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Abstract
Conformant planning is the problem of finding a sequence of actions for achieving a
goal in the presence of incomplete information in the initial state and in the state
transitions. While few practical problems are purely conformant, the ability to find
conformant plans is needed in planning with observations where conformant situa-
tions are an special case and where relaxations into conformant planning yield useful
heuristics. In this dissertation, we tackle the conformant planning problem with de-
terministic actions by using translations. On the one hand, we propose a translation
into propositional logic and two schemes for obtaining conformant plans for it: one
based on boolean operations of projection and model counting, and the other based
on projection and satisfiability. On the other hand, we define translations of the
conformant planning problem into classical problems that are solved by a modern
classical planners. We also analyze the formal properties of the translations and
evaluate the performance of the resulting planners.

Resumen
La planificación conformante es el problema de encontrar una secuencia de acciones
para lograr un objetivo en presencia de información incompleta sobre el estado ini-
cial y en las transiciones entre estados. Aunque pocos problemas son de carácter
puramente conformante, la posibilidad de encontrar planes conformantes es nece-
saria en planificación con observaciones, donde las situaciones conformantes son un
caso particular, y donde las relajaciones a planificación conformante dan heuŕısticas
útiles. En esta tesis atacamos el problema de la planificación conformante con ac-
ciones determińısticas mediante dos formulaciones basadas en traducciones. Por un
lado, proponemos una traducción a lógica proposicional y dos esquemas para obtener
planes conformantes a partir de estas, uno basado en operaciones booleanas de pro-
jección y conteo de modelos, y otro basado en projección y satisfacción proposicional.
Por otro lado, introducimos traducciones que permiten transformar un problema de
planificación conformante en un problema de planificación clásica que es luego re-
suelto usando planificadores clásicos. También analizamos las propiedades formales
de las traducciones y evaluamos el rendimiento de los planificadores obtenidos.
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Preface

Classical planning is the problem of finding a sequence of actions that achieves a
goal, starting from a particular initial situation. A wide range of problems can be
expressed in this form. Classical planning can be cast as a path finding problem
in a graph whose nodes are the possible states and whose edges are the transitions
that are possible with the actions available. State-of-the-art approaches to classical
planning use heuristic search in the state graph or map the problem of finding an
N -time-step plan into a propositional satisfiability problem (sat).

The model underlying classical planning can be extended to take into account partial
information, probabilities, cost, time, or resources. Conformant planning is planning
over a model in which the goal is to be achieved from an uncertain initial situation
using actions with non-deterministic effects. A conformant plan is a sequence of
actions that achieves the goal for any possible initial state and any possible state
transition. Conformant planning is computationally harder than classical planning,
as even under polynomial restrictions on plan length, plan verification remains hard.

While few practical problems are purely conformant, the ability to find conformant
plans is needed in planning with observations, where conformant situations are a
special case and provide useful relaxations and heuristics. Techniques used for con-
formant planning have been used, indeed, for finding contingent plans in problems
with sensing and for deriving finite-state controllers in problems where sensing is
available (Albore, Palacios, and Geffner, 2009; Bonet, Palacios, and Geffner, 2009).

An example of a conformant planning problem is a robot required to clean up a square
grid without knowing which cells are dirty. A conformant plan would involve visiting
all the cells of the grid, cleaning any dirt that may be found in them. After such a
plan the room will be clean with certainty. Another example involves a patient that
after some tests, is known to suffer from one of a set of possible illnesses. If there is a
sequence of treatments that would heal the patient without having to isolate the exact
illness, such sequence will constitute a conformant plan for curing the patient. As a
final example, consider a device made of a set of components that can be defective,
preventing the device from working properly. Even if no information is available to
determine which component is faulty, a plan that replaces all components will be a
conformant plan for fixing the device.

Conformant planning has been addressed computationally as a path-finding problem
in a graph whose nodes are sets of possible states (belief state) and whose edges
are the transitions among belief resulting of applying actions. Most conformant
planners use this approach together with an effective belief state representation and
an informative heuristics for guiding the search. In this dissertation we propose an
alternative approach based on translations.
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x preface

In the first part of the dissertation, we translate the conformant problem into a Con-
junctive Normal Form formula (cnf), whose models capture the possible N -time-
step plans. Each such plan works for some possible initial state and state transitions.
The conformant plans are the ones that work for all of them. For computing such
plans we carry an dpll-like search over the action variables, pruning the assign-
ments than cannot lead to a conformant plan. This pruning is achieved by means
of model-counting and projection operations that are made efficient by compiling
the cnf formula into Deterministic Decomposable Negational Normal Form (d-dnnf
Darwiche, 2001a). Another approach considered in this part of the dissertation uses
the same d-dnnf compilation to obtain a new cnf formula whose models capture
exactly the possible conformant plans, such that a conformant plan can be obtained
calling a standard sat solver once upon the new formula.

In the second part of the dissertation we introduce an alternative translation where
conformant problems are mapped into classical ones that are solved by using an
state-of-the-art classical planner. In the worst case this translation is exponential,
but for a large collection of problems it can be shown to be polynomial and complete.
The complexity of the complete translation is exponential in a conformant width
parameter that for most conformant benchmarks turns out to be bounded and equal
to one. The conformant planner T0 –the best performing planner in the Conformant
Track of the 2006 International Planning Competition (ipc-2006)– is based on a
complete translation for problems of width equal to one, but is effective for other
problems as well.

The results presented in the dissertation have been published in the following articles:

• Héctor Palacios, Blai Bonet, Adnan Darwiche, and Héctor Geffner. Pruning
conformant plans by counting models on compiled d-dnnf representations. In
Proceedings of the 15th International Conference on Planning and Scheduling
(ICAPS-05), pages 141–150. AAAI Press, 2005. [Chapter 3]

• Héctor Palacios and Héctor Geffner. Mapping conformant planning to sat
through compilation and projection. In Current Topics in Artificial Intelligence,
volume 4177, pages 311–320, Berlin, Germany, 2006. Springer Berlin / Heidel-
berg. Selected Papers from the 11th Conference of the Spanish Association for
Artificial Intelligence (CAEPIA 2005). [Chapter 4]

• Héctor Palacios and Héctor Geffner. Compiling uncertainty away: Solving con-
formant planning problems using a classical planner (sometimes). In Proceed-
ings of the Twenty-First National Conference on Artificial Intelligence (AAAI-
2006), pages 900–905. AAAI Press, 2006. [Chapter 5 and Section 8.2]

• Héctor Palacios and Héctor Geffner. From conformant into classical planning:
Efficient translations that may be complete too. In Proceedings of the 17th
International Conference on Planning and Scheduling (ICAPS-07), pages 264–
271. AAAI Press, 2007. [Chapters 6 and 7]

• Héctor Palacios and Héctor Geffner. Compiling uncertainty away in confor-
mant planning problems with bounded width. In Journal of Artificial Intelli-
gence Research (JAIR), volume 35, pages 623–675, 2009. [Chapters 6 and 7]
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cle Award, and the article presented at ICAPS-07 received the Best Student Paper
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Chapter 1

Classical Planning

Alegremente se perdieron en el [laberinto], al
principio como si condescendieran a un juego y
después no sin inquietud . . .

Cheerfully they lost themselves in [the
labyrinth]-at first as though condescending to a
game, but then not without some uneasiness . . .

Parable of the Palace.
Short story by Jorge Luis Borges

In this chapter we introduce the Classical Planning problem and review the main
computational approaches to deal with it. We start with a motivation and define the
classical planning problem formally. We illustrate the notation and basic concepts
using a simple example and briefly discuss the complexity of the classical planning
task. We then comment on two of the main approaches for classical planning: heuris-
tic search and propositional satisfiability. Both are relevant to our formulation of
conformant planning.

1.1 Introduction

A classical planning problem consists of an initial state, a set of goal states, and
actions that change the states. The goal of classical planning is to find effective
methods for obtaining a plan, i.e. a sequence of actions, that applied at the initial
situation achieves a goal state.

Many different problems can be expressed in classical planning. For example, a
logistics problem involving the pickup and delivery of packages can be modeled as
follows. The initial situation describes the initial location of the packages, trucks,
planes. The actions include loading and unloading a package from a train or a plane,
and moving trucks and planes between locations and cities. The goal encodes the
final desired position of the packages. A classical planner use such encoding of the

3



4 classical planning

problem to return a sequence of actions that finally deliver the packages to their
desired destinations. In a similar way, robot navigation and puzzle problems can be
modeled as well.

Classical planning has seen great advances in the last two decades (Blum and Furst,
1995; Kautz and Selman, 1996; Bonet and Geffner, 2001a). The most successful ap-
proach is to use heuristic search on the underlying state model, guided by a heuristic
extracted from the classical problem. Another approach that has been successful is
to try and find a plan of N time steps by creating a set of propositional formulas
that contain such plans.

In the rest of the chapter, we provide a formal definition of classical planning, see an
example and review some complexity results and state-of-the-art planners.

1.2 Model

Solving a classical planning problem involves selecting actions to achieve a goal from
an fully known initial state.

The model underlying classical planning can be described by the tuple
S = 〈S, s0, SG, A, f〉, consisting of

• a finite and discrete state space S,

• an initial state s0 ∈ S,

• a set SG ⊆ S of goal states,

• the actions A(s) ⊆ A that are applicable in each s ∈ S,

• a deterministic transition function s′ = f(a, s) for a ∈ A(s), and

A classical plan in this model is a sequence of actions a0, . . . , an that generates a
state sequence s0, s1, . . . , sn+1 such that ai is applicable in the state si and results in
a state si+1 = f(ai, si), and sn+1 is a goal state.

In this work we assume that action cost are uniform; i.e. c(a, s) = 1. The cost of a
plan is the sum of the action costs, that corresponds to the plan length, denoted |π|.
A classical plan is optimal if it has minimum cost.

Classical planners accept a compact description of the above models as input for
automatically producing a plan. Let us first consider a syntax for expressing a
planning problems, and then provide a semantic in terms of state models.

1.3 Syntax

A classical planning problems P is expressed as a tuple of the form P = 〈F, I,O,G〉
where F stands for the fluent symbols in the problem, I is a set of literals over F
defining the initial situation, O stands for a set of operators or actions, and G is
a set of literals over F defining the goal. Every action a ∈ O has a precondition
Pre(a) given by a set of literals, and a set of conditional effects C → L where C is
a set of literals and L is a single literal. This definition corresponds to the strips
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language extended with conditional effects and negations (Fikes and Nilsson, 1971;
Nebel, 2000).

We refer to the conditional effects C → L of an action a as the rules associated with
a, and sometimes write them as a : C → L. Sometimes we group rules a : C → L for
different literals L into one rule a : C → E, and write C → L as true → L when C
is empty. When all the effects of an action a are of the form true → L, we will say
that the effect of a is simply the set of literals L. Finally, for a literal L, ¬L denotes
the complement of L.

1.4 Semantics

Given a problem P = 〈F, I,O,G〉, the corresponding state model
S(P ) = 〈S, s0, SG, A, f〉, consists of the following.

• The set of states S, where a state s ∈ S is a set of positive literals in F so that
a positive literal p is in s if and only if the fluent p is true in the state s.1

• The initial state s0 is I.

• The set of goal states SG, such that G ⊆ sg for each sg ∈ SG.

• The actions a applicable in s, A(s), are the ones in O such that Pre(a) ⊆ s,
• The state-transition function f(a, s) maps the action a applied to the state s

into the successor state sa. A rule a : C → L is said to apply in an state s if all
the positive literals of C are in s, and all the negative literals of C are not in s.
The state sa contains the same atoms as s, except that for all rules a : C → L
that applies in s, then L is in sa if L is a positive literal, and L is not in sa if
L is a negative literal.

Following the state model, an action sequence π = {a0, a1, . . . , an} is a classical plan
for P if π is executable in the initial state s0 and achieves a goal state sg ∈ SG. An
action ai is executable if the preconditions of ai are true in si. The state that results
from executing action ai in si is si+1. π is a classical plan if all goal literals are true
in sn+1.

1.5 Example

Consider the problem of a robot in a N ×N grid, with N = 8, that has to go from
I to G (Fig. 1.1). This problem can be modeled as a classical planning problems
P = 〈F, I,O,G〉, with:

• Fluents F : at-x(pi), at-y(pj), for any i, j such that 1 ≤ i, j ≤ N .

• Initial situation I: at-x(p2), at-y(p2).

• Actions O:
1This corresponds to the so called closed world assumption, as any atom not mentioned in an

state is assume to be false.
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Figure 1.1: Navigation problem in a simple square grid. The robot starts at Li and should
go to Lg.

– up(pj) for any j < N .
Precondition: at-y(pj). Effect: at-y(pj+1), ¬at-y(pj).

– down(pj) for any j > 1.
Precondition: at-y(pj). Effect: at-y(pj−1), ¬at-y(pj).

– left(pi) for any i > 1.
Precondition: at-x(pi). Effect: at-x(pi−1), ¬at-x(pi).

– right(pi) for any i < N .
Precondition: at-x(pi). Effect: at-x(pi+1), ¬at-x(pi).

• Goal G: at-x(p5), at-y(p5).

A solution for this problem is the sequence.

{ up(p2), up(p3), up(p4), right(p2), right(p3), right(p4) }

Note that the same problem could also be encoded in a slightly different way. In-
stead of 28 actions with one conditional effect each, we could use 4 actions with 7
conditional effects each, as follows:

• Actions O:

– up(). Precondition: None.
Effect: at-y(pj) → at-y(pj+1), ¬at-y(pj), for each j < N .

– down(). Precondition: None.
Effect: at-y(pj) → at-y(pj−1), ¬at-y(pj), for each j > 1.

– left(). Precondition: None.
Effect: at-x(pi) → at-x(pi−1), ¬at-x(pi), for each i > 1.
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– right(). Precondition: None.
Effect: at-x(pi) → at-x(pi+1), ¬at-x(pi), for each i < N .

In this case, a solution is:

{ up, up, up, right, right, right }

The second problem allows the execution of actions in states where the first does not,
making it a different problem. However, the two given solutions behave equally when
executed. We will go back to the second formulation when talking about conformant
planning, where conditional effects are needed for modeling problems.

1.6 The Planning Domain Definition Language –
PDDL

Most work in classical planning has been done for problems expressed in the strips
language (Fikes and Nilsson, 1971). More recently, however, the Planning Domain
Definition Language, pddl (McDermott et al., 1998), has become the standard de
facto, mainly because of its use in the International Planning Competitions (ipc)
(McDermott, 2000; Bacchus, 2001; Fox and Long, 2003; Hoffmann and Edelkamp,
2005; Gerevini et al., 2009; Helmert et al., 2008). pddl allows to specify strips
problems as well as extensions to the strips language. Figures 1.2 and 1.3 show the
navigation examples expressed in pddl.

State-of-the-art planners ground the actions of a pddl problem before attempting to
solve it, i.e. they transform predicates, objects, and constants into a propositional
representation, like our definition of Section 1.3.

1.7 Complexity

Given a classical problem P , the decision problem PlanEx is defined by the question
Is there a plan for P?. For a constant k, the decision problem PlanLen is defined by
the question Is there a plan π for P with |π| ≤ k? The first problem is related to the
complexity of obtaining any plan reaching a goal state, while the second is related to
obtaining an optimal plan. Both problems are pspace-complete (Bylander, 1994),
i.e. the class of problems that can be solved in polynomial space with no restrictions
on running time. For constant k, the PlanLen problem is NP-complete.

1.8 Classical Planning as Heuristic Search

In this and the following section we review the state-of-the-art approaches to classical
planning that have been developed in recent years: heuristic search and propositional
satisfiability. It should be noted that all the winning planning systems from the ipc
in the satisficing track2 have been based on planning as heuristic search. Planning as

2The track where planners are intended to obtain a solution, even though it is not optimal
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(define (domain square)
(:requirements :typing)
(:types pos)
(:constants p1 p2 p3 p4 p5 p6 p7 p8 - pos)
(:predicates (x ?p - pos) (y ?p - pos))
(:action up-p1

:precondition (y p1)
:effect (and (not (y p1)) (y p2))

)
...
(:action up-p7

:precondition (y p7)
:effect (and (not (y p7)) (y p8))

)
(:action down-p2

:precondition (y p2)
:effect (and (not (y p2)) (y p1))

)
...
(:action left-p2

:precondition (x p2)
:effect (and (not (x p2)) (x p1))

)
...
(:action right-p1

:precondition (x p1)
:effect (and (not (x p1)) (x p2))

)
...

)
(define (problem square-8)

(:domain square)
(:init (and (x p2) (y p2)))
(:goal (and (x p5) (y p5)))

)

Figure 1.2: pddl encoding of a navigation problem in a simple square grid. The agent in
a 8× 8 grid starts at (2, 2) and must get to (5, 5).
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(define (domain square)
(:requirements :typing :conditional-effects)
(:types pos)
(:constants p1 p2 p3 p4 p5 p6 p7 p8 - pos)
(:predicates (x ?p - pos) (y ?p - pos))
(:action up

:effect (and
(when (y p1) (and (not (y p1)) (y p2)))
...
(when (y p7) (and (not (y p7)) (y p8)))

))
(:action down

:effect (and
(when (y p2) (and (not (y p2)) (y p1)))
....
(when (y p8) (and (not (y p8)) (y p7)))

))
(:action left

:effect (and
(when (x p2) (and (not (x p2)) (x p1)))
...
(when (x p8) (and (not (x p8)) (x p7)))

))
(:action right

:effect (and
(when (x p1) (and (not (x p1)) (x p2)))
(when (x p2) (and (not (x p2)) (x p3)))
....
(when (x p7) (and (not (x p7)) (x p8)))

))
)
(define (problem square-8)
(:domain square)
(:init (and (x p2) (y p2)))
(:goal (and (x p5) (y p5)))

)

Figure 1.3: pddl encoding of a navigation problem in a simple square grid. The agent in
a 8 × 8 grid starts at (2, 2) and must get to (5, 5). In contrast to Fig. 1.2 on the preceding
page, this encoding uses conditional effects.
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propositional satisfiability is a competitive approach for optimal classical planning,
even though such approaches minimize the parallel length, makespan, instead of the
number of actions in the plan.

Given a classical planning task P and its corresponding state space S(P ), a plan
can be obtain by finding a path from the initial state into a goal state. In principle,
any standard graph-search algorithm (Cormen et al., 1990) can be used, but blind
search turn out to be ineffective as the size of the state space is exponential on the
number of fluents of the problem P . Instead, heuristic search algorithms have been
found to be very effective when appropriate heuristics are used. Many successful
heuristics are based on relaxations of the original problems that are easier to solve
(Pearl, 1983). Useful relaxations of a planning problem are, for example, to ignore the
negative effects of actions or to ignore some of the preconditions. Assuming that the
cost of achieving a set of literals is equal to the sum of the costs for achieving each
literal independently. Planning as heuristic search was introduced independently
by McDermott (1996) and Bonet, Loerincs, and Geffner (1997). Their work uses
relaxations and assumptions to obtain informative heuristics, that combined with
suitable algorithms, lead to very effective planners.

Some very successful classical planners are hsp (Bonet and Geffner, 2001a, 1999), ff
(Hoffmann and Nebel, 2001), FastDownward (Helmert, 2006), SGPlan (Chen et al.,
2006; Wah and Chen, 2006) and lama (Richter et al., 2008), all of them based on
heuristic search.

The heuristic-search based planner hsp uses a heuristic extracted from the planning
problem by ignoring the negative effects and assuming that achieving a set of literals
is equivalent to achieving each one of them independently. hsp uses a Weighted-
A∗ search algorithm that biases the selection of nodes. This biases the selection of
nodes to the heuristic criterion, getting in many cases solutions in less time even at
a reasonable detriment of their quality.

Another successful classical planner is ff, that takes ideas from hsp, but uses as
the heuristic the length of a relaxed plan obtained from a similar problem without
negative effects. ff first tries to reach the goal using an incomplete greedy search,
and switches back to a complete search algorithm when the greedy search fails. Such
greedy search is incomplete but quite effective, as it continues as far as it can improve
the heuristic value by considering actions that are part of the relaxed plan.

Planning as Heuristic Search is sound and complete by construction, as far as the
used search algorithm is complete, given that the state space contains exactly all the
possible plans as paths from the initial state to any goal state.

1.9 Classical Planning as Propositional Satisfiability

The sat-based approach to classical planning (Kautz and Selman, 1992, 1996), maps
the problem of finding a plan of N time steps into the problem of finding a model
of a suitable propositional formula. This way, a planning algorithm may proceed by
generating propositional theories for a problem P and an horizon N , increasing N
until a plan is found. Since the value of N is unknown, the algorithm start with
N = 0.
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The sat approach has become feasible after the great advances in the area of proposi-
tional satisfiability. sat solvers accept propositional formulas in Conjunctive Normal
Form (cnf), represented as a list of clauses. State-of-the-art sat solvers are able to
deal thousand of variables and hundreds of thousand of clauses. The basic algorithm
underlying state-of-the-art sat solvers, called DPLL, is based on very simple ideas
(Davis et al., 1962).

A variable is selected and is assigned to true or false. After each variable assignation,
a limited but efficient form of reasoning called unit propagation is run on the problem,
allowing to set other variables to true or false. Modern sat solvers also learn new
clauses when a contradiction is found, and use effective techniques for variable and
value selection. Modern sat solvers are being used for both industrial application
and other research problems, like classical planning.

The propositional formula TN (P ) encodes the plans of N time steps for classical
problem P , involves propositional variables xi, where i is a temporal index, and
i is in 0, . . . , N for fluents of problem and i is in 0, . . . , N − 1 for actions. For a
formula B, Bi refers to the formula obtained by replacing each variable x in B by
its time-stamped counterpart xi. For the encoding TN (P ) of a classical planning
problem P = 〈F, I,O,G〉 we extend the encoding of Kautz and Selman (1996) for
supporting problems with conditional effects. Given a horizon N , the cnf theory
TN (P ) is defined as follows.

Definition 1.1. The propositional theory TN (P ) for a classical planning problem
P = 〈F, I,O,G〉 and an horizon N is given by the following set of clauses:

1. Init: a literal L0 for each literal L ∈ I.

2. Goal: a literal LN for each literal L ∈ G.

3. Actions: For i = 0, 1, . . . , N − 1 and a ∈ O:

ai ⊃ Pre(a)i (preconditions)
Ci ∧ ai ⊃ Ei+1 (for each rule a : C → E)

4. Frame: for i = 0, 1, . . . , N − 1, and each fluent literal L

Li ∧
∧

a:C→¬L
¬[Ci ∧ ai] ⊃ Li+1

where the conjunction ranges over the rules a : C → ¬L
5. Exclusion: ¬ai ∨ ¬a′i for i = 0, . . . , N − 1 if a and a′ are incompatible

The meaning of the clauses in Init, Goal, and Actions is straightforward. Frame
expresses the persistence of fluents in the absence of actions that may affect them.
Finally, Exclusion forbids the concurrent execution of actions that are deemed in-
compatible.

For obtaining a sequence of actions achieving the goal, pair of actions cannot be exe-
cuted at the same time, and should be regard as incompatible by using the exclusions
clauses. However, the satplan approach to classical planning handle parallelism nat-
urally if two actions are deemed compatible when the sets of boolean variables in
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their effects are disjoint.3 Such parallelism often lead to more compact formulas for
obtaining plans, allowing to scale up to larger planning problems.

Thus, a parallel plan is a sequence of actions sets that maps the initial state into a
goal state, where the set of actions is applicable in a state when the preconditions
of all such actions holds, and the resulting state of applying the set of actions A in
an state s has the same literals of s except for literals ¬L, if C is satisfied by s and
there is rule a : C → L, for some a in A. Normal sequence of actions that achieve
the goal are called serial plans.

For a given N , if the propositional theory TN (P ) is satisfiable, the sequence of actions
sets that are true in the model encodes a parallel plan. Vice versa, for any parallel
plan of P with makespan N , there is exactly one model of TN (P ) encoding both the
actions executed and their effects, starting at the initial state until a goal state.

A parallel classical plan π for P is optimal if there is no other plan π′ such that
|π′| < |π|. Optimal parallel plans are said to have minimal makespan, as there is
no other parallel plan achieving the goal in less time steps. An optimal parallel plan
can be found by setting the horizon N to 0, and increasing it one by one, until a plan
is found. Other strategies for obtaining optimal plans are possible (Rintanen et al.,
2005).

1.10 Syntactic variants

Many of the problems we will be dealing with have a set of clauses instead of a set
of literals, a goal state being a state that satisfies such clauses. Those problems can
be converted into pure strips in a standard way. Each goal clause C : L1 ∨ · · · ∨Lm
is modeled by a new goal atom GC , and a new action that can be executed once is
added with rules Li → GC , i = 1, . . . ,m. An alternative way to represent such cnf
goals is by converting them into dnf, discarding unreachable terms, and having an
action End map each terms into a dummy goal LG. For the first approach, planners
that use additive heuristics (Bonet and Geffner, 2001a), as hsp or ff, may fail to
realize that there are some combinations of literals that are not reachable and get
lost while searching. On the other hand, using the second approach may lead to an
exponential number of dnf terms, making the problem in practice unsolvable.

Other features of pddl cannot be handle by compiling them away into pure strips.
The language for classical planning defined in Section 1.3 includes conditional effects,
in contrast with the strips language where the effects are unconditionally applied
(Fikes and Nilsson, 1971). Indeed, some modern classical planners does not support
conditional effects or provide limited support for them. Conditional effects can be
compiled away into pure strips but at the cost of causing an exponential blow up
in size of the problem or a polynomial increase in the plan length (Rintanen, 2003),
that may harm the heuristics used by state-of-the-art classical planners. In general,
classical planners perform better if they do not explicitly compile conditional effects
into strips, but represent them implicitly and, in the case of heuristic-search based
algorithms, extend their heuristics accordingly.

3Other definitions of compatible actions are possible. We choose this one for simplicity on its
treatment in this dissertation and in the implementation of our conformant planning algorithms.



Chapter 2

Conformant Planning

De noche iremos, de noche,
que para encontrar la fuente,
sólo la sed nos alumbra.

By night, we hasten in darkness,
to search for living water,
only our thirst leads us onwards

Taizé Community’s song. Based on a poem
by John of the Cross1

In this chapter we define the conformant planning problem and review some of the
previous approaches. We start by motivating the problem and providing some ex-
amples. Then, we define formally conformant planning, a planning problem that is
similar to classical planning, except for the uncertainty in the initial state and action
effects. In the rest of the chapter we discuss the computational complexity of the
problem and review current approaches to conformant planning.

2.1 Introduction

A conformant planning problem is like a classical planning problem but the initial
situation is not fully known, and may have non-deterministic effects (Goldman and
Boddy, 1996; Smith and Weld, 1998). Since there are no observations in a conformant
planning problem, conformant plans are sequence of actions like in classical planning.
This plan must ensure that the goal is achieved with certainty regardless of the actual
initial states and possible transitions.

While few practical problems are purely conformant, the ability to find conformant
plans is needed in planning with sensing, that extends the conformant case by al-
lowing observations. Indeed, relaxations of planning with sensing into conformant

1From http://www.taize.fr. c©Ateliers & Presses de Taizé, Communauté de Taizé, 71250
Taizé, France.

13
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Figure 2.1: Conformant Planning problem: Robot in a room with incomplete information
about the initial position. The robot starts at La, Lb, Lc, or Ld, and should go to Lg.

planning yield useful heuristics (Hoffmann and Brafman, 2005; Albore et al., 2009).
In general, the research in conformant planning is relevant to any form of planning
involving reasoning about actions executed on belief states.

Some applications of conformant planning are automatic web service composition
(McDermott, 2007; Pistore et al., 2004; Bertoli et al., 2006; Hoffmann et al., 2007,
2009) and bioinformatics (Bryce and Kim, 2007).

2.2 Examples

As an illustration, consider a variation of the classical planning problem presented
in the previous chapter (Fig. 1.3 on page 9). In the problem depicted in Figure 2.1,
the initial situation is that the agent could be in any of the positions (1, 1), (1, 2),
(2, 1) or (2, 2). In the classical problem illustrated in Fig. 1.3 on page 9, the initial
situation is that the agent is in position (2, 2) with certainty.

First, we observe that the solution to a conformant planning problem may be totally
different from the solution to a classical planning problem. The solution to the
classical planning example in Fig. 1.3 on page 9

{ up, up, up, right, right, right }

is not a solution to the conformant planning example in Fig. 2.1. After executing
the classical plan in Fig. 2.1, the agent may end up in positions (4, 4), (4, 5), (5, 4) or
(5, 5), and thus not achieve the goal that requires the agent to be in position (5, 5)
with certainty. In contrast, the sequence of actions

{ down, left, up, up, up, up, right, right, right, right } (2.1)
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is a conformant plan, as the first two actions cause the agent to be in position (1, 1)
with certainty, and then moving to the goal, position (5, 5), where the agent ends
with certainty.

This example may suggest that the heuristics used in classical planning may be
difficult to adapt to the conformant case. Heuristics based on reducing the number
of possible states may be useful but can also be misleading. For example, if the goal
were at (4, 4), (4, 5), (5, 4) or (5, 5) then it would be a good idea to go directly to the
goal.

This example could be formulated as a conformant problem P = 〈F, I,O,G〉 with

• Fluents F : at-x(pi), at-y(pj), for any i, j such that 1 ≤ i, j ≤ N .

• Initial situation I: oneof(at-x(p1), at-x(p2)), oneof(at-y(p1), at-y(p2))

• Actions O:

– up(). Precondition: None.
Effect: at-y(pj) → at-y(pj+1), ¬at-y(pj), j < N .

– down(). Precondition: None.
Effect: at-y(pj) → at-y(pj−1), ¬at-y(pj), j > 1.

– left(). Precondition: None.
Effect: at-x(pi) → at-x(pi−1), ¬at-x(pi), i > 1.

– right(). Precondition: None.
Effect: at-x(pi) → at-x(pi+1), ¬at-x(pi), i < N .

• Goal G: at-x(p5), at-y(p5)

where the expressions oneof(at-x(p1), at-x(p2)) and oneof(at-y(p1), at-y(p2))
means that agent is at one of two coordinates along each dimension. We can verify
that the sequence of actions (2.1) solves the conformant problem P , as it achieves the
literals at-x(p5) and at-y(p5) for all the possible initial states described in I, given
that the four actions are deterministic. The encoding of these problems in pddl, a
language accepted by modern conformant planners, is shown in Fig. 2.2.

A more challenging conformant planning problem is the following. A robot is initially
at a certain position I in a 8× 8 grid and the location of an object is unknown. The
goal is that the object ends up in a position T, the trash. The robot can move around
the grid, pick up any object at the current position, and release any object that it
is holding. The robot can only pick up one object at a time. Also, when the robot
executes the pick-up action, any object in its location or in the eight neighbor cells
becomes held. Fig. 2.3 illustrates a plan obtained by T0, a conformant planner we
introduce in Chapter 7, where the numbers in circles indicate the order and place of
the pick-up actions.2

Following most work on conformant planning until now, we assume in this disserta-
tion that actions are deterministic. For an exception see the work of Cimatti et al.
(2004).3

2A pddl encoding of this problem can be found in appendix C.5 on page 177.
3In Section 8.3 on page 127, however, we discuss a limited extension of one of our algorithms to

actions with non-deterministic effects.
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(define (domain square-center)
(:requirements :typing :conditional-effects)
(:types pos)
(:constants p1 p2 p3 p4 p5 p6 p7 p8 - pos)
(:predicates (x ?p - pos) (y ?p - pos))
(:action right

:effect (and
(when (x p1) (and (not (x p1)) (x p2)))
(when (x p2) (and (not (x p2)) (x p3)))
....
(when (x p7) (and (not (x p7)) (x p8)))

))
(:action left

:effect (and
(when (x p2) (and (not (x p2)) (x p1)))
...
(when (x p8) (and (not (x p8)) (x p7)))

))
(:action down

:effect (and
(when (y p1) (and (not (y p1)) (y p2)))
...
(when (y p7) (and (not (y p7)) (y p8)))

))
(:action up

:effect (and
(when (y p2) (and (not (y p2)) (y p1)))
....
(when (y p8) (and (not (y p8)) (y p7)))

))
)
(define (problem square-center-8)
(:domain square-center)
(:init (and
(oneof (x p1) (x p2) (x p3) (x p4) (x p5) (x p6) (x p7) (x p8))
(oneof (y p1) (y p2) (y p3) (y p4) (y p5) (y p6) (y p7) (y p8))

))
(:goal (and (x p5) (y p5)))

)

Figure 2.2: pddl for a conformant planning problem. A robot in a 8× 8 grid starts at an
unknown position (1, 1), (1, 2), (2, 1) or (2, 2). The goal is to get to (5, 5).
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Figure 2.3: A solution to the Look-and-Grab conformant problem. A object with unknown
location in a 8× 8 grid must be collected by a robot whose gripper can hold one object at a
time. The robot has an action that picks up the objects that are sufficiently close, if any, and
after each pick-up the agent must dump the collected object into the trash before continuing.
The numbers in circles indicates the order and location of the pick-up actions.
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2.3 Model

Just like classical planning, solving a conformant planning problem involves selecting
actions to achieve a goal state. However, unlike classical planning, such a plan should
do so from each possible initial state.

The model underlying conformant planning can thus be described as a state space
defined as a tuple S = 〈S, S0, SG, A, f〉, consisting of

• a finite and discrete state space S,

• a set of possible initial states S0 ⊆ S,

• a set SG ⊆ S of goal states,

• the actions A(s) ⊆ A that are applicable in each s ∈ S,

• a nondeterministic transition function S′ = f(a, s) for each a ∈ A(s), and

A conformant plan is a sequence of actions a0, . . . , an that for any possible initial
state s0, and for any possible transition of the sequence of actions, generates a state
sequence s0, s1, . . . , sn+1 such that ai is applicable in state si and results in a state
si+1 ∈ f(ai, si), and sn+1 is a goal state.

In this work we assume that action cost are uniform; i.e. c(a, s) = 1. The cost of an
action sequence π is the sum of the action costs, that corresponds to the plan length
denoted |π|. An action sequence π is an optimal conformant plan for P if the action
sequence π is a conformant plan, and there is no other plan π′ such that |π′| < |π|.

As for classical planners, conformant planners accept a compact description of the
above models as an input for producing a plan.

2.4 Syntax

Conformant planning problems P are expressed as tuples of the form P = 〈F, I,O,G〉
where F stands for the fluent symbols in the problem, I is a set of clauses over F
defining the initial situation, O stands for a set of (ground) operators or actions, and
G is a set of literals over F defining the goal.4 Every action a has a precondition
Pre(a) given by a set of fluent literals, and a set of conditional effects C → L where
C is a set of fluent literals and L is a single fluent literal.

All actions are assumed to be deterministic and hence all uncertainty lies in the
initial situation. Hence, the language for conformant planning problems excluding
the uncertainty in the initial situation, is equivalent to the strips language for
classical planning, presented in Section 1.3 on page 4, extended with conditional
effects and negation. Moreover, if there is no uncertainty in the initial situation, as
when I consist only of unit clauses, P is equivalent to a classical planning problem.

As we did for classical planning, we use C → L to refer to the conditional effects of
an action a as the rules associated with a, and sometimes write them as a : C → L.

4All planning systems presented in this document support clauses in the Goal by means of
different transformations (see Section 1.10). For simplicity in presentation, unless stated otherwise,
the goal is considered to be a set of literals.
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When convenient, we also join several effects associated with the same action and
condition as in a : C → L ∧ L′ and write C → L as true → L when C is empty.
Finally, for a literal L, ¬L denotes the complement of L.

It is convenient to allow expressions oneof(l1, . . . , ln) in the initial situation, that are
interpreted as a clause X1 ∨ · · · ∨Xn and a set of binary clauses ¬Xi ∨¬Xj for each
i 6= j, encoding that exactly one of the li literals is true in the initial situation.

2.5 Semantics

Now we show how the syntax defined in the previous section can be interpreted to
encode an state model. Given a conformant problem P = 〈F, I,O,G〉, the state
model S(P ) is obtained in the following way.

• The states s of the state space S are set of literals that represents truth-
assignment over the fluents F in P , i.e. for every fluent L in F either L or ¬L
must belong to s.5

• The set of possible initial states S0 are the states of S that satisfy the clauses
in I.

• The goal states sg ∈ SG are those such that G ⊆ sg.
• The actions a applicable in s, A(s), are the ones in O such that Prec(a) ⊆ s.
• The deterministic state-transition function f(a, s) that maps the action a ap-

plied to the state s into the successor state sa. The state sa contains the same
literals as s, except that sa contains the literal L if C ⊆ s and there is a rule
a : C → L.

Given that we restrict the syntax to deterministic actions, a conformant plan is a
sequence of actions a0, . . . , an that maps any possible initial state s0 into a goal state,
using the deterministic transition function.

Let us write I(s) to refer to the set of literals that are true in a state s (i.e., l ∈ I(s) iff
l is true in s), and P/s to refer to the classical planning problem P/s = 〈F, I(s), O,G〉
which is like the conformant problem P except for the initial state that is fixed to
s. Observe that an action sequence π is a conformant plan for P iff π is a classical
plan for P/s, for every possible initial state s of P .

Throughout this document we assume that I is logically consistent, so that the set
of possible initial states is not empty, and that P itself is consistent, in the sense that
the effects triggered by an action a in a reachable state s must be logically consistent,
in the sense that no pairs of effects cancel each other out.

Conformant planning semantics can also be defined in terms of a state-model whose
nodes are sets of possible states (belief state) and the plans are paths starting at the
initial belief state, and ending in a state where the goal is satisfied with certainty
(Bonet and Geffner, 2000). Even though both semantics are equivalent, in this

5For conformant planning we do not follow a convention that is common in planning of assuming
that fluents not mentioned in I are false in the initial situation. As a result, if we want a fluent p to
be false in the initial situation, we must explicitly add the literal ¬p to I.
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dissertation we choose to take advantage of the assumption of action determinism to
a simpler semantic. This simplifies the formal treatment of our results as they rely
on algorithms for classical planning.

2.6 Complexity

Given a conformant problem P , the decision problem ConfPlanEx is defined by the
question is there a plan for P?. ConfPlanEx is pspace-complete for a language simi-
lar to propositional strips with arbitrary preconditions (Haslum and Jonsson, 1999;
Rintanen, 2004b; Littman et al., 1998). In general, however, conformant planning
is computationally harder than classical planning as plan verification remains hard
even under polynomial restrictions on plan length. Indeed, while determining the
existence of a classical plan with length at most k is np-complete if k is assumed to
be polynomial in the size of the problem (Kautz and Selman, 1996), but under the
same conditions conformant plan existence is ΣP

2 -complete (Turner, 2002). The class
ΣP

2 stands for npnp; i.e. that the problem is in np only if we allow the use of an np
oracle (Papadimitriou, 1994).

Verifying a classical plan of polynomial length is polynomial in time as it is enough to
apply the actions starting from the initial state. In contrast, a polynomial length se-
quence of actions is a conformant plan if it is a classical plan for a possible exponential
number of initial states. Indeed, conformant planning verification of polynomially-
length plans is np-complete by itself (Turner, 2002).

2.7 Conformant Planning as Heuristic Search in Belief
Space

The most common approach to conformant planning is based on the belief state
formulation (Bonet and Geffner, 2000). A belief state b is the non-empty set of
states that are deemed possible in a given situation, and every action a executable
in b, maps b into a new belief state ba

ba = {s′ | such that s′ = f(a, s) for some s ∈ b}

where f(a, s) is the state transition function that maps an action a and a state s into
a new state s′.

A conformant planning task can be solved as a path-finding problem in a graph where
the nodes are belief states b, the source node b0 is the belief state corresponding to
the initial situation, and target belief states bG are those where all the goals are true.
A formula is true in a belief state b if it is true in every state s in b, and an action a
is executable in a belief state b if its preconditions are true in every state s in b.

This formulation, which underlies most current conformant planners (Hoffmann and
Brafman, 2006; Bryce et al., 2006; Cimatti and Roveri, 2000; Cimatti et al., 2004;
Tran et al., 2009), must address two problems: the problem of representing beliefs
in a compact way, and the problem of obtaining effective heuristics over beliefs. The
first problem has been approached through logical representations that make use
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of sat or Ordered Binary Decision Diagrams (obdd) technology (Bryant, 1992)6,
that while intractable in the worst case, scale up better than fully enumerated state
representations. The second problem, on the other hand, has been more complex,
with heuristics for searching in belief space not being as successful so far as the
heuristics developed for classical planning (Bonet and Geffner, 2001a; Hoffmann and
Nebel, 2001), in the sense that different heuristics tend to perform very well in some
family of problems but not in others.

Note that heuristic search in belief space uses a directional branching scheme that
searches for plans by applying actions either forward or backwards. In classical
planning, non-directional branching has also been useful, for example in satplan
(Kautz and Selman, 1996; Hoffmann and Geffner, 2003).

2.8 Belief Space Representation and Heuristics

There are two issues that are crucial for belief space planners to scale up: one is the
heuristic, and the other is the belief space representation and update. In this section
we review the state of the art in conformant planning based on search over belief
state, and look at different approaches to these two critical issues.

The first planner to use explicit search in belief space is gpt (Bonet and Geffner,
2000), where the search for a goal belief state from a given initial belief state is
carried out by means of the A∗ algorithm with a heuristic function obtained from
a suitable relaxation of the problem. This relaxation retains the uncertainty in the
model but assumes full observability, resulting in a heuristic function that is useful in
certain problems, but not in problems where reasoning by cases is not appropriate.
For example, if an agent does not know whether it is at a distance one or two from the
goal, reasoning by cases, the agent will conclude that it is best to move towards the
goal, yet a move in a different direction might help the agent find its true location,
as the problem depicted in Fig. 2.1 on page 14. In general, the assumption of full
observability yields a heuristic that is not well informed for problems that include
an information-gathering component, a feature that is present in many conformant
planning problems even if they do not involve observations.

The cardinality heuristic, used by the planner hscp (Bertoli et al., 2001), selects
actions that reduce the size the most of the current belief state, that is useful in
many situations. There are problems, however, where it might be difficult to find
actions that reduce the belief state size or where it is not a good idea to immediately
try to reduce it.For example, in a problem of getting to a certain position in a grid
(Fig. 2.1 on page 14) where the possible initial states were any position on the grid,
the cardinality heuristic would do very well. In that case, there is almost always a
movement that reduces the size of the belief state and after reaching a corner it is
easier to get to the goal position. But if the possible initial positions are only a few
ones, moves in any direction will lead to a new belief state of the same size, until one
of the walls is reached.

To address the limitations of the reachability heuristic in gpt and the cardinality
heuristic used in hscp, the planner kacmbp uses the notion of necessary knowledge

6obdd is a normal form for propositional logic that while being cost to generate, make tractable
some queries and operations that are costly for general propositional formulas.
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(Cimatti et al., 2004). This planner alternates between the “acquire knowledge”
mode, when it detects that necessary knowledge could be acquire, and the “reach
goal” mode that uses the gpt heuristic.

Based on the success of GraphPlan algorithm for classical planning, some attempts
of using a similar structure for conformant planning have been made. The modern
planner pond (Bryce et al., 2006) uses a structure called the Labeled Uncertainty
Graph (lug) that represents the same GraphPlan-like information for different initial
states, i.e. mutexes, support from preconditions to actions, and from actions to
effects. For example, the lug considers multiple supports for a literal when they are
necessary across different initial states, but does not overcount when the same action
is used as a support for a literal given different initial states.

Good heuristics need a compact representation to speed up the node generation rate,
and reduce the memory footprint, allowing to scale to larger problems. The planner
gpt represents belief states as an explicit enumeration of possible sets. Influenced
by the use of obdd (Bryant, 1992) as a compact representation of formulas in model
verification, many modern conformant planners use obdd for representing belief
states and computing their heuristics.

The current distribution of the planner mbp integrates cmbp (Cimatti and Roveri,
2000), hscp (Bertoli et al., 2001), and kacmbp (Cimatti et al., 2004), using obdds for
belief state representation. In the case of hscp, the cardinality heuristic is calculated
easily given that obdd supports model counting in linear time in the size of the
formula. The planner pond also uses an obdd-based representation. An efficient
construction of the lug depends on the compactness for representing a forest of
obdds, as the nodes in the lug are labeled with formulas for the possible initial
states where they apply.

Another representation and heuristic was proposed in Conformant-ff as an exten-
sion to ff (Hoffmann and Brafman, 2006). In Conformant-ff the belief states are
represented implicitly by a sequence of actions that leads to them. For verifying
whether a literal is known to be true in all possible states s ∈ b of a belief state b,
it needs a sat solver call over a propositional theory encoding the initial belief state
and the sequence of actions that leads to s. For the heuristic, it uses an idea based
on ff (Hoffmann and Nebel, 2001), leading to a relaxed plan for the conformant
planning problem. The key step is to project the cnf theory of the conformant
problem to one having clauses of size 2. This way, it is very efficient to approximate
the consequences of an action during the calculation of the conformant relaxed plan.

2.9 Other approaches

Another approach to planning with incomplete information is pks (Petrick and Bac-
chus, 2002) where belief states are represented by more complex formulas which may
include disjunctions. The language used in pks explicitly represents the knowledge of
the agent about the truth assignment of the literals in the problem, and the actions
modify this knowledge directly. It allows to encode domain-specific information, but
pks ends up depending on blind search for finding a solution. pks is sound but
incomplete, as it fails to find a solution for some problems.
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A way to trade off completeness for efficiency in conformant planning results from
approximating belief states or transitions. For example, the 0-approximation intro-
duced by Baral and Son (1997) represents belief states b by means of two sets: the set
of literals that are true in b, and the set of literals that are false in b. Variables which
do not appear in either set are unknown. In this representation, checking whether
an action a is applicable becomes tractable. Later on, Son and Tu (2006) introduced
a complete algorithm based on 0-approximation. Their idea is to create a set of
partial states, such that a plan that conforms with all them, would be conformant
with the original problem. The size of the set of partial states could be exponentially
smaller than the corresponding belief state. The CpA conformant planner, winner
of the conformant track of the ipc-2008 (Bryce and Buffet, 2008), relies on such a
complete algorithm, using a heuristic based on the cardinality of the belief state and
the number of subgoals achieved (Tran et al., 2009).

All algorithms mentioned so far rely on forward or backward search, on an explicit
or implicit belief space. In classical planning, some successful algorithms do non-
directional search, typically in the space of possible plans. However, the results have
not been as successful, in part due to the higher complexity of the problem (Haslum
and Jonsson, 1999; Rintanen, 2004b), and in part due to the lack of sufficiently strong
pruning criterion.

There are other works that do not fit in the previous classification. For example,
Finzi et al. (2000) present an algorithm for planning based on situational calculus for
the case where the initial state is not closed, having to deal with the possible fully
specified states. There are some incomplete conformant planners based on answer set
programming (Eiter et al., 2003), and even though it can be related to other logic-
based approaches, answer set programming is of a higher level than sat. Along the
line of 0-approximation, there has also been extension using answer set programming
(Morales et al., 2007; Son et al., 2005a) but they do not scale well when the plan
length increases.

Conformant probabilistic planning is also an active area of research. Majercik and
Littman (1998) proposed an approach based on a cnf encoding. Later Hyafil and
Bacchus (2003) proposed a constraint-based algorithm for this problem, and Huang
(2006) proposed an algorithm based on a propositional normal form called Deter-
ministic Decomposable Negation Normal Form (d-dnnf, Darwiche, 2001a).

See the article by Hoffmann and Brafman (2006) for a comprehensive review of
previous approaches to conformant planning.
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Chapter 3

Model-Counting Formulation

El universo (que otros llaman la Biblioteca) se
compone de un número indefinido, y tal vez
infinito, de galeŕıas hexagonales.

The universe (which others call the Library) is
composed of an indefinite and perhaps infinite
number of hexagonal galleries.

The Library of Babel.
Short story by Jorge Luis Borges

The sat approach to classical planning is based on a correspondence between the
plans of length N for a problem P and the models that satisfy a propositional formula
TN (P ) obtained from P . Using this correspondence, the plans for P with length N
can be obtained by running a sat solver on TN (P ), if there is any. A sat-based
classical planner starts with N = 0, generates a theory TN (P ), trying to obtain a
plan of such length, or increasing N by one and trying again.

The same idea, however, does not work for conformant planning. For a conformant
problem P , the models of a propositional encoding similar to TN (P ) are in corre-
spondence, not with the plans for P with length N that conform with every possible
initial state of P , but with the plans for P that conformant with some possible initial
state, which are thus not necessarily conformant.

In this chapter and in the next, we introduce conformant planning algorithms that
use the propositional encoding TN (P ) and a family of logical operations for ensuring
that the obtained plans conform with all the possible initial states. In both cases
such operations can be computationally expensive, representing a challenge to be
addressed.

