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Abstract

Room acoustics is the science concerned to study the behavior of sound waves
in enclosed rooms. The acoustic information of any room, the so-called impulse
response, is expressed in terms of the acoustic field as a function of space
and time. In general terms, it is nearly impossible to find analytical impulse
responses of real rooms. Therefore, in the recent years, the use of computers for
solving this type of problems has emerged as a proper alternative to calculate
the impulse responses.

In this Thesis we focus on the analysis of the wave-based methods in the
time-domain. More concretely, we study in detail the main formulations of
Finite-Difference methods, which have been used in many room acoustics
applications, and the recently proposed Fourier Pseudo-Spectral methods. Both
methods are based on the discrete formulations of the analytical equations that
describe the sound phenomena in enclosed rooms.

This works contributes to the main aspects in the computation of impulse
responses: the wave propagation, the source generation and the locally-reacting
boundary conditions.

Resum

L’acústica de sales s’encarrega de l’estudi del comportament de les ones sonores
en espais tancats. La informació acústica de qualsevol entorn, coneguda com
la resposta impulsional, pot ser expressada en termes del camp acústic com
una funció de l’espai i el temps. En general, és impossible obtenir solucions
analítiques de funcions resposta en habitacions reals. Per tant, en aquests últims
anys, l’ús d’ordinadors per resoldre aquest tipus de problemes ha emergit com
una solució adecuada per calcular respostes impulsionals.

En aquesta Tesi hem centrat el nostre anàlisis en els mètodes basats en el
comportament ondulatori dins del domini temporal. Més concretament, es-
tudiem en detall les formulacions més importants del mètode de Diferències
Finites, el qual s’utilitza en moltes aplicacions d’acústica de sales, i el recent-
ment proposat mètode Pseudo-Espectral de Fourier. Ambdós mètodes es basen
en la formulació discreta de les equacions analítiques que descriuen els fenò-
mens acústics en espais tancats.

Aquesta obra contribueix en els aspectes més importants en el càlcul numèric
de respostes impulsionals: la propagació del so, la generació de fonts i les condi-
cions de contorn de reactància local.
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Preface

In general, the sound distribution produced by the propagation of the acoustic
field within a room is strongly related to the geometry of the enclosure and the
absorbing properties of the materials. In fact, one can perceive the loudness and
the echo of a specific room, leading to a particular distribution of the acoustic
variables which depend on position and time.

The acoustic phenomena in rooms are very complex and in general it is
extremely hard to find analytical expressions for the complete characterization
of the acoustic field. For this reason, the use of computers for predicting the
acoustic field in rooms arises as an important contribution in the design of
room acoustics.

Nowadays, the room acoustics simulations of real and virtual environments
play an important role in different fields. As an example, for giving to architects
a tool capable to predict with high accuracy the acoustic features of any room
before it is constructed. Similarly, these applications can be used for improving
the acoustics of built rooms, such as theaters, auditoriums or concert halls.

Furthermore, in audio processing and multimedia applications, obtaining
recorded sounds with a particular echo is commonly demanded in order to
give sense of immersion. Sometimes, a particular sound is not possible to
record, hence, using room acoustic simulations, we are capable to transform an
anechoic sound (sound recorded with no influence of the room) into a sound
with an echo obtained with the computer simulations.

Thus, computer room acoustics simulations are an important tool for pre-
dicting and improving the acoustics quality of built or unbuilt rooms. Moreover,
the computer game and entertainment industries together with the training
simulators based on virtual reality technologies need, day after day, to find more
realistic auditive sensations in order to create a highly immersive environment
with spatial attributes. Therefore, in this document the improvement in room
acoustics simulations is treated according to the necessities of the industry of
these days.

This document can be downloaded from

http://www.agarriga.org/carlos/phd.pdf
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Notations and Conventions

Conventions

The next conventions are used throughout this thesis:

• Time-domain scalar quantities are denoted by lowercase characters, e.g.,
a(t).

• Frequency-domain scalar quantities are denoted by uppercase characters,
e.g., A(ω).

• Time-domain vector quantities are denoted by boldface lowercase charac-
ters, e.g., a(t).

• Frequency-domain vector quantities are denoted by boldface uppercase
characters, e.g., A(ω).

• Time-domain matrix quantities are denoted by underlined, boldface low-
ercase characters, e.g., a(t).

• Frequency-domain matrix quantities are denoted by lowercase characters,
e.g., A(ω).

• Discretized vector or matrix are denoted by tilde characters, e.g., ã and ã

Mathematical operations

|| · || L2 Norm or vector norm∫ t
−∞

f (τ)dτ Integration operator w.r.t. t
F Time Fourier Transform
Fx Spatial Fourier Transform
∂/∂ t Partial derivative w.r.t. t
ℜ[·] Real component
∇ Nabla operator (gradient)
∆ = ∇2 Laplace operator
∗ Convolution operator
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4 LIST OF FIGURES

Sn Shift operator
An Average operator

Variables and constants

a1 Dimensionality constant of the velocity update equations
a2 Dimensionality constant of the pressure update equation
α Absorption coefficient
B Volume Elasticity
c Speed of sound
cnum Numerical speed of sound
f Frequency
φ Azimuthal angle
k Wavenumber
λ Wavelength
m = (m1,m2,m3,m4,m5,m6) Coefficient matrix of general second order PDE
M Mass matrix
n Discrete time
n̂ Normal direction of the wall
Ω three-dimensional enclosure
ω Angular frequency
ptot(x, t) Total acoustic pressure
p0(x, t) Unperturbed acoustic pressure
p(x, t) = p|ni, j,k Perturbed acoustic pressure
qs(t) Sound strength function
R Reflection coefficient
ρ0 Density of the air
ρtot(x, t) Total density of the air
ρ(x, t) Perturbed density of the air
S Courant stability number
s(t) Monopole strength
Tc Temperature expressed in Celsius scale
t Continuous time
θ Polar angle
V two-dimensional domain
vtot(x, t) Total particle velocity
v0(x, t) Unperturbed particle velocity
v(x, t) Perturbed particle velocity
vx(x, t) = vx|ni, j,k x component of the perturbed particle velocity
vy(x, t) = vy|ni, j,k y component of the perturbed particle velocity
vz(x, t) = vz|ni, j,k z component of the perturbed particle velocity
x = (x,y,z) Continuous cartesian coordinates
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x̃ = (i, j,k) Discrete cartesian coordinates
x0 x-position at t=0
Ψ constant of the Parametric algorithm
Z Acoustic impedance





Chapter 1

Introduction and Scope

1.1 Motivation and Scope of the Thesis

Room acoustics is the science devoted to study sound propagation in enclosures.
In closed environments the sound is heard as a combination of a direct sound
(straight from a source/sources) and indirect reflections from surfaces and other
objects in the enclosure.

The analytical formulation of the sound variables distribution is, in general,
extremely hard to obtain in real scenarios. In fact, there only exist solutions
of very simple and unrealistic scenarios. Therefore, it is necessary to use com-
puters for predicting proper solutions of the sound distribution [Schroeder
(1973)].

Usually, two big groups are considered to classify computer room acous-
tic simulations [Savioja (1999)]: geometrical and wave-based methods. The
first group embraces a set of algorithms based on the assumption that sound
wavelengths are significantly smaller than the size of obstacles found in the
room. Among these methods, the most popular ones are the ray-tracing based
algorithms [Krokstad et al. (1968)], the image-source method [Allen & Berkley
(1979)] and the recently proposed beam tracing methods [Funkhouser et al.
(2004)], which have been succesfully applied to light simulations. Although
these illumination techniques have been used for sound simulations, in order
to achieve sense of presence, sound has different features than light which
introduce several new and interesting challenges.

For example, one important feature that makes sound more difficult to treat
in a computational way than light simulations, is its large audible frequency
bandwidth, that goes from 20 to 20000 Hz. Consequently, the range of audible
wavelengths is comprised between 0.02m and 17m which are five to seven orders
of magnitude longer than visible range. Diffraction of sound occurs around the
obstacles of the same size as the wavelength. So, sound simulations, instead of
light simulations, must take into account more details of the enclosures (such as
tables or even smaller objects as coffee mugs). Moreover, speed of sound is six
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orders of magnitude less than light, and sound propagation delays are percepti-
ble to humans. Thus, acoustic models must compute the exact time/frequency
distribution of propagation paths, in contrast of the propagation delay of light
that can be ignored in most applications. Furthermore, for sound waves, not
only diffraction but interference phenomena must be considered. Finally, it is
worth mentioning that the human ear is sensitive to five orders of magnitude
difference in sound amplitude.

For those reasons, the second group of wave-based methods arises as a very
interesting alternative. These methods are based on numerical solutions of the
partial differential equations that govern the sound propagation in rooms. A
room is characterized by its geometry and by the materials of the walls, ceiling
and floor, which are the boundary conditions of the system. Since to analytically
solve a boundary value problem is not straightforward, wave-based methods
are the best option to found a solution with a high degree of accuracy. From
that point of view, a considerable number of alternatives are commonly applied:
from the frequency-based ones, such as Finite Element Methods [Wright (1995);
Savioja et al. (1996a)] or Boundary Element Methods; to the time-based ones,
such as Finite Difference in the Time Domain (FDTD) [Botteldooren (1994);
Savioja et al. (1996b)] or Digital Waveguide Mesh methods (DWM) [Murphy et al.
(2007)].

All these wave methods provide different advantages and disadvantages
depending on their computational cost and complexity. However, the most
prominent difference lies in their applicability: the frequency-based methods
provide results for a particular frequency, and thus, for steady-state situations;
whereas if the scope of the simulation is to predict the impulse responses of an
enclosure, the time-domain methods need just one simulation to obtain the
results. For that reason, this last group of simulation methods is widely used in
room acoustics, where the computation of impulse responses is a central issue.

The most important time-domain (or discrete-time) methods used for this
purpose are the previously mentioned FDTD and DWM, together with their
more sophisticated variants such as the interpolated [Savioja & Välimäki (2003)]
and the triangular/tethraedrical [Fontana & Rocchesso (1998); VanDuyne &
Smith (1995); Campos & Howard (2005)] DWM. Recently other alternative meth-
ods such as the Transmission Line Matrix [Miklavcic & Ericsson (2004)] (TLM)
and Functional Transformation Method (FTM) [Petrausch & Rabenstein (2005)]
have been proposed as an alternative methods. The scope of all these methods
is to improve the propagation features of simulated waves, since the discretiza-
tion process provides an inherent dispersion, (i.e. the numerical speed of sound
has a frequency/direction dependence).

Over the past decade, many studies in the area of FDTD and DWM modelling
of 2D and 3D acoustic systems have focused on reducing and/or compensating
the dispersion error. An alternative to the common time-domain methods are
the emerging class of spectral algorithms known as Pseudo-Spectral Time Do-
main (PSTD) methods. The most popular PSTD method is the so-called Fourier
spectral method [Liu (1997)] which uses Fourier transforms for computing the
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spatial derivatives. Due to the fact that spatial derivatives are evaluated in a
Fourier basis, the Fast Fourier Transform algorithm [Cooley & Tukey (1965)]
can be used for the efficient computation of the derivatives. A major further
advantage over the FDTD method is the low numerical dispersion that is ob-
served [Liu (1997); Taflove (1995); Spa et al. (2009)]. The numerical accuracy of
the Fourier spectral method for the determination of phase properties in a given
structure is therefore improved with respect to the common FDTD methods. In
the last years PSTD have been used in different fields such as the propagation
of acoustic waves [Liu (1998)], modelling of piezoelectric transducers [Filoux
et al. (2008)] or simulation of photonic devices [Pernice (2008)].

Recently, more attention has been given to another problems such as the for-
mulation of better numerical boundary approximations, in particular the imple-
mentation of locally-reacting boundaries. In general terms, realistic boundaries
can be efficiently approximated by locally-reacting walls. On the other hand,
the sound source generation becomes a difficult task since the emission of a
unit impulse signal needs to be approximated for keeping stable the numerical
simulation.

Both topics should be carefully treated in order to obtain correct and accu-
rate impulse responses. The different approximations of each method have a
considerable influence in the final results, affecting the perception of the spatial
sound distribution when this information is used for example, in auralization
problems [Kleiner et al. (1990)].

The main scope of this thesis is:
To analyse the generation of proper impulse signals, in order to obtain accu-

rate computational solutions of the acoustic features of the simulated enclosures
and, to contribute to boundary conditions modelling in the discrete time meth-
ods, which results in allowing one to include locally reacting impedances with a
reduced computational cost. These investigations will be applied to Finite Differ-
ence and Pseudo-Spectral methods, both in the time domain. Their corresponding
results will be validated through comparison to their analytical expressions.

1.2 Disposition of the Subjects

This Thesis is organized as follows:

• Chapter 2: This chapter presents a brief summary of the basic mathe-
matical and physical fundamentals involved in sound propagation in
enclosures, giving special attention to the boundary conditions and sound
source modelling in room acoustics. These notions are necessary for
proper comprehension of this dissertation; however, a reader with some
experience in this field, could just overview this chapter.

• Chapter 3: Once defined the mathematical and physical foundations of
sound propagation in a room, we present and study various approaches
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used in room acoustics. Furthermore, we justify the suitability of the
so-called discrete methods for room acoustic simulation focusing on the
finite-difference time-domain (FDTD) and pseudo-spectral time-domain
(PSTD) methods.

• Chapter 4: In this chapter, we overview the most common FDTD and
PSTD algorithms for either the Euler or the Wave equation. One important
drawback derived from the discrete formulation of these algorithms is
that they cause non-physical dispersion error. This error is analyzed with
detail, comparing with numerical data obtained in 2D experiments.

• Chapter 5: This chapter discusses the sound source generation of unit
impulse signals in numerical simulations. This subject has never been
treated before in the context of room acoustics. Firstly, we present the
mathematical formulation of the 2D and 3D Green functions, which gives
information of the sound propagation in the free space. Furthermore, we
study two different numerical source generation: the so-called the soft
and the hard source. Finally, we present numerical results of FDTD and
PSTD simulations using both types of sources.

