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Chapter 1

Introduction
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Real-world agents are heterogeneous in all kinds of economically relevant aspects

such as risk aversion, wealth, and productivity. Nevertheless, large parts of macroeco-

nomic research have traditionally been conducted in the representative agent frame-

work. This is so despite the well-known fact that aggregation holds under very restric-

tive conditions only. That is to say, typically the behavior of a representative agent

does not accurately reflect that of a heterogeneous population. The representative

agent framework is thus a simplification whose appropriateness depends on the spe-

cific issue investigated. Three cases in which explicit consideration of heterogeneity is

crucial are analyzed in the chapters of this thesis. They are taken from three differ-

ent areas - asset pricing, labor market policy, and optimal taxation - and in each of

them heterogeneity has different effects: Clearly, it is an important factor in judging

welfare implications and political feasibility of policy problems, as the chapters on

labor market policy and optimal taxation will illustrate. However, as we will see in

the chapter on asset pricing, heterogeneity may also importantly change the nature of

equilibria and give rise to different dynamics. A brief overview of the three chapters

is given in turn.

In chapter 2 we introduce ex ante heterogeneity of agents into a general equilibrium

asset pricing framework with Epstein-Zin preferences. There are two types of agents

who differ exclusively in their risk aversion. They trade in a stock, whose dividend

is the only source of consumption, and in a short-term bond in zero net supply. In

equilibrium the less risk averse agents are leveraged in the stock, and their share in the

economy’s wealth is positively correlated with the dividend shock. Loosely speaking,

”average risk aversion” declines when dividend growth is strong, which implies lower

expected excess returns. At the same time the price-dividend ratio rises. Thus, in

line with the data, a high price dividend ratio predicts low future excess returns.

Moreover, predictability of excess returns displays the empirically observed pattern

of R2s rising with horizon. We manage to generate R2s of similar magnitudes as in

the data at all horizons. Without heterogeneity, by contrast, the price-dividend ratio

and the equity premium would be constant.
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In chapter 3 heterogeneity takes a different form. Agents do not differ innately, but

in the presence of incomplete markets idiosyncratic income shocks leave them with

heterogeneous wealth levels and thus heterogeneous amounts of self-insurance. The

setting is a matching model of the labor market in the Mortensen-Pissarides tradition,

and income shocks are transitions between employment and unemployment. We

study the transition dynamics and welfare effects of reducing unemployment benefits.

The dynamic analysis reveals significant transition costs that comparative statics

would miss. The main reason is that initially individuals have to increase savings

to self-insure. Nevertheless moderate benefit reductions increase average welfare of

workers. Gains are much larger when the reform is announced in advance or phased in

optimally. Workers can then extract windfalls otherwise accruing to firms with filled

jobs which stem from the jump in vacancy costs following an unexpected reform.

In chapter 4, which is joint work with Albert Marcet, we study the optimal path

for capital and labor taxes in a dynamic economy with agents who are heterogeneous

in their ratio of human to physical capital. In an otherwise standard model we

concentrate on tax reforms that are both Pareto efficient and Pareto improving. Also,

we assume the capital tax rate can never rise above its initial level and lump-sum

transfers between agents are impossible. We study the whole path for taxes, including

the transition, from a current status quo to the long run steady state. We find that

introducing all these elements into the analysis changes considerably the nature of tax

reforms. In particular, we find that capital taxes have to be maintained at their status

quo level for at least about ten years in order not to harm poor agents. Labor tax

rates, by contrast, are initially lowered greatly in order to boost capital accumulation

while capital taxes are still high. We show that in the absence of a non-distortive

means of redistribution heterogeneity imposes a severe constraint on the optimal

policy that drives the solution much further away from the first best than in the

standard case in which only non-distortive means of raising revenue are lacking.

3



Chapter 2

Asset Pricing with Heterogeneous
Epstein-Zin Agents
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2.1 Introduction

By now a host of stylized facts about asset prices and their dynamics have been

established that are hard to match jointly in consumption based asset pricing models.

To mention just the ones that will be of concern to this work: Excess returns are high

despite the relative smoothness of consumption and at the same time the riskless real

rate of interest is very low and stable. These are the famous equity premium and

risk free rate puzzles.1 Another well known property of stock prices is their ’excess

volatility’, i.e. the fact that prices are subject to swings much greater than what

seems explicable from changing cash flow and interest rate forecasts.2 While these

puzzles refer to unconditional properties of asset prices and returns, a number of

conditional properties of asset prices and returns has been established too. There

is now strong evidence that equity premium and Sharpe ratio are high in recessions

and low in booms. Moreover, variables such as the price-dividend ratio are subject to

similar swings and can serve to predict excess returns. The predictive power of the

price-dividend ratio as measured by the R2 ranges from about 5% at a yearly horizon

to more than 50% when excess returns are compounded over 10 or more years.3

There is an extensive literature addressing some or all of these puzzles. However,

it seems fair to say that no fully satisfactory framework has been provided to date.

Two lines of attack have been pursued in many contributions:4 One is to endow

models with some feature that allows to separate agents’ attitude towards intertem-

poral substitution from their attitude towards risk. To this end authors have either

employed the recursive utility framework of Kreps-Porteus/Epstein-Zin5 or various

forms of consumption habits.6 The other approach has been to introduce market

1These terms were coined by Mehra and Prescott (1985a) and Weil (1989) respectively.
2See Campbell and Shiller (1988a) and Campbell and Shiller (1988b).
3See for example Fama and French (1988) and Fama and French (1989).
4Of course there are other less common approaches, like for example the recent departures from

log-normal, random walk dividends as in Bansal and Yaron (2004) and Weitzman (2007).
5E.g. Epstein and Zin (1989) and Weil (1989). In this type of utility aggregator intertemporal

substitutability and risk aversion are governed by separate parameters.
6Early contributions in this latter vein are Abel (1990), Abel (1999), Campbell and Cochrane

(1999) and Constantinides (1990). Habits of the ratio type (c/h) make the interest rate less sensitive
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incompleteness, acknowledging the fact that individual consumption is much riskier

than aggregate consumption.7 Campbell and Cochrane (1999) in the habit tradi-

tion and Constantinides and Duffie (1996) with incomplete markets are the two most

successful contributions to date in that they replicate a large variety of asset pric-

ing facts, but - as stated frankly in Cochrane (2005) - both of them are deliberately

reverse-engineered and should be regarded as clever proofs of existence of a solution

rather than as the ultimate economic stories settling the issues.

In this paper we therefore take another step towards explaining the aforementioned

puzzle through an economically plausible mechanism. We introduce heterogeneity in

agents’ risk aversion into a general equilibrium asset pricing framework with Epstein-

Zin preferences. Our economy is endowed with one unit of a stock that produces a

stochastic dividend in each period. Two types of agents trade in this stock and in a

riskless short-term bond that is in zero net supply such as to adjust their exposure

to return risk to their risk preferences. In equilibrium the less risk averse agents

are leveraged in the stock, and their share in the economy’s wealth is positively

correlated with the dividend shock. Loosely speaking, ”average risk aversion” declines

when dividend growth is strong, which implies lower expected excess returns. At

the same time the price-dividend ratio rises, provided the intertemporal elasticity of

substitution is greater than one. Thus, in line with the data, a high price dividend

ratio predicts low future excess returns. Moreover, predictability of excess returns

extends over many periods and displays the empirically observed pattern of R2s rising

with horizon. Quantitatively, we manage to generate R2s of similar magnitudes as in

the data at all horizons.

The model just described can only be solved numerically. However, we can ana-

lytically solve a set of simpler models that isolate certain features of the full model.

These models provide a lot of intuition and help to pin down precisely which aspects

to risk aversion. Habits of the difference type (c−h) allow to choose a low value of the risk aversion
parameter that is compatible with a low interest rate by raising the curvature of the marginal utility
for a given risk aversion parameter.

7See for example Constantinides and Duffie (1996), Heaton and Lucas (1996), Marcet and Sin-
gleton (1999), and Telmer (1993).
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of the full model drive which features of the solution. We thus show that both hetero-

geneous risk aversion and Epstein-Zin utility are essential ingredients in generating

these results. The first simplified model illustrates how heterogeneous risk aversion

causes time variation in equity premium and price-dividend ratio. The second model

shows why Epstein-Zin utility allows the price-dividend ratio to predict excess returns

with the right (negative) sign, while under standard CRRA utility, which ties together

risk aversion and intertemporal willingness to substitute, it would not be possible to

get the sign of predictability right unless risk aversion is unreasonably low. Finally, a

third simplified version of our model helps to explain why the R2s of our long-horizon

regressions rise strongly with horizon, as in the data. For this to happen shocks need

to have very persistent effects. We demonstrate that when there is uncertainty about

dividends in only one period, the effects of this shock persist into the entire future.

In a model with a habit utility function, for example, this would not be the case.

Nevertheless, in our full dynamic framework shocks do not fully persist in asset

prices either. The reason is that all the action in the model takes place in the transi-

tion to the steady-state in which the less risk averse agents own the entire economy

and heterogeneity disappears with all its effects on asset price dynamics. The wealth

share of the less risk averse agent grows because he earns a higher expected return rate

on his portfolio. However, the return differential between the two agents’ portfolios

declines as the less risk averse type’s wealth share increases because his leverage and

the equity premium decrease. Thus once the less risk averse agent is sufficiently rich,

his wealth share increases ever more slowly and converges to one. As this convergence

becomes strong the paths of the economy after a shock and after no shock become

less and less distinguishable and it seems as if the shock had faded away.8

As mentioned before, the related literature is huge. We therefore content ourselves

with relating our work to a few recent contributions that are similar either technically

8It would be easy to eliminate this feature of the model in favor of a steady state with hetero-
geneity, in which asset prices and expected returns would continue to vary. One option would be to
regard agents as dynasties in which with a certain probability children have different risk preferences
than their parents. However, for the sake of clarity of exposition, we prefer to stick to the bare-bones
version of the model at this point and leave this extension to future work.
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or in focus. The model of Chan and Kogan (2002) is the one closest to ours. It

also features heterogeneity in agents’ risk aversion but utility functions are of the

CRRA-type, defined over consumption relative to a slow moving external habit stock.

Qualitatively their results are similar, but the predictive power of the price-dividend

ratio for excess returns is negligible in their model and hardly increases with horizon.

Moreover, with the help of our simplified models we are able to be much more precise

about the intuitions for our results.

To the best of our knowledge the only other contribution to asset pricing featuring

heterogeneous risk-aversion in combination with Epstein-Zin utility is Coen-Pirani

(2005). His interest, however, is not in explaining broad sets of asset pricing facts.

Rather his point is to show that margin requirements do not necessarily increase the

volatility of stock prices. The use of Epstein-Zin utility seems to be motivated mostly

by technical convenience.

Another contribution employing Epstein-Zin utility but closer to ours in thrust

is Bansal and Yaron (2004). The model features a homogeneous agent and separate,

exogenous processes for consumption and dividend growth. One main insight is that if

these processes contain a small persistent component, which cannot be rejected from

the data, moderate degrees of risk aversion are sufficient to generate a high equity

premium, and the price-dividend ratio becomes volatile. The other insight is that

fluctuating volatility in the driving processes further increases the risk premium and

the volatility of the price-dividend ratio because under Epstein-Zin utility volatility

risk is priced. Moreover, the equity premium and the price of risk then become

time-varying and predictable from the price-dividend ratio.

Finally, Campbell and Cochrane (1999) is a classic that cannot be left unmen-

tioned. Featuring habit utility of the difference type (c− h), it manages to generate

counter-cyclical excess returns, predictability, and other features by making effective

risk aversion counter-cyclical. In terms of its quantitative success at reproducing styl-

ized asset pricing facts it is still the benchmark. However, the structure imposed on

the way the habit evolves is very particular. Moreover, it does not solve the equity

8



premium puzzle either in the sense that the risk aversion required to match the equity

premium is extremely high.

The remainder of this paper is organized as follows: Section 2.2 presents our

dynamic heterogeneous model. In section 2.3 we take a step back and analyze our

three simplified models in order to gain insights into the forces at work in our full

model. Section 2.4.2 contains our numerical results for the full model. We first discuss

the calibration of the model (section 2.4.1), then its qualitative properties (section

2.4.2), and finally present our quantitative results with a particular focus on long

horizon predictability (section 2.4.2). Section 3.6 concludes.

2.2 The model

We consider an infinite-horizon exchange economy with two types of agents who differ

exclusively in their risk aversion. Time is discrete. The wealth of the economy consists

in one unit of a stock that produces a stochastic dividend in the form of a perishable

consumption good each period. The dividend process constitutes the only source of

uncertainty in this model. To be more specific:

The market structure: Agents can trade in two assets. One is the stock, whose

total supply is one unit. Its ex-dividend value is equal to its (ex-dividend) price P .

The other one is a riskless bond in zero net supply. Dividends D grow stochastically.

In logs, they follow a random walk with drift

∆d′ = log(
D′

D
) = µ+ ε, (2.1)

where ε ∼ N(0, σ2) and i.i.d. over time.

The individual’s maximization problem: Agents of both types aggregate util-

ity from consumption streams according to the recursive preference specification of

9



Epstein-Zin. (Epstein and Zin 1989) They thus solve the following problem:

Vi(Wi,Γ) = max
{Ci,φi}

[
(1− δ)Ci

1−1/ψ + δ[E(Vi(W
′
i ,Γ

′)
1−γi)]

1−1/ψ
1−γi

] ψ
1−ψ

s.t. W ′
i =

[
φi
P (Γ′) +D′

P (Γ)
+ (1− φi)R

′(Γ)
](
Wi − Ci

)
Γ′ = G(Γ)

W ′
i ≥ W

In words, agents optimally choose their consumption Ci and their portfolio share of

the stock, φi, conditional on their own wealthWi and the aggregate state Γ, respecting

their intertemporal budget constraint. This budget constraint states that an agent’s

wealth at the beginning of a period W ′
i is equal to his investment in the previous

period, Wi − Ci, times the gross portfolio return of agent i given his portfolio choice

φi. W ≤ 0 is some lower bound on wealth which serves to rule out Ponzi schemes.

Agents take the price of the stock P and the gross riskless rate of interest R as given

and understand how they are determined in equilibrium as functions of the aggregate

state Γ, which in equilibrium evolves according to the law of motion G.

We look for solutions where the state vector of the economy only contains the

natural states (D,SL, BL), with S ′L = φL(WL − CL)/P an B′
L = (1− φL)(WL − CL)

being the stock and bond holdings of the agent type with low risk aversion that result

from the previous period’s portfolio choice.9

Note that only γ, the coefficient of relative risk aversion, is indexed by i. This

is where the two types differ. The elasticity of intertemporal substitution, ψ, on the

other hand, is common to the two groups. It is well known that portfolio choice is

largely governed by the parameter γ, while ψ primarily determines the intertemporal

consumption profile.10 Thus, our specification of heterogeneity will lead to heteroge-

neous portfolios. Savings decisions, by contrast, will differ between agents only to the

9For the numerical solution we will be able to compact this state vector into a single dimension,
which is the wealth distribution. See appendix 2.6.1.

10See Campbell and Viceira (2002), ch. 2.
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extent that portfolio heterogeneity leads to different portfolio returns.

The distinction between risk aversion and elasticity of intertemporal substitution,

which Epstein-Zin utility allows us to make, is crucial for our results even at a quali-

tative level. It not only enables us to simultaneously match the equity premium and

the risk free rate without resorting to extremely high discount factors.11 More impor-

tantly, choosing risk aversion and intertemporal elasticity of substitution separately

is essential for the price-dividend ratio to predict equity returns with the correct -

negative - sign. We will see this in detail in section 2.3.2. There it will also be shown

how things would go wrong with CRRA utility.12

Competitive equilibrium: Due to the homotheticity of the utility function and the

absence of non-tradable assets the consumption, stock holdings, and bond holdings

of all agents of a certain type are proportional to their wealth level. We can therefore

aggregate across all agents of a type such as to ignore individual wealth levels and

focus on the wealth held by each group. Equivalently we can think of each group as

consisting of a single agent who behaves competitively.

Equilibrium requires market clearing in the markets for consumption, stocks, and

bonds. We index by L the variables referring to the type with the lower coefficient

of risk aversion and by H those referring to the more risk averse type. The market

clearing conditions at each state are then

CL + CH = D and (2.2)

φL(WL − CL) + φH(WH − CH) = P. (2.3)

Equation (2.2) ensures clearing of the goods market. Equation (2.3) is the condition

for stock market clearing. Bond market clearing follows by Walras’ Law. Note that

Wi denotes wealth at the beginning of the period, i.e. after dividends have been paid

11We do need a high value of the risk aversion parameter, however.
12This is not to say that agents have to be homogeneous in their elasticity of intertemporal

substitution. Within limits they may also differ in ψ. What we need is to be able to choose average
risk aversion and average intertemporal elasticity of substitution separately. The role of these choices
will be discussed in greater detail in sections 2.3.2 and 2.4.1.
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and before consumption. Therefore, WL +WH = P +D. But investment takes place

after consumption of the dividend, so total investment in the stock has to equal P ,

the ex-dividend value of the stock.

We are now ready to formally define a competitive equilibrium for this economy:

Definition 1 A recursive competitive equilibrium in this economy is a set of

consumption and portfolio rules {Ci(Γ), φi(Γ)}i=L,H , as well as a price function P (Γ),

an interest rate function R′(Γ) and a law of motion for the state variables G(Γ) such

that

1. the allocation solves the individual optimization problem (2.2) for each agent

type,

2. the market clearing conditions (2.2) and (2.3) are satisfied, and

3. G(Γ) is consistent with individual choices.

2.3 Three auxiliary models

The model we have just laid out requires numerical techniques for its solution. In

order to gain some analytical insights and intuition for the forces at work, we turn to

three simpler models as a first step in our analysis. The first of these auxiliary models

is a two period model with heterogeneous agents, which will show how heterogeneous

risk aversion leads to time-variation in the equity premium. The second model is

the representative agent version of our infinite horizon model, which has closed form

solutions for asset prices and returns that illustrate the relationship between equity

premium and price-dividend ratio. Finally, as a third simplification, we analyze the

model of section 2.2 with dividend risk in only one period. This will shed light on

the persistence properties of our model.
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2.3.1 A two-period model with heterogeneous agents

We consider a version of our model with only two investment periods and consumption

taking place only after the second investment returns are realized. Even this little

two-period model replicates several of the stylized asset pricing facts mentioned in

the introduction: The equity premium varies ’counter-cyclically’ in the sense that

high growth rates are associated with low subsequent equity premia. Moreover, the

stock price is ’excessively’ volatile relative to a representative agent model, in which

it would be constant. And finally, high prices ’predict’ low future excess returns.13

The stock can now best be thought of as a tree that grows for two periods before

it is chopped down and consumed. The tree’s initial size is one. After the first

period it has grown to X1, which is stochastic. Its final size is X1 ·X2, where X2 is

again stochastic and independent of X1. Initially, individuals choose portfolios of the

tree and a riskless bond in zero net supply, given their initial wealth shares wL,0 and

1−wL,0. After the realization of X1 they choose portfolios for the second period. The

time line in figure 1 illustrates the sequence of events. Since there is no consumption

at t = 0, 1, equilibrium only needs to determine the relative price between stocks and

bonds, which will be denoted by Pt. The gross return to the bond is normalized to 1.

We do not specify any particular utility function but rather make a few plausible

assumptions about the chosen portfolio shares φi,t:

Assumption 2 Agents’ optimal portfolio shares of the stock are differentiable in their

arguments risk aversion, γi, and equity premium, EPt, with derivatives
dφi,t
dγi

< 0 (for

EPt > 0) and
dφi,t
dEPt

> 0.

The first assumption implies that for a given equity premium the less risk averse

agent type has a greater share of stock in his portfolio. The second one will deliver the

comparative statics with respect to the equity premium. Under these assumptions we

can prove the following lemma, from which all the properties of asset prices mentioned

above follow:

13This last point may be a bit of a stretch, since there is not much of a future.
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Lemma 3 If the initial wealth share of the less risk averse agent type, wL,0, is suf-

ficiently large or sufficiently small, a high growth rate in the first period, X1, raises

the subsequent stock price P1 and lowers the subsequent equity premium EP1.

Proof. We derive how the equity premium during the second investment period

depends on the realization of X1. The equity premium at this point is equal to the

expected return to the stock, E1

(
X2

P1

)
− 1, due to the normalization of the riskless

rate. Hence, trivially, the stock price P1 and the equity premium move in opposite

directions. We proceed backwards in two steps. We first turn to the equilibrium

at t = 1, i.e. when agents make their second portfolio choice, and establish that

the equity premium for the second period depends negatively on the L-type’s wealth

share at this point, wL,1. Then we show that, at least under certain circumstances,

wL,1 rises with the first period growth rate X1.

Market clearing in the stock market at t = 1 requires

φ1(γL, EP1)wL,1 + φ1(γH , EP1)(1− wL,1) = 1, (2.4)

where wL,1 =
WL,1

P1X1
is the wealth share of type L. The crucial question at this stage

is, what happens as we vary wL,1. By assumption 2 we have φL,1 > φH,1 for any

given equity premium. Thus a rise in wL,1 goes along with an excess demand for

stocks, which is eliminated by a rise in P1 that reduces the equity premium such as

to lower both types’ portfolio share of stocks. Intuitively, the shift of wealth towards

the L-type lowers ’average’ risk aversion in the economy and therefore the equity

premium.

