

Análisis espacial y temporal de las lluvias extremas en Catalunya. Modelización y clasificación objetiva

M. Carmen Casas Castillo

Departament d'Astronomia i Meteorologia Universitat de Barcelona

U

B

Análisis espacial y temporal de las lluvias extremas en Catalunya. Modelización y clasificación objetiva

Memoria presentada por M. Carmen Casas Castillo para optar al grado de Doctora en Física

Director: Dr. Àngel Redaño Xipell

Programa de doctorado en Astronomía y Meteorología (bienio 1993-1995)

Departament d'Astronomia i Meteorologia

Fdo. Dr. Àngel Redaño Xipell

A mis seres queridos del m^3

Fotos de nubes y rayos de la cubierta: Dr. Jerónimo Lorente Castelló

Agradecimientos:

Quiero expresar mi gratitud, en primer lugar y de un modo muy especial, al Dr. Ángel Redaño, director de este trabajo, no sólo por sus valiosos comentarios y discusiones sino también por su apoyo y ánimo constantes, así como su inmensa paciencia. Asimismo, quiero agradecer al Dr. Jerónimo Lorente la ayuda que me ha prestado en innumerables ocasiones, y la amable cesión de sus magníficas fotos de nubes y de rayos que se han utilizado en la confección de la cubierta de este trabajo. Igualmente, quiero dar las gracias a Germán Delgado por la ayuda prestada, al Dr. Bernat Codina por sus útiles sugerencias, y a Anna Rius y Mónica Herrero del Servei Meteorològic de Catalunya por su colaboración. También quiero mencionar a J.R. Rodríguez para agradecerle las facilidades recibidas en todo momento.

Asimismo, quiero expresar mi más sincero agradecimiento al Dr. Raül Rodríguez, sin cuya ayuda, respaldo, ánimo y estímulo constantes no hubiera podido concluir este trabajo. Otra buena dosis de estímulo se la debo a mi padre, Venancio Casas, y muy especialmente a mi madre, Antonia Castillo, cuya perseverancia ha resultado tan valiosa para mí.

Una parte de este trabajo se ha desarrollado en el marco del proyecto "Validación climática de modelos conceptuales a escala sinóptica, compatibilidad con regímenes cuasiestacionarios de circulación y efectos sobre el tiempo en la Península Ibérica (REN2002-04558-C04-04)" (VALIMOD), financiado por la Dirección General de Investigación del Ministerio de Ciencia y Tecnología.

Índice

1 Introducción	9
2 Estudio de la relación Intensidad-Duración-Frecuencia para lluvias extremas en Barcelona	
2.1 Introducción	11
2.2 Tratamiento de los datos de intensidad de lluvia	12
2.3 Análisis de las series de precipitación máxima. Ajuste mediante la función de distribución Gamma	14
2.4 Obtención de las curvas de Intensidad-Duración-Frecuencia (IDF) a partir de la función de distribución Gamma	18
2.5 Ajuste de una función potencial-exponencial de tres parámetros (<i>mnp</i>) a los extremos de precipitación	25
2.6 Obtención de las curvas de Intensidad-Duración-Frecuencia (IDF) a partir de la función <i>mnp</i>	29
2.7 Generalización de las curvas IDF para la ciudad de Barcelona	32
2.7.1 Normalización de las curvas IDF considerando una dependencia logarítmica con el periodo de retorno	32
2.7.2 Obtención de la ecuación generalizada de las curvas IDF considerando una dependencia potencial con el periodo de retorno	36
2.8 Conclusiones.	39

3 Clasificación de los episodios de lluvia extrema registrados en Barcelona entre 1927 y 2001

3.1	Introducción	.41
3.2	Selección de los episodios de lluvia extrema	.42
3.3	Análisis de conglomerados del conjunto de episodios extremos	45
3.4	Índice ponderado de intensidad de precipitación	58

3.5 Episodios extremos de lluvia en Barcelona registrados por la red de pluviómetros d	e
intensidad de CLABSA (1994-2001)	59
3.5.1 Análisis de conglomerados de los episodios extremos de lluvia	
3.5.2 Distribución de los índices ponderados de intensidad (IP)	
3.6 Conclusiones	71

4 Análisis de la precipitación máxima en 24 horas en Catalunya

4.1	Introducción	73
4.2	Análisis de las series de máximos anuales de precipitación en 24 horas	74
4.3	Análisis espacial de las lluvias extremas en 24 horas en Catalunya	87
4.4	Discusión de los resultados	98
4.5	Conclusiones	100

5 Estimación de la Precipitación Máxima Probable (PMP) en Catalunya

5.1	Introducción	103
5.2	Método estadístico para la estimación de la Precipitación Máxima Probable	104
5.3	Estimación de la Precipitación Máxima Probable en Catalunya	105
5.4	Estimación de la Precipitación Máxima Probable en Barcelona	115
	 5.4.1 Análisis de las series de máximos anuales de precipitación registrados por el pluviógrafo Jardí del Observatori Fabra de Barcelona	115 120
	5.4.5 Analisis de las series de precipitación maxima registrada por la red proviometrica	122
55	Conclusiones	125
6 (An	conclusiones	129
plu	iviógrafo Jardí del Observatori Fabra de Barcelona (1927-1992)	133
An url	exo B: Máximos anuales de precipitación registrados por la red pluviométrica bana de CLABSA (1994-2001)	147
An	exo C: Máximos anuales de precipitación en Catalunya	163
Bił	oliografía	195

1 Introducción

Uno de los rasgos climáticos más importantes que caracteriza un lugar es su régimen pluviométrico. Entre los muchos factores que lo definen destaca, por su interés en el ámbito meteorológico, hidrológico y de Ingeniería Civil, las intensidades extremas de precipitación, su duración y la frecuencia con que se producen. Su conocimiento es imprescindible para la planificación de obras hidráulicas, carreteras, redes de alcantarillado, el diseño de los sistemas de drenaje de las aguas pluviales en grandes instalaciones y edificios en general, la optimización de recursos hidráulicos en cuencas hidrográficas y la prevención de avenidas. Además, el comportamiento de esta variable puede ser de gran utilidad tanto para la detección del cambio climático como en la evaluación de sus posibles efectos sobre un territorio.

El análisis de la relación existente entre las cantidades de precipitación máxima registradas en intervalos de tiempo de distinta duración para un mismo episodio lluvioso resulta muy útil para obtener información sobre la organización temporal y espacial de la lluvia así como sobre los mecanismos que la han originado. Aplicado a los chubascos extremos ocurridos en una zona, este análisis caracteriza la estructura fina de las lluvias y permite su clasificación objetiva poniendo de manifiesto la contribución de las diferentes escalas meteorológicas a la génesis del episodio de precipitación. Además, la medida de la contribución de cada una de las escalas en el proceso de precipitación puede establecerse como un indicativo del grado de severidad de la lluvia.

Para conocer la periodicidad con que ciertas cantidades de lluvia pueden registrarse en un intervalo de tiempo establecido en cualquier punto de una determinada región, suele recurrirse al análisis escalar de las cantidades correspondientes obtenidas a partir de las series de datos disponibles de los observatorios meteorológicos de la zona y sus ajustes mediante funciones de distribución apropiadas. Este análisis debe realizarse con prudencia dada la incertidumbre asociada a la propia naturaleza de los fenómenos meteorológicos que originan la lluvia, tanto por las diferentes escalas espaciales de las organizaciones nubosas que dan lugar a precipitaciones extremas en una región, como por la recurrencia temporal de los casos extremos registrados en los observatorios, que puede ser en algunos casos, muy diferente a la que pueda calcularse, por ejemplo, a partir de series de máximos anuales que no dispongan de la suficiente longitud.

Hacia finales del decenio de 1970 se inició en la Cátedra de Física del Aire de la Universidad de Barcelona una línea de investigación relacionada con el análisis de la intensidad de lluvia. Inicialmente los datos de que se disponía procedían de las bandas de registro del pluviógrafo de intensidad Jardí instalado en el Observatori Fabra de Barcelona en 1927 y que ha estado en funcionamiento casi sin interrupción hasta la actualidad. Los primeros trabajos se centraron en el análisis estadístico del banco de datos obtenido a partir de la digitalización de las bandas de registro y en el estudio de las precipitaciones de alta intensidad en Barcelona. A principios de la década de los 80 se amplió el proyecto de investigación con la puesta en marcha de una red urbana de pluviómetros de intensidad en el área metropolitana de Barcelona. Buena parte de los resultados de estos estudios se recogen en la publicación Aspectos estadísticos y sinópticos de las precipitaciones intensas en Cataluña (Burgueño et al., 1989) de la la Real Academia de Ciencias y Artes de Barcelona. El trabajo realizado en esta tesis es, en parte, continuación de alguna de las líneas de investigación iniciadas en el departamento de Astronomia i Meteorologia en este periodo, como por ejemplo, el tratamiento de los datos de intensidad de lluvia disponibles en Barcelona para la obtención de una expresión generalizada de las curvas de intensidad-duración-frecuencia (IDF) para la ciudad de Barcelona. El estudio trata nuevos aspectos que amplian y completan los estudios anteriores, como el análisis de la distribución de las lluvias extremas en Catalunya mediante el uso de técnicas objetivas de análisis o el cálculo de la precipitación máxima probable (PMP) en nuestra zona.

En el capítulo 2 del trabajo se ha analizado la relación entre las intensidades máximas de precipitación registradas en Barcelona en el periodo 1927-2001, su duración y su frecuencia, lo que ha dado lugar a una revisión de las curvas IDF para Barcelona, obteniéndose además una ecuación generalizada para dicha relación.

En el capítulo 3 se han caracterizado las lluvias extraordinariamente intensas ocurridas en el periodo de estudio (1927-2001) y se ha obtenido una clasificación objetiva que pone de manifiesto la escala a la que pertenecen. También se ha propuesto un índice de severidad de la lluvia que tiene en cuenta la contribución de cada una de las escalas implicadas en el proceso de precipitación.

En el capítulo 4 se ha realizado un análisis de las lluvias diarias extremas a partir de las series de máximos anuales de precipitación en 24 horas registrados en las estaciones pluviométricas que el Instituto Nacional de Meteorología (INM) tiene en Catalunya. Se han ensayado diferentes métodos de ajuste a funciones teóricas de distribución para calcular, posteriormente, las cantidades máximas de lluvia diaria correspondientes a distintos periodos de retorno. Además se ha aplicado un método objetivo de análisis para obtener las distribuciones espaciales de las lluvias diarias máximas en Catalunya.

Finalmente, en el capítulo 5 se ha calculado la precipitación diaria máxima probable (PMP en 24 horas) en Catalunya a partir del análisis estadístico de las series de precipitación diaria y mediante la aplicación de un método de análisis espacial objetivo. El trabajo se ha completado con un estudio detallado de la PMP en Barcelona utilizando la serie histórica del pluviógrafo Jardí y los datos de la red pluviométrica urbana que la empresa Clavegueram de Barcelona, S.A. (CLABSA) tiene instalada en la ciudad de Barcelona.

2 Estudio de la relación Intensidad-Duración-Frecuencia para lluvias extremas en Barcelona

2.1 Introducción

En las zonas de clima mediterráneo de latitudes medias, la precipitación puede proceder de sistemas nubosos de escala sinóptica que presentan ascensos forzados con velocidades verticales pequeñas, y producen precipitaciones de intensidad débil o moderada denominada *generalizada* o *estratiforme*, o bien, de sistemas convectivos de mucha menor extensión, perteneciente a la escala local o a la mesoescala, y menor duración, en los que los ascensos son acelerados en algunas zonas del sistema nuboso, y suelen producirse chubascos de intensidad moderada o fuerte; precipitación que suele denominarse *convectiva*. Aunque ambos tipos de precipitación pueden estar asociados al paso de depresiones frontales, los sistemas convectivos intensos que afectan a las zonas mediterráneas presentan una estructura propia muy influenciada por factores estacionales y locales, siendo la interacción mar-atmósfera uno de los más importantes.

En general, la falta de homogeneidad de los instrumentos de medida de la intensidad de precipitación, así como el diferente tipo de información necesaria según cual sea la aplicación concreta de los datos de lluvia, hacen que en muchas ocasiones sea difícil disponer de datos adecuados que permitan comparar los rasgos climatológicos más significativos de la intensidad en diferentes lugares o clasificar, de forma lo más objetiva posible, las lluvias registradas en un mismo lugar atendiendo al comportamiento de esta variable. Normalmente, a partir de los datos proporcionados por pluviómetros totalizadores se suele estudiar el comportamiento de la intensidad de lluvia promediada en intervalos de tiempo de 24 horas o superiores (Nobilis et al., 1991; Rakhecha et al., 1992), mientras que cuando se requiere un conocimiento más fino de la intensidad se deben utilizar los registros obtenidos por pluviómetros de intensidad que permitan elegir la duración del intervalo en el que se desea promediar la intensidad de la lluvia (Unkaševic, M., 1991; Urcikán y Horváth, 1984). Aunque son numerosos los trabajos dedicados a la obtención de curvas teóricas de distribución de frecuencias de los valores de la intensidad de lluvia promediada en diferentes intervalos de tiempo (Gajic-Capka, 1990, 1991; Koutsoyiannis et al., 1998; Willems, 2000), son mucho más escasos aquellos que se refieren al estudio de la relación entre estos valores para una misma lluvia (Sumner, 1978; Eicher, 1991; Lorente y Redaño, 1991), siendo ésta una información de gran importancia relacionada con el origen y la evolución de la situación meteorológica que provoca la precipitación.

En este capítulo se ha calculado la precipitación máxima en intervalos de tiempo entre 5 minutos y 30 horas registrada por el pluviógrafo Jardí del Observatori Fabra de Barcelona, entre 1927 y 1992. La investigación de la relación entre las intensidades máximas de precipitación calculadas, su duración y su frecuencia, ha permitido la revisión de las curvas de Intensidad-Duración-Frecuencia (IDF) de Barcelona y la obtención de una ecuación generalizada para dicha relación.

2.2 Tratamiento de los datos de intensidad de lluvia

Los datos de precipitación que se han utilizado en este estudio son los registrados por el pluviógrafo de intensidades Jardí del Observatorio Fabra de Barcelona (Burgueño et al., 1994) durante el periodo 1927-1992. A partir del banco de datos generado por la digitalización del conjunto de bandas obtenidas por el instrumento en estos 66 años, convenientemente tratados, se han realizado los siguientes cálculos:

• La cantidad de precipitación total para cada episodio de lluvia individual.

• La cantidad de precipitación total diaria, es decir, caída en 24 horas, calculada en un intervalo fijo de tiempo desde las 0 UTC de un día hasta las 0 UTC del día siguiente. Y también, para poder comparar con los valores de la precipitación diaria medidos en los observatorios, contando las 24 horas desde las 8 UTC de un día hasta las 8 UTC del día siguiente. El valor máximo obtenido para la muestra en el primer caso corresponde al día 26/10/28, para el que se obtienen un total de 125.0 mm, mientras que en el segundo el valor máximo obtenido corresponde al día 05/12/71, con un total de 198.3 mm. Asimismo, se observa una pequeña discrepancia en el valor medio y la desviación estándar de las dos series obtenidas, que se muestra en la tabla 2.1.

• La cantidad de precipitación **máxima** registrada en intervalos de tiempo entre 5 minutos y 30 horas. Mediante un programa informático, se calcula la máxima cantidad de precipitación caída en los intervalos de tiempo de 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70 y 75 minutos y 2, 4, 6, 9, 12, 14, 16, 18, 20, 22, 24 y 30 horas para cada chubasco individual, considerándose éste como cualquier episodio de lluvia separado temporalmente del resto una distancia mayor que el intervalo de tiempo que se esté considerando. Es decir, cuando el tiempo entre dos valores seguidos de intensidad de precipitación 0 mm/min es mayor que el intervalo considerado. En el caso en que dos o más chubascos están separados un tiempo menor que el del intervalo que se estudia, se han tratado como dos o más partes integrantes de un chubasco único. En la figura 2.1 se muestra un ejemplo para el intervalo de una hora.

El funcionamiento del programa es como sigue: dado un chubasco en particular, se calcula la precipitación total correspondiente a una ventana cuya anchura temporal (ver el ejemplo que se muestra en la figura 2.2) coincide con el intervalo de tiempo que se está considerando. Así se obtiene un primer valor para la precipitación caída en dicho intervalo para ese chubasco. La ventana se va moviendo hacia la derecha a intervalos de un segundo, hasta barrer la superficie total del chubasco. De

todos los valores obtenidos se selecciona el mayor, que será la cantidad de precipitación *máxima* en el intervalo de tiempo considerado para dicho chubasco.

Fig. 2.1 La zona sombreada es considerada globalmente como un único chubasco individual, puesto que la separación entre los dos valores de intensidad de precipitación nula es inferior al intervalo considerado, 1 hora.

Fig. 2.2 La zona sombreada representa el intervalo de una hora con la mayor cantidad de precipitación del chubasco

Procediendo de esta manera, se obtienen unas series con los valores de precipitación máxima calculados para cada duración para todos los chubascos registrados por el pluviógrafo Jardí entre 1927 y 1992. En particular, la serie que corresponde a 24 horas (PM24) presenta su máximo, 201.8 mm, para la lluvia producida en los días 5-6/12/71, y la media y la varianza que se muestran en la tabla 2.1.

Tabla 2.1	Media y varianza d	le las series de	precipitación	diaria ca	alculada a	le 0 UI	TC a 0	UTC	(PD0UTC),	de 8
UTC a 8 L	JTC (PD8UTC) y de l	la de precipitaci	ón máxima en	24 hora	s (PM24)					

m=8.5613 m=8.7793 m=10.2178	PD0UTC	PD8UTC	PM24
	m=8.5613	m=8.7793	m=10.2178
$\sigma^2 = 167.1051$ $\sigma^2 = 178.4852$ $\sigma^2 = 240.7102$	$\sigma^2 = 167.1051$	$\sigma^2 = 178.4852$	$\sigma^2 = 240.7102$

La discrepancia entre las series de precipitación diaria calculada en intervalos fijos (de 0 UTC a 0 UTC y de 8 UTC a 8 UTC) y la serie obtenida con el intervalo de 24 horas variable a lo largo del chubasco en busca de su mayor valor es notable. Obsérvese que la razón entre la media de ésta última serie y la que corresponde a la precipitación calculada de 8 UTC a 8 UTC (así como entre las desviaciones estándar) resulta ser de 1.16, muy cercano al factor 1.13, recomendado por Hershfield (1961a y b) y extensamente utilizado, que corrige el efecto de considerar intervalos fijos de duración en lugar de variables, y prácticamente coincidente con el 1.167 obtenido por Dwyer y Reed (1994) para Reino Unido.

2.3 Análisis de las series de precipitación máxima. Ajuste mediante la función de distribución Gamma

Se analizan las series de cantidad de precipitación máxima para las duraciones indicadas en el apartado 2.2, entre 5 minutos y 30 horas.

Para cada una de las series se obtiene un ajuste mediante una función de distribución estadística, la distribución Gamma, una función extensamente utilizada en aplicaciones de ingeniería, limitada a valores positivos y con asimetría hacia la derecha, cuya función de densidad es:

$$f(x) = \frac{\lambda (\lambda x)^{k-1}}{\Gamma(k)} e^{-\lambda x} \quad \text{para } x \ge 0$$
(2.1)

siendo λ y k los parámetros de escala y de forma de la distribución, que se obtienen a partir de la media m y la desviación estándar σ , según las ecuaciones:

$$m = \frac{k}{\lambda} \tag{2.2a}$$

$$\sigma^2 = \frac{k}{\lambda^2} \tag{2.2b}$$

La tabla 2.2 muestra la media, la varianza y el valor máximo de las series, así como los parámetros λ y k obtenidos en el ajuste de cada una de éstas por la función de distribución Gamma. En la tabla aparecen también estos valores para las series de precipitación diaria calculada de 0 UTC a 0 UTC (PD0UTC) y de 8 UTC a 8 UTC (PD8UTC). La tabla 2.3 muestra el número de datos D de cada serie.

t (min)	media	σ^2	k	λ	$P_{max}(mm)$
5	0.86	2.3536	0.3122	0.3642	21.6
10	1.36	5.8666	0.3130	0.2310	30.7
15	1.76	9.6974	0.3184	0.1812	38.7
20	2.04	12.8623	0.3224	0.1583	47.5
25	2.30	16.2198	0.3275	0.1421	54.7
30	2.55	19.3855	0.3352	0.1315	57.2
35	2.74	21.9300	0.3417	0.1248	58.2
40	2.93	24.5664	0.3484	0.1191	59.6
45	3.11	27.6168	0.3503	0.1126	64.2
50	3.25	29.5241	0.3577	0.1101	70.6
55	3.40	31.7143	0.3644	0.1072	72.1
60	3.53	33.9217	0.3683	0.1042	72.6
65	3.65	35.8688	0.3722	0.1019	73.1
70	3.78	37.9214	0.3770	0.0997	73.5
75	3.93	42.1149	0.3675	0.0934	76.2
120	4.78	58.6928	0.3896	0.0815	108.0
240	6.30	94.8174	0.4190	0.0665	159.7
360	7.30	123.7552	0.4307	0.0590	181.3
540	8.37	157.2739	0.4456	0.0532	197.1
720	9.09	183.1188	0.4515	0.0497	198.3
840	9.44	197.5849	0.4507	0.0478	198.3
960	9.69	208.7600	0.4495	0.0464	198.3
1080	9.88	219.6410	0.4441	0.0450	199.0
1200	10.05	229.8311	0.4395	0.0437	200.2
1320	10.15	235.6736	0.4370	0.0431	200.4
1440	10.22	240.7102	0.4337	0.0425	201.8
1800	10.37	255.0228	0.4215	0.0407	204.5
PD0UTC	8.56	167.1051	0.4386	0.0512	125.0
PD8UTC	8.78	178.4852	0.4318	0.0492	198.3

Tabla 2.2 Media, varianza, valor máximo P_{max} y parámetros λ y k de la función de distribución Gamma ajustada de las series de cantidad de precipitación máxima para cada duración t considerada. PD0UTC es la serie de precipitación diaria calculada de 0 UTC a 0 UTC y PD8UTC, de 8 UTC a 8 UTC

duración (min)	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75
D	12060	10637	9674	9055	8496	8080	7747	7466	7229	7035	6854	6687	6553	6422	6278
duración (min)	120	240	360	540	720	840	960	1080	1200	1320	1440	1800			
D	5527	4561	4102	3692	3443	3402	3370	3361	3350	3348	3347	3347			

Tabla 2.3..Número de datos D de las series de cantidad de precipitación máxima para las duraciones consideradas entre 5 minutos y 30 horas

Para representar los ajustes realizados en una misma gráfica, se elimina la normalización de las funciones de densidad obtenidas. Para ello, se fracciona cada serie en intervalos de longitud variable l, de manera que se obtengan histogramas con un número de clases próximo a 1+3.32 log D (Benjamin, 1981), siendo D el número de valores de la muestra (ecuación 2.3a). Multiplicando cada función por la longitud l correspondiente, se obtiene una función de densidad desnormalizada de la distribución Gamma, cuya expresión es la que indica la ecuación 2.3b, en la que x es la cantidad de precipitación. Para el rango de duración entre 5 y 75 minutos se han considerado 14 intervalos de clase, mientras que para las duraciones superiores a 2 horas se han escogido sólo 13.

$$l = \frac{P_{\text{max}}}{1 + 3.32 \log D} \tag{2.3a}$$

$$f(x) = l \frac{\lambda^{k}}{\Gamma(k)} x^{k-1} e^{-\lambda x}$$
(2.3b)

La tabla 2.4 presenta los valores de la longitud *l* de intervalo para cada serie, así como la expresión analítica de las funciones de densidad desnormalizadas de la distribución Gamma ajustada, que se han representado gráficamente en la figura 2.3. La figura 2.4 representa de forma conjunta la función Gamma desnormalizada ajustada a la serie PD8UTC, correspondiente a la precipitación diaria medida de 8 UTC a 8 UTC, con la relativa a la serie PM24 de precipitación máxima en 24 horas con intervalo móvil.

t (min)	l(mm)	f. Gamma desnormalizada	t (min)	l(mm)	f. Gamma desnormalizada
5	1.54	0.3878 x ^{-0.6878} e ^{-0.3642 x}	120	8.31	$1.3722 \text{ x}^{-0.6104} \text{ e}^{-0.0815 \text{ x}}$
10	2.19	$0.4790 \mathrm{x}^{-0.6870} \mathrm{e}^{-0.2310 \mathrm{x}}$	240	12.28	$1.8690 \text{ x}^{-0.5810} \text{ e}^{-0.0665 \text{ x}}$
15	2.76	$0.5722 \mathrm{x}^{-0.6816} \mathrm{e}^{-0.1812 \mathrm{x}}$	360	13.95	$2.0014 \text{ x}^{-0.5693} \text{ e}^{-0.0590 \text{ x}}$
20	3.40	$0.6703 \mathrm{x}^{-0.6776} \mathrm{e}^{-0.1583 \mathrm{x}}$	540	15.25	$2.0841 \text{ x}^{-0.5544} \text{ e}^{-0.0532 \text{ x}}$
25	3.91	$0.7615 \text{ x}^{-0.6725} \text{ e}^{-0.1421 \text{ x}}$	720	15.25	$1.9952 \mathrm{x}^{-0.5485} \mathrm{e}^{-0.0497 \mathrm{x}}$
30	4.09	0.7908 x $^{-0.6648}$ e $^{-0.1315}$ x	840	15.25	$1.9680 \mathrm{x}^{-0.5493} \mathrm{e}^{-0.0478 \mathrm{x}}$
35	4.16	$0.7799 \mathrm{x}^{-0.6583} \mathrm{e}^{-0.1248 \mathrm{x}}$	960	15.25	$1.9490 \mathrm{x}^{-0.5505} \mathrm{e}^{-0.0464 \mathrm{x}}$
40	4.25	$0.7941 \mathrm{x}^{-0.6516} \mathrm{e}^{-0.1191 \mathrm{x}}$	1080	15.31	$1.9186 \text{ x}^{-0.5559} \text{ e}^{-0.0450 \text{ x}}$
45	4.58	$0.8359 \text{ x}^{-0.6497} \text{ e}^{-0.1126 \text{ x}}$	1200	15.40	$1.9325 \text{ x}^{-0.5605} \text{ e}^{-0.0437 \text{ x}}$
50	5.04	$0.9267 \mathrm{x}^{-0.6423} \mathrm{e}^{-0.1101 \mathrm{x}}$	1320	15.41	$1.9372 \mathrm{x}^{-0.5630} \mathrm{e}^{-0.0431 \mathrm{x}}$
55	5.15	$0.9241 \mathrm{x}^{-0.6356} \mathrm{e}^{-0.1072 \mathrm{x}}$	1440	15.52	1.9138 x $^{-0.5663}$ e $^{-0.0425}$ x
60	5.19	$0.9403 \mathrm{x}^{-0.6317} \mathrm{e}^{-0.1042 \mathrm{x}}$	1800	15.73	$1.9334 \mathrm{x}^{-0.5785} \mathrm{e}^{-0.0407 \mathrm{x}}$
65	5.22	$0.9282 \mathrm{x}^{-0.6278} \mathrm{e}^{-0.1019 \mathrm{x}}$	DD0411	0.(2	1 20010.56140.0512 x
70	5.25	$0.9414 \mathrm{x}^{-0.6230} \mathrm{e}^{-0.0997 \mathrm{x}}$	PD0AM	9.02	1.3001 x e 2.0161 - 0.5682 - 0.0492 x
75	5.45	$0.9487 \mathrm{x}^{-0.6325} \mathrm{e}^{-0.0934 \mathrm{x}}$	PD8AM	15.25	2.0161 x

Tabla 2.4 Longitud de intervalo de clase l y expresión analítica de la función de densidad desnormalizada de la distribución Gamma ajustada a las series de cantidad de precipitación máxima para cada duración t. PD0UTC es la serie de precipitación diaria calculada de 0 UTC a 0 UTC y PD8UTC, de 8 UTC a 8 UTC

Fig. 2.3 Funciones de densidad desnormalizadas de la distribución Gamma que ajustan las series de cantidad de precipitación máxima para algunas de las duraciones consideradas. La figura insertada muestra los valores que toman los parámetros k y λ de dichas funciones para cada duración.

Fig. 2.4 Funciones de densidad desnormalizadas de la distribución Gamma ajustadas a la serie PD8UTC de precipitación diaria calculada con un intervalo fijo de 24 horas medido de 8 UTC a 8 UTC, y a la serie PM24 de precipitación máxima en 24 horas, con intervalo móvil

2.4 Obtención de las curvas de Intensidad-Duración-Frecuencia (IDF) a partir de la función de distribución Gamma

Con el fin de obtener las curvas IDF (características de cada localidad y de la distribución temporal de sus aguaceros tipo), calculamos las frecuencias acumuladas F correspondientes a los períodos de retorno de 1, 2, 5, 10, 15, 50 y 100 años, que corresponden a las series de precipitación máxima para las duraciones consideradas. La frecuencia acumulada F se obtiene haciendo uso de la ecuación:

$$F=1-\frac{N/T}{D}$$
(2.4)

dónde N es el número de años de que se dispone, 66 en nuestro caso, D es el número de datos de la serie que se esté considerando y T el periodo de retorno. En la tabla 2.5 se muestran las frecuencias acumuladas calculadas para cada duración y periodo de retorno.

Utilizando las funciones de distribución Gamma ajustadas en el apartado 2.3, se puede calcular la precipitación que corresponde a las frecuencias de la tabla 2.5. Dividiendo estos valores por la duración que corresponde en cada caso se obtienen los valores promediados de intensidad de precipitación que se han representado en función de la duración en las figuras 2.5 y 2.6.

t				T (años)			
(min)	1	2	5	10	15	50	100
5	0.994527	0.997264	0.998905	0.999453	0.999635	0.999891	0.999945
10	0.993795	0.996898	0.998759	0.999380	0.999586	0.999876	0.999938
15	0.993178	0.996589	0.998636	0.999318	0.999545	0.999864	0.999932
20	0.992711	0.996356	0.998542	0.999271	0.999514	0.999854	0.999927
25	0.992232	0.996116	0.998446	0.999223	0.999482	0.999845	0.999922
30	0.991832	0.995916	0.998366	0.999183	0.999455	0.999837	0.999918
35	0.991481	0.995740	0.998296	0.999148	0.999432	0.999830	0.999915
40	0.991160	0.995580	0.998232	0.999116	0.999411	0.999823	0.999912
45	0.990870	0.995435	0.998174	0.999087	0.999391	0.999817	0.999909
50	0.990618	0.995309	0.998124	0.999062	0.999375	0.999812	0.999906
55	0.990371	0.995185	0.998074	0.999037	0.999358	0.999807	0.999904
60	0.990130	0.995065	0.998026	0.999013	0.999342	0.999803	0.999901
65	0.989928	0.994964	0.997986	0.998993	0.999329	0.999799	0.999899
70	0.989723	0.994861	0.997945	0.998972	0.999315	0.999794	0.999897
75	0.989487	0.994744	0.997897	0.998949	0.999299	0.999790	0.999895
120	0.988059	0.994029	0.997612	0.998806	0.999204	0.999761	0.999881
240	0.985529	0.992765	0.997106	0.998553	0.999035	0.999711	0.999855
360	0.983910	0.991955	0.996782	0.998391	0.998927	0.999678	0.999839
540	0.982123	0.991062	0.996425	0.998212	0.998808	0.999642	0.999821
720	0.980831	0.990415	0.996166	0.998083	0.998722	0.999617	0.999808
840	0.980600	0.990300	0.996120	0.998060	0.998707	0.999612	0.999806
960	0.980415	0.990208	0.996083	0.998042	0.998694	0.999608	0.999804
1080	0.980363	0.990182	0.996073	0.998036	0.998691	0.999607	0.999804
1200	0.980299	0.990149	0.996060	0.998030	0.998687	0.999606	0.999803
1320	0.980287	0.990143	0.996057	0.998029	0.998686	0.999606	0.999803
1440	0.980281	0.990140	0.996056	0.998028	0.998685	0.999606	0.999803
1800	0.980281	0.990140	0.996056	0.998028	0.998685	0.999606	0.999803

Tabla 2.5 Frecuencias acumuladas correspondientes a cada periodo de retorno T, para cada duración t

Para obtener una expresión de la relación entre la intensidad de precipitación I y la duración t para cada periodo de retorno (curvas de Intensidad-Duración-Frecuencia o IDF), se prueba un primer ajuste por mínimos cuadrados de los valores (I, t) mediante una curva empírica cuya expresión viene dada por la ecuación (2.5), siendo f y g los parámetros del ajuste. Se trata de la curva de Talbot (Remenieras, 1960), una hipérbola frecuentemente utilizada como curva IDF (Gaspar, 1974; Niemczynowicz, 1982; Chen-lung Chen, 1983, Redaño et al., 1986).

$$I = \frac{f}{g+t}$$
(2.5)

Fig. 2.5 Intensidad de lluvia máxima en función de la duración y de su periodo de retorno T, calculados a partir de las funciones de distribución Gamma ajustadas.
 La figura insertada muestra en detalle el intervalo de duraciones 0-60 min.

Fig. 2.6 Intensidad de lluvia máxima en función de la duración y de su periodo de retorno T, calculados a partir de las funciones de distribución Gamma ajustadas, usando una representación semilogarítmica

En nuestro caso, la curva de Talbot no ofrece un buen ajuste para todas las duraciones a la vez, aunque sí resulta satisfactorio si nos limitamos al rango de duraciones inferiores a 1 hora. La ecuación (2.5) muestra una relación lineal entre la duración t y la inversa de la intensidad de precipitación I. Así pues, ajustamos los valores (1/I, t), cuando t se expresa en minutos y la intensidad I en mm/min, a una recta de pendiente 1/f y ordenada en el origen g/f mediante una regresión lineal por mínimos cuadrados. La tabla 2.6 muestra los parámetros f y g obtenidos en cada ajuste para cada periodo de retorno en el rango t≤1 hora, junto con el coeficiente de correlación lineal.

Tabla 2.6 Parámetros f y g del ajuste de las curvas IDF por la función de Talbot, para t ≤ 1 hora, y coeficiente de correlación lineal r

T(años)	f	g	r
1	36.6	17.2	0.9992
2	44.3	17.6	0.9992
5	54.6	18.0	0.9992
10	62.5	18.3	0.9992
15	67.2	18.4	0.9993
100	89.3	18.8	0.9993

Analizando el rango de duraciones superiores a 6 horas, la curva de Talbot también ofrece un ajuste satisfactorio (r=0.9999) independiente del anterior. En la figura 2.7 se representan conjuntamente las dos rectas de ajuste obtenidas para los valores (1/I, t), una para el intervalo t \leq 1 hora y la otra para t \geq 6 horas, que corresponden al periodo de retorno de 1 año.

Fig. 2.7 Ajustes de los valores (1/I, t) para el periodo de retorno T=1 año mediante dos funciones de Talbot independientes, una para el intervalo t≤1 hora, y la otra para t≥6 horas

Para obtener una expresión de las curvas IDF representativa de todas las duraciones (5 minutos-30 horas), probamos una segunda función de ajuste, la propuesta por Sherman (1931) y aplicada, entre otros, por Cheng-lung Chen (1983), cuya ecuación es:

$$I = \frac{a}{\left(b+t\right)^{c}} \tag{2.6}$$

El ajuste de las curvas IDF por la función de Sherman (2.6) es satisfactorio para todas las duraciones, con un valor del test de bondad del ajuste para todas las curvas del orden de $\chi^2=10^{-5}$. Los parámetros de los ajustes obtenidos (cuando t se expresa en minutos y la intensidad en mm/min) se muestran en la tabla 2.7.

Tabla 2.7 Parámetros a, b y c correspondientes a los ajustes de las curvas IDF por la función de Sherman (2.6)

T(años)	а	b	с
1	13.1	7.6	0.79
2	15.4	7.7	0.78
5	18.5	7.9	0.77
10	21.0	7.9	0.77
15	22.4	8.0	0.77
100	29.2	8.2	0.77

Dado que Cheng-lung Chen (1983) y otros autores proponen que los parámetros (b) y (c) no dependen del periodo de retorno, probamos a ajustar nuevamente las curvas IDF mediante la función de Sherman (2.6), manteniendo fijos los valores de los parámetros (b) y (c) para todas las curvas, y dejando sólo al parámetro (a) manifestar la dependencia con el período de retorno. Estableciendo para estos parámetros los valores medios b=7.9 y c=0.77, y volviendo a ajustar las curvas según la ecuación (2.6), se obtienen los valores para el parámetro (a) que muestra la tabla 2.8. El ajuste sigue siendo satisfactorio para todos los periodos de retorno, encontrándose un test de bondad del ajuste del orden de $\chi^2=10^{-4}$.

Tabla 2.8 Valor del parámetro a para los ajustes de las curvas IDF por la función de Sherman, manteniendo fijos b=7.9 y c=0.77

T(años)	a
1	12.64
2	15.05
5	18.32
10	20.83
15	22.31
100	29.34

Los valores obtenidos para el parámetro (a) de la función de Sherman muestran una dependencia logarítmica con el periodo de retorno. La regresión lineal de los puntos (a, log T) da como resultado la ecuación (2.7), con un coeficiente de correlación de r=0.9998. En la figura 2.8 se muestra la dependencia logarítmica entre el parámetro (a) y el periodo de retorno T.

$$a(T) = 8.35 \log T + 12.54$$
 (2.7)

Fig. 2.8 Dependencia logarítmica del parámetro (a) de la función de Sherman (b=7.9, c=0.77) con el periodo de retorno T

Introduciendo la ecuación (2.7) en la función de Sherman (2.6) con los valores fijos de los parámetros (b) y (c) considerados, se obtiene una primera generalización de las curvas IDF en función del periodo de retorno según la ecuación:

$$I(t,T) = \frac{8.35 \log T + 12.54}{(7.9 + t)^{0.77}}$$
(2.8)

con t en minutos, I(t,T) en mm/min y T en años.

La ecuación obtenida da unos valores de intensidad de precipitación, para una duración y periodo de retorno dados, inferiores a los esperados, especialmente para duraciones inferiores a 2 horas. En la

figura 2.9 se han representado, a partir de la ecuación (2.8), las curvas IDF correspondientes a los periodos de retorno de 1, 2, 5, 10 y 15 años, para duraciones inferiores a 1 hora, junto con las obtenidas por Redaño et al. (1986) con datos procedentes del mismo pluviógrafo entre 1927 y 1980.

Fig. 2.9 En línea continua, curvas IDF correspondientes a los periodos de retorno de 1, 2, 5, 10 y 15 años que se han obtenido en este trabajo con el ajuste de las series de precipitación máxima por la función de distribución Gamma (t≤1 hora). En línea discontinua, las mismas curvas calculadas por Redaño et al. (1986)

Si utilizamos la ecuación (2.8) para calcular el valor de intensidad de precipitación correspondiente al periodo de retorno T=50 años y a la duración de t=5 minutos, se obtiene una intensidad de I(5,50)=3.74 mm/min, que corresponde a una cantidad de precipitación de 18.7 mm. Para T=70 años resulta una intensidad de I(5, 70)=3.91 mm/min y una cantidad de precipitación de 19.5 mm. Comparando estos resultados con los datos observados vemos que el valor I(5, 50) ha sido superado en cinco ocasiones durante todo el periodo que abarca 66 años, y el valor I(5, 70) en tres. En la tabla 2.9 se especifican los episodios lluviosos extremos observados que han excedido los valores de precipitación que la familia de curvas (2.8) da para un periodo de retorno de 50 años, para 5 y 30 minutos, 1 y 2 horas.

Tabla 2.9 Episodios lluviosos extremos registrados por el pluviógrafo Jardí en Barcelona entre 1927 y 1992 que han excedido la intensidad de precipitación correspondiente al periodo de retorno 50 años I(t, 50), para duraciones $t \leq 2$ horas, según la ecuación (2.8). I_t es la intensidad de precipitación observada en cada caso.

I(5,50)= 3.74 mm/min	I(30,50)= 1.65 mm/min	I(60,50)= 1.04 mm/min	I(120,50)= 0.65 mm/min			
$I_t(mm/min) (ddmmyy)^1$						
3.77 (090831)	1.84 (090831)	1.21 (140934)	0.87 (251028)			
4.32 (011035)	1.91 (130952)	1.08 (130952)	0.76 (140934)			
3.89 (310858)	1.86 (160758)	1.08 (160758)	0.90 (051271)			
3.91 (030972)	1.74 (061171)					
4.15 (220590)						

El resultado indica que la función de distribución Gamma utilizada tiende a cero más rápidamente que la muestra de datos, y no proporciona un ajuste satisfactorio en la cola de la distribución. Dado que nuestro interés se centra justamente en los valores extremos, se ha ensayado otro ajuste para estos valores de las series de precipitación máxima.

2.5 Ajuste de una función potencial-exponencial de tres parámetros (*mnp*) a los extremos de precipitación

Con el fin de mejorar el ajuste en la cola de las series, calculamos las frecuencias acumuladas observadas para cada duración y de todas ellas seleccionamos los valores correspondientes a un período de retorno igual o superior un año. Como la función de densidad acumulada de la distribución Gamma no tiene expresión analítica y ha de obtenerse por integración numérica y dado su carácter potencial-exponencial, es de esperar que el comportamiento de su integral, la función de densidad acumulada, también sea potencial-exponencial. Así pues, escogemos como función de ajuste para las frecuencias acumuladas una función potencial-exponencial, con tres parámetros libres, según la ecuación:

$$F(x) = 1 - mx^{n}e^{-px}$$
 (2.9)

en la cual x es la precipitación. Denominaremos abreviadamente mnp a esta función. Los parámetros m, n y p determinados por el método de mínimos cuadrados para cada duración se presentan en la

¹Téngase en cuenta que para cada duración *t* considerada los chubascos separados por un intervalo de tiempo inferior a *t* se consideraron como parte de un mismo episodio, denotado por el *ddmmaa* correspondiente al momento en que el episodio empieza. Así, para la escala sinóptica y duraciones altas puede darse el caso de que al haber estado lloviendo casi ininterrumpidamente a lo largo de algunos días, la fecha real en la que cae el intervalo máximo escogido para el episodio no coincida con la denotada y sea de algún día posterior al *ddmmaa* que lo representa.

tabla 2.10. Las funciones de ajuste obtenidas están representadas en la figura 2.10.

t (min)	m	n	р	χ^2
5	0.162900	0.1164	0.3557	5.63 10 ⁻⁹
10	0.148381	0.1030	0.2209	1.38 10 ⁻⁸
15	0.071934	0.2061	0.1525	2.83 10-8
20	0.036186	0.5051	0.1429	5.08 10-8
25	0.013321	0.9421	0.1445	2.59 10 ⁻⁸
30	0.000323	2.3548	0.1717	1.86 10 ⁻⁸
35	0.000206	2.4087	0.1574	1.03 10 ⁻⁷
40	0.000119	2.5833	0.1544	8.98 10 ⁻⁸
45	0.000078	2.6623	0.1465	9.71 10 ⁻⁸
50	0.000060	2.7260	0.1438	6.17 10 ⁻⁸
55	0.000057	2.7279	0.1405	6.40 10 ⁻⁸
60	0.000053	2.7216	0.1362	5.11 10 ⁻⁸
120	0.001524	1.4120	0.0873	7.15 10 ⁻⁸
360	0.001867	1.6465	0.0911	1.77 10 ⁻⁷
720	0.002192	1.6455	0.0828	9.77 10 ⁻⁸
1440	0.001673	1.5974	0.0682	2.34 10-7

Tabla 2.10 Parámetros m, n y p obtenidos en el ajuste de las colas de las series por una función potencialexponencial como función de densidad acumulada. Test de bondad χ^2 de cada ajuste.

El uso de la función *mnp* mejora considerablemente el ajuste para los valores de la cola de la distribución, especialmente para duraciones inferiores a 6 horas. El test χ^2 calculado para el ajuste con la función Gamma es del orden de 10⁻⁶ para t≤2 horas, y de 10⁻⁷ para 6, 12 y 24 horas, mientras que, como se muestra en la tabla 2.10, el test χ^2 calculado para el ajuste mediante la función *mnp* es dos órdenes de magnitud menor para duraciones cortas, resultando similar para t≥6 horas.

En la figura 2.11 se muestra la frecuencia acumulada del conjunto de datos con período de retorno igual o superior a un año que corresponde a la serie de duración 5 minutos. Como se ha referido en el apartado 2.4, el valor de intensidad de precipitación que el ajuste por la función Gamma atribuye al periodo de retorno T=50 años es I(5,50)=3.74 mm/min, valor superado en cinco ocasiones por los eventos remarcados en la gráfica y especificados en la tabla 2.9.

Fig. 2.10 Ajuste de los valores de precipitación máxima en las colas de la distribución (T≥1 año) por la función potencial-exponencial con tres parámetros libres como función de densidad acumulada.

Fig. 2.11 Frecuencia acumulada de la intensidad de precipitación máxima en 5 minutos con período de retorno igual o superior a un año. En línea continua, la función de frecuencia acumulada asociada a la distribución Gamma. En línea discontinua, la función mnp que se ajusta mejor a los datos. Marcados en negro, los eventos que en la muestra de 66 años han superado la intensidad que la función Gamma atribuye a un período de retorno de 50 años (3.74 mm)

Fig. 2.12 Funciones de distribución acumulada calculadas para las colas de las distribuciones ($T \ge 1$ año). En línea discontinua, la función mnp proporciona un mejor ajuste que la Gamma (continua) para t<6 horas

En la figura 2.12 se representan conjuntamente, como funciones de frecuencia acumulada, la función correspondiente a la distribución Gamma y la función *mnp* ajustada para las duraciones de 5 y 30 minutos, 1, 2, 6 y 24 horas. Puede observarse como para duraciones altas (6 horas o más) los ajustes

son prácticamente coincidentes, mientras que para duraciones inferiores a las dos horas la función potencial-exponencial se ajusta mejor a los datos y, como ya se ha indicado, la función de distribución acumulada Gamma tiende a 1 más rápidamente.

2.6 Obtención de las curvas de Intensidad-Duración-Frecuencia (IDF) a partir de la función *mnp*

Adoptando como funciones de frecuencia acumulada para cada duración las funciones *mnp* ajustadas, procedemos a obtener nuevamente los valores de precipitación correspondientes a los períodos de retorno 1, 2, 5, 10, 15, 50 y 100 años, es decir, las curvas IDF. En la tabla 2.11 se muestran los valores de precipitación que las funciones *mnp* atribuyen a las frecuencias que corresponden a dichos periodos de retorno (ecuación 2.4) para cada duración. Los valores de intensidad obtenidos están representados, en función de su duración y frecuencia, en las figuras 2.13 y 2.14.

Tabla 2.11 Precipitación (en mm) que corresponde a cada periodo de retorno y duración, calculados a partir del ajuste con la función mnp

T(años)							
t(min)	1	2	5	10	15	50	100
5	10.6	12.6	15.2	17.2	18.4	21.8	23.8
10	16.1	19.3	23.6	26.9	28.8	34.3	37.8
15	20.1	25.0	31.2	35.7	38.3	47.0	50.0
20	22.9	28.6	35.7	40.8	43.7	53.4	57.0
25	25.5	31.8	39.4	45.0	48.1	58.1	62.3
30	26.9	34.2	42.6	48.4	51.6	61.0	66.1
35	27.9	36.2	45.9	52.7	56.6	65.9	73.9
40	29.0	37.9	48.1	55.3	59.4	68.8	77.4
45	29.8	39.6	50.5	58.1	62.4	72.6	81.5
50	30.0	40.3	51.6	59.4	63.8	74.4	83.1
55	30.6	41.2	52.7	60.6	65.0	76.1	84.6
60	31.0	42.1	54.0	62.1	66.6	78.2	86.6
120	35.0	48.0	63.1	73.8	79.8	96.3	107.2
360	46.8	58.4	72.4	82.5	88.3	104.2	114.4
720	54.2	66.6	81.9	93.0	99.4	116.7	128.3
1440	61.8	76.8	95.9	110.0	118.1	138.1	155.4

Para obtener nuevamente una expresión empírica de las curvas IDF, ajustamos los nuevos valores de intensidad, duración y frecuencia obtenidos haciendo uso de la función propuesta por Sherman (2.6). Los nuevos parámetros a, b y c del ajuste se muestran en la tabla 2.12.

T(años)	а	b	с	χ^2
1	26	11	0.92	3 10 ⁻⁴
2	28	12	0.86	4 10 ⁻⁴
5	35	13	0.85	8 10 ⁻⁴
10	41	13	0.85	1 10 ⁻³
15	44	13	0.85	2 10-3
50	52	13	0.86	3 10 ⁻³
100	58	14	0.86	2 10 ⁻³

Tabla 2.12 Parámetros del ajuste de los valores de intensidad, duración, frecuencia por la función de Sherman. Test χ^2 de bondad del ajuste para cada periodo de retorno

Fig. 2.13 Intensidad de precipitación en función de la duración para diferentes periodos de retorno calculados a partir del ajuste de las colas de las series mediante la función mnp. La figura insertada muestra en detalle el intervalo de duraciones 0-60 min

Fig. 2.14 Intensidad de precipitación en función de la duración para diferentes periodos de retorno calculados a partir del ajuste mediante la función mnp, usando una representación semilogarítmica

En la figura 2.15 se comparan nuevamente las curvas IDF obtenidas con las calculadas por Redaño et al. (1986), para el rango de duraciones iguales o inferiores a una hora, resultando en este caso las primeras más altas para estas duraciones.

Fig. 2.15 Curvas IDF (línea continua) correspondientes a los periodos de retorno de 1, 2, 5, 10 y 15 años obtenidas con el ajuste de las colas de las series de precipitación máxima por la función mnp (t≤1 hora). En línea discontinua, las calculadas por Redaño et al.(1986)

2.7 Generalización de las curvas IDF para la ciudad de Barcelona

Con el fin de obtener una ecuación generalizada de Intensidad-Duración-Frecuencia adecuada, se ha procedido, en primer lugar, a la normalización de las curvas IDF calculadas en el apartado 2.6, obtenidas utilizando la función *mnp* como función de ajuste de las series. La dependencia con el periodo de retorno, en este caso, resulta ser una dependencia de tipo logarítmico. El resultado obtenido se ha comparado con la ecuación generalizada que se obtiene al realizar un ajuste por regresión multilineal de los valores de intensidad, duración y frecuencia considerando una dependencia potencial con el periodo de retorno.

2.7.1 Normalización de las curvas IDF considerando una dependencia logarítmica con el periodo de retorno

Como en el apartado 2.4, los parámetros (b) y (c) obtenidos en el ajuste de todas las curvas resultan prácticamente constantes, en contraste con la clara dependencia logarítmica del parámetro (a) con el periodo de retorno T. Si la dependencia del parámetro (a) obtenido en el ajuste del apartado 2.4 con el periodo de retorno venía dada por la ecuación (2.7), la función que mejor se ajusta a los obtenidos en el apartado anterior (2.6) es:

$$a(T)=16.60 \log T + 23.68$$
 (2.10)

Para obtener la expresión generalizada de las curvas IDF, vamos a proceder de forma diferente al apartado 2.4. Las curvas IDF son afines, es decir, sólo se diferencian unas de otras en la escala de la intensidad I. Por tanto, pueden ser normalizadas dividiéndolas por un factor adecuado que lleve consigo la dependencia con el periodo de retorno. Como factor de escala suele escogerse el valor de la intensidad para una duración dada que se elige como referencia (Cheng-lung Chen, 1983). En nuestro caso escogemos la intensidad correspondiente a la duración t = 1 hora, es decir, I(60,T), cuya dependencia con el periodo de retorno es logarítmica, según indica la ecuación (2.11). El ajuste logarítmico de la intensidad máxima de precipitación para 1 hora de duración con el periodo de retorno (test de bondad: χ^2 =0.00092, coeficiente de correlación lineal entre I(60,T) y logT: r=0.993) se ha representado en la figura 2.16.

$$I(60,T)=0.45 \log T + 0.56$$
 (2.11)

Fig. 2.16 Ajuste logarítmico de la intensidad máxima de precipitación en 1 hora en función del periodo de retorno T

Así pues, dividiendo cada curva IDF por el valor correspondiente de la intensidad en 1 hora, es decir I(60,T), se elimina la dependencia con el periodo de retorno T y las curvas quedan reescaladas solapándose en una única curva. Para los valores $\frac{I(t,T)}{I(60,T)}$ se ensaya un ajuste mediante la función de Sherman, es decir,

$$\frac{I(t,T)}{I(60,T)} = \frac{a'}{(b+t)^{c}}$$
(2.12)

Los parámetros del ajuste son a' = 42 ± 6 , b = 13 ± 2 y c = 0.87 ± 0.03 , con un test de bondad del ajuste de χ^2 =0.0048. El resultado obtenido se muestra en la figura 2.17. Con estos parámetros de ajuste la ecuación (2.12) resulta:

$$\frac{I(t,T)}{I(60,T)} = \frac{42}{(13+t)^{0.87}}$$
(2.13)

combinando ahora las ecuaciones (2.11) y (2.13) se obtiene la generalización de las curvas de Intensidad-Duración-Frecuencia para Barcelona:

$$I(t,T) = \frac{19 \log T + 23}{(13+t)^{0.87}}$$
(2.14)

en la que t se expresa en minutos, T en años e I(t,T) en mm/min.

Fig. 2.17 Curva IDF normalizada ajustada por la función de Sherman. En la figura insertada se muestra el rango de duraciones inferior a una hora

Fig. 2.18 Curvas IDF para la ciudad de Barcelona de períodos de retorno de 1, 5, 10, 50 y 100 años

Las curvas correspondientes a los periodos de retorno de 1, 5, 10, 15, 50 y 100 años se han representado en la figura 2.18. Estas mismas curvas, junto con I(t,2), se muestran en escala semilogarítmica en la figura 2.19.

Fig. 2.19 Curvas IDF para la ciudad de Barcelona de períodos de retorno de 1, 5, 10, 50 y 100 años, en escala semilogarítmica

Así pues, el numerador de la ecuación generalizada de las curvas IDF (2.14) es una función que lleva consigo la dependencia empírica con el periodo de retorno T. Según muestra Koutsoyiannis et al. (1998), no hay necesidad de introducir ninguna función de tipo empírico para obtener la ecuación IDF, ya que la dependencia con el periodo de retorno puede determinarse de forma completa a partir de la función de distribución de probabilidad de la intensidad de precipitación máxima. Koutsoyiannis muestra, por ejemplo, que si se considera una función de distribución de retorno resulta logarítmica. En cambio, al considerar una función de distribución de Gumbel (distribución de valores extremos o Fisher-Tippett del tipo 1, EV1), distribución ampliamente utilizada para cuantificar el riesgo asociado a valores extremos de precipitación, la dependencia con el periodo de retorno resulta de tipo potencial.

En este estudio, la expresión empírica de tipo potencial se ajustaba peor a los datos que la de tipo logarítmico, razón por la cual esta última acabó por ser adoptada. Aún así, la función potencial tiene la ventaja de permitir la obtención de una ecuación generalizada mediante el uso de una regresión

multilineal. Por esta razón, en el siguiente apartado se prueba a introducir una dependencia potencial para el periodo de retorno y se comparan los resultados obtenidos.

2.7.2 Obtención de la ecuación generalizada de las curvas IDF considerando una dependencia potencial con el periodo de retorno

Si se considera que las curvas IDF tienen una dependencia con el periodo de retorno T de tipo potencial, su expresión generalizada será de la forma:

$$I(t,T) = \frac{k T^{\alpha}}{(b+t)^{c}}$$
(2.15)

cuyos parámetros de ajuste pueden obtenerse de manera muy simple mediante un análisis de correlación múltiple (o regresión multilineal), que consiste en relacionar simultáneamente los valores de intensidad I, duración t y el periodo de retorno T en la familia de curvas.

Para simplificar el cálculo, la mayoría de autores eliminan la constante b por ser prácticamente nula cuando t se expresa en horas. En nuestro caso, como utilizamos la intensidad I en mm/min y la duración t en minutos, mantendremos el valor b=13 obtenido en el apartado 2.7.1 (13 min \approx 0.2167 h).

Aplicando logaritmos a la ecuación (2.15) propuesta se obtiene:

$$\log I = \log k + \alpha \log T - c \log(b + t)$$
(2.16)

con b=13.

En la tabla 2.13 se muestran los valores de los parámetros del ajuste multilineal realizado, junto con sus unos coeficientes de correlación.

Tabla 2.13 Parámetros de ajuste k, α y c de las curvas IDF por una ecuación con dependencia potencial con el periodo de retorno T. Coeficientes de correlación del ajuste multilineal: r es el coeficiente de correlación total, r_T es el coeficiente de correlación parcial entre el logaritmo de la intensidad I y el del periodo de retorno T, r_t es el coeficiente de correlación parcial entre el logaritmo de I y el de la duración, t+13

k	α	с	r	r _T	r _t
27±1	0.198 ± 0.004	0.881 ± 0.005	0.998	0.977	0.998

Introduciendo estos valores en la ecuación (2.15), resulta la siguiente expresión para la ecuación generalizada de las curvas IDF:

$$I(t,T) = \frac{27 \text{ T}^{0.198}}{(13+t)^{0.881}}$$
(2.17)

En las figuras 2.20 y 2.21 se representan las correlaciones parciales (logI, logT) y (logI, log(13+t)):

Fig. 2.20 Correlación parcial entre logI y log T

Fig. 2.21 Correlación parcial entre logI y log (13+t)
Para encontrar la ecuación generalizada de las curvas IDF que considera una dependencia logarítmica de la intensidad con el periodo de retorno T (ecuación 2.14), en el apartado 2.7.1 se ensayó un ajuste lineal entre los valores de la intensidad correspondientes a 1 hora I(60, T) y logT, obteniéndose un coeficiente de correlación de r=0.993 (ecuación 2.11). Si en lugar de una dependencia logarítmica con el periodo de retorno se considera una dependencia potencial y, a modo de comparación, se ensaya el ajuste lineal entre los valores log (60, T) y logT, se obtiene la ecuación:

$$I(60,T) = 0.59 T^{0.21}$$
 (2.18)

con un coeficiente de correlación ligeramente inferior (r=0.97) que indica una menor bondad del ajuste.

En la figura 2.22 se comparan los ajustes que proporcionan las ecuaciones generalizadas (2.14) y (2.17) para todas las duraciones, observándose una correlación similar únicamente para el periodo de retorno intermedio de 10 años. Para los periodos de retorno 1 y 100 años, el ajuste logarítmico es mejor que el potencial para todas las duraciones en general, sólo aproximándose éste último más a los datos experimentales para T= 1 año y la duración de 5 minutos.

Fig. 2.22 Curvas IDF para T=1, 10 y 100 años obtenidas considerando dependencia logarítmica con el periodo de retorno T (negro). Las mismas curvas obtenidas mediante el ajuste multilineal considerando una dependencia potencial con T (azul)

2.8 Conclusiones

A partir de los registros del pluviógrafo de intensidades Jardí del Observatori Fabra de Barcelona, entre 1927 y 1992, se ha calculado la cantidad de precipitación diaria registrada en un intervalo de 24 horas fijo (de 0 UTC de un día a 0 UTC del siguiente y de 8 UTC a 8 UTC), así como la precipitación máxima en intervalos de tiempo móviles con una duración entre 5 minutos y 30 horas. Para 24 horas, el valor medio de la precipitación máxima ha resultado ser un 16 % mayor que el de la precipitación diaria calculada con intervalo de tiempo fijo, es decir, se ha obtenido una razón entre ambos valores de 1.16.