• Chapter 6: One of the most important aspects in room acoustics is the
definition of numerical boundary conditions to realistically simulate the
effect of sound reflection in a wall. In this chapter, we overview the main
formulations of numerical impedance boundary conditions for FDTD.
Furthermore, we present, for the first time, the implementation of numer-
ical boundary conditions for PSTD methods. All the formulations done
have been validated through 2D experiments in order to test the accuracy
of the numerical schemes.

• Chapter 7: Finally, conclusions obtained in this dissertation are presented,
including some guidelines for future research.

Additionally, two appendixes are presented for completeness:

• Appendix A: presents different formulation of the absorbing perfectly
matched layers (PML). These numerical equations are used in PSTD meth-
ods in order to avoid the Gibbs phenomenon produced in the contours of
the simulations.

• Appendix B: studies the stability analysis of different FDTD and PSTD
impedance boundary conditions presented in Chap. 6.



Chapter 2

Background

2.1 Introduction

We have already seen that sound propagation has several aspects that make it
difficult to treat in the low frequency range. In fact, the wave-based methods
are the proper manner to solve this problem, since they take into account the
wave behavior of the sound phenomena. In this current chapter, we present
a brief overview of the basic properties of the sound propagation. Moreover,
The partial differential equations (PDE) that govern the sound propagation
in the free space are formulated and studied in detail (Sec. 2.2 and 2.2.1). In
addition, we overview the main solutions of the wave equation (Sec. 2.2.2) and
the mathematical and physical background of source generation is presented
in Sec. 2.2.3.

Once defined and studied the motion equations of the sound propagation
in the free space, we focus the analysis on the sound propagation in enclosures
(Sec. 2.3). We present the analytical expressions that are needed to characterize
the acoustic properties of the boundaries. More concretely we focus on the
study of locally-reacting boundary conditions since it is a simple and accurate
way to model the behavior of the real boundaries (see Sec. 2.3.1). In addition,
we present in Sec. 2.3.3 some mathematical concepts concerning to the Fourier
transform. Furthermore, we expose the mathematical formulation needed for
establishing proper analytical expressions employed for the computation of
impulse responses (see Secs. 2.3.2 and 2.3.4). Finally, in Sec. 2.4 we expose the
conclusions.

2.2 The Physics of Sound

Waves are a physic phenomenon that is defined as the propagation of energy of
a periodic perturbation without any transport of matter [Tipler (2006)]. It is easy
to observe this kind of behavior daily: waves on the sea, vibrations on a string,
sound waves, TV and radio signals, X-rays, light... There exist two different types

11
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of waves depending on their nature: electromagnetic and mechanical waves.

• Electromagnetic waves exist as a consequence of two effects: a variable
magnetic field that yields an electric field or a variable electric field that
yields a magnetic field. Electromagnetic waves do not need a medium
to propagate and can propagate in vacuum. These waves propagate in a
perpendicular direction of both fields, electric and magnetic and travel
through vacuum with a velocity equal to the velocity of light.

• Mechanical waves need a medium for their propagation (they can not
propagate in vacuum). In this case, the propagation of a perturbation
is driven by the particles of the medium (solid, liquid or gas). There
are two types of mechanical waves: transverse waves and longitudinal
waves. Transverse waves are produced when the particles of the medium
move in a perpendicular direction of the traveller waves. Sound waves
travelling through air are the paradigmatic example of longitudinal waves.
Air particles vibrate producing changes in pressure and density alternating
compressions and rarefactions all over the direction of the movement of
the wave.

The sound waves are described as compressional oscillatory disturbances
that propagate in a fluid [Jacobsen (2007)] or as a result from the time varying
perturbation of the dynamic and thermodynamic variables that describe the
medium [Pierce (2007)]. Therefore, the classical model of compressible fluid in
the free space presumes the existence of some relation between density, ρ , and
pressure p,

p = p(ρ) . (2.1)

Moreover, the basic laws for the sound propagation are the law of conservation
of mass (the continuity equation) and the Newton’s second law of motion (the
momentum equation) which both explicit forms read:

∂ρtot(x, t)
∂ t

+∇ · (ρtot(x, t)vtot(x, t)) = 0 , (2.2)

ρtot(x, t)
(

∂vtot(x, t)
∂ t

+vtot(x, t) · (∇ ·vtot(x, t))
)

= −∇ptot(x, t) , (2.3)

where ∇ = ( ∂

∂x ,
∂

∂y ,
∂

∂ z ), ptot is the acoustic pressure, ρtot the total density and vtot

represents the total particle velocity. Commonly, the two main propagation me-
dia are air (aeroacoustics) and water (underwater acoustics). A third important
medium, with properties close to those of water, is the human body, i.e. biologi-
cal media (ultrasonography). The characteristics of these two main fluids, air
and water, can also be considered as references for the two states of fluids: the
gaseous and the liquid states. These two states, the first characterized by strong
compressibility and the second by weak compressibility, have homogeneous
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characteristics within a state and characteristics than differ greatly from one
state to the other. Generally, sound waves can propagate in any fluid with a
velocity that depends on its mechanical properties. Therefore, the speed of
sound propagation depends, generally, on the elastic and inertial properties of
the medium:

c =

√
B
ρ

, (2.4)

where B is the volume elastic property and ρ is the density of the medium.
Likewise, the speed of sound is related with the temperature of the medium. For
sound waves moving through the air, the relation between speed of sound and
temperature is given by the simple expression:

c = 331

√
1+

Tc

273
, (2.5)

where 331 m/s is the velocity of sound through air at 273, and Tk is the tempera-
ture of the fluid in Celsius. Although the temperature usually depends on the
density distribution of the fluid within the enclosure, it is commonly assumed
in room acoustic applications that the temperature has an homogeneous dis-
tribution along the domain leading to a constant speed of sound propagation.
More concretely, characteristics of the air are given at standard pressure and
temperature in International system units (SI): p0 = 1 atm = 105 N m−2, T0 = 20o

C = 293 K. Air behaves like a perfect gas with ρ0 ∼ 1.21 Kg m−3, so that c = 340
m s−1.

Acoustics is the science devoted to the study of small amplitude disturbances
in a fluid. Considering the classical case of infinitesimally small perturbation in
velocity and pressure in a stagnant fluid, the total particle velocity in fluid vtot,
total pressure ptot and total density ρtot can be written:

vtot = v0 +v = v ; ptot = p0 + p ; ρtot = ρ0 +ρ , (2.6)

where v0, p0 and ρ0 are the velocity, the pressure and density for the unperturbed
fluid and v = (vx,vy,vz), p and ρ are the perturbed quantities. For stagnant fluid,
v0 = 0. Substituting Eq. (2.6) into Eqs. (2.2) and (2.3) and expanding in Taylor
series, Eq. (2.4), we obtain the following system of equations

∂

∂ t
(ρ0 +ρ(x, t)) = −∇ · [ρ0 +ρ(x, t)v(x, t)] , (2.7)

(ρ0 +ρ(x, t))
(

∂

∂ t
+v(x, t) ·∇

)
v(x, t) = −∇ · (p0 + p(x, t)) , (2.8)

p0 + p(x, t) = p(ρ0 +ρ(x, t)) . (2.9)

The terms of Eqs. (2.7) and (2.8) can be grouped into zero-terms and if Eq. (2.9)
is expanded through Taylor series around ρ , a system of coupled PDE so-called
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linear Euler equations for v and p is obtained [Pierce (2007)] that can be written
in shorthand notation as:

ρ0
∂v(x, t)

∂ t
+∇p(x, t) = 0 , (2.10)

∂ p(x, t)
∂ t

+ρ0c2
∇v(x, t) = 0 , (2.11)

Therefore, Eqs. (2.10) and (2.11) are written explicitly,

ρ0
∂vx(x, t)

∂ t
+

∂ p(x, t)
∂x

= 0 , (2.12)

ρ0
∂vy(x, t)

∂ t
+

∂ p(x, t)
∂y

= 0 , (2.13)

ρ0
∂vz(x, t)

∂ t
+

∂ p(x, t)
∂ z

= 0 , (2.14)

∂ p(x, t)
∂ t

+ρ0c2
(

∂vx(x, t)
∂x

+
∂vy(x, t)

∂y
+

∂vz(x, t)
∂ z

)
= 0 . (2.15)

Note that Eq. (2.10) involves Eqs. (2.12) to (2.14). On the other hand, this PDE
system can easily be expressed as a single uncoupled equation. If Eq. (2.10)
is multiplied by ∇ and Eq. (2.11) by ∂

∂ t and they are subtracted, we obtain the
well-known wave equation:

∂ 2 p(x, t)
∂ t2 − c2

∆p(x, t) = 0 , (2.16)

where ∆ = ∇ ·∇ = ∂ 2

∂x2 + ∂ 2

∂y2 + ∂ 2

∂ z2 . Equation (2.16) shows that the properties of

linearized acoustic field are governed by the wave equation.

2.2.1 Hyperbolic Behavior of the Wave Equation

It is important for the computational scientist to know that there are different
classes of PDEs. Just as different solution techniques are called for in the lin-
ear versus the nonlinear case, different methods are required for the different
classes of PDEs, whether the PDE is linear or nonlinear. The need for this spe-
cialization in the approach is rooted in the physics from which the different
classes of PDEs arise. By analogy with the conic sections (ellipse, parabola
and hyperbola) partial differential equations have been classified as elliptic,
parabolic and hyperbolic. Just as an ellipse is a smooth, rounded object, solu-
tions to elliptic equations tend to be quite smooth. Elliptic equations generally
arise from a physical problem that involves a diffusion process that has reached
equilibrium, a steady state temperature distribution, for example. The hyper-
bola is the disconnected conic section. By analogy, hyperbolic equations are
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able to support solutions with discontinuities, for example a shock wave. Hy-
perbolic PDEs usually arise in connection with mechanical oscillators, such as
a vibrating string, or in convection driven transport problems. Mathematically,
parabolic PDEs serve as a transition from the hyperbolic PDEs to the elliptic
PDEs. Physically, parabolic PDEs tend to arise in time dependent diffusion
problems, such as the transient flow of heat in accordance with Fourier’s law of
heat conduction.

For illustrative purposes, we study the one dimensional wave equation de-
rived in Eq. (2.16). The explicit form of the PDE reads

∂ 2 p(x, t)
∂ t2 − c2 ∂ 2 p(x, t)

∂x2 = 0 . (2.17)

In terms of general second order PDE defined by

m1
∂ 2 f (x, t)

∂x2 +m2
∂ 2 f (x, t)

∂x∂ t
+m3

∂ 2 f (x, t)
∂ t2 +m4

∂ f (x, t)
∂x

+m5
∂ f (x, t)

∂ t
+m6 = 0 ,

(2.18)
where coefficients m1 to m3 may depend on x,t,∂ f (x, t)/∂x and ∂ f (x, t)/∂ t, the co-
efficients m4 to m6 may depend on x and t. The terminology of elliptic, parabolic
and hyperbolic chosen to classify PDEs reflects the analogy between the form
of the discriminant, (m2)2−4m1m3, for PDEs and the form of the discriminant,
(m2)2−4m1m3, which classifies the conic sections[Hoffman (1992)]. In Eq. (2.17),
m1 = 1, m2 = 0 and m3 =−c2. The discriminant, (m2)2−4m1m3, is

(m2)2−4m1m3 = 0−4(1)(−c2) = 4c2 > 0 . (2.19)

Consequently, Eq. (2.17) is an hyperbolic equation. Therefore, Eq. (2.16)
has the same properties, since they involve the same differential operators
(i.e., ∂ 2

∂ t2 = c2[ ∂ 2

∂x2 + ∂ 2

∂y2 + ∂ 2

∂ z2 ]). The characteristics associated with Eq. (2.17)

are determined by performing a characteristic analysis. One relationship for
determining the second derivatives of p(x, t) is given by the partial differential
equations itself, Eq. (2.17). Two more relationships are obtained by applying the
chain rule to determine the total derivatives, which are themselves functions of
x and t. Thus,

d
(

∂ p(x, t)
∂x

)
=

∂ 2 p(x, t)
∂x2 dx+

∂ 2 p(x, t)
∂x∂ t

dt , (2.20)

d
(

∂ p(x, t)
∂ t

)
=

∂ 2 p(x, t)
∂ t∂x

dx+
∂ 2 p(x, t)

∂ t2 dt . (2.21)

Equations (2.17), (2.20) and (2.21) can be written in matrix form as follows:

 1 0 −c2

dt dx 0
0 dt dx




∂ 2 p(x,t)
∂ t2

∂ 2 p(x,t)
∂x∂ t

∂ 2 p(x,t)
∂x2

=


0

d
(

∂ p(x,t)
∂x

)
d
(

∂ p(x,t)
∂ t

)
 . (2.22)
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Eq. (2.22) can be solved by Cramer’s rule [Hoffman (1992)] to yield unique finite

values of ∂ 2 p
∂ t2 , ∂ 2 p

∂x∂ t and ∂ 2 p
∂x2 , unless the determinant of the coefficient matrix

vanishes. In that case, the second derivatives of p(x, t) are either infinite, which
is physically meaningless, or they are indeterminate, and thus multivalued or
discontinuous. Setting the determinant of the coefficient matrix of Eq. (2.22)
equal to zero yields

(dx)2− c2(dt)2 = 0 , (2.23)

solving for dx/dt gives

dx
dt

=±c2 , (2.24)

x = x0± ct . (2.25)

Eq. (2.24) shows that there are two real distinct roots associated with the charac-
teristic equations, and Eq. (2.25) shows that the characteristic path are straight
lines having the slope 1/c in the x− t plane, so the speed of propagation of
information along these paths is c. Consequently, information propagates at the
acoustic speed c along the characteristic paths. The finite speed of propagation
of information and the finite domain of dependence and range of influence
must be accounted for when solving hyperbolic PDEs.

