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Abstract

Recent studies have identified some brain regions involved in the de-
cision process for simple perceptual tasks, and have provided insight
into how sensory information is evaluated before the commitment to
a motor response. To understand the dynamical principles of the
decision process, and how they emerge from the interaction of inter-
connected neurons, computational models have been proposed based
on large-scale, neurobiologically inspired networks. In these models
the decision is regarded as a transition between attractors, or stable
states of the network. This transition is triggered by external inputs,
which change the attractor configuration and drive the system from an
initial resting state to one of the other stable states, associated with
the categorical choices. We show that this transition can occur by two
distinct mechanisms depending on the overall external input. The de-
cision mechanism arising at low inputs, entirely driven by noise, leads
to exponentially distributed decision times, with a mean that depends
exponentially on the inverse of the amplitude of the noise present in the
system. Moreover, both decision times and performances are monoton-
ically decreasing functions of the overall external stimulation, thereby
providing a plausible neurobiological basis of the speed-accuracy trade-
off observed in behavioral experiments. In a second project we propose
a method to simplify the description of multistable neural systems
under the influence of noise. The method allows us to transform the
set, of stochastic differential equations describing the activities of the
neural units into a set of ordinary differential equations involving
the first central moments of the distributions. In a third project, we
show that the dynamics of models of perceptual detection based on
bistable stochastic units, in which the percept arises as noise-induced
activation triggered by stimulation, can be properly captured by a
one-dimensional normal-form Langevin equation for inputs near the
detection threshold.
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Resum

Estudis recents han identificat algunes de les regions cerebrals que
participen en el procés de decisié que té lloc durant tasques perceptives
senzilles, 1 han permés comprendre millor com la informacié sensorial
s’avalua durant el procés de deliberaci6. A fi d’entendre els principis
dinamics del procés de decisio, i de com aquests sorgeixen de la di-
namica d’interaccié entre neurones interconnectades, s’han proposat
models computacionals basats en xarxes a gran escala d’inspiraci
neurobiologica. En aquests models la decisié s’associa a una transicio
entre atractors, o estats estables, de la xarxa. La transici6 entre estats
és induida pels inputs selectius associats a 1’estimul, que canvien el pai-
satge d’atractors del sistema, tot afavorint la transici6 entre I'atractor
neutre inicial a un atractor selectiu, associat a una elecci6 categorica.
En aquest treball mostrem que aquesta transicié pot tenir lloc a través
de dos mecanismes qualitativament diferents en funcié de la intensitat
mitjana dels inputs externs. També mostrem que el mecanisme de
decisioé que apareix a baixes intensitats, induit exclusivament pel soroll
present a la xarxa, dona lloc a temps de decisi6é distribuits exponenci-
alment, amb una mitjana que depén exponencialment de la inversa de
I'amplitud del soroll. A més, tant els temps de decisié com el rendi-
ment son funcions monotones decreixents de la intensitat mitjana dels
inputs externs, fet que constitueix una possible base neurobiologica
plausible al compromis entre rapidesa i rendiment observats en experi-
ments conductuals. En un segon projecte, proposem un métode per
a simplificar la descripcié de sistemes neurals multiestables subjectes
a soroll. El métode transforma el conjunt d’equacions diferencials
estocastiques que descriuen ’activitat de les unitats neurals en un
conjunt d’equacions diferencials ordinaries per als primers moments
centrals de la distribucié d’activitats neurals. Finalment, en un tercer
projecte mostrem que la dinamica dels models de deteccié perceptual
basats en unitats biestables estocastiques, en els quals la percepcioé
apareix com un fenomen d’activacio per soroll induit per estimulacio,
pot ser capturada per una equacié de Langevin per a la forma normal
de la bifurcacié quan lestimulaci6 és proxima al llindar de deteccio.
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CHAPTER ].

Introduction

Fluctuations, understood as inevitable random perturbations in measurable vari-
ables, are pervasive in the nervous system. At a subcellular level, processes
such as the activation of ionic channels, the binding of molecules to receptors,
or the release of neurotransmitters are inherently random due to thermal noise.
Variability is also evident at a cellular level, where the temporal patterns of
action potentials generated by individual neurons are highly irregular and, often,
rarely reproducible even under identical stimulation conditions. At a higher level,
animals and humans can exhibit behavior that appears to be unpredictable, a
feature that may be advantageous from an evolutionary point of view.

Are these different manifestations of noise related? Is the indeterminacy
observed in many behavioral responses linked to the variability observed at micro-
scopic levels? While in the physical world fluctuations are typically uncorrelated
and, therefore, averaged out, in the nervous system noise may lead to persistent
changes that may be noticeable at larger scales. For instance, fluctuations in local
calcium concentrations can activate proteins of NMDA receptor channels, inducing
persistent modifications in the synaptic strength, which, in turn, alter the activity
patterns of neurons and cortical networks. This sensitivity to fluctuations is partly
due to the existence of multistability, by virtue of which the effect of transient
perturbations can be maintained and can potentially determine the evolution of
the system at higher scales.

In this work we address the possible mechanisms operating in cortical networks
by which fluctuations can be amplified to give rise to macroscopic effects on the
dynamics of the network and, ultimately, on behavior. We focus in particular on
the neurobiological substrate for the variability of behavioral responses during
simple decision tasks.

Decision-Making

The ability to make decisions is a hallmark of intelligent behavior. Thousands of
years of evolutionary pressure have molded animal brains to convert them into
powerful devices capable of generating different behavioral responses depending
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on the context and the animal’s desires or beliefs. Decisions vary from very simple
decisions about the presence or identity of a stimulus, to elaborated plans of
action that require the evaluation of goals and potential outcomes.

The behavioral and cognitive aspects of decision-making have been studied for
decades, and considerable strides have been made in understanding the behavioral
principles underlying goal-oriented, conscious choices (see, e.g., [96]). It has been
been only recently, however, that the neural substrates of decision-making have
begun to be elucidated. The progress has been particularly notable in the context
of perceptual decisions, a simple type of decision that requires the transformation
of sensory information into an appropriate action. By recording the activity of
single cells within the brains of monkeys engaged in perceptual decision tasks,
it is possible to relate behavior to neural activity. Although the perceptual task
may vary, it always requires the experimental monkey to use specific stimuli as
cues to produce a motor response.

Simple tasks like these allow the experimenter to have full control over the
sensory inputs presented to the subject and to quantify behavior with direct
measures such as the subject’s reaction time or the response accuracy. Besides,
the time needed to commit to a decision is in these tasks typically long, of
several hundred milliseconds, making easier to identify and characterize the neural
correlates of the decision formation process. Also, the fact that the sensory and
motor pathways involved in the task are well known provides a hint as to where
in the sensory-motor pathway the decision process is taking place.

Visual-saccadic tasks

A paradigmatic example of this approach has been the study of decision-making
in visual-saccadic tasks. Trained monkeys have to watch a visual display showing
a cloud of randomly moving dots, a small fraction of which drift in a coherent way
to one of two predefined directions. The monkey has to decide to which one of
the two possible directions this fraction of dots is actually moving, and report its
choice with a rapid eye movement —a saccade— to the corresponding target choice.
The difficulty of the task can be controlled by varying the fraction of dots that
move coherently. While the monkey performs the task, the activity of LIP neurons
is recorded. Neurons are chosen such that their receptive field encompasses one
of the target choices, but that lies off the area where the random-dot stimulus is
shown.

A good reason to study this apparently awkward task, called a “random-dot
direction discrimination task” (Fig. 1.1), is that both the visual system and the
brain stem circuits that control saccadic eye movements are probably the two
most heavily studied neural systems in vertebrate brains. For this reason, the
study of the particular pathways that connect the visual sensory system to the
eye-movement control system has become a benchmark for the study of the general
principles of sensory-motor processes.

It has been known since the late 1980s that there is a small area in the brains of
primates, called the middle temporal area (area MT), which is highly specialized for
processing moving visual stimuli, like those used in random-dot tasks. Cells in MT
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Figure 1.1: Reaction time version of the random-dot direction discrimination task.
1. While the monkey is fixating its gaze at the center, two choice targets appear in
the periphery, one of them in the response field (RF) of the LIP neuron being recorded.
2. After a delay period of variable duration the random-dot stimulus appears. Both the
fraction of dots moving coherently and the direction of coherent motion, which can be
to either of the two possible choice targets, are chosen randomly on each trial. 3. The
monkey has to indicate the perceived direction of motion with a saccadic eye movement
to the associated target at any time after the random-dot motion onset. The reaction
time is the time elapsed between motion onset and saccade initiation. Figure adapted
from [164].

are direction selective, meaning that their response is maximal when stimuli move
in one particular direction. This maximal evoked response correlates well with the
fraction of dots moving in the associated direction, known as the “motion strength”
or “coherence” of the stimulus. Rather strikingly, the rate is also correlated with
the probability that the monkey makes a saccade associated to that direction
of motion [148]. Furthermore, when MT neurons are stimulated electrically, the
probability that the monkey makes a particular saccade is altered [169]. These
and subsequent studies suggested that cells in MT encode, in the firing rates, the
instantaneous strength of the motion in their preferred direction [33, 34, 32, 172].

If cells in MT encode instantaneous motion strength, which clearly is the
relevant sensory information to integrate in the random-dot task, the neural
correlates of the perceptual decision process must occur somewhere downstream
area MT. The neural correlates must also be positioned upstream the areas
involved in saccade initiation, like the frontal eye fields [162, 35, 36] and the
superior colliculus [198, 176]. An area that fulfills this requirements is the lateral
intraparietal area (LIP). Neurons in LIP project to the frontal eye fields [21, 20]
and superior colliculus [17], and receive projections from cells in MT [135]. Many
neurons in LIP respond to visual stimuli that lie at the target of a planned saccadic
eye movement [86, 50]. When the direction of motion of the random-dot stimulus
instructs the monkey the choice of the saccadic-target, the average activity of LIP
predicts the monkey’s saccadic response [173]. In particular, the trial-averaged
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activity of LIP cells builds up at a rate proportional to the coherence of the stimulus
when dots move in the direction of the response field of the LIP neuron [173, 164]
(Fig. 1.2). When dots move instead in the direction away the neuron’s response
field, the trial-averaged activity of the neuron ramps down at a rate also modulated
by the coherence of the stimulus. The ramping of averaged activity of LIP neurons
has been used to support the assertion that neurons in LIP would be integrating
over time the sensory signals projected from area MT [173, 87].

Models

A biologically-inspired cortical model of decision that accounts for some promi-
nent aspects of the decision-related neural activity of LIP was first proposed by
Wang [191]. The cortical model implements a competition between two neural
groups that encode the two possible choices in the task. Each group receives
inputs proportional to the amount of sensory evidence for the choice they encode,
mimicking the signal provided by MT neurons. The activation of these inputs
forces the network to change its initial, spontaneously active state, in which both
subpopulations show low firing activity, to a decision state where one of the neural
groups fires at a significantly higher rate than the other. The outcome of the
decision is the choice associated with the winning population, and is random by
virtue of the noise present in the system.

The model by Wang et al. provides a plausible explanation for the slowness of
the decision mechanism, characterized by reaction times of the order of hundreds
of milliseconds. Long reaction times arise in their model as a result of long time
constants of the NMDA receptor-mediated currents as well as the attractor config-
uration of the system. The network is driven upon stimulation to a competition
regime by an increase of the selective external inputs, which destabilizes the initial
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state. The decision process can thus be seen as the relazation from an unstable
stationary state [91] towards either of the two decision states of the network.

In this work we explore an alternative mechanism for slow decision that does
not require long synaptic time scales. Unlike the regime studied in [191, 197], here
we focus on those cases where stimulation does not destabilize the initial state, but
rather increases the probability for a noise-induced transition to any of the decision
states. We show that the proposed fluctuation-driven scenario for decision-making
entails distinctive implications for the statistics of decision times. In particular,
we show using numerical simulations that mean decision times tend to the Van’t
Hoff-Arrhenius exponential dependence on the amplitude of noise [84, 187] in
the limit of vanishingly small noise. Furthermore, the distributions of decision
times become in this regime more skewed as the noise amplitude is decreased, and
tend to exponentials in the limit of vanishing noise, as expected from the theory
of escape problems in gradient systems, where the notion of potential barrier
is substantiated. We also show that mean decision times and performances are
non-increasing functions of the average input to the competing units. The result
lends more support to the analytical and numerical work done in [165], where the
monotonic dependence on the input of both decision times and performances was
rigorously derived at the the critical point where the initial state loses its stability.
Such monotonic dependence constitutes a plausible physiological substrate of the
speed-accuracy tradeoff observed in behavioral experiments. Overall, the results
suggest that noise-driven transitions among attractors constitute an alternative
mechanism to describe the variability and wide range of decision times observed
experimentally, which span from a few hundreds milliseconds to more than one
second [123, 164].

Outline of the thesis

The work presented in this thesis is about the effect that fluctuations and multi-
stability have on the dynamics of cortical network models, and, in particular, the
possible implications that these effects may have on behavioral measures. Special
emphasis is placed on biophysically realistic network models of decision-making,
and on dimensional reductions of the original high-dimensional network models.

The thesis is structured as follows. Chapter 2 provides the general background
on the modeling of cortical networks. It is basically a review of the neuronal,
synaptic, and network models used in this work. The mean field approximation,
which provides the first step toward a reduction in the dimensionality of the
large-scale network models we use, is described in Chapter 3. Although these two
chapters are collection of well known results, I have decided to include them to
make the text as self-contained as possible. The reader familiarized with cortical
network models may wish to skip them or use them as a refresher. The reader not
interested in the technical aspects of the network models used in the thesis may
wish to skip them too. Chapter 4 is a review on the existing network models of
decision-making and serves as a nontechnical starting point for the next chapters.
Chapter 5 is devoted to noise-driven transitions in attractor-based models of
decision and constitutes the core of the thesis. In it we address, using a cortical
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network model, the plausibility of noise-induced mechanisms operating at the
network level in explaining the observed response times and performances, as well
as the existing electrophysiological data. The following two chapters are more
technical, and serve to illustrate two methods particularly relevant in the study
of multistable systems with noise. Thus, Chapter 6 deals with the method of
moments, by which we can describe the evolution of a stochastic system with a
set of ordinary differential equations involving the first central moments of the
density function. In Chapter 7 we illustrate how center manifold reduction can
be applied to derive a one-dimensional nonlinear diffusion equation for detection.
The method can be applied to relate psychophysical measures with the parameters
of the network models.



CHAPTER 2

Cortical network models

In this chapter we summarize the theoretical framework used in the study of
large-scale network models. We start giving a short survey on the physiology
and anatomy of neurons and cortical networks, emphasizing the aspects that
have constrained and inspired the network models described in this chapter. A
short summary of experimental data on delay activity during short term memory
tasks is also given. We then give an introduction to the theoretical framework of
attractor neural networks. The rest of the chapter is devoted to the description
of the realistic attractor models used in our work, based on large-scale networks
of spike emitting units. We introduce the integrate-and-fire neuron, a simple
description of neuronal dynamics that has become the choice of many theoretical
studies on large-scale networks of spiking neurons. It follows a summary of the
different models used to describe synaptic currents. Once the dynamical principles
for the spike emitting units are established, we describe how these units interact
when connected in a network.

The main references for the contents of this chapter have been the seminal
papers [8, 7], the review [65], and the chapters “Network models of memory’
in [40] and “Mean-Field Theory of Irregularly Spiking Neuronal Populations and
Working Memory in Recurrent Cortical Networks” in [159]. Further references
are given below.

)

2.1 Neurons

Neurons are cells specialized in processing information. Although we are still
far from understanding the mechanisms by which information is processed in
the brain, it is clear that these must rely on the ability of neurons to generate
electrical signals in response to electrical or chemical inputs, and to transmit
them to other cells. These signals travel in the form of changes in the electrical
polarization of the cellular membrane. Under normal conditions the potential
inside the cell is lower than the potential outside, which is 0 by convention. This
voltage across the membrane arises from the permeability of the membrane to
ions and the different ionic concentrations found at both sides of the membrane.
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When the neuron is stimulated strongly enough, a sudden and brief reversal
in the polarization, known as action potential or spike, occurs at one point on
the cell’s membrane. The action potential propagates down the membrane of the
axon until cell’s termination, where it triggers the release of neurotransmitters
into the synaptic cleft. Neurotransmitters then diffuse across the intrasynaptic
space and bind to receptors on the postsynaptic cell’s membrane, which open
up and allow for the influx of ions into the postsynaptic neuron. This in turn
alters the membrane potential of the postsynaptic neuron by an amount called
the postsynaptic potential (PsP). This PSP can be positive or negative, causing
the membrane potential of the postsynaptic cell to depolarize (increase) or to
hyperpolarize (decrease). The likelihood that the postsynaptic neuron emits
a spike thus increases or decreases depending on the sign of the psp, and we
can then say that a presynaptic spike either excites or inhibits the postsynaptic
neuron. If the effect of the incoming PSPs is such that the membrane potential of
the postsynaptic neuron reaches a certain threshold, an action potential will be
initiated at the postsynaptic cell, and the process will start again.

2.2 Cortical columns

Neurons are highly interconnected. A typical neuron has an elaborate branching
structure, called the dendritic arbor, which allows it to receive inputs from many
other neurons through synaptic connections. These inputs may come from very
distant brain areas or even from anywhere in the body, as the axon from a single
neuron can be as long as more than one meter. In the neocortex, neurons are
distributed in six layers highly interconnected within cylindrical columns. Every
column covers ~ 1 mm? of the cortex surface, and contains about 10° neurons, of
which 80% are excitatory and 20% are inhibitory. Any single neuron in the module
receives around 10* connections, most of which (50-80%) from neurons belonging
to the same column [29]. Studies with cortical slices show that the probability
that two neighboring neurons (< 200 pum) are monosynaptically connected is
about 10% [126, 104], and that the impact of a single presynaptic spike onto a
postsynaptic neuron is small compared to the total excursion from the resting
potential to the threshold [128, 174, 78|. Cells within a column show similar
response properties, because they form a local processing network [146, 145]. This,
together with the fact that the connectivity patterns within and among columns
repeat quite stereotypically across the cortex, suggest that cortical columns may
be the fundamental computational modules in the neocortex.

2.3 Delay activity

Many brain areas exhibit delay activity, by which neural populations that respond
to a familiar stimulus can sustain elevated firing activity even after removal of the
stimulus that elicited it. Delay activity was first discovered in the early seventies
in experiments with awake monkeys [83, 116]. These experiments combined
electrophysiological recordings with delayed response tasks, in which subjects
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Figure 2.1: Delay activity in IT cortex during a delayed match-to-sample task. Top and
bottom panels show the rastergram and the trial-averaged firing rate for the same cell,
in trials in which two different sample stimuli were shown. The cell shows selective delay
activity for stimulus #14, but not for #24. S, sample stimulus; T, test stimulus. Adapted
by permission from Macmillan Publishers Ltd: Nature Neuroscience [201], copyright
(1998).

have to remember a particular feature of an initial eliciting stimulus, such as its
identity, color, or spatial location, in order to get a reward. Although there is a
wide variety of experimental protocols, trials typically consist of three stages. In
the first stage, called the cue period, an image (or sample) is shown to the subject
for several hundred milliseconds. The image then disappears for a delay period
that may span several seconds, to which follows the test period, in which another
stimulus is shown, which the monkey has to compare with the sample in order
to perform correctly and get a reward. For instance, during the test period two
images may be shown: the sample image together with a distractor. The response
is considered correct if the monkey chooses the sample image. Another version
is the delayed match-to-sample task, in which only one image is shown, either
the sample or a distractor. The monkey has to press a lever if the test image
coincides with the sample image. In either case, the monkey has to hold an item
in memory during several seconds.

While the monkey is performing the task, the neuronal activity is recorded
using one or several electrodes. Before any stimulus is presented to the subject, the
cells being recorded exhibit spontaneous (or background) activity, characterized by
low firing activities of several spikes per second. Upon presentation of the sample
during the cue period, some of the recorded cells start firing at higher rates, of
several tens of spikes per second. Strikingly, these same cells keep firing during
the delay period at rates significantly higher than the few Hz observed during
the spontaneous state . Delay activity has been found in different cortical areas,
such as inferior temporal (IT) cortex (see Figure 2.1), prefrontal cortex (PFC) and
posterior parietal cortex (PPC) (for reviews see, e.g., [82] or [142]).
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The precise properties of delay activity depend on the cortical area. In IT
neurons, delay activity is often strongly stimulus selective, highly reproducible,
and conveys information about the identity of the stimulus, rather than about
simple features of it. The representation of the stimulus in the firing activity
of IT cells is distributed and sparse: a single neuron may be selective to a few
visual stimuli, and a single stimulus involves the activation of a small fraction
of cells. This fraction is estimated to be around a few percent [140]. Moreover,
the neural representation is robust against simple modifications of the stimulus,
such as affine transformations, changes of color, or degradation with noise [141].
This suggests that delay activity is a collective phenomenon, arising from the
properties of the neural network, rather than caused by changes in the state of
the cell being recorded (see [5] or [65] for a discussion).

Delay activity in PFC and PPC is more complex, as it involves the representation
of other properties of the stimulus, aside from its identity. Neurons in PFC and
PPC exhibit delay activity during tasks in which the subject has to hold in memory
not only the identity but also the location of a stimulus [46]. In these cases, delay
activity may be selective for location, for object identity or even for both [155]. A
classical example of a task requiring spatial short-term memory is the oculomotor
delayed response task [80]. The monkey has to fix its gaze at a central spot on the
screen. After a short time, a flash light is presented at a given, eccentric location.
The monkey has to keep fixating at the central point throughout the delay period,
which spans until the central spot disappears. At this moment, the monkey has
to respond by making a saccade to the memorized position of the cue stimulus.
Neurons in PFC and the PPC show location-tuned elevated activity during the
delay period [80].

2.3.1 Biophysical substrate of multistability

The existence of delay activity indicates that the neural system exhibits multista-
bility. The question arises as to what synaptic, cellular, or network mechanisms
can explain delay activity. In general, multistability can be achieved with any
mechanism that combines non-linearities with positive feedback. Several biophysi-
cal mechanisms have been proposed to explain the observed neural multistability
(see [190] or [40] for details).

At the single cell level, multistability can arise from the positive feedback
provided by active currents [125, 74, 147, 195] A large class of models show
bistability in some range close to the firing threshold. Examples include uni- [102]
and multicompartment [27, 28] models, with voltage-dependent currents [121], or
with intrinsic regenerative calcium dynamics [122].

Another plausible hypothesis is that positive feedback loops arise from synaptic
reverberations in recurrent circuits [89, 170, 53]. It is still debated whether the
anatomical substrate for the recurrent excitatory loops are complex circuits
involving cortical and subcortical areas, a network between cortical areas only, or
are produced locally within a cortical module. The delay activity observed in a
given area may reflect the delay activity somewhere else in the cortex, and might
not be taking active part in the attractor dynamics. Whatever the substrate is, it
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seems reasonable to assume that the dynamical principles of attractors do not
depend much on whether or not the delay activity arises from the interaction
of different cortical areas. Multistability with a large number of attractors can
be obtained with recurrent network models in a robust way [10, 85, 8, 7, 65] In
the models used in this work, multistability arises at a network level. To keep
the model as economical as possible, the positive feedback loop is assumed to be
provided by the collateral connections within the local module alone.

2.4 The attractor picture

Delay activity can be explained as the expression of attractor dynamics exhibited
in cortical networks. By attractor we mean a stable configuration, or state, of
the network, characterized by the stationary distribution of neuronal activities.
The spontaneous activity patterns observed in the absence of stimulation, for
example, may be regarded as a stable state of the cortical network. Delay activity
patterns may also be regarded as attractors, characterized by the elevated firing
of a subset of neurons, which persists even without external stimulation. These
self-sustained patterns of activity, also referred to as local reverberations, may
well be the internal representations of some features of the learned stimuli shown
to the monkey during training (see [5]). Their stability results from the positive
feedback provided by the recurrent connectivity and the nonlinearities in the
response properties of neurons [§].

Experience shapes the set of all synaptic efficacies through a Hebbian mecha-
nism, driven by the covariance of pre- and postsynaptic firing activities [97]. The
process of learning a stimulus involves the potentiation of the synapses connecting
the cells activated by the stimulus. The items being stored in memory thus leave
an imprint in the synaptic structure, in such a way that when the cells driven
by the original stimulus are re-activated, they cooperate to sustain their activity
when the stimulus is removed [5]. Note that this involves two types of memory: a
short-term (or active) memory, maintained by the sustained activation of a subset
of neurons (the ’reverberatory activity of a cell assembly’, using Hebb’s words),
and a long-term (or passive) memory in the form of persistent changes in synaptic
efficacies. Synaptic plasticity allows for the formation of new activity patterns
and enhances the stability of already created ones. The appearance of a familiar
stimulus singles out one of the items imprinted in the network’s synaptic structure,
by activating the particular ensemble of cells associated with the stimulus.

When the stimulus presented is not exactly equal to any of the items previously
learned, the synaptic structure will drive the initial activation pattern towards the
‘closest’ activation pattern it learned to sustain [5]. The network acts therefore as a
content addressable memory: large classes of stimuli will elicit the same persistent
activity for all the stimuli in a class. The different patterns of delay activity,
or memory states, can be regarded in this sense as an internal representation
of the class of stimuli that elicits it. Furthermore, the internal representations
of all the stimuli leading to the same pattern of delay activity are considered
to be in the same basin of attraction. On the other hand, when two stimuli
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Figure 2.2: Tllustration of the attractor landscape of a network. The landscape corre-
sponds to an hypothetic energy or Lyapunov function defined on the high-dimensional
space of all network configurations, formally represented in the two-dimensional xz—y
plane. Arrows point to the direction of evolution of the system at different points of the
configuration space. All trajectories in the configuration space converge to one of the
attractors (blue dots). Attractors correspond to the minima of the landscape, basins
correspond to valleys, and basin boundaries correspond to ridges. Adapted from [9].

are different enough to induce different persistent activities, their corresponding
internal representations are considered to be in different basins of attraction.

From a dynamical systems perspective, persistent activity states may be
thought of as attractors of the network dynamics [194, 3, 105, 5, 204, 8]. The
dynamics of the network are such that the system always evolves into one of the
existing attractors. The configuration space can thus be partitioned into different
basins of attraction, defined by the set of initial configurations leading to the
same attractor. According to this point of view, the convergence of the network
state from an initial configuration to the nearby attractor represents the retrieval
of the stored memory on the basis of a partial cue. Unfortunately, only in some
particular network models, as in the Hopfield model [105, 106], it is possible to
find an energy function that decreases as the system evolves according to its
dynamical rules. The existence of an energy function allows one to make use of
the tools of statistical mechanics [12, 13, 14, 4]. Attractors correspond in this case
to the local minima of this energy function defined on the configuration space.
The dynamics of this system can be thought of as the motion of a particle on the
energy surface under the influence of gravity and friction (see Figure 2.2).

In general there is no such energy function, and hence the notion of landscape
is devoid of meaning, although the concept of network attractor is still valid. We
will often refer to the attractor landscape metaphor due to its illustrative power.
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Thus, for example, we shall say that the creation of new memory corresponds to
the appearance of new attractor, and its corresponding basin of attraction. And,
conversely, we shall say that forgetting a memory corresponds to the vanishing of
both the attractor and its basin. We can say that changes in the synaptic structure
of the network modify the attractor landscape in the sense that learning entails
the creation, destruction, or modification of basins of attraction. It is important
to remark that, in network models, the ability to restore an item from a degraded
or partial cue arises from the collective nature of the persistent activity patterns,
which involve the selective activation of a few thousands of neurons in the module.
If the number of activated neurons happens to be too low, the module cannot
sustain the selective activity, and system evolves to the background activity state.

2.5 Network models

In this section we summarize the theoretical framework of networks of spiking
neurons with discrete attractors, which combines both biological plausibility and
some degree of analytical tractability. These models bridge the gap between
abstract models with networks of binary neurons, which have provided a deep un-
derstanding of the properties of systems with a large number of discrete attractors,
and descriptive neurobiological models.

2.5.1 Neuron models: the integrate-and-fire neuron

A simple model for neuronal firing consists of considering the membrane voltage
as a time-dependent state variable that tells us when an action potential is to be
emitted. The evolution of the membrane potential is given by the time course
of the input received by the neuron, which reflects in turn the activity of the
presynaptic neurons. The integrate-and-fire model (1F) [120, 112, 161, 184] regards
a neuron as a point-like element whose dynamical state is completely described
by a single variable, the instantaneous value of its membrane depolarization
V(t). The whole real membrane is thus taken as equipotential, ignoring any
effect caused by the complex spatial structure of the cell. Although this might
seem a drastic reduction, a neuron of arbitrary geometry and described by a
non-linear cable equation (see for example [113]) can be reduced to an IF neuron
with properly rescaled parameters [16]. Moreover, the temporal dynamics of an
IF neuron receiving noisy inputs do not differ much from those of a anatomically
reconstructed complex pyramidal cell [175].

A simple version of the IF model is the leaky integrate-and-fire (LIF) model, in
which the membrane potential V() obeys the following differential equation

CmV(t) = —9L (V(t) - VL) - ISyn(t)’ (21)

where C,, is the total membrane capacitance, gy, is the passive conductance, Vg,
is the resting potential, Iy, (t) is the synaptic current that charges the neuron,
and the dot over the variable V'(¢) denotes the time derivative of the variable. We
follow the convention that synaptic currents Isy,, are positive-outward, and that
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Figure 2.3: Passive integrate-and-fire model driven by a time-varying current Isyn(¢).
Left: Equivalent circuit of the passive integrate-and-fire cell. A capacitor C, is charged
by the contribution of the synaptic input of the neuron Iy (t) and the leakage current
due to the transmembrane conductance g, between the interior and the exterior of the
neuron. Note that synaptic currents are positive-outwards. In the absence of inputs, the
membrane potential V (¢) = Vinside(t) decays to the resting value Vi, with time constant
Cm/gm. Right: trace of the membrane potential (upper panel) when driven by an
arbitrary Isyn(t) (lower panel). Parameters: C,, = 200 pF, gr = 20nS, VL = —70mV,
0 =-50mV, H=—-60mV.

injected currents that enter the neuron through an electrode are positive-inward.
The first term in the right side of (2.1), called the leakage term, accounts for
the action of the passive ionic channels, which restore the resting potential V7,
in the absence of input current. The LIF model as defined above is said to have
passive currents because conductances do not depend on the voltage —the only
conductance, g, is a constant. According to the differential equation (2.1) the
neuron acts as a leaky integrator of the synaptic current or, using an electric
analogy, as a simple resistor-capacitor (RC) circuit driven by a time-varying input
source Igy,(t) (see Figure 2.3, left). The integrator capability of the neuron is
complemented by the fire condition: when the depolarization V() reaches a
certain emission threshold 6, an action potential or spike is emitted and V' (¢) is
reset to a prescribed value H < 6, following an absolute refractory period 7y
during which the neuron does not integrate the input.