Con las series de precipitación máxima obtenidas se ha ensayado un ajuste estadístico mediante la función de distribución Gamma, que no ha resultado suficientemente satisfactorio para representar los valores extremos de la distribución para las duraciones más cortas. Para estos valores extremos se ha ensayado otro tipo de ajuste utilizando como función de densidad acumulada una función potencial-exponencial de tres parámetros (función *mnp*). Esta función proporciona un mejor ajuste de los datos extremos que la función Gamma para duraciones inferiores a las 6 horas.

Se ha investigado la relación entre las intensidades máximas de precipitación, su duración y su frecuencia, obteniéndose una revisión de las curvas IDF para la ciudad de Barcelona y su ecuación generalizada, $I(t,T) = \frac{19 \log T + 23}{(13+t)^{0.87}}$ (intensidad de precipitación I en mm/min, duración t en min y

periodo de retorno T en años). En general, los ajustes que se han ensayado considerando una dependencia logarítmica con el periodo de retorno T han resultando mejores que aquellos para los que se ha considerado una dependencia de tipo potencial.

3 Clasificación de los episodios de lluvia extrema registrados en Barcelona entre 1927 y 2001

3.1 Introducción

Un aspecto importante a estudiar en un episodio de lluvia es la relación existente entre las cantidades de precipitación máxima registradas en intervalos de tiempo de distinta duración (Sumner, 1978). Su conocimiento aporta información sobre la estructura fina y la organización temporal y espacial de la lluvia y, en consecuencia, sobre su origen.

En el capítulo 2 se calcularon, para cada chubasco, las cantidades de precipitación máximas registradas en Barcelona por el pluviógrafo Jardí entre 1927 y 1992, para duraciones que van desde 5 minutos hasta 30 horas. El análisis de la relación entre las diferentes cantidades, para los episodios lluviosos más importantes, puede ser muy útil de cara a caracterizar cada chubasco y obtener una clasificación objetiva que ponga de manifiesto la escala a la que pertenece y el proceso meteorológico que lo ha originado, así como para establecer algún indicativo de la severidad de la lluvia.

En este capítulo se han seleccionado las lluvias registradas en Barcelona que han resultado ser particularmente intensas y se ha estudiado la correlación entre las cantidades recogidas para cada una de ellas en 16 duraciones, entre 5 minutos y 24 horas. Además, con estas cantidades se ha realizado un análisis de conglomerados, cuyo dendrograma pone de manifiesto cuatro clases de episodios lluviosos extremos en el área de Barcelona: los de escala local, que presentan fuertes intensidades sólo para duraciones cortas; los de mesoscala, que lo hacen para duraciones intermedias inferiores a 6 horas; los de escala sinóptica, que sólo las presentan para 12 y 24 horas y un cuarto grupo que presenta altos valores de intensidad para un amplio rango de duraciones. También se ha propuesto un índice de severidad que tiene en cuenta la contribución de cada una de las escalas implicadas en el proceso de precipitación.

Asimismo, el estudio anterior se ha extendido a los chubascos intensos registrados entre 1994 y 2001 por la red de pluviómetros de intensidad que la empresa Clavegueram de Barcelona S. A. (CLABSA) tiene instalada en el área urbana de Barcelona. Se ha calculado el índice de severidad para estos chubascos, encontrándose unos valores que se distribuyen de manera muy similar a los obtenidos para los episodios registrados por el Jardí. Este resultado avala la hipótesis sobre la posibilidad de alargar las series de precipitación *sustituyendo tiempo por espacio* (Hosking et al., 1997), de manera que los registros de n pluviómetros durante un año sustituyan al registro de uno sólo de ellos en n años.

3.2 Selección de los episodios de lluvia extrema

Con el fin de analizar el comportamiento de las lluvias extraordinariamente intensas de nuestra zona, del conjunto de episodios lluviosos registrados por el pluviógrafo Jardí en Barcelona entre 1927 y 1992, se han seleccionado aquellos que hayan superado o igualado la intensidad correspondiente al período de retorno T=5 años, para alguna de las duraciones consideradas (5, 10, 15, 20, 25, 30, 35, 40, 45, 50 y 55 minutos, y 1, 2, 6, 12 y 24 horas). Los umbrales de intensidad se han determinado en el apartado 2.6 y son los que muestra la tabla 3.1.

Tabla 3.1 Cantidad de precipitación (P) e intensidad (I) con periodo de retorno T=5 años, para cada duración t considerada

t(min)	P(t,5) (mm)	I(t,5) (mm/min)	t(min)	P(t,5) (mm)	I(t,5) (mm/min)
5	15.2	3.05	45	50.5	1.12
10	23.6	2.36	50	51.6	1.03
15	31.2	2.08	55	52.7	0.96
20	35.7	1.78	60	54.0	0.90
25	39.4	1.58	120	63.1	0.53
30	42.6	1.42	360	72.4	0.20
35	45.9	1.31	720	81.9	0.11
40	48.1	1.20	1440	95.9	0.07

Fig 3.1 Número de episodios extremos observados (T>5 años para alguna duración) para cada año de la serie

En los 66 años que abarca el periodo que se analiza, se han observado 44 lluvias que han alcanzado o superado estos umbrales para alguna de las duraciones consideradas. En la figura 3.1 se indica el número de eventos seleccionados para cada año de la serie y la tabla 3.2 expone cronológicamente dichos episodios, indicando la precipitación máxima para cada duración.

Tabla 3.2 Episodios lluviosos cuya precipitación máxima ha igualado o superado (en negrita) el periodo de retorno T=5 años en alguna de las duraciones consideradas.

								t	(min)							
	5	10	15	20	25	30	35	40	45	50	55	60	120	360	720	1440
050927	12.35	20.51	31.35	39.98	44.54	45.41	46.26	46.69	47.23	47.72	48.10	48.57	49.27	49.44	49.44	49.44
151027	9.49	15.96	21.40	25.98	28.61	29.88	34.66	41.71	47.27	50.51	52.06	53.46	71.17	75.34	75.34	75.34
251028	10.65	15.21	20.33	24.78	28.21	31.80	35.77	41.91	48.36	52.82	55.20	58.50	104.64	122.67	123.61	123.61
050130	4.70	7.65	10.17	13.98	16.86	17.92	18.37	18.50	18.50	18.50	20.52	24.29	30.95	63.04	90.18	147.32
280230	1.22	2.36	3.28	4.14	4.85	5.64	6.58	7.39	8.06	8.66	9.25	10.05	17.19	48.50	81.73	93.38
130830	15.74	26.30	32.52	37.19	42.47	46.02	47.63	48.56	49.29	49.53	49.53	49.53	54.29	54.29	54.29	54.29
090831	18.84	30.72	38.65	44.40	49.89	55.26	56.80	57.14	57.14	57.14	57.14	57.14	57.14	63.89	64.09	64.09
111031	7.94	14.89	20.71	25.09	27.87	29.61	33.69	40.18	46.55	51.36	55.19	57.69	72.81	78.66	90.38	91.21
070732	10.71	20.11	28.15	36.08	38.92	39.39	39.76	40.29	41.13	41.30	41.30	41.30	41.30	41.30	47.34	52.89
140934	10.86	20.02	28.62	35.79	41.36	43.91	46.37	55.09	64.18	70.61	72.05	72.63	91.24	103.05	105.08	105.08
011035	21.60	25.25	27.18	28.09	28.47	28.72	28.92	29.12	29.32	29.52	29.72	29.89	30.09	33.86	33.86	33.86
050639	11.18	16.85	23.77	29.99	37.84	43.07	45.21	45.98	46.18	46.45	46.51	46.51	47.99	47.99	48.57	61.45
070740	13.71	25.11	32.66	35.75	37.84	42.01	43.54	43.57	43.57	43.57	43.57	43.57	43.75	43.87	43.87	43.87
240244	5.91	7.89	9.80	11.61	13.97	15.60	16.49	17.45	18.57	19.60	20.36	21.16	33.79	70.70	111.80	122.73
180845	12.45	21.78	27.25	33.59	39.58	42.13	42.40	42.76	42.98	42.98	42.98	42.98	42.98	42.98	45.94	45.94
290648	5.39	6.97	8.23	9.24	10.29	11.16	12.31	13.27	14.36	15.31	16.55	17.75	31.54	68.22	91.44	97.72
030948	17.20	26.67	33.81	38.03	40.72	41.88	42.57	42.92	42.92	42.92	42.98	43.32	48.08	65.59	73.30	73.30
261048	4.57	7.21	8.43	8.81	8.82	8.82	8.82	8.93	9.47	10.01	10.97	12.05	21.82	50.13	80.95	91.03
130952	14.97	27.44	36.58	47.54	54.72	57.24	58.18	59.55	61.16	62.32	63.78	64.64	68.54	69.83	69.83	69.83
280653	7.98	15.23	17.50	20.11	24.98	31.14	36.30	37.65	38.73	40.72	42.44	48.53	67.62	68.83	69.21	74.30
250953	8.34	22.49	31.62	33.08	33.38	33.59	33.73	33.77	33.77	33.80	33.96	34.42	35.34	42.72	42.72	76.95
111053	7.20	13.79	18.86	25.74	30.55	33.43	35.19	36.72	37.47	40.08	41.25	41.78	59.57	96.86	102.46	104.97
201156	8.79	10.44	11.05	11.62	12.72	14.22	15.31	16.27	17.20	17.92	18.35	18.77	27.79	54.92	82.98	105.11
160758	16.48	23.96	32.80	41.06	49.59	55.91	57.47	58.57	62.42	63.59	64.66	64.90	71.85	72.12	72.12	72.12
310858	19.45	30.37	33.17	33.17	33.17	33.17	33.17	33.17	33.17	33.17	33.17	33.17	33.17	36.06	36.06	36.06
300559	11.27	18.30	24.52	30.78	35.60	39.96	44.72	50.74	52.94	54.88	56.96	59.69	75.63	76.93	76.93	76.93
200959	8.32	8.67	10.47	11.42	12.33	13.10	15.18	17.28	19.14	19.14	20.06	20.90	25.86	43.13	63.19	97.41
300860	15.11	25.94	32.03	37.32	40.74	42.54	43.61	45.37	45.82	47.54	49.49	50.30	52.95	63.61	65.30	66.78
040961	8.41	14.14	20.62	25.63	28.47	30.72	31.24	33.48	36.55	38.11	38.79	39.39	60.30	71.31	71.31	76.61
250962	9.93	19.16	23.84	32.23	37.02	41.91	45.80	47.54	47.97	48.09	48.11	48.11	57.16	63.16	63.97	63.97
010965	16.30	27.33	31.65	34.46	34.51	34.51	34.51	34.51	34.51	34.51	34.52	34.52	34.52	34.52	34.52	34.52
020469	4.00	6.16	6.66	7.04	7.40	7.75	8.09	8.41	8.72	9.00	11.17	12.81	18.00	47.81	77.80	99.62
291071	8.02	11.48	15.24	19.90	21.85	24.00	27.64	30.79	37.16	40.23	42.53	44.13	61.77	67.40	67.40	67.40
061171	12.53	23.12	30.70	41.80	49.07	52.08	52.99	53.38	53.49	53.49	53.49	53.49	53.49	55.87	60.04	63.42
051271	11.50	17.63	25.42	33.05	35.09	39.13	40.93	41.24	46.98	51.25	55.55	59.50	108.04	181.33	198.25	201.76
291271	3.40	5.49	6.62	7.55	8.13	8.66	9.16	9.61	11.29	12.11	12.75	13.20	19.64	45.51	52.98	97.37
030972	19.54	27.85	29.76	31.40	33.44	34.49	34.91	35.18	35.18	35.18	35.18	35.18	38.42	40.19	43.54	44.40
260873	17.59	24.95	26.59	27.04	27.07	27.97	28.58	28.61	28.61	28.61	28.61	28.61	28.61	28.61	28.61	28.61
040978	15.43	18.93	19.08	19.08	19.08	19.08	19.08	19.53	20.39	21.83	23.18	23.59	29.14	55.65	55.65	55.65
210881	10.12	17.73	23.99	29.69	34.52	38.67	43.99	49.70	53.64	56.13	56.85	57.35	57.80	71.70	71.70	71.70
141083	18.63	24.22	26.38	27.35	28.80	28.80	28.80	28.80	28.80	28.80	28.80	28.80	28.80	28.80	28.80	28.80
031087	9.66	18.50	25.70	29.23	37.83	43.76	46.50	47.49	48.10	48.10	49.59	50.20	56.81	95.31	95.31	126.50
220590	20.77	34.41	41.97	45.31	46.11	46.91	47.08	47.10	47.10	47.10	47.10	47.10	47.10	47.10	47.10	47.10
221090	16.73	26.10	30.48	31.71	31.71	31.71	31.71	31.71	31.71	31.71	31.71	31.71	31.71	31.71	31.71	31.71

Para estudiar el comportamiento de la intensidad máxima de precipitación en función del intervalo de tiempo al que se refiere en lluvias excepcionalmente intensas, se ha calculado, en primer lugar, la matriz de correlación de las intensidades máximas en los 16 intervalos de tiempo considerados para las 44 lluvias seleccionadas. El resultado, que se presenta en la tabla 3.3, pone de manifiesto tres escalas temporales diferenciadas. Atendiendo al nivel de significación de Pearson de 0.01, las intensidades de precipitación para duraciones entre 5 y 45 minutos no presentan una correlación significativa con las correspondientes a 6 horas. Esto indica que los procesos meteorológicos de escala local causantes de chubascos intensos, con duraciones menores de 1 hora, son independientes, en general, de los procesos de mesoscala, con duraciones típicas entre 2 y 6 horas. Asimismo, las intensidades de precipitación correspondientes a las duraciones entre 50 minutos y 2 horas no están significativamente correlacionadas con las registradas en 24 horas, mostrando la independencia entre los episodios de mesoscala de corta duración y los de origen sinóptico, con duraciones típicas entre 12 y 24 horas.

Tabla 3.3 Matriz de correlación de las intensidades máximas correspondientes a las 16 duraciones consideradas, para los 44 episodios lluviosos seleccionados. En negrita, las correlaciones de Person con nivel de significación de 0.01 (bilateral). Las correlaciones con falta de significación indicando independencia entre grupos están subrayadas con línea discontinua

	5	10	15	20	25	30	35	40	45	50	55	60	120	360	720	1440
5	1.0000															
10	0.9261	1.0000														
15	0.8377	0.9669	1.0000													
20	0.7439	0.8992	0.9736	1.0000												
25	0.6959	0.8531	0.9426	0.9870	1.0000											
30	0.6553	0.8160	0.9119	0.9716	0.9895	1.0000										
35	0.6201	0.7842	0.8853	0.9524	0.9773	0.9942	1.0000									
40	0.5711	0.7368	0.8470	0.9218	0.9530	0.9713	0.9888	1.0000								
45	0.5185	0.6771	0.7979	0.8809	0.9164	0.9359	0.9615	0.9896	1.0000							
50	0.4788	0.6342	0.7592	0.8464	0.8845	0.9046	0.9352	0.9737	0.9959	1.0000						
55	0.4535	0.6057	0.7335	0.8243	0.8639	0.8849	0.9186	0.9615	0.9896	0.9981	1.0000					
60	0.4208	0.5722	0.7015	0.7953	0.8378	0,8621	0.9002	0.9466	0.9792	0.9913	0.9968	1.0000				
120	0.1652	0.2611	0.3925	0.4992	0.5475	0.5834	0.6370	0.7067	0.7816	0.8243	0.8504	0.8778	1.0000			
360	-0.155	-0.129	-0.016	0.0913	0.1318	0.1696	0.2109	0.2688	0.3561	0.4161	0.4581	0.4981	0.8124	1.0000		
720	-0.389	-0.403	-0 307	-0.203	-0.163	-0.124	-0.091	-0.039	0.0457	0 1069	0 1519	0 1955	0 5680	0 9214	1 0000	
120	-0.309	-0.405	-0.507	-0.203	-0.105	-0.124	-0.091	-0.039	0.0457	0.1009	0.1319	0.1955	0.2000	0.7214	1.0000	1 0 0 0 7
1440	-0.045	-0.573	-0.587	-0.496	-0.404	-0.365	-0.328	-0.305	-0.265	-0.190	-0.092	-0.136	0.3287	0.7616	0.9161	1.0000

Así pues, las duraciones inferiores a 45 minutos identifican los procesos meteorológicos de escala local que originan precipitaciones intensas (principalmente tormentas aisladas o células convectivas muy activas inmersas en complejos organizados más extensos). Las duraciones entre 50 minutos y 6 horas corresponden a las típicas de situaciones de mesoescala productoras de lluvia torrenciales (casi siempre asociadas a frentes activos o a sistemas convectivos de mesoescala). Las correlaciones obtenidas para estas duraciones parecen indicar que podría establecerse una distinción en este tipo lluvias entre aquellas cuyo ciclo de vida tiene una duración inferior a dos horas y aquellas otras cuya escala temporal es del orden de 6 horas, que corresponderían, respectivamente, a lo que algunos autores designan como sistemas de pequeña mesoescala y de gran mesoescala (Austin y Houze, 1972; Sumner, 1988). En la gran mesoscala las intensidades de precipitación suelen ser del orden de 2 a 4 veces superior a las registradas a escala sinóptica, tienen habitualmente estructura en forma de banda y contienen zonas de menor extensión, las áreas de pequeña mesoscala, en las que se registran intensidades de precipitación más elevadas. Por último, las duraciones superiores a 6 horas son representativas de las lluvias copiosas de naturaleza sinóptica, generalmente asociadas a movimientos ascendentes a gran escala producidos por la acción de sistemas frontales o por convergencia horizontal en áreas extensas.

3.3 Análisis de conglomerados del conjunto de episodios extremos

El resultado obtenido en el apartado 3.2 sugiere la posibilidad de establecer una clasificación de lluvias extremas en función de su similitud. Una técnica que permite este tratamiento es el análisis de conglomerados (Anderberg, 1973). Básicamente, consiste en caracterizar cada chubasco *i* por *n* variables medidas o calculadas $(x_i^1, x_i^2, ..., x_i^n)$ que, en nuestro caso, son las cantidades de precipitación registradas para cada duración. Se considera que estas variables son las coordenadas que representan al chubasco i en un espacio n-dimensional, precisando el concepto de similitud entre chubascos en función de la distancia entre los puntos que los caracterizan en este espacio n-dimensional. En nuestro caso, se ha calculado la distancia entre los puntos x_i y x_j, que representan los chubascos i y j, mediante la fórmula:

$$d_{i,j} \mid \sqrt{(x_i^1 \, 4 \, x_j^1)^2 \, 2 \, (x_i^2 \, 4 \, x_j^2)^2 \, 2 \dots 2 \, (x_i^n \, 4 \, x_j^n)^2} \tag{3.1}$$

que no es más que la distancia euclidea ordinaria entre ambos puntos.

Este tipo de distancia presenta el inconveniente de depender de las unidades de medida que se utilizan para las diferentes variables y, en el fondo, de la magnitud de cada una de ellas. Es evidente que las que se expresan con números mayores influyen más sobre la distancia que las expresadas con números más pequeños, de manera que las primeras tienen más peso a la hora de determinar la similitud de los chubascos. Como se supone que todas las variables han de tener el mismo peso, antes de calcular las distancias entre chubascos se ha efectuado una normalización de éstas, restando la media y dividiendo por la desviación típica, a fin de obtener variables con media 0 y desviación típica 1.

El proceso que conduce a la formación de grupos o conglomerados es de tipo aglomerativo. En un primer paso se considera que cada uno de los chubascos forma un grupo, de manera que se forman tantos conglomerados como chubascos. En el segundo paso se combinan los chubascos más próximos para formar un conglomerado sencillo. A continuación se añade otra lluvia al conglomerado anterior, o bien se combinan dos nuevos chubascos para formar un nuevo conglomerado. En cada paso se añaden nuevas lluvias a los conglomerados, se agrupan dos lluvias entre sí, o bien se combinan conglomerados ya existentes. Una vez se ha formado un conglomerado, este ya no puede ser separado, solo podrá ser combinado con otros.

Fig. 3.2 Dendrograma de los 44 episodios de lluvia seleccionados (ddmmaa). La línea vertical continua divide el árbol en 5 conglomerados (grupos I, II, III, IV y el episodio 051271). La línea vertical discontinua pone de manifiesto una subclasificación para el grupo II (IIA y IIB)

Existen diversos criterios para decidir, en cada paso de la clasificación, si se combinan chubascos o conglomerados. En nuestro caso se ha utilizado el método UPGMA (*unweighted pair group method using arithmetic averages;* vinculación intergrupos), dónde se define la distancia entre conglomerados como el promedio de distancias entre todas las parejas de chubascos en las que un miembro de la pareja pertenece a un conglomerado y el otro miembro al otro conglomerado.

Las variables que se han utilizado para caracterizar cada una de las 44 lluvias consideradas son 23 intensidades máximas registradas: las 16 que corresponden a los periodos de tiempo analizados que aparecen en la tabla 3.2, y 7 más (240, 540, 840, 960, 1080, 1200 y 1320 minutos) añadidas para completar la información en el rango entre 2 y 24 horas y conseguir una mejor representación de dicho periodo. El dendrograma que se ha obtenido como resultado se presenta en la figura 3.2, y su interpretación es bien sencilla: los chubascos más próximos (y, por tanto, más parecidos) son aquellos que están conectados por el camino más corto a través de las ramificaciones.

Para analizar un dendrograma, el árbol jerárquico se ha de dividir intersectándolo mediante una línea vertical trazada en un punto arbitrario, en función del número de conglomerados requerido. Especificando un número de 5 conglomerados, el conjunto de episodios lluviosos seleccionados queda dividido según aparece en la figura 3.2 por el trazado de la línea vertical continua, y clasificado en los grupos I, II, III y IV que se muestran en la tabla 3.4. Asimismo, el grupo II se ha subdividido mediante el trazado de la línea vertical discontinua de la figura 3.2, dando lugar a los subgrupos IIA y IIB.

Ι	I	I	III	IV
	IIA	IIB		
011035	050927	151027	050130	251028
310858	130830	111031	280230	140934
010965	090831	280653	240244	111053
030972	070732	300559	290648	031087
260873	050639	040961	261048	051271
040978	070740	291071	201156	
141083	180845	210881	200959	
221090	030948		020469	
	130952		291271	
	250953			
	160758			
	300860			
	250962			
	061171			
	220590			

Tabla 3.4 Clasificación de los 44 episodios lluviosos seleccionados (ddmmaa), obtenida mediante su análisis de conglomerados

El primer conglomerado obtenido (grupo I) está formado por 8 chubascos que se caracterizan por alcanzar elevadas intensidades de precipitación sólo para duraciones iguales o inferiores a 15 minutos y presentan intensidades relativamente bajas para el resto de duraciones. Se trata, pues, de un grupo representativo de

las lluvias de carácter muy local, con una clara influencia estacional (los 8 casos se produjeron en los meses de agosto, septiembre y octubre) y un efecto evidente del calentamiento diurno de la superficie terrestre en el desarrollo de la convección (todos los casos ocurrieron después del mediodía). En la figura 3.3 se presentan los hietogramas correspondientes a estos 8 episodios lluviosos del grupo I, y la figura 3.4 muestra su distribución estacional junto con el resto de las lluvias seleccionadas.

Figura 3.3 Hietogramas correspondientes a los chubascos del grupo I, de escala local

Fig. 3.4 Distribución estacional de las lluvias seleccionadas. En azul, los chubascos correspondientes al grupo I (escala local)

El segundo conglomerado (grupo II) contiene 22 lluvias que presentan intensidades de periodo de retorno igual o superior a 5 años para duraciones menores de 6 horas. La mayor parte de estos chubascos registran intensidades mucho más bajas para intervalos entre 5 y 15 minutos o para aquellos que superan las 12 horas (tan sólo en un caso se alcanza el periodo de retorno de 5 años para 12 horas). Si se atiende al nivel inferior de agrupación, este conglomerado agrupa a otros dos de características diferenciadas: el IIA y el IIB. El subgrupo IIA está formado por 15 lluvias que superan el umbral de intensidad impuesto para duraciones inferiores a los 120 minutos, mientras que las 7 del subgrupo IIB lo hacen para duraciones comprendidas entre 40 minutos y 6 horas. Se trata de duraciones que corresponden típicamente a la

mesoescala, siendo las situaciones meteorológicas que más frecuentemente originan este tipo de precipitación en la zona mediterránea los frentes muy activos que se desplazan lentamente y en los que se desarrollan sistemas de precipitación intensa de mesoescala (Browning, 1990), o bien, los complejos convectivos de mesoescala. La influencia estacional en el origen de estas lluvias es también notable; más del 60% de estas lluvias tienen lugar durante los meses de verano, mientras que en invierno no se ha registrado ningún caso (figura 3.5). Las figuras 3.6 y 3.7 muestran los hietogramas correspondientes a los episodios del grupo II.

Fig. 3.5 Distribución estacional de las lluvias seleccionadas. En azul las correspondientes al grupo II (mesoscala)

Fig. 3.6 Episodios de lluvia correspondientes al grupo IIA, de mesoescala

51

Fig. 3.7 Episodios de lluvia correspondientes al grupo IIB, de mesoescala

El grupo III está constituido por 9 lluvias cuyas intensidades sólo superan a las de periodo de retorno de 5 años en los intervalos de 12 y 24 horas, siendo por tanto su origen claramente sinóptico. Prácticamente todos los casos se han caracterizado por la presencia de una borrasca cuyo centro, en la troposfera media, está situado al SW de la península ibérica. En este caso no se ha observado influencia estacional, cómo se pone de manifiesto en la figura 3.8. En la figura 3.9 se muestran sus hietogramas.

Fig. 3.8 Distribución estacional de las lluvias seleccionadas. En azul las correspondientes al grupo III (escala sinóptica)

Los dos últimos conglomerados son el grupo IV, formado por cuatro chubascos, más el episodio aislado correspondiente al 5-6 de diciembre de 1971 (051271). Este caso está separado una distancia máxima del resto, pero muestra una característica común con los casos del grupo IV: todos ellos presentan elevadas intensidades de precipitación (T > 5 años) para un amplio rango de duraciones entre 20 minutos y 24 horas, mientras que ninguno alcanza el umbral de intensidad considerado para

duraciones menores a 20 minutos. Debido a su similar comportamiento, el caso 051271 ha sido incluido en el grupo IV. Se trata de lluvias en cuyo origen han influido conjuntamente procesos meteorológicos de media y gran escala. Estas situaciones sinópticas productoras de precipitaciones a gran escala, que permiten además la formación de sistemas convectivos de mesoescala con lluvias muy intensas, son poco frecuentes (sólo un 11% de los casos estudiados), y constituyen la principal causa de las inundaciones en nuestra zona. La figura 3.10 muestra sus hietogramas.

Fig. 3.9 Hietogramas correspondientes a los episodios lluviosos del grupo III, de escala sinóptica

Fig. 3.10 Hietogramas de los episodios lluviosos pertenecientes al grupo IV, causados por procesos de media y gran escala actuando conjuntamente

La foto de la figura 3.11 muestra el aspecto de la vía pública de la ciudad de Barcelona debido a la lluvia del 3 y 4 de octubre de 1987; uno de los episodios que ha quedado incluido en el grupo IV. Otro de los casos pertenecientes a dicho grupo, el acontecido en los días 5 y 6 de diciembre de 1971, presenta unas intensidades de precipitación máxima para 2, 6, 12 y 24 horas superiores a las que corresponden a la curva de periodo de retorno de 100 años. Son valores excepcionalmente altos: los 201.8 mm recogidos en 24 horas corresponden, según la familia de curvas IDF obtenida, a un periodo de retorno de unos 900 años. Y todavía más extremo resulta el valor de precipitación máxima en 6 horas: los 181.3 mm recogidos corresponden en este caso a un periodo de retorno superior a 2000 años. El episodio que presenta el segundo valor más elevado de precipitación en 24 horas es el correspondiente al 5 de enero de 1930 (050130, del grupo III de escala sinóptica), de 147.3 mm, que corresponde a un periodo de retorno mucho menor de 66 años; coincidiendo con el tamaño de la muestra. Y el episodio acontecido el 25 de octubre de 1928 (251028, del grupo IV) es el que ha presentado el segundo valor más alto en 6 horas, 122.7 mm, que corresponde a un periodo de retorno de 77 años. Aún así, este mismo episodio también presenta un periodo de retorno alto, de 105 años, para la precipitación de 104.6 mm en 2 horas. En la figura 3.12 se muestran los valores de intensidad máxima observados el día 051271, para algunas de las duraciones, en comparación con las curvas IDF obtenidas para Barcelona en el capítulo 2.

Fig. 3.11 Aspecto de la vía pública de Barcelona por las lluvias del 3 y 4 de octubre de 1987

Fig. 3.12 Curvas de Intensidad-Duración-Frecuencia de la ciudad de Barcelona y valores (asteriscos) de intensidad de precipitación máxima correspondientes a la lluvia del 5 y 6 de diciembre de 1971

La tabla 3.5 muestra la matriz de los 44 episodios de lluvia seleccionados, ordenados en función del grupo de clasificación que les corresponde

Tabla 3.5 Episodios de lluvia (ddmmaa) con intensidad de precipitación de TØ años para alguna duración (en negrita), ordenados según la clasificación por grupos obtenida con el análisis de conglomerados (I, IIA, IIB, III y IV)

									t	(min)							
		5	10	15	20	25	30	35	40	45	50	55	60	120	360	720	1440
Ι	011035	21.60	25.25	27.18	28.09	28.47	28.72	28.92	29.12	29.32	29.52	29.72	29.89	30.09	33.86	33.86	33.86
Ι	310858	19.45	30.37	33.17	33.17	33.17	33.17	33.17	33.17	33.17	33.17	33.17	33.17	33.17	36.06	36.06	36.06
Ι	010965	16.30	27.33	31.65	34.46	34.51	34.51	34.51	34.51	34.51	34.51	34.52	34.52	34.52	34.52	34.52	34.52
Ι	030972	19.54	27.85	29.76	31.40	33.44	34.49	34.91	35.18	35.18	35.18	35.18	35.18	38.42	40.19	43.54	44.40
Ι	260873	17.59	24.95	26.59	27.04	27.07	27.97	28.58	28.61	28.61	28.61	28.61	28.61	28.61	28.61	28.61	28.61
Ι	040978	15.43	18.93	19.08	19.08	19.08	19.08	19.08	19.53	20.39	21.83	23.18	23.59	29.14	55.65	55.65	55.65
Ι	141083	18.63	24.22	26.38	27.35	28.80	28.80	28.80	28.80	28.80	28.80	28.80	28.80	28.80	28.80	28.80	28.80
Ι	221090	16.73	26.10	30.48	31.71	31.71	31.71	31.71	31.71	31.71	31.71	31.71	31.71	31.71	31.71	31.71	31.71
IIA	050927	12.35	20.51	31.35	39.98	44.54	45.41	46.26	46.69	47.23	47.72	48.10	48.57	49.27	49.44	49.44	49.44
IIA	130830	15.74	26.30	32.52	37.19	42.47	46.02	47.63	48.56	49.29	49.53	49.53	49.53	54.29	54.29	54.29	54.29
IIA	090831	18.84	30.72	38.65	44.40	49.89	55.26	56.80	57.14	57.14	57.14	57.14	57.14	57.14	63.89	64.09	64.09
IIA	070732	10.71	20.11	28.15	36.08	38.92	39.39	39.76	40.29	41.13	41.30	41.30	41.30	41.30	41.30	47.34	52.89
IIA	050639	11.18	16.85	23.77	29.99	37.84	43.07	45.21	45.98	46.18	46.45	46.51	46.51	47.99	47.99	48.57	61.45
IIA	070740	13.71	25.11	32.66	35.75	37.84	42.01	43.54	43.57	43.57	43.57	43.57	43.57	43.75	43.87	43.87	43.87
IIA	180845	12.45	21.78	27.25	33.59	39.58	42.13	42.40	42.76	42.98	42.98	42.98	42.98	42.98	42.98	45.94	45.94
IIA	030948	17.20	26.67	33.81	38.03	40.72	41.88	42.57	42.92	42.92	42.92	42.98	43.32	48.08	65.59	73.30	73.30
IIA	130952	14.97	27.44	36.58	47.54	54.72	57.24	58.18	59.55	61.16	62.32	63.78	64.64	68.54	69.83	69.83	69.83
IIA	250953	8.34	22.49	31.62	33.08	33.38	33.59	33.73	33.77	33.77	33.80	33.96	34.42	35.34	42.72	42.72	76.95
IIA	160758	16.48	23.96	32.80	41.06	49.59	55.91	57.47	58.57	62.42	63.59	64.66	64.90	71.85	72.12	72.12	72.12
IIA	300860	15.11	25.94	32.03	37.32	40.74	42.54	43.61	45.37	45.82	47.54	49.49	50.30	52.95	63.61	65.30	66.78
IIA	250962	9.93	19.16	23.84	32.23	37.02	41.91	45.80	47.54	47.97	48.09	48.11	48.11	57.16	63.16	63.97	63.97
IIA	061171	12.53	23.12	30.70	41.80	49.07	52.08	52.99	53.38	53.49	53.49	53.49	53.49	53.49	55.87	60.04	63.42
IIA	220590	20.77	34.41	41.97	45.31	46.11	46.91	47.08	47.10	47.10	47.10	47.10	47.10	47.10	47.10	47.10	47.10
IIB	151027	9.49	15.96	21.40	25.98	28.61	29.88	34.66	41.71	47.27	50.51	52.06	53.46	71.17	75.34	75.34	75.34
IIB	111031	7.94	14.89	20.71	25.09	27.87	29.61	33.69	40.18	46.55	51.36	55.19	57.69	72.81	78.66	90.38	91.21
IIB	280653	7.98	15.23	17.50	20.11	24.98	31.14	36.30	37.65	38.73	40.72	42.44	48.53	67.62	68.83	69.21	74.30
IIB	300559	11.27	18.30	24.52	30.78	35.60	39.96	44.72	50.74	52.94	54.88	56.96	59.69	75.63	76.93	76.93	76.93
IIB	040961	8.41	14.14	20.62	25.63	28.47	30.72	31.24	33.48	36.55	38.11	38.79	39.39	60.30	71.31	71.31	76.61
IIB	291071	8.02	11.48	15.24	19.90	21.85	24.00	27.64	30.79	37.16	40.23	42.53	44.13	61.77	67.40	67.40	67.40
IIB	210881	10.12	17.73	23.99	29.69	34.52	38.67	43.99	49.70	53.64	56.13	56.85	57.35	57.80	71.70	71.70	71.70
III	050130	4.70	7.65	10.17	13.98	16.86	17.92	18.37	18.50	18.50	18.50	20.52	24.29	30.95	63.04	90.18	147.32
III	280230	1.22	2.36	3.28	4.14	4.85	5.64	6.58	7.39	8.06	8.66	9.25	10.05	17.19	48.50	81.73	93.38
III	240244	5.91	7.89	9.80	11.61	13.97	15.60	16.49	17.45	18.57	19.60	20.36	21.16	33.79	70.70	111.80	122.73
III	290648	5.39	6.97	8.23	9.24	10.29	11.16	12.31	13.27	14.36	15.31	16.55	17.75	31.54	68.22	91.44	97.72
III	261048	4.57	7.21	8.43	8.81	8.82	8.82	8.82	8.93	9.47	10.01	10.97	12.05	21.82	50.13	80.95	91.03
III	201156	8.79	10.44	11.05	11.62	12.72	14.22	15.31	16.27	17.20	17.92	18.35	18.77	27.79	54.92	82.98	105.11
III	200959	8.32	8.67	10.47	11.42	12.33	13.10	15.18	17.28	19.14	19.14	20.06	20.90	25.86	43.13	63.19	97.41
III	020469	4.00	6.16	6.66	7.04	7.40	7.75	8.09	8.41	8.72	9.00	11.17	12.81	18.00	47.81	77.80	99.62
III	291271	3.40	5.49	6.62	7.55	8.13	8.66	9.16	9.61	11.29	12.11	12.75	13.20	19.64	45.51	52.98	97.37
IV	251028	10.65	15.21	20.33	24.78	28.21	31.80	35.77	41.91	48.36	52.82	55.20	58.50	104.64	122.67	123.61	123.61
IV	140934	10.86	20.02	28.62	35.79	41.36	43.91	46.37	55.09	64.18	70.61	72.05	72.63	91.24	103.05	105.08	105.08
IV	111053	7.20	13.79	18.86	25.74	30.55	33.43	35.19	36.72	37.47	40.08	41.25	41.78	59.57	96.86	102.46	104.97
IV	051271	11.50	17.63	25.42	33.05	35.09	39.13	40.93	41.24	46.98	51.25	55.55	59.50	108.04	181.33	198.25	201.76
IV	031087	9.66	18.50	25.70	29.23	37.83	43.76	46.50	47.49	48.10	48.10	49.59	50.20	56.81	95.31	95.31	126.50

3.4 Índice ponderado de intensidad de precipitación

Los resultados obtenidos en el apartado 3.3 ponen de manifiesto la variedad de escalas de los fenómenos meteorológicos que pueden originar lluvias extremas en el mediterráneo occidental, por lo que cualquier intento de clasificación deberá considerar y diferenciar la naturaleza de la situación que las provoca. Asimismo, el análisis estadístico realizado indica que las intensidades máximas observadas para cada chubasco I_5 , I_{60} , I_{120} e I_{1440} , correspondientes a los intervalos de 5 minutos y 1, 2 y 24 horas, son una selección conveniente como índices de intensidad de lluvia representativos de cada escala que pongan claramente de manifiesto el origen de la precipitación. Cada una de estas intensidades representa, respectivamente, la contribución al origen de la lluvia de mecanismos de escala local, pequeña mesoescala, gran mesoescala y escala sinóptica.

Eligiendo las duraciones de 5 minutos y 1, 2 y 24 horas como representativas del comportamiento de la lluvia, se ha definido un índice normalizado de intensidad IP en la forma dada por la ecuación:

$$IP(T) \mid \frac{1}{4} \left[\frac{I_5}{I(5,T)} 2 \frac{I_{60}}{I(60,T)} 2 \frac{I_{120}}{I(120,T)} 2 \frac{I_{1440}}{I(1440,T)} \right]$$
(3.2)

en donde T es el periodo de retorno elegido para la normalización del índice, I_5 , I_{60} , I_{120} e I_{1440} son las intensidades máximas que ha presentado cada chubasco en los intervalos de tiempo considerados (t) e I(t,T) es la intensidad de periodo de retorno T que corresponde a la duración t. Este índice puede ser muy útil de cara a ponderar el carácter extremo y la severidad de los episodios lluviosos en la zona estudiada.

Se ha calculado el índice IP para las 44 lluvias analizadas, escogiendo como periodo de retorno el valor T= 5 años, utilizando la ecuación (3.2). Los índices calculados se muestran en la figura 3.13, dónde puede verse que sólo 5 chubascos superan el índice 1 (251028, 140934, 130952, 160758 y 051271). De ellos, los tres que presentan un índice mayor pertenecen al conglomerado IV y alcanzaron intensidades superiores a las de periodo de retorno 5 años para duraciones de 1 hora o mayores (251028, 140934 y 051271).

Hay que destacar, también, que el 75% de las lluvias estudiadas sólo superan el umbral de intensidad impuesto I(t,5) en una de las 4 duraciones escogidas para calcular el índice. Los 11 casos restantes presentan intensidades de periodo de retorno de 5 años en 2 o 3 intervalos, pero ninguna lluvia ha presentado intensidades de este periodo de retorno en las 4 duraciones simultáneamente.

40

Fig.3.13 Índice ponderado de intensidad de precipitación para las 44 lluvias seleccionadas

3.5 Episodios extremos de lluvia en Barcelona registrados por la red de pluviómetros de intensidad de CLABSA (1994-2001)

El área urbana de Barcelona (de aproximadamente 100 km² de extensión) dispone de una red densa de 23 pluviómetros de intensidad de tipo balancín propiedad de la empresa Clavegueram de Barcelona S.A. (CLABSA), que comenzó a instalarse en 1983 (figura 3.14 y tabla 3.6). Se dispone de los registros completos de 22 de los pluviómetros desde 1996, y de 17 de éstos desde 1994. Con dichos registros, se han calculado los valores de precipitación máxima recogidos por los pluviómetros para duraciones entre 5 minutos y 24 horas, con un programa informático equivalente al utilizado en el capítulo 2 con los datos de intensidad de precipitación registrados por el pluviógrafo Jardí del observatorio Fabra de Barcelona.

De entre las lluvias observadas se han seleccionado en primer lugar los episodios lluviosos que han presentado intensidades de precipitación correspondientes a un período de retorno T igual o superior a 5 años para alguna de las cuatro duraciones que aparecen en el cálculo del índice IP (5, 60, 120 y 1440 minutos, ecuación 3.2), representativas de cada escala temporal. Se obtienen 38 casos que

corresponden realmente a únicamente 9 episodios lluviosos diferentes, registrados por varios de los pluviómetros: los acontecidos el 19 de octubre de 1994 (191094), el 24 de agosto de 1995 (240895), el 21 de septiembre de 1995 (210995), el 7 de agosto de 1986 (070896), el 13 y 14 de octubre de 1996 (141096), el 2 y 3 de diciembre de 1998 (031298), el 13 y 14 de septiembre de 1999 (140999), el 15 de julio de 2001 (150701) y el 9 de octubre de 2001 (091001).

Si se buscan también los valores que superan el umbral T \bigotimes años para el resto de duraciones, como se había hecho anteriormente con los datos del Jardí, se obtienen algunas otras lluvias que habían quedado fuera de la selección inicial. Una es la del día 3 de septiembre de 1999 (030999), que supera el umbral para el rango de duraciones entre 10 y 35 minutos, pero quedaba fuera por no llegar para 1h al umbral impuesto (48.5 mm, frente a los 54.0 mm que corresponden en la zona a periodo de retorno 5 años para precipitación en 1 hora). Otra es la del 29 de septiembre de 1994 (290994), que presenta intensidades fuertes para las duraciones de 6 y 12 horas, pero que no llega al umbral para 24 horas (91.0 mm frente a los 95.9 mm de periodo de retorno 5 años para 24 horas). Incluyendo estos dos chubascos, con sus repeticiones para algún pluviómetro, la lista asciende a 45 casos, que corresponden en realidad a 11 episodios lluviosos diferentes, que se presentan en la tabla 3.7.

Plu	viómetro	Ubicació	n (UTM)
AGBE	AGBAR-Besòs	432572	4590189
AGCO	AGBAR-Cornellà	422530	4579549
AGTI	AGBAR-Tibidabo	426690	4586494
AGTR	AGBAR-Turó de la Rovira	430034	4585878
AJNO	Ajuntament, edifici novíssim	431351	4581678
AJSA	Ajuntament, Sarrià-Sant Gervasi	426648	4583627
AJUO	Ajuntament, Plaça Lesseps	429270	4584410
BARK	Escola Barkeno	428485	4578698
CANY	Centre Pau Casals (Canyelles)	430181	4588414
CATA	Escola Catalònia	433279	4585023
CLAB	CLABSA	427987	4578247
COTX	Cotxeres de Sants	427879	4580946
DEIN	Dipòsit Escola Industrial (Remota)	428911	4582279
DEPU	Depuradora Besòs	435184	4584975
ELIZ	Casa Elizalde	430373	4583077
FCCF	FCC-Zona Franca	427443	4576149
FISI	Facultat de Físiques	426341	4582030
HEUR	Palau de les Heures (Fundació Bosch i Gimpera)	428357	4587775
MONT	Castell de Montjuic	430431	4579649
NABI	Escola Nabi (Vallvidrera)	425042	4585529
NICA	Poliesportiu Nova-Icària	433035	4582822
ROLI	Ronda Litoral Tram 9, Sant Andreu	434117	4587439
SAGR	Centre Cívic Sagrera	432334	4586332

Tabla 3.6 Pluviómetros de la red de CLABSA de Barcelona

Fig. 3.14 Red de pluviómetros de intensidad de tipo balancín de CLABSA en Barcelona

Tres de los once episodios lluviosos seleccionados presentan un evidente comportamiento sinóptico, dadas sus características espaciales y temporales, y por tanto pertenecen al grupo III de clasificación (290994, 141096, 031298); y otro (070896) es claramente un chubasco de escala local, del grupo I. Las lluvias correspondientes a los días 150701 y 091001 han presentado intensidades por encima del umbral impuesto sólo para un pluviómetro; en el primer caso para las duraciones de 5 minutos y 2 horas, mientras que para 1 hora la precipitación registrada es algo inferior a la correspondiente a 5 años de periodo de retorno. En el episodio 091001 se han registrado unas intensidades altísimas para 5 minutos y 1 hora, de manera que el índice de severidad calculado para este caso resulta el mayor de todos (1.31), lo que parece indicar que este chubasco debería clasificarse dentro del grupo IV de los chubascos más severos. Para los 5 chubascos restantes no está del todo clara la clasificación; por ejemplo, la lluvia del 21 de septiembre de 1995 (210995) presenta unos registros para los pluviómetros AJNO, COTX y SAGR que indican su carácter mesoscalar (grupo II), pero su índice para el registro del pluviómetro AJUO (1.30) y su alta precipitación para las cuatro duraciones representativas de cada escala (19.9 mm en 5 minutos, periodo de retorno T-25 años; 79.7 mm en 1 hora, T-50 años; 91.2 mm en 2 horas, T-40 años y 94.2 mm en 24 horas, muy ligeramente por debajo del umbral T=5 años) lo hacen susceptible de ser clasificado dentro del grupo IV. Asimismo, el episodio lluvioso del 14 de septiembre de 1999 (140999) también pone de manifiesto su comportamiento mesoscalar (grupo II) para la mayoría de pluviómetros, mientras presenta un índice superior a 1 (1.04) para AJSA, y altos valores de precipitación para tres de las cuatro duraciones representativas (16.9 mm en 5 minutos, periodo de retorno T-10 años; 66.1 mm en 1 hora; T-15 años, y 67.3 en 2 horas, T-7 años).

pluviómetro	ddmmaa	5 min P(5,5)=15.2mm	1 hora P(60,5)=54.0mm	2 horas P(120,5)=63.1mm	24 horas P(1440,5)=95.9mm	IP
CANY	290994	3.0	19.7	35.1	85.1	0.50
DEPU	290994	4.3	24.9	41.4	91.0	0.59
COTX	191094	7.7	45.2	63.2	71.7	0.77
MONT	191094	8.7	36.2	60.3	72.7	0.74
AJNO	240895	11.7	80.7	94.2	133.1	1.29
AJNO	210995	11.4	52.6	54.6	56.3	0.79
AJUO	210995	19.9	79.7	91.2	94.2	1.30
COTX	210995	9.6	51.8	53.9	57.0	0.76
SAGR	210995	8.7	77.9	89.3	92.7	1.10
CLAB	070896	19.4	32.6	32.6	32.8	0.68
AGBE	141096	6.3	27.3	33.7	105.3	0.64
AJNO	141096	6.4	29.2	39.3	103.5	0.67
COTX	141096	3.8	16.1	28.1	95.9	0.50
ELIZ	141096	5.7	30.2	37.6	108.1	0.66
MONT	141096	7.0	30.8	39.6	103.9	0.69
NICA	141096	6.2	31.5	38.8	108.2	0.68
SAGR	141096	5.9	29.7	37.6	110.1	0.67
AGBE	031298	3.4	26.3	37.8	110.2	0.61
AGCO	031298	4.8	22.7	29.5	135.7	0.65
AGTI	031298	3.2	20.1	29.9	98.7	0.52
AGTR	031298	3.5	23.4	32.8	103.4	0.57
AJSA	031298	3.1	15.9	26.0	106.5	0.51
BARK	031298	3.3	15.1	22.0	121.1	0.53
CANY	031298	4.2	27.9	37.3	101.5	0.61
COTX	031298	2.6	10.8	19.2	109.1	0.45
DEPU	031298	7.2	25.5	34.3	106.7	0.75
ELIZ	031298	3.7	16.9	26.6	111.5	0.54
FCCF	031298	4.3	16.4	22.5	111.1	0.53
HEUR	031298	5.0	36.0	50.8	134.0	0.80
SAGR	031298	4.4	29.3	40.3	114.2	0.67
BARK	030999	13.7	48.5	50.7	56.1	0.80
AGCO	140999	12.6	59.8	60.6	65.9	0.90
AJSA	140999	16.9	66.1	67.3	74.3	1.04
BARK	140999	13.0	55.4	56.7	60.1	0.85
CLAB	140999	12.2	51.7	52.6	55.3	0.79
CATA	140999	11.6	45.5	46.4	96.4	0.84
COTX	140999	14.4	57.3	58.3	60.3	0.89
FCCF	140999	12.9	53.5	53.9	59.0	0.83
FISI	140999	8.7	55.3	56.2	58.0	0.77
HEUR	140999	11.4	58.6	60.0	78.2	0.90
MONT	140999	14.2	49.4	50.9	58.7	0.82
NABI	140999	7.9	57.5	60.0	63.7	0.80
ROLI	140999	9.5	52.5	53.5	102.0	0.88
AGTR	150701	15.8	39.2	64.9	69.7	0.88
AGTI	091001	39.1	55.8	61.9	63.1	1.31

Tabla 3.7 Lluvias registradas por los pluviómetros de la red de CLABSA en Barcelona (1994-2001) que han igualado o superado (en negrita) el umbral de precipitación correspondiente al período de retorno de 5 años, P(t,5), para alguna de las duraciones escogidas. IP es su índice ponderado de intensidad.

3.5.1 Análisis de conglomerados de los episodios extremos de lluvia

Para comprobar que un análisis de conglomerados pondría también de manifiesto las diferentes escalas en el conjunto de los 45 casos seleccionados, se ha completado la tabla 3.7 añadiendo los valores de precipitación observados para el resto de duraciones consideradas entre 5 minutos y 24 horas, obteniéndose la tabla 3.8. Estos valores se normalizan restándoles la media y dividiéndolos por la desviación estándar, y siguiendo el mismo proceso que en el caso de los chubascos registrados por el pluviógrafo Jardí (vinculación intergrupos, uso de la distancia euclidea), se obtiene el dendrograma que se presenta en la figura 3.15.

Comenzamos el análisis del dendrograma de la figura 3.15 con el trazado de una primera línea vertical (azul) que intersecta el árbol jerárquico, poniendo de manifiesto la similitud entre tres de los chubascos que resultan a distancia máxima del resto, agrupados entre sí. Se trata de los casos AJNO 240895, AJUO 210995 y AGTI 091001, que presentan los índices ponderados de intensidad de mayor valor de toda la muestra: 1.29, 1.30 y 1.31 (tabla 3.7). Estos tres casos pueden identificarse con el grupo IV de clasificación, formado por chubascos que presentan altos valores de precipitación para varias escalas, lo que da una idea de su origen complejo. El caso correspondiente al día 24 de agosto de 1995 (240895), ha presentado intensidades por encima del umbral de periodo de retorno T=5 años en el registro del pluviómetro AJNO, para duraciones en un amplio rango entre 20 minutos y 24 horas (proceso conjunto mesoscala-escala sinóptica). El correspondiente al 9 de octubre de 2001 (091001) presenta altas intensidades para todas las duraciones, superando el periodo de retorno de T=5 años para las inferiores a 1 hora en el pluviómetro AGTI. El caso AJUO 210995 es el comentado anteriormente, un chubasco que presenta altas intensidades de precipitación para todas las duraciones entre 5 minutos y 24 horas, dependiendo del pluviómetro, poniendo de manifiesto su compleja estructura.

Trazando una segunda línea vertical (violeta continua, figura 3.15), se obtienen los grupos I, II y III. El grupo I lo compone un único chubasco, el correspondiente al 7 de agosto de 1996 (CLAB 070896), resultado ya esperado y comentado anteriormente, dada la escala temporal que presenta. Asimismo, quedan agrupados, como se esperaba, todos los registros (22 en total) correspondientes a los chubascos 290994, 141096 y 031298, de claro origen sinóptico. Estos 22 casos pertenecen al grupo III, de escala sinóptica. Los 19 casos restantes formarían parte del grupo II, presentando casi todos ellos intensidades altas en las duraciones de mesoscala, inferiores a 6 horas. En cuanto a la subdivisión del grupo II (línea violeta discontinua, figura 3.15), nos aparecen los subgrupos IIA (que identifica la *pequeña mesoscala*) con los chubascos del día 21 de septiembre de 1995 (AJNO, COTX y SAGR 210995, puesto que AJUO 210995 ha quedado incluido en el grupo IV) y de los días 030999 y 140999. El subgrupo IIB (correspondiente a la *gran mesoscala*) está formado por las lluvias correspondientes al día 191094 y al 150701. En la tabla 3.9 se muestran los grupos y subgrupos de clasificación.

		5	10	15	20	25	30	35	40	45	50	55	60	120	360	720	1440
CANY	290994	3.0	4.7	6.3	8.0	10.1	12.2	13.9	15.0	16.3	17.4	18.6	19.7	35.1	82.5	82.5	85.1
DEPU	290994	4.3_	6.5	8.1	10.6	13.1	15.8	17.6	19.3	20.5	22.0	23.6	24.9	41.4	78.0	88.1	91.0
COTX	191094	7.7	13.1	19.4	25.0	29.1	33.4	36.2	38.1	40.7	43.1	43.9	45.2	63.2	71.7	71.7	71.7
MONT	191094	8.7	11.3	15.7	17.7	19.8	22.4	25.6	28.5	29.5	32.6	34.2	36.2	60.3	72.7	72.7	72.7
AJNO	240895	11.7	21.3	29.1	37.9	46.5	54.3	60.7	66.8	73.9	78.1	79.5	80.7	94.2	131.3	133.1	133.1
AJNO	210995	114	199	263	34.6	41.3	46.3	48.6	50.3	51.2	51.7	52.1	52.6	54.6	55 3	55.3	56.3
AJUO	210995	19.9	33.8	46.3	53.0	59.6	65.3	69.6	72.5	74.4	75.6	76.1	79.7	91.2	91.8	91.8	94.2
сотх	210995	9.6	15.6	24.9	30.8	39.5	45.4	47.0	47.6	49.5	50.8	51.5	51.8	53.9	55.0	55.0	57.0
SAGR	210995	8.7	15.7	22.1	28.1	34.2	40.7	47.4	53.8	59.7	66.0	72.2	77.9	89.3	89.4	89.4	92.7
CLAB	070896	19.4	25.6	27.6	28.8	29.8	31.3	31.7	32.0	32.4	32.5	32.6	32.6	32.6	32.6	32.6	32.8
AGBE	141096	63	10.9	13.9	15.2	16.0	16.9	200	223	25.2	26.2	26.6	27.3	33.7	67.5	85 3	105.3
AJNO	141096	64	10.7	11.8	13.2	15.0	18.2	20.0	22.5	27.6	20.2	20.0	29.2	39.3	74 1	92.8	103.5
сотх	141096	3.8	6.2	7.9	9.4	10.3	10.2	11.6	12.0	12.6	14.0	15.4	16.1	28.1	64.8	80.4	95.9
ELIZ	141096	5.7	8.9	13.0	14.7	15.7	18.4	22.9	24.5	27.6	29.1	29.9	30.2	37.6	75.4	94.5	108.1
MONT	141096	7.0	10.1	13.2	14.5	15.3	17.6	22.9	25.2	28.0	30.0	30.6	30.8	39.6	79.2	93.6	103.9
NICA	141096	6.2	9.4	13.4	15.4	16.7	17.8	20.4	25.3	29.0	29.9	31.0	31.5	38.8	80.8	96.5	108.2
SAGR	141096	5.9	11.0	14.3	15.5	16.8	18.8	22.2	25.0	27.9	28.9	29.4	29.7	37.6	76.2	93.8	110.1
AGBE	031298	3.4	5.8	8.1	10.2	12.3	14.7	16.7	18.2	19.8	21.9	23.8	26.3	37.8	65.5	87.8	110.2
AGCO	031298	4.8	8.6	12.2	15.5	17.4	18.3	19.2	19.9	20.5	21.0	21.8	22.7	29.5	57.1	93.9	135.7
AGTI	031298	3.2	5.5	7.7	8.7	10.2	11.6	12.7	13.5	14.4	16.1	18.2	20.1	29.9	52.1	75.2	98.7
AGTR	031298	3.5	6.3	9.0	11.8	14.7	16.6	17.9	19.0	19.8	21.1	21.8	23.4	32.8	55.3	80.8	103.4
AJSA	031298	3.1	4.6	6.5	7.7	8.6	9.6	10.2	10.9	11.7	12.4	13.5	15.9	26.0	48.5	78.8	106.5
BARK	031298	3.3	5.6	7.1	8.4	9.7	11.0	11.8	12.6	13.3	13.9	14.6	15.1	22.0	48.6	84.4	121.1
CANY	031298	4.2	7.3	9.4	12.1	14.5	16.7	18.6	19.8	21.4	23.5	25.7	27.9	37.3	56.2	78.4	101.5
сотх	031298	2.6	4.0	5.0	6.1	7.1	7.7	8.1	8.7	9.3	9.9	10.4	10.8	19.2	45.0	77.8	109.1
DEPU	031298	7.2	10.5	13.2	15.7	17.6	19.0	19.7	20.4	21.5	22.6	23.7	25.5	34.3	54.9	80.4	106.7
ELIZ	031298	3.7	5.8	7.1	8.0	9.4	10.2	10.8	11.3	12.3	13.0	14.4	16.9	26.6	50.3	81.8	111.5
FCCF	031298	4.3	7.1	9.5	11.0	12.0	12.7	13.2	13.9	14.6	15.3	16.0	16.4	22.5	45.3	77.3	111.1
HEUR	031298	5.0	9.7	12.8	17.1	20.0	23.1	25.4	26.7	28.5	30.1	32.4	36.0	50.8	79.2	108.0	134.0
SAGR	031298	4.4_	7.7	10.9	14.6	16.8	19.1	20.4	21.6	23.2	24.6	26.7	29.3	40.3	63.1	_90.3 _	114.2
BARK	030999	13.7	23.9	32.2	39.9	44.5	46.6	47.5	47.9	48.0	48.2	48.3	48.5	50.7	56.0	56.1	56.1
AGCO	140999	12.6	23.1	31.0	37.9	43.7	49.1	53.8	56.0	57.2	57.9	58.6	59.8	60.6	60.7	64.1	65.9
AJSA	140999	16.9	29.4	36.0	42.3	47.7	53.7	57.3	59.9	61.9	63.6	65.1	66.1	67.3	67.3	69.8	74.3
BARK	140999	13.0	20.4	30.3	37.9	42.4	46.3	48.8	50.4	51.3	52.0	54.4	55.4	56.7	56.7	60.0	60.1
CATA	140999	11.6	22.5	30.0	34.7	37.9	40.2	41.7	42.6	43.3	43.5	44.3	45.5	46.4	46.4	55.8	96.4
CLAB	140999	12.2	20.8	31.0	36.8	40.5	44.2	46.6	47.6	48.3	49.2	50.9	51.7	52.6	52.6	55.2	55.3
сотх	140999	14.5	25.3	34.1	40.6	45.5	49.6	52.2	54.3	55.4	56.0	56.6	57.3	58.3	58.3	60.1	60.3
FCCF	140999	12.9	23.2	32.5	38.1	43.2	46.9	48.9	49.5	49.8	52.1	53.1	53.5	53.9	53.9	58.9	59.0
FISI	140999	8.7	16.3	24.3	31.8	37.5	42.7	46.6	49.4	51.4	52.7	54.2	55.3	56.2	56.2	57.3	58.0
HEUR	140999	11.4	20.3	24.0	28.8	35.2	41.8	47.1	50.8	54.7	56.8	57.9	58.6	60.0	60.2	63.5	78.2
MONT	140999	14.2	25.7	33.6	38.2	40.9	42.4	44.4	45.6	46.7	47.2	48.0	49.4	50.9	51.0	58.1	58.7
NABI	140999	7.9	13.3	20.0	25.5	33.0	37.3	41.5	45.9	50.9	54.0	56.0	57.5	60.0	60.0	62.8	63.7
ROLI	140999	9.5	16.8	22.7	26.9	34.5	40.6	43.9	46.1	48.8	52.1	52.4	52.5	53.5	53.5	53.5	102.0
AGTR	150701	15.8	19.3	20.7	21.2	25.8	28.7	29.8	30.3	30.3	31.4	34.4	39.2	<u>64.9</u>	68.7	69.7	69.7
AGTI	091001	39.1	51.5	51.6	54.9	55.7	55.7	55.7	55.7	55.7	55.8	55.8	55.8	61.9	61.9	62.8	63.1

Tabla 3.8 Precipitación registrada por la red de pluviómetros de CLABSA entre 1994 y 2001 para las lluvias que han superado (en negrita) el periodo de retorno de 5 años, en alguna de las 16 duraciones consideradas

Fig. 3.15 Dendrograma de los 45 chubascos registrados por la red de pluviómetros de CLABSA de Barcelona (1994-2001) que han igualado o superado el periodo de retorno 5 años para alguna de las duraciones consideradas entre 5 minutos y 24 horas.