The conformant planning algorithm introduced in this chapter uses search with a
criterion for pruning branches that are deemed invalid. Given a propositional en-
coding of plans of length N for a conformant problem, an action set is a partial
truth-assignment to the action variables of the theory. It is complete if it assigns a

27
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truth-value to every action variable and is valid if it is consistent with each possible
initial state. A valid action set that is complete is guaranteed to encode a conformant
plan, and vice versa. The searches proceeds incrementally until obtaining an action
set that is both valid and complete

Checking validity can be very expensive in general but it can be verified fast if the
propositional theory is in Deterministic Decomposable Negation Normal Form (d-
dnnf Darwiche and Marquis, 2002), a normal form akin to obdd (Bryant, 1992).
For a given horizon N , stating at 0, the planning algorithm requires first to compile
the propositional theory into d-dnnf, and the search algorithm to use operations on
the d-dnnf formula to prune invalid branches and guide the search until a solution
is found, or the horizon is increased to N + 1 for trying again.

This chapter is organized as follows. We extend the definition of conformant plan-
ning to allow action parallelism in the solutions and present a propositional theory
TN (P ) for conformant problems. Then we define validity and proof that valid actions
sets encodes conformant plans and vice versa. Then we show of to verify validity
using logical operations, and introduce d-dnnf as a mechanism for calculating them
efficiently. We present the resulting conformant planner, report its performance and
finish with a short discussion.

The content of this chapter is based on a paper published by Palacios, Bonet, Dar-
wiche, and Geffner (2005).

3.1 Introduction

Optimal planners in the classical setting are built around two notions: branching
and pruning. In state-based search, classical planners branch by applying actions
(forward or backward) and prune by comparing estimated costs with a given bound.
sat-based planners, on the other hand, branch by trying the values of a selected
variable, and prune by propagating constraints and checking consistency.

In principle, the same two notions can and have been used in the conformant setting
(Goldman and Boddy, 1996; Smith and Weld, 1998) although the results have not
been as strong, in part due to the higher complexity of the problem (Haslum and
Jonsson, 1999; Rintanen, 2004b), in part, due to the lack of strong pruning criterion.

Conformant planning is usually solved by directional branching schemes that search
for plans by applying actions either forward or backward. The problem of optimal
conformant planning becomes a shortest path problem over a graph in which the
nodes are sets of states or belief states (see a longer discussion in Section 2.8 and
following, and also Bonet and Geffner, 2000).

The complexity of the search in belief space grows with two factors: the size of
the states and the number of belief states. The first is exponential in the number of
variables; the second in the number of states. The switch to symbolic representations,
as done by (Cimatti and Roveri, 2000), where sets of states are represented by obdds,
provides a handle on the first problem but not on the second that demands more
informed admissible heuristic functions. Steps in this direction have been reported
by Cimatti et al. (2004), Rintanen (2004a), and Bryce et al. (2006).

Conformant planning can also be approached from a logical perspective, working on
the theory encoding the problem, and branching on action literals until a valid plan is
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found. This approach, however, while so successful in the classical setting (Kautz and
Selman, 1996),1 does not appear to work well in the conformant setting. Actually, an
action set may complete and consistent with an initial state, but may fail to achieve
the goal for other initial state, not being valid and, thus, not encoding a conformant
plan. Checking validity, however, while useful for pruning can be very expensive. We
show then that such validity checks can be performed in linear time provided that the
theory T encoding the problem is transformed into a logically equivalent theory T ′

in Deterministic Decomposable Negation Normal Form (d-dnnf Darwiche, 2001a).
In d-dnnf, validity checks can be reduced to two linear-time operations: projection
(finding the strongest consequence of a formula over some of its variables) and model
counting (finding the number of satisfying assignments).

We now define the propositional encoding of conformant problems, how to verify
validity using logical operations, for then introduce d-dnnf and how to verify validity
efficiently, obtaining an effective conformant planner.

3.2 Propositional Encoding of Conformant Tasks

Following the conformant planning task definition of Section 2.4 on page 18, we con-
sider conformant planning problems P given by tuples of the form P = 〈F, I,O,G〉
where F stands for the fluent symbols f in the problem, O stands for a set of de-
terministic actions a with conditional effects a : C → L, I is a set of clauses over
the fluents in F encoding the initial, and G is a set of literals over the fluents in F
encoding the goal situations.2

We also consider parallel plans to be a sequence {A0, A1, . . . , An−1} of sets of actions.
Every pair of actions in each set Ai must be compatible, meaning that actions do not
interfere each other. For more details about parallel plans see Section 1.9 on page 10.

We assume throughout that the planning problem is consistent in the sense that the
set of possible initial states is not empty, and that for no pair of conflicting rules
a : C → and a : C ′ → −L, there is a state reachable from some initial state s0 where
both C and C ′, and the precondition of the action a are all true.

We build on the propositional encoding for classical planning presented in Section 1.9
on page 10. The encoding of a conformant planning problem P = 〈F, I,O,G〉 with
horizon N is called TN (P ). In this encoding there are variables xi for fluents and
actions x where i is a temporal index in [0, N ] for fluents and in [0, N−1] for actions,
for the problem of finding a plan for P within N time steps. The only difference
in the encoding of a conformant planning is that now the Init part of TN (P ) has
a clause C0 for each init clause C ∈ I.3 Thus, the propositional encoding for a
conformant problem P = 〈F, I,O,G〉 is as follows.

Definition 3.1. The propositional theory TN (P ) for a conformant planning problem
P = 〈F, I,O,G〉 and horizon N is given by the following set of clauses:

1See Giunchiglia et al. (1998) for a similar approach that only branches on action literals.
2See comments on non-deterministic actions in sections 2.4 on page 18
3If we allow clauses for encoding the goal of P , the Goal part of TN (P ) may has a clause CN

for each goal clause C ∈ G. The conformant planner depicted in this chapter supports such goals,
and some benchmarks (sortnet for example) are actually encoded with clauses in goal.
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1. Init: a literal C0 for each clause C ∈ I.

2. Goal: a literal LN for each literal L ∈ G.

3. Actions: For i = 0, 1, . . . , N − 1 and a ∈ O:

ai ⊃ Pre(a)i (preconditions)
Ci ∧ ai ⊃ Ei+1 (for each rule a : C → E)

4. Frame: for i = 0, 1, . . . , N − 1, each fluent literal L

Li ∧
∧

a:C→¬L
¬[Ci ∧ ai] ⊃ Li+1

where the conjunction ranges over the rules a : C → ¬L
5. Exclusion: ¬ai ∨ ¬a′i for i = 0, . . . , N − 1 if a and a′ are incompatible

Recall that for a formula B, Bi refers to the formula obtained by replacing each
variable x in B by its time-stamped counterpart xi, and that pair of actions are
incompatible when serial plans are required or if their effects share some boolean
variable.

Let us consider an example of a cnf encoding of a problem, for getting a better idea
of the theories we are dealing with.

Example: a CNF encoding of a conformant problem

Consider the following conformant problem P :

Fluents p, q, r

Init p ∨ q,¬r

Actions aq and ar with no preconditions, but conditional effects

• aq : p→ q

• ar : q → r

Goal r

Following the propositional encoding for conformant planning we show a theory
T2(P ) for horizon N = 2, for obtaining serial plans:

• Init: p0 ∨ q0, ¬r0

• Goal: r2

• For 0 ≤ i ≤ 1, axioms for:

– Effects of actions:
pi ∧ aqi ⊃ qi+1

qi ∧ ari ⊃ ri+1
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– For each literal, the corresponding frame axiom:
p pi ⊃ pi+1

¬p ¬pi ⊃ ¬pi+1

q qi ⊃ qi+1

¬q ¬qi ∧ ¬(pi ∧ aqi) ⊃ ¬qi+1

r ri ⊃ ri+1

¬r ¬ri ∧ ¬(qi ∧ ari) ⊃ ¬ri+1

– Exclusion: ¬aqi ∨ ¬ari

Action Sets and Validity

Given the encoding TN (P ), we will refer to collections of action literals as action
sets, and denote them as TA. We assume that no action set contains complementary
or incompatible literals.

Definition 3.2. An action set TA is complete when it mentions all action variables
in the theory TN (P )

We will refer to an action set that is complete, as a complete plan or simply plans.4

Definition 3.3. An action set TA is consistent if TA is logically consistent with the
theory TN (P ).

If P is a classical planning problem, a consistent action set that is complete encodes
a plan for P , yet this is not true if P is conformant. Indeed, a consistent action
set that is complete encodes a sequence of actions that conforms with some but not
necessarily all possible initial states of P .

As an illustration, consider the following conformant problem P :

Fluents p, s, q, x

Init p ∨ ¬p, s,¬q,¬x

Actions a, b, c and d with no preconditions, but conditional effects

• a : s→ q

• b : p, s→ x

• c : ¬p, q → x

• d : true→ ¬s

Goal x

For a horizon N = 3, we can generate a propositional encoding TN (P ) that will have
actions variables for time steps 0, 1 and 2. A plan for this problem is {a0, b1, c2}.
The action set {d0} is inconsistent, while {b0, d1} is consistent. It maybe extended
up to a satisfying assignment of all fluents in TN (P ) by assuming that p is true in
the initial situation, but cannot be extended to a conformant plan. In contrast, the
action set {b0} can be extended to a conformant plan, and we will say that such
action sets are valid.

4A complete plan denotes a maximal consistent set of action literals
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3.3 Searching for conformant plans in a CNF
representation

Searching for plans requires, thus, to define a notion of validity for discarding invalid
plans as soon as possible, and to be able to detect such plans efficiently. An action
set can be defined as valid when it is logically consistent with the theory and each
possible initial state. A valid action set that is complete is guaranteed to encode a
conformant plan, and vice versa. Let us formalize this idea.

Let T0(P ) refer to the slice of the theory TN (P ) that represents the initial situation,
let s0 represent a state satisfying T0(P ), and let Lits(s0) refer to the set of literals
true in s0.5 Then we define the notion of validity of action sets in the conformant
setting as follows:

Definition 3.4 (Validity). An action set TA is valid in the context of a theory
TN (P ), if and only if for every possible state s0 satisfying T0(P ), the set of formulas
given by TA ∪ TN (P ) ∪ Lits(s0) is logically consistent.

This definition has two properties that we will exploit in the branching scheme used to
search for conformant plans. The first is that a complete plan that is valid represents
a conformant plan and, vice versa, a conformant plan represents a valid complete
plan. The second is that an incomplete action set that is not valid cannot lead to a
conformant plan.

We state these properties as follows:

Theorem 3.5. A valid complete actions set TA for TN (P ) encodes a conformant
plan π for P , where π = {A0, . . . , AN−1}, and a ∈ Ai iff ai ∈ TA.

Theorem 3.6. A conformant plan π for P , with π = {A0, . . . , AN−1}, encodes a
valid complete action set TA for TN (P ), where ai ∈ TA iff a ∈ Ai, and ¬ai ∈ TA iff
a 6∈ Ai.

These two results establish a correspondence between the conformant plans for P
and the valid complete action sets for TN (P ). In addition, we have another result
that is fundamental for searching for valid action sets that are complete, and hence,
for conformant plans:

Theorem 3.7. An invalid action set for TN (P ) cannot be extended into a valid
complete action set for TN (P ).

With this result, we can search for valid partial action sets that are complete incre-
mentally, pruning the partial action that are not valid. Now we prove formally these
three theorems, but first we need a to prove a lemma that will be useful.

Lemma 3.8. Let π = {A0, . . . , AN−1} a plan, and TA a complete action set of a
theory TN (P ), such that ai ∈ TA iff a ∈ Ai, and ¬ai ∈ TA iff a 6∈ Ai. For an initial
state s0, π is a classical plan for the classical problem P/s0 if and only if the complete
action set TA is consistent with TN (P ) ∪ Lits(s0).

5Each state s0 corresponds to an initial state in the conformant problem P
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Proof. If π is a classical plan for P/s0, then exists a model M satisfying TN (P/s0)
because of the correspondence between plans and models of the satplan encoding.
Moreover, M is also a model of TN (P )∪Lits(s0). Thus, as the action set TA is part
of the model M , TA is consistent with TN (P ) ∪ Lits(s0). Besides, TA is complete,
proving one direction of the equivalence.

For the other direction, if TA is a complete action set and is consistent with TN (P )∪
Lits(s0), observe that TA and Lits(s0) completely determine the theory TN (P ).
Thus, exists a model M for TN (P ) ∪ Lits(s0), that is also a model of TN (P/s0).
Finally, the model M encodes a plan π defined in terms of the literals in TA.

Proof of theorem 3.5. Let s0 be a possible initial state. From lemma 3.8, TA encodes
a classical plan π for the classical problem P/s0. Thus, π conforms with any s0, and
hence π is conformant.

Proof of theorem 3.6. The definition of conformant planning means that π is a plan
of the classical problem P/s0, for any initial state s0. From lemma 3.8, TA is complete
and consistent with TN (P ) and Lits(s0). Thus, TA is valid.

Proof of theorem 3.7. Let us assume that the action set TA can be extended into a
valid complete plan T ′A. From Definition 3.4 of validity, for any possible initial state
s0, the set T ′A ∪ TN (P )∪Lits(s0) is logically consistent. Thus, the set TA ∪ TN (P )∪
Lits(s0) is also logically consistent. Thus, TA is valid. Contradiction.

These properties ensure the soundness and completeness of a simple branch and
prune algorithm that branches on action literals, prunes action sets that are not
valid, and terminates when a non-pruned complete plan is found. Of course, this
simple algorithm would not be necessarily efficient as it involves an expensive validity
check in every node of the search tree, which if done naively, would involve a number
of satisfiability tests linear in the number of possible initial states.

3.4 Pruning Action Sets by Model Counting and
Projection

We focus now on the use of compilation techniques for making the validity checks ef-
ficiently. Indeed, while the validity checks in Definition 3.4 may be exponential in the
clauses of the initial situation of P , it turns to be polynomial when TN (P ) is in deter-
ministic decomposable negation normal form, d-dnnf (Darwiche, 2001a). d-dnnf is
a target language that renders a number of boolean operations and transformations
tractable, including model counting and projection (Darwiche and Marquis, 2002).
Indeed, model counting and projection are the two boolean operations needed in
order to implement the validity tests.

Definition 3.9 (Model count). The model count of a formula ∆, denoted as MC(∆),
stands for the number of truth assignments that satisfy the formula.
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Intuitively, the projection of a formula ∆ over a subset of its variables V allows to
obtain a new formula ∆′, in some sense equivalent to ∆ as far as we refer to variables
in V .

Definition 3.10 (Projection). The projection of a formula ∆ over a subset V of
its variables stands for the strongest formula over the variables V implied by ∆; i.e.,
∆′ = project[ ∆ ; V ] if ∆ entails ∆′ and for every formula ∆′′ over V that is entailed
by ∆, Delta′ entails ∆′′.

Projection is unique up to logical equivalence, i.e. if ∆1 and ∆2 are projections of
∆ over V then Delta1 and Delta2 are logically equivalent. The projection operation
is in turn a dual of variable elimination, usually called forgetting in the context of
propositional formula (Lin and Reiter, 1994; Lang et al., 2003). Indeed, projection
over V is equivalent to eliminating all the variable that are in ∆ but not in V ′.
Moreover, it is well known that a boolean variable can be eliminated from a formula
∆ by the conditioning operation. Conditioning of a theory ∆ on a literal α results
in a formula equivalent to ∆ ∧ α, which models are the models of ∆ consistent with
the literal α. Here we follow the definition 5.4 provided by Darwiche and Marquis
(2002).

Definition 3.11 (Conditioning). Let ∆ be a propositional formula, and let α be a
consistent term. The conditioning of ∆ on α, noted ∆ |α, is the formula obtained
by replacing each variable X of ∆ by true (resp. false) if X (resp. ¬X) is a positive
(resp. negative) literal of α.

We this definition of conditioning, forget a variable v from a formula ∆ is equivalent
to ∆ | p ∨∆ | ¬p. Indeed, Lin and Reiter (1994) define forgetting in this way.

For using the projection operation, it might be useful to describe it in term of the
models of a theory ∆ and its projection over V . We establish such relation through
the following lemma.

Lemma 3.12. If ∆′ = project[ ∆ ; V ], then M ′ is a model of ∆′ if and only if M
is a model of ∆ and M ′ is the model M restricted to the variables V .

Proof. 6 Let M ′ a models that satisfy ∆′, M ′ |= D′. For contradiction, let us assume
that there is no extension of M ′ satisfying ∆. Let us abuse slightly of the notation
to consider the model M also as a conjunction of literals. If we can show that
∆ |= ¬M ′ the proof will be complete. ¬M ′ is a theory over the variables V and ∆′

is the strongest, hence ∆′ |= ¬M ′, but this contradicts M ′ |= ∆′.

It left only to show ∆ |= ¬M ′. Let us prove it for the case of projecting over only
one var w not in V . Let M ′[w] the model M ′ extended with the positive literal w.
Because hypothesis ad absurdum,

M ′[¬w] |= ¬∆ and M ′[w] |= ¬∆

then
∆ ⊃ ¬(M ′[¬w]) and ∆ ⊃ ¬(M ′[w])

6I thank Blai Bonet for his help with this proof.
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then
∆ ⊃ w ∨ ¬M ′ and ∆ ⊃ ¬w ∨ ¬M ′

then
∆ ⊃ ¬M ′

then
∆ |= ¬M ′

Now, if we let F0 refer to the fluent variables f0 at time i = 0 and T0(P ) refer to the
slice of TN (P ) encoding the initial situation, the validity check from Definition 3.4
can be rephrased as follows:

Theorem 3.13 (Validity by Projection and MC). An action set TA is valid in the
context of a theory TN (P ) iff

MC(T0(P )) = MC(project[ TN (P ) |TA ; F0 ]) . (3.1)

Proof. For simplicity, we use T0 for referring to T0(P ), and T ′ to the result of
project[ TN (P ) |TA ; F0 ]. We start with two observations.

Observation1: Each model of T ′ is also a model of T0. This holds because TN (P )
includes the formula T0 as a conjunct, T ′ variables are the same of T0, and lemma 3.12
of projection. Observation1 implies that MC(T ′) ≤ MC(T0).

Observation2: Each model of T0 is a model of T ′ iff MC(T0) = MC(T ′). That is
because if each model of T0 is a model of T ′, because observation1, it follows that
MC(T0) = MC(T ′). On the other hand, if a model of T0 is not a model of T ′, because
observation1, then MC(T ′) should be strictly smaller than MC(T0).

Now we proceed with the proof, giving justifications between { braces }.

TA is valid
iff { Definition 3.4 (validity) }

For any possible initial state s0: TA ∪ TN (P ) ∪ Lits(s0) is consistent
iff { rephrase and conditioning }

Each model s0 of T0(P ) is consistent with TN (P ) |TA
iff { Lemma 3.12 (projection) }

Each model s0 of T0(P ) is a model of project[ TN (P ) |TA ; F0 ]
iff { observation2 }

MC(T0(P )) = MC(project[ TN (P ) |TA ; F0 ])

The theorem reduces the validity check of an action set TA to the comparison of
two numbers: the number of possible initial states, and the number of initial states
satisfying the theory and the commitments made in TA. Clearly, the second number
cannot be greater than the first, as TN (P ) alone entails T0(P ) (T0(P ) is part of
TN (P )). Yet the second number can be smaller: this would happen precisely when
some possible initial state s0 is not compatible with TN (P ) and TA, which according
to definition 3.4, is exactly the situation in which TA is not a valid action set.
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We turn now to the compilation of the propositional formula TN (P ) for making
the model count and projection operations tractable. Even though the compilation
is intractable, it will be done once, and will allow to evaluate model counting and
projection on each node of the search tree.

3.5 A Conformant Model-Counting Planner based on
d-DNNF

Knowledge compilation is the area in AI concerned with the problem of mapping
logical theories into suitable target languages that make certain desired operations
tractable (Selman and Kautz, 1996; Cadoli and Donini, 1997). For example, propo-
sitional theories can be mapped into their set of Prime Implicates making the entail-
ment test of clauses tractable (Reiter and de Kleer, 1987). Similarly, the compilation
into Ordered Binary Decision Diagrams (obdds) renders a large number of opera-
tions tractable including model counting (Bryant, 1992). While in all these cases,
the compilation itself is intractable, its cost may be justified if these operations are
to be used a sufficiently large number of times in the target application. Moreover,
while the compilation will run in exponential time and space in the worst case, it will
not necessarily do so on average. Indeed, the compilation of theories into obdds has
been found useful in formal verification (Clarke et al., 2000) and more recently in
planning (Giunchiglia and Traverso, 1999). A more recent compilation language is
Decomposable Negation Normal Form (dnnf) (Darwiche, 2001b). dnnfs support a
rich set of polynomial–time operations, some of which are particularly suited to our
application, like projection on an arbitrary set of variables, which can be performed
simply and efficiently. A subset of dnnf, known as deterministic dnnf, also supports
model counting

Deterministic Decomposable NNF (d-DNNF)

A propositional sentence is in negation normal form (nnf) if it is constructed from
literals using only conjunctions and disjunctions (Barwise, 1977). A practical repre-
sentation of nnf sentences is in terms of rooted directed acyclic graphs (dags), where
each leaf node in the dag is labeled with a literal, true or false; and each non-leaf
(internal) node is labeled with a conjunction ∧ or a disjunction ∨; see Figure 3.1.
Decomposable nnfs are defined as follows:

Definition 3.14. (Darwiche, 2001b) A decomposable negation normal form (dnnf)
is a negation normal form satisfying the decomposability property: for any conjunc-
tion ∧iαi in the formula, no variable appears in more than one conjunct αi.

The nnf in Figure 3.1 is decomposable. It has ten conjunctions and the conjuncts
of each share no variables. Decomposability is the property which makes the satisfi-
ability of dnnf tractable: a decomposable nnf formula ∧iαi is indeed satisfiable iff
every conjunct αi is satisfiable, while ∨iαi is satisfiable iff some disjunct αi is. The
satisfiability of a dnnf can thus be tested in linear time by means of a single bottom
up pass over its dag.

The nnf (A ∨B) ∧ (¬A ∨ C) is not decomposable since variable A is shared by the
two conjuncts. Any such form, however, can be converted into dnnf. The main
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Figure 3.1: A negation normal form (nnf) represented as a rooted dag. (from Darwiche,
2001a).

technique to use here is that of performing case analysis over the variables that
violate the decomposition property, in this case A. Assuming that A is true, the
nnf reduces to C, while if A is false, the nnf reduces to B. The result is the nnf
(A ∧ C) ∨ (¬A ∧B) which is decomposable, and hence, a dnnf.7

The above principle can be formulated more precisely using the notion of condition-
ing, (Definition 3.11 on page 34). The conditioning of ∆ on literal α, written ∆ |α,
is obtained by simply replacing each leaf α in the nnf dag by true and each leaf ¬α
by false. If ∆ = (A ∨ B) ∧ (¬A ∨ C), then ∆ |A is (true ∨ B) ∧ (false ∨ C) which
simplifies to C. Similarly, ∆ | ¬A is (false ∨B) ∧ (true ∨ C) which simplifies to B.

The case analysis principle can now be phrased formally as follows:8

∆ ≡ (∆ |A ∧ A) ∨ (∆ | ¬A ∧ ¬A) (3.2)

This will actually be the pattern for decomposing propositional theories as we shall
see later. For now though, we point out that the split exhibited by (3.2) above, leads
to a second useful property called determinism, giving rise to the special class of
Deterministic dnnfs:

Definition 3.15. (Darwiche, 2001a) A deterministic dnnf (d-dnnf) is a dnnf
satisfying the determinism property: for any disjunction ∨iαi in the formula, every
pair of disjuncts αi is mutually exclusive.

Determinism is the property which makes model counting over dnnfs tractable: the
number of models of a dnnf ∧iαi is the product of the number of models of each
conjunct αi, while the number of models of a dnnf ∨iαi that satisfies determinism
is the sum of the number of models of each disjunct. Actually, in order to get a
normalized count it must be made sure that the same set of variables appear in
the different disjuncts of the d-dnnf. However, this property called ‘smoothness’ is

7Disjunctive Normal Form (dnf), with no literal sharing in terms, is a subset of dnnf. The
dnf language, however, is flat as the height of corresponding nnf dag is no greater than 2. This
restriction is significant as it reduces the succinctness of dnf as compared to dnnf. For example, it is
known that the dnf language is incomparable to the obdd language from a succinctness viewpoint,
even though dnf and obdd are both strictly less succinct than dnnf (Darwiche and Marquis, 2002).

8This principle is also known as Boole’s expansion and Shannon’s expansion.
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easily enforced (Darwiche, 2001a). In the rest of the chapter and this document, we
will assume that d-dnnfs are smooth, denoted as sd-dnnf.

The final key operation on dnnfs that we need is projection. As we comment on
Section 3.4, theorem 3.13, the projection of a theory ∆ on a set of variables V is
the strongest sentence implied by ∆ over those variables. This sentences is unique
up to logical equivalence and is denoted by project[ ∆ ; V ]. Projection is dual
to elimination or forgetting (Lin and Reiter, 1994): that is, projecting ∆ on V is
equivalent to eliminating (existentially quantifying) all variables that are not in V
from ∆. Like satisfiability on dnnfs, and model counting on d-dnnfs, projection
on dnnfs can be done in linear time (Darwiche, 2001b). Specifically, to project a
dnnf on a set of variables V , all we have to do is replace every literal in ∆ by true
if that literal mentions a variable outside V . For example, the projection of dnnf
(A∧¬B)∨C on variables B and C is the dnnf (true∧¬B)∨C, which simplifies to
¬B ∨ C. Moreover, the projection on variable C only is the dnnf (true ∧ true) ∨ C,
which simplifies to true.

Testing plan validity using d-DNNF

The use of d-dnnfs in this chapter has been motivated by the desire to make the
validity test for action sets tractable and efficient. The test, captured by the equa-
tion (3.1) on page 35, involves computing the model count of a projection. We have
seen that we can count the models of d-dnnf and take the projection of a dnnf in
linear time. This may suggest that we can render the validity test for action sets to
be linear in the size of the d-dnnf representation. This however is not true in general;
the problem is that the linear–time projection operation given above is guaranteed
to preserve decomposability but not necessarily determinism. This means that while
we can model count and project a deterministic dnnf in linear time, we cannot al-
ways model count the projection of a deterministic dnnf in linear time, which is
precisely what we want. There are however two conditions under which the projec-
tion project[ ∆ ; V ] of a deterministic dnnf ∆ on variables V can be guaranteed to
remain deterministic and allow for model counting in linear time. The first condition
is that variables V , which are projected away, are determined in ∆ by variables V
that are kept (i.e., the values of variables V in any model of ∆ are determined by
the values of variables V ). This condition holds in our setting for the fluent variables
fi for i > 0 which are determined by the initial fluent variables f0 and the action
variables ai, i = 1, . . . , N − 1. We actually use this result to project the compiled
d-dnnf on the initial state variables and on action variables, leaving out all other
variables at the outset. The second condition relates to an ordering restriction that
we can impose on the splits given by (3.2) above; we discuss this restriction in the
following section.

Compiling planning theories into d-DNNF

A propositional theory ∆ can be compiled into d-dnnf by simply ordering the vari-
ables appearing in ∆ in a sequence x1, . . . , xn, and then splitting ∆ first on x1 leading
to (∆ |x1 ∧ x1) ∨ (∆ | ¬x1 ∧ ¬x1), and then compiling recursively each of the con-
ditioned theories ∆ |x1 and ∆ | ¬x1 using the sub-order x2, . . . , xn. Coupled with a
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Figure 3.2: A decomposition tree for a cnf.

caching scheme to avoid compiling the same theory multiple times, the above tech-
nique will lead to d-dnnfs that are isomorphic to obdds. In fact, this particular
method for compiling obdds, which deviates from the vast tradition on this sub-
ject, was explored in Huang and Darwiche (2004). Deterministic dnnfs, however,
are known to be strictly more space efficient than obdds (Darwiche and Marquis,
2002), and indeed a more efficient compilation scheme is possible (Darwiche, 2004).
In particular, if during this top–down compilation process one gets to an instantiated
theory ∆′ of the form ∆′1 ∧ ∆′2 such that ∆′1 and ∆′2 share no variables, then the
compilation of ∆′ can be decomposed into the conjunction of the compilation of ∆′1
and the compilation of ∆′2. Moreover, one does not need to use a fixed variable order
as required by obdds, but can choose variables dynamically to split on, typically, to
try to maximize the opportunities for decomposition.

Although dynamic variable ordering and decomposition appear to be the reasonable
strategy to adopt in this context, experience has shown that it may incur in an un-
justifiable overhead. The d-dnnf compiler we use is instead based on semi–dynamic
variable orderings, which are obtained by a pre–processing step to reduce the over-
head during compilation (Darwiche, 2004). In particular, before the compilation
process starts, one constructs a decomposition tree (dtree) as shown in Figure 3.2
(Darwiche, 2001b). This is simply a binary tree whose leaves are tagged with the
clauses appearing in the cnf to be compiled. Each internal node in the dtree cor-
responds to a subset of the original cnf and is also tagged with a cutset: a set of
variables whose instantiation is guaranteed to decompose the cnf corresponding to
that node. The compiler will then start by picking up variables from the root cut-
set to split on until the cnf corresponding to the root is decomposed. It will then
recurse on the left and right children of the root, repeating the same process again.
Within each cutset (which can be arbitrary large), the compiler chooses variable or-
der dynamically. Note also that the dtree imposes only a partial order on cutsets,
not a total order.

A number of additional features are incorporated into the d-dnnf compiler we use
(Darwiche, 2004). Examples include the use of caching to avoid compiling identi-
cal theories twice; unit propagation for simplifying theories; dependency directed
backtracking; and clause learning.

The key benefit of d-dnnf compilers in relation to obdd compilers is that the former
makes use of decomposition. Hence, for example, the complexity of d-dnnf compi-
lations are known to be exponential only in the treewidth of the theory, while obdd
compilations are exponential in the pathwidth, which is no less than the treewidth
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and usually much larger (McMillan, 1994; Darwiche, 2004; Dechter and Mateescu,
2007). Another advantage of using d-dnnfs over obdds is that d-dnnfs employ a
more general form of determinism allowing us to use the linear–time projection oper-
ation discussed earlier, while still preserving both decomposability and determinism
in some cases. This feature allowed us to project compiled planning theories on the
initial state fluents and the actions in linear time. obdds do not support a linear–
time operation for projection under the same conditions (Darwiche and Marquis,
2002).

We note that we had to use specific decomposition trees to allow us to generate
d-dnnfs which can be projected on the initial state fluents only while preserving
determinism—this is needed to implement the plan validity test in (3.1) which is
critical for pruning during search. In particular, we had to construct dtrees in which
initial state fluents are split on before any other variables are split during case anal-
ysis. This guarantees that determinism would be preserved when projecting the
d-dnnf on initial state fluents as it guarantees that every remaining disjunctions
will be of the form (f0 ∧ α) ∨ (¬f0 ∧ β) where f0 is an initial state fluent.9

Input: Formula ∆ in deterministic Decomposable Negated Normal Form
d-dnnf

Input: Set of literals S for conditioning
Output: Number of models of ∆ ∪ S
(* from (Darwiche, 2001a) *)
function MC(∆) begin

if ∆ is a labeled with literal L and ¬L ∈ S then
return 0

if ∆ is labeled with literal L and ¬L 6∈ S then
return 1

if ∆ is a labeled with AND then
return Πi (MC (∆i)) where each ∆i is a child of ∆

if ∆ is a labeled with OR then
return Σi (MC (∆i)) where each ∆i is a child of ∆

end

return MC(∆) (* model counting of ∆ conditioned to S *)

Figure 3.3: Model Counting algorithm for d-dnnf, conditioned to S.

For computing the model-counting and projection in one pass in the d-dnnf we
develop a variation of the model-counting algorithm as follow. Fig 3.3 shows the
original algorithm for computing the number of models of a d-dnnf.10 The intuition
is that decomposability guarantee that no variable appears in more than one conjunct,
thus the number of models is the product of the model counting of each node. Also,
determinism guarantee that disjuncts are incompatible with each other, thus the
number of models if the sum of the model counting of each disjunct.

As mentioned above, in order to perform the pruning test (3.3) efficiently in every
node n, we must ensure that the projection operation preserves determinism. This is

9A similar technique can be used if one compiles into obdds, by having initial state fluents first
in the obdd order.

10Again, we assume that d-dnnf is actually smooth.
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ensured by compiling the cnf theory TN (P ) using a decomposition tree in which the
splits on the variables belonging to F0 (the fluent variables f0 for the initial situation)
are done before any other splits. Also, for having an equivalent but smaller d-dnnf
we project away all fluent variables fi from the theory for i > 0 at compilation time.
Such fluents are not needed, and their elimination satisfies the other condition above:
they are determined by the initial fluent and action variables that are kept. This
lead us to an algorithm for doing projection and model counting in one pass in the
d-dnnf, allowing to compute:

MC(project[ ∆ |TA ; F0 ])

The idea of the algorithm shown in Figure 3.4 is to project lower sections of the
d-dnnf DAG, corresponding to theories with fluents for time > 0, action variables.
Subtheories inconsistent with current assignation return zero, but consistent one re-
turn FORGET, meaning that are consistent, but will not add up for model counting.
The first time a non-to-forget theory is combined with another to be forgotten, the
decision is more subtle. Basically, a forget branch counts as one, unless the node is
an OR and the remaining node is zero. In such case, that OR node can be consider
to be just the FORGET branch, and thus returns FORGET.

The Conformant Planner

We have implemented a validity-based optimal conformant planner called vplan that
accepts the description P of a conformant planning problem and a planning horizon
N , and then produces a valid conformant plan in N time steps at most if one exists,
otherwise reports failure. If the horizon is incremented by 1 starting from N = 0, the
first plan found is guaranteed to have minimal makespan. The planner can be run
in serial or parallel mode according to the sets of concurrent actions allowed. vplan
translates P into a theory Tc in d-dnnf and then performs a backtrack search for a
valid conformant plan by performing operations on the theory: branching on action
literals, pruning invalid sets of action literals (action sets), and terminating when a
non-pruned complete plan is found. More precisely, the planner can be characterized
by the following aspects:

• Preprocessing: the problem P with a given horizon N is translated into a cnf
theory TN (P ), which is compiled into a d-dnnf theory Tc which is associated
with the root node nr of the search tree; i.e. T (nr) = Tc.11

• Branching: at a node n in the search tree, the planner branches by selecting an
undetermined action variable ai and trying each of its possible values; namely,
two d-dnnf theories Tn1 and Tn2 are created for the children nodes n1 and n2

of n that correspond to Tn|ai and Tn|¬ai. This process continues depth-first
until a node is pruned, resulting in a backtrack, or all action variables are
determined, resulting in a valid conformant plan.

11A subtlety in the translation from P to the cnf theory TN (P ) are the frame axioms which
may generate an exponential number of clauses. In order to avoid such explosion, each conjunction
ck(a)i ∧ ai of a condition ck(a)i and the corresponding action ai, is replaced by a new auxiliary
variable zi and the equivalence zi ≡ ck(a)i ∧ ai is added to the theory. Such auxiliary variables do
not affect the compilation into d-dnnf as they are ‘implied variables’ that are safely projected away
when the cnf theories are compiled into d-dnnf.
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Input: Formula ∆ in d-dnnf
Input: Set of literals S to for conditioning
Input: Set of literals V to project
Output: Number of models of project[ ∆ ∪ S ; V ]
(* For simplicity of the presentation, we assume nodes have at

most two children ∆1 and ∆2 *)

function Calc-MC-and-P(∆) begin
if ∆ is a labeled with literal L and ¬L ∈ S then

return 0
if ∆ is a labeled with literal L and var(L) 6∈ V then

return FORGET
if ∆ is labeled with literal L and ¬L 6∈ S then

return 1
if ∆ is a labeled with AND then

Vali ← Calc-MC-and-P (∆i) for each i ∈ {1, 2}
if both Vali = FORGET then

return FORGET
if both Vali 6= FORGET then

return Val1× Val2
if some Vali 6= FORGET and the other Valj = FORGET then

return Vali (* Consider FORGET branch as one *)

if ∆ is a labeled with OR then
Vali ← Calc-MC-and-P (∆i) for each i ∈ {1, 2}
if both Vali = FORGET then

return FORGET
if both Vali 6= FORGET then

return Val1+ Val2
if some Vali 6= FORGET and the other Valj = FORGET then

if Vali = 0 then
return FORGET (* If ∆i is inconsistent, but ∆j is
to be forget, keep forgetting *)

else
return Vali

end

return Calc-MC-and-P(∆)

Figure 3.4: Algorithm MC-and-P for simultaneous Model Counting and Projection
for d-dnnf ∆. Also condition ∆ on a set of literals. Returns MC(project[ ∆ |S ; V ]).
Requires some properties on ∆ to be sound.
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cnf theory d-dnnf theory
problem N∗ vars clauses nodes edges time/acc
blocks-2 2 34 105 61 97 0.03/0.06
blocks-3 9 444 2913 4672 20010 0.25/1.13
blocks-4 26 3036 40732 225396 913621 77.5/752.65

square-center-4 8 200 674 1000 2216 0.1/0.39
square-center-8 20 976 3642 9170 19555 0.7/6.7
square-center-16 44 4256 16586 79039 164191 31.17/512.54

ring-3 8 209 669 2753 6161 0.11/0.48
ring-4 11 364 1196 13239 29295 0.62/2.52
ring-5 14 561 1874 60338 132045 3.68/16.4
ring-6 17 800 2703 254379 551641 23.77/120.58
ring-7 20 1081 3683 1018454 2195393 221.58/1096.7
ring-8 23 1404 4814 3928396 8406323 2018.32/12463.3

sortnet-3 3 51 122 133 230 0.03/0.09
sortnet-4 5 150 409 1048 2325 0.04/0.19
sortnet-5 9 420 1343 7395 17823 0.51/1.4
sortnet-6 12 813 3077 30522 77015 1.28/7.12
sortnet-7 16 1484 6679 116138 294840 8.29/56.61
sortnet-8 19 2316 12364 369375 931097 56.73/427.58
sortnet-9 25 3870 24414 1264508 3075923 780.77/6316.53

Table 3.1: Compilation data for serial planning. N∗ is the optimal planning horizon.
Nodes and edges refer to the dag-representation of the generated d-dnnf. Time refers to
the compilation time for the theory with horizon N∗, and ‘acc’ to the sum of all compilation
times for horizons N = 0, . . . , N∗. All times are in seconds.

• Pruning: a node n is pruned when the d-dnnf theory Tn associated with n
fails the validity test :

MC(T0) = MC(project[ Tn ; F0 ]) (3.3)

where T0 stands for the slice of the theory TN (P ) encoding the initial situation,
MC stands for the model count operator, and F0 stands for the fluent variables
in the initial situation. The model count and the projection are done in linear
time by means of a single bottom-up pass over the dag representation as show
in the algorithm of Figure 3.4 on the facing page. The model count over T0 is
done once, and measures the number of possible initial states.

• Selection Heuristics and Propagation: The undetermined action variable
ai for branching in node n is selected as the positive action literal ai that
occurs in the greatest number of models of Tn; this ranking being obtained
by means of a single model count MC(Tn) implemented so that with just two
passes over the dag-representation of Tn (one bottom up, another top-down;
see (Darwiche, 2001a)), it yields model counts MC(Tn ∧ l) for all literals l in
the theory. Moreover, when for a yet undetermined action literal l this model
count yields a number which is smaller than the number of initial states MC(T0),
then its complement ¬l is set to true by conditioning Tn on ¬l. This process is
iterated until no more literals can be so conditioned on in Tn. This inference
cannot be captured by performing deductions on Tn as this could only set a
literal ¬l to true when the model count MC(Tn ∧ l) is exactly 0. The inference,
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however, follows from the qbf formula associated with Tn encoding not only
the planning domain but the planning task (Rintanen, 1999).12

Input: Conformant Problem P = 〈F,O, I,G〉
Input: Horizon N
Output: Print conformant plan π for P or return FALSE

TN (P )← propositional translation of P for N time steps plans
∆← d-dnnf compilation of TN (P )
#S0 ← number of initial states of P

procedure Closure(TA):
repeat

MC-L(∆,TA) (* calculates MC(∆,TA ∪ {a}) for each literal a in
two passes over ∆ (Darwiche, 2001a) *)
foreach a such that MC(∆,TA ∪ {a}) ≤ #S0 do

TA ← TA ∪ {¬a}
until no change

function PickAction(TA):
return action literal a with larger MC(∆,TA ∪ {a})

function Search(action set TA):
begin

φ← MC-and-P(∆,TA,F0) (* returns MC(project[ ∆ |TA ; F0 ]) *)
(* See Figure 3.4 on page 42 *)

if φ < #S0 then
return FALSE

else if Complete(TA) then
PrintPlan (TA) and abort

else
begin

Closure(TA)
a←− PickAction(TA)
if not Search(TA ∪ {a}) then

if not Search(TA ∪ {¬a}) then
return FALSE

end
end

return Search(∅) (* start with empty action set *)

Figure 3.5: vplan algorithm for finding a conformant plan of N time steps using
compilation to d-dnnf, model counting and projection.

12The qbf formulation of conformant planning reflects that we are not looking for models of Tn

but for interpretations over the action variables that can be extended into models of Tn for any
choice of the initial fluent variables compatible with T0. The qbf formula encoding the planning
task over the theory TN (P ) will imply that an action literal ai that does not participate in any
conformant plan that solves P needs to be false. This, however, does not imply that ¬ai is a
deductive consequence of the planning theory TN (P ); it is rather a deductive consequence of the
qbf formula encoding the planning task. This distinction does not appear in the classical setting,
where the same formula encodes the planning theory and the planning task; it is however important
in the conformant setting where this is no longer true. In Section 9.1 we comment more about the
qbf for a conformant planning task in a more appropriate context.
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Summarizing, the vplan algorithm is shown in Figure 3.5. An optimization respect
to the aspects explained before is that no new d-dnnf is calculated during search.
Instead, the algorithm of Figure 3.4 is used to condition on S the theory ∆ while doing
model counting and projection upon vars in P , calculating MC(project[ ∆ |S ; V ]).

3.6 Experimental Results

We performed the experiments on a Intel/Linux machine running at 2.80GHz and
2Gb of memory.13 Times for the experiments were limited to 2 hours, in most cases,
and memory to 1Gb. We used the same suite of problems as Rintanen (2004a). These
are challenging problems that emphasize some of the critical aspects that distinguish
conformant from classical planning; some of the problems are from Cimatti et al.
(2004)

• Ring: There are n rooms arranged in a circle and a robot that can move either
clockwise or counter-clockwise, one step at a time. The room features windows
that can be closed and locked. Initially, the position of the robot and the
status of the windows are not known. The goal is to have all windows closed
and locked. The number of initial states is n × 3n and the optimal plan has
3n− 1 steps. The parameter n used ranges from 3 to 8.

• Sorting Networks: The task is to build a circuit made of compare-and-swap
gates that maps an input vector of n boolean variables into the correspond-
ing sorted vector. The compare-and-swap action compares two entries in the
input vector and swaps their contents if not ordered. The optimal serial plan
minimizes the number of gates, while the optimal parallel plans minimizes the
‘time delay’ of the circuit. Only optimal plans for small n are known (Knuth,
1973). The number of initial states is 2n. The parameter n used ranges from 2
to 7.

• Square-center: A robot without sensors moves in a room to north, south,
east, and west, and its goal is to get to the middle of the room. The optimal
serial plan for a grid of size n with an unknown initial location is to do n − 1
moves in one direction, n− 1 moves in an orthogonal direction, and then from
the resulting corner, n−2 moves to the center for a total of 3×n−4 steps. In the
parallel setting, pairs of actions that move the robot in orthogonal directions
are allowed. There are 2n initial states. The parameter n used ranges from 22

to 24.14

• Blocks: Refers to blocksworld domain with move-3 actions but in which the
initial state is completely unknown. Actions are always applicable but have an
effect only if their normal ‘preconditions’ are true. The goal is to get a fixed
ordered stack with n blocks. The parameter n used ranges from 2 to 4, and
the number of initial states is 3, 13 and 73 respectively.

13The algorithm presented on this chapter can be run using the option ’mc’ of the conformant
planner ’Translator’ available at http://www.ldc.usb.ve/~hlp/software.

14This problem was called ’emptyroom’ in the experiments reported by Rintanen (2004a). As
described, this ’square-center’ is the same used in the experiments of part III about translation from
conformant into classical planning.

http://www.ldc.usb.ve/~hlp/software
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search at horizon k search at horizon k − 1
problem N∗ #S0 time backtracks #act time backtracks
blocks-2 2 3 0 1 2 0 1
blocks-3 9 13 0.02 7 9 144.45 248619
blocks-4 26 73 > 2h > 76029 > 2h > 78714

square-center-4 8 16 0 0 8 0.02 243
square-center-8 20 64 0.05 0 20 > 2h > 3741672
square-center-16 44 256 > 2h > 188597 > 2h > 191030

ring-3 8 81 0 0 8 0 5
ring-4 11 324 0.06 1 11 0.02 5
ring-5 14 1215 0.71 2 14 0.16 5
ring-6 17 4374 3.49 4 17 0.69 5
ring-7 20 15309 24.48 5 20 3.35 5
ring-8 23 52488 128.64 7 23 13.08 5

sortnet-3 3 8 0 0 3 0 5
sortnet-4 5 16 0 0 5 0.05 421
sortnet-5 9 32 0.02 0 9 > 2h > 4845305
sortnet-6 12 64 0.2 1 12 > 2h > 458912
sortnet-7 16 128 > 2h > 102300 > 2h > 104674

Table 3.2: Search data for serial planning for optimal horizon N∗ (left) and and suboptimal
horizon N∗ − 1 (right). The columns show the optimal horizon, number of possible initial
states, search time in seconds, number of backtracks, and number of actions in the plan.
Rows with ’> 2h’ mean the search reached the cutoff time of 2 hours. All times are in
seconds.

None of the problems feature preconditions, and only sorting and square-center admit
parallel solutions (recall that we only allow parallel actions whose effects, ignoring
their conditions, affect different variables).

The results that we report are collected in three tables. Table 3.1 reports the data
corresponding to the compilation of the theories for serial planning. The last column
shows the time taken for compiling each theory with the optimal horizon N∗, and
the accumulated time for compiling each theory with horizon N = 0, . . . , N∗. All
theories compile: most in a few seconds, some in a few minutes, and only two of
them – the largest ring and sort instance – take 33 and 13 minutes respectively. The
accumulated times are also largest for these two instances, taking a total time of 3.4
and 1.7 hours. It is quite remarkable that all these theories actually compile; they are
not trivial theories, with many featuring several thousands of variables and clauses,
producing large d-dnnfs with millions of nodes in some cases (e.g., the largest sort
and two largest ring instances). The largest instances, except for the ring instances,
are probably beyond the reach of most conformant planners at the moment of doing
this experiments (Palacios et al., 2005), whether optimal or not, with the planner in
Rintanen (2004a) producing apparently the best results and solving most instances,
except for the 3 most difficult sorting problems. From the point of view put forward
in this chapter, this means that the compilation is not the bottleneck for solving these
problems, but the search. However, in those cases where the d-dnnfs obtained are
very large, the advantage of an informative and linear pruning criterion decreases,
as the operations are linear on a structure that is very large (of course, there is no
escape from this in the worst case, as checking the validity of a candidate conformant
plan is hard). We also note though that some instances are quite challenging for
conformant planning even if the size of their corresponding d-dnnfs are not that
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search at horizon k search at horizon k − 1
problem N∗ #S0 time backtracks #act time backtracks

square-center-4 4 16 0 54 8 0 9
square-center-8 10 64 1.26 952 20 39.82 20773
square-center-16 22 256 > 2h > 235696 > 2h > 240089

sortnet-4 3 16 0.01 38 6 0 29
sortnet-5 5 32 0.03 0 10 53.63 61469
sortnet-6 5 64 380.15 23884 14 > 2h > 634880
sortnet-7 6 128 3.48 0 18 > 2h > 84881

Table 3.3: Search data for parallel planning for optimal horizon N∗ (left) and and subop-
timal horizon N∗ − 1 (right). The columns show the optimal horizon, number of possible
initial states, search time in seconds, number of backtracks, and number of actions in the
plan. Rows with ’> 2h’ mean the search reached the cutoff time of 2 hours. All times are in
seconds.

large; this includes sortnet-6 and square-center-16.

Table 3.2 reports the data for the search for plans in the serial setting. On the left
we show the results for the optimal horizon N∗, while on the right, for the horizon
N∗ − 1 for which there is no solution. In a sense, the first results show the difficulty
of finding conformant plans; the second, the difficulty of proving them optimal.
There are actually several examples in which plans are found for the optimal horizon
which cannot be proved optimal in the immediately lower horizon; for example,
square-center-8 and sortnet-6. The problems that are solved most easily are the ring
problems that actually are the ones that have the largest d-dnnf representation. The
reason is that the pruning criterion enables the solution of such instances with very
few backtracks. On the other hand, the hardest block, square-center, and sortnet
problems are not solved. By looking at the table, it appears that problems are
solved with a few backtracks or are not solved at all. In principle it may be thought
that this is because the pruning criterion is too expensive, and node generation rate
is very low. Yet, the number of backtracks in some of the problems suggest the
opposite: e.g., sortnet-5 cannot be proved optimal after almost 5 million backtracks,
and similarly square-center-8. The complexity of the pruning operation, that grows
linearly with the size of the d-dnnf representation explains however why the large
unsolved instances reach the cutoff time with a smaller number of backtracks than
the small unsolved instances.