Next we show how wL,1 depends on the realization of X1, the growth rate of the

stock in the first period. Notice that

wL,1 =
[
φL,0 + (1− φL,0)

P0

P1X1

]
wL,0 (2.5)

Moreover, market clearing at t = 0 and assumption 2 imply φL,0 > 1 > φH,0. Thus,

14



the second term in brackets in equation (2.5) is negative and wL,1 rises with X1, unless

P1 falls with an elasticity greater than one in absolute value. Substituting for wL,1 in

equation (2.4) from equation (2.5) and differentiating, we can calculate this elasticity

as

ε(P1, X1) =
(φL,1 − φH,1)(φL,0 − 1)wL,0

P0

P1X1(
wL,1

dφL,1
dEP1

+ (1− wL,1)
dφH,1
dEP1

)
EP1 − (φL,1 − φH,1)(φL,0 − 1)wL,0

P0

P1X1

(2.6)

The numerator and the second term in the denominator are equal and positive, and

the first term in the denominator is positive as well. Thus we will find ε(P1, X1) > 0

if and only if
(
wL,1

dφL,1
dEP1

+(1−wL,1)dφH,1dEP1

)
EP1 > (φL,1−φH,1)(φL,0−1)wL,0

P0

P1X1
. This

will for sure be the case for wL,0 sufficiently close to zero or one, for in either case

the right hand side of this condition goes to zero, while the left hand side is strictly

positive as long as the L-type is not risk neutral. (Note that as wL,0 → 1, φL,0 → 1.)

Thus, to recap, for wL,0 small enough or large enough the first period growth rate X1

affects the stock price P1 positively and the equity premium EP1 negatively.

The proof has shown clearly that at the heart of the variability of the equity

premium and the (excess) volatility of the stock price there is a relative wealth effect

between the agent types. It exists because they choose different portfolios. For

comparison, if agents were not heterogenous, i.e. if we had φL,t = φH,t, we would

have ε(P1, X1) = 0, and consequently the equity premium EP1 would be constant.

Alternatively, we can interpret what is going on in this model as consumption

insurance. The less risk averse agent type insures the more risk averse type. His

share of final consumption will hence be higher the bigger total consumption X1 ·X2.

Notice that the expectation of final consumption at t = 1, E1(X1 ·X2), rises with the

first period growth rate X1. Consequently, L-types should expect a higher share of

final consumption after high realizations of X1 than after low ones.14 This is the case

if their share of wealth, wL,1, is higher after high X1.
15

14If X1 did not contain any information about the distribution of final consumption this would
not be the case.

15At this level of generality we cannot rule out the alternative that wL,1 is actually lower and
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2.3.2 The infinite horizon model with a representative agent:

comparative statics

In the two period model we saw how with heterogeneous agents shocks effectively

shift the degree of risk aversion of the economy. In this section we will use this

insight to make a short-cut that permits an analytical investigation into the nature

of predictability in the infinite horizon model. While our dynamic heterogeneous

agent model of section 2.2 is not amenable to analytical solution, its representative

agent version features simple closed form solutions for asset prices and returns. We

state these and do comparative statics with respect to the coefficient of relative risk

aversion. Effectively, we ignore the non-linearities that prevent aggregation in the

heterogeneous agent model and discuss the effect of a shock that once and for all

shifts the wealth distribution such as to precipitate a certain change in average risk

aversion. This analysis illustrates that working with Epstein-Zin utility rather than

with the more standard CRRA form is crucial in order for the price-dividend ratio to

predict excess returns with a negative sign, as in the data.

If we eliminate heterogeneity from the model of section 2.2 but maintain the

assumption that dividend growth is i.i.d. we can derive analytical expressions for

asset prices and returns. The equity premium equals

EP = γσ2. (2.7)

The gross risk free rate is determined as

R = δ−1 exp
[ 1

ψ
(µ+

1

2
σ2)− 1

2
(1 +

1

ψ
)γσ2

]
. (2.8)

subsequent portfolio returns are higher. But this case seems rather unintuitive and never arose in
the numerical solutions to the dynamic model.
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And finally, the price-dividend ratio can be expressed as

PD =
δ̃

1− δ̃
, (2.9)

where δ̃ = R−1 exp[−EP ] exp[µ+
1

2
σ2]

= δ exp[(1− 1

ψ
)(µ+

1

2
σ2)] exp[(

1

ψ
− 1)

1

2
γσ2].

Equations (2.7) to (2.9) show that equity premium, risk free rate and price-

dividend ratio are all constant in the representative agent model, ie. there is no

predictability. Nevertheless, their comparative statics with respect to the coefficient

of relative risk aversion, γ mimic how predictability and the like arise in the hetero-

geneous agent version.

Turning to these comparative statics, the equity premium clearly increases in

risk aversion γ, while the risk free rate falls. The latter is a consequence of the

increasing precautionary savings motive. Being the expected discounted sum of all

future dividends, discounted at the risk adjusted rate and normalized by the current

dividend, the price-dividend ratio depends negatively on both the risk free rate and

the equity premium. An increase in γ lowers the risk free rate but raises the equity

premium, as equations (2.7) and (2.8) reveal. The reaction of the price-dividend ratio

is therefore ambiguous. Whether the fall in R or the rise in EP dominate depends

on the intertemporal elasticity of substitution, ψ. The rise in the equity premium

dominates and the price-dividend ratio falls if and only if ψ > 1. This is the case

we have to focus on if we want to generate predictability with the right sign in our

heterogeneous agent model. For, empirically, a high price-dividend ratio predicts low

excess returns.16

Such a high value for the intertemporal elasticity of substitution seems to fly in

the face of micro-evidence suggesting that ψ should be close to zero. (Hall 1988)

However, the choice of ψ > 1 has other arguments in its favor beyond the pattern

16In a different model Bansal and Yaron (2004) work with an elasticity of intertemporal substitu-
tion greater one for the same reason.
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of excess return predictability. For example, we know that the interest rate is very

stable. But low values of the intertemporal elasticity of substitution make the interest

rate very reactive to small variations in expected consumption growth. (Cochrane

(2005), chapter 21) Taking the same short-cut that we have taken above for the case

of changes in γ again for changes in the growth rate µ, this can also be seen from

equation (2.8). Also, at ψ < 1 we would have that the price-dividend ratio is lower

the stronger growth, which is counterfactual. (See equation 2.9.) In sum, in the

case of the intertemporal elasticity of substitution, like in that of the coefficient of

risk aversion, it seems that micro-evidence and the values implied by asset prices

are plainly incompatible. In the asset pricing literature that focuses on conditional

moments of asset prices rather than on the equity premium puzzle the micro-evidence

is therefore typically ignored. High elasticities of intertemporal substitution (e.g.

Bansal and Yaron (2004)) and high degrees of risk aversion (e.g. Campbell and

Cochrane (1999)) are employed as need be to match features of asset prices.

What would happen with CRRA-utility? Imposing γ = 1/ψ in equation (2.9)

and differentiating with respect to the risk aversion coefficient shows that the price-

dividend ratio predicts excess returns with the right sign only if γσ2 < µ + σ2, i.e.

only if the equity premium is smaller than a number that is hardly bigger than the

average growth rate of the economy.17 This would not come out of any reasonable

calibration, for the right hand side of this condition will typically be around 1-3%,

while estimates of the equity premium are always in excess of 4%. Thus, to recap, we

need to employ Epstein-Zin utility with an intertemporal elasticity of substitution in

excess of one in order to generate a negative relationship between the price-dividend

ratio and future excess returns, as observed empirically.18

17The expected growth rate would be µ + 1
2σ

2, but σ2 is an order of magnitude smaller than µ
and hence does not matter much.

18Notice that our reasoning is true only for pure CRRA utility. CRRA with a habit can yield the
right correlation between price-dividend ratio and equity premium because the habit introduces an
element of mean reversion: a good shock raises the surplus of consumption over its habit level but
creates the expectation of a reduction in the surplus as the habit adjusts. This lowers the interest
rate and raises the price dividend ratio. If at the same time a force such as agent heterogeneity lowers
average risk aversion the resulting correlation between price-dividend ratio and equity premium is
negative as in the data. This is the - unstated - intuition behind the results of Chan and Kogan
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2.3.3 Uncertainty in a single period

We now return to our dynamic heterogeneous agent model of section 2.2, however,

there will be uncertainty about dividends in one period only. The purpose of this

simplification is to show analytically that shocks have permanent effects on the allo-

cation of consumption between agents and thus on the wealth distribution. We first

argue that after the resolution of uncertainty agents consume the same fraction of

the dividend forever. Then we show that this fraction depends on the realization of

the dividend in the period of uncertainty. In this simplified setting we cannot make

meaningful statements about the effect of the shock on asset prices because after the

resolution of uncertainty the stock is a safe asset whose price is not influenced by

agents’ risk attitudes. However, we take the shift in the wealth distribution as an

indication that in a model with repeated uncertainty we would observe permanent

asset price effects through the shift in average risk aversion.

For the sake of precision and clarity we frame our discussion in the following

lemma, which will be proved in turn:

Lemma 4 Let dividends be log-normally distributed in period s and let them grow at a

constant rate µ thereafter. Then the realization of the dividend shock, Ds, permanently

affects the distribution of consumption and hence of wealth between agents.

Proof. For all t ≥ s markets are trivially complete and stochastic discount factors

equalize across agents. The stochastic discount factor of agent type i is

mi,t+1 = δ
( Ui,t+1

Et
(
U1−γi
i,t+1

) 1
1−γi

)1/ψ−γi(Ci,t+1

Ci,t

)−1/ψ

. (2.10)

For all t ≥ s the terms involving U cancel and the condition mL,t+1 = mH,t+1 collapses

to
CL,t+1

CL,t
=
CH,t+1

CH,t
, ∀t ≥ s. (2.11)

(2002).
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Hence, agents consume the same fraction of the dividend forever from period s on.

Call the fraction consumed by the less risk averse type cL = CL/D.

It remains to be shown that cL depends on Ds. To do so we will use the two

pricing conditions for the stock and the bond, which are

Et(mi,t+1
Pt+1 +Dt+1

Pt
) = 1 and (2.12)

Et(mi,t+1)Rt+1 = 1, (2.13)

and the fact that they have to be satisfied for both agents. For ease of exposition let

us assume that dividends grow at a constant rate µ after period s, i.e. that the shock

is constant. We can then write utility as Ui,s =
(

1−δ
1−δ exp[µ]

) ψ
ψ−1

Ci,s, and the stochastic

discount factor simplifies to mi,s = kiC
−γi
i,s , where ki summarizes all terms that are

determined before time s. Also, the stock price Ps will be proportional to Ds.

From now on we proceed by contradiction and show that the distribution of con-

sumption cannot be independent of Ds. Suppose to the contrary that irrespective of

the realization of Ds the less risk averse type has consumption share cL = c̄L. Then

setting the left hand sides of equations (2.12) and (2.13) equal for both agent types

and canceling some terms we get

kLc̄L
−γLEs−1(D

−γL
s ) = kH(1− c̄L)−γHEs−1(D

−γH
s ) and

kLc̄L
−γLEs−1(D

1−γL
s ) = kH(1− c̄L)−γHEs−1(D

1−γH
s ),

which implies
Es−1(D

−γL
s )

Es−1(D
1−γL
s )

=
Es−1(D

−γH
s )

Es−1(D
1−γH
s )

. (2.14)

Using the log-normality of Ds, this expression can be simplified to yield

γL = γH

which contradicts our assumption that agents are heterogeneous and γL < γH .
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Thus cL depends on Ds. Moreover, the wealth of agent i at time s is19

Wi,s =
1

1− δ
U

1−1/ψ
i,s C

1/ψ
i,s =

Ci,s
1− δ exp[µ]

which implies that the wealth share of the less risk averse agent type is simply wL = cL.

This completes the proof.

At this level of generality it seems impossible to make stronger statements. Under

the assumption that the dividend process can take only two realizations such as to

make markets complete at all times20 one can further show that the wealth and

consumption shares of the L-type increase in Ds, which is in line with our findings

for the two period model of section 2.3.1.

As mentioned before, the wealth shift that is precipitated by the shock in this

simple model has no consequences for asset prices because after the shock there is

no more uncertainty and hence risk aversion does not affect the pricing of the stock.

Nevertheless, to the extent that the strong persistence property that we have found

carries over to the full model, it is good news for the potential of the model to generate

long horizon predictability. For it suggests that a shock will change expected excess

returns not only today but for the entire future. For comparison, under CRRA with

habits, as employed for example in Chan and Kogan (2002), a one-off shock to the

level of dividends would have only transitory effects because everything mean-reverts

as the habit catches up with consumption.

2.4 Numerical analysis

The three auxiliary models of section 2.3 have provided us with intuition and ana-

lytical insights into the mechanisms at work in our model. Against this backdrop we

can now present the numerical results for the full dynamic model. These will be both

19See Cochrane (2006) for this and other useful derivations involving Epstein-Zin utility.
20Appendix 2.6.2 discusses conjectures about the general relationship between our model and its

complete markets version.
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qualitative and quantitative in nature. We therefore first discuss the calibration we

choose.

2.4.1 Calibration

We fix the parameters of our model on the basis of the annual US-data for the years

1890-1995 that is also used in Campbell (2003).21 The consumption data refers to real

per-capita consumption of non-durables and services, stock market data is based on

the S&P 500, and the real interest rate is derived by deflating six-months commercial

paper, bought in January and rolled over in June.22

The first important choice we have to make regards the parameters of the divi-

dend growth process. While in reality dividends are only a small, but very volatile

component of consumption, in our model dividends and aggregate consumption are

identical. Unlike contributions like Campbell and Cochrane (1999), which work with

a representative agent, we have to impose this equilibrium condition and cannot sim-

ply price the stock given separate processes for consumption and dividends.23 In

keeping with the related literature24 we opt for using consumption data for the main

calibration of the model. (See the first column of table 1.) As a check we also use

dividend data. (See the second column of table 1.) Unfortunately, however, we can-

not solve the model with dividend data for comparable levels of agent heterogeneity.

The dilemma in the choice between consumption and dividend data is the following:

If we calibrate the dividend process to consumption data, it will be very hard to get

the volatilities of price-dividend ratio and returns even approximately right because

consumption is much less volatile than dividends.25 On the other hand, if we base

our calibration on dividend data consumption becomes far too volatile, such as to

21This data can be downloaded from http://kuznets.fas.harvard.edu/ campbell/data.html.
22For greater detail consult the file readmeus.txt in the data set.
23An - albeit complicated - solution would be to work with leveraged equity and bonds in endoge-

nous positive supply. This avenue will be followed in future work.
24E.g. Chan and Kogan (2002).
25In fact, matching the empirical values of these volatilities would be of questionable desirability

since it would mean to introduce too much heterogeneity. This criticism applies for example to Chan
and Kogan (2002).
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seemingly resolve the equity premium puzzles at low levels of risk aversion.

We next explain how we fix the preference parameters of our model. A summary

of the resulting parameter values is contained in table 1. We choose average risk aver-

sion,26 time preference rate, and elasticity of intertemporal substitution such as to

match average excess returns, the average safe rate, and the average price-dividend ra-

tio in our data set. Instead of iteratively simulating our model to match the empirical

values, we take the short-cut of inferring the parameters from the representative agent

version of section 2.3.2, which yielded analytical solutions for the equity premium, the

risk free rate, and the price-dividend ratio. Specifically, average risk aversion, call it

γ̄, is chosen to match the equity premium. Since in our data we measure the average

log excess returns we have to adapt equation (2.7), which refers to levels. The result-

ing expression is (γ̄ − 1/2)σ2. The risk free rate and the price-dividend ratio cannot

be determined separately, as equations (2.8) and (2.9) reveal. We therefore fix δ at

.96 per year, in keeping with a lot of macroeconomic literature, and choose ψ such as

to approximately match both R and PD. The resulting values are reported in table

2 together with other unconditional moments. Admittedly, this method only permits

an approximate matching of the asset pricing data in our full model, however, as we

will see the deviations are an order of magnitude below the variation in parameter

estimates from the different data sets that have been used in the literature.

The representative agent model only helps to choose average risk aversion. How

does this concept relate to the individual risk aversions of the two agent types? It

turns out that defining average risk aversion as the harmonic mean of type specific

risk aversions, weighted by the types’ wealth shares, yields a good approximation of

the equity premium. To see why this is so think of the representative agent model

as the limit of our heterogeneous agent model as γL and γH converge. In this limit

consumption and returns are log-normal and i.i.d., such that the rules of myopic

26How average risk aversion relates to γL and γH will be discussed below.
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portfolio choice apply27 and we have

φi =
EP

γiσ2
. (2.15)

In the neighborhood of the homogeneous agent limit returns will not be too far from

log-normal and i.i.d., so this portfolio rule will still be approximately true. Use it in

the condition for market clearing in the stock market, φLwL +φH(1−wL) ≡ φ̄ = 1,28

and cancel terms to get
1

γL
wL +

1

γH
(1− wL) =

1

γ̄
. (2.16)

Equation (2.16) suggests that, once we have fixed γ̄, there are still two free pa-

rameters to pin down. However, the wealth distribution between agents is not really

a choice. Rather, we can only fix the initial wealth distribution. As the model is

fed with shocks, it evolves endogenously, and that in a non-stationary manner. The

non-stationarity of the model will be discussed below in section 2.4.2. At this point

it suffice to say that we will experiment with different combinations of initial wealth

distribution and risk aversion levels that approximately reproduce the first moments

of our data. In choosing the free risk aversion parameter we strive to generate enough

agent heterogeneity to quantitatively match the long horizon predictability we find

in our data. The resulting values, γL = 36 and γH = 98.14 for our benchmark

calibration, may seem very far apart, suggesting that we impose a huge amount of

heterogeneity. However, judging from the resulting portfolios this is not true, as we

will see in section 2.4.2. The values for the calibration to dividend data are as far

apart as numerically possible.

To generate the artificial asset pricing data necessary for calculating moments and

running predictive regressions, we use repeated simulations of our model at quarterly

frequency over a period of 100 years, roughly corresponding to the length of the data

set. We alternatively tried simulating at annual or monthly frequencies, neither of

27See Campbell and Viceira (2002) for details.
28To be precise, wL must be the post-consumption wealth distribution.
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which changes our results in a significant way. The higher the frequency, the smaller is

the departure from dynamically complete markets, but the higher the computational

effort. This is why we decided in favor of quarters as a middle way.

2.4.2 Results

We present the results for our full model in two steps. Section 2.4.2 is of a mostly

qualitative nature and serves to illustrate the wealth effect in our full model. The

quantitative assessment of our model is deferred to section 2.4.2, where we present

and discuss statistics obtained by simulating the model.

Heterogeneity and the wealth effect

In the following we elicit how and to what extent the insights from the three aux-

iliary models carry over to the dynamic heterogeneous agent case. To this end we

graphically illustrate how various aspects of the solution such as the price-dividend

ratio and the equity premium depend on the distribution of wealth between the two

agent types. The wealth distribution, summarized by the wealth share of the less risk

averse agent type wL, is the only state variable in our numerical solution. Appendix

2.6.1 provides details on our choice of state space and the numerical solution.

Figure 2 traces out the equity premium and the price-dividend ratio as functions

of the share of wealth held by the agent type with low risk aversion for our benchmark

calibration. As predicted by the two-period model of section 2.3.1, the more wealth is

held by the less risk averse agents, the lower is the risk premium. The price-dividend

ratio, by contrast, rises with the wealth share of the L-types. This reflects our choice

of an intertemporal elasticity of substitution greater than one, as discussed in the

context of the representative agent model of section 2.3.2. Note that in the limit

as wL approaches zero or one the values of equity premium and price-dividend ratio

equal their representative agent counterparts for risk aversions γH and γL respectively.

This is not surprising because at these limits heterogeneity disappears and we are in

25



the respective representative agent worlds.

Correspondingly, at the extremes of the set of wealth distributions, the portfolio

share of the stock of the agent type who holds all the wealth approaches one. This

is illustrated in figure 3.29 At the same time the other agent type’s portfolio share

approaches
γj
γi

, where j is the wealthy agent.30 At interior wealth distributions, on the

other hand, there is true heterogeneity, and the less risk averse agents hold leveraged

positions in the stock, while the more risk averse ones hold a mixture of stock and

bonds. Thus, the less risk averse agents take on a disproportionate amount of risk,

in line with the insurance considerations that we discussed in section 2.3.1. Com-

bining figures 2 and 3 we can now infer for the dynamic model the result that we

proved in lemma 3 for the two period illustration: Since the less risk averse agents

are leveraged in the stock (figures 3 and 4), their wealth share increases after good

shocks, which lowers expected future excess returns and raises the price-dividend ratio

(figure 2). Note that in speaking of wealth shares, we mean the wealth distribution

before consumption. A good shock shifts pre-consumption wealth towards the low

risk aversion types, and pre-consumption wL is negatively (positively) related to the

equity premium (the price-dividend ratio). This is necessary in order to be sure that

consumption choices, which were absent in the two period model, do not pervert the

effect.

In section 2.3.2 we invoked the simple solutions to the representative agent ver-

sion of our model and did comparative statics with respect to the coefficient of risk

aversion, arguing that the effects would be similar to those of varying the wealth

29Interestingly, the L-type’s leverage does not monotonously decrease in his wealth share even
though the equity premium does so. This feature could be due to the deviations from i.i.d. log-
normality of returns and consumption that are caused by heterogeneity. (See discussion below.) The
amount of stock held by the L-type, on the other hand, increases smoothly with his wealth share.
(See figure 4.) We checked very carefully that the non-monotonicity in the portfolio graph is not due
to numerical inaccuracies. In particular, we tried approximating different objects. Also, we made
sure that the risk of bankruptcy, which exists in discrete time unlike in the continuous time limit,
does not cause the hump. To this end we solved the model at monthly and smaller trading intervals.
The hump does not go away but if anything becomes slightly bigger as we get closer to continuous
time.