2.2.2 Solutions of the Wave Equation

One of the basic solutions of the wave equations are the plane waves, which
play a key point in many applications. In fact, plane waves are considered as
the basic representation of the sound propagation which can be expressed as
follows

p(x, t) = Peι(k·x−ωt) , (2.26)

where P = P(ω) is the pressure amplitude, ω is the angular frequency, k is the
wavenumber and ι =

√
−1. The angular frequency is related to the frequency f

through
ω = 2π f , (2.27)

note that f is measured in Hertz (Hz) and it indicates the number of oscillations
in a second. The temporal period T can also be introduced as the inverse of the
frequency. On the other hand, the modulus of wavenumber is define as

||k||= ω

c
, (2.28)

where each wavenumber component is usually defined as

kx = ||k||cosφ sinθ , (2.29)

ky = ||k||cosφ cosθ , (2.30)

kz = ||k||cosθ , (2.31)
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the polar and the azimuthal angle are represented by θ and φ , respectively. At
the same time, wavelength λ is defined as an inverse of the wavenumber as the
following way

λ =
2π

||k||
. (2.32)

Sound waves are divided into three categories that cover a wide range of
frequencies. Sonic waves (20 Hz-20000 Hz), infrasonic waves ( f < 20 Hz) and
ultrasonic waves ( f > 20000 Hz). Therefore, the range of audible wavelengths of
sound are comprised between 0.02 m and 17 m. It implies that wave phenomena
such as diffraction or interference occur around the obstacles of the same size
as the wavelength. We will see in the chapter 3 that these phenomena make
sound propagation difficult to simulate. Although there are many methods
based on approximations of sound propagation since they do not assume the
wave behavior of the sound, it is important to consider it in room acoustics
applications in order to improve the results in the low frequency bandwidth.

2.2.3 Sound Sources

Sources that are some distance from bounding surfaces and that are small
compared to a wavelength can frequently be described by source terms. The
simplest such source would be one that causes a net amount of mass or fluid to
flow out of or into a fixes surface that encases it. This mass passing out per time
divided by the density ρ is quantity qs(t) termed the sound strength function
[Rossing (2007)].

If such a source is concentrated to a point x0 = (0,0,0), then the appropriate
inhomogeneous Euler equations take the following form

ρ0
∂v(x, t)

∂ t
+∇p(x, t) = 0

∂ p(x, t)
∂ t

+ρ0c2
∇v(x, t) = ρqs(t)δ (x) . (2.33)

The Dirac delta function, often referred to as the unit impulse function and
introduced by the British theoretical physicist Paul Dirac. Dirac delta function
can be loosely thought of as a function on the real line which is zero everywhere
except at the origin, where it is infinity.

δ (x) =

{
∞ if x = 0,

0 otherwise
(2.34)

and which is also constrained to satisfy the identity∫ +∞

−∞

δ (x)dΩdt = 1 , (2.35)
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where Ω is the integration domain. It is very common to consider this type
of source since they are used to approximate typical sources such as voices or
instruments. Similarly, Eq. (2.33) can be transformed to the wave equation
changing the source term as follows,

∂ 2 p(x, t)
∂ t2 − c2

∆p(x, t) =−ρ
∂qs(t)

∂ t
δ (x) , (2.36)

The solution of the above inhomogeneous equation for an isolate source at the
origin x0 = 0 in an unbounded region is

p =
s(t−||x||/c)
||x||

, (2.37)

where

s(t) =
ρ

4π

∂qs(t)
∂ t

(2.38)

and s(t) is called the monopole strength. If s(t) = δ (t), the unit impulse signal
is defined. This type of sources are used for obtaining the Green’s function (i.e.
acoustic response) which is one of the aims in room acoustics applications (see
Sec 2.3.2).

2.3 Basic Concepts in Room Acoustics

Up to now we have dealt with sound propagation on unbounded medium in
every direction. In contrast to this simple situation, room acoustics is concerned
with sound propagation in enclosures where the sound conducting medium is
bounded on all sides by walls, ceiling and floor. These room boundaries usually
reflect a certain fraction of the sound energy impinging on them. Another
fraction of the energy is ‘absorbed’ (i.e. it is extracted from the sound field inside
the room, either by conversion into heat or by being transmitted to the outside
by the walls). It is just this combination of the numerous reflected components
which is responsible for what is known as ‘the acoustics of a room’ and also for
the complexity of the sound field in a room.

Basically, the sound distribution in a room is the consequence of the com-
plex sound wave phenomena appearing due to the geometric distribution and
absorbing properties of the room [Kutruff (2000)]. This makes that people can
distinguish and perceive different colors or modifications of the same sound
in different rooms. Furthermore, the particular combination of the acoustic
phenomena such as diffraction, frequency-dependent absorption, diffusion...
gives a distribution of acoustic variables which strongly depends on position
and time.

These wave phenomena contribute to the complexity of the sound field since
they commonly appear in typical room acoustics simulations. For example,
diffraction phenomenon appears when obstacles are of the same size that the
wavelength associated to the signal. In those cases, sound expands over the
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Figure 2.1: (Left) The diffraction phenomenon: Plane waves of wavelength λ travelling
throughout a hole of size d similar than λ . Sound expands over the domain
next to the opening. (Right) An incident wave with orientation θ strikes on
a diffusive material that reflects the sound field with an orientation θ + ε

different than the specular direction θ .

obstacle and rounds it according to its wave behavior. In Fig. 2.1 (left), we
illustrate the diffraction phenomenon: plane waves impacting over a perfectly
absorbing wall with a hole of size d which is similar than the wavelength λ . In
room acoustics simulations, diffraction usually appears since audible range
covers a bandwidth that goes from millimeters to decimeters [Beranek (1954)].
Common obstacles such as tables, chair or doors diffract the low frequency
bandwidth of sound field, instead of, for example, light phenomenon which
frequency range is fourth orders of magnitude bigger than sound frequency
range. Therefore, it seems necessary to consider the linearized Euler equations
(or the wave equation) for the low frequency bandwidth, since it is the unique
manner to reproduce wave phenomena.

Another important phenomenon is the diffusion of sound due to the ru-
gosity of the materials. Since smooth materials scatter incident waves with
orientation θ into reflected waves of the same orientation (see Fig. 2.4), dif-
fusive surfaces have the ability to scatter incident sound into non-specular
directions. Diffusion is strongly related to the geometry of walls since rugous
materials present different surface orientations which are responsible of the
non-specular reflexions. These materials are commonly used in scenarios like
auditoriums or theatres for improving their acoustics. In Fig. 2.1 (right) we show
a sound wave, pinc, impacting on a diffusive wall giving a reflected wave pref.
Observe that the angle of incident θ differs with respect the angle of reflexion
θ + ε leading to non-specular direction.

As mentioned, the main scope in room acoustics consits on computing
the acoustic information, so-called the impulse response, so useful for either
predicting or auralizating. Basically, this information is obtained propagating a
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Figure 2.2: (left) A typical room acoustics simulation. S represents the unit impulse
signal, the receiver is expressed by L. (right) The impulse response at L due
to the sound propagation of the impulse source within the domain Ω.

unit impulse signal through the simulated enclosure. In Sec. 2.3.2, we present
the mathematical foundations of the inhomogeneous boundary problem de-
manded for computing impulse response of enclosures. One peculiarity of this
formulation is that the acoustic information obtained with the propagation of
unit impulse signals gives the complete information of the acoustic properties
of rooms since they have a flat frequency spectrum (i.e. they carry the same
amount of energy for each frequency).

For example, one of the common techniques employed to calculate the
impulse response in real scenarios consists on recording with microphones
the sound produced by a banger since it can be considered as the physics
representation of unit impulse source. In Fig. 2.2 (left), it is depicted a common
room acoustics situation where the unit impulse signal is located at S and the
receiver L is somewhere within the enclosure Ω. In Fig. 2.2 (right) the impulse
response for the acoustic intensity in dBs (i.e ||p||2) derived from this situation
is shown. Observe that the listener perceives different picks distributed along
the time axis which intensity decays to 0 for long enough times.

The acoustic response can be splitted in three different regions: a) the direct
sound (the first peak), b) the early reflections produced by the first rebounds
R1, R2, R3, and R4 and c) the late reverberations which are obtained after the
sound has impacted several times on the walls (see Fig. 2.3). These two last
regions are due to the boundaries of the enclosure and are those which contain
the acoustic features of the room while the direct sound only depends on the
distance between the source and the receiver and the absorption of the air.

In order to understand the works developed in this Thesis, it is essential
to introduce the mathematical and physical foundations for room acoustics
applications. In fact, we present the analytical formulation of the main problems
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Figure 2.3: An schematic acoustic response splitted in three regions. a) the direct sound
D which goes from S to L. b) the early reflections produced by the first re-
bounds R1, R2, R3, and R4. c) The late reverberations which are achieved after
the sound has impacted several times on the walls.

that involve the acoustic propagation in enclosures, such as rooms, auditoriums
or theatres.

Before we discuss the properties of such involved sound fields we shall
consider the process which is fundamental for their occurrence: the reflection
of a plane sound wave by a single wall or surface. In this context we shall
encounter the concepts of wall impedance and absorption coefficient, which
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are of special importance in room acoustics.

2.3.1 Impedance Boundary Conditions

Let us consider a plane surface with specific boundary impedance. If a plane
wave strikes a plane and uniform wall of infinite extent, in general a part of the
sound energy will be reflected from it in the form of a reflected wave originating
from the wall, the amplitude and the phase of which differ from those of the
incident wave. Both waves interfere with each other and form a ‘standing wave’,
at least partially. The changes in amplitude and phase which take place during
the reflection of a wave are expressed by the complex reflection factor

R = ||R||e(ιξ ) (2.39)

which is a property of the wall. Its absolute value as well as its phase angle
depend on the frequency and on the direction of the incident wave. According
to (2.39), the intensity of a plane wave is proportional to the square of the
pressure amplitude. Therefore, the intensity of the reflected wave is smaller
by a factor ||R||2 than that of the incident wave and the fraction 1−||R||2 of the
incident energy is lost during reflection. This quantity is called the ‘absorption
coefficient’ of the wall:

α = 1−||R||2 (2.40)

For a wall with zero reflectivity (R = 0) the absorption coefficient has its maxi-
mum value 1. The wall is said to be totally absorbent or sometimes ‘matched to
the sound field’. If R = 1 (in-phase reflection, ξ = 0), the wall is ‘rigid’ or ‘hard’;
in the case of R =−1 (phase reversal, ξ = π ), we speak of a ‘soft’ wall. In both
cases there is no sound absorption (α = 0). The latter case, however, very rarely
occurs in room acoustics and only in limited frequency ranges. The acoustical
properties of a wall surface, as far as they are of interest in room acoustics, are
completely described by the reflection factor for all angles of incidence and for
all frequencies.

A specific boundary impedance Z is defined as the ratio of complex am-
plitude and the normal component of the associated particle velocity v, for a
given plane wave. In the particular case of a plane wave travelling in the air,
the specific acoustic impedance of that medium is Zair = ρc, where ρ is the air
density and c is the speed of sound.

In general, this impedance presents a particular response depending on the
shape of the incident wave. However, there are cases where the material is able
to dissipate energy efficiently, i.e. porous sound absorbing materials [Beranek
(1940)], or where only reflection phenomenon exists, i.e. ground surfaces [Em-
bleton et al. (1976)]. In these scenarios it is reasonable to assume that there is
a local linear relation between the normal component of particle velocity and
the pressure at a particular point of the surface. Therefore, in many practical
situations, a material surface may be characterized in terms of a unique specific
boundary impedance. Although real scenarios would consider a frequency
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dependent impedance, this Thesis is only focused on constant, or frequency
independent, impedances.

q

pinc
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n

¶V
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^

Figure 2.4: Reflection from a plane surface, ∂V , in a two dimensional domain V . n̂ is the
normal vector associated to the boundary.

To be more concrete let us define a two dimensional domain V . The acoustic
pressure within the region is governed by the wave equation, except for those
positions, y, which are located at the boundary, ∂V (see figure 2.4). The time-
domain relation between the acoustic pressure and velocity at ∂V is given by

p(x,y, t) = Zv(x, t) · n̂ , (2.41)

where n̂ is the normalized outward normal vector of the boundary [Kutruff
(2000)], and Z is a real positive constant. If a plane wave which is travelling
toward a locally reacting impedance surface strikes over it with an incident
angle θ , a ratio between the reflected and the incident pressure, pref and pinc
respectively, is defined. This ratio is known as reflection factor R and it is related
to the local reacting impedance Z through [Morse & Ingard (1986)]:

R(θ) =
Z cosθ −ρc
Z cosθ +ρc

, (2.42)

where θ is the angle represented in figure 2.4. Furthermore, it is assumed that
v(x, t) fulfils the linear conservation mass equation,

∂v(x, t) · n̂
∂ t

=− 1
ρ

(∇ · n̂)p(x, t) . (2.43)

where ρ represents the air density and ~∇ is the gradient vector in Cartesian coor-
dinates projected to the outward direction. Although either the Euler equations
or the wave equation can be used to represent sound propagation no matter
which, the choice leads to different formulations of the BCs. For example, if
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the Euler equations are used, the impedance boundary conditions is derived
straightforwardly from Eqs. (2.41) and (2.43). Conversely, if the wave equation
is demanded, it is necessary to introduce some modifications to (2.41) and
(2.43) since this PDE only computes the acoustic pressure. Letting Eq. (2.41)
be introduced into the linear conservation mass equation, Eq. (2.43), a BCs
expression for the wave equation is obtained reading as follows:

∂ p(x, t)
∂ t

=−Z
ρ

(∇ · n̂)p(x, t) . (2.44)

Observe that Eq. (2.44) only depends on the pressure instead of Eq. (2.43) which
relates the acoustic pressure and the normal component of the velocity.

2.3.2 Impulse Response: Mathematical Formulation

In real acoustic systems there exist sound sources (pressure or velocity sources),
as we saw, the source generation can be expressed as

∂ 2 p(x, t)
∂ t2 − c2

∆p(x, t) = s(x, t) . (2.45)

Therefore, if Eq. (2.45) is solved with the appropriate boundary conditions,
we would get the propagation information of a sound source defined by s(x, t).
It is worth emphasizing that the solution of Eq. (2.45) gives only information
of the propagation of the specific source s(x, t). Every time the sound source
is changed, one should solve Eq. (2.45) to obtain the acoustic information of
the new source. Hence, it is necessary to find the acoustic properties of any
room independently of the sound source. This information known as the room
acoustic response is obtained studying the propagation of an unit impulse
sound source.