The leaky integrate-and-fire model defined above is clearly a simplified de-
scription of the biophysics of neurons. Most notably, it does not describe how
the action potential is generated; the fire condition, as well as the reset and
the refractory period following it, constitute an ad hoc rule. The emphasis is
put instead on the integration of synaptic inputs carried out by neurons in the
sub-threshold regime. It is thus implicitly assumed that spikes constitute the
minimal unit of information exchanged among neurons, in the form of stereotyped
all-or-none responses. In this scheme, information is provided by the identity of
the neuron emitting the spike and the time of emission. This level of description
allows to reduce the number of the neuron’s state variables down to one, and
is specially suitable to study the collective dynamics of large-scale networks of
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neurons due to its efficient implementation and its analytical tractability.

2.5.2 Synaptic inputs

Once we have provided a model for the neuron, we need a mathematical description
of the inputs that any cortical neuron receives. The input depends on two factors:
the firing activity of the afferent cells and the dynamics of synaptic activation.
The first requires some assumptions about the network and the collective activity
of the cells in it, and will be addressed in section 2.5.3. In this section we focus
on the second, namely, on how the input current evolves in time after receiving
a presynaptic spike. After a brief introduction about synaptic transmission in
cortical cells, we introduce some of the available models of synaptic dynamics,
from low to high complexity, and discuss the adequacy of each to describe the
different types of postsynaptic currents found in cortical cells.

Neurons communicate mostly by chemical synaptic transmission. This trans-
mission can be fast, of the order of tens of milliseconds, when transmitters bind to
the synaptic channels and activate them directly. In such case, the transmission
is called ionotropic, and will the one we will be concerned with. The other type
of chemical synaptic transmission is slower, and involves the indirect activation
of conductances through intracellular signaling pathway [77]. This type of trans-
mission is called metabotropic, and has longer-lasting and much more diverse
postsynaptic actions. Most of ionotropic transmission in the brain is mediated by
two amino acid neurotransmitters, one excitatory and one inhibitory: glutamate
and GABA (a-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid), respectively.
Glutamate-gated channels are divided into three subtypes, named after their
selective agonists: AMPA (@-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid),
kainate, and NMDA (N-methyl-D-aspartate) (see for example [77]). The AMPA
and NMDA-gated channels mediate the bulk of ionotropic synaptic transmission
in the brain. AMPA-receptor kinetics are fast, both in the activation and the
deactivation phases, with characteristic times of a few milliseconds, while NMDA-
receptor kinetics a considerably slower, specially in the deactivating phase, which
can last several tens of milliseconds [73, 48]. Kainate receptors are also found
throughout the brain and have similar properties to AMPA, but their function is
not well understood. Finally, GABA receptors, in its subtype A form, mediate
most of the inhibitory ionotropic transmission of vertebrates. The kinetics of
GABA, receptors are relatively fast both in the activation and the deactivation
phases, with characteristic times of several milliseconds.

The current that flows into a neuron receiving a single presynaptic spike, called
the postsynaptic current (PSC), depends therefore on the kinetics of the receptor
channels to which neurotransmitters bind. This duration can be of the same order
of magnitude or even larger than the membrane time constant. We can try to be as
schematic as possible and model synaptic currents as delta pulses (instantaneous
synapses) which, as we will see, offer some advantages on the analytical and
computational side. Another approach would be the opposite: to provide an
accurate description of the receptor gating kinetics based, for example, on Markov
models [68], at the cost of losing tractability and computational speed. Here
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we follow the intermediate solution initiated by [43|, making some simplifying
assumptions about the mechanisms of synaptic transmission in cortical cells and
using a conductance-based description for the currents.

Instantaneous synapses

The simplest model of afferent input assumes that each presynaptic spike changes
instantaneously the membrane polarization of the postsynaptic neuron. Each
synaptic contact is associated with a given synaptic efficacy J which may be
positive or negative depending on the excitatory or inhibitory nature of the
presynaptic neuron; the value of J is related with the total charge entering the
membrane upon spike arrival and hence determines the amplitude of the change
in the membrane potential produced by the presynaptic spike. This simple model
for afferent input is described by a sequence of delta pulses:

Ty ZJUZ§ " —dyy), (2.2)

where C'is the number of synaptic sites, J;; is the efficacy of each of them, t§k) is
the time of the k-th spike emitted by the j-th neuron, and d;; is the transmission
delay between neuron j and ¢. Synaptic currents will be taken as injected currents,
and hence positive-inward, until we introduce voltage-dependent synaptic currents,
on p. 19.

The response of neuron i, initially at rest, after receiving a single presynaptic
spike at time ¢y can be calculated by integrating (2.1)

i t—to—dij
Vi(t) = Vi + 24 exp (if) ot —to — dij), (2.3)

where O(t) is the Heaviside function (O(t) =1 if ¢ > 0 and 0 otherwise). Thus,
the PSP consists in a sudden jump in the membrane potential at the time of spike
arrival, after which the potential decays exponentially to its resting value.

Synapses with instantaneous jump and exponential decay

Taking the synaptic currents as a train of delta functions is a rather crude
approximation. The PSC produced by the arrival of a presynaptic spike can be
more accurately described as an instantaneous rise followed by an exponential
decay. This turns out to be a quite good approximation for fast synaptic currents
like AMPA and GABA,-mediated currents [67]. The temporal evolution can be
described by the following differential equation

Tsjsyn,i(t) syn z + Z ng Z 6 t— t ) (24)

with the same definitions used in Eq. (2.2), and where 75 is the characteristic
time constant of postsynaptic currents, which is about a few milliseconds for fast
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Figure 2.4: Evolution of the synaptic currents and the membrane potential for a LIF
model neglecting the rise time constant of the synaptic current. Synaptic and membrane
time constants are 7. = 5 ms and 7, = 20 ms, respectively.

synaptic currents like AMPA and GABA,. Figure 2.4 illustrates the evolution of the
synaptic currents and the membrane potential of a neuron receiving a sequence
of spikes. Note that the solution of Eq. (2.4) is formally equivalent to that of
the leaky integrator (2.1) taking the delta pulses (2.2) as synaptic current. The
synapse acts thus as a filter that transforms a point process into a signal with
finite jump discontinuities. Note also that taking synaptic currents as a sequence
of deltas, as in Eq. (2.2), corresponds to the limit 7, — 0 of the synaptic currents
described by Eq. (2.4). Integration of the differential equation (2.4) yields

1 &

ISyn,i(t) = 7'75 :

Ji]' Zexp[— (t — t;—k) — dij>/7’s]@(t — t;—k) - dij) .
7 k

1

That is, the total current consists in a linear sum of single-spike contributions.
For simplicity we will neglect in the following transmission delays, d;; = 0. We
will also drop the subindex 4 of the postsynaptic cell to make notation lighter.

Synapses with exponential rise and decay

A further step towards biological realism can be made by modeling the PSC as a
difference of exponential functions

T e e
Ipsc(t):rﬁ[e (t—to)/ T, —e (t—to)/ T]@(t—t0)7 (25)

where ?¢ is the time of emission of the presynaptic spike, 74 and 7| are the synaptic
time constants for the exponential rise and decay phases, and the prefactor ensures
that the time integral of the current is J. The time course of the single-spike
currents mediated by AMPA, NMDA, and GABA, receptors can actually be modeled
as a difference of exponentials [67]. Different experiments have shown that,
although there is considerable variability among cells, the rise time constants for
GABA, and AMPA currents are short, of about 0.2 ms, while for NMDA currents
the rise time constant can be as high as 2ms. Decay time constants turn out to be
longer than rise times, and have found to be in the range ~1-10 ms in GABA, and
AMPA-mediated currents, while considerably longer (50-100ms) in NMDA-mediated
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Receptor Rise phase, 7+ Decay phase, 7, References

AMPA 0.2-0.4 ms 1.5-5.0 ms [99, 178, 203, 18].
GABA, 0.2-0.5 ms 5-10 ms [168, 199, 90, 115, 23].
NMDA 1.5 ms 50-100 ms [99, 167, 178, 203, 18].

Table 2.1: Estimated average values of the rising and decay time constants associated
with the kinetics of AMPA, GABA,, and NMDA receptors.

currents. The estimated average values of the observed time constants for all
three channels are summarized in Table 2.1.

Since the rise times for GABA, and AMPA currents are one order of magnitude
shorter than any other time scale, they are usually neglected in analytical studies.
In such case, the first-order system (2.4) is an appropriate description of the
dynamics of AMPA and GABA, currents. The same cannot be applied to NMDA
currents, which have a rise time of the order of the fastest decay constant in the
system (Taypa,; ~ 1.5ms). In this case it is more appropriate to model the PScC
with a difference of exponentials, Eq. (2.5).

The effect of a finite rise time can be included with a second variable in the
system of differential equations describing synaptic dynamics:

rd(t) = —I(t) + Ja(t), (2.6a)

C
Ta(t) = —a(t) Y Yot — i) (2.6b)
k

In this description the total synaptic current generated by a train of presynaptic
spikes is the linear sum of all single spike contributions. This is a plausible
assumption as long as the presynaptic firing rates are low enough to not saturate the
synaptic channels. Saturation occurs when the time elapsed between consecutive
action potentials at the synapse is on average shorter the synaptic decay time
constant. For the typical firing rates observed in the neocortex this implies that
saturation can be safely neglected in AMPA and GABA ,-mediated currents, but
cannot in NMDA currents. Even during spontaneous activity, during which neurons
fire at a few spikes per second, the value of Tyypa,, is comparable to the average
interspike interval (1sI). In this case the inputs saturate the postsynaptic NMDA
receptors, making the actual impact of a presynaptic spike dependent on the value
of the synaptic input. As a consequence, the total synaptic current is no longer
a linear sum of the individual contributions. An accurate description of these
effects can be obtained including a nonlinearity in Eq. (2.6a)

T I(t) = —I(t) + Jo(t) (Imax — I(t)) (2.6a")

where I« is the maximal current attainable using a particular receptor.
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Voltage dependent currents

There is an important difference between real synaptic currents and the currents
we have described so far. In the models discussed above the current flows into the
postsynaptic cell as mere injected current, with conductances playing no active
role. They are current-based descriptions of the synaptic input. In contrast, real
synaptic currents result from the ion permeability of the membrane and from the
voltage across it. When neurotransmitters bind to receptors, the ion channels
at the postsynaptic cell open, thereby increasing the membrane conductance. A
realistic description of synaptic currents should include this explicit dependence of
the current on the conductance and the driving force, which is the name commonly
used for the difference between the voltage and the reversal potential. Models of
this type are said to be conductance-based descriptions of the synaptic currents.

A possible description for the actual conductance is g(V,t) = gsyn(V)s(t),
where gsyn (V) is the maximal conductance at a given voltage, and s(t) is the
fraction of open ion channels at the synapse. The synaptic current, understood as
the current flowing outwards through the ion channels at the membrane, is then
the product of the conductance and the driving force

Liyn(t) = goyn (V1)) s(2) (V(£) = Vo) , (2.7)

where V} is the synaptic reversal potential. According to Eq. (2.1), the synaptic
current is depolarizing when Vy > V (t), and hyperpolarizing when Vy < V (¢) !

The evolution of the gating variable s(¢) depends on the type of receptor.
The time course of PSCs of AMPA and GABA, receptors are modeled as a sudden
jump followed by an exponential decay (see Eq. (2.4)). This time course can be
described in terms of a first-order, linear differential equation

Todny (1) = —sn(t +ZZ(5t—tk (2.8)

j=1 k

where R stands for either AMPA or GABA,. The slow, NMDA-receptor mediated
component of the synaptic current is better described in terms of another gating
variable syupa (t) that obeys the nonlinear second-order differential equation (2.6a’)—
(2.6b) [189]

TLéNMDA z(t) = —SNmpA z(t) + Oéxi(t)(l — SNMDA, z(t)) ) (2'93)
() = —xi(t) + 7 ZZ(S " —a;)), (2.9b)
j=1 k

where « is a constant related to the synaptic efficacy. Note that although the
system of equations (2.9a)—(2.9b) is formally equivalent to Egs. (2.6a’)—(2.6b), the
former represents the total synaptic input while the latter represents the gating
variable. Figure 2.5 illustrates the effect of presynaptic spikes on the voltage-
dependent synaptic currents. Note that the simpler models for synaptic inputs

%Recall that synaptic inputs enter in the resistor-capacitor equation with a minus sign:
CmV (t) = —gr (V(t) = VL) — Lsyn(t).
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Figure 2.5: Evolution of the synaptic currents flowing into a given LIF neuron, as a result
of the incoming of a presynaptic spike train, using a conductance-based description
with non-negligible rise and decay synaptic time constants, and taking into account
saturation effects (Eqgs.(2.7)—(2.9b)). Parameters: 7y = 2ms, 7, = 5 ms, 7 = 20 ms,
a=0.5(ms)" !, geyn =218, Cp, = 200 pF, V5 = 0.

described in previous sections neglect the driving force and assume implicitly that
all active membrane conductances are constant in the subthreshold regime, which
is not always a reasonable approximation to make.

Synaptic currents activated by NMDA-receptors are a non-trivial example
of voltage-dependent current. These currents show, apart from the voltage
dependence due to the driving force, a nonlinear dependence on the postsynaptic
voltage because of the block of channels by extracellular magnesium ions. At the
resting potential, the NMDA current is negligible even when neurotransmitters
are bound to the receptor of the postsynaptic cell, because extracellular Mg?™
blocks the NMDA ion channel [149, 136]. The block is facilitated by the negative
membrane potential of the cell. As the membrane potential increases, the electric
force between Mg?™ and the cell decreases, and the block of channels by Mg?™
becomes less probable. This results in an increase of the conductance with the
voltage. Using the notation introduced so far, this would amount to writing
the maximal conductance g¥¥°*(V) as a function of the voltage and the Mg**

max

concentration. [108] have fit this dependence by

24+ -1
ggll\g?cA(V) = gnmpa (1 + [N[g’y} exp(—ﬁV)) s (210)

where v = 3.57mM and 8 = 1/(16.13 mV) = 0.062 (mV)~!. Typical values for
extracellular magnesium concentration are around 1 mM. The main consequence
of this voltage dependence is that NMDA receptors will open only when both
presynaptic and postsynaptic cells are simultaneously depolarized. NMDA receptors
act therefore as coincidence detectors, thereby providing the biophysical substrate
for learning.

Excitatory and inhibitory cells in current- and conductance-based models

For simplicity, it is often assumed in network models that every neuron has either
an excitatory or an inhibitory effect on all its postsynaptic targets (Dale’s principle;
but see also [182, 109]). The practical implementation of excitatory and inhibitory
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Figure 2.6: Relationship between the NMDA- Ho
mediated current and the membrane voltage.
The functional dependence is given by the
product of the driving force and the voltage-
dependent maximal conductance, Iyupa =
G (V) (V = Vig), where gi2(V') s given by
Eq. (2.10), and [Mg*"] = 1 mM. The mem-
brane voltage spends most of the time in the
interval between the reset potential and the _50 _o55 0
threshold (dotted vertical lines). Voltage (mV)
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cells depends on the description of the inputs. In current-based descriptions,
the synaptic efficacy J;; takes positive values if j-th neuron is excitatory, and
negative if it is inhibitory. The absolute value of J;; provides the amplitude of
the Psp. In conductance-based models the reversal potential Vj in Eq. (2.7) is
above threshold in excitatory synapses, Vj > 6, so that the driving force tends
to depolarize (excite) the postsynaptic neuron when the (excitatory) presynaptic
neuron emits a spike. In inhibitory synapses the reversal potential Vj is below the
reset potential, Vy < H, and hence the driving force tends to hyperpolarize (inhibit)
the postsynaptic neuron after receiving a presynaptic spike. The amplitudes of
the EPSPs and IPsPs are given by the respective maximal conductances gpax (see
Eq. (2.7)).

2.5.3 Connectivity structure
Recurrent and external connections

The synaptic current Iy, (t) of a neuron contains contributions from all presynaptic
cells. Given the modular structure of the cortical tissue, we can distinguish between
recurrent and external currents according to the location of the presynaptic cell.
Recurrent currents include all the currents generated by the spikes exchanged
among cells in the same module, and can be either excitatory or inhibitory.
External currents include the rest: non-specific background activity from cells
not included in the module, as well as the coding of external stimuli provided by
the projections from cells in distant brain areas. External contributions are only
excitatory, as only excitatory cells have axons long enough to reach cells in other
modules [29].

Fully and sparsely connected networks

Models of cortical networks mimic the connectivity patterns seen in cortical slices.
They usually consist in a network of N LIF spiking neurons connected without
any particular topological structure. The ratio of excitatory to inhibitory cells
is 4:1, as observed experimentally. Synapses are of four generic types, as each of
the presynaptic and postsynaptic cells can be either inhibitory or excitatory. We
label synaptic quantities with a3, where o, 8 = F, I, to denote the connection
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of a presynaptic cell of type 0 to a postsynaptic cell of type a. When there is
no structure in the network, synaptic strengths J;; depend only on the type of
pre- and postsynaptic cells, namely {Jog} = {Jege, Jer, Ji1, Jig}. Structure is
introduced in the network when synaptic strengths depend not only the type,
but also on the identity of the cell. We describe structured networks in the next
section.

How exactly these values for J,g are chosen determines the connectivity of
the network. In a fully connected network all synaptic strengths J,z take nonzero
values while in sparsely connected networks, the probability that two neurons are
connected is lower than 1, and usually small. Synapses are in this case drawn
at random, using either a fized or a variable random connectivity scheme [7]. In
a fixed scheme, every neuron of type « receives the same number of synaptic
contacts from c,g/Ng cells selected at random. The fraction co,g < 1 is called the
sparseness level and is usually independent of the type «, 3, i.e., cag = ¢, so that
every cell is innervated by ¢Ng excitatory and cNj cells chosen at random. In
a variable random connectivity scheme, a post- and a presynaptic cell of type «a
and 3 are connected with probability c,s < 1. As a consequence, the number of
connections that a neuron of type « receives from neurons of type 3 is no longer
fixed, but is a binomially distributed random variable with n = Ng and p = cqg.
The mean and variance for this discrete random variable are therefore c,3/Vg and
cap(l — cap)Ng, respectively.

Unless the model incorporates any type of activity-dependent synaptic plasticity
(as in, e.g., [81], [66], or [15]), synaptic efficacies are fixed during the simulation.
The connectivity is said to be quenched. The values for synaptic efficacies, when
they are not zero, can be fixed or variable, in which case they are drawn from
a Gaussian distribution of mean u = J,3 and variance 02 = (J,3044)?. The
probability density function p(j) of synaptic efficacies can therefore be expressed
as [130]:

. . Cap 1 ]_Ja['})]
= (1 - cap)d(j) + —C0Bexp| = (LB |,
PU) = (1~ )i) + 5 exp[ 2( I

where c,g is the sparseness level. Autapses, that is, synapses that a neuron makes
onto itself, are excluded in the model in agreement with experimental observations.
This amounts to set J;; =0 foralli=1... N.

Sparsely connected networks reflect more faithfully the real connectivity struc-
ture found in cortical networks, where the probability that two cells within a
cortical column be connected is around 10% [128, 126, 174, 104]. However, simulat-
ing the dynamics of networks of sparsely connected cells is more computationally
demanding than doing so with fully connected cells. The reason for that is that in
sparsely connected networks, recurrent synaptic inputs differ from cell to cell and
have to be computed individually, whereas in fully connected networks the recur-
rent synaptic input is the same for all cells. This may be an issue in large-scale
models when synaptic currents are included in the description.



2.5. NETWORK MODELS 23

2.5.4 External inputs

The cortical column is an open system that interacts with other columns and brain
areas. This interaction is mediated by excitatory projections from outside the
column that provide external afferent currents. Estimates of the proportion of the
excitatory synaptic inputs on a given neuron from external projections are in the
range 50-80% (see Section 2.2). Hence a considerable part of the influx of spikes
in the module comes actually from outside of it. Moreover, external currents are
modeled as stochastic, as “an expression of our ignorance, not only of what the
rest of the brain does, but also of the interactions of the brain with the outside
world” [7]. External inputs can be either nonselective, reflecting the spontaneous
activity of neurons outside the module, or selective, when they arise from the
direct or indirect projections from sensory areas, which increase selectively their
activity upon stimulus presentation.

Nonselective inputs

To model nonselective external currents, every neuron in the local network receives
Cext Synaptic contacts from excitatory cells outside the module. These external
cells emit spikes at rates similar, on average, to the spontaneous spike rate vy of
excitatory cells in the local network. The total influx of spikes S&**(t) converging
from the external cells to cell i is modeled as a Poisson train (see, e.g., [58]) of
rate X = CoxtVp:

SPU(E) =Y ot —ti),
k

where t;, k = 1,2,..., are the consecutive spike arrival times, which are Poisson
random events. That is, the total number of spikes n that a cell ¢ in the module
receives from the external neurons during a period 7' is a random number N;(T'),
distributed according a Poisson distribution of mean CoyioT),

Pr(Ni(T) = n) = % exp(—CoxtoT) - (2.11)

This random number N;(T') is drawn independently for each neuron in the local
module. In simulations T is set to the timestep At, which is much smaller than
the average 151, At/(Coxtp) < 1. The probability of firing two or more spikes
within At is then negligible, while the probability of firing one single spike is
approximately given by Pr(N (At) = 1) ~ CextVoAt < 1. Spike trains of rate
CextVo can thus be generated by drawing at each timestep a random number
2 uniformly distributed over [0, 1] and comparing it to Cexttp < 1. A spike is
emitted only if < Coxi1g.

Selective inputs

Selective external currents result from the presentation of a particular stimulus
or from the selective activity in other modules. They are selective in the sense
that only a fraction of cells in the module receive input upon presentation of the
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stimulus. A set of p stimuli can be represented as Ng-bit words, &' = 0,1, where
i runs over excitatory cells (¢ = 1,..., Ng), p over stimuli (u = 1,...,p), and
the 1-bits define the subpopulation of f Np randomly chosen excitatory cells that
are activated by the p-th stimulus. The fraction f < 1 is the coding level of the
stimulus and is assumed to be equal for all stimuli. Thus, external stimuli define
p functional excitatory populations of f Ng neurons, each labeled by the external
stimulus p that activates it, and one population of (1 — fp)Ng cells that do not
respond to any stimulus [39].

When the stimulus p is presented, the number of afferent spikes coming from
outside the module increases for selective cells. This increase is parametrized by
the factor (1 + 5\), where the dimensionless parameter X is the selective contrast
of the stimulus. In other words, during presentation of stimulus p each cell 7 in
the module receives at each timestep NF*(At) external spikes, where NF*(At) is a
Poisson distributed random number with mean CexivoT' (1 + A¢!'). The value for
the selective contrast A is typically low, around 0.1 or even less. This is because
neurons are depolarized close to threshold during spontaneous activity, which
make them very sensitive to stimuli with low contrast [183]. The synaptic efficacy
of the external afferents is assumed to be the same, on average, as that of recurrent
collaterals: Ju ext = Jo,r, Where o = E, .

Overlapped representations of stimuli

To be consistent with experiments, where only a small fraction of cells respond
to any stimulus, f is chosen very low, f < 1, and the subset of excitatory cells
activated by the p-th stimulus is chosen at random. As a first approximation,
one can assume that for such low coding levels the probability that any neuron is
stimulated by more than one stimulus is negligible, and therefore that populations
of selective cells are disjoint. However, as also observed experimentally, there is a
finite probability that any cell responds to more than one stimulus when selective
cells are selected at random. If we denote by m the number of different stimuli to
which a cell is responsive, the probability for any cell to have multiplicity higher
than one is

Prim>1)=1—-Pr(m=0)—Pr(m=1)=1— <§) (1-15)P-— (?)f(l — frt
T

Expanding the last expression for Pr(m > 1) in Taylor series about f = 0 leads
to Pr(m > 1) = (pf)?(1 — 1/p)/2 + O(f?). The probability of having overlapping
populations is thus negligible when fp < 1. Although it is possible to incorporate
cells with multiplicity higher than one into network models [117, 57], we will
neglect in the following the contribution of such cells and will assume that stimuli
are represented in different, disjoint populations of cells. As we have just seen,
this is a reasonable assumption as long as the coding level is low and the number
of learned stimuli is not too high. On the other hand, the sparseness level f
cannot be too low, as otherwise the selective activity state would be drowned by
the noise coming from the spontaneous activity in background neurons [8].
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2.5.5 Hebbian learning and structure in excitatory connections

According to the hypothesis of Hebbian plasticity, neural activity and training
experience modify synaptic efficacies. Experimental observations actually show
that neuronal activity affect synaptic strength through long-term potentiation
(LTP, see e.g., [26, 25, 124]) and long-term depression (LTD, see e.g., [72, 47]).
These findings have inspired models of unsupervised, Hebbian synaptic dynamics
in attractor neural networks, which allow one to study quantitatively how learning
protocols determine the statistical properties of the synaptic matrix [11, 6, 37].
Here we assume that the network has already been structured through repeated
presentations of p different stimuli, taken in a random sequence [7]. The repeated
presentation of stimuli induces the potentiation of synapses connecting neurons
that are simultaneously activated by stimuli, while it weakens the synapses that
connect cells with anticorrelated activities. Because external inputs project to
excitatory cells only, and also for the sake of simplicity, plasticity is restricted
to excitatory-to-excitatory synapses. Inhibitory synapses do not change, as the
role of inhibition is to control the global activity of the network by responding
proportionally to the mean firing activity of excitatory cells (shared inhibitory
feedback).

The balance between synaptic potentiation and synaptic depression

The coexistence of potentiation and depression is essential to keep the network
activity stable irrespective of changes in the synaptic matrix. In fact, although
the nature of the regulatory mechanisms that contribute to maintain the overall
activity is still subject of debate [for reviews, see [2]|, and [186]], it is clear that
any homeostatic mechanism must rely on the interplay of both positive (LTP)
and negative (LTD) feedback. In the network model we use, the regulatory
mechanism is invoked ad hoc, requiring that the average excitatory-to-excitatory
synaptic strength remains constant during learning [179, 11, 8]. To be more
precise, if synapses between cells that belong to the same selective population
are potentiated by a factor w4 > 1 (i.e., have a strength J; = Jggw, ), synapses
between cells belonging to different selective populations as well as synapses
connecting nonselective to selective cells are depressed by an amount w_ < 1
related to wy (i.e., J- = Jgpw_ < Jgg) [39]. The remaining synapses do not
change: synapses connecting excitatory cells to nonselective cells, as well as
synapses involving inhibitory cells keep the same value as before learning. The
structure of the synaptic matrix is depicted in Figure 2.7.

The exact dependence of w_ on w; is derived from the homeostatic condition.
If we denoting by (Jgg)o and (Jgg)icarn the average synaptic strength before and
after learning, respectively, the condition reads

(JeE)) = JEE = (JEENearn = JEE (D204 +pf(1— flu_ + (1 —pf)) . (2.12)

The first term on the right hand side of the equation accounts for the synapses
connecting cells in the same selective population; the second, for the synapses
connecting excitatory cells to selective cells, and the third, for synapses connecting
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Figure 2.7: Representation of the synaptic matrix J;; after learning. Indices i,j =
1,...,(Ng + Np) specify post and presynaptic cells, respectively. Non-overlapping
subpopulations of excitatory cells respond to p = 4 different stimuli £, ...,£* (shaded
areas in upper and left boxes). Before learning the connection weights between excitatory
cells are all the same, with value Jgg. As a result of Hebbian learning, the connections
between cells selective to the same stimulus are potentiated with respect to the baseline
Jee (J+ < Jgg), while connections between cells selective to different stimuli are
depressed with respect to Jgg (J— < Jgg). Synapses connecting a nonselective cell
to a selective one are also depressed to the same strength J_. The strengths of all
excitatory projections to nonselective cells do not change, nor do connections involving

inhibitory cells. The overall change in the synaptic strengths is zero when J_ is
Jee(l— fJy/JeE)/(1 — f). See text for details. Adapted from [130].

excitatory cells to nonselective cells (see also the synaptic matrix in Figure 2.7).
Condition (2.12) implies

J_ =Jgpw_ = JEE% = JEE (1 - fW) (2.13)

This balance condition depends exclusively on the synaptic matrix. In this case
we have assumed that synapses from selective to nonselective cells do not change
during learning. Another plausible choice would consist of taking these synapses
as depressed, in the same way as synapses from nonselective to selective neurons
are [8]. The balance condition would then read

Jee [pfPwy +pf(1— Hlru- + (1 —pfpfu_ + (1 —pf)?] = Jee (2.14)

where the second term accounts for the projections from selective to excitatory
cells, the third for the projections from nonselective to excitatory cells, and the
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last for connections among nonselective cells. Equation (2.14) leads then to
wo = (2—flp+wy])/2-flp+1]) <1

The structure in the matrix of synaptic efficacies is not necessarily associated
with a topological or spatial structure in the real network, as cells that are selective
to a particular stimulus are not necessarily close together. The structure induced
by Hebbian learning depends on the correlation between pre- and postsynaptic
firing. It is determined therefore by the selectivity properties of cells, regardless
of their actual distance. However, it is plausible that the connectivity structure
also reflects the fact that the distance between cells selective to the same stimulus
is, on average, shorter than between cells selective to different objects, and hence
that the connection probability cells selective to the same stimulus is higher [43].
The situation in the real cortex might be mixture of these two, with cells selective
to the same stimulus tending to cluster in space, and the connectivity matrix
shaped by the learning process.

2.5.6 Simulations

Once we know the models for the neurons, the synapses, and the connectivity
structure, the dynamics of the network of spiking neurons are completely deter-
mined at a microscopic level. Computer simulations can be carried out to provide
observables like those typically obtained from electrophysiological experiments.
It is possible, for instance, to register spikes times and depolarization traces for
samples of neurons, or to monitor population-averaged or spike-count firing rates.

We will use two types of network in this work. The first is the network model
introduced by [8, 7], and consists of a network sparsely connected LIF neurons,
with synaptic currents given by a linear sum of the presynaptic spikes, and synaptic
matrix structured through Hebbian learning. Appendix B contains the parameters
used in this work. The second model was proposed by [43], and is an extension of
the first. It incorporates synaptic dynamics for the three main receptors involved
in ionotropic synaptic transmission, namely GABA,, NMDA, and AMPA-mediated
currents. Since first network model can be regarded as a particular limit case of
the second, we will describe in the following only Brunel & Wang model.