30This follows from equation (2.15), which implies φi = γj

γi
φj and the fact that φj = 1.
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distribution in the heterogeneous agent version. We now investigate how far this

similarity goes. To this end we compare the equity premium, the Sharpe ratio, and

the volatility of excess returns (all in dependence on wL) to their counterparts in the

representative agent model for different risk aversions. Figure 5 provides a graphical

comparison. The solid lines represent the graphs for the heterogeneous agent model,

the dashed ones are the result of specifying risk aversion according to equation (2.16)

in the representative agent version of section 2.3.2.31 In the first panel the two graphs

are virtually identical and hence overlap. Thus for the Sharpe ratio, i.e. for the price

of risk, we practically have aggregation. That is to say, the price of risk in the hetero-

geneous agent economy with a wealth distribution described by wL and type specific

risk aversion levels γL and γH is identical to the price of risk in a representative agent

economy with risk aversion γ =
[

1
γL
wL+ 1

γH
(1−wL)

]−1

. The equity premium, on the

other hand, is always higher in the heterogeneous agent economy, as the second panel

shows. This can be explained from the graph for the volatility of excess returns at the

bottom of the figure. Heterogeneity introduces extra volatility in the economy, which

implies a higher equity premium for a given price of risk. In the representative agent

economy the risk free rate is constant and so is the price-dividend ratio, such that

the volatility of excess returns is equal to the volatility of dividends. Heterogeneity

introduces volatility into the price dividend ratio (and to a minor extent into the risk

free rate), which makes excess returns more volatile than dividends. 32

Excess return volatility in the heterogeneous agent model is hump shaped, again

with the limits at the two extremes of the wealth distribution being identical to the

respective representative agent versions. It is a good indicator of the strength of

the wealth shifts between the agents in different regions of the wealth distribution.

For, as mentioned previously, return volatility in excess of the volatility of dividend

31To illustrate what we do: E.g. the dashed line for the equity premium represents equation (2.7)

with equation (2.16) plugged in for γ, i.e. EP =
[

1
γL
wL + 1

γH
(1− wL)

]−1

σ2.
32Still, at least for our calibration to consumption data and for the degree of heterogeneity we

have imposed, the volatility of excess returns is far below its empirical counterpart of 18.5% per
year. This is why the Sharpe ratio is far too high when the equity premium is in the right range.
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growth is due to volatility in the price-dividend ratio, which in turn comes about by

shifts in wealth between the two agent types. (See figure 2, panel 1.) Thus a given

dividend shock has the strongest effect on the wealth distribution in its intermediate

range. To see why this is so recall figure 3, which depicts the share of the stock

in agents’ portfolios across the range of wealth distributions. When the L-type owns

almost all wealth his portfolio displays only little leverage. Hence shocks do not affect

the wealth distribution very much. At the other extreme, when the L-type is very

poor, he is very leveraged and thus very exposed to return risk, however, since he has

so little wealth, the wealth distribution does not move very much in absolute terms

either. Hence, in order to have a lot of effective heterogeneity for a given choice of

risk aversion levels we should focus on intermediate, but lower rather than higher,

values for wL. This insight will guide us in the choice of initial wealth distribution

for our simulations.

In section 2.3.2 we also argued that it was crucial to choose a value of the in-

tertemporal elasticity of substitution in excess of one in order for the price-dividend

ratio to predict excess returns with the right sign. Figure 6 confirms that this insight

from the representative agent model carries over to the model with heterogeneity. The

three panels graph the price dividend ratio, the equity premium and the volatility

of excess returns as functions of the wealth distribution. Our benchmark calibration

is depicted in dots. For comparison we plot the same functions for elasticities of

substitution of one (in dashes) and .75 (solid lines). For the latter the price-dividend

ratio falls as the wealth share of the less risk averse agents rises, while the curve for

the equity premium retains its negative slope across all values of ψ. Thus a positive

shock that increases wL will lower both price-dividend ratio and future excess returns,

contrary to the evidence on predictability. The fact that shocks and price dividend

ratio are negatively correlated when the elasticity of intertemporal substitution is

less than one also explains why in this case the volatility of excess returns is actually

lower than without heterogeneity. When ψ is exactly one the price-dividend ratio

is constant. Correspondingly, the volatility of excess returns is constant too at the
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level of the volatility of dividend growth and the behavior of the equity premium is

indistinguishable from its counterpart in our ’mock-heterogeneity’ model in which we

vary risk aversion in the representative agent model.33

A fundamental difference between the dynamic heterogeneous agent model and

its simplified versions of sections 2.3.2 and 2.3.3 regards stationarity. As mentioned

previously, our model is non-stationary in the sense that the wealth distribution

drifts over time. For realistic calibrations the wealth share of the less risk averse

agents approaches one in the long run, and the only stable stationary steady state is

at wL = 1, i.e. in the representative agent limit with γ = γL.34 Why is this so? Since

the L-types have a higher share of stock in their portfolios and stocks command a

return premium, they earn a higher return on their invested wealth. Their propensity

to consume out of wealth, on the other hand, is lower precisely because their portfolio

returns are higher and the elasticity of intertemporal substitution is greater than

one.35 Both forces lead the less risk averse agents to accumulate wealth faster than

the more risk averse ones. However, the average rate of change of the wealth share of

the less risk averse agent type is not constant. Rather, the pattern is hump shaped,

similarly to that of the volatility of excess returns. The reasons are also similar: While

the return advantage of the less risk averse agents tends to decline as their wealth

share grows, this effect is more than compensated at low levels of wL by the increase

in wealth on which this return advantage acts.

The drift in the wealth distribution also has consequences for the persistence

33Nevertheless, even in this special case there is no obvious aggregation result for the true het-
erogeneous agent model. The correspondence between the ’mock’ and ’true’ versions is exact only
for the price dividend ratio and stock returns. To see this first note that with a unit elasticity of
substitution income and substitution effects exactly cancel and each agent’s consumption is a con-
stant fraction 1− δ of his wealth. Market clearing for the consumption good then implies a constant
price-dividend ratio, which in turn implies that stock returns are log-normal and i.i.d. Nevertheless,
due to the time variation in the interest rate portfolio choice is not myopic.

34For certain combinations of (very low) risk aversion coefficients it would be possible for the
more risk averse agents to dominate in the long run. In those cases, even though the less risk averse
agents will always earn higher expected simple returns on wealth, their log returns will be lower.
See Coen-Pirani (2004) for details.

35With CRRA utility this effect would be even more pronounced because the less risk averse agents
would also be more willing to substitute intertemporally.
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properties of our model. Recall that in our simplified model of section 2.3.3, where

dividends were shocked only once, those shocks had fully persistent effects on the

economy. The drift in the model with recurrent dividend uncertainty takes away

some of that persistence. To see this, note that, like the wealth share of the L-

type, all asset price moments converge to their counterparts in the representative

agent model with γ = γL in the long run. Like the wealth distribution, they move

strongly as long as effective heterogeneity is big, i.e. in that intermediate range of

wL referred to previously, and then change ever more slowly to approach their steady

state values asymptotically. Now consider a positive shock. All this shock does is

to take the economy a little closer to its long run steady-state. This changes asset

prices and their moments noticeably at first, but the effect decreases over time and

vanishes asymptotically as the economy approaches wL = 1. Figure 7 illustrates

this behavior through a set of impulse responses. To obtain them we simulated the

economy, starting at wL = 0.1, setting all shocks to zero except for one after 10, 50

or 90 quarters, which we set to one standard deviation. The responses are graphed

as the difference between time series with and without the respective impulse. This

representation shows very clearly how the effect vanishes over time. Moreover, shocks

that occur early on are more persistent than later ones and can even build up. This

is because they occur at a time when the moderating effects of convergence are not

dominant yet.

It is clearly an extreme implication of our model that predictability is an entirely

transitory phenomenon. It could be avoided by viewing agents as dynasties whose

future generations will have different risk preferences with a certain probability. This

modification would introduce an element of mean reversion and hence allow for an

interior stochastic steady state in which the wealth distribution and hence the equity

premium and the price-dividend ratio still respond to dividend shocks. It would come

at the price of taking away some persistence and thus some long horizon predictability.

For the sake of clarity of exposition and in the light of a recent trend to view the

past decades of asset pricing data featuring a high but declining equity premium as
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a transitory period rather than as a steady state,36 we prefer to evaluate the model

during the transition and regard the extension to dynasties as an extension left for

future work.

Simulation results

In order to compare our model to the data we simulate it for 1000 series of 100

years (400 quarterly draws of the shock) each.37 Table 2 reports basic unconditional

statistics. The columns below ’Model’ refer to our benchmark calibration, simulated

from the indicated initial wealth distributions. As explained in section 2.4.1, we do

not strive to match prices and returns to a high precision because data statistics

vary so widely between data samples. Also, as table 2 clearly shows, due to the drift

inherent in our model the exact values depend on the choice of starting value. So

the way to interpret table 2 is as showing that we are rather close to the data for

the means and the autocorrelation of the price-dividend ratio, but far off in terms

of the volatilities. We consider problematic only the low volatilities of excess returns

and price-dividend ratio. The historical standard deviation of the risk free rate seems

very high anyway and is likely due to ex post inflation. Campbell (2003) argues that

the volatility of the ex ante real risk free rate should be very low. The low volatilities

of excess returns and price-dividend ratio are at least partly due to our choice of

data for the driving process. We work with consumption data, even though dividends

are much more volatile than consumption.38 The fact that excess returns are more

volatile than consumption growth and that the price dividend ratio covaries positively

with consumption growth (otherwise excess returns would be less volatile than ∆c)

indicates that our model goes in the right direction of creating ”excess volatility”.

This reiterates what we saw graphically in section 2.4.2.

Table 3 presents long-horizon regressions of log excess stock returns on the log

36See for example Cogley and Sargent (2005).
37We use these short run simulations instead of a long run simulation for the same reasons as Adam,

Marcet and Nicolini (2006): Heterogeneity and hence predictability is a transitory phenomenon in
the model and vanishes in the long run. See Adam et al. (2006) for details on the method.

38We discuss this choice with its pros and cons in section 2.4.1.
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price-dividend ratio in historical and simulated data. We report the slope coefficients

and the R2s up to horizons of 10 years. As mentioned in section 2.4.1, we choose

the spread between the two types’ risk aversion coefficients such as to generate pre-

dictability, as measured by the R2, of magnitudes similar to those we find in the

data.39 The estimation coefficients on the artificial data tend to be higher than in

the historical data.40 Unsurprisingly, in the light of the foregoing discussion of the

properties of our model, there is less predictability at higher initial wealth shares of

the less risk averse agents. This is because in these simulations we miss part of the

range of wealth distributions for which effective heterogeneity is largest. In order

to generate higher R2s also for higher starting values we would have to increase the

spread between the two types’ risk aversion coefficients further.

How ’big’ is heterogeneity in our calibration anyway? The degree of leverage of

the less risk averse agents may provide an intuitive measure. We find that on average

the L-types hold stocks amounting to 128% of their wealth in the simulation for

wL,0 = 0.1 and less in the other two simulations. The H-types’ portfolio share of

stocks is on average 41% in the simulation for wL,0 = 0.1. This difference may seem

rather big, but one has to keep in mind that in this economy the stock is the only

asset in positive net supply. Data presented in Vissing-Jorgensen (2002) show that

even the 44% of stockholders in the U.S. hold only about half their financial wealth

in stocks, with a standard deviation of 30%. This number translates into a coefficient

of variation of the portfolio share of about 0.6, almost equal to the one in our model

for the simulation for wL,0 = 0.1 and bigger than the ones for the other simulations.

Taking into account that households owning stock likely own non-financial wealth as

well and/or adding the households who do not participate in the stock market, the

coefficient of variation calculated from the data would actually be higher than in our

39In line with intuition more heterogeneity leads to more predictability because portfolios become
more extreme and the wealth effect thus becomes stronger.

40This may be because the volatility of the price dividend ratio in the simulated data relative to
the real data is even lower than the relative volatility of excess returns in simulated and real data.
All coefficients are significantly different from zero, both those estimated from artificial and from
real data.
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calibrated model. It therefore seems fair to say that the amount of heterogeneity we

impose in our calibration is not excessive.

Another way of looking at heterogeneity in our model is by comparing the volatil-

ities and correlations of individual and aggregate consumption. Table 4 contains

the corresponding information. In our benchmark simulation the annual volatility

of consumption growth of the less risk averse agents is about twice as big as that

of aggregate consumption while the consumption growth volatility of the more risk

averse agents is only little more than a third of its aggregate value. Thus quite a bit

of consumption insurance is taking place between agents, and from this perspective

heterogeneity does seem sizable. For completeness we also report the correlations of

aggregate and individual consumption growth rates. They are positive but far from

one, in particular where cL is involved.

Table 5 presents means and standard deviations as well as predictive regressions

for our alternative calibration using dividend data. Unfortunately the results are only

partially comparable to those from the consumption calibration because we could not

solve the model for comparable degrees of heterogeneity. For the dividend calibration

we hence have to use a ratio of risk aversion coefficients of γH
γL

= 5.683
2.335

≈ 2.43, compared

to ≈ 2.71 in our benchmark calibration to consumption data. Nevertheless, this

alternative calibration is instructive to analyze. Unsurprisingly, we achieve much

less predictability than in our benchmark calibration. Nevertheless, the R2 rises

noticeably with horizon and reaches 5% at a 10 year horizon, which is still more

than what Chan and Kogan (2002) achieve in their heterogeneous agent model. The

volatilities of excess returns and price-dividend ratio are much higher now than in

our benchmark calibration. The big increase in excess return volatility can clearly be

traced back to the much higher volatility of dividend growth of 12.8%. Again, the

positive correlation of price-dividend ratio and dividend growth add some more to

the volatility of excess returns.

Nevertheless, the volatility of excess returns and price-dividend ratio is still much

lower than in the data. It seems that in this model as it stands it is very hard
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to generate sufficient volatility. One reason is that the price-dividend ratio here is

bounded above and below by its respective values in the two polar representative

agent models. At 18.86 and 23.97 in our benchmark calibration, these bounds are

clearly too tight compared to the data. We could extend them somewhat by choosing

a higher value for the elasticity of intertemporal substitution, but this would not help

very much.41

This lack of volatility is a bit of a concern because it could bias upward our

results regarding predictability. For in a way strong predictability and low volatility

of price-dividend ratio and excess returns are two sides of the same coin: Strong

predictability means that the variability of expected excess returns, i.e. of the equity

premium, is high relative to that of ex post excess returns. Ex post excess returns vary

for three reasons. The first is variation in expected excess returns as a consequence

of wealth shifts between agents. Secondly, dividend shocks directly affect realized

excess returns. And so do, finally, movements in the price-dividend ratio. Thus

if the volatility of excess returns is too low because the price-dividend ratio is too

stable, excess returns may display too little ex post volatility relative to their ex

ante volatility, implying too much predictability. An answer to this concern is that

the level of heterogeneity in our model is sufficiently moderate as to allow further

increases. If we could increase heterogeneity so much as to generate enough volatility

we would likely obtain far too much predictability.42 In the light of the difficulties

of previous contributions to generate sufficient predictability this might actually be a

welcome rather than a problematic result. Also, realistic extensions such as modeling

equity as a leveraged claim on consumption would help to reduce predictability again

by raising volatility for a given amount of heterogeneity.

The upshot of the foregoing discussion is that strong predictability of excess re-

turns is indeed a feature of our model. This is true not only in the sense of generally

sizable R2s but also in terms of significant rises in the R2 with horizon. To understand

41On the downside, the drift in the wealth distribution would become much stronger, which we
regard as undesirable.

42Numerical limitations prevent us from doing so.
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this latter property it is best to refer to the discussion of predictability in Cochrane

(2005), chapter 20. The point made there is that for the R2s of predictive regressions

to rise strongly with horizon the forecasting variable, i.e. the price-dividend ratio for

our purposes, has to be very persistent. This is clearly the case in our model. Table

2 reveals that the first-order autocorrelation of the price-dividend ratio in our simu-

lations is of the same order of magnitude (ca. 0.8) as in the data. This persistence of

the price-dividend ratio can in turn be traced back to the highly persistent effect of

dividend shocks on the wealth distribution. Recall from section 2.3.3 that if it were

not for the drift in the wealth distribution persistence would actually be complete.

The overall magnitude of the R2s, on the other hand, has to do with our choice

of Epstein-Zin utility. This choice allows us to impose heterogeneity only on the

coefficient of risk aversion while leaving the elasticity of intertemporal substitution

equal across agents. We can thus make the equity premium rather volatile while

leaving the real rate fairly constant. It moves only to the extent that changing

average risk aversion changes the strength of the precautionary savings motive. As a

result in our model, unlike in Chan and Kogan (2002), return predictability is actually

excess return predictability and not gross return predictability driven by predictable

movements in the interest rate. In our benchmark calibration the volatility of the

risk premium is more than 50% bigger than that of the risk free rate, while in Chan

and Kogan (2002) it is almost exactly the other way round.

2.5 Conclusion

We have analyzed a model of heterogeneous Epstein-Zin agents who differ exclusively

in their risk aversion. Our major finding is that in this world even at moderate degrees

of heterogeneity the price-dividend ratio is a significant (negative) predictor of future

excess returns. Regressions of excess returns, cumulated over different horizons, on

the price-dividend ratio display the empirically observed pattern of R2s rising strongly

with horizon. The magnitudes of the R2 we find are close to their empirical values.
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Heterogeneity in our model also creates some excess volatility of stock prices and

excess returns, however, the magnitudes of these volatilities are still far below their

empirical counterparts for our calibration. To raise them significantly, we would likely

have to raise heterogeneity to absurd degrees. In order to improve this aspect of the

model it would be interesting to introduce leveraged equity. I.e. bonds would be in

positive net supply, and stocks would be a claim on consumption net of payments to

bond holders. This would be a way to make dividends more volatile than consumption

while retaining the general equilibrium character of the model, which is necessary with

heterogeneous agents. We conjecture that this extension would be an alley towards

achieving realistic amounts of volatility and predictability at the same time.

36



2.6 Appendix

2.6.1 Choice of state space and computational strategy

For all the results presented in section 2.4.2 we solve the model by approximating

four functions on a grid of wL, the wealth share of the less risk averse agent type.

The functions describe cL, the consumption of the L-type as a share of dividends, φL,

the L-type’s portfolio share of stocks, PD, the price-dividend ratio, and R, the gross

risk free rate. We can use the wealth distribution as the single state variable because

dividend growth is i.i.d.

For each wealth distribution we find next period’s wealth distributions on a grid

of dividend growth rates as a fixed point of

w′
L[PD(w′

L) + 1] exp(∆d′) =(
wL[PD(wL) + 1]− cL(wL)

)(
φL(wL)

PD(w′
L) + 1

PD(wL)
exp(∆d′) + (1− φL(wL))R(wL)

)
where we use our approximated functions. The resulting set of w′

L(wL, exp(∆d′))

allows to find the corresponding next period values of the approximated functions

and ultimately to state the Euler equations for stocks and bonds for each agent. We

iterate on the approximated functions to satisfy the Euler conditions using Broyden’s

algorithm.

For the grid of dividend growth rates we use 30 grid points, which are weighted to

approximate a log-normal distribution. For the grid of wealth shares 25 Chebychev

nodes or less are typically sufficient to achieve a precision of 10−5 or better off the

grid.

2.6.2 Complete versus incomplete markets

In the model on which the results of our paper are based markets are incomplete

because there are only two assets while dividend growth can have many realizations.
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Also, with heterogeneous agents we are not aware of any spanning properties for this

asset structure. Nevertheless, we conjecture that our results do not depend on this

market incompleteness. Several arguments suggest so:

1. At a theoretical level, with one source of uncertainty and trade in a stock and a

riskless bond markets are incomplete only due to discrete trading intervals. I.e.

as we shrink the period length we get closer and closer to complete markets.

Numerically, we have made use of this observation and solved the model for

ever shorter frequencies in order to check to what extent the solution changes.

It turns out that changes are hardly recognizable.

2. We have also programmed and solved the social planner’s problem. (See below

for the set-up and the computational approach.) It is computationally more

involved, which makes it less practical for experimenting, and at the point

of writing the program is not fully stable. However, for the calibrations tried

results are hardly distinguishable from those for the incomplete markets version.

3. We have analyzed the simplified model of section 2.3.3 for the case in which the

dividend shock can take only two values such that markets are complete. The

results of lemma 4 uphold and can in fact be strengthened.

Social planner’s problem

For completeness we explain how we solve the complete markets version of our model.

The problem we solve is

max{CL,t,CH,t} ω logUL,1 + (1− ω) logUH,1 (2.17)

CL,t + CH,t = Dt∀t ≥ 1

where Ui,t =
[
(1−δ)Ci1−1/ψ+δ[E(Ui,t+1

1−γi)]
1−1/ψ
1−γi

] ψ
1−ψ

. We use the log-transformation

of U in the planner’s problem because in this formulation the welfare weight ω can

be interpreted as the initial wealth share of the L-types, as will be shown below. This
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property is useful for comparing the complete and incomplete markets versions of our

model. Since the log is a positive monotone transformation logU represents the same

preferences as U .

The first order conditions of this problem are equalization of stochastic discount

factors (definition in equation (2.10)),

mL,t+1 = mH,t+1, (2.18)

for all periods and

ωU
1/ψ−1
L,1 C

1/ψ
L,1 = (1− ω)U

1/ψ−1
H,1 C

1/ψ
H,1 (2.19)

for period one.

The problem is thus not fully recursive, since we have an extra condition for the

initial period. We handle this problem as follows: First we approximate cL, the

consumption share of the L-type, as well as vi ≡ Vi/D, the value of each agent type,

normalized by dividends, on a grid of dividend growth and last period’s distribution

of consumption cL,−1. In this we make use of the stochastic discount factor condition

(2.18) as well as the two recursive utility functions. Next we use equation 2.19 to find

the initial consumption distribution that corresponds to the initial wealth distribution

characterized by ω.

The interpretation of the welfare weight ω as the initial wealth share of the L-types

is possible due to the linear homogeneity of U . This property implies U
1−1/ψ
i,1 C

−1/ψ
i,1 =

(1− δ) Ui,1
∂Ui,1/∂Ci,1

= (1− δ)Wi,1.
43 Dividing the corresponding conditions for each type

by one another and noticing that WL,1/WH, 1 = wL,1/wH,1 we arrive at equation

(2.19) with wL,1 = ω.