Como era de esperar, mientras que el único aguacero registrado de escala local (CLAB 070896) aparece seleccionado (TØ años) sólo para un pluviómetro, el resto de chubascos, sobre todo los correspondientes a la escala sinóptica (grupo III), aparecen repetidos para muchos pluviómetros dada su mayor escala espacial. El episodio del grupo III del día 29 de septiembre de 1994 sólo aparece registrado en dos pluviómetros (CANY y DEPU 290994) porque el resto no estaban aún en funcionamiento.

Grupo I	Gru	po II	Grupo III	Grupo IV
	IIA	IIB		
CLAB 070896	AJNO 210995	MONT 191094	CANY 290994	AJNO 240895
	COTX 210995	COTX 191094	DEPU 290994	AJUO 210995
	SAGR 210995	AGTR 150701	AGBE 141096	AGTI 091001
	BARK 030999		AJNO 141096	
	AGCO 140999		COTX 141096	
	AJSA 140999		ELIZ 141096	
	BARK 140999		MONT 141096	
	CLAB 140999		NICA 141096	
	CATA 140999		SAGR 141096	
	COTX 140999		AGBE 031298	
	FCCF 140999		AGCO 031298	
	FISI 140999		AGTI 031298	
	HEUR 140999		AGTR 031298	
	MONT 140999		AJSA 031298	
	NABI 140999		BARK 031298	
	ROLI 140999		CANY 031298	
			COTX 031298	
			DEPU 031298	
			ELIZ 031298	
			FCCF 031298	
			HEUR 031298	
			SAGR 031298	

Tabla 3.9 Clasificación de los 45 episodios de lluvia registrados por la red de pluviómetros de CLABSA en Barcelona (1994-2001) que han igualado o superado el periodo de retorno T=5 años para alguna duración

La tabla 3.10 muestra la precipitación registrada para cada duración por los eventos seleccionados, ordenados en función del grupo de clasificación, para poner de manifiesto la contribución de cada una de las escalas.

Los chubascos registrados por la red de pluviómetros de CLABSA no han resultado distribuidos en grupos en la misma proporción que los correspondientes al pluviógrafo Jardí, dada la influencia de las escalas de cada grupo (figura 3.16). Mientras que en la muestra del Jardí la distribución por grupos es del 18% para el grupo I (es decir, 8 chubascos de escala local con periodos de retorno superiores a 5 años registradas en el periodo 1927-1992, entre 44 casos), en la muestra de la red de CLABSA, que cubre sólo 8 años entre 1994 y 2001, se ha registrado un único chubasco de dichas características, lo que representa sólo un 2% de la muestra (a pesar de que 1 tormenta en 8 años representa una proporción similar que 8 tormentas en 66 años). Contrariamente, los episodios clasificados en el grupo III de escala sinóptica eran un 21% del total de los registrados por el Jardí, alcanzando para la muestra de la red de pluviómetros de CLABSA un porcentaje del 49% para estos casos, como consecuencia de las repeticiones para varios pluviómetros de un mismo chubasco. Las lluvias correspondientes al grupo II, de mesoscala, representaban el 50% de los registrados por el Jardí, frente al 42% en el caso de la red de CLABSA. Por último, para el grupo IV de los chubascos más severos el porcentaje es del 11% en el caso del Jardí y del 7% para la red pluviómetrica urbana. No se observa, sin embargo, discrepancia entre la distribución de los índices ponderados de intensidad calculados para ambas muestras, como se discute en el siguiente apartado.

Fig. 3.16 Distribución en grupos de las dos muestras de episodios lluviosos extremos

Grupo			5	10	15	20	25	30	35	40	45	50	55	60	120	360	720	1440
Ι	CLAB	070896	19.4	25.6	27.6	28.8	29.8	31.3	31.7	32.0	32.4	32.5	32.6	32.6	32.6	32.6	32.6	32.8
IIA	AJNO	210995	11.4	19.9	26.3	34.6	41.3	46.3	48.6	50.3	51.2	51.7	52.1	52.6	54.6	55.3	55.3	56.3
IIA	сотх	210995	9.6	15.6	24.9	30.8	39.5	45.4	47.0	47.6	49.5	50.8	51.5	51.8	53.9	55.0	55.0	57.0
IIA	SAGR	210995	8.7	15.7	22.1	28.1	34.2	40.7	47.4	53.8	59.7	66.0	72.2	77.9	89.3	89.4	89.4	92.7
IIA	BARK	030999	13.7	23.9	32.2	39.9	44.5	46.6	47.5	47.9	48.0	48.2	48.3	48.5	50.7	56.0	56.1	56.1
IIA	AGCO	140999	12.6	23.1	31.0	37.9	43.7	49.1	53.8	56.0	57.2	57.9	58.6	59.8	60.6	60.7	64.1	65.9
IIA	AJSA	140999	16.9	29.4	36.0	42.3	47.7	53.7	57.3	59.9	61.9	63.6	65.1	66.1	67.3	67.3	69.8	74.3
IIA	BARK	140999	13.0	20.4	30.3	37.9	42.4	46.3	48.8	50.4	51.3	52.0	54.4	55.4	56.7	56.7	60.0	60.1
IIA	CATA	140999	11.6	22.5	30.0	34.7	37.9	40.2	41.7	42.6	43.3	43.5	44.3	45.5	46.4	46.4	55.8	96.4
IIA	CLAB	140999	12.2	20.8	31.0	36.8	40.5	44.2	46.6	47.6	48.3	49.2	50.9	51.7	52.6	52.6	55.2	55.3
IIA	COTX	140999	14.5	25.3	34.1	40.6	45.5	49.6	52.2	54.3	55.4	56.0	56.6	57.3	58.3	58.3	60.1	60.3
IIA	FCCF	140999	12.9	23.2	32.5	38.1	43.2	46.9	48.9	49.5	49.8	52.1	53.1	53.5	53.9	53.9	58.9	59.0
IIA	FISI	140999	8.7	16.3	24.3	31.8	37.5	42.7	46.6	49.4	51.4	52.7	54.2	55.3	56.2	56.2	57.3	58.0
IIA	HEUR	140999	11.4	20.3	24.0	28.8	35.2	41.8	47.1	50.8	54.7	56.8	57.9	58.6	60.0	60.2	63.5	78.2
IIA	MONT	140999	14.2	25.7	33.6	38.2	40.9	42.4	44.4	45.6	46.7	47.2	48.0	49.4	50.9	51.0	58.1	58.7
IIA	NABI	140999	7.9	13.3	20.0	25.5	33.0	37.3	41.5	45.9	50.9	54.0	56.0	57.5	60.0	60.0	62.8	63.7
IIA	ROLI	140999	9.5	16.8	22.7	26.9	34.5	40.6	43.9	46.1	48.8	52.1	52.4	52.5	53.5	53.5	53.5	102.0
IIB	COTX	191094	7.7	13.1	19.4	25.0	29.1	33.4	36.2	38.1	40.7	43.1	43.9	45.2	63.2	71.7	71.7	71.7
IIB	MONT	191094	8.7	11.3	15.7	17.7	19.8	22.4	25.6	28.5	29.5	32.6	34.2	36.2	60.3	72.7	72.7	72.7
IIB	AGTR	150701	15.8	19.3	20.7	21.2	25.8	28.7	29.8	30.3	30.3	31.4	34.4	39.2	64.9	68.7	69.7	69.7
III	CANY	290994	3.0	4.7	6.3	8.0	10.1	12.2	13.9	15.0	16.3	17.4	18.6	19.7	35.1	82.5	82.5	85.1
III	DEPU	290994	4.3	6.5	8.1	10.6	13.1	15.8	17.6	19.3	20.5	22.0	23.6	24.9	41.4	78.0	88.1	91.0
III	AGBE	141096	6.3	10.9	13.9	15.2	16.0	16.9	20.0	22.3	25.2	26.2	26.6	27.3	33.7	67.5	85.3	105.3
III	AJNO	141096	6.4	10.1	11.8	13.5	15.0	18.2	22.2	24.4	27.6	28.6	29.0	29.2	39.3	74.1	92.8	103.5
III	COTX	141096	3.8	6.2	7.9	9.4	10.3	10.8	11.6	12.0	12.6	14.0	15.4	16.1	28.1	64.8	80.4	95.9
III	ELIZ	141096	5.7	8.9	13.0	14.7	15.7	18.4	22.9	24.5	27.6	29.1	29.9	30.2	37.6	75.4	94.5	108.1
III	MONT	141096	7.0	10.1	13.2	14.5	15.3	17.6	22.9	25.2	28.0	30.0	30.6	30.8	39.6	79.2	93.6	103.9
III	NICA	141096	6.2	9.4	13.4	15.4	16.7	17.8	20.4	25.3	29.0	29.9	31.0	31.5	38.8	80.8	96.5	108.2
III	SAGR	141096	5.9	11.0	14.3	15.5	16.8	18.8	22.2	25.0	27.9	28.9	29.4	29.7	37.6	76.2	93.8	110.1
III	AGBE	031298	3.4	5.8	8.1	10.2	12.3	14.7	16.7	18.2	19.8	21.9	23.8	26.3	37.8	65.5	87.8	110.2
III	AGCO	031298	4.8	8.6	12.2	15.5	17.4	18.3	19.2	19.9	20.5	21.0	21.8	22.7	29.5	57.1	93.9	135.7
III	AGTI	031298	3.2	5.5	7.7	8.7	10.2	11.6	12.7	13.5	14.4	16.1	18.2	20.1	29.9	52.1	75.2	98.7
III	AGTR	031298	3.5	6.3	9.0	11.8	14.7	16.6	17.9	19.0	19.8	21.1	21.8	23.4	32.8	55.3	80.8	103.4
III	AJSA	031298	3.1	4.6	6.5	7.7	8.6	9.6	10.2	10.9	11.7	12.4	13.5	15.9	26.0	48.5	78.8	106.5
III	BARK	031298	3.3	5.6	7.1	8.4	9.7	11.0	11.8	12.6	13.3	13.9	14.6	15.1	22.0	48.6	84.4	121.1
III	CANY	031298	4.2	7.3	9.4	12.1	14.5	16.7	18.6	19.8	21.4	23.5	25.7	27.9	37.3	56.2	78.4	101.5
III	сотх	031298	2.6	4.0	5.0	6.1	7.1	7.7	8.1	8.7	9.3	9.9	10.4	10.8	19.2	45.0	77.8	109.1
III	DEPU	031298	7.2	10.5	13.2	15.7	17.6	19.0	19.7	20.4	21.5	22.6	23.7	25.5	34.3	54.9	80.4	106.7
III	ELIZ	031298	3.7	5.8	7.1	8.0	9.4	10.2	10.8	11.3	12.3	13.0	14.4	16.9	26.6	50.3	81.8	111.5
III	FCCF	031298	4.3	7.1	9.5	11.0	12.0	12.7	13.2	13.9	14.6	15.3	16.0	16.4	22.5	45.3	77.3	111.1
III	HEUR	031298	5.0	9.7	12.8	17.1	20.0	23.1	25.4	26.7	28.5	30.1	32.4	36.0	50.8	79.2	108.0	134.0
III	SAGR	031298	4.4	7.7	10.9	14.6	16.8	19.1	20.4	21.6	23.2	24.6	26.7	29.3	40.3	63.1	90.3	114.2
IV	AJNO	240895	11.7	21.3	29.1	37.9	46.5	54.3	60.7	66.8	73.9	78.1	79.5	80.7	94.2	131.3	133.1	133.1
IV	AJUO	210995	19.9	33.8	46.3	53.0	59.6	65.3	69.6	72.5	74.4	75.6	76.1	79.7	91.2	91.8	91.8	94.2
IV	AGTI	091001	39.1	51.5	51.6	54.9	55.7	55.7	55.7	55.7	55.7	55.8	55.8	55.8	61.9	61.9	62.8	63.1

Tabla 3.10 Precipitación (mm) registrada para cada duración (min) para los 45 eventos seleccionados, ordenados según el grupo de clasificación (I, IIA y IIB, III y IV)

3.5.2 Distribución de los índices ponderados de intensidad (IP)

En la figura 3.17 se presentan los índices ponderados IP calculados para el conjunto de los 45 episodios lluviosos seleccionados y registrados por la red de pluviómetros de CLABSA en el periodo 1994-2001, representados conjuntamente con los índices calculados para los eventos registrados por el pluviógrafo Jardí del Observatori Fabra (1927-1992).

Fig. 3.17 Índices ponderados de intensidad de precipitación IP calculados para los 45 episodios de lluvia registrados por la red de pluviómetros de CLABSA (1994-2001) y para los 44 registrados por el pluviógrafo Jardí del Observatori Fabra (1927-1992).

Se ha ensayado un ajuste para las distribuciones de las dos muestras de índices mediante la función de distribución lognormal estándar:

$$f(x) = \frac{1}{x \omega 2\phi} e^{-\frac{1 \left[\frac{\partial(n x - m)}{2m}\right]^2}{2m}}$$
(3.3)

En esta ecuación, x es la variable estadística que representa a los índices IP de las muestras y m y ω son la media y la desviación estándar de las distribuciones (ln x) que se obtienen con los logaritmos de los índices. La media m es el parámetro de escala de la distribución lognormal, mientras que ω es el parámetro de forma. Sus valores para los dos ajustes ensayados se muestran en la tabla 3.11. En la figura 3.18 se representan las frecuencias acumuladas de ambas muestras y los ajustes por la función estadística lognormal estándar.

Tabla 3.11..Parámetros de escala, m, y de forma, ω , de los ajustes por la función de distribución lognormal estándar de la muestra de índices ponderados de intensidad IP (1927-1992), obtenida para los 44 eventos registrados por el pluviógrafo Jardí y de la muestra IP (1994-2001), correspondiente a los 45 casos registrados por la red de pluviómetros de intensidad de CLABSA

	т	ω
IP (1927-1992)	0.7444	0.2651
IP (1994-2001)	0.7323	0.2574

Los ajustes obtenidos ponen de manifiesto el similar comportamiento de los índices de una y otra muestra. En cuanto a la medida y distribución de la severidad de los chubascos extremos en la zona, ha resultado prácticamente equivalente la muestra de 44 casos procedentes del registro del pluviógrafo Jardí en 66 años (1927-1992) a la muestra de 45 casos registrados por la red de pluviómetros de CLABSA únicamente en 8 años (1994-2001). Esto es un indicativo de la posibilidad, para algunas aplicaciones, de alargar las series de datos de lluvia mediante la técnica conocida por la expresión *sustituir tiempo por espacio* (NRC, 1988; Koutsoyiannis, 2003), o método estación-año. Según esta técnica, en el caso ideal de sucesos meteorológicamente independientes registrados en estaciones de una misma región homogénea, los registros de una red de (n) pluviómetros situados en dicha zona durante un cierto número de años (d) resultan equivalentes a los obtenidos por un único pluviómetro en (nxd) años.

Fig. 3.18 Frecuencias acumuladas de las dos muestras de índices ponderados de intensidad IP (Jardí, 1927-1992, negro) e IP (CLABSA, 1994-2001, azul) y función lognormal estándar de ajuste ensayada

3.6 Conclusiones

La técnica del análisis de conglomerados ha permitido caracterizar las lluvias de periodo de retorno igual o superior a 5 años ocurridas en Barcelona entre 1927 y 1992 y clasificarlas en cuatro grupos claramente diferenciados. El primero agrupa los chubascos de elevadas intensidades de precipitación

para duraciones muy cortas (iguales o inferiores a 15 minutos) siendo, pues, representativo de las lluvias de carácter muy local con clara influencia estacional y del ciclo diurno. El segundo corresponde a las duraciones típicas de la mesoescala cuyo origen suele estar relacionado con frentes muy activos que se desplazan lentamente y en los que se desarrollan sistemas de precipitación intensa o complejos convectivos de mesoescala. La influencia estacional en el origen de estas lluvias es también clara. Las lluvias de origen sinóptico cuyas intensidades sólo superan a las de periodo de retorno de 5 años en los intervalos de 12 y 24 horas constituyen el tercer grupo y, por último, se ha encontrado un tipo de lluvia que presentan elevadas intensidades de precipitación para duraciones entre 20 minutos y 24 horas, que delata que son originadas conjuntamente por procesos meteorológicos de media y gran escala. Estos resultados aconsejan para la clasificación objetiva de los episodios de precipitación la elección de un índice de intensidad que contemple las intensidades máximas en intervalos de tiempo de 5 minutos, 1, 2 y 24 horas de forma que refleje la contribución de los mecanismos de escala local, mesoescala y escala sinóptica al origen de la lluvia.

Esta técnica de clasificación se ha aplicado asimismo a las lluvias de carácter extremo registradas por la red de pluviómetros de intensidad de tipo balancín que CLABSA mantiene en Barcelona, entre 1994 y 2001. Se han obtenido nuevamente los 4 grupos de clasificación, con una distribución de los chubascos analizados en cada grupo diferente de la obtenida con los registros del pluviómetro Jardí, como consecuencia de las repeticiones para varios de los pluviómetros de la red urbana de un mismo chubasco.

Se han calculado los índices ponderados de intensidad (IP) para las lluvias extremas registradas por la red pluviométrica urbana entre 1994 y 2001, obteniéndose una distribución de dichos índices muy similar a la obtenida para las lluvias registradas por el pluviómetro Jardí entre 1927 y 1992. Se ha ensayado un ajuste de las dos muestras de índices por la función de distribución lognormal estándar y, en ambos casos, la distribución de índices se ha ajustado satisfactoriamente, resultando prácticamente coincidentes los parámetros de los dos ajustes. El similar comportamiento de los índices de una y otra muestra pone de manifiesto, en cuanto a la medida y distribución de la severidad de las lluvias extremas, la equivalencia entre los registros de (n) pluviómetros durante (d) años y los de 1 solo pluviómetro en (nxd) años. Este hecho es un indicativo de la posibilidad de alargar las series de datos de lluvia mediante la técnica conocida por la expresión *sustituir tiempo por espacio* (NRC, 1994).

4 Análisis de la precipitación máxima en 24 horas en Catalunya

4.1 Introducción

Uno de los rasgos climáticos más importantes que caracterizan un lugar es, sin duda, su régimen pluviométrico. Entre los muchos factores que lo definen destaca, por su interés en numerosas aplicaciones, el conocimiento de la periodicidad con que pueden caer ciertas cantidades de lluvia en un intervalo de tiempo escogido. Con este objetivo, es usual el cálculo de las precipitaciones máximas diarias para diferentes periodos de retorno a partir de las series de datos de lluvia de los observatorios meteorológicos. Uno de los métodos que tradicionalmente se emplean para realizar estos cálculos es el uso de funciones de distribución de valores extremos, por ejemplo de Gumbel, para ajustar funciones analíticas a las series anuales de precipitaciones máximas diarias, que permiten luego asignar una frecuencia, o periodo de recurrencia, a cada valor de la precipitación máxima diaria en un lugar.

Cuando el objetivo es conocer la lluvia máxima, diaria o relativa a cualquier otro intervalo temporal, que puede caer en cualquier punto de una región geográfica con una periodicidad establecida, normalmente se recurre al análisis escalar de las cantidades calculadas a partir de las series de datos disponibles en los observatorios meteorológicos de la zona de estudio. Esta metodología, aunque habitual, tiene algunos inconvenientes que pueden originar grandes incertidumbres en los resultados e incluso errores notables. La causa principal de la dificultad intrínseca que tiene el cálculo de las precipitaciones máximas en una determinada región, estriba en la misma naturaleza de los fenómenos meteorológicos que las suelen originar. En general, las organizaciones nubosas que provocan lluvias de elevada intensidad son de *microescala* ζ o *mesoescala* y las áreas de mayor precipitación, en el seno de estas organizaciones, son todavía de extensión más reducida. Esto quiere decir que cuando en un observatorio se registra una cantidad de lluvia diaria de periodo de retorno elevado por la ocurrencia de un fenómeno meteorológico extremo, es poco probable que el hecho se repita en otros observatorios de una red mesoescalar y mucho menos aún que ocurra si la densidad de estaciones corresponde a la escala sinóptica o *macroescala*.

Así pues, cuando se hace un análisis escalar de las precipitaciones máximas diarias, por ejemplo, correspondientes a un periodo de retorno elegido en una región, a partir de los datos obtenidos mediante el tratamiento estadístico de las series temporales disponibles en los observatorios

meteorológicos de la zona en cuestión, se debe valorar cuidadosamente las series de datos de cada observatorio prestando especial atención al comportamiento de la cola de las distribuciones. En ocasiones, y en especial cuando las series de extremos anuales son relativamente cortas (menos de veinte años), puede ocurrir que algún observatorio haya registrado una lluvia extraordinariamente intensa en el período de funcionamiento de la estación, de forma que al ajustar una curva teórica de distribución a los datos, el periodo de retorno asignado a esa lluvia extraordinaria sea mucho más pequeño que el que realmente le correspondería si la muestra abarcase un número mayor de años.

En este capítulo se ha realizado un análisis de las lluvias diarias extremas en Catalunya a partir de las series de valores máximos anuales de precipitación en 24 horas obtenidas en 145 estaciones pluviométricas que el Instituto Nacional de Meteorología (INM) tiene en esta región. Se han calculado las cantidades máximas diarias de lluvia correspondientes a distintos periodos de retorno a partir de las series de datos para cada observatorio y, utilizando un método de análisis espacial, se han obtenido las precipitaciones máximas para cualquier punto de Catalunya.

4.2 Análisis de las series de máximos anuales de precipitación en 24 horas

Se han seleccionado las series anuales de lluvia diaria máxima de 145 estaciones pluviométricas que el INM gestiona en Catalunya (figura 4.1). El criterio de selección se ha basado en la duración y homogeneidad de la serie. Han sido rechazadas, para este estudio, aquellas estaciones cuyas series no alcancen los 15 años de duración o que no superen el test de homogeneidad de secuencias. Las estaciones seleccionadas, que se relacionan en la tabla 4.1 junto con sus coordenadas UTM (zona 31T) y su altitud, constituyen una red pluviométrica de una densidad media de 0.45 estaciones cada 100 km². Si las estaciones pluviométricas estuviesen uniformemente distribuidas la distancia entre ellas (÷n) se puede calcular mediante la ecuación (Koch et al., 1983),

$$\div n \mid \sqrt{A} \quad " \mid 12 \sqrt{N} () \mid N \mid 4 \mid 0 \in \mathbb{E}$$

$$(4.1)$$

en la que A es el área en la que se ha instalado la red de N pluviómetros. Como en nuestro caso la superficie aproximada de Cataluña es $A=32.000 \text{ km}^2$ y el número de pluviómetros de la red es N=145, la distancia media entre las estaciones pluviométricas resulta ser de unos 16 km aproximadamente.

Tabla 4.1 Indicativo, denominación, localización (UTM), altitud y longitud de la serie de las estaciones pluviómetricas cuyas series han sido analizadas

UTM 31T (m)											
	estación	este	norte	altitud (m)	longitud						
					(anos)						
b0072	Begues	410742	4576098	360	18						
b0079	La Pobla de Lillet	416130	4677820	848	25						
UTM 31T (m)											
-------------	-------------------------	--------	---------	--------------------	---------------------------	--	--	--	--	--	
	estación	este	norte	altitud (m)	longitud (años)						
b0086	Peguera	398122	4668804	1701	19						
b0092	Berga	404906	4661305	730	38						
b0097	Caserres	403376	4650221	617	26						
b0106	Balsareny	407324	4635362	327	15						
b0111	Sallent-Cabrianes	408589	4626092	246	41						
b0114	Prats de Lluçanès	419940	4650015	720	60						
b0120	Moià	425248	4629599	800	16						
b0144	Callús	399057	4626531	265	46						
b0150	Aguilar de Segarra	386370	4622709	622	50						
b0158o	Montserrat	402748	4603960	730	18						
b0161	El Bruc	398554	4602167	480	40						
b0166	Calaf	376637	4621019	715	18						
b0180	Sant Quintí de Mediona	388655	4591209	332	50						
b0181	Sant Sadurní d'Anoia	398346	4587365	125	16						
b0185	Gelida	405309	4587270	120	23						
b0190	Rubí	419238	4592668	120	16						
b0200	Cornellà de Llobregat	420525	4577834	13	16						
b0201	Barcelona Centre	428945	4583298	94	55						
b0202	Besòs	431784	4588822	24	16						
b0203	Balenyà	437739	4633181	570	48						
b0204	Centerres	436306	4627642	526	35						
b0212a	Canoves-Can Garriga	445901	4614609	195	19						
b0213	Cardedeu	445859	4609058	195	19						
b0220	Martorelles	436026	4596185	130	44						
b0222	Caldes de Montbui	430553	4605489	180	47						
b0229e	Sabadell Casa Barba	420769	4600038	250	16						
b0229i	Sabadell Aeròdrom	424900	4596293	130	17						
b0240	Alella Colomer	441574	4594288	109	73						
b0241	El Masnou	443054	4592454	262	36						
b0242	Teià	444356	4594266	140	47						
b0246	Dosrius	450684	4605239	155	19						
b0248	Argentona	450180	4600629	85	46						
b0259	Montseny Turó de l'Home	452898	4623812	1708	30						
b0263	Sant Celoni	458385	4614526	155	44						
b0280	Tordera	476424	4616294	30	43						
b0332	Santa Maria de Besora	439392	4664627	900	16						
b0333	Borgonyà	436571	4657249	521	53						
g0265	Gualta	458418	4620077	177	23						
g0275	Sils	479230	4627388	76	27						
g0281	Blanes	481962	4612577	18	29						

	UTM 31T (m)										
	estación	este	norte	altitud (m)	longitud (años)						
g0282a	Tossa de Mar	494293	4619033	10	51						
g0283a	Sant Feliu de Guíxols	502771	4623657	4	39						
g0283u	Santa Cristina d'Aro	496839	4629055	75	24						
g0287	Palafrugell	513821	4640324	81	37						
g0290	Calella de Palafrugell	516594	4636629	15	41						
g0292a	Begur	515199	4642177	185	19						
g0311	Camprodon	447463	4684641	950	20						
g0316	Freser superior	432138	4690819	1425	22						
g0320	Ribes de Freser	431665	4684531	940	22						
g0321	Campdevànol	431218	4673955	738	45						
g0328	La Farga de Bebié	434499	4664362	608	32						
g0357	Susqueda	461481	4648341	370	15						
g0360	Les Planes d'Hostoles	462760	4655212	347	29						
g0365e	Sant Martí de Llémena	470753	4653632	256	26						
g0370a	Girona	483427	4645881	90	20						
g0383	Camallera	497245	4664367	95	18						
g0384	Jafre	500000	4658815	296	49						
g0385i	L'Estartit	516551	4655133	12	18						
g0387	Empúries	509642	4664373	12	41						
g0395	Castellfollit de la Roca	462858	4673717	296	22						
g0417	Darnius	486276	4690287	193	16						
g0429	Figueres	497366	4679480	40	39						
g0430	Vilajuïga	508239	4686578	31	23						
g0431	Castelló d'Empúries	506025	4678896	17	43						
g0432a	Roses	515118	4680143	65	22						
g0433	Cadaqués	521987	4681056	45	26						
g0433e	Port de la Selva	516612	4687580	4	23						
g9582	Llívia	417652	4701956	1260	29						
g9584	Puigcerdà	412628	4698439	1145	24						
g9585	La Molina	412465	4687181	1704	22						
10134e	Busa	384202	4659763	1200	41						
10135	Navès de Tentellatge	391010	4654102	613	19						
19619	La Seu d'Urgell	373400	4690801	692	46						
19621	Adrall	366772	4685988	642	24						
19635	Organyà	362103	4674446	540	56						
19638	Pantà d'Oliana	359388	4660213	480	46						
19647	Torà	367107	4630445	448	49						
19650	Artesa de Segre	336820	4638480	320	19						
19651u	Baldomar	334141	4642245	385	18						
19669	Presa de Tavascan	356509	4721368	1100	19						

UTM 31T (m)										
	estación	este	norte	altitud (m)	longitud (años)					
19675	Llavorsí	353425	4704769	850	30					
19684	Escós	340801	4692084	780	48					
19688	Estany Gento	335660	4707017	2120	49					
19689	Capdella	335041	4705000	1270	50					
19695	Senterada	329687	4686791	660	30					
19696a	La Pobla de Segur	332257	4679322	550	18					
19701e	Valamitjana	326483	4668351	415	19					
19704	Gabet	326347	4662800	380	40					
19710	Pantà de Sant Llorenç	320131	4635178	245	30					
19713	Agramunt	342106	4627252	349	35					
19720o	Anglesola	337657	4614392	315	19					
19726	Rocallaura	346381	4597001	660	26					
19727i	Bellpuig	333366	4608936	295	19					
19729	Mollerusa	322210	4607351	286	30					
19734	Senet	313846	4711270	1093	25					
19736	Vilaller	310858	4702090	960	25					
19741	Bohí	319226	4707424	1096	23					
19745	Pont de Suert	313451	4696464	845	25					
19766	Els Omellons	330283	4596047	386	47					
19766e	Arbeca	327589	4599814	332	22					
19767	Les Borges Blanques	319200	4598168	304	21					
19768	Juneda	317856	4600054	264	23					
19768e	Puigvert de Lleida	309513	4600269	207	18					
19769i	Torrerribera	306931	4607746	217	19					
19770e	Lleida	305642	4611484	221	24					
19772	Vilosell	328585	4583127	665	24					
19773	L'Albagés	310612	4589130	377	30					
19777	Llardecans	295084	4582146	337	23					
19920	Almacelles	287125	4623251	246	29					
19921	Raïmat	290478	4615615	323	25					
19952	La Granadella	304793	4580026	520	37					
19990	Arties	325264	4729493	1185	22					
19991	Viella	319803	4729633	940	43					
t0001	El Perelló	307569	4526254	152	18					
t0002	L'Ametlla de Mar	314639	4527924	22	46					
t0008	Montbrió del Camp	332085	4553424	120	37					
t0013	Cambrils	336159	4547778	19	16					
t0016	Reus	341960	4556906	117	15					
t0016a	Reus Aeroport	344718	4554996	76	28					
t0017	Vilaseca	343240	4551325	53	48					

		UTM 31	lT (m)		
	estación	este	norte	altitud (m)	longitud
					(años)
t0019	Vimbodí Riudabella	335470	4579265	590	20
t0020	Vimbodí	336989	4584785	488	33
t0024	Rocafort de Queralt	356679	4593624	510	40
t0025	Sarreal	353821	4589979	400	37
t0034a	Valls	353447	4571475	282	16
t0038	La Selva del Camp	344915	4564247	246	37
t0042	Tarragona	353038	4551122	58	28
t9947	La Pobla de Massaluca	277733	4562283	363	38
t9948	Vilalba dels Arcs	281706	4554754	442	36
t9951	Flix S.E.G.	293216	4565531	56	46
t9951a	Flix FECSA	294666	4567342	42	29
t9953	La Palma d'Ebre	304593	4572624	336	36
t9961	Cabacés	310080	4568775	357	40
t9967	La Serra d'Almos	309550	4548421	230	20
t9968	Mora la Nova	305447	4552232	110	24
t9972	Benisanet	301097	4546794	34	50
t9973	Ginestar	301047	4544944	30	24
t9975	Rasquera	298143	4541320	180	32
t9979	Mas de Barberans	277625	4512280	340	24
t9979e	Cherta	289413	4530454	12	22
t9981a	Tortosa Observatori de l'Ebre	287743	4521242	50	47
t9985	Santa Bàrbara	288833	4510100	79	46
t9987	Amposta	295872	4509903	8	48

Las series de máximos anuales de precipitación en 24 horas correspondientes a las 145 estaciones analizadas tienen una longitud que varía entre 15 y 73 años (figura 4.2). Se ha ensayado un ajuste a los máximos de las series anuales mediante la función de distribución estadística de Gumbel (también llamada función de distribución de valores extremos o Fisher-Tippett del tipo 1, EV1), ampliamente utilizada para cuantificar el riesgo asociado a valores extremos de precipitación. La ecuación de la función de densidad acumulada de la distribución Gumbel es:

$$F(x) \mid \exp\left(4e^{4\frac{(x4u)}{\zeta}}\right)$$
(4.2)

cuyos parámetros ζ y *u* han de estimarse para cada muestra.

Algunas de las series de máximos anuales de precipitación disponibles tienen una longitud relativamente corta (15-20 años), y en algunos casos se ha observado la presencia de casos extremos

extraordinarios (*outliers* en la bibliografía anglosajona; Hershfield (1961a y b), WMO (1986), Nobilis et al. (1991)). Para estas lluvias ocasionales, el método tradicional de ajuste a la función de Gumbel puede asignar a sus valores de precipitación unos periodos de retorno mucho menores que los que realmente les corresponderían si la muestra abarcara un número mayor de años. Para minimizar este efecto, se han estimado los parámetros de la distribución Gumbel haciendo uso del método de los momentos de orden L (*L-moments*; Hosking (1990), Hosking y Wallis, (1997)), que son combinaciones lineales de los momentos de probabilidad ponderados.

Figura 4.1 Estaciones pluviométricas de Catalunya cuyas series han sido analizadas

Según Hosking (1990), los parámetros u y ζ de la distribución de Gumbel se encuentran a partir de:

$$\varsigma_1 \mid u \ 2 \ 0.5772 \ \zeta$$

 $\varsigma_2 \mid \zeta \ln 2$
(4.3)

siendo ζ_1 y ζ_2 los momentos de orden L, definidos por las expresiones siguientes:

$$\begin{aligned} \varsigma_1 \mid b_0 \\ \varsigma_2 \mid 2b_1 \mid 4b_0 \end{aligned}$$

$$(4.4)$$

en las que b_0 y b_1 son los estimadores de los momentos de probabilidad ponderados para una muestra de datos finita ($X_1, X_2, ..., X_n$), definidos por:

$$b_{0} \mid n^{41} \frac{}{j} X_{j}$$

$$b_{1} \mid n^{41} \frac{}{j} \frac{}{j} \frac{10}{2} X_{j}$$
(4.5)

Figura 4.2 Número de casos observados para cada longitud

El método de los momentos de orden L es preferible al de los momentos convencionales (media y desviación estándar) o el de máxima verosimilitud ya que, a diferencia de éstos, no sobreestima los valores extremos ocasionales de las series, puesto que su cálculo no conlleva términos cuadráticos o cúbicos de los datos. Por esta misma razón, este método disminuye también el efecto de la variabilidad de la muestra y proporciona una estimación más segura de los parámetros en el caso de series de longitud corta. En la figura 4.3 se comparan los ajustes que proporciona la función de distribución de

Gumbel a la serie de máximos anuales correspondiente a la estación de la Pobla de Lillet (b0079), cuando dicho ajuste se realiza mediante el método tradicional de los momentos y cuando se utilizan los momentos de orden L. Obsérvese que el máximo de la serie parece ser uno de estos casos extremos de lluvia con una recurrencia superior a la longitud de la serie en la que ha quedado incluido. El método de los momentos de orden L proporciona un ajuste más razonable para la muestra de datos.

Figura 4.3 Ajuste por la función de distribución de Gumbel de la serie de máximos anuales de precipitación correspondiente a la estación de la Pobla de Lillet (b0079). En azul y a trazos, el ajuste mediante el uso de los momentos convencionales. En negro y línea continua, el ajuste utilizando los momentos de orden L

En la tabla 4.2 se muestran los parámetros de la función de ajuste de Gumbel relativos a cada una de las series utilizadas. Estas distribuciones se han utilizado para calcular los valores de precipitación en 24 horas con periodos de retorno 2, 5, 10, 25, 50, 75, 100, 250 y 500 años correspondientes a cada estación pluviométrica, que se muestran en la tabla 4.3. Estos datos han servido para calcular la precipitación máxima diaria, en función de su período de retorno, en otro punto cualquiera de Cataluña aplicando el método de análisis objetivo que se presenta en el siguiente apartado.

tación	u	ζ	estación	
072.dat	60.5	19.8	b0111.dat	4
9.dat	64.6	27.8	b0114.dat	45.
086.dat	74.1	20.4	b0120.dat	68.2
0092.dat	62.2	19.8	b0144.dat	43.2
0097.dat	57.7	15.2	b0150.dat	51.8
0106.dat	42.9	11.6	b01580.dat	60.3

Tabla 4.2 Parámetros de ajuste u y ζ de la función de distribución de Gumbel de las series utilizadas

estación	u	ζ		estación
b0161.dat	54.1	19.7		g0360.dat
b0166.dat	41.1	11.2		g0365e.dat
50180.dat	55.5	18.7		g0370a.dat
0181.dat	53.1	14.9		g0383.dat
0185.dat	64.3	18.4		g0384.dat
0190.dat	57.9	18.6		g0385i.dat
50200.dat	56.4	26.2		g0387.dat
b0201.dat	51.3	21.3		g0395.dat
b0202.dat	49.3	15.4		g0417.dat
b0203.dat	58.2	19.5	g042	9.dat
0204.dat	58.3	18.7	g0430.da	ıt
b0212a.dat	64.2	21.4	g0431.dat	
b0213.dat	56.9	20.1	g0432a.dat	
b0220.dat	59.0	24.2	g0433.dat	
b0222.dat	55.7	17.5	g0433e.dat	
b0229e.dat	75.4	31.7	g9582.dat	
b0229i.dat	62.2	26.1	g9584.dat	
b0240.dat	56.1	19.3	g9585.dat	
b0241.dat	53.0	18.3	g9635.dat	
b0242.dat	55.6	21.9	10134e.dat	
b0246.dat	56.8	21.5	10135.dat	
b0248.dat	59.9	22.9	19619.dat	
b0259.dat	95.4	34.2	19621.dat	
b0263.dat	66.4	34.8	19638.dat	
b0280.dat	65.5	26.9	19647.dat	
b0332.dat	62.0	15.7	19650.dat	
b0333.dat	50.1	13.8	19651u.dat	
g0265.dat	74.0	29.4	19669.dat	
g0275.dat	63.8	33.9	19675.dat	
g0281.dat	53.4	17.4	19684.dat	
_ g0282a.dat	52.1	20.4	19688.dat	
g0283a.dat	52.8	21.0	19689.dat	
g0283u.dat	75.6	35.3	19695.dat	
g0287.dat	59.0	26.7	19696a.dat	
g0290.dat	59.4	29.4	19701e.dat	
g0292a.dat	62.2	33.1	19704.dat	
g0311.dat	82.7	36.1	19710.dat	
	63.6	18.7	19713.dat	
g0320.dat	69.5	19.7	19720o.dat	
g0321.dat	60.4	18.0	19726.dat	
g0328.dat	61.1	19.3	19727i.dat	
g0357.dat	81.9	34.7	19729.dat	

estación	u	ζ	estación	u	ζ
19734.dat	66.3	20.5	t0017.dat	57.8	19.3
19736.dat	58.4	20.6	t0019.dat	60.3	28.7
19741.dat	57.3	15.2	t0020.dat	54.8	16.2
19745.dat	55.4	16.4	t0024.dat	40.9	11.8
19766.dat	37.5	11.3	t0025.dat	43.5	13.0
19766e.dat	38.2	11.6	t0034a.dat	43.6	11.8
19767.dat	42.1	16.4	t0038.dat	58.5	16.6
19768.dat	35.0	13.6	t0042.dat	52.0	16.5
19768e.dat	34.2	8.5	t9947.dat	40.7	16.1
19769i.dat	33.2	9.3	t9948.dat	49.4	15.2
19770e.dat	34.9	13.7	t9951.dat	41.8	16.1
19772.dat	48.7	15.9	t9951a.dat	47.5	16.1
19773.dat	42.6	11.5	t9953.dat	41.8	18.0
19777.dat	40.0	9.0	t9961.dat	52.1	18.8
19920.dat	37.8	6.4	t9967.dat	55.4	22.4
19921.dat	32.2	8.2	t9968.dat	57.9	26.2
19952.dat	41.3	12.0	t9972.dat	50.0	23.8
19990.dat	47.6	12.7	t9973.dat	52.8	21.1
19991.dat	47.2	13.6	t9975.dat	65.4	26.0
t0001.dat	68.9	33.8	t9979.dat	80.1	26.3
t0002.dat	73.4	37.4	t9979e.dat	55.3	31.2
t0008.dat	59.3	25.5	t9981a.dat	65.4	26.9
t0013.dat	60.4	27.3	t9985.dat	64.9	29.8
t0016.dat	62.7	19.5	t9987.dat	66.4	24.5
t0016a.dat	53.8	17.1			

Tabla 4.3 Precipitación diaria (en mm) para periodos de retorno entre 2 y 500 años correspondientes a cada estación seleccionada

		T (años)									
estación	2	5	10	25	50	75	100	250	500		
b0072.dat	67.8	90.2	105.1	123.9	137.8	145.9	151.6	169.9	183.6		
b0079.dat	74.8	106.3	127.1	153.5	173.1	184.5	192.5	218.1	237.4		
b0086.dat	81.6	104.7	120.0	139.3	153.6	161.9	167.8	186.5	200.7		
b0092.dat	69.5	91.9	106.8	125.5	139.5	147.6	153.3	171.5	185.2		
b0097.dat	63.3	80.5	91.9	106.3	117.0	123.2	127.6	141.6	152.2		
b0106.dat	47.1	60.3	68.9	79.9	88.1	92.8	96.1	106.8	114.8		
b0111.dat	52.9	71.8	84.4	100.3	112.0	118.9	123.7	139.1	150.7		
b0114.dat	50.1	64.1	73.4	85.1	93.8	98.9	102.4	113.8	122.4		
b0120.dat	74.9	95.5	109.1	126.3	139.1	146.5	151.8	168.5	181.1		
b0144.dat	48.4	64.4	75.0	88.3	98.3	104.0	108.1	121.1	130.8		
b0150.dat	57.2	74.1	85.3	99.5	110.0	116.1	120.4	134.1	144.5		

				Г	' (años)				
estación	2	5	10	25	50	75	100	250	500
b01580.dat	67.8	91.0	106.3	125.7	140.1	148.5	154.4	173.2	187.4
b0161.dat	61.3	83.6	98.3	117.0	130.8	138.8	144.5	162.6	176.2
b0166.dat	45.2	57.9	66.2	76.8	84.7	89.3	92.5	102.8	110.5
b0180.dat	62.3	83.5	97.5	115.3	128.4	136.1	141.5	158.7	171.6
b0181.dat	58.5	75.4	86.5	100.6	111.0	117.1	121.4	135.1	145.4
b0185.dat	71.0	91.9	105.7	123.2	136.1	143.6	148.9	165.9	178.6
b0190.dat	64.7	85.8	99.8	117.5	130.6	138.2	143.6	160.7	173.7
b0200.dat	66.0	95.7	115.4	140.2	158.7	169.4	177.0	201.1	219.3
b0201.dat	59.1	83.3	99.3	119.5	134.4	143.2	149.3	168.9	183.7
b0202.dat	55.0	72.5	84.1	98.7	109.6	115.9	120.3	134.5	145.3
b0203.dat	65.3	87.4	102.0	120.5	134.2	142.1	147.8	165.7	179.2
b0204.dat	65.2	86.3	100.3	118.0	131.1	138.7	144.1	161.3	174.2
b0212a.dat	72.1	96.3	112.3	132.5	147.6	156.3	162.5	182.1	196.9
b0213.dat	64.2	87.0	102.0	121.1	135.2	143.4	149.2	167.7	181.6
b0220.dat	67.8	95.3	113.5	136.4	153.4	163.3	170.3	192.6	209.4
b0222.dat	62.1	82.0	95.2	111.8	124.1	131.3	136.4	152.5	164.7
b0229e.dat	87.0	122.9	146.7	176.8	199.1	212.1	221.3	250.4	272.4
b0229i.dat	71.8	101.4	121.0	145.8	164.1	174.8	182.4	206.4	224.5
b0240.dat	63.2	85.0	99.5	117.8	131.4	139.3	144.9	162.6	176.0
b0241.dat	59.6	80.4	94.1	111.4	124.3	131.8	137.1	153.9	166.6
b0242.dat	63.7	88.5	105.0	125.8	141.2	150.2	156.6	176.7	192.0
b0246.dat	64.7	89.1	105.3	125.7	140.9	149.7	155.9	175.7	190.6
b0248.dat	68.3	94.3	111.5	133.3	149.4	158.8	165.4	186.5	202.4
b0259.dat	107.9	146.6	172.2	204.6	228.6	242.6	252.5	283.9	307.6
b0263.dat	79.2	118.6	144.7	177.7	202.2	216.5	226.5	258.5	282.7
b0280.dat	75.3	105.7	125.9	151.3	170.2	181.2	189.0	213.7	232.3
b0332.dat	67.8	85.6	97.4	112.4	123.4	129.9	134.4	148.9	159.8
b0333.dat	55.2	70.8	81.2	94.3	104.1	109.7	113.7	126.5	136.1
g0265.dat	84.8	118.1	140.1	168.0	188.6	200.6	209.1	236.2	256.6
g0275.dat	76.2	114.6	140.1	172.3	196.2	210.0	219.9	251.1	274.6
g0281.dat	59.7	79.5	92.5	109.0	121.3	128.4	133.5	149.5	161.5
g0282a.dat	59.6	82.7	98.0	117.3	131.6	140.0	145.9	164.6	178.7
g0283a.dat	60.5	84.4	100.1	120.1	134.9	143.5	149.5	168.9	183.5
g0283u.dat	88.6	128.6	155.1	188.6	213.5	227.9	238.1	270.6	295.1
g0287.dat	68.8	99.0	119.0	144.2	163.0	173.9	181.6	206.1	224.6
g0290.dat	70.2	103.5	125.5	153.4	174.0	186.0	194.5	221.5	241.9
g0292a.dat	74.3	111.9	136.7	168.2	191.5	205.0	214.6	245.1	268.1
g0311.dat	95.9	136.8	163.9	198.1	223.5	238.3	248.7	281.9	306.9
g0316.dat	70.5	91.7	105.7	123.4	136.6	144.2	149.7	166.8	179.8
g0320.dat	76.7	99.0	113.8	132.5	146.3	154.4	160.1	178.2	191.9
g0321.dat	67.0	87.4	100.9	118.0	130.6	138.0	143.2	159.7	172.2

				T	' (años)				
estación	2	5	10	25	50	75	100	250	500
g0328.dat	68.2	90.1	104.6	123.0	136.6	144.5	150.1	167.9	181.3
g0357.dat	94.6	134.0	160.1	193.0	217.4	231.6	241.7	273.6	297.7
g0360.dat	95.4	128.9	151.1	179.1	199.9	212.0	220.5	247.7	268.2
g0365e.dat	94.3	142.4	174.3	214.5	244.4	261.8	274.0	313.1	342.6
g0370a.dat	72.5	109.1	133.4	164.0	186.7	199.9	209.3	239.0	261.4
g0383.dat	67.9	89.4	103.6	121.6	134.9	142.7	148.2	165.6	178.8
g0384.dat	67.7	96.7	115.9	140.2	158.2	168.6	176.0	199.6	217.3
g0385i.dat	60.6	79.7	92.3	108.3	120.2	127.0	131.9	147.4	159.1
g0387.dat	59.7	84.8	101.4	122.4	138.0	147.0	153.4	173.8	189.2
g0395.dat	91.9	125.8	148.3	176.8	197.8	210.1	218.8	246.3	267.1
g0417.dat	85.4	117.8	139.3	166.4	186.5	198.2	206.4	232.7	252.5
g0429.dat	60.5	98.4	123.5	155.3	178.8	192.5	202.2	232.9	256.2
g0430.dat	76.3	108.3	129.5	156.3	176.2	187.7	195.9	221.8	241.4
g0431.dat	72.3	111.7	137.8	170.7	195.2	209.4	219.5	251.4	275.6
g0432a.dat	91.2	127.8	152.0	182.6	205.3	218.5	227.8	257.5	279.9
g0433.dat	89.4	160.0	206.6	265.6	309.4	334.8	352.8	410.0	453.2
g0433e.dat	78.9	121.9	150.4	186.4	213.1	228.7	239.6	274.6	300.9
g9582.dat	43.1	56.6	65.5	76.7	85.1	90.0	93.4	104.3	112.6
g9584.dat	57.3	93.3	117.1	147.2	169.6	182.5	191.7	220.9	243.0
g9585.dat	87.0	110.2	125.6	145.0	159.4	167.8	173.8	192.6	206.8
g9635.dat	58.9	76.8	88.6	103.5	114.6	121.1	125.6	140.1	151.1
10134e.dat	58.4	77.0	89.3	104.8	116.4	123.1	127.8	142.9	154.3
10135.dat	58.9	77.9	90.5	106.4	118.2	125.1	130.0	145.4	157.0
19619.dat	48.2	65.6	77.1	91.7	102.5	108.8	113.3	127.4	138.1
19621.dat	49.4	68.5	81.2	97.2	109.1	116.0	120.9	136.4	148.1
19638.dat	52.4	66.9	76.5	88.6	97.5	102.8	106.5	118.2	127.0
19647.dat	45.1	59.2	68.5	80.3	89.1	94.1	97.7	109.2	117.8
19650.dat	48.8	67.9	80.5	96.4	108.2	115.1	120.0	135.4	147.1
19651u.dat	46.0	60.3	69.8	81.8	90.6	95.8	99.4	111.0	119.8
19669.dat	45.1	58.3	67.1	78.1	86.3	91.1	94.5	105.2	113.3
19675.dat	48.7	60.0	67.4	76.9	83.9	88.0	90.9	100.0	106.9
19684.dat	51.9	64.1	72.2	82.4	90.0	94.4	97.5	107.5	114.9
19688.dat	76.7	108.5	129.6	156.2	175.9	187.4	195.5	221.3	240.8
19689.dat	83.1	111.0	129.4	152.7	170.0	180.0	187.1	209.7	226.8
19695.dat	60.4	79.3	91.8	107.6	119.3	126.1	130.9	146.2	157.8
19696a.dat	51.2	66.5	76.6	89.4	98.8	104.3	108.2	120.6	130.0
19701e.dat	45.2	63.6	75.8	91.2	102.7	109.3	114.0	128.9	140.2
19704.dat	48.1	63.1	73.0	85.6	94.9	100.3	104.1	116.3	125.5
19710.dat	45.4	59.4	68.7	80.5	89.2	94.3	97.9	109.3	117.9
19713.dat	42.0	54.3	62.5	72.8	80.4	84.9	88.0	98.0	105.5
19720o.dat	38.2	48.2	54.8	63.1	69.3	73.0	75.5	83.6	89.7

				Г	' (años)				
estación	2	5	10	25	50	75	100	250	500
19726.dat	45.6	62.3	73.3	87.3	97.7	103.7	107.9	121.5	131.7
19727i.dat	34.5	45.5	52.8	62.1	68.9	72.9	75.7	84.6	91.3
19729.dat	39.5	54.9	65.0	77.9	87.4	92.9	96.8	109.3	118.7
19734.dat	73.8	97.1	112.4	131.8	146.2	154.6	160.5	179.4	193.6
19736.dat	65.9	89.2	104.6	124.1	138.6	147.0	153.0	171.9	186.1
19741.dat	62.9	80.1	91.5	106.0	116.7	122.9	127.3	141.3	151.9
19745.dat	61.4	80.0	92.3	107.8	119.3	126.0	130.8	145.8	157.2
19766.dat	41.7	54.5	63.0	73.8	81.8	86.4	89.7	100.1	108.0
19766e.dat	42.5	55.6	64.3	75.3	83.4	88.2	91.5	102.2	110.2
19767.dat	48.1	66.6	78.9	94.4	105.9	112.6	117.3	132.4	143.7
19768.dat	40.0	55.5	65.7	78.6	88.2	93.8	97.8	110.3	119.8
19768e.dat	37.3	47.0	53.4	61.5	67.5	71.0	73.5	81.3	87.3
19769i.dat	36.6	47.2	54.1	63.0	69.5	73.3	76.0	84.5	91.0
19770e.dat	40.0	55.5	65.8	78.9	88.5	94.1	98.1	110.7	120.3
19772.dat	54.6	72.6	84.5	99.6	110.7	117.2	121.8	136.4	147.5
19773.dat	46.8	59.9	68.5	79.4	87.5	92.2	95.5	106.1	114.0
19777.dat	43.3	53.5	60.3	68.8	75.2	78.9	81.5	89.8	96.0
19920.dat	40.2	47.4	52.2	58.3	62.8	65.4	67.3	73.1	77.6
19921.dat	35.2	44.5	50.6	58.4	64.2	67.5	69.9	77.4	83.1
19952.dat	45.7	59.3	68.3	79.6	88.1	93.0	96.5	107.5	115.8
19990.dat	52.3	66.7	76.3	88.3	97.3	102.5	106.1	117.8	126.7
19991.dat	52.1	67.5	77.7	90.6	100.2	105.7	109.7	122.2	131.6
t0001.dat	81.3	119.7	145.1	177.1	201.0	214.8	224.6	255.7	279.2
t0002.dat	87.1	129.5	157.5	192.9	219.2	234.5	245.3	279.6	305.6
t0008.dat	68.7	97.6	116.7	140.9	158.8	169.2	176.6	200.0	217.7
t0013.dat	70.4	101.3	121.7	147.5	166.7	177.8	185.7	210.8	229.7
t0016.dat	69.8	91.9	106.5	125.0	138.7	146.7	152.3	170.3	183.8
t0016a.dat	60.1	79.5	92.3	108.5	120.5	127.5	132.4	148.2	160.0
t0017.dat	64.8	86.7	101.3	119.6	133.2	141.1	146.7	164.4	177.9
t0019.dat	70.8	103.3	124.8	152.0	172.2	183.9	192.2	218.6	238.5
t0020.dat	60.8	79.1	91.2	106.6	118.0	124.6	129.2	144.1	155.3
t0024.dat	45.2	58.5	67.4	78.5	86.8	91.6	95.0	105.8	114.0
t0025.dat	48.3	63.0	72.8	85.1	94.3	99.6	103.4	115.3	124.4
t0034a.dat	47.9	61.3	70.2	81.4	89.7	94.5	97.9	108.8	117.0
t0038.dat	64.5	83.3	95.7	111.4	123.0	129.8	134.6	149.8	161.3
t0042.dat	58.1	76.7	89.0	104.6	116.2	122.9	127.7	142.8	154.2
t9947.dat	46.6	64.8	76.9	92.1	103.5	110.0	114.7	129.5	140.6
t9948.dat	54.9	72.1	83.5	97.9	108.5	114.7	119.1	133.1	143.6
t9951.dat	47.7	65.9	78.0	93.2	104.5	111.1	115.7	130.5	141.6
t9951a.dat	53.4	71.7	83.8	99.1	110.4	117.0	121.7	136.5	147.7
t9953.dat	48.4	68.8	82.3	99.3	112.0	119.3	124.5	141.1	153.5

	T (años)										
estación	2	5	10	25	50	75	100	250	500		
t9961.dat	59.0	80.2	94.3	112.1	125.3	133.0	138.4	155.6	168.7		
t9967.dat	63.6	89.0	105.8	127.0	142.8	151.9	158.4	179.0	194.6		
t9968.dat	67.5	97.2	116.9	141.8	160.2	171.0	178.6	202.7	220.9		
t9972.dat	58.7	85.8	103.6	126.3	143.0	152.8	159.7	181.6	198.1		
t9973.dat	60.5	84.5	100.3	120.3	135.2	143.8	149.9	169.4	184.0		
t9975.dat	74.9	104.3	123.8	148.4	166.7	177.3	184.8	208.7	226.7		
t9979.dat	89.8	119.6	139.3	164.3	182.8	193.5	201.1	225.3	243.6		
t9979e.dat	66.7	102.0	125.4	154.9	176.8	189.6	198.6	227.2	248.9		
t9981a.dat	75.3	105.8	126.1	151.6	170.5	181.6	189.3	214.1	232.8		
t9985.dat	75.8	109.6	131.9	160.2	181.2	193.4	202.0	229.4	250.1		
t9987.dat	75.4	103.1	121.5	144.8	162.0	172.0	179.1	201.6	218.7		

4.3 Análisis espacial de las lluvias extremas en 24 horas en Catalunya

La técnica elegida para realizar el análisis espacial objetivo de las lluvias extremas en Cataluña ha sido el método de Cressman (Cressman, 1959; Thiébaux and Pedder, 1987; Lu and Browning, 1998). El método consiste en la aplicación recurrente de un algoritmo de cálculo del tipo

$$X^{a(k21)} \mid X^{a(k)} \ 2 - h_j (X_j^o \ 4 \ X_j^{a(k)})$$
(4.6)

en el que $X^{a(k21)}$ es el análisis en los puntos de la malla elegida en el paso de iteración k+1, $X^{a(k)}$ es el calculado en el paso k anterior y h_j son los pesos utilizados para ponderar las diferencias entre los valores analizados $(X_j^{a(k)})$ en los puntos donde se encuentran las estaciones pluviométricas y los datos observados en ellas (X_j^o) . Los pesos utilizados, cuando se aplica el método de Cressman, se calculan mediante la expresión

en la que d es la distancia entre el observatorio j (o estación pluviométrica en nuestro caso) y el punto de la malla donde se quiere calcular el valor del campo analizado. R es el radio de influencia, que determina la distancia máxima a la que se puede encontrar un observatorio para influir en el análisis de un punto de la malla. Esta distancia se debe elegir en función del tipo de variable meteorológica que se analiza y también de las características del terreno sobre el que se está haciendo el análisis, y puede variar en cada paso de iteración. El análisis correspondiente al primer paso del proceso iterativo, $X^{a(0)}$, puede establecerse por diferentes procedimientos. Se podría utilizar, por ejemplo, un valor constante del campo en todos los puntos de la malla o calcular, para cada punto, una media ponderada de los datos de cada observatorio, es decir,

$$X^{a(0)} \mid \frac{-p_j \left(X_j^{o} \right)}{-p_i}$$

$$(4.8)$$

en la que los pesos p_j podrían ser los mismos que se han definido en la ecuación (4.7) o cualquier otra función de la distancia entre el punto de análisis y los observatorios. En nuestro caso se ha asignado, en función del periodo de retorno considerado, un valor de lluvia máxima diaria a cada punto de una malla de 1 km de brazo que contiene toda Catalunya. Para calcular estas cantidades máximas diarias de precipitación se ha determinado, en primer lugar, la precipitación mensual correspondiente al mes más lluvioso en cada punto de la malla (figura 4.4). Esta precipitación mensual máxima se ha calculado a partir de los resultados del análisis de regresión múltiple obtenidos por Ninyerola et al. (2000). El modelo empírico de Ninyerola ha utilizado los sistemas de informació geográfica (GIS) para realizar un análisis de regresión múltiple entre la precipitación mensual y algunas variables geográficas como la altitud (que pone de manifiesto la orografía), la latitud y la continentalidad (medida como distancia lineal al mar Mediterráneo) y otras físicas como la radiación solar o la nubosidad. La técnica empleada es capaz de generar mapas climáticos de precipitación mensual y anual de gran resolución espacial para Catalunya (*http://magno.uab.es/atles-climatic/*).