One property derived from the Fourier analysis is that delta function has
a flat frequency spectrum of Energy. It means that if a Dirac delta function is
used as a sound source, s(t), the solution of the inhomogeneous wave equation
would give the acoustic information of the closed domain independently of the
radiation emitted by the source. Conversely, the most important drawback in
the computation of an acoustic response is the generation of the unit impulse
signal. More concretely, In numerical methods, the Dirac delta function needs
to be approximated since its singularity makes the simulations unstable. In
chapter 5, several proposals of unit impulse signal are presented and studied
carefully.

The mathematical formulation of this problem is solved by using Green’s
theory. In this context, we are able to construct an integral equation which
combines the effect of sources, propagation, boundary conditions and initial
conditions in a simple formula [Barton (1989)]. Let us introduce some basic
background in order to understand this method.

We define Green’s function,

g(x−x′, t− τ) = g(x, t|x′,τ) , (2.46)
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as the impulse response of the PDE,

1
c2

∂ 2g(x, t|x′,τ)
∂ t2 −∆g(x, t|x′,τ) = δ (x−x′)δ (t− τ) , (2.47)

where the product of delta functions: δ (x−x′)δ (t− τ) represents an impulse of
sound pressure. The index x = (x,y,z) represents the position of the source and
x′ = (x′,y′,z′) is the location of the receiver. The definition of g(x, t|x′, t ′) is further
completed by specifying suitable boundary conditions for ∂Ω. Moreover, one
usually assumes a causality condition that there is no field other than the one
due to δ -source:

g(x, t|x′,τ) = 0 and
∂

∂ t
g(x, t|x′,τ) = 0 , (2.48)

for t < τ . It means that the solution of Eq. (2.47) gives information of the unit
impulse propagation that carries the same amount of energy at each frequency.

If Eq. (2.45) is multiplied by g(x, t|x′, t ′) and Eq. (2.47) is multiplied by p(x, t).
Then both equations are subtracted and integrated over the domain Ω and τ ,
obtaining a general expression for the acoustic pressure that reads:

p(x, t) =
∫ t

t0

∫
Ω

s(x′,τ)g(x, t|x′,τ)dΩdτ

− c2
∫ t

t0

∫
δΩ

[
s(x′,τ)

∂g(x, t|x′,τ)
∂x′i

−g(x, t|x′,τ)
∂ s(x′,τ)

∂x′i

]
ndΩdτ

−
[∫

Ω

(
s(x′,τ)

∂g(x, t|x′,τ)
∂τ

−g(x, t|x′,τ)
∂ s(x′,τ)

∂τ

)
dΩ

]
τ=t0

. (2.49)

The first integral represents the effects of the source, the second one is referred
to the effects of the boundaries and the third one represents the effects of the
initial condition at τ = τ0. When the boundary conditions defining the Green’s
function coincide with those of the physical problem considered the Green’s
function is called tailored Green’s function. For tailored Green’s functions the
second vanishes to zero and when τ =−∞, we have the superposition principle
over elementary sources which we expect intuitively [Barton (1989)]:

p(x, t) =
∫ t

t0

∫
Ω

s(x′,τ)g(x, t|x′,τ)dΩdτ . (2.50)

Note that Green’s function gives information of the enclosure, independently of
the source. In acoustics, the Green’s function is called the acoustic response of
the room and it is the main objective in the study of room acoustics.

2.3.3 The Fourier Transform

As it is well-known, it is possible to express any periodic function p(t) as a linear
combination of harmonic waves. This combination is called Fourier Series,
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mathematically expressed as

p(t) = ℜ

[
+∞

∑
n=−∞

P(ωn)e−ιωnt

]
, (2.51)

where ωn = 2πn/T . Therefore, it implies that any function is obtained weighting
the harmonics related sinusoidal functions. The coefficients pn are achieved
multiplying Eq. (2.51) by eιωnt and integrating over the time interval, T , obtaining

P(ωn) =
∫ T

t=0
p(τ)e−ιωnτ dτ . (2.52)

So far, we have only considered periodic functions; nevertheless, non-periodic
functions can be achieved assuming an infinite period. In this case, basic func-
tions (complex exponential functions) are not harmonically related, but also all
frequencies appear. Let us define the continuous Fourier transform as follows

F [p(t)] = P(ω) =
∫ +∞

−∞

p(t)eιωtdt , (2.53)

where, for a given angular frequency ω = ω0, the complex value P(ω0) indicates
the complex amplitude of the corresponding complex sinusoidal function, Eq
(2.26). The linear operator F [·] is used as a definition of the Fourier transform.
Similarly, it also defined the inverse Fourier Transform as

F−1[P(ω)] = p(t) =
1

2π

∫ +∞

−∞

P(ω)eιωtdω , (2.54)

where it represents the linear operation which finds the time-domain represen-
tation from a frequency domain signal.

The Fourier transform has a set of interesting mathematical properties
[Proakis & Manolakis (1998)] and some of them are summarized as follows:

• F [a f (t)+bg(t)] = aF(ω)+bG(ω).

• F [ f (t) ·g(t)] = 1
2π

F(ω)∗G(ω).

• F [ f (t)∗g(t)] = F(ω) ·G(ω).

• F
[

∂ p
∂ t

]
=−ιωP(ω).

where the operator ∗ denotes the convolution function explained in Sec. 2.3.4 .

2.3.4 A Discrete Formulation for Computational Problems

Many different applications can be developed with the appropriate use of the
Green’s theory. For example, in room acoustics, once obtained the acoustic
response, we can predict how any source would be heard within the domain
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approximating the analytical equation (2.50). Commonly, in room acoustics
applications we approximate sound sources such as instruments or human
voices through spatial punctual source [Kutruff (2000)]. Thus, according to one
of the properties of the Dirac delta function, Eq. (2.50) can be simplified as
follows

p(x, t) =
∫ t

t0
s(τ)g(x, t|τ)dτ . (2.55)

We can write Eq. (2.55) in short-hand notation by defining the mathematical
operation ∗ as the convolution of two functions

p(x, t) = s(t)∗g(x, t) . (2.56)

As we presented in Sec. 2.3.3, one of the properties of the Fourier Transform is
that converts the convolution into a linear product. Therefore, Eq. (2.55) can be
expressed in the frequency domain as follows,

p(x,ω) = S(ω)G(x,ω) . (2.57)

It is worth mentioning that room acoustics simulations need to discretise the
required domain since they are based on different computational techniques.
The use of computers for predicting the acoustic features of rooms forces to
discretize the solutions in space and time.

Consider that ∆t = ttot/T is used as the cell size where ttot is the total time
of the simulations and T is the number of temporal grid points. The physical
quantities s(t) and g(x, t|τ) are discretized through the discrete variables (i, j,k)
and (n|l) that represent the spatial and temporal steps. Hence, s(t) and g(x,y,z, t)
transform to the discrete space as

s(t) = s(n∆t) = s|n , (2.58)

g(x, t|τ) = g|n−l
i, j,k , (2.59)

note that subindex and superindex refer to spatial and temporal coordinates,
respectively. The discrete representation of the convolution, which is needed
for obtaining the acoustic pressure distribution due to punctual sound source
propagation, is defined as

p|ni, j,k =
T

∑
l=0

s|lg|n−l
i, j,k . (2.60)

Observe the analogy between equations (2.55) and (2.60), since they represent
the continuous and discrete formulation of the convolution.

At this point, we need to redefine the Fourier transform of a periodic func-
tion, Eq. (2.52), in order to convert the convolution into a linear operation.
Let us assume that s|n is a periodic function of period T . The discrete Fourier
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transform of the sequence {s|1, ...,s|T |} is the new sequence {S|1, ...,S|ωT }which
is defined by

F (s|:) = S|k =
T

∑
n=1

s|ne−ιωkn∆t for 1≤ n≤ T , (2.61)

where the : symbol denotes all x-coordinates. Conversely, it can be defined the
discrete inverse Fourier Transform which explicit form is

F−1(S|:) = s|n =
1
T

ωT

∑
k=1

S|keιωkn∆t for 1≤ k ≤ ωT , (2.62)

note that both transformations fulfill the properties presented in Sec. 2.3.3.
Finally, as for the continuum case, we can convert the convolution into a

simple product applying the Fourier transform to s and g obtaining the the
resulting frequency equation,

P|li, j,k = S|lG|li, j,k . (2.63)

Once again, we transform the convolution operation following the properties of
the Fourier transform.

2.4 Conclusions

In this chapter, some of the mathematical and physical concepts regarding the
sound phenomenon have been presented. More concretely, we presented the
basic expressions commonly used in room acoustics. As has been previously
mentioned, an inhomogeneous boundary value problem is the starting point
to predict and analyze a particular sound field in an enclosure. However, with
the exception of some particular (and very simple) cases, these inhomogeneous
boundary value problems are unsolvable analytically. For that reason, the room
acoustic prediction requires obtaining an approximation of the sound field
through several physical simplifications and to define computer algorithms for
solving the problem in a reasonable computing time [Schroeder (1973)]. De-
pending on what possible simplifications are carried out, some of the different
room acoustic simulation techniques arises.



Chapter 3

Room Acoustics
Simulation Techniques

3.1 Introduction

In this chapter, some of the main computer simulation techniques for room
acoustic simulation are revisited, with particular emphasis on the ability to
incorporate source modelling and boundary conditions. Room acoustics simu-
lations techniques are usually divided in two groups: the geometrical and the
wave-based methods. In turn, Wave-based methods are also subdivided in two
large groups: the frequency and time domain methods (the latter, also known
as discrete-time modelling or methods). Savioja [Savioja (1999)] also included
statistical methods, but since they do not model the temporal behaviour of the
sound field, they are far from the aim of this thesis.

It is the purpose of this chapter not to provide a deep overview of the cur-
rent state-of-the-art in room acoustic modelling, but also to give some of the
advantages and disadvantages of the most representative techniques, with the
aim of justifying the use of the discrete-time methods.

The current chapter is organised as follows: Sec. 3.2 presents some of the
most important geometrical methods, focused on a brief overview of the ray-
tracing and image-source method. The next two sections deal with wave-based
methods. The first one concerns frequency-based wave methods with a generic
sight over the two most used methods for room acoustic simulation: finite and
boundary element methods. In section 3.4, as this thesis is mainly focused
on time-based wave methods (or discrete-time methods), a deeper overview
of the state-of-the-art is introduced. Finally, we present the motivations for
giving efforts to formulate the Pseudo-Spectral Time-Domain methods for room
acoustic simulations.

29
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3.2 Geometrical Methods

Geometrical acoustic simulations make the assumption that sound wavelengths
are significantly smaller than the size of the objects in the scene. Hence, the
starting point of these methods consists on assuming that sound propagates
as a ray. This simplification can considerably improve the computational cost
since a PDE problem is directly transformed into an algebraic and/or geometric
problem. Therefore, these algorithms currently provide the most practical
and accurate method for modelling the early part of an impulse response for
high frequency sounds. Nevertheless, sound propagation phenomena at low
frequencies, such as diffraction, are not considered under these assumptions.
Hence, one important drawback of these methods is the inability to include
phenomena such as interference, diffusion and diffraction, since they appear
when wavelengths are similar to the size of obstacles.

On the other hand, the implementation of realistic boundary conditions is
obtained assuming specular or diffusive reflections, see Sec. 2.3. It could also
include the absorption issue in a frequency-dependent manner according to
the impedance/absorbing factor of the wall (see Sec. 2.3.1).

Two main algorithms have emerged from the geometrical method’s assump-
tions: the ray-tracing and the image-source method. From this moment on,
many variations of these methods have been formulated in order to improve
their computational cost, flexibility or to include some of the sound propaga-
tion properties properties, such as diffraction and diffusion [Cox et al. (2006)].
Although being far from the scope of this thesis, it is worth mentioning that
recently a unified integral equation generalising those methods in an unique
formulation has been proposed [Siltanen et al. (2007)]. In the next subsections,
these algorithms are overviewed.

3.2.1 Ray-Tracing Method

The ray-tracing method (RTM) is a general technique from geometrical optics
that arises from optical physics [Lipson et al. (1995)], with important appli-
cations in the computer graphics field [Whitted (1980); Glassner (1989)] and
communications [McJown & Hamilton (1991); Cátedra et al. (1998); Coleman
(1998); Ji et al. (2001)]. The first attempt to use the RTM for room acoustic
simulation was presented by Krokstad et al [Krokstad et al. (1968)].

Basically, these methods find propagation paths between a source and a
receiver by generating rays emitted from the source position and following
their trajectories through the enclosure until the rays have reached the receiver.
Therefore, the delays and attenuation of direct sound and early reflections are
straightforwardly computed.

As mentioned above, the initial tendency of this algorithm is to consider only
specular reflections, where in each incidence, the incident ray is absorbed by
the impedance wall, and reflected with the same angle of incidence [Kulowski
(1985)]. Thus, it could be considered that ray-tracing allows simulation of locally
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reacting impedances (see in Sec. 2.3.1). However, several improvements of the
algorithm have included diffusive surfaces [Lam (1996); Embrechts (2000)] and
edge diffraction [Svensson et al. (1999)].

Moreover, RTM applies the Monte Carlo simulation technique to sample
these reflection paths leading to statistical results [Halton (1970)]. Monte Carlo
path tracing methods consider randomly generated paths from the source to
the receiver. In the basic algorithm, sound rays emitted by the sound source are
reflected at the surfaces according to certain rules. A specular reflection is the
most common reflection rule. By this technique higher order reflections can be
searched for, though there are no guarantees that all the paths will be found.

Conversely, the way sound rays are emitted can be either randomised or
predefined as a function of the directional properties of the source [Savioja
(1999)]. Therefore, it must be ensured that their generation is almost uniform
on the surface of a spherical source [Farina (1995)]. The simple assumption of
three random generators for the three components of the vector direction of
the ray is not completely correct, as that produces a “cube of rays” instead of a
sphere. It is possible to cut away the corners of the cube, discarding each vector
with a modulus greater than one [Farina (1995)]. If each ray is weighted by an
angle dependent function, it is possible to include directivity properties to the
source with no increase of computational cost.