43See Cochrane (2006) for details on the properties of Epstein-Zin utility.
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Chapter 3

Dynamic Effects of Unemployment
Insurance Reform
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3.1 Introduction

Recently considerable attention has been devoted to the analysis of the influence of

unemployment insurance on labor market outcomes and welfare. Several main chan-

nels have been identified: Simple matching models like the one used in Pissarides

(1990) show that, by increasing workers’ outside option in bargaining, unemploy-

ment benefits raise wages and thus reduce vacancy creation, job finding rates and

ultimately employment. The welfare consequences of this effect are ambiguous unless

one imposes parameter restrictions.1 A clearly negative consequence of unemployment

insurance is above all the moral hazard that it induces among both unemployed and

employed workers by distorting their search and work effort incentives respectively.2

Furthermore, to the extent that unemployment insurance lowers employment it will

increase welfare losses from distortive taxation because tax rates have to increase to

keep revenue constant and the benefit itself has to be financed as well. On the posi-

tive side, Marimon and Zilibotti (1999), for example, have pointed to improvements

in match quality and hence productivity resulting from the role of unemployment

benefits as a subsidy to search. The most obvious benefit of unemployment insur-

ance, however, is its insurance function for risk-averse individuals in an environment

of incomplete asset markets. In this role it may not only increase utility but even

enhance productive efficiency as Acemoglu and Shimer (1999) show. This is because,

absent insurance, risk-aversion would lead to inefficiently high employment. On the

other hand, it is well documented that even under incomplete markets individuals can

self-insure quite well against temporary income shocks as long as they have access

to a safe asset.3 Thus, given its adverse effects, rather low levels of unemployment

insurance are likely to be optimal in steady-state.

Nevertheless, currently most developed countries exhibit fairly high levels of un-

1E.g. the Hosios (1990)-condition.
2Contributions emphasizing search distortions are Shavell and Weiss (1979), Hopenhayn and

Nicolini (1997), and more generally the optimal unemployment insurance literature. Moral hazard
among employed workers has for example been discussed by Wang and Williamson (1996).

3See for example Krusell and Smith (1998) and the references cited therein.
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employment benefits. - After tax replacement rates around 60% are by no means

uncommon. And despite the above theoretical considerations it is not clear a priori

whether reducing them would be beneficial, for self-insurance crucially depends on

having appropriate asset levels. But accumulating assets takes time and has a cost

of foregone consumption. Also temporary lack of insurance in the early phase of a

reform will impose a welfare cost. Hence, looking at the transition from the initial

conditions to the new steady-state is essential before making any statement regarding

desirable levels of unemployment insurance.

Such a dynamic analysis of the consequences of reducing unemployment benefits

is the main contribution of the present paper. To this end, we embed the standard

Mortensen-Pissarides job matching model in an Aiyagari (1994)-type incomplete mar-

kets setting. As a by-product, insights are gained on the out-of-steady-state behavior

under incomplete markets of this main workhorse of the recent macro-labor literature.

In the model individuals are risk-averse and face idiosyncratic income uncertainty due

to stochastic transitions between the states of employment and unemployment. In

addition to unemployment insurance they have the possibility to self-insure by accu-

mulating an asset that yields a safe exogenously fixed return, but they cannot borrow.

Job loss occurs exogenously while the reemployment probability is endogenously de-

termined by the vacancy-unemployment ratio and the matching function. Firms’

hiring probability is correspondingly endogenous as well. A zero-profit condition

determines vacancy creation in the presence of costly vacancy creation. Unions and

employers, both without strategic motives, bargain over the wage, which consequently

is unique despite the fact that heterogeneous individual assets imply heterogeneous

outside options for the agents. For the sake of tractability, labor supply is inelas-

tic and there is no search decision. Nevertheless, there are potentially strong effects

of benefits on job finding rates and employment which work through the Nash bar-

gaining and firms’ vacancy creation. Appropriate calibration hence yields the right

reduced form effects without the extra complications of further decision variables.

The solutions for both the steady-state and the transition path are obtained numer-
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ically for a calibration to Germany in the mid-1990s. The policy reforms considered

are one-off changes in the level of unemployment benefits with and without previous

announcement as well as optimal reform paths. We compare the effects for two vari-

ants of the model: First we maintain the standard assumption of firms facing a cost

for each period that they open a vacancy. Then we alternatively assume that there

is a fixed cost of hiring a worker independent of how long it takes to find him.

We find that, even though steady-state comparisons suggest significant welfare

gains from reducing unemployment benefits, the dynamic analysis reveals important

transition costs. For the standard vacancy cost specification even a one percentage

point reduction of the replacement rate (without announcement) harms the unem-

ployed workers. However, average worker welfare improves for moderate reductions.

The transition costs are identified to stem on the one hand from the need to increase

savings (and hence temporarily reduce consumption) to improve self-insurance and

on the other hand from the drop in utility for those who become unemployed before

they can adjust their asset holdings to the reduced unemployment income.

The welfare gains for workers can be increased greatly when the reform is an-

nounced some time in advance or if it is phased in gradually. The main reason, how-

ever, is not a reduction in transition costs that could be achieved this way. Rather

announcement or phasing-in allow workers to extract gains from the reform that

otherwise accrue to firms. These gains arise due to the upward jump in vacancies

following an unexpected reform, which makes recruiting so much more costly that

firms with filled jobs earn a large windfall. Bargaining allows workers to extract part

of this windfall during an announcement period or during the phasing-in. Vacancies

then no longer jump but increase steeply.

The results for our alternative assumption of a fixed hiring cost differ substantially.

Despite the costs of transition, even big, unannounced reforms turn out favorably.

But advance announcement does not further improve the welfare effects. Since with

constant hiring costs there is no windfall to be appropriated by the workers, an

announcement period only permits improvements in self-insurance before the reform

43



hits. However, these are quantitatively dominated by the losses from delaying the

reform. In fact, an unannounced one-off change in the replacement rate is optimal

when there is a fixed hiring cost.

The transition paths of unemployment and wages reflect the general equilibrium

nature of the model. In the first periods following an unannounced reform gross

wages drop sharply due to insufficient self-insurance, overshooting their new steady-

state. This induces so much job creation that unemployment also overshoots with a

lag before gradually converging to its new steady-state. Net wages, by contrast, at

first drop but then increase above their old steady-state level because the increase

in employment reduces the burden from unemployment insurance contributions and

other taxes. With announcement dynamics differ in that wages first rise before the

reform hits, which reflects the process of rent appropriation described.

The two papers that are most closely related to this work are Joseph and Weitzen-

blum (2003) and Lentz (2003). To my knowledge they are the only contributions that

take account of transition effects in the welfare analysis of unemployment insurance.

Both, however, use partial equilibrium models in which the wage is exogenous and

does not react to the policy change. Joseph and Weitzenblum (2003) is a numerical

analysis calibrated to the low-skilled segment of the French labor market. The authors

find that even though steady-state comparisons suggest welfare gains from lowering

unemployment insurance transition costs more than outweigh the gains. Lentz (2003)

structurally estimates a search model with precautionary savings and variable search

intensity. Using Danish data he finds that the search decision is only little distorted

by unemployment insurance. Consequently optimal replacement rates turn out rather

high, that is between 43% and 82%.

Static analyses of unemployment in general equilibrium search models with in-

complete markets have been performed by Costain (1997) and Rebelo, Gomes and

Greenwood (2003). In a life-cycle model with matching and search costs Costain

(1997) finds mildly positive steady-state effects of unemployment insurance, which

become significantly positive for higher coefficients of risk-aversion. Calibrating their
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model to U.S. replacement rates and higher ’European’ levels, Rebelo et al. (2003)

find a negative impact of benefits on employment and welfare in a search model with

endogenous labor supply.

The paper is structured as follows: Section 4.2 sets out the model and defines the

concept of equilibrium used. The calibration is described in section 3.3. In section

3.4 the model’s comparative statics for different benefit levels are analyzed. The

transition dynamics and their welfare consequences are then investigated in section

3.5. Section 3.6 concludes.

3.2 The Model

In this section I set out the model I am using for my analysis. One of its building

blocks is the Mortensen-Pissarides type matching framework with matching function

and wage determination through Nash bargaining. The other important feature is

market incompleteness in the sense that risk-averse, credit-constrained individuals,

who face idiosyncratic income uncertainty due to the risk of job loss, can self-insure

only via a safe asset a. There is no aggregate uncertainty since the focus is on un-

employment insurance which can clearly cover idiosyncratic risk only. However, the

labor market reform considered consists in an unanticipated shock to the level of un-

employment benefits. Unemployment benefits are financed through a tax levied on

the employed. The firm side is kept as simple as possible with one-worker firms pro-

ducing a fixed output when they have a worker. Wages and vacancy-unemployment

ratio (henceforth sometimes called market tightness) are endogenously determined

in general equilibrium. The interest rate r is exogenously fixed at a level below the

workers’ discount rate β, that is to say the economy can be thought of as small and

open. 4

4The reason for not endogenizing the interest rate is that workers in reality only own a small
fraction of the entire productive capital. With an endogenous interest rate this would either imply a
very unrealistic capital-labor ratio or unrealistically high accumulation among workers, which would
render an analysis of unemployment insurance useless.
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3.2.1 The Individual’s Problem

The economy is populated by a mass one of risk-averse individuals who are charac-

terized by their asset holdings at and by their employment status st ∈ {u, e}. Their

problem consists in optimally choosing consumption ct and savings at+1 in every pe-

riod subject to their budget and borrowing constraints and taking into account the

Markov transition probabilities πt(st+1|st) between unemployment and employment.

The utility function satisfies standard conditions. Labor supply is fixed and there are

no search costs. Hence the individual’s value is

Vt(at, st) = max
ct,at+1

{u(ct) + β(πt(u|st)Vt+1(at+1, u) + πt(e|st)Vt+1(at+1, e))} (3.1)

s.t. ct + at+1 ≤ it(st) + (1 + r)at

at+1 ≥ 0

where it(st) is his state-dependent non-asset income. For an employed worker this

income equals the wage wt minus taxes. For unemployed workers it consists in un-

employment benefits bt, which are a fraction ρt ∈ [0, 1] of the net wage. This net

replacement rate does not depend on the completed length of an individual unem-

ployment spell but may vary over time during the implementation of a reform. Taxes

serve both to finance unemployment benefits and to cover the state’s other expenses

which are assumed to be a fixed exogenous amount G. Hence they equal utbt+G
1−ut

per employed worker, where ut is the unemployment rate.5 This leaves after some

manipulations:

it(st) =

 ρt
(1−ut)wt−G
1−ut+ρtut st = u

(1−ut)wt−G
1−ut+ρtut st = e

5This general purpose tax is introduced for calibration purposes only in order to achieve a realistic
range for the wedge between gross and net wages. It can be thought of as the sum of a payroll tax
and social security contributions aside from unemployment insurance. The individual’s tax burden
varies inversely with employment such as to capture the general equilibrium effect of employment
on taxes.
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The value function of the individual is time-indexed because out-of-steady-state wages,

taxes, and transition probabilities are not constant. The individual is assumed to

know the entire future path of these variables, which are determined in general equi-

librium as set out below.

The Markov transition probabilities between unemployment and employment are

determined as  πt(u|u) πt(e|u)

πt(u|e) πt(e|e)

 =

 1− θtq(θt) θtq(θt)

λ 1− λ

 (3.2)

Here λ is the exogenous rate of job destruction while θtq(θt) is the job finding rate

for unemployed workers. θt, the ratio of vacancies to unemployed, is the argument of

the matching function q(·) (expressed as matches per vacancy), which is decreasing

with an elasticity of less than one in absolute value. θt is exogenous to the worker

and is determined in general equilibrium.

Note that, in the description of the individual’s problem we have taken for granted

that jobs are always accepted. This is in fact a safe thing to do because, with un-

employment income being no greater than income from working (ρt ≤ 1), individuals

will accept any job they find provided 1 − λ ≥ θtq(θt), i.e if their chances of having

an employment opportunity next period are at least as big if they accept the offer as

if they reject it. This will always hold if one chooses the time period short enough.

3.2.2 Firms

Firms can be in one of two states: They can have a worker and produce, or they can

have a vacancy. Like the workers they know the future path of wages and matching

probabilities. A filled job has value

Jt = p− wt +
1

1 + r

[
λOt+1 + (1− λ)Jt+1

]
(3.3)
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where p is the output of a firm that has a filled job. Since with probability λ the match

is destroyed, the firm’s value next period changes to Ot+1, the value of a vacancy, with

probability λ. A firm that opens a vacancy has value

Ot = −κ+
1

1 + r

[
q(θt)Jt+1 + (1− q(θt))Ot+1

]
(3.4)

with κ being the cost of opening a vacancy for one period.6 Free entry implies that

Ot = 0. Thus profits on average just cover hiring costs. This implies that ex ante, i.e.

in the absence of unexpected parameter changes, the value of a filled job is given by

Jt+1 =
1 + r

q(θt)
κ. (3.5)

Combining equations (3.5) and (3.3) we can relate wages and market tightness ac-

cording to

wt = p+
1− λ

q(θt)
κ− 1 + r

q(θt−1)
κ (3.6)

which again only holds absent policy shocks. In case policy shocks lead ex post to

profits or losses, these are attributed to the rest of the world, which is assumed to be

the residual claimant.

3.2.3 Determination of Wages and Matching Probabilities

Nash bargaining between employers’ associations/firms and unions determines the

wage in a given period conditional on current and future market tightness and taxes

and future wages. That is to say, agents on both sides do not behave strategically

such as to influence aggregate or future variables.7 The union’s objective is the

6The alternative specification of the hiring cost referred to in the introduction will be introduced
in section 3.5.2.

7Clearly, this assumption is strong in the context of centralized bargaining. But it simplifies
the solution of the model greatly. Individual bargaining would make it unnecessary, however at the
cost of wage differentials that are due not to productivity differences or job characteristics but asset
holdings.
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value of the median employed worker, that is of the worker whose assets correspond

to the median of the asset distribution for employed workers. This form of wage

determination achieves that there is a unique wage for all employees despite their

heterogeneous outside options (due to heterogeneous wealth).8

Precisely, denoting by amt the asset level of the median worker in period t, bar-

gaining between firms and unions solves

max
wt

(
Vt(a

m
t , e)− Vt(a

m
t , u)

)σ
J

(1−σ)
t (3.7)

The solution to this problem is

Vt(a
m
t , e)− Vt(a

m
t , u) =

σ

1− σ
V ′

t(a
m
t , e)Jt.

9 (3.8)

The determination of the wage also pins down the number of vacancies created

and hence market tightness and matching probabilities, even though with a lead of

one period of vacancies. The mechanism is through free entry: Given future wages

and matching probabilities the value of a firm one period ahead, Jt+1, is known.

Entry and vacancy creation has to occur so long as to drive this period’s value of

a job opening to zero. This link from wage setting to matching probability (and

consequently job finding rate, average duration of unemployment, unemployment rate,

etc.) is crucial to keep in mind for the analysis of unemployment insurance below.

For the level of unemployment benefits directly influences the bargaining strength of

workers and thus wages and by the mechanism just explained employment dynamics.

Thus, even though we do not model labor supply and search costs, which are usually

held to provide the channels for effects of unemployment insurance on employment

dynamics, the observed correlation between benefit levels and labor market variables

8This wage is nevertheless acceptable to all workers regardless of their asset position since jobs
are never turned down in this setting (Cf. section 3.2.1.

9The presence of the V ′
t(am

t , e)-term on the right hand side is caused by the fact that workers have
strictly concave utility unlike in most matching models. The derivative of the value function with
respect to wages is therefore generally not equal one. Intuitively, an extra unit of wages translates
into one unit loss of surplus for the firm but into V ′

t(am
t , e) units gain in surplus for the worker.
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can be generated.

3.2.4 Competitive Equilibrium

To close the model the behavior of the aggregate state variables, that is unemploy-

ment and the asset distribution, has to be determined. The law of motion for the

unemployment rate is

ut+1 = λ(1− ut) + (1− θtq(θt))ut. (3.9)

To describe the evolution of the asset distributions for unemployed and employed

workers it is necessary to first introduce some more notation. As explained in section

3.2.1, the individual’s asset choice depends on his individual states plus the paths of

wages, taxes, and tightness. Write it hence as at+1 = F (at, st; Θ
t, ωt, ut) where Θt and

ωt are the paths of tightness and wages, i.e. Θt = {θt, θt+1, ...} and ωt = {wt, wt+1, ...}.

Today’s unemployment ut features as an argument in the policy function because the

path for taxes is determined by the path for tightness and equation (3.9) together

with ut as an initial condition. The law of motion for the distribution functions of

unemployed and employed workers’ assets, Gu
t (ã) and Ge

t(ã), can now be described as

 Gu
t+1(at+1)

Ge
t+1(at+1)

 =

 1− θtq(θt) λ

θtq(θt) 1− λ

 Gu
t (ā

u
t (at+1))

Ge
t (ā

e
t (at+1))

 (3.10)

where āstt (at+1) = max{at|F (at, st; Ω
t, ωt, ut) = at+1}.10 Note that this law of motion

is based on the agents’ optimizing choices.

For convenience summarize the aggregate states as Γt = (Gu
t (ã), G

e
t(ã), ut) and

denote their joint law of motion as Γt+1 = Ht(Γt). We are now set to define a

(potentially non-steady-state) equilibrium for this economy:

10This formulation relies on continuity and monotonicity of the policy function F in at, which is
warranted by standard nature of the household problem in this respect.
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Definition 5 A competitive equilibrium for the economy considered is a wage path

ω, a tightness path Θ, a policy function F , and a law of motion H such that

(i) F solves the individual’s problem,

(ii) ω solves the Nash bargaining,

(iii) H is generated by F and Θ, and

(iv) vacancies have zero value.

In particular, a steady-state equilibrium is defined as follows:

Definition 6 A competitive steady-state equilibrium for the economy considered is a

competitive equilibrium in which θ and w are time-invariant and Γ is a fixed point of

H.

3.3 Calibration

The solution of the model is entirely numerical. In a first step the steady-state is

solved for. Out of steady-state a time path between two steady-states with different

levels of unemployment benefits is determined. The algorithms used to find the

steady-state and the transition path are contained in appendix 3.7.2.

I make standard functional choices: Utility is taken to be of the CRRA type with

coefficient of relative risk-aversion γ set to 2. This is within the acceptable range

according to Mehra and Prescott (1985b). The matching function is Cobb-Douglas.

Dividing it by vacancies and calling θ = v
u
, the ratio of vacancies to unemployment,

we have q(θ) = m(u,v)
v

= χ · θη. η is the elasticity of the matching function with

respect to vacancies while χ is a scaling parameter. η is chosen to be -0.5 which is in

the middle of the commonly used range of -0.4 to -0.6.11 The weight of the worker

in bargaining is 0.5. This is the value that has traditionally been assumed in Nash

bargaining.12 Also we thus have σ = |η| as in most of the literature. The Hosios

11See Petrongolo and Pissarides (2001).
12e.g. in Pissarides (1990).
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(1990)-condition regarding absence of search externalities is nevertheless not readily

applicable due to the concavity of the workers’ utility function which breaks the link

between σ and the share of the match surplus going to the workers. Output per

match, p, is normalized to one. The time period is set to one month.

All remaining parameters are matched to observations on Germany for the mid-

1990s. The parameters governing labor market flows can be inferred from data on

unemployment, vacancies, and unemployment duration using the law of motion for

unemployment. An unemployment rate of 8.2% (OECD standardized unemploy-

ment rate), vacancy-unemployment ratio of 0.10 (calculated from the vacancy data

of Nickell and Nunziata (2001)), and average unemployment duration of 12.4 months

(Machin and Manning (1999)) then imply a job destruction rate λ = 0.72% and

matching efficiency χ = 0.254.

The net replacement rate, that is the ratio of unemployment benefits to net wages

ρ, is set to 60%. Obviously, as in most economies in Germany there exists in fact a

multitude of replacement rates depending on previous wage, personal circumstances,

employment history, and completed length of the unemployment spell. To summarize

them into this one rate I construct a weighted average from OECD data (Martin

(1996)) reporting net replacement rates for three different classes of workers and

three unemployment durations. The weights are obtained from data in the Report

on Poverty and Wealth of the Federal Government of Germany (Bundesregierung

(2001)).13 It may be worth noting that a constant replacement ratio independent of

the length of the unemployment spell is in fact not a bad approximation for many

workers in Germany.

Finding one single rate of taxation is fraught with the same problems as find-

ing a summary replacement rate. The rate According to the Federal Employment

Agency (Bundesanstalt fr Arbeit), total social security contributions (i.e employer

and worker share together) amount to about 33% of labor costs, while wage taxes

13Martin (1996) also reports an ’overall average’ of 54%. However, this measure is the unweighted
average of the nine categories, in which for example long-term unemployed with spouse in work,
who do not receive any benefits, are given far too much weight.
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net of family benefits etc. amount to 7% for an average employee (German Institute

for Economic Research (DIW), Bedau and Teichmann (1995)).14 We thus set taxes

including unemployment insurance contributions (i.e. utbt+G
1−ut ) to 40% of gross wages.

The magnitude of this tax wedge has direct consequences for the elasticity of the

unemployment rate with respect to unemployment benefits because it determines the

strength of the general equilibrium effect of benefits on unemployment: As unemploy-

ment increases with the level of benefits, the tax burden on each worker increases not

only due to rising contributions to unemployment insurance but also due to the fact

that G has to be financed by fewer employees. This tends to raise gross wages further

and reduce employment even more. Hence, the resulting elasticity of unemployment

with respect to the benefit level is a measure of success for the calibration of the tax

burden. We compute this elasticity to be 0.75. This is reasonably close to the esti-

mates of approximately one reviewed in Costain and Reiter (2003) given the absence

of an endogenous search decision in our model. By assuming a higher tax burden the

elasticity of unemployment to benefits could be further raised. But we choose to stick

to the data in order to avoid the danger of overstating the welfare gains from reducing

unemployment benefits because a fall in unemployment due to increased costly search

is less welfare enhancing than one that is due to lower taxation.