Los valores de lluvia mensual máxima obtenidos se han normalizado dividiéndolos por la precipitación mensual más alta correspondiente al punto de la red más próximo al Observatorio Fabra de Barcelona y se han multiplicado, a continuación, por la precipitación diaria máxima calculada mediante las curvas de Intensidad-Duración-Frecuencia obtenidas en el capítulo 2 para este observatorio (Casas et al., 2004). El resultado coincidiría con la precipitación máxima diaria en cada punto, y para el periodo de retorno considerado, si existiera una relación lineal entre estas cantidades y la precipitación media mensual del mes más lluvioso. Obviamente no existe esta relación, aunque sí es cierto que, para Catalunya, se ha encontrado una correlación alta entre la variabilidad espacial de la lluvia media mensual y la lluvia diaria máxima (Lana et al., 2004), mientras que otros autores, sin embargo, no han llegado a los mismos resultados en otras zonas (Koutsoyiannis et al., 1998). Evidentemente, puede ocurrir a veces que la precipitación diaria máxima anual sea menor en un observatorio que en otro, aún teniendo una precipitación media mensual más elevada. Este es el caso, por ejemplo, de zonas muy lluviosas pero con un régimen de precipitación caracterizado por lluvias continuas suaves o moderadas. En Catalunya, un ejemplo muy claro de este comportamiento es la comarca de La Vall d'Aran, donde la precipitación anual se reparte de forma casi uniforme durante las cuatro estaciones del año; en contraste con la zona litoral, por ejemplo, en la que el otoño es la estación más lluviosa con notable diferencia respecto del resto (ICC, 1996).

Fig. 4.4 Precipitación mensual máxima en Catalunya

Este primer análisis ha sido modificado aplicando, en cada punto de la malla, la ecuación (4.6) y utilizando como factores de ponderación los definidos en la expresión (4.7). Se ha elegido un radio de influencia decreciente con el paso de iteración hasta un valor mínimo de 31 km, para asegurar la contribución de al menos dos estaciones pluviométricas en el cálculo de la corrección del análisis, en cada punto de la malla, al aplicar el algoritmo (4.6). La figura 4.5 compara la primera aproximación al análisis de campo de precipitación diaria de periodo de retorno 100 años, con el resultado obtenido después de 12 iteraciones (con radios de influencia de 100, 80, 60, 50 y 40 km en los cinco primeros pasos y 31 km en los 7 restantes) para conseguir la convergencia entre los valores analizados y los datos en los puntos de observación. Las figuras 4.6 y 4.7 muestran el resultado del mismo análisis aplicado a la precipitación máxima diaria para el resto de los periodos de retorno considerados.

Fig. 4.5 Precipitación en 24 horas de periodo de retorno 100 años. Arriba, el campo inicial considerado en el análisis. Abajo, el resultado del análisis tras aplicar el algoritmo de Cressman

(*a*)

(b)

Fig. 4.6 Precipitación máxima en 24 horas con periodos de retorno 2 (a), 5 (b), 10 (c) y 25 años (d)

(a)

(b)

Fig. 4.7 Precipitación máxima en 24 horas con periodos de retorno 50 (a), 75 (b), 250 (c) y 500 años (d)

Como puede observarse claramente en los mapas representados en las figuras 4.5, 4.6 y 4.7, todos los análisis muestran un alto grado de detalle con estructuras diferenciadas de muy pequeña longitud de onda. Esto es consecuencia de la gran resolución de la malla utilizada (1 km de brazo) en el cálculo de la primera aproximación al campo que se quiere analizar mediante la ecuación de Ninyerola (Ninyerola et al., 2000). Aunque al aplicar el algoritmo (4.6) de Cressman se consigue suavizar notablemente el campo inicial como consecuencia de su modificación en cada punto de la red, en función de las diferencias promediadas entre el análisis y los datos observados en las estaciones pluviométricas, los análisis obtenidos retienen todavía estructuras diferenciadas cuya longitud de onda no puede ser correctamente resuelta por la densidad de la red de estaciones que se ha utilizado. Como se sabe, cuando la densidad de la red de observatorios es tal que la distancia media entre ellos es de *r* km las estructuras del campo que se pretende analizar con longitud de onda $\zeta O2r$ no quedan correctamente representadas y deben, por tanto, eliminarse mediante una técnica adecuada de filtrado o suavizado (Koch et al., 1983).

Para suavizar el campo, de forma que el análisis contenga únicamente aquellas estructuras que pueden ser correctamente representadas por la red de observación que se utiliza, se ha aplicado un filtro bidimensional (Haltiner y Williams, 1980) definido por el operador

$$\overline{X}_{ij}^{a} \mid X_{ij}^{a} 2 \frac{S}{4} (X_{i41j}^{a} 2 X_{i21j}^{a} 2 X_{ij41}^{a} 2 X_{ij21}^{a} 4 4 X_{ij}^{a}), \qquad (4.9)$$

en el que \overline{X}_{ij}^{a} es el valor suavizado del análisis en el punto de la malla (i, j), que se calcula a partir del valor del campo en ese punto y en los cuatro que lo rodean. En esencia el método consiste en sustituir una parte (S) del valor del campo en cada punto por el promedio del mismo en los cuatro puntos más próximos. Cuando este operador se aplica sobre una onda simple del tipo

$$X \mid A \quad e^{i \quad (k \ \div x 2l \ \div y)} \tag{4.10}$$

la función de respuesta R del filtro es

$$R \mid 14 S \left(\sin^2 \bigotimes_{\mathsf{IM}}^{\mathsf{R}} \frac{\div x}{2} \right) 2 \sin^2 \bigotimes_{\mathsf{IM}}^{\mathsf{R}} \frac{\div y}{2} \right)$$
(4.11)

donde $\pm x y \pm y$ son las distancias entre dos puntos consecutivos de la malla utilizada en las direcciones x e y. Como en nuestro caso el brazo de malla utilizado es de 1 km, muy inferior a la distancia media entre las estaciones pluviométricas de la red de datos que es 16.2 km, se ha aplicado el algoritmo (4.9) de filtrado 60 veces para eliminar aquellas estructuras de longitud de onda igual o menor que la distancia media entre estaciones. De la ecuación (4.11) se deduce también que las ondas de longitud de onda 2d quedan suavizadas, al aplicar de manera recurrente 60 veces el filtro descrito, según un factor R=0.5. En las figuras 4.8, 4.9, 4.10, 4.11 y 4.12 se muestran los análisis obtenidos de la precipitación máxima en 24 horas de periodos de retorno 2, 5, 10, 25, 50, 75, 100, 250 y 500 para Catalunya.

Fig. 4.8 Precipitación máxima en 24 horas de periodo de retorno 2 y 5 años

Fig. 4.9 Precipitación máxima en 24 horas de periodo de retorno 10 y 25 años

Fig. 4.10 Precipitación máxima en 24 horas de periodo de retorno 50 y 75 años

Fig. 4.11 Precipitación máxima en 24 horas de periodo de retorno 100 y 250 años

Fig. 4.12 Precipitación máxima en 24 horas de periodo de retorno 500 años

4.4 Discusión de los resultados

Los resultados obtenidos, según se muestra en las figuras 4.8, 4.9, 4.10, 4.11 y 4.12, presentan unas isoyetas que mantienen las formas y estructuras en todos los análisis realizados para los diferentes periodos de retorno considerados en este trabajo. Esta distribución espacial que localiza los máximos y mínimos de forma idéntica en todos los análisis es consecuencia de la metodología utilizada. A grandes rasgos, se puede decir que las áreas donde se puede esperar un máximo de precipitación diaria extrema se localizan en la mitad este de Catalunya, en las zonas más altas del Pirineu y en el tercio sur;

mientras que las áreas donde hay que esperar una precipitación diaria extrema más baja coinciden, en gran parte, con la Depresión Central, extendiéndose desde su extremo occidental hasta el altiplano del Lluçanès y la Plana de Vic.

En la mitad este de Catalunya los máximos más destacados dibujan una línea que sigue la Sierra Prelitoral, desde Montserrat y Sant Llorenç de Munt hacia el Montseny y las Guilleries y que se extiende en dirección norte siguiendo la cordillera Transversal hasta llegar al Pirineu Oriental, desde donde continua hacia el oeste hasta el sector del Moixeró y hacia el este por las Alberas hasta el mar. Los lugares donde se pueden esperar valores máximos de las precipitaciones diarias extremas son las zonas de las Guilleries y del cabo de Creus, aunque también son destacables los valores obtenidos en la zona comprendida entre las cabeceras de los ríos Ter y Muga.

En los Pirineos destacan otras zonas donde se puede esperar precipitaciones diarias máximas importantes, coincidentes también con las zonas de mayor altitud. La más notable se encuentra al norte de la Cerdanya, entre los picos de Perafita y Puigpedrós, y otra secundaria al oeste, en la divisoria de aguas de las cuencas del Noguera Pallaresa, Noguera Ribagorzana y el Garona.

En el tercio sur de Catalunya se obtiene también un área de máximo para la precipitación diaria extrema definida alrededor de la sierra Prelitoral, desde las montañas de Prades hasta el Montsià, donde destaca una banda orientada de oeste a este en la que los máximos son más importantes. Esta banda está limitada por los Puertos de Beseit al oeste, la sierra de Cardó al nordeste, la franja Litoral que rodea el golfo de Sant Jordi y la mitad norte del delta del Ebro, donde se encuentra el máximo más importante.

Cuando se comparan estos mapas con los de precipitación media anual de Catalunya, se encuentra una gran similitud en su distribución espacial. Las zonas donde se han obtenido los valores máximos de precipitación diaria extrema, descritos anteriormente, son muy parecidas a las áreas de Catalunya de mayor lluvia anual en las que se superan los 700 mm. Sin embargo, también se detectan áreas de máximos situadas dentro de lo que se puede considerar la Catalunya seca, cabo de Creus y golfo de Sant Jordi, donde la precipitación media anual se situa entre los 500 y 600 mm, siendo además los lugares en los que se obtienen los valores más elevados de la precipitación diaria extrema.

Por lo que respecta a la distribución de mínimos más destacados, existe una gran concordancia con la Catalunya más seca, que coincide con el extremo occidental de la Depresión Central en el mapa de precipitación media anual.

Otras zonas de mínimos coinciden con las bien conocidas sombras pluviométricas del valle del Noguera de Cardós o de las tierras del Alt Urgell y de la Cerdanya más próximas al río Segre. El Valle de Aran o la Plana de Vic son en cambio áreas de la Catalunya lluviosa que presentan mínimos para los valores de la precipitación diaria máxima.

Hay que señalar también los mínimos de la Franja Litoral situados en el Garraf-Alt Penedès y en el Campo de Tarragona que delimitan un máximo relativo alrededor de un área que coincide bastante aproximadamente con la comarca del Baix Penedès.

Los gradientes más importantes se encuentran en la cara norte de la Sierra Transversal, con una disminución de más del 50% en una distancia de unos 30 km desde su cima en dirección NW, poniendo de manifiesto el efecto barrera de esta cadena a las perturbaciones y sistemas nubosos que provienen del SE.

Los resultados ponen de manifiesto además que las diferencias entre los máximos y mínimos son mayores cuanto mayor es el período de retorno, duplicándose, por ejemplo, cuando se comparan los análisis correspondientes a los periodos de retorno de 10 y 500 años, como consecuencia de las diferentes pendientes que tienen las rectas de ajuste de la función de distribución de Gumbel (por ejemplo, las de la figura 4.3) a los datos de lluvia de cada observatorio.

4.5 Conclusiones

El cálculo de los parámetros de la distribución de valores extremos de Gumbel mediante el método de los momentos de orden L propuesto por Hosking (1990) proporciona unos valores más estables y realistas de las precipitaciones diarias de periodos de retorno elevados para las series de valores máximos analizadas que cuando se calculan siguiendo el procedimiento tradicional. En este trabajo se ha calculado la precipitación en 24 horas con periodos de retorno 2, 5, 10, 25, 50, 75, 100. 250 y 500 años para 145 estaciones pluviométricas de Catalunya. Con este método, los valores de lluvia en 24 horas extraordinariamente elevados que se han registrado en algunos observatorios estudiados (La Pobla de Lillet, b0079; Cadaqués, g0433; Vimbodí "Riudabella", t0019; Bohí "Central", 19741) no influyen de una manera tan importante en el ajuste de la función de distribución de Gumbel. Esto ha contribuido a obtener, por ejemplo, diferencias superiores al 30% entre las cantidades de lluvia en 24 horas, para periodos de retorno superiores a 50 años, calculadas en este trabajo y las obtenidas por otros autores en algunas zonas de Catalunya (INM, 1999, Lana et al., 1995). Los valores obtenidos en nuestro caso son sensiblemente inferiores a los que han sido calculados aplicando el método tradicional de ajuste mediante la función de Gumbel a partir de la media y la desviación típica de las series de datos. Las cantidades de lluvia máxima calculadas son más aproximadas a los valores reales ya que no tienen una dependencia tan grande con la magnitud de los máximos absolutos de las series, es decir, si se prescinde de estos datos los resultados obtenidos en este estudio sufren una variación menor que los estimados aplicando la técnica tradicional.

El método que se ha aplicado para analizar la distribución espacial de las lluvias extremas en Cataluña ha permitido obtener una gran resolución espacial (1 km²) gracias al uso conjunto de un campo inicial de lluvia calculado a partir de la ecuación de regresión múltiple obtenida por Ninyerola et al. (2000) y del algoritmo de análisis de Cressman (Thiébaux, H.J., M.A. Pedder, 1987). El uso de este campo

inicial, que presenta una correlación aceptable con la variable analizada, mejora la resolución del análisis especialmente en las zonas montañosas de los Pirineos y de la Sierra Transversal en las que la densidad de estaciones no es suficiente para representar adecuadamente las grandes variaciones asociadas a la irregularidad del terreno. Además, el análisis realizado permite asignar a cada km² un valor numérico calculado objetivamente mediante un algoritmo matemático, lo que mejora notablemente la estima aproximada que puede hacerse a partir de un mapa analizado manualmente.

Con la aplicación iterativa de un filtro numérico al análisis obtenido mediante el método de Cressman se ha conseguido eliminar las estructuras de longitud de onda inferior a la distancia media entre las estaciones pluviométricas que se han utilizado, ajustando así su variabilidad a la densidad de la red de observación. La técnica empleada mantiene, sin embargo, la información que aporta el uso de un campo inicial de gran resolución. Además, el uso de este filtro asegura que la resolución del análisis espacial sea homogénea evitando, por tanto, que dependa de la densidad de la red de observación en cada zona y pueda provocar falsas interpretaciones sobre la variabilidad espacial real de la variable analizada, mejorando así el resultado que se obtiene cuando se aplica directamente un método de trazado de isolíneas automático.

5 Estimación de la Precipitación Máxima Probable (PMP) en Catalunya

5.1 Introducción

La precipitación máxima probable (PMP) se define como la cantidad de precipitación teóricamente más alta para una duración dada que es físicamente posible sobre una localidad, en un área de tormenta y una época del año especificadas (Hansen et al., 1982). Mientras que con anterioridad a 1950 se usaba el concepto de la precipitación máxima posible (MPP), posteriormente se cambió el nombre a PMP dada la incertidumbre que conlleva la estimación de una cantidad de precipitación máxima (Wang, 1984). Por definición, la PMP es la cantidad de precipitación estimada para una duración, área y época del año dadas, cuya probabilidad de ser excedida es nula (Wang, 1984). En ocasiones las cantidades de precipitación registradas han excedido la PMP estimada con anterioridad, lo que indica claramente que en realidad no puede considerarse riesgo nulo (Koutsoyiannis, 1999). Se han llevado a cabo algunos estudios para tratar de asignar una declaración de riesgo a la PMP estimada. El National Research Council (NRC, 1994) estima un período de retorno para la PMP calculada en los EEUU entre 10⁵ y 10⁹ años. Koutsoyiannis (1999) ha desarrollado un método para asignar un período de retorno al valor de la PMP estimada usando el método del factor de frecuencia o recurrencia (Hershfield, 1961b, 1965).

Para el cálculo de la PMP en un lugar se usan dos tipos de métodos: los métodos físicos (modelos de nubes con variables físicas como la temperatura del punto de rocío en la superficie o la altura de la base de la nube de tormenta, maximización y transposición de tormentas individuales observadas, etc.) y métodos estadísticos (WMO, 1986). En este capítulo, se ha calculado la PMP en 24 horas en 145 estaciones pluviométricas de Catalunya mediante técnicas estadísticas. A partir de los valores obtenidos, se ha realizado un análisis objetivo siguiendo la metodología expuesta en el capítulo 4, con el fin de obtener un mapa generalizado de la PMP en 24 horas para toda Catalunya, con resolución 1km∆1km. Se ha estudiado en particular la PMP obtenida para la ciudad de Barcelona, dado que se dispone de las series de precipitación para duraciones entre 5 minutos y 30 horas registradas por el pluviógrafo Jardí del Observatori Fabra de Barcelona y por la red pluviométrica urbana de CLABSA,

lo que ha servido para contrastar convenientemente los resultados y analizar la influencia de la duración y las escalas temporales en la PMP estimada.

5.2 Método estadístico para la estimación de la Precipitación Máxima Probable

Uno de los procedimientos estadísticos más comúnmente aceptados para la estimación de la PMP es el que trabaja a partir del análisis de frecuencia de los máximos anuales de precipitación. Hershfield (1961b, 1965) desarrolló una técnica para el cálculo de la PMP basada en la ecuación general de frecuencia dada por Chow (1951):

$$x_{\rm T} \mid x_n \ 2 \ k \ \omega_n \tag{5.1}$$

donde $x_{\rm T}$ es la precipitación de periodo de retorno T, y x_n y ω_n son, respectivamente, la media y la desviación estándar de las series de n máximos anuales. El parámetro *k* es un factor de frecuencia que varía con las diferentes distribuciones de frecuencia que se pueden ajustar a los valores extremos de los datos hidrológicos. Para la estimación de la PMP, Hershfield (1961b, 1965) consideró un valor extremo k_m del parámetro *k* y modificó la ecuación de Chow en la forma:

$$x_e \mid x_n \ 2 \ k_m \ \omega_n \tag{5.2}$$

con

$$k_m \mid \frac{x_M \ 4 \ x_{n41}}{\omega_{n41}} \tag{5.3}$$

donde x_e es la PMP para una estación dada y una duración específica, k_m es el factor de frecuencia, y x_M , x_n y ω_n son, respectivamente, el valor máximo, la media y la desviación estándar de las series de máximos anuales de precipitación para cada duración, y x_{n41} y ω_{n41} son la media y la desviación estándar de dichas series pero excluyendo en éstas el valor máximo de cada una. En un principio, Hershfield (1961b) recomendó el valor de $k_m=15$ para estimar la PMP, porque éste fue el mayor factor que obtuvo al analizar un total de 2645 estaciones (el 90% en EEUU). Más tarde, (Hershfield, 1965) mostró que el coeficiente k_m es directamente proporcional a la duración considerada e inversamente proporcional al valor medio de cada serie, y presentó un nomograma para determinar k_m para series con duraciones de 5 minutos, 1, 6 y 24 horas dependiendo de su valor medio. Koutsoyiannis (1999) ha presentado un ajuste mediante una distribución generalizada de valores extremos (GEV) de los factores de frecuencia obtenidos a partir de los 2645 registros usados por Hershfield, encontrando que

el factor mayor (k_m =15) corresponde a un período de retorno de unos 60000 años, en el límite inferior del rango considerado por el NRC (1994).

5.3 Estimación de la Precipitación Máxima Probable en Catalunya

En el capítulo 4 se obtuvieron los valores de la precipitación máxima en 24 horas y período de retorno entre 2 y 500 años para 145 estaciones pluviométricas en Catalunya a partir de sus series de máximos anuales de precipitación en 24 horas (la figura 4.1 muestra su localización). En este capítulo van a utilizarse esas mismas series para estimar estadísticamente la PMP en Catalunya.

Siguiendo la técnica de Hershfield, se han calculado para todas las series los parámetros estadísticos x_n , x_{n41} , ω_n y ω_{n41} (medias y desviaciones estándar) que intervienen en las ecuaciones (5.1) y (5.3), así como el coeficiente de variación CV = ω_n / x_n , considerado un estadístico más estable que la desviación estándar. En la tabla 5.1 se muestran los valores obtenidos junto con los máximos x_M de cada serie, así como los factores de recurrencia k_m calculados haciendo uso de la ecuación (5.3).

Obsérvese que el factor de recurrencia indica cuántas desviaciones estándar ω_{n41} se han de sumar a la

media x_{n41} para obtener el valor máximo x_M , y por tanto, puede tomar un valor muy alto para las series cuyo máximo sea un caso extremo extraordinario, es decir, con un periodo de recurrencia aparente muy superior a la longitud de la serie (outlier). Asimismo, según se describe en el trabajo de la OMM (WMO, 1986), la inclusión de un evento de este tipo en la serie de máximos anuales puede tener un efecto anómalo apreciable en el valor de la media y de la desviación estándar de la muestra, siendo la magnitud de dicho efecto menor para series largas que cortas, y variar en función de la excepcionalidad del caso extremo extraordinario o outlier. Hershfield (1961b) describe el efecto de la propia longitud de la serie en su media y desviación estándar: debido al sesgo hacia la derecha de la distribución de extremos de precipitación, estos estadísticos tienden a aumentar al aumentar la longitud de la muestra. Así, si la longitud de una serie es mayor, es más probable obtener un valor extremo grande que uno pequeño. Uno de los métodos utilizados para compensar estos efectos (Rakhecha et al., 1992), consiste en el análisis y ajuste del coeficiente de variación CV de las series de máximos anuales. En los casos en los que se detecte que el valor calculado de dicho coeficiente difiere demasiado de los obtenidos para las estaciones vecinas en un radio inferior a 50 km, aproximadamente, el coeficiente CV ha de ajustarse asignándole el valor más próximo de entre los que presenten las estaciones vecinas. Con el valor revisado del coeficiente CV y el valor original de la media de la serie se recalcula la desviación estándar en dichos casos. En este trabajo, las estaciones que han tenido que revisarse para modificar su desviación estándar han sido únicamente 6 (un 4% del total de estaciones): La Pobla de Lillet (b0079), cuyo coeficiente de variación del 58% se ha reducido al 40%; Cherta (t9979e), que presentaba un coeficiente del 62% que se ha reducido al 50%; Cornellà de Llobregat (b0200), del 56 % al 45%; Cadaqués (g0433), del 90 % al 75 %; Vimbodí *Riudavella* (t0019), del 56 % al 40 % y Puigcerdà (g9584), del 87 % al 50 %.

Tabla 5.1 Estadísticos de las series de máximos anuales de precipitación en 24 horas analizadas: máximo x_M de cada serie, medias x_{n41} y x_n , desviaciones estándar ω_{n41}, ω_n , coeficiente de variación CV y factor de recurrencia k_m

estación	X_M	x_{n41}	X_n	ω_{n41}	ω _n	CV	k_m
b0072	116.0	69.4	71.9	22.5	24.3	0.34	2.1
b0079	266.0	72.9	80.6	26.5	46.8	0.58	7.3
b0086	185.2	80.4	85.8	18.9	30.6	0.36	5.5
b0092	153.9	71.0	70.9	22.9	24.2	0.34	3.6
b0097	104.8	64.5	66.6	17.2	17.4	0.26	2.4
b0106	84.6	47.1	49.6	11.8	14.8	0.30	3.2
b0111	179.3	53.3	56.4	18.1	26.4	0.47	7.0
b0114	87.6	52.0	55.2	14.4	17.8	0.32	2.5
b0120	127.0	75.5	78.7	19.4	22.5	0.29	2.7
b0144	100.0	50.3	51.4	16.2	17.6	0.34	3.1
b0150	100.0	59.4	58.9	17.6	18.6	0.32	2.3
b0158o	130.0	68.7	72.1	25.6	28.6	0.40	2.4
b0161	156.2	63.1	65.5	21.8	26.0	0.40	4.3
b0166	88.0	45.2	47.6	11.2	14.6	0.31	3.8
b0180	130.0	65.0	66.3	21.9	23.5	0.35	3.0
b0181	95.5	59.4	61.7	16.5	18.2	0.29	2.2
b0185	125.0	72.7	74.9	20.9	23.1	0.31	2.5
b0190	108.0	66.0	68.6	21.0	22.8	0.33	2.0
b0200	177.0	64.5	71.5	30.2	40.0	0.56	3.7
b0201	165.0	61.7	63.6	24.1	27.6	0.43	4.3
b0202	90.4	56.1	58.2	17.5	18.9	0.32	2.0
b0203	207.0	66.5	69.4	19.9	28.1	0.41	7.1
b0204	135.0	67.2	69.1	21.4	23.9	0.35	3.2
b0212a	126.0	73.8	76.6	24.3	26.4	0.34	2.2
b0213	138.8	64.5	68.4	20.1	25.6	0.37	3.7
b0220	250.0	68.8	72.9	25.1	36.7	0.50	7.2
b0222	135.0	64.3	65.8	19.9	22.2	0.34	3.6
b0229e	188.0	87.4	93.7	33.3	40.4	0.43	3.0
b0229i	168.0	71.6	77.3	27.0	34.7	0.45	3.6
b0240	151.0	65.5	66.8	23.3	27.2	0.41	3.7
b0241	128.8	61.6	63.5	21.7	24.1	0.38	3.1
b0242	145.0	66.6	68.3	25.5	27.6	0.40	3.1
b0246	142.5	65.2	69.3	22.2	27.7	0.40	3.5

estación	X _M	<i>x</i> _{<i>n</i>41}	<i>x</i> _n	ω_{n41}	ω _n	CV	k _m
b0248	180.0	70.8	73.2	26.3	30.5	0.42	4.2
b0259	182.4	112.8	115.1	40.1	41.3	0.36	1.7
b0263	270.0	82.2	86.5	41.1	49.3	0.57	4.6
b0280	190.0	78.4	81.0	30.9	34.8	0.43	3.6
b0332	135.0	66.9	71.1	15.2	22.1	0.31	4.5
b0333	127.5	57.3	59.9	15.0	18.0	0.30	4.7
g0265	230.0	84.6	90.9	28.9	41.9	0.46	5.0
g0275	230.0	77.7	83.3	39.3	48.1	0.58	3.9
g0281	169.0	59.6	63.4	17.2	26.6	0.42	6.4
g0282a	230.1	60.6	63.9	21.4	32.0	0.50	7.9
g0283a	230.1	60.6	64.9	20.3	33.9	0.52	8.3
g0283u	208.5	91.1	96.0	41.9	48.3	0.50	2.8
g0287	199.5	70.9	74.4	29.1	35.5	0.48	4.4
g0290	192.5	73.5	76.4	32.7	37.1	0.49	3.6
g0292a	180.0	75.8	81.3	36.5	42.4	0.52	2.9
g0311	271.8	94.7	103.5	35.2	53.0	0.51	5.0
g0316	170.0	69.9	74.4	16.9	27.2	0.37	5.9
g0320	136.0	78.2	80.8	22.2	25.3	0.31	2.6
g0321	196.0	67.9	70.8	18.4	26.2	0.37	7.0
g0328	159.5	69.5	72.2	20.6	26.0	0.36	4.4
g0357	202.6	94.8	101.9	36.8	46.1	0.45	2.9
g0360	210.0	97.8	101.6	37.8	42.4	0.42	3.0
g0365e	234.0	98.2	107.1	48.1	51.7	0.48	2.8
g0370a	174.0	74.3	79.3	35.8	41.1	0.52	2.8
g0383	140.0	67.9	71.9	19.7	26.0	0.36	3.7
g0384	188.0	70.7	73.1	29.0	33.2	0.45	4.0
g0385i	103.6	61.8	64.1	19.4	21.1	0.33	2.2
g0387	182.4	61.4	64.3	24.1	30.6	0.48	5.0
g0395	192.0	93.7	98.2	35.2	40.0	0.41	2.8
g0417	169.0	86.3	91.4	30.7	35.8	0.39	2.7
g0429	231.0	63.2	67.5	39.7	47.9	0.71	4.2
g0430	186.0	77.6	82.3	31.1	38.4	0.47	3.5
g0431	291.0	74.6	79.6	38.4	50.6	0.64	5.6
g0432a	168.3	94.6	98.0	37.7	40.8	0.42	2.0
g0433	430.0	91.3	104.4	66.6	94.0	0.90	5.1
g0433e	250.0	79.5	86.9	46.2	58.3	0.67	3.7
g9582	77.5	44.5	45.6	13.6	14.9	0.33	2.4
g9584	290.7	54.1	63.9	27.2	55.4	0.87	8.7
g9585	136.0	89.2	91.3	23.9	25.9	0.28	2.0
g9635	153.0	60.4	62.0	16.7	21.9	0.35	5.6
10134e	140.0	57.5	61.9	14.7	23.3	0.38	5.6

estación	<i>x</i> _{<i>M</i>}	<i>x</i> _{<i>n</i>41}	X_n	ω_{n41}	ω _n	CV	k _m
10135	122.0	61.1	62.5	19.4	21.1	0.34	3.2
19619	107.0	49.0	51.4	16.9	20.2	0.39	3.4
19621	118.0	51.7	54.5	19.9	24.9	0.46	3.3
19638	101.0	53.8	53.6	14.5	15.9	0.30	3.3
19647	114.0	46.4	47.8	14.0	16.8	0.35	4.8
19650	105.0	49.5	52.4	18.6	22.0	0.42	3.0
19651u	91.8	46.2	48.7	12.7	16.2	0.33	3.6
19669	86.0	45.4	47.6	12.1	14.8	0.31	3.4
19675	98.0	49.1	50.8	10.9	13.9	0.27	4.5
19684	80.0	53.6	54.1	12.7	13.1	0.24	2.1
19688	200.0	80.2	82.7	33.4	37.1	0.45	3.6
19689	252.0	84.9	88.3	27.5	35.9	0.41	6.1
19695	138.0	61.3	63.9	19.9	23.9	0.37	3.9
19696a	97.0	51.5	54.1	14.5	17.6	0.32	3.1
19701e	107.0	45.4	48.6	17.5	21.9	0.45	3.5
19704	100.0	49.6	50.9	15.6	17.3	0.34	3.2
19710	82.0	46.8	48.0	14.5	15.6	0.33	2.4
19713	82.0	42.7	41.9	11.6	13.7	0.33	3.4
19720o	76.0	38.0	40.0	9.5	12.5	0.31	4.0
19726	87.4	47.1	48.7	17.3	18.6	0.38	2.3
19727i	68.4	34.8	36.6	10.2	12.4	0.34	3.3
19729	92.0	40.6	42.4	15.7	18.0	0.42	3.3
19734	137.0	75.7	78.2	23.0	25.5	0.33	2.7
19736	178.0	65.7	70.2	21.2	30.3	0.43	5.3
19741	135.0	62.9	66.1	17.1	22.3	0.34	4.2
19745	138.0	61.8	64.8	19.3	24.1	0.37	3.9
19766	75.0	43.4	44.1	13.3	14.0	0.32	2.4
19766e	80.0	43.2	44.9	12.5	14.4	0.32	2.9
19767	108.0	48.7	51.5	18.7	22.2	0.43	3.2
19768	76.5	41.4	42.9	15.9	17.1	0.40	2.2
19768e	59.5	37.9	39.1	9.6	10.6	0.27	2.2
19769i	55.5	37.6	38.6	11.0	11.4	0.29	1.6
19770e	109.0	40.0	42.9	13.5	19.1	0.44	5.1
19772	115.0	55.4	57.9	16.5	20.1	0.35	3.6
19773	92.4	46.9	48.3	11.9	13.9	0.29	3.8
19777	76.0	43.8	45.2	9.6	11.5	0.25	3.4
19920	55.0	40.7	41.3	7.5	9.8	0.24	1.9
19921	56.0	36.2	36.9	9.4	10.0	0.27	2.1
19952	94.7	46.9	48.2	13.6	15.5	0.32	3.5
19990	112.0	52.3	55.0	12.4	17.3	0.32	4.8
19991	169.5	52.3	55.0	13.4	22.1	0.40	8.7

estación	X _M	<i>x</i> _{<i>n</i>41}	<i>X_n</i>	ω_{n41}	ω _n	CV	k _m
t0001	187.2	82.6	88.4	37.2	43.4	0.49	2.8
t0002	218.0	91.8	92.2	43.1	46.7	0.51	2.9
t0008	172.0	71.3	74.0	30.0	33.8	0.46	3.4
t0013	159.8	70.5	76.1	28.0	34.7	0.46	3.2
t0016	125.0	70.3	73.9	20.7	24.2	0.33	2.6
t0016a	134.0	61.1	63.7	17.9	22.2	0.35	4.1
t0017	144.5	67.3	68.9	22.4	24.7	0.36	3.5
t0019	230.0	68.8	76.8	25.8	43.2	0.56	6.3
t0020	113.7	62.6	64.2	18.6	20.3	0.32	2.7
t0024	129.4	45.6	47.7	11.6	17.4	0.36	7.3
t0025	130.0	48.8	51.0	13.1	18.4	0.36	6.2
t0034a	80.0	48.4	50.4	12.9	14.6	0.29	2.5
t0038	131.0	66.3	68.0	18.2	20.8	0.31	3.6
t0042	114.0	59.6	61.5	19.1	21.3	0.35	2.9
t9947	123.5	48.0	50.0	18.1	21.6	0.43	4.2
t9948	100.0	56.9	58.1	17.6	18.7	0.32	2.5
t9951	105.0	49.9	51.1	18.4	19.9	0.39	3.0
t9951a	130.0	54.2	56.8	16.3	21.2	0.37	4.6
t9953	128.9	50.0	52.2	20.2	23.7	0.45	3.9
t9961	118.0	61.5	62.9	21.6	23.1	0.37	2.6
t9967	176.0	62.6	68.3	21.9	32.6	0.48	5.2
t9968	167.5	68.9	73.0	29.6	35.0	0.48	3.3
t9972	179.6	61.4	63.8	26.7	31.2	0.49	4.4
t9973	150.5	61.3	65.0	21.3	27.5	0.42	4.2
t9975	196.5	76.6	80.4	29.5	35.7	0.44	4.1
t9979	165.0	92.3	95.3	30.0	32.8	0.34	2.4
t9979e	217.0	66.4	73.3	33.5	45.3	0.62	4.5
t9981a	209.0	78.2	81.0	32.0	36.8	0.45	4.1
t9985	202.0	79.4	82.1	34.9	38.8	0.47	3.5
t9987	153.0	79.0	80.5	28.2	29.9	0.37	2.6

Los factores de recurrencia k_m presentan una cierta dependencia con el valor medio de las series de precipitación para cada duración (Hershfield, 1965). En la figura 5.1 se muestra la dependencia entre el valor medio de las series de máximos anuales de precipitación en 24 horas y los factores de recurrencia k_m observados para cada una de ellas. Tal como recomienda la OMM (WMO, 1986), para estimar unos valores adecuados de la PMP es conveniente trazar una envolvente que englobe todos los casos, incluyendo los más extremos. La técnica habitual consiste en seleccionar los valores mayores de la muestra y ajustarlos a una curva. Este proceso puede aplicarse a la muestra de factores de recurrencia k_m calculados para una duración dada (Dhar et al., 1981, Rakhecha et al., 1992). En la

gráfica de la figura 5.1 se ha representado, junto a los puntos (k_m, x_n) , la curva envolvente representativa de la dependencia entre ambas variables.

Fig. 5.1 Representación del factor de recurrencia k_m respecto al valor medio de precipitación x_n de cada serie para 24 horas. A trazos, curva ajustada a los 4 casos extremos de la muestra. En línea continua, curva envolvente paralela a la anterior.

Para encontrar la envolvente apropiada, se han utilizando los puntos correspondientes a los extremos más altos de las series de máximos anuales en 24 horas (remarcados en la figura 5.1). Estos valores se han registrado en las estaciones de Puigcerdà (g9584, k_m =8.7), La Pobla de Lillet (b0079, k_m =7.3), Capdella (l9689, k_m =6.1) y Cadaqués (g0433, k_m =5.1). La ecuación de la curva que mejor se ajusta a dichos puntos es la que se ha representado a trazos en la figura 5.1:

$$k_m = \tilde{Z}7.56 \ln x_n + 40.2 \tag{5.4}$$

Para conseguir que la curva esté por encima de todos los puntos, sumamos +0.3 al término independiente obteniendo, de esta forma, la curva envolvente que se ha representado con línea continua en la figura 5.1. Su ecuación es:

$$k_m = Z7.56 \ln x_n + 40.5 \tag{5.5}$$

Con el fin de estimar la PMP correspondiente a cada estación, se ha hecho uso de la ecuación (5.5) para obtener los valores del factor de recurrencia k_m que la envolvente asocia a la media de precipitación en 24 horas x_n de cada estación, valores que serán en todos los casos superiores a los k_m originales observados. Con estos valores teóricos de k_m que da la envolvente para cada estación, la media x_n y la desviació estándar ω_n se ha calculado la PMP utilizando la ecuación (5.2). A los valores obtenidos se les ha aplicado el ajuste recomendado por la OMM (WMO, 1986), para corregir el uso de intervalos de tiempo fijos de 24 horas, en lugar de variables. Los valores de precipitación en 24 horas suelen obtenerse en las estaciones para intervalos fijos de tiempo, generalmente de 8 AM a 8 AM (o de 7AM a 7 AM). Estos valores normalmente no coinciden con los valores máximos reales en 24 horas, casi siempre son apreciablemente menores. Hershfield (1961a) propone un factor multiplicativo de 1.13 a la precipitación en 24 horas medida con intervalos fijos, para aproximarla a los valores reales de precipitación máxima en 24 horas. Este factor, ampliamente utilizado, es el que se ha aplicado para maximizar la PMP en 24 horas. Otros autores (Dwyer y Reed, 1994) recomiendan un factor algo superior (1.167). En el capítulo 2, apartado 2.2, ya se comentó que entre la media y la desviación estándar de la serie de precipitación máxima en 24 horas obtenida con los registros del pluviógrafo Jardí del Observatori Fabra de Barcelona, usando un intervalo de 24 horas móvil a lo largo de cada chubasco en busca de su valor máximo, y las de las series de precipitación diaria calculada para los mismos registros en intervalos fijos (de 0 UTC a 0 UTC y de 8 UTC a 8 UTC) se había observado una relación de 1.16. Los valores de la PMP en 24 horas calculados para cada estación se muestran en la tabla 5.2.

estación	PMP (mm)	estación	PMP (mm)	estación	PMP (mm		
b0072	307	b0181	263	b0241	321		
b0079	357	b0185	291	b0242	345		
b0086	331	b0190	299	b0246	346		
b0092	305	b0200	380	b0248	361		
b0097	245	b0201	357	b0259	347		
b0106	242	b0202	276	b0263	478		
b0111	365	b0203	349	b0280	379		
b0114	266	b0204	308	b0332	291		
b0120	282	b0212a	318	b0333	262		
b0144	271	b0213	328	g0265	403		
b0150	268	b0220	420	g0275	481		
b0158o	347	b0222	297	g0281	344		
b0161	336	b0229e	392	g0282a	399		
b0166	243	b0229i	391	g0283a	415		
b0180	309	b0240	343	g0283u	431		

Tabla 5.2 Precipitación Máxima Probable en 24 horas calculada para cada estación pluviométrica
estación	PMP (mm)	estació	n PMP (mm)	estación	PMP (mm)
g0287	404	19650	324	19990	265
g0290	412	19651u	261	19991	319
g0292a	443	19669	245	t0001	428
g0311	439	19675	228	t0002	434
g0316	326	19684	214	t0008	389
g0320	297	19688	393	t0013	394
g0321	328	19689	370	t0016	304
g0328	319	19695	319	t0016a	302
g0357	398	19696a	268	t0017	316
g0360	383	19701e	333	t0019	354
g0365e	449	19704	269	t0020	281
g0370a	438	19710	253	t0024	277
g0383	318	19713	235	t0025	284
g0384	386	197200	226	t0034a	238
g0385i	290	19726	290	t0038	280
g0387	383	19727i	230	t0042	296
g0395	376	19729	297	t9947	324
g0417	364	19734	307	t9948	273
g0429	541	19736	369	t9951	300
g0430	400	19741	299	t9951a	305
g0431	511	19745	320	t9953	345
g0432a	375	19766	237	t9961	312
g0433	567	19766e	244	t9967	398
g0433e	537	19767	329	t9968	404
g9582	245	19768	284	t9972	394
g9584	386	19768e	198	t9973	354
g9585	286	19769i	210	t9975	389
g9635	291	19770e	312	t9979	333
10134e	320	19772	290	t9979e	416
10135	292	19773	229	t9981a	396
19619	305	19777	204	t9985	409
19621	350	19920	181	t9987	339
19638	246	19921	192		
19647	269	19952	251		

Para calcular el periodo de retorno de estos valores de la PMP, utilizamos las funciones de distribución de frecuencias obtenidas en el capítulo 4 que corresponden a cada una de las series. Un porcentaje superior al 90 % de los periodos de retorno calculados resultan entre 10^4 y 10^8 años. De forma similar a como se procedió en el capítulo 4, vamos a tomar como primera aproximación a la PMP en todos los puntos de una malla de 1km Δ 1km que cubre toda Catalunya, la precipitación en 24

horas de periodo de retorno 100000 años que se obtiene en cada punto a partir del trabajo de Ninyerola et al. (2000) y las curvas IDF obtenidas en el capítulo 2 (Casas et al., 2004). Estos valores se toman como el campo inicial de un análisis objetivo de Cressman, que irán modificándose con cada iteración hasta conseguir la convergencia a los datos, que son los valores de la PMP en 24 horas consignados en la tabla 5.2. El resultado del análisis de la PMP en 24 horas para Catalunya se presenta en la figura 5.2. Si procedemos a filtrar de forma similar a la realizada en el capítulo 4 para eliminar las estructuras que presenten una longitud de onda que no pueda ser resuelta por la densidad de la red de estaciones, se obtiene el campo de PMP en 24 horas representado en la figura 5.3.

Fig. 5.2 Precipitación Máxima Probable en 24 horas para Catalunya

Fig. 5.3 PMP en 24 horas para Catalunya, después del proceso de filtrado

La PMP en 24 horas para Catalunya obtenida después del proceso de filtrado, que se muestra en la figura 5.3, presenta una distribución espacial muy similar a la que se obtuvo en el capítulo 4 para la precipitación máxima en 24 horas, especialmente para los periodos de retorno más elevados. La PMP obtenida oscila entre valores inferiores a 200 mm, y valores que superan los 500 mm, con una diferencia relativa entre el máximo y el mínimo superior al 150 %. Asimismo, tal y como ocurría con los mapas de precipitación máxima, la distribución espacial obtenida presenta una gran similitud con la de la precipitación media anual en Catalunya. Así pues, salvo algunas excepciones como la del cabo de Creus y el golfo de Sant Jordi, las zonas en donde se han obtenido los valores máximos de la PMP son muy parecidas a las áreas de Catalunya con mayor lluvia anual, mientras que los mínimos, exceptuando algún caso como el observado en la Vall d'Aran o la Plana de Vic, están localizados sobre áreas prácticamente coincidentes con las de la Catalunya más seca, en cuanto a precipitación media anual se refiere.

5.4 Estimación de la Precipitación Máxima Probable en Barcelona

El análisis estadístico del conjunto de series de máximos anuales de precipitación en 24 horas de las estaciones pluviométricas de Catalunya disponibles y el trazado de una curva envolvente representativa de la dependencia entre el factor de recurrencia y la media de cada serie realizado en el apartado 5.3 ha permitido estimar el valor de la PMP correspondiente a Barcelona. Esta localidad está representada por la estación Barcelona "Centro" (b0201), cuya serie de máximos anuales de precipitación en 24 horas registrada, de 55 años de longitud, presenta una media de 63.6 mm y una desviación estándar de 27.6 mm. Según la ecuación de la curva envolvente obtenida (ecuación 5.5), a este valor medio de precipitación en 24 horas le correspondería un factor de recurrencia k_m =9.1, obteniéndose una PMP estimada para esta estación de 357 mm (tabla 5.2).

Dado que se dispone de un registro de precipitación de similar longitud (66 años) en otra estación de Barcelona, el Observatori Fabra, se ha procedido a calcular una segunda estimación de la PMP en Barcelona analizando las series de precipitación registradas por el pluviómetro Jardí de este observatorio, para varias duraciones entre 5 minutos y 30 horas. Asimismo, a partir de las series de precipitación máxima procedentes de los registros de la red pluviométrica urbana de CLABSA en Barcelona, se ha calculado una tercera estimación de la PMP para duraciones entre 5 minutos y 24 horas.

5.4.1 Análisis de las series de máximos anuales de precipitación registrados por el pluviógrafo Jardí del Observatori Fabra de Barcelona

A partir de los registros del pluviógrafo de intensidades Jardí del Observatori Fabra de Barcelona, se han calculado los valores de precipitación máxima para varias duraciones entre 5 minutos y 30 horas, haciendo uso de un interválo móvil que selecciona la cantidad mayor de precipitación para la duración considerada a lo largo de cada uno de los chubascos registrados (capítulo 2, apartado 2.2). De entre los conjuntos de valores obtenidos, se han seleccionado los valores máximos para cada año, desde 1927 hasta 1992, con el fin de obtener series de máximos anuales de precipitación. Las duraciones consideradas han sido 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70 y 75 minutos, 1, 2, 4, 6, 9, 12, 14, 16, 18, 20, 22, 24 y 30 horas.

Con el fin de realizar una segunda estimación de la PMP en Barcelona, haciendo uso de los registros de este pluviógrafo, aplicamos la técnica descrita en el apartado 5.3 a las series de máximos anuales obtenidas para cada una de las duraciones consideradas. La tabla 5.3 muestra los parámetros estadísticos obtenidos para cada duración, así como los valores del factor de frecuencia o recurrencia k_m , que se han representado en la figura 5.4.

Tabla 5.3 Estadísticos de las series de máximos anuales de precipitación para duraciones entre 5 minutos y 30 horas, obtenidas a partir de los registros del pluviógrafo Jardí: máximo x_M de cada serie, medias x_{n41} y x_n , , desviaciones estándar ω_{n41} , ω_n , coeficiente de variación CV y factor de recurrencia k_m

duración (min)	X _M	x _n	X _{n-1}	ω _n	ω _{n-1}	CV	k _m
5	21.6	11.9	11.7	3.8	3.6	0.32	2.8
10	34.4	18.2	18.0	6.0	5.7	0.33	2.9
15	42.0	23.1	22.8	7.5	7.2	0.33	2.7
20	47.5	26.0	25.7	9.2	8.9	0.35	2.5
25	54.7	29.0	28.6	10.8	10.4	0.37	2.5
30	57.2	31.0	30.6	11.7	11.4	0.38	2.3
35	58.2	32.5	32.1	12.2	11.8	0.37	2.2
40	59.6	33.8	33.4	12.6	12.3	0.37	2.1
45	64.2	35.0	34.5	13.1	12.7	0.37	2.3
50	70.6	35.6	35.0	13.7	13.1	0.38	2.7
55	72.1	36.3	35.7	14.0	13.3	0.38	2.7
60	72.6	37.1	36.6	14.3	13.7	0.39	2.6
65	73.1	37.9	37.3	14.7	14.1	0.39	2.5
70	73.5	38.5	37.9	15.0	14.5	0.39	2.5
75	76.2	39.7	39.2	15.6	15.0	0.39	2.5
120	108.0	44.0	43.0	20.0	18.5	0.45	3.5
240	159.7	49.9	48.2	25.1	21.3	0.50	5.2
360	181.3	53.7	51.8	25.9	20.7	0.48	6.3
540	197.1	57.7	55.6	27.5	21.5	0.48	6.6
720	198.3	60.5	58.4	28.5	23.0	0.47	6.1
840	198.3	62.8	60.7	29.4	24.3	0.47	5.7
960	198.3	64.5	62.5	30.1	25.3	0.47	5.4
1080	199.0	66.0	63.9	30.5	25.8	0.46	5.2
1200	200.2	67.7	65.6	31.5	27.1	0.47	5.0
1320	200.4	68.6	66.6	31.7	27.3	0.46	4.9
1440	201.8	69.5	67.4	32.2	27.9	0.46	4.8
1800	204.5	72.0	69.9	34.1	30.1	0.47	4.5

Fig. 5.4 Factor de recurrencia k_m para cada duración considerada

La serie de precipitación máxima en 24 horas presenta un valor medio de 69.5 mm (tabla 5.3). Nótese que esta precipitación se ha calculado haciendo uso de un intervalo móvil de 24 horas, y por tanto, si queremos compararlo con los valores de las series anuales de precipitación en 24 horas utilizados en el apartado anterior, deberemos tener en consideración el factor 1.13 ya mencionado (Hershfield, 1961b) que corrige el uso de intervalos de tiempo fijos en lugar de móviles. El valor medio de 69.5 mm medido con un intervalo móvil de 24 horas equivaldría a una precipitación de 61.5 mm medida con intervalo fijo de 24 horas, valor para el que la curva envolvente obtenida en el apartado 5.3 (ecuación 5.5) asigna un factor de recurrencia k_m de 9.4, superior a cualquiera de los factores observados para cada duración, que oscilan entre 2.1 y 6.6 (tabla 5.3).

Cómo puede observarse en la figura 5.3, el factor de recurrencia presenta sus valores más altos en el rango de duraciones entre 6 y 12 horas, presentando un máximo de 6.6 para, aproximadamente, 9 horas. Este resultado es indicativo de la escala temporal del tipo de procesos que con más frecuencia dan lugar a episodios de precipitación de carácter extremadamente intenso en nuestra zona. Es, en definitiva, un reflejo de los diferentes periodos de retorno que muestran los valores máximos de las series x_M utilizados para el cálculo de k_m (ecuación 5.3). En los casos en que el máximo x_M ha resultado ser un caso extremo extraordinario o *outlier*, los periodos de retorno correspondientes aumentan apreciablemente. Por ejemplo, el evento correspondiente al 5 y 6 de Diciembre de 1971 (051271) presenta intensidades de periodo de retorno muy superiores a la longitud de la muestra (por encima de la curva de periodo de retorno de 100 años, véase la figura 3.12), para las duraciones superiores a dos horas. Así, si se ajusta cada serie por el método de los momentos de orden L a la

función de distribución de Gumbel se observa que, por ejemplo, el valor máximo de 21.6 mm que presenta la serie de 5 minutos de duración corresponde (figura 5.5) a un período de retorno de unos 50 años, inferior a la longitud de la muestra. Incluso menor, 30 años, es el periodo de retorno correspondiente al valor máximo de la serie de 1 hora, 72.6 mm. En cambio, a partir de las 2 horas, el caso 051271 es el que proporciona los valores más altos a todas las series, y si para 2 horas los 108.0 mm calculados para dicho episodio representan un periodo de retorno de 50 años, a partir de 6 horas las cantidades de precipitación aumentan espectacularmente, con periodos de retorno muy superiores a la longitud de la muestra. Por ejemplo, el periodo de retorno que presenta este caso extremo para todas las duraciones entre 6 y 12 horas es superior a los 1000 años. En la figura 5.5 aparece representado el ajuste de la serie correspondiente a 9 horas, cuyo máximo es de 197.1 mm.

Fig. 5.5 Distribuciones de frecuencia de Gumbel ajustadas a las series de precipitación máxima para las duraciones de 5 minutos, 1, 9 y 24 horas

Si las series no contuvieran estos casos extraordinarios, cabría esperar que los valores máximos de todas ellas presentaran unos periodos de retorno del orden de la longitud de la serie y, por tanto, al tratarse de series correspondientes a una misma localidad, un factor de recurrencia independiente de la duración (Koutsoyiannis, 1999). Así pues, para obtener la PMP correspondiente a cada una de las duraciones consideradas, escogemos un valor único de k_m y hacemos uso de la ecuación 5.2 utilizando el valor medio de la precipitación y la desviación estándar obtenidos para cada duración. Con el fin de

maximizar el resultado, escogemos el factor de recurrencia $k_m = 9.4$ obtenido a partir de la curva envolvente (ecuación 5.5), por ser mayor que cualquiera de los factores observados para cada duración. Los valores de PMP estimados mediante esta técnica se muestran en la tabla 5.4 y la figura 5.6. Estos valores se ajustan satisfactoriamente (r²=0.995) por la función:

$$PMP(t) = 60.5 \ln t - 67.7 \tag{5.6}$$

siendo t la duración en minutos y la PMP en mm.

duración (min)	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75
PMP (mm)	47	74	94	112	130	141	146	152	158	164	167	171	175	179	186
duración (min)	120	240	360	540	720	840	960	1080	1200	1320	1440	1800			
PMP (mm)	231	285	297	315	328	338	346	352	363	365	371	392			

Tabla 5.4 Valores estimados de la PMP en Barcelona para las duraciones consideradas

Figura 5.6 Valores estimados de la PMP en Barcelona para duraciones entre 5 minutos y 30 horas

Los valores de la PMP obtenidos, según las distribuciones de Gumbel ajustadas a las series, presentan unos periodos de retorno entre 150000 y 900000 años, en el límite inferior del rango estimado por el National Research Council (NRC, 1994) que es de 10⁵ a 10⁹ años. La figura 5.7 muestra el ajuste realizado a la serie de precipitación máxima en 24 horas, que asigna un valor del periodo de retorno de 360000 años a los 371 mm de la PMP estimada en 24 horas.

Fig. 5.7 Distribución de frecuencias de Gumbel ajustada a la serie de precipitación máxima en 24 horas. El periodo de retorno asignado al valor de 371 mm de PMP es de unos 360000 años

Según Nobilis et al. (1991), la PMP obtenida a partir de la técnica de Hershfield puede ser un límite superior razonable para la precipitación que resulta de fenómenos frecuentes (en su caso, Austria, precipitación orográfica por ascenso forzado), pero en cambio, aquellos fenómenos mucho menos habituales de carácter violento y con una alta organización, como pueden ser los sistemas o complejos convectivos mesoescalares o las supercélulas, podrían no estar apropiadamente representados. Por esta razón debe actuarse con precaución a la hora de considerar el resultado de una evaluación puramente estadística de valores extremos de precipitación.

5.4.2 Análisis de las series de precipitación máxima registrada por el pluviógrafo Jardí con período de retorno igual o superior a 1 año

La elección habitual de series de máximos anuales reduce el número de los datos de precipitación disponibles a uno por año únicamente, eliminándose ocasionalmente aquellos casos que aún habiendo resultado inferiores que el máximo del año en que acontecieron, presentan unas características

similares a las de los escogidos, superando en ocasiones a los valores máximos correspondientes a otros años. Por esta razón, para el análisis de valores extremos de precipitación, algunos autores (Davison, 1984, Davison y Smith, 1990, Smith, 1986, Weissman, I., 1978) recomiendan un enfoque alternativo que evite la eliminación innecesaria de algunos eventos de carácter extremo, seleccionando todos aquellos casos que superen un valor umbral previamente establecido, y estén lo suficiente espaciados temporalmente como para poder ser considerados meteorológicamente independientes. Además, esta técnica permite aumentar la longitud de las series cuando éstas no son lo suficientemente largas para el análisis estadístico (Cook (1985) recomienda una longitud mínima de 20 años para obtener resultados representativos). Con la finalidad de incluir en el estudio episodios lluviosos de carácter extremo que hayan quedado fuera de las series de máximos anuales, a partir del conjunto de datos de precipitación máxima en varias duraciones entre 5 minutos y 30 horas registrados por el pluviógrafo Jardí en Barcelona entre 1927 y 1992, se han seleccionado todos aquellos casos que han igualado o superado el periodo de retorno de 1 año según las curvas IDF obtenidas en el capítulo 2 para la localidad.

Las nuevas series presentan, como era de esperar, valores medios superiores a los de las series de máximos anuales y desviaciones estándar inferiores (tabla 5.5). Sus coeficientes de variación CV han disminuido sensiblemente y los factores de recurrencia k_m observados toman valores entre 2.6 y 9.1. Si a la serie correspondiente a 24 horas de duración, a pesar de no ser una serie de máximos anuales, le quisiéramos calcular el factor de recurrencia que le asigna la curva envolvente obtenida en el apartado 5.2 (ecuación 5.5), obtendríamos para su media de 83.2 mm (73.6 mm el valor equivalente para intervalo fijo de 24 horas) un factor de 8.0. Este valor resulta inferior a todos los factores de recurrencia observados para las duraciones entre 6 y 24 horas (tabla 5.5).

Tabla 5.5 Estadísticos de las series de precipitación que han superado el periodo de retorno de 1 año obtenidas

duración (min)	x_M	x_n	<i>x</i> _{<i>n</i>-1}	W _n	W _{n-1}	CV	k_m
5	21.6	13.4	13.3	2.7	2.5	0.20	3.3
10	34.4	20.7	20.5	4.1	3.8	0.20	3.7
15	42.0	26.2	26.0	5.1	4.7	0.19	3.4
20	47.5	30.8	30.5	5.8	5.4	0.19	3.2
25	54.7	33.8	33.5	6.8	6.3	0.20	3.4
30	57.2	36.0	35.6	7.6	7.1	0.21	3.1
35	58.2	37.9	37.5	7.7	7.3	0.20	2.9
40	59.6	40.0	39.6	7.9	7.5	0.20	2.7

recurrencia k_m para cada duración

a partir de los registros del pluviógrafo Jardí para duraciones entre 5 minutos y 30 horas: máximo x_{M} de cada serie, medias X_{n41} y X_n , desviaciones estándar ω_{n41}, ω_n , coeficiente de variación CV y factor de

duración (min)	x_M	x_n	x_{n-1}	ω_n	ω_{n-1}	CV	k_m
45	64.2	41.5	41.1	8.5	8.0	0.20	2.9
50	70.6	42.3	41.9	9.2	8.4	0.22	3.4
55	72.1	42.6	42.1	9.6	8.9	0.22	3.4
60	72.6	43.5	43.0	9.9	9.2	0.23	3.2
65	73.1	47.6	47.1	9.2	8.4	0.19	3.1
70	73.5	48.7	48.2	9.4	8.7	0.19	2.9
75	76.2	50.4	49.9	10.6	10.0	0.21	2.6
120	108.0	51.1	50.2	15.6	13.9	0.31	4.2
240	159.7	60.8	58.9	21.5	16.4	0.35	6.1
360	181.3	64.5	62.3	21.6	14.8	0.34	8.1
540	197.1	71.5	68.9	22.9	14.1	0.32	9.1
720	198.3	72.4	70.2	22.7	15.3	0.31	8.4
840	198.3	75.8	73.5	23.1	16.1	0.30	7.8
960	198.3	77.9	75.7	23.3	16.8	0.30	7.3
1080	199.0	78.9	76.8	23.2	17.0	0.29	7.2
1200	200.2	81.1	79.0	23.8	18.0	0.29	6.7
1320	200.4	82.0	80.0	23.6	18.0	0.29	6.7
1440	201.8	83.2	81.1	23.5	17.4	0.28	6.9
1800	204.5	85.8	83.8	25.1	20.1	0.29	6.0

Tabla 5.6 Valores de la PMP en Barcelona para las duraciones consideradas a partir de las series de precipitación que han superado el periodo de retorno de 1 año

duración (min)	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75
PMP (mm)	38	58	73	84	96	105	108	112	119	126	130	133	131	134	147
duración (min)	120	240	360	540	720	840	960	1080	1200	1320	1440	1800			
PMP (mm)	193	256	262	280	279	286	291	290	298	297	298	315			

Como ocurría con las series de máximos anuales, el mayor factor de recurrencia observado es el que se obtiene para la serie de 9 horas de duración, de valor 9.1. Este es el valor que vamos a aplicar para el cálculo de la PMP para todas las duraciones. Con las nuevas desviaciones estándar, también inferiores, la aplicación de la ecuación (5.2) proporciona unos valores de la PMP algo menores a los calculados con las series de máximos anuales, que se muestran en la tabla 5.6 y la figura 5.8, junto con los valores máximos x_M de las series. Ajustamos los valores de la PMP calculados mediante las series de

precipitación que han igualado o superado el periodo de retorno de 1 año a una función como la de la ecuación (5.6), obteniendo:

$$PMP(t) = 52.4 \ln t - 70.8 \tag{5.7}$$

siendo t la duración en minutos y la PMP en mm. En este caso el ajuste es algo peor ($r^2=0.977$, figura 5.8). En la figura 5.9 se muestran los ajustes anteriores, en escala semilogarítmica y para duraciones inferiores a 2 horas.

