultivar were not 

equally effective in suppressing nematode reproduction. As a general trend, 

rootstock PG-76 was the most effective, followed by Brigeor, cv. Monika, 

Beaufort, and Maxifort. These results are in agreement with those of Cortada et 

al. (2008) using a single population of M. javanica (MJ-05) regarding to the 

differential response of tomato rootstocks and the ranking in the resistance 

levels.  

 

The differences found in the resistant responses of tomato rootstocks 

have implications in root-knot nematode management. The success of growing 

resistant tomato rootstocks in nematode-infested soils could vary according to 

locally-occurring populations of Meloidogyne, and this could limit their 

usefulness as an alternative to chemical control. The susceptibility of Beaufort 

to populations of M. incognita and M. arenaria has already been reported (Graf 

et al., 2001; López-Pérez et al., 2006). The extremely vigourous root system of 

the rootstocks and the presence of additional resistance genes in their genome 

may help to counteract other soil-borne diseases, and in turn, contribute to 

increased tomato yields, but they may not be effectively enough to control root-

knot nematodes. 
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Comparison of the vigor of the 
aerial part of the resistant 

rootsock Brigeor (upper plant) 
and the susceptible cultivar 
Durinta (lower plant) four 

weeks after planting in a plastic 
house. The soil was naturally 

infested by an avirulent 
Meloidogyne javanica 

population. 
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Aspect of the aerial part of a non-grafted PG-76 rootstock plant grown 
in a plastic house. The extremely vigorous growth of the plant can be 
observed in the big leaflets of the plant. The small fruits that the plant 

produces never rippen. 
  



 Molecular characterization of Mi-tomato rootstocks 

 

 
79 

 

In crop breeding programs, the use of molecular markers saves time, money and 

effort. In tomato, the co-dominant REX-1 marker is used to detect the Mi-1.2 gene in 

S. lycopersicum × S. peruvianum hybrids. Nevertheless, this marker is not suitable 

for use with hybrid tomato rootstocks (S. lycopersicum × S. habrochaites or S. 

lycopersicum × S. chilense) since false positives were reported in screenings for root-

knot nematode resistance. In this paper, we evaluate the reliability of 4 available 

PCR-based molecular markers defined by primer pairs: Mi23, PM3, PMi, and intron 

1, for detection of resistance mediated by Mi-1.2 gene and characterization of the Mi-

locus in tomato hybrid rootstocks. Primers annealing to the Mi-1.2 gene, Mint-up/do, 

C1/2, C2S4, IMO-F1/R1 or VIGS-F were assessed in silico for their ability to anneal 

to known Mi-homologs (MiGHs) in S. lycopersicum and S. peruvianum genomes. 

Markers PM3-Fb/Rb and Pau-Do, could distinguish the Mi-1.2 gene among the S. 

peruvianum and S. lycopersicum MiGHs, although PM3-Fb/Rb could detect the  

Mi-1.2 resistance gene in S. lycopersicum × S. habrochaites hybrid rootstocks but not 

in S. lycopersicum × S. chilense hybrids. Pau-Do, in combination with C2S4, was 

successfully used to determine Mi-1.2 gene expression in S. lycopersicum × S. 

habrochaites hybrids. The markers specifically designed for tomato rootstocks (PMi-

F3/R3 and Mi23) could not determine the allelic condition of the Mi-1 locus as both 

amplified Mi-1.2-like bands in susceptible tomato cultivars (S. lycopersicum).  

 

Key words: Beaufort, Maxifort, Meloidogyne spp., root-knot nematodes, Solanum 

spp.  
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Introduction 
 

 

The introduction of new agronomic traits into tomato (Solanum lycopersicum; 

Sl) cultivars from wild Solanum species started early in the 20th century (Osborn 

et al., 2007). Breeding efforts have mainly focused on the acquisition of genes 

that confer resistance to various pathogens and pests including fungi, viruses 

and nematodes. In this process, several disease resistance genes have been 

introduced to tomato and mapped to the short arm of chromosome 6. Ol-1 and 

the Am genes that confer resistance to powdery mildew (Oidium lycopersicum) 

(van der Beek et al., 1994) and most strains of alfalfa mosaic virus (AMV) 

(Parrella et al., 2004), respectively, were introduced from S. habrochaites; Cf-2 

and Cf-5 for resistance to Cladosporium fulvum was obtained from S. 

pimpinellifolium and S. lycoperscium var. cerasiforme, respectively (Dixon et 

al., 1998); Ty-1 and Ty-3 introgressed from S. chilense conferring resistance to 

tomato yellow leaf curl virus (TYLCV) (Ji et al., 2007); and the Mi-1.2 gene, 

from S. peruvianum (Sp) conferring resistance to root-knot nematodes 

(Meloidogyne arenaria, M. incognita, and M. javanica) (Roberts and 

Thomason, 1986) from S. peruvianum (Smith, 1944).  

The introduction of the Mi-1.2 gene had a high impact on this crop 

which is currently the only commercially available source of resistance to root-

knot nematodes in tomato. Plant resistance against root-knot nematodes is an 

economical alternative to soil fumigation (e.g. methyl bromide) that allows 

cultivation of resistant tomato in nematode-infested fields without significant 

yield losses (Sorribas et al., 2005). The resistance gene (R gene) Mi-1.2 is a 

member of the plant R gene family encoding proteins with nucleotide-binding 

site and leucine-rich repeat motifs (Milligan et al., 1998). In resistant tomato, 

seven Mi-1.2 gene homologs (MiGHs), all located on the short arm of 

chromosome 6, are from the S. peruvianum introgression and are organized into 

two different clusters: cluster 1p (Mi-1.1, Mi-1.2 and Mi-1.3) and cluster 2p 

(Mi-1.4 to Mi-1.7) (Seah et al., 2007a). In susceptible tomato, the seven MiGHs 

are also organized in two clusters: 1e (Mi-1E, Mi-1F and Mi-1G) and 2e (Mi-

1A, Mi-1B, Mi-1C and Mi-1D) (Seah et al., 2007a). Despite the high homology 

among these 14 MiGHs, only Mi-1.2 has been shown to confer resistance to 

root-knot nematodes (Milligan et al., 1998). Additional root-knot nematode 

resistance genes have been identified in a number of accessions of wild 

Solanum species such as Mi-2, Mi-3, Mi-4, Mi-5, Mi-6, Mi-7 and Mi-8 from  
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S. peruvianum (Yaghoobi et al., 1995; Veremis and Roberts, 1996a, 1996b; 

Ammiraju et al., 2003) and Mi-9 from S. arcanum (Jablonska et al., 2007).  

As pathogenicity assays are time consuming and require specialized 

skills, molecular marker analysis evolved rapidly as a reliable tool in tomato 

breeding programs to monitor the transfer of genes from wild Solanum 

accessions into commercial tomato cultivars. In tomato, root-knot nematode 

resistance has been traditionally traced either with the isozyme acid phosphatase 

(Aps-1) (Rick and Forbes, 1974) or the co-dominant PCR marker REX-1 

(Williamson et al., 1994). REX-1 is located on the short arm of chromosome 6 

and is tightly linked to the Mi-1 locus (Kaloshian et al., 1998) and the reliable 

results obtained with this marker made it widely used in most tomato breeding 

programs (Osborn et al., 2007). Because this marker was designed to detect the 

introgression of the region of the short arm of chromosome 6 containing the Mi-

1 locus from a specific accession of S. peruvianum, its use to detect the 

presence of root-knot nematode resistance originating from other Solanum 

species is questionable. El Mehrach et al. (2005) reported false positives when 

REX-1 was used in screens for root-knot nematode resistance in begomovirus 

resistant tomatoes with introgressions from S. habrochaites and S. chilense. In a 

bioassay performed to determine root-knot nematode resistance in commercial 

and experimental tomato rootstocks, the hybrids Beaufort and Maxifort (both 

hybrids: S. lycopersicum × S. peruvianum × S. habrochaites), responded as 

susceptible to two a Mi-1.2 avirulent population of M. javanica, in disagreement 

with the REX-1 genotyping data (Cortada et al., 2008, 2009). As this result was 

initially interpreted as a possible false positive, the co-dominant SCAR-PCR 

marker Mi23 was used to confirm the genotypes of these two rootstocks. Mi23 

was designed for tomato hybrid rootstocks (Seah et al., 2007b) and despite 

being successfully tested with several wild Solanum species (Seah et al., 2007b) 

it was also unable to detect the susceptible phenotypes of Beaufort and Maxifort 

(Cortada et al., 2009). The proximity of the Mi23 marker to the Mi-1.2 

resistance gene, and the low recombination rate in the Mi locus, suggests that 

the Mi-1.2 gene is present in Beaufort and Maxifort. Since the genetic 

background of these rootstocks included a Solanum species other than S. 

peruvianum, it is uncertain whether the intended resistance source was the Mi-

1.2 gene or a distinct MiGH.  

The purpose of this work was to investigate the presence of the Mi-1.2 

resistance gene in tomato hybrid rootstocks Beaufort and Maxifort. We 

evaluated available PCR markers that amplify the Mi-1.2 gene or are tightly 

linked to it and have been specifically designed to detect root-knot nematode 
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resistance in hybrid tomato rootstocks, to determine their utility for marker-

assisted selection in tomato breeding programs. Bioinformatics and PCR 

analyses were performed with tomato cultivars, rootstocks and wild Solanum 

species and accessions. Nematode pathogenicity assays were also performed in 

order to determine the resistance phenotype of the wild Solanum species 

analyzed.  
 

 

 

Materials and methods 
 

 

▌Plant material and growth conditions 

 

Plant materials used for DNA analyses are described in Table 1. Seeds were 

germinated in seedling trays filled with an organic planting mix (Sun Gro 

Horticulture) and maintained in a greenhouse at 22 ˚C to 26 ˚C. After 

germination, seedlings were supplemented with a slow release fertilizer (NPK: 

17-7-10; Osmocote® Pro, Sierra Chemical). 

 

 

▌PCR-based markers 

 

PCR-based markers were employed for characterization of the Mi locus in 

tomato varieties and wild tomato species (Table 2). These were REX-1, Mi23, 

PMi and PM3 (Fig. 1a) (Williamson et al., 1994; El Mehrach et al., 2005; Seah 

et al., 2007a). Intron-1 was also used to fingerprint MiGHs (Fig. 1b) (Jablonska 

et al., 2007). 

 

 

▌Bioinformatics analysis 

 

Bioinformatics analyses were performed to identify the locations of markers 

linked to the Mi locus. The AnnHyb software 

(http://www.bioinformatics.org/annhyb/) was used for in silico analyses 

considering that the salts and the primers concentrations of the virtual PCR 

reaction ranged from 25 to 50 mM and from 250 to 1000 nM, respectively. In 

addition, analysis was performed with primers C1/2, C2S4 (Milligan et al., 

1998), C1/2Do (Martínez de Ilarduya and Kaloshian, 2001), IMOF1, IMOR1 

(Bendezu, 2004), and VIGS-F (Li at al., 2006) designed to amplify Mi-1.2 (Fig. 
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1b). Anaylsis tested whether these primers could also detect in silico MiGHs 

from resistant tomato cultivar Motelle (introgression from the S. peruvianum, 

Sp) and from susceptible tomato cultivar Heinz-1706 (S. lycopersicum, Sl) 

(Seah et al., 2007a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. (a) Location of PCR markers on the short arm of chromosome 6 of 

Solanum peruvianum and S. lycopersicum. MiGHs are shown as white boxes, 

pseudogenes as grey boxes and truncated genes in hatched boxes. In cluster 2e, the 

order between 1C and 1D is not resolved. Figure adapted from Seah et al. 2007a. (b) 

Location of primers in the Mi-1.2 resistant gene. In parenthesis, the nucleotide 

position of each primer is shown, according to the Mi-1.2 genomic sequence obtained 

from Genbank accession U81378. Solid bars show exons, dotted line show introns, 

and the white bar represents the 3’ and 5’ untranslated regions of the gene. 
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▌DNA isolation and PCR 

 

DNA extraction was carried out according to Cortada et al. (2008). The 

amplification conditions for intron-1 is described by Jablonska et al. (2007); 

REX-1 by Williamson et al. (1994); PM3 and REX-1 multiplex-PCR and 

PMi by El Mehrach et al. (2005), and Mi23 by Seah et al. (2007b). The 

ubiquitin-3 (Ubi-3) PCR conditions were: 95 ˚C for 3 min followed by 35 

cycles of 30 s at 95 ˚C, 1 min at 58 ˚C and 30 s at 72 ˚C, followed by 5 min at 

72 ˚C. For all PCR reactions, 20 µL of the PCR products were resolved on 

1.5% agarose gel in 1×TAE buffer, except for the intron-1 reactions where 45 

µL were resolved in the same conditions.  

 

 

 

▌RNA isolation and RT-PCR 

 

RNA from leaf tissues was extracted using a hot phenol protocol (Bhattarai et 

al., 2007) and extractions from roots were performed according to Lambert et 

al. (1999). RNA samples were treated with RQ1 RNase-free DNase 

(Promega) and followed by phenol/chloroform extraction. For cDNA 

synthesis, 3.5 to 5 µg of DNase treated RNA was used with oligo(dT)20 

primer and ThermoScriptTM  reverse transcriptase (Invitrogen) according to 

manufacturer’s recommendation. To amplify Mi-1.2, PCR was carried out in 

25 µL volume using 1 µL of cDNA template, except for Beaufort leaves 

where 4 µL was used. Primers Pau-Do (5’-CCTTTGACAATCTATTTG 

TTGAC-3’) and C2S4 (5’- CTAAGAGGAATCTCATCACAGG-3’) 

(Milligan et al. 1998) were used (Fig. 1b).  

Amplification conditions were 95 ˚C for 5 min followed by 30 cycles 

of 1 min at 94 ˚C, 1 min at 61 ˚C and 72 ˚C for 2 min, followed by 8 min at 

72 ˚C. Tomato Ubi3 gene was used as internal control for PCR. The 

amplified products were resolved on 1.5% agarose gel in 1×TAE buffer. 

 

 

 

▌Nematode screens 

 

Cuttings from tomato accessions (Table 1) and cultivars Monika (resistant) 

and Durinta (susceptible) were treated with Rizhopon AA growing hormone 

(3- indolbutiric acid at 1%; Rizhopon) and rooted in seedling trays in 

vermiculite. Each accession was replicated eight times and rooted cuttings of 
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the commercial tomato cultivars Monika (resistant) and Durinta (susceptible) 

were included as controls. Cuttings were maintained in a growth chamber at 

25 ˚C until new leaves were produced. Four-week-old rooted cuttings were 

transplanted singly into 500 cm3 pots containing a mixture of steam-sterilized 

river sand and peat (v/v) and used for nematode assays a week later. Mi-

avirulent nematode inoculum was obtained from infected tomato (cv. Roma) 

roots collected from pot cultures maintained in a glasshouse. The identity of 

the M. javanica population was confirmed by SCAR-PCR using primers Fjav  

(5’-GGTGCGCGATTGAACTGAGC-3’) and Rjav (5’-CAGGCCCTTCAG 

TGGAACTATAC-3’) (Ziljstra et al., 2000). Roots were macerated in a 0.5% 

NaOCl solution and eggs collected (Hussey and Barker, 1973). Infective 

second-stage-juveniles (J2) were obtained from hatched eggs as described by 

Martínez de Ilarduya et al. (2001). Five hundred J2, collected after 72 h, were 

used as inoculum per plant.  

 

Plants were maintained in a growth chamber at 20 ˚C- 22 ˚C 

temperature until the first nematode generation was completed determined by 

the informatics application GENERA (Ornat et al., 2008; 

https://deab.upc.edu/genera). Plants were fertilized with a slow-release 

fertilizer (Osmocote®, Sierra Chemical). At harvest, root systems were 

washed free of soil and weighed. The number of eggs per plant was 

determined by extracting the entire root system in NaCOl as described for the 

nematode inoculum. Eggs were expressed per gram of fresh root. An 

accession was considered resistant when the number of eggs per gram of root 

did not differ statistically from the resistant cultivar Monika.  

 

 

 

▌Statistical analyses 

 

The general linear model procedure of the Statistica (StatSoft, Inc. 2004) 

software was used for statistical analysis. The variable “number of eggs per g 

of root” was transformed into cubic root to comply with test assumptions, 

and then subjected to analysis of variance. The Dunnett studentized range test 

was used to compare means of each Solanum accessions to resistant control 

cv. Monika when the One-way ANOVA analysis was significant (P <0.05).  
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Results 
 

 

 

▌Bioinformatics analysis 

 

Since the development of the markers used in this study, substantial progress 

has been made in sequencing the chromosomal regions that contain MiGHs 

from both resistant (with Sp introgression) and susceptible tomato (Seah et al. 

2007a). We have used in silico bioinformatics analysis to determine potential 

amplification of a product using the primer pairs for markers (Mi23, PMi, 

PM3) on the short arm of chromosome 6 where the MiGHs reside.The 

locations of the amplified products are indicated in relation to MiGHs in 

figure 1b for both the Sp introgressed region and the corresponding Sl region. 

Our bioinformatics analysis indicates that Mi23 primers could anneal to a 

region in clusters 2e and 1p in Sl and Sp, respectively (Fig. 1a). Similarly, 

PMi primers could anneal to a region in clusters 1e and 2p in Sl and Sp, 

respectively. The PM3 primers could anneal only to a region in cluster 1p in 

Sp (Fig. 1a). 

 

 

 

▌Nematode bioassays 

 

Root-knot nematode resistance phenotypes of all rootstocks and tomato 

cultivars used in this study was previously determined (Table 1). The 

resistance phenotype was only known for two of the wild Solanum species 

and the rest were assayed for nematode susceptibility. Nematode 

reproduction on wild Solanum accessions was significantly different (P 

<0.05) from that on the resistant cultivar Monika (Fig. 2) and therefore they 

were considered susceptible. 

 

 

▌PCR marker analysis 

 

Previously, REX-1 marker (Fig. 1a) analysis of the rootstocks used in this 

study showed that all were Sp homozygous, except for MKT-410, which was 

heterozygous, both profiles indicating resistant genotypes even though a 

subset of these rootstocks were root-knot nematode susceptible (Cortada et 

al., 2008). Similarly, it was shown that the Mi23 marker could not distinguish 
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between nematode resistant and susceptible rootstocks. Although REX-1 has 

been tested in numerous tomato cultivars and shown clear polymorphism 

between Sl and Sp alleles and nematode resistance introgression, Mi23 has 

not been extensively tested with tomato cultivars. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Reproduction of a Mi-1 avirulent population of Meloidogyne javanica on Solanum 

species. Solanum chilense (LA-1932, LA-1959, LA-1969, LA-2746), S. habrochaites (LA-

0386, LA-1777, LA-3864), S. peruvianum (LA-1336), tomato resistant cultivar Monika, and 

susceptible cultivar Durinta. Displayed values show back-transformed mean ± standard 

deviation of eight replicated plants except for S. chilense accessions LA-1959, LA-1969, and 

LA-2746 that had 6, 4 and 7 plants, respectively. Stars indicate significant differences between 

a Solanum accession and the resistant control Monika, according the Dunnett’s t test (P < 

0·05). 

 
 

 

Using Mi23 primers for PCR on tomato cultivars amplified a 380 bp 

fragment from nematode resistant tomato and a 430 bp fragment from most 

susceptible tomato cultivars (Fig. 3a). However, both fragments were 

amplified from two nematode susceptible tomato cultivars (Fig. 3a, lanes 11-

12) indicating that this marker also cannot distinguish between resistant and 

susceptible tomato cultivars. The inability of this marker to discern between 

root-knot nematode resistance and susceptibility was further evident when 

Mi23 was tested with S. chilense, S. habrochaites and S. peruvianum, species 

that constitute one or more parent of the tomato rootstocks (Table 1). 