The remaining parameters, the vacancy creation cost κ and the discount factor

β, are calibrated such that the aggregate state variables, unemployment and asset

distribution, match the data. Given that income variation in the model results from

the risk of unemployment only it is clearly unrealistic to aim for a realistic asset

distribution in all dimensions. Since the model is about dependent workers I focus on

this segment of the population and in particular on the share of people with little or

no assets. This seems reasonable since it is these people who are most affected by the

level of unemployment benefits. Also by assets I understand liquid assets, i.e. those

that can readily be used to smooth consumption in case of job loss. Of these 6.5% of

14More precisely: On so called ’gross wages’ employers and employees each pay about 20% of
social security contributions, and the average employee pays 8% in wage tax net of family benefits,
subsistence allowance, etc. So in total we have a burden of 48/120 or 40% of labor costs.
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German worker and unemployed households did not have any in 1998 (Bedau (1999),

Mnnich (2001)). Since it is likely that even these households have some money on

a current account, I calibrate the difference between discount rate and interest rate

such as to achieve a share of 6.5% with less than half a monthly net wage in savings.

This requires an annual discount rate of 5.5% while the real interest rate is set at

2% per year. This value of the interest rate is chosen despite the fact that the real

return on (rather safe) public debt has tended to be higher. The reason is that people

with little financial wealth tend to hold it in assets with extremely low yields such as

savings accounts.

3.4 Steady-State Analysis

Before turning to the numerical results let us briefly recall the main economic forces at

work in Mortensen-Pissarides type models. First of all, unemployment benefits have

a positive effect on the (gross) wage because they improve the workers’ position in the

Nash bargaining. Secondly, higher wages go along with lower market tightness, which

in steady-state translates into higher unemployment. Formally this relationship can

be seen from equation (3.6) evaluated in steady-state. The economic logic is that at

higher wages the flow income of firms is lower and hence, for given interest and job

destruction rates, recruitment costs must be lower in order for them to break even

in present value terms. But recruitment costs are lower only if market tightness is

lower because vacancies are then matched to workers more rapidly. Thus, in choosing

their preferred replacement rate workers face a trade-off between higher wage income

when employed and the fraction of time they spend unemployed on average. In the

presence of discounting, unemployed workers will tend to prefer a higher replacement

rate than employed workers, whose potential unemployment spells are more distant.

Risk-aversion introduces the aspect of consumption-smoothing and therefore implies

higher optimal replacement rates for all workers.

Note that this analysis is not at odds with the constrained efficiency result of
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Hosios (1990).15 First of all, the Hosios-result is applicable with risk neutral agents

only. Secondly, in the above as well as in the analysis in the next sections we are

concerned with the wellbeing of workers in their two employment states only and not

with the value of the entire economy. The difference is the value of firms, which reacts

to changes in the return to past investment in vacancies. The reason for this choice

of welfare criterion is that not only in the model but arguably also in reality workers’

preferences over different degrees of unemployment insurance do not depend on these

firm value effects since they tend not to be the owners. Hence, with regard to the

political economy aspects of unemployment insurance reform, it makes sense to focus

on the value of workers under different policies only.

Let us now turn to the numerical results for the model with precautionary sav-

ings. Figure 8 summarizes the comparative static welfare analysis. The solid lines

depict utility as a function of the replacement rate for different asset levels. In line

with intuition both unemployed and employed workers have strictly positive optimal

replacement rates for each asset level, welfare depends positively on asset holdings,

and richer individuals prefer lower replacement rates because they are better self-

insured. The dashed lines correspond to the average utility across the steady-state

asset distribution for the respective worker group. Utility is measured in units of

equivalent certain consumption per period. Even for the unemployed the optimal

level of unemployment insurance is lower than the current one of 60% of net wages.

For the employed workers it would be best to be in a steady-state with no unem-

ployment insurance whatsoever. Since they are the great majority the same is true

for total utility aggregating over all workers. This result is perhaps surprising given

the above reasoning. The reason is that, as benefits are withdrawn, the steady-state

asset distributions shift towards higher asset levels so strongly that, given the positive

relationship between assets and welfare, individuals are better off on average when

15The Hosios-condition says that whenever the matching elasticity is equal to the workers’ share
in bargaining the decentralized equilibrium (without tax financed benefits) is the same as the social
planner’s solution, which suggests that any distortion caused by unemployment benefits would be
detrimental to welfare.
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benefits are lower. That is to say, the general equilibrium effect through the asset dis-

tribution dominates all more direct effects via the bargaining or risk-aversion. This

result fits in well with the literature on self-insurance, which generally documents

that a single safe asset provides a lot of insulation against temporary shocks (see for

example Krusell and Smith (1998) and the references cited therein).

Our findings are robust to varying the calibration with regard to vacancy rate,

risk aversion, interest rate, and discount rate. Changes in the assumed vacancy rate,

which is likely to be measured rather imprecisely, are fully offset by changes in the

resulting calibrated value of vacancy costs. Higher or lower risk aversion do not

change the steady-state results significantly either. Higher risk-aversion primarily

translates into higher savings. Interest rate and discount rate interact to largely

determine both the steady-state distribution of asset holdings and its responsiveness

to unemployment benefits. The former is what we calibrated to. The latter has turned

out rather high.16 It could be reduced by increasing the wedge between time discount

and interest rate. In the status quo savings would then be even lower than under

the benchmark calibration (which features low savings anyway since we calibrate to

the share of people with no savings) while the comparative statics would not change

much. For example for a rather extreme calibration with an annual interest rate of

1%, time discount rate of 8% annually, and risk aversion set to three17 the qualitative

picture sketched above still upholds but welfare gains are smaller.

For the calibration shown here the welfare effect of the shifting asset distribution

is reenforced by the fact that net wages actually increase as benefits decrease. This is

due to the high government spendingG whose burden per worker sinks with increasing

employment at lower benefit levels. However, lower tax burdens would not change

16For a reduction of the net replacement rate from 60% to 50%, for example, the ratio of average
wealth to monthly income increases from about 1.9 to about 3.3. This is not surprising given the
wedge between time discount and interest rate of only about 3% per year. Carroll and Samwick
(1997) document the same phenomenon and find they have to increase the annual discount rate to
13% (for an interest rate of 2%) in order to match the empirical responsiveness of asset holdings to
income uncertainty.

17This choice of parameters yields again roughly a 6.5% fraction of the population with assets
less than half a monthly wage. Similar results are obtained if instead of higher risk-aversion a
Stone-Geary utility function with a minimum consumption of about one sixth of the wage is used.
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the general picture. Higher G on the other hand would even strengthen the results.18

3.5 Dynamic Analysis

The results presented thus far are mere steady-state comparisons and could impos-

sibly be used to judge the desirability of policy reforms. It was stressed that they

hinge to a large extent on the response of the steady state asset distribution to the

change in benefit level. However, the asset distribution can adjust only slowly. In

the short run individuals are stuck with the assets they have at the point of regime

change, which means low consumption during unemployment and initially also re-

duced consumption during spells of employment in order to build up higher savings.

This section will therefore discuss the properties of the transition between steady-

states. As a benchmark we will first study simple unannounced one-off changes in

the replacement rate. Then we will allow for previous announcement of the reform

and show that the results depend to some extent on the specification of recruitment

cost in the Mortensen-Pissarides world. Both under the standard assumptions and

under the alternative assumption that there is a fixed cost of hiring a worker we will

finally discuss the optimal path of reform.

3.5.1 The Benchmark - Transition Dynamics and Welfare Ef-

fects

Figure 9 graphs the paths of market tightness, unemployment, median assets, and

net wages following an unannounced reduction of the replacement rate from 60% to

50% of net wages. As can be seen from the behavior of the jump variables tightness

and wage, the bargaining position of the workers first worsens strongly. The state

of unemployment becomes so unattractive that low gross wages are negotiated. Free

18This should be the relevant direction to look at given the absence of endogenous search effort.
Compare the argument made in section 3.3
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entry of firms correspondingly drives up vacancies. The reduction in the gross wage is

so large that net wages at first fall as well despite the reduction in the tax burden that

is caused by the reduction in unemployment benefits. As workers accumulate assets

and thus improve the degree of self-insurance, their outside option unemployment

gains in relative value again. The negotiated wage hence increases as is mirrored by

the gradual fall in the vacancy-unemployment ratio. Net wages soon rise above their

old steady-state level even though gross wages always stay lower because the increase

in employment lowers both unemployment insurance contributions and other taxes.

The path of unemployment is a consequence of the path of the vacancy-unemployment

ratio. It initially increases so strongly after the policy shock that after 19 months

unemployment has already fallen below its new steady-state level. After 39 months

it reaches its minimum.

This general pattern of the transition paths after a reduction in unemployment

benefits is the same as the one described irrespective of calibration and size of reform.

The only sensitive aspect is whether net wages converge to a new steady-state that is

higher or lower than the old one. This depends on the level of government spending

G in the economy. The higher it is, the stronger the positive general equilibrium

effect of higher employment on net wages via lower per capita taxes. But for realistic

ranges of taxation the net wage always increases.19

Welfare effects, on the other hand, depend strongly on the particular reform ex-

periment. Table 7 summarizes the welfare effects of lowering the replacement rate

from 60% to various lower levels. The column titled ’static’ reports the comparative-

static effects discussed in section 3.4 while the column titled ’dynamic’ gives the true,

dynamic effects that take the transition period into account. Clearly, the transition

period matters for welfare, and that more so the bigger the reform: Not even a re-

19The general equilibrium effect from G on net wages hinges on the assumption that government
expenditure is constant. The alternative assumption would be constant revenue per employee. Even
though the net wage would then tend to be lower at lower replacement rates the welfare evaluation
would not change much. For the extra revenue from higher employment would then have to be
added at the point of calculating welfare. However, given that there is no compelling reason why
exogenous government spending should be higher at low unemployment levels, we find our way of
handling the issue more reasonable.
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duction of one percentage-point is Pareto-improving. The 10%-decrease that looked

beneficial even for the unemployed in the static perspective turns out to reduce the

unemployed’s welfare in the dynamic perspective. And the reduction of the replace-

ment rate to 30% that statically seems to give to the employed the highest gain of

all three reforms considered in fact reduces their welfare by more than half a per-

cent. The dynamic perspective also permits to discriminate winners and losers of the

various reforms by asset levels. It turns out that employment status is a far more

important predictor than asset level. Only when the overall welfare effect for a group

(employed/unemployed) is small, asset holdings separate winners and losers. This

is the case for the employed when the replacement rate is reduced to 40%. Then

the 17.5% poorest employees, i.e. those with savings of less than about one and a

half net wages, lose while the wealthier employees gain. An explanation for this pat-

tern of gains and losses is the persistence of income shocks. Given constant hazard

rates, every unemployed worker will remain unemployed for another year on expec-

tation while an employed worker can expect to hold on to his job for another 111
2

years. Thus, leaving aside general equilibrium effects via job finding rates, the costs

of unemployment insurance are borne largely by today’s employed while the benefits

accrue primarily to today’s unemployed.

As a measure of the transition cost we take the difference between the static

and dynamic effects. This transition cost has two sources. One is the foregone

consumption during the transition to the new steady-state asset distribution with

more self-insurance. This cost is relevant during spells of employment, which is when

individuals save. The other source is the utility loss incurred by those who experience

unemployment during the early periods after the reform when their asset holdings are

still inadequately low. Transition costs from both sources are higher per percentage

point benefit reduction the lower benefits are. This is reflected in the more than

linear increase of transition costs in the size of the reform (cf. the last column of

table 7). Costs arising from accumulation increase because average asset holdings

increase more than linearly as benefits decrease. And due to the concavity of the
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utility function the drop in flow utility of those becoming unemployed early on after

the reform is more than proportional to the reduction of benefits for a given asset

level.

Unsurprisingly in the light of the above, the size of transition costs is sensitive to

the calibration of the utility function and the interest rate. Higher risk-aversion and

time preference rates and lower interest rates yield significantly less positive dynamic

welfare effects of lowering unemployment benefits even though the steady-state results

are only moderately less positive. For the alternative calibration mentioned in section

3.4 with a relative risk aversion of 3, time discount rate of 8% annually and interest

rate of 1% annually, for example, a reduction of the net replacement rate to 50% has

severely negative consequences for all workers.20

3.5.2 The Effects of Announcement and the Nature of Turnover

Costs

An obvious (and realistic) way to reduce the welfare cost of the transition is to

announce the reduction of the replacement rate some time before it takes effect. This

gives people time to partially adjust their asset holdings and be better self-insured

once the reform hits. Also, since wage setting will be such as to give rise to job

creation less people will be unemployed at the time of benefit reduction. But, on

the other hand, announcement also means delaying the gains from the reform. We

calculated the transition for several reforms with previous announcement of 12 or

24 months. It turns out that the cost of transition can be greatly reduced or even

over-compensated such that a reduction of benefits to a replacement rate of 30% still

improves average welfare of workers and only slightly harms the unemployed. In the

20Our results are clearly at odds with the ones presented in Joseph and Weitzenblum (2003). The
discrepancies arise from the calibration rather than from the model used. The principal differences
are that Joseph and Weitzenblum do not calibrate the tax burden and that their elasticity of unem-
ployment with respect to the replacement ratio is very low (despite the endogenous search choice!).
Moreover, at the same replacement rate that I am using unemployment is twice as high initially,
which means the consequences of a reform for the unemployed have a much higher weight in welfare
evaluations.
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following we will argue, however, that these strong announcement effects do not stem

from improved self-insurance but rather from the redistribution of gains from firms

to workers and that they are peculiar to the specification of recruitment costs used.

Table 8 gives exemplary results for a 20 percentage point reduction in the re-

placement ratio with various announcement periods for the baseline calibration.21 In

addition to the welfare effects for the unemployed and the employed it reports the

effect of the reform on the value of a filled job. Clearly, this value decreases in the

length of the announcement period while the welfare gains of both worker types in-

crease. In fact, the two opposite effects are intimately linked. For the self-insurance

effect of announcing the reform in advance is only part of the reason for the welfare

gains of individuals. The other part is due to the Nash bargaining through which

announcement allows workers to extract (parts of) the windfall gains firms make in

case of an unannounced reform. To see this, recall the expressions for the value of a

filled job in equations (3.3) and (3.5). When an unannounced reform is introduced,

the gross wage drops and vacancy creation shoots up (cf. figure 9). This implies that

the value of a filled job jumps up as well. The intuition is that, given the new, high

value of market tightness, recruiting a worker is very costly and hence the value of

having one is higher than before.

With announcement, we still have that after the reduction in benefits the outside

option of workers worsens and hence the value of a filled job increases. But now

backward recursion implies that this effect feeds through into the value of a filled

job, J , in all periods back to the point of announcement. Through Nash bargaining

the workers appropriate part of this gain in J in the form of higher wages. The

zero-profit condition at the same time implies that vacancies increase as we get closer

to the enactment of the reform. These effects can be seen in figure 10. The longer

the reform is announced, the less market tightness jumps and the lower the firms’

windfall. Hence, the effect of announcement is not only to give the workers time to

self-insure but moreover to transfer resources to them from the firms, which in turn

21For the alternative calibration mentioned above welfare effects are positive only with 24 months
announcement.
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improves their capacity to build up assets. Nevertheless, with view to the high future

value of jobs vacancy creation sets in immediately, which further improves the lot of

the workers.

The above dynamics logically arise from wage determination through Nash bar-

gaining in combination with rents depending on the ratio of vacancies to unemploy-

ment. If the value of the firm were independent of market tightness we would not

observe the arguably unrealistic spike in the wage. It may therefore be worth con-

sidering the opposite polar case of a fixed cost per job. This case obtains in a world

in which, instead of periodic vacancy costs, an initial training is required for each

worker. Denoting the fixed cost per job by K, equation (3.4) then turns into

Ot =
1

1 + r

[
q(θt)(Jt+1 −K) + (1− q(θt))Ot+1

]
, (3.11)

which by free entry clearly implies

J = K. (3.12)

The gross wage is obviously constant at w = p − (r + λ)K. Vacancies and hence

unemployment respond much more strongly to unemployment benefit changes because

the dampening effect of vacancy costs is missing. In fact, for the same calibration

used all along the elasticity of unemployment with respect to the replacement rate is

about 1.5 (compared to 0.75 in the benchmark case). The welfare effects of lowering

benefits are therefore much more positive than under the specification used above.

For an unannounced one-off reduction of the replacement rate to 40% welfare gains

are 4.3% for the unemployed and 4.9% for the employed.22 But in this setting not

much is to be gained from announcing the reform in advance. Relative to a reform

with no announcement, announcement two years ahead makes everybody worse off,

22The reason they are so similar for unemployed and employed workers is that with the value
of a filled job fixed Nash-bargaining holds the difference in values of the unemployed and the em-
ployed fixed for the median asset level, such that the divergence only stems from the different asset
distributions for the two types.
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and announcement one year ahead only benefits the unemployed. The big welfare

effect from extracting the firms’ windfalls being absent, it seems that the cost of

delaying the gains from the reform dominates the gain in self-insurance.

3.5.3 The Optimal Path of Reform

The purpose of this section is to investigate whether more sophisticated, gradual re-

forms can increase the welfare gains by mitigating the trade-off between, on the one

hand, delaying the efficiency gains and, on the other hand, improving self-insurance

(and extracting firms’ rents in the vacancy cost specification). Clearly, it is numeri-

cally infeasible to optimize over the entire path of the transition. Instead, we constrain

the problem to searching over several classes of continuous functions of time with two

degrees of freedom (after fixing beginning and endpoint). Further we impose that the

new final replacement rate be reached after 240 periods (20 years) at the latest. The

functional classes are monotonously decreasing polynomials of degree three, hyperbo-

lae and linear transformations of decreasing segments of the density function of the

normal distribution.23 These functions allow to check globally concave and convex

paths as well as paths with inflection points and announcement.

We search for the optimal path of reform for both specifications of turnover costs,

the standard one with a periodic vacancy posting cost and the alternative of a fixed

recruitment cost introduced in the last section. The results reflect the dichotomy

that was already found for the effects of announcing one-off benefit reductions in

advance: When hiring a worker involves a fixed recruitment cost and the goal is to

maximize average worker welfare, the reform should be implemented immediately and

at once. For all three functional classes tried the path converged (as far as possible)

23Precisely, for 0 ≤ t ≤ 240 we use

ρt =
{
ρold t ≤ x
α+ βf(t− x|max(x, 0), σ) t > x

where f is the Gaussian density function. x > 0 corresponds to a reform announced x periods in
advance. x < 0 means the time path of the replacement rate is described by a part of the right half
of the Gaussian density function.
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towards the announced one-off reduction and never yielded a higher welfare. If the

goal is to find the path that is optimal for the unemployed, small improvements can

be achieved by announcing the policy four months ahead and then reducing benefits

gradually over almost two years.

For the standard specification with market-dependent vacancy costs, by contrast,

some announcement and/or gradualism in the implementation is desirable. Both

forms of delaying the full reform allow workers to appropriate the gains that in the

case of the unannounced one-off change in benefits accrued as windfalls to firms. For

a reduction of the replacement rate from 60% to 50% a gradual but faster than linear

phasing in of the reform seems almost equivalent in terms of welfare to a path that

involves an announcement period of 16 months and then a very quick drop in the

replacement rate.

In any case, it is noteworthy that neither ’optimal’ path yields significant im-

provements over a one-off reform announced 24 months ahead. For the fixed-cost

variant we already saw that allowing for sophisticated reform paths is not helpful.

This suggests that fine-tuning the transition to reduce the welfare losses due to lack

of appropriate self-insurance is not very important.24 It seems that the effects work-

ing through (not) delaying efficiency gains and rent extraction dominate. Also, that

part of the cost of transition that is due to foregone consumption in the process of

asset accumulation cannot be avoided anyway. Thus, the welfare effects of reducing

unemployment insurance that we found in sections 3.5.1 and 3.5.2 on the basis of sim-

ple reforms are actually very good approximations of what can be achieved. What

also emerges is that ultimately the optimal reform size and path depend paramountly

on what is the correct assumption about the nature of hiring costs. We have shown

results for the two extreme cases. The truth is likely to be somewhere in between.

Solutions of the model for intermediate specifications involving a fixed and a variable

hiring cost turn out to be convex combinations of those two polar cases in all respects.

24Our simulations suggest that this is true irrespective of the size of the reform.
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3.6 Conclusion

In this paper the Mortensen-Pissarides matching model has been introduced in an

incomplete markets setting in order to study the dynamics and welfare effects of re-

ductions in unemployment benefits. The various numerical experiments performed for

our calibration to Germany in the mid-1990s suggest that reductions of the replace-

ment rate in the order of 10 or 20 percentage points would be welfare improving for

workers. However, the welfare gains would be much smaller than simple steady-state

comparisons suggest because there are significant transition costs associated with the

need for individuals to increase their self-insurance capacity by accumulating higher

savings. It was further shown that both the optimal size of reform and its optimal

timing depend strongly on the assumptions one makes about the nature of turnover

costs faced by firms. Under the standard Mortensen-Pissarides assumption that the

costs of hiring a worker increase in the equilibrium ratio of vacancies to unemployed

parts of the gains from reducing unemployment benefits are crowded out by the in-

crease in (wasteful) vacancy costs. Moreover, since sudden increases in vacancies

confer windfall gains upon firms with a filled job, a gradual or announced reform

is preferable. It allows workers to appropriate most of those windfalls. Under the

alternative assumption of a fixed, market independent cost of hiring a worker, on the

other hand, a reduction in benefits should come as fast and fully as possible because

the cost of delaying the efficiency gains dominates the gains from giving people time

to self-insure before benefits are actually lowered.