Table 3.3 reports the data for the search for plans in the parallel setting. Given
our simple model of parallelism where the only compatible actions are the ones that
involve disjoint set of variables, it turns out that only the square-center and sortnet
problems admit parallel solutions. In the first, one can take orthogonal directions at
the same time; in the second, one can compare disjoint pairs of wires concurrently.
The instances that get solved do not change significantly with respect to the serial
setting, yet there are three interesting exceptions. One is square-center-8 which could
not be solved before for the horizon N∗ − 1 now is solved in less than 40 seconds
with a relatively large number of backtracks: 20773 (by solving a problem in the
horizon N∗ − 1 we mean proving failure). This breaks the pattern observed earlier
where problems were solved almost backtrack-free or not solved at all. In the same
instance, the solution found for the optimal horizon N∗ is obtained in a slightly more
time, but with many more backtracks: 952. A possible explanation for this is that
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parallelism removes some symmetries in the problem, leaving an smaller space with
fewer solutions. Thus, the proof for solutions become more difficult but the proofs
for non-solutions become simpler. At the same time though, the parallel formulation
makes sortnet-7 solvable in the optimal horizon. We are not solving sortnet-7 fully
either; it is solved for the optimal horizon N∗, but not for N∗ − 1 (which is always
the most difficult horizon for proving the lack of solutions). Instead, sortnet-5 gets
now solvable also for the horizon N∗−1 taking under 54 seconds and a large number
of backtracks: 61469.

From the benchmarks considered and reported in various papers, it was not simple
to assess the performance of the proposed planner in relation to existing optimal and
non-optimal ones at the moment of performing this evaluation (Palacios et al., 2005).
It seems that various planners do well for some types of problems but not for others.
In particular, the gpt planner (Bonet and Geffner, 2000) does well in problems
where the size of the belief states that are reachable is small, and the heuristic V ∗dp
that relaxes the problem assuming full observability, remains well informed (this also
requires that the size of the state space not be too large either). The planner mbp
reported in Cimatti et al. (2004) extends the scope of heuristic search planners by
representing belief states symbolically as obdds; so it is not affected necessarily by
the size of the state space nor by the size of the belief states. Still, when running in
optimal model, mbp depends on the quality of a heuristic function similar to V ∗dp, and
then it is also somewhat bound to problems where the assumption of full observability
does not simplify the problem too much (for such problems actually a better informed
admissible heuristic, although not fully automated is discussed in Cimatti et al.
(2004)). The Conformant-ff planner recently introduced in Brafman and Hoffmann
(2004) seems to perform best in problems that add a small amount of uncertainty
in otherwise large classical planning problems, where the proposed, novel heuristic
appears to work best. The problems that we have selected, which correspond to
those considered in Rintanen (2004a), do not appear to exhibit these features, and
gathering from the reported papers, it does not seem that these planners would do
well on them, or even as well as vplan (with the exception of the ring problems, that
involve large state spaces and large belief states, but where the heuristic V ∗dp remains
well informed making the symbolic heuristic-search approach particularly suitable).
In particular, we considered the ‘cube-center’ problem, a problem that extends the
‘square-center’ problem with another dimension. In Brafman and Hoffmann (2004)
cubes of sizes up to m = 3 are reported solvable by Conformant-ff and cubes of sizes
up to m = 5 are reported solvable by mbp. We ran this benchmark for vplan and as
for square-center, we obtained better results in the parallel formulation, where some
symmetries are broken. In this way, we were able to solve cube-center for m = 7 in
less than a minute for the optimal horizon N∗ = 8, proving the lack of solutions for
the horizon N∗ − 1 in 485 seconds.

The planner reported in Rintanen (2004a) does particularly well on the suite of prob-
lems considered, solving most of them very fast. The planner is a heuristic-search
planner based on obdd representations of belief states that uses a novel heuristic
function obtained from relaxations that do not assume full observability. The relax-
ations appear to stand for conformant planning problems that differ from the original
instance in their initial belief state. Rintanen solves the problem for all possible ini-
tial belief states with two states at most, and stores the resulting costs in memory.
Then, the heuristic h(b) of a belief state b is set to maxb′⊆b h′(b′) where h′ is the stored



3.7. discussion 49

cost function, and b′ is a belief state with at most two states in b. Unfortunately,
Rintanen does not report data on the costs of preprocessing, but the results suggest
that the heuristic obtained, while being more expensive, is better suited than the
simpler heuristic V ∗dp for problems that involve some form of epistemic reasoning.

3.7 Discussion

We have developed an algorithm for conformant planning with deterministic actions
that operates over logical encodings in which action literals are selected for branching,
and branches that encode invalid action sets are pruned. The validity test checks at
every node of the search tree whether the accumulated set of commitments (or action
set) is consistent with each possible initial state and the planning theory. This ensures
that the planner is sound and complete. Validity test, however, are informative but
expensive. We showed how they can be reduced to projection and model count
operations that can be carried out efficiently in the d-dnnf representation of the
planning theory. The empirical results are encouraging, although we believe that
there is still a lot of room for improvement.

Some goals for the future are: better ways for dealing with symmetries in the search
space (there are plenty), better preprocessing (e.g., inference in the style of the plan-
ning graph capturing that certain actions literals cannot participate in a conformant
plan), better criteria for selecting the action on which to branch (the planner is sensi-
tive to this choice, and we should probably explore the use of one criterion for finding
plans, and another one for proving optimality as done often in CSPs), incremental
model counts in the search tree (taking advantage of the count performed in the
parent node of the search tree), and other ways for using the d-dnnf representation
to cut the search for plans even further.

The use of d-dnnf for conformant planning is further discussed at the end of the
next chapter, after observing the performance of the algorithm proposed there.





Chapter 4

SAT Formulation

Sediento de saber lo que Dios sabe,
Judá León se dio a permutaciones
de letras y a complejas variaciones
y al fin pronunció el Nombre que es la Clave

Thirsty to see what God would see,
Judah Loew gave in to permutations
with letters in such complex variations
that he at last uttered the Name that is Key.

El Golem. Poem by Jorge Luis Borges1

In the previous chapter, we introduced an algorithm that starts by transforming the
conformant planning problem P into a propositional theory TN (P ) for an horizon
N . We observed that verifying consistency of TN (P ) through a sat solver was not
enough for discarding partial plans that cannot be extended to conformant plans.
This prompted the introduction of a stronger criterion for discarding such partial
plans, by model counting and projection over propositional theories, operations are
made efficient by transforming the theory TN (P ) into Deterministic Decomposable
Negational Normal Form (d-dnnf, Darwiche and Marquis, 2002).

In this chapter we use the same propositional theory TN (P ) and transform it into
d-dnnf but, in contrast, we used it to obtain a new propositional theory TN (P )′

such that getting a conformant plan requires a single sat call over such new theory.

The chapter is organized as follows. We give a general introduction to the approach,
referring to previous chapters for further details on conformant planning task defini-
tion, propositional encoding of planning theories, logic operations on propositional
theories, and d-dnnf. Then, we study how to obtain a formula whose models corre-
sponds to conformant plans, by using projection as a logical operation, and the use of
d-dnnf as a compiled normal form that supports projection in linear time. Finally,
we present the conformant planning algorithm, the experimental results, and a final
discussion.

1Translation to English from http://www.syntheticzero.com/?p=629
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The content of this chapter is based on a paper published by Palacios and Geffner
(2006b).

4.1 Introduction

Conformant planning is computationally harder than classical planning, and unlike
classical planning, cannot be reduced polynomially to sat. Other sat approaches to
conformant planning follow a generate-and-test strategy (Ferraris and Giunchiglia,
2000): the models of the theory are generated one by one using a sat solver (assum-
ing a given planning horizon), and from each such model, a candidate conformant
plan is extracted and tested for validity using another sat call. This works well when
the theory has few candidate plans and models, but otherwise is too inefficient. In
this chapter, we propose a different use of a sat engine where conformant plans
are computed by means of a single sat call over a transformed theory. This trans-
formed theory is obtained by projecting the original theory over the action variables.
Projection is the dual of variable elimination (also called forgetting or existential
quantification): the projection of a formula over a subset of variables is the strongest
formula over those variables; e.g., the projection of ((x ∧ y) ∨ z) over {x, z} is x ∨ z.
While projection is intractable, it can be done efficiently provided that the theory
is in a certain canonical form such as deterministic Decomposable Negated Normal
Form (d-dnnf Darwiche and Marquis, 2002), a form akin to obdds (Bryant, 1992).

Our scheme for planning is thus based on the following three steps: the planning
theory in cnf is first compiled into d-dnnf, the compiled theory is then transformed
into a new theory over the action variables only, and finally the conformant plan,
if there is one, is obtained from this theory by a single invocation of a sat engine.
The experiments that are reported show that this compile-project-sat planner
is competitive with state-of-the-art optimal conformant planners and improves upon
the planner reported in the previous chapter.

Two optimal conformant planners are by Rintanen (2004a) and the one presented
in Chapter 3 (Palacios et al., 2005). The first performs heuristic search in belief
space with a powerful, admissible heuristic obtained by precomputing distances over
belief states with at most two states. The second is a branch-and-prune planner
that prunes partial plans that cannot comply with some possible initial state. This
is achieved by performing model-count operations in linear-time over the d-dnnf
representation of the theory. Both schemes assume that all uncertainty lies in the
initial situation and that all actions are deterministic. In this chapter, we maintain
this simplification which is not critical as non-deterministic effects can be eliminated
by adding a polynomial number of hidden fluents, if the length of the plan is bounded.
An appealing feature of the new conformant planning scheme is that it is based on
the two off-the-shelf components: a d-dnnf compiler and a sat solver.

We refer the reader to Chapter 2 for the definition of the conformant planning prob-
lem, and sections 3.2 to 3.5 for further details about propositional encoding of confor-
mant problems, the projection logical operator, and the use of d-dnnf for computing
such operations.
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4.2 Conformant Planning and Models

In classical planning the relation between a problem P and its propositional encoding
TN (P ) is such that the models of TN (P ) are in one-to-one correspondence with the
plans that solve P (for the given horizon.In conformant planning, this correspondence
no longer holds: the models of TN (P ) encode ’optimistic plans’, plans that work for
some initial states and transitions but may fail to work for others, and hence are not
conformant. However, we will see that it is possible to transform the theory TN (P )
so that the models of the resulting theory are in correspondence with the conformant
plans for P .

Let Plan denote a collection of action literals such that it mentions all action vari-
ables in theory TN (P ), let Init denote the fragment of TN (P ) encoding the initial
situation, and let s0 refer a possible initial state which we denote as s0 ∈ Init2. Then
for a classical planning problem P , Plan is a solution if and only if

TN (P ) ∧ Plan is satisfiable. (4.1)

For a conformant problem P with deterministic actions only, on the other hand, Plan
is a solution if and only if

∀ s0 ∈ Init : TN (P ) ∧ Plan ∧ s0 is satisfiable. (4.2)

In other words, in the conformant setting, Plan must work for all possible initial
states.

In order to find a Plan that complies with (4.1) it is enough to find a model of TN (P ),
and then set Plan to the set of action literals that are true in the model. On the
other hand, for finding a Plan that complies with (4.2) this is not enough. As we
will show, however, this will be enough when the theory TN (P ) is transformed in a
suitable way. As a first approximation, consider the problem of finding a Plan that
complies with

TN (P )′ ∧ Plan is satisfiable. (4.3)

where TN (P )′ is a conjunction that takes into account all the initial states

TN (P )′ =
∧

s0∈Init

TN (P ) | s0 (4.4)

Here T |X refers to theory T with variables x in T replaced by the value they have
in state X: true if x ∈ X, and false if ¬x ∈ X. This operation is known as value
substitution or conditioning (Definition 3.11 in Section 3.4 on page 33).

If equations (4.3) and (4.4) provided a correct formulation of conformant planning,
we could obtain a conformant plan by finding a model for TN (P )′, and extracting
Plan from the value of the action variables in that model.

The formulation (4.3–4.4), however, is not correct. The reason is that the theory
TN (P ) contains fluent variables fi for times i > 0 which are neither in Init nor in
Plan. In (4.2), these variables can take different values for each s0, while in (4.3–4.4),
these variables are forced to take the same value over all possible s0.

2 s0 denote a maximal consistent set of fluent literals f0 compatible with Init
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We can modify, however, the definition of TN (P )′ in (4.4) for obtaining a correct
sat formulation of conformant planning. For this we need to eliminate or forget the
fluent variables fi, for i > 0, from each conjunct TN (P ) | s0 in (4.4).

The forgetting of a set of variables S from a theory T (Lin and Reiter, 1994), also
called elimination or existential quantification, is the dual operation to Projection of
T over the rest of variables V ; V = vars(T )−S. The projection of T over V , denoted
project[ T ; V ], refers to a theory over the variables V whose models are exactly the
models of T restricted to those variables. For example, if φ = (a1 ∧ f1) ∨ a2 then
project[φ; {a1, a2} ] = a1 ∨ a2, which can also be understood as ∃f1φ = (φ | f1 =
true)∨(φ | f1 = false) = ((a1∧ true)∨a2)∨((a1∧ false)∨a2) = (a1∨a2). Projection
was discussed in detail in section 3.4.

Getting rid of the fluent variables fi for i > 0 in the conjuncts TN (P ) | s0 in (4.4)
simply means to project such formulas over the action variables, as the variables
in TN (P ) | s0 are either action variables or fluent variables fi for i > 0 (the fluent
variables fi for i = 0 have been substituted by the their values in s0).

The result is that the transformed theory TN (P )′ becomes:

Tcf (P ) =
∧

s0∈Init

project[ TN (P ) | s0 ; Actions ] (4.5)

for which we can prove:

Theorem 4.1. The models of Tcf (P ) in (4.5) are in one-to-one correspondence with
the conformant plans for the problem P .

Proof. Justifications and comments are enclosed by { braces }. Remember that the
given a truth assignment for all action variables and variables of the initial situation,
the theory TN (P ) has either one model or none. Let TA a model on Tcf (P ).

TA satisfy
∧
s0∈Init project[ TN (P ) | s0 ; Actions ]

iff { Expanding. Observe that TA contains exactly all action variables }
For all s0 ∈ Init : TA satisfies project[ TN (P ) | s0 ; Actions ]

iff
{

Lemma 3.12 (projection). TA is unique given M because s0 and action
literals determine the theory TN (P )

}
For all s0 ∈ Init : Exists M that satisfies TN (P ) | s0 such that TA ⊆M

iff { Properties of conditioning }
For all s0 ∈ Init : Exists M that satisfies TN (P ) ∪ Lits(s0) s.t. TA ⊆M

iff

{Lemma 3.8 on page 32 given that TA is complete and consistent with
TN (P ) ∪ Lits(s0). Observe that π can be obtained from TA and vice
versa

}
For all s0 ∈ Init : π is a classical plan for P/s0

iff { Definition of conformant planning }
π is a conformant plan of P

Equation (4.5) suggests a simple scheme for conformant planning: construct the
formula Tcf (P ) according to (4.5), and then feed this theory into a state-of-the-art
sat solver. The crucial point is the generation of Tcf (P ) from the original theory
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TN (P ): the transformation involves conditioning and conjoining operations, as well
as projections. The key operation that is intractable is projection. Nevertheless, it is
well known that projection, like many other intractable boolean transformations, can
be performed in polynomial time provided that the theory is in a suitable compiled
form (Darwiche and Marquis, 2002). Of course, the compilation itself may run in
exponential time and space, yet this will not be necessarily so on average. We will
actually show that the theory Tcf (P ) in (4.5) can be obtained in time and space
that is linear in the size of the d-dnnf compilation of TN (P ). We refer the reader
to Section 3.5 in the previous chapter for d-dnnf definition, and its support for
operations like projection and conditioning.

4.3 A Conformant Planner based on SAT

Integrating the previous observations, the proposed conformant planner involves the
following steps, given a horizon N .

1. A cnf theory TN (P ) for horizon N is obtained from a pddl-like description of
the planning problem.

2. The theory TN (P ) is compiled into the d-dnnf theory Tc(P )

3. From Tc(P ), the transformed theory

Tcf (P ) =
∧

s0∈Init

project[ Tc(P ) | s0 ; Actions ]

is obtained by operations that are linear in time and space in the size of the dag
representing Tc(P ). The resulting theory Tcf (P ) is in nnf but is not decompos-
able due to the conjunction used to combine each formula
project[ Tc(P ) | s0 ; Actions ], as the formulas share variables.

4. The nnf theory Tcf (P ) is converted into cnf and a sat solver is called upon
it.

This sequence of operations are summarized in Figure 4.1 on the following page and
repeated starting from a planning horizon N = 0 which is increased by 1 until a
solution is found.

Some of the details of the generation of the target theory Tcf (P ) from the compiled
theory Tc(P ) are important. Normally, a simple way to compile an expression to
d-dnnf is by recursively applying Shannon expansion over all variables in a theory
T , as describe in Section 3.5:

T = (T | a) ∨ (T | ¬a)

The first expansion leading to a d-dnnf appears in fig. 4.2, where T | a and T | ¬a are
to be transformed using the same algorithm. Even though the process of compilation
to d-dnnf includes many optimizations, the compiler can be set to do exactly that
for some variables.

In particular for our algorithm, TN (P ) is compiled into Tc(P ) using an ordering of
variables that expands the Init variables first; this is so that the dag representing
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Input: Conformant Problem P = 〈F,O, I,G〉
Input: Horizon N
Output: Print conformant plan π for P or return FALSE

TN (P )← propositional translation of P for N time steps plans
∆← d-dnnf compilation of TN (P )
Tcf ←

∧
s0∈Init project[ ∆ | s0 ; Actions ]

Tcnf ← Tcf converted from nnf into cnf
Model← SAT(Tcnf)
if Model then

PrintPlan(Model)
else

return FALSE

Figure 4.1: Algorithm for finding a conformant plan ofN time steps using compilation
to d-dnnf, projection, and one sat solver call.

and

−a T | −a

and

T | a a

or

Figure 4.2: Partial compilation of T to d-dnnf using Shannon expansion

the d-dnnf subtheories Tc(P ) | s0 for each possible initial state s0, all correspond to
(non-necessarily disjoint) fragments of the dag representing the compiled d-dnnf
theory Tc(P ). Then the dag representing the target nnf theory Tcf (P ) is obtained
by conjoining these fragments. This last step requires to project the theory T over
actions and variables of the initial situation T0(P ), ensuring that the remaining
variable after conditioning over states s0 are only action variables. The compiler to
d-dnnf supports such projection during compilation3.

For example, if a and b were the only two variables appearing in Init , and there
were exactly four possible initial states {a, b}, {a,¬b}, {¬a, b} and {¬a,¬b}, the four
subformulas corresponding to the conjuncts of equation (4.5) can be extracted as a
subgraph, as illustrated in fig. 4.3.

The conjunction of these subgraph is in nnf negational normal form, but is no longer
decomposable neither deterministic. In such case, verifying satisfiability would have
been verifiable in linear time. Instead, we consider the dag as a circuit and generate
an equivalent cnf formula. This is done by creating propositional variables for each
node of the dag, and adding clauses for encoding the relations between nodes. If a
parent node is labeled with and, then whenever all its children are true, the parent
node should be true and vice versa. Or nodes are translated similarly.

3As in the algorithm in the previous chapter, all variables but actions and initial states were
also forgot during compilation
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and

or

and

or

and

T | −a,b b

and

−b T | a,−b

and

−b T | −a,−b

and

T | a,b b

a

or

−a

Figure 4.3: Partial compilation of T to d-dnnf for an initial state with variables a and b,
and four possible initial states

4.4 Experimental Results

We performed experiments testing the proposed optimal conformant planner on a
Intel/Linux machine running at 2.80GHz with 2GB of memory, in the same machine
used in the experiments of previous chapter. We call satconf the planner based on
the algorithm of this chapter.4 Runs of the d-dnnf compiler and the sat solver were
limited to 2 hours and 1.8GB of memory. The d-dnnf compiler is Darwiche’s c2d
v2.18 (Darwiche, 2004), while the sat solver is siege_v4 except for very large cnfs
that would not load, and where zChaff was used instead. We used the same suite
of problems used in the previous chapter and Rintanen (2004a). We provide a brief
definition of the domains.

• Ring: A robot can move in n rooms arranged in a circle. The goal is to have
all windows closed and locked.

• Sorting Networks: The task is to build a circuit of compare-and-swap gates
to sort n boolean variables.

• Square-center: A robot without sensors can move in a grid of n× n, and its
goal is to get to the middle of the room. For this, it must first locate itself into
a corner.

• Cube-center: Like the previous one, but in three dimensions.

• Blocks: Refers to the blocks-world domain with move-3 actions but in which
the initial state is completely unknown. Actions are always applicable but have
an effect only if their normal ‘preconditions’ are true. The goal is to get a fixed
ordered stack with n blocks. None of the problems feature preconditions, and
only sorting, square-center, and cube-center admit parallel solutions.

We report compilation and search times. The first is the time taken by the d-dnnf
compiler; the second is the time taken by the sat solver. For the search part, we

4The algorithm presented on this chapter can be run using the option ’sat’ of the conformant
planner ’Translator’ available at http://www.ldc.usb.ve/~hlp/software.

http://www.ldc.usb.ve/~hlp/software
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cnf theory d-dnnf theory Tcf (P )
problem N∗ vars cls nodes edges time vars cls
ring-7 20 1081 3683 11M 3M 192.2 977k 3106k
ring-8 23 1404 4814 4M 9M 1177 4M 12M

blocks-3 9 444 2913 5242 21k 0.3 4667 24k
blocks-4 26 3036 41k 227k 889k 124.5 224k 1105k

square-center-8 20 976 3642 12k 23k 1.1 9664 28k
square-center-16 44 4256 17k 91k 175k 47.1 82k 239k

cube-center-9 33 2700 11k 283k 575k 98.9 277k 840k
cube-center-11 42 4191 17k 659k 1331k 371.6 648k 1959k

sortnet-7 16 1484 6679 116k 284k 12.4 113k 391k
sortnet-8 19 2316 13k 364k 896k 77.2 360k 1247k

Table 4.1: Compilation data and resulting CNF for serial formulation and optimal horizon
N∗. On the left, the size of the theories TN (P ) encoding the conformant planning problems,
on the center, the size of the dags representing the compiled theories Tc(P ) and the times
spent in the compilation; on the right, the size of the target theories Tcf (P ) in cnf that are
passed to the sat engine. cls means the number of clauses. Suffix k and M means that the
number has been divided by 1000 and 1000× 1000, respectively, and rounded up.

show the results for both the optimal horizon N∗ and N∗ − 1. The first shows
the difficulty of finding conformant plans; the second, the difficulty of proving them
optimal. These times dominate the times consumed in the previous iterations.

In Table 4.1, we show results of the compilation for optimal horizons in the serial
setting. The compilation of theories for smaller horizons or parallel formulations is
normally less expensive. The table shows the optimal horizon N∗ for each problem,
the size of the original cnf theory TN (P ), the size of the dag representing the
compiled theory Tc(P ) with the time spent in the compilation, and finally the size
of the target theory Tcf (P ) in cnf that is fed to the sat solver. The first thing
to notice is that all the problems considered by Rintanen (2004a) compile properly.
Thus, as in Chapter 3, the compilation is not the bottleneck.

Table 4.2 shows the results of the sat solver over the transformed theory Tcf (P ) for
both the optimal horizon N∗ and N∗− 1, and for both the serial and parallel formu-
lations. While not all problems are solved, the results improve upon those reported
in Chapter 3, solving one additional instance in square-center and sorting, both in
the serial and parallel setting. This represents an order of magnitude improvement
over these domains. In blocks, on the other hand, there is no improvement, while the
largest ring instances resulted in very large cnf theories that could not be loaded
into Siege but were loaded and solved by zChaff (except for ring-r8 under the opti-
mal planning horizon). In contrast, the algorithm based on model-counting did not
exhaust the memory in the experiments reported.

4.5 Discussion

We presented a compile-project-sat scheme for computing optimal conformant
plans. The scheme is simple and uses two off-the-shelf components: a d-dnnf com-
piler and a sat solver. Given a conformant problem P and a horizon N , it first
generate a propositional encoding TN (P ), compile it into d-dnnf and generate a
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search with horizon k horizon k − 1
problem N∗ #S0 time #dec #act time #dec

serial theories
ring-7 20 15309 ◦ 2.1 2 20 ◦ 0.8 0
ring-8 23 52488 > 1.8GB ◦ 2.4 0

blocks-3 9 13 0.1 1665 9 0.2 3249
blocks-4 26 73 > 2h > 2h

square-center-8 20 64 18.8 53k 20 207.4 208k
square-center-16 44 256 5184.4 1097k 44 > 2h

cube-center-7 24 343 3771.5 579k 24 5574.2 737k
cube-center-9 33 729 > 2h > 2h

sortnet-5 9 32 0.0 352 9 22.0 35053
sortnet-6 12 64 40.0 35k 12 > 2h
sortnet-7 16 128 3035.6 526k 16 > 2h
sortnet-8 19 256 > 2h > 2h

parallel theories
square-center-8 10 64 0.5 2737 20 0.3 1621
square-center-16 22 256 423.1 245k 44 1181.5 440k

cube-center-7 8 343 6.1 4442 24 2.9 1892
cube-center-9 11 729 114.6 28k 33 156.0 32760
cube-center-11 14 1331 > 1.8GB 181.5 13978

sortnet-7 6 128 46.1 19k 18 355.4 48264
sortnet-8 6 256 ◦ 4256.6 534k 23 > 2h

Table 4.2: Results for the Search: sat calls over the transformed theory Tcf (P ) for the
optimal horizon N∗ (left) and N∗−1 (right), both for serial and parallel formulations (when
they differ). We show the number of initial states, the time spent on the sat call, the number
of decisions made, and the number of actions in the plan found. Entries ’> 2h’ and ’> 1.8GB’
mean time or memory exceeded. The sign ◦ indicates that the sat solver used was zChaff,
as siege v4 could not load Tcf (P ) due to its size. Times are in seconds. A suffix k and M
means that number has been divided by 1000 and 1000 × 1000, respectively, and rounded
up.

new propositional formula whose models are all the conformant plans of N times
steps for P . Calling a sat-solver upon such new formula returns a conformant plan,
if there is one for such N . We have shown that it improves on performance upon the
model-counting-based algorithm of the previous chapter.

We have also explored a variation of the compile-project-sat scheme that may be
more suitable for dealing with problems that are not that far from classical planning,
such as those considered by Brafman and Hoffmann (2004). When the number of
possible initial states s0 is small, rather than getting rid of the fluent variables fi,
i > 0, by projection (as in Equation 4.5)

L =
∧

s0∈Init

project[ TN (P ) | s0 ; Actions ], (4.6)

it may be more convenient to introduce copies of them, one for each possible initial
state s0, resulting in the formula

L′ =
∧

s0∈Init

[ TN (P )s0 | s0 ] (4.7)

where each TN (P )s0 denotes a theory which is like TN (P ) except that the fluent
variables fi, i > 0, are replaced by fresh copies f s0i . Action variables, on the other
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hand, remain shared among all these theories. It can be shown that models of L′ as
well as the models of L, are in one-to-one correspondence with the conformant plans
that solve the problem. The latter approach, which does not require projection or
compilation, may work better when the number of possible initial states is low, and
collapses to the standard sat approach to classical planning when there is uncer-
tainty. However, the results were not competitive in the limited tests we performed.
This idea is related to the translation K0(P ) of conformant problems into classical
ones proposed in Chapter 6, were each atom is labelled with all possible initial states.

We transform the resulting formula in nnf to cnf, as sat solvers for cnf are capable
of solving industrial size formulas, albeit we tried with a non-clausal solver that
accepts circuits (Thiffault et al., 2004) but we had syntactic problems that could not
be overcome. It is encouraging the sat competition includes now a track on solving
circuits (Sinz and Jain, 2008), as in the future the resulting products of knowledge
compilation operation over d-dnnf and obdd may be feed directly into non-clausal
sat solvers, hopefully leading to better performance.

In this and the previous chapters the d-dnnf compilation step was not a bottleneck
for the performance of the proposed algorithms. However, in both cases we refined
the algorithms for model-counting, projection and conditioning in order to achieve
good performance. The main reason is that even though these operations can be
performed in time linear in the size of the d-dnnf graph, these graphs can be quite
big. In general, the effective use of d-dnnf depends on being able to compile the
propositional formulas, and obtaining a small enough compiled formula. Our compi-
lation strategy, following the chronological order of the propositional variables, was
critical for achieving good performance.

As in many other problem solving areas, symmetries appear in planning. For ex-
ample, given two simple conformant planning problems, adding them up in a single
up will cause quadratic increase on the number of possible initial states. Both al-
gorithms presented in this part may find the new problem much harder than the
two simple ones. Symmetries seems to play a role in the bad performance of both
algorithms in the ring problem, for example.
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Chapter 5

A Basic Translation to Classical
Planning

But it happened that after walking for a long
time through sand, and rocks, and snow, the
little prince at last came upon a road. And all
roads lead to the abodes of men.

The Little Prince.
Novel by Antoine de Saint-Exupéry

In this part of the dissertation we introduce an alternative approach to conformant
planning where problems are automatically compiled into classical problems and
solved by a classical planner. This approach provides an implicit solution to the
two problems faced by conformant planners that search in belief space (Bonet and
Geffner, 2000): the belief representation and the heuristic over beliefs (see Sec-
tion 2.8). In the translation approach to classical planning, belief states are rep-
resented as plain states, allowing standard classical planning heuristics to be used.

In the translation-based approach to conformant planning considered in this chapter,
beliefs are represented by literals KL that aim to represent that a literal L is known
to be true with certainty. In addition, and since belief states are represented as plain
states, the heuristic over beliefs is a classical heuristic. From a computational point
of view, though, there is no explicit search in belief-space: conformant problems P
are converted into classical problems K0(P ) at the ’knowledge-level’ (Petrick and
Bacchus, 2002), whose solutions, computed by a classical planner, encode the confor-
mant solutions for P . However, the translation of this chapter is incomplete, meaning
that a problem P may have a conformant plan with no corresponding classical plan
for its translation K0(P ). In the next chapter we extend the translation K0(P ) to
make complete.

The content of this chapter is based on ideas first published by Palacios and Geffner
(2006a).

63
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5.1 Introduction

The problem of conformant planning can be formulated as a deterministic search
problem in belief space, where a sequence of actions that map a given initial belief
state bel0 into a target set of beliefs is sought. A belief state bel represents the set
of states s that are deemed possible, and actions a, whether deterministic or not,
deterministically map one belief state bel into another, denoted as bela (Bonet and
Geffner, 2000) (more details in Section 2.7). Since the number of belief states is
exponential in the number of states, it is clear that the search for conformant plans
takes place in a space that is exponentially larger than the search for classical plans
(see section Complexity, 2.6). .

A way to trade off completeness for efficiency in conformant planning results from
approximating belief states or transitions. For example, the 0-approximation intro-
duced by Baral and Son (1997) represents belief states bel by means of two sets: the
set of literals that are true in bel, and the set of literals that are false in bel. Vari-
ables which do not appear in either set are unknown. In this representation, checking
whether an action a is applicable in bel, computing the next belief state bela, and
verifying polynomial length plans are all polynomial time operations. Roughly, a
fluent literal L makes it into bela iff a) action a has some conditional effect C → L
such that all literals in C are in bel, or b) L is in bel and for all conditional effects
C ′ → ¬L of action a, the complement of some literal L′ ∈ C ′ is in bel.

Conformant planning under the 0-approximation is thus no more complex, theoret-
ically, than classical planning. The problem however is that the 0-approximation is
strongly incomplete, as it does not capture any non-trivial form of disjunctive in-
ference. For example, given a disjunction p ∨ q and an action a that maps either p
or q into r, the semantics will not validate a as a conformant plan for r. Indeed,
disjunctions that are not tautologies are thrown away. The 0-semantics does cap-
ture, on the other hand, situations in which the information that is missing is not
relevant. For example, if there are actions that can make a variable p true or false,
then uncertainty in the initial state of p would not hurt. Classical planners, on the
other hand, cannot handle such situations.

Another sound but incomplete approach to planning with incomplete information
is presented by (Petrick and Bacchus, 2002) where belief states bel are represented
by more complex formulas which may include disjunctions. Yet in order to make
belief updates efficient several approximations are introduced, and in particular,
while existing disjunctions can be carried from one belief state to the next and can
be simplified, no new disjunctions are added. This too imposes a serious limitation
in the type of problems that can be handled.

Expressivity, however, is not the only problem; efficiency or control is the other.
Indeed, it is not enough to introduce restrictions that under polynomial length con-
straints bring the complexity of conformant planning to that of classical planning
or SAT; the control knowledge needed for solving the resulting problem must be
made available as well. The approach by (Petrick and Bacchus, 2002) leave this
problem largely unaddressed relying on a blind search over compact belief represen-
tations and efficient update rules. Recent elaborations of the 0-approximation by
(Son et al., 2005b; Tran et al., 2009) rely in turn on a fixed heuristic function that
counts the number of goals achieved, which applies well to some problems but not
to others.
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In this part of the dissertation, we aim to address both problems, expressivity and
control, by introducing incomplete and complete mappings to classical planning. We
refer the reader to Chapter 2 on page 13 for the definition of the conformant planning
task. The formulations in this part of the dissertation are limited to conformant
problems that are deterministic and where all uncertainty lies in the initial situation.

5.2 A Basic Translation K0

A simple translation of the conformant problem P into a classical problem K(P ) can
be obtained by replacing the literals L by literals KL and K¬L aimed at capturing
whether L is known to be true and known to be false respectively.

Definition 5.1 (TranslationK0). For a conformant planning problem P = 〈F, I,O,G〉,
the translation K0(P ) = 〈F ′, I ′, O′, G′〉 is a classical planning problem with

• F ′ = {KL,K¬L | L ∈ F}
• I ′ = {KL | L is a unit clause in I}
• G′ = {KL | L ∈ G}
• O′ = O but with each precondition L for a ∈ O replaced by KL, and each

conditional effect a : C → L replaced by a : KC → KL and a : ¬K¬C →
¬K¬L,

where the expressions KC and ¬K¬C for C = L1, L2 . . . are abbreviations of the
formulas KL1,KL2 . . . and ¬K¬L1,¬K¬L2 . . . respectively.

The intuition behind the translation is simple: first, the literal KL is true in the
initial state I ′ if L is known to be true in I; otherwise it is false. This removes all
uncertainty from K0(P ), making it into a classical planning problem. In addition,
for soundness, each rule a : C → L in P is mapped into two rules: a support rule
a : KC → KL, that ensures that L is known to be true when the condition is known
to be true, and a cancellation rule a : ¬K¬C → ¬K¬L that guarantees that K¬L
is deleted (prevented to persist) when action a is applied and C is not known to be
false. The use of support and cancellation rules for encoding the original rules at the
’knowledge-level’ is the only subtlety in the translation.

The translation K0(P ) is sound as every classical plan that solves K0(P ) is a confor-
mant plan for P , but is incomplete, as not all conformant plans for P are classical
plans for K(P ). The meaning of the KL literals follows a similar pattern: if a plan
achieves KL in K0(P ), then the same plan achieves L with certainty in P , yet a plan
may achieve L with certainty in P without making the literal KL true in K0(P ).1

Proposition 5.2 (Soundness of K0(P )). If π is a classical plan for K0(P ), then π
is a conformant plan for P .

As an illustration, consider the conformant problem P = 〈F, I,O,G〉 with F =
{p, q, r}, I = {q}, G = {p, r}, and actions O = {a, b} with effects

a : q → r , a : p→ ¬p , b : q → p .

1 Formal proofs for this chapter can be found in the appendix A, since page 155
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For this problem, the action sequence π = {a, b} is a conformant plan for P while
the action sequence π′ = {a} is not. Indeed, π is a classical plan for P/s for any
possible initial state s, while π′ is not a classical plan for the possible initial state
s′ where p is true (recall that s is a possible initial state of P if s satisfies I so that
neither p nor r are assumed to be initially false in this problem).

From Definition 5.1, the translation K0(P ) = 〈F ′, I ′, O′, G′〉 is a classical planning
problem with fluents F ′ = {Kp,K¬p,Kq,K¬q,Kr,K¬r}, initial situation I ′ =
{Kq}, goals G′ = {Kp,Kr}, and actions O′ = {a, b} with effects

a : Kq → Kr , a : Kp→ K¬p , b : Kq → Kp,

that encode supports, and effects

a : ¬K¬q → ¬K¬r , a : ¬K¬p→ ¬Kp , b : ¬K¬q → ¬K¬p,

that encode cancellations.

Proposition 5.2 implies, for example, that π′ = {a}, which is not a conformant plan
for P , cannot be a classical plan for K(P ) either. This is easy to verify, as while
the support a : Kq → Kr achieves the goal Kr as Kq is true in I ′, the cancellation
a : ¬K¬p→ ¬Kp associated with the same action, preserves Kp false for the other
goal p.

While the translation K0 is not complete, meaning that it fails to capture all con-
formant plans for P as classical plans, its completeness can be assessed in terms of a
weaker semantics. In the so-called 0-approximation semantics (Baral and Son, 1997),
belief states b are represented by 3-valued states where fluents can be true, false, or
unknown. In this incomplete belief representation, checking whether an action a
is applicable in a belief state b, computing the next belief state ba, and verifying
polynomial length plans are all polynomial time operations. In particular, a literal
L is true it the next belief state ba iff a) action a has some effect C → L such that
all literals in C are true in b, or b) L is true in b and for all effects C ′ → ¬L of
action a, the complement of some literal L′ ∈ C ′ is true in b. An action sequence π
is then a conformant plan for P according to the 0-approximation semantics if the
belief sequence generated by π according to the 0-approximation semantics makes
the action sequence applicable and terminates in a belief state where the goals are
true. It is possible to prove then that:

Proposition 5.3 (K0(P ) and 0-Approximation). An action sequence π is a classical
plan for K0(P ) iff π is a conformant plan for P according to the 0-approximation
semantics.

This correspondence is not surprising though as both the 0-approximation semantics
and the K0(P ) translation throw away the disjunctive information and restrict the
plans to those that make no use of the uncertain knowledge. Indeed, the states s0,
s1, . . . generated by the action sequence π = {a0, a1, . . .} over the classical problem
K0(P ) encode precisely the literals that are known to be true according to the 0-
approximation; namely, L is true at time i according to the 0-approximation iff the
literal KL is true in the state si.

Proposition 5.3 does not mean that the translation K0 and the 0-approximation
semantics are equivalent but rather that they both rely on equivalent belief repre-
sentations. The translation K0 delivers also a way to get valid conformant plans
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using a classical planner. The translation-based approach thus addresses both the
representational and the heuristic issues that arise in conformant planning.

As an illustration of Proposition 5.3, given a conformant problem P with I = {p, r}
and actions a and b with effects a : p → q, a : r → ¬v, and b : q → v, the plan
π = {a, b} is valid for achieving the goal G = {q, v} according to both K0(P ) and
the 0-approximation, while the plan π = {b} is not valid according to either. At
the same time, if the initial situation is changed to I = {p ∨ q}, neither approach
sanctions the plan π = {a} for G = {q}, even if it is a valid conformant plan. For
this, some ability to reason with disjunctions is needed.

We postpone to Section 8.2 an extension to the basic translation K0 that allows a
limited form of disjunctive reasoning. That extension is based on the introduction of
new literals L/Xi used for encoding the conditionals Xi ⊃ L (Palacios and Geffner,
2006a). In the next chapter, K0 is extended in a different manner that ensures both
tractability and completeness over a large class of problems in a very simple way
(Palacios and Geffner, 2007, 2009).





Chapter 6

Complete Translations to Classical
Planning

Viajan conmigo mis amigos muertos.
Adónde llego, van por todas partes,
apresurados me siguen, me preceden,
gentiles, cómodos e incómodos,
en grupos, solos, conversando, paseando.

My friends who are dead are travelling with me.
Each place I go they’re there, they are all around,
dashing wildly to catch up, they’re way ahead,
in comfort, in discomfort, in great style,
in groups, alone, talking, out walking.

The absent ones.
Poem by Eugenio Montejo1

In last chapter we introduced a scheme where conformant problems P are automat-
ically converted into classical ones K0(P ) and solved by an off-the-shelf classical
planner. In this chapter we extend such translation by mapping literals L and sets of
assumptions t about the initial situation, into new literals KL/t that represent that
L must be true if t is initially true. We lay out a general translation scheme that is
sound and establish the conditions under which the translation is also complete. We
show that the complexity of the complete translation is exponential in a parameter
of the problem that we call the conformant width, which for most benchmarks will
turn out to be bounded.

This chapter is based on a paper published by Palacios and Geffner (2009), a revision
and extension of the formulation originally presented by Palacios and Geffner (2007).

1English translation from “The trees: selected poems, 1967-2004” By Eugenio Montejo. Cam-
bridge, U.K. : Salt, 2004
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6.1 Introduction

In this chapter we present a new translation that maps sets of literals t about the
initial situation and literals L into new literals KL/t that express that

if t is true in the initial situation, L must be true.

We lay out first a general translation scheme that is sound and then establish the
conditions under which the translation is also complete. Also, we show that the
complexity of the complete translation is exponential in a parameter of the problem
that we call the conformant width, which for most benchmark domains is bounded,
implying that the complete translation in those cases is polynomial. The planner
based on this translation exhibits good performance in comparison with existing
conformant planners and is the basis for T0, the best performing planner in the
Conformant Track of the 2006 International Planning Competition (ipc-2006).

The translation-based approach provides a solution to the two problems faced by
conformant planners that search in belief space: the belief representation and the
heuristic over beliefs. In the translation-based approach, the beliefs are represented
by the literals KL/t that stand for conditionals, a representation that is polynomial
and complete for conformant problems with bounded width. In addition, and since
belief states are represented as plain states, the heuristic over beliefs is a classical
heuristic. From a computational point of view, though, there is no explicit search in
belief-space: conformant problems P are converted into classical problems K(P ) at
the ’knowledge-level’ (Petrick and Bacchus, 2002), whose solutions, computed by a
classical planner, encode the conformant solutions for P .

Even though this formulation is limited to conformant problems that are determin-
istic and where all uncertainty lies in the initial situation, in Section 8.3 on page 127
we address the issues that must be handled in order to generalize the approach pre-
sented in this chapter to non-deterministic domains, and report empirical results over
non-deterministic domains as well.

The chapter is organized as follows. Based on the sound but incomplete transla-
tion K0 (Chapter 5), we consider a more general translation scheme KT,M where T
and M are two parameters, a set of tags t encoding assumptions about the initial
situation, and a set of merges m encoding valid disjunctions of tags (Section 6.2),
and analyze several instances of this scheme that follow from particular choices of
the sets of tags and merges: a complete but exponential translation KS0 where tags
are associated with the possible initial states of the problem (Section 6.3), and a
polynomial translation Ki for a fixed integer i ≥ 0 that is complete for problems
with conformant width bounded by i (Section 6.4). We provide then an alternative
explanation for this compact but complete translation by showing that in problems
in problems with bounded width, the exponential number of possible initial states
S0 includes always a polynomial number of ’critical’ initial states S′0 such that plans
that conform with S′0, conform also with S0 (Section 6.5). Formal proofs are leave
to the appendix A. We left for the next chapter the presentation of the conformant
planner T0 based on the translation KT,M (P ).
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6.2 General Translation Scheme KT,M

The basic translation K0 is extended now into a general translation scheme KT,M

where T and M are two parameters: a set of tags t and a set of merges m. We will
show that for suitable choices of these two parameters, the translation KT,M , unlike
the translation K0, can be both sound and complete.

A tag t ∈ T is a set (conjunction) of literals L from P whose truth value in the initial
situation is not known. The tags t are used to introduce a new class of literals KL/t
in the classical problem KT,M (P ) that represent the conditional ’if t is true initially,
then L is true’, an assertion that could be written as K(t0 ⊃ L) in a temporal modal
logic. We use the notation KL/t rather than L/t as used by Palacios and Geffner
(2006a), because there is a distinction between ¬KL/t and K¬L/t: roughly ¬KL/t
means that the conditional K(t0 ⊃ L) is not true, while K¬L/t means that the
conditional K(t0 ⊃ ¬L) is true.

Likewise, a merge m is a non-empty collection of tags t in T that stands for the
Disjunctive Normal Form (DNF) formula

∨
t∈m t. A merge m is valid when one of

the tags t ∈ m must be true in I; i.e., when

I |=
∨
t∈m

t .

A merge m for a literal L in P will translate into a ’merge action’ with a single effect∧
t∈m

KL/t → KL

that captures a simple form of reasoning by cases.

While a valid merge can be used for reasoning about any literal L in P , compu-
tationally it is convenient (although not logically necessary) to specify that certain
merges are to be used with some literals L and not with others. Thus, formally, M
is a collection of pairs (m,L), where m is a merge and L is a literal in P . Such a
pair means that m is a merge for L. We group all the merges m for a literal L in
the set ML, and thus, M can be understood as the collection of such sets ML for all
L in P . For simplicity, however, except when it may cause a confusion, we will keep
referring to M as a plain set of merges.

We assume that the collection of tags T always includes a tag t that stands for the
empty collection of literals, that we call the empty tag and denote it as ∅. If t is the
empty tag, we denote KL/t simply as KL.

The translation KT,M (P ) is the basic translation K0(P ) ’conditioned’ with the tags
t in T and extended with the actions that capture the merges in M :

Definition 6.1 (Translation KT,M ). Let P = 〈F, I,O,G〉 be a conformant problem,
then KT,M (P ) is the classical planning problem KT,M (P ) = 〈F ′, I ′, O′, G′〉 with

• F ′ = {KL/t,K¬L/t | L ∈ F and t ∈ T}

• I ′ = {KL/t | I, t |= L}

• G′ = {KL | L ∈ G}
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• O′ = {a : KC/t→ KL/t, a : ¬K¬C/t→ ¬K¬L/t | a : C → L in P} ∪
{am,L : [

∧
t∈mKL/t]→ KL ∧XL | L ∈ P,m ∈ML}

where KL is a precondition of action a in KT,M (P ) if L is a precondition of a in P ,
the conditions KC/t and ¬K¬C/t stand for KL1/t,KL2/t, . . . , and
¬K¬L1/t,¬K¬L2/t, . . . respectively, when C = L1, L2, . . ., and XL stands for∧
L′ K¬L′ with L′ ranging over the literals L′ mutex with L in P .

The translation KT,M (P ) reduces to the basic translation K0(P ) when M is empty
and T contains only the empty tag. The extra effects XL =

∧
L′ K¬L′ in the merge

actions am,L are needed only to ensure that the translation KT,M (P ) is consistent
when P is consistent, and otherwise can be ignored. Indeed, if L and L′ are mutex in
a consistent P , the invariant KL/t ⊃ K¬L′/t holds in KT,M (P ) for non-empty tags
t, and hence a successful merge for L can always be followed by a successful merge
for ¬L′. In the rest of the chapter we will thus assume that both P and KT,M (P ) are
consistent, and ignore such extra merge effects. We refer to the appendix B where
we prove the consistency of KT,M (P ) from the consistency of P .

For suitable choices of T and M , the translation KT,M (P ) will be sound and complete.
Before establishing these results, however, let us make these notions precise.

Definition 6.2 (Soundness). A translation KT,M (P ) is sound if for any classical
plan π that solves the classical planning problem KT,M (P ), the plan π′ that results
from π by dropping the merge actions is a conformant plan for P .

Definition 6.3 (Completeness). A translation KT,M (P ) is complete if for any con-
formant plan π′ that solves the conformant problem P , there is a classical plan π
that solves the classical problem KT,M (P ) such that π′ is equal to π with the merge
actions removed.

The general translation scheme KT,M is sound provided that all merges are valid and
all tags are consistent (literals in a tag are all true in some possible initial state):2

Theorem 6.4 (Soundness KT,M (P )). The translation KT,M (P ) is sound provided
that all merges in M are valid and all tags in T are consistent.

Unless stated otherwise, we will assume that all merges are valid and all tags consis-
tent, and will call such translations, valid translations.

As a convention for keeping the notation simple, in singleton tags like t = {p}, the
curly brackets are often dropped. Thus, literals KL/t for t = {p} are written as
KL/p, while merges m = {t1, t2} for singleton tags t1 = {p} and t2 = {q}, are
written as m = {p, q}.

Example. As an illustration, consider the problem of moving an object from an
origin to a destination using two actions: pick(l), that picks up an object from a
location if the hand is empty and the object is in that location, and drop(l), that
drops the object at a location if the object is being held. For making the problem
more interesting, let us also assume that the action pick(l) drops the object being

2 Formal proofs for this chapter can be found in the appendix A, since page 155
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held at l if the hand is not empty. These are all conditional effects and there are
no action preconditions. Assuming that there is a single object, these effects can be
written as:

pick(l) : ¬hold, at(l)→ hold ∧ ¬at(l)
pick(l) : hold→ ¬hold ∧ at(l)
drop(l) : hold→ ¬hold ∧ at(l) .

Consider now an instance P of this domain, where the hand is initially empty and
the object, initially at either l1 or l2, must be moved to l3; i.e., P = 〈F, I,O,G〉 with

I = {¬hold , at(l1) ∨ at(l2) , ¬at(l1) ∨ ¬at(l2) , ¬at(l3)}

and
G = {at(l3)} .