Although this marker could distinguish between root-knot nematode resistant 

and susceptible S. peruvianum accessions (Fig. 3b, lanes 9-10), no consistent 
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M 1 2 3 4 5 6 7 8 9 10 11 12

Tomato cultivars 

R R S S S S S S S S S S

300 bp

500 bp

a

profile linked to nematode resistance was identified among the other 

Solanum species (Fig. 3b). 

 

 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 3. Mi23 marker profile in tomato cultivars and Solanum species. a Lanes: (1) VFN; (2) 

Motelle; (3) Heinz-1706; (4) Moneymaker; (5) Durinta; (6) UC82; (7) Castlemart;(8) Pearson; 

(9) Pixie; (10) Castlemart; (11) Ailsa Craig; (12) Chatham. b Lanes: (1) LA-1932; (2) LA-

1959; (3) LA-1969; (4) LA-2746; (5) LA-0386; (6) LA-1777; (7) LA-3864; (8) LA-1336; (9) 

PI 270435 clone 2R2; (10) PI 270435 clone 3MH. R indicates resistance and S susceptibility 

to root-knot nematodes according to Ammati et al. (1986), Kaloshian unpublished, or this 

study. Lane M is 100 bp DNA ladder.  

 

 

 

We also tested PMi marker with tomato cultivars, rootstocks and 

wild tomato accessions. The primers PMiR3/F3 amplified about 530 bp 

fragment from the Sp resistant allele (Fig. 4a, lane 15) and 350 bp fragment 

from the Sl susceptible allele (Fig. 4a, lane 14). Both DNA fragments were 

amplified from the heterozygous cultivars (Fig. 4a, lanes 11-12). The 

susceptible hybrid cultivar Tyrmes (S. lycopersicum × S. chilense, Fig. 4a, 

lane 13) gave a distinct banding pattern, which included the Sl susceptible 

allele in addition to two (450 bp and 600 bp) distinct fragments. All the 

fragments amplified from the hybrid rootstocks were similar to those found 

in the commercial cultivars. Two of the susceptible rootstocks amplified a 

fragment similar to the Sp resistance allele (Fig. 4a, lanes 9–10), indicating 

that PMi cannot distinguish between resistant and susceptible hybrid 

rootstocks. Furthermore, screening the accessions from several Solanum 

species indicated that PMi is highly polymorphic (Fig. 4b) and cannot 

distinguish between resistant and susceptible accessions (Fig. 4b, lanes 8-9).  
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Figure 4. PMi marker profile in tomato hybrid rootstocks, cultivars and in 

Solanum species. a Lanes: (1) PG-76; (2) Gladiator; (3) MKT-410; (4) 

Brigeor; (5) 42851; (6) 43965; (7) Big Power; (8) Heman; (9) Beaufort; (10) 

Maxifort; (11) Caramba; (12) Monika; (13) Tyrmes; (14) Durinta; (15) VFN. 

b Lanes: (1) LA-1932; (2) LA-1959; (3) LA-1969; (4) LA-2746; (5) LA-

0386; (6) LA-1777; (7) LA-3864; (8) LA-1336; (9) PI 270435 clone 2R2; 

(10) PI 270435 clone 3MH. R indicates resistance and S susceptibility to root-

knot nematodes according to Ammati et al. (1986), Cortada et al. (2008), 

commercial sources or this study. Lane M is 100 bp DNA ladder. 

 

 

 

Primers PM3-Fb/Rb amplified a 500 bp fragment from the S. 

peruvianum introgression (Sp-PM3-locus) located in close proximity 3’of 

Mi-1.2 (Fig. 1). Since this primer pair does not amplify a fragment in tomato 

cultivars without wild species introgressions, it is designed for use in 

multiplex reactions with REX-1 primers (El Mehrach et al., 2005). A 

multiplex-PCR reaction was performed to amplify both PM3 and the REX-1 

markers. The multiplex-PCR amplified a 720 bp fragment representing REX-

1 in all the tomato rootstocks and cultivars tested (Fig. 5a). Similarly, a 500 

bp fragment was amplified representing PM3 in all rootstock and cultivars 

except in the susceptible cultivar Durinta (Fig. 5a, lane 14). Surprisingly, a 

500 bp fragment was also amplified from the susceptible cultivar Tyrmes 

(Fig. 5a, lane 13). In addition, analysis of susceptible accessions from S. 

chilense with PM3 primers amplified the 500 bp fragment in three out of four 

accessions tested (Fig. 5b, lanes 2-4). There was no amplification of this 

marker in S. habrochaites as expected from susceptible phenotypes (Fig. 5b, 

lanes 5-7) however it was also not amplified from two resistant accessions of 

Sp (Fig. 5b, lanes 9-10). The REX-1 marker did not amplify from the S. 

habrochaites accessions (Fig. 5b, lanes 5-7), although Ubi3 amplified 
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successfully from the same DNA source (Fig. 5c), indicating that REX-1 is 

not present in these accessions.  

 

 

 

 

 

 

 

 

 
Figure 5. Multiplex PCR of PM3 and REX-1 markers of tomato hybrid rootstocks, cultivars 

and Solanum accessions. a Lanes: (1) PG-76; (2) Gladiator; (3) MKT-410; (4) Brigeor; (5) 

42851; (6) 43965; (7) Big Power; (8) Heman; (9) Beaufort; (10) Maxifort; (11) Caramba; 

(12) Monika; (13) Tyrmes; (14) Durinta; (15) VFN. b Lanes: (1) LA-1932; (2) LA-1959; (3) 

LA-1969; (4) LA-2746; (5) LA-0386; (6) LA-1777; (7) LA-3864; (8) LA-1336; (9) PI 

270435 clone 2R2; (10) PI 270435 clone 3MH. c Amplification of tomato Ubi3 gene in S. 

habrochaites accessions. Lanes: (1) LA-0386; (2) LA-1777; (3) LA-3864. R indicates 

resistance and S susceptibility to root-knot nematodes according to Ammati et al. (1986), 

Cortada et al. (2008), commercial sources or this study. Lane M is 100 bp DNA ladder. 

 

 

 

 

 

▌Fingerpriting of MiGHs 

 

To identify MiGHs in the tomato rootstocks and cultivars, PCR was used to 

amplify the intron-1 region (Fig. 1b). Amplification of intron-1 from tomato 

rootstocks and cultivars produced a highly diverse range of fragments (Fig. 

6) indicating the presence of different MiGHs. Resistant tomato rootstocks 

and cultivars have at least a single large fragment (1,400 bp) in common 

which is not seen in the susceptible cultivars (Fig. 6a and 6b). However, this 

large fragment is present in the susceptible rootstocks Beaufort and Maxifort 

(Fig. 6a, lanes 9-10). It is interesting to note that susceptible tomato cultivars, 

with no nematode resistance introgression, have also variable MiGHs.  
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Figure 6. Mi intron 1 profile of tomato hybrid rootstocks and cultivars. Primers Mint-up 

and Mint-do were used in PCR to amplify intron 1. a Lanes: (1) PG-76; (2) Gladiator; (3) 

MKT-410; (4) Brigeor; (5) 42851; (6) 43965; (7) Big Power; (8) Heman; (9) Beaufort; (10) 

Maxifort; (11) Caramba; (12) Monika; (13) Tyrmes; (14) Durinta; (15) Motelle; (16) 

Moneymaker. b Lanes: (1) VFN; (2) Motelle; (3) Moneymaker; (4) Durinta; (5) UC82; (6) 

Castlemart; (7) Pearson; (8) Pixie; (9) Castlemart; (10) Ailsa Craig; (12) Chatham. R 

indicates resistance and S susceptibility to root-knot nematodes according to Cortada et al. 

(2008), Kaloshian I, unpublished, or commercial sources. Lane M is 100 bp DNA ladder. 

 

 

 

 

▌Expression of Mi-1.2 in rootstocks Beaufort and Maxifort  

 

To assess the expression of Mi-1.2 in rootstocks Beaufort and Maxifort, 

existing Mi-1.2 primers, C1/2, C1/2Do, C2S4, IMO-F, IMO-R and VIGS-F, 

were used in all possible combinations in bioinformatics analysis to 

determine their specificity. None of these primer combinations were specific 

to Mi-1.2 (Table 3). Therefore, a new primer, Pau-Do (Fig. 1b), was designed 

based on existing sequence information that could amplify only Mi-1.2 when 

used in combination with primer C2S4 (Fig. 1b). This predicted Mi-1.2 
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cDNA amplification product was 1,494 bp. PCR was performed with 

Beaufort and Maxifort root and leaf cDNAs and Pau-Do and C2S4 primers. 

Resistant tomato cultivar Motelle was used as control for Mi-1.2 and the 

expected size fragment was amplified (Fig. 7). A similar size product was 

amplified from both leaves and roots of Beaufort and Maxifort indicating that 

Mi-1.2 is expressed in these rootstocks (Fig. 7).  
 

 
 
 
 
 
 
 

Table 3. In silico bioinformatics analysis performed with primers C1/2, 
C1/2Do, C2S4; VIGS-F, IMO-F and IMO-R and the known MiGHs from 
Solanum peruvianum and S. lycopersicum. The length of the DNA fragments 
amplified from the MiGHs by the primer pair combination is indicated. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

a nm indicates that there is no match of the primers with the genomic 
sequence of the MiGHs. 

b Pseudogenes with a truncated ORF (Seah et al., 2007b). 
 
 

 
 
 
 

 

MiGHs 
C1/2 

C2S4 

C1/2 

IMO-R 

C1/2D0 

C2S4 

VIGS-F 

C2S4 

IMO-F 

IMO-R 

IMO-F 

C2S4 

Solanum peruvianum  

Mi-1.1 nma nm nm nm nm nm 

Mi-1.2 1,579 bp 1,060 bp 296 bp 331 bp 998 bp 1.535 bp 

Mi-1.3b nm nm nm nm nm nm 

Mi-1.4 nm 1,048 bp nm nm nm nm 

Mi-1.5b nm nm nm nm nm nm 

Mi-1.6 1,579 bp 1,054 bp 284 bp nm 992 bp 1,517 bp 

Mi-1.7 1,581 bp 1,060 bp 280 bp 315 bp nm nm 

Solanum lycopersicum 

Mi-1.Ab nm nm nm nm nm nm 

Mi-1.B nm 1,069 bp nm nm nm nm 

Mi-1.C 1,597 bp 1,060 bp 265 bp 331 bp nm nm 

Mi-1.Db nm nm nm nm nm nm 

Mi-1.E nm 1,051 bp nm nm nm nm 

Mi-1.F nm nm nm nm 989 bp nm 

Mi-1.G nm 1,060 bp nm nm 998 bp nm 
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Figure 7. Mi-1.2 gene expression in tomato cultivar Motelle (lane 

1) and rootstocks Beaufort (lane 2) and Maxifort (lane 3). cDNA 

from leaves and roots were amplified using Pau-Do and C2S4 

primers. Tomato Ubi3 gene was used as an internal control for 

cDNA. RT-PCR products were resolved in 1 - 1.5% agarose gels 

and stained with ethidium bromide. 

 

 

 

Discussion 
 

 

The parental species of the resistant tomato hybrid rootstocks Beaufort and 

Maxifort were not available, as seed breeders refused to share this 

information. This fact prevented the characterization of the Mi locus through 

marker screening of an F2 population and the derived F3 lines. As none of the 

markers available could determine the presence of the Mi-1.2 gene in the 

genome of Beaufort and Maxifort, a new molecular marker was developed. 

Pau-Do, in combination with C2S4 marker, was used to determine 

expression of the Mi-1.2 gene in rootstocks Beaufort and Maxifort. RT-PCR 

results indicated that the Mi-1.2 gene is expressed in leaves and roots of both 

rootstocks, although no quantitative comparative conclusions can be drown 

from our results as tissues were not coming from the same plants and the 

amount of DNase-treated total RNA used for RT-PCR varied among 

samples.  

 

The Mi-1.2 gene confers a broad resistance-spectrum against Mi-

avirulent isolates of the M. arenaria, M. incognita and M. javanica species, 

despite some variability has been reported among resistant tomato cultivars 

(Williamson and Kumar, 2006). This resistant gene has been successfully 

used to inhibit reproduction of root-knot nematodes populations worldwide 

since it was introgressed into cultivated tomato (S. lycopersicum) (Roberts, 

1995). Neither the methylation of the Mi-1.2 gene (Liharshka, 1998) nor a 



Tomato rootstocks for the control of Meloidogyne spp. 

 

 
96 

mutation of the R genes located upstream in the Mi-1 signal transduction 

pathway (e.g. Rme1, Hspo90 or Sgt1) (Martínez de Ilarduya et al., 2001; 

Bhattarai et al., 2007b) were considered as feasible hypothesis; both types of 

mutation would have caused a complete loss of the functionality of the Mi-

1.2 gene preventing the expression of a resistant response to any root-knot 

nematode population tested. Thus, the nematode-isolate specific phenotype 

observed in Beaufort and Maxifort (Cortada et al., 2009) did not correspond 

to the expected phenotype of a resistant tomato plant that hosts a non-

mutated Mi-1.2 gene in its genome.  

 

One of the hypotheses considered is that the introgression of new 

genes from S. habrochaites might have, somehow, affected the post-

transcriptional expression of the Mi-1.2 gene in Beaufort and Maxifort. The 

most straightforward prediction of the gene-for-gene model (Flor, 1971) is 

that NBS-LRR plant R proteins recognize a single pathogen Avr effector and 

that recognition involves a direct binding between these two proteins. 

However, more recent findings are consistent with the so-called guard model 

for R-Avr gene interactions. This model predicts that the R proteins detect 

modifications of host proteins (e.g. Rme1) targeted by several unrelated 

effectors rather than the effectors themselves (van der Voosen et al., 2005; 

Jones and Dangl, 2006). Based on this model, it could be feasible that the 

hybrid genetic background of Beaufort and Maxifort interacts to the Avr 

effectors of the Mi-avirulent nematode isolates tested in a different manner 

than resistant tomato cultivars to elicit the resistance response. 

 

The second hypothesis considered was that the Mi-1.2 gene was 

present in the genome of Beaufort and Maxifort, although it was not 

functional. A mutation in the sequence of the gene impeded the induction of 

a conformational change in the NBS-LRR protein required to initiate 

signaling or resulted in a truncated ORF that prevented resistance expression, 

as it has been reported for other MiGHs (Hwang and Williamson, 2003; Seah 

et al., 2007a). Under this statement, it can be speculated that in the absence of 

a major resistance response conferred by the Mi-1.2 gene, the underlying 

resistant phenotype of other MiGH(s) present in the genetic background of 

both rootstocks was revealed. A nematode-specific resistance response has 

been reported in several MiGHs (e.g. Mi-3, Mi-7 or Mi-8) from S. arcanum 

and S. peruvianum (Ammati et al., 1985, 1986; Roberts et al., 1990; Veremis 

and Roberts; 1996a, 1996b). In other Solanaceous crops like pepper 

(Capsicum annuum), some Me-homologs present a resistance response that 

varies in time and intensity (e.g. Me1 and Me3) or that is nematode isolate-
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dependent (e.g. Me2, Me4, Me5) (Bleve-Zacheo et al., 1997; Castagnone-

Sereno et al., 2001). The presence of additional homologs to those of the S. 

peruvianum and S. lycopersicum species in the genetic background of 

Beaufort and Maxifort is supported by the genetic profile of intron-1. 

Individual silencing of the MiGH(s) would be useful to determine the role 

that each homolog plays in the resistant response of tomatoes to root-knot 

nematodes (Seah et al., 2007a). Whether the nematode-isolate specific 

resistance response of Beaufort and Maxifort is linked to the Mi-1.2 gene or 

to a MiGH(s) from the S. habrochaites genetic background remains 

unknown. Cloning of the whole gene sequence would be needed for a 

complete identification of the gene. 

 

The great polymorphism of the MiGHs present in the wild Solanum 

species has been corroborated by the molecular markers tested (Mi23, PMi, 

and PM3) as they amplified gDNA in all the Solanum species analyzed (S. 

peruvianum, S. lycopersicum, S. habrochaites, and S. chilense). Only, the 

PM3 marker (El Mehrach et al., 2005), specifically designed to trace the Mi-

1.2 gene in tomato hybrid lines, amplified a Sp-PM3-like band in the S. 

habrochaites hybrid rootstocks. Analyses with the Mi23 marker indicated 

that the regions comprised between the Mi-1.2 and Mi-1.3 genes in cluster 1p 

(S. peruvianum) and between Mi-1A and Mi-1B genes in cluster 2e (S. 

lycopersicum) are highly conserved among these two species. Polymorphism 

was additionally observed in susceptible cultivar Tyrmes (S. lycopersicum × 

S. chilense) which showed a PM3-profile different from that described for 

tomato lines with S. chilense introgressions (El Mehrach et al., 2005). The 

Sp-PM3-like fragment amplified in Tyrmes, however, could not be clearly 

attributed to the introgression of the Ty-1 locus of S. chilense (Vidavsky and 

Czosnek 1998; Zamir et al., 1994), as similar bands were amplified in 

accessions LA-1959 and LA-2746 although no tolerance to TYLCV has been 

reported for these two accessions (TGRC; http://tgrc.ucdavis.edu/). In silico 

analyses with specific markers for amplification of the Mi-1.2 gene (C1/2, 

C1/2Do, C2S4, VIGS-F and IMO-F/R) indicated that they all amplify Mi-

1.2-like bands in the MiGHs of the S. lycopersicum and S. peruvianum 

species. These molecular markers should be hence discarded for molecular 

analyses, as they lead to detection of false positives in tomato hybrid 

rootstocks and in resistant tomato cultivars (El Mehrach et al., 2005).  

 

Mint-PCR marker could not determine the presence of Mi-1.2 gene in 

Beaufort and Maxifort, although it was able to indicate different parental 

origin between tomato rootstocks obtained by different parental species (e.g. 
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Tyrmes vs. Brigeor), and differences within species, between different 

parental accessions (e.g. Beaufort vs. Maxifort vs. Heman). The distinct 

Mint-band intron-1 patterns observed in susceptible tomato cultivars revealed 

a recent and rapid divergence process in S. lycopersicum. Although the 

MiGHs have been classified as a fast evolving type-I of R genes (Seah et al., 

2007a), the variability observed in the fingerprint of MiGHs in the S. 

lycopersicum cultivars analyzed was unexpected, due to the recently 

speciation of the Solanum genus (Bretó et al., 1993), These new phylogenetic 

differences were not observed when other PCR markers were used for the 

characterization of the Mi-locus in S. lycopersicum.  

 

Despite the positive results obtained with the molecular markers Pau-

Do and C2S4 to detect expression of the Mi-1.2 gene in S. habrochaites 

hybrid lines, a wider pool of accessions from different Solanum species 

should be analyzed. Unfortunately, the idea that we amplified a homolog 

different from Mi-1.2 gene from the S. habrochaites parental accessions of 

Beaufort and Maxifort cannot be completely abandoned. It has to be 

mentioned that the design of the Pau-Do molecular marker was based on the 

sequences presently available from Sp and Sl MiGHs. The sequences of all 

MiGHs from S. peruvianum and S. lycopersicum, their organization in 

clusters and their positioning in the short arm of chromosome 6 are recent 

discoveries (Seah et al., 2007a) that clearly contrast with the limited 

knowledge about MiGHs from other wild Solanum species. Several 

approaches have been done to map the R genes of wild tomatoes, although 

the high diversity among races and between accessions challenges the 

characterization of each Solanum species (Grube et al., 2000). The unknown 

sequences of the MiGHs of the wild Solanum species and the high inter- and 

intra-genetic variability of the accessions used in crop breeding programs, 

also limits the availability of molecular markers to specifically trace a single 

R gene within a wide family of R homologs. 