Figura 5.8 Valores de la PMP en Barcelona para duraciones entre 5 minutos y 30 horas. En negro, los calculados a partir de las series de máximos anuales. En azul, los calculados a partir de las series de precipitación con periodo de retorno TOI año. Las estrellas rojas simbolizan los máximos x_M de las series

5.4.3 Análisis de las series de precipitación máxima registrada por la red pluviométrica urbana de CLABSA

En el capítulo 3 se calculó la precipitación máxima en intervalos de tiempo entre 5 minutos y 24 horas registrada por los pluviómetros que CLABSA mantiene en Barcelona, entre 1994 y 2001. A partir de estas series se han seleccionado los máximos anuales para cada duración registrados por cada pluviómetro. Estos máximos se han listado en una serie única para cada duración, como si se tratara de

los registros de un solo pluviómetro. Aplicando el método de estimación estadística, se ha calculado la PMP para cada duración considerando un factor de recurrencia de 9.9, que es el valor que la curva envolvente (5.5) asigna a la media correspondiente a la serie de 24 horas (57.1 mm). Los valores de la PMP calculados se presentan en la tabla 5.7 y se muestran en las figuras 5.9 y 5.10.

Tabla 5.7 Valores de la PMP en Barcelona para las duraciones consideradas a partir de las serie de máximos anuales obtenidos de los registros de los pruviómetros de CLABSA.

duración (min)	5	10	15	20	25	30	35	40	45	50	55	60	120	360	720	1440
PMP (mm)	45	72	91	106	119	130	138	145	151	155	159	162	169	210	257	331

Fig. 5.9 Valores de la PMP en Barcelona para duraciones entre 5 y 75 minutos. En negro, los calculados a partir de las series de máximos anuales. En azul, los calculados a partir de las series de precipitación con periodo de retorno $T \emptyset$ 1 año. En violeta, los calculados analizando las series obtenidas partir de los registros de la red de CLABSA. Las estrellas rojas simbolizan los máximos x_M de las dos primeras series (Jardí)

Obsérvese que la PMP obtenida presenta unos valores muy similares a los calculados a partir de los máximos anuales registrados por el pluviógrafo Jardí para duraciones inferiores a 2 horas, pero que

para duraciones superiores presenta unos valores inferiores a los calculados anteriormente. La diferencia es superior en el rango entre 6 y 12 horas, es decir, para las duraciones en las que se sospechaba una sobrevaloración de la PMP calculada debida a la influencia del episodio extremo 051271. Para probar dicha influencia, se ha eliminado este caso de las series de máximos anuales correspondientes al Jardí para las duraciones superiores a 2 horas y se ha recalculado la PMP, obteniéndose unos valores algo menores a los originales. En la figura 5.10 se muestran dichos valores junto con los calculados anteriormente.

Fig. 5.10 Valores de la PMP en Barcelona para duraciones entre 5 minutos y 30 horas. En negro, los calculados a partir de las series de máximos anuales. En azul, los calculados a partir de las series de precipitación con periodo de retorno TØ1 año. En violeta, los calculados analizando las series obtenidas a partir de los registros de la red de CLABSA. Los circulos blancos representan los valores de la PMP obtenidos a partir de las series de máximos anuales eliminando el episodio del 051271. El cuadrado blanco es el valor de la PMP calculado en la estación Barcelona "Centro" (b0201) para 24 horas. Las estrellas rojas simbolizan los máximos x_M de las dos primeras series (Jardí)

5.5 Conclusiones

Haciendo uso del método estadístico de estimación, se ha calculado la Precipitación Máxima Probable (PMP) en 24 horas para 145 estaciones pluviométricas repartidas por toda el área de Catalunya, a

partir de sus series de máximos anuales de precipitación en 24 horas. El efecto anómalo de la presencia en las series de casos extremos extraordinarios, así como la influencia de la longitud de dichas series, puede dar lugar a coeficientes de variación estadísticos CV cuyo valor difiere sustancialmente del de las estaciones del entorno. Para compensar estos efectos, se ha ajustado el CV de algunas series asignándole el valor más próximo entre los que presentan las estaciones vecinas en un radio inferior a 50 km. Los casos que han tenido que revisarse han sido únicamente un 4 % del total. Asimismo, se ha obtenido la ecuación que determina el factor de recurrencia máximo k_m en función de la precipitación media en 24 horas x_n para esta región, $k_m = \tilde{Z}7.56 \ln x_n + 40.5$ (x_n en mm), como curva envolvente calculada a partir del ajuste a los cuatro puntos correspondientes a los extremos más altos registrados (Puigcerdà, La Pobla de Lillet, Capdella y Cadaqués). Más de un 90% de los valores calculados de la PMP en 24 horas, atendiendo a las funciones de distribución de frecuencias obtenidas en el capítulo 4 que les corresponden a cada una de las series, presentan unos periodos de retorno entre 10⁴ y 10⁸ años.

A partir de los valores calculados de la PMP en 24 horas se ha realizado un análisis espacial aplicando el algoritmo de Cressman (Thiébaux, H.J., Pedder, M.A., 1987) a un campo inicial de precipitación en 24 horas con periodo de retorno de 100000 años en todos los puntos de una malla de 1 km de brazo que contiene toda Catalunya. Este campo inicial ha sido obtenido mediante el uso conjunto de la técnica de regresión múltiple de Ninyerola et al. (2000) y la relación Intensidad-Duración-Frecuencia calculada en el capítulo 2 de este trabajo (Casas et al., 2004). El resultado del análisis ha sido filtrado para conseguir eliminar las estructuras de longitud de onda inferior a la distancia media entre las estaciones pluviométricas utilizadas. De esta forma, se ha obtenido la PMP en 24 horas para toda Catalunya con una gran resolución espacial, que presenta una distribución espacial muy similar a la de la precipitación máxima en 24 horas, con cantidades que oscilan entre valores inferiores a 200 mm y valores que superan los 500 mm y una diferencia relativa entre el máximo y mínimo superior al 150 %. Asimismo, tal y como ocurría con los mapas de precipitación média anual de Catalunya.

El resultado obtenido para la ciudad de Barcelona se ha comparado con la PMP en 24 horas calculada utilizando el método estadístico sobre la serie de precipitación máxima en 24 horas obtenida en el capítulo 2 de este trabajo a partir de los registros del pluviógrafo Jardí del Observatori Fabra de Barcelona. El valor de la PMP en 24 horas calculada para el Observatori Fabra, situado a 411 m de altitud sobre la montaña del Tibidabo, ha resultado algo superior (380 mm) al correspondiente a la estación pluviométrica Barcelona "Centro" (b0201, 357 mm), situada en el centro de la ciudad a 55 m de altitud.

Asimismo, a partir de las series de precipitación máxima obtenidas en el capítulo 2 con los registros del pluviógrafo Jardí, se ha calculado la PMP para duraciones entre 5 minutos y 30 horas, así como su ecuación de ajuste considerando una dependencia logarítmica con la duración t, PMP(t)=60.5 lnt - 67.7 (PMP en mm, t en min, correlación r^2 =0.995). Los valores de la PMP obtenidos, según las funciones de distribución de Gumbel ajustadas a las series, presentan unos periodos de retorno entre 150000 y 900000 años, en el límite inferior del rango estimado por el

National Research Council (NRC, 1994) que es de 10^5 a 10^9 años. El análisis de dichas series ha puesto de manifiesto la influencia que sus valores máximos tienen sobre la PMP calculada y como, para ciertas duraciones, los factores de recurrencia observados resultan más altos que para el resto como consecuencia de las características temporales de las situaciones meteorológicas extremas que han dado origen a los máximos de las series. Por ejemplo, la presencia del caso extremo extraordinario del 051271 en la muestra tiene como consecuencia el aumento de los factores de recurrencia para las series entre 6 y 12 horas.

Seleccionando los valores de precipitación máxima registrados por el pluviógrafo Jardí que han superado el periodo de retorno 1 año se obtienen unas series, para cada duración, de características estadísticas ligeramente diferentes a las series de máximos anuales. En todos los casos, las nuevas series presentan valores medios mayores que sus homólogas y desviaciones estándar menores, y en consecuencia los valores estimados de la PMP tras la aplicación del método estadístico resultan inferiores que los calculados utilizando las series de máximos anuales. La función de ajuste en este caso resulta ser PMP(t)=52.4 lnt - 70.8 (PMP en mm, t en min, correlación $r^2=0.977$).

La aplicación de la técnica estadística sobre las series de precipitación máxima entre 5 minutos y 24 horas obtenidas a partir de los registros de la red pluviométrica de CLABSA en Barcelona, permite realizar una tercera estimación de la PMP. En este caso los valores obtenidos para las duraciones inferiores a 2 horas se encuentran en el rango limitado superiormente por los calculados para las series de máximos anuales del Jardí e inferiormente por los calculados para las series del Jardí que igualaron o superaron 1 año de periodo de retorno. Para duraciones entre 6 y 12 horas, la PMP calculada queda por debajo de las estimadas anteriormente; un indicio más de la influencia que sobre las anteriores tuvo la presencia del caso extremo extraordinario 051271, ausente en los registros de los pluviómetros de CLABSA (1994-2001). Esta influencia puede ponerse de manifiesto eliminando este episodio extraordinario de las series de máximos anuales y recalculando la PMP, que presenta unos nuevos valores ligeramente inferiores a los originales entre 6 y 12 horas. Para 24 horas el valor calculado es prácticamente coincidente con la PMP calculada a partir de los registros de la red de CLABSA. Además, el análisis de la serie de precipitación en 24 horas registrada por el pluviómetro b0201 del INM situado en la estación Barcelona "Centro" da un valor de la PMP situado en el rango determinado por las estimaciones anteriores para dicha duración.

6 Conclusiones

A partir de los registros del pluviógrafo de intensidades Jardí del Observatori Fabra de Barcelona entre 1927 y 1992, se ha obtenido la relación entre el valor de la precipitación máxima en 24 horas utilizando un intervalo de tiempo móvil y el de la precipitación registrada en un intervalo de 24 horas fijo (de 0 UTC de un día a 0 UTC del siguiente y de 8 UTC a 8 UTC). La razón entre ambos valores es de 1.16, un valor casi coincidente con el 1.167 calculado por Dwyer y Reed (1994) y similar al factor 1.13 recomendado por Hershfield (1961).

El ajuste mediante la función de distribución Gamma de las series de precipitación máxima en intervalos móviles de tiempo entre 5 minutos y 30 horas no ha resultado suficientemente satisfactorio para representar los valores extremos de la distribución para las duraciones más cortas. Para estos valores una función potencial-exponencial de tres parámetros (función *mnp*), utilizada como función de densidad acumulada, proporciona un mejor ajuste que la función Gamma para duraciones inferiores a las 6 horas.

Se ha obtenido la ecuación generalizada de las curvas IDF para la ciudad de Barcelona, $I(t,T) = \frac{19 \log T + 23}{(13+t)^{0.87}}$, en la que la intensidad de precipitación I se expresa en mm/min, la duración t

en min y el periodo de retorno T en años. En general, los ajustes que se han ensayado considerando una dependencia logarítmica de la intensidad de precipitación con el periodo de retorno T han resultando mejores que aquellos para los que se ha considerado una dependencia de tipo potencial.

El análisis de conglomerados ha permitido caracterizar las lluvias de periodo de retorno igual o superior a 5 años ocurridas en Barcelona entre 1927 y 1992 y clasificarlas en cuatro grupos claramente diferenciados. El primero es el representativo de las lluvias de carácter local, con altas intensidades de precipitación en intervalos muy cortos de tiempo, presentando además una clara influencia estacional y del ciclo diurno. El segundo corresponde a las duraciones típicas de la mesoescala, entre 2 y 12 horas, para el que se ha encontrado también una influencia estacional. Las lluvias de origen sinóptico cuyas intensidades sólo superan a las de periodo de retorno de 5 años en los intervalos de 12 y 24 horas constituyen el tercer grupo. El cuarto grupo está constituido por episodios lluviosos caracterizados por presentar elevadas intensidades de precipitación para un rango amplio de duraciones entre 20 minutos

y 24 horas. Esta misma técnica de clasificación se ha aplicado a las lluvias de carácter extremo registradas, entre 1994 y 2001, por la red de pluviómetros de intensidad de tipo balancín que CLABSA mantiene en Barcelona, obteniéndose nuevamente los 4 grupos de clasificación con una distribución del total de los chubascos analizados en cada grupo diferente de la obtenida con los registros del pluviómetro Jardí, como consecuencia de las repeticiones para varios de los pluviómetros de la red urbana de un mismo chubasco.

Como medida de la severidad de la lluvia, se ha propuesto un índice ponderado de intensidad (IP) que se calcula a partir de las intensidades máximas en intervalos de tiempo de 5 minutos, 1, 2 y 24 horas, de manera que refleja la contribución de los mecanismos de escala local, mesoescala y escala sinóptica al origen de cada lluvia. La distribución de los índices calculados para las lluvias extremas registradas por el pluviómetro Jardí entre 1927 y 1992 ha resultado ser muy similar a la de los índices correspondientes a las lluvias registradas por la red pluviométrica urbana entre 1994 y 2001. Se ha ensayado un ajuste de las dos muestras de índices por la función de distribución lognormal estándar y, en ambos casos, la distribución de índices se ha ajustado satisfactoriamente, resultando prácticamente coincidentes los parámetros de los dos ajustes. El similar comportamiento de los índices de una y otra muestra pone de manifiesto la equivalencia entre ambas en cuanto a la medida y distribución de la severidad de las lluvias extremas. Se trata de un indicativo más de la eficacia de la técnica de sustitución de espacio por tiempo (station-year approach; NRC, 1988), que permite alargar las series de datos de lluvia de un lugar añadiendo los valores registrados en estaciones vecinas y que, en el caso ideal de sucesos meteorológicamente independientes registrados en estaciones de una misma región homogénea, supone la equivalencia entre los registros de n estaciones durante d años y los de una sola estación en (nxd) años.

El cálculo de los parámetros de la distribución de valores extremos de Gumbel mediante el método de los momentos de orden L propuesto por Hosking (1990) proporciona unos valores más estables y realistas de las precipitaciones diarias de periodos de retorno elevados, para las series de valores máximos de 145 estaciones pluviométricas de Catalunya, que el método tradicional de ajuste que hace uso de los momentos convencionales media y desviación estándar. Utilizando los momentos de orden L, los valores de lluvia en 24 horas extraordinariamente elevados que se han registrado en algunos de los observatorios estudiados no influyen de una manera tan importante en el ajuste de la función de distribución de Gumbel, de manera que, en algunas zonas de Catalunya, se han obtenido diferencias superiores al 30 % entre las cantidades de lluvia en 24 horas calculadas en este trabajo para periodos de retorno superiores a 50 años y las obtenidas por otros autores (INM, 1999, Lana et al., 1995).

El uso de un campo inicial de gran resolución, obtenido apartir de la ecuación de regresión múltiple obtenida por Ninyerola et al. (2000), en la aplicación del método de Cressman para el análisis de la distribución espacial de las lluvias extremas en Catalunya nos ha permitido asignar a cada km² un valor numérico calculado objetivamente, lo que mejora notablemente tanto la resolución en las zonas con baja densidad de estaciones como la estima aproximada que puede hacerse a partir de un mapa analizado manualmente.

La aplicación de un filtro numérico al análisis espacial de las lluvias extremas en Catalunya ha eliminado las estructuras de longitud de onda inferior a la distancia media entre las estaciones pluviométricas utilizadas, asegurando que la resolución del análisis espacial no dependa de la densidad de la red de observación en cada zona y evitando, por tanto, falsas interpretaciones sobre la variabilidad espacial real de la variable analizada.

Se ha calculado la Precipitación Máxima Probable (PMP) en 24 horas para 145 estaciones pluviométricas repartidas por toda Catalunya, mediante el método estadístico de estimación, encontrando, en primer lugar, la ecuación que determina el factor de recurrencia máximo k_m en función de la precipitación media en 24 horas x_n para esta región, $k_m = -7.56 \ln x_n + 40.5$ (x_n en mm). Atendiendo a las funciones de distribución de frecuencias obtenidas en el capítulo 4, a los valores de la PMP en 24 horas calculados les corresponden unos periodos de retorno entre 10⁴ y 10⁸ años, para un porcentaje superior al 90 % de las estaciones.

Se ha obtenido un análisis espacial de la PMP para Catalunya con una resolución de 1 km mediante la aplicación conjunta de la técnica de regresión múltiple de Ninyerola et al. (2000), la relación Intensidad-Duración-Frecuencia calculada en el capítulo 2 de este trabajo y el algoritmo de Cressman.

Los períodos de retorno correspondientes a la PMP para la ciudad de Barcelona, calculada utilizando el banco de datos del pluviógrafo Jardi del Observatorio Fabra, para duraciones entre 5 minutos y 30 horas, varían entre 150000 y 900000 años, en el límite inferior del rango estimado por el National Research Council (NRC, 1994). La ecuación de ajuste entre la PMP y la duración de la lluvia obtenida, considerando una dependencia logarítmica, ha sido PMP(t)=60.5 lnt - 67.7 (PMP en mm, t en min, correlación r^2 =0.995).

Cuando se ha considerado la precipitación máxima registrada por el pluviógrafo Jardí de periodo de retorno superior a 1 año se ha obtenido unas series, para cada duración, de características estadísticas ligeramente diferentes a las series de máximos anuales. En todos los casos, las nuevas series presentan valores medios mayores y desviaciones estándar menores, y en consecuencia los valores estimados de la PMP, tras la aplicación del método estadístico, resultan inferiores que los calculados utilizando las series de máximos anuales. La función de ajuste en este caso resulta ser PMP(t)=52.4 lnt - 70.8 (PMP en mm, t en min, correlación $r^2=0.977$).

Los valores de la PMP para Barcelona calculados a partir de los datos de lluvia de la red pluviométrica de CLABSA, correspondientes al período 1994-2001, para duraciones inferiores a 2 horas se encuentran en el rango limitado superiormente por los calculados para las series de máximos anuales del Jardí e inferiormente por los calculados para las series del Jardí que igualaron o superaron 1 año de periodo de retorno. Para duraciones entre 6 y 12 horas la PMP calculada queda por debajo de las estimadas anteriormente mientras que para 24 horas el valor calculado es prácticamente coincidente.

Anexo A: Series de precipitación extrema registrada por el pluviógrafo Jardí del Observatori Fabra de Barcelona (1927-1992)

				_				-		_		-	
5	5	1	0	1:	5	20	0	2	5	30	0	3.	5
12.4	050927	20.5	050927	31.4	050927	40.0	050927	44.5	050927	45.4	050927	46.3	050927
10.7	251028	15.2	251028	20.3	251028	24.8	251028	28.2	251028	31.8	251028	35.8	251028
11.8	100629	13.5	100629	14.2	100629	14.8	100629	15.0	100629	15.6	020829	17.0	020829
15.7	130830	26.3	130830	32.5	130830	37.2	130830	42.5	130830	46.0	130830	47.6	130830
18.8	090831	30.7	090831	38.7	090831	44.4	090831	49.9	090831	55.3	090831	56.8	090831
10.7	070732	20.1	070732	28.2	070732	36.1	070732	38.9	070732	39.4	070732	39.8	070732
12.3	120633	17.0	120633	17.2	120633	17.5	120633	17.8	120633	18.0	120633	18.0	080933
14.0	051134	20.0	140934	28.6	140934	35.8	140934	41.4	140934	43.9	140934	46.4	140934
21.6	011035	25.3	011035	27.2	011035	28.1	011035	28.5	011035	28.9	121035	29.4	121035
6.3	250336	7.9	261136	10.7	261136	13.3	261136	15.2	261136	16.7	261136	18.5	261136
11.7	021037	16.0	021037	16.0	021037	19.0	021037	22.1	021037	22.9	021037	23.5	021037
10.9	110638	16.1	110638	20.1	210838	24.9	210838	30.2	210838	32.6	210838	33.3	210838
14.5	240839	17.4	120639	23.8	050639	30.0	050639	37.8	050639	43.1	050639	45.2	050639
13.7	070740	25.1	070740	32.7	070740	35.8	070740	37.8	070740	42.0	070740	43.5	070740
13.0	291141	18.5	100741	23.6	100741	28.1	100741	33.9	100741	36.4	100741	36.8	100741
7.2	301042	12.9	200842	18.3	200842	22.9	200842	25.9	200842	30.3	200842	34.4	200842
11.3	250743	20.9	250743	28.0	250743	32.3	250743	37.1	250743	41.3	250743	42.3	250743
14.4	060844	21.1	060844	24.0	060844	28.2	080844	31.7	080844	34.2	080844	35.5	080844
12.5	180845	21.8	180845	27.3	180845	33.6	180845	39.6	180845	42.1	180845	42.4	180845
8.4	180846	14.1	251046	17.3	251046	19.5	251046	20.2	251046	20.7	251046	21.1	251046
14.0	071047	20.9	071047	24.2	071047	28.7	190747	34.4	190747	37.3	190747	38.0	190747
17.2	030948	26.7	030948	33.8	030948	38.0	030948	40.7	030948	41.9	030948	42.6	030948
7.9	300549	11.7	051049	13.7	051049	15.1	051049	15.9	051049	16.4	190549	17.5	190549
10.0	070850	14.0	170650	20.0	170650	26.0	170650	29.9	170650	32.6	170650	34.6	170650
14.6	150751	23.1	150751	28.2	150751	30.6	200851	33.6	250851	37.2	200851	42.5	200851
15.0	130952	27.4	130952	36.6	130952	47.5	130952	54.7	130952	57.2	130952	58.2	130952

250953

140954

33.1

12.3

250953

140954

33.4

12.3

250953

140954

33.6

16.8

280653

140954

36.3

19.5

250953

140954

22.5

12.0

31.6

26.9

250953

140954

250953

140954

12.7

9.1

Tabla A1 Series de máximos anuales de precipitación (mm, ddmmaa), para cada duración (min). En negrita se indican los valores máximos de cada serie

4	5	1	0	1	5	2	0	2	5	3	0	3:	5
10.5	050855	16.0	050855	18.8	050855	20.5	050855	22.1	050855	22.4	050855	22.5	050855
8.8	201156	10.4	201156	26.2	221056	16.7	221056	19.1	221056	23.9	221056	25.4	221056
8.4	260457	11.1	260457	26.2	300857	17.0	151057	18.9	151057	19.6	151057	20.6	151057
19.5	310858	30.4	310858	33.2	310858	41.1	160758	49.6	160758	55.9	160758	57.5	160758
11.3	300559	18.3	300559	24.5	300559	30.8	300559	35.6	300559	40.0	300559	44.7	300559
15.1	300860	25.9	300860	32.0	300860	37.3	300860	40.7	300860	42.5	300860	43.6	300860
12.2	220761	19.0	220761	21.1	220761	25.6	040961	28.5	040961	30.7	040961	31.2	040961
13.1	260962	19.6	260962	37.2	250962	32.2	250962	37.0	250962	41.9	250962	45.8	250962
8.0	010863	14.1	310863	18.3	110963	23.8	110963	28.4	110963	31.5	110963	33.3	110963
9.4	200964	14.0	200964	14.5	200964	15.8	200964	17.1	200964	17.6	270664	18.0	270664
16.3	010965	27.3	010965	31.7	010965	34.5	010965	34.5	010965	34.5	010965	34.5	010965
10.5	041066	16.6	041066	17.3	041066	22.9	151066	25.4	151066	28.3	151066	33.0	151066
9.7	231067	14.5	231067	16.0	231067	22.6	231067	25.4	231067	26.9	231067	28.4	231067
9.6	180668	14.0	060868	17.8	081168	21.1	081168	22.5	081168	23.9	081168	25.5	081168
10.5	181069	18.0	181069	21.9	181069	27.8	181069	35.2	181069	39.4	181069	41.7	181069
9.9	101070	16.3	101070	20.0	101070	20.0	101070	20.1	101070	20.1	101070	20.3	101070
12.5	061171	23.1	061171	30.7	061171	41.8	061171	49.1	061171	52.1	061171	53.0	061171
19.5	030972	27.9	030972	29.8	030972	31.4	030972	33.4	030972	34.5	030972	34.9	030972
17.6	260873	25.0	260873	26.6	260873	27.0	260873	27.8	070973	28.8	070973	28.8	070973
8.0	170974	13.6	170974	19.1	260874	25.3	260874	30.8	260874	36.9	260874	42.6	260874
8.1	210875	11.0	310875	12.5	310875	13.1	310875	13.9	310875	15.0	310875	15.8	310875
11.2	010876	18.3	010876	22.9	010876	31.5	010876	37.2	010876	38.8	010876	39.2	010876
6.9	280677	10.8	220677	13.4	220677	15.6	220677	17.8	220677	19.2	220677	21.3	220677
15.4	040978	18.9	040978	19.1	040978	19.1	040978	19.1	040978	19.1	040978	19.1	040978
11.6	041079	18.0	041079	23.8	041079	28.7	041079	31.0	041079	32.3	041079	34.6	041079
6.8	160580	11.7	160580	13.0	160580	14.2	160580	15.5	160580	16.0	160580	16.2	160580
10.1	210881	17.7	210881	24.0	210881	29.7	210881	34.5	210881	38.7	210881	44.0	210881
10.1	300782	14.3	300782	16.3	230782	17.6	230782	17.6	230782	17.7	230782	17.7	230782
18.6	141083	24.2	141083	26.4	141083	27.4	141083	28.8	141083	28.8	141083	28.8	141083
8.9	051184	12.4	051184	13.1	051184	14.6	051184	15.5	051184	16.0	051184	16.7	270884
11.2	170585	18.4	170585	20.3	170585	20.6	170585	20.8	170585	20.8	170585	21.6	050585
7.8	300986	13.3	300986	18.2	300986	21.1	300986	22.7	300986	23.9	300986	25.1	300986
11.5	280587	18.5	031087	25.7	031087	29.2	031087	37.8	031087	43.8	031087	46.5	031087
7.5	140988	10.5	140988	11.5	140988	12.4	140988	13.9	140988	14.1	140988	15.3	270588
12.9	281089	19.6	281089	22.1	281089	22.7	281089	23.2	281089	23.9	281089	24.3	281089
20.8	220590	34.4	220590	42.0	220590	45.3	220590	46.1	220590	46.9	220590	47.1	220590
5.0	240391	6.0	240391	6.1	240391	6.2	240391	6.2	240391	6.2	240391	6.7	240391
5.3	050792	9.3	050792	13.3	050792	14.5	050792	15.5	050792	16.0	050792	16.2	050792

4	0	4	5	5	0	5.	5	6	0	6	5	7	0	7	5
46.7	050927	47.3	151027	50.5	151027	52.1	151027	53.5	151027	54.9	151027	55.8	151027	56.0	151027
41.9	251028	48.4	251028	52.8	251028	55.2	251028	58.5	251028	62.3	251028	66.8	251028	76.2	080328
18.4	020829	19.9	020829	21.4	020829	22.0	020829	22.4	020829	22.7	020829	23.2	020829	23.7	020829
48.6	130830	49.3	130830	49.5	130830	49.5	130830	49.5	130830	50.3	130830	51.1	130830	51.5	130830

40	45	50	55	60	65	70	75
57.1 090831	57.1 090831	57.1 090831	57.1 090831	57.7 111031	58.9 111031	60.2 111031	62.0 111031
40.3 070732	41.1 070732	41.3 070732	41.3 070732	41.3 070732	41.3 070732	41.3 070732	41.3 070732
18.2 080933	28.1 080933	18.7 200933	18.9 200933	19.3 040633	19.7 040633	20.0 040633	57.6 131233
55.1 140934	64.2 140934	70.6 140934	72.1 140934	72.6 140934	73.1 140934	73.5 140934	75.1 140934
29.5 121035	29.5 121035	29.5 011035	31.2 121035	32.6 121035	33.3 121035	33.6 121035	33.7 121035
19.8 261136	20.6 261136	21.5 261136	22.4 261136	23.1 261136	23.5 261136	23.6 261136	24.1 261136
23.5 021037	23.5 021037	24.0 031037	24.3 031037	24.3 031037	24.5 031037	24.6 031037	24.6 031037
33.4 210838	33.4 210838	33.4 210838	33.4 210838	33.4 210838	33.4 210838	34.3 210838	35.7 210838
46.0 050639	46.2 050639	46.5 050639	46.5 050639	46.5 050639	46.6 050639	47.1 050639	47.5 050639
43.6 070740	43.6 070740	43.6 070740	43.6 070740	43.6 070740	43.6 070740	43.7 070740	43.8 070740
38.2 100741	39.1 100741	40.9 100741	44.1 100741	46.3 100741	49.1 100741	49.3 100741	49.9 100741
37.6 200842	44.8 050242	42.7 200842	44.0 200842	45.2 200842	46.4 200842	47.3 200842	48.0 200842
42.7 250743	43.1 250743	43.6 250743	44.1 250743	44.7 250743	45.2 250743	45.5 250743	45.9 250743
36.4 080844	36.7 080844	37.0 080844	37.3 080844	37.6 080844	37.8 080844	38.0 080844	38.1 080844
42.8 180845	43.0 180845	43.0 180845	43.0 180845	43.0 180845	43.0 180845	43.0 180845	43.0 180845
21.4 251046	22.1 251046	22.5 251046	22.9 251046	23.3 251046	23.8 251046	24.2 251046	24.5 251046
38.2 190747	38.8 190747	39.5 190747	39.9 190747	40.2 190747	40.2 190747	40.2 190747	40.2 190747
42.9 030948	42.9 030948	42.9 030948	43.0 030948	43.3 030948	44.0 030948	44.1 030948	44.1 030948
18.3 051049	19.0 051049	19.4 051049	19.8 051049	22.2 051049	24.2 051049	25.5 051049	26.6 051049
36.0 170650	36.7 170650	36.7 170650	36.9 170650	36.9 170650	36.9 170650	36.9 170650	36.9 170650
45.7 200851	47.2 200851	47.9 200851	48.4 200851	48.7 200851	48.9 200851	48.9 200851	48.9 200851
59.6 130952	61.2 130952	62.3 130952	63.8 130952	64.6 130952	65.2 130952	65.6 130952	66.4 130952
37.7 280653	38.7 280653	40.7 280653	42.4 280653	48.5 280653	51.7 280653	55.1 280653	57.5 280653
19.8 140954	19.8 140954	19.8 140954	19.8 140954	19.8 140954	19.8 140954	19.8 140954	19.8 140954
22.5 050855	22.5 050855	22.5 050855	22.5 050855	22.5 050855	22.5 050855	22.5 050855	22.5 050855
25.6 221056	25.8 221056	25.8 221056	25.8 221056	25.8 221056	25.8 221056	25.9 221056	26.1 221056
22.5 151057	23.1 151057	23.2 151057	23.5 151057	24.3 260457	26.2 260457	27.1 260457	28.9 260457
58.6 160758	62.4 160758	63.6 160758	64.7 160758	64.9 160758	65.3 160758	65.6 160758	65.9 160758
50.7 300559	52.9 300559	54.9 300559	57.0 300559	59.7 300559	62.8 300559	64.7 300559	66.3 300559
45.4 300860	45.8 300860	47.5 300860	49.5 300860	50.3 300860	52.1 300860	52.8 300860	53.0 300860
33.5 040961	36.6 040961	38.1 040961	38.8 040961	39.4 040961	40.4 040961	42.6 040961	44.2 040961
47.5 250962	48.0 250962	48.1 250962	48.1 250962	48.1 250962	48.2 250962	48.4 250962	48.4 250962
33.9 110963	34.5 110963	34.8 110963	35.2 110963	35.7 110963	36.1 110963	36.7 110963	37.0 110963
18.3 270664	18.5 130864	19.3 130864	20.3 130864	21.1 130864	21.6 130864	22.1 130864	22.6 130864
34.5 010965	34.5 010965	34.5 010965	36.4 081065	37.7 081065	38.9 081065	39.9 081065	40.6 081065
37.5 151066	38.4 151066	39.0 151066	41.4 151066	44.6 151066	46.0 151066	47.0 151066	47.6 151066
29.6 231067	30.8 231067	31.7 231067	33.7 231067	37.0 231067	38.5 231067	39.9 231067	41.9 231067
26.6 081168	27.7 081168	28.5 081168	29.5 081168	30.9 081168	32.1 081168	33.2 081168	34.1 081168
43.3 181069	45.1 181069	47.0 181069	48.3 181069	49.1 181069	49.7 181069	50.2 181069	50.5 181069
22.8 101070	25.2 101070	27.5 101070	29.0 101070	30.6 101070	31.0 101070	31.2 101070	31.4 101070
53.4 061171	53.5 061171	53.5 061171	55.6 051271	59.5 051271	60.8 051271	64.7 051271	68.9 051271
35.2 030972	35.2 030972	35.2 030972	35.2 030972	35.2 030972	35.4 030972	36.0 030972	36.0 030972
28.8 070973	28.8 070973	28.8 070973	28.8 070973	28.8 070973	28.8 070973	28.8 070973	28.8 070973
44.5 260874	45.9 260874	46.8 260874	47.0 260874	49.7 260874	51.9 260874	53.1 260874	53.6 260874
16.2 310875	16.5 310875	16.8 310875	16.9 310875	17.0 310875	17.3 310875	17.6 310875	17.8 310875

135

40	45	50	55	60	65	70	75
39.5 010876	39.7 010876	39.9 010876	40.1 010876	40.3 010876	40.4 010876	40.4 010876	40.4 010876
21.9 220677	22.3 220677	22.7 220677	23.0 220677	23.4 220677	23.6 220677	23.8 220677	24.2 220677
19.5 040978	20.4 040978	21.8 040978	23.2 040978	23.6 040978	24.0 040978	24.0 040978	24.0 040978
36.2 041079	37.3 041079	38.5 041079	39.9 041079	41.6 041079	42.5 041079	43.9 041079	45.0 041079
16.2 160580	16.2 160580	16.2 160580	16.2 160580	16.2 160580	16.2 160580	16.2 160580	16.2 160580
49.7 210881	53.6 210881	56.1 210881	56.9 210881	57.4 210881	57.8 210881	57.8 210881	57.8 210881
17.7 230782	17.8 150282	18.2 150282	18.6 150282	19.2 150282	20.5 150282	21.7 150282	22.7 150282
28.8 141083	28.8 141083	29.8 071183	30.7 071183	32.4 071183	33.0 071183	33.3 071183	34.8 071183
20.0 270884	21.5 270884	22.3 270884	22.9 270884	22.9 270884	22.9 270884	23.0 270884	23.0 270884
25.8 050585	26.7 050585	27.1 050585	27.5 050585	27.9 050585	28.2 050585	28.4 050585	28.5 050585
25.9 300986	26.7 300986	26.9 300986	27.2 300986	27.5 300986	28.2 300986	28.6 300986	28.8 300986
47.5 031087	48.1 031087	48.8 031087	49.6 031087	50.2 031087	51.2 031087	52.4 031087	52.8 031087
16.4 270588	17.9 270588	18.2 270588	18.8 270588	19.2 270588	19.3 270588	19.6 300988	20.3 300988
24.4 281089	24.5 281089	24.5 281089	24.5 281089	24.5 281089	24.5 281089	24.5 281089	24.5 281089
47.1 220590	47.1 220590	47.1 220590	47.1 220590	47.1 220590	47.1 220590	47.1 220590	47.1 220590
6.8 240391	6.8 240391	6.8 240391	6.8 240391	6.8 240391	6.8 240391	6.8 240391	6.8 240391
16.2 050792	16.4 050792	16.4 050792	16.4 050792	16.4 050792	16.4 050792	16.4 050792	16.4 050792

12	20	24	0	36	0	54	0	72	20
71.2	151027	75.3	151027	75.3	151027	75.3	151027	75.3	151027
104.6	251028	120.8	251028	122.7	251028	123.3	251028	123.6	251028
36.2	020829	50.5	020829	60.1	080829	76.8	080829	77.4	080829
54.3	130830	54.3	130830	63.0	050130	85.3	050130	90.2	050130
72.8	111031	78.7	111031	78.7	111031	79.0	111031	90.4	111031
41.3	070732	41.3	70732	43.3	120732	45.6	120732	47.3	070732
23.7	270933	39.7	270933	49.6	270933	50.1	270933	50.1	270933
91.2	140934	100.5	140934	103.1	140934	105.1	140934	105.1	140934
33.7	121035	35.6	121035	35.6	121035	36.5	121035	38.4	121035
27.0	261136	33.5	261136	38.1	261136	43.0	261136	51.7	261136
26.0	031037	28.3	031037	35.2	021037	35.2	021037	35.2	021037
38.0	110838	42.9	110838	43.4	110838	43.4	110838	43.4	110838
48.0	050639	48.0	050639	48.0	050639	48.0	050639	48.6	050639
43.8	070740	43.9	070740	43.9	070740	43.9	070740	43.9	070740
52.6	100741	55.7	100741	57.7	100741	58.2	100741	64.2	280941
56.7	200842	58.5	200842	58.5	200842	58.5	200842	59.6	200842
46.1	250743	46.1	250743	46.6	311043	48.1	311043	56.3	311043
38.1	080844	52.8	240244	70.7	240244	90.3	240244	111.8	240244
43.0	180845	43.0	180845	43.0	180845	43.0	180845	45.9	180845
29.1	251046	35.0	101046	40.4	101046	45.6	251046	48.4	101046
40.2	190747	40.3	190747	42.2	190747	42.2	190747	42.2	190747
48.1	030948	58.3	030948	68.2	290648	82.6	290648	91.4	290648
39.4	051049	42.7	051049	43.9	051049	49.3	290449	54.7	290449
36.9	170650	37.0	170650	38.8	170650	38.8	170650	38.8	170650

12	20	24	0	36	60	54	10	72	20
48.9	200851	48.9	200851	58.1	250851	58.4	250851	58.4	250851
68.5	130952	69.8	130952	69.8	130952	69.8	130952	69.8	130952
67.6	280653	96.2	111053	96.9	111053	97.2	111053	102.5	111053
20.2	140954	24.7	050454	33.1	050454	39.6	050454	42.5	050454
22.5	050855	22.5	050855	22.5	050855	22.5	050855	22.5	050855
27.8	201156	43.7	201156	54.9	201156	72.4	201156	83.0	201156
32.8	260457	39.8	260457	51.6	260457	71.9	260457	77.8	260457
71.9	160758	72.1	160758	72.1	160758	72.1	160758	72.1	160758
75.6	300559	76.9	300559	76.9	300559	76.9	300559	76.9	300559
53.0	300860	63.6	300860	63.6	300860	63.8	300860	65.3	300860
60.3	040961	70.9	040961	71.3	040961	71.3	040961	71.3	040961
57.2	250962	57.2	250962	63.2	250962	64.0	250962	64.0	250962
39.1	110963	47.8	110963	57.2	110963	67.1	110963	75.8	110963
25.2	130864	29.6	130864	31.7	130864	31.8	170164	33.2	130864
46.5	081065	47.4	81065	47.4	81065	56.6	251065	59.7	251065
56.5	151066	56.5	151066	57.3	151066	60.1	151066	71.6	151066
57.3	231067	67.4	231067	69.5	231067	69.5	231067	69.5	231067
40.0	081168	42.6	081168	53.8	081168	62.4	081168	67.9	081168
51.8	181069	54.1	181069	54.1	181069	62.3	020469	77.8	020469
31.5	101070	32.7	090570	37.2	090570	49.5	101070	49.5	101070
108.0	051271	159.7	051271	181.3	051271	197.1	051271	198.3	051271
38.4	030972	39.4	030972	45.5	020172	49.8	061072	50.3	061072
28.8	070973	34.0	070973	34.3	070973	36.4	070973	36.6	231273
54.3	260874	54.3	260874	54.3	260874	54.3	260874	54.3	260874
18.4	310875	24.3	310875	39.5	310875	42.6	310875	42.6	310875
45.4	010876	46.5	010876	46.5	010876	61.3	010876	61.3	010876
27.5	160577	29.7	220677	34.0	030577	43.4	030577	47.0	030577
29.1	040978	46.3	040978	55.7	040978	55.7	040978	55.7	040978
56.3	041079	65.5	041079	66.6	041079	66.6	041079	66.6	041079
16.2	160580	18.8	230280	20.1	230280	22.5	210380	22.5	210380
57.8	210881	71.7	210881	71.7	210881	71.7	210881	71.7	210881
24.6	150282	25.1	150282	29.6	150282	38.1	150282	46.6	150282
46.3	071183	48.1	071183	49.2	071183	49.2	071183	49.6	071183
23.0	270884	23.0	270884	34.9	130384	43.8	130384	53.1	130384
28.5	050585	28.5	050585	28.5	050585	28.5	050585	28.5	050585
30.7	300986	35.5	300986	35.6	300986	36.8	300986	36.8	300986
56.8	031087	94.9	031087	95.3	031087	95.3	031087	95.3	031087
22.3	300988	22.8	300988	33.2	130188	33.2	130188	33.2	130188
24.5	281089	24.5	281089	24.5	281089	24.5	281089	24.5	281089
47.1	220590	47.1	220590	47.1	220590	47.1	220590	47.1	220590
6.9	240391	8.6	240391	8.9	240391	8.9	240391	8.9	240391
16.4	050792	16.4	050792	16.7	050792	16.7	050792	16.7	050792

84	0	96	50	10	80	12	00	13	20	144	40	180	00
75.3	151027	75.3	151027	75.3	151027	75.3	151027	75.3	151027	75.3	151027	75.3	151027
123.6	251028	123.6	251028	123.6	251028	123.6	251028	123.6	251028	123.6	251028	123.6	251028
83.1	080829	87.4	080829	87.4	080829	87.4	080829	87.4	080829	87.4	080829	87.4	080829
92.2	050130	107.1	050130	126.4	050130	143.6	050130	146.1	050130	147.3	050130	160.2	050130
91.2	111031	91.2	111031	91.2	111031	91.2	111031	91.2	111031	91.2	111031	92.6	111031
52.8	070732	52.9	070732	52.9	070732	52.9	070732	52.9	070732	52.9	070732	52.9	070732
50.1	270933	51.9	270933	58.3	270933	58.3	270933	62.0	061133	65.7	061133	80.9	270933
105.1	140934	105.1	140934	105.1	140934	105.1	140934	105.1	140934	105.1	140934	105.1	140934
38.4	121035	38.4	121035	38.8	100935	42.0	100935	42.8	100935	42.8	100935	43.6	100935
55.3	261136	58.7	261136	61.9	261136	65.4	261136	67.8	261136	68.2	261136	77.1	261136
35.2	021037	35.2	021037	35.2	021037	35.2	021037	35.2	021037	35.2	021037	35.2	021037
43.5	110838	43.5	110838	43.5	110838	43.5	110838	43.5	110838	43.5	110838	43.5	110838
61.5	050639	61.5	050639	61.5	050639	61.5	050639	61.5	050639	61.5	050639	61.5	050639
43.9	070740	43.9	070740	43.9	070740	43.9	070740	43.9	070740	43.9	070740	43.9	070740
66.2	280941	66.2	280941	66.2	280941	66.2	280941	66.2	280941	66.2	280941	66.2	280941
63.2	270442	64.9	270442	68.8	270442	69.5	270442	79.2	270442	87.1	270442	104.1	270442
61.6	141243	66.7	141243	70.6	141243	74.9	141243	77.5	031143	85.0	031143	90.7	031143
121.2	240244	121.8	240244	121.8	240244	121.8	240244	121.8	240244	122.7	240244	131.0	240244
45.9	180845	45.9	180845	45.9	180845	45.9	180845	45.9	180845	45.9	180845	45.9	180845
49.4	251046	49.4	251046	49.4	251046	49.4	251046	49.4	251046	49.4	251046	50.5	101046
42.2	190747	42.8	301147	43.5	301147	48.0	301147	53.5	301147	53.5	301147	53.5	301147
95.9	290648	97.7	290648	97.7	290648	97.7	290648	97.7	290648	97.7	290648	97.7	290648
66.1	290449	79.5	290449	85.3	290449	87.2	290449	87.3	290449	87.3	290449	106.5	290449
38.8	170650	38.8	170650	41.2	130450	50.0	130450	51.7	130450	51.7	130450	51.7	130450
58.4	250851	58.4	250851	58.4	250851	58.4	250851	58.4	250851	58.4	250851	58.4	250851
69.8	130952	69.8	130952	69.8	130952	69.8	130952	69.8	130952	69.8	130952	69.8	130952
103.4	111053	105.0	111053	105.0	111053	105.0	111053	105.0	111053	105.0	111053	105.0	111053
49.9	050454	50.1	050454	51.9	050454	51.9	050454	51.9	050454	51.9	050454	51.9	050454
22.5	050855	22.5	050855	22.5	050855	22.5	050855	22.5	050855	22.5	050855	22.5	050855
93.0	201156	99.6	201156	101.3	201156	104.5	201156	104.9	201156	105.1	201156	105.3	201156
78.0	260457	87.1	260457	90.6	260457	90.7	260457	90.7	260457	90.7	260457	90.7	260457
72.1	160758	72.1	160758	72.1	160758	72.1	160758	72.1	160758	72.1	160758	72.1	160758
76.9	300559	76.9	300559	76.9	300559	82.3	200959	89.7	200959	97.4	200959	104.9	200959
66.8	300860	66.8	300860	66.8	300860	66.8	300860	66.8	300860	66.8	300860	66.8	300860
72.5	040961	72.5	040961	74.9	040961	74.9	040961	76.1	040961	76.6	040961	76.6	040961
64.0	250962	64.0	250962	64.0	250962	68.4	041162	70.5	041162	72.2	041162	72.3	041162
79.9	110963	84.9	110963	85.0	110963	85.0	110963	87.5	110963	96.9	110963	117.7	110963
33.2	130864	37.4	130864	37.4	130864	38.2	130864	38.9	130864	38.9	130864	38.9	130864
60.1	081065	64.0	081065	64.0	081065	64.0	081065	64.0	081065	64.0	081065	68.5	151065
74.3	151066	74.3	151066	74.3	151066	74.3	151066	74.3	151066	74.3	151066	74.3	151066
69.5	231067	69.5	231067	69.5	231067	69.5	231067	69.5	231067	69.5	231067	69.5	231067
76.6	081168	78.8	081168	81.5	081168	82.5	081168	82.5	081168	82.5	081168	82.5	081168
85.6	020469	93.2	020469	94.2	020469	97.4	020469	97.4	020469	99.6	020469	100.5	020469
61.5	101070	64.9	101070	64.9	101070	84.9	101070	85.0	101070	85.0	101070	85.0	101070
198.3	051271	198.3	051271	199.0	051271	200.2	051271	200.4	051271	201.8	051271	204.5	051271

84	0	96	0	10	80	12	00	13	20	14	40	18	00
53.8	010572	57.9	010572	61.1	010572	63.1	010572	72.7	010572	72.7	010572	77.4	010572
36.6	231273	40.8	070973	40.9	070973	40.9	070973	40.9	070973	43.1	231273	49.2	231273
54.3	260874	54.3	260874	54.3	260874	54.3	260874	54.3	260874	54.3	260874	54.3	260874
43.7	310875	43.8	310875	59.6	310875	63.0	310875	63.0	310875	63.0	310875	64.0	310875
61.3	010876	61.3	010876	61.3	010876	61.3	010876	61.3	010876	61.3	010876	61.3	010876
47.4	030577	47.4	030577	47.4	030577	47.4	030577	48.2	030577	48.8	030577	49.1	030577
55.7	040978	55.7	040978	55.7	040978	55.7	040978	55.7	040978	55.7	040978	55.7	040978
66.6	041079	66.6	041079	66.6	041079	66.7	041079	66.7	041079	66.7	041079	66.7	041079
22.5	210380	22.5	210380	22.5	210380	22.5	210380	22.5	210380	22.5	210380	22.5	210380
71.7	210881	71.7	210881	71.7	210881	71.7	210881	71.7	210881	71.7	210881	71.7	210881
46.6	150282	49.8	150282	58.7	150282	59.5	150282	59.5	150282	61.7	150282	69.9	150282
49.6	071183	49.6	071183	49.6	071183	50.2	071183	51.8	071183	52.1	071183	53.2	071183
59.1	130384	67.7	130384	71.6	130384	78.2	130384	83.4	130384	90.2	130384	103.7	130384
28.5	050585	28.5	050585	28.5	050585	28.5	050585	28.5	050585	28.5	050585	28.5	050585
36.8	300986	36.8	300986	40.8	300986	44.3	300986	44.3	300986	44.3	300986	44.3	300986
110.0	031087	113.2	031087	113.2	031087	125.5	31087	126.5	031087	126.5	031087	129.7	031087
33.9	170188	34.2	170188	34.2	170188	34.2	170188	34.2	170188	34.4	170188	34.4	170188
24.5	281089	24.5	281089	24.5	281089	24.5	281089	24.5	281089	24.5	281089	24.5	281089
47.1	220590	47.1	220590	47.1	220590	47.1	220590	47.1	220590	47.1	220590	47.1	220590
8.9	240391	8.9	240391	8.9	240391	8.9	240391	8.9	240391	8.9	240391	8.9	240391
16.7	050792	16.7	050792	16.7	050792	16.7	050792	16.7	050792	16.7	050792	16.7	050792

Tabla A2 Series de valores de precipitación máxima (mm, ddmmaa) para cada duración (mm) que han superado el periodo de retorno de 1 año. En negrita se indican los valores máximos de cada serie

5	5	1	0	1	5	2	0	2	5	3	0	3.	5
12.4	050927	20.5	050927	31.4	050927	40.0	050927	44.5	050927	45.4	050927	46.3	050927
10.7	251028	26.3	130830	21.4	151027	26.0	151027	28.6	151027	29.9	151027	34.7	151027
11.8	100629	30.7	090831	20.3	251028	24.8	251028	28.2	251028	31.8	251028	35.8	251028
15.7	130830	20.1	070732	32.5	130830	37.2	130830	42.5	130830	46.0	130830	47.6	130830
18.8	090831	17.0	120633	38.7	090831	44.4	090831	49.9	090831	55.3	090831	56.8	090831
10.7	070732	20.0	140934	20.7	111031	24.5	110931	27.8	100931	31.9	100931	35.4	100931
12.3	120633	19.4	031134	28.2	070732	25.1	111031	26.7	110931	27.1	110931	33.7	111031
12.2	270634	18.0	051134	28.6	140934	36.1	070732	27.9	111031	29.6	111031	39.8	070732
10.9	140934	25.3	011035	22.6	031134	35.8	140934	38.9	070732	39.4	070732	28.0	080834
10.8	031034	17.4	121035	20.3	051134	25.1	031134	41.4	140934	43.9	140934	46.4	140934
13.6	031134	16.9	050639	27.2	011035	28.1	011035	26.0	031134	28.7	011035	28.9	011035
14.0	051134	17.4	120639	21.8	121035	25.7	121035	28.5	011035	28.9	121035	29.4	121035
21.6	011035	16.9	240839	23.8	050639	24.9	210838	27.9	121035	32.6	210838	33.3	210838
11.0	121035	25.1	070740	32.7	070740	30.0	050639	30.2	210838	43.1	050639	45.2	050639
11.7	021037	18.5	100741	23.6	100741	35.8	070740	37.8	050639	42.0	070740	43.5	070740
10.9	110638	18.5	291141	20.5	291141	28.1	100741	37.8	070740	36.4	100741	36.8	100741
11.2	050639	20.9	250743	28.0	250743	32.3	250743	33.9	100741	30.3	200842	34.4	200842

4	5	1	0	1	5	2	0	2	5	3	0	3:	5
13.2	120639	21.1	060844	24.0	060844	26.3	060844	25.9	200842	41.3	250743	42.3	250743
14.5	240839	17.0	080844	23.2	080844	28.2	080844	37.1	250743	27.6	060844	28.6	060844
13.7	070740	16.7	270445	27.3	180845	33.6	180845	27.2	060844	34.2	080844	35.5	080844
13.0	291141	21.8	180845	21.9	190747	28.7	190747	31.7	080844	42.1	180845	42.4	180845
11.3	250743	20.9	071047	24.2	071047	25.7	071047	39.6	180845	37.3	190747	38.0	190747
14.4	060844	17.1	220548	20.8	220548	38.0	030948	34.4	190747	27.0	071047	42.6	030948
10.9	270445	26.7	030948	33.8	030948	26.0	170650	26.4	071047	41.9	030948	34.6	170650
12.5	180845	23.1	150751	28.2	150751	29.3	150751	40.7	030948	32.6	170650	30.5	150751
14.0	071047	21.3	200851	26.9	200851	30.6	200851	29.9	170650	30.5	150751	42.5	200851
17.2	030948	18.9	250851	25.9	250851	30.0	250851	30.1	150751	37.2	200851	36.8	250851
10.7	270451	16.5	011051	21.7	011051	47.5	130952	32.7	200851	35.5	250851	58.2	130952
11.1	250651	19.0	011051	20.5	011051	33.1	250953	33.6	250851	57.2	130952	36.3	280653
14.6	150751	16.7	101151	36.6	130952	25.7	111053	54.7	130952	31.1	280653	33.7	250953
12.1	200851	27.4	130952	31.6	250953	41.1	160758	33.4	250953	33.6	250953	35.2	111053
11.4	250851	22.5	250953	26.9	140954	33.2	310858	30.6	111053	33.4	111053	57.5	160758
13.6	011051	24.0	160758	26.2	221056	30.8	300559	49.6	160758	55.9	160758	33.2	310858
12.3	101151	30.4	310858	26.2	300857	37.3	300860	33.2	310858	33.2	310858	44.7	300559
15.0	130952	18.3	300559	32.8	160758	25.6	040961	35.6	300559	40.0	300559	43.6	300860
12.7	250953	25.9	300860	33.2	310858	32.2	250962	40.7	300860	42.5	300860	31.2	040961
16.5	160758	19.0	220761	24.5	300559	27.5	260962	28.5	040961	30.7	040961	45.8	250962
19.5	310858	19.2	250962	32.0	300860	23.8	110963	37.0	250962	41.9	250962	28.0	141062
11.3	300559	19.6	260962	21.1	220761	34.5	010965	27.5	260962	27.5	260962	33.3	110963
13.2	130660	17.6	220765	20.6	040961	25.9	081065	25.5	141062	27.2	141062	34.5	010965
15.1	300860	27.3	010965	23.8	250962	27.8	181069	28.4	110963	31.5	110963	29.2	081065
12.2	220761	17.1	081065	37.2	250962	24.1	040771	34.5	010965	34.5	010965	28.2	270766
12.0	190961	16.6	041066	25.7	260962	41.8	061171	27.6	081065	28.5	081065	33.0	151066
13.1	260962	18.0	181069	31.7	010965	33.1	051271	35.2	181069	28.3	151066	28.4	231067
12.3	220765	16.3	101070	22.4	081065	31.4	030972	26.8	040771	26.9	231067	41.7	181069
16.3	010965	23.1	061171	21.9	181069	27.0	260873	49.1	061171	39.4	181069	31.5	040771
10.9	040771	17.6	051271	30.7	061171	25.4	070973	35.1	051271	29.8	040771	53.0	061171
12.5	061171	27.9	030972	25.4	051271	25.3	260874	33.4	030972	52.1	061171	40.9	051271
11.5	051271	25.0	260873	29.8	030972	31.5	010876	27.1	260873	39.1	051271	34.9	030972
19.5	030972	21.4	070973	26.6	260873	28.7	041079	27.8	070973	34.5	030972	28.6	260873
17.6	260873	18.3	010876	24.1	070973	27.6	210881	30.8	260874	28.0	260873	28.8	070973
13.2	070973	18.9	040978	22.9	010876	29.7	210881	37.2	010876	28.8	070973	42.6	260874
11.2	010876	18.0	041079	23.8	041079	27.4	141083	31.0	041079	36.9	260874	39.2	010876
15.4	040978	17.3	210881	22.7	210881	24.5	300787	31.5	210881	38.8	010876	34.6	041079
11.6	041079	17.7	210881	24.0	210881	29.2	031087	34.5	210881	32.3	041079	40.4	210881
18.6	141083	24.2	141083	26.4	141083	45.3	220590	28.8	141083	35.3	210881	44.0	210881
11.2	050585	17.1	101183	21.0	101183	31.7	221090	28.8	300787	38.7	210881	28.8	141083
11.2	170585	18.4	170585	20.3	170585			37.8	031087	28.8	141083	34.1	300787
11.5	280587	17.6	300787	21.6	300787			46.1	220590	31.4	300787	46.5	031087
10.9	100989	18.5	031087	25.7	031087			31.7	221090	43.8	031087	47.1	220590
12.9	281089	19.6	281089	22.1	281089					46.9	220590	31.7	221090
20.8	220590	34.4	220590	42.0	220590					31.7	221090		

						-				-		_	
4	5	1	0	1	5	2	0	2	5	3	0	3:	5
11.1	151090	17.9	151090	20.3	151090								
16.7	221090	26.1	221090	30.5	221090								