The action sequence

π1 = {pick(l1), drop(l3), pick(l2), drop(l3)}

is a conformant plan for this problem, where an attempt to pick up the object at
location l1 is followed by a drop at the target location l3, ensuring that the object
ends up at l3 if it was originally at l1. This is then followed by an attempt to pick
up the object at l2 and a drop at l3.

On the other hand, the action sequence π2 that results from π1 by removing the first
drop action

π2 = {pick(l1), pick(l2), drop(l3)}

is not a conformant plan, since if the object was originally at l1, it would end up at l2
after the action pick(l2). In the notation introduced above, π1 is a classical plan for
the classical problem P/s for the two possible initial states s, while π2 is a classical
plan for the problem P/s but only for the state s where the object is initially at l2.

Consider now the classical problem KT,M (P ) = 〈F ′, I ′, O′, G′〉 that is obtained from
P when T = {at(l1), at(l2)}3 and M contains the merge m = {at(l1), at(l2)} for the
literals hold and at(l3). From its definition, the fluents F ′ in KT,M (P ) are of the
form KL/t and K¬L/t for L ∈ {at(l), hold}, l ∈ {l1, l2}, and t ∈ T , while the initial
situation I ′ is

I ′ =

{
K¬hold,K¬hold/at(l),K¬at(l3),K¬at(l3)/at(l),

Kat(l)/at(l),K¬at(l′)/at(l)

}
for l, l′ ∈ {l1, l2} and l′ 6= l, and the goal G′ is

G′ = {Kat(l3)} .

The effects associated to the actions pick(l) and drop(l) in O′ are the support rules

pick(l) : K¬hold, Kat(l) → Khold ∧K¬at(l)
pick(l) : Khold → K¬hold ∧Kat(l)
drop(l) : Khold → K¬hold ∧Kat(l)

3The empty tag is assumed in every T and thus it is not mentioned explicitly.
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for each one of the three locations l = li, that condition each rule in O with the
empty tag, along with the support rules:

pick(l) : K¬hold/at(l′), Kat(l)/at(l′) → Khold/at(l′) ∧K¬at(l)/at(l′)
pick(l) : Khold/at(l′) → K¬hold/at(l′) ∧Kat(l)/at(l′)
drop(l) : Khold/at(l′) → K¬hold/at(l′) ∧Kat(l)/at(l′)

that condition each rule in O with the tags at(l′) ∈ T , for l′ ∈ {l1, l2}. The corre-
sponding cancellation rules are:

pick(l) : ¬Khold, ¬K¬at(l) → ¬K¬hold ∧ ¬Kat(l)
pick(l) : ¬K¬hold → ¬Khold ∧ ¬K¬at(l)
drop(l) : ¬K¬hold → ¬Khold ∧ ¬K¬at(l)

and

pick(l) : ¬Khold/at(l′),¬K¬at(l)/at(l′) → ¬K¬hold/at(l′) ∧ ¬Kat(l)/at(l′)
pick(l) : ¬K¬hold/at(l′) → ¬Khold/at(l′) ∧ ¬K¬at(l)/at(l′)
drop(l) : ¬K¬hold/at(l′) → ¬Khold/at(l′) ∧ ¬K¬at(l)/at(l′) .

In addition, the actions in O′ include the merge actions am,hold and am,at(l3) that
follow from the merge m = {at(l1), at(l2)} in M for the literals hold and at(l3):

am,hold : Khold/at(l1),Khold/at(l2) → Khold

am,at(l3) : Kat(l3)/at(l1),Kat(l3)/at(l2) → Kat(l3) .

It can be shown then that the plan

π′1 = {pick(l1), drop(l3), pick(l2), drop(l3), am,at(l3)}

solves the classical problem KT,M (P ) and hence, from Theorem 6.4, that the plan
π1 obtained from π′1 by dropping the merge action, is a valid conformant plan for P
(shown above). We can see how some of the literals in KT,M (P ) evolve as the actions
in π′1 are executed:

0: Kat(l1)/at(l1),Kat(l2)/at(l2) true in I ′

1: Khold/at(l1),Kat(l2)/at(l2) true after pick(l1)
2: Kat(l3)/at(l1),Kat(l2)/at(l2) true after drop(l3)
3: Kat(l3)/at(l1),Khold/at(l2) true after pick(l2)
4: Kat(l3)/at(l1),Kat(l3)/at(l2) true after drop(l3)
5: Kat(l3) true after merge am,at(l3).

We can also verify in the same manner that the action sequence π′2

π′2 = {pick(l1), pick(l2), am,hold, drop(l3)}

is not a classical plan for KT,M (P ), the reason being that the atom Khold/at(l1)
holds after the first pick up action but not after the second. This is due to the
cancellation rule:

pick(l2) : ¬K¬hold/at(l1)→ ¬Khold/at(l1) ∧ ¬K¬at(l2)/at(l1)
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#S0 KS0 POND CFF
Problem time len time len time len
adder-01 18 > 2h 0,4 26 > 2h
blocks-02 18 0,2 23 0,4 26 > 2h
blocks-03 231 59,2 80 126,8 129 > 2h

bomb-10-1 1k 5,9 19 1 19 0 19
bomb-10-5 1k 11,3 15 3 15 0 15
bomb-10-10 1k 18,3 10 8 10 0 10
bomb-20-1 1M > 2.1GB 4139 39 0 39
coins-08 1k 20,2 27 2 28 0 28
coins-09 1k 19,9 25 5 26 0 26
coins-10 1k 21,5 31 5 28 0,1 38
coins-11 1M > 2.1GB > 2h 1 78
comm-08 512 18,3 61 1 53 0 53
comm-09 1k 77,7 68 1 59 0 59
comm-10 2k > 2.1GB 1 65 0 65

corners-square-16 4 0,2 102 1131 67 13,1 140
corners-square-24 4 0,7 202 > 2h 321 304
corners-square-28 4 1,2 264 > 2h > 2h
corners-square-116 4 581,4 3652 > 2h > 2h
corners-square-120 4 > 2.1GB > 2h > 2h
square-center-16 256 13,1 102 1322 61 > 2h
square-center-24 576 > 2.1GB > 2h > 2h

log-2-10-10 1k 183,5 85 > 2h 1,6 83
log-3-10-10 59k > 2h > 2h 4,7 108

ring-5 1,2k 12,6 17 6 20 4,3 31
ring-6 4,3k > 2.1GB 33 27 93,6 48
safe-50 50 0,5 50 9 50 29,4 50
safe-70 70 1,4 70 41 70 109,9 70
safe-100 100 6 100 > 2.1GB 1252,4 100

sortnet-07 256 2,9 28 480 25 SNH
sortnet-08 512 9,8 36 > 2h SNH
sortnet-09 1k 77,7 45 > 2h SNH
sortnet-10 2k > 2.1GB > 2h SNH
uts-k-08 16 0,6 46 24 47 4,4 46
uts-k-10 20 1,2 58 2219 67 16,5 58

Table 6.1: KS0 translation fed into FF planner compared with POND and Conformant FF
(CFF) along both times and reported plan lengths. #S0 stands for number of initial states,
’SNH’ means goal syntax not handled (by CFF). Times reported in seconds and rounded to
the closest decimal.

that expresses that under the assumption at(l1) in the initial situation, hold and
¬at(l2) are not known to be true after the action pick(l2), if under the same assump-
tion, ¬hold was not known to be true before the action.

6.3 A Complete Translation: KS0

A complete instance of the translation scheme KT,M can be obtained in a simple
manner by setting the tags to the possible initial states of the problem P and by
having a merge for each precondition and goal literal L that includes all these tags.
We call the resulting ’exhaustive’ translation KS0:
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Definition 6.5 (Translation KS0). For a conformant problem P , the translation
KS0(P ) is an instance of the translation KT,M (P ) where

• T is set to the union of the empty tag and the set S0 of all possible initial states
of P (understood as the maximal sets of literals that are consistent with I), and

• M is set to contain a single merge m = S0 for each precondition and goal literal
L in P .

The translation KS0 is valid and hence sound, and it is complete due the correspon-
dence between tags and possible initial states:

Theorem 6.6 (Completeness of KS0). If π is a conformant plan for P , then there is
a classical plan π′ for KS0(P ) such that π is the result of dropping the merge actions
from π′.

For problems P whose actions have no preconditions, the argument is simple: if π is a
conformant plan for P then π must be a classical plan for P/s for each possible initial
state s, but then if π achieves the (goal) literal Gi in P/s for each s, π must achieve
the literal KGi/s in KS0(P ) for each s as well, so that π followed by the merge action
for Gi, must achieve the literal KGi. In the presence of action preconditions, this
argument must be applied inductively on the plan length, but the idea remains the
same (see the proof in the appendix for details): a correspondence can be established
between the evolution of the fluents L in each problem P/s and the evolution of the
fluents KL/s in the problem KS0(P ).

The significance of the exhaustive KS0 translation is not only theoretical. There are
plenty of conformant problems that are quite hard for current planners even if they
involve a handful of possible initial states. An example of this is the Square-Center-
n task (Cimatti and Roveri, 2000), where an agent has to reach the center of an
empty square grid with certainty, not knowing its initial location. There are four
actions that move the agent one unit in each direction, except when in the border
of the grid, where they have no effects. In the standard version of the problem, the
initial position is fully unknown resulting in n2 possible initial states, yet the problem
remains difficult, and actually beyond the reach of most planners, for small values
of n, even when the uncertainty is reduced to a pair of possible initial states. The
reason is that the agent must locate itself before heading for the goal. The domain
Corners-Square-n in Table 6.1 is a variation of Square-Center-n where the possible
initial states are the four corners of the grid.

Table 6.1 shows results for a conformant planner based on the KS0(P ) translation
that uses FF (Hoffmann and Nebel, 2001) for solving the resulting classical prob-
lem, and compares it with two of the planners that entered the Conformant track
of the ipc-2006 (Bonet and Givan, 2006): POND (Bryce et al., 2006) and Confor-
mant FF (Hoffmann and Brafman, 2006) (the other two planners in the competition
were translation-based: T0, based on the formulation developed in this chapter, and
K(P ), based on an earlier and more restricted formulation and presented in sec-
tion 8.2 (Palacios and Geffner, 2006a)). Clearly, the approach based on the KS0(P )
translation does not scale up to problems with many possible initial states, yet when
the number of such states is small, it does quite well.
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6.4 Complete Translations that May be Compact Too

In order to have complete translations that are polynomial, certain assumptions
about the formulas in the initial situation I need to be made. Otherwise, just
checking whether a goal is true in I is intractable by itself, and therefore a polynomial
but complete translation would be impossible (unless P = NP). We will thus assume
that I is in prime implicate (PI) form (Marquis, 2000), meaning that I includes
only the inclusion-minimal clauses that it entails but no tautologies. It is known
that checking whether a clause follows logically from a formula I in PI form reduces
to checking whether the clause is subsumed by a clause in I or is a tautology, and
hence is a polynomial operation. The initial situations I in most benchmarks is in
PI form or can easily be cast into PI form as they are normally specified by means
of a set of non-overlapping oneof(X1, . . . , Xn) expressions that translate into clauses
X1 ∨ · · · ∨ Xn and binary clauses ¬Xi ∨ ¬Xj for i 6= j where any resolvent is a
tautology.

Conformant Relevance

The translation KS0(P ) is complete but introduces a number of literals KL/t that
is exponential in the worst case: one for each possible initial state s0. This raises
the question: is it possible to have complete translations that are not exhaustive
in this sense? The answer is yes and in this section we provide a simple condition
that ensures that a translation KT,M (P ) is complete. It makes use of the notion of
relevance:4

Definition 6.7 (Relevance). The conformant relevance relation L −→ L′ in P , read
L is relevant to L′, is defined inductively as

1. L −→ L

2. L −→ L′ if a : C → L′ is in P with L ∈ C for some action a in P

3. L −→ L′ if L −→ L′′ and L′′ −→ L′

4. L −→ L′ if L −→ ¬L′′ and L′′ −→ ¬L′.

The first clause stands for reflexivity, the third for transitivity, the second captures
conditions that are relevant to the effect, and the fourth, the conditions under which
L preempts conditional effects that may delete L′. If we replace 4 by

4’ L −→ L′ if ¬L→ ¬L′

which is equivalent to 4 in the context of 1–3, the resulting definition is the one by
Son and Tu (2006), where the notion of relevance is used to generate a limited set
of possible ’partial’ initial states over which the 0-approximation is complete (see
Section 6.5 for a discussion on the relation between tags and partial initial states).

4While we follow an earlier account (Palacios and Geffner, 2007), many of the definitions and
theorems differ in a number of details (for example, the notion of relevance depends on the rules in
P but not on the clauses in the initial situation). The changes are aimed at making the resulting
formulation simpler and cleaner.
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Notice that according to the definition, a precondition p of an action a is not taken
to be ’relevant’ to an effect q. The reason is that we want the relation L −→ L′ to
capture the conditions under which uncertainty about L is relevant to the uncertainty
about L′. This is why we say this is a relation of conformant relevance. Preconditions
must be known to be true in order for an action to be applied, so they do not introduce
nor propagate uncertainty into the effects of an action.

If we let CI stand for the set of clauses representing uncertainty about the initial
situation, namely, the non-unit clauses in I along with the tautologies L ∨ ¬L for
complementary literals L and ¬L not appearing as unit clauses in I, the notion of
(conformant) relevance can be extended to clauses as follows:

Definition 6.8 (Relevant Clauses). A clause c ∈ CI is relevant to a literal L in P if
all literals L′ ∈ c are relevant to L. The set of clauses in CI relevant to L is denoted
as CI(L).

Having a representation of the uncertainty in the initial situation that is relevant to
a literal L, it is possible to analyze the completeness of a translation KT,M in terms
of the relation between the merges m for the literals L, on one hand, and the sets of
clauses CI(L) that are relevant to L on the other.

Covering Translations

It may appear that a translation KT,M would be complete when the merges m for
precondition and goal literals L, understood as the DNF formulas

∨
t∈m t, contain as

much information, and thus are equivalent to the CNF formula CI(L) that captures
the fragment of the initial situation I that is relevant to L. This intuition is par-
tially correct, but misses one important point; namely that not every DNF formula
equivalent to CI(L) will do: the DNF representation captured by the merges must
be ’vivid’ enough. For example, if CI(L) is the single clause x ∨ ¬x, completeness
requires a tag for x, a tag for ¬x, and a merge m = {x,¬x} for L containing the
two tags, even if the clause x ∨ ¬x is a tautology and is thus equivalent to the DNF
formula true.

For defining the types of tags and merges that are required for completeness then, let
us first define the closure S∗ of a set of literals S, relative to a conformant problem
P = 〈F, I,O,G〉, as the set of literals that follow from S and I:

S∗ = {L | I, S |= L} .

Let us also say that S is consistent if S∗ does not contain a pair of complementary
literals.

The type of merges m required for precondition and goal literals L are then those
that do not only imply CI(L) but that satisfy it as well. The notion of satisfaction
associates a consistent set of literals S with the partial truth assignment that is
implicit in the closure S∗ of S, and is extended to account for the conditions under
which a DNF formula (e.g., a merge for L) satisfies a CNF formula (e.g., CI(L)).

Definition 6.9 (Satisfaction). 1. A consistent set of literals S satisfies a clause
L1 ∨ L2 ∨ · · · ∨ Lm if S∗ contains one of the literals Li, i = 1, . . . ,m.
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2. A consistent set of literals S satisfies a collection of clauses C if S satisfies each
clause in C.

3. A collection S of consistent sets of literals satisfies a collection of clauses C if
each set S in S satisfies C.

The type of merges required for completeness are then simply the valid merges m
that satisfy the set of clauses CI(L). We call them covering merges:

Definition 6.10 (Covering Merges). A valid merge m in a translation KT,M (P )
covers a literal L if m satisfies CI(L).

For example, if CI(L) is given by the clauses that result from a oneof(x1, . . . , xn)
expression, i.e. x1 ∨ x2 ∨ · · · ∨ xn and ¬xi ∨ ¬xj for all i and j, 1 ≤ i, j ≤ n, i 6= j,
then the merge m = {x1, . . . , xn} covers the literal L, as each x∗i not only includes
xi but also ¬xj for all j 6= i, and thus x∗i satisfies CI(L).

If for a merge m = {t1, . . . , tn}, we denote by m∗ the DNF formula
∨
ti∈m t

∗
i , where

each tag ti is replaced by its closure t∗i , then it is simple to prove that if m covers the
literal L, m∗ entails CI(L). A merge m that covers L is thus a DNF formula that is
strong enough to imply the CNF formula CI(L) (through the closure), weak enough
to be entailed by I, and vivid enough to satisfy CI(L).

As a further illustration, if CI(L) is given by the tautologies p ∨ ¬p and q ∨ ¬q,
and I = CI(L), the merge m1 = {p,¬p} implies CI(L) but does not satisfy CI(L).
Likewise, the merge m2 = {{p, q}, {¬p,¬q}} satisfies CI(L) but is not entailed by
I. Finally, the merge m3 = {{p, q}, {p,¬q}, {¬p, q}, {¬p,¬q}} satisfies CI(L) and is
entailed by I, and thus is a valid merge that covers L.

If a valid translation KT,M (P ) contains a merge m that covers L for each precondition
and goal literal L in P , we say that the translation covers P or just that it is a covering
translation:

Definition 6.11 (Covering Translation). A covering translation is a valid translation
KT,M (P ) that includes one merge that covers L, for each precondition and goal literal
L in P .

A central result of the chapter is that covering translations are complete:

Theorem 6.12 (Completeness). Covering translations KT,M (P ) are complete; i.e.,
if π is a conformant plan for P , then there is a classical plan π′ for KT,M (P ) such
that π is π′ with the merge actions removed.

In other words, complete translations KT,M (P ) result when the tags and merges in
T and M capture the information in the initial situation that is relevant to each
precondition and goal literal in a suitable manner.

Theorem 6.12 can be used in two ways: for proving the completeness of a transla-
tion, by checking that the covering condition holds, and for constructing complete
translations, by enforcing the covering condition. In addition, while our interest in
this chapter is on conformant planning with no optimality guarantees, the theorem
is useful for optimal conformant planning as well, whether the cost of plans is defined
as their length (action costs equal to 1) or as the sum of non-uniform action costs.
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In both cases, the theorem ensures that the problem of optimal conformant planning
gets mapped into a problem of optimal classical planning provided that the cost of
the merge actions in KT,M (P ) is made sufficiently small.

As an illustration of Theorem 6.12, consider the conformant problem P with initial
situation I = {x1∨· · ·∨xm}, goal G = L, and actions ai, i = 1, . . . ,m, each with effect
xi → L. The number of possible initial states for this problem is exponential in m, as
the disjunction among the xi’s is not exclusive. So, the translation KS0(P ) is com-
plete but exponential in size. On the other hand, consider the translation KT,M (P )
where T = {x1, . . . , xm} and M contains the single valid merge m = {x1, . . . , xm}
for L. It is simple to verify that this merge covers the goal L (satisfies CI(L) = I),
and hence that the translation KT,M (P ) is covering, and by Theorem 6.12, complete,
while being polynomial in m.

Notice that testing whether a valid translation KT,M (P ) is a covering translation
can be done in polynomial time, as in particular, computing the set of literals t∗

from every tag t in T is a tractable operation provided that I is in PI form; indeed,
I, t |= L′ iff I |= t ⊃ L′ iff ¬t ∨ L′ is a tautology or is subsumed by a clause in I.

Translation Kmodels

It is straightforward to show that the exponential translation KS0 considered in
Section 6.3, where (non-empty) tags stand for the possible initial states, is covering
and hence complete according to Theorem 6.12. It is possible, however, to take
further advantage of Theorem 6.12 for devising a complete translation that is usually
more compact. We call it Kmodels.

Definition 6.13. The translation Kmodels(P ) is obtained from the general scheme
KT,M (P ) by defining

• M to contain one merge m for each precondition and goal literal L given by
the models of CI(L) that are consistent with I,5 and

• T to contain the tags in all such merges along with the empty tag.

The translation Kmodels is equivalent to KS0 when for all the precondition and goal
literals L, CI(L) = I; i.e., when all the clauses in I are relevant to L. Yet, in other
cases, the first translation is exponential in the number of variables appearing in one
such CI(L) set (the one with the largest number of such variables), while the second
is exponential in the number of unknown variables in I. For example, if there are n
precondition and goal literals Li, i = 1, . . . , n in P such that for each one, CI(Li) is
a unique oneof(xi1, . . . , x

i
m) expression, the merge for the literal Li in KS0(P ) will

contain the mn models of the n one-of expressions in I, while the merge for Li in
Kmodels(P ) will just contain the m models of the single oneof(xi1, . . . , x

i
m) expression

in CI(Li). The translation Kmodelscan thus be exponentially more compact than the
exhaustive KS0 translation while remaining sound and complete:

Theorem 6.14. The translation Kmodels(P ) is sound and complete.

In the worst case, however, Kmodels is also an exponential translation. We thus con-
sider next polynomial translations and the conditions under which they are complete.

5The models of CI(L) are to be understood as conjuntions of literals.
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Conformant Width

We address now the conditions under which a compact, covering translation can be
constructed in polynomial time. For this, we define a structural parameter that we
call the conformant width of a problem P , that in analogy to the notion of width
used in graphical models (Dechter, 2003), will provide an upper bound on the time
and space complexity required for generating a covering translation. More precisely,
the complexity of this construction will be exponential in the conformant width of
the problem P that cannot exceed the number of fluents in P but can be much lower.

In principle, we would like to define the width w(P ) as the maximum tag size required
in a translation KT,M (P ) to be a covering translation. Such a definition, however,
would not give us the complexity bounds that we want, as just checking the validity
of a merge with tags of bounded size is an intractable operation, whether the initial
situation I is in prime implicate form or not.6 So we need to define width in a
different way. First, let the cover of a set of clauses be defined as follows:

Definition 6.15 (Cover). The cover c(C) of a set of clauses C, relative to a con-
formant problem P with initial situation I, is the collection of all minimal sets of
literals S consistent with I such that S contains a literal of each clause in C.

Two important properties of the cover c(C) of a set of clauses C are that c(C) stands
for a DNF formula that is logically equivalent to the CNF formula C given I, and that
c(C) can be computed in polynomial time if the size of C is bounded by a constant.
Moreover, c(C) not only implies C but satisfies C as well. Thus in particular, if C is
the collection of clauses CI(L) that are relevant to the literal L, the cover c(CI(L))
of CI(L) is a valid merge that covers L. From this and the completeness of covering
translations, it follows that a complete translation KT,M (P ) can be constructed in
polynomial time if the size |CI(L)| of the sets of clauses CI(L) for all precondition
and goal literals L in P is bounded. Unfortunately, this condition rarely seems to
hold, yet there is a weaker sufficient condition that does: namely, it is often possible
to find a subset C of clauses that are either in CI(L) or are tautologies such that c(C)
satisfies CI(L) and thus covers the literal L. We thus define the width of the literal L
as the size of the smallest such set (cardinality-wise). For this, we denote by C∗I (L)
the set of clauses CI(L) extended with tautologies of the form p ∨ ¬p for fluents p
such that either p or ¬p appears in CI(L) (if both appear in CI(L) then p∨¬p is in
CI(L) from its definition).

Definition 6.16 (Width of Literal). The conformant width of a literal L in P ,
written w(L), is the size of the smallest (cardinality-wise) set of clauses C in C∗I (L)
such that c(C) satisfies CI(L).

A consequence of this definition is that the width of a literal must lie in the interval
0 ≤ w(L) ≤ n, where n is the number of fluents in P whose status in the initial
situation is not known. Indeed, if CI(L) is empty, w(L) = 0, while for any set of

6 The problem of checking whether I entails a DNF formula whose terms may have more than
2 literals is coNP-hard even if I is equivalent to true. Indeed, if Φ is a 3-CNF formula; Φ is
contradictory iff its negation ¬Φ (which is in 3-DNF) is valid, which in turn is true iff ¬Φ is implied
by I. Actually, for a general I in prime implicate form, the problem remains coNP-hard even if the
terms of the DNF formula contain at most 2 literals. We thank Pierre Marquis for pointing these
results to us.
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clauses CI(L), the cover c(C) of the set C of tautologies in C∗I (L) must satisfy CI(L),
and thus w(L) ≤ |C| ≤ n. Similarly, if CI(L) contains a single clause x1 ∨ · · · ∨ xm
or the clauses x1 ∨ · · · ∨ xm and ¬xi ∨¬xj that correspond to the oneof(x1, . . . , xm)
expression, it is simple to prove that w(L) = 1 with the singleton C = {x1∨· · ·∨xm}
generating the cover c(C) = {{x1}, . . . , {xn}} that satisfies CI(L). Finally, if CI(L)
contains the two tautologies p∨¬p and q ∨¬q, w(L) = 2 as the smallest C in C∗I (L)
whose cover satisfies CI(L) is CI(L) itself.

The width of a problem is the width of the precondition or goal literal with maximum
width:

Definition 6.17 (Width of Problem). The conformant width of a problem P , written
as w(P ), is w(P ) = maxLw(L), where L ranges over the precondition and goal
literals in P .

We show below that for problems with bounded width, complete translations can be
constructed in polynomial time, and moreover, that almost all existing conformant
benchmarks have bounded width, and more precisely, width equal to 1. In such a
case, the resulting translations will use tags that are never greater in size than w(P ),
so that for problems with width 1, tags will be single literals.

Like for the (tree)width of graphical models, computing the width of a problem P is
exponential in w(P ), so the recognition of problems with small width can be carried
out quite efficiently:

Proposition 6.18 (Determining Width). The width w(P ) of P can be determined
in time that is exponential in w(P ).

In particular, we can test if w(P ) = 1 by considering one by one each of the sets C
that includes a single clause from C∗I (L), verifying whether c(C) satisfies CI(L) or
not. If w(P ) 6≤ 1, then the same verification must be carried out by setting C to each
set of i clauses in C∗I (L) for increasing values of i. For a fixed value of i, there is a
polynomial number of such clause sets C and the verification of each one can be done
in polynomial time. Moreover, from the arguments above regarding w(L), w(P ) can
never exceed the number of unknown fluents in the problem:

Proposition 6.19 (Bounds on Width). The width of P is such that 0 ≤ w(P ) ≤ n,
where n is the number of fluents whose value in the initial situation is not known.

Polynomial Translation Ki

The translation Ki, where the parameter i is a non-negative integer, is an instance
of the general KT,M scheme designed to be sound, polynomial for a fixed i, and
complete for problems with width w(P ) ≤ i. Thus, for example, the translation K1

is sound, polynomial, and complete for problems with width 1.

Definition 6.20 (Translation Ki). The translation Ki(P ) is obtained from the gen-
eral scheme KT,M (P ) where

• M is set to contain one merge m = c(C) for each precondition and goal literal
L in P if there is a set C of at most i clauses in C∗I (L) such that m covers L.
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If no such set exists, one merge m = c(C) for L is created for each set C of i
clauses in C∗I (L), and no merges are created for L if C∗I (L) is empty;

• T is the collection of tags appearing in those merges and the empty tag.

The translation Ki(P ) applies to problems P of any width, remaining in all cases
exponential in i but polynomial in the number of fluents, actions, and clauses in P .
In addition, the translation Ki(P ) is sound, and for problems with width bounded
by i, complete.

Theorem 6.21 (Properties Ki). For a fixed i, the translation Ki(P ) is sound, poly-
nomial, and if w(P ) ≤ i, covering and complete.

Soundness is the result of the merges being all valid by construction, as the covers c(C)
for any C in C∗I (L) are entailed by C and hence by I. The complexity is polynomial
for a fixed i, because there is a polynomial number of clause sets C of size i in C∗I (L),
and constructing the cover c(C) for each one of them, is a polynomial operation.
Finally, completeness follows from the definition of width: if w(P ) ≤ i, then there is
a set of clauses C in C∗I (L) with size |C| no greater than i whose cover satisfies CI(L),
and thus M in Ki(P ) must contain a merge m = c(C) for L that covers L.

Notice that for i = 0, the translation Ki(P ) reduces to the basic K0(P ) transla-
tion introduced in Section 6.3 that has no tags (other than the empty tag) and no
merges. Before, we assessed the completeness of this translation in terms of the 0-
approximation semantics. Theorem 6.21 provides an alternative interpretation: the
translation K0(P ) is complete for problems P with zero width. These are the prob-
lems for which the set of clauses CI(L) relevant to a precondition or goal literal L is
empty. This makes precise the intuition mentioned above that the K0(P ) translation
is complete for problems where the uncertain information in I is not relevant. In such
cases, none of the clauses in the initial situation I make it into the sets of relevant
clauses CI(L) for preconditions and goal literals L.

As an illustration of Theorem 6.21, consider again the conformant problem P with
initial situation I = {x1∨ · · · ∨xm}, goal G = {L}, and actions ai, i = 1, . . . ,m, each
with effect xi → L. For this problem, the singleton set of clauses C = CI(L) = I
is such that c(C) = {{x1}, . . . , {xm}} covers CI(L). Then, since there is no other
precondition or goal literal, K1(P ) includes the single merge m = c(C) for L with the
singleton tags ti = {xi}, that we write simply as m = {x1, . . . , xm}. The translation
K1(P ) is polynomial in m, and since w(P ) = 1, by Theorem 6.21 it is complete.
Notice that for this same example, the translations KS0(P ) and Kmodels(P ) are
identical and exponential in m (the number of models of I and CI(L)).

Width of Conformant Benchmarks

The practical value of the notion of width becomes apparent when the width of
existing benchmarks is considered. Table 6.2 summarizes the width of many of the
existing benchmark domains for conformant planning. The domains all depend on
certain parameters n or m that capture the size of the instances (e.g., size of a grid,
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Domain-Parameter # Unknown Fluents Width
1 Safe-n combinations n 1
2 UTS-n locs n 1
3 Ring-n rooms 4n 1
4 Bomb-in-the-toilet-n bombs n 1
5 Comm-n signals n 1
6 Square-Center-n× n grid 2n 1
7 Cube-Center-n× n× n cube 3n 1
8 Grid-n shapes of n keys n×m 1
9 Logistics n pack m locs n×m 1
10 Coins-n coins m locs n×m 1
11 Block-Tower-n Blocks n× (n− 1) + 3n+ 1 max
12 Sortnet-n bits n max
13 Adder n pairs of bits 2n max
14 Look-and-Grab m objs from n× n locs n× n×m m
15 1-dispose m objs from n× n locs n× n×m m

Table 6.2: Width of parameterized domains. max means that the width is the number of
unknown fluents

number of objects, etc).7 A domain has a bounded width when its width does not
grow with the size of its instances, and has width equal to i when all of its instances
have width i regardless of the parameter values.

As it can be seen from the table, the width of most existing benchmarks is 1. In
all these cases, this means that the sets CI(L) of clauses that are relevant to a
precondition or goal literal L contain a single clause (often a tautology p ∨ ¬p or a
disjunction x1 ∨ . . . ∨ xm) or a single oneof(x1, . . . , xm) expression (that translates
into the disjunction x1 ∨ · · · ∨ xm and clauses ¬xi ∨ ¬xk). As shown above, w(L),
and therefore, w(P ), is equal to 1 in theses cases.

On the other extreme are domains such as Blocks, Sortnet, and Adder, all of which
have maximal widths; i.e., widths that are equivalent to the number of fluents whose
status in the initial situation is not known. This is because all fluents interact through
the action conditions (not the preconditions). The numbers for Blocks in Table 6.2,
thus follow from the number of fluents involved; namely, the fluents on(x, y), clear(x),
ontable(x), and holding(x).

Finally, the domains 1-dispose and Look-and-Grab (Palacios and Geffner, 2006a,
2007) where m objects with unknown locations in a grid of n by n must be collected
by a robot whose gripper can hold one object at a time, have width equal to m,
meaning that the width of these domains grows with the number of objects but not
with the size of the grid. This is because in this case, the clauses about the possible
locations of the m objects are all relevant to the condition ’hand empty’ of the pick
up actions.

Let us point out that the completeness of the translation Ki(P ) for problems P with
width w(P ) bounded by i, establishes a correspondence between the conformant
plans for P and the classical plans for KT,M (P ). For solving P , however, this corre-
spondence is not needed; it suffices for Ki(P ) to be solvable; a plan for Ki(P ) will
then encode a conformant plan for P , even if Ki(P ) does not capture all conformant

7The names of the parameterized domains in the table do not coincide with the names of the
instances as currently used. E.g. Comm-n in ipc-2006 refers to a Communication instance but not
necessarily to an instance with n signals.
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plans for P . From this perspective, it makes sense to refer to the smallest value of
the i parameter for which the classical problem Ki(P ) is solvable, as the effective
width of P , denoted we(P ). It turns out that while we(P ) cannot be larger than
w(P ), it may be much smaller.

An interesting example of this comes from the Sortnet-n domain (Bonet and Geffner,
2000). Sortnet-n is considered a challenging domain in conformant planning with
very few planners able to scale up to even small values of n (the number of entries
to be sorted in a sorting network). The domain has width n, and in the compact
encoding used in ipc-2006, the input vector is represented by a set of bits, exploiting
the fact that sorting vectors of numbers reduces to sorting vector of bits (0’s and
1’s). The domain cannot be solved by the K1 translation that FF reports correctly
as unsolvable after a brief unsuccessful search. On the other hand, it is possible to
reformulate the domain, replacing the unary high(i) and low(i) predicates by binary
predicates less(i, j) that compare two vector entries. We call this reformulation Sort-
2-n. While the encoding Sort-n is linear in n, the encoding Sort-2-n is quadratic in
n, and in both cases, the problem width is maximum, given by the number of fluents
whose status in the initial situation is unknown. Yet, while the more compact Sort-n
encoding is not solvable by the K1 translation, K1 suffices to solve the problem over
the expanded Sort-2-n encoding that actually can also be solved by K0. Thus the
effective width of Sort-2-n is 0. Interestingly, provided the K0 translation of Sort-
2-n, instances can be solved with up to 20 entries. On the other hand, conformant
planners such as Conformant-FF and POND can solve Sort-2-n instances for n no
greater than 3.

Before explaining the formulation of Sort-2-n more in detail, let us start with Sortnet-
n. The initial situation is form by the clauses high(i)∨¬high(i) for all 1 ≤ i ≤ n. For
all i < j there is an action cmp-n-swap(i,j) without preconditions, with conditional
effects high(i)→ high(j) and ¬high(j)→ high(i). The goal is a set of implications,
ensuring the ordering of the bits: for all 1 ≤ i < n, high(i) ⊃ high(i+ 1).

In Sort-2-n, instead of high(i) we use predicates less(i, j) for explicitly encoding
the relation between those two vector entries. So, the initial situation is less(i, j) ∨
¬less(i, j) for all 1 ≤ i, j ≤ n. For i < j we have actions cmp-n-swap(i,j) without
preconditions but with effect less(i, j)∧¬less(j, i). This action also have conditional
effects, for any k, less(k, i) → less(k, j) ∧ ¬less(j, k) and less(j, k) → less(i, k) ∧
¬less(k, i). The goal is less(i, i+ 1) for all 1 ≤ i < n.8

The intuition of Sort-2-n is to represent explicitly in a predicate less(i, j) what is
represented in Sortnet-n by the implication high(i) ⊃ high(j). After setting up
less(i, j), we need to propagate this fact to other predicates less(k, i) and less(j, k),
to enforce transitivity of less() on the numbers we have interchanged so far. Sort-2-n
can be solved by K0(P ) because after each action cmp-n-swap(i,j) we can be sure
that at least less(i, j) will be true, and everything that this can propagate. This
process can continue without really having to keep track of a more complex belief
state.9

8A pddl encoding of this problem can be found in appendix C.1 on page 169
9Note that the initial situation of Sort-2-n is a relaxation of the one of Sortnet-n. As was

described, the initial belief state of Sort-2-n is consistent with less(i, j)∧ less(j, i). If binary clauses
are used for enforcing these constraints, the translation that use the possible initial states as tags,
KS0, will be different but the translation K0 will lead to the same classical problem.
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It may also be the case that all the solutions to a problem P can be found by Ki(P )
for i smaller than w(P ). Consider a problem Pk that for each j such that 1 ≤ j ≤ k,
has:

• a clause pj ∨ ¬pj in the initial situation I,
• and action rule aj : ¬pj → pj in O,
• and a literal pj in goal G.

Such problem has width 1 as every clause pj ∨¬pj is only relevant to a different goal
pj . The plans are the execution in any order of all the actions aj . Consider now
the following modification to Pk called P ′k, that have the literal r true in the initial
situation I ′, and for each j such that 1 ≤ j ≤ k:

• a clause pj ∨ ¬pj in the initial situation I ′,
• an action rule aj : ¬pj ∧ r → pj in O′,
• an action rule bj : pj ∧ r in O′,
• and a literal pj in goal G′.

Observe that in P ′k, the literal r is relevant to any pj and ¬pj , and that any pj and
¬pj is relevant to r. This way, all the clauses get relevant to any pj through the
literal r and hence the problem P ′k has width k. Notice that actions b do nothing
as r is always true. Actually, r can be removed automatically, however the width is
again k if bj were changed to bj : pj∧ 6 r. In such case, executing any action b before
all the actions a may turn the problem unsolvable. Again, doing landmarks analysis
b actions can also be removed by showing the they do no lead to any solution (Richter
et al., 2008). In any case, there may be situations difficult to detect that lead to
a width k where a translation Ki for i < k may allow to get all the solutions to a
problem.

6.5 Tags and Initial States

A deeper understanding of the results above can be obtained by relating tags with
possible initial states. By looking more closely at this relation in the context of
covering translations, we will be able to answer the question of how a polynomial
number of contexts (tags) can play the role of an exponential number of possible
initial states in problems with bounded width.

For this, let us first recall a notation introduced in Section 2.5 on page 19, where for
a state s, we wrote I(s) to refer to the set of atoms encoding s (i.e, p ∈ I(s) iff p is
true in s) and P/s to refer to the classical planning problem P/s = 〈F, I(s), O,G〉
that is like the conformant problem P = 〈F, I,O,G〉 but with the initial state fixed
to s.

Let us now extend this notation and say that an action sequence π conforms with
a set of states S given the conformant problem P iff π is a plan for the classical
problem P/s for each s ∈ S. Clearly, a conformant plan for P is nothing else but
an action sequence that conforms with the set S0 of possible initial states of P , yet
the notion of ’conforms’ allows us to abstract away the initial situation I and make
precise the notion of a basis:
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Definition 6.22 (Basis for P ). A set of states S′ is a basis for a conformant problem
P = 〈F, I,O,G〉 if S′ is a subset of the set S0 of possible initial states of P and every
plan that conforms with S′ conforms with the set of possible initial states S0.

In words, if S′ is a basis for P , it is not necessary to consider all the states in S0 for
computing the conformant plans for P ; it suffices to consider just the states in S′.
We aim to show that if the width of P is bounded, then P has a polynomial basis
S′ even if S0 has exponential size. Moreover, the states s in such a basis are in close
correspondence with the tags appearing in a covering translation.

As an illustration, consider a problem P with actions ai, i = 1, . . . , n, and effects
ai : xi → L. Let G = {L} be the goal and I = {x1 ∨ · · · ∨ xn} the initial situation.
The set S0 of all possible initial states are the truth valuations over the xi atoms
where at least one of these atoms is true. There are 2n − 1 such states. On the
other hand, one can show that the set S′0 of n valuations in which exactly one of
these atoms is true provides a basis for P ; i.e., the plans that conform with these n
possible initial states, are exactly the plans that conform with the complete set of
2n − 1 possible initial states in S0.

The reduction in the number of possible initial states that must be considered for
computing conformant plans results from two monotonicity properties that we for-
mulate using the notation rel(s, L) to refer to the set of literals L′ that are true in
the state s and are relevant to the literal L:

rel(s, L) = {L′ | L′ ∈ s and L′ is relevant to L} .

Proposition 6.23 (Monotonicity 1). Let s and s′ be two states and let π be an
action sequence applicable in the classical problems P/s and P/s′. Then if π achieves
a literal L in P/s′ and rel(s′, L) ⊆ rel(s, L), π achieves the literal L in P/s.

Proposition 6.24 (Monotonicity 2). If S and S′ are two collections of states such
that for every state s in S and every precondition and goal literal L in P , there is a
state s′ in S′ such that rel(s′, L) ⊆ rel(s, L), then if π is a plan for P that conforms
with S′, π is a plan for P that conforms with S.

From these properties, it follows that

Proposition 6.25. S′ is a basis for P if for every possible initial state s of P
and every precondition and goal literal L in P , S′ contains a state s′ such that
rel(s′, L) ⊆ rel(s, L).

This proposition allows us to verify the claim made in the example above that the
set S′0, that contains a number of states that is linear in n, is a basis for P that
has an exponential number of possible initial states. Indeed, such a problem has
no precondition and a single goal literal L, and for every state s that makes more
than one atom xi true (these are the literals relevant to L), there is a state s′

in S′0 that makes only one of those atoms true, and hence for which the relation
rel(s′, L) ⊆ rel(s, L) holds.

The question that we address now is how to build a basis that complies with the
condition in Proposition 6.25 given a covering translation KT,M (P ). For this, let
m = {t1, . . . , tn} be a merge in M that covers a precondition or goal literal L, and
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let S[ti, L] denote the set of possible initial states s of P such that rel(s, L) ⊆ t∗i ;
i.e., S[ti, L] contains the possible initial states of P that make all the literals L′ that
are relevant to L false, except for those in the closure t∗i of ti. We show first that if
I is in prime implicate form, S[ti, L] is a non-empty set:10

Proposition 6.26. If the initial situation I is in prime implicate form and m =
{t1, . . . , tn} is a valid merge that covers a literal L in P , then the set S[ti, L] of
possible initial states s of P such that rel(s, L) ⊆ t∗i is non-empty.

Let then s[ti, L] stand for an arbitrary state in S[ti, L]. We obtain the following
result:

Theorem 6.27. Let KT,M (P ) be a covering translation for a problem P with an
initial situation in PI form, and let S′ stand for the collection of states s[ti, L] where
L is a precondition or goal literal of P and ti is a tag in a merge that covers L. Then
S′ is a basis for P .

This is an important result for three reasons. First, it tells us how to build a basis
for P given the tags ti in a covering translation KT,M (P ). Second, it tells us that
the size of the resulting basis is linear in the number of precondition and goal literals
L and tags ti. And third, it makes the role of the tags ti in the covering translation
KT,M (P ) explicit, providing an intuition for why it works: each tag ti in a merge
that covers a literal L represents one possible initial state; namely, a state s[ti, L]
that makes false all the literals L′ that are relevant to L except those in t∗i . If a plan
conforms with those critical states, then it will conform with all the possible initial
states by monotonicity (Proposition 6.24). It follows then in particular that:

Theorem 6.28. If P is a conformant planning problem with bounded width, then P
admits a basis of polynomial size.

Namely, conformant problems P with width bounded by a non-negative integer i
admit polynomial translations that are complete, because the plans that conform
with the possibly exponential number of initial states of P correspond with the plans
that conform with a subset of critical initial states that are polynomial in number
(namely, those in the polynomial basis). Thus, one complete polynomial translation
for such problems is the Ki translation; another one, is the KS0 translation but with
the tags associated with those critical initial states only rather than with all the
initial states.

As an illustration, for the problem P above with actions ai and effects ai : xi → L,
goal G = {L}, and initial situation I = {x1 ∨ · · · ∨ xn}, the K1(P ) translation with
tags xi, i = 1, . . . , n, and the merge m = {x1, . . . , xn} for the goal literal L, is a
covering translation. Theorem 6.27 then states that a basis S′ for P results from the
collection of states si that make each tag xi true, and all the literals that are relevant
to L that are not in x∗i false (i.e., all xk atoms for k 6= i). This is precisely the basis
for P that we had above that includes the states that make a single atom xi true
for i = 1, . . . , n: the plans that conform with this basis are then exactly the plans
that conform with the whole collection of possible initial states of P . This basis has
a size that is polynomial in m though, while the number of possible initial states of
P is exponential in m.

10Recall that we are assuming throughout that the initial situation I is logically consistent and
that the tags t are consistent with I.



Chapter 7

The Conformant Planner T0

No he de proferir adornada falsedad ni poner
tinta dudosa ni añadir brillos a lo que es.
Esto me obliga a óırme.
Pero estamos aqúı para decir verdad.
Seamos reales.
Quiero exactitudes aterradoras.

I shall not utter adorned falsehood nor pour
doubtful ink nor add gloss to what it is.
This forces me to hear myself.
But we are here to tell the truth.
Let us be real.
I want terrifying accuracies.

Ars Poética. Poem by Rafael Cadenas1

This chapter describes the T0 planner, based on the translation scheme presented in
the previous chapter (Palacios and Geffner, 2009). A preliminary version of the T0

planner was the winner of conformant track of the 2006 International Planning Com-
petitions (ipc-2006 Bonet and Givan, 2006) and was a runner-up in the conformant
track of ipc-2008 (Bryce and Buffet, 2008). The planner T0 is based on two in-
stances of the general translation KT,M (P ) from conformant into classical planning:
the instance K1(P ), the polynomial translation that is complete for problems of con-
formant width one, and the instance Kmodels(P ) that is complete for any problem
but may have exponential size.

7.1 Implementation

The current version of the conformant planner T0 is based on two instances of the
general translation scheme KT,M (P ) whose outputs are fed into the classical planner

1Collaborative translation by friends on facebook.com
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ff v2.3.2 One instance is polynomial but not necessarily complete; the other is
complete but not necessarily polynomial. For the incomplete translation, T0 uses K1

that is complete for problems with width no greater than 1, and as argued above,
can result in solvable instances for problems of larger widths. For the complete
translation, the Kmodels translation is used instead with a simple optimization: if the
K1 translation produces a single merge m that covers L, then this merge m is used
for L instead of the potentially more complex one determined by Kmodels. This is a
mere optimization as the resulting translation remains complete. The other merges
in Kmodels, that result from the models of the set of clauses CI(L) that are consistent
with I, are computed using the SAT solver relsat v2.20 (Bayardo and Schrag, 1997).
In the current default mode in T0, which is the one used in the experiments below,
the two translations K1 and Kmodels are used in sequence: FF is called first upon
the output of K1 and if this fails, it is called upon the output of Kmodels. In the
experiments below, we indicate the cases when Kmodels was invoked.

The translations used in T0 accommodate certain simplifications and two additional
actions that capture other types of deductions. The simplifications have to do with
the fact that the translations considered are all uniform in the sense that all literals
L in P and all rules C → L are ’conditioned’ by each of the tags t in T . From a
practical point of view, however, this is not needed. The simplifications address this
source of inefficiency. In particular:

• literals KL/t are not created when the closure t∗ contains no literal relevant to
L. In such a case, the invariance KL/t ⊃ KL holds, and thus, every occurrence
of the literal KL/t in KT,M (P ) is replaced by KL.

• support rules a : KC/t→ KL/t for non-empty tags t are not created when L
is not relevant to a literal L′ with a merge that contains t, as in such a case, the
literal KL/t cannot contribute to establish a precondition or goal. Similarly,
cancellation rules a : ¬K¬C/t→ ¬K¬L/t for non-empty tags t are not created
when ¬L is not relevant to a literal L′ with a merge that contains t.

• support and cancellation rules a : KC/t→ KL/t and a : ¬K¬C/t→ ¬K¬L/t
are grouped as a : KC/t→ KL/t ∧ ¬K¬L/t when for every fluent L′ relevant
to L, either L′ or ¬L′ is entailed by I and t. In such a case, there is no
incomplete information about L given t in the initial situation, and thus the
invariant KL/t or K¬L/t holds, and ¬K¬C/t is equivalent to KC/t.

• When a state contains the atom KL/t if and only if that state contains KL,
then the atom KL/t can be replaced by KL. This invariant is satisfied if for
all atoms L′ relevant to L, it holds that KL′/t ∈ I ′ ⊃ KL′ ∈ I ′.

Two other types of sound deductive rules are included in the translations:

• a rule a : KC → KL is added if a : C,¬L → L is a rule in P for an action a,
and no rule in P has the form a : C ′ → ¬L,

2The conformant planner T0 along with all the benchmarks considered in this chapter are avail-
able at http://www.ldc.usb.ve/~hlp/software, where the source code is also available. The clas-
sical planner FF was modified to allow larger instances as the generated by T0

http://www.ldc.usb.ve/~hlp/software
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• rules K¬L1, . . . ,K¬Li−1,K¬Li+1, . . . ,K¬Ln → KLi for i = 1, . . . , n are
added to a new unique action with no precondition, when L1 ∨ · · · ∨ Ln is
a static clause in P (a clause in P is static if true in the initial situation and
provably true after any action).

These rules are versions of the action compilation and static disjunctions rules (Pala-
cios and Geffner, 2006a, 2007), and they appear to help in certain domains without
hurting in others. They are presented in more detail in Section 8.2 on page 119 where
we explain the work presented in 2006a.