 

If molecular screenings in tomato hybrid rootstocks had not been 

performed side by side with pathogenicity tests, the Mi-1.2 gene could be 

missing in some commercial tomato rootstocks although they would host 

conserved homologue copies of the Mi-1 gene from other wild Solanum 

species, which would be susceptible or partially resistant to Meloidogyne 

spp. More exhaustive assays related to the tomato rootstock genome should 

be performed to clarify this hypothesis. Due to the variability observed 

among different Solanum species, the high polymorphisms of the MiGHs 

present in the genome of these wild species, and the lack of reliable 
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molecular markers for the characterization of the Mi-1 locus, pathogenicity 

assays cannot yet be substituted by marker-assisted selection in tomato 

breeding programs. 
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Stained blue egg masses of an avirulent population of M. javanica attached at the external surface of 
the roots of wild Solanum accessions of the species S. chilense (LA-1932, LA-1959, LA-2746, LA-

1969), S. habrochaites (LA-3864, LA-0386, LA-1777) and S. peruvianum (LA-1336), and to the 
resistant tomato cultivar (S. lycopersicum × S. peruvianum) Monika and the susceptible cultivar  

(S. lycopersicum) Durinta. 
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General view of a plastic house in which field trials for selection of 
virulent nematode populations where performed during three 

consecutive years. The soil was artificially infected with an avirulent 
population of Meloidogyne javanica.  
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Field trials were conducted in a plastic house artificially infested with an avirulent 

population of Meloidogyne javanica to determine the durability of the resistance 

mediated by the Mi gene in tomato rootstocks after repeated cultivation for three 

consecutive years. Treatments included an experimental rootstock cv. PG-76 

(Solanum lycopersicum × Solanum sp), a commercial rootstock cv. Brigeor (S. 

lycopersicum × S. habrochaites), a resistant tomato cv. Monika (S. lycopersicum × 

S. peruvianum); and a susceptible cv. Durinta (S. lycopersicum). Based on the 

reproduction index (RI: number of eggs per g root on the resistant cultivar divided 

by number of eggs per g root on the susceptible cultivar × 100), rootstock cv. PG-

76 responded as highly resistant (RI = 7%) after the first cropping cycle (3.4 

nematode generations), showed intermediated resistance (RI = 33%) after the 

second cropping cycle (3.3 generations), and was fully susceptible (RI = 94%) 

after the third one (3.3 generations). In contrast, rootstock cv. Brigeor and resistant 

cv. Monika retained intermediate resistance levels (RI = 41% and 25%, 

respectively) after the third cropping cycle. Virulent nematode populations were 

rapidly selected from an avirulent one after repeated cultivation of resistant 

tomatoes under field conditions. Bioassays conducted under controlled conditions 

confirmed that selection for virulence occurred more rapidly in plots with cv. PG-

76 followed by Brigeor and Monika. The nematode population in the field not 

exposed to Mi resistance remained avirulent to Mi genotypes. The genetic 

background of the resistant rootstocks and the frequency of cropping were critical 

factors for the appearance of virulent nematode populations. Irrespective of 

nematode infection, all resistant tomatoes yielded more than the susceptible 

cultivar.  

 

Key words: durability, root-knot nematodes, Solanum habrochaites, virulence 
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Introduction 
 

 

Root-knot nematodes, Meloidogyne spp., are major pests of vegetable crops of 

intensive agriculture in several areas of the Mediterranean basin including Spain 

(Ornat et al., 2001, Verdejo-Lucas and Sorribas, 2008). Grafting vegetables is 

expanding in Europe and has been adopted alone or in combination with other 

control measures as a non-chemical alternative to soil fumigation, especially in 

the Mediterranean region (MBTOC, 2006). Within the Solanaceae, tomato 

(Solanum lycopersicum; formerly, Lycopersicon esculentum), pepper and 

eggplant are the most successfully grafted crops. Most tomato rootstocks are 

interspecific hybrids of Solanum lycopersicum × S. habrochaites and they 

incorporate resistances to viruses, fungi and root-knot nematodes. The wild type 

S. habrochaites is primarily used to confer increased vigour to the root system 

of the grafted plants. These rootstocks improve nutrient absorption (Leonardi et 

al., 2006), yield and fruit quality under various stress conditions (Fernández-

García et al., 2002; Rivero et al., 2003; Estañ et al., 2005).  

 

Disease resistance in plants must be durable, that is, it should provide an 

efficient protection against the target organism during prolonged and 

widespread use in environments conducive to disease development (Johnson, 

1981). In tomato, resistance to Meloidogyne incognita, M. javanica and M. 

arenaria is conferred by the Mi resistance gene (Roberts and Thomason, 1989) 

that was identified in the wild relative of tomato S. peruvianum and later 

introgressed into cultivated tomato S. lycopersicum (Smith, 1944). This gene 

has been the source of resistance to root-knot nematodes for more than 40 years 

in all resistant tomato cultivars worldwide, and may be considered as a very 

stable resistance gene in terms of durability (Kaloshian et al., 1996; 

Castagnone-Sereno, 2002). However, virulence, defined as the ability of the 

nematode to reproduce on a host plant that possesses one or more resistance 

genes, occurs naturally in Meloidogyne populations, apparently without 

previous exposure to the Mi resistance gene (Kaloshian et al., 1996; Ornat et al., 

2001), and their frequency of occurrence is increasing in certain regions 

(Tzorztzakakis et al., 2005).  

 

Virulence in root-knot nematodes can also be selected after repeated 

exposure to Mi resistant plants (Bost and Triantaphyllou, 1982; Jarquin- 

Barberena et al., 1991, Xu et al., 2001). The selection of virulent nematode 

populations depends on the nematode genetic composition (Castagnone-Sereno 

et al; 1994) and the frequency of virulent individuals present in a field 
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population (Roberts, 2002). The response of resistant tomato rootstocks to root-

knot nematodes ranges from highly resistant to fully susceptible (López-Pérez 

et al., 2006, Cortada et al., 2009). It is assumed that the durability of the Mi 

resistance gene of the rootstocks in the field is as durable as the F1 hybrid 

cultivars. However, no information currently exits about the durability of 

tomato rootstocks in the field. Therefore, it is important to determine if root-

knot nematode resistance in tomato rootstocks is durable under field conditions 

to establish their utility for nematode management.  

 

This paper reports the results of field trials conducted in a plastic house 

infested with an avirulent Mi population of M. javanica, to determine the 

durability of the Mi resistance gene in tomato rootstocks after repeated 

cultivation over three consecutive years. Bioassays were conducted to 

determine the (a)virulence status of the nematode field population after 

exposure to the Mi resistance gene for one, two or three cropping cycles.  

 

 

 

Materials and methods 
 
 

The study was conducted in an unheated plastic house of 800 m2 located at 

Cabrils, Barcelona, Spain. The soil was a sandy loam with 85.8% sand, 8.1% 

silt and 6.1% clay, pH 8.1, 0.9% organic matter w/w, and 0.40 dS m-1 electric 

conductivity. The soil had been artificially infested with M. javanica (code MJ-

05) (Ornat et al., 2001) originally isolated from infested soil collected in a 

plastic house located in Cabrera (Barcelona) in 1994. Single egg-mass cultures 

were initially established in monoxenic transformed tomato root cultures. 

 

In 1998, the nematode was transferred from monoxenic cultures to potted 

tomato plants in a glasshouse, to obtain inoculum to infest the field site. Pre-

inoculated tomato seedlings were transplanted to the plastic house and allowed 

to grow for 4 months. Lettuce and susceptible tomato were grown in rotation 

from 1999 to 2003 in the plots used for this study. In September 2003, the soil 

of the plastic house was fumigated with methyl bromide, and in spring 2004, the 

soil was reinfested with the same nematode isolate as before. The identity of  

M. javanica was confirmed by SCAR-PCR (Zijlstra et al., 2000) before the start 

of this study and at the end of each cropping cycle. The avirulence status of the 

field M. javanica population was confirmed using second-stage juveniles (J2) 

recovered from the plastic house soil and infecting selected resistant tomatoes. 
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Twenty plots of 9.6 m2 (3.5 m long × 2.75 m wide) each were marked in 

the plastic house. They consisted of four rows with six plants per row spaced 50 

cm within the row and 55 cm between rows. Four plant treatments were 

investigated: (i) the experimental resistant tomato rootstock cv. PG-76  

(S. lycopersicum × Solanum sp., Mi/Mi); (ii) the resistant tomato rootstock cv. 

Brigeor (S. lycopersicum × S. habrochaites, Mi/Mi); (iii) the resistant tomato cv. 

Monika (S. lycopersicum × S. peruvianum, Mi/mi); and (iv) the susceptible 

tomato cv. Durinta (S. lycopersicum, mi/mi). Both rootstocks were selected 

because they consistently responded as highly resistant and resistant, 

respectively, to M. javanica under glasshouse and field conditions (Cortada et 

al., 2008). The commercial tomato cultivars cv. Monika (resistant) and cv. 

Durinta (susceptible) were included as controls. Each treatment was replicated 

five times in a stratified randomized block design. Tomatoes were cultivated for 

about 4 months and each plot received the same treatment in 2005 (22 February 

to 7 July), 2006 (3 March to 10 July) and 2007 (22 March to 7 July). Plots were 

maintained free of weeds between crops. Rootstocks were grafted with 

susceptible cv. Durinta in 2006 and 2007, but were left ungrafted in 2005. 

Grafting was performed by a commercial nursery. 

 

 

▌Crop management 

 

 

Soil preparation was carried out by hand hoeing plots individually to prevent 

cross contamination from treatments. Plants received water as needed through a 

drip irrigation system and were fertilized weekly with a solution consisting of 

NPK (15-5-30) at 31 kg ha-1, together with iron chelate with micronutrients at a 

rate of 0.9 kg ha-1, respectively. The ingredients were mixed in a tank and 

delivered through the irrigation system. Tomato plants were vertically trained 

using canes, and were pollinated by a colony of Bombus bees placed into the 

plastic house at first blossom. After the final tomato harvest, plants were cut at 

ground level and removed from the plastic house. Weeds were removed 

manually during and between crops. Soil temperatures were recorded daily at 

30 min intervals with temperature probes placed at 15 cm deep. Mean daily soil 

temperatures are provided in Fig. 1. The number of degree-days accumulated by 

M. javanica was calculated using a base temperature of 13 ˚C and 343 ˚C as the 

minimum thermal time requirement for one generation (Tzortzakakis and 

Trudgill, 1996). 
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▌Densities of M. javanica and evaluation of nematode damage 

 

Composite soil samples were collected at the beginning and at the end of each 

cropping cycle to estimate initial (Pi) and final (Pf) population densities of the 

nematode. Individual samples consisted of eight soil cores taken to 30 cm deep 

with a sampling tube (2.5 cm diameter). Samples were mixed thoroughly and 

nematodes were extracted from 500 cm3 soil sub-samples using Baermann 

trays. Second-stage juveniles were collected 1 week later, concentrated on a 25-

μm-aperture sieve, counted and expressed as J2 per 250 cm3 of soil. Disease 

incidence was measured as the percentage of plants with galled roots. Disease 

severity was assessed using the root gall index of tomato plants.  

 

 

 

 

 

 

 

 
Figure 1. Mean daily soil temperatures at 15 cm depth from 22 February 2005 to 7 July 

2007 in a plastic house infested with a Mi avirulent population of Meloidogyne javanica 

cultivated with resistant tomatoes containing the Mi resistance gene for three consecutive 

years in a plastic house. Shaded areas indicate the periodof cropping. 
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Eight plants per plot from the two central rows were dug from the soil, 

examined, and immediately rated on a scale of 0 to 10, where 0 = a complete 

and healthy root system and 10 = plants and roots were dead (Zeck, 1971). To 

determine egg production, roots from the eight plants used for gall rating were 

bulked, cut into 1 cm-long segments and two 30 g subsamples used to extract 

eggs by blender maceration in a 0.5% NaOCl solution for 10 min. (Hussey and 

Barker, 1973). The number of eggs was expressed as eggs g-1 of fresh root 

weight. The reproduction index (RI) of the nematode was calculated as the 

number of eggs g-1 root on the resistant material divided by eggs g-1 root on the 

susceptible material ×100 (Triantaphyllou, 1975). Based on the RI, nematode 

response was classified as highly resistant (RI ≤10%), intermediate resistant 

(10% <RI ≤50%), or susceptible (RI >50%) (Hadisoeganda and Sasser, 1982).  

 

 

▌Testing for virulence 

 

 

Bioassays were conducted in pots using as inoculum the J2 that had survived in 

the soil from the preceding crop as inoculum. Each year, three sub-populations 

of the nematode were generated; one per each resistant material, and called sub-

populations P1 (2005), P2 (2006) and P3 (2007) (Fig. 2, Table 1). 

 

Nematode juveniles from plots with susceptible cv Durinta were 

included as control since they had never been exposed to the Mi resistance gene. 

Tests were conducted as the nematode sub-populations were generated. Each 

sub-population was inoculated onto a resistant (cv. Monika) or susceptible  

(cv. Durinta) tomato growing in 1.5 L pots containing steam sterilized sand. To 

obtain J2 inocula, composite soil samples were collected from the five 

replicated plots of each plant treatment in March 2006 (J2 P1), 2007 (J2 P2), 

and 2008 (J2 P3). The soil was bulked, mixed, and J2 recovered from soil using 

Baermann trays. Tomatoes were inoculated with 350 J2 per plant of the P1 sub-

populations, 200 J2 per plant of the P2 sub-populations or 600 J2 per plant of 

the P3 sub-populations. There were six (P1) or 10 times (P2 and P3) plants per 

treatment combination. Pots were arranged at random on a bench in an air 

conditioned glasshouse set at 25˚C. Plants were watered as needed and fertilized 

with a slow-release fertilizer (15 N + 10 P + 12 K + 2MgO + microelements). 

The number of eggs g-1 root was determined 10 weeks after nematode 

infestation. Eggs were extracted from roots as described previously. The RI of 

the nematode was calculated in the same way as the field study.  
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▌Crop yield 

 

 

To determine tomato yield, fruits produced from eight plants (the same ones 

used for gall rating and egg extraction) from each plot were harvested once per 

week from the first six fruit sets. Cumulative yield was expressed as kg m-2.  

 

 

▌Statistical analysis 

 

 

Statistical analyses were performed using the general linear model procedure 

(Proc GLM) of the SAS software version 8 (SAS institute Inc.). The number of 

nematodes in soil and eggs g-1 root were transformed to log10(x + 1), and along 

with data on gall rating and yield of tomato were subjected to analysis of 

variance. When the overall F-test was significant (P <0·05), means were 

separated by the Least Significant Difference (LSD) method. Data on the RI 

were transformed to log10(x) and means were separated by the LSD method. 

 

 

Results 

 

 
Meloidogyne javanica completed 3.4, 3.3, and 3.3 generations per cropping 

cycle in 2005, 2006 and 2007, respectively. In 2005, maximum values exceeded 

28 ˚C, and ranged from 28.6 ˚C to 31.3 ˚C (x = 29.9 ˚C) for an average of 12 h 

per day (range from 9 to 14h) from 21 to 30 June. They were below 28 ˚C in 

2006, and maximum values of 28.9 ˚C were recorded for 6h only on 10 May in 

2007.  

 

 

▌Densities of M. javancia and evaluation of nematode damage 

 

 

Repeated cultivation of the resistant tomatoes did not affect Pi values but there 

was a progressive increase in Pf values and number of eggs g-1 root from one 

cropping cycle (Fig. 1) to the next (Table 2). On susceptible cv. Durinta, very 

high levels of the nematodes were observed in soil and roots and did not differ 

between cropping cycles. With regards to the effect of plant treatment on the 
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disease parameters, Pf values and eggs g-1 root were lower (P <0·05) on the 

resistant tomatoes compared to susceptible cv. Durinta after the first cropping 

cycle (2005) (Table 2). 

 

 
Table 1. Number of eggs g-1of root on Mi resistance gene (R) and susceptible (S) tomato cultivars 

produced by three sets of sub-populations of Meloidogyne javanica generated after exposure to 

tomatoes containing the Mi resistance gene for one (P1), two (P2) or three (P3) cropping cycles to 

test for virulence in a glasshouse. Tests were conducted as sub-populationswere generated. 

 
Sub-populations 

and source of J2a 

inoculum 

Inoculum  

(J2 per plant)  

Preceding 

crop 

Inoculated 

cultivar 
Eggs g-1 rootb RI (%)c 

      P1 = Pi 2006 350 PG-76 (R) Monika (R) 82 ± 89 b 12 ± 13 

   Durinta (S) 702 ± 890 a  

  Brigeor (R) Monika  240 ± 173 a 24 ±17 

   Durinta 1020 ± 854 a  

  Monika (R) Monika  110 ± 111 b 13 ± 13 

   Durinta 868 ± 685 a  

  Durinta (S) Monika  456 ± 564 b 8 ± 10 

   Durinta 5832 ± 4172 a  

P2 = Pi 2007 200 PG-76 (R) Monika  387 ± 258 a 90 ± 38 

   Durinta 490 ± 313 a  

  Brigeor (R) Monika  580 ± 213 b 40 ± 14 

   Durinta 1477 ± 527 a  

  Monika (R) Monika  313 ± 72 b 33 ± 7 

   Durinta 976 ± 304 a  

  Durinta (S) Monika  72 ± 57 b 9 ± 7 

   Durinta 816 ± 462 a  

P3 = Pi 2008 650 PG-76 (R) Monika  2620 ± 1790 a 107 ± 25 

   Durinta 2459 ± 886 a  

  Brigeor (R) Monika  1359 ± 675 a 51 ± 73 

   Durinta 2650 ± 1857 a  

  Monika (R) Monika  1852 ± 1240 a 180 ± 120 

   Durinta 1028 ± 557 a  

  Durinta (S) Monika  288 ± 263 b 11 ± 10 

   Durinta 2523 ± 1544 a  
 

a J2= secondstage juveniles of M. javanica 
b Values were transformed to log10 (x+1) before analysis. Values are untransformed means ± standard 

deviations of 6 (sub-populations P1) or 10 (sub-populations P2 and P3) plants per treatment combination. 

Means separation within resistant and susceptible tomatoes assessed by the LSD test (P <0·05). Different 

lower case letters indicate significant differences. 

c Eggs g -1 root on resistant tomato / eggs g -1 root on susceptible tomato × 100. 
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However, in the second cropping cycle (2006), these parameters were 

higher (P <0·05) on rootstock cv. PG-76 compared to resistant cv. Monika, and 

in the third cycle (2007) they were similar on rootstock cv. PG-76 and 

susceptible cv. Durinta. According to the RI, rootstock cv. PG-76 responded as 

highly resistant (RI = 7%) after the first cropping cycle, resistant (RI = 33%) 

after the second cycle, and fully susceptible (RI = 94%) after the third cycle 

(Table 2). Rootstock cv. Brigeor and tomato cv. Monika responded as highly 

resistant after the first (RI = 4%) and second cropping cycles (RI = 9%) and 

resistant after the third cycle (RI = 41% Brigeor and 25% Monika). Rootstock 

cvs PG-76 and Brigeor and tomato cv. Monika showed similar levels of relative 

resistance after the first cropping cycle (2005) but rootstock cv. PG-76 showed 

lower (P <0·05) resistance level compared to cvs. Brigeor and Monika after the 

third cycle (2007).  
 