Let us conclude with a final remark regarding limitations of the model used in this

paper. It stems from the fact that we use Nash-bargaining to determine wages. This

is widely done in the literature and there is as yet no well established alternative, but

recently a quest for alternative mechanisms has set off because, in particular when

used in business-cycle applications, Nash-bargaining causes difficulties in matching

the data.25 It seems that a method of wage determination that gives rise to more wage

stickiness would be more appropriate. The consequence for our model would likely

25Shimer (2002) carefully demonstrates the insufficiencies of Nash-bargaining.
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be that employment dynamics would be slower, which would tend to reduce welfare

gains, even though not by much. It could however worsen the lot of the unemployed

and thereby accentuate equity issues involved in reducing unemployment insurance.
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3.7 Appendix

3.7.1 Job Acceptance

Lemma 7 With ρt ∈ [0, 1] and 1 − λ ≥ θtq(θt) an individual never rejects a job

regardless of his asset level.

Proof. The proof will make use of a revealed preference argument. Time indices are

dropped for ease of notation.

Denote by V (a, e) and V (a, u) the maximized values of an employed and an unem-

ployed worker respectively. Let (c∗u, a
′∗
u) describe the unemployed individual’s optimal

allocation of his current income b+ (1 + r)a to consumption and savings. Given our

assumption that b is no greater than the net wage, this choice is in the feasible set

of a worker with assets a who holds a job as well. Suppose the employed worker

chose (c∗u, a
′∗
u). Then his utility from consumption today would be equal to that of

the unemployed and next period he would hold the same assets as the unemployed.

With the same assets, starting from next period he cannot be worse off than the one

who was unemployed today because i) his probability of being matched no less than

for the unemployed and ii) the individual could turn down a job offer if the value of

unemployment were higher. Hence, for the same consumption and asset choice the

employed worker is at least as well off as the unemployed worker. Since (c∗u, a
′∗
u) is

feasible for him we can conclude that for his optimal choice he is also at least as well

off. Thus V (a, e) ≥ V (a, u) and a job offer is never rejected.

3.7.2 The Algorithms

Computation of the steady state

To find the steady state the following computational strategy is employed:

1. The value functions of the worker and the unemployed are approximated by

Schumaker splines in a on a log-linear grid.

67



2. For a given θ, i.e. for given transition probabilities and wages, the station-

ary asset distributions of the unemployed and the employed are calculated by

forward iterating the asset distributions. That is to say, in a first step next

period’s asset holdings are determined for each individual state vector (a, s) on

a grid. Then these new asset levels are attributed to the support points of the

grid adjusting the densities such as to preserve the means. Further the distri-

butions are adjusted to reflect the transition probabilities between employment

and unemployment (compare equation (3.10)). The median assets of employed

workers, am, are derived from the asset distribution for employed workers.

3. The steady state version of equation (3.8) is used to update θ.

Steps 1-3 are repeated until convergence.

Computation of the transition dynamics

To characterize the transition towards steady-state following a policy shock I solve

for the time paths of the variables as follows:

1. Solve for the steady-states under the old and the new policy regime.

2. Choose T as the number of out-of-steady-state periods considered. I.e. in the

Tth period before the new steady-state is reached the policy shock occurs.

3. Postulate a path for am and u in the T − 1 periods following the shock.

4. Calculate θ1 from JSS,new (cf. equation 3.5).

5. Calculate the wage for period 1 from the bargaining problem.

6. Approximate the value function in period 1 given w1 and θ1 and the fact that

from the next period on we are in steady state.

7. Repeat steps 4-6 for all T periods always using the last period’s value function

to calculate the new one.
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8. Using the wealth distribution in the old steady-state and the calculated paths for

θ, wages, and value functions, calculate the evolution of the wealth distribution

and hence of am. Using the unemployment rate in the old steady-state and the

calculated path for θ find a new path for unemployment.

9. Update the guess for the paths of median assets and unemployment and go back

to step 4 until convergence.
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Chapter 4

Optimal Capital and Labor Taxes
with Heterogeneous Agents:
Making Everybody Happy
(with Albert Marcet)
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4.1 Introduction

It has been known for a while that under a variety of circumstances optimal capital

taxes are zero in the long run. This result, which originally goes back to Chamley

(1986) and Judd (1985), has proven very resilient to many challenges. A quick sum-

mary of the literature is that there are ways to go away from the zero long run capital

taxes, but often the deviation from zero is small and it can be positive or negative

depending on minor changes to the model.

Surprisingly, even with heterogeneous agents capital should not be taxed in steady

state no matter how a social planner weights the utilities of the different agents.

Atkeson, Chari and Kehoe (1999), Chamley (1986), and Judd (1985) provide results

of this kind.1 This seems to suggest that there is no tradeoff between efficiency and

equity: as long as the time path of capital taxes is chosen appropriately all agents

can enjoy the efficiency gains that occur with capital taxes going to zero.

It is also well known that optimal capital taxes in the first few periods are not

zero but in fact quite high.2 Nevertheless, Lucas (1990) showed that even if the

optimal transition were ignored, if capital taxes were abolished immediately and all

tax revenue was collected from labor taxes, the welfare of the representative agent

would increase. This result has been interpreted as suggesting that designing the

transition optimally is not very important.

However, more recently several contributions have shown that this conclusion is

not warranted if we acknowledge the heterogeneity of agents: Garcia-Milà, Marcet

and Ventura (1995) show that for a reasonable calibration of inequality, if capital taxes

were abolished immediately, output would increase but large parts of the population

would lose a lot of utility relative to the status quo. Similar results have been obtained

in different setups by Correia (1995), Domeij and Heathcote (2004), and Conesa and

1Chamley and Judd allow for lump-sum transfers, which is a severe restriction. Moreover, it is
not clear whether they correctly take into account the equilibrium conditions. The proof in Atkeson
et al. (1999) does not suffer from these limitations. Note, though, that Atkeson, Chari, and Kehoe
do not impose an upper bound on the admissible capital tax rates.

2For certain common utility functions it can be shown that capital taxes are high only one period
and then drop to zero.
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Krueger (2006).

Thus, once agents are heterogeneous and equity considerations play a role, the

time path of capital taxes until their abolition does seem to matter. Abolishing them

too fast is impossible in a Pareto improving way, but - given the steady state results

- there should be a way of reaching the steady state with no capital taxes without

harming any agent.

We study this issue and analyze the whole path for capital and labor taxes when

fiscal policy is restricted to delivering allocations that are Pareto efficient AND Pareto

superior to the status quo.3 As an additional restriction we impose an upper bound

on capital taxes for all periods. We think of this bound as a requirement that a

policy has to satisfy if it is to be credible. We know that optimal capital taxes under

full commitment have a tendency to be initially very high, and we think it would be

difficult for any government to convince investors that it is going to suppress capital

taxes in the future if the first thing the government does is to hike capital taxes.4

Finally, to make the redistribution problem meaningful, we require tax rates to be

common to all agents and exclude redistributive lump sum transfers.

We find that the optimal reform under all these constraints is quite different from

the steady state analysis that much of the literature has concentrated on. In our

baseline model the transition is much longer than absent distributive issues. Capital

taxes take a very long time to be zero in order for all the agents to be better off than

under the status quo - at least about ten years, if the degree of inequality is reasonably

calibrated. The reason is that if taxes are abolished too quickly, as in Garcia-Milà

et al. (1995), the redistributive effect is too strong and it makes the workers worse off

despite the gain in aggregate efficiency. Also, we find that optimal labor taxes in the

3The recent work of Flodén (2006) studies optimal policy when the Ramsey planner maximizes
the utility a certain agent. Therefore, the policies he studies do have a transition and capital taxes
take a while before they hit zero. The results reinforce the view of the papers described in the
previous paragraph: there are often large losses for a large part of the population, so it would seem
that the efficiency/equity tradeoff is a big issue in the potential disappearance of capital taxes. But
still, since Flodén does not look for a Pareto efficient/Pareto improving policy, it would seem he
only studies part of the story.

4Lucas (1990) offered a similar motivation to study taxes that are constant over time.
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initial periods are lower than in the status quo: in this way the planner can engineer

growth while capital taxes are at the limit. Therefore, the policy recommendation for

the short run is exactly the opposite of the steady state: lower labor taxes and high

capital taxes are needed for the short-medium run (about 10 years).5 Thus, this model

is a case where the so called ’timeless perspective’, i.e. policy analysis neglecting the

transition, would not only give the reverse recommendation to the actually optimal

one, but it would yield very low welfare for some agents, as Garcia-Milà et al. (1995)

and others found. 6

We also find that the initially low labor taxes imply deficits that are typically not

fully repaid, and that in the long run the government is in debt. There is recently a

renewed interest in studying the determinants of the optimal level of debt in various

setups.7 Our paper shows that implementing an optimal reform could be one such

factor.

In our model two sources of distortions constrain the optimal policy, the absence

of lump-sum taxes to raise revenues, and the absence of a lump-sum instrument for

redistribution. In order to isolate the effects of each distortion we consider modifi-

cations of our baseline model that either allow for lump-sum transfers or fix labor

supply. We thus show that aggregate welfare gains are much smaller in our baseline

model than if a redistributive lump sum were available or if we were only interested

in aggregate efficiency. The model with fixed labor supply also underlines how im-

portantly equity concerns constrain the solution because the distortions from labor

taxation are absent. Capital taxes can be abolished after 10 years at the earliest,

while they would be suppressed immediately if there were transfers because labor

taxes are non-distortive. Moreover, in this model the planner cannot engineer early

growth by lowering early labor taxes. This is reflected in much slower accumulation

5The fact that the transition takes so long questions the validity in practice of such a policy, since
the government has to make credible announcements that taxes are abolished while the economy is
not growing.

6Also, this explains why they were finding such bad results when the long run optimum was
implemented from period zero: it is a feature of optimal (Pareto improving) policy to not only
suppress capital taxes in the long run, but also to lower labor taxes in the first periods.

7See Faraglia, Marcet and Scott (2006) and the references therein.
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of capital during the periods with high capital taxes.

We find that in this setup the frontier of feasible equilibria sometimes has an

increasing part, even in the range of equilibria that are Pareto superior to the status

quo. This implies that the Pareto optimal frontier may not cover the range of all

possible utilities and that the degree of redistribution is limited by the presence of

distortionary taxes: if taxes are chosen optimally it may not be possible to find Pareto

superior allocations that leave one agent indifferent and redistribute all the gains from

optimality to the other agent. In our calibrated examples it was always the case that

the ’capitalist’ (i.e. the agent with a lot of physical wealth relative to human wealth)

could be made to enjoy all the gains in increased efficiency while the worker could

sometimes enjoy at most part of the benefit. In these cases, if the government insists

on leaving the capitalist in the status quo it can only do so by lowering the utility

gain of the worker also and, therefore, by pursuing a Pareto inefficient policy, even if

it places itself at the boundary of the feasible equilibrium set.

The focus on Pareto optimal allocations implies that, for the right weight, the

planner behaves as if he had a welfare function. But trying to interpret the weights

if welfare functions in the objective of the planner per se could be quite misleading.

We will show cases where the implied weight ”seems” very large even though it does

not achieve a large redistribution.

In solving the model we have to take care of a few technical issues. The upper

bound in taxes introduces a forward looking constraint that requires the introduction

of recursive contracts to be solved. The solution then depends on a second state

variable in addition to capital.

The paper is organized as follows: In section 4.2 we lay out our baseline model

as well as the modifications we consider. Section 4.3 discusses some properties of the

models. Among others we provide a proof that capital taxes are zero in steady state

in our setup, to which existing proofs do not fully apply. Our numerical results are

discussed in section 4.4.
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4.2 Models

4.2.1 The Baseline Model

We lay out a standard dynamic competitive equilibrium model with two agents that

differ in their sources of income, a government that taxes capital and labor, no un-

certainty. The model is as in GMV with only two agents. Tax rates τ lt and τ kt are

allowed to be time dependent. Also assume no growth, so µ = 1 and g constant.

The environment

More precisely, there are two consumers j = 1, 2 with utility
∑∞

t=0 δ
t [u(cj,t) + v(lj,t)]

where c is consumption and l is labor of each agent each period. Agents differ in their

initial wealth kj,−1 and their labor productivity φj. Agent j obtains income from

renting his/her capital at the rental price rt and from selling his/her labor for a wage

wtφj, pays labor taxes τ lt on labor income and capital taxes τ kt on capital income net

of depreciation allowances. The period-t budget constraint is given by

cj,t + kj,t−1 = wt φj lj,t(1− τ lt ) + kj,t−1(1 + (rt − d)(1− τ kt )) for j = 1, 2 (4.1)

capturing the fact that consumers are responsible for investment.

Firms maximize profits, have a production function F (kt−1, et) where e is total

efficiency units of labor, k is total capital.

Government chooses capital and labor taxes and consumes g every period, has the

standard budget constraint, it saves in capital and has initial capital kg−1.

We normalize each agents’ mass to be 1/2. Market clearing conditions are

1

2

2∑
j=1

φjlj,t = et (4.2)

kt = kgt +
1

2

2∑
j=1

kj,t (4.3)
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1

2

2∑
j=1

cj,t + g + kt − (1− d)kt−1 = F (kt−1, et) (4.4)

Competitive Equilibria

The equilibrium concept is standard, agents take prices and taxes as given, max-

imize their own utility, markets clear, the budget constraint of the government is

satisfied. Agents’ maximization implies

u′(cj,t) = δ u′(cj,t+1)
(
1 + (rt+1 − d)(1− τ kt+1)

)
(4.5)

u′(cj,t) wt (1− τ lt ) φj + v′(lj,t) = 0 (4.6)

for all t and j. Firms’ maximization implies factor prices equal marginal product to

set rt = F1(kt−1, et) and wt = F2(kt−1, et).

The budget constraints of the agents written in present value form are

∞∑
t=0

δt
u′(c1,t)

u′(c1,0)

(
cj,t − wt φj lj,t(1− τ lt )

)
= (4.7)

kj,−1(1 + (r0 − d)(1− τ k0 )) for j = 1, 2

Due to Walras’ law the budget constraint of the government is implied by these and

market clearing, so we ignore it.

Assuming further CRRA u and v, each with risk aversion σc, σl < 0, FOC for

capital and labor imply

c2,t
c1,t

= λ and
1− l2,t
1− l1,t

= λ
σc
σl

(
φ2

φ1

) 1
σl

for all t

for some λ that is constant through time.

Using the above equation and the primal approach in the usual way it is easy to

see that for a competitive equilibrium to hold it is necessary and sufficient to find a
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constant λ and a sequence {c1t , kt, l1t } satisfying

∞∑
t=0

δt (u′(c1,t)c1,t + v′(l1,t) l1,t) = u′(c1,0) k1,−1(1 + (r0 − d)(1− τ k0 )) (4.8)

∞∑
t=0

δt
(
u′(c1,t)λc1,t +

φ2

φ1

v′(l1,t) f(λ, l1,t)

)
= u′(c1,0) k2,−1(1 + (r0− d)(1− τ k0 )) (4.9)

and feasibility. Here f(λ, l1,t) is defined as

f(λ, l1,t) ≡ 1− (1− l1,t)λ
σc
σl

(
φ2

φ1

) 1
σl

and it is the value of l2,t that solves (4.6) for each possible value of the endogenous

variables λ, l1t .

Taxes are then found as a residual from (4.5) and (4.6). Consumption and labor

of agent 2 is found from λ and f and individual capital is backed out from the budget

constraint period by period.8

Constraints on Policy

As usual, the Ramsey optimizer is restricted to choosing allocations, taxes and

prices that are compatible with the above equilibrium conditions.

We now introduce some additional constraints to the choice of policy. First of

all, we assume that the planner chooses Pareto efficient allocations. With the usual

argument, this is achieved by assuming that the planner maximizes the utility of

agent 1 subject to the constraint that agent 2 has a minimum value of utility:

∞∑
t=0

δt [u(c2,t) + v(l2,t)] ≥ U2 (4.10)

Varying the value of the minimum utility U2 we can trace the frontier of Pareto

8For the details on this model see Garcia-Milà et al. (1995). For details on the general primal
approach, see Chari and Kehoe (n.d.).
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efficient allocations. We will concentrate our attention on values of U2 that guarantee

a Pareto improvement over some status quo utility U j
SQ that would be achieved with

some taxation scheme that is already in place.9 We call these POPI (=Pareto optimal

Pareto improving) allocations, and they can be found by considering minimum utility

values such that U2 ≥ U2
SQ and by checking, after the problem has been solved, that

∞∑
t=0

δt
[
u(c∗1,t) + v(l∗1,t)

]
≥ U1

SQ

where ∗ denotes the optimized value.

Also, we introduce tax limits ensuring that capital taxes never go beyond a certain

level, so we introduce the constraint τ kt ≤ τ̃ for all t and some given constant τ̃ . This

tax limit is introduced to avoid the usual pattern that optimal capital taxes usually

shift all the tax burden to early capital income, and to avoid the criticism that the

Ramsey optimal tax is not a credible tax to announce (see Lucas (1990)). If the upper

bound τ̃ is equal to the status quo the government will only choose decreasing paths

for capital taxes.

To enforce this tax limit it is necessary and sufficient to introduce the following

constraint

u′(c1,t) ≥ δ u′(c1,t+1) (1 + (rt+1 − d)(1− τ̃)) for all t > 0 and (4.11)

τ k0 ≤ τ̃ (4.12)

The first equation insures that the actual capital tax that is backed out from (4.5)

satisfies the limit and it allows us to use use the primal approach where taxes do

not appear explicitly.10 The limit for time 0 (4.12) is standard in models of optimal

capital taxes (see Chari and Kehoe (n.d.)) and has to be specified separately.

9The status quo utility depends on the distribution of initial capital but we leave this dependence
implicit.

10Atkeson et al. (1999) considered a similar bound explicitly.
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To summarize, the planner solves

max
λ,{c1t ,kt,l1t}∞t=0

∞∑
t=0

δt [u(c1,t) + v(l1,t)]

s.t.
∞∑
t=0

δt [u(c2,t) + v(l2,t)] ≥ U2 (4.13)

subject to feasibility (4.4) for all t, the implementability constraints (4.8) and (4.9)

(for period 0 only) and the tax limit constraint (4.11) for all periods t > 0. Notice

that λ is a choice variable that has to be maximized over. Initial wealth, the tax

bound τ̃ and the utility bound U2 are given constants in this problem.

Letting α be the lagrange multiplier of the minimum utility constraint (4.13),

letting ∆1,∆2 be the multipliers of the (4.8) and (4.9) normalized by u′(c1,0), and

letting γt be the multiplier of (4.11), the Lagrangian is

L =
∞∑
t=0

δt
[
(u(c1,t) + v(l1,t)) + α(u(λc1,t) + v(f(λ, l1,t))) +

∆1

(
u′(c1,t)c1,t + v′(l1,t) l1,t

)
+

∆2

(
u′(c1,t)λc1,t +

φ2

φ1

v′(l1,t)f(λ, l1,t)
)

+

γt
(
u′(c1,t)− δ u′(c1,t+1)(1 + (rt+1 − d)(1− τ̃))

)
−

µt
(1 + λ

2
c1,t + g + kt − (1− d)kt−1 − F (kt−1, et)

)]
−A (4.14)

where A = u′(c1,0)[∆1k1,−1(1 + (r0 − d)(1 − τ k0 )) + ∆2k2,−1(1 + (r0 − d)(1 − τ k0 ))].

Further, γt, α ≥ 0 and they satisfy the usual slackness conditions.

The first line of this Lagrangian has the usual interpretation: a Pareto efficient

allocation amounts to solving a welfare function where the planner weighs linearly

the utility of both agents, where the weight of agent 1 is normalized to one and the

weight of agent two is the lagrange multiplier of the minimum utility constraint. The

other lines represent all the constraints in the problem of the planner.
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First order conditions are derived as usual with respect to capital, labor and

consumption. They are shown in the appendix. Here we only comment on features

of these first order conditions that differ from other papers on dynamic taxation.

Notice that λ is a constant to be found, just as the ∆, α’s. While the optimality

of the ∆’s and α simply insures feasibility of some policy, many values of λ are

compatible with feasibility, and the derivative with respect to λ has to be set to zero

to insure an optimal choice. This derivative is

∞∑
t=0

δt
[
α (u′(λc1,t)c1,t + v′(f(λ, l1,t))fλ(λ, l1,t)) + (4.15)

∆2

(
u′(c1,t)c1,t +

φ2

φ1

v′(l1,t)fλ(λ, l1,t)
)
−

µt
1

2

(
c1,t − Fe(kt−1, et)φ2fλ(λ, l1,t)

)]
= 0

This takes into account the fact that the planner can vary the ratio of consumptions

of the agents, in effect, by varying the total tax burden of labor or capital. α is also

a constant but it has to be set to a level insure the minimum utility constraints.

Solving the model involves iterating on the constants α,∆1,∆2, λ until a solution

series is found that satisfies the period-t FOC and it insures that the all the conditions

involving infinite sums computed from period zero (namely, the implementability

constraints, the minimum utility constraint, and the FOC for λ) hold.

The multipliers have to satisfy the necessary slackness conditions. Although these

are standard, since they are key for some important features of the solution, we now

state in detail these conditions. In particular, the slackness condition for α (the

multiplier of (4.13)) is

either α > 0 and
∞∑
t=0

δt [u(c2,t) + v(l2,t)] = U2

or α = 0 and
∞∑
t=0

δt [u(c2,t) + v(l2,t)] ≥ U2
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In other words, either the minimum utility constraint is binding and in the Lagrangian

the planner maximizes the weighted utility of both agents with weight 1 for agent 1

and weight α for agent 2, or the minimum utility constraint is NOT binding and the

planner gives zero weight to agent 2. Even though the latter case is not usually a

relevant case in studying PO allocations in models without frictions, we will see that

it can arise in the type of model we are considering. The reason is that the frontier

of the set of possible equilibria will have an increasing part.