In the second case, we also ’ramify’ the heads KLi into all the existing literals of
the form KLi/t for maintaining the invariant KLi ⊃ KLi/t. On the other hand,
for speed, the ’ramifications’ in the merge actions am,L in KT,M that enforce the
invariant KL ⊃ K¬L′ for each literal L′ mutex with L in P are eliminated in T0, as
the mutex computation may be expensive, and these ramifications are not strictly
needed (see XL on Section 6.2, page 72). From a theoretical point of view, they are
needed to ensure that the classical problem KT,M (P ) is consistent if the conformant
problem P is consistent (see appendix B on page 163). From a practical point of
view, however, the consistency of KT,M (P ) is not needed; for a classical plan π for
KT,M (P ) to be sound, it suffices that none of the actions a in π trigger inconsistent
effects KL/t and ¬KL/t, a condition that is easy to verify.3

The version of T0 reported below does not assume that the initial situation I of P is
in prime implicate form but it rather renders it in PI form by running a version of
Tison’s algorithm 1967, a computation that in none of the benchmarks solved took
more than 48 seconds.

The translators in T0 are written in OCaml while the code for parsing the PDDL
files is written in C++. An sketch of the algorithm for generating a classical problem
KT,M (P ) is describe in function GetKtm() on the next page, and the whole algorithm
of the planner T0 is on page 93. Other complete or incomplete planners can be
construct using instances of KT,M (P ), variating ways of getting merges and tags,
and in which order try them out.

7.2 Experiments

We considered instances from three sources: the Conformant-FF distribution, the
Conformant track of the ipc-2006, and relevant publications (Palacios and Geffner,
2006a, 2007; Cimatti et al., 2004; Hoffmann and Brafman, 2006). The instances
were run on a cluster of Linux boxes at 2.33 GHz with 8GB. Each experiment had
a cutoff of 2h or 2.1GB of memory. Times for T0 include all the steps, in particular,
computation of prime implicates, translation, and search (done by FF). We also
include results from the Conformant Track of the recent ipc-2008.

Goals that are not sets of literals but sets of clauses are transformed in T0 in a
standard way: each goal clause C : L1 ∨ · · · ∨ Lm is modeled by a new goal atom

3All plans below have been verified in this way, and as a double check, the resulting conformant
plans have been checked also with the conformant verifier used at ipc-2006 due to Blai Bonet,
available at http://www.ldc.usb.ve/~bonet/ipc5/softw/verifier.tar.gz.

http://www.ldc.usb.ve/~bonet/ipc5/softw/verifier.tar.gz
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Figure 7.1: Function GetKtm(Conformant Problem P , Merges M). Returns a Clas-
sical Problem KT,M (P )

Input: Conformant Problem P = 〈F,O, I,G〉
Input: Merge M(X) for each X goal or precondition in P
Output: Classical Problem KT,M (P )

Tags T ←− any tag mentioned in merges M

function PossibleTag(L,t): (* t is a possible tag for L *)
return t == {} or

t∗ relevant to L ∧ L relevant to X ∧ t in M(X) = {t1, . . . , tn}
if X is goal or precondition

(* Actions of KT,M (P ) *)
foreach X goal or precondition in P , and M(X) = {t1, . . . , tn} do

Add merge action mX to O′ with rule
mX : KX/t1, . . . ,KX/tn → KX

foreach action a in O of P do
Add action a to O′ with

preconditions KL for each L in preconditions of a
foreach a : C1, . . . , Cn → L rule in O of P do

foreach t in T do
begin

if PossibleTag(L,t) then
Add to a the rule

a : KC1/t, . . . ,KCn/t→ KL/t
if PossibleTag(¬L,t) then

Add to a the rule
a : ¬K¬C1/t, . . . ,¬K¬Cn/t→ ¬K¬L/t

if t∗ is not relevant to x then
Replace Kx/t by Kx in the condition of an added rule

end
(* Init situation of KT,M (P ) *)
foreach tag t == {} or t in M(X) for X goal or precondition in P do

ConsequenceOfTag ←− literals in UnitPropagation(I ∪ {t})
foreach L in ConsequenceOfTag do (* {L | I |= t ⊃ L} *)

Add KL/t to I ′

(* Goal of KT,M (P ) *)
foreach X in G do

Add KX to G′

(* Fluents of KT,M (P ) *)
F ′ ←− any atom KL/t mentioned in O′, I ′ or G′

return KT,M (P ) = 〈F ′, I ′, O′, G′〉
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Figure 7.2: Algorithm for the Conformant Planner T0

Input: Conformant Problem P = 〈F,O, I,G〉
Output: Conformant plan π for P

function Merge-K1(Conformant P = 〈F,O, I,G〉):
begin

M ←− function from literals L to a set merges m
foreach goal or precondition literal L in P do

CI(L)←− clauses in I and tautologies relevant to L
foreach C in CI(L) do

if for all t in C, t∗ satisfies CI(L) then
Add {ti | ti ∈ C} to set M(L)
continue

if M(L) is empty then
foreach C in CI(L) do

Add {ti | ti ∈ C} to set M(L)
return M

end

function Merge-Kmodels(Conformant P = 〈F,O, I,G〉):
begin

M ←− function from literals L to merges m
foreach goal or precondition literal L in P do

CI(L)←− clauses in I and tautologies relevant to L
M(L)←− {ti | ti ∈Models(CI(L))} (* Calls a SAT solver *)

return M
end

function Solve(Conformant P , GetMerge()):
begin

Relevance(P) (* to be used also in GetKtm() *)
KT,M ←− GetKtm(P ,GetMerge(P)) (* on the preceding page *)
KT,M ←− SimplifyFurther(KT,M)
KT,M ←− KT,M + Action Compilation(P)
KT,M ←− KT,M + Static Disjunctions(P)
π′ ←− Classical Planner(KT,M)
return π′ without the merge actions

end

try
return Solve(P ,Merge-K1)

else
return Solve(P ,Merge-Kmodels)
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P K1(P ) pddl
Problem #Acts #Atoms #Effs Time #Acts #Atoms #Effs Size

bomb-100-100 10100 404 40200 2 10201 1595 50500 2,9
square-center-96 4 196 760 35,1 7 37248 75054 3,8

sortnet-09 46 68 109 8,3 56 29707 154913 5,1
blocks-03 32 30 152 4 37 11370 35232 0,7

dispose-16-1 1217 1479 2434 163,6 1218 133122 3458 0,3
look-and-
grab-8-1-1 352 358 2220 6,9 353 8708 118497 7,8

sgripper-30 487 239 1456 21,5 860 1127 12769 1

Table 7.1: Translation data for selected instances: #Acts, #Atoms, and #Effs stand for the
number of actions, fluents, and conditional effects. Time is the translation time in seconds
rounded to the closest decimal, and PDDL Size is the size of the PDDL file in Megabytes.

GC , and a new action that can be executed once is added with rules Li → GC ,
i = 1, . . . ,m.4

Table 7.1 shows data concerning the translation of a group of selected instances. As
it can be seen, the number of conditional effects grows considerably in all cases, and
sometimes the translation may take several seconds.

Tables 7.2, 7.3, 7.4, and 7.5, show the plan times and lengths obtained on a number of
benchmarks by T0, POND 2.2 (Bryce et al., 2006), Conformant FF (Hoffmann and
Brafman, 2006), MBP (Cimatti and Roveri, 2000) and KACMBP (Cimatti et al.,
2004). These last two planners do not accept problems in the standard syntax
(based on PDDL), so only a limited number of experiments were performed on them.
The general picture is that T0 scales up well in most domains, the exceptions being
Square-Center and Cube-Center in Table 7.3, where KACMBP scales up better.

The problems in Table 7.2 are encodings from the Conformant-FF repository: Bomb-
x-y refers to the Bomb-in-the-toilet problem with x packages, y toilets, and clogging;
Logistics-i-j-k is a variation of the classical version with uncertainty about initial
location of packages; Ring-n is about closing and locking windows in a ring of n
rooms without knowing the current room; and Safe-n is about opening a safe with
n possible combinations. All these problems have width 1. T0 does clearly best on
the last two domains, while in the first two domains, Conformant-FF does well too.

Table 7.3 reports experiments on four grid domains: Cube-Center-n refers to the
problem of reaching the center of a cube of size n3 from a completely unknown
location; Square-Center-n is similar but involves square with n2 possible locations;
Corners-Cube-n and Corners-Square-n are variations of these problems where the set
of possible initial locations is restricted to the Cube and Square corners respectively.
MBP and KACMBP appear to be effective in these domains, although KACMBP
doesn’t scale up well in the corner versions. T0 solves most of the problems, but in
the corner versions, the quality of the plans is poor. These problems have also width
1.

The problems reported in Table 7.4 and Table 7.5 are variations of a family of grid
problems (Palacios and Geffner, 2006a, 2007), described as follows.

4 An alternative way to represent such CNF goals is by converting them into DNF first and
having an action End map each of its non-mutex terms into a dummy goal LG. This alternative
encoding pays off in some cases, such as in the Adder-01 instance that does not get solved in the
default CNF goal encoding (see below).
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T0 POND CFF MBP KACMBP
Problem time len time len time len time len time len

bomb-20-1 0,1 49 4139 39 0 39 > 2h 0 40
bomb-20-5 0,1 35 > 2h 0 35 > 2h 0,2 40
bomb-20-10 0,1 30 > 2h 0 30 > 2h 0,5 40
bomb-20-20 0,1 20 > 2h 0 20 > 2h 2 40
bomb-100-1 0,5 199 – 56,7 199 – 1,9 200
bomb-100-5 0,7 195 – 52,9 195 – 4,3 200
bomb-100-10 1,1 190 – 46,8 190 – 16,4 200
bomb-100-60 4,25 140 – 9,4 140 – > 2h
bomb-100-100 9,4 100 – 1 100 – > 2h
logistics-4-3-3 0,1 35 56 40 0 37 > 2h > 2.1GB

logistics-2-10-10 1 84 > 2h 1,6 83 > 2h > 2.1GB
logistics-3-10-10 1,5 108 > 2h 4,7 108 > 2h > 2.1GB
logistics-4-10-10 2,5 125 > 2h 4,4 121 > 2h > 2.1GB

ring-4 0,1 13 1 18 0,4 18 0 11 0 26
ring-5 0,1 17 6 20 4,3 31 0,1 14 0,1 58
ring-6 0,1 20 33 27 93,6 48 0,6 17 0,2 99
ring-7 0,1 30 444 33 837 71 3,8 20 0,5 204
ring-8 0,1 39 > 2h > 2h 40 23 2 432
ring-30 13,4 121 – – > 2h > 2.1GB
safe-10 0,1 10 0 10 0 10 0,1 10 0 10
safe-30 0,1 30 2 30 1,4 30 > 2h 0,2 30
safe-50 0,4 50 9 50 29,4 50 > 2h 0,7 50
safe-70 1,12 70 41 70 109,9 70 > 2h 2,4 70
safe-100 2,5 100 > 2.1GB 1252,4 100 > 2h 8,6 100

Table 7.2: Experiments over well known benchmarks. Times reported in seconds and
rounded to the closest decimal. ’–’ means time or memory out for smaller instances.

• Dispose-n-m is about retrieving m objects whose initial location is unknown
in a n× n grid , and placing them in a trash can at a given, known location.

• Push-to-n-m is a variation where m objects can be picked up only at two
designated positions in the n × n grid to which all objects have to be pushed
to: pushing an object from a cell into a contiguous cell moves the object if it
is in the cell.

• 1-Dispose-n-m is a variation of Dispose where the robot hand being empty is
a condition for the pick up actions to work. As a result, a plan for 1-Dispose
has to scan the grid, performing pick ups in every cell, followed by excursions
to the trash can, and so on. The plans can get very long (a plan is reported
with 1316 actions).

• Look-and-Grab-n-m-r has an action that picks up the any of the m objects
that are sufficiently close if any in the n× n grid, and after each pick-up must
dump the objects it collected into the trash before continuing. The parameter
r is the radius of the action: 1 means that the hand picks up all the objects in
the 8 surrounding cells, 2 that that the hand picks up all the objects in the 15
surrounding cells, and so on. An illustration of a solution of Look-and-Grab-
8-1-1 found by T0 is in figure 2.3 on page 17.

pddl examples encoding instances of this domains can be found in appendix C on
page 169.
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T0 POND CFF MBP KACMBP
Problem time len time len time len time len time len

square-center-8 0,2 21 2 41 70,6 50 0 24 0 28
square-center-12 0,2 33 12 52 > 2h 0 36 0 42
square-center-16 0,3 44 1322 61 > 2h 0 48 0 56
square-center-24 0,8 69 > 2h – 0 72 0 84
square-center-92 45,3 273 > 2h – 0,9 276 0,3 322
square-center-96 50,2 285 – – 0,9 288 0,3 336
square-center-100 > 2.1GB – – 1,1 300 0,3 350
square-center-120 > 2.1GB – – 1,9 360 0,4 420

cube-center-5 0,1 18 1 22 8,2 45 0 28 0 25
cube-center-7 0,1 27 2 43 > 2h 0 33 0 35
cube-center-9 0,2 33 3 47 > 2h 0,1 54 0 45
cube-center-11 0,3 45 29 87 – 0,2 59 0 55
cube-center-15 0,5 63 880 109 – 0,2 69 0 75
cube-center-19 0,8 81 > 2h – 1,6 111 0,1 95
cube-center-63 28,5 279 > 2h – 28 285 0,5 315
cube-center-67 41,6 297 – – > 2.1GB 0,7 335
cube-center-87 137,5 387 – – > 2.1GB 1,2 435
cube-center-91 > 2.1GB – – – 1,2 455
cube-center-119 > 2.1GB – – – 2,1 595

corners-square-12 0,1 64 11 44 1,7 82 0 36 0,2 106
corners-square-16 0,2 102 1131 67 13,1 140 0 48 0,6 158
corners-square-20 0,3 148 > 2h 73,7 214 0,3 60 3 268
corners-square-24 0,5 202 > 2h 321 304 0,6 72 7,5 346
corners-square-28 0,7 264 – MPL 1,1 84 20,7 502
corners-square-36 1,7 412 – – 1,5 108 3308,8 808
corners-square-40 2,5 498 – – 7,8 120 > 2h
corners-square-72 26,1 1474 – – 118,8 216 > 2h
corners-square-76 30,5 1632 – – 371 228 –
corners-square-80 38,2 1798 – – 649,6 240 –
corners-square-120 223,6 3898 – – > 2.1GB –

corners-cube-15 0,8 147 907 105 134,5 284 3,7 69 174,1 391
corners-cube-16 0,9 174 3168 115 439,4 214 12,5 72 270,5 316
corners-cube-19 2,5 225 > 2h 868,4 456 549,5 111 1503,1 488
corners-cube-20 2,7 258 > 2h 3975,6 332 1061,9 90 2759 625
corners-cube-23 6,3 319 – MPL > 2h 6265,9 899
corners-cube-24 6,7 358 – – > 2h > 2h
corners-cube-27 14,6 429 – – – > 2h
corners-cube-52 448 1506 – – – –
corners-cube-55 > 2.1GB – – – –

Table 7.3: Experiments over grid problems. Times reported in seconds and rounded to the
closest decimal. ’MPL’ for CFF means that plan exceeds maximal plan length (500 actions).
’–’ means time or memory out for smaller instances.
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T0 POND CFF MBP KACMBP
Problem time len time len time len time len time len

dispose-4-1 0,1 59 9 55 0,1 39 > 2h 17,1 81
dispose-4-2 0,1 110 36 70 0,2 56 > 2h > 2h
dispose-4-3 0,3 122 308 102 0,6 73 – > 2h
dispose-8-1 2,7 426 > 2.1GB 339,1 227 – –
dispose-8-2 18,4 639 > 2.1GB 2592,1 338 – –
dispose-8-3 197,1 761 – > 2h – –
dispose-12-1 78 1274 – ME – –
dispose-12-2 2555 1437 – > 2.1GB – –
dispose-12-3 > 2.1GB – – – –
dispose-16-1 382 1702 – – – –
dispose-16-2 > 2.1GB – – – –

look-and-grab-4-1-1 0,3 30 3098 16 > 2h > 2h 0,6 54
look-and-grab-4-1-2 0,5 4 > 2h Mcl 0,02 5 0,0 6
look-and-grab-4-1-3 0,61 4 > 2h Mcl 0,01 5 0,0 6
look-and-grab-4-2-1 35 12 > 2.1GB > 2h > 2h 0,63 40
look-and-grab-4-2-2 49,41 4 > 2h Mcl 0,02 5 0,01 6
look-and-grab-4-2-3 60,02 4 > 2h Mcl 0,02 5 0,01 6
look-and-grab-4-3-1 > 2.1GB > 2.1GB > 2h > 2h 0,98 60
look-and-grab-4-3-2 213,3 4 – > 2h 0,02 5 0,02 6
look-and-grab-4-3-3 > 2.1GB – > 2h 0,02 5 0,01 6
look-and-grab-8-1-1 58,2 242 – – > 2h > 2h
look-and-grab-8-1-2 75,3 90 – – > 2h > 2h
look-and-grab-8-1-3 55,89 58 – – > 2h > 2h
look-and-grab-8-2-1 > 2h – – > 2h > 2h
look-and-grab-8-2-2 > 2h – – > 2h > 2h
look-and-grab-8-2-3 > 2h – – > 2h 1195 178
look-and-grab-8-3-1 > 2h – – > 2h > 2h
look-and-grab-8-3-2 > 2h – – > 2h > 2h
look-and-grab-8-3-3 > 2h – – > 2h 17,9 58

Table 7.4: Problems from Palacios and Geffner (2006, 2007): Times reported in seconds
and rounded to the closest decimal. ’–’ means time or memory out for smaller instances.
’ME’ and ’Mcl’ mean too many edges and too many clauses respectively.

T0 POND CFF
Problem time len time len time len

push-to-4-1 0,2 78 5 50 0,3 46
push-to-4-2 0,3 85 171 58 0,7 47
push-to-4-3 0,6 87 – 1,6 48
push-to-8-1 81,8 464 > 2h > 2.1GB
push-to-8-2 457,9 423 > 2h > 2.1GB
push-to-8-3 1293,1 597 > 2h > 2.1GB
push-to-12-1 > 2h – –
push-to-12-2 > 2h – –
push-to-12-3 > 2.1GB – –
1-dispose-8-1 82,2 1316 > 2.1GB > 2h
1-dispose-8-2 > 2.1GB > 2.1GB > 2h
1-dispose-8-3 > 2.1GB – –

Table 7.5: Other problems from Palacios and Geffner (2006, 2007). MBP and KACMBP
were not tried on these problems as they use a different syntax. Times reported in seconds
and rounded to the closest decimal. ’–’ means time or memory out for smaller instances.
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The domains in Tables 7.4 and 7.5 have width 1 except 1-Dispose and Look-n-Grab.
This is because, the hand being empty is a fluent that is relevant to the goal, and
clauses about the location of objects are all relevant to ’hand empty’. In all these
domains T0 appears to do better than the other planners. The Kmodels translation
was triggered only in the instances Look-and-Grab-n-m-r for m > 1 (the width of
these instances, as mentioned in Section 6.4, is m, independent of grid size).

7.3 Results of the Conformant track of the
International Planning Competition 2006

We now consider the instances used in the Conformant track of the ipc-2006, where
a previous version of T0 end up as the winner. The other participants were CFF
and POND. We also compare with MBP and KACMBP, and show the results in
Table 7.6. In summary, T0 scales up well in most of the used benchmarks, except in
Sortnet where MBP and KACMBP scale up better, and Adder where POND is the
only planner able to solve one instance.

Table 7.6 reports experiments over problems from the conformant track of the ipc-
2006 (Bonet and Givan, 2006). The domains Coins, Comm and UTS have all width
1. The others have max width given by the number of unknown fluents in the initial
situation. T0 dominates in all these domains except in Adder where POND is the
only planner able to solve an instance, and Sortnet, where MBP and KACMBP do
very well, possibly due to use of the cardinality heuristic and OBDD representations.
T0 fails on Adder because FF gets lost in the search. Looking at this problem more
closely, we found that FF could solve the (translation of the) first instance in less
than a minute provided that the CNF goal for this problem is encoded in DNF as
explained in footnote 4, page 94. The domains Adder, Blocks, and Sortnet in the
table, along with the domain Look-and-Grab in the next table, are the only domains
considered where FF run on the K1 translation reports no solution after a brief
search, triggering then the use of the complete Kmodels translation. In all the other
cases where Kmodels was used, the K1 translation had an unreachable goal literal,
detected in the translated problem, and there was no need to try FF on it.

7.4 Results of the Conformant track of the
International Planning Competition 2008

Tables 7.7 and 7.8 provide details on the results of the Conformant Track of the
ipc-2008 (Bryce and Buffet, 2008), The version of T0 in ipc-2008 was different from
the version of T0 used in ipc-2006, and different also from the upgraded version used
in Chapter 7 (Palacios and Geffner, 2009). In relation, to the former, T0 ipc-2008
was a cleaner but complete reimplementation; in relation to the latter, T0 ipc-2008
handled problems with width greater than 1 in a different way. As explained in
Chapter 7, the current version of T0 uses K1 as the basic translation regardless of
the width of the problem, switching to Kmodels when the search over K1 fails. In the
version of T0 at ipc-2008, the basic translation was a combination of K0 and K1.
More precisely, merges for literals L with width w(L) = 1, were generated according
to K1, but merges for literals L with width w(L) 6= 1 were not generated at all. The
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T0 POND CFF MBP KACMBP
Problem time len time len time len time len time len
adder-01 > 2h 1591 5 SNH NR NR
adder-02 > 2h > 2h SNH NR NR
blocks-01 0,1 5 0,1 4 0 6 NR NR
blocks-02 0,3 23 0,4 26 > 2h NR NR
blocks-03 82,6 80 126,8 129 > 2h NR NR
coins-10 0,1 26 5 28 0,1 38 > 2h 4,2 106
coins-12 0,1 67 > 2h 0,8 72 > 2h 3654,7 674
coins-15 0,1 79 > 2h 3 89 – > 2h
coins-16 0,3 113 – 33,3 145 – > 2h
coins-17 0,2 96 – 1,4 94 – –
coins-18 0,2 97 – 6,2 118 – –
coins-19 0,2 105 – 16,5 128 – –
coins-20 0,2 107 – 20,6 143 – –
coins-21 > 2h – > 2h – –
comm-07 0,1 54 0 47 0 47 0,2 55 63,6 53
comm-08 0,1 61 1 53 0 53 0,2 71 1966,8 53
comm-09 0,1 68 1 59 0 59 0,2 77 > 2h
comm-10 0,1 75 1 65 0 65 0,3 85 > 2h
comm-15 0,1 110 6 95 0,2 95 0,9 115 –
comm-16 0,2 138 > 2h 0,4 119 1,6 151 –
comm-20 0,8 278 > 2.1GB 6,4 239 50,9 340 –
comm-25 2,3 453 – 56,1 389 > 2h –
sortnet-06 0,6 21 18 20 SNH 0 17 0 21
sortnet-07 2,5 28 480 25 SNH 0 20 0 28
sortnet-08 9,6 36 > 2h SNH 0 28 0 36
sortnet-09 76,8 45 > 2h SNH 0 36 0 45
sortnet-10 > 2.1GB – SNH 0,1 37 0,1 55
sortnet-11 > 2.1GB – SNH 0,1 47 0,1 66
uts-k-04 0,1 23 2 22 0,1 22 5,4 32 1,5 30
uts-k-05 0,1 29 4 28 0,3 28 1247,3 38 195,4 42
uts-k-06 0,2 35 10 34 0,8 34 1704,8 50 > 2h
uts-k-07 0,4 41 13 40 1,9 40 > 2h > 2h
uts-k-08 0,6 47 24 47 4,4 46 > 2h –
uts-k-09 0,9 53 > 2h 8,6 52 – –
uts-k-10 1,3 59 2219 67 16,5 58 – –
uts-l-07 0,2 70 201 58 0,2 41 10,5 89 > 2h
uts-l-08 0,3 80 937 67 0,4 47 41,1 106 > 2h
uts-l-09 0,6 93 > 2h 0,8 53 1176 137 –
uts-l-10 0,7 97 > 2h 1,6 59 > 2h –

Table 7.6: Experiments over problems from ipc-2006. Times reported in seconds and
rounded to the closest decimal. ’SNH’ for CFF means that goal syntax not handled, while
’NR’ for MBP and KACMBP that these planners were not run due to lack of translations
from PDDL. ’–’ means time or memory out for smaller instances.
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Domain # Instances CpA(H) CpA(C) T0 ipc-2008
Blocks 4 4 3 3
Adder 4 1 1 1

UTS Cycle 27 2 2 3
Forest 9 1 1 8

Rao’s keys 29 2 2 1
Dispose 90 76 59 20

Table 7.7: Data from the Conformant Track of the recent ipc-2008 Competition: Number
of problems solved by each of the conformant planners, with time out of 20 minutes. In bold,
entry for planner that performed best in each domain. The data is by Bryce and Buffet
(2008)

result was that the basic translation in T0 in ipc-2008 was lighter than the basic
translation of the current version of T0 but could fail on problems with width higher
than 1 that the latter can solve. Retrospectively, this was not a good choice, but
it didn’t have much of an impact on the results. There was however a bug in the
program that prevented two width-1 domains, Forest and Dispose, to be recognized
as such, and thus resulted in the use of the Kmodels translation, that is complete for
all widths, but does not scale up that well.

The other two conformant planners entered into ipc-2008 where CpA(H) and CpA(C);
these are belief-space planners that represent beliefs as DNF formulas, and use simple
belief-state heuristics for guiding the search (Tran et al., 2009). The belief progres-
sion in these planners is done quite effectively, by progressing each term in turn,
according to the 0-approximation semantics. More about this in the Section 9.5 on
page 141, in the Related Work chapter. The heuristics used by CpA(H) and CpA(C)
are combinations of the cardinality heuristic, that measures the number of states in
a belief state, the total sum heuristic, that adds the heuristic distances to the goal
from each possible state, and the number of satisfied goals, that counts the number
of top goals achieved. These heuristics are all very simple, yet they work well on
some benchmarks.

Tables 7.7 and 7.8 show data obtained from the ipc-2008 organizers from the planner
logs. The first table appears in the ipc-2008 report (Bryce and Buffet, 2008), where
the new domains Forest and Rao’s keys are explained, and shows the number of
problems solved by each planner, displaying in bold the planner that did best in
each domain. The planner CpA(H), was declared the winner, as it was declared best
in three domains (Blocks, Rao’s keys, Dispose), with T0 doing best in two domains
(UTS Cycle and Forest), and CpA(C) doing best in one (Adder).

Table 7.8 shows additional details on some of the instances; in particular, the total
time taken to solve the instance and the length of the plans for each of the three
planners.

In terms of domain coverage, the planners do similarly on most domains, except in
Forest, where T0 solved most of the instances and CPA(H) solved few (8/9 vs. 1/9),
and Dispose, where CPA(H) solved most of the instances and T0 solved few (76/90
vs. 20/90).

In terms of time and plan quality, CpA(H) and CpA(C) appear to be slightly faster than
T0 on Blocks, but produce much longer plans. In Dispose, T0 scales up better than
CpA(H) and CpA(C) over the size of the grids, and worse on the number of objects.
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Indeed, only T0 manages to solve the largest grid but for a single object (Dispose-
10-01), and only CpA(H) and CpA(C) solve instances with more than 2 objects in
the largest grids. As in most cases, plan lengths produced by T0 are shorter; e.g.,
the plan for Dispose-04-03 contains 125 actions for T0, 314 for CpA(H), and 320 for
CpA(C).

Dispose is actually a domain where the cardinality heuristic does very well in the
generation of plans, even if the plans tend to be rather long. In this domain, an agent
has to scan a grid collecting a set of objects at unknown locations, and each time
the action of picking up an object from a cell that may contain the object is made
(except for the first time), the cardinality of the belief state is reduced. Indeed, if
initially an object may be at positions p1, p2, . . . , pn, after a pick up at p1, the object
can be in positions p2, . . . , pn or in the gripper, after a pick up at p2, the object can
be in positions p3, . . . , pn or in the gripper, and so on, each pick up action decreasing
the cardinality of the belief state, until becoming a singleton belief where the object
must be held by the gripper with certainty.

The problem with the version of T0 used in ipc-2008 in the Dispose domain, was not
only that FF explores too many states in the search, but as explained above, that it
used the expensive Kmodels translation instead of the lighter K1 translation that is
complete for this domain that has width 1. With this bug fixed, T0 solves 60 rather
than 20 of the 90 Dispose instances, still failing on some of the larger grids with many
objects, but producing much shorter plans. For example, Dispose-06-8 is solved with
a plan with 470 actions, while CpA(H) and CpA(C) solve it with plans with 2881 and
3693 actions respectively. The same bug surfaced in the Forest domain, but it just
prevented the solution of one instance only. Forest, Dispose, and UTS Cycle have
all conformant widths equal to 1, while the other domains have all larger widths (see
Table 6.2 on page 84 for the widths of Blocks and Adder).

The second domain in ipc-2008 where FF got lost in the search was Adder, where
indeed, T0 did not solve any instance. The instance that is shown to be solved by
T0 in the competition report, appears to be a mistake. Similarly, the fourth instance
of blocks, that is reported as solved by CPA(H), may be a mistake too; indeed, no
plan for such an instance can be found in the logs, and T0 reports that the goal is
unreachable in the Kmodels translation that is complete. According to T0, instance
four of Rao’s key is unsolvable too. On the other hand, T0 failed on the larger UTS
Cycle and Rao’s key instances during the translation. In the the first, the resulting
PDDL’s are too large and can’t be loaded into FF; in the second, the number of
init clauses turns out to be quite large (above 300), giving rise to a still larger set
of prime implicates (above 5000) that caused the translator to run out of memory.
The second instance of Rao’s keys, however, is rather small and T0 didn’t solve it
due to a different bug. With this bug fixed, T0 solves it in 0.3 seconds, producing
a plan with 53 actions, which compares well with the solutions produced by CpA(H)
and CpA(C) in 0.7 and 1.9 seconds, with 85 and 99 steps, respectively.

7.5 Discussion

We have developed a conformant planner T0 based on two instances of the KT,M (P )
translation. One based on the instance K1(P ), complete for problems with confor-
mant width 1; the other based on Kmodels, that is complete for any problem P . We
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Problem Instance CpA(H) CpA(C) T0 ipc-2008
time len time len time len

Blocks 1 0 4 0 7 0,1 5
2 0,1 28 0,1 35 0,1 23
3 5,9 411 6,3 157 17,8 83
4 143,9 257

Adder 1 8,5 3 8,3 3
UTS Cycle 1 0,8 3 0,6 3 0,1 3

2 25,3 6 24,7 6 0,7 7
3 5,4 10

Forest 1 3,6 24 11,6 18 0,2 16
2 1,3 45
3 2,2 78
4 12,1 129
5 14,4 115
6 69,7 200
7 355,1 256
8

Rao’s keys 1 0,1 28 0 29 0 16
2 0,7 85 1,9 99

Dispose 4,1 0,3 80 0,4 88 0,1 77
4,2 0,7 197 0,9 206 3,6 110
4,3 1,3 314 1,8 320 528,3 125
4,4 2 431 2,8 434
6,1 4,7 270 4,5 187 0,9 204
6,2 10,4 643 42,2 735 217,7 329
6,3 17,7 1016 97,9 1228
6,4 27,6 1389 172,5 1721
8,1 40,1 753 40,3 518 7,4 326
8,2 86,7 1851 524,6 1962
8,3 86,7 1851
10,1 45 683
10,2

Table 7.8: Running time and plan length from ipc-2008 logs. Time in seconds. Blanks
stand for time or memory out. Only 13 of the 90 Dispose-n-m instances shown, At ipc-2008,
size n of grid ranged from 2 to 10, while number m of objects, from 1 to 10. T0 scales up
best on n and worst on m.
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have shown that T0 exhibits a good performance in comparison with existing confor-
mant planners, specially because many current benchmarks have conformant width
1, and problems with width > 1 tend to be hard for both T0 and other conformant
planners of the state of the art.

The classical planner ff was used for solving the instances of KT,M (P ). Even though
there are many good classical planners, we faced troubles on making use of them
for our instances. Most of them claim to support conditional effects, and actually
work on benchmarks used in the planning competitions, but failed in simple small
instances of KT,M (P ) (Helmert, 2006; Chen et al., 2006; Wah and Chen, 2006).
Further improvement in the support of conditional effects of classical planners, as well
as their ability to accept grounded pddl of moderate size, may boost the performance
of T0. In the future we would like classical planners to support better automated-
generated instances, similarly to what is called industrial instances in the sat solver
competitions (Berre and Roussel, 2009). It might also be interesting to consider
using a compact binarized form of strips which can be fast and efficiently read into
memory.

Using different instances of KT,M (P ) allows to tradeoff efficiency for completeness
and more combinations than the current one are possible. We tried out to do a first
trial using K0(P ) or only using K1(P ) when the problem has conformant width 1.
This issue should be explored further.

We would like to improve the current version of the T0 conformant planner, based on
instances of the KT,M (P ) translation. So far, the planner uses the instance K1(P ),
which is complete for problems having conformant width 1, or the instance Kmodels

that is complete for any problem, but might be exponentially larger to what is needed.
We would like to develop an efficient implementations of Ki(P ) for i > 1, even though
the current benchmarks has not needed it. Even in the conformant track of the
ipc-2008, where the organizers introduced new benchmarks with conformant width
greater than 1, we did not observe that using Kmodels was a limitation, meaning that
the tags and merges generated by Kmodels were the merge that would have generated
the appropriated instances of Ki(P ) for the width of those benchmarks.

Problems with conformant width i can be solved by the instance Ki(P ), whose tags
have size i. Some problems may be solvable using smaller tags for some literals.
Besides, observe that if {t1, . . . , tn} is a valid merge for a problem P , the following
merge rule is sound

KL/{t1, t} ∧ . . . ∧KL/{tn, t} → KL/t.

We would like to obtain instances of KT,M (P ) smaller than Ki(P ), but also complete
for problems with conformant width i.

Classical planning seems to be very restricted, but it has been used recently to
tackle other flavors of planning. In probabilistic planning, simplified versions of the
problems are solved with classical planners. The resulting sequences are tried, hoping
the agent can arrive to a goal, or planning from scratch if they fail (Yoon et al., 2007).
In planning with complex preferences along the execution of actions, tasks are first
transformed that preferences should be achieve during actions execution until the
goal state, and then a modified versions of classical planning heuristics are used to
guide the search (Baier et al., 2009).
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Chapter 8

Extensions and Variations

. . . man can and does select the variations given
to him by nature, and thus accumulate them in
any desired manner.

Origin of Species by Charles Darwin

In this chapter we consider some extensions or variations of the ideas and algorithms
presented in parts II and III.

We discuss first an extension of the model-counting formulation presented in Chap-
ter 3 for solving conformant probabilistic planning problems; i.e., problems with a
probabilistic distribution over the possible initial states and probabilistic effects of
actions. An extension to our scheme, together with important ideas for achieving
good performance was proposed by Huang (2006).

In Section 8.2, we extend the basic translation K0(P ) in a way different from the
general extension KT,M (P ). The new extension K(P ), first published by Palacios
and Geffner (2006a), is incomplete but quite effective, and was the base of the planner
KP that perform well in the conformant track of ipc-2006 (Bonet and Givan, 2006).

We then present, in Section 8.3, an extension to the translation KT,M (P ) for sup-
porting non-deterministic effects, based on the well known intuition of introducing
uncertain literals for representing the possible effects of actions (Smith and Weld,
1998). We incorporate such extension in the conformant planner T0 and refine it
further by using properties of the KT,M (P ) translation.

Finally, in Section 8.4, we show how to use the translation KT,M (P ) for optimal
conformant planning.

8.1 Logic-based Conformant Probabilistic Planning

Probabilistic conformant planning is planning where the initial situation is a proba-
bilistic distribution over possible initial states, the effects of actions are also proba-
bilistic, and the goal must be achieve with maximal probability by a plan of N time
steps (Kushmerick et al., 1995; Majercik and Littman, 1998; Hyafil and Bacchus,
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2003; Huang, 2006). In this section we relate the work of Huang (2006) on confor-
mant probabilistic planning with our model-counting-based algorithm for conformant
non-probabilistic planning presented in Chapter 3.

In this section we explore the use of our approaches to non-probabilistic conformant
planning to the probabilistic case. A natural candidate for such exploration is our
logic-based model-counting formulation because of two reasons. On one hand, a
propositional formulation for conformant probabilistic planning was used by max-
plan (Majercik and Littman, 1998) for conformant probabilistic planning.1 On the
other, d-dnnf has been applied to probabilistic reasoning, specially with Bayesian
Networks (Darwiche, 2003; Chavira and Darwiche, 2008; Darwiche, 2009).

We start the section defining the probabilistic conformant planning model and then
extend the non-probabilistic cnf encoding presented for the model-counting formu-
lation (Chapter 3), following ideas of Majercik and Littman (1998). We show that
Huang’s algorithm can be understood as a refinement and extension of our algorithm
to the probabilistic case. We also evaluate the difference in performance of Huang’s
algorithm and our extension, and comment on the possible impact of Huang’s ideas
on non-probabilistic benchmarks.

Conformant Probabilistic Planning

A conformant probabilistic planning problems is a tuple of the form P = 〈F, I,O,G,N〉
where F stands for the fluent symbols in the problem, I expresses the probability
distribution over the possible initial situations, O stands for a set of (ground) oper-
ators or actions a, G is a set of literals over F defining the goal, and N is a number.
A solution to a problem P is a plan of length N with maximal probability of suc-
cess. The initial situation I is given by set containing fluents literals or expressions
p1t1 | . . . | pntn such that ti are set of fluent literals and

∑n
i=1 pi = 1. Every action

a in O has an effect Eff (a) that is a set containing fluents literals or probabilistic
effects p1E1 | . . . | pnEn, where

∑n
i=1 pi = 1 and each Ei is a set of rules. Each rule

is of the form C → E, where C and E are set of fluent literals, and if C is empty, the
rule is interpreted as true→ E.2 For simplifying the presentation of this section, we
assume that actions are always executable, and thus have no preconditions.

Given S, the set of the possible states of P , the initial situation I encodes a proba-
bilistic density p0 : S → [0, 1]. If there are m elements of the form p1t1 | . . . | pntn in
I, then the cross-product of them generates terms of the form (p1 · · · pm t1∧. . .∧tm).
The set of possible initial states are the terms t1∧ . . .∧ tm consistent with the literals
of I not appearing in expressions p1t1 | . . . | pntn. The probability of each such state
is p1 · · · pm. We assume that the probabilities of each possible initial states calculated
in this way adds up one, making p0 a probability density. This always holds if the
atoms in p1t1 | . . . | pntn do not appear somewhere else in I.

The effect of applying an action a in an state s is defined as a conditional probabilistic

1They call it probabilistic planning, but wanted to obtain a plan with maximal probability of
success.

2For probabilistics effects we follow the notation of Rintanen (2003). This simplified language
is used for the sake of clarity of presentation and also for the preliminary implementation of the
algorithms of this section.
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density of the possible resulting states s′ defined as

p(s′|s, a) =
∑
{pi | s′ = f(Ei, s)},

where f(Ei, s) is the result of applying the set of rules E on the state s, returning a
new state.

Given a sequence of n actions π = {a1, . . . , an}, the probability density of obtaining
a sequence of states {s0, . . . , sn} after the execution of π is

pπ({s0, . . . , sn}) = p0(s0)
n∏
i=1

p(si|si−1, ai) ,

where p0 is the probabilistic density of the possible initial states.

Observe that for a sequence of actions π that makes impossible to reach a state sn,
the probability of reaching it through any intermediary states s1, . . . , sn−1 is zero.
Thus, for calculating the probability of a sequence of actions π reaching the goal G,
we add up all the possible sequence of length N such that their last states sn satisfy
the goal G, i.e.

Pr(π,G) =
∑

{s0,...,sn} |= G∈sn

pπ({s0, . . . , sn})

that can be summarized as

Pr(π,G) =
∑

{s0,...,sn} |= G∈sn

p0(s0)
n∏
i=1

p(si|si−1, ai) . (8.1)

Given a problem P = 〈F, I,O,G,N〉, a conformant probabilistic planning task is to
obtain a sequence of N actions π∗ with maximal probability of success Pr(π∗, G).

We would like to express the task of obtaining the N -step plan π∗ with maximal prob-
ability of success in the problem P in terms of of its propositional encoding TN (P )
presented in Section 3.2 on page 29. It would allow us to calculate Pr(π,G) using
a new propositional encoding T ′N (P ) and a representation of the actions sequence π
using propositional literals.

The maxplan algorithm (Majercik and Littman, 1998) uses propositional variables,
called chance variables, for encoding the probabilities appearing in the initial situa-
tion and action effects. For a problem P , maxplan creates a formula whose models
correspond to all the possible N -step plans for P , and all the possible results of the
probabilistics effects.

We now show how to enrich the pddl language for expressing conformant proba-
bilistic problems and how to obtain the new encoding T ′N (P ) for them.

Probabilistic PDDL and its CNF encoding

We describe probabilistic pddl, a simple extension of pddl for expressing prob-
abilistic uncertainty in the initial state and in the actions effects, through examples
(Younes and Littman, 2004; Bonet and Givan, 2006). The initial situation can con-
tain expressions of the form
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(probabilistic 0.2 (a) 0.8 (and (b) (c)))

meaning (a) is true with probability 0.2 and (b)∧(c) is true with probability 0.8. The
cnf encoding T ′N (P ) uses two new propositional variables, called chance variables, p1

and p2, one for each probability in the expression. We associate each chance variable
with its corresponding term, labeled with time step 0, using clauses for expressing
p1 ↔ a0 and p2 ↔ b0 ∧ c0. Finally, clauses are added for encoding that at least one
pi is true, and not two different pi can be true at the same time.

Actions may have one or more probabilistics effects, for example, the expression

(:action o
:effect (and

(probabilistic 0.3 (a) 0.7 (when (b) (c)))
...
(d)

)
)

means that after applying action o, (d) will be true for sure, with probability 0.3,
(a) will be true, and with probability 0.7, if (b) is true in the state where the actions
is applied, then (c) will be true afterwards.

The propositional theory T ′N (P ) has literals corresponding to actions and fluents
for each time step t until the horizon N . The introduction of chance variables
introduces small changes respect to the encoding TN (P ) and we describe them using
time-stamped literals and actions, abusing slightly of the pddl syntax, as follows

(:action ot
:effect (and

(probabilistic 0.3 (at+1) 0.7 (when (bt) (ct+1)))
...
(dt+1)

)
).

The probabilistics effects of an action o at time step t can be understood as the effects
of ot depending on chance variables pit, which probability distribution is described
like in the initial situation as

(probabilistic 0.3 (p1
t) 0.7 (p2

t)).

The new chance variables should depend on t, as different executions of a probabilistic
effect behave differently. Now the action o at time step t can be expressed in terms
of these chance variables as
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(:action ot
:effect (and

(when (p1
t) (at+1))

(when (p2
t) (when (bt) (ct+1)))

...
(dt+1)

)
)

In summary, for encoding the probabilistic effects of an action o at time step t in cnf,
its effects are conditioned on chance variables pit. We also add clauses expressing that
the pit vars are exclusive of each other, and that the action ot is executed if and only
if at least one pit is true. This guarantees that when the action o is not executed all
its chance variables are false.

The cnf theory T ′N (P ) constructed in this way guarantees that any assignment of
actions and chance variables corresponds to a unique model encoding one possible
execution. The probability of reaching the goal in such execution is the product of the
probabilities associated to the positive pi appearing in the model.3 The probability of
success of a plan π is the sum of the probabilities of each possible execution consistent
with π. If π is not a plan for a possible execution, then it will be inconsistent with
the cnf theory and will have, thus, zero probability of success. We encode action
sequences π using the set of action literals TA(π), also called an action set, where
at ∈ TA iff a is π[t], and ¬at ∈ TA iff a is not π[t].

The weighted model counting (WMC) of a propositional theory φ and a weight func-
tion w returns the sum of the weight of each model of φ, that is the product of the
weight of each literal w(l) in such model. Thus, the probability of success of a plan
can be calculated using weighted model counting over the theory T ′N (P ) as

Pr(π,G) = WMC( T ′N (P ), wπ ), (8.2)

where the weight function is

wπ(l) =


0 : if l is inconsistent with the action set TA(π)
ψ : if l is a positive chance variable pit with probability ψ
1 : otherwise.

A naive algorithm for obtaining a plan of length N with maximal probability of suc-
cess would generate all possible plans π, compute their probability using Pr(π,G),
and return a plan with maximal probability. In practice, a branch-and-bound al-
gorithm is more effective, using a criterion for pruning branches that will necessary
lead to plans with lower probability of success that the best found so far. For this
we need an algorithm val(∆, TA) that, given a propositional encoding abbreviated
as ∆, returns the probability of the best plan consistent with TA, a partial action
set of literals.4

Huang (2006) algorithm for computing val(∆, TA) is:

3It is possible to use less chance variables by assigning probabilities to literals ¬pi (Majercik and
Littman, 1998; Huang, 2006), but we presented this way for simplicity of presentation, and used it
for the experiments reported below as they are very preliminary.

4Recall that an action set TA is partial when there are action variables that do not appear in
TA. See page 31.
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• val(∆, TA) = max(val(∆ | a, TA), val(∆ | ¬a, TA)) if ∆ mentions some action
variable a;

• val(∆, TA) = val(∆ | p, TA) · Pr(p) + val(∆ | ¬p, TA) if ∆ mentions no action
variables, but some chance variable p;

• val(∆, TA) = 1 if ∆ mentions no action or chance variables, and is consistent
with TA;

• val(∆, TA) = 0 if ∆ mentions no action or chance variables, and is inconsistent
with TA.

Following Huang, the idea behind this algorithm saying is that the first case of the
definition says that the actions should be chosen to give the maximum probability of
success; the second case says that for a complete sequence of actions chosen, the suc-
cess probability is the weighted average between the success probabilities under the
two complementary scenarios p and ¬p, for each chance variable p; the other two cases
ensure that all and only the scenarios satisfying the goal are counted. Actually, for
the second case Huang uses instead val(∆ | p, TA)·Pr(p)+val(∆ | ¬p, TA)·(1−Pr(p))
because in his encoding negative chance variables are also associated to probabilities.

As weighted model counting, the evaluation of val can be very expensive, as it is
enumerating all the models of a formula. Weighted model counting is tractable
for d-dnnf (Darwiche and Marquis, 2004), thus we would like to get a a similar
algorithm for calculating val on d-dnnf theories. As Huang points out, evaluating
val(·) involves a sequence of maximizations followed by a sequence of summations.
If we wanted to evaluate val(.) in linear time in a d-dnnf we should compile it
with all actions on top, and then all the chance variables. Such restriction make the
theories very difficult to compile, and for the non-probabilistic case allows to obtain
a solution without any search. Huang (2006) explain that such restriction increased
the constrained treewidth, that is usually much higher than the normal treewidth
(Park and Darwiche, 2004). Given that compiling the theory using such order is
not feasible, we consider an approximation to val that provides enough pruning
for developing an effective branch-and-bound algorithm for conformant probabilistic
planning.

Extending the model-counting-based algorithm

The weighted model counting of a propositional theory can be calculated in linear
time if the theory is in d-dnnf (Darwiche, 2001a). Recall that a d-dnnf is a propo-
sitional formula represented as a graph, where the leaves are literals and the inner
nodes can be labelled with ∨ or ∧ (see fig. 3.1 on page 37). The ∨ nodes in the
d-dnnf are deterministic, i.e. ∨-children are inconsistent each other and it is safe
to sum them; and that the ∧ nodes are decomposable, i.e. ∧-children do not share
literals and it is safe to multiply them. Both determinism and decomposability are
crucial properties for computing the number of models or the weighted model count-
ing of a d-dnnf, by replacing labels ∨ with + and labels ∧ by ∗, and evaluating
bottom-up the resulting arithmetic circuit (Darwiche, 2003; Chavira and Darwiche,
2008; Darwiche, 2009).
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Using the WMC algorithm for d-dnnf theories, the probability of a plan π reaching
the goal given the propositional theory T ′N (P ) can be calculated as

WMC( T ′N (P ), wπ ) = prob(∆, TA)

where ∆ is T ′N (P ) converted to d-dnnf, TA is the action set corresponding to the
plan π, and

prob(∆, TA) =



0 : if ∆ is literal inconsistent with the action
set TA

ψ : if ∆ is a positive chance var pit with prob-
ability ψ

1 : for any other literal∏
i prod(∆i, TA) : if ∆ root is the operator ∗ and ∆i are the

children of ∆∑
i prod(∆i, TA) : if ∆ root is the operator + and ∆i are

the children of ∆ .

The algorithm prob(∆, TA) does not work when the action set TA is partial, 5 and
thus cannot be used for a branch and bound algorithm. Indeed, we need an algorithm
prob′(∆, TA) that returns the probability of the best plan consistent with TA.

For obtaining the algorithm prob’, let us recall the model-counting formulation for
conformant non-probabilistic planning of Chapter 3 that computes the number of
initial states consistent with the action set TA (see page 33)

MC(project[ TN (P ) + TA ; F0 ]) (8.3)

where F0 is the set of variables appearing in the propositional encoding of the initial
situation I of P . If a for partial plan TA such number is lower than the number of
possible initial states, TA could not be extended to encoded a conformant plan, and
thus can be discarded from the search tree.