4	0	4	5	5	0	5	5	6	0	6	5	7	0	7	5
46.7	050927	47.2	050927	47.7	050927	48.1	050927	48.6	050927	48.9	050927	49.2	050927	49.2	050927
41.7	151027	47.3	151027	50.5	151027	52.1	151027	53.5	151027	54.9	151027	55.8	151027	56.0	151027
41.9	251028	48.4	251028	52.8	251028	55.2	251028	58.5	251028	62.3	251028	66.8	251028	76.2	080328
48.6	130830	49.3	130830	49.5	130830	49.5	130830	49.5	130830	50.3	130830	51.1	130830	74.5	251028
57.1	090831	57.1	090831	57.1	090831	57.1	090831	57.1	090831	57.1	090831	57.1	090831	51.5	130830
38.1	100931	39.2	100931	40.3	100931	40.5	100931	40.5	100931	40.5	100931	40.5	100931	60.7	010431
40.2	111031	46.6	111031	51.4	111031	55.2	111031	57.7	111031	58.9	111031	60.2	111031	57.1	090831
29.8	200632	31.7	200632	32.9	200632	33.4	200632	33.8	200632	41.3	070732	41.3	070732	40.5	100931
40.3	070732	41.1	070732	41.3	070732	41.3	070732	41.3	070732	73.1	140934	73.5	140934	62.0	111031
29.9	080834	29.8	120732	30.4	120732	30.8	120732	31.3	120732	46.6	050639	47.1	050639	41.3	070732
55.1	140934	30.6	080834	30.7	080834	30.7	080834	72.6	140934	43.6	070740	43.7	070740	57.6	131233
29.1	011035	64.2	140934	70.6	140934	72.1	140934	32.6	121035	49.1	100741	49.3	100741	75.1	140934
29.5	121035	33.4	210838	33.4	210838	31.2	121035	33.4	210838	46.4	200842	47.3	200842	47.5	050639
33.4	210838	46.2	050639	46.5	050639	33.4	210838	46.5	050639	45.2	250743	45.5	250743	43.8	070740
46.0	050639	43.6	070740	43.6	070740	46.5	050639	43.6	070740	37.8	080844	38.0	080844	49.9	100741
43.6	070740	39.1	100741	40.9	100741	43.6	070740	46.3	100741	43.0	180845	43.0	180845	48.0	200842
38.2	100741	44.8	050242	42.7	200842	44.1	100741	45.2	200842	40.2	190747	40.2	190747	45.9	250743
37.6	200842	39.9	200842	43.6	250743	44.0	200842	44.7	250743	44.0	030948	44.1	030948	38.1	080844
42.7	250743	43.1	250743	37.0	080844	44.1	250743	31.0	200644	36.9	170650	36.9	170650	43.0	180845
36.4	080844	36.7	080844	43.0	180845	37.3	080844	37.6	080844	48.9	200851	48.9	200851	40.2	190747
42.8	180845	43.0	180845	39.5	190747	43.0	180845	43.0	180845	39.5	250851	39.8	250851	44.1	030948
38.2	190747	38.8	190747	42.9	030948	39.9	190747	40.2	190747	65.2	130952	65.6	130952	36.9	170650
42.9	030948	42.9	030948	36.7	170650	43.0	030948	43.3	030948	51.7	280653	55.1	280653	48.9	200851
36.0	170650	36.7	170650	30.5	150751	36.9	170650	36.9	170650	34.7	250953	44.8	111053	40.1	250851
30.5	150751	30.5	150751	47.9	200851	48.4	200851	48.7	200851	42.5	111053	65.6	160758	66.4	130952
45.7	200851	47.2	200851	38.4	250851	38.8	250851	39.1	250851	65.3	160758	64.7	300559	57.5	280653
37.5	250851	38.0	250851	62.3	130952	63.8	130952	64.6	130952	62.8	300559	52.8	300860	45.4	111053
59.6	130952	61.2	130952	40.7	280653	42.4	280653	48.5	280653	52.1	300860	42.6	040961	65.9	160758
37.7	280653	38.7	280653	33.8	250953	34.0	250953	34.4	250953	40.4	040961	48.4	250962	66.3	300559
33.8	250953	33.8	250953	40.1	111053	41.3	111053	41.8	111053	48.2	250962	36.7	110963	53.0	300860
36.7	111053	37.5	111053	63.6	160758	64.7	160758	64.9	160758	36.1	110963	39.9	081065	44.2	040961
58.6	160758	62.4	160758	33.2	310858	33.2	310858	33.2	310858	38.9	081065	35.8	270766	48.4	250962
33.2	310858	33.2	310858	54.9	300559	57.0	300559	59.7	300559	34.8	270766	47.0	151066	37.0	110963
50.7	300559	52.9	300559	31.4	280959	32.4	280959	33.2	280959	46.0	151066	39.9	231067	40.6	081065
45.4	300860	30.3	280959	47.5	300860	49.5	300860	50.3	300860	38.5	231067	50.2	181069	36.5	270766
33.5	040961	45.8	300860	38.1	040961	38.8	040961	39.4	040961	49.7	181069	46.4	291071	47.6	151066
47.5	250962	36.6	040961	48.1	250962	48.1	250962	48.1	250962	45.4	291071	53.5	061171	41.9	231067
33.9	110963	48.0	250962	34.8	110963	35.2	110963	35.7	110963	53.5	061171	64.7	051271	36.6	300969
34.5	010965	34.5	110963	34.5	010965	34.5	010965	34.5	010965	60.8	051271	36.0	030972	50.5	181069
29.7	081065	34.5	010965	33.2	081065	36.4	081065	37.7	081065	35.4	030972	53.1	260874	47.2	291071

4	0	4	5	5	0	5	5	6	0	6	5	7	0	7	75
29.9	270766	30.1	081065	32.4	270766	33.2	270766	33.8	270766	51.9	260874	40.4	010876	53.5	061171
37.5	151066	31.4	270766	39.0	151066	41.4	151066	44.6	151066	40.4	010876	43.9	041079	68.9	051271
29.6	231067	38.4	151066	31.7	231067	33.7	231067	37.0	231067	42.5	041079	54.0	210881	53.6	260874
43.3	181069	30.8	231067	47.0	181069	30.7	300969	31.5	300969	53.9	210881	57.8	210881	40.4	010876
32.0	040771	45.1	181069	33.3	040771	48.3	181069	49.1	181069	57.8	210881	36.9	300787	45.0	041079
30.8	291071	32.8	040771	40.2	291071	33.7	040771	33.9	040771	36.0	300787	52.4	031087	54.0	210881
53.4	061171	37.2	291071	53.5	061171	42.5	291071	44.1	291071	51.2	031087	47.1	220590	57.8	210881
41.2	051271	53.5	061171	51.3	051271	53.5	061171	53.5	061171	47.1	220590			38.4	300787
35.2	030972	47.0	051271	35.2	030972	55.6	051271	59.5	051271					52.8	031087
44.5	260874	35.2	030972	46.8	260874	35.2	030972	35.2	030972					47.1	220590
39.5	010876	45.9	260874	30.9	170974	47.0	260874	49.7	260874						
36.2	041079	39.7	010876	39.9	010876	31.1	170974	31.2	170974						
45.9	210881	37.3	041079	38.5	041079	40.1	010876	40.3	010876						
49.7	210881	49.0	210881	51.3	210881	39.9	041079	41.6	041079						
34.7	300787	53.6	210881	56.1	210881	52.4	210881	53.3	210881						
47.5	031087	34.7	300787	34.7	300787	56.9	210881	57.4	210881						
47.1	220590	48.1	031087	48.8	031087	30.7	071183	32.4	071183						
31.7	221090	47.1	220590	47.1	220590	34.7	300787	34.7	300787						
		31.7	221090	31.7	221090	32.0	300987	33.0	300987						
						49.6	031087	50.2	031087						
						47.1	220590	47.1	220590						
						31.7	221090	31.7	221090						

12	20	24	40	30	60	54	40	72	20
49.3	050927	49.4	050927	49.4	050927	75.3	151027	75.3	151027
71.2	151027	75.3	151027	75.3	151027	123.3	251028	123.6	251028
104.6	251028	120.8	251028	122.7	251028	59.8	071128	61.4	071128
36.2	020829	47.1	071128	56.2	071128	76.8	080829	54.8	100629
36.5	260130	50.5	020829	51.9	020829	85.3	050130	77.4	080829
54.3	130830	46.4	050130	60.1	080829	59.8	280230	58.7	211029
57.1	090831	54.3	130830	63.0	050130	54.3	130830	90.2	050130
40.5	100931	63.6	090831	48.5	280230	64.1	090831	81.7	280230
72.8	111031	78.7	111031	54.3	130830	79.0	111031	54.3	130830
35.0	200632	100.5	140934	63.9	090831	105.1	140934	64.1	090831
41.3	070732	48.6	051134	78.7	111031	57.3	051134	90.4	111031
91.2	140934	43	110838	49.6	270933	58.2	100741	105.1	140934
38.0	110838	48.0	050639	103.1	140934	58.5	200842	57.3	051134
36.7	210838	43.9	070740	54.9	051134	90.3	240244	58.3	100741
48.0	050639	55.7	100741	48.0	050639	62.7	200644	64.2	280941
43.8	070740	58.5	200842	57.7	100741	57.2	050944	58.3	270442
52.6	100741	46.1	250743	58.5	200842	82.6	290648	59.6	200842
56.7	200842	52.8	240244	70.7	240244	72.3	030948	56.3	311043
46.1	250743	43	180845	62.3	200644	71.2	261048	111.8	240244
38.1	080844	53.5	290648	68.2	290648	58.4	250851	62.7	200644

12	20	24	40	30	60	54	40	72	20
43.0	180845	58.3	030948	65.6	030948	69.8	130952	67.2	050944
40.2	190747	42.7	051049	50.1	261048	69.2	280653	54.5	220548
48.1	030948	48.9	200851	48.9	200851	97.2	111053	91.4	290648
39.4	051049	69.8	130952	58.1	250851	72.4	201156	73.3	030948
36.9	170650	68.8	280653	69.8	130952	71.9	260457	81.0	261048
48.9	200851	47.0	090753	68.8	280653	72.1	160758	54.7	290449
41.1	250851	96.2	111053	51.6	090753	76.9	300559	58.4	250851
44.5	011051	43.7	201156	96.9	111053	54.2	200959	69.8	130952
68.5	130952	72.1	160758	54.9	201156	63.2	280959	69.2	280653
67.6	280653	76.9	300559	51.6	260457	63.8	300860	102.5	111053
35.3	250953	54.9	280959	72.1	160758	71.3	040961	83.0	201156
59.6	111053	63.6	300860	76.9	300559	64.0	250962	77.8	260457
71.9	160758	70.9	040961	63.2	280959	67.1	110963	72.1	160758
75.6	300559	57.2	250962	63.6	300860	56.6	251065	76.9	300559
39.6	280959	47.8	110963	71.3	040961	60.1	151066	63.2	200959
37.9	301159	47.4	081065	63.2	250962	69.5	231067	63.3	280959
53.0	300860	47.5	270766	57.2	110963	58.9	261167	65.3	300860
60.3	040961	56.5	151066	47.4	081065	62.4	081168	71.3	040961
57.2	250962	67.4	231067	47.5	270766	62.3	020469	64.0	250962
39.1	110963	42.6	081168	57.3	151066	56.0	181069	75.8	110963
46.5	081065	51.8	300969	69.5	231067	54.8	220471	59.7	251065
41.7	270766	54.1	181069	53.8	081168	67.4	291071	71.6	151066
56.5	151066	67.4	291071	47.8	020469	58.6	061171	69.5	231067
57.3	231067	53.5	061171	52.6	300969	197.1	051271	59.1	261167
40.0	081168	159.7	051271	54.1	181069	54.3	260874	67.9	081168
43.8	300969	54.3	260874	54.4	220471	61.3	010876	77.8	020469
51.8	181069	46.5	010876	67.4	291071	55.7	040978	56.2	181069
35.8	040771	46.3	040978	55.9	061171	66.6	041079	54.8	220471
61.8	291071	65.5	041079	181.3	051271	65.3	210881	67.4	291071
53.5	061171	65.3	210881	54.3	260874	71.7	210881	60.0	061171
108.0	051271	71.7	210881	55.7	040978	95.3	031087	198.3	051271
38.4	030972	48.1	071183	66.6	041079			54.3	260874
35.0	210374	94.9	031087	65.3	210881			61.3	010876
54.3	260874	47.1	220590	71.7	210881			55.7	040978
45.4	010876			49.2	071183			66.6	041079
54.0	210881			95.3	031087			65.3	210881
56.3	041079			47.1	220590			71.7	210881
57.8	210881							54.3	300987
46.3	071183							95.3	031087
39.2	300787								
36.2	300987								
56.8	031087								
47.1	220590								

84	10	96	50	10	80	120	00	13	20	14	40	18	00
75.3	151027	75.3	151027	75.3	151027	75.3	151027	75.3	151027	75.3	151027	75.3	151027
123.6	251028	123.6	251028	123.6	251028	123.6	251028	123.6	251028	123.6	251028	123.6	251028
61.4	071128	61.4	071128	61.4	071128	61.4	071128	61.4	071128	87.4	080829	87.4	080829
83.1	080829	87.4	080829	87.4	080829	87.4	080829	87.4	080829	72.1	211029	72.1	211029
65.5	211029	67.1	211029	69.8	211029	69.9	211029	72.1	211029	147.3	050130	160.2	050130
92.2	050130	107.1	050130	126.4	050130	143.6	050130	146.1	050130	93.4	280230	93.7	280230
88.4	280230	88.7	280230	89.6	280230	89.6	280230	89.6	280230	73.8	280530	75.1	280530
64.1	090831	64.1	090831	64.1	090831	63.4	280530	71.0	280530	64.1	090831	64.1	090831
91.2	111031	91.2	111031	91.2	111031	64.1	090831	64.1	090831	91.2	111031	92.6	111031
105.1	140934	105.1	140934	105.1	140934	91.2	111031	91.2	111031	64.9	270933	80.9	270933
57.3	051134	58.4	151134	63.5	151134	105.1	140934	62.0	061133	65.7	061133	68.4	061133
61.5	050639	58.7	261136	61.9	261136	63.5	151134	105.1	140934	105.1	140934	105.1	140934
58.3	100741	61.5	050639	61.5	050639	65.4	261136	63.5	151134	62.2	051134	65.7	051134
66.2	280941	58.3	100741	66.2	280941	61.5	050639	67.8	261136	63.5	151134	65.9	151134
63.2	270442	66.2	280941	68.8	270442	66.2	280941	61.5	050639	68.2	261136	77.1	261136
59.6	200842	64.9	270442	59.6	200842	69.5	270442	66.2	280941	66.2	280941	66.2	280941
56.8	311043	59.6	200842	66.5	031143	73.1	031143	79.2	270442	87.1	270442	104.1	270442
61.6	141243	58.0	031143	70.6	141243	74.9	141243	77.5	031143	85.0	031143	90.7	031143
121.2	240244	66.7	141243	121.8	240244	121.8	240244	74.9	141243	74.9	141243	67.4	041243
62.7	200644	121.8	240244	62.7	200644	62.7	200644	121.8	240244	122.7	240244	74.9	141243
73.1	050944	62.7	200644	78.6	050944	78.6	050944	62.7	200644	62.7	200644	131.0	240244
95.9	290648	76.1	050944	97.7	290648	97.7	290648	78.9	050944	79.0	050944	79.0	050944
73.3	030948	97.7	290648	73.3	030948	73.3	030948	97.7	290648	97.7	290648	97.7	290648
82.1	261048	73.3	030948	90.7	261048	90.9	261048	73.3	030948	73.3	030948	73.3	030948
66.1	290449	85.2	261048	85.3	290449	87.2	290449	91.0	261048	91.0	261048	91.0	261048
58.4	250851	79.5	290449	69.8	130952	69.8	130952	87.3	290449	87.3	290449	106.5	290449
69.8	130952	58.4	250851	74.3	280653	74.3	280653	69.8	130952	69.8	130952	69.8	130952
69.2	280653	69.8	130952	70.1	250953	73.3	250953	74.3	280653	74.3	280653	74.3	280653
103.4	111053	72.7	280653	105.0	111053	105.0	111053	77.0	250953	77.0	250953	80.0	250953
57.3	131053	105.0	111053	101.3	201156	104.5	201156	105.0	111053	105.0	111053	105.0	111053
93.0	201156	99.6	201156	90.6	260457	90.7	260457	104.9	201156	105.1	201156	67.9	131053
78.0	260457	87.1	260457	72.1	160758	72.1	160758	90.7	260457	90.7	260457	105.3	201156
72.1	160758	72.1	160758	76.9	300559	76.9	300559	72.1	160758	72.1	160758	90.7	260457
76.9	300559	76.9	300559	75.0	200959	82.3	200959	76.9	300559	76.9	300559	72.1	160758
63.6	200959	64.1	200959	74.7	280959	78.1	280959	89.7	200959	97.4	200959	76.9	300559
65.2	280959	73.6	280959	66.8	300860	66.8	300860	79.6	280959	79.6	280959	104.9	200959
66.8	300860	66.8	300860	74.9	040961	74.9	040961	66.8	300860	66.8	300860	87.4	280959
72.5	040961	72.5	040961	64.0	250962	64.0	250962	76.1	040961	76.6	040961	66.8	300860
64.0	250962	64.0	250962	62.3	041162	68.4	041162	64.0	250962	64 0	250962	76.6	040961
79.9	110963	84.9	110963	85.0	110963	85.0	110963	70.5	041162	72.2	041162	64.0	250962
60.1	081065	64.0	081065	64.0	081065	64.0	081065	87.5	110963	96.9	110963	72.3	041162
59.7	251065	59.7	251065	59.7	251065	74.3	151066	64.0	081065	64.0	081065	117.7	110963
74.3	151066	74.3	151066	74.3	151066	69.5	231067	74.3	151066	74.3	151066	64.0	081065
69.5	231067	69.5	231067	69.5	231067	61.4	261167	69.5	231067	69.5	231067	68.5	151065
59.1	261167	59.2	261167	61.0	261167	82.5	081168	61.4	261167	82.5	081168	74.3	151066

840		960		10	80	1200		13	1320		1440		1800	
76.6	081168	78.8	081168	81.5	081168	97.4	020469	82.5	081168	99.6	020469	69.5	231067	
85.6	020469	93.2	020469	94.2	020469	84.9	101070	97.4	020469	85.0	101070	82.5	081168	
61.5	101070	64.9	101070	64.9	101070	67.4	291071	85.0	101070	67.4	291071	100.5	020469	
67.4	291071	67.4	291071	67.4	291071	63.4	061171	67.4	291071	63.4	061171	64.4	181069	
62.6	061171	62.6	061171	63.4	061171	64.9	081171	63.4	061171	64.9	081171	85.0	101070	
198.3	051271	198.3	051271	199.0	051271	200.2	051271	64.9	081171	201.8	051271	66.3	300471	
61.3	010876	61.3	010876	65.1	291271	77.0	291271	200.4	051271	97.4	291271	67.4	291071	
66.6	041079	66.6	041079	61.1	010572	63.1	010572	88.3	291271	72.7	010572	64.9	081171	
65.3	210881	65.3	210881	59.6	310875	63.0	310875	72.7	010572	63.0	310875	204.5	051271	
71.7	210881	71.7	210881	61.3	010876	61.3	010876	63.0	310875	66.7	041079	102.7	291271	
59.1	130384	67.7	130384	66.6	041079	66.7	041079	61.3	010876	65.3	210881	77.4	010572	
110.0	031087	113.2	031087	65.3	210881	65.3	210881	66.7	041079	71.7	210881	64.0	310875	
				71.7	210881	71.7	210881	65.3	210881	90.2	130384	66.7	041079	
				71.6	130384	78.2	130384	71.7	210881	126.5	031087	65.3	210881	
				113.2	031087	125.5	031087	83.4	130384			71.7	210881	
								126.5	031087			69.9	150282	
												103.7	130384	
												129.7	031087	

Anexo B: Máximos anuales de precipitación registrados por la red de pluviómetros de CLABSA (1994 - 2001)

Tabla B Máximos anuales de precipitación (ddmmaa, mm), para cada duración (min), registrados por la red	t de
pluviómetros de CLABSA en Barcelona entre 1994 y 2001	

pluviómetro		5		10		15		20
AGBE	031194	4.5	091094	7.2	091094	9.1	091094	10.2
	060895	8.7	060895	14.9	060895	22.4	060895	25.3
	070896	8.0	070896	14.4	070896	21.1	070896	22.7
	180697	4.9	180697	7.9	180697	9.7	231097	11.2
	041098	7.5	041098	9.9	041098	11.0	200898	12.5
	140999	8.7	140999	16.2	140999	22.5	140999	29.9
	190900	9.6	190900	12.2	190900	13.3	190900	13.8
	300801	10.0	300801	16.2	300801	21.1	300801	24.8
AGCO	130994	7.6	181094	10.0	200994	12.0	151094	13.8
	040795	10.3	040795	14.7	131095	17.8	070895	21.5
	100596	6.3	100596	11.6	100596	15.9	100596	21.3
	010997	6.7	221097	9.8	240897	10.9	240897	12.1
	181098	8.7	181098	11.7	181098	13.1	021298	15.5
	130999	12.6	130999	23.1	130999	31.0	130999	37.9
	180900	8.3	180900	10.1	180900	11.3	180900	12.2
	181001	7.3	181001	12.0	140701	16.7	140701	22.4
AGTI	200995	9.2	200995	16.2	200995	21.8	200995	26.5
	070596	6.2	070596	9.1	070596	10.6	070596	11.4
	250897	6.6	250897	8.0	250897	9.2	250897	9.4
	041098	6.9	041098	10.4	041098	14.5	041098	17.9
	130999	10.0	130999	16.2	130999	19.5	130999	22.7
	100500	7.4	100500	13.7	100500	17.7	100500	20.0
	091001	39.1	091001	51.5	091001	51.6	091001	54.9
AGTR	070896	6.8	070896	9.0	070896	10.0	070896	10.8
	250897	8.7	250897	14.6	250897	17.8	250897	19.9
	181098	9.0	181098	14.3	181098	15.4	181098	15.9

1 •7 /		-		10		1.7		20
piuviometro	171000	5	171000	10	171000	15	171000	20
	1/1099	11.2	1/1099	18.4	1/1099	25.1	1/1099	24.9
	180900	9.4	180900	11.9	180900	12.9	180900	13.6
	150/01	15.8	150/01	19.3	150/01	20.7	150/01	21.2
AJNO	250694	7.6	250694	14.7	250694	18.3	250694	19.5
	240895	11.7	240895	21.3	240895	29.1	240895	37.9
	170996	8.8	170996	13.3	170996	15.6	070896	16.6
	221097	5.1	221097	8.6	310597	11.3	310597	13.4
	020898	4.4	220998	6.1	220998	7.6	220998	8.5
	140999	11.6	140999	19.4	140999	24.6	140999	28.8
AJSA	170996	7.1	170996	12.8	170996	14.5	170996	14.9
	010997	6.5	161297	8.2	161297	9.6	161297	11.6
	181098	8.4	041098	14.2	041098	20.6	041098	23.8
	130999	16.9	130999	29.4	130999	36.0	130999	42.3
	180900	7.1	100500	9.6	100500	12.7	100500	13.6
	140701	6.3	140701	8.8	140701	11.6	140701	15.4
AJUO	200994	11.1	191094	14.8	191094	20.0	191094	23.8
	210995	19.9	210995	33.8	210995	46.3	210995	53.0
	070896	9.0	070596	11.9	070596	13.2	070596	13.9
	161297	7.2	161297	11.7	161297	15.5	161297	18.4
	181098	5.8	181098	8.7	181098	10.0	181098	10.3
	140999	5.9	140999	10.5	140999	13.8	140999	16.3
	180900	8.2	180900	10.0	180900	10.4	180900	11.8
	150701	5.2	150701	11.0	150701	12.3	150701	17.1
BARK	250694	7.7	250694	12.1	250694	15.2	250694	16.0
	040795	6.8	210995	9.0	210995	12.1	210995	14.5
	170996	12.6	070896	21.0	070896	27.5	070896	31.2
	221097	8.2	221097	13.6	221097	18.0	221097	20.0
	230998	6.2	230998	11.0	230998	13.7	230998	16.6
	030999	13.7	030999	23.9	030999	32.2	030999	39.9
	280900	8.4	280900	14.3	280900	15.8	280900	16.5
	150701	7.4	150701	13.8	150701	20.4	150701	22.6
CANY	130994	5.7	130994	8.8	130994	10.5	130994	10.6
	060895	10.8	060895	18.2	060895	23.6	060895	25.0
	210996	6.6	210996	11.0	210996	12.6	260296	13.4
	180497	6.2	250897	10.3	250897	15.1	250897	16.7
	230998	6.6	051098	9.4	051098	11.2	051098	13.1
	140999	9.9	140999	14.0	140999	16.3	171099	18.7
	190900	5.7	190900	8.3	190900	9.6	190900	10.8
	150701	7.4	150701	11.9	150701	14.9	150701	17.3
CATA	130994	9.2	130994	15.0	130994	17.1	181094	20.3
	060895	5.8	060895	9.8	060895	13.2	060895	16.2
	170996	7.1	170996	11.2	170996	13.5	170996	13.9

pluviómetro		5		10		15		20
	250897	8.5	250897	13.8	250897	15.2	250897	15.5
	020898	4.1	041098	5.6	250998	7.2	021298	9.3
	140999	11.6	140999	22.5	140999	30.0	140999	34.7
	280900	8.6	280900	15.4	280900	20.7	280900	25.3
	041001	9.0	041001	9.5	300801	13.3	300801	17.1
CLAB	120995	5.9	120995	8.6	120995	9.9	070895	12.6
	070896	19.4	070896	25.6	070896	27.6	070896	28.8
	221097	6.9	221097	11.6	221097	15.1	221097	15.8
	230998	5.0	230998	9.3	230998	12.7	230998	15.1
	130999	12.2	130999	20.8	130999	31.0	130999	36.8
	280900	9.8	280900	16.9	280900	18.6	280900	19.6
	150701	11.9	150701	21.3	150701	27.0	150701	27.5
COTX	040795	11.8	210995	15.6	210995	24.9	210995	30.8
	070596	6.7	070596	12.3	070596	14.5	070596	15.3
	221097	10.0	221097	18.5	221097	26.4	221097	33.4
	250998	7.8	250998	13.6	250998	15.8	250998	16.4
	130999	14.5	130999	25.3	130999	34.1	130999	40.6
	280900	6.9	280900	11.3	280900	15.4	280900	19.6
	150701	6.1	150701	9.3	150701	13.1	150701	16.4
DEIN	011000	10.7	011000	18.8	011000	21.4	011000	22.1
	150701	5.7	150701	8.7	150701	12.2	150701	16.7
DEPU	110595	5.4	060895	10.0	060895	14.4	060895	17.7
	070596	9.6	170996	15.0	170996	18.7	170996	19.2
	051197	3.9	161297	5.3	161297	7.0	161297	8.1
	021298	7.2	021298	10.5	021298	13.2	021298	15.7
	140999	11.6	140999	21.2	140999	27.2	140999	31.5
	100700	7.7	280900	12.2	280900	16.5	280900	21.5
ELIZ	070596	7.3	070596	10.2	131096	13.0	070896	16.7
	010997	7.2	010997	10.5	020797	12.9	020797	14.1
	250998	5.6	250998	9.6	250998	12.6	250998	15.1
	130999	12.7	130999	23.3	130999	30.9	130999	35.0
	280900	6.4	280900	12.0	280900	15.9	280900	17.5
	150701	6.9	150701	8.9	150701	10.1	150701	11.2
FCCF	130994	12.0	130994	18.1	130994	20.1	130994	20.4
	110895	6.6	120995	10.7	120995	12.5	110895	15.6
	091196	8.3	091196	14.9	091196	15.4	091196	15.5
	221097	9.0	221097	11.9	161297	13.8	161297	16.8
	230998	5.4	230998	9.9	230998	13.0	230998	15.7
	130999	12.9	130999	23.2	130999	32.5	130999	38.1
	280900	9.4	280900	15.6	280900	20.1	280900	23.3
	150701	10.4	150701	20.1	150701	24.1	150701	24.8
FISI	110694	8.5	110694	14.0	110694	17.7	110694	19.7

nluviómetro		5		10		15		20
runomeno	070895	83	070895	13.6	070895	17.8	070895	20 1
	210996	75	210996	97	210996	97	210996	9.8
	221097	12.2	221097	20.0	221097	24.4	221097	28.8
	250998	8.8	250998	11.3	250998	13.2	250998	13.9
	130999	87	130999	16.3	130999	24.3	130999	31.8
	180900	64	180900	73	100500	87	100500	10.1
	300801	8.3	300801	11.2	300801	13.2	140701	15.3
HEUR	221195	8.2	221195	13.0	221195	15.3	221195	16.4
	101196	11.8	101196	19.7	101196	20.8	101196	21.9
	161297	10.0	161297	15.4	161297	20.0	161297	21.5
	220998	9.2	220998	10.8	021298	12.8	021298	17.1
	130999	11.4	130999	20.3	130999	24.0	130999	28.8
	270900	5.4	011000	8.5	180900	9.6	310300	12.5
	041001	6.7	041001	8.0	130101	8.9	150701	10.5
MONT	210995	9.8	210995	15.6	210995	20.6	210995	25.6
	070896	7.5	170996	12.3	070896	14.7	070896	17.4
	310597	6.7	310597	12.0	310597	17.5	310597	21.5
	020898	5.3	260198	7.0	250998	8.6	250998	10.7
	140999	14.2	140999	25.7	140999	33.6	140999	38.2
	280900	6.0	280900	11.8	280900	17.2	280900	22.0
	150701	6.5	150701	11.6	150701	16.3	150701	20.5
NABI	200995	10.6	060895	17.5	060895	23.0	200995	26.8
	200996	6.1	290896	7.3	131096	8.5	110396	9.3
	270697	5.6	161297	7.4	161297	8.6	210997	10.3
	041098	11.1	041098	17.2	041098	18.6	041098	21.8
	030999	10.7	030999	18.7	030999	27.0	030999	33.0
	180900	6.0	180900	8.8	180900	10.8	180900	11.5
	041001	7.4	041001	8.7	300801	11.5	300801	13.5
NICA	240895	10.5	240895	15.0	240895	20.2	240895	25.7
	170996	12.0	170996	19.3	170996	21.4	170996	22.7
	250897	6.9	250897	9.8	161297	12.2	161297	13.2
	250998	5.4	220998	7.9	220998	9.5	220998	10.3
	030999	13.6	140999	23.2	140999	29.5	140999	34.5
	280900	9.1	280900	16.8	280900	20.3	280900	23.3
	150701	6.8	150701	9.7	150701	11.1	200401	12.8
ROLI	270697	4.9	270697	6.3	180697	7.7	180697	8.7
	081098	5.9	081098	10.0	081098	13.7	081098	14.7
	171099	10.2	140999	16.8	140999	22.7	140999	26.9
	011000	4.3	280900	6.3	280900	8.8	280900	10.7
	300801	8.4	300801	13.9	300801	14.6	300801	15.3
SAGR	210995	8.7	210995	15.7	210995	22.1	210995	28.1
	070596	9.2	131096	11.0	131096	14.3	131096	15.5
pluviómetro		5		10		15		20
-------------	--------	------	--------	------	--------	------	--------	------
	250897	9.3	250897	15.0	250897	18.7	250897	20.2
	181098	6.8	181098	12.4	181098	13.8	021298	14.6
	140999	12.4	140999	22.7	140999	30.0	140999	34.3
	180900	6.6	180900	10.6	180900	13.8	180900	16.3
	041001	10.1	041001	10.9	300801	12.4	150701	13.3
pluviómetro		25		30		35		40
AGBE	091094	10.9	091094	11.6	290994	13.0	290994	14.2
	060895	27.3	060895	29.4	060895	29.8	210995	33.2
	070896	23.3	070896	23.8	070896	24.2	070896	24.5
	231097	13.5	161297	14.9	161297	16.0	161297	17.6
	200898	14.1	041098	15.1	021298	16.7	021298	18.2
	140999	35.2	140999	39.6	140999	42.8	140999	44.8
	190900	14.2	190900	14.5	190900	14.5	190900	14.5
	300801	29.5	300801	31.2	300801	32.3	300801	33.0
AGCO	151094	16.0	151094	17.2	151094	17.9	151094	19.3
	070895	24.2	070895	25.2	070895	25.5	131095	26.5
	100596	26.0	100596	28.6	100596	30.4	100596	31.6
	240897	12.3	240897	12.4	240897	12.4	240897	12.4
	021298	17.4	021298	18.3	260198	19.5	260198	20.8
	130999	43.7	130999	49.1	130999	53.8	130999	56.0
	180900	12.4	180900	12.4	180900	12.4	310300	12.4
	140701	26.7	140701	30.3	140701	30.9	140701	31.2
AGTI	200995	28.4	200995	30.8	200995	31.0	200995	31.2
	070596	12.2	100596	13.0	100596	14.1	100596	14.7
	210997	12.2	210997	13.8	210997	14.5	161297	15.1
	041098	20.2	041098	20.9	041098	21.1	041098	22.1
	130999	25.2	130999	29.1	130999	31.2	130999	33.0
	100500	21.1	100500	21.3	100500	21.4	100500	21.5
	091001	55.7	091001	55.7	091001	55.7	091001	55.7
AGTR	101196	11.5	101196	12.1	101196	12.5	101196	12.6
	250897	22.3	250897	23.5	250897	23.9	250897	23.9
	181098	16.0	181098	16.8	021298	17.9	021298	19.0
	171099	25.8	171099	26.8	171099	27.6	171099	28.2
	180900	13.8	180900	14.0	180900	14.1	180900	14.4
	150701	25.8	150701	28.7	150701	29.8	150701	30.0
AJNO	250694	20.1	191094	23.0	191094	24.9	191094	26.5
	240895	46.5	240895	54.3	240895	60.7	240895	66.8
	070896	19.2	070896	20.2	131096	22.2	131096	24.4
	310597	15.8	310597	17.2	310597	18.5	310597	19.5

pluviómetro		25		30		35		40
	220998	8.9	220998	9.4	250998	9.9	250998	10.2
	140999	32.4	140999	34.4	140999	36.0	140999	37.7
AJSA	170996	15.3	170996	15.5	170996	15.6	170996	15.8
	161297	14.1	161297	15.7	161297	18.4	161297	19.5
	041098	25.0	041098	25.5	041098	26.9	041098	28.0
	130999	47.7	130999	53.7	130999	57.3	130999	59.9
	100500	14.2	100500	14.4	100500	14.4	100500	14.5
	140701	17.7	140701	19.2	140701	19.5	140701	19.6
AJUO	191094	25.3	191094	26.1	191094	27.6	191094	28.4
	210995	59.6	210995	65.3	210995	69.6	210995	72.5
	070596	14.7	070596	15.4	070596	15.9	070596	16.3
	161297	22.5	161297	28.0	161297	30.2	161297	32.3
	181098	10.4	181098	10.5	181098	11.6	181098	12.1
	140999	18.8	140999	21.2	140999	22.7	140999	23.5
	280900	13.2	280900	14.4	280900	15.1	280900	16.1
	150701	19.4	150701	21.1	150701	21.8	150701	21.9
BARK	250694	17.3	250694	18.2	250694	19.0	250694	19.4
	210995	15.9	210995	16.3	210995	16.6	210995	16.9
	070896	33.3	070896	34.2	070896	34.5	070896	34.8
	221097	20.3	221097	20.3	221097	20.3	221097	20.3
	230998	19.3	230998	20.4	230998	21.0	230998	21.6
	030999	44.5	030999	46.6	130999	48.8	130999	50.4
	280900	18.0	280900	18.8	280900	19.2	280900	19.4
	150701	23.8	150701	24.2	150701	24.2	150701	24.3
CANY	130994	10.7	290994	12.2	290994	13.9	290994	15.0
	060895	26.9	060895	28.3	060895	28.6	060895	28.7
	260296	15.3	260296	17.2	260296	18.2	260296	18.7
	161297	17.6	161297	21.4	161297	23.6	161297	25.9
	051098	14.9	021298	16.7	021298	18.6	021298	19.8
	171099	20.7	171099	21.9	171099	22.5	140999	26.0
	190900	11.6	190900	11.6	190900	11.6	190900	11.6
	150701	19.2	150701	24.0	150701	25.1	150701	25.4
CATA	181094	23.4	181094	25.3	181094	27.4	181094	29.0
	060895	18.5	060895	20.2	060895	20.6	060895	20.8
	070896	15.1	070896	16.4	131096	18.6	131096	21.8
	250897	15.7	250897	16.6	250897	16.8	250897	16.8
	021298	11.4	021298	12.4	041098	13.5	041098	13.9
	140999	37.9	140999	40.2	140999	41.7	140999	42.6
	280900	28.7	280900	30.1	280900	33.2	280900	36.1
	300801	17.6	300801	18.0	300801	18.2	300801	18.4
CLAB	070895	15.6	070895	17.2	070895	19.4	070895	20.5
	070896	29.8	070896	31.3	070896	31.7	070896	32.0

pluviómetro		25		30		35		40
	221097	15.9	221097	15.9	221097	15.9	161297	17.1
	230998	16.8	230998	17.8	230998	18.4	230998	18.8
	130999	40.5	130999	44.2	130999	46.6	130999	47.6
	280900	21.0	280900	21.9	280900	22.4	280900	22.6
	150701	27.6	150701	27.7	150701	27.7	150701	28.0
COTX	210995	39.5	210995	45.4	210995	47.0	210995	47.6
	070596	16.1	070596	16.8	070596	17.3	070596	17.7
	221097	39.0	221097	41.6	221097	41.9	221097	41.9
	250998	16.7	250998	16.8	250998	17.1	250998	17.2
	130999	45.5	130999	49.6	130999	52.2	130999	54.3
	280900	21.0	280900	21.9	280900	22.4	280900	28.4
	150701	19.8	150701	21.9	150701	22.4	150701	22.4
DEIN	011000	23.3	011000	23.8	011000	24.1	011000	24.3
	150701	19.3	150701	21.2	150701	21.4	150701	21.5
DEPU	060895	20.2	060895	21.8	060895	22.3	060895	22.4
	170996	19.3	170996	19.3	070596	19.5	070596	19.9
	180697	8.8	180697	10.3	180697	11.9	180697	13.5
	021298	17.6	021298	19.0	021298	19.7	021298	20.4
	140999	33.4	140999	34.8	140999	35.9	140999	36.7
	280900	24.8	280900	27.9	280900	29.8	280900	31.3
ELIZ	070896	20.7	070896	21.6	131096	22.9	131096	24.5
	020797	14.3	231097	14.7	231097	17.0	231097	18.7
	250998	15.9	250998	16.3	250998	16.5	250998	16.6
	130999	38.4	130999	40.4	130999	43.1	130999	45.2
	280900	21.7	280900	24.3	280900	25.9	280900	27.6
	220901	13.3	220901	16.2	220901	19.0	220901	20.1
FCCF	130994	20.4	130994	20.4	181094	20.8	181094	21.8
	070895	18.1	070895	22.1	070895	24.2	070895	25.1
	091196	15.5	091196	15.5	091196	15.6	020696	16.6
	161297	18.8	161297	21.1	161297	22.5	161297	23.7
	230998	17.5	230998	18.8	230998	19.6	230998	20.4
	130999	43.2	130999	46.9	130999	48.9	130999	49.5
	280900	24.6	280900	25.2	280900	25.6	280900	25.7
	150701	24.9	150701	24.9	150701	24.9	150701	25.5
FISI	110694	19.9	110694	19.9	110694	19.9	110694	19.9
	240895	23.4	240895	27.6	240895	31.6	240895	33.7
	210996	10.6	210996	10.7	170496	10.9	170496	12.1
	221097	31.0	221097	32.4	221097	32.5	221097	32.6
	250998	14.0	250998	14.0	181098	15.1	181098	16.0
	130999	37.5	130999	42.7	130999	46.6	130999	49.4
	100500	11.0	100500	11.3	100500	11.3	100500	11.4
	140701	19.0	140701	20.7	140701	22.3	140701	22.4

pluviómetro		25		30		35		40
HEUR	221195	17.4	221195	18.0	221195	18.1	221195	18.2
	101196	22.6	101196	23.4	101196	24.3	101196	24.7
	161297	22.9	161297	31.5	161297	33.6	161297	36.9
	021298	20.0	021298	23.1	021298	25.4	021298	26.7
	130999	35.2	130999	41.8	130999	47.1	130999	50.8
	310300	14.7	310300	16.5	310300	18.2	310300	19.6
	150701	11.9	150701	15.3	150701	17.1	150701	18.0
MONT	210995	30.5	210995	33.4	240895	37.3	240895	41.1
	070896	19.9	070896	21.1	131096	22.9	131096	25.2
	310597	23.2	310597	24.2	310597	24.9	310597	26.1
	250998	12.5	250998	13.8	250998	14.3	250998	14.9
	140999	40.9	140999	42.4	140999	44.4	140999	45.6
	280900	25.8	280900	27.0	280900	27.6	280900	27.9
	150701	21.7	150701	21.8	150701	21.9	220901	22.2
NABI	200995	30.8	200995	33.8	200995	34.2	200995	34.4
	200996	10.7	110396	12.6	110396	15.0	110396	16.3
	210997	11.7	210997	13.4	210997	13.9	210997	13.9
	041098	24.1	041098	26.0	041098	26.7	041098	27.2
	030999	36.3	030999	37.4	130999	41.5	130999	45.9
	310300	12.4	310300	14.4	310300	15.7	310300	17.0
	140701	17.6	140701	21.2	140701	23.5	140701	24.1
NICA	240895	30.3	240895	32.3	240895	32.3	240895	32.4
	170996	22.8	170996	22.9	070896	23.9	131096	25.3
	161297	14.3	161297	14.7	161297	15.4	180697	16.6
	220998	11.4	220998	12.4	220998	12.7	220998	13.2
	140999	38.2	140999	40.8	140999	42.4	140999	43.7
	280900	25.3	280900	27.1	280900	29.4	280900	31.3
	200401	14.4	200401	17.4	220901	20.1	200401	21.6
ROLI	180697	9.7	180697	11.1	180697	11.8	180697	12.1
	081098	14.9	081098	15.0	081098	15.0	021298	17.7
	140999	34.5	140999	40.6	140999	43.9	140999	46.1
	280900	12.0	280900	14.1	280900	15.6	280900	16.6
	300801	15.6	300801	15.6	300801	15.7	300801	15.9
SAGR	210995	34.2	210995	40.7	210995	47.4	210995	53.8
	131096	16.8	131096	18.8	131096	22.2	131096	25.0
	250897	20.9	250897	21.5	250897	22.2	250897	22.2
	021298	16.8	021298	19.1	021298	20.4	021298	21.6
	140999	37.9	140999	40.4	140999	42.7	140999	44.2
	180900	17.9	180900	18.2	180900	18.2	280900	19.8
	150701	16.2	150701	17.9	150701	18.2	150701	18.3

Pluviómetro		45		50		55		60
AGBE	290994	15.2	290994	16.6	290994	17.9	290994	19.6
	210995	34.2	210995	34.9	210995	35.6	210995	36.1
	131096	25.4	131096	26.2	131096	26.6	131096	27.3
	161297	19.7	161297	22.6	161297	24.6	161297	26.0
	021298	19.8	021298	21.9	021298	23.8	021298	26.3
	140999	46.0	140999	46.9	140999	48.3	140999	49.4
	190900	14.5	190900	14.6	190900	14.7	190900	14.7
	300801	33.8	300801	36.8	300801	41.0	300801	45.6
AGCO	151094	21.0	151094	21.8	151094	22.3	151094	22.9
	070895	27.5	070895	27.7	131095	28.2	131095	28.3
	100596	32.5	100596	33.6	100596	34.8	100596	35.8
	020197	12.9	020197	13.7	020197	14.2	020197	14.9
	260198	24.4	260198	26.0	260198	26.7	260198	27.7
	130999	57.2	130999	57.9	130999	58.6	130999	59.8
	310300	13.1	310300	13.7	310300	14.1	310300	14.7
	140701	31.4	140701	33.3	140701	37.8	140701	41.2
AGTI	200995	32.8	200995	34.4	200995	34.6	200995	34.7
	170496	15.8	170496	17.2	170496	18.3	170496	19.5
	161297	16.5	161297	18.9	161297	20.3	161297	21.3
	041098	23.0	041098	23.2	041098	23.3	041098	23.3
	130999	35.9	130999	38.5	130999	40.2	130999	41.4
	100500	21.5	100500	21.5	100500	21.5	100500	21.5
	091001	55.7	091001	55.8	091001	55.8	091001	55.8
AGTR	131096	15.3	131096	16.1	131096	16.5	131096	16.7
	250897	24.0	250897	24.0	250897	24.0	101197	24.1
	021298	19.8	021298	21.1	021298	21.8	021298	23.4
	171099	28.5	171099	28.9	171099	29.7	171099	30.3
	180900	14.4	180900	14.4	180900	14.4	180900	14.5
	150701	30.0	150701	31.4	150701	34.4	150701	39.2
AJNO	191094	28.0	191094	29.6	191094	30.9	191094	32.1
	240895	73.9	240895	78.1	240895	79.5	240895	80.7
	131096	27.6	131096	28.6	131096	29.0	131096	29.2
	310597	20.0	310597	20.5	310597	21.0	310597	21.0
	250998	10.7	250998	10.9	250998	11.1	021298	12.5
	140999	39.0	140999	39.6	140999	39.9	140999	41.3
AJSA	170996	16.1	170996	16.5	170996	17.0	170996	17.4
	161297	21.2	161297	23.2	161297	24.6	161297	25.9
	041098	28.2	041098	28.3	041098	28.4	041098	28.4
	130999	61.9	130999	63.6	130999	65.1	130999	66.1
	100500	14.5	100500	14.5	100500	14.5	210500	14.6
	140701	19.6	140701	21.2	140701	24.2	140701	28.5
AJUO	191094	29.0	191094	30.1	191094	31.0	191094	31.4

Pluviómetro		45		50		55		60
	210995	74.4	210995	75.6	210995	76.1	210995	79.7
	131096	16.9	131096	17.8	131096	18.5	131096	18.9
	161297	34.8	161297	39.1	161297	40.7	161297	42.1
	181098	12.3	181098	12.4	021298	13.7	021298	15.8
	140999	24.4	140999	24.8	140999	25.3	140999	25.6
	280900	16.7	280900	17.0	280900	17.3	280900	17.6
	150701	21.9	150701	22.4	150701	24.0	150701	27.1
BARK	250694	20.2	250694	21.1	250694	21.9	250694	22.0
	210995	17.2	210995	17.6	210995	18.1	210995	18.4
	070896	35.2	070896	35.7	070896	36.0	070896	36.1
	310597	20.3	310597	20.4	310597	20.4	310597	20.4
	230998	22.1	230998	22.7	230998	23.0	230998	23.2
	130999	51.3	130999	52.0	130999	54.4	130999	55.4
	280900	20.3	280900	21.1	280900	21.5	280900	22.4
	150701	24.3	150701	24.7	150701	25.1	150701	25.2
CANY	290994	16.3	290994	17.4	290994	18.6	290994	19.7
	060895	28.9	060895	29.0	060895	29.0	060895	29.0
	260296	18.7	260296	18.8	260296	19.4	260296	19.7
	161297	29.5	161297	31.7	161297	33.6	161297	34.6
	021298	21.4	021298	23.5	021298	25.7	021298	27.9
	140999	28.9	140999	30.4	140999	31.9	140999	32.7
	310300	12.1	310300	12.7	310300	13.4	310300	13.7
	150701	25.6	150701	26.5	150701	27.7	150701	28.6
CATA	181094	30.9	181094	32.5	181094	33.4	181094	34.4
	210995	22.5	210995	23.9	210995	26.2	210995	28.2
	131096	24.9	131096	25.9	131096	26.3	131096	26.7
	180697	17.2	180697	18.9	180697	20.0	180697	20.7
	021298	14.7	021298	15.8	021298	16.5	021298	18.1
	140999	43.3	140999	43.5	140999	44.3	140999	45.5
	280900	37.9	280900	38.9	280900	40.2	280900	41.3
	300801	18.6	300801	18.8	300801	18.9	300801	19.3
CLAB	070895	20.7	070895	21.0	070895	21.8	070895	22.5
	070896	32.4	070896	32.5	070896	32.6	070896	32.6
	161297	18.4	161297	19.5	161297	20.4	161297	20.8
	230998	19.3	230998	19.6	230998	19.9	230998	20.0
	130999	48.3	130999	49.2	130999	50.9	130999	51.7
	280900	23.1	280900	23.6	280900	24.0	280900	24.2
	150701	28.4	150701	28.6	150701	28.6	150701	29.1
COTX	210995	49.5	210995	50.8	210995	51.5	210995	51.8
	160496	18.7	160496	20.2	160496	21.8	160496	23.7
	221097	42.7	221097	42.7	221097	42.7	221097	42.7
	250998	17.3	250998	17.6	250998	17.8	250998	17.9

Dluni dan atu -		15		50		55		60
riuviometro	120000	43	120000	50	120000	55	120000	57.2
	130999	55.4 20.5	130999	56.0	130999	56.6	130999	57.3
	280900	29.5	280900	30.4	280900	31.0	280900	31.4
	150/01	22.4	150/01	22.7	150/01	23.2	150/01	24.4
DEIN	280900	25.4	280900	26.1	280900	27.8	280900	28.6
	150701	21.5	150701	21.6	150701	23.4	150701	25.9
DEPU	060895	22.8	060895	22.9	060895	23.0	060895	23.3
	131096	20.8	131096	21.9	131096	23.8	131096	24.3
	180697	15.3	180697	16.9	180697	18.4	180697	19.9
	021298	21.5	021298	22.6	021298	23.7	021298	25.5
	140999	37.1	140999	37.3	140999	37.5	140999	38.7
	280900	32.3	280900	33.0	280900	33.8	280900	34.4
ELIZ	131096	27.6	131096	29.1	131096	29.9	131096	30.2
	231097	18.9	231097	18.9	231097	18.9	231097	18.9
	250998	16.9	250998	17.1	250998	17.3	250998	17.3
	130999	46.4	130999	47.2	130999	47.7	130999	49.3
	280900	28.3	280900	29.5	280900	32.4	280900	33.8
	220901	20.7	220901	21.0	220901	21.2	220901	21.3
FCCF	181094	24.0	181094	28.4	181094	30.6	181094	31.2
	070895	25.7	070895	26.3	070895	26.7	070895	27.0
	020696	18.1	020696	19.7	020696	21.2	020696	22.6
	161297	24.1	161297	24.5	161297	25.0	161297	25.6
	230998	20.8	230998	21.0	230998	21.1	230998	21.1
	130999	49.8	130999	52.1	130999	53.1	130999	53.5
	280900	25.9	280900	26.2	280900	26.3	280900	26.5
	300801	25.8	300801	26.4	300801	26.6	300801	26.8
FISI	110694	19.9	110694	19.9	110694	20.0	110694	20.1
	240895	33.7	240895	33.8	240895	33.8	240895	33.8
	170496	13.7	170496	15.4	170496	16.7	170496	18.2
	221097	32.6	221097	32.6	221097	32.6	221097	32.6
	181098	16.4	181098	16.7	181098	16.9	181098	17.1
	130999	51.4	130999	52.7	130999	54.2	130999	55.3
	011000	11.8	011000	12.4	011000	12.8	011000	13.1
	140701	22.5	140701	23.0	140701	25.2	140701	28.7
HEUR	221195	18.3	221195	18.4	221195	18.4	221195	18.4
	101196	24.9	101196	25.0	101196	25.1	101196	25.8
	161297	39.9	161297	41.3	161297	42.9	161297	44.3
	021298	28.5	021298	30.1	021298	32.4	021298	36.0
	130999	54.7	130999	56.8	130999	57.9	130999	58.6
	310300	20.3	310300	21.1	310300	22.0	310300	22.4
	150701	18.3	150701	18.6	150701	19.8	150701	20.8
MONT	240895	43.9	240895	46.9	240895	50.3	240895	51.7
	131096	28.0	131096	30.0	131096	30.6	131096	30.8

Pluviómetro		45		50		55		60
	310597	26.8	310597	27.2	310597	27.3	310597	27.3
	250998	15.3	250998	15.6	250998	15.7	250998	16.0
	140999	46.7	140999	47.2	140999	48.0	140999	49.4
	280900	28.2	280900	28.3	280900	28.6	280900	28.8
	220901	22.7	150701	23.0	220901	23.3	220901	23.4
NABI	200995	34.5	200995	34.5	200995	34.5	200995	34.5
	110396	17.2	110396	17.9	160496	18.8	160496	20.0
	210997	14.0	170697	14.1	170697	14.7	170697	15.0
	041098	27.6	041098	27.8	041098	28.0	041098	28.1
	130999	50.9	130999	54.0	130999	56.0	130999	57.5
	310300	18.0	310300	18.6	310300	19.3	310300	19.7
	140701	24.2	140701	24.4	140701	25.9	140701	27.3
NICA	240895	32.6	240895	32.8	240895	33.0	240895	33.2
	131096	29.0	131096	29.9	131096	31.0	131096	31.5
	180697	17.9	180697	18.6	180697	19.7	180697	21.3
	220998	13.9	220998	15.2	220998	16.9	220998	17.7
	140999	44.6	140999	44.9	140999	45.0	140999	46.1
	280900	33.1	280900	34.2	280900	35.0	280900	35.5
	200401	23.0	200401	24.5	200401	25.8	200401	27.1
ROLI	180697	12.5	180697	13.4	180697	14.5	180697	15.3
	021298	19.7	021298	21.2	021298	22.4	021298	24.1
	140999	48.8	140999	52.1	140999	52.4	140999	52.5
	280900	18.0	280900	18.8	280900	19.5	280900	20.4
	300801	16.0	300801	16.0	150701	18.0	150701	20.9
SAGR	210995	59.7	210995	66.0	210995	72.2	210995	77.9
	131096	27.9	131096	28.9	131096	29.4	131096	29.7
	250897	22.2	280197	22.3	280197	23.2	280197	23.9
	021298	23.2	021298	24.6	021298	26.7	021298	29.3
	140999	44.8	140999	45.0	140999	45.9	140999	47.2
	280900	21.9	280900	23.3	280900	24.3	280900	25.0
	150701	18.3	150701	18.6	150701	21.0	150701	24.3
Pluviómetro		120		360		720		1440
AGBE	290994	36.7	290994	68.0	290994	78.7	290994	82.8
	210995	36.7	210995	41.4	060895	51.0	060895	56.9
	131096	33.7	131096	67.5	131096	85.3	131096	105.3
	161297	39.1	161297	48.3	161297	54.1	161297	55.4
	021298	37.8	021298	65.5	021298	87.8	021298	110.2
	140999	50.2	140999	50.2	140999	54.6	140999	87.0
	190900	23.0	190900	23.1	190900	23.1	190900	25.7
	300801	49.1	300801	51.0	130101	54.8	130101	61.2

Pluviómetro		120		360		720		1440
AGCO	290994	33.4	290994	65.5	290994	67.9	290994	70.2
	041295	28.6	041295	34.6	041295	34.7	041295	34.7
	100596	40.3	100596	58.0	131096	64.5	131096	75.9
	020197	21.1	020197	26.9	080197	28.1	180497	29.8
	260198	34.1	021298	57.1	021298	93.9	021298	135.7
	130999	60.6	130999	60.7	130999	64.1	130999	65.9
	310300	16.8	310300	19.8	211200	20.5	270400	20.5
	140701	50.6	140701	54.3	140701	56.3	140701	56.3
AGTI	200995	34.9	200995	35.0	200995	35.0	200995	39.7
	170496	32.8	170496	54.0	131096	61.6	131096	75.9
	161297	26.4	280197	35.6	161297	39.4	161297	41.7
	021298	29.9	021298	52.1	021298	75.2	021298	98.7
	130999	43.2	130999	43.3	130999	49.0	130999	52.2
	100500	22.2	100500	31.6	210500	32.4	210500	32.8
	091001	61.9	091001	61.9	091001	62.8	091001	63.1
AGTR	131096	22.2	131096	51.6	131096	67.2	131096	70.7
	280197	35.7	101197	65.9	101197	66.8	101197	67.0
	021298	32.8	021298	55.3	021298	80.8	021298	103.4
	171099	31.7	171099	36.2	171099	39.6	171099	39.6
	180900	24.4	180900	24.4	180900	24.4	180900	24.7
	150701	64.9	150701	68.7	150701	69.7	150701	69.7
AJNO	191094	54.4	191094	62.7	290994	64.5	290994	66.8
	240895	94.2	240895	131.3	240895	133.1	240895	133.1
	131096	39.3	131096	74.1	131096	92.8	131096	103.5
	280197	24.9	280197	28.3	161297	36.8	161297	37.3
	021298	19.3	021298	40.9	021298	66.3	021298	90.7
	140999	43.2	140999	43.3	140999	53.6	140999	59.2
AJSA	160496	27.7	160496	53.7	131096	71.0	131096	85.1
	161297	30.1	161297	40.2	161297	44.5	161297	46.1
	041098	29.4	021298	48.5	021298	78.8	021298	106.5
	130999	67.3	130999	67.3	130999	69.8	130999	74.3
	210500	18.8	210500	23.2	210500	27.8	210500	27.9
	140701	42.4	140701	43.7	130101	45.0	130101	50.1
AJUO	191094	40.7	290994	65.3	290994	74.5	290994	75.2
	210995	91.2	210995	91.8	210995	91.8	210995	94.2
	131096	26.8	131096	55.5	131096	71.5	131096	85.3
	161297	47.7	161297	56.2	161297	60.4	161297	61.1
	021298	24.6	021298	39.2	021298	59.4	021298	78.0
	140999	26.0	140999	26.0	140999	28.6	140999	28.9
	280900	20.9	100500	27.2	100500	27.2	100500	27.3
	150701	42.3	150701	44.4	150701	45.4	150701	45.5
BARK	290994	31.5	290994	61.8	290994	70.1	290994	73.1

Dinni dan ata -		120		260		720		1440
riuviometro	210005	120	210005	300	210005	/20	210005	24.4
	210995	21.0	210995	22.1 62.4	210995	22.1 76.2	210995	24.4
	0/0896	36.4	131096	62.4	131096	/6.3	131096	92.5
	31039/	24.2	101297	54.8	101297	4/./	101297	48.6
	230998	27.0	021298	48.6	021298	84.4	021298	121.1
	130999	56.7	130999	56.7	130999	60.0	130999	60.1
	280900	28.7	280900	31.2	280900	32.8	280900	32.8
	150701	38.4	150701	43.9	150/01	44.0	150/01	44.4
CANY	290994	35.1	290994	70.5	290994	82.5	290994	85.1
	210995	30.5	210995	30.5	060895	53.6	060895	57.4
	170496	21.4	131096	46.1	131096	60.8	131096	77.3
	161297	42.8	161297	50.1	161297	54.2	161297	54.9
	021298	37.3	021298	56.2	021298	78.4	021298	101.5
	140999	33.4	201099	33.5	201099	36.0	140999	51.1
	190900	18.2	190900	18.2	190900	18.2	190900	20.5
	150701	32.8	150701	34.8	140101	39.6	140101	43.1
CATA	181094	51.1	290994	65.4	290994	76.6	290994	78.9
	210995	39.1	210995	39.4	210995	39.4	210995	46.5
	131096	33.6	131096	62.3	131096	77.2	131096	88.4
	280197	25.0	280197	37.3	280197	39.7	280197	41.4
	021298	27.3	021298	43.5	021298	63.7	021298	75.5
	140999	46.4	140999	46.4	140999	55.8	140999	96.4
	280900	46.2	280900	49.7	280900	51.1	280900	51.5
	200401	23.7	190701	27.6	130101	32.3	130101	38.6
CLAB	070895	23.1	070895	23.6	070895	23.9	120995	28.8
	170496	40.2	170496	68.2	170496	75.1	020696	82.7
	161297	23.5	161297	30.1	161297	40.0	161297	40.4
	230998	24.4	021298	33.4	021298	57.2	021298	84.3
	130999	52.6	130999	52.6	130999	55.2	130999	55.3
	280900	29.8	280900	33.0	280900	35.6	280900	35.6
	150701	51.3	150701	57.9	150701	58.1	150701	58.9
COTX	210995	53.9	210995	55.0	210995	55.0	210995	57.0
	160496	39.5	160496	66.9	131096	80.4	131096	95.9
	161297	43.8	161297	52.9	161297	61.2	161297	62.2
	250998	34.9	250998	49.2	021298	77.8	021298	109.1
	130999	58.3	130999	58.2	130999	60.1	130999	60.3
	280900	35.9	280900	41.2	280900	44.2	280900	44.2
	150701	38.7	150701	44.0	150701	45.3	150701	46.1
DEIN	280900	34.0	280900	40.6	280900	43.5	280900	43.5
	150701	38.7	150701	44.2	130101	48.2	130101	53.5
DEPU	060895	23.9	210995	27.7	060895	27.9	060895	29.9
	131096	33.1	131096	63.0	131096	80.1	131096	95.7
	180697	25.5	280197	29.0	161297	34.2	161297	35.1