 

 

 

Table 2. Initial (Pi) and final (Pf) population densities, eggs g-1 of root and reproduction index  

(RI %) of Meloidogyne javanica on selected rootstocks and cultivars of tomato containing the Mi 

resistance gene for three consecutive seasons in a plastic-house infested with the nematode. 

 

  Juveniles 250 cm-3 soil   

Treatment Year Pi  Pf Eggs g-1 root RI (%)a 

Rootstock      

   PG-76 (R)b 2005   172 ± 224 a Ac   205  ± 112   b B   2284 ± 2946  b B   7 ± 9   b A  

 2006   210 ± 193 a B 2892  ± 2392 a B 12870 ± 12450 a B 33 ± 32 b A 

 2007   290 ± 473 a A 4606  ± 2090 a AB 29860 ± 11083 a A 94 ± 35 a  A 

         Brigeor (R) 2005   206 ± 237 a A    266 ± 216    b B  1143 ± 966   c B  4  ± 3  b A 

 2006   132 ± 128 a B   717  ± 498    b BC  3418 ± 1496 b BC  9  ± 4  b A 

 2007   196 ± 143 a A  8917 ± 8917  a A 12934± 6885 a B 41 ± 22 a B  

Cultivar      

   Monika (R) 2005   178 ± 210 a A   216   ± 283    b B 1359  ± 334   b B  4  ± 1   b A 

 2006   357 ± 354 a B   662   ± 443   ab C 3570  ± 3717 ab C  9  ± 10 b A 

 2007   180 ± 127 a A  2545  ± 3050 a B 8015  ± 6370  a  B 25 ± 20 a B 

         Durinta (S) 2005   236 ± 123   c A 13476 ± 10044 a A 31924 ± 2496   a A  

 2006 2063 ± 1222 a A 14927 ± 6700   a A 39064 ± 11437 a A  

 2007   485 ± 186   b A 12658 ± 10090 a A 31834 ± 13973 a A  

 
a Eggs g -1 root on resistant tomato / eggs g -1 root on susceptible tomato × 100. 
b(R): Mi resistant plants, (S): mi susceptible plants. 
c Values are means ± standard deviations of five replicated plots per treatment. Values within tomato 

rootstock or cultivar in the same column followed by different lower-case letters are significantly different 

according to LSD Test (P <0·05). Values within year in the same column followed by different capital 

letters are significantly different according to LSD Test (P <0·05). 
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Gall ratings were lower (P <0·05) on the resistant cultivars compared to 

the susceptible cv. Durinta throughout the study, although disease incidence 

(number of plants with galled roots) and severity (gall rating) increased 

progressively as the resistant cultivars were repeatedly cultivated in the same M. 

javanica infested plots (Fig. 3). Plants with gall rating index ≥5 (25% of the 

root system severely damaged and not functioning) were considered as 

nematode susceptible. The gall rating on rootstock cv. PG-76 was higher (P 

<0·05) in the second and third cropping cycles compared to the first cycle. On 

rootstock cv. Brigeor, the gall rating was higher (P <0·05) only in the third 

cycle compared to the two previous cycles. On tomato cv. Monika, gall ratings 

did not differ between cropping cycles. 

 

 

 

▌Testing for virulence 

 

 

The sub-populations of P1 and P2 from plots with resistant tomatoes 

produced lower (P <0·05) number of eggs g-1 root on the resistant than 

susceptible cultivars (Table 1) with the exceptions of sub-population P1 from 

plots with rootstock Brigeor and sub-population P2 from plots with rootstock 

cv. PG-76. All sub-populations of P3 from resistant tomatoes produced similar 

eggs g-1 root on the resistant and susceptible tomato cultivars. Sub-populations 

of P1, P2, and P3 from plots with susceptible Durinta produced lower (P <0·05) 

number of eggs g-1 root on the resistant than susceptible cultivars (Table 1), 

indicating that the Mi resistance gene mediated resistance was functional in the 

resistant tomato cultivar used in the virulence testing. The resistant cultivar used 

in these virulence tests, expressed a high level of resistance to the four P1-sub-

populations of the nematode after exposure to the Mi resistance gene for one 

cropping cycle. However, after two cropping cycles, the resistant cultivar 

showed no resistance to the P2 sub-population from plots with rootstock PG-76, 

and only intermediate resistance to those from plots with rootstock cv. Brigeor 

or tomato cv. Monika (Table 1). After the third cropping cycle, the resistant 

tomato cultivar responded as susceptible to all P3 sub-populations from plots 

with resistant rootstocks and tomato cultivars. In contrast, the sub-populations 

from plots with susceptible cv. Durinta not exposed to the Mi resistance gene 

remained avirulent irrespective of the frequency of cropping (Table 1). 
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▌Crop yield 

 

 

Cumulative yield was higher (P <0·05) in plots with resistant compared to 

susceptible tomatoes in each cropping cycle (Table 3).  

 
 

Table 3. Cumulative tomato yield (kg m-2) of rootstocks 

containning Mi resistance gene grafted with susceptible cv. 

Durinta, grown in Meloidogyne javanica-infested plots for 

three consecutive years in a plastic house. 

 

Treatment Year kg m-2 

Rootstocks   

PG 76   (R)a 
2005 nab 

2006 17.65 ± 1.43  ac A 
2007 7.88 ± 0.97    b B 

   

Brigeor (R) 
2005 na 
2006 19.09 ± 1.55 a A 

2007 10.36 ± 1.53 b A 

Cultivars   

Monika (R) 
2005 13.47 ± 1.79 a A 
2006 14.51 ± 1.37 a B 
2007 8.38 ± 1.83   b B 

   

Durinta  (S) 
2005 7.58 ± 1.97   a B 

2006 3.86 ± 2.18   b C 
2007 5.17 ± 1.17   ab C 

 
a (R): Mi resistant plants, (S): mi susceptible plants.  
b Not available. 
c Yield values are means ± standard deviations of 40 plants ( eight 

plants per plot × five plots per treatment). Means separation within 

plant treatment done by the LSD test (P <0·05). Different lower-

case letters in the same column within tomato rootstock or cultivar 

indicate significant differences. Different capital letters within year 

indicate significant differences.  

 

 

The resistant plants yielded more (P <0·05) fruits in the second (2006) 

compared to the third cropping cycle (2007). No yield data was evaluated for 

the rootstocks in the first cycle since they were not grafted (2005). Cumulative 

yield was higher (P <0·05) in tomatoes grafted on rootstock cv. Brigeor than on 

rootstock cv. PG-76 in 2007. Resistant cv. Monika consistently had higher fruit 

yield (P <0·05) than susceptible cv. Durinta. Grafting cv. Durinta onto either cv. 

PG-76 or Brigeor rootstock produced significantly higher yield compared to the 

ungrafted Durinta plants. 
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2·5 ± 1·1 b B 4·4 ± 0·8 a B PG76 (R) 
 
1·2 ± 0·3 c C 

9·0 ± 0·8 a A 

Brigeor (R) 
 
1·8 ± 0·4 b BC 

Monika (R)  
 
2·1 ± 0·5 a B 

Durinta (S) 
 
7·3 ± 0·6 b A 

1·9 ± 0·9 b B 3·9 ± 1·0 a BC 

1·7 ± 0·7 a B 2·7 ± 1·1 a C 

Gall rating 

6·2 ± 0·9 c A 

2005 2006 2007 

 

 

Figure 3. Change over the years in Meloidogyne javanica disease incidence (percentage of 

infected plants) and severity (gall rating) for tomato rootstocks containing the Mi resistance gene 

cvs. PG-76 and Brigeor, and tomato resistant cv. Monika and susceptible cv Durinta. Plants were 

grown in a plastic house infested with the nematode. Gall rating based on a scale from 0 (none, 

healthy plant) to 10 (dead plants). Bars represent the number of plants with a given gall rating. 

Values in each square are means ± standard deviations of 40 plants per treatment. Significant 

differences according to LSD Test (P <0.05) are represented in lower case letters within tomato 

rootstock or cultivar and with capital letters within year. (R): Mi resistant plants, (S): mi 

susceptible plants. A few plants did not survive until the end of the cropping cycle; 1 plants of cv. 

PG-76 in 2005 and 2007, 2 plants in 2006; 1 plant of cv. Brigeor in 2006, 1 plant of cv. Monika in 

2005, 2006 and 2007, 1 plant of cv. Durinta in 2005, and 2 plants in 2006. 
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Discussion 

 

 
Virulent populations of M. javanica were rapidly selected from a Mi avirulent 

population after repeated cultivation of resistant tomatoes for only two or three 

cropping cycles under field conditions. However, the change in the relative 

resistance levels of the resistant materials was not abrupt but gradual. The 

resistance level decreased as the frequency of cropping increased, particularly 

with rootstock cv. PG-76 that became fully susceptible after the third cropping 

cycle. The resistance in rootstock cv. Brigeor and cv. Monika was not 

completely overcome after the third cycle. Although repeated cultivation 

gradually increased the mean gall ratings on the rootstocks, it did not increase 

the mean gall rating on cv. Monika in which selection for virulence occurred at 

lower speed. The faster selection of virulence on rootstock cv. PG-76 and 

Brigeor compared to cv. Monika suggest different mechanisms of nematode 

resistance in these tomato cultivars. The genetic background of the tomatoes 

was a critical factor for the selection of virulence. The frequency of cropping 

was also crucial as virulent nematode populations only appeared if resistant 

tomatoes were repeatedly cultivated in the same plots. The increased 

reproduction of M. javanica on the resistant plants cannot be attributed to Mi 

resistance breakdown due to high temperatures. Temperature records were 

above 28˚C for 10 days in 2005 (two weeks before the end of the cropping 

cycle) but during this cropping cycle the three resistant tomatoes showed high 

resistance levels, and resulted in suppression of nematode reproduction by 93% 

(PG-76) or 96% (Brigeor and Monika). In a previous experiment, rootstock PG-

76 retained a high resistance level despite soil temperatures being above 28˚C in 

the first week after nematode inoculation (Cortada et al., 2008).  

 

Selection for virulence was somehow unexpected because these resistant 

rootstocks had provided consistently high degree of resistance in previous 

experiments under both glasshouse controlled conditions (one nematode 

generation) and in the field after one cropping cycle (3.3 nematode generations) 

(Cortada et al., 2008). Also, rootstock cv. PG-76 has shown high resistance 

levels to several species and populations of Meloidogyne under glasshouse 

controlled conditions whereas rootstock cv. Brigeor showed more variable 

results (Cortada et al., 2009). Cultivar Monika provided similar resistance 

responses to those reported in previous studies (Sorribas et al., 2005; Verdejo-

Lucas and Sorribas, 2008). The genetic differences in rootstock cvs. PG-76 and 

Brigeor, could contribute differentially to the durability of the nematode 
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resistance. In addition, the genetic composition of the nematode can also 

contribute to the reduction in the durability of the resistance (Castagnone-

Sereno et al., 1994; Jacquet et al., 2005). 

 

The results of the virulence bioassays confirmed the field data regarding 

the selection for virulence after repeated cultivation of resistant tomato 

genotypes. The nematode population in the field remained Mi avirulent after 

one cropping cycle irrespective of the planted tomato genotype. In the second 

cropping cycle, the nematode population became virulent in plots with rootstock 

cv. PG-76, and after the third cycle, virulence appeared in plots with rootstock 

cv. Brigeor and tomato cv. Monika. Selection of virulent nematode populations 

on resistant tomato cultivars over generations have been previously reported but 

under controlled conditions (Bost and Triantaphyllow, 1982; Jarquin-Barberena 

et al., 1991, Xu et al., 2001). However, selection of virulent nematode 

populations has not been previously reported on tomato rootstocks under field 

conditions. The acquired virulence by the nematode will probably remain stable 

because virulence is genetically inherited and stable once acquired (Castagnone-

Sereno et al., 1993). Although the mechanisms involved in the selection for 

virulence are largely unknown, one possibility is that two copies of the Mi 

resistance gene in homozygous tomato cultivars might protect better against the 

nematode compared to one copy in hybrid tomatoes (Tzortzakakis et al., 1998; 

Jacquet et al., 2005). However, this Mi dosage effect was not observed here as 

the Mi locus in rootstock cv. PG-76 and Brigeor is homozygous whereas in 

tomato cv. Monika is heterozygous (Cortada et al., 2008). 

 

Recently, several wild Solanum species have been used as novel breeding 

materials to combine pathogen resistances and improved agronomical traits 

under a wide range of conditions. For example, S. habrochaites accession 

LA1777 confers resistance to both Tomato yellow leaf curl virus (TYLCV) 

(Vidavsky and Czoskez, 1998) and Cucumber mosaic virus (CMV) (Cillo et al., 

2007), as well as for increase productivity in suboptimal temperatures (Hanson 

et al., 2007). Since the genetic background of the material used to develop 

hybrid PG-76 and Brigeor rootstocks are not well described, it is possible that 

instead of the Mi resistance gene, other Mi-homologues have been selected for 

in these hybrid rootstocks. Several Mi-homologues are present in Solanum spp. 

and these homologues may not be equally effective or stable as the Mi 

resistance gene. Alternatively, these Mi-homologues might play a role in 

selecting for virulent nematode populations by a yet unknown mechanism.  
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Further investigations are necessary using additional nematode-tomato 

genotype combinations to determine if tomato rootstocks rapidly select virulent 

populations in different environmental conditions. From an agronomic 

perspective, the Mi resistance gene provided resistance and tolerance to  

M. javanica in cv. Monika, but only tolerance in tomato rootstocks. The 

tolerance in both rootstocks could be attributed to the deep and massive root 

systems. Although the use of tomato rootstocks can be profitable and are 

considered an ecological alternative to chemical control, nematode management 

should include rotation of resistant rootstocks with susceptible genotypes to 

preserve the durability of the resistance. The frequency of the rotations, 

however, needs to be determined.  

 

 

 

▌Acknowledgements  

 

This work was funded by a grant from Fundación Ramón Areces, Spain.  

L. Cortada acknowledges the Spanish Instituto Nacional de Investigaciones 

Agrarias (INIA) for support through a pre-doctoral grant. Thanks are given to 

Dr. M. F. Andrés for identification of M. javanica, to Dr I. Kaloshian for critical 

reading of the manuscript, and to the seed company Gautier for supplying the 

tomato seeds. The technical assistance of O. Simon, V. Barnes, O. Jurado and S. 

Alcalá is greatly appreciated. 



Selection of virulence by repeated cultivation of tomato rootstocks 

 
121 

 

 

 

 

 

 

Bost, S. C., Triantaphhyllou. A. C. (1982). Genetic basis of the epidemiological effects of 
resistance to Meloidogyne incognita in the tomato cultivars Small Fry. Journal of 
Nematology 14:540-544. 

Castagnone-Sereno, P. (2002). Genetic variability of nematodes: a threat to the durability of plant 
resistance genes?. Euphytica 124:193-199. 

Castagnone-Sereno, P., Bongiovanni, M., Dalmasso, A. (1993). Stable virulence against tomato 
resistance Mi gene in the parthenogenetic root-knot nematode Meloidogyne incognita. 
Phytopathology 83:803-805. 

Castagnone-Sereno, P., Wajnberg, E., Bongiovanni, M., Leroy, F., Dalmasso, A., (1994). Genetic 
variation in Meloidogyne incognita virulence against the tomato Mi resistance gene: 
evidence from isofemale line selection studies. Theoretical and Applied Genetics 88:749-
753. 

Cillo, F., Pasciuto, M. M., De Giovanni, C., Finetti-Sialer, M. M., Ricciardi, L., Gallitelli, D., 
(2007). Response of tomato and its wild relatives in the genus Solanum to cucumber 
mosaic virus and satellite RNA combinations. Journal of General Virology 88:3166-3176. 

Cortada, L., Sorribas, F. J., Ornat, C., Kaloshian, I., Verdejo-Lucas, S. (2008). Variability in 
infection and reproduction of Meloidogyne javanica on tomato rootstocks with the Mi 
resistance gene. Plant Pathology 57:1125-1135 

Cortada, L., Sorribas, F. J., Ornat, C., Andrés, M. F., Verdejo-Lucas, S. (2009). Response of 
tomato rootstocks carrying the Mi-resistance gene to populations of Meloidogyne 
arenaria, M. incognita and M. javanica. European Journal of Plant Pathology 124:337-
343. DOI 10.1007/s10658-008-9413-z. 

Estañ, M., Martínez-Rodríguez, M. M., Pérez-Alfocea, F., Flowers, T. J., Bolarin, M. C. (2005). 
Grafting raises the salt tolerance of tomato through limiting the transport of sodium and 
chloride to the shoot. Journal of Experimental Botany 56:703-712. 

Fernández-García, N., Martínez, V., Cerdà, A., Carvajal, M. (2002). Water and nutrient uptake 
of grafted tomato plants grown under saline conditions. Journal of Plant Physiology 
159:899-905. 

Hadisoeganda, W. W., Sasser, J. N. (1982). Resistance of tomato, bean, southern pea, and garden 
pea cultivars to root-knot nematodes based on host suitability. Plant Disease 66:145-150. 

Hanson, P. M., Sitathani, K., Sadashiva, A. T., Yang, R., Graham, E., Ledesma, D. (2007). 
Performance of Solanum habrochaites LA 1777 introgression line hybrids for marketable 
tomato fruit yield in Asia. Euphytica 158:167-178. 

Hussey, R. S., Barker, K. R. (1973). A comparison of methods of collecting inocula of 
Meloidogyne spp., including a new technique. Plant Disease 57:1025-1028. 

Jacquet, M., Bongiovanni, M., Martínez, M., Verschave, P., Wajnberg, E., Castagnone-Sereno, P. 
(2005).Variation in resistance to the root-knot nematode Meloidogyne incognita in tomato 
genotypes bearing the Mi gene. Plant Pathology 54:93-99. 

 
 

 
 

 
 

References 



Tomato rootstocks for the control of Meloidogyne spp. 

 

 
122 

Jarquin-Barberena, H., Dalmasso, A. de Guiran, G., Cardin, M. C. (1991). Acquired virulence in 
the plant parasitic nematode Meloidogyne incognita. I. Biological analysis of the 
phenomenon. Revue of Nematology 14:299-303. 

Johnson, R. (1981). Durable resistance: Definition of, genetic control, and attainment in plant 
breeding. Phytopathology 71:567-8. 

Kaloshian, I., Williamson, V. M., Miyao, G., Lawn, D. A., Westerdahl, B. B. (1996). “Resistance-
breaking” nematodes identified in California tomatoes. California Agriculture 50:18-19. 

Leonardi, C., Giuffrida, F. (2006). Variation of plant growth and macronutrient uptake in grafted 
tomatoes and eggplants on three different rootstocks. European Journal of Horticultural 
Science 71:97-101. 

López-Pérez, J., Le Strange, M., Kaloshian, I., Ploeg, A. (2006). Differential response of Mi 
gene–resistant tomato rootstocks to root-knot nematodes (Meloidogyne incognita). Crop 
Protection 25:382-388. 

Methyl Bromide Technical Options Committee (MBTOC), 2006. Report of the methyl bromide 
technical options committee. Non-chemical alternatives adopted as replacements to 
methyl bromide on a large scale. Nairobi, Kenya: United Nations Environmental 
Programme, UNON Publishing Section Services.  