Similarly, for the γ’s and for each t, we have

either γt > 0 and u′(c1,t) = δ u′(c1,t+1)(1 + (rt+1 − d)(1− τ̃))

or γt = 0 and u′(c1,t) ≥ δ u′(c1,t+1)(1 + (rt+1 − d)(1− τ̃))

It turns out that the ∆i’s may be positive or negative, since the corresponding

PVBCs have to be satisfied with equality. This becomes clear by looking at their eco-

nomic interpretation. With two agents the marginal utility cost of distortive taxation

is ∂L
∂τk0

= u′(c1,0)[∆1k1,−1 + ∆2k2,−1](r0 − d). Thus,

∆1k1,−1 + ∆2k2,−1 ≥ 0

with the inequality being strict as long as any taxes are raised after the initial

period. This does not preclude one of the ∆i being negative, which will in fact

be the case whenever the constraints on redistribution that are imposed by the

competitive equilibrium conditions are sufficiently severe. To see this consider a

slightly modified model in which the social planner is allowed to redistribute ini-

tial wealth between agents by means of a transfer T .11 All this modification does

to the Lagrangian is to change the implementability constraints such that A =

u′(c1,0)[∆1(k1,−1(1 + (r0 − d)(1 − τ k0 )) − T ) + ∆2(k2,−1(1 + (r0 − d)(1 − τ k0 )) + T )].

Now the derivative of the Lagrangian with respect to the lump-sum transfer between

11Below we will further discuss this modification as ”modified model 1”.
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agents is ∂L
∂T

= u′(c1,0)(∆1 − ∆2). For any given T , and in particular for T = 0 as

in our baseline model, this expression is a measure of the marginal utility cost of the

transfer not being optimal. If the planner were free to choose T optimally, we would

have ∆1 = ∆2 > 0. If the planner would like to redistribute more towards agent 2,

∆1−∆2 > 0 and vice versa. If the transfer is much too low (high) the derivative will

be large in absolute value and ∆2 (∆1) will be negative. In sum, while the weighted

sum of the multipliers on the PVBCs is related to the cost of distortive taxation,

their difference indicates the cost of not being able to redistribute lump sum. These

multipliers thus capture in a simple way the two forces that drive the solution to our

model away from the first best, the absence of lump-sum taxes and of agent-specific

lump-sum transfers.

4.2.2 Modifications of the model

In order to learn about different aspects of the optimal policy it will be useful to

consider three modifications of the model:

Modified Model 1: redistributive transfers (MM1)

We are mainly interested in the baseline model where a sequence of capital and labor

taxes has an effect both in terms of redistribution of wealth and efficiency. Ideally, the

tax authority would like to resolve these two issues separately and it would rather have

another instrument to handle redistribution of wealth (just as in, say, intermediate

micro, one shows that any Pareto efficient allocation can be supported by competitive

equilibrium with redistribution of wealth). In order to study how the optimal program

is affected by the presence or absence of this extra instrument, we modify the problem

by assuming the government can resort to a lump sum redistributive transfer across

agents. We denote by T the amount of goods that the planner transfers from agent

1 to agent 2. This changes the budget constraints by subtracting T from the right

side of the budget constraint of agent 1, namely, equation (4.7) for j = 1 (and adding
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T to the same constraint for 2). Correspondingly, we subtract T on the right side of

constraint (4.8) and we add T in (4.9).

Also, we add some limits to these transfers:

T ≤ T ≤ T

Here, all of T , T, T could be positive or negative. Subject to this, the planner chooses

T optimally.

That is, the government can redistribute wealth but within some limits. It is

clear that if −T , T are sufficiently large the government can achieve a kind of first

second best, where there are no redistributive issues, and the government faces only

the usual tradeoff between taxes today or tomorrow and versus capital and labor.

This is stated formally in the following

Result: If −T , T are sufficiently large the solution to the modified problem is as

in the baseline model ignoring the budget constraints (4.8) and (4.9) of the agents but

considering the budget constraint of the government instead

The main model described in the previous section is, of course, a special case of

this modified model with T = T = 0.

Modified Model 2: fixed labor input (MM2)

Modified model 2 is complementary to MM1. While modified model 1 serves to

illustrate what the optimal program would look like absent distributional concerns

that constrain the solution, modified model 2 isolates the effect of precisely these

distributional concerns. By fixing labor input we eliminate the distortions from labor

taxation that by themselves would lead the tax authority not to abolish capital taxes

too fast. In this model, the transition to zero capital taxes would be immediate if it

were not for the distributive effects of abolishing capital taxes.
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Modified Model 3: time varying tax limits (MM3)

In the characterization of equilibrium it will be useful to study other types of tax

limits. Instead of a uniform limit for all periods we assume capital taxes have to

satisfy

τ kt ≤ τ̃t

where τ̃t is a sequence of pre-specified time-varying tax limits, given to the planner.

The case where τ̃t is very large in the initial periods will be useful to study how much

utility and redistributive power is lost by the fact that the capital taxes cannot be

front-loaded in the usual way in our main model. The case where where τ̃t is very

large in the last periods will be useful in the proof of asymptotic behavior of the

model.

4.3 Characterization of equilibria

4.3.1 Steady state and zero capital taxes

First of all we derive the behavior in steady state. To the best of our knowledge there

is no previous proof of zero long-run capital taxes that fully applies to our model,

which features both a tax limit and heterogeneous agents but no lump-sum transfers

or agent-specific taxes.12

Result: Assume log utility of consumption and τ̃ > 0. Further assume that there is

free disposal on the part of the government. I.e. the government can collect more

taxes than necessary to finance g and dump the rest. Then capital taxes are zero in

12When they consider heterogeneous agents, both Chamley (1986) and Judd (1985) allow for
redistributive lump-sum transfers. Moreover, only Chamley limits frontloading of capital taxes by
imposing a limit (of 100%) on the tax rate. Both Chamley and Judd are very vague about how they
extend their results for representative agents to the heterogeneous agent case. Only in Chari and
Kehoe (n.d.) and Atkeson et al. (1999) it is clear that indeed all competitive equilibrium constraints
are taken into account. But for the case with heterogeneous agents and no transfers or agent specific
taxes they only prove the case without a tax limit.
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the long run. Moreover, for some finite N

τ kt = τ̃ for all t ≤ N,

= 0 for all t ≥ N + 2,

In other words, at some point, the capital tax rate jumps from the tax limit to zero in

two periods.

Proof of result:

We proceed in two steps. First we show that it is not possible for all the FOC to

be satisfied if the tax limit is binding forever. Then we show that capital taxes go

from the limit to zero in two periods.

First of all, notice that in the log case the first order condition with respect to

consumption for t > 0 becomes

c−1
1,t

(
1 + α

)
− (4.16)

−c−2
1,t

(
γt − δγt−1(1 + (Fk(kt−1, et)− d)(1− τ̃))

)
= µt

1 + λ

2

Then the FOC for consumption and labor for t > 0 at steady state for the variables

imply

c−1
1 (1 + α) + (4.17)

−c−2
1

(
γt − δγt−1(1 + (Fk(k, e)− d)(1− τ̃))

)
= µt

1 + λ

2
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−B(1− l1)
σl

(
1 + αλσc

φ2

φ1

f ′(λ, l1) + ∆1 + ∆2
φ2

φ1

f ′(λ, l1)
)
+ (4.18)

σlB(1− l1)
σl−1

(
∆1l1 + ∆2

φ2

φ1

f(λ, l1)
)
+

γt−1c
σc
1 (1− τ̃)Fk,e(k, e)

1

2
(φ1 + φ2f

′(λ, l1)) =

−Fe(k, e)
1

2
(φ1 + φ2f

′(λ, l1))µt

Notice that we are only imposing steady state on the variables, not on the mul-

tipliers. This is natural because the real variables have natural bounds but the mul-

tipliers should not have bounds, otherwise there is no sense in which the Lagrangian

is guaranteed to give a maximum.

At steady state and if the tax limit is at the bounds constraint (4.11) is satisfied

as equality so that

δ
[
1 + (Fk(k, e)− d)(1− τ̃)

]
= 1

Also, collecting as constants those terms in (4.17) and (4.18) that do not depend on

the multipliers γ or µ we have

A− c−2
1 (γt − γt−1) = µt

1 + λ

2
(4.19)

B + Cγt−1 = −µt (4.20)
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for

A =c−1
1 (1 + α)

B =
[
−B(1− l1)

σl
(
1 + αλσc

φ2

φ1

f ′(λ, l1) + ∆1 + ∆2
φ2

φ1

f ′(λ, l1)
)

+

σlB(1− l1)
σl−1

(
∆1l1 + ∆2

φ2

φ1

f(λ, l1)
)] 1

Fe(k, e)
1
2
(φ1 + φ2f ′(λ, l1))

C =
cσc1 (1− τ̃)Fk,e(k, e)

Fe(k, e)

So, we have

γt = c21

[
A + B

1 + λ

2

]
+γt−1

[
Cc21

1 + λ

2

]
(4.21)

Since C > 0, γ goes to plus or minus infinity depending on the sign of the first

bracket in this equation, regardless of the initial values of γ. If this bracket is negative

this implies negative γ’s eventually, which is incompatible with an optimum. If this

bracket is positive the above equation implies positive γ’s (going to infinite). Notice

that according to (4.19) this explosive γ implies that µ is negative. In a sense the

planner would prefer less output. But µ can never be negative if the government can

just throw away tax revenues in excess of g and thus effectively reduce output. Thus,

the tax limit cannot be binding forever.

Now we show that capital taxes go from limit to zero within two periods in finite

time.

Let N + 1 be the first period where the tax limit is not binding, so that τ kN+1 < τ̃

and τ kt = τ̃ for all t ≤ N . Clearly, N is finite and well defined.

Now consider the ”modified model 3” at the end of the previous section. Given

N , consider the time-varying tax limits that leave τ̃ kt = τ̃ for all t 6= N + 1 but where

τ̃ kN+1 is very large (say, it is infinite) so as to insure beforehand the tax limit at period

N + 1 can not be binding. Let us call this the ”modified model 3.1”. It is clear that

the solution to this problem is equal to the solution of the baseline model, because

we have just relaxed a tax limit that was not binding in the optimum of the baseline
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model. Let us keep this fact in store for a while.

Now consider anther modified model 3, let us call it modified model 3.2. The tax

limits are now τ̃ kt = τ̃ for all t ≤ N and τ̃ kt is very large (say, infinite) to insure it is

not binding for all t > N . Let us denote with âthe solution to this modified model

3.2.

Clearly the first order conditions for this modified model are the same as for the

basic problem except that

γ̂t = 0 for all t ≥ N (4.22)

(notice that γt is the multiplier associated with the constraint on τ kt+1, so that τ kN+1

being unconstrained means γN = 0)

Combining (4.22) with (4.16), implies

ĉ−1
1,t

(
1 + α̂

)
= µ̂t

1 + λ̂

2
for all t ≥ N + 1 (4.23)

(notice, this last equation does not hold for t = N because γ̂N−1 6= 0 appears in

(4.16)). Plugging (4.22) in the FOC’s with respect to capital we get

µ̂t = δµ̂t+1(1 + Fk(kt, et+1)− d) for all t ≥ N

and using (4.23) we have

ĉ−1
1,t = δĉ−1

1,t+1(1 + Fk(kt, et+1)− d) for all t ≥ N + 1

Using the Euler equation of the consumer we conclude that τ̂ kt = 0 for all t ≥ N + 2.

Now, it is clear that the optimal solution for the modified model 3.2 is also feasible

in the modified model 3.1, even though the latter is more restrictive, because the tax

limit for t > N in model 3.1 is positive so that τ̂ kt < τ̃ . Therefore, thêsolution is

also the solution to modified model 3.1.

Since we already argued that this had to be the solution to the baseline model as
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well, this completes the proof.

4.3.2 Recursive Formulation

The model is recursive only after period 0. Formally, the structure of Marcet and

Marimon (1998) does not apply starting at period t = 0 because the terms in the

right side of the budget constraints have some endogenous variables (labor and con-

sumption) that appear differently in period T = 0 than in all remaining periods.

To obtain a recursive formulation, we first observe that, by a similar argument as

in Chari, Christiano and Kehoe (1994), the optimal solution is found by solving

max
{c1t ,kt,l1t}∞t=1

∞∑
t=1

δt [u(c1,t) + v(l1,t) + α(u(λc1,t) + v(f(λ, l1,t))) +

∆1( u
′(c1,t)c1,t + v′(l1,t) l1,t )+

∆2

(
u′(c1,t)λc1,t +

φ2

φ1

v′(l1,t) l2,t

)
+

γtu
′(c1,t)− γt−1 u

′(c1,t)(1 + (rt − d)(1− τ̃)) ]

subject to the tax limit and feasibility, and for fixed values of ∆’s, α, λ, γ0 and k0.

Notice that in this problem the series to be found starts at t = 1, and the choice in

period zero is taken as given. Given the optimal choices in period zero for k, γ, given

∆’s, λ and α, we now consider the maximization for the periods t > 0. The results

in Marcet and Marimon (1998) insure that an optimal policy function F


c1t

kt

l1t

γt

 = F (kt−1, γt−1)

could be found with the usual techniques to deliver the optimal policy.

Notice the dependence of F on the ∆’s, α and λ, this is left implicit.
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4.3.3 Frontier of Equilibrium Set

Our approach allows us to trace out the whole utility possibilities frontier of the set

of competitive equilibria. The Pareto frontier is only a subset of this frontier, and

the set of utilities belonging to POPI plans is contained within the Pareto frontier.

It is instructive to relate these sets in terms of the constraints of the optimal policy

problem.

The frontier of the equilibrium set is found by, first, varying α in the Lagrangian

from plus to minus infinity. We omit here the requirement to improve agents upon

the status quo, this is trivial to find ex-post. For α ≥ 0 the solution is equivalent to

solving for the Pareto optimal allocations imposing a minimum utility constraint for

agent two, where U2 is the utility value computed from the solution of the Lagrangian.

The points on the frontier that feature positive α constitute the Pareto frontier, since

a positive α indicates that the minimum utility constraint is binding. For α < 0 the

solution of the Lagrangian corresponds to maximizing the first agent’s utility and

imposing U2 with equality. In this range the solution is not Pareto-optimal because,

as is indicated by the negative Lagrange multiplier α, the first agent’s utility could be

increased by also increasing U2. These points of the frontier would correspond to a

welfare function where the planner would be willing to hurt agent 1 as long as agent 2

gets a sufficiently low utility. But in order to trace out the entire frontier we also have

to switch agents one and two in the first line of the Lagrangian so that α multiplies

the utility of agent one and then we have to vary α from zero to negative infinity

again: this would correspond to points in the equilibrium frontier that are again not

pareto optimal and that are obtained by forcing the planner to give a certain utility

to agent one.

Being a subset of the Pareto frontier, set of POPI plans clearly features positive

α. However, note that non-optimal points on the feasible frontier, i.e. points where

α < 0 may also be Pareto-improving. If this is the case, it will be true for at least one

agent that any POPI plan will strictly improve his utility. I.e. it is not possible to

shift all the gains to the other agent in a Pareto optimal way. We will see an example
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of this in section 4.4.4.

4.4 Results

In the following we present and discuss our numerical results, which are based on

the parameter choices explained in the next subsection. We first describe the results

for the baseline model of subsection 2.1, and then contrast them with those for the

modified models as a way of gaining intuition for the forces at work.

4.4.1 Calibration

We calibrate the model to match several aspects of the status quo before the reform.

All parameters except for the tax rates remain the same during the policy experiments.

An overview of our parameter choices is provided in table 4.6.2. We evaluate the

model at a yearly frequency.

Preferences: Agents have a CRRA-utility function over each consumption and

leisure, ie. u(ci,t, li,t) =
c
(
i,t1−σc)
1−σc + B

(1−li,t)(1−σl)
1−σl

. Our choices for the risk aversion

parameters σc and σl are standard. The same is true for the discount factor δ. The

parameter B is chosen such that in a corresponding representative agent economy

agents would work one third of their time in the steady state before the reform.

Heterogeneity: Our two types of agents are heterogeneous with respect to both

their labor efficiency φj and their initial wealth kj,−1. For simplicity we will from now

on speak of ”workers”, indexed w, and ”capitalists”, indexed c. Capitalist are the

group whose ratio of wealth to labor efficiency is higher. I.e. they are rich relative

to their earnings potential. Note, however, that in absolute terms the capitalists

are both richer AND more productive. In the status quo before the reform the

heterogeneity parameters of table 4.6.2 translate into a relative consumption of the

workers of λ = .4.

We base our choice of relative labor efficiency and wealth on the analysis of the
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Panel Study of Income Dynamics performed in Garcia-Milà et al. (1995). They split

their sample in five groups, while we have only two in order to facilitate computations.

The degree of heterogeneity in our calibration is somewhat less than the difference

between their two most extreme groups. Thus, we clearly understate heterogeneity.

This is even more so as we are interested in the scope for Pareto improving tax

reforms, which means we should not only take the poor and the rich as some group

averages, but the poorest and the richest individual. This is important to keep in

mind because it implies that our results must be regarded as lower bounds in the sense

that in reality the constraint to improve everybody (or at least almost everybody)

will be much tighter.

Production: We use a standard yearly calibration for technology. The produc-

tion function is Cobb-Douglas with a capital income share of αk = .36. There is no

productivity growth. The depreciation rate is d = .08. Initial capital is such that

the corresponding representative agent economy would be in steady state before the

reform.

Government: Before the reform the capital and labor income tax rates are 57%

and 23% respectively. These are the average marginal tax rates calculated by Mc-

Grattan, Rogerson and Wright (1997) for the period 1947-87. Government spending

per period g, is chosen to balance the budget intertemporally with these tax rates.

It amounts to about 25% of output in the status quo. Note that the choice of tax

rates in the status quo matters for two reasons. First of all, the capital tax rate influ-

ences the steady state (and hence initial) capital stock. Secondly, status quo utilities

depend on the tax rates, and thus the scope for Pareto improvements.

We assume that during the reform the capital tax rate can never increase above

its initial level. A justification for this assumption is political credibility: It should

be hard for the government to convince agents that in the future capital taxes will

be abolished if at the same time they are raised.
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4.4.2 The set of Pareto Optimal-Pareto Improving Plans

Our goal is to explore the properties of tax policies that are not only Pareto optimal

but, in addition, also improve all agents vis a vis the status quo described in section

4.4.1. Figure 11 traces out the welfare gains that each agent stands to reap from such

POPI programs for the baseline model of section 4.2.1.13 Clearly, the gains are quite

large, it is feasible to improve both agents significantly. Notice how the frontier of

utilities is decreasing, meaning that we can find a Pareto optimal tax reform where

the worker reaps the entire surplus of the reform while leaving the capitalist at his

status quo utility (at the point where the solid line crosses the x-axis), or we can find

a tax reform where only the capitalist enjoys all the gains (the solid line crossing the

y-axis), or many tax reforms in between where both agents gain.14

As we vary the distribution of gains between the two agent types, many proper-

ties of the policies and allocation change. Figure 12 illustrates how several of them

change with the welfare gain of the worker. First of all, the duration of the transition

to zero capital taxation increases from about nine to nineteen years as we increase the

welfare gain of the worker from zero to the maximum compatible with not hurting

the capitalist (which is approximately 9%). Duration here is defined as the number

of years with positive capital tax rates. As we know from the proof in section 4.3.1,

capital taxes stay at their upper bound for all but the last period of the transition and

then transit to zero with (at most) one intermittent period. A typical time path for

capital taxes is drawn in figure 13. The fact that the duration of the transition is so

sensitive to the distribution of the welfare gains is a reflection of the lack of redistribu-

tive instruments of the social planner: The worker contributes to the public coffers

primarily through labor taxes, which means his burden stands to increase through

the reform while the capitalist’s burden decreases. This effect tends to distribute

the efficiency gains that the reform permits asymmetrically. The earlier capital taxes

13In all the figures in this paper reporting results on welfare, the welfare gains for each agent
are measured as the percentage, permanent increase in status quo consumption that would give the
agent the same utility as in the optimal tax reform. Therefore, the origin of the graph represents
the status quo utility, and the positive orthant contains Pareto improving allocations.

14We will see in section 4.4.4 that this is not generally true.
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are suppressed, the more revenue has to be raised from labor taxes and the bigger

the relative tax burden of the worker. This is why, by delaying the suppression of

capital taxes, the welfare gains of the worker can be increased at the expense of the

capitalist. The second panel in figure 12 further illustrates this mechanism: The more

the worker gains the higher is the share of capital taxes in revenues in present value

terms because they are suppressed only later.15

The final graph in figure 12 depicts α, the multiplier on the minimum utility con-

straint for the worker, and λ, the ratio of the worker’s consumption to the capitalist’s.

We put these two graphs in the same picture because it can be shown that in a first

best situation, i.e. if there is no distortionary taxation and no distributive conflict

(∆1 = ∆2 = 0) and hence the upper bound on capital taxes never binds (γt = 0∀t),

and with logarithmic utility of consumption, we would have α = λ.16 In the second

best world of our model, by contrast, as we increase the welfare of the worker the

marginal cost of doing so explodes, while his consumption share increases only mildly.

In fact, it always remains very close to its value in the status quo, which is 0.4.

Another way of looking at α comes to mind by noting that it is the relative weight

that agent 2 receives in the Lagrangean of the optimal program. This suggests that

α is a measure of the bias of the social planner in favor of the workers. We do not

favor this interpretation, however, because it invites to take the welfare function of the

planner literally as a measure of what the planner should do. Keeping in mind Arrow’s

impossibility theorem, we think it is better to stay away from that interpretation, and

this is why we confine our attention to studying POPI allocations, where the only

unit of interest is the utility that each agent achieves through various tax reforms.

Under this view, the weight α is not a measure of what a government should or should

not do, it is just a Lagrange multiplier determined in equilibrium, it measures the

cost of enforcing the minimum utility constraint. The fact that α has to increase so

much to achieve a small redistribution is just a reflection of the difficulties that the

planner finds in redistributing wealth from one agent to the other when only capital

15For comparison, the share of capital taxes in revenues is about .43 in the status quo.
16Generally, in the first best α = λ−σc .

94



or labor taxes are available.