Let us recall the algorithm for model counting and projection MC-and-P (Figure 3.4
on page 42) for computing the equation (8.3) for theories compiled into d-dnnf.
The version presented here, called MCP, is written at a higher level and leave out
the possibility of doing conditioning that MC-and-P detailed, even though it is also
necessary by the algorithms of this section.

MCP(∆, TA) =



0 : if ∆ is a literal inconsistent with the
action set TA

1 : for any other literal∏
i MCP(∆i, TA) : if ∆ root is the operator ∗ and ∆i

are the children of ∆∑
i MCP(∆i, TA) : if ∆ root is the operator +, ∆ root

is a decision node over a variable of
the initial situation, and ∆i are the
children of ∆

maxi MCP(∆i, TA) : if ∆ was not in the previous case but
∆ root is the operator + and ∆i are
the children of ∆

5Recall that an action set TA is partial when there are action variables that do not appear in
TA. See page 31
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UB(∆, TA) =



0 : if ∆ is inconsistent with partial plan
TA

ψ : if ∆ is a positive chance var pit with
probability ψ

1 : for any other literal∏
i UB(∆i, TA) : if ∆ root is the operator ∗ and ∆i are

the children of ∆∑
i UB(∆i, TA) : if ∆ root is the operator +, ∆ root

is a decision node over a variable of
the initial situation, and ∆i are the
children of ∆

maxi UB(∆i, TA) : if ∆ was not in the previous case but
∆ root is the operator + and ∆i are
the children of ∆

Figure 8.1: Extension of the model-counting algorithm for conformant planning to the
probabilistic case

A decision node is an ∧ node with two children, one corresponding to a positive
literal A, the other to the negative literal ¬A, following the Shannon expansion
(∆ |A ∧ A)∨ (∆ | ¬A ∧ ¬A). Where ∆ |A is the conditioning of ∆ on A, equivalent
to replace all the literals A (¬A, respectively) by true (false, respectively) in ∆.

The compilation step to d-dnnf for the algorithms presented in the cnf-based part,
both the model-counting formulation of Chapter 3 and the sat-formulation of Chap-
ter 4, was guaranteed to keep the variables encoding the initial situation to be on
top of the d-dnnf and to be decision nodes. This is needed for the algorithm MCP
to be sound on computing the Equation 8.3. More details in Section 3.5 on page 38.

We can construct an upper bound to val(.) by modifying the MCP algorithm on
the preceding page. The algorithm UB in figure 8.1 differs from MCP only in the
treatment of chance literals. Huang propose a similar algorithm called val′(.) to the
one in figure 8.1, defined as

val ′(∆, TA) =



0 : if ∆ is inconsistent with partial plan
TA

ψ : if ∆ is a positive chance var pit with
probability ψ

1 : for any other literal∏
i val ′(∆i, TA) : if ∆ root is the operator ∗ and ∆i are

the children of ∆
maxi val ′(∆i, TA) : if ∆ root is the operator +, ∆ root is a

decision node over an action variable,
and ∆i are the children of ∆∑

i val ′(∆i, TA) : if ∆ was not in the previous case but
∆ root is the operator + and ∆i are
the children of ∆

where we emphasize the two cases where UB and val’ differ. Actually, it can be
proved that both algorithms UB and val’ compute the same number for the propo-
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sitional encoding T ′N (P ) if 1) all the variables but chance and actions vars are forget
away during compilation to d-dnnf, and 2) the same strategy used by us in Chap-
ter 3 and by Huang (2006) is use for compiling to d-dnnf; i.e. to split initial chance
variable first, then actions at time 0, then chance effects at time 0, actions at time
1, and so on.

Branch-and-bound algorithm

We have seen an upper bound UB of the probability of success of a plan and saw
that Huang’s val′ is equivalent. We now discuss the difference in variable and value
ordering, and some other optimizations in both the algorithm in Chapter 3, called
vplan, and Huang’s called ComPlan.

For vplan we considered the ordering for selecting the propositional variables, prefer-
ring action literals l that appears in most models. We use the same strategy for both
serial and parallel planning. In contrast, ComPlan is tailored for serial plans, and
consider the variable to be the time step k to be assigned, and the value the action
at k. ComPlan selects k such that setting an action literal will produce the tightest
bound. This is a most-critical heuristics that is usually very useful in other branch-
and-bound algorithms (Marriot and Stuckey, 1999). However, for calculating such
bound, ComPlan requires to calculate val(∆, TA + a) for each possible action a, that
cannot be done simultaneously for all actions in one pass over the d-dnnf graph, in
contrast to the criterion used by vplan. However, their experiments support paying
such cost, specially because they take additional advantage by pruning actions such
that val(∆, TA, a) ≤ lb, where lb is the probability of success of the best plan found
so far. We call this pruning strong pruning.

Experiments

For studying the differences between ComPlan and the straightforward extension of
our model-counting for the probabilistic case, we made experiments comparing the
impact of both algorithms. Based on the source-code of vplan we extended it to
support probabilistic planning using the lower bound calculated by UB.6 We also
built over vplan a preliminary implementation of Huang’s ComPlan algorithm, as it
have some syntactical restriction and do not implement an optimization of ComPlan
called variable sharing for reducing the size of the propositional theory. We report
the performance of vplan-strong, that is similar to our vplan with the UB bound,
but uses the stronger pruning of Huang’s ComPlan. In all cases, given an horizon N ,
a cnf is generated, then is compiled into d-dnnf, and the problem with maximum
probability of success is found. Only the search time is reported. We choose to
not show the success probability of the plans as they are the same for all planners.
Obviously, the success probability increases with the horizon N .

In Table 8.1 we report the number of nodes and time spent by vplan, vplan-strong
and ComPlan in the benchmarks by Huang (2006), running the experiments on a
Intel/Linux machine running at 2.80GHz and 2GB of memory. The number of nodes
found for ComPlan is similar to the reported but Huang, validating our preliminary

6The algorithms presented in this section can be run using the options ’mc’ and ’-prob’ of the
conformant planner ’Translator’ available at http://www.ldc.usb.ve/~hlp/software.

http://www.ldc.usb.ve/~hlp/software
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vplan vplan-strong ComPlan
prob horiz nodes time nodes time nodes time
castel 20 40.030 6,51 9.134 7,7 1.326 1,73
castel 21 68.100 18,29 15.472 14,13 2.052 2,66
castel 22 98.130 18,88 21.842 20,98 2.760 3,96
castel 23 157.362 32,28 35.394 38,67 3.878 5,75
castel 24 245.042 51,62 53.576 61,64 6.240 17,28
castel 25 318.118 98,77 66.142 86,29 8.224 14,95
castel 26 531.764 134,11 113.728 148,47 13.394 23,8
castel 27 745.646 282,54 166.978 266,78 19.350 38,33
castel 28 1.124.610 452,17 267.986 417,48 29.678 65,91
castel 29 1.470.022 549,51 367.024 625,64 36.604 81,03
castel 30 2.475.358 927,19 652.238 1132,12 58.052 134,43
castel 31 2.641.562 957,94 735.040 1340,41 70.590 181,93
castel 32 6.619.584 2660,28 1.919.562 3471,54 115.338 305,81
castel 33 199.770 551,06
castel 34 190.246 535,12
castel 35 704.966 2006,91
castel 36 959.268 2855,6
castel 37

gripper 10 20.292 7,77 2.702 3,71 1.792 3,09
gripper 11 74.164 33,63 11.404 16,63 6.916 12,79
gripper 12 196.782 105,16 21.866 37,6 18.806 37,89
gripper 13 537.378 341,6 61.872 130,49 105.592 227,29
gripper 14 1.595.740 1332,28 127.748 291,38 362.090 1046,93
gripper 15 442.192 1459,8
gripper 16

grid 18 146.096 85,33 25.832 65,8 25.784 67,47
grid 19 21.454 36,73 4.884 29,91 4.736 42,86
grid 20 48.918 152,49 66.798 529,7 13.164 127,78
grid 21 31.464 139,85 178.760 2203,89 6.422 107,36
grid 22 103.690 624,22 21.906 427,11
grid 23 74.256 763,34 12.726 342,63
grid 24 267.314 1988,36 47.916 1878,93
grid 25 183.006 2474,98 28.526 1529,94
grid 26 74.040 3046,82
grid 27

Table 8.1: Comparison of vplan, vplan-strong and ComPlan over domains taken from Huang
(2006). Times are in seconds. Empty spots means more than 3600 seconds. ’Castle’ is about
building a sand castle, ’Gripper’ about picking balls, and ’Grid’ about moving in a grid with
actions that may end in other cell.
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vplan vplan-strong ComPlan sat-based
problem nodes/time/len nodes/time/len nodes/time/len time/len

sqr-center-4 352/0,65/8 61/0,63/8 165/0,68/8 0,64/8
sqr-center-8 676k/to 150k/to 350k/to 412,5/20
sqr-center-16 140k/to 9k/to 11k/to mo

sortnet-3 7/0,17/3 7/0,18/3 9/0,19/3 0,17/3
sortnet-4 489/0,44/5 197/0,42/5 480/0,49/5 0,36/5
sortnet-5 145k/to 337k/to 551k/to 28,34/9
cube-3 6/1,25/6 5/0,50/6 5/0,50/6 0,51/6
cube-5 52k/to 71k/2766/15 9k/to 711,1/15
cube-7 27k/to 4k/to 2k/to mo
safe-5 307/0,30/5 123/0,55/5 277/0,43/5 0,29/5
safe-10 2171k/to 444k/to 799k/to 27,09/10
safe-30 44k/to 4k/to 6k/to mo
blocks-1 4/0,34/4 1/0,33/4 1/0,31/4 0,35/4
blocks-2 43k/to 22k/2526/13 2k/to 10,19/13
blocks-3 640/to 122/to 130/to mo
coins-1 125/4,05/9 7/3,51/9 8/3,27/9 4,54/9
coins-2 125/4,27/9 7/3,83/9 8/3,22/9 2,82/9
coins-3 148/5,15/10 8/4,05/10 7/4,02/10 3,46/10
coins-4 125/4,06/9 7/5,77/9 8/3,34/9 2,90/9
coins-5 148/5,33/10 8/4,25/10 7/4,24/10 6,79/10
comm-1 17/2,09/11 7/2,07/11 3/2,05/11 2,06/11
comm-2 31/33,36/17 9/54,35/17 5/31,59/17 31,48/17
comm-3 45/1038/23 19/1293/23 10/1063/23 1010/23
uts-k1 10/0,19/4 5/0,22/4 7/0,23/4 0,21/4
uts-k2 488k/2019/10 14k/313,2/10 11k/263,3/10 4,61/10
uts-k3 2k/to 1k/to 1k/to 890,5/16
uts-k4 4k/to 34/to 34/to to
uts-l1 10/0,34/4 5/0,21/4 7/0,22/4 0,24/4
uts-l2 4k/3,34/10 227/2,35/10 308/2,88/10 1,37/10
uts-l3 482k/to 16k/1773/16 17k/to 15,66/16
uts-l4 107k/to 3k/to 6k/to 303,2/22

Table 8.2: Comparison of vplan, vplan-strong, ComPlan and satconf over non-probabilistic
conformant domains. ’to’ means time out of 3600 seconds. ’mo’ means memory out of the
2GB available. A suffix k means that number has been divided by 1000 and rounded up. We
put in bold face when an algorithm outperform the rest of the based on branch-and-bound.

implementation. Fixing the precision of the probabilities to six decimals was critical
to approximate the number of nodes reported in Huang (2006). We observe that
ComPlan definitively dominates in castle, but in gripper and grid vplan and ComPlan
solve almost the same number of problems. The pruning in vplan-strong makes
a difference in gripper-15 but is very expensive in the grid domain. The planner
ComPlan has an slower node-generation rate than vplan. For the largest instances
solved by ComPlan, it generates 337,15, 345,85 and 18,64 nodes per second, for castle-
32, gripper-14 and grid-25, respectively. In contrast, vplan generates 2488, 1197,75
and 73,94 nodes per second, respectively. The node-generation rate of vplan-strong
is faster than ComPlan but slower than vplan.
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Even though the ideas in ComPlan were developed for the non-probabilistic setting,
we also tried ComPlan, vplan-strong in pure conformant planning problems, for com-
pare them with our vplan algorithm. The results are reported in Table 8.2. In
non-probabilistic problems, the algorithm of ComPlan is modified to return the first
plan that achieve the goal for all the initial states, which is to achieve them with
probability one (Huang, 2006). We tested over square-center and sortnet, two prob-
lems used for the experiments in Chapters 3 and 4, and also used the problems
cube and safe from the Conformant ff benchmarks (Hoffmann and Brafman, 2006),
and blocks, coins, comm and uts as used in the conformant track of the ipc-2006
(Gerevini et al., 2009). For these experiments we added up the search time for all
horizons until the optimal one, and included also the time used for cnf generation,
d-dnnf compilation, that is the same for the three algorithms. As a reference we
also compare with the planner developed in Chapter 4, that also uses d-dnnf but
for generating for each horizon N an new cnf, obtaining a plan in a single sat call
if there is one.

In Table 8.2, the algorithms vplan and ComPlan are able to solve the same problems,
almost in the same time, except for the instance uts-k2. ComPlan generates less
nodes but the slower generation rate compensate the advantage. vplan-strong is
able to solve problems that ComPlan cannot solve like cube-5, blocks-2 and uts-l3.
The sat-based planner solves an extra instance than vplan-strong in the problems
square-center, sortnet, safe, uts-k and uts-l.

The algorithm of ComPlan was developed for the probabilistic case and it is not
expected to perform well in non-probabilistics instances. In particular, their prun-
ing and variable selection heuristics are designed for probabilities that allow strong
pruning when a better lower bound is found. Anyway, it is interesting to observe its
performance on pure conformant problems.

Huang (2006) argues that “Having variable orders of bounded width implies that the
size of the d-dnnf compilation will grow at most linearly with the horizon, which
will allow us to ultimately scale the proposed approach to large horizons.” However,
sometimes being able to compile into d-dnnf is not enough for achieving good per-
formance. For example, in the instance blocks-2 in table 8.2, ComPlan and vplan
are reported to generate 0,55 and 11,94 nodes per second. Even though d-dnnf
are linear in the size of the compiled formulas, and that the compilation strategy
used by vplan and ComPlan leads to bounded treewidth, the resulting d-dnnfs can
be quite big. We would like to observe the performance of ComPlan on conformant
probabilistic problems with more fluents and actions.

The same idea used for extending the vplan algorithm to the probabilistic case, could
be used for conformant non-probabilistic non-deterministic planning. That can be
implemented translating non-deterministic effects (oneof (a) (b)) into
(probabilistic 0.5 (a) 0.5 (b)), and increase the horizon until founding a plan
with a success probability of 1. The issue of non-deterministic effects is explored in
Section 8.3, presenting an extension to the translation KT,M (P ) from conformant
into classical planner introduced in Chapter 6.
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8.2 An alternative extension of K0

While translation KT,M (P ) presented in Chapter 6 is based on conditionals KL/t
that represent that L must be true if t is initially true, this alternative translation
K(P ) presented earlier by us (Palacios and Geffner, 2006a), uses conditionals L/t
that represent that if t then L. The main difference is that t in KL/t literals refers
to the initial situation, but for L/t they are associated with the current situation. As
shown in (Palacios and Geffner, 2006a) and summarized here, this alternative transla-
tion provides also effective solutions to many of the existing conformant benchmarks,
even if is not complete. Such translation, called K(P ), is made of the basic trans-
lation K0(P ), new literals L/t, and a set of extra actions capturing deductions and
characterized as rules.

In this section we discuss about the kind of reasoning we want to capture with K(P ),
then introduce the corresponding extension, we prove its correctness and evaluate its
performance through experiments. Later, we conclude on a final discussion.

Motivation

We want to extend the translation K0(P ) presented in Chapter 5 to more expressive
forms of reasoning, but without obtaining exponentially larger classical problems.
Even though this retain us from obtaining completeness, we can still obtain interest-
ing results.

Some conformant planning problems are solvable through simple rules. For example,
a robot that systematically scans a grid, collecting the objects in each cell, will pick
up all the objects in the grid, regardless of their original locations. Or similarly, a
robot that moves n times to the right in an empty grid of size n, will necessarily end
up in the rightmost column.

This raises the question of whether it is possible to identify and use such forms of
inference for developing an efficient but incomplete conformant planner capable of
solving non-trivial problems quickly. In this section, we show that this is possible
by formulating a suitable translation of conformant problems into classical problems
which are then solved by an off-the-shelf classical planner. The translation is sound
as the classical plans are all conformant, but it is incomplete as the converse relation
does not always hold. The translation scheme accommodates ‘reasoning by cases’
by means of a ‘split-protect-and-merge’ strategy; namely, atoms L/Xi that represent
conditional beliefs ‘if Xi then L’ are introduced in the classical encoding that are then
combined by suitable actions to yield the literal L when the disjunction X1∨· · ·∨Xn

holds and certain invariants in the plan are verified.

As an illustration, assuming that there is a pickup(l) action with precondition at(l)
and effect ‘if at(o, l) then hold(o)’ with at(o, l) unknown and l ∈ L, where L is a
set of locations. In this case, the translation K(P ) introduces effects of the form ‘if
true then hold(o)/at(o, l)’ for each l ∈ L. This way, the consequence of pickup(l)
is the atom hold(o)/at(o, l) that stands for the conditional belief ‘if at(o, l) is true,
then hold(o) is true’. Then any classical plan that achieves the atoms hold(o)/at(o, l)
for each one of the possible locations l ∈ L of o, and which preserves certain invari-
ants (like that the ‘hidden’ locations do not change), can be shown to be a valid
conformant plan for achieving hold(o).
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By accounting for this type of simple disjunctive reasoning in a translation scheme
that has a clear semantics, we will see that many other patterns of inference fall into
place. For example, if in the robot domain above ‘push’ actions that move objects
from one cell to the next are added (for each one of the possible directions), and
at the same time, the pick up actions are restricted to particular cells (like corners
or centers), then the classical encoding would produce valid conformant plans where
enough pushes are done so that all objects are forced into such cells regardless of their
original location, from which they can be collected. Several effective but incomplete
formulations of conformant planning have been formulated before (some of which
handle sensing as well; see Baral and Son, 1997; Petrick and Bacchus, 2002), none,
as far as we know, can represent these types of plans, except those that are complete
and thus exponential in the worst case, like our translation KT,M (P ) in Chapter 6.

We call the new translation K(P ), and will make it stronger by accounting for
certain disjunctive inferences in the translation. This will result into more actions
and conditional effects added to K(P ) which is initially set to K0(P ).

Case Analysis over Single Actions

Consider an action a that in a given context C ′ can force a literal L to make the
transition from false to true, while preventing the opposite transition. In such a
context C ′, even if L is unknown, a can be used to make L true. This type of
inference is captured in the translation as follows:

Rule 8.1 (Action Compilation). If P contains a rule a : C ∧¬L→ L, and the rules
for the same action a with ¬L in the head are Ci → ¬L, i = 1, . . . , n for n ≥ 0, then
add to K(P ) the rules KC ∧K¬L1 ∧ · · · ∧K¬Ln → KL where Li is a literal in Ci.

This is a modular translation rule in which the context C ′ above is the formula
C∧¬L1∧· · ·∧¬Ln, for any combination of literals Li chosen as to preempt the rules
Ci → ¬L associated with the same action a that can clobber L. All the literals in C ′

are preceded by K’s as they refer to literals in K(P ) that ensure that the condition
holds with certainty.

It is not difficult to show that this translation rule preserves soundness. A key
characteristic of the rule and others to be introduced below is that they make use of
the conditional effects a : C ∧X → L in the problem P for deriving L with certainty
when the body of the rule C ∧X is not fully known.

In an example like ‘square center’, where a robot moves in an empty square grid and
literals Xi are used to represent the column location of the robot, this translation
ensures that literal K¬X1 is obtained right after a single ‘move right’ action (namely,
that the robot cannot be in the leftmost column then), and similarly, that K¬X2

is obtained after two consecutive right moves, etc. If the grid is nxn, the resulting
classical theory yields K¬Xi for all i < n after n − 1 steps, although it does not
yield KXn (being in the rightmost column). For this, the disjunction expressing the
possible column positions, namely X1∨X2∨· · ·∨Xn, needs to be taken into account
as well. We address this next.
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Case Analysis over Action Sequences

We extend the translation further so that the disjunctions in P are taken into account
in a form that is similar to the Disjunction Elimination inference rule used in Logic
(Barwise and Etchemendy, 1991):

If X1 ∨ · · · ∨Xn, X1 ⊃ L, . . . , and Xn ⊃ L then L (8.4)

For this, we create new atoms in K(P ), written L/Xi, that aim to capture the
conditional beliefs Xi ⊃ L. Then, the resulting classical encoding will be such
that when these atoms are ‘achieved’ for each i = 1, . . . , n, and they are suitably
‘protected’, the literal L will be rendered ‘achievable’ by means of an extra ‘dummy’
action with conditional effect similar to (8.4).

As already mentioned, the atoms L/Xi will stand for the conditional belief ‘if Xi

then L’. In principle, any rule a : C ∧Xi → L in P with Xi uncertain can be used
to produce a rule a : KC → L/Xi in K(P ), meaning that if KC is known and a is
applied, then if Xi was true, L will become true. However, we want L/Xi to mean
exactly that ‘right after the action a, if Xi is true, then L is true’, and for this, some
additional care is needed. Indeed, if a contains also rules a : Ck → Xi that can make
Xi true, it may be possible that L and Xi are false at time t when a is applied, and
that L remains false but Xi becomes true, and then that ‘if Xi at t, then L at t+ 1’
is true, but ‘if Xi at t+ 1, then L at t+ 1’ is false. In order to rule out this situation
we define the corresponding translation rule as follows:

Rule 8.2 (Split). For each rule a : C ∧ Xi → L in P where Xi is a literal that
appears in a disjunction X : X1 ∨ X2 ∨ · · · ∨ Xn, if a : Ck → Xi, k = 1, . . . ,m
for m ≥ 0 are the rules in P for the same action a with Xi in the head, then
add to K(P ) the atoms L/Xj, j = 1, . . . , n, all initialized to false, and the rules
a : KC ∧K¬L1 ∧ · · · ∧K¬Lm → L/Xi where Lk is a literal in Ck.

The combination of the conditional beliefs represented by the atoms L/Xi is achieved
by means of extra actions added to the classical encoding K(P ) that generalize (8.4)
slightly, allowing some of the cases Xi to be disproved:7

Rule 8.3 (Merge). For each disjunction X : X1 ∨ · · ·Xn and atom L in P such that
L/Xi is an atom in K(P ), add to K(P ) a new action aX,L with conditional effect

(L/X1 ∨K¬X1) ∧ · · · ∧ (L/Xn ∨K¬Xn) ∧ FLAGX,L → KL

where FLAGX,L is a boolean initialized to true. If L = Xi for some i ∈ [1, n],
remove the conjunct (L/Xi ∨K¬Xi) from the rule body.

A key distinction from Logic is that the disjunction X1∨· · ·∨Xn and the conditional
beliefs ‘if Xi then L’ represented by the atoms L/Xi need all be preserved until
they are combined together to yield L. This is the purpose of the boolean FLAGX,L
that is initially set to true, but which is deleted when an action is done in a context
where it is not possible to prove that 1) L is preserved (if true), 2) the disjunction
X ∨ L is preserved (the disjunction X is initially true but it is actually sufficient to

7When using the classical plans obtained from K(P ) as conformant plans for P , such ‘dummy’
actions must be removed, as was done for merge actions in the translations introduced in Chapter 6.
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preserve the weaker disjunction X ∨ L), and 3) the conditional beliefs represented
by the atoms L/Xi achieved are preserved. This is accomplished by extending K(P )
with the following cancellation rules:

Rule 8.4 (Protect). If there is a boolean flag FLAGX,L in K(P ) for X : X1∨· · ·∨Xn,
then for each action a: 1) if a : C → ¬L in P , add to K(P ) the rule a : ¬K¬C →
¬FLAGX,L, 2) if a : C → ¬Xi in P and neither a : C → Xk nor a : C → L in P
for Xi and Xk in X, add to K(P ) the rule a : ¬K¬C → ¬FLAGX,L, and 3) if a :
C → Xk for Xk in X, then add to K(P ) the rule a : ¬K¬C ∧L/Xk → ¬FLAGX,L.

These rules, as we will see, yield expressivity without sacrificing efficiency, as they
manage to accommodate non-trivial forms of disjunctive inference in a classical the-
ory without having to carry disjunctive information explicitly in the belief state: dis-
junctive information is represented implicitly in K(P ) in terms of the the conditional
atoms L/Xi, the ’merge’ actions, and the invariants enforced by the ’flags’.

Theorem 8.1 (Soundness K(P )). Any plan that achieves the literal KL in K(P )
is a plan that achieves L in the conformant problem P .8

The key element in the proof is the following lemma that captures the meaning of
the L/Xi atoms:

Lemma 8.2 (L/Xi Atoms). Any plan that yields L/Xi while preserving FLAGX,L
in K(P ) is a plan that achieves the conditional Xi ⊃ L in P .

Proof. Let us assume that L/Xi, which is initially false, is made true at time t by
an action a in the plan. We need to prove that if FLAGX,L remains true in K(P )
until time t′ ≥ t, then the conditional Xi ⊃ L remains true until t′ in P , which we
write as Xi(t′) ⊃ L(t′). From the argument above, if L/Xi became true in K(P )
at time t, so does the conditional Xi(t) ⊃ L(t) in P . From this, Xi(t′) ⊃ L(t′)
follows if we can show both Xi(t′) ⊃ Xi(t) and L(t) ⊃ L(t′). The latter is true
because rule 8.4.1 in K(P ) ensure that if a rule a′ : C ′ → ¬L gets triggered by
the plan in P , the rule a′ : ¬K¬C ′ → ¬FLAGX,L will be triggered by the plan in
K(P ). Similarly, the former is true because rule 8.4.3 in K(P ) guarantee that if a
rule a′ : C ′ → Xi is triggered by the plan in P when L/Xi is true in K(P ), then
the rule a′ : ¬K¬C ′ ∧ L/Xi → FLAGX,L will be triggered in K(P ). In either case,
FLAGX,L would be deleted, so if it is not, Xi(t′) ⊃ Xi(t) and L(t) ⊃ L(t′) must
hold, and since Xi(t) ⊃ L(t) holds, so must Xi(t′) ⊃ L(t′).

Proof of theorem 8.1. We proceed by induction on the length of the plan π. If π is
empty, then π achieving KL in K(P ) means that L is true with certainty in the
initial I of the conformant problem P , and thus π achieve L.

Otherwise, π is a sequence of actions π′ and an action a. π achieve KL is either
because (1) a cause KL directly or because (2) π′ achieve it and a does not cause
¬KL.

8 For this result to hold, we assume that for every pair of conflicting rules a : C → α and
a : C′ → ¬α associated with the same action a in P , the bodies C and C′ are such that they
contain a mutex pair L, L′. This mutex relation is enforced on the corresponding K-literals by
adding to every effect C′′ → KL associated with the ’dummy’ merge action aX,L in K(P ), the
effects C′′ → K¬L′ and C′′ → ¬KL′.
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For case (2), let us assume that a is not a merge but a normal action. We will
show by contrapositive that if a does not achieve ¬KL then a does not achieve ¬L,
preserving L achieved by π′. Let us also assume that a cause ¬L in P using the rule
a : C → ¬L and that π′ achieve some K¬Ci in K(P ), avoiding the execution of rule
a : ¬K¬C → ¬KL for Ci in C. In such case, by inductive hypothesis, π′ achieve
¬Ci in P and the rule a : C → ¬L would not achieve ¬L. Thus, π′ does not achieve
any K¬Ci and the rule a : ¬K¬C → ¬KL produces ¬KL.

On the other hand, if a is a merge action, the only way to achieve ¬KL is because
a achieve KL′ where L and L′ are mutex. But if L and L′ are mutex, then KL and
KL′ are also mutex because in the problem K(P ), without merge actions, each rule
a : KC → KL′′ corresponds to a rule a : C → L′′, producing the same mutexes. Even
considering merge actions, merging an atom KL also produces K¬L′ (see footnote 8
on the preceding page). Thus, it is impossible to achieve KL′ after π′ achieving KL.

For case (1), i.e. if π achieve KL because a cause KL directly, it maybe through a
rule a : KC → KL, but then π′ achieve KC and by inductive hypothesis achieve C,
and a : C → L achieve L.

The other case to consider is that KL is achieved by a rule added by action com-
pilation (rule ) of the form KC ∧K¬L1 ∧ · · · ∧K¬Ln → KL. Again, by inductive
hypothesis π′ achieve C and L1, . . . , Ln. Each Li guarantee that no rule Ci → ¬L is
applied. The rule a : C ∧ ¬L → L is applied when ¬L was true after π′. Thus, in
any case L is true afterwards.

A third option is that the action a is a merge achieving KL.

a : (L/X1 ∨K¬X1) ∧ · · · ∧ (L/Xn ∨K¬Xn) ∧ FLAGX,L → KL

For any Xi if K¬Xi is achieved, then KL or another KXj was made true. Otherwise
FLAGX,L would have been deleted because of rule rule 8.4.2. Let us consider the set
of preserved literals XP = {Xi} such that K¬Xi was not achieved. If XP is empty,
as FLAGX,L is still true, then KL is achieved by π′ and thus L is achieved and the
merge action does not delete it. If XP is not empty, then atoms L/Xi were achieved
for Xi not in XP and by lemma 8.2 the conditional Xi ⊃ L is achieved in P . Given
that X1 ∨ . . . ∨ Xn ∨ L was preserved because FLAGX,L remains true, some Xi is
true for a literal L/Xi, and hence L should holds after the merge.

Example

As an illustration, given an object O to be collected from an unknown location in a
grid with two cells A and B using the actions pick(X), push(X,Y ), and go(X,Y ),
where X and Y are cells and the three actions have as a precondition that the agent
is at X, it follows that if the agent is initially at A, the plans

π1 = {pick(A), go(A,B), pick(B)}, and
π2 = {push(A,B), go(A,B), pick(B)},

achieve hold(O) in K(P ), but the following plan does not

π3 = {pick(A), go(A,B), push(B,A)} .
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P Trans. K(P )
Problem #Act #Atoms #Eff time #Act #Atoms #Eff

bomb-100-60 6060 320 24120 1.35 6260 1041 79560
cube-11 6 33 120 0.036 72 226 1152
cube-75 6 225 888 1.08 456 1789 8448

square-center-64 4 128 504 0.31 260 893 4796
square-center-240 4 480 1912 6.11 964 3833 18172

grid-4-5 174 155 444 5.65 183 351 1244
safe-100 100 101 100 0.11 101 304 804

logistics-4-10-10 3320 610 6640 3.52 3370 1321 13880

Table 8.3: Data concerning the translation of some conformant problems P into classical
encodings K(P ). The sizes refer to the grounded versions, and all times are in seconds and
they include grounding time.

If at(O,A) ∨ at(O,B) is the disjunction X in P and L is hold(O), then using the
split rule (8.2) π1 achieves hold(O)/at(O,A) and hold(O)/at(O,B), π2 achieves
K¬at(O,A) and hold(B)/at(O,B), while π3 achieves both hold(O)/at(O,A) and
K¬at(O,B) but clobbers FLAGX,L, preempting the merge action aX,L from achiev-
ing hold(O). This happens because the rule

push(B,A) : at(O,B)→ at(O,A)

in P yields the rule

push(B,A) : ¬K¬at(O,B) ∧ L/at(O,A)→ ¬FLAGX,L

which gets triggered in K(P ) by the action sequence π3.

Experimental Results

We implemented and studied the performance of the KP conformant planner, that
takes a conformant problem in pddl, translate into a classical planning problem using
the K(P ) translation, solve it using ff classical planner, and report the resulting plan
without the merge actions, or reports fail if it cannot find a plan. Table 8.3 shows
data concerning the translation of a number of problems from various sources, used
and explained by Brafman and Hoffmann (2004). Bomb-x-y refers to the Bomb-in-
the-toilet problem with x packages, y toilets, and clogging. Cube-n to the problem of
reaching the center of a cube of size n3 from a completely unknown location. Square-
Center-n is similar but involves only n2 possible locations. Logistics-i-j-k, Grid-n
and Safe-n are from (Brafman and Hoffmann, 2004). The table provides information
about the size of the original (ground) conformant problems P , the resulting classical
problems K(P ), as well as the time taken in the translation. This last figure is less
than a second in most problems, but grows up to a few seconds in some.

In comparison with the performance of the translation step of T0 reported in table 7.1,
the increasing on number of conditional effects is much larger for T0. For example,
for the problem bomb-100-100, T0 increase the number of rules by 300% but KP
only increased it in 10%. For square-center, T0 increased the number of rules by near
10000% but K(P ) increased them by 1000%.

The empirical results of tables 8.4 and 8.5 are over instances taken from the Conformant-
ff distribution, from the ipc-2006 (Bonet and Givan, 2006), and some presented in
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T0 KP Conformant-ff
problem time len time len time len

bomb-100-60 5,6 140 4,54 140 9,38 140
bomb-50-50 1,11 50 0,96 50 0,1 50

square-center-4 0,05 8 0,05 8 0,01 12
square-center-8 0,07 26 0,05 0 70,63 50
square-center-12 0,1 32 0,07 32 > 2h
square-center-64 10,68 188 1,66 188 > 2h
square-center-120 > 1.8GB 13,23 356 > 1.8GB

corners-square-4-16 0,2 86 fail 13,13 140
corners-square-4-20 0,51 128 fail 73,73 214
corners-square-4-24 1,13 178 fail 320,9 304
corners-square-4-64 267,3 1118 fail > 2h

log-3-10-10 3,42 109 2,67 109 4,67 108
log-4-10-10 6,52 125 3,07 125 4,36 121

ring-4 0,09 13 fail 1,37 26
ring-5 0,1 17 fail 27,35 45

safe-100 0,18 100 0,26 100 1252,3 100
safe-50 0,09 50 0,09 50 29,37 50
safe-70 0,11 70 0,14 70 109,92 70
uts-k10 1,09 58 2,11 59 16,53 58
uts-l10 0,33 88 > 2h 1,64 59

comm-21 0,39 313 fail 10,39 269
comm-22 0,51 348 fail 17,31 299
comm-23 0,61 383 fail 27,04 329
comm-24 0,7 418 fail 37,52 359
comm-25 0,84 453 fail 56,13 389

Table 8.4: Evaluation of the planners T0, K(P ) and Conformant-ff. Plan times in seconds
and lengths over standard domains. ’fail’ means that KP problem reported unsolvable by
ff

.

Chapter 7. The experiments were run on a Linux machine running at 2.33 GHz with
8GB of RAM, with a cutoff of 2h or 1.8GB of memory. The version of T0 used for
this experiments was the reported in Palacios and Geffner (2007), and hence not the
same reported in Chapter 7, as a full reimplementation of T0 was done before the
experiments of that chapter.9

Table 8.4 shows the plan times and lengths obtained by three conformant planners on
several standard domains: T0, K(P ) (Palacios and Geffner, 2006a), and Conformant
ff (Hoffmann and Brafman, 2006). In all these domains, T0 scale up very well with
the exception of the Square-center-n family, where the task is to get to the middle
of a grid of size n × n without having any information about the initial location.
Here KP does best. Surprisingly, though, when the set of possible initial locations
is restricted to the four corners as in the Corners-Square-n family, KP produces
encodings without solutions. Conformant-ff does not appears better than KP in
any domain that KP is able to deal with, except in UTS-L10. The problems reported
in Table 8.5 are the family of grid problems introduced in Section 7.1. KP fails to

9 During the reimplementation we found out that ff action selection was sensible to the ap-
pearing order of actions in the pddl file. We crafted the new implementation of T0 to imitate the
ordering of actions generated by the old implementation. The exact match was not possible, and
new simplifications and optimizations dominate in most of those difference in favor of the new T0.
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T0 KP
Problem len len len len

dispose-12-1 17,77 709 14,02 683
dispose-12-2 39,62 811 317,42 826
dispose-12-3 > 1.8GB 2434,04 985
dispose-16-1 60,34 1357 454,91 1361
dispose-16-2 818,2 1748 4764,13 1680
dispose-16-3 > 1.8GB > 1.8GB
dispose-20-1 174,71 1926 > 1.8GB
dispose-20-2 > 1.8GB > 1.8GB
push-to-4-1 0,16 64 > 1.8GB
push-to-4-2 0,3 67 0,16 69
push-to-4-3 0,48 83 0,22 71
push-to-8-1 63,23 369 > 1.8GB
push-to-8-2 928,63 452 5,7 289
push-to-8-3 1153,16 395 10,12 291
push-to-12-1 > 2h > 1.8GB
1-dispose-4-1 0,21 140 fail
1-dispose-4-2 0,68 140 fail
1-dispose-4-3 1,82 140 fail
1-dispose-8-1 124,5 1268 fail
1-dispose-8-2 699,11 1268 fail
1-dispose-8-3 1296,02 1268 fail
1-dispose-12-1 > 2h fail

look-n-grab-4-1-1 0,31 26 fail
look-n-grab-4-2-1 1,49 26 fail
look-n-grab-4-3-1 5,12 26 fail
look-n-grab-8-1-1 45,27 212 fail
look-n-grab-8-1-2 84,04 88 fail
look-n-grab-8-2-1 > 1.8GB fail

Table 8.5: Challenging Problems over a Grid: plan times in seconds and lengths shown. ’fail’
means that ff found K(P ) problem unsolvable. Figures for Conformant-ff not included, as
it solves only 3 instances: Push-to-4-1/3.

solve two of them and perform worst in one of them. In summary, when KP is able
to solve a domain, it may outperform T0.

Discussion

In this section we proposed an alternative translation for mapping conformant prob-
lems P into classical problems K(P ) that can then be solved by a classical planner.
The translation uses literals L/t that represent that if t then L, in contrast with
the literals KL/t used by the translation KT,M (P ), presented in Chapter 6, where
t referred to the initial situation. The translation K(P ) is different from the trans-
lation KT,M (P ), but also adds to the basic translation K0(P ) a set of new literals,
new actions rules, and new deductions actions, that allow to solve a wide range of
problems even being an incomplete translation. This is apparent from the results of
the conformant track of the ipc-2008 (Bonet and Givan, 2006), where the translation
K(P ) was fed to the classical ff planner (Hoffmann and Nebel, 2001) producing a
planner, KP , that was dominated only by T0, the planner presented in Chapter 7.

The translation K(P ) ensures that KL is true when L is known to be true, but
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also uses the new literals L/X for literals L and X in the problem P , ensuring
that L/X is true when the conditional ’if X then L’ is known to be true. The
tagged literals L/X are ’produced’ by conditional effects of the form a : C ∧X → L,
translated into a : KC → L/X, and are ’consumed’ by merge actions of the form
d : L/X1, L/X2 → KL provided that X1 ∨X2 is known to hold, accounting thus for
a simple form of reasoning by cases.

The key departures from K(P ) respect to KT,M (P ) are in the syntax and semantics
of the conditionals represented by the literals L/t: syntactically, t has to be a single
literal, and semantically, the truth of L/t means that L is true if t is true at the same
time, instead of KL/t meaning that L is true if t was true in the initial situation.
Also, the translation KT,M (P ) distinguish between the atoms KL/t and K¬L/t for
guaranteeing soundness, but in this section we used instead the literals FLAG.

The simplicity of the translation and the semantics captured by the theorems of this
section not only allow us to prove the soundness of the approach, but as importantly,
to delimit its scope. In relation to natural deduction systems in the style of Ficht
(Barwise and Etchemendy, 1991), the type of disjunctive reasoning accounted for in
the translation is limited in two ways. First, while disjunctions X1 ∨ · · · ∨ Xn in
P are used to create sub-derivations by making assumptions of the form Xi, these
sub-derivations are not nested, and therefore, disjunctions are not combined. This
implies, for example, that four action rules like ai,j : Xi ∧ Yj → L for i = 1, 2 and
j = 1, 2 cannot be used to produce a plan for L given the disjunctions X1 ∨ X2

and Y1 ∨ Y2 in the initial situation. Second, the sub-derivations that arise when
making the assumptions Xi are very limited, and in particular the atoms L/Xi can
only be used for proving L but no other literal. Thus, as a result, four action rules
like a1 : X1 → L1, a2 : X2 → L2, b1 : L1 → L, and b2 : L2 → L cannot be used
to generate a plan that achieves L given the single disjunction X1 ∨ X2. These
are the two sources of incompleteness in the translation that is aimed at capturing
conformant plans that can be verified easily, by reasoning with ‘one disjunction’ at a
time. These two limitations are overcome by the translation KT,M (P ) presented in
Chapter 6. The example illustrating the first limitation will have conformant width
2 and be solvable by K2(P ), an instance of the translation KT,M (P ). For the second
limitation, the rules KC/t → KL/t allows to ’carry’ assumptions from the initial
situation.

The translation K(P ) may produce bad performance in problems where the literals
FLAGX,L are easily deleted, as the heuristic of the classical planner ff do not de-
tected some dead-ends. Any translation-based approach based on classical planning,
sat or csp, should be aware of the weakness of the underlying tools.

8.3 Non-Deterministic Actions for KT,M(P )

The translation schemes considered in the classical-planning-based part (III) are all
limited to problems with deterministic actions only. Nonetheless, as we illustrate in
this section, those schemes can be applied to non-deterministic actions as well pro-
vided suitable transformations are included. We cover these transformations briefly
as a matter of illustration only.

Consider a conformant problem P with non-deterministic action effects a : C →
oneof(S1, S2, . . . , Sm), where each Si is a set (conjunction) of literals, and the trans-
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formed problem P ′, where these effects are mapped into deterministic rules of the
form a : C, hi → Si, with the expression oneof(h1, . . . , hm) added to the initial sit-
uation of P ′. In P ′, the ’hidden’ hi variables are used for encoding the uncertainty
on the possible outcomes Si of the action a.

It is easy to show that the non-deterministic conformant problem P and the deter-
ministic conformant problem P ′ are equivalent provided that only plans for P and
P ′ are considered where the non-deterministic action a from P are executed at most
once. Namely, a correspondence exists between the conformant plans for P that use
such actions at most once with the conformant plans for P ′ that use the same actions
at most once too. On the other hand, a conformant plan for P ′ where these actions
are done many times will not necessarily represent a conformant plan for P . Indeed,
if a non-deterministically moves an agent up or right in a square grid n×n, starting
in the bottom left corner, n actions a in a row would leave the agent at either the top
left corner or the bottom right corner in P ′, and anywhere at Manhattan distance n
from the origin in P. The divergence between P and P ′, however, does not arise if
non-deterministic actions are executed at most once.

Building on this idea, a non-deterministic conformant planner can be obtained from
a deterministic conformant planner in the following way. For the non-deterministic
problem P , let P1 be the problem P ′ above, with the additional constraint that the
actions a in P1 arising from the non-deterministic actions in P can be executed at
most once. This is easily achieved by adding a precondition enabled(a) to a that
is true initially and that a sets to false. Let then P2 represent the deterministic
conformant problem where each non-deterministic action a in P is mapped into 2
deterministic actions, each executable only once, and each having its own ’hidden
fluents’ h1, . . . , hm with the oneof(h1, . . . , hm) expression in the initial situation.
Similarly, let Pi be the deterministic problem that results from encoding each non-
deterministic action in P with i deterministic ’copies’.

From this encoding, a simple iterative conformant planner for non-deterministic prob-
lems P can be defined in terms of a conformant planner for deterministic problems
by invoking the latter upon P1, P2, P3, and so on, until a solution is reported. The
reported solution uses each copy of a ’non-deterministic action’ at most once, and
thus encodes a solution to the original problem.

We have implemented this strategy on top of T0 with an additional refinement that
takes advantage of the nature of the KT,M translation, where assumptions about
the initial situation are maintained explicitly in tags.10 Basically, ’non-deterministic’
actions a in Pi are allowed to be executed more than once provided that all the literals
KL/hi that depend on a particular outcome of these actions (Si) are erased. This
is implemented by means of an additional reset(a) action in Pi whose unconditional
effect is enabled(a) (i.e., the action a can then be done again) and whose conditional
effects are ¬KL → ¬KL/hi and KL → KL/hi for i = 1, . . . ,m. Namely, literals
KL/hi where the truth of L depends on a particular non-deterministic outcome (Si)
are erased, except when L is true with no assumptions; i.e. when KL is true. Then
non-deterministic actions a can be executed more than once in a plan provided that
each occurrence of a, except for the first one, is preceded by a reset(a) action.

Table 8.6 compares the resulting non-deterministic planner with mbp and kacmbp on

10The non-dermististic extension is integrated into T0, part of the conformant planner ’Translator’
available at http://www.ldc.usb.ve/~hlp/software.

http://www.ldc.usb.ve/~hlp/software
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T0 mbp kacmbp
Problem time len time len time len

sgripper-10 1,4 48 > 2h 0,6 68
sgripper-20 16,7 93 > 2h 5,4 148
sgripper-30 90 138 – 23,3 228
btuc-100 2,9 200 > 2h 2 200
btuc-150 9,2 300 > 2h 7,9 300
btuc-200 23 400 – 16,9 400
btuc-250 44,6 500 – 33,2 500
btuc-300 82 600 – 62,1 600

bmtuc-10-10 0,1 20 65,9 29 0,2 20
bmtuc-20-10 0,1 40 > 2h 0,6 40
bmtuc-20-20 0,3 40 > 2h 2,2 40
bmtuc-50-10 0,9 100 – 3,6 100
bmtuc-50-50 3,3 100 – 2722,4 100
bmtuc-100-10 4,9 200 – 25,1 200
bmtuc-100-50 14,9 200 – > 2h
bmtuc-100-100 30,2 200 – > 2h
nondet-ring-5 18,3 19 0 18 0,1 32
nondet-ring-10 > 2h 2,1 38 0,5 112
nondet-ring-15 > 2h 1298,9 58 2,4 242
nondet-ring-20 – > 2h 7,3 422
nondet-ring-50 – – 603,1 2552

nondet-ring-1key-5 > 2h 0,1 33 0,2 42
nondet-ring-1key-10 > 2.1GB 11,2 122 4 197
nondet-ring-1key-15 – 5164,4 87 33,7 375
nondet-ring-1key-20 – > 2.1GB 246,5 1104
nondet-ring-1key-25 – – 1417,5 2043
nondet-ring-1key-30 – – > 2h

Table 8.6: Non-deterministic problems. All problems except sgripper are from mbp and
kacmbp. These problems were modified to render a simple translation into PDDL; in par-
ticular, complex preconditions were moved in as conditions. Times reported in seconds and
rounded to the closest decimal. ’–’ means time or memory out for smaller instances.

a number of non-deterministic problems considered in the mbp and kacmbp papers.
We have just added an additional domain, Slippery Gripper (sgripper), that is similar
to classical Gripper where a number of balls have to be moved from room A to B,
except that the robot cannot move from A to B directly, but has a non-deterministic
move action move(A,C,D) that moves the robot from A to either C or D. A typical
plan for moving two balls from A to B is to pick them at A, move to C or D, move
from C to B, and from D to B, finally dropping the balls at B.11

For the deterministic conformant planner (T0) used in the non-deterministic setting
we added the following modification: merges are not introduced only for precondition
and goal literals but for all literals. The reason is that in this setting it pays to remove
the uncertainty of all literals when the reset mechanism is used. Indeed, provided
with this simple change and the reset mechanism, in none of the problems we had
to move beyond P1 (a single copy of each non-deterministic action) even if in all the
domains non-deterministic actions are required many times in the plans (e.g., if there
are more than 2 balls in room A).

As it can be seen from the table, T0 does better than mbp on these collection of

11A pddl encoding of the Slippery Gripper problem can be found in appendix C.6 on page 180.
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non-deterministic domains, although not as well as kacmbp, in particular, in the
NonDet-Ring and Non-Det-Ring-1Key domains. In any case, the results obtained
with T0 on these domains are quite meaningful. In all cases where T0 failed to solved
a problem, the reason was that the classical planner (ff) got lost in the search
for plans, something that may improve with further advances in classical planning
technology.

8.4 Optimal conformant planning based on KT,M(P )

In Chapters 3 and 4, we presented algorithms for optimal conformant planning, for
both the serial and parallel setting, using a cnf-based translation. In this section
we show that the translation into classical planning presented in Chapter 6 can be
used for obtaining serial optimal conformant plans.

We start by considering classical planning with costs, extending the definition of
Chapter 1 for having a cost function c(a) that assign to any action a in the actions of
the problem O a positive integer. The cost of a classical plan π is c(π) =

∑
a∈π c(a).

A plan π has minimal cost if there is no plan π′ such that c(π′) < c(π).

For obtaining optimal conformant plans for P given a translation KT,M (P ) we use
the cost function

c(a) =
{

1 : if a is a merge action
κ : otherwise

where κ is a sufficiently large positive constant. We will assume that the integer κ is
larger than |F | · |π∗| where |π∗| is the longest optimal conformant plan of the problem
P , and |F | denotes the number of fluents of P . Remember that merge actions allow
to obtain KL literals given a set of literals KL/t where

∨
t is a valid disjunction in

the initial situation. By removing the merges of a minimal cost plan π for KT,M (P )
we obtain a plan π′ for P , and we will prove that π′ is an optimal conformant plan
for P . However, notice that there may be many optimal conformant plans. Consider
two of them π′ and π′2, both with the same number of actions, but observe that the
cost of the smaller corresponding classical plans π and π2 may be different as they
may require different number of merge actions. Thus, an optimal conformant plan
may not produce a minimal cost classical plan, but an optimal classical plan does
translate into an optimal conformant plan.