In the fully connected network with realistic currents introduced by [43],
recurrent excitatory connections are mediated by both AMPA and NMDA receptors.
Reverbatory excitations are balanced by the inhibitory feedback mediated by
GABA, interneurons, which presumably controls the excitability of the network.
External currents are mediated by AMPA receptors only. The whole system is
described by the set of coupled equations consisting in the RC-equation for the
membrane potential of every neuron, Eq.(2.1), together with the synaptic input
to every cell ¢, which depends in turn on the spiking activity of the rest of
the network. The synaptic input is given by the sum of the glutamatergic and
GABAergic components I;Y"(t) = IpMPACXE(f) 4 [AMPATEC (1)  [NMDA(F) 4 JGABA(E),
where (see 2.5.2)

Next
L) = guonens (Vill) = Vi) 3 341 (2150)
j=1
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IZ_AMPA reC(t) = Ganra rec z VE ij AMPA rec ’ (215b)

L (1) = ffje(xp Zwy ), (2:15¢)
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I () = Ganna (Vi) = Vi) D s§2°2(1) (2.15d)
j=1

and where the sums are over the synapses formed by presynaptic neurons j. Note
that recurrent synaptic currents have two components, IAM*¢(¢) and IMMPA(t),
and are modulated by the dimensionless factor w;. Note also that the recurrent
currents are identical for all neurons in the network, as they all involve a sum
over all the excitatory or inhibitory cells in the network due to the all-to-all
connectivity. The dynamics of the gating variables reproduce the time course of
the Psc for each component, and are described by

SAMPAEXY(p) — _ gAMPACXU(p) r Z 5(t— t;k)) , (2.16a)
ghMPATEC () . _ gAMPATEC () Z(g (k) (2.16b)
SN () = =5 (1) /Tanmn + 3 0(E— £57) (2.16¢)

k
M) = =Y (E) /T, + i (D) (1= 5YN(E)) (2.16d)
(1) = —;(t) /Taont + 71 Z 5(t — 1) (2.16¢)

The spike times t;k) in the equations for recurrent synaptic variables, Egs. (2.16b),

(2.16¢), and (2.16e), are generated by the network itself through the threshold
condition imposed on the N equations (2.1). Spike times from external connections,
Eq. (2.16a), are, on the contrary, randomly generated as described in 2.5.4, and
constitute the only source of fast noise in the system. Without this contribution,
the system would be deterministic, so that it would be possible to know the values
of all variables at any time, given some initial conditions. A different source
of disorder is present when the connectivity matrix is sparse and random and
synaptic efficacies and/or transmission delays are drawn from some probability
distribution. This type of disorder is fixed or changes on time scales much longer
than neuronal and synaptic time constants, so that can be considered effectively
quenched [7].

The state of the system is specified by the value of the 6N dynamical variables
present: N of each of sAMPASXt  gAMPATEC & gGABA # oNMDA and . Strictly speaking,
the system (2.1),(2.15), (2.16) is a hybrid system: the state of a neuron evolves
continuously according to some (smooth) differential equation, and incoming
spikes trigger sudden changes in some of the state variables. The evolution of
the system is thus described as a mixture of ordinary differential equations and
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maps [31]. Maps are not explicit in Eqs. (2.1),(2.15), (2.16); we use instead the
0 distribution to describe, keeping the formalism of differential equations, the
sudden changes in the state variables induced by the arrival of a spike. In addition,
there are threshold conditions on the state variables, and there is noise coming
from synaptic inputs. Bearing these caveats in mind, we can loosely represent the
evolution of the system as a set of differential equations

= F(x;t,w), (2.17)
where x is a vector whose components are the state variables of the system

xr = ({V}, {S/\MPAext}7 {SAMPATEC}’ {SGABA}’ {SNMDA}, {13})

_ AMPA ext
—(Vl,‘/z,...,VN,Sl ,....,[L’N),

and where the functions F' are, up to a constant multiplicative factor, the right
hand sides of the differential equations for the membrane potential and synaptic
inputs, Eqgs.(2.1) and (2.15). The symbol w denotes a particular realization of
the stochastic process, specified by the particular sequence of spike times coming
from external afferents, Eq. (2.16a). In numerical simulations of the network, this
sequence is completely determined by the seed we use to initialize the random
number generator.

The numerical integration of (2.17), given the initial condition x(t = 0) = @
and some particular realization w is done as usual by discretizing time, t,, = nAt,
n € N, and applying Euler method

T(tpt1) = Tpy1 = Ty + AtF(mn;tn,w) .
That is,

At syn -
Vvi(tn—i-l) = %(tn) + Cf |:_gL (‘/z(tn) - VL) - Iiy (tn):|7 = 17 e N

AMPA ext

tn)+1 upon spike from ext. synapse j

£ (
SAMPAeXt t — J
j ( n+1) {S?MPAeXt(tn)(l — At/TAMPA) otherwise

and so on for the other state variables. In our simulations we have used the 2nd
order Runge-Kutta scheme for the integration [see, e.g., 100]

At At
Tpi1 = :cn—f—AtF(a:n—i— 7F(wn;tn,w);tn + 2,w).

Typically, all the state variables are updated simultaneously at every time step.
The update is then called synchronous or clock-driven. This is the method
commonly used for network models that incorporate synaptic dynamics, such as
[43]. Another strategy takes advantage of the fact that the state variables evolve
deterministically between any two consecutive spikes, and update the state of a
neuron only when it receives or emits a spike. This is the approach of event-driven
or asynchronous algorithms [131]. This type of update is suited for network models
with instantaneous synapses, like that presented in [8].
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After setting the initial values for the state variables, one can simulate the
temporal evolution of all the variables of the system and extract from them
potentially relevant observables. For example, one can monitor the membrane
depolarization V;(t), or the spike times of an arbitrary subset of neurons. It is
useful to represent the sequence of spikes emitted by the i-th neuron with its
neural response function

pilt) =8t — ), (2.18)
k

where tgk), k=1,2,... are the consecutive spike times [58]. The number of spikes
emitted between times t¢,,_; and ¢, in some arbitrary population z can also be

tracked down,
N, tn
Ny (tn) = Z/ pi(T)dr,

icx Vin—1

where p;(t), is the neural response function of cell i, Eq. (2.18). From n, we can
obtain the population averages of the rates, defined as

T-1

1
Vw(tn) = m Z nx(tn—m)a

m=0

where T is the length of the time window, in units of At, over which we average
the rates. Figure 2.8 illustrates the time course of some of these observables, as
obtained from the cortical network model by [43].

Up to now we have not dealt with the problem of choosing the values for the
large set of parameters present in the model. Many of the parameter values can
be, and actually are, constrained to fall within experimental ranges. But even
with the parameters constrained within plausible ranges, there is a rich variety
of network states, most of which are not physiologically relevant. Although it
is possible to use simulations to find, if it exists, the region of the parameter
space where the activity of the network reproduces well experimental data, the
computational cost associated to such scan is considerable and, more critically,
the insight we gain into the dynamics of the network is rather limited. In the
hypothetical case that we could narrow down the region of the parameter space
indefinitely, reducing it to a point, and if we were lucky enough to have come up
with a good model that reproduces experimental data, there would remain the
essential question of what mechanisms give rise to the phenomena observed. This
motivates the use of a description based on global, or collective variables, which
we introduce in the next chapter.
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Figure 2.8: Simulation of a network of 2000 LIF neurons (1600 excitatory, 400 inhibitory),
with synaptic currents mediated by AMPA, GABA, and NMDA receptors. Excitatory
cells are subdivided into three populations: p = 2 selective (called A and B), and one
nonselective (N). The population of inhibitory cells (I) has no structure. The neuronal
and synaptic parameters are in Table A.1, p. 119. The synaptic matrix is that shown in
Fig. 2.7, with w4 = 1.75 and coding level f = 0.15. The average spike rate of external
afferents is vexy = Cextvo = 2400 Hz for all cells and throughout the simulation, except
for cells in A and B, which during the interval from 1000 to 3000 ms receive external
spike trains at higher rate 2415 Hz (selective contrast 0.625%). Top panel: traces of the
membrane potential of four cells belonging to the different functional subpopulations.
Mid panel: rastergram showing the spike times of 60 nonselective cells, 20 selective
cells (10 per stimulus), and 20 inhibitory cells. The depolarization traces shown in the
top panel correspond in the rastergram to the first cell (starting from below) of each
subpopulation. Bottom panel: population activity each of these four populations, in
bins of 50 ms slided every 5 ms.






CHAPTER 3

The mean field approximation

The cortical network models presented in the previous chapter are valuable tools
that help us gain insight into the dynamics of real cortical networks. However,
both the number of parameters and the dimensionality of these models are large,
rendering their analysis difficult. This problem motivates the need for a lower-
dimensional description of large-scale networks, based on the use of a few global,
collective variables. This is the essence of the so-called mean field approximation,
with which it is possible to identify the stationary states of the network and
analyze their stability as a function of the microscopic parameters of single-cells
and synapses.

Several references have been found particularly useful for the material of this
chapter. The articles [8, 7] are very readable and cover the first part of the
chapter, devoted to the mean field formulation in networks with instantaneous
synapses. For the second part, where realistic synaptic currents are incorporated
in the mean field framework, the articles [43] and [79] are valuable references. The
reviews [40] and [159] are also very comprehensible references.

3.1 Input-output transformation of single LIF neurons

3.1.1 Collective variables

Recordings in awake animals show that cortical cells emit action potentials
at rates in the range 0-200 spikess™!, with very irregular spike trains. This
irregularity can be characterized with the statistics of the time elapsed between
consecutive action potentials, known as interspike interval (1s1). If the event
‘emitting a spike’ at a given time ¢ were a pure Poissonian process, the 11 would
be exponentially distributed. In this case the coefficient of variation (cv), defined
as the standard deviation of the 1SI divided by its mean, would be exactly 1. The
¢V measured in cortical cells is usually around 1 in all cortical areas [175], not
only when cells discharge during background activity states but also during delay
activity states [52]. The firing activity of cortical cells can thus be described as
approximately Poissonian.

33
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Moreover, as mentioned in Chapter 2, cortical columns are composed of func-
tionally similar, highly interconnected neurons, with low probability of connection
between pairs of cells. The inputs received by the neurons within a column
are therefore expected to be similar, but weakly correlated. This implies that
any postsynaptic cell can decode the activity of the neuronal population just by
summing the thousands of weakly-correlated irregular spike trains, as fluctuations
in the individual activities will average out when summed together. In other
words, we can thus regard the set of columnar neurons as an ensemble of units
undergoing independent realizations of the same random process.

This suggest a description of the network activity based on the mean rates
of statistically homogeneous populations of neurons. By homogeneous we mean
that the statistical properties of the currents and the connection strengths are
identical for all neurons in the same population. We then make the assumption
that all neurons in the same subpopulation emit spikes at the same rate. With
this assumption, the statistics of the currents become homogeneous within each
subpopulation, and we can determine the average emission rate in the subpopula-
tion. The steady mean emission rate in each subpopulation is obtained by closing
the loop: the output rates, which depend on the input currents via the activation
function, must be equal to the input rates, which contribute to the input currents.

3.1.2 Statistical properties of the input currents

To formulate the mean-field description, we should first know the response prop-
erties of single cells. More specifically, we want to determine the average firing
rate of a neuron as a function of its input currents. This is done in several steps.
First we characterize the inputs that a single cell receives by the sole fact of being
part of a network. For this, we make some assumptions about the connectivity
and the firing activity of the neighboring cells. Once the inputs are specified, we
are left with the problem of finding the statistics of the firing activity, such as the
mean firing rate or the coefficient of variation of 1SI intervals, of a LIF neuron.
We start by considering a population of excitatory and inhibitory neurons.
As described in the previous chapter, every cell receives recurrent inputs from
collaterals, and external inputs from regions outside the local module. We neglect
for the moment any synaptic dynamics: synaptic inputs are modeled as a sum
of delta pulses (section 2.5.2). Given the irregularity of spike emission seen in
cortical cells, it is reasonable to assume that both excitatory and inhibitory cells
emit spikes according to independent Poisson processes of rates vg(t) and vy (t).
The rates of excitatory and inhibitory cells are equal for all cells of the same
type, and possibly time-dependent. External cells also emit spikes according to
independent Poisson processes, at a constant rate vey. Every cell in the network
receives from recurrent connections C'g excitatory synaptic contacts of strength
Jg, and C7 inhibitory synaptic contacts of strength —J, J; > 0. It also receives
Cext excitatory contacts of strength Jg from outside. Synaptic strengths Jg and
Jr are expressed in units of electric charge. In such network, the synaptic input
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to any neuron is

ext

Cr
](t):lrec()+[ext JEZ'OJ (t— )—|—J12pj(t— —i—JEZp]
j=1

where p;(t) =, 0(t — t( ) is the neural response function of cell j, and d is the
transmission delay in the recurrent connections, which we assume identical for all
cells. The mean synaptic input of any neuron is obtained computing the mean
rate of charge injection

(I(t)) = Je[Crre(t — d) + CextVext| — JrCrvi(t — d) = (t), (3.2)

where the angular brackets (-) denote the average over realizations. Information
about second order statistics is given by the two-point correlation function,

= {JIQE[CEVE(t— )+CextVext] —I-JIC[V[ t— }5 t—t (33)
a(t)

Note that ji(t) has units of current and that %(t) has units of square of the
current times time (A2 -s). As we did in the previous chapter, we will set the
transmission delay d to zero.

3.1.3 Depolarization as a random walk

The input (3.1) is delta correlated, meaning that fluctuations in the current are
independent at any time scale. The question now is, what is the firing rate of
a LIF neuron that receives the noisy synaptic input (3.1), with mean fi(¢) and
variance 62(¢)? The problem is a genuine example of a first-passage time problem,
in which one has to find the average time it takes for a random variable to reach a
given value. The mean rate is computed from the mean interspike interval, which
is the average time spent for the voltage to reach the threshold from the reset
potential, taking into account the leakage and the stochastic forcing due to the
inputs. The membrane voltage obeys the LIF equation (2.1), which can be recast
as the simpler expression

TV(t) = =V (t) + I(t), (3.4)

by shifting V to V + V},, defining 7 as Cy,, /g1, and absorbing gy, in the current
I(t), which is now expressed in voltage units. Doing so, the PSPs J are expressed
in units of voltage per time. For J to be expressed in units of voltage only, we
rewrite J as JT.

The membrane voltage is a function of a random variable, the synaptic current,
and it is hence a random variable itself. Figure 3.1 illustrates a sample path of
the membrane voltage in response to a particular realization of the stochastic
input (3.1). As a random variable, the dynamics of the membrane potential should
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Figure 3.1: Depolarization of a LIF neuron in response to a stochastic point-process input.
The input is a superposition of two spike trains, one with rate 5 kHz and psp amplitude
J = 0.3 mV, and another with rate 2 kHz and negative psp amplitude J = —0.3 mV.
The inset is a snapshot of the depolarization trace in the time interval from 6 to 8 ms.
Parameters of the LIF neuron: 7 = 20ms, § = 20mV, H = 15mV, VL = 0. The
refractory period is 7vp = 2 ms.

be described in terms of the conditional probability density for V (t) = v given
that V' (¢g) = vg, which we denote by P(v,t|vg,t0) = Q(v,t). Because the input is
delta correlated, the precise value of the input at any time does not convey any
information about the values at later times. This is equivalent to saying that the
conditional probability density P(v,t|vg,to) is not affected by any knowledge of
the values of V' at times earlier than ¢y, and hence that V' (¢) is a Markov process.

The conditional probability Q(v,t) of a stationary Markov process must obey
the so called differential form of the Chapman-Kolmogorov equation, also known
as master equation (see, e.g., [187, 55, 84])

500 = [{W QW) - W l)Qe. 0}

where W (v'|v), W(v|v') > 0 are the transition probabilities per unit time from
v to v’, and from v’ to v, respectively. The master equation for the membrane
voltage of a LIF neuron is

0

0
TaQ(U, t) = £ [UQ(U, t)}

+ [CEVE(t) + Cextyext}T[Q(v - JE>t) - Q(U7t)]
+ Crvr()7[Qv + J1,t) — Q(v,t)] . (3.5)

The first term describes the change in Q(v,t) due to the deterministic decay of
the membrane potential, while the remaining terms account for the jumps in V/
provoked by the instantaneous injection of positive and negative charge due to
synaptic inputs. More precisely, the terms in the second and third lines containing
Qv — Jg,t) and Q(v + Jr,t) represent the ‘gain’ of probability in V = v due
to transitions from v — Jg and v + Jy, respectively. The accompanying negative
terms, which contain Q(v,t), represent the loss in V' = v due to transitions from
v to v+ Jg or to v — J; caused by the arrival of an excitatory or inhibitory spike.
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3.1.4 The diffusion approximation

Equation (3.5) is difficult to handle because it is non local. We can convert
the equation to a more tractable partial differential equation using the diffusion
approximation [see, in the context of neuronal activity, 184, 16]. The idea is to
convert the original point process I(t) to a continuous random process I(t) with
the same mean (I) and two-point correlation function (I(¢)I(t'))), so that the
response of the potential to I(t) is continuous instead of jumpy, while the statistics
of postsynaptic firing remain the same. This is achieved by taking the limits
of vanishing PsPs and infinitely large number of connections. Given that every
cortical neuron receives around 10* presynaptic contacts, each of which contribute
with a small fraction of the total excursion from the reset to the threshold, the
approximation is plausible. Moreover, since cortical cells emit at a few spikes per
second, the number of spikes received by a cortical cell during the integration
time scale is large, so that the evolution of the membrane voltage actually looks
stochastic even at very short time scales.

The diffusion approximation is applied expanding the right hand side of (3.5)
in a power series of Js, neglecting the terms of order higher than 2 (see [187] for
a discussion about the validity of this truncation, and for a systematic account on
power expansions of the master equation). This gives

2w =~ 2w - vewn] + 0 L own, (30

where
p(t) = T{JE [CEVE(t) + Oextl/ext] - JICIVI(t)} , (3.7a)
O'Q(t) = T{JIQE [CEI/E(t) + CextVext] + JIQC]V[(t)} R (37b)

are the mean and the variance of the current. Both p(¢) and the standard deviation
o(t) are in voltage units.

Equation (3.6) is the Fokker-Planck equation describing the temporal evolution
of the conditional probability density, Q(v,t) = P(v,t|vo, to), of a LIF neuron that
receives a stochastic input I(¢) composed of a pure deterministic component, ju(t),
plus a pure stochastic component, a source of white noise with variance o2(t).
The system described by the Fokker-Planck equation (3.6), is mathematically
equivalent to that described by the following differential equation

V()= -V(t)+1(t), (3.8a)
where
I(t) ~ u(t) + o (OVTn(t). (3.8b)
The symbol 7(t) denotes a Gaussian random variable obeying
(n(t)) = 0. (3.99)
(n(t)n(t')) =@t —t). (3.9b)

Equations (3.8) together with conditions (3.9) are the Langevin description of the
stochastic system.
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3.1.5 Mean firing rate of a LIF neuron

Both equation (3.6) and Eq. (3.8) describe the random motion of v under the
influence of a stochastic perturbation of amplitude o(t) and a harmonic potential
U(v) = [v—pu(t)]? —an Ornstein-Uhlenbeck process [84]. The potential falls sharply
at the firing threshold to represent an absorbing barrier at v = 6. The potential
is depicted in Fig. 3.2A (top). When the input has no stochastic component,
that is, when o2(¢) = 0, the membrane potential v evolves deterministically to
the minimum of the potential u. If p < 6, the membrane potential cannot cross
the threshold and the firing rate of the neuron is 0. The neuron can only fire
if the mean intensity of the current is higher than the threshold, in which case
the neuron fires regularly with a fixed 1SI given by the refractory period plus the
precise time it takes to decay from the reset potential to the threshold. For finite
noise, o(t) > 0, the neuron is able to fire even when p <  because fluctuations
can drive the membrane potential toward the threshold, surmounting the potential
barrier U(6) — U(p).

To calculate the firing rate, we need to determine the average time between
consecutive spikes. We will also be interested in higher order statistics of the
interspike interval, like the coefficient of variation. The ISI is a random variable
given by the sum of the refractory period and the random time it takes for the
voltage to reach the threshold 6, starting from the reset potential H. These
quantities can be computed using the theory of first-passage times of an Ornstein-
Uhlenbeck process. The mean firing rate is given by the inverse of the mean 1sI,
which can be computed with the following trick. The Fokker-Planck equation (3.6)
can be rewritten as a continuity equation:

0 0
pn (v,t) = —%S(U,t),
where )
s, =0 0.0 - T2 g ),

The quantity S(v,t) is the probability current at V' = v at time ¢. The instanta-
neous firing rate, v(t), of a neuron receiving the stochastic input I(t) is equal to
the probability current at threshold

o2(t) 0 B
5. gy @01 o v(t), (3.10a)

S(0,t) = —

where we have used the condition that v = 6 is an absorbing barrier, Q(6,¢) = 0.
As it stands, Eq. (3.10a) is just a definition. For it to be useful we have to solve
the partial differential equation (3.6), subject to a set of boundary conditions,
particular to the LIF problem. First, since the membrane potential is reset, after a
refractory period 7p, to V = H whenever the potential crosses the threshold, the
probability flux leaving the interval (—oo, @) through 6 must be reinjected at the
reset potential, after a refractory period 7. As a consequence, the probability
current has a jump discontinuity at V' = H, with size equal to the instantaneous



3.1. INPUT-OUTPUT TRANSFORMATION OF SINGLE LIF NEURONS 39

firing rate at time ¢t — 7y,

2
t— T
S(H*,t) — S(H™,t) = v(t) = f%ﬁ , (3.10b)
where we have used in the first equality the fact that Q(v,t) is continuous (and
hence Q(H™,t) = Q(H,t)), and (3.10a) in the second. Since Q(v,t) is, after all,
a probability density function, it has decay sufficiently fast for v — —oo so that it
can be integrated. This is guaranteed imposing the limits

lim Q(v,t) =0, lim vQ(v,t) =0. (3.10¢)
In addition, Q(v,t) has to be normalized. We have to take into account the
probability p,p(¢) that the neuron is refractory at time ¢, and is hence missing in
the sample space (0,8). This probability is

Peo(t) = /t L (s ds.

—Trp

The normalization condition reads then
0
/ Qv t) dv + prp(t) = 1. (3.10d)

The instantaneous mean firing rate v(¢) is obtained by solving (3.6) with the
boundary conditions (3.10a)—(3.10d). Its value depends on the parameters of
the input I(t), such as the number of connections or the PSP amplitudes (see
Egs. (3.7)), as well as on the parameters of the single-cell. We will be particularly
concerned with the firing rate v of a neuron under stationary conditions, that
is, when u(t) = i, 0?(t) = o2. In that case, the probability density function for
V = v is found from Eq. (3.6) by setting the time derivative to 0 and solving
the resulting ordinary differential equation, with the boundary and continuity
conditions enumerated above. The solution is

T v — )2 (0-p)/o
Q) = wr exp ((2,“)> /( O(u — H) exp(u?) du, (3.11)

g v—p)/o

where O(z) is the step function, ©(z) =1 for x > 0 and 0 otherwise. Figure 3.2A
(bottom) shows the stationary solution of the Fokker-Planck equation (3.6), Q(v).
The firing rate is obtained from the normalization condition (3.10d), and is given
by [161]

(0-p)/o -1
=d(u,0) = <Trp + \/7?7'/( exp(u?)[1 + erf(u)] du,) , (3.12)

H—p)/o

where we have introduced the transduction function ®(u, o), which transforms the
input current to a cell to output firing rate, and where we have used the definition
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for the error function erf(z) = (2//7) [, exp(—u?)du. The transduction function
is depicted in Fig. 3.2B for different noise amplitudes in the input. Note that
noise smooths out the f-I curve given by ®(u,0), allowing the neuron to fire
when the average membrane voltage is below the deterministic threshold —the
subtreshold regime. Notice also that the firing rate increases supralinearly (is
concave) for sub-threshold mean currents p, while increases sublinearly (is convex)
for supra-threshold currents. The change of curvature, from convex to concave, of
®(u, o) occurs around the threshold, p = 6. The suprathreshold increase of the
rate eventually saturates at 1/7,.

3.1.6 Higher order firing statistics of LIF neurons

Once we know the mean emission rate, we can compute the higher-order moments
of the distribution of 1SIs, uk, by integrating the recurrence relations for the
first-passage times [84, 184]

o? d? d
—kp—1(z) = ?@#k(l’) + (b= I)@M(»’C)-

In particular, we can derive from them the coefficient of variation of the 1S1 [184, 38|

) 9 (0—p)/o
o (ISt pa() H1(9)22m/§/( exp(z?)y(z) dz,

CV™® = =
<ISI>2 /j‘% (0) H—up)/o

where

P(x) = /x exp(y?) [1 + erf(y)]” dy.

—00

The dependence of the coefficient of variation on the mean current p is shown
in Fig. 3.2D. For subthreshold currents, the voltage can decay to the steady
state v = p without crossing the threshold (see Fig. 3.2A). Were it not for the
fluctuations in the current, the voltage would settle at V' = p and stay there
forever. Fluctuations allow the voltage to escape from the local potential and
reach the threshold, making the neuron fire. This is reflected in highly variable
interspike intervals with coefficients of variation close to one. In contrast, for
suprathreshold currents the voltage always crosses the threshold during its decay
to the steady state V' = p. A spike is then emitted, the voltage is set to the
reset value, and the process starts over again. This process is entirely due to the
deterministic component of the dynamics. Fluctuations only add some variability
in the decay process, but are not needed for the neuron to fire. This is reflected in
more regular spike trains, characterized by low values of the cv. The transition
between the sub- and suprathreshold regimes of the cv is sharper the smaller
is the amplitude of the fluctuations. In the limit of zero noise, the cv is a step
function with value 1 for p < 6 and 0 otherwise.
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Figure 3.2: A: (Top): Dynamics of the depolarization of a LIF neuron receiving stochastic
inputs. The sample path of the membrane depolarization is described by the stochastic
motion in the harmonic potential U(v) = (v — p)?, truncated at the firing threshold
v = 60 (Bottom): Stationary probability density of the membrane voltage, Q(v). Note
the (slight) discontinuity in the derivative of Q(v) at v = H, due to the reset condition.
The two plots correspond to the subthreshold regime, u < 6. B: As in A, but for supra-
threshold currents. The discontinuity in Q’(v) at v = H is evident. C: Membrane traces
for subthreshold (bottom) and suprathreshold inputs (top). The threshold is 6 = 20 mV,
and the inputs are y = 16 mV (subthreshold) and p = 22 mV (suprathreshold). In both
cases 0 = 4mV. D: Single neuron transduction function ®(p,o) = (1s1)~* for three
different amplitudes of noise. E: Coefficient of variation of the 1s1, for three different
amplitudes of noise. The abrupt termination of the curve for ¢ = 0.1 is caused by
a numerical artifact (it should be 1 for u < ). Single cell parameters: § = 20 mV,
H =15mV, 7 =20 ms, 7vp = 2ms.
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3.2 Firing rates in homogeneous populations of neurons

3.2.1 Unstructured network

We now come back to the initial question about how to describe the activity of
the network in terms of global variables. Due to the homogeneity and statistical
independence of the inputs, the system can be described by the rates of the two
existing populations, the excitatory and the inhibitory. In the derivation of the
f-I curve for a single cell, we have assumed for simplicity that there were only two
types of connections, namely, Jg and J;, depending on the type of the presynaptic
cell. Tt is straightforward to extend the results to the case where the synaptic
strength depends also on the type of the postsynaptic cell. The synaptic weights
J are then of the type Jgg, Jgr, Ji1, or Jig (see 2.5.3, on p. 21).

The means and variances received by excitatory (F) and inhibitory (I) cells
are then

1e(ve,vi) = 7{Jpe |[CeVE + CextVext] — JEICrvr } (3.13a)
wr(we,vr) = {Jre[Ceve + CextVext| — JriCrvr}, (3.13b)
op(ve,vr) =1m{JEp [Ceve + CextVext] + JzCrvr}, (3.13¢)
o?(vg,vy) = T{JIQE [CEI/E + Cextuext] + JIQICIVI} , (3.13d)

where vg and vy are the firing rates of the cells in the excitatory and inhibitory
populations, respectively. These rates are determined self-consistently, by requiring
them to be the output rates of the corresponding transfer function when inputs
are Egs. (3.13), that is,

Vg :(bE(,UJE,UE)y (314&)
VIZ(I)](/,L],O'[). (314b)

The set of equations (3.13)—(3.14) can be solved numerically to find the firing
rates of the stationary stable network states. The stability of these stationary
states can also be analyzed [38]. It turns out that the asynchronous state of
the network with low rates and irregular firing (coefficient of variation close to
1) is stable as long as recurrent inhibition is stronger than recurrent excitation,
external inputs are suprathreshold, and the synaptic delays are sufficiently small
compared to the membrane time constant 7.

3.2.2 Network structured by learning

As described in section 2.5.5, the effects of learning can be incorporated in the
model by introducing structure in the matrix of excitatory synapses. We have
seen that the ‘strength’ of memories can be parametrized by the level of recurrent
excitation within selective populations —the parameter w, defined in Sec. 2.5.5,
p- 25. When recurrent excitation is low, the only stable state of the network is the
so-called ‘spontaneous’ state of the network, characterized by similar low rates for
all cells in the network. When recurrent excitation is greater than some threshold
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value, however, a new set of solutions appears. These networks states are called
‘memory’ states, and are characterized by the elevated firing of the cells in one of
the selective sub-populations. The remaining cells, both nonselective cells and
selective cells from other sub-populations, fire at low rates, not necessarily equal.

The mean field approximation allows us to compute the mean rates that
characterize these memory states. Because of the structure in the population
of excitatory cells, we have to distinguish between the rates and inputs of cells
in the activated selective sub-population (denoted by g1, psit, and ogy), in
non-activated selective sub-populations (g, psiy, 0s1y), and nonselective cells
(Vnsl, Hnsl, Ons1)- All these variables must obey the self-consistency relationships
between the inputs and output rates. Let v denote the vector formed by all
the different rates, v = (va, Vs1y, Vnst, V1). The mean input for each of the four
possible cell categories are

psit (V) = 7'{JEECE [fw+Vs1T + flp — Dw_vgy + (1 - pf)wfynsl]

(3.15a)
+ JpECextVext — Ju1Crvr }
i) = (T [P0+ 1+ (0= 20 v, -
+ (1 = pflw_rne] + JpeCextVext — JerCrvr},
st (V) = T{JepCr[frar + f(p — Vs + (1 — pf)vus] (3.150)
+ JpECextVext — Ju1Crvr }
pr(v) = m{JreCr[frar + f(p — Dray + (1 — pf)vn] (3.15d)

+ JpECextVext — J11Crvr } -

The expressions for the variances are similar, with the only difference that synaptic
strengths, including modulatory factors wy and w_, are squared

USZIT(V) = T{JJQEECE [finSIT +flp— 1>w2—1/sll +(1 _pf>w2—ynsl]

+ 25 CoxVexs — J2,Crur}, (3.15¢)
afu(v) = T{J%ECE [fw_yslT 4 f(wfr +(p— 2)w2_)Vsu .-
+ (1= pf)w vna] + JppCexivexs — T, Crvr}
ona (V) = T{JEeCE [ frar + f(p — Dray + (1 = pf)vns] (3.15g)
+ J3 pCoextVext — J51Crvr }
o3 (v) = {J2sCr [ fran + F(p— D + (1 — pf el (3.15h)

+ J%Ecextl/ext - JIQICIVI} .
On the other hand, cells emit spikes in response to the inputs given by (3.15).
The mean emission spike rates for each of the four possible categories are
vair = P (psiy, O-SQIT) )
vsl, = P (s, 05211)7
Vnst = Pp(fins1, 02g1) (3.16¢
v = ®;(ur,07). (3.16d
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The state of the network is described by the vector of rates v, which can be
determined solving numerically the equations (3.15)—(3.16).