Pluviómetro		120		360		720		1440
	021298	34.3	021298	54.9	021298	80.4	021298	106.7
	140999	39.5	140999	39.5	140999	53.5	140999	89.1
	280900	38.8	280900	43.3	280900	45.0	280900	45.0
ELIZ	131096	37.6	131096	75.4	131096	94.5	131096	108.1
	280197	27.8	280197	38.6	280197	48.4	280197	50.6
	250998	27.6	021298	50.3	021298	81.8	021298	111.5
	130999	51.1	130999	51.1	130999	62.5	130999	63.3
	280900	38.3	280900	44.2	280900	46.5	280900	46.5
	200401	31.8	130101	43.4	130101	52.7	130101	60.0
FCCF	181094	35.7	290994	52.1	200994	63.0	200994	66.1
	070895	27.7	070895	27.8	070895	27.9	120995	44.3
	020696	32.5	131096	62.7	131096	76.0	131096	88.2
	161297	29.5	161297	38.2	161297	53.8	161297	54.5
	230998	25.0	021298	45.3	021298	77.3	021298	111.1
	130999	53.9	130999	53.8	130999	58.9	130999	59.0
	020900	34.7	020900	37.5	020900	37.5	020900	39.4
	150701	41.3	150701	46.7	150701	46.9	150701	48.1
FISI	290994	30.5	290994	61.4	290994	68.0	290994	71.2
	240895	33.8	240895	37.1	240895	37.4	240895	37.4
	170496	28.5	170496	48.2	170496	52.9	131096	58.5
	161297	33.9	161297	42.4	161297	46.7	161297	47.7
	250998	26.0	250998	39.5	021298	66.2	021298	91.3
	130999	56.2	130999	56.2	130999	57.3	130999	58.0
	310300	13.9	310300	17.2	310300	17.6	211200	19.7
	140701	41.8	140701	43.4	140701	44.3	140701	45.0
HEUR	221195	18.4	221195	20.0	141295	30.1	141295	33.8
	101196	29.1	170496	47.0	131096	65.3	131096	83.0
	161297	52.8	161297	65.0	161297	71.2	161297	73.6
	021298	50.8	021298	79.2	021298	108.0	021298	134.0
	130999	60.0	130999	60.2	130999	63.5	130999	78.2
	270400	24.3	100500	33.7	100500	33.7	100500	33.7
	150701	25.6	130101	47.1	130101	54.2	130101	62.0
MONT	240895	53.5	240895	64.2	240895	65.7	240895	65.7
	131096	39.6	131096	79.2	131096	93.6	131096	103.9
	310597	30.0	310597	31.5	161297	39.1	161297	40.0
	250998	19.4	021298	38.3	021298	62.9	021298	86.0
	140999	50.9	140999	51.0	140999	58.1	140999	58.7
	280900	32.8	280900	35.7	280900	38.3	280900	38.3
	150701	36.0	150701	44.5	150701	44.9	150701	45.5
NABI	200995	34.5	200995	35.3	200995	35.3	200995	39.8
	160496	34.8	160496	55.7	131096	63.4	131096	78.9
	161297	19.9	170497	36.2	170497	40.9	170497	42.9

Pluviómetro		120		360		720		1440
	041098	28.5	021298	48.4	021298	71.7	021298	93.2
	130999	60.0	130999	60.0	130999	62.8	130999	63.7
	210500	20.0	210500	24.3	210500	32.5	210500	33.0
	140701	33.3	130101	44.5	130101	47.9	130101	54.0
NICA	240895	34.4	240895	65.0	240895	66.6	240895	66.6
	131096	38.8	131096	80.8	131096	96.5	131096	108.2
	180697	30.0	280197	35.0	280197	39.2	280197	40.1
	021298	25.8	021298	45.3	021298	70.3	021298	94.1
	140999	47.2	140999	47.2	140999	58.9	140999	88.4
	280900	40.4	280900	45.1	280900	47.1	280900	47.1
	200401	36.0	200401	38.1	200401	38.2	130101	38.4
ROLI	280197	23.8	280197	31.2	161297	34.8	161297	36.0
	021298	31.1	021298	51.1	021298	72.1	021298	92.7
	140999	53.5	140999	53.5	140999	53.5	140999	102.0
	280900	23.3	280900	25.5	280900	26.8	280900	26.8
	150701	30.8	150701	34.4	150701	35.4	130101	35.9
SAGR	210995	89.3	210995	89.4	210995	89.4	210995	92.7
	131096	37.6	131096	76.2	131096	93.8	131096	110.1
	280197	40.3	280197	51.2	280197	53.5	280197	55.9
	021298	40.3	021298	63.1	021298	90.3	021298	114.2
	140999	48.5	140999	48.5	140999	58.9	140999	85.2
	280900	28.9	280900	33.3	280900	35.1	280900	35.1
	150701	37.6	150701	40.3	130101	45.8	130101	54.0

Anexo C: Máximos anuales de precipitación en 24 horas registrados en Catalunya

estación	año	mm	año	mm	año	mm	año	mm
b0072								
	1969	111.0	1978	52.0				
	1970	79.0	1979	72.0				
	1971	83.0	1980	33.0				
	1972	95.0	1981	57.0				
	1973	60.0	1982	92.0				
	1974	44.0	1983	94.0				
	1975	116.0	1984	53.0				
	1976	45.0	1985	50.0				
	1977	100.0	1986	59.0				
b0079								
	1971	90.0	1980	56.4	1989	58.5		
	1972	75.0	1981	92.3	1990	100.2		
	1973	69.5	1982	266.0	1991	94.0		
	1974	66.0	1983	66.0	1992	167.9		
	1975	66.5	1984	74.5	1993	40.3		
	1976	67.0	1985	34.8	1994	103.1		
	1977	65.7	1986	72.0	1995	61.1		
	1978	57.0	1987	67.0				
	1979	68.0	1988	36.5				
b0086							1	
	1919	100.8	1929	106.0				
	1920	65.3	1930	68.3				
	1921	185.2	1931	52.4				
	1922	79.1	1932	83.8				
	1923	71.4	1933	66.5				
	1924	63.2	1934	75.8				
	1925	68.4	1935	85.2				
	1926	84.0	1936	132.0				
	1927	104.3	1937	70.2				
	1928	70.1		,				
b0092								
00072	1956	81.6	1966	56.0	1976	567	1986	471
	1057	50.2	1007	40.0	1077	(1.0	1007	20.4

Tabla C Máximos anuales de precipitación en 24 horas registrados por estaciones pluviométricas del INM en Catalunya

estación	año	тт	año	mm	año	mm	año	mm
	1958	135.0	1968	90.2	1978	69.3	1988	41.6
	1959	54.7	1969	72.5	1979	93.1	1989	61.2
	1960	98.5	1970	66.1	1980	57.3	1990	34.6
	1961	52.6	1971	66.0	1981	81.7	1991	61.4
	1962	67.9	1972	80.3	1982	153.9	1992	57.6
	1963	72.9	1973	85.1	1983	45.4	1993	67.8
	1964	82.7	1974	71.8	1984	58.2		
	1965	90.5	1975	103.7	1985	70.3		
b0097								
	1968	103.9	1977	51.8	1986	42.6		
	1969	60.3	1978	48.2	1987	63.1		
	1970	79.5	1979	104.8	1988	49.3		
	1971	80.2	1980	47.9	1989	59.6		
	1972	82.7	1981	82.9	1990	53.0		
	1973	53.1	1982	83.5	1991	58.4		
	1974	71.8	1983	61.7	1992	64.0		
	1975	73.1	1984	71.2	1993	64.3		
1.010.6	19/6	38.2	1985	83.5				
b0106	1072	40.0	1001	70.0				
	19/3	40.8	1981	/0.0				
	19/4	84.6	1982	55.7				
	19/5	67.2	1983	39.5				
	19/6	31.1	1984	55.0				
	19//	47.7	1985	48.7				
	19/8	32.1 50.2	1986	55.1				
	19/9	50.5	1987	42.0				
10111	1980	30.0						
00111	1040	38.0	1060	12.5	1071	170.3	1082	47.0
	1950	42.3	1961	42.5	1971	51.0	1982	40.0
	1951	56.5	1962	70.8	1972	42.0	1984	45.0
	1952	54.9	1963	70.8	1974	43.0	1985	48.0
	1953	58.6	1964	45.8	1975	56.5	1986	52.0
	1954	40.0	1965	78.5	1976	36.0	1987	47.5
	1955	130.0	1966	60.7	1977	49.5	1988	43.5
	1956	55.2	1967	30.8	1978	33.0	1989	61.0
	1957	39.0	1968	73.5	1979	85.0	1707	01.0
	1958	69.0	1969	58.8	1980	24.0		
	1959	44.2	1970	56.2	1981	69.5		
b0114								
	1942	51.3	1957	48.1	1972	62.1	1987	58.0
	1943	44.3	1958	44.7	1973	40.6	1988	61.2
	1944	85.2	1959	67.6	1974	55.5	1989	27.1
	1945	33.9	1960	58.8	1975	73.2	1990	44.8
	1946	69.1	1961	29.4	1976	38.9	1991	63.3
	1947	30.1	1962	66.3	1977	50.7	1992	117.5
	1948	53.3	1963	56.6	1978	30.5	1993	55.3
	1949	79.2	1964	55.5	1979	70.5	1994	64.5
	1950	73.9	1965	78.9	1980	27.5	1995	44.9
	1951	51.0	1966	39.9	1981	60.8	1996	94.7
	1952	35.0	1967	43.5	1982	57.1	1997	69.3
	1953	56.7	1968	52.9	1983	39.1	1998	82.4
	1954	36.1	1969	60.5	1984	39.5	1999	46.8
	1955	51.2	1970	61.9	1985	54.3	2000	33.6

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	estación	año	mm	año	mm	año	mm	año	mm
b0120 1972 58.0 1980 55.0 1973 127.0 1981 72.5 1974 92.0 1982 109.0 1975 105.0 1983 48.0 1977 101.0 1985 54.0 1977 101.0 1985 54.0 1977 50.0 1987 63.0 b0144 1940 100.0 1952 27.7 1943 64.0 1955 58.0 1967 33.0 1943 64.0 1955 88.0 1966 30.1 1978 26.5 1944 80.0 1956 43.0 1968 64.2 1980 31.0 1944 80.0 1956 51.0 1977 96.0 1982 39.0 1945 37.0 1959 51.0 1977 91.0 1983 37.5 1946 40.0 1958 50.1 1977 50.0 1982 39.0		1956	87.6	1971	51.7	1986	37.6	2001	55.0
1972 58.0 1980 72.5 1974 92.0 1981 72.5 1975 105.0 1983 48.0 1977 101.0 1984 73.0 1977 101.0 1985 54.0 1978 71.0 1986 58.0 1979 83.0 1987 63.0 b0144 1940 100.0 1952 27.7 1964 51.3 1976 33.0 1942 59.0 1955 58.0 1966 63.0 1977 56.0 1944 80.0 1955 43.0 1968 64.2 1980 31.0 1944 80.0 1955 43.0 1968 64.2 1980 31.0 1945 20.0 1957 58.0 1967 45.5 1981 37.5 1946 40.0 1958 62.0 1971 91.0 1983 39.0 1945 47.0 1956 30.0	b0120								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1972	58.0	1980	55.0				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1973	127.0	1981	72.5				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1974	92.0	1982	109.0				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1975	105.0	1983	48.0				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1976	90.0	1984	73.0				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		19/7	101.0	1985	54.0				
b0144 1940 100.0 1952 27.7 1964 51.3 1976 33.0 1941 54.0 1953 41.0 1965 68.0 1977 56.0 1942 59.0 1955 58.0 1966 30.1 1978 26.5 1943 64.0 1955 58.0 1967 35.0 1979 66.0 1944 80.0 1956 62.0 1970 64.2 1980 31.0 1945 20.0 1957 58.0 1968 64.2 1982 39.0 1945 20.0 1957 58.0 1969 84.1 1981 37.5 1946 40.0 1958 62.0 1971 91.0 1983 39.0 1947 35.0 1961 30.0 1973 58.3 1985 54.5 1950 29.6 1962 66.0 1971 60.0 1984 90.0 1947 44.0 1959<		19/8	/1.0	1986	58.0				
b0144 1940 100.0 1952 27.7 1964 51.3 1976 33.0 1941 54.0 1953 41.0 1965 68.0 1977 56.0 1942 59.0 1954 50.0 1966 30.1 1978 26.5 1943 64.0 1955 58.0 1966 30.1 1978 26.5 1943 64.0 1955 43.0 1968 64.2 1980 31.0 1945 20.0 1957 58.0 1969 84.1 1981 37.5 1946 40.0 1958 51.0 1971 91.0 1983 39.0 1947 35.0 1950 29.6 1962 62.0 1972 50.5 50.5 b0150 1945 47.0 1958 95.0 1971 60.0 1984 90.0 1947 44.0 1960 50.0 1973 75.0 1988 80.0 1947	10144	19/9	83.0	1987	03.0				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	60144	10/0	100.0	1052	27.7	106/	51.3	1076	33.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1940	54.0	1952	41.0	1965	68.0	1970	55.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1941	59.0	1953	50.0	1965	30.1	1977	26.5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1943	64.0	1955	58.0	1967	35.0	1979	20.5 66 0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1944	80.0	1956	43.0	1968	64.2	1980	31.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1945	20.0	1957	58.0	1969	84.1	1981	37.5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1946	40.0	1958	62.0	1970	64.9	1982	39.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1947	35.0	1959	51.0	1971	91.0	1983	39.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1948	60.0	1960	42.0	1972	46.5	1984	77.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1949	37.4	1961	30.0	1973	58.3	1985	54.5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1950	29.6	1962	62.0	1974	61.0		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1951	55.0	1963	40.0	1975	50.5		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	b0150								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1945	47.0	1958	95.0	1971	60.0	1984	90.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1946	44.0	1959	70.0	1972	50.0	1985	53.5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1947	44.0	1960	50.0	19/3	75.0	1986	38.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1948	48.0	1961	50.0	1974	60.0	1987	65.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1949	94.0 50.0	1962	66.0 26.0	19/5	100.0	1988	40.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1950	50.0 75.0	1903	30.0 62.0	19/0	48.0	1989	50.0 21.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1951	60.0	1965	100.0	1078	40.0	1990	40.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1952	63.0	1965	28.0	1978	61.0	1997	80.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1954	65.0	1967	40.0	1980	35.0	1993	50.0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1955	70.0	1968	40.0	1981	50.0	1994	60.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1956	70.0	1969	90.0	1982	60.0		00.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1957	75.0	1970	80.0	1983	58.0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	b01580								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	1970	53.5	1979	48.0				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1971	116.0	1980	57.0				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1972	54.0	1981	76.5				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1973	58.0	1982	64.0				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1974	120.0	1983	129.0				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1975	130.0	1984	63.5				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		19/6	64.5	1985	47.0				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		19//	60.0	1986	49.8				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	101(1	19/8	48.0	1987	59.4				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	00101	10/18	10 8	1958	120.1	1968	30.5	1078	53.2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1040	38.0	1950	57.7	1960	66 D	1970	52.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1950	20.0	1960	83.5	1970	68.6	1980	36.5
1952 23.6 1962 88.4 1972 48.0 1982 69.2 1953 69.9 1963 68.3 1973 43.8 1983 61.8		1951	50.2	1961	53.9	1971	116.9	1981	55.9
1953 69.9 1963 68.3 1973 43.8 1983 61.8		1952	23.6	1962	88.4	1972	48.0	1982	69.2
		1953	69.9	1963	68.3	1973	43.8	1983	61.8

estación	año	mm	año	mm	año	mm	año	mm
	1954	66.8	1964	84.2	1974	87.7	1984	103.1
	1955	62.4	1965	83.7	1975	156.2	1985	53.8
	1956	59.3	1966	45.3	1976	68.0	1986	74.4
10166	1957	52.4	1967	41.9	1977	61.3	1987	82.2
60166	1072	00.0	1001	57 E				
	1972	88.0	1981	57.5				
	19/3	43.0	1982	48.3				
	1974	70.3	1985	40.0				
	1975	32.5	1984	49.4				
	1970	47 5	1985	31.6				
	1978	35.0	1987	46.8				
	1979	43.3	1988	38.7				
	1980	29.6	1989	65.2				
b0180	1							
	1941	54.0	1954	38.8	1967	100.0	1980	38.0
	1942	62.0	1955	83.0	1968	44.0	1981	75.0
	1943	120.0	1956	54.0	1969	60.0	1982	80.0
	1944	100.0	1957	45.0	1970	90.0	1983	52.7
	1945	86.5	1958	68.0 75.0	1971	75.0	1984	77.0
	1946	45.0	1959	/5.0	19/2	59.0 46.0	1985	52.5
	1947	124.0	1960	50.0	1975	40.0	1980	67.7
	1948	41.2 37.0	1901	130.0	1974	85.0 56.0	1987	98.0
	1949	24.6	1963	70.5	1975	76 0	1980	45 5
	1951	53 5	1964	50.0	1977	85.0	1990	67.0
	1952	43.0	1965	80.0	1978	68.0	1770	07.0
	1953	71.0	1966	22.5	1979	60.0		
b0181								
	1972	73.0	1980	33.5				
	1973	35.0	1981	42.0				
	1974	52.0	1982	73.8				
	1975	95.5	1983	63.0				
	19/6	67.0	1984	80.3				
	1977	32.0 84.0	1985	84.0 51.0				
	1978	46.0	1980	54.3				
b0185	1777	-0.0	1707	54.5				
00102	1968	79.5	1980	52.8				
	1969	86.5	1981	64.3				
	1970	54.5	1982	68.0				
	1971	77.5	1983	74.5				
	1972	89.0	1984	115.0				
	1973	46.5	1985	50.9				
	1974	120.0	1986	67.0				
	1975	86.7	1987	104.2				
	19/6	00.5	1988	125.0				
	19//	70.0 80.0	1989	55 2				
	1970	40.5	1990	55.5				
b0190	1717	т0.5						
00170	1972	55.7	1980	30.1				
	1973	68.3	1981	48.0				
	1974	108.0	1982	82 7				

1975 78.6 1984 96.0 1977 76.5 1985 95.0 1978 87.0 1986 57.0 1979 87.0 1980 43.0 1973 45.3 1981 86.0 1974 45.3 1981 68.0 1975 177.0 1982 57.0 1976 65.8 1984 45.0 1977 109.5 1985 51.0 1977 109.5 1987 47.0 b0201 1931 85.0 1947 36.0 1962 89.0 1974 25.0 1932 40.0 1946 42.0 1960 69.0 1974 25.0 1933 37.0 1947 36.0 1962 89.0 1976 55.0 1935 35.0 1949 21.0 1963 79.0 1976 55.0 1935 35.0 1964 35.0 1966 50.0 1977	estación	año	тт	año	mm	año	mm	año	mm
1976 38.3 1984 96.0 1977 76.5 1985 95.0 1978 87.0 1986 57.0 1972 160.0 1980 43.0 1973 45.3 1981 68.0 1974 44.0 1982 57.0 1975 177.0 1985 51.0 1977 57.0 1985 51.0 1977 67.5 1987 47.0 50201 1931 85.0 1945 61.0 1959 82.0 1977 25.0 1933 37.0 1946 42.0 1960 69.0 1977 69.7 1934 88.0 1945 61.0 1963 79.0 1977 69.7 1935 35.0 1948 50.0 1965 60.0 1978 69.2 1937 52.0 1951 80.0 1965 83.0 1984 56.2 1937 74.0 1952		1975	78.6	1983	52.0			-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1976	38.3	1984	96.0				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1977	76.5	1985	95.0				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1978	87.0	1986	57.0				
b0200 1972 160.0 1980 43.0 1973 45.3 1981 68.0 1974 44.0 1982 57.0 1975 177.0 1983 59.0 1975 177.0 1983 59.0 1977 109.5 1985 51.0 1978 57.0 1986 48.0 1972 67.5 1987 47.0 b0201 1933 37.0 1944 42.0 1960 60.0 1974 25.9 1933 37.0 1947 36.0 1961 74.0 1975 119.9 1934 88.0 1948 50.0 1963 79.0 1977 65.7 1935 35.0 1949 21.0 1963 79.0 1977 69.7 1936 49.0 1953 128.0 1966 60.0 1978 62.2 1937 74.0 1955 53.0 1964 43.0 1982 <th></th> <th>1979</th> <th>39.0</th> <th>1987</th> <th>86.0</th> <th></th> <th></th> <th></th> <th></th>		1979	39.0	1987	86.0				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	b0200								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1972	160.0	1980	43.0				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1973	45.3	1981	68.0				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1974	44.0	1982	57.0				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1975	177.0	1983	59.0				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1976	65.8	1984	45.0				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1977	109.5	1985	51.0				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		19/8	57.0	1986	48.0				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.0201	19/9	67.5	1987	4/.0				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	60201	1021	95.0	1045	(1.0	1050	82.0	1072	25.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1931	85.0	1945	01.0	1959	82.0	1973	25.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1932	40.0	1940	42.0	1960	69.0 74.0	1974	25.9
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1933	37.0 88.0	1947	50.0	1901	74.0	1975	55.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1025	35.0	1040	21.0	1962	70.0	1970	55.0 60.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1935	49.0	1949	18.0	1964	36.0	1977	69.7
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1937	52.0	1951	80.0	1965	60.0	1979	67.6
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1938	74.0	1952	74.0	1966	52.0	1980	48.8
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1939	37.0	1953	128.0	1967	88.0	1981	56.2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1940	85.0	1954	35.0	1968	43.0	1982	43.2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1941	43.0	1955	53.0	1969	76.0	1983	74.7
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1942	83.0	1956	66.0	1970	51.1	1984	49.1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1943	100.0	1957	61.0	1971	117.0	1985	49.3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1944	165.0	1958	65.0	1972	66.2		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	b0202								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1972	53.0	1980	33.0				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1973	46.0	1981	70.0				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1974	66.0	1982	76.0				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1975	42.0	1983	80.0				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1976	35.0	1984	56.0				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		19/7	88.4	1985	37.0				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1978	90.4	1986	57.0				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	h0202	19/9	72.0	1987	50.0				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	00203	1940	90.0	1952	35.5	1964	44.0	1976	88.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1941	62.0	1952	66.3	1965	102.0	1977	60.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1942	44.0	1954	32.0	1966	62.5	1978	53.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1943	86.0	1955	62.0	1967	75.0	1979	41.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1944	207.0	1956	52.5	1968	55.5	1980	45.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1945	38.0	1957	65.5	1969	95.0	1981	47.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1946	71.5	1958	54.0	1970	72.5	1982	124.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1947	37.0	1959	67.0	1971	78.5	1983	54.5
1949 48.5 1961 74.0 1973 66.0 1985 67.0 1950 58.0 1962 99.0 1974 76.0 1986 62.0 1951 92.0 1963 77.0 1975 85.7 1987 58.5 b0204 1951 59.0 1960 71.5 1969 98.5 1978 45.0 1952 38.0 1961 79.0 1970 86.5 1979 58.5		1948	105.0	1960	64.0	1972	57.5	1984	72.0
195058.0196299.0197476.0198662.0195192.0196377.0197585.7198758.5b0204195159.0196071.5196998.5197845.0195238.0196179.0197086.5197958.5		1949	48.5	1961	74.0	1973	66.0	1985	67.0
1951 92.0 1963 77.0 1975 85.7 1987 58.5 b0204 1951 59.0 1960 71.5 1969 98.5 1978 45.0 1952 38.0 1961 79.0 1970 86.5 1979 58.5		1950	58.0	1962	99.0	1974	76.0	1986	62.0
b0204195159.0196071.5196998.5197845.0195238.0196179.0197086.5197958.5		1951	92.0	1963	77.0	1975	85.7	1987	58.5
195159.0196071.5196998.5197845.0195238.0196179.0197086.5197958.5	b0204								
1952 38.0 1961 79.0 1970 86.5 1979 58.5		1951	59.0	1960	71.5	1969	98.5	1978	45.0
		1952	38.0	1961	79.0	1970	86.5	1979	58.5

estación	año	mm	año	mm	año	mm	año	mm
	1953	66.6	1962	135.0	1971	83.5	1980	74.0
	1954	38.0	1963	65.2	1972	45.3	1981	68.5
	1955	59.6	1964	46.5	1973	84.0	1982	116.0
	1956	36.5	1965	126.5	1974	70.8	1983	43.0
	1957	79.5	1966	101.0	1975	60.0	1984	80.0
	1958	65.2	1967	48.0	1976	42.3	1985	64.0
	1959	57.8	1968	57.5	1977	68.3	1,00	00
b0212a	1707	0,10	1900	0,10		00.0		
002124	1972	44 6	1982	119.0				
	1973	47.0	1983	47.8				
	1974	77.0	1984	100.4				
	1975	98.0	1985	126.0				
	1976	80.0	1986	71.4				
	1977	65.4	1987	69.4				
	1978	55 2	1988	124.5				
	1070	60.3	1080	55.5				
	19/9	40.0	1909	<i>33.3</i> 84.0				
	1980	40.0	1990	84.0				
b0212	1901	89.0						
00213	1072	64.1	1092	00.7				
	1972	28.0	1982	90.7				
	1975	58.9 80.5	1985	50.4 76.1				
	19/4	89.5	1984	/0.1				
	19/5	96.3	1985	//.5				
	1976	52.5	1986	51.1				
	1977	80.0	1987	91.6				
	1978	36.5	1988	138.8				
	1979	55.0	1989	65.6				
	1980	35.7	1990	71.0				
	1981	53.0						
b0220								
	1947	45.5	1958	57.3	1969	112.5	1980	24.5
	1948	59.0	1959	81.0	1970	100.0	1981	50.7
	1949	49.0	1960	75.0	1971	100.0	1982	75.0
	1950	68.0	1961	43.5	1972	50.7	1983	68.2
	1951	113.3	1962	250.0	1973	54.0	1984	82.5
	1952	50.0	1963	100.0	1974	60.1	1985	53.5
	1953	94.5	1964	36.0	1975	91.0	1986	41.5
	1954	47.2	1965	60.0	1976	79.0	1987	94.0
	1955	56.7	1966	60.0	1977	76.0	1988	160.0
	1956	51.3	1967	65.0	1978	55.0	1989	49.5
	1957	86.3	1968	45.0	1979	65.0	1990	73.0
b0222	1							
	1941	60.0	1953	52.0	1965	77.0	1977	45.6
	1942	44.7	1954	83.3	1966	63.0	1978	42.0
	1943	69.8	1955	67.4	1967	46.8	1979	79.0
	1944	81.9	1956	67.4	1968	66.5	1980	33.8
	1945	42.4	1957	82.0	1969	67.4	1981	44 5
	1946	34 3	1958	47.0	1970	69.3	1982	66.8
	1947	40.0	1950	85.0	1971	107.7	1983	43.0
	10/18	74.0	1960	98 5	1072	57 /	108/	106.5
	1040	55 0	1061	70.5 15 D	1072	65.0	1095	76.6
	1949	02.0	1067	43.0	19/3	62.0	1905	/0.0
	1930	52.U 62.5	1902	54.0	17/4	03.0	1700	40.0
	1931	03.3	1903	54.U 40.5	19/3	92.0	198/	57.0
	1952	40.0	1964	49.5	19/6	111.6		

estación	año	mm	año	mm	año	mm	año	mm
b0229e								
	1971	97.0	1979	47.0				
	1972	68.0	1980	37.0				
	1973	129.0	1981	56.0				
	1974	150.0	1982	70.0				
	1975	150.0	1983	188.0				
	1976	100.0	1984	95.0				
	1977	77.0	1985	76.0				
	1978	96.0	1986	63.0				
b0220i	1770	70.0	1700	05.0				
002271	1974	168.0	1983	80.0				
	1075	83.0	108/	66.0				
	1975	70.0	1085	59.5				
	1970	73.0	1086	41.0				
	1977	103.0	1087	100.0				
	1978	105.0	1000	100.0				
	19/9	40.0	1900	51.2				
	1980	35.0	1989	51.2				
	1981	43.0	1990	/3.0				
10240	1982	/8.0						
00240	1022	65 1	1041	70 /	1060	51.0	1070	641
	1922	03.4	1941	/0.4	1900	50.1	19/9	48.0
	1923	83.3	1942	4/.0	1901	50.1	1980	48.0
	1924	20.2	1943	/0./	1962	148.8	1981	41.2
	1925	82.2	1944	110.0	1903	125.0	1982	/0.1
	1926	45.0	1945	37.9	1964	38.0	1983	62.1
	1927	32.8	1946	86.0	1965	53.0	1984	50.5
	1928	86.3	1947	100.0	1966	49.3	1985	64.5
	1929	40.2	1948	63.1	1967	86.6	1986	56.1
	1930	49.5	1949	151.0	1968	30.0	1987	44.5
	1931	154.5	1950	55.0	1969	79.0	1988	117.5
	1932	71.9	1951	67.8	1970	102.0	1989	60.6
	1933	53.8	1952	47.5	1971	77.4	1990	44.1
	1934	54.4	1953	70.5	1972	54.7	1991	86.8
	1935	56.5	1954	46.0	1973	77.7	1992	74.6
	1936	59.8	1955	47.5	1974	69.9	1993	55.5
	1937	110.4	1956	43.4	1975	60.8	1994	45.0
	1938	52.5	1957	48.0	1976	48.4		
	1939	39.4	1958	78.5	1977	61.9		
	1940	58.0	1959	70.4	1978	67.7		
b0241								
	1952	64.0	1961	60.0	1970	44.4	1979	61.0
	1953	105.3	1962	96.5	1971	65.0	1980	49.0
	1954	63.4	1963	128.8	1972	53.8	1981	41.0
	1955	41.5	1964	39.8	1973	40.4	1982	60.7
	1956	89.3	1965	57.6	1974	118.6	1983	119.0
	1957	47.0	1966	50.4	1975	50.1	1984	33.7
	1958	69.3	1967	80.9	1976	51.5	1985	39.5
	1959	68.2	1968	32.5	1977	52.0	1986	60.0
	1960	45.1	1969	74.6	1978	67.2	1987	65.0
b0242						-	-201	
-	1941	73.2	1953	105.0	1965	53.3	1977	65.6
	1942	57.3	1954	41.1	1966	48.2	1978	74.3
	1943	1153	1955	47.0	1967	81.5	1979	86.5
	1944	145.0	1956	108.0	1968	36.7	1980	38.1
	1711	110.0	1,00	100.0	1, 1,00	20.7	1700	20.1

estación	año	mm	año	mm	año	mm	año	mm
	1945	34.0	1957	52.0	1969	100.3	1981	37.1
	1946	45.5	1958	92.7	1970	45.1	1982	68.3
	1947	53.5	1959	82.3	1971	50.2	1983	109.1
	1948	60.0	1960	41.2	1972	56.9	1984	45.1
	1949	73.0	1961	67.2	1973	57.6	1985	77.5
	1950	50.1	1962	122.3	1974	109.4	1986	69.2
	1951	102.0	1963	112.0	1975	54 1	1987	417
	1952	46.8	1964	31.2	1976	46.1	1707	11.7
b0246	1702		1701	01.2	1770			
00210	1972	67.0	1982	142.5				
	1973	53.0	1983	33.5				
	1974	70.0	1984	110.0				
	1975	55.0	1985	60.0				
	1976	38.5	1986	64.0				
	1977	80.0	1987	79.5				
	1078	49.0	1088	106.0				
	1978	49.0	1080	67.0				
	19/9	97.0	1989	66.0				
	1980	51.0 47.0	1990	00.0				
b0248	1981	47.0						
00248	1045	68.0	1057	50.0	1060	121.0	1091	81.0
	1943	08.0 55.2	1937	30.0	1909	121.0	1981	81.0
	1946	33.3	1958	/5.8	1970	62.5	1982	92.0
	1947	36.6	1959	86.8	19/1	//.0	1983	34.0
	1948	62.0	1960	60.0	1972	55.0	1984	66.0
	1949	52.5	1961	94.0	1973	40.0	1985	65.0
	1950	77.4	1962	180.0	1974	100.0	1986	72.0
	1951	95.3	1963	76.4	1975	95.0	1987	60.0
	1952	35.0	1964	45.0	1976	31.0	1988	84.0
	1953	72.0	1965	123.0	1977	138.0	1989	77.0
	1954	56.3	1966	59.0	1978	60.0	1990	45.0
	1955	47.0	1967	150.0	1979	78.0		
	1956	45.0	1968	73.0	1980	56.0		
b0259								
	1956	72.0	1966	62.0	1976	124.8		
	1957	46.0	1967	154.0	1977	149.0		
	1958	88.0	1968	171.0	1978	39.6		
	1959	100.0	1969	146.0	1979	80.1		
	1960	85.0	1970	114.0	1980	118.3		
	1961	160.0	1971	179.8	1981	58.4		
	1962	166.0	1972	72.7	1982	167.8		
	1963	132.0	1973	80.0	1983	136.6		
	1964	105.0	1974	135.4	1984	182.4		
	1965	136.0	1975	121.4	1985	69.7		
b0263				-				
	1946	53.3	1957	51.5	1968	50.2	1979	66.0
	1947	31.6	1958	102.0	1969	219.2	1980	58.3
	1948	97.9	1959	84.0	1970	80 2	1981	40.0
	1949	39.9	1960	102.0	1971	270.0	1982	173.0
	1950	48 7	1961	68.4	1972	48 5	1983	76.0
	1951	109.6	1962	132.5	1973	50.0	1984	64 2
	1057	A6 1	1062	152.5	107/	175.0	1095	102.0
	1052	78.5	1965	83.8	1075	62.0	1985	102.0
	1955	878	1065	162.0	1076	55.0	1007	79.0 55 A
	1754	07.0	1703	60.4	1077	55.0 97.0	170/	23.0 87.0
	1933	12.5	1900	09.4	19//	87.0	1988	87.0

estación	año	mm	año	mm	año	mm	año	mm
	1956	48.5	1967	57.3	1978	85.0	1989	67.0
b0280								
	1948	76.5	1959	51.0	1970	154.4	1981	57.8
	1949	39.5	1960	75.2	1971	166.0	1982	86.2
	1950	113.5	1961	75.3	1972	96.3	1983	42.4
	1951	93.0	1962	190.0	1973	92.0	1984	69.0
	1952	42.5	1963	100.3	1974	81.8	1985	65.0
	1953	120.0	1964	39.6	1975	141.6	1986	65.6
	1954	30.3	1965	78.7	1976	40.2	1987	92.0
	1955	71.9	1966	46.0	1977	117.5	1988	80.6
	1956	67.7	1967	112.4	1978	54.0	1989	74.6
	1957	53.0	1968	63.4	1979	92.2	1990	75.2
	1958	56.3	1969	92.0	1980	48.4		
b0332								
	1972	92.5	1980	50.0				
	1973	65.0	1981	60.2				
	1974	58.3	1982	135.0				
	1975	66.5	1983	67.0				
	1976	105.0	1984	62.5				
	1977	83.5	1985	71.0				
	1978	57.2	1986	62.0				
	1979	53.2	1987	49.0				
b0333								
	1942	54.5	1956	44.1	1970	80.7	1984	43.0
	1943	44.5	1957	59.3	1971	75.3	1985	59.0
	1944	60.0	1958	43.0	1972	52.0	1986	62.0
	1945	80.0	1959	43.0	1973	51.0	1987	40.0
	1946	58.5	1960	76.6	1974	66.7	1988	70.5
	1947	75.1	1961	31.2	1975	92.0	1989	73.0
	1948	31.0	1962	69.5	1976	45.5	1990	60.0
	1949	56.2	1963	95.5	1977	53.5	1991	58.0
	1950	64.0	1964	68.8	1978	48.8	1992	64.4
	1951	54.7	1965	127.5	1979	50.1	1993	44.0
	1952	57.5	1966	53.5	1980	34.5	1994	64.3
	1953	60.5	1967	34.0	1981	59.0	1995	103.0
	1954	56.2	1968	64.3	1982	66.2		
	1955	47.3	1969	57.5	1983	45.4		
g0265	1044	000	1050		10.00	107.0		
	1944	92.8	1952	67.0	1960	107.0		
	1945	50.3	1953	98.2	1961	/0.0		
	1946	110.0	1954	85.0	1962	168.0		
	194/	105.0	1955	68.0 76.0	1963	98.0		
	1948	94.0	1950	/6.0	1964	60.0 40.0		
	1949	38.5	1957	49.0	1903	40.0		
	1950	122.0	1950	230.0	1900	/1.0		
<u>~0275</u>	1931	122.0	1939	230.0				
g0275	1061	65.0	1070	135.0	1070	13.0		
	1961	223.0	1970	118.0	1979	45.0		
	1963	102.0	1072	42.0	1981	40.0		
	1964	37.5	1972	40.0	1987	103.0		
	1965	108.0	1974	89.0	1983	82.0		
	1966	66.0	1975	95.0	1984	48.0		
	1967	78.0	1976	67.0	1985	66.5		
	1 100	, 0.0	1 1770	07.0	1,000	00.0	I	

estación	año	mm	año	mm	año	mm	año	mm
	1968	42.0	1977	90.0	1986	64.0		
	1969	75.0	1978	56.0	1987	230.0		
g0281								
-	1973	53.0	1983	34.0	1993	53.5		
	1974	58.0	1984	34.0	1994	61.5		
	1975	169.0	1985	45.0	1995	55.0		
	1976	69.0	1986	61.0	1996	60.0		
	1977	76.0	1987	57.5	1997	116.3		
	1978	49.0	1988	60.5	1998	41.5		
	1979	61.0	1989	79.0	1999	56.0		
	1980	37.5	1990	78.0	2000	40.0		
	1981	62.0	1991	80.0	2001	48.3		
	1982	80.0	1992	63.0				
g0282a								
	1915	34.7	1928	59.7	1941	36.2	1954	29.7
	1916	42.1	1929	69.0	1942	66.4	1955	112.6
	1917	44.1	1930	54.1	1943	52.1	1956	42.8
	1918	58.6	1931	64.9	1944	40.1	1957	46.6
	1919	62.8	1932	69.9	1945	54.2	1958	39.1
	1920	79.8	1933	72.9	1946	73.4	1959	230.1
	1921	95.1	1934	72.4	1947	47.4	1960	67.2
	1922	53.3	1935	122.6	1948	82.9	1961	61.9
	1923	58.3	1936	38.7	1949	34.2	1962	97.5
	1924	41.1	1937	57.5	1950	48.5	1963	65.1
	1925	125.9	1938	/9.3	1951	54.9	1964	55.4
	1926	44.1	1939	50.1	1952	63.6	1965	63.6
~0292	1927	33.4	1940	30.1	1933	32.3		
g0285a	1027	22 /	1027	57 5	1047	17 1	1057	16.6
	1927	55.4 50.7	1038	70.3	1947	47.4	1957	40.0
	1920	59.7 60.0	1030	79.3 56 1	1940	34.2	1950	220.1
	1929	54.1	1939	50.1	1949	18 5	1959	67.2
	1930	64.9	1940	36.2	1950	54.9	1960	61.9
	1932	69.9	1942	50.2 66 4	1952	63.6	1962	97.5
	1933	72.9	1942	52.1	1953	52.5	1963	87.4
	1934	72.9	1944	40.1	1954	27.2	1964	55.4
	1935	122.6	1945	54.2	1955	112.6	1965	63.6
	1936	38.7	1946	73.4	1956	42.8	1905	05.0
g0283u				,				
0	1973	64.0	1981	45.0	1989	61.4		
	1974	163.0	1982	138.5	1990	63.2		
	1975	208.5	1983	187.0	1991	65.4		
	1976	84.0	1984	55.5	1992	132.5		
	1977	194.0	1985	67.7	1993	54.1		
	1978	54.3	1986	97.6	1994	93.3		
	1979	89.2	1987	84.6	1995	53.0		
	1980	85.0	1988	79.3	1996	84.5		
g0287								
	1951	74.2	1961	53.5	1971	62.0	1981	84.0
	1952	55.5	1962	65.5	1972	111.5	1982	49.0
	1953	54.3	1963	138.0	1973	61.0	1983	42.0
	1954	50.0	1964	141.0	1974	91.5	1984	38.8
	1955	88.0	1965	100.0	1975	110.5	1985	121.7
	1956	47.2	1966	45.0	1976	37.0	1986	93.5

estación	año	mm	año	mm	año	mm	año	mm
	1957	43.8	1967	57.2	1977	62.0	1987	63.2
	1958	77.2	1968	89.5	1978	41.5		
	1959	199.5	1969	58.8	1979	36.6		
	1960	115.0	1970	55.5	1980	37.7		
g0290								
	1947	47.5	1958	65.0	1969	87.1	1980	37.0
	1948	192.5	1959	130.0	1970	77.1	1981	86.0
	1949	130.0	1960	104.0	1971	60.1	1982	38.0
	1950	116.0	1961	30.8	1972	45.6	1983	51.5
	1951	62.3	1962	50.8	1973	140.0	1984	47.0
	1952	84.5	1963	125.0	19/4	46.0	1985	130.4
	1955	60.0	1904	0.0	1975	111.0	1980	90.0
	1934	02.0	1903	102.5	1970	111.3	1987	95.0
	1955	70.0	1900	85.0	19//	40.1		
	1930	33.0	1907	42.3	1978	75.0		
<u>~0202</u>	1937	41.0	1908	05.5	19/9	39.0		
g0292a	1072	119.0	1982	90 N				
	1972	60.5	1983	53.5				
	1973	80.0	1983	46.5				
	1975	112.0	1985	150.0				
	1976	32.0	1986	180.0				
	1977	67.5	1987	146.0				
	1978	39.5	1988	66.0				
	1979	50.5	1989	44.5				
	1980	41.0	1990	50.0				
	1981	116.0						
g0311								
C	1962	173.0	1972	74.3				
	1963	87.6	1973	98.3				
	1964	61.0	1974	69.5				
	1965	109.0	1975	56.8				
	1966	60.4	1976	117.3				
	1967	97.2	1977	271.8				
	1968	160.0	1978	71.6				
	1969	99.2	1979	73.5				
	1970	166./	1980	/5.2				
~0216	19/1	84.5	1981	04.0				
g0310	1060	57.0	1071	75.0				
	1900	42 0	1077	90 0				
	1961	96 N	1972	90.0 80.0				
	1963	70.0	1974	80.0				
	1964	58.0	1975	80.0				
	1965	85.0	1976	65.0				
	1966	42.0	1977	73.0				
	1967	80.0	1978	46.0				
	1968	75.0	1979	57.0				
	1969	76.0	1980	42.0				
	1970	170.0	1981	98.0				
					1			
g0320								
g0320	1960	66.0	1971	136.0				
g0320	1960 1961	66.0 67.0	1971 1972	136.0 70.0				

estación	año	mm	año	mm	año	mm	año	mm
	1963	105.0	1974	77.0	ĺ			
	1964	70.0	1975	63.0				
	1965	125.0	1976	66.0				
	1966	74.0	1977	85.0				
	1967	120.0	1978	48.0				
	1968	80.0	1979	64.0				
	1969	41.0	1980	48.0				
	1970	110.0	1981	95.0				
g0321	1							
0	1945	49.8	1957	76.1	1969	104.2	1981	102.1
	1946	59.2	1958	53.3	1970	95.6	1982	196.0
	1947	46.1	1959	82.2	1971	58.6	1983	56.5
	1948	64.9	1960	67.8	1972	70.2	1984	72.0
	1949	59.6	1961	59.6	1973	53.7	1985	48.8
	1950	70.3	1962	96.6	1974	55.2	1986	60.0
	1951	83.2	1963	75.4	1975	47 1	1987	66.9
	1952	62.8	1964	70.2	1976	58 7	1988	92.5
	1953	49.8	1965	112.6	1977	1113	1989	41.0
	1954	46.9	1966	48.9	1978	64.4	1707	11.0
	1955	58.5	1967	82.8	1979	73.2		
	1956	64.0	1968	75.6	1980	41 1		
σ <u>0328</u>	1750	04.0	1700	75.0	1700	71.1		
g0520	1954	53.0	1965	159.5	1976	80.0		
	1955	51.8	1966	59.4	1977	96.6		
	1956	62.5	1967	113.4	1978	78.3		
	1950	57.5	1968	61.0	1070	11.8		
	1957	17.5	1960	62.0	1080	30.3		
	1950	73.0	1070	63.2	1001	17 0		
	1939	75.0	1970	47.0	1901	47.0		
	1900	90.0 50.0	19/1	47.0	1962	90.0		
	1901	30.0	1972	60.0	1965	19.0		
	1902	/0.2	1973	69.0	1984	45.5		
	1905	123.3	1974	07.0	1985	03.1		
~0257	1904	01./	19/3	92.5				
g0337	1040	186.3	10/18	122.2				
	1940	100.5	1940	72.5				
	1042	105.8	1949	12.0				
	1942	77.0 116.5	1950	70.2 126 7				
	1943	2026	1057	120.7				
	1944	202.0	1952	41.3				
	1943	55.2 06 2	1933	15.5				
	1940	90.3 56 0	1954	03.2				
a0360	194/	50.9					1	
g0300	1050	80.0	1060	80.0	1070	70.0		
	1939	101 7	1070	00.0 Q1 5	19/9	70.0		
	1900	101.7	19/0	04.J 92.0	1980	/0.0		
	1901	110.0	19/1	03.0	1981	210.0		
	1962	190.0	19/2	91.0	1982	210.0		
	1963	100.0	19/5	01.0	1985	85.0		
	1964	132.0	19/4	85.0	1984	108.0		
	1965	200.0	1975	82.0	1985	90.0		
	1966	64.5	1976	95.5	1986	70.0		
	1967	100.0	1977	200.0	1987	90.0		
	1968	88.5	1978	55.0				

estación	año	mm	año	mm	año	mm	año	mm
g0365e								
	1969	75.5	1978	35.0	1987	76.0		
	1970	87.5	1979	69.0	1988	183.0		
	1971	85.0	1980	82.0	1989	136.0		
	1972	90.0	1981	62.0	1990	53.0		
	19/3	60.0	1982	205.0	1991	146.0		
	19/4	92.0	1985	42.0	1992	120.0		
	1975	112.0	1984	185.0	1995	234.0		
	1970	160.0	1985	84 5	1994	234.0		
g0370a	1777	100.0	1700	01.5				
800,00	1972	63.6	1982	90.0				
	1973	92.2	1983	165.0				
	1974	41.0	1984	52.2				
	1975	109.9	1985	55.0				
	1976	92.0	1986	61.0				
	1977	174.0	1987	75.0				
	1978	34.0	1988	111.0				
	1979	6.0	1989	96.5				
	1980	49.6	1990	115.0				
	1981	41.0	1991	62.0				
g0383	1015	< - -	1054	(0.0				
	1945	65.5	1954	68.0				
	1940	140.0	1955	52.8				
	1947	01./	1950	35.0 76.9				
	1940	90.0 65.0	1957	70.8 56.6				
	1949	67.0	1950	84.0				
	1951	86.0	1960	66.0				
	1952	43.0	1961	51.3				
	1953	60.0	1962	119.8				
g0384								
	1942	115.0	1955	50.0	1968	59.3	1981	111.0
	1943	150.0	1956	44.0	1969	96.4	1982	125.0
	1944	82.0	1957	45.0	1970	57.5	1983	69.0
	1945	65.0	1958	35.0	1971	87.0	1984	48.5
	1946	84.0	1959	120.0	1972	73.0	1985	87.0
	1947	61.0	1960	55.0	1973	42.0	1986	85.0
	1948	93.0	1961	41.0	19/4	139.2	198/	188.0
	1949	/4.0	1962	93.0 77.0	19/5	00.5	1988	4/.0
	1950	00.0 72.0	1903	//.0 82.0	19/0	37.3 115.0	1989	50.5 35.3
	1951	65.0	1965	84.0	1977	24.5	1990	55.5
	1952	60.0	1965	40.0	1970	37.8		
	1954	34.0	1967	54.0	1980	58.5		
g0385i							l	
	1969	57.1	1978	64.0				
	1970	59.8	1979	42.0				
	1971	51.7	1980	67.7				
	1972	99.0	1981	101.2				
	1973	32.5	1982	36.2				
	1974	70.1	1983	63.8				
	1975	66.7	1984	42.4				
	1976	44.3	1985	85.3				

estation unit unit unit unit unit unit unit unit g0387 1977 103.6 1986 66.8	astanión	año	101 101	año	114 144	año	100 100	año	114 104
g0387 1922 58.9 1933 115.0 1944 69.8 1955 54.9 1922 58.9 1933 115.0 1944 69.8 1955 54.9 1924 44.0 1935 68.8 1946 98.2 1957 51.4 1925 51.0 1936 65.5 1947 51.8 1958 36.9 1926 54.0 1937 31.6 1948 60.6 1959 182.4 1927 24.2 1938 40.0 1950 120.0 1961 49.1 1929 33.0 1940 54.3 1951 65.0 1962 107.1 1931 67.7 1942 50.4 1953 74.8 1960 107.1 1975 72.4 1980 65.5 1974 49.6 1977 65.2 197.0 1983 94.0 1975 72.4 1986 60.0 1974 72.6 1982 143.0 1977 72.4	estucion	1077	102 (1096		uno	mm	uno	mm
g0387 1922 58.9 1933 115.0 1944 69.8 1955 54.9 1923 67.0 1934 60.0 1945 50.0 1955 54.9 1924 44.0 1935 68.8 1946 98.2 1957 51.4 1925 51.0 1936 65.5 1947 51.8 1958 36.9 1926 54.0 1937 31.6 1948 60.6 1959 182.4 1927 24.2 1938 30.6 1949 84.8 1960 60.1 1928 65.0 1939 40.0 1950 120.0 1961 49.1 1929 33.0 1940 54.3 1951 65.0 1962 107.1 1931 67.7 1942 50.4 1953 74.8 1962 107.1 1971 1972 80.0 1983 72.0 1984 85.5 1975 72.4 1986 60.0 <t< td=""><td></td><td>19//</td><td>103.6</td><td>1986</td><td>66.8</td><td></td><td></td><td></td><td></td></t<>		19//	103.6	1986	66.8				
922 58.9 1934 60.0 1944 69.8 1955 54.9 1924 44.0 1935 68.8 1946 98.2 1957 51.4 1925 51.0 1936 65.5 1947 51.8 1958 36.9 1926 54.0 1937 31.6 1948 60.6 1959 182.4 1927 24.2 1938 30.6 1948 60.6 1959 182.4 1928 65.0 1939 40.0 1950 120.0 1961 49.1 1931 67.7 1942 50.4 1953 74.8 1962 107.1 1932 115.0 1943 80.6 1954 49.6 1962 107.1 1971 67.8 1982 156.5 1974 72.0 1985 68.5 1972 80.0 1983 94.0 1976 107.0 1985 47.0 1975 72.4 1986	g0387								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1922	58.9	1933	115.0	1944	69.8	1955	54.9
924 44.0 1935 68.8 1946 98.2 1957 51.4 1925 51.0 1936 65.5 1947 51.8 1958 36.9 1926 54.0 1937 31.6 1948 60.6 1959 182.4 1928 65.0 1939 40.0 1950 120.0 1961 49.1 1929 33.0 1940 54.3 1951 65.0 1962 107.1 1930 87.0 1941 42.6 1952 23.0 1962 107.1 1931 67.7 1942 50.4 1953 74.8 1962 107.1 1970 192.0 1981 77.4 1975 74.4 1986 60.0 1977 192.5 1988 91.0 197.9 197.9 197.9 197.9 197.9 197.9 197.9 197.9 197.9 197.9 197.9 197.9 197.9 197.9 197.9 197.9 198.9 <		1923	67.0	1934	60.0	1945	50.0	1956	42.2
1925 51.0 1936 65.5 1947 51.8 1958 36.9 1926 54.0 1937 31.6 1948 60.6 1959 182.4 1928 65.0 1939 40.0 1950 120.0 1961 49.1 1929 33.0 1940 54.3 1951 65.0 1962 107.1 1930 87.0 1941 42.6 1952 23.0 1962 107.1 1931 67.7 1942 50.4 1953 74.8 1962 107.1 1970 192.0 1981 77.4 1971 67.8 1972 80.0 1983 94.0 1977 182.5 1988 91.0 1975 72.4 1986 60.0 1977 182.5 1984 91.0 1975 1974 72.0 1981 113.5 1974 72.0 1981 113.5 1974 68.3 1975 38.0 1983 72.0 1981		1924	44.0	1935	68.8	1946	98.2	1957	51.4
1926 54.0 1937 31.6 1948 60.6 1959 182.4 1927 24.2 1938 30.6 1949 84.8 1960 60.1 1929 33.0 1940 54.3 1951 65.0 1962 107.1 1930 87.0 1941 42.6 1952 23.0 1962 107.1 1931 67.7 1942 50.4 1953 74.8 1962 107.1 1932 115.0 1980 67.0 1954 49.6 1962 107.1 1971 67.8 1982 156.5 1972 80.0 1983 94.0 1973 104.0 1984 85.5 1975 72.4 1986 60.0 1976 117.0 1987 168.0 109.0 1976 177.4 1986 10.2 1974 72.0 1981 113.5 1974 72.6 1984 90.0 1977 30.0 1985		1925	51.0	1936	65.5	1947	51.8	1958	36.9
1027 24.2 1938 30.6 1940 84.8 1960 60.1 1928 65.0 1939 40.0 1950 120.0 1961 49.1 1929 33.0 1940 54.3 1951 65.0 1961 49.1 1930 87.0 1941 42.6 1952 23.0 1962 107.1 1931 67.7 1942 50.4 1953 74.8 1962 107.1 1932 115.0 1943 80.6 1954 49.6 1962 107.1 1970 192.0 1981 77.4 1954 49.6 1973 104.0 1984 85.5 1975 72.4 1986 60.0 1976 117.0 1987 168.0 1977 182.5 1988 91.0 1975 72.4 1986 60.0 1977 72.0 1981 131.5 1974 68.5 1974 68.5 1974		1926	54.0	1937	31.6	1948	60.6	1959	182.4
1227 27.2 1230 30.0 177 07.0 1960 49.1 1929 33.0 1940 54.3 1951 65.0 1962 107.1 1930 87.0 1941 42.6 1952 23.0 1962 107.1 1931 67.7 1942 50.4 1953 74.8 1962 107.1 1932 115.0 1943 80.6 1954 49.6 1962 107.1 1932 115.0 1981 77.4 1953 74.8 1973 72.0 1983 94.0 1973 1972 80.0 1985 68.5 1975 72.4 1986 60.0 1977 128.5 1988 91.0 1975 72.4 1980 120.0 1974 72.0 1983 47.0 1977 182.5 1988 91.0 1975 88.0 1982 143.0 1975 38.1 1975 38.1 <t< td=""><td></td><td>1927</td><td>24.2</td><td>1938</td><td>30.6</td><td>1940</td><td>84.8</td><td>1960</td><td>60.1</td></t<>		1927	24.2	1938	30.6	1940	84.8	1960	60.1
1928 0.30 1939 40.0 1930 120.0 1901 49.1 1930 87.0 1940 54.3 1951 65.0 1962 107.1 1931 67.7 1942 50.4 1952 23.0 1962 107.1 1932 115.0 1943 80.6 1954 49.6 1962 107.1 g0395 1969 100.0 1980 67.0 1953 74.8 197 g0395 1969 100.0 1986 66.0 1954 49.6 197 g0395 1972 80.0 1983 94.0 1973 144.0 1984 85.5 1977 72.4 1986 60.0 1976 107.0 1977 182.5 1988 91.0 1978 46.0 1989 10.9 1975 38.1 1975 38.1 1975 38.1 1975 38.1 1975 38.1 1975 38.1 1975 38.1 1975		1029	65.0	1020	40.0	1050	120.0	1061	40.1
1929 33.0 1940 34.3 1951 63.0 1962 107.1 1931 67.7 1942 50.4 1953 74.8 1952 23.0 1962 107.1 1932 115.0 1943 80.6 1954 49.6 1953 74.8 1952 23.0 1962 107.1 1972 80.0 1980 67.0 1973 1973 1972 80.0 1983 94.0 1973 1973 104.0 1985 68.5 1975 72.4 1985 68.5 1975 177.4 1986 60.0 1973 172.0 1985 68.5 1977 182.5 1988 91.0 1978 1974 72.0 1981 113.5 1974 72.0 1981 113.5 1976 60.0 1984 89.0 1977 182.5 1982 143.0 1977 1974 72.0 1981 113.5 1977 1974 68.3 1977 183.5 1977 38.1		1920	03.0	1939	40.0	1950	120.0	1901	49.1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1929	33.0	1940	54.5	1951	05.0	1962	107.1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1930	87.0	1941	42.6	1952	23.0		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1931	67.7	1942	50.4	1953	74.8		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1932	115.0	1943	80.6	1954	49.6		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	g0395								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	C	1969	100.0	1980	67.0				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1970	192.0	1981	77 4				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1971	67.8	1982	156.5				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1072	80.0	1082	04.0				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1972	104.0	1903	94.0				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1975	104.0	1984	83.3				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		19/4	/2.0	1985	68.5				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1975	72.4	1986	60.0				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1976	117.0	1987	168.0				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1977	182.5	1988	91.0				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1978	46.0	1989	80.0				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1979	69.2	1990	109.0				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	o0417								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50417	1972	874	1980	120.0				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1072	72.0	1081	112.5				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1973	72.0	1002	113.5				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1974	/2.0	1982	145.0				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		19/5	88.0	1983	/2.0				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1976	60.0	1984	89.0				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1977	93.0	1985	47.0				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1978	35.0	1986	169.0				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1979	140.0	1987	61.5				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	g0429								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	1944	66.5	1954	18.6	1964	68.4	1974	68.3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1945	36.8	1955	34.0	1965	1173	1975	38.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1946	99.4	1956	30.1	1966	29.0	1976	35.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1047	16.3	1950	44.5	1967	52.4	1077	72.6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1049	102.1	1059	44.5	1069	52.4 86.0	1079	24.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1940	105.1	1930	33.3	1908	102.9	1970	24.0 42.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1949	50.4	1959	12.5	1909	102.8	19/9	42.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1950	111.3	1960	42.0	1970	26.4	1980	29.3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1951	79.8	1961	46.5	1971	223.0	1981	87.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1952	24.5	1962	133.0	1972	39.5	1982	231.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1953	62.0	1963	93.0	1973	30.8		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	g0430								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	1941	76.9	1949	112.0	1957	70.7		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1942	172.0	1950	67.0	1958	48.0		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1943	99.0	1951	92.6	1959	122.0		
1944 160.0 1952 52.7 1960 43.0 1945 70.0 1953 101.4 1961 73.8 1946 71.0 1954 54.5 1962 75.8 1947 64.0 1955 47.4 1963 94.0 1948 81.0 1956 37.3 1963 94.0		1944	186.0	1952	32.7	1960	43.0		
1945 70.0 1955 101.4 1961 75.8 1946 71.0 1954 54.5 1962 75.8 1947 64.0 1955 47.4 1963 94.0 1948 81.0 1956 37.3 1963 94.0		1045	70.0	1052	101 4	1061	72.0		
1940 71.0 1934 54.5 1962 75.8 1947 64.0 1955 47.4 1963 94.0 1948 81.0 1956 37.3 94.0 1956		1943	70.0	1933	5/5	1040	15.0		
$ \begin{vmatrix} 1947 & 64.0 \\ 1948 & 81.0 \end{vmatrix} \begin{vmatrix} 1955 & 47.4 \\ 1956 & 37.3 \end{vmatrix} \begin{vmatrix} 1963 & 94.0 \\ 94.0 \end{vmatrix} $		1940	/1.0	1934	54.5	1902	13.0		
1948 81.0 1956 37.3		194/	64.0	1955	4/.4	1963	94.0		
		1948	81.0	1956	57.5				