Theorem 8.3. If π is a minimal cost classical plan of a covering translation KT,M (P )
of the conformant problem P , then the plan π′ that results from π by removing the
merge actions is an optimal conformant plan for P .

Proof. For a classical plan π we denote as π′ the plan obtained by dropping the
merge actions. We denote by |π′| the number of actions of the conformant plan π′

and observe that the cost of a classical plan π is c(π) = κ · |π′|+N where N is the
number of merge actions in π. Observe that any optimal plan for KT,M (P ) has at
most |F | merges after each action or before achieving the goal. Thus, c(π) is bounded
by κ · |π′|+ |F | · |π′|.

Suppose that π is a minimal cost plan of KT,M (P ) and π′ is not an optimal confor-
mant plan of P . Thus, there is another conformant plan π′2 such that |π′2| < |π′|. If
π2 is π′2 with the necessary merges for being a classical plan of KT,M (P ), we get a
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contradiction by proving that c(π2) < c(π) because π was supposed to be an minimal
cost plan for KT,M (P ).

We now prove that c(π2) < c(π), giving justification between { braces }.

c(π2)

≤
{
π2 has at most one merge for each precondition of each action, and a
merge for each goal. Having more is not optimal.

}
κ · |π′2| + |F | · |π′2|

< { κ is larger than |F | · |π| for any optimal plan π. }
κ · |π′2| + κ

= { distributivity }
κ · (|π′2| + 1)

≤ { |π′2| is strictly smaller than |π′| and both are positive integers }
κ · |π′|

< { previous observation }
c(π)

The evaluation of the effectiveness of this approach for optimal conformant planning
is left as future work.





Chapter 9

Related Work

Hablan poco los árboles, se sabe.
Pasan la vida entera meditando
y moviendo sus ramas.
Basta mirarlos en otoño
cuando se juntan en los parques:
sólo conversan los más viejos,
. . . muy poco nos llega, casi nada.

The trees speak so little, you know.
They spend their entire life meditating
and moving their branches.
Just look at them closely in autumn
as they seek each other out in public places:
only the oldest attempt some conversation,
. . . so little filters down to us, nothing really.

The Trees. Poem by Eugenio Montejo1

In this chapter we present related work. We first comment on the use of Quantified
Boolean Formulas (qbf) for solving conformant planning problems and its connec-
tion with our methods that use cnf encodings. Then, we comment on approaches
for obtaining conformant plans by incrementally building plans in one initial state
and reject those that do not work for all of them. In the third section, we look at
belief-space-based conformant planners and their relation with the approaches pre-
sented in this dissertation, where the belief states are not represented explicitly. We
review two approaches that share some similarities with our translations to classical
planning: one is a knowledge-based algorithm, commented in Section 9.4, the other is
based on the 0-approximation semantics, commented in Section 9.5 (Baral and Son,
1997). Also in Section 9.5, we comment about the relation of our classical-based
planner with CpA, winner of the conformant track of the 2008 International Plan-
ning Competition (ipc-2008), and is based on an extension of the 0-approximation
semantics. In Section 9.6, we discuss existing relations between our work and some

1English translation from “The trees: selected poems, 1967-2004”. Op. Cit.
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approaches used for conformant probabilistic planning. Finally, Section 9.7 relates
our notion of conformant width with other width definitions in AI.

9.1 QBF-based Conformant Planning and QBF solving

In this section, we relate our cnf-based approach to conformant planning with the
problem of satisfying a Quantified Boolean Formula (qbf), a quantified version of
propositional formulas. We introduce qbf, current approaches for qbf satisfiability,
and relate them to our work. We review a well known mapping from conformant
planning into qbf and describe a possible use of our methods for solving a specific
type of qbf.

Quantified Boolean Formula

A Quantified Boolean Formula (qbf) is a quantified version of a propositional for-
mula. For a propositional formula φ, a quantified boolean formula with kernel φ
is

Q0v0Q1v1 . . . Qnvnφ (9.1)

where each vi is a list of distinct variables, and each Qi is a quantifier ∀ or ∃, such
that no adjacent quantifiers Qj and Qj+1 are the same. The qbf in Equation 9.1 is
said to have n alternations. We assume that all the variables in φ are quantified, i.e.
all of them appear in some vi.

For a set of variables v, a truth-assignment of them is denote by v̂, and recall that
we denote φ | v̂ as the conditioning of φ on v̂, i.e. replacing in φ all variables vi by
true (resp. false) if vi (resp. ¬vi) appears in v̂.

qbf satisfiability is defined recursively as follows. A qbf formula ∀viφ is satisfiable
when for all the possible truth-value assignment v̂ i for the variables vi, the qbf
φ | v̂ i is satisfiable. A qbf formula ∃viφ is satisfiable when there exists a truth-value
assignment v̂ i of the variables vi such that the qbf φ | v̂ i is satisfiable. Note that
after evaluation of the inner-most quantifier, the formula is true or false, and no
variable remains.

There are two main approaches for qbf satisfiability. One uses variant of dpll (Davis
et al., 1962), a procedure for sat that recursively selects a variable and tries (splits)
both possible values, true and false, until a solution is obtained or an inconsistency
is detected through unit resolution. An inconsistency leads to backtracking and to a
search of the alternative value. However, qbf satisfiability requires all the branches
(search paths) for a variable quantified by a ∀ quantifier to be satisfiable, and one
satisfying branch for a variable quantified by a ∃ quantifier. In addition, the ordering
in which variables are considered must be compatible with the order in which they
appear in the qbf quantifier. Both constraints are necessary for such algorithm
to be sound. However, since the performance of current implementations of dpll
strongly depend on the freedom to select the next variable to split, the two previous
constraints may lead to a dramatically decreased performance.

A second approach to qbf satisfiability is to use a variant of variable elimination,
called eliminate and expand (Biere, 2005; Dechter, 2003). It is possible to eliminate
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a quantifier of a qbf using resolution between pairs of clauses, an expensive process
that motivates the use of the simpler unit resolution in dpll. Applying variable
elimination typically increases the size of the formula and may harm the scalability
of this approach.

QBF-based Conformant Planning

Rintanen (1999) solves the problem of finding a N -step conformant plan in terms of
a qbf formula of the form ∃actions ∀s0 ∃fi φ, where fi stands for the propositional
variables that corresponds to the fluents of the problem. The solution for this formula
is a truth assignment to actions variables such that, for all variables in the initial
state s0, the formula φ is satisfiable. For deterministic actions, the case considered
in this dissertation, once actions and initial variables have been set to a truth-value,
there is at most one model describing the execution of such a plan for each initial
state.

We are interested in evaluating the performance of current solvers over our qbf
formulas constructed using the cnf encoding for conformant planning presented in
Chapters 3 and 4. We add the prefix ∃actions∀s0 ∃fi to our cnf and the resulting
qbf formula can be feed into a qbf solver for deciding whether there exists a N -step
conformant plan or not. This approach represents an alternative to the compilation
of the propositional theory into d-dnnf.

Encoding conformant problems into qbf requires a special treatment concerning the
variables modeling the initial states. Otherwise, there may be assignments to ini-
tial state variables that do not correspond to possible initial states, leading to an
easily falsified qbf formula (Ansótegui et al., 2005). Following Rintanen (1999),
we introduce dummy vars for the ∀s0 part of the qbf. Some of the 2m combina-
tions of dummy literals are associated to possible initial states, but there might be
combinations that are not.

∃a1, . . . , an ∀x1, . . . , xm ∃f1, . . . , fo( TN (P ) ∧
(x1 ∧ x2 ∧ . . . xm ⊃ s1) ∧
(¬x1 ∧ x2 ∧ . . . xm ⊃ s2) ∧
(x1 ∧ ¬x2 ∧ . . . xm ⊃ s3) ∧ . . .)

(9.2)

where TN (P ) is the propositional theory of the conformant problem P for horizon
N , a1, . . . , an are the action variables, x1, . . . , xm are the dummy vars, s1, . . . are
conjunctions of literals corresponding to the possible initial states, and f1, . . . , fo are
the rest of the variables in the theory TN (P ).

The qbf of Equation 9.2 is satisfiable iff there is a truth value assignment for action
variables such that for all possible initial states, such assignment encodes a plan. For
a given truth assignment a upon action literals, any combination of dummy literals
li associated to an initial state through a formula of the form l1 ∧ l2 ∧ . . . ∧ lm ⊃ s,
encodes that if such set of dummy literals is satisfied, the set of literals s will be
satisfied too. Thus, as the truth-assignment also satisfies TN (P ), the only possible
model is the execution of the sequence of actions encoded in a starting at the initial
state encoded in s. For any other combination of dummy variables not associated to
an initial state, the kernel of the qbf will be satisfied if there is at least a plan for
some possible initial state. Thus, the qbf of Equation (9.2) ensures that for a given
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sequence of actions, the theory will be satisfiable iff the sequence conforms with all
the possible initial states.

As a useful evaluation and as a contribution to the qbf community, we generated
qbf instances using the Equation (9.2), built over the cnf formulas generated for
the model-counting and sat-based algorithms presented in Chapters 3 and 4, respec-
tively.

We submitted some of those instances to the the qbf-solver evaluation (Palacios,
2007,2008). The best performer participant on our instances in the 2008 QBFEVAL
was quantor3.0, based on the eliminate and expand method (Biere, 2008).2 The
variable elimination performed by quantor3.0 might be related to the projection
used by our sat-based algorithm. 3

In Chapter 4 we proposed an algorithm for verifying whether there is a N -time-
step conformant plan using a single call to a sat solver. The algorithm converts
the theory TN (P ) into d-dnnf and performs logical operations to obtain a new cnf
whose models are in correspondence to the conformant plans of N time steps. In
principle, the satisfiability of qbfs with prefix ∃∀∃ can be assessed by using the same
transformation to a new cnf and using a sat solver on it. This is not direct, as the
performance of our d-dnnf-based algorithms depends strongly on the strategy used
for compilation of the cnf theories, and on taking profit of the fact that the inner
variables fi of the qbf in Equation (9.2) are determined by the rest of the variables,
which is not true for general qbfs with prefix ∃∀∃.

Conformant planning without search

In principle, it is also possible to look for N -time-step plans using another strat-
egy while compiling the theory TN (P ) into d-dnnf. If we instruct the compiler to
split first over the actions variables, as we did in Section 3.5, it is possible to elimi-
nate easily the remaining ones, fluents and auxiliary literals. The resulting formula,
project[ ∆ ; Actions ], encodes all the possible conformant plans and, as such formula
remains in d-dnnf, a model can be obtained in linear time. We are, then, deciding
whether there is a N -step conformant plan with a sat call, but sat is tractable for
d-dnnf. This approach, however, does not scale up, as the compiling process with
actions on top of the d-dnnf tends to be very difficult. This maybe related with two
issues. First, the order we used for the algorithm presented in this chapter coincides
with the layer structure of the propositional planning theories (Huang, 2006). Fixing
fluents to be true, preconditions and conditions get narrowed, and once actions lit-
erals are set, their consequences get determined, making the compilation to d-dnnf
be very efficient. In fact, as far as we know, the cnf formulas in the first part of
this dissertation are the largest that has been transformed into d-dnnf. Second,
by compiling with all the actions variables on top, the resulting formula not only
allows us to obtain a plan in linear time, but also allows us to enumerate all possible
conformant plans of N time steps. An algorithm having such a huge side product is
likely to be an overkill.

2The ’Translator’ planner has an option for exporting qbf of conformant problems for a given
horizon. The software is available at http://www.ldc.usb.ve/~hlp/software.

3See for a definition of projection and how to perform it on d-dnnf formulas, starting at Sec-
tion 3.4 on page 33.

http://www.ldc.usb.ve/~hlp/software
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Indeed, the satisfiability of qbf has been shown to be polynomial for qbf with a
obdd formula as kernel, provided the obdd respects the ordering of the variables in
the qbf prefix (Coste-Marquis et al., 2005, Proposition 4). As it was mentioned in
Section 3.5, we instruct the compiler to do strict case reasoning over the initial-state
atoms. If we did the same for all the actions variables following an strict order when
compiling and forgetting the rest of the variables, the resulting formula will be in
obdd form, consistent with the fact that all d-dnnf can be converted into obdd
in polynomial time, but not the other way around (Huang and Darwiche, 2004,
2005; Darwiche and Marquis, 2002). Thus, the proposed algorithm for extracting
conformant problems without searching suggests that the tractability result for qbf
extends to some other d-dnnf formulas.

We also look for an algorithm that trades off by compiling with some actions on top,
and search on the remaining actions for a conformant plan. With all the algorithms
we tried, compiling with as many actions on top as possible leads to a huge d-
dnnf, making it very expensive to run the linear time operations and queries. A
conclusion is that even though d-dnnf operations can be quite cheap, it stops paying
off as the size of the formula increases. This means that finding good strategies
for compiling formulas, by getting good decomposition trees (dtree), is critical for
effective applications.

9.2 Using plans for a single initial state

Some conformant planning algorithms find a plan for a specific initial state and then
test if such plan conforms with the rest of the initial states. We consider now the
relation of such approaches with the algorithms of this dissertation.

C-Plan finds conformant plans with N time-steps. It does this using a cnf encoding
similar to the one used in the cnf-based part of this dissertation (Ferraris and
Giunchiglia, 2000). Given an initial state, C-Plan uses a dpll algorithm to look
for a plan. That is, it recursively attempts assign propositional variables to values
until a total consistent assignment is found. As such assignment encodes a plan that
conforms with an initial state, C-Plan uses a sat solver call to verify whether such
plan conforms also with the rest of the possible initial states. If the plan conforms,
a solution is returned. Otherwise, the dpll search continues.

The C-Plan algorithm can be related to both the branch-and-prune procedure in the
model-counting algorithm of Chapter 3, and to the sat-based algorithm of Chapter 4.
However, in both cases, partial assignments of the action literals are discarded before
they are completed. The validity criterion of the model-counting-based algorithm
discards partial plans that cannot be extended to conformant plans. Modern sat
solvers, as the used in our sat-based scheme, are able to detect inconsistencies before
assigning values to all the variables of a propositional formula.

The planner DLVk also generates a candidate plan and checks whether it is con-
formant, in a similar way to C-Plan, but uses answer set programming instead of
propositional satisfiability (Eiter et al., 2003; Lifschitz, 2008). The algorithm Frag-
plan generates a plan for an initial state, and then generates new plans by forcing
some actions to be applied that were found to be part of the solution for other ini-
tial states. By accumulating these fragments, Fragplan generates a plan conforming
with all the possible initial states (Kurien et al., 2002). In contrast, cgp generates a
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Graphplan for each possible initial state and attempts to extract a conformant plan
by considering all such planning graphs at the same time (Smith and Weld, 1998).
Fragplan and cgp work better when the set of possible initial states is small.

Let us consider the role of the plans for a possible initial state in our algorithms. Our
sat-based algorithm presented in Chapter 4 starts by producing a cnf theory TN (P )
that encodes all the possible executions of plans for each specific initial state and hori-
zon N . The algorithm then creates a cnf theory Tcf (P ) that is fed into a sat solver
and obtains a conformant plan for P if there is any. The theory Tcf (P ) is created
by logical operations that are made tractable by compiling the theory TN (P ) into
d-dnnf. However, another way of getting such theory is indeed possible. If the num-
ber m of possible initial states s0 remains bounded and actions are deterministic, the
problem of obtaining and N -step conformant plan of P can be mapped into the sat
problem over a formula very similar to Tcf (P ) =

∧
s0∈Init project[ T (P ) | s0 ; Actions ]

(Equation 4.5 on page 54 Palacios and Geffner, 2006b):

Tcf
′(P ) =

∧
s0∈Init

T s0N (P ), (9.3)

where TN (P ) is the propositional theory that encodes the problem P with horizon
N , and T s0N (P ) is T (P ) with two modifications: first, fluent literals L0 (L at time
0) are replaced by true/false iff L is true/false in the (complete) state s0, and
second, fluent literals Li, i > 0, are replaced by ’fresh’ literals Ls0i , one for each
s0 ∈ Init. A model of Tcf

′(P ) encodes a truth-assignment of the action variables,
and a truth-assignment of the execution of such actions upon each possible initial
states, each of them achieving the goal. Equation (9.3) can be thought as expressing
m “classical planning problems”, one for each possible initial state s0 ∈ Init, that
are coupled in the sense that they all share the same set of actions; namely, the action
variables are the only variables shared across the different sub-theories T s0N (P ) for
s0 ∈ Init. As we comment in Section 4.5), page 58; this approach did not scale up in
the limited test we performed. Nevertheless, the formulation is still interesting and
has an interesting relation with the rest of the work done in this dissertation.

For bounded m, the resulting class of conformant planning problems with a fixed
horizon can be mapped polynomially into SAT using the encoding Tcf

′(P ), general-
izing the SAT encoding of classical planning problems which corresponds to m = 1.
Also, for a sufficiently large horizon, this formulation is complete.

If the translation from conformant into classical KT,M (P ) of Chapter 6 is used upon
a classical plan P , the result is the same classical problem.4 KS0(P ), a complete
instance of the general translation KT,M (P ), is related with Equation (9.3). For
each literal L in the conformant problem P and each possible initial states s0, there
are two literalsKL/s0 andK¬L/s0 inKS0(P ). When an action is applied inKS0(P ),
all the literals KL/s0 are updated accordingly, and for any initial state s′0, the set
of literals KL/s′0 represents the current state assuming that the initial state was s′0.
Indeed, it can be proved than, given a sequence of actions π = {a0, . . . , an}, the
action variable Ls0t is true for the formula Tcf

′(P ) ∪ TA(π) iff KL/s0 is true after
applying the first t actions of π in KS0(P ), where TA(π) is the conjunction of literals
representing the plan π.

4Actually, for problems P with no clauses in its initial situation I, after some simplifications
done by the planner T0, the classical KT,M (P ) is equivalent to compile away negations of conditions,
by replacing rules of the form a : L1,¬L2 → L by a : KL1,K¬L2 → KL∧¬K¬L, equivalent to use
two atoms KL and K¬L for representing the literals L and ¬L (Nebel, 2000).
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However, it is possible to have more compact instances that are also complete, as
we discussed in Section 6.4, leading to exponential savings with respect to the in-
stances KS0(P ) and the Equation 9.3. Smith and Weld (1998) point to the need
of such compact representation when they comment about the limitations of the
cgp algorithm: “Although the possible worlds mechanism is conceptually clear, it
is also cumbersome. As the amount of uncertainty grows, the number of possible
worlds grows exponentially and performance deteriorates. To fix this, we would like
to confine the representation of uncertainty to only those propositions that we are
uncertain about.”

Indeed, the planner T0, presented on Chapter 7 and based on theKT,M (P ) translation
of Chapter 6, allows us to obtain polynomial translations for problems with bounded
width even if the number of possible initial states is exponential.

9.3 Belief State Conformant Planners

The most common approach to conformant planning is to search in belief-space, where
each belief-state is a set of possible plain states. The search starts at the initial belief
state consisting of the possible initial states. Applying an action on a belief state
leads to the set of possible consequences of each possible state in the current belief
state. As we discussed in Section 2.7, the two main issues for this approach are the
representation and update of the belief states, and obtaining appropriate heuristics
for guiding the search.

Most recent conformant planners such as Conformant-ff, pond, mbp, and CpA
cast conformant planning as an heuristic search problem in belief space (Bonet and
Geffner, 2000). In contrast, all algorithms presented in this dissertation do not search
explicitly on belief space. Indeed, our cnf algorithms based on cnf search on the
space of the possible plans, not representing the state explicitly, similarly to the sat-
based approach to classical planning (Kautz and Selman, 1996). In contrast, the
translations to classical planning have a clear relation to belief-state-based planners.

The general translation KT,M (P ) presented in Chapter 6 represents the current belief
state by a plain classical state with literals KL/t representing conditionals if t is
true in the initial situation, L must be true. Such translations can be far more
compact by restricting the context t to the uncertainty relevant to different goals or
preconditions. The instances KT,M (P ) can be complete even if they do not track
explicitly all interactions in belief space. The conformant relevance, as presented in
Section 6.4, works as criterion for independency, showing that some interactions can
be ignored. Such independency allows to keep track of actions effect using a cheap
representation of the possible current states. Therefore, the representation of the
problem depends not only on the initial states and the effect of actions, but also in
the precondition of actions and goals.

For example, in problems with conformant width one are easily solvable by the
planner T0 using the instance K1(P ). Belief-state planners, on the other hand, may
face symmetries that need to be overcome in order for them to be effective. Compact
representation of belief states using obdds probably help with this issue (Cimatti and
Roveri, 2000), but are not aware of the semantic of the planning problem that would
lead to a even cheaper representation. The planner CpA uses relevance analysis for
simplifying the initial situation and decomposing the goal of conformant problems.
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CFF FF in T0

Problem Nodes Time Nodes/sec Nodes Time Nodes/sec
bomb-100-1 5149 32,9 156,5 5250 0,4 12804,9

bomb-100-100 100 0,8 125 201 7,5 26,7
Safe-100 100 1747,4 0,1 102 <0,1 25500

logistics-4-10-10 356 4,4 80,5 774 0,5 1646,8
square-center-8 4634 59,3 78,1 46 <0,1 920
square-center-12 39000 >5602,5 7 72 <0,1 2400

cube-center-5 2211 8,2 269,6 74 <0,1 7400
cube-center-7 81600 >5602,5 14,6 105 <0,1 5250

blocks-01 46 <0,1 4600 47 <0,1 11750
blocks-02 1420 >5602,5 0,3 86 <0,1 4300
coins-20 1235 20,6 60 783 0,1 19575
comm-25 517 56,1 9,2 1777 0,4 4132,6
uts-k-10 58 16,5 3,5 62 0,3 182,4

dispose-8-1 1107 339,1 3,3 11713 0,8 15016,7
dispose-8-2 1797 2592,1 0,7 87030 14,3 6077,5
dispose-8-3 2494 >5602,5 0,4 580896 190,2 3054,1

look-and-grab-4-1-1 4955 >5602,5 0,9 79 0,1 790

Table 9.1: Conformant-ff over Conformant Problems vs. ff over Translations: Nodes
stand for number of nodes evaluated, Time is expressed in seconds, and Nodes/sec stands for
average number of nodes per second. Numbers shown in bold when either Conformant-ff
or ff evaluate significantly less nodes (an order-of-magnitude reduction or more). Times
preceded by ‘>’ are time outs.

Tran et al. (2009) showed that this technique has some impact on the performance
of Conformant-ff and pond.

In general, the heuristics used in belief-state conformant planning are not as effective
as the ones in classical planning. Belief-state planning may fail to generalize over
a wide range of problems. We showed in Chapter 7 that the planner T0 was quite
effective in comparison with most of such planners. It may be possible to extract
useful heuristics from a relaxation of KT,M (P ), even though it was not suitable for
obtaining a solution using a classical planner on the original KT,M (P ). This could
be either because of the size of KT,M (P ) or because of the behavior of the classical
planning heuristics. Additionally, it is possible that problems P with high conformant
width can be relaxed to problems P ′ with lower conformant width, obtaining a useful
heuristics for solving P .

As the planner T0 uses ff as underlying classical planning, it is important to consider
its relative performance with respect to Conformant-ff. We report experiments in
Table 9.1, comparing the search that results from the use of the FF planner over
the classical translations in T0, to the search carried out by Conformant-FF over the
original conformant problems. The table illustrates the problems faced by belief-
space planners mentioned in Section 2.8 on page 21. It also illustrates how the
translation to classical planning handles them: representation of the states, and
heuristics for guiding the search. The belief representation and update problem
appears in the overhead of maintaining and evaluating the beliefs. This is shown
in the number of nodes that are evaluated per second: while CFF evaluates a few
hundred nodes per second; FF evaluates several thousands. At the same time, the
heuristic used in CFF in the conformant setting, appears to be less informed than the
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heuristic used by FF over the classical translations. In domains like Square-Center-
n, Cube-Center-n, Blocks, and Look-and-Grab, FF needs orders-of-magnitude less
nodes than CFF to find a plan. The opposite is true in Dispose-n-m, where FF
evaluates many more nodes than CFF. Nonetheless, even then, due to the overhead
involved in carrying the beliefs, FF manages to solve problems that CFF cannot
solve. For example, the instance Dispose-8-3 is solved by T0 after evaluating more
than half a million nodes, but times out in CFF after evaluating less than three
thousand nodes.

Hoffmann and Brafman (2006) emphasized that Conformant-ff handles better con-
formant problems that are closer to classical planning: “our approach demonstrates
the potential to combine the strengths of FF with conformant abilities in domains
that combine classical and conformant aspects.” In Table 9.1 the problem logistics-
4-10-10 is taken from Conformant-ff distribution an reported as an enriched classical
benchmarks (Hoffmann and Brafman, 2006). Both T0 and Conformant-ff solved it
in a few hundred nodes, but T0 generated them 21 times faster than Conformant-ff.

9.4 Knowledge-based planners

A sound but incomplete approach to planning with incomplete information is intro-
duced by Petrick and Bacchus (2002), where belief states are represented as formulas.
In contrast with approaches that rely on complete representations, which can make
the search unfeasible, the authors propose to model explicitly the knowledge of the
agent, using modal logic, but restricting the language in order to ensure that the
required inference can be accomplished. The language allows to represent, for ex-
ample, when a conjunction of literals is known to be true or known to be false after
applying an action, but not in the case of a disjunction of literals. Also they support
domain depending knowledge to be added.

To summarize, in order to make belief updates efficient, several approximations are
introduced. In particular, while existing disjunctions can be carried from one belief
to the next, no new disjunctions are added. This imposes a limitation on the types
of problems that can be handled. The two other limitations of this approach are
that domains must be crafted by hand, and that no control information is derived
from the domains so that the search for plans is blind, using iterative deepening. Our
translations to classical planning in part III provide a solution to these two problems.
First, the problem is moved to the ’knowledge-level’ automatically. Second, once
moved, the problem is solved by classical planners, which are able to search with
control information derived automatically from the new representation.

9.5 0-approximation Semantics

The 0-approximation semantics, introduced by Baral and Son (1997), represents
belief states b not by sets of states but by a single 3-valued state where fluents can
be true, false, or unknown.5 In this representation, checking whether an action a

5Actually, belief states b are represented using two sets: the set of literals that are true in b, and
the set of literals that are false in b. Variables which do not appear in either set are unknown. This
representation is equivalent to a 3-value representation, that we found more convenient.
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is applicable in a belief state becomes tractable. Son and Tu (2006) introduced a
complete algorithm based on 0-approximation. The idea is to create a set of partial
states, such that a plan that conforms with all of them, would be conformant with
the original problem. The size of the set of partial states could be exponentially
smaller than the corresponding belief state. Conformant planners based on the 0-
approximation semantics use the complete extension for searching on belief space,
and need a way to guide the search for plans in the simplified belief space.

The 0-approximation semantics is very related to our translations to classical plan-
ning in chapters 5 and 6. In Proposition 5.3 on page 66, a correspondence was estab-
lished between the plans for P that are conformant according to the 0-approximation
semantics and the classical plans for the translation K0(P ). Furthermore, the latter
is an instance of the more general translation Ki(P ) that is complete for problems
with width i = 0 (see Section 6.4). Thus, the semantics of the translation K0 are
related to the 0-approximation semantics. And yet, the K0 translation delivers some-
thing more: a computational method for obtaining conformant plans that comply
with the 0-approximation semantics using a classical planner.

The 0-approximation and the basic K0 translation are too weak for dealing with the
existing benchmarks. The translations Ki extend K0 for problems of higher width by
enriching the set of fluents KL by fluents KL/t where the tags t encode assumptions
about the initial situation. The extensions of the 0-approximation semantics in the
context of conformant planning have taken a different form: switching from a single
3-valued state for representing beliefs to sets of 3-valued states, each 3-valued state
progressed efficiently and independently of the others (Son et al., 2005b). The initial
set of 3-valued states is obtained by forcing states to assign a boolean truth-value
(true or false) to a number of fluents. Crucial for this approach to work is the number
of such fluents; belief representation and update are exponential in it. The conditions
that ensure the completeness of this extension of the 0-approximation semantics can
be expressed in terms of a relevance analysis similar to the one underlying our analysis
of width in Section 6.4 on page 77 (Son and Tu, 2006): the fluents that must be set
to true or false in each initial 3-valued state are those appearing in a clause in CI(L)
for a precondition or goal literal L. In particular, if in the initial situation there
are n tautologies pi ∨ ¬pi, each relevant to a precondition or goal literal L, then the
number of initial 3-valued states required for completeness is exponential in n, as
each has to make each fluent pi true or false. The difference with our approach can
be seen when each of the tautologies pi ∨ ¬pi is relevant to a unique precondition
or goal literal Li. In such a case, the number of 3-valued or ’partial’ states required
for completeness remains exponential in n, while the resulting problem has width
1 and thus can be solved with the K1 translation that involves tags with a single
literal. In other words, while the tags used in our translation scheme encode the
local contexts required by the different literals in the problem, the initial 3-valued
states (Son and Tu, 2006) encode their possible combinations in the form of global
contexts. These global contexts correspond to the consistent combinations of such
local contexts, which may thus be exponential in number even if the problem has
bounded width.

Another difference with the 3-valued approach (Son et al., 2005b; Son and Tu, 2006)
is that the translation to classical planning not only addresses the representation of
beliefs but also the computation of conformant plans. Once a conformant problem
P is translated into a problem KT,M (P ), it can be solved by a classical planner.
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This is in contrast with the 0-approximation semantics that needs an explicit search
algorithm and convenient heuristics.

The planner CpA is based on the extensions of the 0-approximation semantics to be
complete (Son and Tu, 2006), and participated with two versions in the conformant
track of the ipc-2008, as we commented about then in Section 7.4 on page 98. Con-
sistent with this extension, CpA is a belief-space planner that represent beliefs as dnf
formulas, and use simple belief-state heuristics for guiding the search (Tran et al.,
2009). Its main weakness is the potential blow up coming from the number of terms
in the dnf formula encoding the initial belief state.

In order to reduce further the number of terms in this initial dnf formula, ’inde-
pendent’ one-of expressions are combined by CpA. For example, two independent
one-of clauses oneof(x1, x2) and oneof(y1, y2), which would give rise to 4 possi-
ble initial states and dnf terms, are combined into the single one-of expression
oneof(x1 ∧ y1, x2 ∧ y2), that results into 2 possible initial states and terms. These
one-of expressions are independent when they can be shown not to interact in the
problem. The technique appears to be related to the notion of ’critical initial states’
considered in Section 6.5, where it was shown that plans that conform with all critical
initial states must conform also with all possible initial states. However, such one-of
combination is still weak in comparison with our approach. For a given n, consider
a conformant problem as follows

Init oneof (a1, . . . , an), oneof (b1, . . . , bn)

Goal a0, b0

Actions with no preconditions, but with conditional effects
• doa1 : a1 → a0

• · · ·
• doan : an → a0

• confuse : a1 ∧ b1 → a0 ∧ b0

• dob1 : b1 → b0

• · · ·
• dobn : bn → b0

The problem has 2(n+1) atoms and 2n+1 actions. For any n, the one-of combinations
reported by Tran et al. (2009) cannot transform the initial situation into oneof (a1 ∧
b1, . . . , an∧ bn) because of the action confuse. The conformant width of this problem
is, however, one and the instance K1(P ) is able to solve it. Indeed, CpA reports n×n
partial states for this problem, while T0 creates a linear number of atoms6, that after
simplifications drops to 2(n+1), making the performance of CpA degrade much faster
than T0’s, as n grows. The same happens when the oneof in the initial situation are
replaced by clauses a1 ∨ . . . ∨ an, b1 ∨ . . . ∨ bn.

9.6 Probabilistic Planning

There are two tasks related with our work that are extensions of models used in
planning that use probabilities. One is probabilistic conformant planning, which

6For each literal li of an atom ai or bi, for 0 < i ≤ n, the following atoms are generated: Kli,
K¬li, Kli/li, Kl0/li and K¬l0/li, adding so far 2 ·5 ·n atoms. There are also the atoms Ka0, K¬a0,
Kb0 and K¬b0. To summarize, T0 generates before simplifications 10n+ 4 atoms for this problem.
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is an extension of classical planning for the case where the initial situation is a
probabilistic distribution over possible initial states, and the effects of actions are
also probabilistic (Kushmerick et al., 1995; Majercik and Littman, 1998; Hyafil and
Bacchus, 2003; Huang, 2006). A probabilistic conformant planning task is to find
a sequence of N actions with maximal probability of achieving the goal. Another
related case is probabilistic planning, where there is also a probabilistic distribution of
the possible initial states, the actions also have probabilistic effects, but the resulting
state after applying an action is totally observable (Hansen and Zilberstein, 2001;
Bonet and Geffner, 2001b). In this case the solution is represented as a policy that
maps states into actions.

In Section 8.1 we introduced an extension of our model-counting-based algorithm
for conformant planning to the probabilistic case, and relate it with a similar algo-
rithm by Huang (2006). Other algorithms for probabilistic conformant planning uses
propositional logic or constraints (Majercik and Littman, 1998; Hyafil and Bacchus,
2003). Some others are based on partial-order planning (POP) (Onder et al., 2006).
Some probabilistic planners were also able to obtain plans also for the case without
observations, as Buridan (Kushmerick et al., 1995).

A recently proposed strategy for probabilistic planning is called replanning (Yoon
et al., 2007; Little and Thiébaux, 2007). Given a simplification of the problem for
eliminating uncertainty, a classical planner is called upon it. The resulting plan is
applied as far as the real effect coincides with what is expected by the classical plan.
In case of failure, a new plan is obtained from a classical problem with the initial
situation reflecting the current one. This idea is related to our translation from
conformant into classical, but our approach obtains a solution with only one call to
a classical planner, and the guarantee of completeness.

9.7 Width and Tractability

Many AI models, as csp or sat, can be depicted as graphs, whose nodes are the
variables and whose edges represent there appearance together in a constraint or a
clause. The complexity of solving those models can be bounded by properties of
such graphs. For example, the satisfiability of a cnf formula can be decided by a
systematic scanning on its variables, and applying resolution to clauses mentioning
each variable. This algorithm, dp (Davis and Putnam, 1960), has the drawback
of potentially generating an exponential number of new clauses, but the benefit
that for some problems it may outperform the most used algorithm for sat solving:
dpll (Davis et al., 1962). Dechter and Rish (1994) proved that dp’s runtime and
space complexity depends on a property called the induced-width, that bound the
size of the largest intermediate result. Such width can be calculated from a graph
representation of the cnf formula, and depends on both the theory and the order
in which the variables are considered. Even being exponential in the worst case, dp
may solve instances of some classes of problems in polynomial time, for example for
cnf formulas consisting only of horn clauses.

The notion of width is important in the cnf-based part of this dissertation. A
key step of the proposed algorithms is to compile a propositional formula encoding
N -time-step plans into d-dnnf. Such compilation is exponential on the treewidth
of the cnf formula given a decomposition tree (dtree) that guides the compilation
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(Darwiche, 2001b). Using an argument from Huang (2006), the compilation of our
propositional theories scales up because we use an ordering that induces a dtree that
leads to a low treewidth.

The conformant width measure defined for bounding the complexity of the transla-
tions from conformant into classical planning (Section 6.4 on page 77)is different to
the treewidth notion because bounded conformant width does not translate into a
polynomial time algorithm for solving the problem. Instead, having bounded con-
formant width means that the problem can be mapped into a polynomially larger
classical problem. But classical planning is still intractable, although of a lower
complexity than general conformant planning (Turner, 2002).





Chapter 10

Conclusions

Those who plant in tears
will harvest with shouts of joy.
They weep as they go
to plant their seed,
but they sing
as they return with the harvest.

Psalm 125 (126). The Bible1

In this chapter we summarize the work presented in the dissertation and enumerate
the contributions, indicating the chapters and publications where they appeared. At
the end of the chapter we comment on current and future work.

10.1 Introduction

In this dissertation we have introduced and investigated translation-based approaches
to conformant planning. Most of the previous recent work on this topic has been
based on the search on belief space paradigm where nodes are belief states; i.e. sets
of possible states. Our work, in contrast, introduces a formulation that addresses
the problem by translating the conformant problem into other models used in arti-
ficial intelligence: propositional logic and classical planning. These translations are
exponential in the worst case but are not necessarily so, and allow us to use state-of-
the-art sat solvers, d-dnnf compilers, and classical planning tools and algorithms.

In the first part of this dissertation, we considered cnf encodings and used search
and operations over logical formulas for obtaining conformant plans. Our algorithms
used available tools for sat solving and d-dnnf compilation.

In the second part, we mapped conformant planning problems into classical prob-
lems whose solutions are the conformant plans. We have presented a variety of
translations and a structural criterion, the conformant width, and showed that a

1Taken from the Holy Bible, New Living Translation, copyright 1996, 2004. Used by permission
of Tyndale House Publishers, Inc., Wheaton, Illinois 60189. All rights reserved.
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polynomial translation called Ki is complete for problems whose width is bounded
by i. This translation allows us to solve conformant problems with bounded width
using a polynomial size transformation and off-the-shelf classical planners, even if
the number of possible initial states is exponential. The translation K1 is the base
of our conformant planner T0 that was the winner of the Conformant track of the
2006 International Planning Competition (ipc-2006).

10.2 Contributions

In this section we outline the main contributions of the dissertation, referring to the
appropriate chapters and publications where they originally appeared:

1. An algorithm for finding conformant plans ofN time steps based on an encoding
the problem in cnf, a compilation to d-dnnf, and a dpll-like search in the
space of possible plans. To prune partial plans that cannot be extended to
conform with all possible initial states, the algorithm uses model counting and
projection operations, that are rendered efficient by the d-dnnf compilation.
(in Chapter 3, and Palacios, Bonet, Darwiche, and Geffner, 2005).

2. An algorithm for finding conformant plans ofN time steps based on an encoding
the problem in cnf and a compilation into d-dnnf, but to produce a new cnf
formula whose satisfying assignments correspond to conformant plans. Thus,
for obtaining a conformant plan, a sat solver is called once upon the resulting
cnf formula. The projection required to obtain such formula runs in linear
time in the size of the d-dnnf representation. (in Chapter 4, and Palacios and
Geffner, 2006b).

An appealing feature of this algorithm is that it is based on two off-the-shelf
components: a d-dnnf compiler and a sat solver (Palacios and Geffner, 2006b).

3. A sound but incomplete mapping from conformant into classical planning,
called K0(P ), which allows us to solve problems using a classical planner when
the missing information is not relevant for obtaining a solution (in Chapter 5,
and Palacios and Geffner, 2006a, 2009).

4. A general sound translation scheme from conformant problems P into classical
planning problems KT,M (P ) and the conditions under which this translation is
complete, meaning that all the conformant plans of P can be obtained from the
classical planning problem KT,M (P ) (in Chapter 6, and Palacios and Geffner,
2007, 2009).

5. A characterization of the complexity of the complete KT,M (P ) translation in
terms of a structural parameter of the problem P that we call the conformant
width. The complexity of the complete translation is exponential on the con-
formant width, which for most benchmark domains turns out to be bounded.
For these domains, the complete translation is polynomial in the number of
variables of the problem (in Chapter 6, and Palacios and Geffner, 2009).

6. A polynomial translation called Ki, instance of KT,M (P ), which is complete for
problems with conformant width no greater than i (in Chapter 6, and Palacios
and Geffner, 2007, 2009).
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7. A conformant planner T0, based on the translations K1 and Kmodels, that uses
the classical planner ff and was the winner of the Conformant track of the
ipc-2006 (in Chapter 7, and Palacios and Geffner, 2009).

We have also discussed the relation between the tags t used in the literals KL/t of
the KT,M (P ) translation and the possible initial states of a conformant problem P ,
providing a novel perspective on how the incomplete information can be compiled
away for obtaining problems with no uncertainty (See Section 6.5, and Palacios and
Geffner, 2009).

10.3 The Model-based approach to AI

We have introduced novel approaches for solving conformant planning problems by
translating them into well known problems: propositional satisfiability, d-dnnf com-
pilation, and classical planning. These mappings have resulted in a variety of suc-
cessful conformant planning algorithms, in many cases outperforming state-of-the-art
planners.

These translations and algorithms exploit a number of well-defined models and
solvers. The model-based approach to artificial intelligence has produced a num-
ber of models and powerful solvers, and has received increasing attention in the
literature. To assess the impact of the work on models and algorithms in current re-
search, we show in Figure 10.1 on the following page a word cloud using the abstracts
of the Journal of Artificial Intelligence Research (JAIR) from April 2004 to April
2009. Without regard to any formal statistical meaning, larger words in Figure 10.1
like problem, model, and algorithm appear larger than others, as they appear more
frequently in JAIR abstracts.

The algorithms and systems introduced in this dissertation can take immediate ad-
vantage of future improvements in the state of the art for sat solving, d-dnnf com-
pilation and classical planning algorithms, without having to modify the code at all.
Tools performing well in future editions of the sat Competition2 or in the ipc are
likely thus to improve the performance of our planners.

10.4 Current and Future Work

We outline current and future research lines based on the work presented in the
dissertation.

Conformant planning is a particular case of contingent planning that also features
uncertainty but allows for feedback and thus leads to a different solution form. While
solutions for conformant problems are sequences of actions, solutions of contingent
problems are trees or graphs, as it is useful and in many cases necessary, to apply
different actions for different outcomes of an observation.

We have collaborated with Albore and Geffner in creating a contingent planner called
clg, that builds upon our KT,M (P ) translation. clg is an effective action selec-
tion mechanism that enables the solution of contingent problems on-line or off-line.

2http://www.satcompetition.org

http://www.satcompetition.org
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Figure 10.1: Cloud of words appearing in abstracts of the Journal of Artificial Intelligence
Research (JAIR) from April 2004 to April 2009. Some plurals were collapsed with their
respective singular versions. Articles and other less meaningful words were removed by the
software. Elaborated at www.wordle.net. See it online at http://www.wordle.net/show/
wrdl/948576/jair.org_abstract_from_2004_to_june_2009

Reaching the goal on-line avoids generating a solution for all the possible obser-
vations, dealing only with those coming from the environment, allowing to scale
to problems whose complete solution would be too big. The clg planner takes a
contingent planning problem as input, removes the observations, and feeds the re-
sulting conformant problem into our translation K1(P ) as used by the T0 conformant
planner. The resulting classical problem is modified so that it takes into account ob-
servations and the possibility that such observations rule out a possible initial state.
clg is complete for problems with contingent width 1. Such width is a measure for
bounding the size of the translation required for completeness (Albore, Palacios, and
Geffner, 2009).

We have also collaborated with Bonet and Geffner on the derivation of finite state
controllers for a class of contingent planning problems (Bonet, Palacios, and Geffner,
2009). Instead of having solutions that are trees or graphs, the form was restricted to
apply the same action when the agent is in presence of the same observation and in
the same controller state of the agent. When the agent applies an action, it possibly
changes its controller state to a new one, so that it can apply a different action in the
presence of the same observation. The solutions obtained with this restriction are like
Mealy finite-state automaton (Mealy, 1955). Automatons are very robust controllers
frequently used in robotics, but typically written by hand. Many of the obtained
controllers are able to solve problems with different size or number of objects.

Neither of these two works on contingent planning are part of this dissertation, but
represent an interesting line of work that is being explored.

The problems generated using the translation KT,M (P ) are different to most bench-
marks normally used for evaluating the performance of classical planners. The plan-
ner T0 currently uses the classical planner ff (Hoffmann and Nebel, 2001), because
it performed better than other options we tried. In the future, we plan to use more
recent and powerful planners such as lama (Richter et al., 2008), but this requires
further support for handling conditional effects. Another limitation of current clas-

http://www.wordle.net/show/wrdl/948576/jair.org_abstract_from_2004_to_june_2009
http://www.wordle.net/show/wrdl/948576/jair.org_abstract_from_2004_to_june_2009
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sical planners is that the size of the KT,M (P ) translation may be beyond the limit
of most planner parsers. We considered the possibility of not generating grounded
pddls but using predicates to have a smaller theory. The drawback of this approach
is that many simplifications done by the planner T0 cannot be applied.
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Appendix A

Proofs of the K0(P ) and KT,M (P )
translations

In this appendix we proof formal results of Chapter 6 and also of basic translation
K0(P ) in Section 5.2. We proof assuming consistency of the resulting classical prob-
lems, and in Chapter B we prove that given a consistency conformant problem P ,
the resulting classical translation KT,M (P ) is also consistent.

P below stands for a conformant planning problem P = 〈F, I,O,G〉 and KT,M (P ) =
〈F ′, I ′, O′, G′〉 for its translation. Propositions and theorems in chapters 5 and 6
appear in this appendix with the same numbers; while new lemmas and propositions
have numbers preceded by the letters A and B (for Appendix A and B). The con-
formant problem P and the classical problems P/s and KT,M (P ) that arise from
P are all assumed to be consistent. Consistency issues are important, and they are
addressed in more detail in the second part of this appendix where it is shown that
if P is consistent, KT,M (P ) is consistent too (Appendix B). For a consistent classical
problem P ′, the standard progression lemma applies; namely, a literal L is achieved
by an applicable action sequence π+1 = π, a, where π is an action sequence and a is
an action iff A) π achieves C for a rule a : C → L in P ′, or B) π achieves L and the
negation ¬L′ of a literal L′ in the body C ′ of each rule in P ′ of the form a : C ′ → ¬L
(see Theorem B.2 below).

Lemma A.1. Let π be an action sequence applicable in both P and K0(P ). Then if
π achieves KL in K0(P ), π achieves L in P .

Proof. By induction on the length of π. If π is empty and π achieves KL in K0(P ),
then KL must be in I ′, and hence L must be in I, so that π achieves L in P .

Likewise, if π+1 = π, a achieves KL in K0(P ) then A) there is rule a : KC → KL in
K0(P ), such that π achieves KC in K0(P ); or B) π achieves KL in K0(P ) and for
each rule a : ¬K¬C ′ → ¬KL in K0(P ), π achieves K¬L′ in K0(P ) for some L′ in
C ′.

If A) is true, then P must contain a rule a : C → L, and by inductive hypothesis, π
must achieve C in P , and therefore, π+1 = π, a must achieve L in P . If B) is true,
by inductive hypothesis, π must achieve L in P along with ¬L′ for some literal L′ in
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the body C ′ of each rule a : C ′ → ¬L, and thus π+1 = π, a must achieve L in P too.

Lemma A.2. If an action sequence π is applicable in K0(P ), then π is applicable
in P .

Proof. If π is empty, this is trivial. Likewise, if π+1 = π, a is applicable in K0(P ), π
is applicable in K0(P ), and thus by inductive hypothesis, π is applicable in P . Also
since, π, a is applicable in K0(P ), π must achieve the literals KL in K0(P ) for each
precondition L of a, but then from Lemma A.1, π must achieve the literals L for the
same preconditions in P , and thus, the sequence π+1 = π, a is applicable in P .

Proposition 5.2 (p. 65) If π is a classical plan for K0(P ), then π is a conformant
plan for P .

Proof. Direct from Lemma A.2 once we consider a problem P ′ similar to P but with
a new dummy action aG whose preconditions are the goals G of P . Then if π is a
plan for K0(P ), π, aG is applicable in K0(P ′), and by Lemma A.2, π, aG is applicable
in P ′, which implies that π is applicable in P and achieves G, and thus, that π is a
plan for P .

Proposition 5.3 (p. 66) An action sequence π is a classical plan for K0(P ) iff π is
a conformant plan for P according to the 0-approximation semantics.

Proof. Let us say that an action sequence π = a0, . . . , an is 0-applicable in P and
0-achieves a literal L in P if the belief sequence b0, . . . , bn+1 generated according to
the 0-approximation semantics is such that the preconditions of the actions ai in
π are true in bi, and the goals are true in bn+1 respectively. From the definition
of the 0-approximation semantics (and the consistency of P ), an applicable action
sequence π thus 0-achieves a literal L in P iff π is empty and L ∈ I, or π = π′, a
and A) a : C → L is an effect of P and π′ 0-achieves each literal L′ in C, or B) π′

0-achieves L and for all effects a : C ′ → ¬L in P , π′ 0-achieves ¬L′ for some L′ ∈ C ′.
These, however, are the conditions under which π achieves the literal KL in K0(P )
once ’a sequence 0-achieving a literal L in P ’ is replaced by ’a sequence achieving the
literal KL in K0(P )’. Thus, an action sequence π that is applicable in K0(P ) and
0-applicable in P achieves a literal KL in K0(P ) iff π 0-achieves the literal L in P ,
while π is applicable to K0(P ) iff it is 0-applicable to P , with the last part following
from the first using induction on the plan length.

Definition A.3. For an action a in P , define a∗ to be the action sequence where a
is followed by all merges in KT,M (P ) in arbitrary order. Similarly, if π = a0, . . . , ai
is an action sequence in P , define π∗ to be the action sequence π∗ = a∗0, . . . , a

∗
n in

KT,M (P ).