Multi-memory states

The potentiation parameter w, can be increased beyond the threshold value w(+1)

necessary to sustain single memory states. At some value wf), a new type of
network state will appear, in which two selective sub-populations are active, i.e.,
fire at rates considerably higher than background values. Increasing even further
the value of w, gives rise to new stable states with an increasing number of active
sub-populations. These are the so-called multi-item memory states or [-memory
states, [ being the number of coactivated subpopulations. In general, the threshold

values of the potentiation parameter wﬁ) at which the [-memory states appear

form an ordered sequence, i.e., w(l) < wf) < wf) . We will find 2-memory

states in the analysis of the de01510n making network presented in chapter 5.

3.3 Treatment of realistic synaptic dynamics

The analytical results reviewed in previous sections are based on a very simple
model for the input currents, that of instantaneous synapses. Real synaptic
currents differ from those described above in at least three respects. First,
synapses are not instantaneous, but have a characteristic time course that depends
on the kinetics of the receptor, as seen in Section 2.5.2. Second, synaptic activation
results from an increase in the synaptic conductance, rather than from a plain
injection of charge. Third, receptors saturate, which implies that in general
postsynaptic currents do not necessarily sum linearly. We show in the following
how these features are dealt with in the mean field formalism.

3.3.1 Synaptic filtering

In the previous section, the noise carried by the inputs was assumed to be delta
correlated In real neurons, however, the inputs entering the soma have been
previously filtered by synapses, which introduce temporal correlations in the
synaptic currents. This can be easily seen with the simple model for fast synapses
we have introduced in 2.5.2, in which currents obey an equation of the form

T I(t) = —I(t) + S(t), (3.17)
where 7, is the relaxation time of the synapse and S(t) is a sum of delta pulses,
=> Z Joj Z a(t— 1y,
a j=1

The first sum is over the different types of neuron, o € {FE,I,ext}. Using the
diffusion approximation, we can describe the fluctuations around the mean of the
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input train as pure Gaussian white noise

S(t) ~ p(t) +a(t)n(t),

where ji(t) and 62(t) are proportional to the mean and the variance of the synaptic
input. To be more specific, (S(t)) = a(t), (S#)S(t)) = 62(t)6(t — t'), where
fi(t) and 62%(t) are given in Egs. (3.2) and (3.3). The quantity () is a source of
delta-correlated Gaussian random variable (i.e., it satisfies Egs. (3.9)). From the
integration of Eq. (3.17) it follows

The current has thus an exponentially decaying correlation function, with the
time scale given by the synaptic time constant. The main consequence of this
nonzero width of the two-point correlation function is that the membrane voltage
V' can no longer be regarded as a Markov process. However, the joint process that
results from taking the voltage V' together with the current I, is a Markov process
—a bivariate one. In general, non-Markov processes may be reduced to Markov
processes by introducing new random variables. It is possible therefore to derive
the associated two-dimensional Fokker-Planck equation and, in principle, solve it
to obtain the joint probability density for V' and I, from which the mean firing
rate can be obtained. The calculation can be done using singular perturbation
theory in the small 7, limit [92, 42]. It can be shown that the synaptic decay time
effectively introduces an effective threshold # + A and an effective reset potential
H + A, where A = o(a/2)\/7s/7, with a = v/2|¢(1/2)| =~ 3.479, T being the
membrane time constant and {(x) being the Riemann zeta function [79]. This
correction is valid to first order in k = y/7,/7. The main consequence of synaptic
filtering is a reduction in the post-synaptic firing rates. This reduction is specially
manifest in sub-threshold regimes, where the neuronal discharge is driven by
fluctuations and is hence more sensitive to synaptic filtering.

3.3.2 Conductance-based description of the currents

The amount of current flowing through ion channels is proportional to the product
of the number of open channels times the driving force (see Eq. (2.7)). All
postsynaptic currents are thus voltage-dependent. In addition to this natural
dependence on the voltage, there may be other voltage-dependencies, like that of
the maximal conductance in NMDA-mediated currents due to magnesium blockage.

In conductance-based descriptions of currents, stochasticity is introduced by
the synaptic gating variables. Assuming stationary inputs, the time course of a
gating variable sqyn(t) can be split in a constant component 3y, and a fluctuating
component dsgyn(t). If we ignore for the moment any dependence on the voltage
of the maximal conductance, the equation (2.7) for the unitary synaptic current
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reads now

Isyn (t) = JmaxSsyn (t) (V(t) - VYSY“)

B B (3.18)
= gmaxssyn (V(t) - Vvsyn) + gmax(sssyn(t) (V(t) - ‘/syn)

The fluctuation term depends on the voltage. To avoid the difficulties associated
to multiplicative noise, the voltage is replaced by its average in the driving force for
the fluctuating component, i.e., gmaxdSsyn (%) (V(t) - Vsyn) A Gmax0Ssyn (V - Vsyn).
The deterministic part of the current is on the other hand easy to handle. The
factor gmaxSsyn can be absorbed by a redefinition of the leak conductance, g;, —
gL + gmaxBsyn, leading to an effective decrease of the membrane time constant
from 7,,, = Cp, /g1 to
Trenﬂ = Cm/(gL + gmaxgsyn) .

The neuron is therefore leakier by a factor 1 4+ gmaxSsyn/gr. From (3.18) we see

that the resting membrane potential is also renormalized through the constant
GmaxSsyn Vsyn and the effective leak conductance, leading to

gL VL + gmaxgsyn ‘/;yn

Vi — -
gL + JmaxSsyn

The maximal conductance for NMDA-currents depends on the voltage (see
Eq. (2.10) and Fig. 2.6). To simplify the analytical treatment, the voltage
dependence of NMDA currents is linearized around the mean value of the voltage
V, which will be calculated self-consistently below. The linearization reads

VO Ve V() Ve
1+ Mg*exp(—pV)/y (V) B B B
VOV | gy 1) =BT V) (1= J(T).

J(V) J2(V)

This linear approximation is very accurate for the range of values between the
reset potential and the threshold, which is where the voltage stays most of the
time (see Fig. 2.6). As we will see below, the mean value of the voltage turns out
to be in this range. Note that the current that results from the linearization can
be written as

Lawoa(t) = ngEADASNMDA(t) (V(t) - VEH) )

where
O J(V) = B(V = Vi) (1 = J(7V)
ng\f/IDA = Ynmpa JZ(V) ( ) , (3.19a)
U (V VE) . (3.19D)
Inmpa J(V)

To complete the derivation, we must specify the average voltage V. Its value
can be computed using the probability density function Q(V') for the potential,
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Eq. (3.11), and taking into account the stay at the reset potential during the
refractory period

V= /9 V(Q(V) + vrpd(V — H)) dV

— 00

= p— (0 — Hjrryt — (p = H)vp,

where p is the mean synaptic current, which will be specified below, and v is the
postsynaptic rate. Note that the average voltage is a linear function of v, which
implies that the postsynaptic rate v cannot be simply computed as a function of
the synaptic input, but it has to be instead determined in a self-consistent way.

3.3.3 Fluctuations in the synaptic current with multiple synaptic
time scales

The derivation presented above can be applied when synaptic currents have one
single time scale, which is certainly not the case when fluctuations are meditated
by AMPA, NMDA, and GABA receptors. There is no rigorous analytical treatment
for fluctuations with multiple time scales, so one has to resort to approximations.
A simple one can be made by noting that there is a hierarchy of time scales, the
time constant of AMPA receptors being much smaller than those of GABA and
NMDA receptors. The longer the synaptic time constants, the more fluctuations
are filtered out. From this it follows that the amplitude of the fluctuations
of the AMPA synaptic variables is much larger than those in GABA and NMDA
synaptic variables. The approximation neglects fluctuations due to GABA and
NMDA receptors. Another approximation can be made if gampa rec is much smaller
than gawpa,ext, neglecting the former. Figure 3.3 summarizes the architecture, the
population structure, and the different types of synaptic current of the cortical
network model.

3.3.4 Nonlinear sum of inputs

The temporal dynamics of AMPA and GABA are fast compared to the typical
interspike-intervals, so that in normal conditions these receptors can recover
during the time between consecutive spikes. As a consequence, the fraction of
open channels is a linear function of the presynaptic rate when these are in
physiological ranges. This is easily seen by integrating the dynamical equations
for these receptors, Eq.(2.8), replacing the presynaptic train of spikes by the
corresponding mean v, giving

W)

(Sampa(t)) =
(Saana(t))
NMDA receptors have, on the contrary, decay times of the order of hundred

milliseconds, and hence they saturate whenever the incoming spike has a rate
of around 10 Hz. The gating variable becomes then a nonlinear function of the

ampa = UTampa < 1, (320&)
GaBa = UTgapa < 1. (320b)

If
VAl
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Other areas— — _ _

Nonselective

Inhibitory cells

Excitatory cells

Figure 3.3: Architecture of the cortical network model. The population of excitatory
neurons is subdivided in non-overlapping populations selective to p different stimuli.
Black solid arrows: NMDA and AMPA-mediated recurrent excitatory connections. Black
dashed arrows: AMpPA-mediated external excitatory connections. Blue circle-headed
arrows: GABA-mediated inhibitory connections. There are three possible synaptic
strengths for recurrent excitatory connections: potentiated (by a relative factor w4+ > 1,
thick arrows), depressed (by a relative factor w— < 1, thin arrows), and unchanged
(baseline level w = 1, connections without labels). The dots stand for the missing
S3,...,Sp—1 populations and the corresponding connections. Connections from and to
population S, are not shown for clarity.

presynaptic rate. As a first approximation, this nonlinear function can be derived
replacing the incoming spike train S(t) = >, 6(t — t*)) in Eqgs. (2.9) by the
corresponding mean discharge rate (S(t)) = v, and finding the stationary solution.
The average value of the gating variable would be in this case

(snmpa(t)) = ~ >

where 7 = Tyumpat Tampay @ The approximation can be refined if S(t) is taken as a
pure Poisson spike train. The calculation is in this case more involved [43], and
we only sketch the ideas behind the derivation. The starting point is the formal
solution for the gating variable syyps(t) in Egs. (2.9)

sxnn (£) :a/t +(v) exp<— fou —a/vtx(u) du> dv, (3.21)

—o0 TNMDA |

Since Syupa(t) is a function of the random variable z(t), it is a random variable
itself. We split the variable z(¢) in Egs. (2.9) into a deterministic component,
equal to the stationary solution (x) = Tyupat¥, and a fluctuating component dz,
of zero mean, (dz(t)) = 0. The n-point correlation function of x can be obtained
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from the properties of Poisson processes

n

(6x(ty) - dx(tn)) = exp< Z (t; —t1 /TNMDAT> (3.22)

Jj=2

The average of syupa can then be calculated from the expansion in power series of
the exponential in Eq. (3.21), separating the deterministic from the fluctuating
component and using (3.22). The final result is

(aon(®) = 00) = 115 (14 152 & Gy To ) (329

n:l

where

zn: ( > TNMDAT(l + V7~')
=0 TNMDAT(]- + V7~—) + kTNMDAJ, .

3.3.56 Firing statistics of a neuron with realistic synaptic inputs

Here we derive the final mean field equations for networks with realistic synaptic
inputs mediated by AMPA, GABA, and NMDA receptors. We go along the same lines
as the derivation followed for the network with instantaneous synapses. Thus, we
assume that the synaptic conductances and the mean firing rates of all presynaptic
inputs from the same subpopulation are identical, so that the network can be
partitioned into subpopulations.

In the spontaneous activity state, the network consists functionally of one
population of C'g excitatory cells and one population of Cy cells. The subthreshold
dynamics of a single cell, Eq. (2.1), with the synaptic currents given by Eqs. (2.15)
is then

CmV(t) = —9gL (V(t) - VL) — Jampa ext (V(t> - VE)SAMPA ext (t)
— Jamparec (V(t) - VE)SAMPA rec (t) - gf,ﬁm (V(t) - VEH) SNMDA(t)
- gGABA<V(t) - VI)SGABA (t) ) (324)

where ¢ and VEH are given by Eqs. (3.19). The symbols Siupaext; Sanmpa recs
Sumpa, and Sgapa, denote the total fraction of open channels for each type of
receptor. By appealing to the diffusion approximation, gating variables can be
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replaced with a sum of a deterministic tonic component and a fluctuation term

ext

S ampa cxt E Z AMPACXt Coxt (SAMPA ext T 0Sampa ext (t))
= Cloxt (TAMPAVeXt + 05 ampa ext (t)) ;

gAMPATEC - ~
AMIArec § W;§; =Cg (SAMPA rec + 0Sampa rec(t)) ~ CETauraVE s

NMDA Z w] sHMPA C(E (§NMDA + 6SNMDA(t)) ~ CEw(VE) )

CI

SGABA(t) = S?ABA =Cr (EGABA + 55GABA(t)) ~ CITeapalI -

j=1

As explicitly stated in these equations, fluctuations are assumed to be introduced
by external AMPA receptors only. The correlation function of these fluctuations is,
from the discussion following Eq. (3.17),

<5SAMPA ext (t) 08 anmpa ext (t/)> = VextTampa eXP(*\t - t/‘/TAMPA) .

Given that the deterministic components of the current are all linear in the
voltage, the dynamical equation (3.24) for the membrane potential can be rewritten
in terms of the effective parameters introduced above. The equation then reads

TV =VL =V + p+o\/Fun(t), (3.25)
where we have defined the renormalized time constant
7-m = m/gL ) (326)
gL =915,
S=1+ gzl (GAMPAext + GAMPAreC + GNMDA + GGABA) ;
with

_ — eff
G anpaext = Gampa ext Coxt TampaVext 5 Grvipa = gNMDACEd)(VE) )

G amparec = gampa recCETaMpAVE Geapa = gGABACIVITGABA .

The synaptic current is specified by the following parameters

1
Mn = E{(VE - VL) (GAMPA ext + G anpa rec)

(3.27)
+ (VEeff - VL)GNMDA + (VI - VL)GGABA} 5

— 2 ~
02 = eXtVethiMl’A ext (V - VE) TEMI’ATm/C?n ’ (328)
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The noise source 7(t) in Eq. (3.25)

(nt)) =0,
(NEONE)) = Tanspa €xXP(— [t = ']/ Taniea) -

From Eq. (3.26), the effective membrane time constant is lower than the bare
membrane time constant C,,/gr by a shunting factor S. This decrease in the
membrane time constant results from the increase in the overall conductance
caused by the different types of synaptic bombardment. In fact, measures on in
vivo preparations have shown that the effective leak conductance can be up to 5
times larger than the bare conductance gy, [69], and hence the effective membrane
time constant 7,, can be as short as 2ms. The mean current p corresponds to the
asymptotic value of the membrane potential in the absence of fluctuations and in
the absence of spiking [43].

To obtain the mean firing rate of a LIF cell whose potential is described by
Eq. (3.25) we follow the same procedure used in Section 3.1.5, with the caveat
that inputs have exponentially decaying correlations due to synaptic filtering. As
mentioned in section 3.3.1, such correlations introduce an effective threshold and
an effective reset potential [79]

0—0+A, Q[ Tampa 1
Homyn, hee A=og /= a_\/i‘c(i)"

Thus, the mean discharge rate of a cell is

a(p,o)

v=ao(p,o)= <Trp + \/771'7'/ﬁ exp(u®)[1 + erf(u)] du) , (3.29)

(p,0)

where

a(p,o)=(0+A -V, —p)/o,
Blp,o)=(H+A=V, —p)/o.

Note that in [43] only the effective threshold appeared. The discrepancy is due to
the slightly different assumptions made in [79] with respect to [42] regarding the
stationary probability density function of synaptic currents (see [79] for details).

3.3.6 Delay activity states

The network is able to sustain persistent activity states when recurrent inputs are
high enough, in a completely analogous way to the network with instantaneous
synapses. The population of excitatory cells breaks into three subpopulations,
depending on whether or not cells are selective and, if they are, on whether
or not the cells are activated by the stimulus. The set of nonlinear equations
characterizing the persistent activity state of the network are derived along the
lines shown in Section 3.2.2. The difference with respect to Egs. 3.15 is that now
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the mean and variance of the inputs should include the different contributions
from AMPA, NMDA, and GABA receptors.
It is convenient to introduce the following definitions

Text = (gAMPACXt/gL)CCXtTAMPA y K= (gNMDA/gL)CEw(VE) 5
Toripa = (gAMPA rec/gL)OETAMPA 5 Tr = (gGABA/gL)OITGABA 5
as well as

AVe=Vy -V, AVER = Vel — vy, AVi=Vi=Vg.

Using the same notation of Section 3.2.2, the populations are described by

1

Mslt = ? {AVE (TextVext + TAMPAnSlT) + AVEEHHJVSIT + AVITIVI} 5 (3303)
st
1

Msl| = S, {AVE (Textyext + Tampansl l) + AVvEe'lcf'k@]\/vsl LT AVYITIVI} 5 (330b)
sl
1

Hnsl = TI{AVE (TextVext + TAMPAnnsl) + A‘/Eff"fj\fnsl + AVITIVI} 5 (330C)

where we have defined

SSIT =1 + ToxtVext + Tanpanisi + K:NSIT +Trvy,
Ssll =14 TextVext + TAMPAnSIl + RNsli + Trvr 5
Snsl = 1+ TextVext + Tampafinst + £Nnsl + 1071,

and

nsit = fwivsy + f(p— Dw-va, + (1 — fp)w_rmy,

Natr = fwip(var) + f(p — Dw-_t(vay) + (1 = fplw_t(vms),

ne ) = fw_vt + f(wy 4+ (p— 2w_)vs, + (1 — fp)w_vmg

Nay = fw_tp(var) + f(wgy + (p — 2w_)p(va,) + (1 — fp)w_t (),
Nast = frar + f(0— Dvsy + (1 — fp)vng

Nust = fo(vsiq) + f(p = DY(vay) + (1 = fp)Y(vna) -

The mean firing rates of the different subpopulations are found from

Vsit = ¢(Hsi1,0) (3.31a)
sty = ¢(st1,0) (3.31b)
Vnsl = @ (fnsl; 0) (3.31c)

v = ¢(pr,0), (3.31d)

where ¢(u, o) is given by Eq. (3.29), and the mean and variance of the synaptic
inputs are given by Eqgs. (3.30) and (3.28), respectively. The stable solutions of
this self-consistency condition are the stable attractors of the structured network.



CHAPTER 4

Biophysically realistic models of
decision-making

In this chapter we summarize the attractor-based model for decision-making
first proposed by Wang in [191], and further extended in subsequent articles. We
describe in section 4.1 the first version of the model, which is essentially a particular
implementation of the network models introduced in the previous chapter. The
network model can account for some salient aspects of both behavioral and
neurophysiological data, which we enumerate in section 4.2. A two-variable rate
model that captures the main dynamical properties of the original network model
was introduced in [197] to provide a simpler and more manageable description of
the decision process. It is described in section 4.3.

4.1 Decision-making network

As explained in the introduction (Ch. 1), neurons in area LIP exhibit decision-
related activity during visual-saccadic perceptual tasks. These cells are innervated
mostly by neurons from area MT, which are known to encode the instantaneous
motion strength of the random-dot stimulus and provide, therefore, the sensory
evidence relevant for the perceptual decision. When averaged over trials, the activ-
ity of LIP neurons builds up gradually during the presentation of the stimulus at a
rate proportional to the fraction of dots moving coherently in the cell’s preferred
direction. The ramping activity observed in LIP cells has been hypothesized to be
the neural correlate of the “integration of evidence” provided by the activity of
MT cells [173, 164].

The idea that the activity of LIP reflects the accumulation of evidences necessary
for a perceptual decision task was specially appealing due to its resemblance with
sequential sampling models, a class of abstract models proposed to describe most
of the behavioral aspects of two-choice decision tasks, such as speed-accuracy
tradeoffs or reaction time distributions [123, 158]. The diffusion model [154] is
perhaps the most conspicuous version of sequential sampling models. According to
it, the moment-by-moment evidence provided by the sensory inputs is modeled as a

53
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one-dimensional stochastic variable that is integrated over time. The accumulated
signal plays the role of a decision variable, which quantifies the amount of evidence
for or against a particular choice. When the decision variable crosses one of
two predefined boundaries, a decision is considered to be made with choice
determined by the boundary being reached. The model is simple and tractable,
and fits surprisingly well not only behavioral data, including chronometric and
psychometric curves, but also neuronal data [173, 137, 156].

However, while the model describes the data, it does not explain it. The model
is heuristic and as such it does not address the possible cellular and synaptic
mechanisms underlying the observed dynamics in LIP. It is unclear, for example,
how a one-dimensional decision variable can arise from a high-dimensional and
highly nonlinear system like a network of cortical neurons. Also relevant is
the question about the neurobiological mechanisms underlying the non-leaky
integration of inputs inherent in the diffusion model. In order to elucidate the
biophysical mechanisms of the decision-related activity in LIP and its possible
relationship with the existing behavioral models, Wang proposed a biophysically
inspired network model for the visual discrimination task [191]. The observation
that LIP neurons exhibit, apart from decision-related activity, direction-selective
persistent activity during delay periods led Wang to investigate whether network
models of working memory could also perform the integration of stimuli and the
formation of categorical choices observed experimentally.

4.1.1 Architecture

Wang’s cortical model of LIP consists of a fully connected recurrent network of
integrate-and-fire neurons with realistic synaptic excitation, mediated by AMPA and
NMDA receptors, and inhibition, mediated by GABA, receptors (see the previous
two chapters for details). The network is structured in a set of statistically
homogeneous neural populations. In particular, the statistical properties of the
synaptic currents and the connection strengths are identical for all the cells
from the same population. There is one population of inhibitory cells and one
population of excitatory cells, which is partitioned into three subpopulations. Two
of these, A and B, represent the ensemble of LIP excitatory neurons selective to
either one of the two possible directions of motion —say, cells in A are selective
to leftward motion and cells in B are selective to rightward motion. The third
subpopulation includes the remaining nonselective cells. Recurrent connections
between cells from the same selective subpopulation A or B are potentiated by a
factor wy > 1 with respect to the baseline connectivity level, while connections
between cells from different selective subpopulations are weakened by a factor
0 < w_ < 1, related to wy (see Sec. 2.5.5). A schematic representation of the
network architecture is shown in Figure 4.1.

4.1.2 Stimulation and decision formation

Stimulation is modeled as the activation of external inputs to neurons in popula-
tions A and B, mimicking the motion-selective inputs provided by the projections
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Figure 4.1: Architecture of the decision-making net- A+AXN A—AX
work [191]. Two populations A and B of excitatory neurons
encode in their activity the two possible choices in the de- (r )
cision process. They are endowed with strong recurrent
connections (parametrized by w ), and inhibit each other
through shared feedback from the inhibitory population.
All cells receive nonselective background input, modeled
with independent Poisson spike trains of rate vo. When

recurrent connections are strong enough, the network op- Excitatory pool
erates as a winner-take-all. Stimulation is modeled as an - T l
increase, with respect to the background input vy, in the

rate of the Poisson spike train arriving to selective cells. Inhibitory pool

This selective increase is A + AX and A — A\ for neurons
in populations A and B, respectively. See text for details.

background noise

from area MT. Neurons in MT are tuned to a particular direction of visual motion,
and their firing rates are given by an approximately linear increasing (decreasing)
function of the coherence when the motion is in the preferred (null) direction of
the cell [33]. The selective inputs due to the random dot stimulus are modeled
accordingly [191], with greater imbalances for higher motion coherences.

The recurrent strength wy within selective populations plays an important
role in the decision-related capabilities of the network. When w, is large enough
the network can sustain, apart from the spontaneous activity state, a selective
state that persists after stimulus withdrawal. The two populations engage into a
competition for higher activity when stimulation is applied, increasing first their
activity together until at some point the recurrent inputs are strong enough and
the population rates start to diverge from each other (Fig. 4.2A). The network
decays then into a delay activity state in which the activity of either one of
the populations exceeds significantly the activity of the other —an asymmetric
state. The choice made by the network is then said to be A or B according to
the population firing at highest rate, i.e., according to the population winning
the competition. Based on the observation that the activity of LIP neurons is
correlated with the behavioral outcome, the activity of the two neural populations
is assumed to select the monkey’s planned motor response. That is, the possible
behavioral outcomes of the task are identified with the possible asymmetric states
of the model. To stress this correspondence, delay activity states are called in
this context decision states, while the spontaneously active state of the network
is called neutral, resting, or undecided state.

The temporal evolution of the system can be represented as a trajectory in
the phase plane of the rates of the two competing populations, (v4,vp). Before
stimulus onset the network is in the neutral state, with both populations firing
at low and approximately equal rates. Were it not for the noise present in the
system, the neutral state would be correspond to a single point in the lower left
region in the phase plane, around the diagonal. Any trajectory starting at the
vicinity of the fixed point would relax to it and stay there forever. Because of
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Figure 4.2: Decisions as stimulus-triggered transitions from the spontaneous (neutral) to
either one of the two selective (decision) states. A: Average rates in selective populations
as a function of time, for two different trials, one in which the network choses A (top)
and another in which it choses B (bottom). Between ¢ = 500 ms and ¢ = 3000 ms,
the selective input to both populations is increased by A = 20 Hz. B: Trajectories in
the phase-plane (va,vp) for the same two trials shown in A. Dashed line: separatrix
va = vp between the two basins of attraction. Due to the noise present in the system,
the outcome of this transition is random, with probability p that the final attractor is A
and probability 1 — p that the final attractor is B. Crimson dots represent the peaks of
the stationary distributions of rates associated with each attractor —hypothetically, the
location of the fixed points in the limit of vanishingly small noise.

the stochasticity present in the network through background and selective inputs,
attractors are not longer fixed points but rather distributions of neural activity
centered around the stable fixed points that would arise in the limit of an infinitely
large network. Incidentally, another consequence of the presence of noise is that
the system can escape spontaneously (without stimulation) from one attractor to
another. We will address this issue thoroughly in the next chapter.

The increase in selective inputs reconfigures the attractor landscape of the
network, destabilizing the neutral state and partitioning the phase plane into two
basins of attraction associated with the two decision states. When the selective
inputs to both populations are identical, the separatrix between the two basins
coincides with the diagonal ¥4 = vp. The system follows then a jagged trajectory
along the separatrix, until goes deep into one of the basins of attraction and
eventually decays to the corresponding attractor (Fig. 4.2B). Due to the symmetry
of the attractor landscape and of the initial configuration, the network chooses
randomly one of the two possible attractors with equal probability. When external
inputs are not identical the symmetry of the system is lost, and the basin of
attraction associated with the correct choice gets larger at the expense of the
other. This results in an increase of the probability of choosing correctly. The
larger the difference between the inputs to A and B is, the larger more decisions
will be biased toward the correct choice. We will make this claims more precise in
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Sec. 4.3, when we discuss the two-dimensional rate model of decision.

The model operates in this situation as a stochastic winner-take all [98]. All
trajectories converge to one or the other attractor depending on the initial condition
and on the realization of the noise. Trajectories starting in the region v4 > vp
are more likely to converge to the A-selective attractor due to the deterministic
drift of the dynamics, while trajectories starting in the region vp > v4 are likely
to converge for the same reason to the B-selective attractor. The probability of
falling into one or another attractor is closer to chance when the system is around
the separatrix between the two basins of attraction, where trajectories that start
very close together may have very different dynamical fates. In this region, the
system is very sensitive to initial conditions, and it is noise, not the deterministic
drift of attractor dynamics, which determines ultimately the successive states of
the system. In the limit of vanishing noise, there is no possible indeterminacy,
and the fate of any trajectory depends solely on its initial condition.

4.1.3 Winner-take-all behavior

In the model, the competition between the two neural groups arises from the
negative feedback of inhibitory neurons. Upon stimulation, the input to both
groups increases, causing selective cells to fire at higher rates. This activation
leads to an increase of the synaptic drive to inhibitory cells, which respond
discharging at a higher rate. As a result, excitatory cells receive more nonselective
inhibitory inputs, which tend to compensate the initial increase of excitatory
activity. When the amplitude of recurrent currents is large enough, stimulation
induces a symmetry breaking mechanism that forces the system to undergo a
transition from the neutral state to one of the two decision states.

In a decision state, the cells from the winning population receive suprathreshold
currents due to the increase of recurrent excitatory currents. In contrast, cells
from the losing population receive less recurrent excitatory currents because they
fire at lower rates and because the connections they receive from activated cells are
weak. This diminished excitatory drive cannot compensate the strong inhibitory
feedback caused by the activation of the winning population. As a result, the input
feeding non-activated selective cells is effectively subthreshold, and cells fire at low
rates [43]. It is important to remark that for this state to be stable it is necessary
that feedback inhibition acts sufficiently fast, otherwise oscillatory solutions may
appear [75, 51, 44]. This is actually the case in the model, as GABA ,-mediated
inhibitory currents have a synaptic time scale one order of magnitude shorter
than that of NMDA receptors.

4.2 Agreement with experimental data

The decision model by Wang reproduces some prominent features of the behavioral
and neurophysiological data obtained during visual-saccadic decision tasks. First,
the model is capable of forming a categorical choice. The elevated activity of the
winning neural population reaches a stereotypical level that is independent of the
stimulus, and that persists after the removal of it, in accordance with the delay
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activity patterns observed in LIP neurons during delayed-response versions of the
random dot task [164]. These properties stem naturally from the multistability
between discrete attractors of the network, and are consistent with the view
that the categorical representation of the choice is independent of the details of
the inputs used in the deliberation. Second, the trial-averaged activity of the
neurons selective for the correct saccadic target grows at a rate proportional to
the coherence of the stimulus.

Another virtue of the attractor model is that replicates the violation of time
shift invariance [196]. If LIP neurons are truly integrating —in the mathematical
sense— the inputs provided by MT, the effect of a brief perturbation in the
random dot stimulus should be independent of the time at which this perturbation
is applied. To test this hypothesis, Huk and Shadlen analyzed the effect that
such brief perturbation had on behavioral and neuronal responses [107]. The
perturbation consisted in the presentation with some variable delay of a brief pulse
of coherent motion superimposed on the random dot stimulus. The direction of
motion of the brief pulse could be either the same or the opposite to the coherent
motion of the random dots. Although the subject was instructed to attend the
random dot stimulus and ignore the brief pulse, both the response of LIP neurons
and the behavioral performances were significantly modulated by the sign of the
pulse. Moreover, the impact of the pulse was larger when its onset time was
earlier, a clear violation of the time shift invariance and completely opposite to
what a leaky integrator model would predict [196].

On the behavioral side, the model replicates some of the most prominent
features of the performances and reaction times observed experimentally. First,
the psychometric functions derived from the model agree with those obtained
experimentally, with similar parameters. The psychometric function is defined as
the fraction p of correct trials as a function of the coherence, and is usually fit
with a Weibull function

p(c) =1 —0.5exp(—[c'/a]?), (4.1)

where ¢’ is the coherence, « is the coherence threshold, defined as the value for ¢/
for which the fraction of correct trials is 82%, and § is related with the slope of
the psychometric curve at zero coherence. With the set of parameters for spiking
network model used in [197], the coherence threshold is a = 8.4% and the slope,
3 = 1.6. These values are comparable to the experimental ones o = 7.4% and
8 =1.25 [164].