estación	año	mm	año	mm	año	mm	año	mm
σ0431								
g0+51	1952	30.5	1963	109.0	1974	76.0	1985	56.0
	1953	79.0	1964	51.0	1975	72.0	1986	111.0
	1954	45.0	1965	136.0	1976	53.0	1987	291.0
	1955	51.0	1966	28.0	1977	121.0	1988	33.0
	1956	42.0	1967	68.5	1978	47.0	1989	48.5
	1957	68.0	1968	74.0	1979	51.0	1990	53.0
	1958	61.0	1969	83.0	1980	28.0	1991	45.0
	1959	144.0	1970	60.5	1981	81.0	1992	117.5
	1960	50.0	1971	149.0	1982	69.4	1993	199.5
	1961	96.5	1972	63.0	1983	46.5	1994	153.0
0.422	1962	75.0	19/3	35.2	1984	/1.0		
g0432a	1040	11 1	1051	120.0				
	1940	44.4	1951	120.0				
	1941	92.8	1952	27.0				
	1942	165.0	1955	73.0 52.1				
	1943	130.2	1954	118.5				
	1945	76.5	1956	61.6				
	1946	79.3	1957	83.5				
	1947	60.0	1958	92.5				
	1948	164.2	1959	122.7				
	1949	76.9	1960	108.0				
	1950	156.4	1961	80.0				
g0433								
C	1969	118.7	1978	53.3	1987	87.7		
	1970	86.5	1979	57.7	1988	36.0		
	1971	285.0	1980	60.7	1989	35.0		
	1972	62.5	1981	92.0	1990	50.0		
	1973	44.5	1982	33.0	1991	92.4		
	1974	68.3	1983	100.5	1992	150.0		
	19/5	57.5	1984	50.0	1993	/5.0		
	1970	34.4 276.0	1985	84.Z	1994	192.5		
<u>a0422a</u>	19//	270.0	1980	430.0				
g0455e	1071	85.0	1070	68.0	1088	51.5		
	1971	56.0	1979	55.0	1980	200.0		
	1973	39.5	1981	100.0	1990	44 2		
	1974	76.0	1982	70.0	1991	80.0		
	1975	62.0	1983	55.0	1992	101.0		
	1976	42.0	1984	55.0	1993	83.2		
	1977	250.0	1985	60.0	1994	226.0		
	1978	42.0	1987	97.0				
g9582								
-	1949	36.5	1959	46.0	1969	29.0		
	1950	23.0	1960	41.0	1970	64.0		
	1951	34.5	1961	33.0	1971	40.8		
	1952	60.0	1962	55.0	1972	46.0		
	1953	77.5	1963	47.2	1973	42.0		
	1954	27.0	1964	42.5	1974	47.5		
	1955	4/.0	1965	62.6	19/5	51.0		
	1950	/4.5	1960	20.2	19/0	45.4		
	1957	59.0	190/	27.3	19//	52.8		

estación	año	mm	año	mm	año	mm	año	mm
	1958	70.5	1968	35.5				
g9584								
e	1911	31.7	1919	41.5	1927	290.7		
	1912	27.2	1920	35.8	1928	33.5		
	1913	31.5	1921	97.2	1929	123.4		
	1914	46.2	1922	34.3	1930	46.0		
	1915	42.8	1923	55.7	1931	54.0		
	1916	45.2	1924	35.6	1932	99.0		
	1917	52.8	1925	37.9	1933	59.0		
	1918	30.6	1926	114.1	1934	69.0		
g9585								
-	1960	76.0	1971	107.2				
	1961	77.0	1972	86.1				
	1962	132.0	1973	75.2				
	1963	86.0	1974	92.8				
	1964	136.0	1975	59.0				
	1965	126.0	1976	83.4				
	1966	85.6	1977	66.2				
	1967	111.2	1978	41.2				
	1968	94.6	1979	113.6				
	1969	64.0	1980	69.6				
	1970	92.2	1981	134.2				
g9635								
	1950	70.0	1961	42.8	1972	71.5	1983	40.0
	1951	43.5	1962	62.8	1973	76.0	1984	59.0
	1952	61.4	1963	68.6	1974	73.5	1985	38.5
	1953	63.4	1964	58.2	1975	38.0	1986	28.5
	1954	48.2	1965	72.5	1976	82.4	1987	46.7
	1955	50.1	1966	60.6	1977	68.0	1988	35.5
	1956	52.3	1967	91.8	1978	48.0	1989	51.2
	1957	89.0	1968	67.0	1979	38.0	1990	92.3
	1958	66.0	1969	44.1	1980	37.5		
	1959	76.4	1970	72.1	1981	80.0		
10124	1960	60.5	1971	64.0	1982	153.0		
10134e	10.00	55.0	1070	45.0				
	1968	55.0	1978	45.0				
	1969	/1.5	19/9	37.0				
	1970	92.1	1980	/8.5				
	19/1	/5.0	1981	140.0				
	1972	45.0	1982	62.5				
	19/3	30.3 62.0	1985	60.0 56.6				
	1974	02.0	1984	30.0				
	1975	55.5 45.0	1985	59.5				
	1970	43.0 50.0	1980	39.0				
10125	19//	39.0					1	
10133	1042	01.0	1054	10.2	1066	38 5	1079	18 5
	1042	71.0 10.5	1934	40.5 51.5	1900	56.5 56.7	1070	40.J 18 N
	1943	122.0	1955	100.5	1068	50.7 70.5	1020	40.0 51 1
	10/15	40.5	1950	77 5	1060	66 7	1001	71.0
	1945	37.0	1058	573	1070	10/1 0	1087	01 5
	1940	38.0	1950	77.5	1970	73 5	1982	91.5 75 A
	1949	86 0	1960	587	1072	64 4	1984	58 1
	1040	40.0	1961	<u> </u>	1972	65 3	1985	72.5
	1777	-U.U	1701	71.0	1715	05.5	1705	12.0

estación	año	mm	año	mm	año	mm	año	mm
	1950	50.0	1962	61.0	1974	52.8	1986	33.0
	1951	34.0	1963	56.6	1975	104.5	1987	57.8
	1952	40.4	1964	94.9	1976	49.8		
	1953	56.3	1965	68.2	1977	58.2		
19619	1							
	1967	46.1	1975	39.0	1983	37.0		
	1968	44.0	1976	36.0	1984	53.0		
	1969	30.0	1977	92.0	1985	35.0		
	1970	107.0	1978	29.0	1986	38.0		
	1971	33.0	1979	32.0	1987	42.0		
	1972	42.0	1980	50.0	1988	66.0		
	1973	49.0	1981	75.0	1989	44.0		
	1974	70.0	1982	72.0	1990	73.0		
19621								
	1940	102.0	1954	31.3	1968	50.3	1982	92.5
	1941	32.0	1955	67.8	1969	30.0	1983	45.5
	1942	26.0	1956	45.8	1970	118.0	1984	60.0
	1943	30.0	1957	53.4	1971	45.0	1985	31.7
	1944	99.0	1958	51.1	1972	64.5	1986	26.2
	1945	37.0	1959	56.6	1973	54.5	1987	34.0
	1946	54.0	1960	17.4	1974	82.0	1988	49.0
	194/	35.0	1961	43.5	1975	/0.0	1989	39.0
	1948	29.0	1962	54.8	1976	51.2	1990	68.0
	1949	35.0	1903	79.2 52.8	1977	49.5	1991	40.0
	1950	28.0	1904	52.8 50.0	1978	37.0	1992	24.0
	1951	57.5	1905	50.0 62.0	1979	35.0 36.4	1995	24.0 69.0
	1952	100.7	1967	40.0	1980	70.2	1994	70.0
19638	1755	100.7	1707	40.0	1701	70.2	1775	70.0
17050	1950	42.0	1962	54.0	1974	101.0	1986	50.0
	1951	41.3	1963	48.5	1975	32.0	1987	53.0
	1952	52.2	1964	87.7	1976	39.0	1988	47.0
	1953	53.3	1965	67.5	1977	48.0	1989	40.0
	1954	50.7	1966	43.8	1978	45.0	1990	54.0
	1955	76.0	1967	52.0	1979	52.5	1991	37.0
	1956	49.2	1968	58.4	1980	36.0	1992	73.0
	1957	69.6	1969	32.5	1981	79.0	1993	32.5
	1958	33.8	1970	61.4	1982	90.0	1994	60.0
	1959	53.9	1971	67.0	1983	61.0	1995	34.0
	1960	61.2	1972	61.5	1984	54.0		
	1961	38.2	1973	52.0	1985	38.0		
19647								
	1942	41.0	1955	57.2	1968	33.5	1981	54.4
	1943	54.0	1956	43.3	1969	63.4	1982	58.4
	1944	114.0	1957	52.5	1970	65.6	1983	78.5
	1945	38.0	1958	56.0	19/1	//.8	1984	40.3
	1946	50.0	1959	38.5	1972	47.5	1985	30.5
	1947	58.0	1960	49.0	19/3	39.5	1986	/3.0
	1948	29.0	1901	37.0	19/4	45.0	1987	52.0
	1949	40.0	1902	49.1	19/3	57.5 97 1	1988	24.9 28.0
	1930	43.U 16 7	1903	55.0 12.0	19/0	0/.4 16 0	1989	20.0 12.0
	1951	37 8	1904	43.0	1977	40.9 20.1	1790	42.0
	1952	57.0 172	1905	41.0 22.5	19/0	27.1 11 2		
	1933	47.3	1900	22.3	19/9	44.3	l	

estación	año	mm	año	mm	año	mm	año	mm
	1954	20.8	1967	46.4	1980	33.2		
19650							I	
	1972	76.0	1982	47.2				
	1973	105.0	1983	46.1				
	1974	35.0	1984	35.7				
	1975	38.0	1985	30.6				
	1976	36.5	1986	62.9				
	1977	373	1987	27.3				
	1078	53.4	1088	27.5				
	1978	20.2	1900	56.9				
	19/9	89.5 22.0	1989	55.2				
	1980	33.9 80.7	1990	33.2				
10/71	1981	89.7						
1965 I u	1072	01.0	1002	50.0				
	19/3	91.8	1982	58.9				
	19/4	46.9	1983	39.6				
	1975	59.5	1984	44.0				
	1976	34.0	1985	62.0				
	1977	37.2	1986	57.7				
	1978	44.0	1987	33.7				
	1979	50.1	1988	20.7				
	1980	29.7	1989	51.2				
	1981	70.8	1990	44.5				
19669								
	1972	30.0	1982	65.0				
	1973	30.0	1983	45.0				
	1974	86.0	1984	52.0				
	1975	36.0	1985	37.0				
	1976	45.0	1986	30.0				
	1977	54.0	1987	70.0				
	1978	40.0	1988	48.0				
	1979	45.0	1989	32.0				
	1980	63.0	1990	41.0				
	1981	55.0						
19675	1							
	1961	42.0	1971	42.0	1981	35.0		
	1962	59.0	1972	44 0	1982	98.0		
	1963	45.0	1973	45.0	1983	63.0		
	1964	54.0	1974	68.0	1984	62.0		
	1965	52.0	1975	36.0	1985	47.0		
	1966	62.0	1976	46.0	1986	44.0		
	1967	47.0	1977	47.0	1987	84.0		
	1968	52.0	1978	30.0	1988	57.0		
	1969	41.0	1970	42.0	1980	42.0		
	1970	45.0	1080	48.0	1000	44.0		
19684	1770	45.0	1700	40.0	1770	0		
1700-	1940	51.0	1952	44 4	1964	75.0	1976	54 7
	1941	58.0	1953	37.5	1965	72.0	1977	42.0
	10/2	61.0	1954	40 5	1966	80.0	1078	77.0
	10/2	53.0	1055	54 0	1960	43.0	1070	AA 5
	1043	40.0	1955	JH.U 16.6	1060		19/9	12 2
	1044	52.0	1930	70.0	1700	50.0	1001	43.3
	1943	33.U 64.0	193/	70.0	1909	03.5	1981	30.0 52.5
	1940	04.0	1938	/0.0	19/0	3/.U 71.0	1982	55.5 21.7
	194/	61.0	1959	62.0	19/1	/1.0	1983	51./
	1948	40.0	1960	70.0	1972	57.0	1984	40.3

estación	año	mm	año	mm	año	mm	año	mm
cstucton	1949	42.0	1961	50.0	1973	61.0	1985	50.0
	1950	25.0	1962	58.0	1974	70.0	1986	33.0
	1951	50.3	1963	38.5	1975	75.0	1987	58.8
19688								
	1937	160.0	1950	82.0	1963	103.0	1976	120.0
	1938	52.0	1951	85.0	1964	90.0	1977	75.0
	1939	105.0	1952	170.0	1965	103.0	1978	40.0
	1940	92.0	1953	45.0	1966	104.0	1979	78.0
	1941	87.0	1954	67.0	1967	150.0	1980	60.0
	1942	162.0	1955	46.0	1968	/8.0	1981	//.0
	1945	03.0 47.0	1930	81.0 57.0	1909	47.0	1982	200.0
	1944	47.0	1957	52.0	1970	82.0	1905	114.0
	1945	49.0	1958	52.0 62.0	1971	54.0	1984	87.0
	1947	48.0	1960	97.0	1973	59.0	1705	07.0
	1948	55.0	1961	75.0	1974	148.0		
	1949	42.0	1962	74.0	1975	55.0		
19689								
	1941	86.0	1954	59.0	1967	88.0	1980	81.0
	1942	85.0	1955	83.3	1968	73.0	1981	103.0
	1943	96.0	1956	71.0	1969	54.0	1982	252.0
	1944	52.0	1957	80.0	1970	65.0	1983	55.0
	1945	80.0	1958	95.0	1971	74.0	1984	105.0
	1946	48.0	1959	103.0	1972	64.0	1985	88.0
	1947	80.0	1960	95.0	1973	/6.0	1986	58.0
	1948	/2.0	1961	61.0	19/4	161.0	198/	93.0
	1949	112.0	1902	07.0	1975	180.0	1988	/3.0
	1950	70.5	1905	95.0	1970	105.0	1909	51.0
	1952	107.5	1965	84.0	1978	72.0	1770	51.0
	1953	61.0	1966	148.0	1979	135.0		
19695								
	1961	75.0	1971	61.0	1981	100.0		
	1962	50.0	1972	46.0	1982	138.0		
	1963	50.0	1973	63.0	1983	52.0		
	1964	90.0	1974	136.0	1984	73.0		
	1965	63.0	1975	58.0	1985	49.0		
	1966	68.0	1976	59.0	1986	52.0		
	196/	/0.0	19//	52.0 25.0	198/	57.0		
	1908	03.0 52.0	1978	55.0 55.0	1988	44.0 52.0		
	1909	73.0	1979	42 0	1909	39.0		
19696a	1770	15.0	1700	72.0	1770	57.0		
170704	1973	56.0	1982	79.0				
	1974	97.0	1983	32.0				
	1975	45.0	1984	80.0				
	1976	54.0	1985	51.0				
	1977	53.0	1986	50.0				
	1978	35.0	1987	41.0				
	1979	48.0	1988	41.0				
	1980	37.0	1989	56.0				
10701	1981	/8.0	1990	40.0				
19/01e	1040	62 5	1070	12 2				
	1909	03.3	19/9	43.2				

estación	año	mm	año	mm	año	mm	año	mm
	1970	107.0	1980	34.3				
	1971	42.1	1981	64.7				
	1972	43.1	1982	84.4				
	1973	51.5	1983	39.5				
	1974	84 5	1984	42.1				
	1975	35.4	1985	26.2				
	1076	28.3	1086	20.2				
	1077	20.5	1007	22.0				
	1977	45.5	1907	33.0				
10704	19/8	24.1					1	
19704	10/6	34.0	1056	41.0	1066	38.0	1076	36.0
	1047	40.0	1057	57.0	1900	28.0	1077	50.0
	1947	40.0	1957	37.0	1907	56.0	1977	50.5
	1948	36.0	1958	39.0	1968	45.0	19/8	55.0
	1949	34.0	1959	44.0	1969	88.0	19/9	81.0
	1950	38.0	1960	56.0	1970	81.0	1980	45.0
	1951	38.0	1961	34.0	1971	45.0	1981	57.0
	1952	53.0	1962	72.0	1972	50.0	1982	100.0
	1953	39.0	1963	43.0	1973	75.5	1983	37.0
	1954	45.0	1964	45.0	1974	82.5	1984	63.0
	1955	57.0	1965	50.0	1975	47.0	1985	19.0
9710								
	1961	52.0	1971	47.0	1981	53.0		
	1962	52.0	1972	76.0	1982	82.0		
	1963	26.0	1973	51.0	1983	35.0		
	1964	40.0	1974	54.0	1984	44.5		
	1965	35.0	1975	80.0	1985	25.0		
	1966	38.0	1976	46.0	1986	31.0		
	1067	30.0	1077	40.0	1087	68.0		
	1069	78.0	1079	40.0 58.0	1000	26.5		
	1908	78.0	1970	38.0	1900	20.5		
	1909	35.0	19/9	49.0	1989	44.0		
0712	1970	45.0	1980	37.0	1990	32.3		
19/13	1067	36.5	1076	27.0	1085	25.0	1004	51.0
	1069	257	1077	27.0	1006	23.0	1005	202
	1908	55.7	1977	31.3	1980	28.3	1995	20.2
	1969	61.0	19/8	39.0	198/	57.0	1996	44.2
	1970	6/.5	19/9	40.0	1988	58.0	1997	49.4
	1971	39.6	1980	29.5	1989	38.5	1998	26.4
	1972	47.4	1981	82.0	1990	40.5	1999	28.0
	1973	34.7	1982	51.5	1991	34.0	2000	51.0
	1974	60.0	1983	42.0	1992	42.8	2001	22.0
	1975	43.0	1984	48.5	1993	24.0		
97200	1070	10 -	1000	-				
	1972	49.5	1982	76.0				
	1973	29.5	1983	35.0				
	1974	39.0	1984	52.0				
	1975	36.6	1985	35.0				
	1976	28.0	1986	27.5				
	1977	33 3	1987	35.0				
	1978	30.5	1988	36.0				
	1070	40.0	1980	42.5				
	1080	33.0	1000	35.0				
	1980	67.0	1990	55.0				
9726	1901	07.0					1	
9120	1965	81.0	1974	63 9	1983	39.0		
					1		I	

estación	año	mm	año	mm	año	mm	año	mm
	1966	47.5	1975	81.5	1984	49.6		
	1967	87.4	1976	37.1	1985	29.0		
	1968	31.1	1977	66.0	1986	42.0		
	1969	43.5	1978	36.1	1987	80.4		
	1970	72.0	1979	39.0	1988	26.1		
	1971	36.6	1980	27.0	1989	42.5		
	1972	52.5	1981	56.8	1990	36.5		
	1973	26.7	1982	35.1	1770	20.0		
19727i	1770	20.7	1702				1	
197271	1972	56.6	1982	39.2				
	1973	31.3	1983	38.4				
	1974	44.2	1984	37.5				
	1975	49.7	1985	18.4				
	1976	19.5	1986	35.6				
	1977	34.7	1987	27.8				
	1978	29.3	1988	17.1				
	1070	13 7	1080	37.1				
	1080	31.2	1000	<i>J</i> 2.4 <i>A</i> 0.1				
	1081	68.4	1990	40.1				
10720	1901	00.4					1	
19/29	1061	32.0	1071	40.0	1091	74.0		
	1901	32.0	19/1	49.0	1901	74.0		
	1902	40.0	1972	30.0	1962	33.0		
	1905	32.0	1975	34.0 02.0	1985	33.3 21.9		
	1904	43.0	1974	92.0 57.5	1904	22.5		
	1903	72.0	1975	37.3	1985	25.5		
	1900	33.0	1970	27.0	1980	00.9		
	1907	30.0	1977	23.0	1987	24.4		
	1908	32.8	1978	40.5	1988	27.5		
	1909	5/./	19/9	52.0	1989	41.5		
10724	1970	40.0	1980	20.0	1990	81.1	-	
19/34	1066	110.0	1075	97.0	1094	08.0		
	1900	78.0	1975	87.0	1984	98.0		
	1907	78.0	1970	95.0	1985	90.0		
	1908	58.0	19//	118.0	1980	43.0		
	1909	47.0	19/8	94.0	198/	/9.0		
	1970	92.0	19/9	84.0	1988	61.0 58.0		
	19/1	62.0	1980	64.0	1989	58.0		
	1972	48.0	1981	62.0	1990	56.0		
	19/3	50.0	1982	125.0				
10726	19/4	137.0	1985	58.0			-	
19/36	1000	02.0	1075	72.0	1004	(0,0)		
	1966	92.0	19/5	/3.0	1984	69.0		
	196/	02.8	19/0	04.0	1985	52.0		
	1968	//.0	19//	80.0	1986	5/.0		
	1969	38.7	1978	62.0	1987	58.0		
	1970	52.0	1979	68.0	1988	58.0		
	1971	51.0	1980	104.0	1989	/0.0		
	1972	61.0	1981	67.0	1990	51.0		
	1973	52.0	1982	178.0				
	1974	135.0	1983	43.0				
19741						_, _		
	1968	76.5	1976	58.5	1984	72.5		
	1969	72.0	1977	67.5	1985	43.5		
	1970	53.0	1978	67.0	1986	53.0		

estación	año	mm	año	mm	año	mm	año	mm
	1971	60.0	1979	66.0	1987	55.0		
	1972	46.5	1980	84.0	1988	54.0		
	1973	45.0	1981	55.0	1989	56.0		
	1974	125.0	1982	135.0	1990	70.5		
10745	1975	50.0	1983	54.0				
19745	1066	77 7	1075	560	1004	56.0		
	1900	//./	19/5	50.0 72.0	1984	50.0 42.5		
	1907	60.0 05.0	1970	/3.0	1985	42.5		
	1908	95.0	1977	02.0 50.0	1980	55.0 65.0		
	1909	43.0	1970	50.0	1987	61.5		
	1970	66.0	1980	49.0	1989	59.0		
	1971	65.0	1981	56.0	1990	59.5		
	1973	59.5	1982	138.0	1770	57.5		
	1974	133.0	1983	42.0				
19766								
	1944	40.0	1956	49.6	1968	62.0	1980	19.0
	1945	45.0	1957	34.0	1969	47.2	1981	40.2
	1946	50.0	1958	32.0	1970	73.5	1982	59.7
	1947	30.0	1959	72.9	1971	75.0	1983	39.2
	1948	30.0	1960	42.6	1972	37.3	1984	34.5
	1949	45.0	1961	35.0	1973	38.0	1985	23.0
	1950	20.0	1962	43.5	1974	64.0	1986	54.0
	1951	44.7	1963	50.0	1975	62.0	1987	39.0
	1952	20.0	1964	51.0	1976	27.6	1988	39.2
	1953	64.9	1965	59.8	1977	34.4	1989	33.3
	1954	27.1	1960	50.0 41.4	1978	38.0 56.0	1990	48.0
107669	1955	49.4	1907	41.4	19/9	30.0		
197000	1969	414	1980	20.0				
	1970	54.0	1981	67.0				
	1971	80.0	1982	54.0				
	1972	58.0	1983	44.0				
	1973	43.0	1984	30.0				
	1974	58.0	1985	22.0				
	1975	61.5	1986	48.0				
	1976	41.0	1987	26.0				
	1977	35.0	1988	38.0				
	1978	39.0	1989	35.0				
107(7	1979	50.0	1990	43.0				
19/6/	1069	50 5	1070	50.0				
	1908	52.5 40.8	19/9	20.0				
	1909	40.0	1900	29.0 108.0				
	1970	106.0	1982	38.5				
	1972	61.0	1983	40.5				
	1973	414	1984	32.5				
	1974	62.5	1985	34.5				
	1975	54.0	1986	82.9				
	1976	30.8	1987	24.5				
	1977	46.0	1988	56.0				
	1978	42.0						
19768	10.50	46.2	1000	10.0				
	1968	40.3	1980	18.0				

estación	año	тт	año	тт	año	mm	año	mm
	1969	39.0	1981	76.5				
	1970	43.0	1982	58.0				
	1971	76.0	1983	40.0				
	1972	29.0	1984	38.5				
	1073	25.0	1085	173				
	1975	23.0	1086	71.5				
	1974	64.0	1007	20.5				
	1973	04.0	1987	29.5				
	19/6	28.0	1988	35.0				
	1977	37.0	1989	33.7				
	1978	30.0	1990	41.5				
	1979	57.5						
19768e								
	1973	31.0	1982	34.0				
	1974	52.0	1983	37.0				
	1975	59.5	1984	31.0				
	1976	41.0	1985	28.0				
	1977	30.0	1986	$\frac{1}{420}$				
	1978	39.0	1987	33.0				
	1070	54.0	1088	28.0				
	1979	22.0	1988	20.0				
	1980	22.0	1989	39.0 47.0				
107(0)	1981	37.0	1990	47.0				
19/691	1070	45.5	1000	50.2				
	1972	45.5	1982	50.3				
	1973	31.9	1983	38.2				
	1974	52.8	1984	26.0				
	1975	54.8	1985	17.4				
	1976	45.0	1986	36.5				
	1977	32.1	1987	27.7				
	1978	23.0	1988	29.8				
	1979	55.5	1989	34.8				
	1980	31.0	1990	49.5				
	1981	51.0	1770					
19770e	1701	0110						
197700	1967	42.2	1975	59.4	1983	34 1		
	1968	25.8	1076	20.9	108/	20.8		
	1060	23.0 41.4	1077	20.5	1085	21.0		
	1070	27.0	1079	29.0	1006	44.6		
	1970	57.0	1978	/0.1	1980	44.0		
	19/1	54.0	19/9	4/.0	198/	39.4		
	1972	53.6	1980	34.2	1988	23.4		
	1973	27.5	1981	49.1	1989	44.7		
10.550	1974	109.0	1982	33.4	1990	48.8		
19772	10/-		10		1000			
	1967	76.8	1975	115.0	1983	42.0		
	1968	57.0	1976	71.0	1984	34.0		
	1969	67.0	1977	80.0	1985	33.5		
	1970	65.0	1978	40.0	1986	34.0		
	1971	83.6	1979	60.0	1987	50.0		
	1972	46.5	1980	27.5	1988	48.0		
	1973	45.0	1981	74 0	1989	40.0		
	1974	717	1982	68.0	1990	60.0		
19773	1//1	/ 1.1	1702	00.0	1770	00.0		
17115	1966	37.5	1976	43.0	1986	48.2		
	1067	40 5	1077	37 1	1987	37.5		
	1040	49.5	1070	12 1	1000	20.6		
I	1900	+0.J	19/0	73.4	1900	59.0		

estación	año	mm	año	mm	año	mm	año	mm
	1969	45.1	1979	60.0	1989	52.3		
	1970	45.3	1980	35.2	1990	40.0		
	1971	57.2	1981	92.4	1991	53.7		
	1972	50.8	1982	49.2	1992	58.5		
	1973	52.8	1983	41.0	1993	48.9		
	1974	76.1	1984	36.9	1994	50.0		
	1975	70.8	1985	29.8	1995	21.7		
19777	1775	70.0	1705	27.0	1775	21.7		
17777	1968	48 3	1976	40.0	1984	42.9		
	1960	41.0	1077	40.0	1085	31.0		
	1909	32.5	1078	31.0	1985	12.6		
	1071	32.5	1070	76.0	1087	51.5		
	1072	32.3	1080	16.3	1088	50.0		
	1972	32.3 40.5	1980	40.3	1988	39.0		
	1975	40.3	1901	30.3	1989	55.5 59.5		
	1974	55.5	1962	41.7	1990	38.5		
10020	1975	03.3	1985	42.3				
19920	10(2	25.0	1072	50.0	1002	265		
	1963	25.0	19/3	50.0	1983	36.5		
	1964	31.5	19/4	53.7	1984	34.0		
	1965	48.5	19/5	47.3	1985	26.0		
	1966	33.3	19/6	34.5	1986	45.5		
	1967	50.5	1977	38.5	1987	42.5		
	1968	23.0	1978	38.0	1988	57.8		
	1969	38.0	19/9	55.0	1989	29.5		
	1970	33.5	1980	49.2	1990	50.0		
	1971	38.0	1981	45.0	1991	55.0		
1	1972	38.0	1982	50.8				
19921	1 10 11		10-0		10-0			
	1961	35.6	1970	26.0	1979	54.0		
	1962	30.7	1971	47.5	1980	46.0		
	1963	25.8	1972	48.0	1981	35.5		
	1964	44.5	1973	29.5	1982	31.5		
	1965	41.0	1974	56.0	1983	37.5		
	1966	31.0	1975	53.5	1984	28.5		
	1967	45.0	1976	26.0	1985	23.0		
	1968	21.0	1977	29.3				
	1969	40.0	1978	37.2				
19952								
	1954	30.0	1964	56.5	1974	56.6	1984	31.2
	1955	28.7	1965	25.0	1975	94.7	1985	30.3
	1956	57.0	1966	37.1	1976	47.7	1986	36.5
	1957	42.7	1967	56.0	1977	35.5	1987	31.8
	1958	40.0	1968	33.0	1978	44.4	1988	45.1
	1959	60.0	1969	59.0	1979	58.5	1989	38.9
	1960	52.0	1970	46.0	1980	46.6	1990	50.5
	1961	68.2	1971	56.7	1981	91.0		
	1962	49.3	1972	38.7	1982	62.8		
	1963	60.0	1973	31.5	1983	54.1		
19990								
	1964	72.0	1975	49.0				
	1965	44.0	1976	49.0				
	1966	42.0	1977	50.0				
	1967	41.0	1978	49.0				
	1968	35.0	1979	43.0				
estación	año	mm	año	тт	año	mm	año	mm
----------	------	--------------	---------	---------------	------	---------------	------	--------------
	1969	50.0	1980	54.0				
	1970	60.0	1981	41.0				
	1971	74.0	1982	112.0				
	1972	47.0	1983	32.0				
	1973	54.4	1984	71.0				
	1974	72.0	1985	68.0				
19991								
	1948	44 0	1959	62.0	1970	40.0	1981	49.0
	1949	38.0	1960	45.0	1971	82.0	1982	169.5
	1950	41.0	1961	56.0	1972	41.0	1983	34.0
	1951	57.0	1962	40.0	1973	85.0	1984	57.0
	1952	56.0	1963	68.0	1974	93.0	1985	46.0
	1953	51.0	1964	65.0	1975	47.0	1986	38.0
	1954	49.0	1965	55.6	1976	52.0	1987	40.0
	1955	32.0	1966	60.0	1977	52.0	1988	38.0
	1956	80.0	1967	52.0	1978	50.0	1989	60.0
	1950	52.0	1968	43.0	1979	55.0	1990	45.0
	1958	51.0	1969	44.0	1980	50.0	1770	чJ.0
±0001	1750	51.0	1707	-+.0	1700	50.0		
10001	1072	78.2	1091	73.6				
	1972	90.3	1082	162.3				
	1973	120.5	1082	81.1				
	1974	120.3	1985	44.6				
	1975	101.2	1984	44.0 04.2				
	1970	42.5	1985	52.5				
	1977	26.1	1980	1970				
	1978	50.1	1987	187.2				
	19/9	30.0	1900	/5./				
+0002	1980	40.5	1989	80.0				
10002	1040	61.0	1061	79 /	1072	62 7	1095	867
	1949	150.0	1901	/ 8.4	1973	05./	1985	80.2 52.5
	1950	130.0	1962	143.0	1974	1/3.3	1980	55.5 52.6
	1951	138.0	1903	218.0	1975	40.4	1987	55.0 67.5
	1952	07.4	1904	28.0	1970	02.8	1900	07.5
	1933	/9.0	1903	28.0	1977	80.0 145.4	1989	138.3
	1954	118.0	1900	50.0	1978	145.4	1990	45.4
	1955	08.0 52.5	1907	131.0	19/9	/2.4	1991	05.5
	1950	52.5	1968	59.9	1980	100.7	1992	50.4 25.4
	1957	95.5	1909	80.5	1981	80.9	1995	35.4
	1938	32.3	1970	55.4 175.0	1982	120.2	1994	129.0
	1939	180.0	19/1	1/3.0	1985	103.2		
40000	1960	110.4	1972	130.5	1984	59.0		
10008	1051	1(2.0	10(1	5(0	1071	116.0	1001	115.0
	1951	162.0	1961	56.0	19/1	116.0	1981	115.0
	1952	51.5	1962	111.0	1972	51.0	1982	128.0
	1953	49.9	1963	45.0	19/3	47.5	1983	60.0
	1954	64.0	1964	116.5	1974	52.0	1984	/3.5
	1955	50.0	1965	39.3 55 0	19/3	105.0	1985	95.0
	1956	/2.0	1966	55.9 765	19/6	101.5	1986	49.2
	1957	9/.4	1967	/6.5	19/7	/2.0	1987	62.5
	1958	46.2	1968	59.6	1978	39.0		
	1959	1/2.0	1969	60.0	19/9	42.2		
	1960	52.0	1970	52.2	1980	35.0		
t0013	40-5		4.0.5.5	· · -				
	1972	111.0	1980	32.5				

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
t0016a 1958 33.0 1968 59.0 1978 43.0 1959 59.0 1969 60.0 1979 59.0
1958 33.0 1968 59.0 1978 43.0 1959 59.0 1969 60.0 1979 59.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1939 39.0 1909 00.0 1979 39.0
1962 50.0 1972 93.0 1983 65.2
1964 76 0 1974 41 3 1984 61 6
1965 58.0 1975 74.0 1985 134.0
1966 24.0 1976 98.8
1967 82.0 1977 66.2
t0017
1940 35.0 1952 58.8 1964 63.5 1976 67.5
1941 93.0 1953 78.8 1965 57.5 1977 58.0
1942 143.0 1954 53.7 1966 45.0 1978 42.5
1943 90.0 1955 144.5 1967 93.5 1979 50.0
1944 72.0 1956 77.5 1968 55.0 1980 31.0
1945 59.5 1957 104.1 1969 53.0 1981 45.7
1946 42.0 1958 43.0 1970 73.0 1982 97.2
1947 76.0 1959 84.0 1971 64.5 1983 66.7
1948 40.0 1960 107.0 1972 96.0 1984 52.8
1949 86.0 1961 54.3 1973 51.0 1985 64.6 1959 46.0 1962 75.9 1973 70.5 1998 23.0
1950 46.0 1962 /5.0 $19/4$ /0.5 1986 35.0 1062 /5.0 1074 /0.5 1986 35.0 1051 78 5 1062 (7.7)
40010
1969 145 5 1979 53.0
1973 53.0 1983 59.5
1975 99.0 1985 50.5
1976 57.0 1986 44.0
1977 82.0 1987 43.5
t0020
1955 55.3 1966 43.6 1977 60.4
1956 80.0 1967 69.2 1978 64.0

estación	año	mm	año	mm	año	mm	año	mm
	1957	44.0	1968	51.2	1979	51.8		
	1958	57.5	1969	73.4	1980	50.4		
	1959	113.7	1970	83.0	1981	70.3		
	1960	56.0	1971	113.0	1982	58.7		
	1961	83.5	1972	65.0	1983	52.5		
	1962	85.0	1973	53.4	1984	34.5		
	1963	69.8	1974	75.0	1985	21.5		
	1964	87.0	1975	58.4	1986	41.5		
	1965	89.0	1976	70.6	1987	35.6		
t0024								
	1946	35.4	1956	32.8	1966	31.7	1976	47.3
	1947	28.1	1957	47.1	1967	43.7	1977	46.4
	1948	36.2	1958	60.7	1968	36.2	1978	33.7
	1949	59.3	1959	78.3	1969	47.2	1979	57.4
	1950	18.5	1960	55.2	1970	60.7	1980	39.8
	1951	39.8	1961	32.1	1971	42.7	1981	49.0
	1952	53.4	1962	60.4	1972	49.0	1982	52.4
	1953	41.8	1963	63.4	1973	43.8	1983	43.3
	1954	36.6	1964	39.2	1974	51.6	1984	129.4
	1955	36.6	1965	56.4	1975	53 3	1985	36.5
t0025	1700	20.0	1900	20.1	1770	00.0	1700	50.5
10020	1951	50.0	1961	37.0	1971	53.0	1981	53.0
	1952	38.0	1962	73.0	1972	49.0	1982	55.0
	1953	70.0	1963	48.0	1973	39.0	1983	42.0
	1954	35.0	1964	50.0	1974	70.0	1984	130.0
	1955	52.5	1965	62.0	1975	62.0	1985	27.5
	1956	28.0	1966	25.0	1976	58.0	1986	42.0
	1957	47.0	1967	50.0	1977	53.0	1987	51.0
	1958	57.0	1968	25.0	1978	38.0	1707	51.0
	1959	49.0	1969	60.0	1979	40.5		
	1960	49.0	1970	80.0	1980	39.0		
t0034a	1900	17.0	1770	00.0	1900	57.0		
100544	1972	50.0	1980	27.3				
	1973	29.5	1981	55.5				
	1974	66.0	1982	41 7				
	1975	60.5	1983	43.0				
	1976	50.0	1984	65.0				
	1977	49.0	1985	80.0				
	1978	43.0	1986	32.0				
	1979	43.0	1987	70.5				
t0038	1777	15.0	1707	70.0				
10050	1953	55.6	1963	80.7	1973	36.4	1983	58.2
	1954	59.6	1964	92.1	1974	48.0	1984	68.2
	1955	131.0	1965	84 3	1975	74.4	1985	86.5
	1956	75.4	1966	27.7	1976	70.0	1986	45.5
	1957	101.5	1967	77.5	1977	66 7	1987	897
	1958	55.4	1968	63 7	1978	66.5	1988	41 1
	1950	52 4	1960	60.3	1979	65.8	1989	62.0
	1960	103 3	1970	88.5	1980	42.6	1707	02.0
	1961	43.9	1971	49.2	1981	66.0		
	1962	89 4	1972	$\frac{47.2}{67.4}$	1982	75 3		
t0042	1702	07.4	1714	04.4	1702	13.5		
10042	1058	46.0	1968	48 5	1978	48.0		
	1050	50.0	1060	90.5 80.1	1070	-0.0 60 6		
	1939	50.0	1709	00.1	17/7	09.0		

estación	año	тт	año	mm	año	mm	año	mm
	1960	114.0	1970	57.9	1980	35.8		
	1961	112.0	1971	46.8	1981	54.0		
	1962	96.0	1972	83.5	1982	88.7		
	1963	49.0	1973	28.9	1983	50.4		
	1964	68.0	1974	47.0	1984	50.0		
	1965	65.0	1975	75.0	1985	39.7		
	1966	53.0	1976	67.3				
	1967	55.3	1977	43.0				
t9947								
	1953	41.0	1963	46.3	1973	60.0	1983	46.5
	1954	35.0	1964	59.0	1974	63.5	1984	25.2
	1955	29.8	1965	27.7	1975	46.5	1985	30.4
	1956	35.0	1966	42.5	1976	32.4	1986	32.2
	1957	51.0	1967	123.5	1977	50.8	1987	33.9
	1958	31.8	1968	40.9	1978	37.2	1988	96.3
	1959	58.0	1969	68.4	19/9	64.3	1989	44.5
	1960	37.5	1970	39.0	1980	25.5	1990	48.5
	1961	93.0	19/1	33.8	1981	67.5		
+0049	1962	88./	1972	45.0	1982	0/./		
19948	1055	22.2	1064	66.3	1073	57.3	1082	00.3
	1955	52.0	1904	45.8	1973	57.5	1982	54 7
	1950	32.0	1905	45.8	1974	57.4 60.5	1985	<i>J</i> 4.7 <i>A</i> 0.6
	1957	67.8	1967	81.0	1975	56.0	1985	30.1
	1950	76.2	1968	50.7	1977	74 5	1986	58.0
	1960	50.2	1969	70.2	1978	30.0	1987	33.8
	1961	48.4	1970	44.1	1979	78.5	1988	66.5
	1962	100.0	1971	51.1	1980	34.8	1989	49.1
	1963	82.0	1972	35.5	1981	60.3	1990	93.1
t9951								
	1942	52.0	1954	29.0	1966	55.0	1978	50.0
	1943	68.0	1955	24.5	1967	105.0	1979	87.0
	1944	42.0	1956	44.5	1968	38.0	1980	24.0
	1945	30.0	1957	52.6	1969	83.0	1981	73.3
	1946	41.0	1958	38.5	1970	48.0	1982	69.0
	1947	27.0	1959	66.0	1971	74.0	1983	49.3
	1948	51.0	1960	52.0	1972	44.0	1984	26.2
	1949	52.0	1961	82.0	1973	38.0	1985	20.0
	1950	21.0	1962	51.0	1974	56.0	1986	63.3
	1951	91.0	1963	39.0	1975	/5.0	1987	38.0
	1952	36.8	1964	65.5	19/6	60.0		
40051	1955	32.5	1905	31.0	19//	54.5		
19931a	1062	64.0	1072	54.0	1082	64.0		
	1962	58.0	1072	<u>45</u> 0	1902	33.0		
	1964	63.0	1973	55.0	1985	53.0		
	1965	32.0	1975	81.0	1985	27.0		
	1966	48.0	1976	55.0	1986	55.0		
	1967	130.0	1977	56.0	1987	37.0		
	1968	41.0	1978	34.0	1988	67.0		
	1969	83.0	1979	75.0	1989	47.0		
	1970	43.5	1980	24.0	1990	68.0		
	1971	82.0	1981	72.0				
			-					
			•		•			

estación	año	mm	año	тт	año	mm	año	mm
t9953								
	1952	56.0	1961	46.9	1970	86.8	1979	46.9
	1953	30.8	1962	56.6	1971	65.0	1980	38.1
	1954	29.5	1963	36.3	1972	65.6	1981	104.2
	1955	31.8	1964	43.2	1973	53.9	1982	74.7
	1956	36.0	1965	20.5	1974	69.4	1983	50.0
	1957	44.2	1966	24.8	1975	128.9	1984	34.2
	1958	32.0	1967	96.7	1976	42.6	1985	30.2
	1959	56.0	1968	38.2	1977	50.3	1986	63.5
	1960	45.2	1969	81.5	1978	35.0	1987	32.2
t9961								
	1951	118.0	1961	62.6	1971	97.0	1981	95.5
	1952	693	1962	61.5	1972	47.0	1982	53.0
	1953	49.0	1963	32.6	1973	48.4	1983	50.7
	1954	50.4	1964	93.4	1974	74 9	1984	41.5
	1955	87.2	1965	40.1	1975	109 1	1985	43 7
	1956	61.0	1966	35.5	1976	62.0	1986	74.0
	1957	58.6	1967	86.1	1977	83.0	1987	27.4
	1958	56.3	1968	44.0	1978	32.8	1988	66.0
	1959	98.1	1969	87.6	1979	51.5	1989	33.8
	1960	64 2	1970	86.9	1980	32.3	1990	50.5
t0067	1700	01.2	1770	00.7	1900	52.5	1770	
())07	1971	103.0	1981	57.0				
	1972	52.0	1982	106.0				
	1973	57.0	1983	52.5				
	1974	56.0	1984	49.0				
	1975	176.0	1985	71.0				
	1976	67.0	1986	60.0				
	1977	113.0	1987	64.0				
	1978	43.0	1988	67.0				
	1979	37.0	1989	52.5				
	1980	28.0	1990	55.0				
t0068	1700	20.0	1770	55.0			I	
())00	1967	154.0	1975	167.5	1983	69.0		
	1968	49.5	1976	76.0	1984	32.0		
	1969	85.0	1977	99.0	1985	63.0		
	1970	91.0	1978	47.5	1986	63.5		
	1971	134.0	1979	32.5	1987	52.0		
	1972	71.0	1980	40.5	1988	59.5		
	1973	61.5	1981	88.0	1989	33.0		
	1974	54.0	1982	75.5	1990	54.0		
t9972	1771	51.0	1702	10.0	1770	51.0		
())/2	1941	48.0	1954	60.4	1967	116.8	1980	40.0
	1942	49.0	1955	42.1	1968	37.8	1981	73.2
	1942	70.0	1956	60.2	1969	54.5	1982	96.1
	1944	40.0	1957	66.2	1970	66.4	1983	53.4
	1945	31.0	1958	29.1	1971	179.6	1984	34.5
	1946	53.0	1959	88 2	1972	109.8	1985	83.5
	1947	34.0	1960	56.5	1973	58 7	1986	56.8
	1948	21.0	1961	86.9	1974	63.8	1987	70.6
	1949	117.0	1962	79 2	1975	130.4	1988	49.8
	1950	21.0	1963	57 1	1976	71 9	1989	46.7
	1951	107.4	1964	60.3	1977	65.7	1990	51 7
	1952	69.8	1965	23 7	1978	22.0	1,7,70	U 1.1
	1		1 00				1	

estación	año	mm	año	mm	año	mm	año	mm
	1953	44.9	1966	106.0	1979	32.1		
t9973								
	1962	75.5	1970	70.0	1978	22.0		
	1963	57.0	1971	45.0	1979	32.0		
	1964	60.0	1972	85.0	1980	50.0		
	1965	23.0	1973	60.0	1981	73.0		
	1966	54.5	1974	82.0	1982	100.0		
	1967	97.0	1975	150.5	1983	53.0		
	1968	47.0	1976	80.0	1984	35.0		
	1969	52.0	1977	79.0	1985	77.0		
t9975	1050		1050		1001			
	1959	/1.5	1970	66.9	1981	83.0		
	1960	59.0	19/1	1/6.5	1982	120.0		
	1961	74.5	1972	196.5	1983	83.0		
	1962	/5.0	19/3	102.3	1984	42.0		
	1963	//.0	1974	101./	1985	67.0		
	1964	68.0	1975	138.0	1986	57.0		
	1905	49.4	1970	/8.2	198/	04.0 42.0		
	1900	80.5	1977	87.0	1988	45.0		
	1967	106.0	19/8	35.0	1989	/5.0		
	1908	20.1 82.1	1979	40.0	1990	05.5		
+0070	1909	65.1	1980	40.5				
19979	1067	743	1075	130.0	1083	83 5		
	1967	00 5	1975	79.0	108/	81.5		
	1960	117.0	1970	165.0	1985	64.0		
	1970	67.0	1978	55.0	1986	56.5		
	1971	143.8	1979	78.0	1987	95.0		
	1972	144.2	1980	61.0	1988	65.0		
	1973	62.2	1981	133.0	1989	123.5		
	1974	69.5	1982	134.0	1990	97.0		
t9979e							I	
	1969	72.0	1980	33.0				
	1970	52.0	1981	41.0				
	1971	217.0	1982	151.0				
	1972	116.0	1983	50.0				
	1973	36.0	1984	56.5				
	1974	46.0	1985	151.0				
	1975	83.0	1986	59.0				
	1976	56.0	1987	55.0				
	1977	60.0	1988	61.0				
	1978	26.0	1989	85.0				
	1979	56.0	1990	49.0				
t9981a								
	1939	67.0	1951	113.0	1963	78.0	1975	69.2
	1940	209.0	1952	49.0	1964	70.0	1976	60.7
	1941	/6.0	1953	61.0	1965	176.0	1977	49.9
	1942	64.U	1954	90.0 54.0	1960	58.U	19/8	55.1 11 5
	1943	189.0	1955	54.0	196/	95.4	19/9	44.5
	1944	84.0	1930	54.U	1968	41.9	1980	49.0
	1945	84.0	195/	20.0	1969	93.1 72 4	1981	51.5 110.7
	1940	89.0 70.0	1938	59.0 114.0	19/0	12.4	1982	64.2
	194/	/U.U 17 0	1939	114.0	19/1	124.3	1983	04.Z
	1948	47.0	1900	104.0	19/2	04.2	1984	30.1

estación	año	mm	año	mm	año	mm	año	mm
	1949	89.0	1961	64.0	1973	81.1	1985	88.1
	1950	66.0	1962	104.0	1974	49.2		
t9985								
	1945	26.0	1957	139.8	1969	155.2	1981	65.3
	1946	202.0	1958	63.7	1970	60.7	1982	89.3
	1947	173.7	1959	142.2	1971	122.4	1983	74.5
	1948	44.0	1960	61.7	1972	97.9	1984	59.9
	1949	104.0	1961	66.7	1973	86.7	1985	49.2
	1950	128.0	1962	156.6	1974	72.8	1986	76.6
	1951	98.2	1963	103.4	1975	83.2	1987	72.4
	1952	54.4	1964	82.1	1976	40.2	1988	54.8
	1953	58.7	1965	50.2	1977	65.1	1989	79.3
	1954	86.7	1966	62.9	1978	34.1	1990	44.6
	1955	32.3	1967	115.7	1979	69.2		
	1956	62.7	1968	63.8	1980	41.8		
t9987								
	1941	70.0	1953	95.0	1965	55.0	1977	66.0
	1942	101.0	1954	30.5	1966	34.0	1978	53.0
	1943	108.0	1955	41.0	1967	91.9	1979	88.0
	1944	41.0	1956	64.0	1968	64.5	1980	77.0
	1945	60.0	1957	76.0	1969	118.0	1981	93.0
	1946	153.0	1958	44.0	1970	78.0	1982	103.0
	1947	122.0	1959	110.0	1971	127.0	1983	66.0
	1948	40.0	1960	100.0	1972	106.0	1984	60.0
	1949	75.0	1961	52.4	1973	73.0	1985	133.0
	1950	80.0	1962	100.0	1974	107.0	1986	66.0
	1951	120.0	1963	90.0	1975	133.0	1987	99.0
	1952	35.0	1964	65.0	1976	40.0	1988	61.0
	1							

Bibliografía

Anderberg, M.R., 1973: Cluster Analysis for Applications. Academic Press, New York

Austin, P.M., Houze, R.A., 1972: Analysis of the structure of precipitation patterns in New England. Journal of Applied Meteorology, 11, 926-935

Benjamin, J.R., 1981: Probabilidad y estadística en Ingeniería Civil. McGraw Hill

Browning, K.A., 1990: *Extratropical Cyclones*. Ed. Chester Newton and Eero O. Holopainen, American Meteorological Society, Boston

Burgueño, A; Redaño. A.; Llasat, M.C., 1989: Aspectos estadísticos y sinópticos de las precipitaciones intensas en Cataluña. Memorias de la Real Academia de Ciencias y Artes de Barcelona, 3ª época, nº 875. Vol. XLIX, nº 7

Burgueño, A., Codina, B., Redaño, A., Lorente, J., 1994: *Basic Statistical Characteristics of Hourly Rainfall Amounts in Barcelona*. Theoretical and Applied Climatology, 49, 175-181

Casas, M.C., Codina, B., Redaño, A., Lorente, J., 2004: A methodology to classify extreme rainfall events in the western mediterranean area. Theoretical and Applied Climatology, 77, n. 3-4, 139 - 150

Cheng-lung Chen, M., 1983: Rainfall Intensity-Duration-Frequency Formulas. Journal of Hydraulic Engineering, 109, 12

Chow, V.T., 1951: A general formula for hydrologic frequency analysis. Transactions American Geophysical Union, 32, pp 231-237

Cook, N.J., 1985: *The designers guide to wind loading of building structures. Part 1: Background, damage survey, wind data and structural classification.* Building Research Establishment, Garston and Butterworths, London, 371 pp.

Cressman, G.P., 1959: An operational objective analysis system. Monthly Weather Review, 87, 367-374

Davison, A.C., 1984: *Modelling excesses over high thresholds, with an application. In: statistical extremes and applications.* Ed. J. Tiago de Oliveira, D. Reidel Publishing Company, pp. 461-482

Davison, A.C. y Smith, R.L., 1990: *Models for exceedances over high thresholds (with discussion)*. Journal of the Royal Statistical Society, Series B, 52, 393-442

Dhar O.N., Kulkarni A.K., Rakhecha P.R., 1981: *Probable maximum point rainfall estimation for the southern half of the Indian peninsula*. Proceedings of the Indian Academy of Sciences: Earth and Planetary Sciences, 90 A, 1, 39-46

Dwyer, I.J., Reed, D.W., 1994: *Effective fractal dimension and corrections to the mean of annual maxima*. Journal of Hydrology, 157, 13-34

Eicher, C., 1991: Selection of design storms-time resolution considerations. Atmospheric Research, 27, 23-43

Gajic-Capka, M., 1990: *Maximum Precipitation for different Short-Term Intervals*. Theoretical and Applied Climatology, 41, 33-39

Gajic-Capka, M., 1991: Short-term Precipitation Maxima in Different Precipitation Climate Zones of Croatia, Yugoslavia. International Journal of Climatology, Vol. 11, 677-687

Gaspar, S., 1974: *Evaluation des pluies exceptionnelles en Belgique*. Centre Belge d'Etude et de Documentation des Eaux, 365, 210-216

Haltiner, G.J., R.T. Williams, 1980: Numerical Prediction and Dynamic Meteorology. John Wiley & Sons, New York

Hansen, E.M., Schreiner, L.C., Miller, J.F., 1982: *Application of Probable Maximum Precipitation Estimates - United States East of the 105th Meridian*. Hydrometeorological Report No. 52, (HMR-52), National Oceanic and Atmospheric Administration, National Weather Service, Silver Springs, MD, 168 pp.

Hershfield, D.M., 1961a: Rainfall frequency atlas of the United States for durations from 30 minutes to 24 hours and return periods from 1 to 100 years. Weather Bureau Technical Paper 40, U.S. Weather Bureau, Washington, D.C., 115 pp.

Hershfield, D.M., 1961b: *Estimating the probable maximum precipitation*. Proceedings American Society of Civil Engineers, Journal Hydraulics Division, 87(HY5), 99-106

Hershfield, D.M., 1965: *Method for estimating probable maximum precipitation*. Journal American Waterworks Association, 57, 965-972

Hosking, J.R.M, Wallis, J.R., 1997: *Regional frequency analysis: an approach based on L-moments*. Cambridge University Press, 224 pp.

Hosking, J.R.M., 1990: *L-moments: analysis and estimation of distributions using linear combinations of order statistics.* Journal of the Royal Statistical Society, Series B, 52, 105-124

Institut Cartogràfic de Catalunya, 1996: Atles climàtic de Catalunya. ISBN 84-393-4227-6. Barcelona

I.N.M., 1999: Las precipitaciones máximas en 24 horas y sus períodos de retorno en España. Un estudio por regiones. Volumen 5. Cataluña. 148 pp.

Koch, S.E.; DesJardins, M.; Kocin, P.J., 1983: An Interactive Objective Map Analysis Scheme for Use with Satellite and Conventional Data. Journal of Climate and Applied Meteorology, 22, 9, 1487-1503

Koutsoyiannis, D., 2003: On the appropriateness of the Gumbel distribution for modelling extreme rainfall. Proceedings of the European Science Foundation, Life and Environmental Sciences meeting, Bologna

Koutsoyiannis, D., Kozonis, D., Manetas, A., 1998: A mathematical framework for studying rainfall intensity-duration-frequency relationships. Journal of Hydrology, 206, 118-135

Koutsoyiannis, D., 1999: A probabilistic view of Hershfield's method for estimating probable maximum precipitation. Water Resources Research, 35(4), 1313-1322

Lana, X.; Fernandez Mills, G.; Burgueño, A., 1995: *Daily precipitation maxima in Catalonia (North-East Spain): Expected values and their spatial distribution*. International Journal of Climatology, 15, 341-354

Lana, X.; Martínez, M.D.; Serra, C.; Burgueño, A., 2004: Spatial and Temporal Variability of the Daily Rainfall Regime in Catalonia (Northeastern Spain), 1950-2000. International Journal of Climatology, 24, 613-641

Lorente J., Redaño, A., 1991: Relation between maximal rainfall rates for different time intervals in the course of a storm. Atmospheric Research, 27, 61-66

Lu, G.; Browning, G.L., 1998: *The Impact of Observational Errors on Objective Analyses*. Journal of the Atmospheric Sciences, 55, 10, 1791-1807

National Research Council, 1988: *Estimating probabilities of extreme floods. Methods and recommended research*. National Academy Press, Washington, D.C.

National Research Council, 1994: *Estimating bounds on extreme precipitation events*. National Academy Press, Washington, D.C.

Niemczynowicz, J., 1982: Areal Intensity-Duration-Frequency Curves for short-term rainfall en Lund. Nordic Hydrology, 4, 193-204

Ninyerola, M; Pons, X.; Roure, J.M., 2000: A Methodological Approach of Climatological Modeling of Air-Temperature and Precipitation Through Gis Techniques. International Journal of Climatology, Vol 20, 14, 1823-1841

Nobilis, F., Haiden, T., Kerschbaum, M., 1991: *Statistical considerations concerning Probable Maximum Precipitation (PMP) in the Alpine Country of Austria*. Theoretical and Applied Climatology, 44, 89-94

Rakhecha, P.R., Deshpande, N.R., Soman, M.K., 1992: *Probable Maximum Precipitation for a 2-Day Duration over the Indian Peninsula*. Theoretical and Applied Climatology, 45, 277-283

Redaño, A., Lorente, J., Vázquez, R., 1986: *Climatología de las intensidades extremas de lluvia en Barcelona*. Revista de Geofísica, 42, 193-198

Remenieras, G., 1960: L'hydrologie de l'ingénieur. Eyrolles-EDF, Paris, 456 pp.

Sherman, C.W., 1931: Frequency and intensity of excessive rainfall at Boston, Massachusetts. Transactions, American Society of Civil Engineers, Vol. 95, 951-960

Smith, R. L., 1986: *Extreme value theory based on the r largest annual events*. Journal of Hydrology, 86, 27-43

Sumner G.N., 1978: The prediction of short duration storm rainfall intensity maxima. Journal of Hydrology, 37, 91-100

Sumner, G.N., 1988: Precipitation: Process and Analysis. John Wiley & Sons, New York, 455 pp.

Thiébaux, H.J., M.A. Pedder, 1987: Spatial Objective Analysis: with applications in atmospheric science. Academic Press, London

Unkaševic, M., 1991: *The Extreme Value Distribution of 5-min Rainfall Data at Belgrade*. Theoretical and Applied Climatology, 44, 223-228

Urcikán P., Horváth, J., 1984: Synthetic design storm and its relation to intensity-duration-frequency curves. Water Science & Technology, 16, 69-83

Wang, B-H. M, 1984: *Estimation of probable maximum precipitation: case studies*. Journal of Hydraulic Engineering, 110 (10): 1457-1472

Weissman, I., 1978: Estimation of parameters and large quantities based on the k largest observations. Journal of the American Statistical Association, 90, 1055-1061

Willems P., 2000: Compound intensity/duration/frequency-relationships of extreme precipitation for two seasons ant two storm types. Journal of Hydrology, 233, 189-205

WMO, 1986: *Manual for estimation of probable maximum precipitation*. Operational hydrology, Report.1, WMO-No.332, 269 pp.