Lemma A.4. Let π be an action sequence such that π is applicable in P and π∗ is
applicable in a valid translation KT,M (P ). If π∗ achieves KL/t in KT,M (P ), then π
achieves L in P/s for all possible initial states s that satisfy t.
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Proof. For an empty π, if π∗ achieves KL/t, from the definition of KT,M (P ) and
since I |= t ⊃ L, L must be in any such s, and thus π must achieve L in P/s.

Likewise, if π+1 = π, a and t is not the empty tag, π∗+1 = π∗, a∗ achieves KL/t in
KT,M (P ) iff A) π∗ achieves KC/t in KT,M (P ) for a rule a : KC/t → KL/t in
KT,M (P ), or B) π∗ achieves KL/t, and for any rule a : ¬K¬C ′/t → ¬KL/t, π∗
achieves K¬L′/t in KT,M (P ) for some L′ in C ′ (merge actions do not delete positive
literals KL/t).

If A, by inductive hypothesis, π achieves C in P/s for each possible initial state s
that satisfies t, and hence π+1 = π, a achieves L in P/s from the rule a : C → L that
must be in P . If B, by inductive hypothesis, π achieves L and ¬L′ in P/s, for some
L′ in the body of each rule a : C ′ → ¬L in P , and thus π+1 = π, a achieves L in P/s.

For the empty tag t = ∅, a third case must be considered: a merge action
∧
t′∈mKL/t

′ →
KL in a∗ may be the cause for the action sequence π∗+1 = π∗, a∗ achieving KL in
KT,M (P ). In such a case, the sequence π∗, a, and hence π∗, a∗, must achieve KL/t′

for each (non-empty) t′ ∈ m in KT,M (P ), and hence from the inductive hypothesis
and the two cases above, the sequence π, a must achieve L in P/s for each possible
initial state s that satisfies any such t′. Yet, since the merge m is valid, all possible
initial states s must satisfy one such t′, and thus π must achieve L in P/s for all
possible initial states s, that are the initial states that satisfy t = ∅.

Lemma A.5. If π∗ is applicable in a valid translation KT,M (P ), then π is applicable
in P .

Proof. If π is empty, this is direct. For π+1 = π, a, if π∗+1 = π∗, a∗ is applicable
in KT,M (P ), then π∗ is applicable in KT,M (P ), achieving KL for each precondition
L of a, and hence from the inductive hypothesis, π is applicable in P , and from
Lemma A.4, π must achieve L for each precondition L of a, and thus π+1 = π, a is
applicable in P .

Theorem 6.4 (p. 72) The translation KT,M (P ) is sound provided that all merges in
M are valid and all tags in T are consistent.

Proof. Consider the problem P ′ that is similar to P but with a new dummy action
aG whose preconditions are the goals G of P . We have then that π∗ is a plan for
KT,M (P ) iff π∗1, a

∗
G is applicable in KT,M (P ′), which from Lemma A.5 implies that

π, aG is applicable in P ′, which means that π is a plan for P .

Lemma A.6. Let π be an action sequence such that π is applicable in P and π∗ is
applicable in KS0(P ). If π achieves L in P/s for some possible initial state s, π∗

achieves KL/s in KS0(P ).

Proof. If π is empty and π achieves L in P/s, then L ∈ s, and since I |= s ⊃ L,
KL/s must be in I ′ and thus π∗ achieves KL/s in KS0(P ).

Likewise, if π+1 = π, a achieves L in P/s then A) there is rule a : C → L such that
π achieves C in P/s; or B) π achieves L and for any rule a : C ′ → ¬L, π achieves
¬L′ in KS0(P ) for some L′ ∈ C ′.
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If A), by inductive hypothesis, π∗ achieves KC/s in KS0(P ) and, from rule a :
KC/s → KL/s, π∗, a must achieve KL/s, and thus, π∗+1 = π∗, a∗ achieves KL/s
(merges in a∗ do not delete positive literals KL/t).

If B), by inductive hypothesis, π∗ achieves KL/s and K¬L′/s in KS0(P ) for some
L′ in the body of each rule a : C ′ → ¬L in P , and therefore π∗, a achieves KL/s,
and so does π∗+1 = π∗, a∗.

Lemma A.7. If π is applicable in P , π∗ is applicable in KS0(P ).

Proof. If π is empty, this is trivial. If π+1 = π, a is applicable in P , then π must be
applicable in P and must achieve each precondition L of a in P/s for every possible
initial state s, s ∈ S0. From the inductive hypothesis, π∗ must then be applicable in
KS0(P ), and from Lemma A.6, it must achieve the literals KL/s for all s ∈ S0, and
then, the last merge action with effect

∧
s∈S0

KL/s → KL in π∗ must achieve KL,
and so does π∗, and therefore, π∗, a∗ is applicable in KS0(P ).

Theorem 6.6 (p. 76) If π is a conformant plan for P , then there is a classical plan
π′ for KS0(P ) such that π is the result of dropping the merge actions from π′.

Proof. Direct from Lemma A.7 if we consider a problem P ′ similar to P but with
a new action aG whose preconditions are the goals G of P . If π is a plan for P ,
the sequence π, aG is applicable in P ′, and from Lemma A.7, π∗, a∗G is applicable in
KS0(P ′), and thus π∗ is a plan for KS0(P ).

Definition A.8. rel(s, L) stands for the set of literals L′ in s that are relevant to L
in P :

rel(s, L) = {L′ | L′ ∈ s and L′ is relevant to L} .

Definition A.9. t∗ stands for the deductive closure of t under I:

t∗ = { L | I, t |= L} .

Theorem A.10. Let m = {t1, . . . , tn} be a covering merge for a literal L in a valid
translation KT,M (P ) for a problem P whose initial situation is in prime implicate
form. Then for each tag ti in m there must be a possible initial state s of P such
that rel(s, L) ⊆ t∗i .

Proof. Assume otherwise that each state s satisfying I makes true a literal Ls relevant
to L such that Ls 6∈ t∗i . If we then take c to be the disjunction of such literals Ls over
all the states s that satisfy I, we obtain that I entails c, which since I is in prime
implicate form, means that c contains a tautology c′ or is subsumed by a clause c′′ in
I. But, in either case, this is a contradiction, as all the literals in c′ or c′′ are relevant
to L, and hence t∗i , where ti is part of the covering merge m, must contain a literal
in either c′ or c′′, and hence in c.

Lemma A.11. Let π be an action sequence such that π is applicable in P and π∗ is
applicable in a covering translation KT,M (P ). Then, if π achieves L in P/s for some
possible initial state s and there is a tag t in T such that rel(s, L) ⊆ t∗, π∗ achieves
KL/t in KT,M (P ).
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Proof. If π is empty and π achieves L in P/s, then L is in s and thus, in rel(s, L).
Since rel(s, L) ⊆ t∗, then L ∈ t∗, and thus KL/t is in the initial situation I ′ of
KT,M (P ), and π∗ achieves KL/t in KT,M (P ). Likewise, if π+1 = π, a achieves L
in P/s, then A) there is a rule a : C → L in P such that π achieves C in P/s,
or B) π achieves L in P/s and for each rule a : C ′ → ¬L, π achieves ¬L′ in P/s
for some L′ in C ′. If A, by inductive hypothesis, π∗ achieves KC/t, and from the
support rule a : KC/t → KL/t in KT,M (P ), π∗, a must achieve KL/t in KT,M (P ),
and so must π∗+1 = π∗, a∗, as the merges in a∗ cannot delete a positive literal KL/t.
If B, by inductive hypothesis, π∗ achieves KL/t, and for each cancellation rule a :
¬K¬C ′/t→ ¬KL/t arising from the rule a : C ′ → ¬L in P , π∗ must achieve K¬L′/t
for some literal L′ ∈ C ′. This means that π∗, a, and therefore, π∗+1 = π∗, a∗, must
achieve KL/t.

Lemma A.12. Let KT,M (P ) be a covering translation of P . Then if π is applicable
in P , π∗ is applicable in KT,M (P ).

Proof. If π is empty, this is direct. Else, if π+1 = π, a is applicable in P , then π must
be applicable in P where it must achieve each literal L in Pre(a), and therefore, by
inductive hypothesis π∗ must be applicable in KT,M (P ). Then, let m = {t1, . . . , tn}
be a covering merge for L ∈ Pre(a) in KT,M (P ). From Theorem A.10, for each
ti ∈ m there must be a possible initial state s such that rel(s, L) ⊆ t∗i , and then
from Lemma A.11, π achieving L in P/s implies π∗ achieving KL/ti in KT,M (P ).
Since this is true for all ti ∈ m and π achieves L ∈ Pre(a) in P/s for all possible
initial states s, then it follows that π∗ achieves KL/ti for all ti ∈ m in KT,M (P ),
and therefore that π∗ achieves KL in KT,M (P ) as π∗ ends with a sequence of merges
that include the action merge am,L with effect

∧
ti∈mKL/ti → KL. As a result,

π∗+1 = π∗, a∗ is applicable in KT,M (P ).

Theorem 6.12 (p. 79) Covering translations KT,M (P ) are complete; i.e., if π is a
conformant plan for P , then there is a classical plan π′ for KT,M (P ) such that π is
π′ with the merge actions removed.

Proof. The theorem follows trivially from Lemma A.12 by having a problem P ′ that
is like P but with an additional, dummy action aG such that the goals G of P are
the preconditions of aG. The action sequence π is a plan for P iff the action sequence
π, aG is applicable in P ′, which due to Lemma A.12 implies that the action sequence
π∗, a∗G is applicable in KT,M (P ′) which in turn is true iff the action sequence π∗ is a
plan for KT,M (P ). The sequence π, in turn, is the sequence π∗ with all the merge
actions removed.

Theorem 6.14 (p. 80) The translation Kmodels(P ) is sound and complete.

Proof. Direct from the merges m generated by Kmodels for each precondition and
goal literals L. Clearly these merges are all valid, their tags are consistent with I,
and they cover L (the models of CI(L) all satisfy CI(L)). Thus the result follows
from Theorems 6.4 and 6.12.

Proposition 6.18 (p. 82) The width w(P ) of P can be determined in time that is
exponential in w(P ).
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Proof. If m is the number of clauses in C∗I (L), then there are at most mi sets of
clauses C in C∗I (L) such that |C| = i. Each clause in one such set must have at most
n literals, where n is the number of fluents in P , and hence, if one literal from each
clause in C is collected, we end up with at most ni sets of literals of size no greater
than i, some of which are inconsistent with I and some of which are consistent and
minimal (no other consistent set in the collection is properly included); both tests
being polynomial given that I is in prime implicate form. Thus constructing the
cover c(C) for a set of clauses C with |C| = i is exponential in i, while checking
whether one such cover satisfies CI(L) is a polynomial operation provided that I is
in prime implicate form. Indeed, if c(C) = {t1, . . . , tn}, computing the closures t∗i for
each ti ∈ c(C), when I is in PI, and testing whether each t∗i intersects each clause
in CI(L) are polynomial operations (the former reducing to checking for each literal
L′ whether I |= ¬t∗i ∨ L′). Thus for computing width(L), we generate all sets C of
clauses in C∗I (L) with |C| = i, starting with i = 0, increasing i one by one until for
one such set, c(C) satisfies CI(L). This computation is exponential in w(L), and
the computation over all preconditions and goal literals in P is exponential in w(P ).

Proposition 6.19 (p. 82) The width of P is such that 0 ≤ w(P ) ≤ n, where n is
the number of fluents whose value in the initial situation is not known.

Proof. The inequality 0 ≤ w(P ) is direct as w(L) is defined as the size |C| of the
minimal set of clauses C in C∗I (L) such that c(C) satisfies CI(L), and w(P ) = w(L) for
some precondition and goal literal L. The inequality w(P ) ≤ n follows by noticing
that for the set C of clauses given by the tautologies L′ ∨ ¬L′ in C∗I (L), c(C) must
satisfy each clause c in CI(L), as each t ∈ c(C) must assign a truth value to each
literal in c, and if inconsistent with c, it will be inconsistent with I and thus pruned
from c(C). Finally, the max number of such tautologies in C∗I (L) is the number of
fluents L′ such that neither L′ nor ¬L′ are unit clauses in I.

Theorem 6.21 (p. 83) For a fixed i, the translation Ki(P ) is sound, polynomial,
and if w(P ) ≤ i, covering and complete.

Proof. For soundness, we just need to prove that all merges m in Ki(P ) are valid
and that all tags t in Ki(P ) are consistent. The soundness follows from Theorem 6.4.
The merges m for a literal L in Ki(P ) are given by the covers c(C) of collections C of
i or less clauses in C∗i (L) and clearly since each model M of I must satisfy C∗I (L),
it must satisfy some t ∈ c(C) so that I |=

∨
t∈m t for m = c(C). At the same time,

from the definition of the cover c(C), each of these tags t must be consistent with I.

For proving that Ki is polynomial for a fixed i, we follow ideas similar to the ones
used in the proof of Proposition 6.18 above, where we have shown that the width
of P can be determined in time that is exponential in w(P ) and polynomial in the
number of clauses and fluents in P . For a fixed i, the number of sets of clauses C in
C∗I (L) with size |C| ≤ i is polynomial, and the complexity of computing the covers
c(C) for such sets, and hence, the merges m for L in Ki(P ) is polynomial too. Thus,
the whole translation Ki(P ) for a fixed i is polynomial in the number of clauses,
fluents, and rules in P .

Finally, for proving completeness, if w(P ) ≤ i, then w(L) ≤ i for each precondition
and goal literal L in P . Therefore, for each such literal L, there is a set C of clauses
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in C∗I (L) such that c(C) satisfies CI(L). The translation Ki(P ) will then generate a
unique merge for L that covers L. Since Ki(P ) is a valid translation, this means that
Ki(P ) is a covering translation, that is then complete, by virtue of Theorem 6.12.

Lemma A.13. If L′ is relevant to L and rel(s, L) ⊆ rel(s′, L), then rel(s, L′) ⊆
rel(s′, L′).

Proof. If L′′ is in rel(s, L′), then L′′ is relevant to L′, and since L′ is relevant to L
and the relevance relation is transitive, L′′ is relevant to L. Thus, L′′ is in rel(s, L)
and therefore, since rel(s, L) ⊆ rel(s′, L), L′′ is in rel(s′, L). But then L′′ is in s′ and
since it is relevant to L′, L′′ is in rel(s′, L′).

Proposition 6.23 (p. 87) Let s and s′ be two states and let π be an action sequence
applicable in the classical problems P/s and P/s′. Then if π achieves a literal L in
P/s′ and rel(s′, L) ⊆ rel(s, L), π achieves the literal L in P/s.

Proof. By induction on the length of π. If π is empty, and π achieves a literal L
in P/s′, L must be in s′, and since L is relevant to itself, L ∈ rel(s′, L). Then as
rel(s′, L) ⊆ rel(s, L), L must be in s, and thus π achieves L in P/s.

Likewise, if π+1 = π, a achieves L in P/s′ then A) there is rule a : C → L such that
π achieves C in P/s′; or B) π achieves L in P/s′ and for any rule a : C ′ → ¬L, π
achieves ¬L′ in P/s′ for some L′ ∈ C ′.

If A, π must achieve each literal Li ∈ C in P/s′. Since Li is relevant to L and
rel(s′, L) ⊆ rel(s, L), by Lemma A.13, rel(s′, Li) ⊆ rel(s, Li). Then, by inductive
hypothesis, the plan π must achieve Li in P/s for each Li ∈ C, and thus π+1 = π, a
must achieve L in P/s

If B, since each such ¬L′ is relevant to L (as L′ is relevant to ¬L), and rel(s′, L) ⊆
rel(s, L), by Lemma A.13, rel(s′,¬L′) ⊆ rel(s,¬L′), and thus by inductive hypoth-
esis, π must achieve ¬L′ in P/s and also L, so that π+1 = π, a must achieve L in
P/s.

Lemma A.14. If S and S′ are two collection of states such that for every state s in
S and every precondition and goal literal L in P , there is a state s′ in S′ such that
rel(s′, L) ⊆ rel(s, L), then if π is applicable in P/S′, π is applicable in P/S.

Proof. By induction on the length of π. If π is empty, it is obvious. If π+1 = π, a is
applicable in P/S′, then π is applicable in P/S′ and, by inductive hypothesis, π is
applicable in P/S. We need to prove that π achieves the preconditions of action a
in P/S.

For any L ∈ Prec(a) and any s ∈ S, from the hypothesis, there is a state s′ ∈ S′ such
that rel(s′, L) ⊆ rel(s, L). From Proposition 6.23, and since π achieves L in P/s′,
π must achieve L in P/s. Since the argument applies to any s ∈ S, π achieves L in
P/S, and thus π+1 = π, a must be applicable in P/S.

Proposition 6.24 (p. 87) If S and S′ are two collections of states such that for
every state s in S and every precondition and goal literal L in P , there is a state s′

in S′ such that rel(s′, L) ⊆ rel(s, L), then if π is a plan for P that conforms with S′,
π is a plan for P that conforms with S.
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Proof. From Lemma A.14, we consider a problem P ′ similar to P but with a new
action aG whose preconditions are the goals G of P . If π is a plan for P that conforms
with S′, then the action sequence π, aG is applicable in P ′/S′, and then from the
lemma, π, aG is applicable in P ′/S, and thus π must be a plan for P/S

Proposition 6.25 (p. 87) S′ is a basis for P if for every possible initial state s of
P and every precondition and goal literal L in P , S′ contains a state s′ such that
rel(s′, L) ⊆ rel(s, L).

Proof. Direct from Proposition 6.24, by considering S to be the set of possible initial
states of P .

Proposition 6.26 (p. 88) If the initial situation I is in prime implicate form and
m = {t1, . . . , tn} is a merge that covers a literal L in P , then the set S[ti, L] of
possible initial states s of P such that rel(s, L) ⊆ t∗i is non-empty.

Proof. Direct from Theorem A.10.

Theorem 6.27 (p. 88) Let KT,M (P ) be a covering translation and let S′ stand for
the collection of states s[ti, L] where L is a precondition or goal literal of P and ti is
a tag in a merge m that covers L. Then S′ is a basis for P .

Proof. We show that for every possible initial state s and any precondition and goal
literal L, S′ in the theorem contains a state s′ such that rel(s′, L) ⊆ rel(s, L). The
result then follows from Proposition 6.25. Indeed, any such state s must satisfy a tag
ti in a covering merge m = {t1, . . . , tn} for L, as these merges are valid. But from
Theorem A.10, there must be a possible initial state s′ such that rel(s′, L) ⊆ t∗i , and
therefore, rel(s′, L) ⊆ rel(s, L) as s must satisfy t∗i and possibly other literals L′ that
are relevant to L.

Theorem 6.28 (p. 88) If P is a conformant planning problem with bounded width,
then P admits a basis of polynomial size.

Proof. If w(P ) ≤ i for a fixed i, Ki(P ) is a covering translation with a polynomial
number of merges and tags, and in such case, the basis S′ for P defined by Theo-
rem 6.27 contains a polynomial number of states, regardless of the number of possible
initial states.
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Consistency of the KT,M (P )
translation

We have been assuming throughout chapters 5 and 6 appear that the conformant
planning problems P and their translations KT,M (P ) are consistent. In this section
we make this notion precise, explain why it is needed, and prove that KT,M (P ) is
consistent if P is. For the proof, we take into account that the heads KL of the
merge actions am,L in KT,M (P ), are extended with the literals K¬L′ for the literals
L′ that are mutex with L in P (see Definition 6.1).

We start at the beginning assuming that states are not truth-assignments but sets of
literals over the fluents of the language. A state is complete if for every literal L, L
or ¬L is in s, and consistent if for no literal both L and ¬L are in s. Complete and
consistent states represent truth-assignments over the fluents F and the consistency
of P and of the translation KT,M (P ) ensures that all applicable action sequences π
map complete and consistent states s into complete and consistent states s′. Once
this is guaranteed, complete and consistent states can be referred to simply as states
which is what we have done in chapters 5 and 6 and in the proofs in appendix A.

Given a complete state s and an action a applicable in s, the next state sa is

sa = (s \Del(a, s)) ∪Add(a, s)

where
Add(a, s) = {L | a : C → L in P and C ⊆ s}

and
Del(a, s) = {¬L |L ∈ Add(a, s)} .

It follows from this that sa is a complete state if s is a complete state, as the action
a only ’deletes’ a literal L in s if ¬L is added by a in s. On the other hand, s may be
consistent and sa inconsistent, as for example, when there are rules a : C → L and
a : C ′ → ¬L such that both C and C ′ are in s. In order to exclude this possibility,
ensuring that all reachable states are complete and consistent, and thus represent
genuine truth assignments over the fluents in F , a consistency condition on P is
needed:
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Definition B.1 (Consistency). A classical or conformant problem P = 〈F, I,O,G〉
is consistent if the initial situation I is logically consistent and every pair of comple-
mentary literals L and ¬L is mutex in P .

In a consistent classical problem P , all the reachable states are complete and con-
sistent, and the standard progression lemma used in the preceding proofs holds:

Theorem B.2 (Progression). An action sequence π+1 = π, a applicable in the com-
plete and consistent state s achieves a literal L in a consistent classical problem P
iff A) π achieves the body C of a rule a : C → L in P , or B) π achieves L and for
every rule a : C ′ → ¬L, π achieves ¬L′ for a literal L′ in C ′.

We will see below that if a conformant problem P is consistent in this sense, so will
be any valid translation KT,M (P ). We have tested all the benchmarks considered in
chapters 5 and 6 for consistency and found all of them to be consistent except for
two domains:1-Dispose and Look-and-Grab. In these cases, since the consistency of
the classical problem KT,M (P ) cannot be inferred from the consistency of P , it can
be checked explicitly using Definition B.1, or similarly, the plans that are obtained
from KT,M (P ) can be checked for consistency as indicated in Section 7.1 on page 89:
the soundness of these plans is ensured provided that they never trigger conflicting
effects KL/t and ¬KL/t.1

Proof. The proof of Theorem B.2 does not rest on a particular definition of mutexes,
just that mutex atoms are not both true in a reachable state. In a consistent problem
P , an applicable action sequence π maps s into a complete and consistent state s′

that represents a truth assignment. Then, the action sequence π+1 = π, a achieves L
iff C) L ∈ Add(a, s′) or D) L ∈ s′ and ¬L 6∈ Del(a, s′). Condition A in the theorem,
however, is equivalent to C, and Condition B in the theorem, is equivalent to D.
Indeed, L 6∈ Del(a, s′) iff for each rule a : C ′ → ¬L there is a literal L′ ∈ C ′ such
that L′ 6∈ s′, which, given that s′ is complete and consistent, is true iff ¬L′ ∈ s′ (this
is precisely where consistency is needed; else ¬L′ ∈ s′ would not imply L′ 6∈ s′).

The notion of mutex used in the definition of consistency expresses a guarantee
that a pair of literals is not true in a reachable state. Sufficient and polynomial
conditions for mutual exclusivity and other type of invariants have been defined in
various papers, here we follow the definition by Bonet and Geffner (1999).

Definition B.3 (Mutex Set). A mutex set is a collection R of unordered literals
pairs (L,L′) over a classical or conformant problem P such that:

1. for no pair (L,L′) in R, both L and L′ are in a possible initial state s,

2. if a : C → L and a : C ′ → L′ are two rules for the same action where (L,L′)
is a pair in R, then Pre(a) ∪ C ∪ C ′ is mutex in R, and

3. if a : C → L is a rule in P for a literal L in a pair (L,L′) in R, then either
a) L′ = ¬L, b) Pre(a) ∪C is mutex with L′ in R, or c) Pre(a) ∪C implies C ′

in R for a rule a : C ′ → ¬L′ in P ;

1The consistency of the two domains, 1-Dispose and Look-and-Grab, can be established however
if a definition of mutexes slightly stronger than the one below is used. It actually suffices to change
the expression Pre(a) ∪ C in clause 3c) of the definition of mutex sets below by Pre(a) ∪ C ∪ {L′}.
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In this definition, a pair is said to be mutex in R if it belongs to R, a set of literals
S is said to be mutex in R if S contains a pair in R, and a set of literals S is said
to imply a set of literals S′ in R when S is mutex in R with the complement ¬L of
each literal L in S′ \ S.

It easy to verify that if R1 and R2 are mutex sets, their union R1 ∪ R2 is a mutex
set, and thus that there is a maximal mutex set for P that we denote as R∗. The
pairs in R∗ are just called mutexes.

For simplicity and without loss of generality, we will assume that preconditions Pre(a)
are empty. Indeed, it is simple to show that the mutexes of a problem P remain the
same if preconditions are pushed in as conditions. We also assume that no condition
C in a rule C → L in P is mutex, as these rules can be simply pruned. In addition,
we assume that no literal L is mutex with a pair of complementary literals L′ and
¬L′, as then L cannot be true in a reachable state, and thus, can be pruned as well.

The definition of mutexes is sound, meaning that no pair in a mutex set can be true
in a reachable state:

Theorem B.4. If (L,L′) is a pair in a mutex set R of a classical or conformant
problem P , then for no reachable state s in P , {L,L′} ⊆ s.

Proof. We proceed inductively. Clearly, L and L′ cannot be part of a possible initial
state, as this is ruled out by the definition of mutex sets. Thus, let us assume as
inductive hypothesis that L and L′ are not part of any state s reachable in less than i
steps, and let us prove that the same is true for the states s′ = sa that are reachable
from s in one step. Clearly if L and L′ belong to s′, then either A) both L and
L′ belong to Add(a, s), or B) L belongs to Add(a, s) and L′ belongs to s but not to
Del(a, s). We show that this is not possible. For A, P must comprise rules a : C → L
and a : C ′ → L′ such that C ∪ C ′ ⊆ s, yet from the definition of mutex sets, C ∪ C ′
must be mutex, and from the inductive hypothesis then C ∪ C ′ 6⊆ s. For B, there
must be a rule a : C → L with C ⊆ s, but then from L′ ∈ s and the inductive
hypothesis, it follows that L′ is not mutex with C in R, and thus, from the mutex
set definition, that either L′ = ¬L or C implies C ′ for a rule a : C ′ → ¬L′. In the
first case, however, due to the rule a : C → L and C ⊆ s, L′ ∈ Del(a, s), while in
the second case, from the completeness of all reachable states, we must have C ′ ⊆ s,
and hence L′ ∈ Del(a, s), contradicting B in both cases.

Provided that the initial situation I of a conformant planning problem P is in prime
implicate form, computing the largest mutex set R∗ and testing the consistency of
P are polynomial time operations. For the former, one starts with the set of literal
pairs and then iteratively drops from this set the pairs that do not comply with the
definition until reaching a fixed point (Bonet and Geffner, 1999).

We move on now to prove that if a conformant problem P is consistent, so is a valid
translation KT,M (P ). The consistency of the classical problems P/s for possible
initial states s is direct, as the set of mutexes in P is a subset of the set of mutexes
in P/s where the initial situation is more constrained.

Proposition B.5 (Mutex Set RT ). For a valid translation KT,M (P ) of a consis-
tent conformant problem P , define RT to be the set of (unordered) literals pairs
(KL/t,KL′/t′) and (KL/t,¬K¬L′/t) where (L,L′) is a mutex in P , and t and t′
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are two tags jointly satisfiable with I (I 6|= ¬(t ∪ t′)). Then RT is a mutex set in
KT,M (P ).

It follows from this that KT,M (P ) is consistent if P is consistent, as then L′ = ¬L is
mutex with L in P , and so (KL/t,¬KL/t) must be a mutex in RT .

Theorem B.6 (Consistency KT,M (P )). A valid translation KT,M (P ) is consistent
if P is consistent.

The consistency of the translation K0(P ) follows as a special case, as K0(P ) is
KT,M (P ) with an empty set of merges M and a set of tags T containing only the
empty tag. We are left to prove Proposition B.5.

Proof of Proposition B.5. We must show that the set RT comprised of the pairs
(KL/t,KL′/t′) and (KL/t,¬K¬L′/t) for L′ mutex with L in P , and tags t and t′

jointly satisfiable with I, is a set that complies with clauses 1, 2, and 3 of Defini-
tion B.3. We go one clause at a time.

1. No pair in RT can be true initially in KT,M (P ) = 〈F ′, I ′, O′, G′〉 for jointly
satisfiable I, t, and t′. Indeed, if both KL/t and KL′/t′ are in I ′ there must be a
possible initial state satisfying t and t′ where L and L′ are true in contradiction
with L and L′ being mutex in P . Similarly, if KL/t is in I ′ but K¬L′/t not, it
must be the case that I |= t ⊃ L and I 6|= t ⊃ ¬L′, so that there must be some
possible initial state of P where t, L, and L′ hold, a contradiction with L and
L′ being mutex in P too.

2. If there is an action a with rules for KL/t and KL′/t′ then the rules must be
support rules of the form a : KC/t → KL/t and a : KC ′/t′ → KL′/t′ arising
from rules a : C → L and a : C ′ → L′ in P .2 Then since L and L′ are mutex
in P , C and C ′ must contain literals L1 ∈ C and L2 ∈ C ′ such that (L1, L2)
is a mutex in P , and hence (KL1/t,KL2/t

′) belongs to RT , so that KC/t and
KC ′/t′ are mutex in RT as well.

Similarly, if there is an action with rules for KL/t and ¬K¬L′/t for a literal L′

mutex with L in P , the rules must be support and cancellation rules of the form
a : KC/t → KL/t a : ¬K¬C ′/t → ¬K¬L′/t, arising from rules a : C → L
and a : C ′ → L′ in P . Since L and L′ are mutex in P , C and C ′ must contain
literals L1 ∈ C and L2 ∈ C ′ that are mutex in P , and hence RT must contain
the pair (KL1/t,¬K¬L2/t), so that KC/t and ¬K¬C ′/t must be mutex in
RT .

3. We are left to show that the set RT given by the pairs (KL/t,KL′/t′) and
(KL/t,¬K¬L′/t) complies with clause 3 in the definition of mutex sets as well.
Consider the first class of pairs (KL/t,KL′/t′) and a rule a : KC/t→ KL/t for
KL/t arising from a rule a : C → L in P . Since L is mutex with L′ in P , then
one of the conditions 3a, 3b, or 3c must hold for the rule a : C → L and L′. If
3a, then L′ = ¬L, and KC/t must imply the body ¬K¬C/t′ of the cancellation

2The action a cannot be a merge for a literal L′′ mutex with both ¬L and ¬L′, as in such case,
L′′ implies that L and L′ that are mutex. Similarly, a cannot be a merge for L as in such a case, L
will be mutex with both L′ and ¬L′. For the same reason, a cannot be a merge for L′ either. Thus,
the action a above cannot be a merge and must be an action from P .
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rule a : ¬K¬C/t′ → ¬K¬L/t′, as for each literal L1 in C, RT must contain the
pair (KL1/t,K¬L1/t

′) so that KL1/t implies ¬K¬L1/t
′, and KC/t implies

¬K¬C/t′ (case 3c). If 3b, then C and L′ are mutex in P , and thus C contains
a literal L1 mutex with L′ in P . This means that the pair (KL1/t,KL

′/t′) is
in RT and hence that KC/t is mutex with KL′/t′ in RT (case 3b). Last, if
3c, C implies C ′ in P for a rule a : C ′ → ¬L′, but then KC/t must imply the
body ¬K¬C ′/t′ of the cancellation rule a : ¬K¬C ′/t′ → ¬KL′/t′. Indeed, for
each literal L1 in both C and C ′, we had above that KL1/t implies ¬K¬L1/t

′,
while if L2 is a literal in C ′ but not in C, then some literal L3 ∈ C must be
mutex with ¬L2 in P , and hence the pair (KL3/t,K¬L2/t

′) must be in RT
and KL3/t implies then ¬K¬L2/t

′ (case 3c)

Consider now the same pair (KL/t,KL′/t′) along with a merge action am,L
with a rule

∧
ti∈mKL/ti → KL for KL/t = KL (thus t is the empty tag). In

this case, since the merge m is valid and t′ is consistent, there must be some
ti ∈ m such that ti and t′ are jointly consistent with I. It follows then that
(KL/ti,KL′/t′) is a pair in RT and thus that the body of the merge is mutex
with KL′/t′ in RT (case 3b).

There is no need to consider the pair (KL/t,KL′/t′) along with the rules for
KL′/t′, as the literals KL/t and KL′/t′ have the same structure, and thus the
same argument above applies, replacing t with t′ and L with L′.

We switch now to the second class of pairs (KL/t,¬K/¬L′/t) and the rules
a : KC/t→ KL/t forKL/t. Since L and L′ are mutex in P , then conditions 3a,
3b, or 3c must hold. If a, then L′ = ¬L, and in such a case, condition 3c holds
in KT,M (P ) as KC/t implies the body KC/t of the rule a : KC/t → K¬L′
(¬L′ = L). If b, C is mutex with L′, and thus there is a literal L1 in C such
that L1 and L′ are mutex in P , and therefore KC/t and KL′/t are mutex in
RT (case 3b). Finally, if c, C implies C ′ for a rule a : C ′ → ¬L′ in P , then
KC/t must imply KC ′/t in RT for a rule a : KC ′/t→ K¬L′/t (case 3c).

For the empty tag t, the rule for KL/t may also be a merge, but then due to
the extra effects K¬L′ in the merge action for L, the merge for KL is also a
merge for K¬L′, and then case 3c holds.

Last, for the same class of pairs, the only rules for ¬K¬L′/t are cancellation
rules of the form a : ¬K¬C ′′/t→ ¬K¬L′/t for a rule a : C ′′ → L′ in P . Since
L′ is mutex with L in P , then conditions 3a, 3b, or 3c must hold for the rule
a : C ′′ → L′ and L′ in P . If a, then L = ¬L′, and the cancellation rule is then
a : ¬K¬C ′′/t → ¬KL (case 3c). If b, C ′′ is mutex with L, and thus there
is a literal L2 in C ′′ such that (L2, L) is a mutex in P , and therefore KL/t
implies K¬L2/t in RT , and hence ¬K¬L2/t and ¬K¬C ′′/t imply ¬KL/t in
RT (case 3b). Finally, if c, C ′′ implies C ′ for a rule a : C ′ → ¬L in P , and
then ¬K¬C ′′/t must imply ¬K¬C ′/t for a rule a : ¬K¬C ′/t→ ¬KL/t in RT .
Indeed, if LA implies LB in P , ¬LB implies ¬LA in P , and K¬LB/t implies
K¬LA/t in RT , and ¬K¬LA/t implies ¬K¬LB/t.





Appendix C

PDDLs of some Conformant
Problems

C.1 Sort-2-n

This is the pddl encoding for n = 3 of the reformulation of the Sortnet-n problem
called Sort-2-n, explained in Section 6.4 on page 83.

(define (problem sort-2-3-p)
(:domain sort-2-3)
(:init (and

(or (less n1 n2) (not (less n1 n2)))
(or (less n1 n3) (not (less n1 n3)))
(or (less n2 n1) (not (less n2 n1)))
(or (less n2 n3) (not (less n2 n3)))
(or (less n3 n1) (not (less n3 n1)))
(or (less n3 n2) (not (less n3 n2)))

))
(:goal (and

(less n1 n2)
(less n2 n3)

))
)
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(define (domain sort-2-3)
(:requirements :typing :conditional-effects)
(:types num)
(:constants n1 n2 n3 - num)
(:predicates (less ?n1 ?n2 - num))

(:action cmpswap-1-2
:effect (and (less n1 n2) (not (less n2 n1))

(when (less n3 n1)
(and (less n3 n2) (not (less n2 n3))))

(when (and (less n3 n1) (not (less n3 n2)))
(not (less n3 n1)))

(when (less n2 n3)
(and (less n1 n3) (not (less n3 n1))))

(when (and (less n2 n3) (not (less n1 n3)))
(not (less n2 n3)))

))

(:action cmpswap-1-3
:effect (and (less n1 n3) (not (less n3 n1))

(when (less n2 n1)
(and (less n2 n3) (not (less n3 n2))))

(when (and (less n2 n1) (not (less n2 n3)))
(not (less n2 n1)))

(when (less n3 n2)
(and (less n1 n2) (not (less n2 n1))))

(when (and (less n3 n2) (not (less n1 n2)))
(not (less n3 n2)))

))

(:action cmpswap-2-3
:effect (and (less n2 n3) (not (less n3 n2))

(when (less n1 n2)
(and (less n1 n3) (not (less n3 n1))))

(when (and (less n1 n2) (not (less n1 n3)))
(not (less n1 n2)))

(when (less n3 n1)
(and (less n2 n1) (not (less n1 n2))))

(when (and (less n3 n1) (not (less n2 n1)))
(not (less n3 n1)))

))
)
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C.2 Dispose

Excerpt of the pddl encoding of the Dispose problem presented in Section 7.2 on
page 91. This pddl corresponds to a 3× 3 grid with a object in an unknown initial
position, that should be disposed at a trash.

(define (problem dispose-3-1)
(:domain dispose)

(:objects o1 - obj
p1-1 p1-2 p1-3 p2-1 p2-2 p2-3 p3-1 p3-2 p3-3 - pos)

(:init
(and
(at p2-2)
(trash-at p1-1)

(adj p1-1 p2-1)
(adj p2-1 p1-1)

(adj p2-1 p3-1)
(adj p3-1 p2-1)

...

(adj p1-1 p1-2)
(adj p1-2 p1-1)

(adj p1-2 p1-3)
(adj p1-3 p1-2)

....

(oneof
(obj-at o1 p1-1)
(obj-at o1 p1-2)
(obj-at o1 p1-3)
(obj-at o1 p2-1)
(obj-at o1 p2-2)
(obj-at o1 p2-3)
(obj-at o1 p3-1)
(obj-at o1 p3-2)
(obj-at o1 p3-3)

)

)
)

(:goal (disposed o1)))
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(define (domain dispose)
(:requirements :typing :conditional-effects)
(:types pos obj)
(:predicates (adj ?i ?j) (at ?i) (holding ?o) (obj-at ?o ?i)

(trash-at ?x) (disposed ?o))
(:action move

:parameters (?i - pos ?j - pos)
:precondition (and (adj ?i ?j) (at ?i))
:effect (and (not (at ?i)) (at ?j)))

(:action pickup
:parameters (?o - obj ?i - pos)
:precondition (at ?i)
:effect (when (obj-at ?o ?i)

(and (holding ?o) (not (obj-at ?o ?i)))))
(:action drop

:parameters (?o - obj ?i - pos)
:precondition (and (at ?i) (trash-at ?i))
:effect (when (holding ?o)

(and (not (holding ?o)) (disposed ?o)))))
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C.3 Push To

Excerpt of the pddl encoding of the Push-to problem presented in Section 7.2 on
page 91. This pddl corresponds to a 3× 3 grid with a object in an unknown initial
position, that should be grab, but there are only two position where the pickup action
can be applied. Instead, it is possible to push an object from one cell to other.

(define (problem push-to-3-1)
(:domain push-to)

(:objects p1-1 p1-2 p1-3 p2-1 p2-2 p2-3 p3-1 p3-2 p3-3 - pos)
(:init
(and
(at p2-2)
(pick-loc p1-1) (pick-loc p3-3)

(adj p1-1 p2-1)
(adj p2-1 p1-1)

(adj p2-1 p3-1)
(adj p3-1 p2-1)

...

(adj p1-1 p1-2)
(adj p1-2 p1-1)

(adj p1-2 p1-3)
(adj p1-3 p1-2)

....

(oneof
(obj-at o1 p1-1)
(obj-at o1 p1-2)
(obj-at o1 p1-3)
(obj-at o1 p2-1)
(obj-at o1 p2-2)
(obj-at o1 p2-3)
(obj-at o1 p3-1)
(obj-at o1 p3-2)
(obj-at o1 p3-3)

)

)
)
(:goal (holding o1)))
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(define (domain push-to)
(:requirements :typing :conditional-effects)
(:types pos obj)
(:constants o1 - obj)
(:predicates (adj ?i ?j) (at ?i) (holding ?o) (obj-at ?o ?i)

(pick-loc ?i))
(:action move

:parameters (?i -pos ?j - pos)
:precondition (and (adj ?i ?j) (at ?i))
:effect (and (not (at ?i)) (at ?j)))

(:action pickup
:parameters (?o - obj ?i - pos)
:precondition (and (at ?i) (pick-loc ?i))
:effect (when (obj-at ?o ?i)

(and (holding ?o) (not (obj-at ?o ?i)))))
(:action push

:parameters (?i - pos ?j - pos)
:precondition (and (adj ?i ?j) (at ?i))
:effect (when (obj-at o1 ?i)

(and (obj-at o1 ?j) (not (obj-at o1 ?i))))
))
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C.4 1-Dispose

Excerpt of the pddl encoding of the 1-Dispose problem presented in Section 7.2 on
page 91. This pddl corresponds to a 3× 3 grid with a object in an unknown initial
position, that should be put at position (1, 1). If the agent is holding an object, and
tries to pickup, then the object get lost. Thus, a solution requires to visit each cell
of the grid, pick a possible object in it, and go to the position (1, 1) to release such
object.

(define (problem one-dispose-3-1)
(:domain one-dispose)

(:objects p1-1 p1-2 p1-3 p2-1 p2-2 p2-3 p3-1 p3-2 p3-3 - pos)
(:init
(and
(handempty)
(at p2-2)

(adj p1-1 p2-1)
(adj p2-1 p1-1)

(adj p2-1 p3-1)
(adj p3-1 p2-1)

...

(adj p1-1 p1-2)
(adj p1-2 p1-1)

(adj p1-2 p1-3)
(adj p1-3 p1-2)

....

(oneof
(obj-at o1 p1-1)
(obj-at o1 p1-2)
(obj-at o1 p1-3)
(obj-at o1 p2-1)
(obj-at o1 p2-2)
(obj-at o1 p2-3)
(obj-at o1 p3-1)
(obj-at o1 p3-2)
(obj-at o1 p3-3)

)

)
)
(:goal (obj-at o1 p1-1))

)
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(define (domain one-dispose)
(:requirements :typing :conditional-effects)
(:types pos obj)
(:constants o1 - obj)
(:predicates (adj ?i ?j) (at ?i) (holding ?o)

(obj-at ?o ?i) (handempty))
(:action move

:parameters (?i -pos ?j - pos)
:precondition (and (adj ?i ?j) (at ?i))
:effect (and (not (at ?i)) (at ?j)))

(:action pickup
:parameters (?p - pos)
:precondition (at ?p)
:effect

(and
(when (and (handempty) (obj-at o1 ?p))

(and (not (handempty)) (holding o1)
(not (obj-at o1 ?p))))

(when (holding o1)
(and (handempty) (not (holding o1))))

))
(:action putdown

:parameters (?p - pos)
:precondition (at ?p)
:effect (when (holding o1)

(and (handempty) (not (holding o1))
(obj-at o1 ?p)))))
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C.5 Look and Grab

Excerpt of the pddl encoding of the Look-and-Grab problem presented in Section 7.2
on page 91. This pddl corresponds to a 4 × 4 grid with one object in a unknown
initial position and where grab actions can pick an object in radios of one cell around
the current position of the agent. This domain can be understood as a generalization
of the 1-Dispose domain.

Figure 2.3 on page 17 depicts a solution to a 8× 8 instance, with one object, found
using the conformant planner T0, presented in Chapter 7.

(define (problem look-and-grab-4-1-1-p)
(:domain look-and-grab-4-1-1)
(:init
(and

(handempty)
(at p2-2)

(adj p1-1 p2-1)
(adj p2-1 p1-1)
....
(adj p1-4 p2-4)
(adj p2-4 p1-4)

(adj p2-1 p3-1)
(adj p3-1 p2-1)
....
(adj p3-4 p4-4)
(adj p4-4 p3-4)

(adj p1-1 p1-2)
(adj p1-2 p1-1)
....
(adj p4-3 p4-4)
(adj p4-4 p4-3)

(oneof
(obj-at o1 p1-1)
...
(obj-at o1 p1-4)
(obj-at o1 p2-1)
...
(obj-at o1 p4-4)

)
)

)
(:goal (obj-at o1 p1-1))

)
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(define (domain look-and-grab-4-1-1)
(:requirements :typing :conditional-effects)
(:types pos obj)
(:constants o1 - obj

p1-1 p1-2 p1-3 p1-4 p2-1 p2-2 p2-3 p2-4 p3-1
p3-2 p3-3 p3-4 p4-1 p4-2 p4-3 p4-4 - pos)

(:predicates (adj ?i ?j) (at ?i)
(holding ?o) (obj-at ?o ?i) (handempty))

(:action move
:parameters (?i -pos ?j - pos)
:precondition (and (adj ?i ?j) (at ?i))
:effect (and (not (at ?i)) (at ?j)))

(:action putdown
:parameters (?p - pos)
:precondition (at ?p)
:effect (when (holding o1)

(and (handempty) (not (holding o1)) (obj-at o1 ?p))))

(:action pickup-1-1-look-1
:precondition (at p1-1)
:effect (and

(when (holding o1)
(and (handempty) (not (holding o1))))

; X = 1
; Y = 1

(when (and (handempty) (obj-at o1 p1-1))
(and (not (handempty)) (holding o1)

(not (obj-at o1 p1-1))))
; Y = 2

(when (and (handempty) (obj-at o1 p1-2))
(and (not (handempty)) (holding o1)

(not (obj-at o1 p1-2))))
; X = 2

; Y = 1
(when (and (handempty) (obj-at o1 p2-1))

(and (not (handempty)) (holding o1)
(not (obj-at o1 p2-1))))

; Y = 2
(when (and (handempty) (obj-at o1 p2-2))

(and (not (handempty)) (holding o1)
(not (obj-at o1 p2-2))))

))
...
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(:action pickup-2-2-look-1
:precondition (at p2-2)
:effect (and

(when (holding o1)
(and (handempty) (not (holding o1))))

; X = 1
; Y = 1

(when (and (handempty) (obj-at o1 p1-1))
(and (not (handempty)) (holding o1)

(not (obj-at o1 p1-1))))
; Y = 2

(when (and (handempty) (obj-at o1 p1-2))
(and (not (handempty)) (holding o1)

(not (obj-at o1 p1-2))))
; Y = 3

(when (and (handempty) (obj-at o1 p1-3))
(and (not (handempty)) (holding o1)

(not (obj-at o1 p1-3))))
; X = 2

; Y = 1
(when (and (handempty) (obj-at o1 p2-1))

(and (not (handempty)) (holding o1)
(not (obj-at o1 p2-1))))

; Y = 2
(when (and (handempty) (obj-at o1 p2-2))

(and (not (handempty)) (holding o1)
(not (obj-at o1 p2-2))))

; Y = 3
(when (and (handempty) (obj-at o1 p2-3))

(and (not (handempty)) (holding o1)
(not (obj-at o1 p2-3))))

; X = 3
; Y = 1

(when (and (handempty) (obj-at o1 p3-1))
(and (not (handempty)) (holding o1)

(not (obj-at o1 p3-1))))
; Y = 2

(when (and (handempty) (obj-at o1 p3-2))
(and (not (handempty)) (holding o1)

(not (obj-at o1 p3-2))))
; Y = 3

(when (and (handempty) (obj-at o1 p3-3))
(and (not (handempty)) (holding o1)

(not (obj-at o1 p3-3))))
))
...



180 pddls of some conformant problems

C.6 Slippery Gripper

pddl encoding of the non-deterministic domain Slippery Gripper presented in ver-
sion 8.3 on page 127. This instance is for three balls.

(define (problem gripper-3)
(:domain gripper)
(:objects rooma roomb1 roomb2 roomc - room

ball1 ball2 ball3 - ball)
(:init (and

(at-robby rooma)
(free left)
(free right)
(det roomb1 roomc)
(det roomc roomb1)

(det roomb2 roomc)
(det roomc roomb2)

(non-det rooma roomb1 roomb2)

(det roomb1 rooma)
(det roomb2 rooma)

(at ball1 rooma)
(at ball2 rooma)
(at ball3 rooma)

))
(:goal (and

(at ball1 roomc)
(at ball2 roomc)
(at ball3 roomc)

))
)
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(define (domain gripper)
(:requirements :typing :conditional-effects)
(:types room ball gripper)
(:constants left right - gripper)
(:predicates (at-robby ?r - room)

(det ?r1 ?r2 - room)
(non-det ?from ?r1 ?r2 - room)
(at ?b - ball ?r - room)
(free ?g - gripper)
(carry ?o - ball ?g - gripper))

(:action move-d
:parameters (?from ?to - room)
:precondition (det ?from ?to)
:effect (when (at-robby ?from) (and (at-robby ?to)

(not (at-robby ?from)))))

(:action move-nd
:parameters (?from ?to1 ?to2 - room)
:precondition (non-det ?from ?to1 ?to2)
:effect (when (at-robby ?from)

(and (oneof (at-robby ?to1) (at-robby ?to2))
(not (at-robby ?from)))))

(:action pick
:parameters (?obj - ball ?room - room ?gripper - gripper)
:effect (when (and (at ?obj ?room) (at-robby ?room)

(free ?gripper))
(and (carry ?obj ?gripper)

(not (at ?obj ?room))
(not (free ?gripper)))))

(:action drop
:parameters (?obj - ball ?room - room ?gripper - gripper)
:effect (when (and (carry ?obj ?gripper) (at-robby ?room))

(and (at ?obj ?room)
(free ?gripper)
(not (carry ?obj ?gripper)))))

)
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