Second, the coherence threshold decreases with the duration of the stimulus
presentation in a similar way to that observed in experiments [33], with coherence
thresholds around 50% for stimuli 250 ms long to coherence thresholds lower than
10% for stimuli 2 s long [191]. Third, decision times are decreasing functions of
the coherence. This observation is compatible with the integration of sensory
evidence that hypothetically LIP neurons perform during the deliberation, before
the decision is made. Higher coherences lead, according to this hypothesis, to
steeper ramping activities, and therefore to faster accumulation of evidences that
result in shorter decision times. The model also reproduces the experimental
observation that decisions are slower in incorrect trials than in correct trials [164].
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Figure 4.3: A: Two competing neural units are selective for leftward (A) and rightward
(B) direction. Self coupling is strong and excitatory (arrows), while cross coupling
is inhibitory (circleheaded arrows). The external inputs consist of motion-selective
signals from area MT, Iur,i, and nonselective background input Ip; (i = A, B). B: The
motion-selective inputs from MT are linearly increasing (decreasing) functions of the
motion coherence when motion is in the preferred (null) direction of the cell.

This is a nontrivial feature of the attractor model that the simplest diffusion
model fails to replicate, unless some trial-to-trial variability is introduced in the
drift term of the model [157].

4.3 Two-variable rate model of decision

To understand better the dynamics of the original decision network, the authors
of [197] derived from the network model a two-variable neural model using semian-
alytical arguments. The reduced model captures the main features of the original
spiking neural network model, and is more amenable to analysis than the mean
field approximation of the spiking network. Although the contents of this section
lie somewhat outside the main line of discussion, we have decided to include them
because the reduced model provides a simple yet rigorous picture of many aspects
of the dynamics of models we will encounter in the next chapters.

The reduction consists in three steps. First, since nonselective neurons fire
at constant and low rates under a wide range of parameter conditions, their
dynamics can be safely ignored. Second, the transfer function of inhibitory
neurons is assumed to be linear, which spare us the self-consistency condition for
the inhibitory population, simplifying therefore the equations. And third, the
evolution of the system is governed by the slow dynamics of NMDA gating variables,
which are the dynamical variables with the longest effective time constant. We
refer to the original article for the details of the derivation.

Two competing neural populations, i = A, B are selective for leftward (A) and
rightward (B) direction of motion 4.3. The firing rate of the neural population ¢
receiving synaptic input I; obeys the following current-frequency relation [1]

T
where r;=al; —b.

Vi:f(xi):m’
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Parameters a, b, and c are fitted to the Ricciardi formula for first-passage time of
a LIF neuron receiving noisy input, Eq. (3.12). Their values are a = 270 Hz/nA,
b =108 Hz, and d = 0.145 s. Given that in the original network model recurrent
excitation is mostly mediated by NMDA receptors, synaptic drive is approximated
to be given by the total NMDA gating variable S;. The total synaptic current to
each neural population is then

In=w(JySa—J_SB) + Lur,a + 1o, (4.2a)
Ip =w(JySp — J-Sa) + Luyr + 1o, (4.2b)

where w = 1 is a scale parameter of recurrent coupling, and J; = 0.3725 nA
and J_ = 0.1137 nA are the self- and cross-coupling strengths, respectively. The
inputs Iy ; represent the signal carried by the projections from area MT, and are
modeled as linear functions of the coherence

Cl

Lo = ho(1 fopor) i = A B, (4.3)
where I,; = 0.0292 nA is the overall motion input, f = 0.45, and ¢ is the
coherence of the motion stimulus. The sign 4+ or — refers to the neural population
for which the motion stimulus is in the preferred or null direction, respectively.
The input Iy = 0.3297 nA is a tonic background input. The response of NMDA
gating variables to inputs is described by

Si = =Si/Twowa + (1= S)vf (L), i=A,B, (4.4)

where v = 0.641 and Typya = 60 ms is the time constant of NMDA receptors. Note
that the gating variables S; are the truly dynamical variables, from which the
rates are computed via the transduction function f, v; = f(]l-(SA, SB)).

The system (4.4) of 2-coupled ‘rate’ equations can be analyzed using the
standard tools from nonlinear dynamics theory. In particular, since the system
is two-dimensional, a phase-plane analysis can be carried out [180]. Let us first
determine the nullclines of the two-dimensional system. The S 4-nullcline is the
curve Sy = Ga(Sa,Sp) = 0. It partitions the phase plane (S4,Sg) into two
regions where the dynamical variable S4 moves in opposite directions. The Sp-
nullcline is defined analogously. The intersections of the S4 and Sp nullclines are
the fixed points of the system which can be either stable or unstable depending
on how the nullclines intersect with each other. The nullclines and fixed points of
the rates v4 and vg are qualitatively similar to the nullclines and fixed points of
the gate variables S4 and Sg*

IThe nullclines for v4 and vp are obtained from those for S5 and Sp applying the chain

rule .
()= ("5 pihy) Gy Tm) (52) 2o 8

The first square matrix is nonsingular because f(I) is a monotonically increasing function. The
second matrix is also nonsingular with the given values of the coupling strengths. Therefore,
the equality (*) holds only if (S’A, SB) = (0,0). That is, the v4- and vp-nullclines consist of
a coordinate-dependent scaling (first matrix in Eq. (*)) times and a coordinate-independent
scaling (second matrix) of the S4- and Sp-nullclines.
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Figure 4.4: Reconfiguration of the phase portrait by the external input. The red and
green curves are the nullclines Sa=0and S =0, respectively. Filled circles are stable
fixed points, and empty circles, unstable fixed points. The area shaded in gray is the
basin of attraction of the symmetric stable fixed point, with separatrices marked with
dashed curves. The recurrent coupling parameter is w = 0.4.

The ‘landscape’ of fixed points of the system, or phase portrait, depends most
crucially on two parameters: the common input I, and the recurrent coupling
w. For low inputs and low recurrent coupling, the system has one single stable
fixed point, characterized by equal and low firing rates in both neural groups
(Fig. 4.4a). This fixed point is refered to as low-activity symmetric state, and is
the equivalent to the neutral, or spontaneously active, state of the spiking neural
network model. If recurrent coupling is sufficiently strong, an increase in the
external input gives rise to a pair of stable fixed points that lie off the diagonal in
the phase plane, i.e., with rates v4 and vy differing considerably from each other
(Fig. 4.4b). Accordingly, these two states are called asymmetric states, and are
associated with the two possible categorical choices.

The appearence of the pair of asymmetric states reduces the basin of attraction
of the low-activity symmetric state. This basin shrinks further when inputs
increase, until it eventually disappears due to the loss of stability of the symmetric
fixed point, which becomes a saddle (Fig. 4.4c). In this range, the network exhibits
bistability between the two asymmetric fixed points, and acts as a winner-take
all. This is not surprising, as it is known that systems with fast cross-inhibition,
described by equations of the form 7; = F(r;, I, ki r;j), where F' is an increasing
function of its second argument and a decreasing function of its third argument,
can generate winner-take-all behavior [76]. A high-activity symmetric state will
appear if the inputs are increased beyond the winner-take-all regime (Fig. 4.4d).
In this case, external inputs counteract the effect of mutual inhibition between
both neural groups and the network can sustain a non-decision state, which will
necessarily be a high-activity state due to the strong excitatory drive fed by
external inputs. The high-activity symmetric state is the rate analogous to the
2-memory state described in 3.2.2.

The phase portrait depends also on the recurrent coupling. For low recurrent
excitation, the network cannot sustain asymmetric states and hence no decisions
can be made. In that case the activity of the symmetric fixed point grows smoothly
and monotonically with the input feeding the network (Fig. 4.5a). When recurrent
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Figure 4.5: Dependence of the activity of the two neural populations on the overall
external input, for 4 different values of the recurrent coupling (increasing from left to
right, w = 0.1, 0.23, 0.3, 0.5). Thin solid curves represent the rate of the symmetric
states, in which v4 = vp. Thick solid curves represent the rates of selective (asymmetric)
states, in which one population fires at high rate and the other fires at low rate.

coupling is increased beyond some threshold value, a new pair of stable fixed
points appear through a supercritical pitchfork bifurcation as the input increases
(Fig. 4.5b). If the recurrent coupling is increased even further, the two asymmetric
fixed points appear instead through a pair of saddle-node bifurcations as the
input is varied (Fig. 4.5¢,d). The unstable branches emerging from the pair
of saddle-node bifurcations, together with the stable branch of the symmetric
state, coalesce as the input increases into a symmetric unstable branch, through a
subcritical pitchfork bifurcation. There is therefore a range of inputs where the
symmetric state coexists with the asymmetric states, within which the system
can subserve working-memory (hysteresis). In that range, a transient input can
push the system to the winner-take-all region of the bifurcation diagram, forcing
the system to decay to either of the two asymmetric states. After the transient
fades away, the system stays in the asymmetric state —the choice is ‘maintained
internally in working memory’ [197]. This picture remains essentially unchanged
when all the set of mean field equations is taken into account (i.e., when no
approximations are made).



CHAPTER 5

Fluctuation-driven mechanism for
decision

The model by Wang presented in the previous chapter was the first attempt to
describe, using a large-scale cortical network model, the decision-related neuronal
activity at LIP. In their subsequent articles, Wang and co-workers reduced the
model and provided a dynamical description of the neuronal activity in LiP. In all
cases, stimulation is supposed sufficiently strong to set the system in a winner-
take-all regime, where the neutral state is no longer a stable state of the network.
In this chapter we explore a different mechanism by which the system can undergo
a transition to a decision state, based on a noise-driven escape from the basin of
attraction of the neutral network state.

5.1 Noise-driven transitions between network states

In the decision network models seen in the previous chapter, the application of
the stimulus reconfigures the phase space so that the spontaneous state, initially a
stable fixed point, becomes unstable (a saddle, in the two-dimensional description).
As a result, the system decays to one of the two decision states. The noise present
in the network perturbs the trajectory of the system during the decay, but it is
not essential for the system to undergo the transition. Thus, if it were possible to
eliminate noise completely, the system would follow a deterministic trajectory that
would end in the asymmetric fixed point associated with the basin of attraction in
which the initial condition happened to lie. In other words, the system is driven
mostly by the deterministic component of the dynamics [197] —the transition is
mean-driven.

A different transition mechanism arises when the stimulus strength is below
the critical value at which the spontaneous state becomes unstable. In that case,
transitions from the spontaneous to a decision state are possible by virtue of
the fluctuations present in the system. While the deterministic component of
the dynamics tends to keep the system in the locally stable spontaneous state,
fluctuations tend to ‘liberate’ the system by driving it out of the associated
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basin of attraction. Once the system escapes from the basin of attraction of the
spontaneous state, the deterministic part of the dynamics takes over and the
system eventually decays to a decision state. Transitions are thus fluctuation-
driven. If noise were completely eliminated from the system, the transitions from
the spontaneous to the decision states would cease, and the system would stay
in the spontaneous state indefinitely. Since a complete suppression of the noise
present in the system cannot be done in practice, we expect that fluctuation-driven
transitions play a primary role when the spontaneous state is a metastable state
of the network. As we will see, this is the situation that arises when the external
inputs are low.!

Many important processes in science involve the noise-driven escape of a system
from a potential trap. The problem has been studied for more than one century
in many different disciplines, giving rise to various theories of noise-activated
escape (for a review see, e.g., [95]). These theories aim to provide answers to the
typical problems arising in stochastic systems with multiple stable states, such as
determining the mean time needed for a bistable system to switch from one state
to another, or specifying the dynamics of relaxation from an unstable state, to
mention just a few. In this chapter we will be concerned with the consequences
on behavioral measures of noise-induced transitions in attractor-based decision
models. Before we go into the network models, we illustrate the problem of
noise-induced transitions as it was first posed in the physics literature.

5.2 Kramers’' escape problem

The problem of escape from metastable states dates back to the 1880s, when Van’t
Hoff and Arrhenius found that the dissociation rates k of various electrolytes
follow

k = Aexp(—pAU), (5.1)

where A is a constant, 3 = (kgT)~! is the inverse temperature, with kg being the
Boltzmann constant, and AU is the activation energy, the energy necessary for
the reactants to dissociate. Relation (5.1) is known today as Van’t Hoff-Arrhenius
law [188, 19], and states that the dissociation rate is exponentially suppressed by
the ratio of the activation energy to the amplitude of the thermal fluctuations. It
was soon realized that many different systems involving metastable states could
be well described by such law, giving birth to the discipline known as reaction
rate theory [see, e.g., 192, 95].

Hncidentally, the distinction between mean- and fluctuation-driven regimes for decision is
equivalent, yet in a completely different context, to the distinction between sub- and suprathresh-
old regimes of the integrate-and-fire neuron described in Section 3.1.5. The membrane voltage
has a single fixed point given by the mean current V = p (see Eq. (3.4), and Figures 3.2A-B).
For subthreshold currents, p < 6, the fixed point V' = p is a metastable state and the membrane
potential reaches the threshold by means of the fluctuations in the current. This is reflected
in the high variability of the 1s1, with coefficients of variation close to one. As the mean input
increases, the deterministic component of the dynamics takes over, the firing becomes more
regular, and the cv of the 1s1 decreases. As we will see, decision-making models exhibit an
analogous dependence on mean inputs.
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Figure 5.1: Energy potential near a metastable state. The
system is initially caught in a potential well a, from which
can escape by surmounting the energy barrier AU. The point
c represents an arbitrary point of no-return: the particle can
cross it in one direction but not in the other.

Kramers proposed studying the escape problem as a diffusive process in a
potential [114]. A sketch of his derivation is the following. Consider an over-
damped Brownian particle moving in a free energy potential with two minima
a, and d, as illustrated in Fig. 5.1. By overdamped we mean that the inertia of
the particle, given by ma in the Newton equation, is negligible compared to the
friction term bz, so that the velocity may be taken proportional to the force

o dU(x)
flz) = e =mi + bi =~ bi.

Equivalently, © = uf(x), where u = 1/b is the mobility of the particle. The
Brownian motion of the particle is specified by the diffusion constant D, given by
the Einstein relation
AX)?
D= fim (AX)7)

At—0 2At ’

and is related to the temperature and the friction through D = kT /b = ukgT.
The free energy at d is so low that it can be effectively regarded as an abyss, or
absorbing well.

The particle, initially at a, wanders around the minimum a due to thermal
fluctuations of size D. If these fluctuations are small compared to the activation
energy AU = U(b) — U(a), the particle will spend most of its time in the vicinity
of a, until the particle eventually jumps over the energy barrier and decays to the
minimum at d. For convenience, we introduce a point of no-return ¢ somewhere
between the potential hill at b and the global minimum at d. The particle can
cross ¢ when it decays to the minimum d, but it cannot climb back from d to
b because the energy barrier is unsurmountable. This is rigorously true only if
U(b) — U(d) = oo, but we expect that whenever U(b) — U(d) > U(b) — U(a)
transitions from d to a are extremely more rare than transitions from a to d. The
escape problem consists of determining the rate of escape events in terms of the
parameters of the system.

Kramers formulated the escape problem in terms of the Fokker-Planck equation.
The probability density for the position x of the particle obeys

2

O Pa.t) = - (U'(2)P(a. 1)) + Dy Pla 1) (5.2

We assume that the particle is lost when it reaches point c¢. As we saw in
Section 3.1.4, the Fokker-Planck equation can be regarded as a continuity equation
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for the probability current, which in this particular case reads

J(x,t) = —pU' () P(z,t) — D%P(x,t)

_ Dew (_MUl()x)) C% {exp(”(]g)) P(x,t)} (5.3)

= —Dexp (— ZE(:?) aaz{exp(z;?)lj(x,t)} )

where in the last equation we have used pkpT = D. This current cannot be
zero, as the particle eventually escapes from the potential trap. We make two
further assumptions: that the current is stationary and homogeneous, namely,
independent of ¢ and x. That the current is stationary is justified by the smallness
of the current itself, which does not produce appreciable changes in the probability
distribution within the typical time scales of the problem. Multiplying both sides
of (5.3) with exp(U(x)/kpT) and integrating from a to ¢ we obtain

ess (L) ey [ oL

where we have used the fact that the point ¢ is an absorbing barrier, and therefore
that P(c,t) = 0. The escape rate is obtained dividing the probability current J
by the probability p that the particle is in the vicinity of a. We estimate p by
assuming that the probability density around a is approximately given by the
stationary distribution

P(x,t) ~ P(a,t) exp (-W) .

kT

This probability is now integrated in the vicinity of a, between some arbitrary,
but irrelevant, limits a; < @ and a < a; < b

p= / Pa,t)dz = Pla,t) exp<[$> / exp (— gg) dz.

The inverse of the escape rate, called the mean escape time, reads then

- a Ulz)
1 — — —
B =Tome = D/ (kBT>dx /al eXp( kBT>dx

These integrals can be approximated by a simple expression using the so-called
“parabolic approximation”. The factor eXp(U (x)/k BT) in the first integral is large
when z is in the vicinity of b, and is exponentially smaller otherwise. Likewise,
the factor exp(fU(x)/k‘BT) in the second integral is large when z is around a,
and exponentially smaller otherwise. We thus have

x a "(a)(x — a)?
oL L0 (LD
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Extending the limits of integration to (—o0,00) and evaluating the Gaussian
integrals we finally get

1 2T ( AU)
Tooe=— exp .
pA/U" (a)|U"(b)] kgT

Note that the escape time only depends on the energy gap and the curvature of the
potential at the extrema a and b. The precise form of the potential is, therefore,
irrelevant. Another interesting feature is that a new time scale is introduced
by the exponential dependence on the height of the energy barrier, in units of
the amplitude of noise. The times of escape can therefore be much longer than
the natural time scales of the system. In other words, escape events are rare
events, as they will only take place in the improbable case that a large fluctuation
occurs. The derivation followed here has been somewhat handwaving. A more
elegant derivation of the Kramers’ escape rate can be done using the theory of
first-passage times [187, 84]. It should be said, though, that there is no analytical
solution for the problem, and one has always to rely on approximations to gain
insight.

5.3 Noise-induced transitions in a decision network

A semianalytical treatment of the escape problem in the decision-making network
model is impossible for two reasons. First and foremost, the system does not
have an energy function and hence the sole idea of an energy barrier with a
well-defined height is devoid of meaning. And second, even if the system had an
energy function, we should face the problem of a noise-induced escape in a high-
dimensional system. Although, there exist approximate solutions to the Kramers’
escape rate problem for systems with more than one dimensions [118, 119, 129, 171],
these generalizations always assume that such systems admit a potential energy,
from which the equilibrium distribution can be easily derived and the escape rates
can be readily estimated (see, e.g., [84], p. 363). In general, though, the dynamics
of high-dimensional systems cannot be derived from a potential, and they should
be studied either numerically or making additional approximations. The decision
network is not an exception.

5.3.1 Effective reduction of dimensions at bifurcations

The description of the high-dimensional system can be simplified under some
circumstances. All the networks models for decision discussed so far were, in
essence, winner-take-all networks sharing the same bifurcation structure: when
stimulation is applied, the system undergoes a bifurcation through which the
neutral state becomes unstable, leaving decision states as the only stable states
of the system. According to these models, stimulation should not be too strong,
i.e., should not be much higher than the critical value at which this bifurcation
occurs, as otherwise the network would settle in a 2-memory state (high-activity
symmetric state, in the reduced model) and, therefore, no categorical choice would
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be formed. Stimulation should not be too weak either, because in that case
the neutral state would be too stable for the system to leave it, preventing the
formation of a choice. The relevant dynamics for decision occur thus near the
bifurcation point where the neutral state loses stability.

Interestingly, close to bifurcation points the dynamics of the system are confined
on a low dimensional subset on the phase space, called the center manifold (see,
e.g., [56, 193], and Ch. 7), where trajectories exhibit a so-called critical slowing
down, evolving much more slowly than usual. The slow manifold is tangent to the
center subspace of the critical fixed point, which is the linear space spanned by
the generalized eigenvectors of the linearized system that have eigenvalues of zero
real part?. Because the characteristic time scales of the different modes are given
by the inverse of the real part of their associated eigenvalue, the evolution of the
critical system is fast everywhere except along the center manifold. Moreover, the
center manifold is invariant, so that all trajectories starting in the manifold stay in
the manifold. The system is thus effectively decoupled from the rest of the phase
space, and the dimension of the relevant dynamics, reduced to the dimension of
the center space.

It is typically the case that the center manifold at a bifurcation point has
dimension one. For example, in all the decision models based on winner-take-
all networks described so far, the neutral state destabilizes through a pitchfork
bifurcation. Since the center subspace at a bifurcation point of this type has
dimension one, we can describe the system near the bifurcation point using a
one-dimensional dynamical equation, with some additive noise sources if the
original system was stochastic. In such cases, an energy function can be trivially
defined, and one can directly apply the well-known results of first-passage times
theory in one-dimensional systems to obtain the mean escape time in terms of
the parameters of the original model. This was actually done in [165]|, where the
authors applied this reduction to describe the dynamics of several winner-take-all
models in terms of simpler, one-dimensional nonlinear diffusion equations, with
coeflicients determined by the parameters of the original model. They showed that
the dynamics near the bifurcation point could be captured by the noise-driven
motion in a quartic potential,

+ L(t), (5.4)
where
B(z) = ax + px? £ 2

and where L(t) is a noise source obeying (L(t)) = 0 and (L(t)L(t')) = o25(t — t').
Although the coefficients «, i, and o depend in general on the parameters of each

2Given a dynamical system ¢ = V(z, 1), z € R", u € R with fixed point at (z, ) = (0,0),
i.e., V(0,0) = 0, the linearized system is the Taylor expansion of the dynamical system to first
(linear) order in the dependent variable: & = D;V (0, 0)z, where D,V (0,0) is a n-dimensional
matrix with elements D3V (0,0)|;; = 9V;/0x;(0,0). The center subspace is E¢ = span{v | v €
E) and Re\ = 0}, where E) denotes the subspace spanned by the generalized eigenvectors
with eigenvalue A (see, e.g., [101] for details).
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Figure 5.2: Tllustration of the three possible one-dimensional decision landscapes for a
generic winner-take-all network with symmetric inputs. For low recurrent excitation,
the system has only one stable state, that associated with the spontaneous activity state
of the network (left, one local minimum). When recurrent excitation is sufficiently high,
the large positive feedback in the system allows the network to sustain two more stable
states, associated with the two possible outcomes of the decision. For values of the
external input lower than a certain critical value I. the spontaneous state coexists with
these two decision states (center, three local minima). For values of the external input
higher than I, the spontaneous state is unstable (right, two local minima).

particular model, they show a universal dependence on the critical parameters.
The coefficient « of the linear term is in all cases proportional to the imbalance
in the inputs received by the competing populations, i.e., « « I4 — Ig, whereas
the coefficient of the quadratic term is proportional to the distance to criticality,
woc I —1I., where I = (I4+ Ig)/2. This parameter determines the stability of the
neutral state (Fig. 5.3.1). With the explicit form for equation (5.4), the authors
could derive analytical expressions for the reaction times and the performances
in terms of the parameters of the original models, including the external inputs.
They also showed that both the mean decision time and the performance are
nonincreasing functions of u ~ (I — I..).

Although the center manifold reduction is strictly valid only at bifurcation
points, one often sees a good agreement between the reduced and the original high-
dimensional system far beyond the bifurcation occurs. In addition, the reduction
also reveals the fundamental bifurcation structure of a dynamical system near
the bifurcation point, and hence provides the essential information about the
qualitative structure of the trajectories in the phase space. Another virtue of
the method is its generality, since it can be applied to any imaginable dynamical
system of any dimension. In Chapter 7 we will illustrate the reduction for a very
simple model of detection.

Unfortunately, a derivation of the nonlinear diffusion equation (5.4) from the
original decision network by Wang ([191]) is extremely cumbersome, and one has
to rely on numerical simulations to analyze the effects of the inputs on behavioral
measures. Our goal in the following sections is to address the plausibility of noise-
driven mechanisms of decision in explaining behavioral and neurophysiological
data. We will start analyzing the original network model by Wang with realistic
synaptic currents. The analysis consists, first, in locating the regions of the
parameter space susceptible to accommodate noise-induced transitions relevant for
decision. Once the regions of multistability between the neutral and the decision
states are identified, we run numerical simulations of the full network using the
parameters selected. Decision times and performances are then estimated from
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a large sample of simulated trials. To assess the generality of the noise-driven
mechanism, we use in Section 5.6.2 a network which differs from the original in
that the connectivity is sparse and synapses are instantaneous [8, 7].

5.4 Mean field analysis

In order to identify the attractors accessible to the network and to study their
stability as a function of the parameters of the model, we use the mean field
approximation derived in [43] (see Chapter 3 for a detailed description).

5.4.1 Existence and stability of network states

The mean field approximation gives rise to a set of n nonlinear equations describing
the mean rate of the different populations

Vl:¢l(yla~-~ayn)7 (55)

where [ = 1,...,n labels the different neural populations, and where ¢, is the
transduction function of population I, which gives the output firing rate of pop-
ulation [ in terms of the inputs, see also Eqgs. (3.29) and (3.31). These inputs
depend in turn on the rates of all the populations. The system of equations (5.5)
is just the self-consistency condition that neurons in every population produce
an output that is compatible with their inputs. To solve the system (5.5), we
integrate numerically the set of differential equations

v=—-v+o(va,...,vn), l=1,...,n, (5.6)
which have the same fixed point solutions as equations (5.5). This set of differential
equations is sometimes referred to as the fake-dynamics of the system, to make
clear that it is not meant to describe the real time course of the population rates.

The set of all possible fixed-points that coexist for a given parameter setting
is found integrating equations (5.6) with different initial conditions [43]. To
find the spontaneous activity solution, we use an initial condition of the type
Usi+ = Vsl = Vnst ~ 1 Hz, and check that the trajectory converges to a fixed point
with spontaneous-like activity. Likewise, selective activity solutions were found
using an initial condition vg 1 > v = pg ~ 1 Hz, and checking whether the
trajectory ended up in a selective fixed-point. We also check for the existence of
2-memory states, using initial conditions of the form vg = vg | > v ~ 1 Hz
(note that, since the network has only two populations of selective neurons, we
expect to find at most 2-memory states, see p. 44).

The different stable fixed points of Egs. (5.6) are the stationary population
rates of the network. They are thus the mean rates characterizing the different
attractors the network is able to sustain for a given choice of parameters. In
the following we will be concerned with the concept of metastability of network
states and the relative size of their basins of attraction, for which we need more
information than just the fixed points of the system. This motivates the need for
a phase plane description involving the rates of the two competing populations.
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5.4.2 Effective population response

The total number of neural populations in the decision network is four, and
therefore the fixed points characterizing the neural rates are 4-tuples of positive
real numbers, v = (vq,...,14) € Ri. Although much lower than the dimension of
the original network model, the mean field approximation involves still too many
variables to get some intuition about the qualitative dynamics of the network. One
possibility is to use the reduction derived in [197] and presented in the previous
chapter, which makes use of some simplifying assumptions. Another possibility
is to derive numerically the effective population response of the two competing
populations, using the method presented in [127]. This method does not rely on
any other approximation than those assumed in the mean field approximation,
and is the one we use here to obtain the nullclines of the system as well as the
effective flow representation. As we will see, the results are qualitatively similar
to those given by the reduced model of Wong & Wang (see Sec.4.3).

The basic idea is to consider [ of the n population rate variables as parameters;
while keeping these [ parameters fixed, we find the stationary points of the
remaining n — [ rate variables by using Egs. (5.6). That is, we allow the system
to adapt to the stationary state induced by the [ frozen variables.

Nullclines The nullclines shown in Fig. 5.3 are calculated by quenching one of
the rates associated with either of the two selective populations. For example, the
nullcline 5 = 0 is obtained by taking v; = U as a parameter of the system and
calculating, for every value of this parameter, the solutions of

Vo = ¢2(,U/2(17»V27'"7Vn)702(1771/2a"'71/n))7

(5.7)
Vp = (b’n(:u’n(l;7y27 .. '71/’n)70-’n(ljvy27 .. '71/71))'

The values (vq, ..., v,) that satisfy Eqgs. (5.7) are the fixed-points of the (n — 1)-
dimensional map defined by the equations. Note that for a given value of the
parameter  there may exist different fixed-points due to the nonlinearity of the
transfer functions ¢. The nullcline 5 = 0 is then obtained by plotting the values
of 15 that one gets after solving (5.7), against the value of v; = p, for all the values
of 7 in the range considered. The nullcline ; = 0 is obtained in a completely
analogous way, taking v as quenched variable.

Flow The rate-flow diagrams were plot following the same principle. We covered

a part of the v4-v5 plane with a grid. At each point (71, 73) of this grid we solved
the (n — 2)-dimensional fixed-point equation:

V3 = ¢3(M3(Dla1727’//)70-3(9175271//))’

Up = (bn(/ln(ﬁh17271//)70-71(171752”//))'
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where v/ = (v3,...,1,) is the rate vector formed by the dynamical (not quenched)
variables. For fixed rates v and v, therefore, the solutions of (5.8) are the
stationary points of the remaining populations induced by the rates quenched at
v1 = 1 and vy = U and by the full feedback among all the other populations.
The solution depends on 7; and s, i.e., v’ = v/'(71,72). The currents afferent to
neurons in populations 1 and 2 tend to drive them to new rates vy oyt and v gut
that are in general different from the quenched values 7, and oy:

Vlout = ¢1 (/ll [171, vy, V' (1, 172)],01 [171, g, V' (1, 172)]),
V2.out = $2 (MQ [1717 vy, V' (11, 92)],02 [1717 o, V' (1, DQ)])-

The rate-flow diagram was obtained by drawing at each point of the grid an arrow
from the point (v1,12) to (¥1,0ut, V2,0ut). For clarity we represented every arrow
with a length given by log(1 + m/2), where m is the original length of the arrow,
and excluded arrows whose modules were larger than 8.0.

5.4.3 Multistability between neutral and decision states

As in the reduced model, there are essentially two classes of network states:
symmetric and asymmetric. The symmetric states include the spontaneously
active state as well as the 2-memory state arising at high inputs. The asymmetric
states encompass the two 1-memory (selective) states A and B associated with
the categorical choices (see Sec. 4.1). When the inputs to both populations is
identical, the system is completely symmetric with respect to the transformation
A = B, and the decision states always appear and disappear in pairs as we vary
the parameters.

Figure 5.3 shows the regions where the different states are found according to
the mean field approximation in the space of the specific input A and the recurrent
excitation wy. Note that the conditions for existence and stability of the neutral
and decision states are qualitatively the same as in Wong & Wang’s model [197],
where some additional approximations were made to reduce the system to two
dimensions. We want to delimit the region of parameter space (X, w) where the
network shows tristability among the spontaneous and the two decision states. We
will later confirm with numerical simulations that the network of spiking neurons
shows tristability in approximately the same region.