The listener positions cannot be considered as a point, since an infinitely
small point cannot detect an infinite small ray. For this reason, listeners are
typically modelled as volumetric objects, like spheres or cubes, but the listener
may also be planar. In practice, a sphere is in most cases the best choice, as it
provides an omnidirectional sensitivity pattern and it is easy to implement.

A primary advantage of these methods is their simplicity. They depend only
on ray-surface intersection calculations, which are relatively easy to implement
and have computational complexity that grows sub linearly with the number
of surfaces in the model. Another advantage is generality. As each ray-surface
intersection is found, path of specular reflections, diffuse reflection, diffraction
and rarefactions can be sampled, thereby modelling arbitrary types of indirect
reverberation.

Some examples of its application and comparison with measurements can
be found in [Hodgson (1989); Tsingos et al. (2002)]. A software example of
the use of the ray-tracing method is CATT-Acoustic 1. CATT is an acronym for
Computer Aided Theater lighting and decor CAD programs were the first CATT
product in 1986. Since 1988, however, CATT has concentrated on software for
acoustic prediction/auralization (CATT-Acoustic) and more recently, frequency
impulse response reverberation tools (The FIReverb Suite).

1URL: http://www.catt.se.
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3.2.2 Image-Source Method

The image source method (ISM) is one of the most common ray-based mod-
elling method. The concept of image sources has been applied to various field
problems in electromagnetic [Balanis (1997)] and acoustic wave propagation,
[Allen & Berkley (1979)] extended to arbitrary geometries with plane walls [Bor-
ish (1984)].

The concept is based on the principle that a specular reflection can be
represented as a sound source (outside the physical boundary) that radiates in
free space. It computes specular reflections paths by considering virtual sources
generated by mirroring the location of the audio source, over each boundary
surface of the environment.

The primary advantage of image source methods is their robustness. They
guarantee that all specular paths up to a given order are found. Moreover, the
listener can be modelled as a punctual source inspite of Ray-Tracing that must
create volumetric listeners.

However, ISM models only specular reflections, their computational com-
plexity grows exponentially with the number of reflections. Thus, an important
goal is to try to reduce this complexity. One possible solution is derived from
the formulation of the beam tracing methods. These methods have evolved
from the ray tracing. As in the ray tracing, a number of rays are emitted from
the source, but now these rays are treated as beams. Briefly, for each beam,
polygons in the environment are considered for intersection of the beam in
front-to-back visibility order. As intersecting polygons are detected, the original
beam is clipped to remove the shadow region, a reflection beam is constructed
matching the shadow region by mirroring the transmission beam over the poly-
gon’s beam[Funkhouser et al. (1998)]. As compared to ISM, the advantage of
beam tracing is that fewer virtual sources must be considered for environments
of arbitrary geometries [Rindel (1995)].

This method has been implemented in commercial softwares such as CARA
(Computer Aided Room Acoustics) 2.

3.2.3 Hybrid and Alternative Geometrical Methods

A possible improvement of those models is to create hybrid models. These meth-
ods combine the image source method and ray tracing. The hybrid methods are
based on an arrangement where the first reflections are computed with image
sources whereas the late reflections are handled by the ray tracing. Such an
approach guarantees that the accuracy of the image source method is exploited
for early part of a response whereas at the same time exponential growth of the
number of image source is avoided.

An example of this method is the ODEON software 3 [Naylor (1993)], initially
developed in the Technical University of Denmark. The first version of ODEON

2URL: http://www.cara.de.
3URL: http://www.odeon.dk
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program was targeted at solving acoustic problems in concert and opera halls,
today versions are available which allow prediction of auditorium acoustics
as well as the acoustics in industrial environments. These software solutions
can only be used for large and single enclosures due to the fact that they use
geometric-based algorithms for acoustic rendering.

Due to the highly elevated computational cost and other implementation
problems of these geometrical methods, an increasing number of alternative
methods have appeared in the last years, being more or less inspired by the
previous ones. However, it should be mentioned that all of them share the same
problematic regarding to the low frequencies approaches as in RTM and ISM.
Some of the most important methods are commented in this section.

An alternative method is the well-known beam tracing method [Funkhouser
et al. (2004)]. It arises as an improvement to the ray tracing, since rays have
no thickness, and it uses beams. Beams are shaped like unbounded pyramids
and each beam represents an infinite number of potential ray paths emanating
from the source location. It does not suffer from the sampling artifacts of ray
tracing [Lehnert (1993)], nor the overlap problems of cone tracing [Vian & van
Maercke (1986)]. Another alternative is the pyramid tracing, suited to room
acoustics and outdoor calculations [Farina (1995)]. The main advantage of
Pyramid Tracing over other diverging beam tracers is the fact that pyramids
perfectly cover the surface of a spherical source, while cones cause overlapping
or uncovered zones. This method has been produced the first publicly available
software for acoustical simulations based on this method, RAMSETE 4

For a long time, computer graphics, heat and light radiation have used ra-
diosity methods for their simulations. Applications of this method for room
acoustics have been described in several contributions [Dalenbäck (1996); Hodg-
son & Nosal (1996); Nosal et al. (2004)]. The radiosity methods are based on
geometrical room acoustics. More concretely, the radiosity method is closely re-
lated to ray tracing. However, at some points, radiosity differs from conventional
ray-based methods and can be classified to another category. For example, in-
stead of launching a large number of rays and letting them sample boundary
surfaces, the radiosity method divides boundaries into smaller elements. After
this subdivision the rays are sent between these predefined surface elements.
Contribution strengths, which are called form factors, are computed for each
element-to-element combination. This method is based on the assumption
of Lambertian diffuse surface. This assumption introduces diffusion in the
simulated walls.

Finally, acoustic sonel mapping [Kapralos (2006)] is an application of the
photon mapping algorithm used in computer graphics for room acoustic sim-
ulation. Acoustic sonel mapping is a two-pass particle-based, probabilistic
global method developed in order to determine the sound field at any point in a
scenario. In the first pass, “sonel” (the analogue to photons, the basic quantity
of light, when considering the visual photon mapping method) are emitted

4URL: http://www.ramsete.com.
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from each sound source and traced through the scene until they interact with a
surface. When sonel encounter a diffuse surface, they are stored in a structure
called a sonel map. In the second stage, the scene is rendered using the informa-
tion provided by the previously collected sonel map to provide a quick estimate
of the diffuse reflected sound field. A distribution of ray tracing is employed to
model specular effects. Sonel mapping is independent of the scene geometry,
thereby allowing for the sound field simulation of arbitrary complex scenes to
be computed. In addition, it can handle complex interactions between sound
and a surface, including pure specular, pure diffuse and glossy reflections and
any combination of them.

3.3 Wave Methods in the Frequency Domain

Finite Element Method (FEM) and Boundary Element Method (BEM) are two of
the most important frequency-domain wave-based algorithms. These methods
have been successfully applied to different areas such as structural mechanics
[Courant (1943); Dominguez (1993)] and electromagnetism [Jin (2002); Chen &
Zhou (1992)]. In the acoustic literature, there are several applications of both
methods focused on the analysis of resonance of acoustic systems [Ihlenburg
(1998); Wrobel & Aliabadi (2002)]. Basically, in these algorithms the frequency
range is discretized, in order to give results of the steady-state sound pressure
distribution.

These algorithms are not appropriate for room acoustic simulation since
the solutions are achieved in the frequency range. Moreover, the use of FEM or
BEM in room acoustics problems is so far limited to a frequency range that is
considerably smaller than the range used for room acoustical purposes. The
limiting factor for these methods is the required discretization of the volume or
surface in elements of a size small enough to reconstruct the wave in magnitude
and phase at every point of the discretization domain.Nevertheless, using these
techniques, the eigenvalue analysis of enclosures can be calculate leading to
remarkable accuracies.

3.3.1 Finite Element Method

In the room acoustics field, several analysis of rectangular rooms through FEM
have been provided by Wright [Wright (1995)] and Savioja et al. [Savioja et al.
(1996a)]. On the other hand, more realistic rooms have recently been analyzed
giving a fair agreement among simulation and measurements in small [Pietrzyk
& Kleiner (1997)] and large [Ahnert et al. (2006)] rooms.

The main advantage of FEM lies in the flexibility of handling problems with
complex geometries and inhomogeneous media. This flexibility appears owing
to the fact that it can be implemented through non-uniform meshes. Therefore,
the systematic generality of the method leads to build proper computer pro-
grams. The basic formulation of FEM assumes a general solution in the whole
simulated domain. The PDE system is derived for a typical element and then, it
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is assembled for all elements of the domain using a set of basis functions. Each
of these elements only interacts with the elements directly adjacent to it and
these basis usually conform a tessellation of the whole space. This represen-
tation by elements creates matrices that are large but sparsely filled [Taflove
(1995)].

The most important drawback of FEM is that the computation of the acous-
tic field is achieved in the frequency range. Therefore, it implies that we would
need to carry out a different simulation for each frequency since the acoustic
properties depends strongly on this value, increasing considerably the compu-
tational cost of the algorithms. Moreover, due to stability reasons, FEM takes
an extremely small element size for modelling in the entire frequency band-
width. Over seven elements per wavelength are required as sufficient sampling
rate [van der Geest & McChulloch (1998); Murphy (2000)]. For example, if an
element is 0.5 m long, with c = 343ms−1, the maximum frequency that can be
calculated with any reasonable accuracy is approximately 114 Hz. In a 3-D
simulation, doubling the frequency the number of elements are multiplied by
eight [Murphy (2000)].

3.3.2 Boundary Element Method

In the room acoustics literature some contributions of BEM methods have been
applied for the analysis of large hall effects [Bai (1992); Osa et al. (2006)].

Since FEM is fairly a very computational expensive method, BEM arises as
an alternative method which considerably reduces the computational cost of
the problem. In these methods, only boundaries are discretized, more con-
cretely, they are divided into surface elements which are typically smaller than
approximately 1/8 of the characteristic wavelength.

The methodology of BEM methods consists on fitting boundary values into
Kirchoff-Helmholtz integral formulation. What we obtain is an integral equation
that can then be used again to calculate numerically the solution directly at
any desired point in the interior of the solution domain. It allows a simple and
accurate modelling of problems involving infinite and semi-infinite domains.
The matrix implementation of the method gives a full matrix, i.e. every element
of the matrix is non-zero [Kirkup (1998)].

3.4 Wave Methods in the Time Domain

Until now, we reviewed different methods employed for computing a room
impulse response. Depending on the physics treatment of sound, we can split
the room acoustics methods into three different groups. On the one hand, geo-
metrical methods provide simple and accurate algorithms which are valid only
for high frequencies; on the other hand, wave methods solve numerically the
wave equations, giving more accurate results than geometrical methods in the
low frequency range since the wave equations model all sound propagation
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phenomena, except air absorption. For example, the frequency-domain wave-
based methods based on the wave equation analyse the steady-state of a room
leading to high accuracies in their results. Conversely, one important drawback
of these methods is the impossibility of being formulate in transitory analysis
(i.e. in the time domain). For this reason, the wave-based in the time domain is
an appropriate alternative methods, since they are based on physic foundations
of sound propagation leading fairly goor accuracies in the low frequency band-
width; furthermore, the mesh generation of the simulated domains is simpler
to define than FEM or BEM, since a constantly regular mesh of polyhedron (in
a 3D simulation) is demanded for their implementation. The flexibility and
simpler conceptually such as geometrical methods, but with a higher accuracy
at low frequencies, is a main aim for room acoustic simulations.

3.4.1 Finite Difference Methods

All these methods lie on a common assumption: the mathematical expressions
of sound propagation are discretised not only in space, but also in time, giving a
recursive algebraic expression which is updated in each time step for every grid
point of the mesh. More specifically, two time-domain methods have specially
arisen for room acoustic applications: the Digital Waveguide Mesh (DWM) and
the finite-difference time-domain method (FDTD).

On the one hand, DWM was formulated for the first time in room acoustics
applications by Van Dyune and Smith [Duyne & Smith (1993); VanDuyne &
Smith (1995)]. Many of the advances on this topic have been inherited as an
extension of the membranes and plate, being a 2D problem, to enclosures as a
3D problem [Savioja et al. (1995); Campos (2003)]. The DWM could also be seen
as a particular class of finite difference method [Savioja et al. (1999)], with the
particularity that it uses a decomposition of the sound pressure waves based
on incoming and outgoing components [Duyne & Smith (1993); Campos &
Howard (2005)]. This method has a similar formulation to the Transmission Line
Matrix (TLM) method [Elmasri et al. (1998); Christopoulos (1995)], although
finally it was demonstrated the equivalence between both methods [Johns
(1987); Krumpholz et al. (1995); Bilbao (2001)]. On the other hand, the first
contributions of FDTD in the room acoustic field were presented in the middle
of the nineties by Botteldooren [Botteldooren (1995)] and Savioja [Savioja et al.
(1994)] leading to an increasing number of publications and works related in
this topic in order to improve the suitability of these methods.

This Thesis is focused on analysing and contributing to time-domain meth-
ods, more concretely, the FDTD methods. A review of several propagation
algorithms, the implementation of aproppriate boundary conditions and the
analysis of different sound source generation are studied with detail since the
main objective in room acoustics applications is the computation of acoustic
impulse response.
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3.5 Pseudo-Spectral Time-Domain Methods

In this chapter, an overview of the modelling techniques for room acoustic
simulation has been presented. Since solving directly the particular inhomoge-
neous boundary value problem which represent the room under analysis is an
extremely complex task, simplified models should be used to obtain approxi-
mated but accurate solutions.

A proper alternative for computing the impulse acoustic response of a en-
closure is the use of wave-based methods in the time domain or discrete-time
methods. They are based on approaching partial differential equations that
govern the sound wave propagation through time and space discretization, cre-
ating a recursive algorithm which provides an acoustic variables distribution in
all discretized space positions in every discrete time step. With these methods,
impulsive analysis are obtained with an unique recursive algorithm, simplifying
considerably the computational cost. The most popular discrete-time meth-
ods for room acoustic simulation are FDTD method and the DWM method.
Although the efforts of this Thesis are restricted to the FDTD algorithms, both
methods have been successfully applied into room acoustics applications.