4.4.3 The Time Path of the Economy under POPI Plans

To further describe the comparative dynamics of POPI tax reforms it helps to consider

the time paths of capital, labor supply, the labor tax rate, and the government deficit

that are pictured in figure 14. First note that qualitatively the paths are very similar

across the set of POPI plans. The horizontal shifts in the graphs occur because under

plans that shift the benefits to the worker capital taxes remain at their initial level for

longer. The kinks in the paths of labor taxes and government deficit occur precisely

in the intermediate period when capital taxes transit from their maximum to zero.

The paramount message from the set of graphs in figure 14 is that the optimal

policy in our model goes against several traditional policy prescriptions that have

been derived from studies of optimal dynamic taxation. We find the following:

• Long transition. It is known that with log utility of consumption the transition

takes one period (capital taxes go to zero abruptly in period t = 1) in the

standard model without tax limits. In our model the transition is very long.

Part of this length is due to the tax limit (see section on MM1 model below) but

as we explained in the description of Figure 12, the planner must lengthen the

transition in order to insure that both agents gain, even more so in tax reforms

more favorable to the worker.

• Non-smooth taxes. Both in capital and labor taxes there is an abrupt change

at some point in the future. Capital taxes stay at the upper bound for a while

and then go in one period to zero.17 Furthermore, labor taxes also change

considerably over time.

• It is optimal to reduce labor taxes initially. Until now, the literature has con-

centrated on the long run results, which often imply very low capital taxes.

17This feature, for capital taxes, already was described in Atkeson et al. (1999) for a tax limit
such that the after tax gross return is bounded below by 1− d.
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But we find that the optimal policy is to reduce labor taxes initially, for some

tax reforms even to a negative level, and then increase labor taxes above their

status quo level. This, combined with the long transition, means that labor

taxes often have to be low for a very long time.

What happens is the following: the planner wants to frontload capital taxes for

the usual reasons that have been described at length in the literature. Therefore, it is

optimal to have capital taxes at the upper limit in the first few periods and then let

them go to zero. But in order to boost output and capital accumulation in the early

periods, when capital taxes are still high, it is optimal to lower labor taxes to induce

an increase in the return of capital. Figure 3 shows that labor supply of all agents is

very high in the early periods.18 This engineers capital growth in the early periods

when capital taxes are still at their high old level. Eventually the zero capital tax

is the one promoting growth and helping the economy converge to the steady state

where the golden rule holds. Absent this backloading of labor taxes early capital

accumulation would take place only to the extent that the expectation of low future

capital taxes raises incentives to save. This is much less, as will be confirmed in our

analysis of model MM2 with fixed labor supply in section 4.4.4.

The fact that the short run policy is very different from the one applicable in

the long run questions the validity of steady state analysis as a tool to understand

what governments should do. In particular, the nowadays fashionable ’timeless per-

spective’, which focuses on the analysis of optimal policies in the steady state, would

give a recommendation that is the exact opposite from the optimal in the short run.

This is the reason why Garcia-Milà et al. (1995) and related work found that imple-

menting the long run policy with zero capital taxes immediately hurts poor agents

(workers): It looks like it is not only the immediate suppression of capital taxes that

is non-optimal, but also the high initial labor tax rates.

Furthermore, it would seem that the fact that the transition is so long implies that

the government would need a very high degree of commitment in order to actually

18Capitalists, who also have higher labor productivity, always work less than workers.
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achieve the long run zero capital tax.

A somewhat surprising pattern that emerges from the pictures is that the long run

labor tax rate is higher the later capital taxes are abolished, i.e. the more the policy

favors the worker. This may seem paradoxical because the worker is interested in

low labor taxes. Note though, that even though the long run labor tax rate is higher

if the worker is favored, the share of labor taxes in the present value of revenues is

lower in this case, as figure 12 showed. This suggests that the long run labor tax

rate is high for two reasons. First, when capital taxation is abandoned late the initial

boost to capital accumulation comes mainly from extremely low initial labor taxes.

I.e. the backloading of labor taxes is strongest in these cases. Second, the long run

labor supply is lower the later capital taxes are suppressed, while the gross wage is

always the same.19 Therefore, the revenue raised for a given labor tax rate is lower.

Since government expenditures are constant, the low initial labor taxes translate

into government deficits. Only as labor taxes rise the government budget turns into

surplus. Once capital taxes are suppressed and revenues fall again, the government

deficit quickly reaches its long run value which can be positive or negative depending

on whether during the transition the government accumulated wealth or not. We can

see from figure 3 that most POPI policies imply that the government runs a primary

surplus in the long run. This implies that the government is in debt in the long run,

because the primary surplus is needed to pay the interest on debt. Therefore, for

most tax reforms the low taxes in the initial periods generate a debt that is, in part,

never repaid.

4.4.4 Isolating the Effects: Modified Models 1 and 2

As mentioned previously, in our baseline model there are two reasons not to abandon

capital taxes too fast. One is the conventional one that the shortfall in government

19Since the long run real return on capital is determined by the rates of time preference and
depreciation and the production function is Cobb-Douglas, the long run capital-labor ratio and
wage are independent of the policy - as long as capital taxes are zero eventually.
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revenues would have to be compensated through higher labor taxes, which are also

distorting. So the tax authority has to balance off the two types of distortions. The

second reason present in our model is the requirement to ensure a minimum utility

level for both agents. In particular, abolishing capital taxes too fast would hurt the

worker. In this section we want to look at each of these two factors separately.

Optimal Policies with Lump-Sum Transfers

By allowing for lump-sum transfers between the agents, Modified Model 1 gives the

social planner an extra instrument to resolve the distributional conflicts, while re-

taining the problem of distortive labor taxes. Figure 15 traces out the set of Pareto

optimal plans in terms of the welfare gains of each agent for MM1 (solid line) and, for

comparison, for the baseline model (dashed line). Note that the POPI tax reforms

are those that occupy the positive orthant, as they are the ones that imply Pareto

improvement.

First of all note that the frontier of equilibria is decreasing, so the frontier of

equilibria is also that of Pareto optimal allocations. Obviously the utility possibilities

frontier in the baseline model is always dominated by that for the model with transfers.

This indicates how the absence of transfers constrains the solution. It turns out

that all POPI policies for the model MM1 imply a positive lump sum transfer from

capitalists to workers, therefore, all POPI policies of the baseline model could be

strictly improved upon if such a transfer took place. This transfer would be bigger

the higher the required welfare gain of the worker. It is particularly interesting that

the possibility of a transfer would allow to enhance the welfare gains even if the

worker’s welfare is to be kept at its status quo level (i.e. if the planner considered

only tax reforms along the y-axis). In other words, the capitalist would be better off

if he could make a payment to the worker and then choose a policy that leaves the

worker indifferent to the situation before the reform. A zero transfer would be chosen

by the policy maker only for a policy that harms the worker. This policy corresponds

to the point in the north-western quadrant of figure 15 where the two lines just touch.
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(If we move further up the line, i.e. benefit the capitalist even more at the expense

of the worker, a transfer from worker to capitalist becomes optimal.)

How the possibility of a transfer takes care of the distributional component of our

problem can also be seen from other properties of POPI plans with optimal transfers.

As a benchmark, recall that in figure 12 all variables with the exception of λ change

strongly as the distribution of the gains from reform changes. This is very different

when optimal transfers are available. The graphs of duration and share of capital

taxes in revenues analogous to the ones in Figure 2 would be almost flat: capital

taxes are always suppressed after 5-6 years, the share of capital taxes is always 0.11.

α, the multiplier on the worker’s utility constraint, would increase only slowly with

Π(worker), while λ would rise much more than without the transfer. This pattern

illustrates that the policies and the path of the economy would hardly depend on the

distribution of the gains from reform. On the other hand, shifting welfare gains and

consumption between agents would be much easier, as indicated by the behavior of

α and λ.

Optimal Policies with a Fixed Labor Supply

Modified Model 2 features a fixed labor input, such that labor taxes are no longer

distortive. What remains is the need to Pareto improve upon the status quo. Figure

16 traces out a part of the frontier of feasible equilibria for MM2 (solid line) as well

as the corresponding frontier for a chimera of MM1 and MM2 (dashed line), ie. the

model without labor AND with an optimal transfer, for comparison. This latter

graph actually corresponds to the first best because neither distributional concerns

nor inefficient taxes constrain the social planner’s problem and hence capital taxes

can be abolished immediately without any drawbacks. Clearly, MM2 gives rise to

solutions that are far away from the first best, no matter how the gains are distributed

between the agents. Correspondingly, it takes 10 to 20 years until the suppression

of capital taxes. This shows that the need to improve all agents by itself imposes a

severe constraint on the planner’s problem, even when distortions of the labor supply
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are not an issue.

Another interesting aspect of figure 16 is the shape of the frontier of feasible

equilibria in MM2. It bends backward, which means not the entire frontier actually

belongs to the set of Pareto optimal plans: The increasing part of the solid line

contains equilibria that are at the frontier of the feasible equilibrium set but that

are not Pareto optimal, since the point αc = 0 Pareto-dominates all these equilibria.

The way we generate this frontier is by imposing a minimum utility constraint for the

capitalist with equality.20 Those plans that lie on the (non-optimal) backward bending

part of the frontier go along with a negative multiplier on the utility constraint (αc <

0). I.e. in these cases the planner can only force the capitalist onto a certain (low)

utility level by also harming the worker. Note, however, that this non-optimal part

of the frontier still satisfies the requirement of Pareto superiority vis a vis the status

quo. Notice also that this implies that in this model it is not possible to distribute all

the gains from a Pareto optimal reform to the worker. It is perfectly feasible, on the

other hand, to keep the worker at status quo and make only the capitalist benefit.21

MM2 also helps to illustrate the role of the path of labor taxes in the baseline

economy. Recall that in section 4.4.3 we argued that it is important that the planner

can initially boost labor supply and thus capital accumulation by lowering labor

taxes while capital taxes are still high. Here in MM2 this option does not exist since

labor supply is fixed and in fact the time path of labor taxes is indeterminate.22

Correspondingly, capital increases in the initial periods only to the extent that the

expectation of low future capital taxes induces saving. Figure 17 illustrates that

the resulting capital accumulation is much slower initially. We have plotted two

illustrative time paths for capital. The solid line depicts the evolution of the capital

stock for the fastest possible transition to zero capital taxes, namely for the plan

20Details are given in section 4.3.3. Note that while before we were maximizing the utility of the
capitalist subject to a min. utility constraint for the worker, now we are maximizing for the worker
subject to a constraint on the capitalist’s utility. To make this plain we now index the multiplier
with ”c”.

21It must be expected that the same phenomenon occurs in the model with a labor choice if σl is
sufficiently high. After all, in the limit as σl →∞ the labor supply becomes fixed.

22All that matters is the total discounted sum of labor taxes paid.
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that just leaves the worker at his status quo utility. The dashed line corresponds to

the slowest possible POPI transition, i.e. the one that maximizes the utility gain of

the workers and has αc = 0. All other paths belonging to POPI plans would be in

between. Comparison with the first panel in figure 14 shows clearly that in the model

without labor capital rises much less in the first periods while capital taxes are still

in place. Thus the backloading of labor taxes in the baseline model seems to be an

important part of the optimal policy.

4.5 Conclusion

Several recent papers suggest that the abolition of capital taxes - desirable as it may

be for efficiency reasons - will harm large groups of agents, unless it is done very

carefully in terms of timing. In this paper we respond to this observation by studying

the optimal time path of capital and labor taxes in a model of heterogeneous agents,

subject to the constraint that nobody lose from the reform. For reasons of political

credibility we moreover impose an upper bound on capital tax rates corresponding

to their level before the reform. The Pareto optimal and Pareto improving plans

that solve our policy problem have very interesting properties. The time path of

tax rates is highly non-smooth. Capital tax rates remain at their upper bound for

at least 10 years and then drop to zero within two periods. Labor tax rates, by

contrast, are initially very low, often even negative, and rise to their new long run level

around the time when capital taxes are suppressed. As a consequence, the government

typically accumulates debt that is never repaid. These time paths suggest that 1) a

Pareto improving abolition of capital taxes requires a lot of credibility on part of the

government because the transition is so long, and 2) the nowadays popular ”timeless

perspective’, i.e. the exclusive focus on the steady state, is very misleading in our

case. It would mean to miss all the dynamics that are necessary in order to distribute

the gains from the reform broadly.

101



4.6 Appendix

4.6.1 The maximization problem and first order conditions

Using the derivations in section 4.2.1, the maximization problem to be solved becomes

max
λ,{c1t ,kt,l1t}∞t=0

∞∑
t=0

δt [u(c1,t) + v(l1,t)] (4.24)

s.t. u′(c1,t) ≥ δ u′(c1,t+1)(1 + (rt+1 − d)(1− τ̃)) for all t (4.25)

1 + λ

2
c1,t + g + kt − (1− d)kt−1 = F

(
kt−1,

l1,t + f(λ, l1,t)

2

)
for all t (4.26)

∞∑
t=0

δt [u(λc1,t) + v(f(λ, l1,t))] ≥ U2 (4.27)

∞∑
t=0

δt (u′(c1,t)c1,t + v′(l1,t) l1,t) = u′(c1,0) k1,−1(1 + (r0 − d)(1− τ k0 )) (4.28)

∞∑
t=0

δt
(
u′(c1,t)λc1,t +

φ2

φ1

v′(l1,t) f(λ, l1,t)

)
= u′(c1,0) k2,−1(1 + (r0 − d)(1− τ k0 ))

(4.29)

letting α,∆1,∆2 be the lagrange multipliers for the constraints involving discounted

sums (4.27), (4.28) and (4.29), the Lagrangian is given by (4.14).

The first order conditions for the Lagrangian are:

• for consumption, t > 0:

u′(c1,t) + αλu′(λc1,t) + (∆1 + λ∆2)[u
′(c1,t) + u′′(c1,t)c1,t] +

γtu
′′(c1,t)− δγt−1u

′′(c1,t)(1 + (rt − d)(1− τ̃)) = µt
1

2
(1 + λ)
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• for consumption, t = 0:

u′(c1,0) + αλu′(λc1,0) + (∆1 + λ∆2)[u
′(c1,0) + u′′(c1,0)c1,0]−

u′′(c1,0)
(
(∆1k1,−1 + ∆2k2,−1)(1 + (r0 − d)(1− τ k0 ))+

∆1m1,1 + ∆2m2,−1

)
+ γ0u

′′(c1,0) = µ0
1 + λ

2

• for labor, t > 0:

v′(l1,t) + αv′(f(λ, l1,t))f
′(λ, l1,t) +

∆1[v
′(l1,t) + v′′(l1,t)l1,t] + ∆2

φ2

φ1

[v′(l1,t)f
′(λ, l1,t) + v′′(l1,t)f(λ, l1,t)] −

γt−1u
′(c1,t)(1− τ̃)Fk,e(kt−1, et)

1

2
(φ1 + φ2f

′(λ, l1,t)) =

−Fe(kt−1, et)
1

2
(φ1 + φ2f

′(λ, l1,t))µt

• for labor, t = 0:

v′(l1,0) + αv′(f(λ, l1,0))f
′(λ, l1,0) +

∆1[v
′(l1,0) + v′′(l1,0)l1,0] + ∆2

φ2

φ1

[v′(l1,0)f
′(λ, l1,0) + v′′(l1,0)f(λ, l1,0)] −

(∆1k1,−1 + ∆2k2,−1)u
′(c1,0)Fk,e(kt−1, et)

1

2
(φ1 + φ2f

′(λ, l1,t))(1− τ k0 ) =

−Fe(kt−1, et)
1

2
(φ1 + φ2f

′(λ, l1,t))µ0

• for capital, t ≥ 0:

µt + γtδu
′(c1,t+1)(1− τ̃)Fk,k(kt, et+1) = δµt+1(1 + Fk(kt, et+1)− d)
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• for λ:

∞∑
t=0

δt
[
α (u′(λc1,t)c1,t + v′(f(λ, l1,t))fλ(λ, l1,t)) +

∆2

(
u′(c1,t)λc1,t +

φ2

φ1

v′(l1,t)fλ(λ, l1,t)
)
−

µt
1

2

(
c1,t − Fe(kt−1, et)φ2fλ(λ, l1,t)

)]
= 0
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4.6.2 Computational strategy: Approximation of the time

path

1. Fix T as the number of periods after which the steady-state is assumed to have

been reached. (We use T = 150.)

2. Propose a 3∗T+3-dimensional vectorX = {k0, ..., kT−1, l0, ..., lT−1, γ0, ..., γT−1,∆1,∆2, λ}.

(This is not the minimal number of variables to be solved for as a fixed point

problems. 2 ∗ T + 3 would be sufficient, however, convergence is better if the

approximation errors are spread over a larger number of variables.)

3. With k−1 and g known, find {ct, Fkt, Flt, Fklt, Fkkt} from the resource constraint

and the production function.

4. Calculate {µt} from the FOC for labor.

5. Calculate {γt} from the FOC for consumption, making use of {µt} and the guess

for {γt} from the X-vector. (The guess is plugged into γt−1, γt is backed out.)

6. Form the 3 ∗ T + 3 residual equations to be set to 0:

• The FOC for capital (Euler equation) has to be satisfied. (T equations)

• The vector {γt} has to converge, ie old and new guess have to be equal.

(T equations)

• Check for each period whether the constraint on τ k is satisfied. If yes,

impose γt = 0. Otherwise, the constraint on capital taxes has to be satisfied

with equality. (T equations)

• The remaining 3 equations come from the present value budget constraints

(PVBC) and the FOC for λ. The discounted sums in the PVBCs are

calculated using the time path of the variables for the first T periods and

adding the net present value of staying in steady-state forever thereafter.
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7. Iterate on X to set the residuals to 0. (We use Broydn’s algorithm to solve this

3 ∗ T + 3-dimensional fixed point problem.)
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Model
Statistic Data wL,0 = 0.1 wL,0 = 0.2 wL,0 = 0.3
E(∆c) 1.7 1.7. 1.7 1.7.
σ(∆c) 3.3 3.3 3.3 3.3
E(rf ) 1.7 1.3 1.4 1.5
σ(rf ) 5.1 0.9 0.7 0.5
E(r − rf ) 4.6 4.9 4.7 4.6
σ(r − rf ) 18.5 3.6 3.5 3.5
E(PD) 22.7 23.4 23.5 23.6
σ(PD) 6.2 1.0 0.8 0.7
ρ(PD,PD−1) 0.81 0.85 0.78 0.70

Note: The model is simulated at a quarterly frequency.
Statistics are calculated from time-averaged data at an an-
nual frequency. All returns are annual percentages. Small
letter are logs.

Table 2: Unconditional statistics of simulated and historical data

Model
Data wL,0 = 0.1 wL,0 = 0.2 wL,0 = 0.3

Horizon 10 x 10 x 10 x 10 x
(Years) Coefficient R2 Coefficient R2 Coefficient R2 Coefficient R2

1 -1.65 .06 -2.77 .11 -2.51 .06 -2.23 .04
2 -3.43 .11 -5.41 .20 -4.93 .12 -4.40 .07
3 -3.92 .13 -7.90 .27 -7.22 .17 -6.47 .11
5 -7.91 .35 -12.40 .38 -11.39 .26 -10.29 .17
7 -7.92 .20 -16.58 .46 -15.39 .33 -14.13 .22
10 -13.19 .59 -21.69 .55 -20.29 .41 -18.88 .29

Table 3: Long-horizon return regressions

Volatilities Correlations
σ(∆cL) σ(∆cH) σ(∆c) ρ(∆cL,∆c) ρ(∆cH ,∆c) ρ(∆cL,∆cH)
6.7% 1.2% 3.3% .57 .96 .59

Table 4: Volatilities and correlations of individual and aggregate consumption growth
(wL,0 = 0.1)
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Means and Std. dev.’s Long-horizon regressions
Horizon Data Model

Statistic Data Model (Years) 10 x Coeff. R2 10 x Coeff. R2

E(rf ) 1.7 1.1 1 -1.65 .06 -1.32 .006
σ(rf ) 5.1 1.0 2 -3.43 .11 -2.50 .011
E(r − rf ) 4.6 4.8 3 -3.92 .13 -3.51 .015
σ(r − rf ) 18.5 13.3 5 -7.91 .35 -5.86 .024
E(PD) 22.7 23.6 7 -7.92 .20 -8.75 .039
σ(PD) 6.2 1.8 10 -13.19 .59 -12.04 .052

Note: The model is simulated starting at wL,0 = 0.1.

Table 5: Means, standard deviations, and long horizon return regressions for the
calibration to dividend data
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γ 2
β 0.9955 (=̂ 0.9479 p.a.)
r 0.0017 (=̂0.02 p.a.)
y 1
κ 2.6534
λ 0.0072
χ 0.254
η -0.5
σ 0.5

Table 6: Parameters

new rate status static dynamic transition cost
59% unemployed 0.04% -0.01% 0.05%

employed 0.12% 0.06% 0.06%
50% unemployed 0.16% -0.48% 0.64%

employed 0.98% 0.29% 0.69%
40% unemployed -0.01% -1.73% 1.72%

employed 1.63% 0.03% 1.60%
30% unemployed -0.34% -3.88% 4.21%

employed 2.10% -0.59% 2.69%

Table 7: Welfare effects of lowering the replacement rate (old level: 60%) without
announcement

new rate agent type static dynamic, announcement
none 1 yr 2 yrs

40% unemployed -0.01% -1.73% 0.35% 0.71%
employed 1.63% 0.03% 0.63% 0.75%

firms 14.32% 35.74% 8.54% 0.78%

Table 8: Welfare effects of reducing the replacement rate from 60% to 40% depending
on the length of the announcement period
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Preference parameters

γc -1
γl -3
B .76
δ .96

Heterogeneity Parameters
φc/φw 1.05
kc,−1 5.49
kw,−1 -3.47

Production parameters
αk .36
d .08
k−1 1.01

Government spending g .13

Tax rates before reform
τ l .23
τ k .57

Upper bound on cap. tax
rate

τ̃ .57

Table 9: Parameter Values of the Baseline Economy.
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Figure 6: The Role of the intertemporal elasticity of substition
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Figure 10: The transition paths of vacancy-unemployment ratio and net wages with
announcement
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