Note that there are no decision states when recurrent excitation is too low, no
matter how strong the input is (see the S strip on the left of the phase diagram,
and the phase portrait at lower left). The network lacks in this case the minimal
degree of structure to sustain decision states. Figure 5.3 also shows that the
minimal amount of recurrent excitation needed to have decision states depends
nonmonotonically on the input, as a consequence of the greater recruitment of
shared inhibitory feedback for higher input strengths [43]. Importantly, there are
regions of tristability (labeled S, A, B in the phase diagram), where the two decision
states coexist with the either the neutral state or with the 2-mixed state. Note
also that, although we distinguish between two different (unconnected) regions of
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Figure 5.3: Central panel: Phase diagram of the system as given by the mean field
approximation, for balanced inputs (AX = 0). In each region of the diagram, the presence
of the different stable states is indicated by initials S (spontaneous and high-activity
symmetric state), A (A-selective state), and B (B-selective state). In regions labeled
with S, A, B all three states are simultaneously stable. Boundaries between regions
correspond to bifurcation points at which either the symmetric state or the asymmetric
states disappear (blue and black thick curves, respectively). Lateral panels show the
fixed points, the flows, and the nullclines of the effective 2-dimensional reduction of the
system (see Sec. 5.4.2), for different representative points in the phase space. Filled and
empty circles denote the stable and unstable fixed points of the reduced system. Red
and green curves are the nullclines 273 = 0 (vertical flow) and v, = 0 (horizontal flow),
respectively.

tristability in the phase diagram, they actually are portions of a connected region,
as one would see if negative values for \ were included in the phase diagram. The
stable symmetric states found at high enough A and w (rightmost S, A, B region
in the phase diagram; see also the upper right figure (w, = 1.80, A\ = 50Hz) in the
lateral panels) are characterized by firing rates considerably higher (2 20Hz) than
those associated with the spontaneous activity measured in the cortex. For this
reason, we exclude this region from our analysis and concentrate on the S, A, B
regime found between w; = 1.6 and w, = 1.8, for A < 20 Hz (lower center part
of the phase diagram).

The average firing rates of the spontaneous and selective states as a function
of the selective input A are shown in Figure 5.4, for two different values of the
w4 lying in the region S, A, B aforementioned. Solid curves in the figure are
calculated from the mean field approximation, while data points are obtained
from simulations of the full network. The discrepancies between simulations and
mean field approximation are significant close to the bifurcation values, where
fluctuations around the mean rates are expected to depart from gaussianity. Yet,
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Figure 5.4: Dependence of the network activity on overall external input, as obtained
from the mean field approximation (black solid curves) and from network simulations
(symbols), for w4 = 1.62 (A) and w4+ = 1.75 (B), and using balanced inputs (AX = 0).
Thin solid curve: firing rates of both populations in a stable symmetric state (both
populations at equal rates); thick solid curves: firing rates of the two selective populations
in an asymmetric state (one population at high rate, the other at low rate). Thick
dashed lines show the position of the unstable fixed point. Dotted vertical lines indicate
the boundaries of the three different regimes present in the system, as predicted by the
mean field approximation. At A = \. the spontaneous state loses its stability. Error
bars indicate the sample standard deviation of the firing rates.

both the mean field description and the simulations show that the network is able
to sustain three different states for a given range of parameters A and w .

5.5 Finite-size noise

In this model, network states are not really stable because of finite-size effects.
When recurrent conductances are scaled as 1/N, the mean recurrent input remains
constant as the size of the network is varied. The variance of recurrent inputs, in
contrast, tend to zero when the size of the network is increased, so that the only
source of noise in the system is provided by the external currents when N — oco.
The number of spikes emitted by all neurons in a given population = during the
time interval At is a Poisson random variable with mean and variance N,v,At,
where N, is the size of the population and v, is the corresponding mean firing
rate, independent of N. For large N this random variable is well approximated by
a Gaussian random variable of the same mean and variance. Thus, the estimated
rate for the neural population can be written as v, (t) = v, + /Vs/Nzn(t), where
n(t) is a source of standard Gaussian white noise. The fluctuating part of this
process is felt by all the neurons in the network due to all-to-all connectivity. It
constitutes a source of internal noise. There are other types of fluctuations in
the network, such as those carried by external inputs or, when the network is
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sparse, due to the quenched randomness of the synaptic matrix. However, these
fluctuations are uncorrelated from neuron to neuron, and are already taken into
account by the mean field approximation through the variance of the inputs [7]
(see also Section 3.1.3).

Finite-size fluctuations induce transitions between the different network states
and affect the collective dynamics of the network (see, e.g., [41]). We will use
network simulations to capture the effect of finite-size noise on the stability of the
network states. Although it is possible to incorporate finite-size effects in a mean
field treatment [41, 38, 132, 134, 177] the description becomes too cumbersome
when applied to complex architectures involving more than two populations
recurrently interconnected, like those used in decision-making networks (see [71]
for an example using feed-forward architectures). The amplitude of finite-size
effects can be controlled by using different network sizes and scaling proportionally
the recurrent conductances, so that the average input current is kept constant. In
the simulations shown in Sect. 5.6.2, with sparse connectivity, both the mean and
the variance of the input current are kept constant as N varies.

5.6 Simulations of the network of spiking neurons

Once the ranges of parameters A and w, for which the network shows tristability
were found, we studied the statistical properties of transition times and their
dependence on the network parameters. To this end we simulated, given some
fixed values for the parameters (X, w, N), 4000 trials with different random seeds,
which determined the initial values for the membrane potentials and the synaptic
gate variables, as well as the random realization of the external currents. With
the first two parameters we controlled the regime of operation of the network (i.e.,
tristable or not), as well as the distance to the boundaries of the tristability range
(S, A, B). By using different network sizes we modulated the amount of noise in
the system.

To make the analysis simpler, and to mimic experimental conditions, we kept
the value w. of recurrent connectivity fixed and varied only the external input .
The selected value of wy was such that the spontaneous state was stable when
X = 0 and it was high enough to provide acceptable signal-to-noise ratios, the
signal being the difference between the rate of the winning population and the rate
of the spontaneous state, and the noise being the amplitude of the rate fluctuations
in the winning population. The value wy = 1.75 fulfilled these two requirements.
While keeping w,. fixed, we used A as a control parameter that allowed us to drive
the system from the tristable regime (S, A, B) to the competition regime (4, B)
as well as to control the distance to the bifurcation point.

Every simulated trial consisted of two stages. During the first (pre-stimulus)
stage, spanning from 0 to 500 ms, every neuron in the network received only the
baseline background input. The network remained in the spontaneous state at
that stage. After this period, neurons in both selective populations received an
additional signal of magnitude \ (see lower panel in Figure 5.5 for a representation
of the protocol used and the stimulation applied). This increase in input strength
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Figure 5.5: Decision neural dynamics. A: Evolution of the selectivity index (top), the
average activity of populations A and B (middle), and stimulation applied (bottom),
along a single trial. The green line in the top panel is the low-pass filtered selectivity
with 7 = 50 ms. From 0 to 500 ms no stimulation is applied (A = AX = 0). From
500 ms to the end of the trial, A = 5 Hz and A\ = 5Hz (Aa = 10Hz, Ap = 5 Hz). The
decision time (DT) was the time elapsed between stimulus onset and the time at which
the low-pass filtered selectivity index crossed the threshold 0.7 and stayed above it for
at least 100 ms. The shaded area shows the time window within which the signal (green
line) is required to be greater than the threshold. N = 2000, w4 = 1.75. B: Trajectory
in the phase plane (va,vg) for the same realization represented in A. The trajectory
from 0 to 500 ms (prestimulus stage) is plotted in brown. Blue straight lines: decision
boundary X = |va —vB|/(va + vs) = 0.7. Inset: blowup of region marked in red.

may either destabilize completely the spontaneous state or facilitate noise-induced
transitions to the decision states.

The occurrence of a transition in the simulated trial was determined with the
selectivity index defined as X = |v4 — vp|/(va + vp). This variable provides a
measure of the asymmetry between the two rates and allows to describe with a
single variable the transition from the spontaneous state (X 2 0) to a decision
state (X < 1, see top panel in Fig. 5.5). The selectivity index X can thus
be thought of as the ‘decision variable’; or weight of evidence supporting one
alternative over the other in the decision problem [87, 88]. Furthermore, to take
into account occasional high fluctuations transiently bringing the selectivity index
X above threshold, we applied a first-order low-pass filter with 7 = 50 ms and
considered that a decision was properly formed if the filtered signal crossed the
threshold Xi,, = 0.7, and remained above it for at least 100ms. We name decision
time (DT) the time elapsed between stimulation onset and threshold crossing. The
criterion used differs from the ‘hard threshold” methodology used in [191, 197],
but it leads to qualitatively similar results and it has the advantage of avoiding
the use of a particular level of activity as threshold.

According to the bifurcation diagram in Fig. 5.4B, given w; = 1.75 the
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Figure 5.6: Distributions of decision times for a regime with spontaneous stable state
(blue, A = 3 Hz) and without spontaneous stable state (red, A = 30 Hz), from a sample
of 4000 trials each. The two insets show the distributions separately (note the different
scales). N = 4500, w4 = 1.75.

spontaneous state is stable for values of X below the value A, = 2Hz, approximately.
Figure 5.6 shows the distribution of DTs for two values of A: one below (blue) and
one above (red) the critical value \.. For low input intensities (A < \.) transitions
between network states are fluctuation-driven, and the distribution of transition
times is very skewed right, close to an exponential or a gamma with very low
shape parameter. In contrast, high enough input intensities lead to transition
times that are significantly shorter, more narrowly distributed, and less right
skewed as a consequence of the dominant deterministic mechanism underlying the
transition [91]. The transition from a fluctuation-driven to a relaxation regime is
more abrupt the lower is the presence of noise in the system. This is shown in
both panels in Figure 5.7, where the mean value and coefficient of variation (Cv)
of decision times obtained from a simulated sample are represented as a function
of the control parameter A for different levels of noise. Mean decision times grow
as the external input is reduced, regardless of the regime in which the network
operates. Decision times are however much more sensitive to the value of X in the
fluctuation-driven regime than in the relaxation regime.

Second order statistics of decision times also show distinctive properties de-
pending on the regime. The variability of decision times around the mean is
measured with the coefficient of variation, cv = op./(DT), and is plotted in
Fig. 5.7A. The ¢v of DTs tends for sufficiently large N (small noise) to the value
1 as A is decreased below the bifurcation value. This asymptotic value, together
with the histogram in Fig. 5.6 (blue), suggest that in this regime and in the limit
of vanishing noise decisions are essentially Poisson processes, with exponentially
distributed decision times. This Poissonian character is gradually lost as the
external input increases and the deterministic component of the dynamics takes
over the stochastic one, leading to more peaked, gamma-like DT distributions and
hence to lower cv values. From Fig. 5.7A it is also seen that for A < . the value
of cv of DT is essentially insensitive to the amount of noise (while the mean value
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Figure 5.7: Coefficient of Variation (A) and mean value (B) of decision times versus
the external input intensity A, for different sizes of the network, as indicated in the key.

of DT strongly depends on N in the same region), consistently with the picture
of an approximate Poisson statistics for the noise-driven decision process. For
X > X, the converse is observed, the strong dependence of cv on A being due to
the fact that for increasing noise (decreasing N) the representative point in the
(va,vp) plane drops off the symmetric ridge down from the unstable spontaneous
state at more widely distributed times.

As seen in section 5.2, the average escape time from a metastable state in a
one-dimensional system depends exponentially on the inverse of the variance o2
of the fluctuations (Van’t Hoff-Arrhenius law): (T') ~ exp(AU/a?), where AU is
height of the potential barrier the system has to jump over to escape from the
basin of attraction of the initial state. The law is strictly valid only in the limit
of vanishing noise. For multidimensional systems it may even be impossible to
define a potential function, but the general dependence on ¢? is still of the type
~ exp(K/o?) [84, 187]. In any case, since o scales as 1/N, decision times grow
exponentially with the size of the network. As Fig. 5.8B shows, the mean DT
grows approximately exponentially with N for A < A, consistent with the theory
of noise-driven escape processes. Furthermore, the Cv tends to one as N — oo
for A < \., while it slowly decreases with N when A > X\, (Figure 5.8A). In the
thermodynamic limit N — oo the ¢v would decay to 0 whenever \ is high enough
to destabilize the spontaneous state, as the transition would consist in this case
on a deterministic relaxation from an unstable to a stable state.

The dynamics unfolded in this regime is compatible with the ramping-like
activity observed in LIP when neuronal activity is averaged over trials [173, 164].
In the noise-driven regime, but also in the mean-driven regime, single trial activity
exhibits a rather sharp transition between the spontaneous and a decision state.
Such transitions have durations of about one hundred milliseconds, and reflect
the decay to the final decision attractor with time constant given by the NMDA
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synaptic time scale. The stereotyped nature of the transitions can be seen at a
neuronal level in Fig. 5.9, which shows simulated single-cell raster activity from
different trials (top) and the corresponding trial-averaged activity (bottom; see
also Fig. 5.5 for the population averaged activity).

It should be remarked that even if transitions are thought of as sharp, random
jumps between two stereotyped levels of activity, smooth ramping activities can
be obtained averaging over trials [143, 204, 151, 111]. To be specific, if we model
the activity r(¢) as a step function with random threshold T, i.e., r(t) = O(t — T'),
where O(t) is the step function and T is a random variable with probability density
p(T), the average over trials gives rise to the cumulative density function of the
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Figure 5.10: Phase diagram of the system as a
function of the overall selective input X\ and the
A, B bias A\, as given by the mean field approximation
11 I with w4 = 1.75. Labels are as in Fig. 5.3: S labels
regions where the spontaneous state is stable,
0.5 3 while A and B label the regions of stability of
S,A,B the respective selective states. Note that the
0 ' . ' . spontaneous state coexists with both selective
0 0.25 0.5 states when A and A\ are small.

A (Hz)

decision times,
(r(8)) :/ ()0t — ) ds = Pr(T < 1).
0

The fact that realistic cumulative density functions are smooth, monotonically
increasing functions would explain in this case the ramping activity observed in
trial-averaged activities (see also Discussion).

5.6.1 Biased inputs

So far, we have considered only identical inputs to both neural populations. This
is the situation one may expect when the coherence of the stimulus is zero, in
which case the MT cells selective to either of the two possible directions of motion
fire at identical rates. For nonzero coherences, the activity of MT neurons increase
(decrease) if the coherent motion of the dots is in the preferred (antipreferred)
direction of the cell. Indeed, it has been shown that the coherence of the stimulus
is encoded approximately linearly in the rates of the direction-selective neurons
in MT [34]. Based on these observations, we assume that the difference in the
inputs received by populations A and B depends linearly on the coherence ¢, i.e.,
AN o< /. Apart from motion-selective inputs, cells in populations A and B also
receive inputs for the visual signals used to indicate the monkey the two possible
saccadic targets. These target inputs are equal for both neural groups and can be
absorbed into the overall selective input A [196].

We now follow the same line of analysis done in the previous section. First, we
determine the region in the parameter space (A, A\) where the network exhibits,
according the mean field approximation, multistability between the neutral and
the decision states (Fig. 5.10). The recurrent strength w_ is assumed to be fixed.
We then choose two different values for the overall input A. For one of these values,
A can sweep a finite range of the tristability region (S, A, B), within which the
network is expected to operate driven by noise. A possible value satisfying this
condition is A = 0 Hz. For the other value of A, the network operates exclusively
in the winner-take-all regime (A, B) at all values of AX. We chose A = 10 Hz. We
then simulated different sets of trials with different values A\ for both values of
A. The results are summarized in Fig. 5.11.

Remarkably, performances in the noise-driven regimes (low \) are significantly
better than in the mean-driven counterpart. The bias threshold AM,,, defined
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Figure 5.11: Performances and mean decision times as a function of the bias in the
inputs, A\, for w = 1.75. A: The overall selective input is A = 0. Dashed vertical lines
indicate the value of A\ where the spontaneous state becomes unstable according to
the mean field approximation (see also Fig. 5.10). B: X = 10 Hz, which is far above the
critical value \. at which the spontaneous state destabilizes.

as the value of A\ at which the Weibull fit reaches p = 1 — 0.5exp(—1) =~ 81.6%
of correct choices, is systematically lower in the noise-driven regime than in the

mean-driven regime (see Fig. 5.12) for all network
sizes, although a more systematic check should
be certainly carried out to assess the generality
of this claim. The ability of the decision network
to discriminate differences in the selective inputs
seems therefore to improve when it operates in a
noise-driven regime. Moreover, simulations sug-
gest that performance improves when the ampli-
tude of noise decreases, both for the mean- and
the noise-driven regimes. On the other hand, de-
cision times decrease as a function of the overall
input, as seen in the previous section. The mono-

Bias threshold
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Figure 5.12

tonic increase of both performance and decision times with the overall input has
been proved analytically for values of the input close to the bifurcation point where
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the neutral state destabilizes [165], and constitutes a plausible neurobiological
mechanism for the tradeoff between speed and accuracy observed in behavioral
experiments (see also Discussion).

We show in the next section that the picture emerging from Figs. 5.7 and 5.8
is recovered in simulating sparse networks of simpler synaptic and neural elements,
where larger N intervals have been explored.

5.6.2 Sparse network

In this section we briefly discuss the results of an analysis similar to the one
performed in the previous sections, but carried out in the context of a simpler
network model. Specifically, the network is again composed of four populations of
leaky integrate-and-fire neurons, with the same architecture as in the previous
sections, (for N neurons, 12% of N belong to each of the selective, A and B
populations, 20% of N are inhibitory neurons, and 56% of N are background,
nonselective excitatory neurons) with the following differences:

1. synaptic transmission is instantaneous. Thus, the dynamics of AMPA, NMDA
and GABA receptors are completely ignored.

2. the connectivity is sparse. Every neuron in the network receives spikes from
a fixed number of presynaptic neurons, randomly chosen at the beginning
of the simulation. Hence, no topology is imposed on the network structure.
This random choice of synaptic connectivity provides a source of ‘quenched’
noise, such that simulations run for the same set of parameters and the
same stimulation protocol embody different realizations of the statistical
distribution of synaptic contacts.

3. spikes are propagated to their postsynaptic targets with a delay §. The values
of ¢ are drawn from an exponential distribution with mean value (6) = 11.3ms
for spikes generated by excitatory neurons, and (§) = 1.2 ms for inhibitory
spikes. A distribution of spike transmission delays is a physiologically
plausible feature to incorporate, and contributes to make the states of
asynchronous activity of the network more stable, tempering the propensity
to ignite global oscillations [133]. We remark that the longest delays between
excitatory neurons are much smaller than the characteristic time of NMDA
conductances.

The values of the synaptic efficacies are chosen such that the unstructured network
(wy = w_ = 1) possesses a stable state of spontaneous activity with vy = 3 Hz
and vy = 6 Hz for the excitatory and the inhibitory neurons, respectively. Along
the lines of the previous sections, the symmetry between the recurrent excitation
and the cross-excitation in the populations A and B is broken by choosing wy > 1
and w_ < 1 in such a way as to support three fixed points in the network (S, A, B).

The purpose of this stage of analysis is to illustrate how the noise-driven
mechanism envisaged is able per se to account for slow decision processes in the
simplest network model, implicitly checking whether the characteristic times of
the synaptic transmission, included as realistic features in the Brunel-Wang model
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Figure 5.13: A: Coefficient of variation cv of Decision times, DT vs size of the sparse
network N. B: Mean DTs vs .

adopted in the previous sections, are essential in allowing the network to exhibit
such a wide range of DTs. We will show that, indeed, mean DTs obtained from the
simplified network studied in this section also extend to very high values compared
to all synaptic times, including those associated with NMDA.

The stimulation protocol and the estimate of DT are the same as in the
previous sections. For a given set of network parameters, statistics on the DT is
accumulated over 200 simulations. Consistently with theoretical expectation, the
long tail of the distribution of DTs is well fitted by an exponential. Results are
summarized in Fig. 5.13 in terms of the mean decision times and their coefficient
of variation with respect to the network size N, for three values of A = 10 Hz,
20 Hz, and 30 Hz (w4 = 1.41). According to the mean field approximation the
spontaneous state is stable for the first two values of A and unstable for the third.
From Fig. 5.13B it is seen that when the stimulus intensity ) is such as to keep
the spontaneous state stable, the mean DT is very close to be exponential in
N, confirming the scenario of noise-driven transitions reported in the previous
section. For strong stimuli (see the case A = 30 Hz in the figure) mean DTs show
a very mild dependence on N, confirming the quasi-deterministic nature of the
motion. Furthermore, as Fig. 5.13A shows, the cv of the noise-driven escape
events (A = 10 Hz and 20 Hz) tends to 1 for sufficiently small noise (large N)
thereby signaling an asymptotic Poisson behavior, which is consistent with known
theoretical results on the distribution of residence times in noisy bistable systems.
For A\ = 30Hz cvV stays approximately constant for the whole of the range explored
for N, with a slight decrease for high V. Indeed, when the stimulus destabilizes
the initial spontaneous state and the noise is very small, intuition suggests that
the cv of DT should tend to zero (for a symmetric landscape in the phase space).

The simplification introduced in the present section aims to show that in the
mechanism we adopted, of a noise-driven escape from the spontaneous state as
the dynamical underpinning of the decision process, very slow decision times can
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be easily obtained as a result of the interaction between the finite-size noise and
the cooperative-competitive dynamics of the system.

5.7 Discussion

A prominent problem in psychology is to explain the duration and variability of
response times [138, 123, 94, 164], with distributions exhibiting long tails that
can be approximated as exponential (see e.g. [45]). In this work we have shown
that stimulus-triggered, noise-driven mechanisms among stable, asynchronous
network states operating in simple neural architectures can accommodate such
variability without the need for fine-tuning the parameters of the neuron and
synapse models, and constitute a plausible and robust mechanism for spanning
behavioral times further beyond synaptic and cellular time scales. Predictions
amenable to experimental check include those related to the skewness of the
distribution of decision times for both the relaxation and the noise-driven regimes
upon presentation of zero-coherence random-dot stimuli.

The idea that noise-induced transitions among attractors could underlie some
aspects of cognitive process is not new. It has been proposed to account for the
variability of dominance times in perceptual rivalry [93, 160, 30, 144], and also
to explain the neurophysiological and behavioral signatures of Weber’s law, in
the context of a two-forced choice vibrotactile task [64] or timing [150, 151]. The
present work addresses the implications that noise-induced mechanisms entail on
the dynamics of decision formation.

Attractor models of decision-making describe the decision process as a transi-
tion from a neutral (spontaneous) network state to another state associated with
a given categorical choice —a ‘decision’ state. Noise, a constitutive ingredient
of these models, is responsible for the variability in response times and for the
probabilistic outcome of the decision process. The effect that noise has on the
system, however, depends strongly on the regime of operation of the system.
Previous works on attractor-based models of decision have focused on a particular
dynamical regime, that associated to strong stimulation, in which the network acts
as a winner-take-all and decision states are the only stable states of the system.
In such situation, the initial neutral state is destabilized upon stimulation, and
the system is forced to relax to either one of the decision states. Noise does not
induce transitions by itself but rather introduces some randomness in the decision
process by perturbing the deterministic drift towards the either one of the decision
states. The system is specially sensitive to the effects of noise when it is close to
the separatrix delimiting the basin of attraction of the decision states. Once the
system leaves this region, the deterministic component of the dynamics takes over
and makes the system decay to the final attractor.

A different mechanism for decision arises when the mean input is low and does
not destabilize the neutral state of the network. In this case, decision and neutral
states coexist together, and the transition dynamics between states are genuinely
different from those associated with the relaxation mechanism. The existence of
such multistable regime is a plausible assumption supported by the observation of
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delay activity during delay-response versions of the random dot discrimination task
[173, 164]. This delay-activity patterns are clear evidence that the network can
sustain a spontaneous activity state as well as a decision state when stimulation is
turned off. It is also reasonable to assume that this multistability is not destroyed
when the inputs are low enough, because of structural stability. Under these
conditions, noise plays a primary role in the decision process by letting the system
escape from the initial basin of attraction of the neutral spontaneous state to
either of the existing decision states.

When the external inputs are no longer balanced, the attractor favored by
external stimulation is unambiguously assigned to the correct choice. In such
case, the basin of the attractor associated with the correct response grows at the
expense of the other basins. This change in the attractor landscape results in a
greater probability of choosing the option favored by the inputs [197]. Regardless
of these modifications in the attractor landscape, the spontaneous state will
remain stable as long as the inputs (balanced or not) are low enough not to
destabilize it. Our numerical simulations suggest that performances improve as
the overall selective input is decreased. That is, the more the system is set to
operate in the regime where transitions are mainly noise-driven, the better is
the network in discriminating imbalances in the selective inputs. A plausible,
heuristic explanation for this improvement in sensitivity is that in noise-driven
regimes the probability of transition to the incorrect attractor is exponentially
suppressed with respect to the probability of transition to the correct attractor,
due to the Van’t Hoff-Arrhenius activation factor. In fact, the reduction made by
[165] around the bifurcation point where the neutral state destabilizes shows that
for subcritical currents, the decision process can be described as the motion of
a Brownian particle in an inverted double-well potential (see Fig. 5.3.1, center).
When selective inputs are asymmetric, the potential is tilted and the two barriers
have no longer the same height, so that the probability of escaping through the
lower barrier becomes exponentially larger than the probability of escaping through
the other®. This exponential dependence renders the system extremely sensitive
to differences in the inputs, yet at the price of long decision times. The fact that
both speed and accuracy are monotonically decreasing functions of the overall
input [165] constitutes a plausible mechanism accounting for the speed-accuracy
tradeoff observed behaviorally.

The main prediction that follows from this work is the existence of two
distinguishable decision behaviors depending on the mean input feeding the
decision network. For low inputs, the dynamics governing the decision process
are mainly noise-driven and characterized, in the limit of vanishing noise, by
exponentially distributed decision times, with coefficients of variation close to
1, and mean values that can be substantially larger than neuronal and synaptic
time scales. As inputs increase decision times are less variable and decrease
monotonically. These predictions become more exact the smaller is the amplitude

3In a one-dimensional problem, the probability that a diffusive system in a potential U (z)
starting at xo reaches first a one of the two limits of the interval I = [[,r], with zo € I is given
by the splitting probabilities [187, 84|, m;(x0) and 7 (xo), whose ratio can be shown to be of the
form m;(z0)/mr(w0) ~ exp[U(zr) — U(zy)].
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of the noise present in the system.

Several factors may contribute to the modulation of the overall afferents to
LIP. The neuronal activity in LIP is affected not only by the motion information
provided by the projections from MT, but also by the temporal structure of the
task [173]. When the trial is short and the subject has to make a rapid decision,
the neuronal activity in LIP evolves more rapidly than when trials are longer.
Thus, the expectations of the subject about the duration of the trial influence the
evolution of the neuronal activity in LIP. Also the behavioral value associated
with each choice has been found to modulate the activity in LIP cells [153]. All
these modulations are likely to be attributable to changes in the afferent activity
to LIP. Interestingly, a recent analysis of the generic dynamical properties of
winner-take-all networks shows that modulations in the input common to both
populations can account for the speed-accuracy tradeoff observed in behavioral
experiments [165]. From the analysis it follows that the pre-stimulus average
activity in LIP should be higher when the subject has to respond more rapidly, and
it should decrease when it has to respond more accurately. If this the prediction
is correct, the overall input to the decision-making network could be manipulated
by instructing subjects to respond within a given time interval [166, 152]. Thus,
a shortening of the time interval would result in an increase of the overall input
feeding both populations, and the network would operate in a relaxation regime.
Similarly, long time intervals allow for very accurate responses and presumably
entail low common inputs to the decision network. If two different mechanisms for
decision exist, one should observe that reaction time distributions tend to be more
skewed in trials where the subject is instructed to be as accurately as possible.

Furthermore, since the final response time is a sum of the decision time and
some residual (transduction, transmission, etc.) latencies, we expect response time
distributions to reflect only in part the time devoted to decision formation [123].
Although these residual latencies are relatively short compared to the decision
times when the discrimination is difficult, they introduce an additional source of
variability in the final response time, whose distribution necessarily reflects the
indeterminacies of both decision and non-decision contributions. In this respect,
exponentially distributed decision times cannot be ruled out on experimental
grounds. In fact, it has been suggested that the long right tails observed in
empirical response-time distributions may result from the contribution of some
exponentially distributed random variable in the response time [123]. A sim-
ple description that explores this exponential contribution is the ex-Gaussian
model [103, 123, 202|. In this model, response times are the sum of two indepen-
dent random variables: one, exponentially distributed, represents the decision
stage, while the other, normally distributed, represents the nondecision stage.
The distribution of response times is given in this case by the convolution of an
exponential and a normal distribution, which is an ex-Gaussian. This distribution
turns out to fit surprisingly well behavioral data.

We have also showed that, for a noise-driven decision scenario, the widely
distributed decision times can give rise to a ramping profile of the trial-averaged
firing rate. Such profiles have been observed in experiments involving perceptual
decisions, and we suggest that sharp firing rate transitions sparsely occurring in
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time, as implied in the present work, might also contribute to the explanation of
these observations. This is not meant to exclude ramping firing activity at the
single trial level; indeed, published data would seem to provide partial support
to both scenarios [107, 139]. Perceptual decisions leading to motor responses
such as saccades would plausibly involve a multi-stage process, first accumulating
perceptual evidence, to be later read out by downstream neurons. In a noise-driven
decision scenario, ramping activities observed in peristimulus time histograms
would be an artifact of averaging single trials characterized by sharp firing rate
transitions for the first stage, and a genuine reflection of single trial features for
the second stage.

In this work the noise source is explicitly identified as the finite-size fluctuation
of the network spiking activity. As such, it does not affect the dynamics as an
additional preset external random signal (as in several analysis previously pro-
posed), but rather as a re-entrant effect of the network recurrent dynamics. While
the effective number N of neurons involved in the various stages of a decision
process is obviously unknown, and the predictions shown for the N-dependence of
the decision times statistics cannot be directly checked, a qualitative hint might
come from experiments in which different stimulation/performance conditions
are thought to involve neural populations of different sizes in the same brain
areas. For example, it has been suggested that the ‘oblique effect’, by which
subjects discriminate better visual stimuli with horizontal and vertical rather than
oblique orientations, may result from the overrepresentation of cardinal (horizon-
tal/vertical) orientations in MT cells [200]. If a similar anisotropic representation
of orientations is found in LIP, one could devise an experiment showing different
distributions of reaction times depending on the orientation of the opposing targets
in a random-dot direction discrimination task. For instance, a subject can be
instructed to respond within different time intervals so that one can manipulate
the speed-accuracy tradeoff [152]. The average reaction time in long duration
trials should be longer for choices involving cardinal orientations than for choices
in oblique orientations, by virtue of the different number of cells involved in their
representation. The higher amount of noise associated with the representation
of oblique orientations would also account for the ‘oblique effect’ itself, as larger
noise amplitudes give rise to poorer performances.