Ornat, C., Verdejo-Lucas, S., Sorribas, F. J. (2001). A population of Meloidogyne javanica in 
Spain virulent to the Mi resistance gene in tomato. Plant Disease 85:271-276. 

Rivero, R. M., Ruiz, J. M., Romero, L., (2003). Can grafting in tomato plants strengthen 
resistance to thermal stress?. Journal of Science and Food Agriculture 83:1315-1319. 

Roberts, P. A. (2002). Concepts and consequences of resistance. In: Plant resistance to parasitic 
nematodes. Eds. Starr, J. R. R., Cook, R., Bridge, J. Wallingford, UK: CABI Publishing. 
Pp:23-41. 

Roberts, P. A., Thomason, I. J. (1989). A review of variability in four Meloidogyne spp. measured 
by reproduction on several hosts including Lycopersicon. Agricultural Zoology Review 
3:225-252. 

Smith, P. G. (1944). Embryo culture of a tomato species hybrid. Proceedings of the American 
Society of Horticultural Sciences 44:413-416. 

Sorribas, F. J., Ornat, C., Verdejo-Lucas, S., Galeano, M., Valero, J. (2005). Effectiveness and 
profitability of the Mi-resistant tomatoes to control root-knot nematodes. European 
Journal of Plant Pathology 111:29-38. 

Triantaphillou, A. C. (1975). Genetic structure of races of Heterodera glycines and inheritance of 
ability to reproduce on resistant soybeans. Journal of Nematology 7:356-364.  

Tzortzakakis, E. A., Trudgill, D. L. (1996). A thermal time based method for determining the 
fecundity of Meloidogyne javanica in relation to modeling its population dynamics. 
Nematologica 42:347-353. 

Tzortzakakis, E. A., Trudgill, D. L., Phillips, M. S. (1998). Evidence for a dosage effect of the Mi 
gene on partially virulent isolates of Meloidogyne javanica. Journal of Nematology 30:76-
80. 

Tzortzakakis, E. A., Adam, M. A. M., Blok, V. C., Paraskevopoulos, C., Bourtzis, K. (2005). 
Occurrence of resistance-breaking populations of root-knot nematodes on tomato in 
Greece. European Journal of Plant Pathology 113:101-105. 

Verdejo-Lucas, S., Sorribas, F. J. (2008). Resistance response of the tomato rootstock SC 6301 to 
Meloidogyne javanica in a plastic house. European Journal of Plant Pathology 121:103-
107.  



Selection of virulence by repeated cultivation of tomato rootstocks 

 
123 

Vidavsky, F., Czosnek, H. (1998). Tomato breeding lines resistant and tolerant to tomato yellow 
leaf curl virus issued from Lycopersicon hirsutum. Phytopathology 88:910-914. 

Xu, J., Narabu, T., Mizukubo, T., Hibi, T. (2001). A molecular marker correlated with selected 
virulence against the tomato resistance gene Mi in Meloidogyne incognita, M. javanica 
and M. arenaria. Phytopathology 91:377-382.  

Zeck, W. M. (1971). A rating scheme for field evaluation of root-knot nematode infestations. 
Pflanzenschtz-Nachrichten Bayer 24:141-144. 

Zijlstra, C., Donkers-Venne, D. T. H. M., Fargette, M. (2000). Identification of Meloidogyne 
incognita, M. javanica and M. arenaria using sequence characterized amplified region 
(SCAR) based PCR assays. Nematology 2:847-853.  

 

 



Tomato rootstocks for the control of Meloidogyne spp. 

 

 
124 

 Roots of a susceptible tomato cultivar Durinta after repeated cultivation 
for three consecutive years in the same experimental plot, infected with 

Meloidogyne javanica. Plants were grown in a plastic house 
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In tomato, resistance to root-knot nematodes is mediated by the Mi resistance gene. 

This gene confers resistance to the three most important species of Meloidogyne: M. 

arenaria, M. incognita and M. javanica. Nevertheless, the Mi-gene is unable to 

inhibit reproduction of selected and naturally virulent populations of root-knot 

nematodes. As pathogenicity assays are difficult to perform and time consuming, 

molecular markers have been developed for the easy identification of virulent 

populations of Meloidogyne. The SCAR MVC molecular marker, differentiated 

selected virulent from naturally virulent populations. This marker was used to 

compare acquired virulence in populations of M. javanica form Spain. The original 

populations used to develop de MVC marker were included as control for relevance. 

Results indicated that the MVC marker was not able to amplify genomic DNA 

extracted from single juveniles and females of any of the populations studied, either 

from Spain or Japan. In silico analyses performed with the recently published 

complete genomic of M. incognita, and of several betaproteobacterial species, 

indicated that the MVC marker is related to bacterial enzymes from the species 

Verminephrobacter eiseniae EF01-2, Acidovorax avenae subsp. citrulli AAC00-1 

and the genus Diaphorobacter spp., and not to a Meloidogyne virulence locus 

(MVC).  

 

Key words: Acidovorax spp., Diaphorobacter spp., egg mass, Meloidogyne spp., 
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Introduction 
 

 

In tomato, plant resistance to Meloidogyne arenaria, M. incognita and M. 

javanica is conferred by a single dominant gene named Mi (Willamson et al., 

1994). Plant resistance conferred by the Mi gene has been widely used to 

successfully control root-knot nematode since the 1940s (Ornat and Sorribas, 

2008). In nematology, virulence is defined as the ability of a nematode to infect 

and reproduce on a resistant plant, evolving into a fertile female (Roberts, 

1995). Virulent populations can be classified into two groups: as selected 

virulent and naturally virulent. Virulent selected populations appear after 

repeated exposure to the selection pressure of the Mi gene (Bost and 

Thriantaphyllou, 1982; Jarquin-Barberena et al., 1991; Eddaoudi et al., 1997; 

Williamson, 1998; Gleason, 2003; Verdejo-Lucas et al., 2009), whereas 

naturally virulent populations are able to reproduce successfully on resistant 

tomato cultivars despite never having been exposed to the Mi gene (Netcher, 

1976; Prot, 1984; Kaloshian et al., 1996; Ornat et al., 2001; Xu et al., 2001). 

Virulence against the Mi gene might appear under polygenic control and is 

stably inherited and maintained over generations (Jarquin-Barberena et al., 

1991; Castagnone-Sereno et al., 2003). 

 

The gene-for-gene model postulated by Flor (1971) indicates that for 

every avirulence gene (Avr) present in the pathogen there is a resistant gen (R) 

in the host that prevents infection and the establishment of the pathogen in the 

plant. So far, Avr genes have been cloned from bacteria, viruses and oomycetes 

but not from nematodes (Williamson and Gleason, 2003) although there is 

genetic evidence that avirulence in some plant-parasitic nematode species is 

transmitted to the progeny as a single dominant trait (Gleason et al., 2008). This 

Avr-R gene model has already been proved for Globodera rostochiensis and the 

R gene H1 (Bakker, 2002), although experiments to confirm this model in the 

root-knot nematode-resistant plant pathosystem are scarce (McK Bird et al., 

2009). In 2003, Chen and Roberts were able to demonstrate that a gene-for-gene 

interaction occurs between an Avr dominant gene present in M. hapla (with 

sexual reproduction) and a dominant R gene from the bean cultivar NemaSnap. 

Unfortunately, the strictly parthenogenetic mode of reproduction of M. 

arenaria, M. incognita and M. javanica prevents from performing experiments 

to determine progeny segregation of avr alleles in these species.  

 

Many efforts have been done along the past years to characterize 

virulent populations through a molecular approach. The protein MAP-1, the first 
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candidate coding for a nematode Avr gene (Semblat et al., 2001), was found in 

those avirulent nematode populations of Meloidogyne subjected to the Mi 

selection pressure (M. arenaria, M. incognita and M. javanica), but not in M. 

hapla or M. fallax (Semblat et al., 2001). However, a general functional 

evidence correlating this candidate gene to virulence or avirulence has not been 

established (Gleason et al., 2008). Recently, the new candidate Cg-1 gene has 

been related with avirulence of M. javanica (Gleason et al., 2008). Although no 

similarities have been found between Cg-1 and other sequences on the 

Genebank, silencing experiments performed with dsRNA indicated that Cg-1 is 

required in the nematode for the expression of the Mi-mediated resistance 

response in the plant. In 2001, Xu et al. developed a SCAR-PCR molecular 

marker to differentiate selected from naturally virulent populations of 

Meloidogyne genus. These authors suggested that virulent populations of 

Meloidogyne spp. do not share a common origin but are originated by similar 

mutational events in the MVC (Meloidogyne virulence related) locus. In the 

opposite way, other molecular studies have shown that virulence has different 

molecular origins between virulent populations rather than being the result of a 

mutational event on a single locus (Abad et al., 2003; Gleason et al., 2008; 

Semblat et al., 2000; Tzortzakakis et al., 1999). So far, characterization of 

virulent root-knot nematode populations using the MVC molecular marker has 

only been feasible for Asiatic virulent isolates (Bleve-Zacheo et al., 2007), 

suggesting that this marker may be only useful for eastern Asiatic nematode 

isolates. Therefore, none of the candidates coding for a nematode Avr gene 

screened to date can be used to characterize virulent nematode populations from 

all around the world at the molecular level.  

 

The recent publication of the complete genome of M. incognita and M. 

hapla (McK Bird et al., 2009) opened an opportunity to establish a correlation 

between the sequences of the MVC locus and the corresponding gene(s) in the 

genome of M. incognita. In silico analyses resulted in no relation of the MVC 

locus with any nematode gene(s), although there was a strong similarity of the 

MVC sequences to three different genera of anaerobic protobacteria. 

Experiments presented in this paper show that the MVC locus is strongly 

related to the genome of three different genera of anaerobic protobacteria that 

have been recently sequenced, but not to a root-knot nematode virulence locus.  
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Materials and Methods 

 

 
▌Blast analyses of the MVC-allelic sequences 

 

 

Bioinformatic analyses were performed with the MVC-allelic sequences 

(GenBank accession no. AB047761 to AB047767) described by Xu et al. 

(2001) corresponding to three selected virulent populations, one naturally 

virulent population and to three avirulent M. javanica populations. The 

nucleotide BLAST search revealed a close relationship between the sequences 

of the MVC locus and those of three different genera of betaproteobacteria. 

The closest homology for the MVC-allelic sequences analyzed was 

consistently obtained with the betaproteobacteria genera Acidovorax spp., 

Diaphorobacter spp., and the species Verminephrobacter eiseniae (EF01-2). 

Pairwise sequence similarities are presented in Table 1. No correlation of the 

sequences of the MVC locus were found to any nematode species, including 

M. incognita, M. hapla and Caenorhabditis elegans, nor to any other 

eukaryotic organism.  

 

 

▌Nematode samples 

 

 

Two Japanese laboratory-selected virulent populations of M. javanica (MJON-

VI) and M. incognita (MIYN-VI), three M. javanica selected virulent 

populations (PG-76-P3, Brigeor-P3, Monika-P3), one avirulent population 

(Durinta-P3), and one naturally virulent (MJ-27) from north-eastern Spain 

were used for molecular analyses. Characteristics of the root-knot nematode 

populations are described in Table 1. 

 

Draining-water samples were obtained from a potted resistant tomato 

plant (cv. Momotaro) infected by the MIYN-VI population. The plant was 

watered with distilled water and draining water was collected on a beaker and 

stored at 4˚C. This draining-water, so called “non-filtered water” (NFW), was 

then passed through a 5µm-pore-sieve of nylon to retain J2 and nematode eggs  

(5 µm-FW) and finally, an aliquot of this 5 µm-FW water was filtered through 

a 0.2-µm cellulose acetate filter to retain bacterial and fungal spores (0.2 µm-

FW).
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Ten females and their corresponding egg masses of the population 

MJON-VI, and three females of the population MIYN-VI, were dissected from 

the roots of infected resistant tomato plants (cv. Momotaro) with the help of a 

forceps under a stereo microscope. Egg masses of the population MJON-VI 

were placed into screw-cap vials filled with 2 mL-sterile distilled water. Vials 

were left at room temperature after hatching of second stage juveniles (J2) for 

15 days. Forty females each of the populations PG-76-P3, Brigeor-P3, 

Monika-P3, MJ-27, and Durinta-P3 were hand-picked from roots of infected 

resistant tomato plants (cv. Monika) as described. Females were kept at -80 ˚C 

until DNA extraction.  

 

 

▌DNA extraction  

 

 

From water: one milliliter of the NFW, 5 µm-FW and 0.2 µm-FW samples were 

pipetted separately into 1.5 mL eppendorf tubes and spun at 13,000 rpm for 20 

min at 4 ˚C. Supernatant was removed and 20 µL of 0.1% SDS lysis buffer 

(Sakai et al., 2008) were carefully added by repeated pipetting on the walls of 

the eppendorf tubes, to clean and drug the pellet to the bottom of the tube. 

Incubation was held at 50 ˚C in a thermal cycler for 2 h followed by 95 ˚C for 

10 min. Finally, 980 µL of sterilized water were added and the tubes were 

vortexed. Vials each containing single egg mass of the MJON-VI population 

were vigorously shaken and hatched J2 were left to settle at the bottom of the 

vials for three hours. One mL of each the supernatant phase and the sediment 

containing J2 and the remains of the gelatinous matrix (GM) of the egg mass 

was pipetted separately into 1.5 mL eppendorf tubes, spun and processed as 

described for water samples.  

 

From nematodes: DNA extraction of individual J2 of the MJON-VI population 

was performed in twenty J2 from two egg masses (ten J2 from each EM1 and 

EM2), adapting the protocol of Sakai et al. (2008). A suspension of J2 was 

added to a sterilized Petri dish, and individual J2 were picked with the aid of a 

sterilized needle and placed on a 5 µL-drop of sterilized Milli-Q water on a 

slide glass. Single J2 were crushed with a sterilized filter paper chip (1mm × 

1mm). Paper chips were then introduced individually in a 0.5 mL eppendorf 

tube containing 4 µL of the DNA 0.1% SDS lysis buffer; DNA extraction of 

single females of the MIYN-VI population was performed following the same 

protocol. Samples were incubated at 55 ˚C for 1h and 30 min; the lysate was 

extracted twice with 1 volume of chloroform, and samples were left at -70 ˚C 
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for 15 min after addition of the 3M Sodium Acetate for DNA precipitation. 

DNA extraction of females from the Spanish populations was performed 

following a protocol adapted from Cenis (1993).  

 

 

▌PCR analyses 

 

PCR analyses were performed with the co-dominant marker MVC-F3/R2 and 

the dominant marker MVC-VF/R2 (Xu et al., 2001). PCR conditions were 

those described by Xu et al. (2001), except that PCR reactions were held at  

a final volume of 40 µL with 10× PCR Buffer and 0.5 units of Ex Taq DNA-

polymerase (Takara Bio). Specific amplification conditions for all samples 

were those described by Xu et al. (2001), although amplification was 

performed with 40 cycles and the denaturation was held at 95 ˚C. Nematode 

DNA extraction was tested by PCR amplification of the ITS region (Ferris et 

al.; 1993). The MVC-F3/R2 amplified products were digested overnight with 

the Nde I restriction enzyme (Takara Bio) following the manufacturer 

protocol. For all PCR reactions, 5 µL of the PCR products were resolved on 

1.5% agarose gel in 0.5 × TBE buffer.  

 
 

▌DNA sequencing 

 

PCR products obtained with the dominant marker MVC-VF/R1 were cut from 

the gel and purified with a MinElute Gel Extraction Kit (Qiagen). DNA labeling 

was performed using BigDye® Terminator v1.1 (Applied Biosystems) followed 

by purification with Dye Ex® 2.0 Spin Kit (Qiagen). Sequencing was performed 

in a 370xl DNA analyzer (Applied Biosystems). DNA sequences were manually 

corrected using Bioedit v 7.0.9 program. 

 

 

 

Results  
 

 

▌Amplification with the MCV-molecular markers in absence of nematodes 

 

 

PCR reactions carried on water samples showed that amplification of MVC-

F3/R2 and MVC-VF/R2 molecular markers occurred in water samples from 
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(a) M 1 2 43 5 6 87 109 11

800 bp 

500 bp 

(b) M 1 2 43 5 6 87 109 11

1000 bp 

500 bp 

NFW, in 5 µm-FW but not in 0.2 µm-FW. This fact suggested that DNA 

amplification occurred in samples without nematode J2 (Fig. 1a and b), but 

that contained organisms that were retained by a 0.2 µm cellulose filter. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 1. MVC marker profile of draining-water samples collected from a 

potted plant infected by a Meloidogyne incognita (MIYN-VI) population. (a) 

Co-dominant molecular marker MVC-F3/R2. (b). Dominant molecular marker 

MVC-VF/R1. Lanes: (1 to 3) 0.2 µm-filtered water, (4 to 6) 5 µm-filtered 

water, (7 to 9) non-filtered water, (10) Supernatant of egg mass no. 3 (EM3), 

(11) MiliQ sterilized water. Lane M indicates 100 bp DNA ladder. 

 

 

 

▌MVC locus amplification on DNA extracted from draining water samples 

 

PCR reactions carried on water samples showed that amplification of MVC-

F3/R2 and MVC-VF/R2 molecular markers occurred in draining-water 

samples from NFW and 5 µm-FW, but not in 0.2 µm-FW. Therefore, DNA 

amplification occurred in all samples (Fig. 1a and b), except in samples that 

were passed through a 0.2 µm cellulose filter, that retained bacteria and fungal 

spores. To determine whether the MVC locus had been amplified from DNA 

of any microorganism(s) associated to the GM of the egg mass, molecular 

analyses were performed in an aqueous suspension of individual egg masses. 

DNA amplification with co-dominant and dominant markers for the MVC 

locus occurred in both the suspension resulting from incubation of a single M. 

javanica egg masses and the pellet containing J2 and fragments of the GM. 

Amplification with co-dominant primers MVC-F3/R2 occurred in all the 
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1000 bp 

500 bp 

supernatant samples (Fig. 2a; lanes 1 to 8) and in six out of eight samples 

containing the pelleted J2 and remains of the egg mass (Fig. 2a; lanes 10, 12 

and 13 to 16).  

 

 

 

 

 

 

 

 

Figure 2. MVC marker profile of egg masses (EMs) of the virulent Meloidogyne javanica 

population (MJON-VI). (a) Co-dominant molecular marker MVC-F3/R2. (b). Dominant molecular 

marker MVC-VF/R1. (S) Indicates samples supernatant phase obtained from the aqueous 

suspension of an egg mass, and (P) samples obtained from the sediment containing the juveniles 

and the gelatinous matrix of the egg. Lanes: (1 and 9) EM3, (2 and 10) EM4, (3 and 11) EM5, (4 and 

12) EM6, (5 and 13) EM7, (6 and 14) EM8, (7 and 15) EM9, (8 and 19) EM10, (17) MiliQ sterilized 

water. Lane M indicates 100 bp DNA ladder. 

 

 

 

 

 

In addition to the expected fragment of approximately 832 bp, several 

additional bands appeared in the gel, which indicated that the 

microorganism(s) species present in the egg masses were highly polymorphic 

for this marker, or that different species of microorganisms were amplified by 

the MVC marker. In PCR performed with MVC-F1/R2 marker four 

supernatant samples showed the expected genomic fragment of 1Kb (Fig. 2b; 

lanes 1, 2, 4 and 5); amplification occurred in six of the pelleted samples and 

polymorphism was also found for this marker (Fig. 2b; lanes 10 to 16). 