The advantages of these methods can be found such as the simplicity of the
algorithm formulation as the accuracy of the results achieved at low frequency-
bandth. Even though it seems that these algorithms are the proper alternative
for this type of acoustic problems, There are different negative aspects that, at
least, should be commented.

For example, one of the most important drawbacks of FDTD algorithms
is that they introduce a non-physical dispersion error due to the spatial dis-
cretization of the simulated domain. It means that the numerical speed of
sound differs respect the theorical one depending strongly on the orientation
of the travelling waves [Taflove (1995); Spa et al. (2009)]. Furthermore, the
computational cost of these algorithms is an important limitation since typical
scenarios, such as auditoriums or theatres, require either memory resources
or computational times which are excessively long to consider these methods
suitable for room acoustics applications.

Due to these facts, it seems reasonable to dedicate efforts in improving these
negative characteristics derived from their assumptions. More concretely, in
this Thesis we present for the first time in room acoustics the formulation of the
Fourier Pseudo-Spectral Time-Domain (PSTD) methods which improves either
the dispersion error or the computational cost of the algorithms compared with
those previously commented. This method is based on the Fourier transform
since the spatial derivatives of the PDE system are computed using the spectral
derivatives [Fornberg (1996)]. Conversely, as for FDTD methods, the temporal
derivatives of the dynamic system are given by finite difference operators. the
fact of employing these algorithms leads to less dispersive numerical simula-
tions and reduces the computational cost of the acoustic problems. In this
section, neither technical nor mathematical foundations are presented.

The first contribution of Fourier PSTD methods was presented by Liu [Liu
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(1997)] for electromagnetism problems and it was further developed for acous-
tics propagation [Liu (1998)], modelling of piezoelectric transducers [Filoux
et al. (2008)] or simulation of photonic devices [Pernice (2008)]. Nevertheless,
this method has never been applied to room acoustics applications since the
definition of suitable impedance boundary conditions for the characterisation
of real walls has not been done yet.

The following chapters are grouped in three different parts (wave propaga-
tion, source generation and locally-reacting boundary conditions) according to
the main problems that one finds in the computation of an acoustics impulse re-
sponse. We carefully review the most common formulations of FDTD and PSTD
for either the Euler or the wave discretized equations incorporating several for-
mulations of impedance boundary conditions which are properly studied. We
should remark that the formulation of numerical boundary conditions for PSTD
methods is a novel contribution into room acoustics simulations. We will see
during the course of the explanations that PSTD is capable to build appopriate
algorithms for room acoustics simulations even improving in some cases the
accuracy of the results respect to those obtained with FDTD algorithms.

3.6 Conclusion

In this chapter, we presented an overview of the most common numerical tech-
niques applied to room acoustics. Basically, the numerical methods are divided
in two big groups deppending on the considerations used to approximate the
the sound phenomenon. On the one hand, the geometrical methods treat the
sound propagation as rays travelling through the space. This assumpition allows
to build efficient algorithms, since the computational resources required for
these algorithms make possible to create real time applications so important in
computer graphics. Nevertheless, one important drawback is that phenomena
such as diffraction or diffusion, commonly observed in room acoustics, is not
obtained, since the unique manner to simulate these phenomena is using the
PDE which, in the case of sound propagation, is the wave equation. The most
representative ray-based methods are the RT, the beam-tracying and the ISM.

On the other hand, the second group of room acoustics simulations are the
wave methods in either the frquency and the time-domain. Both subgroups
are based on the PDE that defines the physical problem, in order to obtain
computational solutions of the acoustic pressure. Firstly, we presented the
wave-methods in the frequency-domain where the most important techniques
are the FEM and BEM. Both methods give accurate solutions in the steady-state
of the acoustic pressure in the frequency space. The main disadvantage of
this methods is that it is needed to carry out one different simulation by each
frequency.

For this reason, the wave-based methods in the time-domain have emerged
as a proper solution for simulating the sound propagation in the low frequency
range. These methods approximate the PDE into a simple set of update equa-
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tions that allows to obtain the acoustic propagation in enclosures with only one
simulations. In fact, we focus on the analysis of the FDTD and PSTD methods.
The first methods have been succesfully applied in room acoustics, whereas the
PSTD methods have recently emerged in this area. As titled in this Thesis, we
deal with the sound propagation, the source genertion and the locally reacting
boundary conditions which are the main problems in these type of simulations.
In Chapter 4, we formulate the most important formulations of FDTD and PSTD
algorithms. Moreover, we study the accuracy of the methods with numerical
experiments. Secondly, we present a complete analysis of the main source gen-
erations that exist for FDTD and PSTD methods observing different behavior
deppending on the source approximation used in the simulations (see Chapter
5). Finally, in Chapter 6 we overview the most important numerical boundary
conditions based on the local impedance concept. Furthermore, we present
for the first time in the acoustics, numerical boundary conditions for either the
Euler or the wave equation suportted by numerical data of remarkable accuracy.





Chapter 4

Wave Propagation Algorithms

4.1 Introduction

As we explained in Chap. 3, there are different techniques to compute an
acoustic response in a virtual environment. We carefully overviewed either the
geometrical (see Sec. 3.2) or the wave-based methods in the frequency and
in the time domain (see Sec. 3.3 and 3.4, respectively), observing the main
features of those methods. All the efforts in this Thesis are focused on the study
of the main problems (wave progation, source generation and locally reacting
boundary conditions) in the computation of an impulse response using the
time-domain numerical methods.

In this chapter, we formulate and analyze the main features of the finite-
difference in the time-domain (FDTD) (see from Sec. 4.3 to Sec. 4.5), which
has been successfully applied in acoustics [Botteldooren (1994),Wagner &
Schneider (2005),Maloney & Cummings (1995)] and the new recently emergent
Fourier pseudo-spectral time-domain methods (PSTD) [Liu (1997)] which is
properly presented in Secs. 4.6 and 4.7. Moreover, in Sec. 4.8, we present a
novel numerical analysis of the dispersion error which provides high accuracies
even for isotropic algorithms. Finally, we expose the conclusions by giving a
comparisson analysis between these methods.

4.2 Problem Overview

The starting point of both methods is the PDEs that govern the dynamical
system, which in this case is the sound propagation phenomenon. This phe-
nomenon can be completely described by using the linearized Euler equations,
Eqs (2.10)-(2.11), that are explained with detail in Sec. 2.2. Moreover, we ob-
served that the wave equation can be derived straightforwardly from this PDE,
leading to an uncoupled differential equation called the wave equation Eq.
(2.16).

To numerically solve either the Euler equations or the wave equation, the

41
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Figure 4.1: (Left) A 2D centered mesh: All the acoustic quantities are computes at each
node. (Right) a 2D staggered mesh: the yellow nodes and the red nodes are
the x and y component of the velocity respectively and pressure is computed
at the black nodes.

space and time of the simulated domain should be discretized. Therefore, the
acoustic pressure and velocity components are evaluated at discrete positions
and times. In the Eulerian simulations, we have used two different types of
meshes: the centered meshes; and the staggered meshes. For the centered
meshes, each grid point represents a position in the space where the acoustic
pressure and velocity are computed (see Fig. 4.1 (left)). On the other hand,
in staggered meshes, there are grid points that have information only of the
pressure and others of the velocity. In Fig. 4.1 (right), a 2D staggered mesh is
shown. there are three types of grid points (each type with a different color) that
represent the three different quantities measured. Yellow and red points carry
information about vx and vy, respectively, and black dots compute p. Conversely,
for the simulations based on the wave equation, centered meshes are required
since it is only computed the information of the acoustic pressure.

Once discretized the space and time, the partial derivatives of Eqs. (2.10)-
(2.11) and Eq. (2.16) can be easily approximated. In this section we present
the basic concepts in FD and Fourier PS methods, in order to understand the
formulation of several algorithms discussed in this chapter.

Finite Difference Methods

Finite Differences Methods (FDM) are the most common numerical methods for
solving PDE systems. There are many fields where FDM have been successfully
applied: Computer Graphics, Electromagnetism, Seismology, Solid State Physics
(Elasticity Theory) and also in Meteorologic predictions. In all these fields, FDM
have provided very good and useful results. We believe that for new multimedia
applications, FDM will play an important role, mostly in the low frequency
domain.
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The basic idea of FDM is simple: derivatives in differential equations are
written in terms of discrete quantities of dependent and independent variables,
resulting in simultaneous algebraic equations with all unknowns prescribed at
discrete mesh points for the entire domain. To illustrate this, let us consider a
generic function u(x) and its derivative at point x:

∂u(x)
∂x

= lim
∆x→0

u(x+∆x)−u(x)
∆x

, (4.1)

if u(x+∆x) is expanded in Taylor series about u(x) [Hoffman (1992)], we obtain:

u(x+∆x) = u(x)+∆x
∂u(x)

∂x
+

(∆x)2

2
∂ 2u(x)

∂x2 +
(∆x)3

3!
∂ 3u(x)

∂x3 + ... (4.2)

Substituting Eq. (4.2) in Eq. (4.1):

∂u(x)
∂x

= lim
∆x→0

(
∂u(x)

∂x
+

∆x
2

∂ 2u(x)
∂x2 + ...

)
, (4.3)

and from Eq. (4.2) it can be written:

u(x+∆x)−u(x)
∆x

=
∂u(x)

∂x
+

∆x
2

∂ 2u(x)
∂x2 + ... =

∂u(x)
∂x

+O(∆x) . (4.4)

The derivative, Eq. (4.4), is of first order in ∆x, showing that the truncation error
O(∆x) goes to zero with the first power in ∆x. This finite difference approxima-
tion exposed is just the first order accuracy of finite differences method.

Considering Fig. 4.2, we can relate the value of the function u at the grid
points i + 1 and i− 1 with the value of u and its derivatives at the grid point i
using the Taylor expansion:

ui+1 = ui +∆x
(

∂u
∂x

)
i
+

(∆x)2

2

(
∂ 2u
∂x2

)
i
+

(∆x)3

3!

(
∂ 3u
∂x3

)
i
+ ... (4.5)

ui−1 = ui−∆x
(

∂u
∂x

)
i
+

(∆x)2

2

(
∂ 2u
∂x2

)
i
− (∆x)3

3!

(
∂ 3u
∂x3

)
i
+ ... (4.6)

Rewriting Eq. (4.5), we obtain the forward difference relation (first order in
accuracy): (

∂u
∂x

)
i
=

ui+1−ui

∆x
+O(∆x) . (4.7)

It corresponds to number 1 in Fig. 4.2. Likewise, from Eq. (4.6), the backward
difference relation (first order in accuracy) is obtained:(

∂u
∂x

)
i
=

ui−ui+1

∆x
+O(∆x) , (4.8)
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1
2

3

Figure 4.2: Finite difference approximation. 1 represents the forward difference; 2 repre-
sents the backward difference; and, finally, 3 represents the central difference.

it corresponds to number 2 in Fig. 4.2. A central difference relation arises from
subtracting Eq. (4.6) from Eq. (4.5) (number 3 in Fig. 4.2):(

∂u
∂x

)
i
=

ui+1−ui−1

2∆x
+O(∆x2) . (4.9)

Central difference give a second order of truncation error, instead of forward
and backward difference that gives a first order of truncation error. Finally,
adding Eqs. (4.5) and (4.6), we obtain:

ui+1−2ui +ui−1

∆x2 =
(

∂ 2u
∂x2

)
i
+

(∆x)2

12

(
∂ 4u
∂x4

)
i
+ ... (4.10)

This leads to the finite difference formula for the second derivative with second
order accuracy, (

∂ 2u
∂x2

)
i
=

ui+1−2ui +ui−1

∆x2 +O(∆x2) . (4.11)
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Fourier Psuedo-Spectral Methods

The difference between the common FDTD methods and the Fourier Pseudo-
Spectral Time-Domain methods lies in the treatment of the spatial derivatives
which in the case of PSTD are computed by using the discrete Fourier transforms
Eqs. (2.61) and (2.62) defined in Sec. 2.3.4. In this case, we apply the Fourier
transform over the spatial coordinates, instead of those presented in Sec. 2.3.4
that were computed over the time axis. To illustrate this, let us consider a one
dimensional domain of size L and an evolving physical quantity u(x, t). Consider
that ∆x = L/Nx is used as the cell size and Nx is the number of grid points. Then,
according to the fourth property of the Fourier transform presented in Sec. 2.3.3,
the approximation of the spatial derivative can be written as:

∂u(x, t)
∂x

≈F−1
x

[
ι

2πnx

Nx∆x
Fx[u |n: ]

]
, (4.12)

where Fx and F−1
x denote the Fourier transform over the x-axis and its inverse

respectively; nx is the index of the Fourier transform. More concretely, the spatial
derivative at the locations x = i∆x, i = 0,1, ...,Nx−1, is given by:(

∂u(x, t)
∂x

)
x=i∆x

=
1
L

Nx/2−1

∑
m=−Nx/2

ιkmU |nmeιkmi∆x , (4.13)

where km = 2πm/L, and U(m) is the Fourier series

U |nm = ∆x
Nx−1

∑
i=0

u|ni e−ιkmi∆x . (4.14)

Interestingly, the discrete Fourier transforms in Eqs. (4.13) and (4.14) can be
obtained efficiently by using a FFT algorithm [Cooley & Tukey (1965)], with a
number of operations of the order of (Nx log2 Nx). It is worth mentioning the fact
that from the Nyquist sampling theorem, the derivative in Eq. (4.13) is exact
for ∆x ≤ λ/2 (λ being the wavelength) which implies that even with two cells
per wavelength, the PSTD method does not produce phase error due to the
spatial discretization. This makes the PSTD method far better than the more
common FDTD methods for the numerical study of high-frequency problems
or if long-time solutions are needed [Li et al. (2000)].

4.3 The Classical Leap-Frog Scheme

The most important basic formulation of the Yee algorithm [Yee (1966)] applied
to acoustics was presented in 1994 [Botteldooren (1994)], and further developed
for room acoustics in 1995 [Botteldooren (1995)].