CHAPTER 6

The method of moments

In this chapter we briefly discuss the method of moments and apply it to a simple
competition rate model. The method can be applied to Markovian systems where
fluctuations are small compared to the scales of the dynamical variables, in which
the probability density function is a sharply peaked function at all times, and
the evolution of the system can be described in an approximate way by a set of
differential equations involving the first two central moments of the distribution.

The method of moments has been used to describe the time course of the
dynamical variables of single-cell and spiking network models {163, 185]. Here
we use the method to characterize the different quasi-stationary distributions
that typically arise in a competition model. This work has been published in two
different articles [61, 62]. The presentation given here differs slightly from the
one given in the published work in that, instead of using Ito calculus, here we
use an equivalent and hopefully more intuitive formulation based on the master
equation [187].

6.1 Stochastic rate models

As we have seen in Chapter 3, it is possible to derive rigorously a population rate
model from a network model of spiking neurons. For the decision network model,
the description can be reduced further making some plausible approximations,
giving rise to a simple 2-rate model (see Sec. 4.3). In many situations, though,
rigorous derivations from the original spiking network model are not really neces-
sary, as one may only be interested in a qualitative description of the dynamical
properties of the system. This is the approach we take in this chapter. We will
be concerned with simple models that retain two important ingredients of the
decision models discussed in Chapters 4 and 5: the winner-take-all property and
the presence of noise.

While the dynamical properties of decision models based on winner-take-all
networks have been addressed in Ch. 4, here we focus on the effect of noise on
the dynamics of such models. As in the reduced model discussed in Sec. 4.3,
noise terms are added to the dynamical equations to model the time-varying

89
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fluctuations that naturally arise in spiking neural networks but that are absent in
the mean field formulation. The resulting equations describe a stochastic process,
and as such it is completely specified by its probability density.

6.1.1 General setting

Suppose we have a system of coupled neuronal populations. Let Y be an n-
dimensional Markov variable representing the firing rates of the different popula-
tions, and let yo be the value of Y at time ¢ = 0. The evolution of the system is
given by a stochastic differential equation, which can be formulated in its Langevin
form (see, e.g., [84])

y=Aly) + L(t), (6.1)

where A(y) is an R"-valued nonlinear function on R™, and where we have added
an n-valued Langevin term L(t) to describe the fluctuations in the system. These
fluctuations consist of Gaussian noise sources, of zero mean and two-point correla-
tion function (L(t)L(t')) = B2I5(t — t'), where the symbol I denotes the identity
in the n-dimensional space.

The non-linear function A(y) in Eq. (6.1) is of the type A(y) = —y+P(Wy+E),
where W is a n X n symmetric matrix of connection weights, E is a diagonal
matrix of inputs, and ® is a vector with components ®;(>",_; Wiry, + E;); each
®,(x) is a monotonically increasing activation function. The form of A(y) satisfies
the conditions for the Cohen-Grossberg theorem [49] (see also [76]), which can
therefore be applied to prove that all trajectories decay to fixed points —i.e., there
are no oscillatory solutions. Moreover, we assume that the synaptic matrix W
has positive entries in the diagonal and negative entries off the diagonal to ensure
that the network operates as a winner-take-all (see Sec. 4.1). When fluctuations
are turned off, L(t) = 0, the system evolves deterministically toward the stable
fixed point y* of the basin of attraction where the initial value yq is.

6.2 Dynamical equations for the mean and the covariance

The addition of the fluctuation term renders Y a stochastic variable, and the
evolution of Y must be described in terms of its probability density function
P(y,t). At time ¢t = 0 the quantity Y has the precise value yp, and hence the
probability density is initially P(y,to) = 6(y — yo). As t increases, P(y,t) will
tend to the stationary distribution P*(y). The main assumption of the method
of moments is that fluctuations remain small during the whole decay process. In
other words, P(y,t) is a sharply peaked function of y for all ¢. The location of
this peak can, although not necessarily should, be identified with the mean value

(Yi)e E/yiP(yL...,yn)dyl...dyn.
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The subscript ¢ indicates that the averages are over realizations at time t. The
width of the distribution is given by the diagonal elements of the covariance matrix

(ViY5)), = ([Yi = (Vi) [Y5 = (Vi)

=/[yi—<Y¢>t} [y; — (V) e| P(yr, - Y t) dyr -+ dyn -

To simplify the notation, we shall omit the subscripts whenever there is no
ambiguity. So, we will write

V) = /yP(yJ) d"y,
and
), = (¥ =" =), = [lo= 00"y - 00 Py,

and it will be understood that the mean (Y); is an n-dimensional vector, the
covariance <<Y2 >> , an n X n matrix, and integrals are over the n-dimensional
sample space. Being Y a Markov random variable, its evolution is fully specified
by the associated master equation, which describes the temporal evolution of the
probability density of Y. Instead of deriving the master equation for Y, we will be
concerned with the time evolution of the first two moments. Let us first consider
the one-dimensional case. The location of the peak must obey, by virtue of the
Markov character of Y,

S0= [ugpwod= [[y0valy)Pe .6 - W'l P} ady

~ [[w = WP aray = [awPe.nd
= (@ (), (6:2)

In the last equality we have introduced definition for the jump moments

ay(y) = /(y’fy)” W(y'ly)dy' = /(Ay)” W(y'ly) d(Ay),

where we have redefined 3’ as y + Ay. In n-dimensions, the v-th jump moment is
defined as

A (g ) = / W —yi) - (& — ) Wy lg) A"y’
(6.3)

= /ijl Ay, W(Y'y) d™(Ay),
which is nothing but

J1Jv —
ay v = lim (Ayi--- Ay,) /At
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With this definition, the n-dimensional version of equation 6.2 reads

A (Yi)e = (a1 (Y))e (6.4)

The second order moment obeys
i), = //(y£y§- vy AWl )P t) =W ly)Py,t)} d"y'd"y
= //{(yé —y) (W — i)+ ui(yy — i) + (i —w) }

x W(y'ly) Py, t) d"y'd"y
= (a (V)), + (y;0} (V) + yia] (Y)), . (6.5)

The equation describing the temporal evolution of the covariance (Y;Y;)); =
(Y:Y;): — (Yi)(Y;): follows from Egs. (6.4) and (6.5) and reads

D), = (1%~ 0l (0), + (5 — ek (), + (¥ (1)), (66)

6.2.1 Calculation of the jump moments

Both Eq. (6.4) and Eq. (6.6) are exact identities. To derive the dynamical equation
of the moments of our particular system we need to compute the jump moments.
The jump moments are computed from the definition (6.3) and the exact identity

t+AL
Ay; = / {Ai ly(s)] + Ll(s)} ds.
t
Thus, the average of Ay; with initial value y;(t) is
(Ayi) = A [y(t)] At + o(At).

Similarly, the mean square displacement is

(Agiay;) = < [ o) s mobas [T {0 + 1)) ds'>

At t+AL
— </75 Aily(s)] ds/t A;jly(sh)] ds’>

t+At t+At

/ / Lj(s'))ds'ds
+ /tt—s_it/tt—kj s')] Li(s)) ds'ds
tHAL ptHAL
—l—/ / (s'))ds'ds. (6.7)
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The first term on the right hand side is of order (At)2. This can be seen expanding
Aly(s)] in the integrand around the initial value A[y(t)],

Aily(s)] = Aily(t) + (y(s) — y(t))]

~ Aily)]+ Y oA [y(®)] (yn(s) — we () + -+, (©8)
k=1

where 0; denotes partial derivative with respect to y;. Since y(s) — y(t) is a
well-behaved function of s, in the sense that it contains no delta functions, the
integral in the first term of Eq. (6.7) must grows linearly At in the limit of small
time increments. To see how the second and third terms in Eq. (6.7) depend on
At we proceed analogously. If we plug the expansion (6.8) of A;[y(s)] into the
second term of Eq. (6.7) we obtain

t+At pt+At t+At
/t /t (A;[y(s)]Lj(s")) ds'ds = A; [y(t)] -/t (L;(s))ds

n t+AL AL
+ ZakAi [y(1)] / / ((yr(s) —yr(t))Lj(s))ds'ds + - - - .
k=1 t t

The first term is zero from the properties of L(t). The second term involves a
double integral of a well-behaved function multiplied by the stochastic forcing. It
must therefore be of order (At)2. Going back to Eq. (6.7), only the third term
depends linearly on At, with value d;; B32At. The Kronecker delta arises from the
orthogonality between components of L(t).

To summarize, the first two jump moments for our neurodynamical model

Eq. (6.1) are

ai(y) = Aim <AA‘?> = Ai(y), (6.92)
{Ayily;)

af (y) = lim "= = 5205 (6.9b)

6.3 The macroscopic approximation

The dynamical equations for the mean and the covariance can be simplified
with the assumption that fluctuations are small. In that case, the values of the
stochastic variable Y distribute narrowly around (Y), so that the first jump
moment appearing in Eq. (6.4) can be approximated by the lowest order terms of
the expansion around (Y') ,
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Therefore,

@) = () + 33 3 [t ()| (i), 4 (610

" n , (6.11)
{aaamm (YT, + -

While the dynamical equation for the covariance, Eq. (6.6), is

LY = (1% — Vel (), + (1% — (¥3)ah (), + (a (V)

n

_ Z<<1€Yk>>tai%a{(<lf>t) + Z«}?Yk»t%a’i«}/h) (6.12)
k=1 k=1

+ad ((Y)e) + -+

Note that, unless the jump moments are linear functions of y, equations (6.11) and
(6.12) do not form a closed system of equations, as they involve all the moments of
the probability density. The macroscopic approximation assumes that the higher
order terms can be neglected because they are small.

To keep the notation uncluttered we define p;(t) = (Y;); and ~;;(t) = (YiY; )+
We invoke the macroscopic approximation to truncate the expansion at second
order in the expansion parameter Ay = y — (Y'). Taking the explicit forms for
the jump moments, Egs. (6.9), and using A(y) = —y + ®(Wy + E), we have

L (6.13)
= —Hq + (I)z(uz) + 2 Z Z’YlkWZszlq)i (uz) 3
k=11=1
where in the first line p = (p1,p2) and in the second line we have defined

u; = Zzzl Wik + Er. Equation (6.13) states that the temporal course of the
mean depends not only on the mean itself but also on the fluctuations around it.
The dynamical equation for the covariance matrix is obtained analogously,
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and reads

Yij = ;8% + {'Yik&’cAj(M) + ’ijakAi(,U)}
k=1

=68+ Z Yir (=055 + Wk ®)(uy))
=1 (6.14)

+ ik (=0ik + Wir®)(u;)) }

= 6587 — 2vi5 + Z{%‘ijk‘I’;(Uj) + ’ijWik‘I’;'(Uz')}
k=1

Equations (6.13) and (6.14) form a closed set of ordinary differential equations.
Note that the equations are in general nonlinear due to the factors @’ (u;(t))
and @ (u;(t)). By describing the original stochastic system in terms of the first
two moments of the probability density, we end up dealing with a system of
deterministic differential equations, which can be analyzed straightforwardly. One
may, for example, find the fixed points of Eqgs. (6.13)—(6.14), which yield the mean
and variances of the quasi-stationary distributions centered at the different fixed
points of the original nonlinear system (6.1), in the limit of small noise.

It should be noted, however, that the approximation is based on the assumption
that fluctuations are small, and the equations derived above should be consistent
with the assumption. To be specific, one should check that all the elements in the
covariance matrix remain small along the trajectory. We see from Eq. (6.14) that
the variances, given by the diagonal elements of -, tend to increase at a rate given
by the diffusive term (32, but this tendency might be balanced by the terms linear
in 7 present on the right hand side of Eq. (6.14). At the fixed point Egs. (6.14)
read

n

0=06;;8%— 27} + Z{ﬁkwjk@;(u;) +7;fkwik¢>;(u;f)} = §;;0% — L(t)v; (6.15)
k=1

where u* = Y7 Wiput + Ej, and L(t) is a linear operator whose elements
depend on p* only. The components ~;; are thus given by v;; = Lt 62|Z-j as long
as L is nonsingular. Incidentally, we see from Eq. (6.12) that the form of L is
basically a symmetrized version of the Jacobian matrix DA(y), and hence the
solution for v* exists only for hyperbolic points, where det DA(y)|y=y+ # 0. The
condition is actually more restrictive as it requires not only the fixed point but
also the whole trajectory to the fixed point to be hyperbolic (see, e.g., [193]).

6.4 Example: two-dimensional decision neural model

Let us take two neural populations with sigmoidal activation functions

Py (x) = Py(x) = (1 + exp[—afz — 9)])_1 ,
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and symmetric synaptic matrix

W= <w+ “’) with w, >0, w_ < 0.
w_— w4

The dynamical equations are

T = —y1 + P(wiys +w_ys + Er) +VTL(t), (6.16a)
T = —Y2 + C(wiys + w_y1 + E2) + V7T La(t). (6.16Db)
For the sake of concreteness, let us assume that wy = 1.5, w_ = -1, a=4,0 =1,

and 7 = 1. We also assume for simplicity that the external inputs to both neural
groups are identical, £y = Fy = FE.

6.4.1 Noiseless limit

The system is qualitatively similar to Wong & Wang’s 2-rate equation [197, 196]
(see also Sec. 4.3). When the recurrent coupling is sufficiently strong, the system
may exhibit multistability between symmetric and asymmetric stable fixed points
depending on the common external input F. Figure 6.1A shows the dependence
of the stationary rates on the input E for the deterministic system, § = 0
(cf. Figs. 4.5c—d). The two-coupled system (6.16) exhibits also winner-take-all
behavior for an intermediate range of the common external input. In that range,
the phase plane (y1,y2) is partitioned into two basins of attraction, with separatrix
at the diagonal, and all trajectories decay to either of the two asymmetric states
depending on which basin of attraction the system is initialized in (Fig. 6.1B). The
winner-take-all regime is destroyed for sufficiently low or sufficiently high external
inputs, which cause asymmetric states lose their stability. For these limit cases,
symmetric states are the only stable fixed points of the system. The dependence
of the phase portrait on the external input is basically the same as that seen in
Fig. 4.4 (not shown).

6.4.2 Finite noise: derivation of the moment equations

When noise is finite, we can apply the method of moments and transform the
original Langevin equations (6.16) to a system of five coupled deterministic
differential equations relating the means and covariances. In this particular
example, the dynamical equations for the two components of the mean, u(t) =

(k1(2), p2(t)) are:

. 1
pn=—p1+ 5@"(%) (Wi + w?y22 + wiw_ (112 +721)] (6.17a)

. 1
P2 = —p2 + 5@"@2) (w3 Y22 + w2 y11 + wiw_ (12 + y21)] S (6.17b)



6.4. EXAMPLE: TWO-DIMENSIONAL DECISION NEURAL MODEL 97

0.75 4

o
3
!

0.25 4

firing rate, y1, yo2

o —

0 05 1 1.5 05 1
external input, £ Y1

Figure 6.1: Bifurcation diagram and phase portrait of the decision neural model. Param-
eters: wy = 1.5, B = 0 (no noise), other parameters as in the text. A: Dependence of the
firing rate of the two neural groups on the common input F1 = E3. Thin solid curves:
rates of both groups in a symmetric solution (y1 = y2). Thick solid curves: rates of both
groups in asymmetric solutions (y1 > y2 and vice versa). Dotted black curves: rates
of the unstable solutions. Dashed blue curve: E = 0.7, used in B. B: Phase plane of
the rate model for wy = 1.5 and E = 0.7. Red and green curves: yi- and ye-nullclines,
respectively. Filled dots are the stable fixed points of the system, and the empty dot is
a saddle. The blue curve is the deterministic trajectory starting at (y1,y2) = (0.2,0.1)
and ending at the y;-choice fixed point.

where we have defined u; = w1 +w_ e and ug = wy po +w_ 1. The dynamical
equations for the elements of the covariance matrix read

Y11 = B2 = 2911 + 2@ (ug) (w11 + w_2) ( )
Y12 = —2712 + ' (u1) (w21 + w_r22) + @' (u2) (w4y12 + w_y11),  (6.18b)
Yo1 = —2721 4+ D (u2) (wiy12 + w_y11) + ' (u1) (W21 + w_7y22),  (6.18¢)
A11 = B2 — 2720 + 20’ (uz)(w+722 + w—721) , (6.18d)

As expected, the dynamical equations for 7,2 and for -9; are identical, and hence
their trajectories coincide when their initial value is the same, as it should by
definition of covariance matrix. The number of independent dynamical variables
is therefore five.

The set of five differential equations (6.17)-(6.18) can be integrated numerically
for a given initial mean and covariance matrix. The solution can be regarded as a
trajectory m(t) in the five-dimensional vector space R, spanned by the dynamical
variables

m(t) = (p(t), p2(t), 1 (), M2(t), 22 () -

The solution represents the time course of the parameters of the bivariate nor-
mal distribution describing the stochastic process (y1(t), y2(t)) specified by the
Langevin equations (6.16). The description will be more accurate the more peaked
is the density function for (y;(t),y2(t)). The existence of such bump is guaranteed
by the condition that the elements of the covariance matrix remain small at all
times, which will be satisfied as long as the trajectory falls far from separatrices.
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6.4.3 Comparison of analytical results with simulations

To see that the solutions of the deterministic system (6.17)—(6.18) describe well
the evolution of the ensemble of solutions of the original Langevin Egs. (6.16), we
integrated numerically both systems from an arbitrary initial point yo = (y1,0, Y2.0)-
The initial conditions for the two-dimensional Langevin system were therefore
y(to) = (y1(t0), y2(to)) = yo, while the initial conditions for the five-dimensional
moment equations were those corresponding to a delta distribution centered at
Yo, namely, mo(to) = (y1,0,¥2,0,0,0,0).

The parameters were chosen to set the system operate in the winner-take-all
regime, although the choice was irrelevant for the validity of the method. We
estimated the mean trajectory (Y), = u(t) from N = 1000 simulated trials with
same initial conditions and different random seeds,

L m oy Ly ® *)
y(tn) = Nzy (tn) = NZ(% (tn)va (tn))a
k=1 k=1

where
y ") (to) = yo for all k.

The estimated mean trajectory was then compared with the solution of the
moment equations, (p1(t), u2(t)) (see Fig. 6.2A). When the initial condition yq
is not too close to the separatrices, both the estimated trajectory g(¢) and the
trajectory u(t) computed from Eq. (6.13) are hardly distinguishable from one
another, and they both converge to the same locally stable attractor. When g is
close to a separatrix, however, there is a finite probability that fluctuations carry
the system out of its initial domain of attraction, driving the system toward a
different attractor from that expected according to the deterministic limit. In
such case, the probability density describing the evolution of the ensemble splits
in two autonomous bumps, and the small noise assumption we invoked to apply
the macroscopic approximation cannot be applied.

We have also checked that the stationary solutions of the equations of mo-
ments (6.17)—(6.18) fit well the stationary distribution centered at an attrac-
tor. Using the Langevin dynamical equations (6.16), we simulated 40 random
trajectories in the range t € [0,20] and assumed that the system was both
self-averaging (ergodic) and quasi-stationary in that time interval. The initial
conditions were randomly drawn from a normal distribution of variance 0.1 and
centered at the asymmetric fixed point of the noise-free version of Eqgs. (6.16),
Yasym1 = (0.9911,0.0059), and the network parameters were the same used in
Fig. 6.1, w = 1.5, E = 0.7. The histogram obtained from the simulated trials
was then fit with a normal distribution using maximum likelihood estimators.
The estimated values were compared with the fixed points of Eqs. (6.17)—(6.18)
associated with the quasi-stationary distribution centered at yasym1. Figure 6.2B
shows the bivariate normal distribution estimated from the simulated data, as well
as the corresponding error ellipse, defined as the curve of constant density equal
to exp(—1/2) of the value of the density at the mean. The figure also shows the
error ellipse of the distribution derived from the equations of moments, described
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Figure 6.2: Moment equations capture the temporal evolution of the stochastic variable
Y = (y1,y2). Parameters: wy = 1.5, E = 0.7, 8 = 0.01. A: Sample trajectories
starting at (y1,y2) = (0.2,0.1) for 6 different noise realizations (thin black curves). Red:
trajectory for the mean (u1(t), pu2(t)), obtained solving the system (6.17)—(6.18) with
initial condition. Green: trajectory for the estimated mean, obtained by a sample average
over 1000 realizations of the Langevin dynamical equation. Note that in some parts of the
trajectory the red and green curves are indistinguishable. To avoid cluttering the figure
with random walks around the y;-choice fixed point, trajectories have been integrated
for ¢ € [0,6]. B: Estimated stationary probability density for a sample of simulated
trajectories wandering around the yi-decision state (see text for details). Black: error
ellipse for the density estimated from the simulated trials. Blue: error ellipse for the
density computed with the method of moments (also shown in A).

by the condition (z — u)Ty~!(z — p) = 1, where p is the two-dimensional vector of
the means and + is the 2-dimensional covariance matrix. The ellipse is centered at
(13, 1#3) and has major axes defined by the eigenvectors of the covariance matrix
evaluated at the fixed point. The lengths of the major axes are given by the
square root of the corresponding eigenvalues.

The predictions from the reduced deterministic system are consistent with
the simulations of the stochastic system for a wide range of initial conditions,
network parameters, and noise amplitudes. The method of moments provides thus
an equivalent description based on a set of deterministic differential equations
for the first- and second-order moments of the state variables, which implicitly
include information about the fluctuations present in the system. An extension
of the method to bistable systems, where the distribution of state variables is
bimodal, was developed in [62]. The method allows us to investigate the role of
random fluctuations in systems of coupled rate equations like those commonly
used in neurodynamical modeling, and without the need for simulated random
realizations.






CHAPTER 7

Nonlinear diffusion models of
detection

In this chapter we formally reduce the dynamics of a minimal rate model of
detection to the corresponding one-dimensional nonlinear diffusion equation using
multiscale analysis, along the lines followed in [165] for decision-making models.
The reduction allows us to regard the detection problem as a noise-driven motion
along a one-dimensional energy function with shape determined by the parameters
of the model. Putative behavioral outcomes of the model such as psychometric
curves can then be related analytically with the model parameters by using one-
dimensional rate theory (see Sec. 5.2). This framework is generic and can be
applied to different models, such as firing rate descriptions or networks of spiking
neurons, as long as they share the same bifurcation structure near the detection
threshold.

7.1 Perceptual detection

Behavioral and neuronal responses in simple detection tasks vary across repetitions
under the same stimulus conditions. The probabilistic nature of both types of
response is specially manifest when the intensity of the stimulus is close to the
detection threshold. Recent studies have analyzed the neuronal responses in
several cortical areas during a vibrotactile detection task [59, 60], in which trained
monkeys have to report the presence or absence of a mechanical vibration applied
to one fingertip. Responses in medial premotor cortices (MPC) were found to
be strongly correlated with the monkey’s perceptual report, and only weakly
correlated with the stimulus intensity, showing an all-or-none response after the
perceptual decision was made, with a latency determined by the stimulus strength.

Some aspects of the activity in MPC during perceptual detection tasks can be
modeled using attractor network models exhibiting multistability. In the simplest
version of such models, the perceptual event is encoded in the activity of one neural
population receiving external inputs proportional to the intensity of the probe
stimulus. The system can be either in a silent state, associated with the negative

101
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percept (“no” response), or in an active state, associated with the positive percept
(“yes” response). The model system is assumed to be bistable for inputs near
the detection threshold, with stimulation raising the probability of noise-induced
transitions from the default silent state to the active state [63]. We illustrate in
the next section a very simple model with these features.

7.2 Two-dimensional stochastic rate model of detection

We consider a simple rate model describing the activity of one excitatory population
and one inhibitory population coupled together

Tg = —Tp + C(Jepre — Juri + 1) + opns(t),

) (7.1)
T = -1+ QI(JIETE - JIITI) + UI\/;I I(t) y

where r; and r; are the firing rates of the excitatory and inhibitory neural
populations, respectively, Jgg, Jig, Ju, and J; are the coupling strengths, all
positive, and I is the external input. The activation functions are sigmoids,

Py (z) = (14 exp[—afz — 0)})71 ,
Fluctuations in the firing rates are modeled with additive Gaussian white noise
sources of zero mean and variances o2 and o2 for the excitatory and inhibitory
populations, respectively (last term in both Egs. (7.1), where (1,(t)) = 0 and
Ma(t)ng(t')) = dapd(t —t'), a, B = E,1). Note that time is expressed in units of
the time constant of the excitatory neural population. The architecture of the
model is illustrated in Figure 7.1A.

Let us first consider the noiseless case, o, = 0, = 0. The system exhibits
bistability when the positive feedback arising from excitatory recurrent coupling,
Jer, is sufficiently strong (Fig. 7.1B), so that a high-activity (H) a low-activity
(L) stable states coexist for some range of the inputs. As in the models of decision
discussed so far, multistability results from the interplay between the nonlinearity
in the transfer function and the positive feedback, provided in this case by the self-
coupling. A minimum amount of positive feedback is therefore needed to sustain
a high-activity stable state. Beyond this critical value, the system is bistable for
some range of the external input, with the bistability range broadening as the
self-coupling increases (region L, H in Fig. 7.1C). Note that phase diagram has a
cusp at the start of the bistability range.

The branch of high-activity stable solutions appears jointly with a branch of
saddle (unstable) solutions via a saddle-node bifurcation as the external input I
increases (Fig. 7.1B). The unstable branch coalesces with the low-activity stable
branch input increases and disappears through a second saddle-node bifurcation
at some critical value I = I.. If the system is initially in the low-activity stable
state, the application of an external current I greater than I, will force the system
jump to the high-activity state, while for I < I, the system will remain in the
low-activity branch.

In the model, the low- and the high-activity states are identified with the
negative and positive perceptual reports, respectively. The system is initialized in
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Figure 7.1: Bistability in a simple two-dimensional rate model. A: Architecture. The
circuit is composed of one excitatory and one inhibitory units, which are self- and
cross-coupled. Only the excitatory unit receives external input. B: Dependence of the
activity rg of the excitatory population as a function of the external input I, for Jze = 1.8.
Thick solid curves: stable fixed point solutions (H: high-activity branch; L: low-activity
branch). Parameters: J,, = Jo = Jie = 1, 71 = 1, ®u(x) = &i(x), with o« =4 and 6 = 1.
C: Phase diagram of the rate model. In regions labeled with L (H) there exists a stable
fixed point with low (high) excitatory activity, r=. The area shaded in gray and labeled
L, H represents the region of bistability between high- and low-activity solutions. Blue
dot: bifurcation point where the low-activity branch represented in B disappears, i.e.,
having coordinates (I, Je) = (I¢, 1.8). All parameters except Jgs as in B.

the low-activity state before stimulation to mimic the low, spontaneously active
activity of MPC neurons before stimulus onset [59]. In the absence of fluctuations,
the excitatory unit will become active, and hence a positive percept will be
reported, whenever I > I.. Otherwise, the unit remains silent. The psychometric
curve, representing the fraction of positive perceptual reports as a function of
the stimulus intensity, would be in this case be a step function with threshold at
I1=1.

The situation changes when random fluctuations are included in the model.
Noise-driven transitions between the low- and the high-activity stable states may
occur when the input is below the critical value I.. The hypothetical psychometric
curve that would result from such stochastic perceptual activation is a smeared
out step function, namely, a sigmoid, whose exact shape will depend in general
on the parameters of the model —notably, the amplitude of the fluctuations—
as well as on the duration of the trial. The model predicts that the fraction of
positive percepts must increase with the duration of the trial, as the probability
of transition from one to the other state tends to one in the limit of trials of
infinite duration. In a general detection problem, though, the temporal window
within which the sensory signal is supposed to be integrated is not specified at all,
and some mechanism to frame temporally the integration of evidence needs to
be invoked [88, 181]. We ignore in the following this problem by assuming that
such temporal window is set beforehand, which corresponds to the experimental
situation where the presentation of the stimulus is cued.
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Figure 7.2: Phase portrait of the two-dimensional rate model at the bifurcation value
I =1, for Jo: = 1.8. A: Red and green curves are the - and 7;-nullclines, respectively,
and thin black curves are trajectories with different initial conditions. Black thick curve:
one-dimensional center manifold. Parameters as in Fig. 7.1. B: Inset. Near the critical
fixed point L, dynamics are slow and confined to the center manifold W¢, which can be
locally represented by the graph of a function h(z), x € E°, from the center manifold
E° to its orthogonal space E° @ E*. In this system the orthogonal space is simply E°.

The identification of the detection threshold with the saddle-node bifurcation
implies a critical slowing down of the dynamics near threshold, with a subsequent
reduction in the dimension of the system because of the separation of time scales.
Near the bifurcation point at I = I., dynamics are fast except along the one-
dimensional unstable manifold of the saddle, which is, strictly speaking, the center
manifold of the critical fixed point. Trajectories relax rapidly onto the manifold,
and then evolve slowly on it. Figure 7.2A depicts the phase portrait for the
bifurcation value I = I. at which the low-activity state disappears. Trajectories
starting at different initial conditions over the phase space get trapped on the
slow manifold of the critical fixed point L. Our objective is to derive the equation
of motion along this one-dimensional slow manifold.

7.3 Dynamics on the center manifold

Let r* = (r%, ) be a fixed point of the system (7.1), which we represent succinctly
as 7= f(r) = —r + ®(r; I, 7, {J}). The stability of the solution r* is determined
by the eigenvalues of the linearized system at the fixed point,

o =1+ Jes®, — T ®L

where the derivatives @/, and @/ are evaluated at the fixed point,

& =@ (Juprs — Jur' +1),
O =D (Jpry — Jur)).
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A bifurcation occurs when at least one of the eigenvalues of the linearized system,
a critical eigenvalue, has zero real part. In a saddle-node bifurcation the critical
eigenvalue is 0, and we must have therefore det D f(r*) = 0. This condition gives
rise to a functional relationship G between the parameters, G(I,{J}, 1) = 0,
which is precisely the relationship that the two curves shown in the phase diagram
Fig. 7.1C satisfy. In the following we will take coupling strengths, time constants,
and noise amplitudes as fixed parameters, and consider the input I as the only
control parameter.

The center subspace The eigenspace associated with the critical eigenvalue 0
is found from D f(r*)x = 0 and is called the center subspace. Note that it is the
kernel of the Jacobian D f(r*). In general, any vector r of the original space can
be decomposed as a direct sum of the center space £ and the stable and unstable
subspaces, F® and E", of the fixed point, spanned by the eigenvectors associated
with the eigenvalues with negative and positive real part, respectively [101, 193].
In short, any vector r of the phase space, r € R™, can be represented as

r = (x,y), where z € E° and y € £ @ E", (7.3)
and where, if E) denotes the eigenspace with eigenvalue A,

E° =span{v |v € E) and Re\ =0},
E® =span{v | v € E) and Re\ < 0},
E* =span{v |v € E) and Re\ > 0}.

The direct sum of the stable, unstable, and center subspaces, of dimensions n®,
n*, and n°, respectively, is the whole phase space: R™ = E° ¢ E" & E°. Using
the decomposition (7.3), any dynamical system can be cast into

&= Az + Ni(z,vy), (7.4a)
=By + Na(z,y), (7.4b)

where A is an n¢ X n° matrix whose eigenvalues lie all on the imaginary axes, and
Bis an (n® +n") x (n® +n") matrix with eigenvalues off the imaginary axis. The
terms N7 and Ns are nonlinear in (z,y) variables.