Digestion of the MVC-F3/R2-PCR products with restriction enzyme NdeI did 

not produce any restriction fragment for any of the samples analyzed, 

including single virulent J2 from MJON-VI population (Fig. 3). Molecular 

experiments were repeated twice, with similar results. 
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Figure 3. Digestion of MVC-VF/R1-PCR products with Nde I restriction 

enzyme. Samples correspond to the virulent population M. javanica 

(MJON-VI). Lanes: (1) juvenile no. 1 (J21) of egg mass no.1 (EM1), (2) J22 

from EM2, (3) Pellet of EM4, (4) Pellet of EM5, (5) Supernatant of EM4, (6) 

Supernatant of EM5, (7 to 8) 5 µm-FW, (9 to 10) non-filtered draining-

water, (11) reaction without Nde I (positive control), (12) water. Lane M 

indicates 100 bp DNA ladder. 

 

 

 

 

▌MVC locus amplification on DNA root-knot nematode juveniles and females 

 

 

DNA amplification with the co-dominant MVC-F3/R2 marker in ten 

individual J2 obtained from two independent egg masses (10 J2/EM) or a pool 

of DNA extracted from ten single juveniles of the MJON-VI population, did 

not occur. No amplification from nematode DNA occurred either from 

individual females of the MIYN-VI population (Fig. 4). An identical result 

was obtained when amplification with MVC-F3/R2 and MVC-VF/R1 

molecular markers was performed using the selected virulent populations from 

north-eastern Spain PG-76-P3, Brigeor-P3, Monika-P3, MJ-27, and Durinta-

P3 as DNA template (Fig. 5a and b).  

 

 

 

 

 

 
 

 

Figure 4. MVC-F3/R2 marker profile of the selected virulent populations 

Meloidogyne javanica (MJON-VI) and M. incognita (MIYN-VI). Lanes: (1 

to 10) individual juveniles (J2) from one egg mass EM1 of MJON-VI 

population, (11) Pool of DNA from 10 J2 of EM1, (11) Pool of DNA from 

10 J2 of EM2, (13-14) individual females of the MIYN-VI population, (15) 

MiliQ sterilized water, and (16) Supernatant of EM3. Lane M indicates 100 

bp DNA ladder. 
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Figure 5. MVC marker profile of the selected virulent Meloidogyne javanica populations 

(PG-76-R3, Brigeor-P3, Monika-P3) from north-eastern Spain, naturally virulent M. 

javanica population (MJ-27), avirulent M. javanica (Durinta-P3), and the selected 

virulent M. javanica population (MJON-VI) from Japan. (a) Co-dominant molecular 

marker MVC-F3/R2. (b). Dominant molecular marker MVC-VF/R1. Lanes: (1) PG-76-

R3, (2) Brigeor-P3, (3) Monika-P3, (4) MJ-27, (5) Durinta-P3, (6) Pellet of egg mass 

EM4, (7) MiliQ sterilized water. Lane M indicates 100 bp DNA ladder. 

 

 

 

In order to determine that the lack of amplification of nematode DNA 

was not related to a DNA degradation, amplification of the ITS region was 

successfully performed (Fig. 6).  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. ITS profile of the Meloidogyne javanica 

populations. (a) Individual juveniles from two 

independent egg masses (EM1 and EM2) from the 

Japanese virulent MJON-VI population. Lanes: (1 to 

3) J21, J22 and J23 from EM1, respectively, (5 to 7) J21, 

J22 and J23 from EM2, respectively, (4 and 8) Water. 

(b) Pool of females from virulent selected (PG-76-R3, 

Brigeor-P3, Monika-P3), naturally virulent (MJ-27), 

and avirulent (Durinta-P3) populations from north- 

eastern Spain). Lanes: (1) PG-76-R3, (2) Brigeor-P3, 

(3) Monika-P3, (4) MJ-27, (5) Durinta-P3, (6) MiliQ 

sterilized water. Lane M indicates 100 bp DNA ladder. 
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▌Sequence characterization of the MVC-F1/R2-1-Kb alleles 

 

 

The MVC-F1/R2 PCR-products obtained from the supernatant phase of the 

EM4 water suspension were sequenced. Results showed that the fragment 

sequenced by the MVC-VF/R1 dominant marker from water samples in the 

absence of nematodes is closely related to a group of bacterial enzymes. Using 

BLAST searches of public databases, bioinformatics analyses revealed that the 

1,032 bp DNA fragment obtained was highly homologous to the seven MVC-

allelic sequences (GenBank accession no. AB047761 to AB047767), but also to 

a ribosome small sub-unit dependent GTPase A (RsgA) and a Ste24 

endopeptidase (Ste24) from V. eiseniae EF01-2 (Score =9 51, E value = 0), to a 

RsgA and a pterin-4-alpha carbinolamine dehydratase (PCD) from A. avenae 

subsp. citrulli AAC00-1 (Score = 771; E value = 0), and to a Ste24 and a PCD 

from Diaphorobacter spp. TPSY (Score = 767, E value = 0) (Fig. 7). An 

alignment of the MVC-allelic sequences and the MVC/S-EM4 revealed a 

mutation in this sequence in the target site of the restriction enzyme Nde I (Fig. 

8) which would explain why no restriction fragments were found after digestion 

of MVC-F3/R2 PCR-products. 

 
 

 

NdeI
MVC/S-EM4
MAMG-AV

MIIK-AV
MJON-AV

MIGD-NVI
MINN-VI

MAYG-VI
MJON-VI
Consensus

Avirulent and naturally
virulent populations

Selected virulent
populations

 
 
Figure 7. Alignment sequences of the seven alleles from the MVC locus from the Mi-selected 

virulent (VI), naturally virulent (NVI) and avirulent (AV) populations of Meloidogyne arenaria, M. 

incognita and M. javanica from Japan, the genomic sequences of the MVC/S-EM4 corresponds to 

the genomic sequence amplified from the supernatant phase from an egg mass suspension using the 

MVC-F1/R1 dominant marker, with the target sequence of the restriction enzyme Nde I. MAMG-

AV, MIIK-AV and MJON-AV are avirulent populations of M. arenaria, M. incognita and M. 

javanica; MIGD-VI is a naturally virulent population of M. incognita, and MAYG-VI, MINN-VI 

and MJON-VI are selected virulent populations of M. arenaria, M. incognita and M. javanica, 

respectively. 
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Discussion 
 

 

Experimental evidence indicates that the MVC locus is not related to any root-

knot nematode gene but to a microorganism(s) genome. The MVC molecular 

marker related to a (a)virulence locus from Meloidogyne spp. populations (Xu 

et al., 2001), failed to amplify DNA from single juveniles of a selected-

virulent populations from Japan. It should be mentioned that the Japanese 

populations used in this paper were the original populations used to develop 

the MVC marker. Indeed, amplification did not occur either when molecular 

analyses were performed increasing the amount of DNA extracted from 

Meloidogyne juveniles, nor when selected virulent females from Japanese and 

Spanish populations were analyzed. In silico analyses, indicated that the 

molecular markers MVC-F3/R2 and MVC-F1/R2 are closer to a 

betaproteobacterial enzymes than to any other eukaryotic gene. All together, 

these results reveal that MVC locus dominant marker is not related to a 

nematode avr-gene, but most likely to a bacterial genome. DNA amplification 

of bacteria and not of the nematode would explain why the results reported by 

Xu et al. (2001) have been considered as non-reproducible with virulent 

isolates of Meloidogyne (Bleve-Zacheo et al., 2007).  

 

 Xu et al. (2001) did not find any significant matches at the nucleic 

acid level for the MVC-allelic sequences in public databases. The recent 

sequencing of the genome of Acidovorax spp., Diaphorobacter spp. and V. 

eiseniae in 2006 hampered previous detection of the close homology between 

the MVC allelic sequences and some proteobacterial enzymes. Results are 

consistent with those obtained by Xu et al. (2001), as amplification only 

occurred in DNA samples obtained from pelleted egg masse but not from 

individual J2. Most likely, no amplification occurred in J2 as bacteria(s) 

adhered to the cuticle surface of the nematodes would have been washed 

away, while hand-picking from water suspension; and adult females lying 

inside the root tissue might be protected from bacteria(s) attachment. 

Therefore, characterization of the MVC locus by Xu et al. (2001) could have 

been originated by the presence of some bacteria(s) in the samples used. 

Although data presently available, could not identify the bacteria(s) species 

associated to the Japanese populations, the closest similarity was established 

with the species of betaproteobacteria V. eiseniae EFO1-2, recently described 

as an endosymbiont of the earthworm Eisenia foetida (Pinel et al., 2008). 

Despite the similarity with V. eiseniae, the MVC-amplified DNA does not 

correspond to endosymbiont bacteria as no amplification occurred on 
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individual juveniles. A high sequence homology was also found to the species 

Acidovorax avenae subsp. citrulli AAC00-1 and Diaphorobacter spp. TYPS. 

Bacteria of this genus are frequently present in waste water treatment plants, 

aquatic environments, soil, sludge and some species can be found as a group 

of plant pathogens (Kardenavis et al., 2007; Pinel et al., 2008) and on 

siderurgic-polluted environments (Freitas et al., 2008). The bacteria enzymes 

showing the highest homology with the sequence amplified from the 

supernatant samples (MVC/S-EM4) present a zinc-binding motif and have 

been described in bacteria and plants.  

 

Whether the bacteria(s) species were present in the GM of the egg 

mass or in the rizhosphere, has not been solved. Bacteria play an important 

role in the egg mass ecosystem and are involved in the protection of nematode 

eggs against microorganisms (Orion et al., 2001). Up to 70 isolates of bacteria 

have been found in the gelatinous matrix of the egg masses of M. hapla from 

infected tomato roots (Kok et al., 2001), being Acidovorax delafieldii the 

second most abundant species. The bacterial composition of egg masses differ 

from that of the rizhosphere and the abundance of bacteria is three times 

higher in egg masses than in the surrounding soil (Kok et al., 2001). Whatever 

it may be the species of bacteria amplified, it must be present at high densities 

in the soil, considering that DNA amplification occurred in all samples from 

egg masses suspension or draining-water from the potted plant. 

Microbiological and genetic analyses will be necessary to determine whether 

the DNA amplified by MVC molecular marker corresponds to the Acidovorax, 

Diaphorobacter or Verminephrobacter genus, or to an undescribed species.  

 

Results obtained from the neighbor-joining tree are similar to those 

obtained by Xu et al. (2001). Nevertheless, the wide genetic distance between 

the MVC/S-EM4 and the MJON-VI has to be remarked. Despite that the 

MVC/S-EM4 sequence was obtained from a MJON-VI infected plant, results 

indicate that this sequence is genetically closer to the betaproteobacteria 

proteins than to the MJON-VI sequence itself (accession no. AB047762). 

Isolation and identification of the bacterial species present in the egg masses 

of the Japanese population MJON-VI would be necessary to perform new 

phylogenic trees. Mutations on the genomic DNA sequences have been 

detected in the amplified fragment. The fact that NdeI was able to digest the 

genomic sequences of MJON-VI populations in Xu et al. (2001) experiments, 

but not in the ones described in this paper, can be explained by the mutation in 

the target sequence of the restriction enzyme. The maintenance and replication 

of this population from a single egg mass, for the last 10 years, may have 
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selected a different strain of bacteria from the nematode population MJON-VI 

through several mutations.  

 

Virulent populations overcame all the resistance plant mechanisms 

and reproduce successfully on Mi tomato cultivars. Apart from the MVC 

molecular marker, the (a)vir candidates protein MAP-1 and Cg-1 cannot be 

used for general detection of virulence. No functional evidence correlating the 

avr candidate protein MAP-1 to virulence or avirulence has been established, 

as this protein candidate did not reveal genetic polymorphisms between a 

virulent and an avirulent isolate of M. javanica (Gleason et al., 2008). The Cg-

1 marker has been detected in the three most important species of 

Meloidogyne affected by Mi-1 mediated resistance, indicating that this gene 

was probably present in a common nematode ancestor (Gleason, 2003; 

Gleason et al., 2008). No similarities have been found to date between Cg-1 

and other public sequences on the GenBank although silencing experiments 

performed wit dsRNA indicated that Cg-1 is required in the nematode for Mi-

mediated resistance. Nevertheless, Cg-1 has not been tested with more virulent 

isolates from different geographic origins. Thus, with the refuting of the MVC 

marker as a molecular virulence related locus, no reliable molecular markers 

are able at the present moment for the easy identification of virulent 

populations of root-knot. Therefore, virulence still needs to be determined by 

pathogenicity assays, until new molecular markers will be created. 
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Plantlets of the wild tomato Solanum huaylasense accession LA1358, 
three avirulent populations of each Meloidogyne arenaria, M. incognita 

and M. javanica and one virulent population of M. javanica. Plants 
were maintained in 500 cm3 pots in a growth chamber until the first 

nematode generation was completed. 
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Pathogenicity test were performed in order to determine resistance of Solanum 

huaylasense to four populations of Meloidogyne spp. The S. huaylasense accession 

LA1358, the root-knot nematode resistant tomato cultivar Anairis and the susceptible 

tomato cultivar Bodar were assessed against three Mi avirulent populations of 

Meloidogyne arenaria, M. incognita and M. javanica and to one naturally Mi virulent 

population of M. javanica. The number of eggs per plant, referred to the number of 

infective juveniles inoculated, was used as the dependent variable to determine 

variability in the reproduction of the four Meloidogyne populations tested. Results 

indicate that S. huaylasense accession LA1358 was able to reduce reproduction of the 

M. arenaria population at similar levels as the resistant tomato cultivar Anairis. 

Reproduction of the M. incognita population in accession LA1358 was highly 

variable and it did not differ from reproduction on resistant and susceptible tomato 

cultivars used as controls. Nevertheless, the S. huaylasense accession LA1358 did not 

reduce reproduction of the avirulent and the naturally virulent M. javanica 

populations tested. This is the first report on a nematode-species specific resistance in 

the newly described species S. huaylasense. Identification of novel root-knot 

nematode resistance genes in wild Solanum species is the first step for the 

deployment of new resistance genes in tomato cultivars to preserve durability of plant 

resistance to root-knot nematodes. 

 

Keywords: Durability; Mi-gene; Mi-homologues; resistance genes, Solanum species, 

wild tomatoes. 
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Introduction 
 

 

Root-knot nematodes of the genus Meloidogyne are important pests that cause 

millionaire economic losses in agriculture worldwide (Sasser and Freckman, 

1987). In tomato (Solanum lycopersicum Mill.) the Mi-1 gene confers resistance 

to Meloidogyne arenaria (Neal) Chitwood, M. incognita (Kafoid and White) 

Chitwood and M. javanica (Treub) Chitwood (Roberts and Thomason 1989). It 

was first identified in Solanum peruvianum L. accession PI 128657 in the 1940s 

and introduced through embryo rescue in the commercial S. lycopersicum 

(Smith, 1944). All resistant tomato cultivars commercialized nowadays 

originate from that single resistant hybrid (Williamson, 1998). The Mi-1 gene is 

referred to as Mi in this text. The Mi mediated resistance is phenotipically 

expressed only when soil temperature is below 28˚C (Dropkin, 1969). 

Resistance conferred by the Mi gene considerably reduces nematode 

reproduction, although variability in the efficiency of resistant cultivars to 

control different Meloidogyne populations has been observed (Netscher, 1976; 

Roberts and Thomason, 1989; Tzortzakakis et al., 1998). Despite these few 

limitations, plants carrying the Mi gene are considered a reliable, economical 

and environmentally friendly method to control Meloidogyne spp. in infested 

fields (Sorribas et al., 2005). Moreover, specific rotation sequences with 

resistant tomato cultivars have been suggested to prevent the emergence of 

virulent populations (Talavera et al., 2009). 

The use of a single genetic source of resistance (R) genes in monoculture 

can lead to the defeating of valuable resistance genes (Pedersten and Leath, 

1988). Race-specific resistance associated to monogenic genes that provide a 

hypersensitive response (HR) has been proved to be non-durable (Lindhout, 

2002). Despite the fact that Mi-mediated resistance in tomato has remained 

durable for a long time (Roberts, 1995; Castagnone-Sereno, 2002), the 

appearance of virulent root-knot nematode populations after repeated exposure 

to the Mi gene has already been reported in field conditions (Kaloshian et al., 

1996; Eddaoudi et al., 1997; Ornat et al., 2001; Xu et al., 2001; Tzorzakakis et 

al., 2005; Verdejo-Lucas et al., 2009). In this sense, gene pyramiding has been 

proposed as a strategy to reduce the chances of appearance of virulent 

populations and to preserve the durability of plant resistance (Pink, 2002). 

Simultaneous deployment of R genes has been implemented to control 

nematodes (Sacks and Robinson, 2009), bacteria (Kousik and Ritchie, 1999; 

Singh et al., 2001), virus (Pérez de Castro et al., 2008; Vidavsky et al., 2008) 
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and fungi (Richardson et al., 2006). Wild Solanum species have been widely 

explored as a source of new R genes to control root-knot nematodes in the 

tomato crop. Several Mi-homologues (from Mi-2 to Mi-9), that present 

resistance either to virulent nematode populations or to high temperatures, have 

been found in accessions of the species that integrate the Solanum peruvianum 

Marañón complex (Ammati et al., 1986; Cap et al., 1993; Yaghoobi et al., 1995; 

Veremis and Roberts, 1996a, 1996b, 2000; Jablonska et al., 2007). This 

complex has been recently split into four new species (Peralta et al., 2005; 

Zuriaga et al., 2008): S. arcanum Peralta (formerly S. peruvianum), S. 

corneliomulleri J.F.Macbr. (formerly S. glandulosum), S. huaylasense Peralta 

and S. peruvianum L. s.str. Both S. peruvianum and S. arcanum have been 

widely screened for Meloidogyne spp. resistance (Ammati et al., 1986; Veremis 

and Roberts, 1996a, 1996b, 2000). However, no information is available about 

the spectrum of resistance of S. corneliomulleri and S. huaylasense to root-knot 

nematodes. Only resistance to the fungi Alternaria solani Sorauer and A. 

tomatophila Simmons has been described in S. huaylasense (Foolad et al., 

2007).  

Therefore, searching, identification and characterization of new nematode 

R genes would be the first step towards the use of “pyramided” cultivars, with 

the aim to preserve plant resistance on a long term basis. In a previous 

screening for resistance to root-knot nematodes carried out over several 

accessions of S. chilense, S. habrochaites, S. peruvianum and S. huaylasense, 

pathogenicity assays indicated that the S. huaylasense accession LA-1358 was 

able to reduce nematode reproduction at the levels of a resistant tomato cultivar. 

This paper presents the results of pathogenicity tests conducted to determine the 

response of the wild tomato S. huaylasense accession LA-1358 to three 

avirulent populations of M. arenaria, M. incognita and M. javanica and one 

naturally virulent population of M. javanica.  

 

 
 

Material and Methods 
 

 

▌Nematode Screens 
 

 

Tomato cultivar seeds were germinated in seedling trays filled with an organic 

planting mix (Sun Gro Horticulture). The tomato cultivars used as controls were 



Tomato rootstocks for the control of Meloidogyne spp. 