The finite differences in the time domain approximation uses a Cartesian
staggered grid as in the original paper by [Yee (1966)] (see Fig. 4.1 (right)) with
pressure and particle velocity components as unknown quantities. The acoustic
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pressure is located at x̃ = (i∆x, j∆y,k∆z) at a discrete time t̃ = n∆t, where ∆x,
∆y and ∆z are the spatial discretization and ∆t is the time discretization. The
indexes i, j and k mark the positions into the mesh; and finally, the index n refers
to the time step. Conversely, the three components of the particle velocity are
determined at positions,

vx(x,y,z, t) = vx ((i+1/2)∆x, j∆y,k∆z) ,

vy(x,y,z, t) = vy (i∆x,( j +1/2)∆y,k∆z) ,

vz(x,y,z, t) = vz (i∆x, j∆y,(k +1/2)∆z) , (4.15)

at intermediate times t = (n + 1/2)∆t. Once the numerical domain is defined,
the derivatives of the Euler equations can be approximated by finite difference
techniques. On the one hand, the temporal derivatives of the velocity are
approximated with the backward difference (see Eq. (4.6)) and the temporal
derivative for the pressure employs the forward difference (see Eq. (4.5)). On
the other hand, the spatial derivatives of the velocity and the pressure are also
obtained with the backward and the forward difference, respectively. With these
assumptions, the FDTD scheme for the Euler equations of acoustics become:

vx|n+1/2
i+1/2, j,k = vx|n−1/2

i+1/2, j,k−a1(p|ni+1, j,k− p|ni, j,k) ,

vy|n+1/2
i, j+1/2,k = vy|n−1/2

i, j+1/2,k−a1(p|ni, j+1,k− p|ni, j,k) ,

vz|n+1/2
i, j,k+1/2 = vz|n−1/2

i, j,k+1/2−a1(p|ni, j,k+1− p|ni, j,k) ,

p|n+1
i, j,k = p|ni, j,k−a2(vx|n+1/2

i+1/2, j,k− vx|n+1/2
i−1/2, j,k + vy|n+1/2

i, j+1/2,k− vy|n+1/2
i, j−1/2,k

+ vz|n+1/2
i,, j,k+1/2− vz|n+1/2

i, j,k−1/2) , (4.16)

where a1 = ∆t
ρδ

and a2 = ρc2 ∆t
δ

are the stability constants of our problem. Observe
that we have considered (as in the paper by Botteldooren) that ∆x = ∆y = ∆z = δ .
Finally, note that this algorithm is second order accuracy in time and space.

One important issue common to all FDTD-based algorithms is that they
cause a nonphysical dispersion of the simulated waves [Trefethen (1982)]. This
error affects the numerical speed of sound, cnum, which is different than the
sound velocity, c. The dispersion error can be derived from the standard Von-
Neumann analysis [Hoffman (1992)], which assumes numerical planar waves
of the form

p|ni, j,k = p0eι(k·x̃−ω t̃) (4.17)

v|ni, j,k = v0eι(k·x̃−ω t̃) , (4.18)

where k is the wave number defined in Sec. 2.2.2. These equations are intro-
duced in the numerical scheme Eq. (4.16) obtaining an homogeneous algebraic
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system

M

(
v0
p0

)
= 0 , (4.19)

that has solution if and only if the determinant of M (i.e. the mass matrix)
is equal to 0. It arises an expression which can be written in terms of the
Courant stability number, S, the number of cells per wavelength N

λ= λ

δ

, and

the orientation of the solid angle. In this case, the dispersion relation reads as
follows,

S−2 sin2
(

πS
Nλ

)
= sin2

(
πc

Nλ cnum
cosθ sinφ

)
+ sin2

(
πc

Nλ cnum
sinθ sinφ

)
+sin2

(
πc

Nλ cnum
cosφ

)
. (4.20)

Note that θ and φ are the angles derived from the spherical coordinates. A
straightforward analysis of Eq. (4.20) reveals a number of interesting properties:
c/cnum tends to 1 in the continuum limit (Nλ → ∞); the scheme is second order
accurate in terms of isotropy;[Wagner & Schneider (2005)] finally, letting S = 1√

2
,

which is the maximum value of S for this algorithm to be stable,[Botteldooren
(1994)] there is no dispersion error at θ = 45◦.

Observe that, for this numerical algorithm, the dispersion relation depends
strongly in the frequency and the orientation of the planar waves. It means
that cnum has a different behavior than c, the real sound velocity, which is
isotropic and independent of the frequency. These variations of the numerical
sound velocity introduce an inherent error in the computation of any acoustic
response, even getting critical for long reverberation times or large enclosures.

Due to the discretization, any numerical algorithm is stable only for certain
values of δ and ∆t. More concretely, the stability criterium is fixed by the Courant
stability number,

S = c
∆t
δ
≤ 1√

D
, (4.21)

where D represents the dimension which in this case is 3.
One of the main problems of this algorithm is that it requires staggered

meshes for its formulation. In fact, when the geometry of the numerical domain
is sufficiently complex, the definition of impedance walls is strongly constrained
since they can only be defined at velocity nodes. Therefore, it is important to re-
define the staggered leap-frog scheme in order to get a more flexible algorithms
in terms of the mesh generation. More concretely, Liu [Liu (1996)] presents a
methodology to convert staggered FDTD algorithms into their centered version.
These new algorithms keep exactly the same dispersion relation, Eq. (4.20),
Courant stability number, (Eq. 4.21), and the accuracy than the staggered ones
but, in this case, they are defined by using a centered cubic mesh where the
pressure and the velocity components are located at (i, j,k) at a time step n.
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More specifically, to obtain the same dispersion and accuracy properties than
for the staggered algorithms, it is combined the forward and the backward finite
differences leading to the following numerical scheme:

vx|n+1
i, j,k = vx|ni, j,k−a1(p|ni+1, j,k− p|ni, j,k) ,

vy|n+1
i, j,k = vy|ni, j,k−a1(p|ni, j+1,k− p|ni, j,k) ,

vz|n+1
i, j,k = vz|ni, j,k−a1(p|ni, j,k+1− p|ni, j,k) ,

p|n+1
i, j,k = p|ni, j,k−a2

(
vx|n+1

i, j,k− vx|n+1
i−1, j,k + vy|n+1

i, j,k− vy|n+1
i, j−1,k

+ vz|n+1
i,, j,k− vz|n+1

i, j,k−1

)
. (4.22)

It is important to highlight the relevance of this analogous formulation, since
it is demanded for the definition of the locally reacting boundary conditions
explained in Sec. 6.5.2. Finally, we should note that for room acoustics applica-
tions it is more appropriate to create numerical algorithms based on the wave
equation since, in the computation of impulse responses, we only need the
information of the acoustic pressure. A similar formulation of the finite differ-
ences algorithm based on the wave equation is obtained using a centered mesh
where the second order space and time derivatives of the PDE are approximated
with second order finite derivatives Eq. (4.11) leading to the following scheme

p|n+1
i, j,k = 2p|ni, j,k− p|n−1

i, j,k− c2 ∆2t
δ 2

(
p|ni+1, j,k + p|ni−1, j,k + p|ni, j+1,k + p|ni, j−1,k

+p|ni, j,k+1 + p|ni, j,k−1−6pn
i, j,k

)
. (4.23)

Note that this algorithm has exactly the same dispersion relation and Courant
stability number than the numerical formulations of the Euler equations pre-
sented in both, staggered and centered meshes.

4.4 A Parametric FDTD Algorithm

In this section, we present a family of algorithms [Wagner & Schneider (2005)]
which are an extension of the leap-frog scheme and improve the accuracy of the
dispersion error in terms of isotropy. The algorithm is also defined in a staggered
cubic mesh with the velocity and the acoustic pressure computed at interleaved
positions and times. In this case, the velocity update equation takes the same
form than for the leap-frog scheme. On the other hand, the spatial derivatives
of the pressure update equation are approximated with a combination of the
forward difference and a next-to-nearest neighbors difference,

∇tot = (1−Ψ)∇+Ψ∇
iso . (4.24)
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Both operators are weighed by an adimensional constant Ψ defined in the range
of [0,1/2].

In order to specify presicely a finite-difference operator ∇iso, it is convenient
to define the following discrete operators. We inherently assume a Cartesian
grid of nodes at which samples of the fields are available. The shift operator
Sn(a) acting on a field f (x,y,z, t) shifts the variables n on f by aδn, that is the grid
sparcing in the n direction. Thus, for example, Sn(a) f (x,y,z, t) = f (x+aδx,y,z, t).
With the shift operator the central finite difference are

Dn =
Sn( 1

2 )−Sn(− 1
2 )

δn
, n ∈ (x,y,z, t) . (4.25)

For the present algorithm the following averaging operators are also needed

An =
Sn(1)+Sn(−1)

2
, n ∈ (x,y,z, t) . (4.26)

For example, the x component of the next-to-nerarest neightbour difference
operator, ∇iso, averages four nodes by taking the finite difference of the average
of the opposite face,

∇
iso
x = Dx

Ay +Az

2
=

(Sx( 1
2 )−Sx(− 1

2 ))(Sy(1)+Sy(−1)+Sz(1)+Sz(−1))
4δ

. (4.27)

In three dimensions, the explicit form of this family of algorithms reads as
follows,

vx|n+1/2
i+1/2, j,k = vx|n−1/2

i+1/2, j,k−a1(p|ni+1, j,k− p|ni, j,k) ,

vy|n+1/2
i, j+1/2,k = vy|n−1/2

i, j+1/2,k−a1(p|ni, j+1,k− p|ni, j,k) ,

vz|n+1/2
i, j,k+1/2 = vz|n−1/2

i, j,k+1/2−a1(p|ni, j,k+1− p|ni, j,k) ,

p|n+1
i, j,k = p|ni, j,k− (1−Ψ)a2

(
vx|n+1/2

i+1/2, j,k− vx|n+1/2
i−1/2, j,k + vy|n+1/2

i, j+1/2,k

− vy|n+1/2
i, j−1/2,k + vz|n+1/2

i,, j,k+1/2− vz|n+1/2
i, j,k−1/2

)
−Ψ

a2

4

(
vx|n+1/2

i+1/2, j+1,k

+ vx|n+1/2
i+1/2, j−1,k− vx|n+1/2

i−1/2, j+1,k− vx|n+1/2
i−1/2, j−1,k + vx|n+1/2

i+1/2, j,k+1

+ vx|n+1/2
i+1/2, j,k−1− vx|n+1/2

i−1/2, j,k+1− vx|n+1/2
i−1/2, j,k−1 + vy|n+1/2

i+1, j+1/2,k

+ vy|n+1/2
i−1, j+1/2,k− vy|n+1/2

i+1, j−1/2,k− vy|n+1/2
i−1, j−1/2,k + vy|n+1/2

i, j+1/2,k+1

+ vy|n+1/2
i, j+1/2,k−1− vy|n+1/2

i, j−1/2,k+1− vy|n+1/2
i, j−1/2,k−1 + vz|n+1/2

i+1, j,k+1/2

+ vz|n+1/2
i−1, j,k+1/2− vz|n+1/2

i+1, j,k−1/2− vz|n+1/2
i−1, j,k−1/2 + vz|n+1/2

i, j+1,k+1/2

+ vz|n+1/2
i, j−1,k+1/2− vz|n+1/2

i, j+1,k−1/2− vz|n+1/2
i, j−1,k−1/2

)
. (4.28)



50 CHAPTER 4. WAVE PROPAGATION ALGORITHMS

First, note that the leap-frog algorithm (4.16), is recovered when Ψ = 0. Also,
observe that this algorithm requires more operations per iteration than the
classical leap-frog. Moreover, the dispersion relation is obtained similarly than
for the leap-frog scheme. In three dimensions, the dispersion relation reads,

S−2 sin2
(

πS
Nλ

)
=

[
1−Ψ+

Ψ

2

(
cos
(

2πcsinθ sinφ

Nλ cnum

)
+ cos

(
2πccosφ

Nλ cnum

))]
×sin2

(
πccosθ sinφ

Nλ cnum

)
+
[

1−Ψ+
Ψ

2

(
cos
(

2πccosθ sinφ

Nλ cnum

)
+cos

(
2πccosφ

Nλ cnum

))]
sin2

(
πcsinθ sinφ

Nλ cnum

)
+
[

1+Ψ

+
Ψ

2

(
cos
(

2πcsinθ sinφ

Nλ cnum

)
+ cos

(
2πccosθ sinφ

Nλ cnum

))]
×sin2

(
πccosφ

Nλ cnum

)
. (4.29)

Observe that these algorithms depend on S, Nλ , the orientation of the plane
waves and, moreover, the adimensional parameter Ψ. When Ψ = 1/3 it arise an
algorithm which leads an accuracy of second order in the derivatives and fourth
order in isotropy; more specifically, cnum = c+O(∆x6,∆t6). It means that, under
these assumptions, cnum has almost an isotropic behavior and, therefore, the
acoustic responses computed with this algorithm exihibit a numerical disper-
sion error that only depends on the frequency of the plane waves. This error
can be easily corrected from the acoustic response instead of the one obtained
with the classical leap-frog scheme. On the other hand, the computation of the
next-to-nearest difference increases the Courant stability number which can be
found by using complex frequency analysis leading to the following expression:

S =


1√
3

for Ψ = 0, the leap-frog scheme,
1√

3(1−2Ψ)
for 0≤Ψ≤ 1

4 ,

1√
2(1−Ψ)

for 1
4 ≤Ψ≤ 1

2 .