The center manifold The critical fixed point 7* possesses a center manifold
We that passes through r* and which is tangent to the center subspace E° at
r*. The tangency at r* allows us to express the manifold W€ as the graph of a
function y = h(x) (see Fig. 7.2B)

h:E°— E°®E"

LY,

where, for 2 sufficiently small, the point = (z, h(z)) belongs to W€ [56]. Moreover,
if 7(t) = (z(t), g(t)) is a trajectory on the center manifold with sufficiently small
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amplitude (not too far from the fixed point), one has that g(t) = h(z(t)); this

curve defines a vector field 4(t) = Dh(Z(t))Z(t), which has to be equal to the vector
field in Eq. (7.4b). The function h(z) that satisfies this “invariance condition”,

Dh(x)i = Dh(x)[Az + Ni (z, h(x))] = Bh(z) + Na(z,h(z)), (7.5

defines the center manifold. Equation (7.5) is a nonlinear partial differential
equation and cannot be solved in general. It can, however, be solved perturbatively
using power series expansions.

As mentioned in Chapter 5, the usefulness of center manifold theory is that it
allows us to reduce the dimensionality of the problem down to the dimension of
the center subspace. The function function h(z) makes this reduction possible by
decoupling the flow described by Eq. (7.4a) from that given in Eq. (7.4b)

& = Az + Ny (z, h(z)). (7.6)

This equation describes the evolution of the system in the vicinity of the bifurcation.
When the unstable subspace is empty (n* = 0) trajectories rapidly converge to
nc-dimensional manifold (z,h(x)), and then evolve according to the dynamical
equation (7.6). The dynamics of the system on the center manifold are slow due
to the infinite long time constants associated with the eigenvalues with zero real
part.

7.3.1 Multiscale analysis

We will now derive the dynamical equation of the system (7.1) on the center
manifold. In principle we should first determine h(z) from the invariance condi-
tion (7.5) to the desired order and then plug the approximate solution into the
dynamical equation (7.6). Instead, we will take advantage of the separation of
time scales in the center manifold and will apply multiscale analysis [24]. The
idea is to compute the perturbative terms beyond linear order in an expansion
around the critical fixed point. We will ignore noise for the moment.

Let r* = (rf,r) be the critical fixed point in the lower branch, at I = I, = I,.
We introduce a small perturbative parameter ¢ which measures the distance to
the bifurcation, and expand the solution r and the control parameter I in power
series of e:

r=r*ter +erg oo, (7.7a)
I=Iy+elh +El+--. (7.7b)
We also assume there are two timescales, one fast, ¢, and one slow, T' = €t, and
that the perturbations r;, ¢ = 1,..., evolve according to the slow time scale T
The two time coordinates are treated as independent variables, so
d g dTI' 0
_—= — -_ = a (9 . 7'8
at ot “dtor  TeOT (7.8)

Plugging Eqgs. (7.7) and (7.8) into Eqs. (7.1), and collecting terms order by
order in € we get a series of linear equations for the higher-order terms rj. At
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every order in € the equations to solve have the form Lry = N(r;<x), where L is
a linear operator and N include all the inhomogeneous terms, which may depend
on the solutions found for lower orders. The 0-th order of the expansion is simply
the fixed point condition 77 = V(r*, I.) = 0. Let us compute the first and second
order corrections.

First order in ¢ Collecting all terms linear in €, we have

(1 Te®l T @ Tle Lo\ _
0= ( Ju-:(bi -1- JII¢;7 1 + 0 = -lnt

where we have defined L as a shorthand notation for the linear operator consisting
in the Jacobian matrix with sign reversed, L = —DV (r*, I.). Since at the critical
point det L = 0, we cannot invert L to solve for r1. A solution for r; only exists if
N is in the range of L. According to Fredholm alternative theorem, the equation
Lz = b has a solution if and only if b'n = 0 for every vector n satisfying A7n = 0.
That is to say, the kernel of AT is the orthogonal complement of the range of A.
We can express this solvability condition finding a left null eigenvector of L, i.e.,
a vector n such that n”L = 0, and imposing n”N; = 0. It leads to

L T
1= T,

where in the last equality we have used the fact that ®/, and ® are both nonzero
at the bifurcation point. We are then left with the equation Lry = 0, which states
that 1 must be in the kernel of the linear operator L. Since L = —DV (r*, 1.), the
kernel of L is by definition the center subspace of the fixed point (r*,I..) (Sec. 7.3).
Solving for r; we obtain

_(Tie) _ JEI(p]/:;
()2 a (o). -

where the arbitrary coefficient A depends in general on the slow time scale,
A = A(T). The first order approximation states therefore that perturbations grow
along the critical (center) eigenvector, as expected.

) , so that n'N; =0 = J,®L®/ [, =0 = I, =0,

Second order in ¢ We have

6T _ 1 "2 ‘I):afz
(TIaT) r1 = Lry + 5@ ntl g ;

which, after rearranging terms, reads
T 1 (I)/I[JEErlE - JE1T11]2 q)l 12
Lry=-0 +5 | g +(P52) = Ny ().
" ’ <Tlr11> 2 ((pi/[JIETIE - J11r11]2 0 Q(Tl)

Again, we must have n”No = 0, where n is the same left null eigenvector of L
used above. It gives

Js® Y — Ju®LOrA + B J2 A2 + D1, 0
1— Juu®, ) \ [l = Jeu®L]07A + O[S T ®, — Ji (Jou®l, — 1)]242/2) =
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which can be recast into

OrA (Jis Ju®,®] — 7i[1 — Jus®)?) = Jin®[ @I
A2
+5 (Jis T2 @@ + @ (1 — Juu®)) [ (i Jer — Judus) + Ju)]?) -

This differential equation has the form
OrA(T) = i+ bA(T)?, (7.10)

where the coefficients ¢ and b depend on the parameters of the original system,
Eq. (7.1), and are given by

o= (Jou®), — 1)[1+ Ju®, + 71(1 — Jeu®})], (7.11a)
ap = Jp @Iy = jly = (I — 1), (7.11b)
ab = (JpJ2 (@) + @' (1 — Juu®)) [} (JurJiw — Judee) + Jn)]?) /2,  (7.11c)

We have used det L = (1 — Jgu®),) (1 + Ju®]) + JigJu PP = 0 to simplify the
expression for «. Note that the monotonicity of the activation functions implies
@y, > 0 and hence /i > 0, so that the sign of the constant y depends on whether the
control parameter is above or below the critical value. The value p is proportional
to the gains of both neural units.

Noise sources The contribution to the amplitude equation (7.10) of the noise
terms in the original system is calculated to first order in €, projecting on the
space of the left null eigenvector n,

noise terms = n’ oen=(t)) _ Jie®loens(t) + (Jee®l — D)o (t).
om(t)
These two terms are then divided by the common factor « arising from the
projection —as we did for 4 and b, in Egs. (7.11b), (7.11c). The variance of the
noise in the amplitude equation is therefore
9 1

o = —
a2

[(JIE@;)%E + (Jus®, — 1)%02]. (7.11d)

7.4 Nonlinear diffusion equation

With the reduction derived above we arrive at a one-dimensional stochastic
differential equation
OrA(T) = p+ bA(T)? + on(t), (7.12)

with coefficients p, b, and o given by Egs. (7.11). Equation (7.12) can be thought
of as describing the motion of an overdamped Brownian particle under the influence
of a potential E(A) (see Sec. 5.2):

dE(A)

OrA(T) = — == +on(t), (7.13)
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Figure 7.3: One-dimensional energy function E in the vicinity of the low-activity state
L for inputs below, equal, and above the critical value.

where
E(A) = —pA— gAS(T). (7.14)

The Langevin equation (7.12) is referred to in this context as amplitude equation,
as it describes the time course of the amplitude along the center subspace (see
Eq. (7.9)). We will also refer to it as nonlinear diffusion equation.

When the input is below the critical value, the constant term p is negative and
the energy has a local minimum, which corresponds to the low-activity stable fixed
point L of the original system (Fig. 7.3). The state becomes marginally stable
when the input reaches the critical value I. (1 = 0), to finally disappear for inputs
higher than I. (¢ > 0). In the latter case, the system evolves going ‘downhill’ the
energy function, thereby increasing A, until it decays to the high-activity state H
(not represented in the figure).

We stress that, although we have used a particular model to illustrate the
reduction to a one-dimensional nonlinear diffusion equation, the same argumenta-
tion can be followed for other systems having the same local bifurcation structure.
To be precise, we expect the same type of noise-driven motion in a cubic poten-
tial, Eq. (7.13), whenever a system undergoes a saddle-node bifurcation through
which a ‘low-activity state’ disappears when inputs are increased. Of course, the
coefficients u, b, and o will depend on the specific details of the model, but the
dependence on the amplitude A will remain the same.

7.4.1 Comparison with the original system

Equation (7.10) captures the dynamics of the system near the bifurcation point
(r,I) = (r*,I.). It is basically the normal form of a saddle-node bifurcation [180],
with a pair of stable and unstable fixed point solutions appearing at A* = 4+/—pu/b.
According to the first-order correction to the critical fixed point, Eq. (7.9), near
the bifurcation point at I = I., the fixed point solutions will be

T; _ M(I) JEI‘I)L; 2
(rr) = (JEE<I>'E1 O,

The dependence on the input I of the fixed point solutions for the original
system and for the amplitude equation is shown in Figure 7.4A. The solution
of the amplitude equation provides the second order approximation in I of the



110 NONLINEAR DIFFUSION MODELS OF DETECTION

1
— rate model
o — amplitude equation
0.25-
=) N 0
" T
0.25 1
<
0 . ; 0 : ;
0.25 0.3 I. 0.35 0 20 40
I t

Figure 7.4: The dynamics described by the amplitude equation and by the original
rate equations match at the bifurcation point (r*, I.). A: Bifurcation diagram for the
original system (black) and the amplitude equation (red) with coefficients given by
Egs. (7.11). B: Sample trajectories of the original system (blue) and the one-dimensional
amplitude equation (red), for I ~ I, —9.56- 107%. oz = 0, = 0.01. Parameters: Juz = 1.8,
Jo=Je=Ju=1,1=1.

stable and unstable branches around the bifurcation point, and becomes a better
approximation the closer is I to the bifurcation value. The match between both
solutions can be further improved including the €? correction 75 to the critical
fixed point (see Eq. (7.7a)), although this correction would not add any new
qualitative feature to the description.

The evolution of the original system is correctly captured by the nonlinear
diffusion equation. Figure 7.4B shows the time course in a single trial of the rate
variables r; and r;, as given by the original two-dimensional model, Egs. (7.1)
and the one-dimensional system, Eq. (7.12). In the latter, the rates ry and r
are related to the amplitude variable A through Eq. (7.9). The input was chosen
slightly below the critical value to have the low-activity state L metastable. The
nonlinear diffusion equation matches better the evolution of the variable r; than
it does for r;, because the center subspace onto which the dynamics are projected
lies mostly on the subspace spanned by 7 (see Fig. 7.2A). Thus, since the center
manifold is practically orthogonal to r;, fluctuations in this transversal dimension
hardly affect the dynamics on the manifold and hence on the formation of a
percept, according to the model. This is indirectly reflected in the suppressed
variability of the r; variable derived from the amplitude equation when compared
to the original counterpart (lower panel of Fig. 7.4B).

The trajectories described by the one-dimensional nonlinear diffusion equation
and by the original rate equations match closely until both systems are driven out
by noise from the domain of attraction of the low-activity metastable state. When
this transition occurs, the trajectory of the original two-dimensional system decays
to the high-activity fixed point H, while the trajectory of the one-dimensional
system blows up to infinity due to the positive quadratic term in Eq. (7.12). We
have estimated the distributions of transition times, defined as the time necessary
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Figure 7.5: Distribution of transition times for the original and the one-dimensional
system, for three values of the input. Transition times are defined as the time elapsed
before 7 reaches the value 0.8, and Al = I — I.. Blue histogram: transition times for
the original system. Red histogram: transition times for the one-dimensional system.
Blue and black curves: lognormal fits of the transition times for the original and the
reduced systems, respectively. The parameters of the lognormal distribution were found
applying an adapted Levenberg-Marquardt algorithm on the sum squared distances
between the expected cumulative density and the observed cumulative probability [110].
Each histogram has been obtained from a sample of 10° trials. Other parameters as in
Fig. 7.4.

for 7 to cross the threshold ry = 0.8 when the system is initialized near the low-
activity state, are shown in Fig. 7.5 for sub-, near-, and super-critical values of the
input I. Even when [ differs considerably from the critical value, the distribution of
escape times obtained from the nonlinear diffusion equation (7.12) closely matches
that predicted by the full-dimensional system. The distribution corresponding
to the one-dimensional system is slightly more skewed to low transition times
than that associated with the two-dimensional system. The difference become
significant for subcritical currents (Fig.7.5 left). This may reflect a dimensional
bottleneck effect caused by the fewer available dimensions through which the
system can escape from its metastable state.

7.5 Summary and perspectives

Experimental studies on detection show that behavioral responses during simple
perceptual detection tasks are highly variable for stimulations near the detection
threshold (see, e.g., [22, 33, 54, 59]). Based on this experimental fact, we have
proposed a simple stochastic bistable model for detection and have reduced its
dynamics onto the slow critical manifold that arises at the bifurcation where the
inactive state disappears, and which we identify as the detection threshold. The
reduction provides a useful tool to derive the dependence of behavioral measures
on the model parameters like the stimulus intensity or the connection strengths.
Such dependence is expected to be generic for different classes of models based on
noise-driven, bistable units sharing the same bifurcation structure. Our next step
will consist in assessing whether the universal properties exhibited by this broad
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class of models can explain the electrophysiological and behavioral data obtained
during detection tasks.



CHAPTER 8

Results and Conclusions

The work presented in this thesis addresses the putative role that noise-induced
transitions in multistable neural systems may play in both the variability and
duration of behavioral responses during simple perceptual decision tasks. Our
results rely the assumption that neurons of the brain regions involved in the
decision process engage in a competition for higher activity upon stimulation,
as suggested by recent electrophysiological experiments [173, 164, 70]. It is also
assumed that cortical networks exhibit multistability, an assumption supported by
the existence of persistent activity states during working memory tasks [83, 116].
We have focused on the regimes that potentially arise for values of the control
parameters (mainly, the inputs) below the onset of winner-take-all behavior, where
the interplay between noise and multistability is expected to have the strongest
effects. We summarize in the following the main results of this thesis.

Project 1 (Chapter 5)

1. Noise-induced transitions among asynchronous, stable network states con-
stitute a neurobiologically plausible mechanism for spanning times beyond
synaptic and cellular time scales, without the need for fine-tuning.

2. Noise-induced activation mechanisms lead in a natural way to exponential
distributions of transition times, which can potentially account for the long
tails commonly observed in the distribution of response times of different
mental processes.

3. We observe a monotonic dependence of response times and performance
on the average input feeding the competing units, in agreement with the
analytical results of [165], valid for systems operating near the onset of
winner-take-all behavior. This monotonic dependence constitutes a plausible
mechanism to explain physiological substrate of the speed-accuracy tradeoff
observed behaviorally.

4. Our results predict an that the skewness of the response time distributions
must increase when subjects are instructed to respond more accurately.
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Project 2 (Chapter 6)

1. The time course of a stochastic neural rate model, described by a set of
nonlinear Langevin equations, can be properly captured by a reduced set of
ordinary differential equations, called moment equations, for the first central
moments of the distribution of the original stochastic variables.

2. The method of moments can be applied also to characterize the quasista-
tionary distributions associated with each of the stable fixed points of the
deterministic limit of the rate model.

3. The agreement of the moment equations with the simulated stochastic
system is very good when the system is far from criticality.

Project 3 (Chapter 7)

1. The dynamics of many stochastic models exhibiting bistability between
an active and an nonactive state, as those proposed to account for the
neural activity in premotor areas during vibrotactile detection tasks, can be
captured by a one-dimensional Langevin equation in a cubic potential.

2. The reduction, valid in the vicinity of the bifurcation point where the non-
active state disappears, provides the functional dependence of the putative
behavioral outcomes on the parameters of the model.



APPENDIX A

Brunel-Wang model

Here we give a short description of the network introduced by [43], in its particular
implementation as a binary decision making model [191]. Please refer to Chapter 2
for a motivation and a more detailed description of the models.

Network

The network consists of N neurons, of which Ny = 0.8N are pyramidal cells
(excitatory) and Ny = 0.2N are interneurons (inhibitory). Every neuron receives
from the network Ng excitatory synaptic contacts and N; inhibitory synaptic
contacts; the network is thus fully connected. The whole set of neurons is
partitioned into different populations, with all neurons in a population sharing
the same single-cell parameters and the same statistical properties of the afferent
inputs. The set of all excitatory neurons is in turn structured in three different
populations: two populations formed by neurons that encode one or the other
choice, and a third population formed by the remaining excitatory neurons. The
former two constitute the two disjoint selective populations, of fNg (f = 0.15)
neurons each. The other (1 — 2f)Ng excitatory neurons do not encode any
information about the choices, and constitute the nonselective population.

External inputs

To simulate the background input from other brain regions, every neuron in the
network receives 800 excitatory connections from external neurons, each of which
fires according to an independent Poisson process with rate 3 Hz. Every cell
receives therefore an independent Poisson train of spikes of rate 2.4 kHz. On top
of this background signal, neurons in selective populations receive external inputs
encoding stimulus specific information. Stimulation is modeled with an increase A
in the rate of external incoming spikes received by selective cells (see also 2.5.4,
on p. 23).
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Neurons

Neurons are modeled as leaky integrate-and-fire units, with resting potential
Vi = =70 mV, firing threshold Vi, = —50 mV, reset potential Viegset = —55 mV,
and refractory period 7, = 2 ms for excitatory cells and 7., = 1 ms for inhibitory
cells. The subthreshold dynamics of the membrane potential V' (¢) of every neuron
is described by

WO gV (1)~ Vi) ~ L),
where C,, is the membrane capacitance, of value 0.5nF for excitatory neurons and
0.2 pF for inhibitory neurons; gy, is the membrane conductance, set to 25 nS for
excitatory cells and to 20 nS for inhibitory cells. The total afferent postsynaptic
current (PSC) Igyn(t), is a sum of recurrent (coming from the local module) and
external (background activity and stimuli) contributions, described in detail below.

Cm

Currents

The afferent synaptic current includes glutamatergic excitatory components, me-
diated by AMPA and NMDA receptors, and inhibitory components, mediated by
GABA, receptors. External cells contribute to the current only trough AMPA
receptors. The total current is given by

Isyn(t) = Lampa ext (t) + IAMPA rec (t) + INMDA (t) + IGABA (t) (Al)

where the different currents are described as the product of the maximal conduc-
tance, the driving force, and the fraction of open channels:

Next
Liipaext (t) = ganraext (V(t) = VE) Z S?MPA ext (t)
j=1

Ng
Lnipa rec(t) = Jampa rec(V(t) - VE) Z ij?MPA ree (t)
j=1

gNMDA(V(t) — VE) & W, gYMPA
1+ [Mg*] eXP(—ﬁV(t))/“Y; 5
Nr

IGABA(t) = gGABA(V(t) - VI) S?ABA (t)
j=1

INMDA (t) =

where s7 is the fraction of open channels for receptor z € {AMPA,NMDA, GABA},
and ¢” is the corresponding maximal synaptic conductance. The values for the
synaptic conductances are given in table A.1. To keep the mean recurrent input
constant as we vary the size N of the network, all recurrent conductances are
rescaled by 1/N. The reversal potentials are Vg = 0mV and V; = =70 mV.
The dimensionless parameters w; found in excitatory recurrent currents are the
inter-population synaptic weights, described in section “Connectivity Structure”.
The maximal synaptic conductance of NMDA currents is voltage dependent and
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controlled by the intracellular magnesium concentration [Mg%] ~ 1 mM, with
coefficients v = 3.57mM and 8 = 0.062 (mV)~!.

The fraction of open AMPA (external and recurrent) channels, s
j obeys the following differential equation:

AMPA

3 in neuron

S (E) = )M (E) [ Taaen + Y 0(E— 1) —d) |
k

where Tyyps = 2.0 ms, and the sum over k represents a sum over spikes emitted
by presynaptic neuron j at time tg»k)7 and received after a transmission delay
d. In the case of external AMPA currents, spikes are fired following independent
Poisson processes of rate vey = 2.4 kHz, except for stimulated cells, which receive
a Poisson train of spikes at rate ve = 2.4kHz + \;, i = A, B. The dynamics for
the NMDA synaptic currents are described by

SINPA(E) = — S (E) T, + x5 (8)(1 = 55PN (D)

Gj(t) = —d5(t) /ramoa + D0t — 1) —d),
k

where characteristic rise and decay times are Tyypa,; = 2.0ms and Tyupa,; = 100ms,
and a = 0.5 (ms)fl. The GABA synaptic component of the current obeys

SN (H) = =SSN () [Tanpa + 3 O(E — £ — d),
k

with Teaga = 5 ms. The rise time for GABA, currents is, like for AMPA currents,
neglected. The transmission delay d is 0.5 ms in all channels.

Neuronal, synaptic, and network parameters are summarized in table A.1. The
values for synaptic conductances are chosen so that the firing rate of excitatory
and inhibitory cells during spontaneous activity is 3 Hz and 9 Hz, respectively.
Additional constraints are needed to determine the values of the 8 conductances.
They are the following. First, the average external excitatory input equals the
average recurrent excitatory input. Second, the mean recurrent inhibition is
three times as high as the mean recurrent excitation, as measured by the charge
entry per presynaptic spike. Third, the gating variable of NMDA receptors is 0.95
during the spontaneous activity state. These three conditions are imposed on
both excitatory and inhibitory cells, giving rise to six constraints that, together
with two conditions imposed on the rates, determine uniquely the 8 conductances.

Connectivity structure

The connection weights between cells determine the structure of the network.
Weights are given by the dimensionless parameters w; (see equations following
Eq. (A.1)), which denote the relative strength of the modified synapses with
respect to the baseline, to which there corresponds the value (w) = 1. Note that
only recurrent currents contain weights, whose precise value is set according to
the average inter-population synaptic efficacies that would result from a Hebbian
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plasticity mechanism. According to this prescription, the connection weights
would be stronger than average when the activity of pre and postsynaptic neurons
is correlated, lower than average when it is anticorrelated, and unaltered when it
is uncorrelated. In a selective population, where neurons tend to be coactivated,
connections are strengthened above the baseline. The connection weight between
cells from the same selective population is denoted by wy > 1. Analogously, since
the activity of the two selective populations is anticorrelated, the two populations
are weakly connected, with a value denoted by w_ < 1. All other weights are set to
the baseline value 1. To ensure that the average excitatory synaptic efficacy is not
changed in the learning process, w_ must depend on w4 as 1 — f(wy —1)/(1 — f).

Simulations

We have used a second order Runge-Kutta routine to integrate the system of
coupled differential equations that describe the dynamics of all cells and synapses.
The time step used was 0.02 ms. To calculate the firing rate of a population we
divided the number of spikes emitted in a 50 ms window by the number of neurons
in the population and by the window size. The time window was slided with a
time step of 5 ms. Every trial was simulated until a decision was made. For a
given parameter set, we estimated decision times from a block of 4000 trials.

Initial values

The network is initialized as follows. The initial depolarizations of the N neurons
are drawn from a uniform distribution of interval [H,#], where H is the reset
potential and 6 the threshold. The initial values for the 5NV gating variables are
drawn from a uniform distribution of interval [0,1]. For the baseline levels of
connection strengths and external inputs, the state of the network decays to the
spontaneous state in about one hundred of milliseconds, which is of the order
of the longest neuronal or synaptic time scale of the system. Choosing different
distributions leads to the same results, up to a transient period of the same time
scale.
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Table A.1: Parameters used in the integrate-and-fire simulations

Parameter Value

Network parameters:

N: number of cells in the network

«: normalization factor for NMDA PSCs

500-4500 cells

Ng: number of excitatory cells 0.8N

Nr: number of inhibitory cells 02N

Next: number of cells in the external module 800

c¢: sparseness (connectivity level) 1.0

p: number of selective populations 2

f: fraction of exc. cells in each selective population 0.15

w4 relative strength of single potentiated synapses 1.5-2.0

w—: relative strength of single depressed synapses 1— flwy —1)/(1—f)

Vext: Spike rate at external synapse 2.4 kHz
Neuronal parameters: excitatory  inhibitory

V1. resting membrane potential —70 mV

0: firing threshold —50mV

H: reset potential —55mV

C\»: membrane capacitance 0.5 nF 0.2 pF

gr: membrane leak conductance 25nS 20 nS

VE/Vr: reversal potential (excitatory/inhibitory) 0mV —70mV

Trp: refractory period 2ms 1ms
Synaptic parameters: excitatory  inhibitory

d: transmission delay (fixed) 0.5 ms 0.5 ms

Jampaext: €xternal AMPA synaptic conductance 2.08 nS 1.62 nS

Gamparec: Tecurrent AMPA synaptic conductance 104 nS/N 81nS/N

gnupa: Tecurrent NMDA synaptic conductance 327nS/N 258 nS/N

Joasa: recurrent GABA synaptic conductance 1250 nS/N 973 nS/N

[Mg?"]: extracellular magnesium concentration 1 mM

~: modulatory factor of magnesium block 3.57 mM

[: gain factor in magnesium block 0.062 (mV)~*

Tamea: decay time of AMPA currents 2 ms

Teasa: decay time of GABA currents 10 ms

Tawpa,1: decay time of NMDA currents 100 ms

Tawpa,1: rise time of NMDA currents 2 ms

0.5 (ms)™*







APPENDIX B

Amit-Brunel model

In this section we summarize the network model by [7], in the particular imple-
mentation as a binary decision making model, and enumerates the parameter
values we used. Here we highlight the differences of this model with respect to
the model by [43] described in Appendix A, to be referred to as BW.

Network

The network is composed of N neurons, from which Ny = 0.8 N are excitatory and
N; = 0.2N are inhibitory. Each cell in the network has a probability ¢ of having
a direct synaptic contact to any other neuron in the network, either excitatory
or inhibitory. The number of contacts per neuron is therefore a random number
binomially distributed, with p = ¢ and n = N (variable random connectivity, p. 22).
We assume that the connectivity level c¢ is independent of the type of pre- and
postsynaptic cell. Excitatory neurons are divided three different subpopulations:
p = 2 populations, of fNg cells each, selective to either one stimulus, and another
population of cells not responding to any (of size (1 — fp)Ng). Apart from being
sparse, the synaptic matrix is slightly different with respect to the model in
A. As in the BW model, synaptic efficacies between connected cells that belong
to the same selective subpopulation are stronger than the baseline level, while
connections between cells from different selective populations are weaker. Unlike
the BW model, all connections between selective and nonselective cells are weaker
than the baseline level. Only connections between nonselective cells remain to the
baseline level. The synaptic matrix is show in Fig. B.1

Neurons and synapses

Excitatory and inhibitory cells are modeled as leaky integrate-and-fire cells. Neu-
ron number ¢ of type « € {E, I}, where i =1 ..., N,, has at time ¢ two dynamical
variables associated with it: the depolarization of the membrane potential V;(¢)
and the afferent postsynaptic current I;°"(¢). The membrane potential obeys:

TmVi(t) = —(Vi(t) = Vi) + 7" (t)
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Figure B.1: Synaptic matrix of the sparse network model. The overall change in the
synaptic strengths is zero if J_ = (2 — f(p+ J4+/JeE))/(2— f(p+ 1)). Compare with
the synaptic matrix used for the Bw model.

where the synaptic current I;°"(t) is expressed in units of the potential. The ith
neuron emits a spike when V;(t) reaches the threshold 6. Right after the emission
of a spike V() is reset to H, following an absolute refractory period 7. I;¥"(t)
is the sum of a recurrent and an external contribution. Both synaptic currents

are modeled as instantaneous injections of charge into the cell (see 2.5.2)

IY(E) = I°(t) + I2°(0)
Next

N
= Jieis D0t~ —dif) + 3 Trexe D0t — £ — diy)
j=1 k j=1 k

where ¢;; is a Bernoulli random variable, which is 1 if there exists a synaptic
contact between neuron j and neuron i, and 0 otherwise. The probability of
synaptic contact is by definition the sparseness level ¢, i.e., Pr(¢;; = 1) = ¢. The
symbol J;; denotes the synaptic strength between cell j and i, whose value is drawn
from a Gaussian distribution with mean J,g and standard deviation J,gA; tg-k) is
the time of the k-th spike emitted by the j-th presynaptic neuron, while d;; is the
corresponding transmission delay, which is drawn from an exponential distribution
of mean d;o. The weights J;;, the connectivity c¢;;, and the transmission delays d;;
are fixed throughout a trial. The values used for this work are shown in Table B.1.
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Table B.1: Parameters used in the integrate-and-fire simulations, using a sparse network.

Parameter Value

Network parameters:

N: number of cells in the network 10000 cells

Ng: number of excitatory cells 0.8N

Ny: number of inhibitory cells 0.2N

Next: number of cells in the external module 800

c: sparseness (connectivity level) 0.1

p: number of selective populations 2

f: fraction of exc. cells in each selective population 0.15

w4 relative strength of single potentiated synapses 1.3-1.5

w_: relative strength of single depressed synapses [2 — f(p+ w4)]/[2 — f(p+1)]

Vext: Spike rate at external synapse 2.4 kHz
Neuronal parameters: excitatory inhibitory

V1: resting membrane potential —70 mV

0: firing threshold —50mV

H: reset potential —55mV

T.m: membrane time constant 20 ms 10 ms

Tvp: refractory period 2 ms 1 ms
Synaptic parameters: excitatory inhibitory

d: transmission delay (random, exponential) 11.3ms 1.2 ms

Efficacies J,p are drawn from a Gaussian distribution pag
e external (excitatory) innervations:

Jaext: mean of po ext 0.25 mV 0.50 mV
Agext: relative s.d. of pq ext 0.71 0.50

e recurrent collaterals to excitatory cells:
Jeg: mean of pga 0.35 mV —1.00 mV
Agg: relative s.d. of pga 0.71 0.25

e recurrent collaterals to inhibitory cells:
Jrg: mean of prq 0.50 mV —1.00 mV

Apg: relative s.d. of prao 0.5 0.25







AMPA
CcvV
DT

EPSP
GABA
IF
IPSP
ISI

1T
LDP
LIF
LIP
LTP
MT
NMDA
PFC
PSC
PSP
PPC
WTA

List of abbreviations

a-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid
coeflicient of variation

decision time

excitatory postsynaptic potential
y-aminobutyric acid
integrate-and-fire

inhibitory postsynaptic potential
interspike interval

inferior temporal

long-term depression

leaky integrate-and-fire

lateral intraparietal area
long-term potentiation

middle temporal (visual area V5)
N-methyl-D-aspartate

prefrontal cortex

postsynaptic current
postsynaptic potential

posterior parietal cortex

winner-take-all
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