 

 
148 

Anairis [De Ruiter Seeds; highly resistant to: Tomato mosaic virus (ToMV); 

Tomato spotted wilt virus (TSWV); Fusarium oxysporum f.sp. lycopersici races 

0 and 1 (Fol:0,1); Verticillium albo-atrum (Va); V. dahliae (Vd); Meloidogyne 

arenaria (Ma), M. incognita (Mi); M. javanica (Mj)] and Bodar F1 [Seminis 

Royal Sluis; highly resistant to: Tobacco mosaic virus (TMV); Tomato spotted 

wilt virus (TSWV); Fusarium oxysporum f.sp. lycopersici races 1 and 2 

(Fol:1,2); Verticillium albo-atrum (Va); Verticillium dahliae (Vd)]. Cuttings 

from the wild tomato S. huaylasense accession LA-1358 were treated with 

Inavarplant-IV growing hormone (3-indolbutiric acid at 0.4%;  

1-naphthaleneacetic acid at 0.4%; Captan 15%; Inbar) and rooted in seedling 

trays in vermiculite. Cuttings were maintained in a growth chamber at 25˚C 

until new leaves were produced. Five-week-old rooted cuttings and plantlets of 

tomato cultivars at the three-true-leaf stage were transplanted singly into 500 

cm3 pots containing a mixture of steam-sterilized river sand and peat (v/v) and 

used for nematode assays a week later.  

 

Four Meloidogyne populations were used for nematode screening: one 

avirulent population of each M. arenaria (code MA-68), M. incognita (code 

MI-CROSS) and M. javanica (code MJ-05), and one virulent population of M. 

javanica (code MJ-27). The (a)virulent condition of each population had been 

previously tested (Ornat et al., 2001; Cortada et al., 2009). The identity of the 

Meloidogyne populations was confirmed by SCAR-PCR reaction (Ziljstra et al., 

2000). Nematode inoculum was obtained from infected tomato plants of the 

susceptible cultivar Roma maintained in a glasshouse. Roots were macerated 

for 10 min in a blender containing a 0.5% NaOCl solution and eggs collected 

(Hussey and Barker, 1973). Infective second-stage juveniles (J2) were obtained 

from hatched eggs as described by Martínez de Ilarduya and Kaloshian (2001). 

Each plant was inoculated with 130 J2 collected after 72 h. Every cultivar-

nematode population combination was replicated 12 times whereas the 

accession LA-1358 was replicated 10 times. Pots were maintained for 6 weeks 

in a growth chamber at 25 ± 1.5˚C until the first nematode generation was 

completed. Plants were fertilized with a slow release fertilizer (NPK: 17-7-10; 

Osmocote® Pro, Sierra Chemical).  

 

At harvest, the tops were cut at ground level and the root systems washed 

free of soil and weighed. The number of eggs per plant was determined by 

maceration of the entire root system, as described previously for the nematode 

inoculum.  
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▌Statistical analyses 

 

 

Fresh root weight of S. huaylasense accession LA-1358 had to be checked for 

differences with cultivars Anairis and Bodar, in order to avoid data distortion 

caused by the low root weight of S. huaylasense cuttings that differed from both 

tomato cultivars (factorial ANOVA; factors: nematode population and tomato 

variety; F (6, 121) = 5.384; P < 0.001) (HSD test; Fig. 1). The reproduction rate 

(RR) was calculated as the number of eggs per plant obtained at the end of the 

experiment in relation to the initial inoculum (number of eggs per plant per J2 

inoculated). The RR was fourthroot transformed to comply with test 

assumptions, and then subjected to factorial ANOVA, where nematode 

population and tomato variety (cultivars and accession) were included as 

factors.  

 

 

 

Figure 1. Mean fresh root weight (g) of Solanum huaylasense accession LA-1358, 

resistant tomato cultivar Anairis and susceptible tomato cultivar Bodar six weeks after 

nematode inoculation with four Meloidogyne populations. Different letters indicate 

significant differences (HSD test). Error bars depict the standard error of the mean. 
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For each nematode population, the post-hoc Tukey test procedure was used to 

determine differences in reproduction between S. huaylasense accession LA-

1358 and the resistant or susceptible cultivars. The S. huaylasense accession 

LA-1358 was considered resistant when its RR did not differ statistically from 

the resistant cultivar Anairis. The reproduction index (RI), calculated as the 

number of egg per plant on the S. huaylasense accession LA-1358 or the 

resistant cultivar divided by the number of eggs per plant on the susceptible 

cultivar ×100, was used to categorize the level of resistance as highly resistant 

(RI < 10%), intermediate resistant (10%≤ RI< 25%) or moderately resistant 

(25%≤ RI< 50%) (Hadisoeganda and Sasser 1982). Statistica software 

(StatSoft, Inc., 2004) was used for the statistical analyses. 

 
 

 

Results 
 

 

The plant materials analyzed had a differential resistance response across the 

four different nematode populations tested (F (6,121) = 3.468; P = 0.003) (Fig. 2).  

 

A multiple comparison test performed for all the populations upon the RR data 

on the susceptible control Bodar indicated that the four Meloidogyne 

populations presented a similar ability to reproduce in the absence of the Mi 

mediated resistance. The RR values were significantly lower on the resistant 

cultivar Anairis than on the susceptible Bodar, for M. arenaria MA-68 (P< 

0.001), M. incognita MI-CROSS (P< 0.01) and M. javanica MJ-05 (P< 0.01) 

(Fig. 2), thus confirming the avirulent character of these populations.  

 

The RR value of the M. arenaria MA-68 population on S. huaylasense 

accession LA-1358 was similar (P= 0.07) to that of the resistant cultivar 

Anairis, and lower (P< 0.001) than on the susceptible cultivar Bodar (Fig. 2). 

For the M. incognita MI-CROSS population, reproduction differed neither from 

the resistant control Anairis (P= 0.70) nor the susceptible cultivar Bodar (P= 

0.13) (Fig. 2). Reproduction of the avirulent population M. javanica MJ-05 was 

higher (P= 0.02) on the S. huaylasense accession LA-1358 than on the resistant 

cultivar Anairis and did not differ from reproduction on Bodar (P= 0.07) (Fig. 

2). As expected, the virulent population M. javanica MJ-27 reproduced equally 

on the S. huaylasense accession LA-1358 and on both tomato cultivars (P> 

0.60) (Fig. 2). Calculation of the RI for the S. huaylasense accession LA-1358 

indicated that it showed intermediate resistance to M. arenaria MA-68 (RI= 
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20%), moderate resistance to M. incognita MI-CROSS (RI= 38%), and 

susceptibility to both M. javanica populations (Table 1). The resistant control 

Anairis responded as highly resistant (RI= 10%) to M. arenaria MA-68, and 

intermediate resistant to M. incognita MI-CROSS (RI= 12%) and M. javanica 

MJ-05 (RI= 22%) (Table 1).  

 

 

 
 

 

 

 

 

Figure 2. Mean reproduction rate (RR) of four Meloidogyne populations on Solanum 

huaylasense accession LA-1358, resistant tomato cultivar Anairis and susceptible 

tomato cultivar Bodar six weeks after nematode inoculation. Error bars depict the 

standard error of the mean. For each nematode species, values in the same column 

followed by different lower-case letters are significantly different according to Tukey’s 

studentized range test (P < 0.05). 
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Table 1. Reproduction index (RI) calculated as the number of eggs per plant on Solanum 

huaylasense accession LA-1358 and on the resistant tomato cultivar Anairis, expressed as a 

percentage of the number of eggs per plant on susceptible tomato cultivar Bodar in plants 

inoculated with Meloidogyne arenaria, M. incognita or M. javanica six weeks after plant 

inoculation. 

 

 

1For each nematode-plant combination, valid n=12, except for S. huaylasense accession LA-1358, where valid 

n=10. 

 

 

 

 

Discussion 
 

 

Results presented in this paper indicate that the accession LA-1358 of the newly 

described species S. huaylasense shows root-knot nematode resistance, although 

this resistance is species-specific and only effective against M. arenaria and M. 

incognita but not against M. javanica. As only one avirulent population of M. 

arenaria, M. incognita and M. javanica were tested, it cannot be asserted that 

the resistance response of accession LA-1358 is nematode-isolate specific.  

Population 
(A)Virulence 

status 

Tomato RI1 Response 

M. arenaria (MA-68) Avirulent LA-1358 20 ± 16 Intermediate resistant 

  Anairis (R) 10 ± 15 Highly resistant  

  Bodar (S) 100 ± 34  

M. incognita (MI-CROSS) Avirulent LA-1358 38 ± 39  Moderately resistant  

  Anairis (R) 12 ± 10  Intermediate resistant 

  Bodar (S) 100 ± 44   

M. javanica (MJ-05) Avirulent LA-1358 60 ± 37  Susceptible 

  Anairis (R) 22 ± 17  Intermediate resistant  

  Bodar (S) 100 ± 34   

M .javanica (MJ-27) Virulent LA-1358 88 ± 61  Susceptible 

  Anairis (R) 100 ± 44  Susceptible 

  Bodar (S) 100 ± 52   
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Among the Meloidogyne populations, the RR values remained similar 

when they were inoculated on susceptible Bodar indicating that the tested 

populations had the same reproduction ability in absence of the Mi gene. 

Resistance to root-knot nematodes in tomato has been generally characterized 

by the failure of the nematodes to induce the formation of giant cells in the host 

after infection, to molt and to develop into adult gravid females (Williamson 

and Kumar, 2006). As the RR value for M. arenaria MA-68 on accession LA-

1358 did not differ statistically from RR on the resistant cultivar Anairis, but it 

was significantly lower than on susceptible cultivar Bodar, it was assumed that 

a resistance mechanism in accession LA-1358 either prevents J2 from penetrate 

into the root, settle down and/or become adult fertile females. A similar 

phenomenon seems to occur with M. incognita MI-CROSS population, but to a 

lesser extent. Reproduction of the virulent M. javanica MJ-27 population was 

similar among all the plant materials tested, confirming that when an 

incompatible interaction occurs between a virulent nematode and a resistant 

plant (vir- R-gene), no differences are found between resistant and susceptible 

cultivars regarding infection or female fecundity (Ornat et al., 2001).  

 

Solanum peruvianum is the wild Solanum species that has provided most 

of the R genes to root-knot nematodes (Ammati et al., 1986; Veremis and 

Roberts, 1996a, 1996b). From the formerly species included in the S. 

peruvianum Marañón complex, S. huaylasense is the closest to S. peruvianum 

according to molecular data (Moyle ,2008). The fact that these species derive 

from an original Solanum ancestor, supports the hypothesis that all of them 

share a common pool of Mi-homologues (Seah et al., 2007) and hence, it would 

not be surprising to find a resistant Mi-homolog in S. huaylasense. Specificity in 

the resistance response of some Mi-homologues has been reported in other 

Solanum species by Roberts et al. (1990) and Huang et al. (2004). In these 

works, the resistance response of the wild Solanum Mi-homologues presented a 

variable phenotype according to the Meloidogyne isolate tested. In tomato, 

Cortada et al. (2009) reported similar results for the hybrid rootstocks Beaufort 

and Maxifort. This phenomenon has also been reported for resistant soybean 

(Glycine max) (L.) Merr. (Luzzi et al., 1987), resistant tobacco (Nicotiana 

tabacum) L. (Bowman et al., 1990; Noe, 1992), the Me-3 resistance gene in 

pepper (Capsicum annuum) L. (Castagnone-Sereno et al., 2001), and for other 

families of race-specific monogenic R genes (e.g. Ty-homologues) (Pérez de 

Castro et al., 2008). Even within tomato cultivars, genotype differences have an 

effect on the effectiveness of Mi gene (Roberts and Thomason, 1989; Jacquet et 

al., 2005). Understanding this phenomenon will be necessary for the successful 

transfer of new root-knot nematode R genes into cultivated tomato. Despite that 
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the main obstacle to obtain new resistant hybrids is the incompatibility between 

the germplasms of wild Solanum species and cultivated tomato (Veremis and 

Roberts, 2000; Ammiraju et al., 2003), transference of the Mi-resistance gene to 

susceptible tomato plants has been achieved using transgenic techniques 

(Williamson, 1998; Goggin et al., 2006; Williamson and Kumar, 2006). In 

addition, interesting works have been performed to introduce new Mi-resistance 

genes from wild Solanum species into S. lycopersicum through “bridge lines” or 

embryo rescue (Williamson and Hussey, 1996). Unfortunately, putting new 

resistance genes from wild Solanum species at disposal of new tomato cultivars 

is not a trivial matter. So far, it seems that the most feasible alternative to 

overcome germplasm incompatibility is the use of tomato hybrid rootstocks (S. 

lycopersicum × Solanum spp.) (Santos et al., 2004).  

 

Naturally and selected resistance-breaking populations of Meloidogyne 

spp. have been reported worldwide from agricultural fields where Mi-resistant 

tomato cultivars are cropped (Kaloshian et al., 1996; Eddaoudi et al., 1997; 

Ornat et al., 2001; Xu et al., 2001; Tzorzakakis et al., 2005; Verdejo-Lucas et 

al., 2009). Therefore, the identification of new root-knot nematode R genes in 

tomato opens a door to preserve the efficiency of the Mi-mediated resistance 

through combination of different Mi-homologues into one single genotype. 

Although this is the first step towards the identification of S. huaylasense as a 

new source of root-knot nematode R genes, a deeper characterization of the 

resistance spectrum of this species will be necessary, including additional 

Meloidogyne populations from several geographic origins and their evaluation 

under different agronomic and environmental conditions (e.g. high 

temperatures). Comprehension of the species-specific resistance response of the 

S. huaylasense accession LA-1358 will also provide insights into host 

mechanisms underlying specific plant-nematode interactions. 
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population of M. 
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external surface of the 
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Plantlets of tomato rootstock Maxifort at the three true-leaf stage 

ready for grafting at a commercial nursery in Níjar (Almería) 
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Based on the experiments performed along this thesis, the objectives of 

characterization of the resistance response of tomato rootstocks to Meloidogyne 

spp., and the evaluation of the durability of the Mi-resistance have been 

achieved. Data indicates that the resistance response of the Mi-1 tomato hybrid 

rootstocks is highly variable (Chapter 1) and some rootstocks show a nematode-

isolate specific resistance response (Chapter 2). Abiotic factors like soil 

temperature also influenced the phenotypic expression of the Mi-mediated 

resistance in tomato rootstocks (Chapter 1). The molecular markers presently 

available failed to characterize the Mi locus in tomato hybrid rootstocks, which 

lead us to design a new molecular marker for detection of the Mi-1.2 gene 

(Chapter 3). Field experiments demonstrated for the first time that selection of 

virulence occurred after repeated cultivation of resistant tomato rootstocks in 

the same experimental plots, and that selection occurred faster in resistant 

rootstocks than in resistant tomato cultivars (Chapter 4). Thus, Mi-tomato 

rootstocks were considered a non-durable strategy to control Meloidogyne spp. 

in nematodes infested soils. In addition, it was proved that selected-virulent 

populations of Meloidogyne cannot be traced at the molecular level using the 

MVC molecular marker, as this marker is related to proteins of 

betaproteobacteria species but not to a nematode virulence effector (Chapter 5). 

The wild tomato species S. huaylasense was assessed to search for new Nem-R 

genes that could be a new source of resistance in tomato breeding programs 

(Chapter 6). The results presented in this dissertation are relevant for the use of 

resistant tomato rootstocks as a management strategy to control Meloidogyne 

spp. 

 

 

Variability of the resistance response of Mi-1 tomato rootstocks 

 

The resistance response of the Mi-1 tomato rootstocks tested was highly 

variable compared to the resistant tomato cultivars used as controls (e.g. 

Monika and Caramba). When rootstocks were confronted to a Mi-avirulent 

population of M. javanica, the resistance phenotype ranged from highly 

 
 

 
 
 
 

General discussion 



Tomato rootstocks for the control of Meloidogyne spp. 

 

 
162 

resistant to fully susceptible, although intermediate resistance responses were 

also found (Chapters 1 and 2). The susceptible phenotype of rootstock Beaufort 

(Graf et al., 2001; López-Pérez et al., 2006) has been confirmed in this thesis, 

and the susceptible phenotype of Maxifort (Chapter 1 and 2) and the moderately 

resistance of Big-Power and He-man is reported for the first time. The 

phenotype of the rootstocks in the glasshouse tests involving one nematode 

generation were validated in the field indicating that the resistance response of 

tomato rootstocks can be early characterized.  

 

The resistance response of Mi-1 tomato rootstocks also varied 

according to the soil temperature. Although most of the studied hybrid 

rootstocks (S. lycopersicum × S. peruvianum × Solanum spp.) were susceptible 

when temperatures rose above 28 ˚C, rootstocks PG-76 and He-man were able 

to inhibit root-knot nematode reproduction (Chapter 1). This suggests that there 

is, at least, one MiGH in the genome of PG-76 and He-man different from Mi-

1.2 gene which is heat-stable resistant to the Mi-avirulent nematode population 

tested. Most likely this heat-stable MiGH(s) was introgressed from the wild 

Solanum parental species. Therefore, some resistant tomato rootstocks have an 

advantage over tomato cultivars, as they express resistance during the hottest 

time of the year. This heat-stable resistant phenotype turns these rootstocks into 

a suitable method to inhibit nematode reproduction in areas where summer 

temperatures frequently exceed 28 ˚C (e.g. Mediterranean basin). The resistant 

tomato cultivar Caramba reduced more effectively the reproduction of the 

nematode than the resistant cultivar Monika when temperatures above 28 ºC 

(Chapter 1). Although no heat-stable MiGHs are present in the S. peruvianum 

introgression of Caramba, the higher resistance of this cultivar points out the 

influence that the genetic background of tomato cultivars has on the expression 

of the Mi-mediated resistance (Jacquet et al., 2005). In the light of the results 

presented in this thesis, this can be also applicable for resistant tomato 

rootstocks. 

 

Tomato rootstocks Beaufort and Maxifort responded as susceptible to 

M. javanica but showed a nematode-isolate specific resistance response when 

they were infected with different Mi-avirulent populations of M. arenaria and 

M. incognita (Chapter 2); this phenotypic variability was not observed in the 

resistant tomato cultivars: Monika (Chapter 2) and Anairis (Chapter 6). 

Nematode-isolate specific resistance responses have been mainly described in 

MiGHs from S. peruvianum (e.g. Mi-3, Mi-7, Mi-8) (Ammati et al., 1986; 

Roberts et al., 1990; Veremis and Roberts, 1996a, 1996b) but also for the Mi-

1.2 gene (Sorribas and Verdejo-Lucas, 1999). Thereby, the question that rose 
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from these results was which is the mechanism associated to the nematode-

isolate specific resistance response is of these rootstocks.  

 

The plant-nematode pathosystem is influenced by the nematode isolate 

and the genetic background of the resistant plant (Jacquet et al., 2005). In this 

sense, the use of wild Solanum species in tomato breeding programs increases 

the genetic variability of rootstocks compared to cultivars, because of the 

inherent variability of the Solanum accessions used as parentals. The gen-for-

gen model (Flor, 1971) has been accepted to explain the interaction between 

root-knot nematodes and the Mi-1 gene. So far, this theory has not been 

completely demonstrated as no Mendelian analyses can be performed to study 

the Avr-R gene interaction for the parthenogenetic species M. arenaria, M. 

incognita and M. javanica (Roberts, 1995; Bakker, 2002; McK Bird et al., 

2009). In contrast to this theory, the guard model postulates that the initial 

pathogen recognition occurs between of a host protein (e.g. Rme1) of the 

resistant plant and the nematode Avr effector. This first interaction induces a 

conformational change of the targeted protein that allows the union to the R 

protein (e.g. Mi-1.2) and the subsequent resistance response of the infected cell 

(Kaloshian, 2004) (Fig. 1). According to this model, the recognition of the 

infection by the R gene would be modulated by both the genetic background of 

the resistant plant and the specific Avr determinant of each nematode 

population. The nematode isolate-specific resistance response of Beaufort and 

Maxifort could be associated to the introgression of different genes (e.g. host 

genes and/or R genes) from S. habrochaites in their genetic background 

(Chapter 3). Therefore, the recognition of the nematode infection in resistant 

tomato rootstock would be more specific than previously thought. 

 

As opposed to the resistant tomato rootstocks, the resistant tomato 

cultivars available nowadays originate from a single F1 hybrid (S. lycopersicum 

× S. peruvianum) obtained by Smith in 1944; in addition breeders have done 

many efforts to reduce the S. peruvianum introgression in chromosome 6 (Ho et 

al., 1992), which overall might have reduced the genetic variability of Mi-

tomato cultivars. Thus, in the light of the presented results it can be concluded 

that the resistance response of the tomato hybrid rootstocks is more variable 

than that of resistant tomato cultivars as it is depends on the genetic background 

of the rootstock, the nematode isolate tested and the soil temperature. 
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Figure 1. Predicted interaction between the host proteins of a Mi-resistant tomato and the 
Avr effectors of two nematode populations (a and b), based on the guard model. The R 
proteins Hsp90 (heat shock protein 90), and the Stg1 (suppressor of the G2 allele of 
SKP1) form a functional cluster of R proteins to assist in the resistance response of the 
Mi-1 gene. (a) In an incompatible interaction (resistant response), the nematode Avr 
effectors interact with a NBS-LRR R proteins (Rme1) to form an R-signaling complex to 
trigger the downstream Mi-1 resistant pathway (e.g. MAPK cascades). (b) In a 
compatible interaction (susceptible response), the lack of recognition of the nematode Avr 
effector by the host protein inhibits the conformational change of the host protein and 
prevents the subsequent resistance response mediated by the Mi-1 gene like MAPK 
cascade (adapted from Bent and Mackey 2007 and Bhattarai et al., 2007). 
 
 

The characterization of the Mi- locus in tomato hybrid rootstocks 

 

The molecular characterization of the Mi-locus in tomato rootstocks was 

initially done using the conventional marker REX-1 but the phenotypic 

resistance response of a subset of the rootstocks (e.g. Beaufort and Maxifort) 

was in disagreement with genotyping data (Chapter 1 and 2). Therefore PCR 

markers for detection of root-knot nematode resistance in tomato lines with 

introgressions from wild Solanum species were used for the characterization of 

the Mi-locus. Although the Mi23 marker was initially used to characterize the 

Mi-locus in tomato rootstocks (Chapters 1 and 2) further analyses indicated that 

this marker was polymorphic for the species S. habrochaites, S. peruvianum and 
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S. lycopersicum (Chapter 3). Similar results were obtained for PMi marker. The 

PM3 marker was only suitable to trace the Mi-locus in hybrid rootstocks of S. 

lycopersicum × S. habrochaites (e.g. Brigeor, He-man, Beaufort, Maxifort). As 

the PM3 marker was designed to anneal at the 3’ end of the UTR of the gene, 

the Mi-locus could not be characterized either in any hybrid of S. lycopersicum 

× S. habrochaites hybrids; only the presence of a Sp-Mi-like region could be 

confirmed. Characterization of the Mi-locus was not possible for those 

rootstocks of unknown parental origin (PG-76, Gladiator, and MKT-410). 

Thereafter, the allelic condition of the Mi-1 locus could not be determined for 

any of the tomato hybrid rootstocks, and the question on whether the Mi-

homozygous tomato rootstocks are more resistant than the Mi-heterozygous 

ones could not be answered. 

 

As in silico tests performed with Mi-1.2 specific primers (Mint-up/do, 

C1/2, C2S4, IMO.F1/R1, VIGS-F) indicated that none of the available 

molecular markers were able to distinguish the Mi-1.2 gene, the new marker 

Pau-Do was designed. At the moment, Pau-Do and C2S4 (Milligan et al., 1998) 

are the only existing markers that allow the amplification of the Mi-1.2 gene in 

resistant tomato cultivars (S. lycopersicum × S. peruvianum). Nevertheless the 

specificity of both markers should be tested in wider pool of rootstocks, 

cultivars and accessions of wild Solanum species to ensure their suitability for 

amplification of the Mi-1.2 gene. As it was mentioned in Chapter 3, the 

hypothesis that a homolog different than Mi-1.2 gene was amplified in this two 

tomato rootstocks remains possible, and cloning of this candidate gene would 

be required to identify its functional role. 

 

The parental species of the resistant tomato rootstocks studied in this 

thesis were not available, as seed breeders refused to share this information. 

Therefore, the Mi-1 locus could not be traced by resistance and marker 

screening of an F2 population and the derived F3 lines. The traditional molecular 

markers used in breeding (e.g. REX-1, PM3, PMi, Mi23) to identify the 

introgression of the S. peruvianum Mi-1.2 gene, are not suitable for tomato 

hybrid rootstocks. The lack of knowledge about the sequence of the MiGHs 

present in wild tomato species also hampered the characterization the Mi-locus 

in resistant tomato rootstocks. As far as the number, sequence and function of 

the MiGHs present in the wild Solanum species used in breeding programs 

remains unknown, pathogenicity assays will still be essential to test resistance 

to root-knot nematodes in tomato rootstocks. 
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Durability of the Mi-mediated resistance in resistant tomato rootstocks  
 

The second objective of this thesis was to determine the durability of 

the Mi-mediated resistance in tomato rootstocks to control Meloidogyne spp. 

The initial hypothesis considered was that the durability of the Mi-resistance 

would be similar to that of resistant tomato cultivars, although it did not. 

Virulent populations were rapidly selected from a Mi-avirulent nematode 

population of M. javanica after repeated cultivation of resistant tomato 

rootstocks during three cropping cycles in the field (Chapter 4). The resistance 

level of the rootstocks decreased as the frequency of cropping increased. This 

was particularly evident with rootstock PG-76 that became fully susceptible 

after the third cropping cycle. Virulence was also selected in plots planted with 

Brigeor and Monika, although at much lower speed. At the end of the third 

year, cultivar Monika provided similar resistance responses to those reported in 

previous studies (Sorribas et al., 2005; Verdejo-Lucas and Sorribas, 2008). The 

cropping frequency of the resistant plants was crucial, although the rapid 

selection of virulent nematodes in plots cultivated with PG-76 compared to 

Brigeor and Monika suggested the existence of a different resistance 

mechanism to root-knot nematodes in their genome. 

The question that rose from the field experiments was why selection of 

virulence occurred so rapidly in rootstock PG-76. Avirulence (Avr) is 

considered a genetically dominant character and only homozygous individuals 

with recessive alleles (avr) can become virulent (Block et al., 1997). Therefore, 

it was initially considered that rootstock PG-76 had induced several mutational 

events in the genome of the population leading to acquisition of virulence. It is 

known that the durability of the resistance conferred by a R gene depends on the 

evolutionary potential of the pathogen population (McDonald and Linde, 2000). 

Experimental data indicates that Meloidogyne can accumulate a large amount of 

genetic variability in the offspring from one generation to the next (Jarquin-

Barberena et al., 1991; Castagnone-Sereno, 2002). Mechanisms such as 

transposable elements, which are very abundant in the genome of some species 

like M. incognita (McK Bird et al., 2009), allow root-knot nematodes to exhibit 

high mutation rates compared to other organisms with asexual reproduction; 

polyploidy, aneuploidy or gene conversion could also play an important role in 

genetic plasticity (Roberts, 1995; McK Bird et al., 2009). In population 

genetics, creation of new genetic material through mutagenesis is considered 

the ultimate source of genetic variation (Hartl, 2000). In nematode populations 

where avr alleles are initially absent it is unlikely that these alleles will increase 

their frequency dramatically in a short period of time. If we consider that the 
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original nematode population was nearly fixed for the wild type allele for 

avirulence (Avr), non-lethal mutations were first needed for the acquisition of 

virulence; and in second term, the frequency of the avr alleles must increase in 

the genetic pool of the population in order to allow the appearance of 

homozygous virulent (avr/avr) individuals. As the spontaneous forward 

mutation rates are typically small (10-4 to 10-6 per allele and generation), the 

changes in the allele frequency as a result of recurrent mutation (mutation 

pressure) are very small over the course of a few generations (Hartl, 2000). 

Hence, the hypothesis of selection of virulence caused by direct mutagenic 

events favored by rootstock PG-76 was rejected due to the short time elapsed in 

the field experiments and the progressive appearance of virulence. 

On the contrary, it has been proposed that selection for increased 

virulence will occur in populations that already contain virulent individuals that 

are able to reproduce on R plants (Block et al., 1997). This seems to be the case 

of the population of M. javanica infesting the field soil that became virulent 

following a gradual fashion as a result of the selection pressure exerted by the 

repeated cultivation of the resistant tomatoes in the same plots. Apparently, 

rootstock PG-76 produced a stronger directional selection pressure over the 

avirulent M. javanica population than rootstock Brigeor or cultivar Monika, as 

virulent individuals did not appear after three consecutive cropping cycles. 

From the different evolutionary forces described, selection pressure has been 

considered the main force that drives changes in the frequencies of mutant 

alleles (avr) at a faster pace than the other causes of evolution (e.g. genetic drift, 

gene flow, reproduction mating system or mutations) (Hartl, 2000; McDonald 

and Linde, 2002). The higher the selection pressure is, the faster the adaptation 

of the pathogens to the new environment and the appearance of individuals that 

are able to overcome the R genes. Rootstock PG-76 consistently showed the 

highest resistance response among all the rootstocks analyzed towards several 

Meloidogyne populations in pot experiments and in field conditions (Chapters 

1, 2 and 4), and also in the hottest time of the year. Under these statements, we 

concluded that the repeated cultivation of the highly resistant PG-76 rootstock 

favored the reproduction of the virulent individuals already present in the 

population, resulting in a rapid change on the frequency of the Avr alleles.  
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Figure 2. Variation on the frequency of the alleles of avirulence Avr (green) and 

virulence avr (red) in the genetic pool of two nematode populations (1) and (2). (A) 

Changes in the allelic frequency in the avirulent population (P0) as a result of recurrent 

mutation (mutation pressure) leads to the acquisition of virulence after n nematode 

generations (Pf). (B) Positive selection of the virulent alleles (avr) already present in the 

genetic pool of the population (P0) by selection pressure of the Mi-1 gene.  
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Noteworthy, selection for virulence has always been tested in resistant 

tomato cultivars. For the first time, it was demonstrated that not only the 

cropping frequency of the R plants has an effect upon the frequency of the Avr 

alleles of the population, but also that the genetic background of the resistant 

tomatoes is a critical factor for the selection of virulence. Thus, acquisition of 

virulence can be explained by the interaction between plant genotype, nematode 

isolate and cropping frequency but not by either factor alone. This close 

interaction between root-knot nematodes and the genetic background of tomato 

rootstocks has important implications in nematode management.  

 

 

Molecular characterization of virulent populations of Meloidogyne spp.  

 

Acquired virulence invalidates the use of the Mi-mediated resistance as a 

management strategy to control root-knot nematodes, since virulence is 

genetically stable and transmitted to the progeny (Castagnone-Sereno et al., 

1993). Little is known about root-knot nematode Avr effectors and the reason 

why some isolates can reproduce on resistant plants, whereas others never 

overcome resistance (Jarquin-Barberena et al., 1991). In this thesis, it was 

demonstrated that the molecular marker MVC (Xu et al., 2001) described for 

characterization of selected-virulent populations of Meloidogyne spp. it is not 

related to root-knot nematodes but to betaproteobacteria proteins (Chapter 5). 

Virulence markers like MAP-1 and Cg-1 (Semblat et al., 2001; Gleason et al., 

2008) have been tested with a limited number of nematodes populations which 

compromises their reliability as a molecular tool for identification of virulent 

root-knot nematodes. In the same way that the genetic background of tomato 

rootstocks is a key element in the selection of virulent populations, the genetic 

pool of the nematode populations is also a crucial factor that determines the 

durability of the Mi-mediated resistance. At the moment, molecular 

characterization of virulence in nematode populations is not feasible, and the 

potential virulence (frequency of Avr/ avr alleles) of the nematode population 

which is intended to manage will remain unknown. Consequently, the 

characterization of virulence still requires specific pathogenicity assays. 

 

 

Management of Meloidogyne spp. with resistant tomato rootstocks  

 

The differences found in the resistant responses of the tomato rootstocks have 

important implications in root-knot nematode management. High reproduction 

levels of the nematode were reached on some resistant tomato rootstocks just 
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after two nematode generations in spring and a single generation in summer. In 

addition, some resistant tomato rootstocks showed a nematode-species specific 

resistant phenotype; such variability has implications on rootstocks 

management as the effectiveness of the Mi-mediated resistance may be 

compromised by local isolates of root-knot nematodes infecting the soil.  

 

As tomato rootstocks produce very vigorous plants, nematode infection 

might be initially go unnoticed before nematode population levels increase. 

Yield reduction of resistant tomato rootstocks was related to an increase on the 

reproduction of the nematode populations. Besides the deep and massive root 

systems of PG-76 and Brigeor, yield production was reduced on both resistant 

tomato rootstocks in the same way than on resistant cultivar Monika after the 

third cropping cycle (Chapter 4). Although the use of tomato rootstocks can be 

profitable and are considered an ecological alternative to chemical control, 

particularly for organic farming, nematode management should include rotation 

of resistant rootstocks with susceptible genotypes. For resistant tomato 

cultivars, rotation sequences involving one cropping cycle with a susceptible 

cultivar followed by two consecutive cropping cycles with resistant cultivars 

have been proposed for effective suppression of Meloidogyne spp. on tomato 

cultivated in nematode-infested soils in plastic houses (Talavera et al., 2009). 

The optimum cropping sequence of resistant rootstocks needs to be determined 

to preserve the durability of the resistance and prevent the selection of virulent 

populations.  

 

As it has been shown in Chapter 4, the use of a single genetic source of 

resistance in monoculture is a thread for the durability of valuable resistance 

genes (e.g. Mi-1.2 gene). For this reason, wild Solanum species have been 

largely explored as novel sources of R genes and improved agronomical traits. 

Preliminary studies revealed the resistance of the accession LA-1358 of S. 

huaylasense to M. arenaria and M. incognita but not to M. javanica (Chapter 

6). This resistance, however, was nematode-species specific, a similar situation 

found in rootstocks Beaufort and Maxifort (Chapters 1 and 2). Screening larger 

numbers of accessions along with a deeper characterization of the resistance 

spectrum of wild Solanum species will be necessary in order to identify novel 

nematode resistance in wild tomatoes.  

 

The management of the Mi-mediated resistance in tomato rootstocks 

should be particularly careful compared to that of Mi-resistant tomato cultivars, 

due to the variability of their effectiveness and the potential selection of virulent 

populations. The genetic background of the resistant tomato rootstocks is 
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complex and unknown, and the molecular tools currently available are 

inadequate for their characterization it. The existence of several MiGHs in 

tomato hybrids rootstocks that provide resistance to different nematode 

populations and environmental conditions have been demonstrated in this 

thesis. For this reason, the selection pressure that resistant tomato rootstocks 

can exert on field populations may be superior to that of resistant tomato 

cultivars. Emergence of virulent nematode populations results in a point of no 

return on the use of plant resistance as a management method to control root-

knot nematodes. 
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 Glass-house facility at IRTA where bioassays where performed. 
This picture corresponds to the pathogenicity test performed to 
determine the resistance response of tomato rootstocks to M. 

javanica (Chapter 1). 
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1.- The phenotypic resistance response observed in Mi-1 tomato rootstocks 

ranged from highly resistant to susceptible. 

 

2.- A subset of Mi-1 tomato rootstocks showed a nematode-isolate specific 

resistance response.  

 

3.- Susceptible and intermediate resistance responses in tomato rootstocks 

cannot be detected through molecular techniques. 

 

4.- The molecular markers Mi23, PMi and intron-1 used in tomato breeding 

programs are unable to characterize the Mi locus in resistant tomato rootstocks.  

 

5.- The molecular marker PM3 can only be used to trace the Mi locus in S. 

lycopersicum × S. peruvianum × S. habrochaites hybrids.  

 

6.- The molecular markers C1/2, C1/2Do, C2S4, VIGS-F, and IMO-F/R 

specifically designed to detect the Mi-1.2 gene are unable to distinguish this 

gene from other Mi-homologs from the S. lycopersicum or S. peruvianum 

species. 

 

7.- The newly designed molecular marker Pau-Do, in combination with C2S4, 

can specifically detect expression of the Mi-1.2 gene in S. lycopersicum × S. 

peruvianum hybrids. 

8.- Several Mi-homologs present in the genetic background of hybrid tomato 

rootstocks are responsible of the variability in the resistant phenotype. 

9- Molecular analyses to determine the resistance response of tomato rootstocks 

cannot replace pathogenicity assays.  

10.- Repeated cultivation of resistant tomato rootstocks selected virulent 

populations of M. javanica. 

 

 
 

 
 
 

 
Conclusions 
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11.- Acquisition of virulence is influenced by the frequency of Avr/avr alleles in 

the genetic pool of the nematode population, the genetic background of the 

resistant rootstock, and the frequency of cropping.  

 

12.- The durability of the Mi-gene mediated resistance was lower in tomato 

rootstocks than in resistant tomato cultivars. 

 

13.-The highly vigorous root-system of resistant tomato rootstocks does not 

prevent yield losses if infected by a virulent population of Meloidogyne spp. 
 

14.- Careful management of resistant tomato rootstocks will be needed to 

preserve the durability of Mi-gene mediated resistance. 

 

15.- The molecular marker MVC is unable to characterize virulent selected 

populations of Meloidogyne spp. 

 

16.- The newly described species S. huaylasense can be a source of new 

resistance genes to control Meloidogyne spp. 
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Tomato cultivar (scion) grafted 
in a Maxifort plant (rootstock). 
The rubber band helps to tight 

the union between the scion and 
the rootstock, increasing the 

contact of the vascular tissues 
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Annex 1: Identification of Meloidogyne populations using molecular 

markers 
 

Meloidogyne arenaria (MA-68) 

 

400 pb

68M

 
 

Meloidogyne incognita (MI-ALM and MI-CROSS) 

 

1200 pb

ALM CROSSM

 
 

Meloidogyne javanica (MJ-IBIZA, MJ-27, MJ-Q21, and MJ-05) 

 

700 pb

Q21IBIZAM M

700 pb

27 05

 
 

 

All the populations are avirulent except the population M. javanica (MJ-27), 

which is naturally virulent. PCR analyses were performed according to protocol 

described by Ziljstra et al. (2000). For all PCR reactions, 20 µL of the PCR 

products were resolved on 1.5% agarose gel in 1×TAE buffer and stained in 

ethidium bromide. Lane M indicates 100 bp DNA ladder.  

 
Table 1. Primers used in PCR reactions for identification of Meloidoyne species 

(Ziljstra et al., 2000). 

 

Nematode specie Primer Sequence (5’-3’) 

   M. arenaria Far 

Rar 

TCGGCGATAGAGGTAAATGAC 

TCGGCGATAGACACTACAACT 

M. incognita Finc 

Rinc 

CTCTGCCCAATGAGCTGTCC 

CTCTGCCCTCACATTAAG 

M. javanica Fjav 

Rjav 

GGTGCGCGATTGAACTGAGC 

CAGGCCCTTCAGTGGAACTATAC 
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