(4.30)

In order to obtain a centered version of the family of algorithms, Eq. (4.28), it
is essential to define the acoustic quantities in a time and space centered mesh.
In this case, all the acoustic information is evaluated either the same time and
position and the spatial and temporal derivatives are approximated through
first order finite difference operators taking the following form:
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vx|n+1
i, j,k = vx|ni, j,k−a1(p|ni+1, j,k− p|ni, j,k) ,

vy|n+1
i, j,k = vy|ni, j,k−a1(p|ni, j+1,k− p|ni, j,k) ,

vz|n+1
i, j,k = vz|ni, j,k−a1(p|ni, j,k+1− p|ni, j,k) ,

p|n+1
i, j,k = p|ni, j,k− (1−Ψ)a2

(
vx|n+1

i, j,k− vx|n+1
i−1, j,k + vy|n+1

i, j,k− vy|n+1
i, j−1,k

+ vz|n+1
i,, j,k− vz|n+1

i, j,k−1

)
−Ψ

a2

4

(
vx|n+1

i, j+1,k + vx|n+1
i, j−1,k− vx|n+1

i−1, j+1,k

− vx|n+1
i−1, j−1,k + vx|n+1

i, j,k+1 + vx|n+1
i, j,k−1− vx|n+1

i−1, j,k+1− vx|n+1
i−1, j,k−1 + vy|n+1

i+1, j,k

+ vy|n+1
i−1, j,k− vy|n+1

i+1, j−1,k− vy|n+1
i−1, j−1,k + vy|n+1

i, j,k+1 + vy|n+1
i, j,k−1− vy|n+1

i, j−1,k+1

− vy|n+1
i, j−1,k−1 + vz|n+1

i+1, j,k + vz|n+1
i−1, j,k− vz|n+1

i+1, j,k−1− vz|n+1
i−1, j,k−1 + vz|n+1

i, j+1,k

+ vz|n+1
i, j−1,k− vz|n+1

i, j+1,k−1− vz|n+1
i, j−1,k−1

)
. (4.31)

Observe that the velocity update equations employ the forward difference for
the temporal and spatial derivatives and conversely, the pressure update equa-
tion uses the backward difference for both derivatives. Moreover, note that for
Ψ = 0, the centered leap-frog scheme is recovered. Finally, remark that this
family of centered algorithms achieves the same Courant stability number, Eq.
(4.30), and the dispersion relation, Eq. (4.29), than for the staggered version.

4.5 The MacCormarck Algorithm

In this section, we present the MacCormack algorithm, which is a two-step
explicit method.[Hoffman (1992)] We have chosen this scheme for different
reasons: on the one hand, this is a very popular scheme for dealing with Navier-
Stokes equations and its performance for acoustic simulations have been only
recently investigated; on the other hand, unlike the algorithms studied in the
preceding sections, it uses a centered mesh (i.e. pressure and velocities are
computed at the same points of the mesh).

Consider that the space is discretized on a centered cubic mesh. The nodes
of the grid i, j,k at a time n are characterized by the following four quantities:
velocity v|ni, j,k = (vx,vy,vz)|ni, j,k and pressure p|ni, j,k. The MacCormack method
consist on integrating the equations of motion in two steps. The first step is
given by:
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v̂x|n+1
i, j,k = vx|ni, j,k−a1(p|ni+1, j,k− p|ni, j,k) ,

v̂y|n+1
i, j,k = vy|ni, j,k−a1(p|ni, j+1,k− p|ni, j,k) ,

v̂z|n+1
i, j,k = vz|ni, j,k−a1(p|ni, j,k+1− p|ni, j,k) ,

p̂|n+1
i, j,k = p|ni, j,k−a2

(
vx|ni+1, j,k− vx|ni, j,k + vy|ni, j+1,k− vy|ni, j,k + vz|ni, j,k+1− vz|ni, j,k

)
,

(4.32)

Note that (v̂x, v̂y, v̂z, p̂) are auxiliary quantities which are used in the next step
that reads,

vx|n+1
i, j,k =

1
2

(
vx|ni, j,k + v̂x|n+1

i, j,k

)
− a1

2

(
p̂|n+1

i, j,k− p̂|n+1
i−1, j,k

)
,

vy|n+1
i, j,k =

1
2

(
vy|ni, j,k + v̂y|n+1

i, j,k

)
− a1

2

(
p̂|n+1

i, j,k− p̂|n+1
i, j−1,k

)
,

vz|n+1
i, j,k =

1
2

(
vz|ni, j,k + v̂z|n+1

i, j,k

)
− a1

2

(
p̂|n+1

i, j,k− p̂|n+1
i, j,k−1

)
,

p|n+1
i, j,k =

1
2

(
p|ni, j,k + p̂|n+1

i, j,k

)
− a2

2

(
v̂x|n+1

i, j,k− v̂x|n+1
i−1, j,k + v̂y|n+1

i, j,k− v̂y|n+1
i, j−1,k + v̂z|n+1

i, j,k

− v̂z|n+1
i, j,k−1

)
. (4.33)

The algorithm (4.32)-(4.33) is proposed as a numerical integration scheme
of the linear equations of the acoustic field. Such a scheme has never been ana-
lyzed in full detail in this context. The dispersion relation in three dimensions
is sufficiently complex to render it almost unusable. For illustrative purposes,
the two dimensional MacCormack algorithm is analyzed. From the standard
Von-Newmann analysis, we obtain to the following dispersion relation:

0 = −1
4

e−ιk∆(cosθ+sinθ)(−1+ eιk∆xcosθ )2(−1+ eιk∆xsinθ )2S4

+
(

1− e−ιω∆tS2[−1+ cos(k∆xcosθ)]
)(

1− e−ιω∆t +S2[−1

+ cos(k∆xsinθ)]
)(

1− e−ιω∆tS2[−2cos(k∆xcosθ)+ cos(k∆xsinθ)]
)

+ S2 sin2(k∆xcosθ)
[
[1− e−ιω∆tS2(−1+ cos(k∆xsinθ))]sin(k∆xcosθ)

− 1
2

eιk∆xcosθ (−1+ eιk∆xcosθ )(−1+ eιk∆xsinθ )S2 sin(k∆xsinθ)
]

− 1
2

S2 sin(k∆xsinθ)
(

S2 sin(k∆xcosθ)[−1+ eιk∆xcosθ ][−1+ eιk∆xsinθ ]

− 2
[
−1+ e−ιω∆t +S2−S2 cos(k∆xcosθ)

]
sin(k∆xsinθ)

)
, (4.34)
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The equality of Eq. (4.34) can only be satisfied for complex values of k = α + ιβ .
The velocity of propagation of the simulated wave is then related to the real part
of k via cnum = 2πν

α
. On the other hand, the imaginary part of k corresponds to

a (mild) exponential damping of the plane waves along their propagation in
the mesh. Its non-zero value is due to the fact that the MacCormack scheme is
not perfectly conservative. Note that Eq. (4.34) is a rather complicated implicit
equation for cnum. Finally, the Courant stability number of the MacCormack
scheme is obtained through a conventional analysis leading to exactly the same
relation than for the leap-frog scheme, Eq. (4.21).

4.6 The PSTD Algorithm

Although the Fourier spectral PSTD method introduced by Liu [Liu (1997)]
was originally formulated for the numerical solution of Maxwell’s equations,
it can be easily adapted to acoustic wave propagation [Liu (1998)]. The basic
formulation of the algorithm used a centered cubic mesh where velocity and
pressure are located at nodes (i, j,k). Conversely, both quantities are computed
at interleaved time steps, so the velocities are computed at a time step n+1/2
and the pressure at n. The spatial derivatives of the partial differential equations
are approximated using the pseudo-spectral techniques explained in Sec. 4.2
and the temporal derivatives use the first order finite difference operators. In
three dimensions, the explicit form of the PSTD scheme for the linear Euler
equations is given by:

vx|n+1/2
i, j,k = vx|n−1/2

i, j,k −
∆t
ρ

F−1
x

[
ι

2πnx

Nx∆x
Fx[p|n:, j,k]

]
,

vy|n+1/2
i, j,k = vy|n−1/2

i, j,k −
∆t
ρ

F−1
y

[
ι

2πny

Ny∆y
Fy[p|ni,:,k]

]
,

vz|n+1/2
i, j,k = vz|n−1/2

i, j,k −
∆t
ρ

F−1
z

[
ι

2πnz

Nz∆z
Fz[p|ni, j,:]

]
,

p|n+1
i, j,k = p|ni, j,k−ρc2

∆tF−1
x

[
ι

2πnx

Nx∆x
Fx[vx|n+1/2

:, j,k ]
]

−ρc2
∆tF−1

y

[
ι

2πny

Ny∆y
Fy[vy|n+1/2

i,:,k ]
]

−ρc2
∆tF−1

z

[
ι

2πnz

Nz∆z
Fz[vy|n+1/2

i,k,: ]
]

, (4.35)

where Fµ and F−1
µ denote the Fourier transform over the µ-axis and its inverse

respectively; nx, ny and nz are the index of the Fourier transforms, and the :
symbol denotes all µ-coordinate along the straightline cut through the space
lattice. Finally, Nµ are the total grid points over the µ-axis.

A direct consequence of Eq. (4.35) is that the stability criterium does not de-
pend on Nλ , which may be set to a value as low as 2. Similarly, from a dispersion
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error point of view, PSTD methods exhibit a perfectly isotropic relation, i.e. the
ratio c/cnum does not depend on the propagation angle θ . More specifically, for
large enough numerical domains:

c num

c
=

π

NT sin
(

π

NT

) , NT :=
T
∆t

, (4.36)

where T is the period of the wave and NT controls the time discretization. A
standard Von Neumann analysis [Hoffman (1992)] yields the following Stability
Courant number, S, for the PSTD method,

S = c
∆t
δ
≤ 2

π
√

D
, (4.37)

where D represents the dimension (in the case of Eq. (4.35) is 3). Note that S in
PSTD method is smaller than in any algorithm based on FDTD methods, which
means that PSTD is stable for larger cell sizes than FDTD (with the same time
discretization step).

As we show before, this algorithm is defined in a spatial centered cubic mesh
where the pressure and the velocity components are computed at interleaved
time steps. To build the centered version of this algorithm, it is necessary to
define the acoustic quantities also at the same time step. Hence, As for the
centered version of FDTD algorithms, the temporal derivatives are approxi-
mated similarly with the combination of the forward and the backward finite
difference operators, obtaining the following analogous algorithm:

vx|n+1
i, j,k = vx|ni, j,k−

∆t
ρ

F−1
x

[
ι

2πnx

Nx∆x
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]
,
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i, j,k = vy|ni, j,k−

∆t
ρ

F−1
y

[
ι

2πny

Ny∆y
Fy[p|ni,:,k]

]
,

vz|n+1
i, j,k = vz|ni, j,k−

∆t
ρ

F−1
z

[
ι

2πnz

Nz∆z
Fz[p|ni, j,:]

]
,

p|n+1
i, j,k = p|ni, j,k−ρc2

∆tF−1
x

[
ι

2πnx

Nx∆x
Fx[vx|n+1

:, j,k ]
]

−ρc2
∆tF−1

y

[
ι

2πny

Ny∆y
Fy[vy|n+1

i,:,k ]
]
−ρc2

∆tF−1
z

[
ι

2πnz

Nz∆z
Fz[vy|n+1

i,k,: ]
]

, (4.38)

observe that the velocity update equations use the forward difference and the
pressure update equation employs the backward difference to approximate the
temporal derivatives of the Euler equations. Once again, this numerical algo-
rithm presents exactly the same Courant stability number and the dispersion
error than the time staggered algorithm presented by Liu. [Liu (1997)]



4.7. ADDITIONAL REMARKS 55

Finally, as for the FDTD leap-frog scheme, we present the formulation of
the PSTD algorithm based on the wave equation since it is more convenient in
room acoustics applications

p|n+1
i, j,k = −p|n−1

i, j,k +2p|ni, j,k +(c∆t)2
(

F−1
x

[(
ι

2πnx

Nx∆x

)2

Fx[p|n:, j,k]

]

+ F−1
y

[(
ι

2πny

Ny∆y

)2

Fy[p|ni,:,k]

]
+F−1

z

[(
ι

2πnz

Nz∆z

)2

Fz[p|ni, j,:]

])
,

(4.39)

Note that this numerical scheme leads to the same dispersion error and Courant
stability number than the PSTD algorithms based on the Euler equations.

4.7 Additional Remarks

However, one important drawback of PSTD methods is that the computation of
the spectral derivative assumes a periodic distribution of the acoustic quantities
over the numerical domain. If the distribution is non periodic, the accuracy
of the spectral derivative is affected by an error called the Gibbs phenomenon.
This error becomes critical in any numerical simulation even for space and time
discretizations fitted by the Courant stability number, Eq. (4.37).
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Figure 4.3: A non periodic sinusoidal function f (x) (the left one) and its derivative com-
puted with spectral analysis(the right one). Observe that the Gibbs phe-
nomenon appears at the edges of the derivated function.

In Fig. 4.3 a pedagogical example is shown: A non periodic sinusoidal distri-
bution f (x) is derived by using the Fourier techniques. The resultant derivative
is plotted in Fig. 4.3 (right). Observe that the Gibbs phenomenon appears
at the edges of the derivated function since f (x) is defined as a non periodic
function. Therefore, numerical simulations based on Fourier techniques can
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only be stable if some periodic boundary conditions are defined at the edges of
the numerical domain (i.e. p = v = 0).

However, some applications, such as room acoustic modelling and aeroa-
coustic, require to define partially absorbing boundary conditions through an
impedance. The performance of these reflecting boundary conditions in PSTD
methods has not been done yet, since to define it as a problem with different
domains causes serious difficulties in their implementation [Fornberg (1996)].

n̂

n̂

y

x

Figure 4.4: Representation of a typical room acoustics simulation. In PSTD methods,
PML nodes are added next to the BC nodes in order to avoid the Gibbs
phenomenon absorbing the transmitted field in the outward direction n̂.

This can be mostly avoided through the definition of some extra nodes be-
yond the contours of the discretised domain. These nodes are governed by
absorbing boundary conditions such as the Perfectly Matched Layer (PML). Ba-
sically, the PML equations absorb smoothly the transmitted energy by keeping
to 0 the pressure (and the velocity) of the new edges, and consequently getting
a periodic distribution of the acoustic quantities. In Fig. 4.4, it is illustrated a
typical PSTD numerical simulation in room acoustics. Commonly, a punctual
source is located somewhere within the nodes governed by the propagation
algorithm. Moreover, the walls of the numerical enclosure are characterized by
another update equation which takes into account the geometry of the walls
and the acoustic properties of the materials (i.e. numerical BCs). Therefore,
In PSTD methods, it should be added beyond the impedance boundary layers



4.8. NUMERICAL VALIDATION IN 2D ALGORITHMS 57

some extra PML nodes, in order to obtain a periodic distribution of the acoustic
quantities at the edges of the simulated domain. As mentioned, PML nodes ab-
sorb the acoustic field transmitted in the outward direction n̂ by the impedance
boundary layer.

The first formulation of the PML for the Euler equations was presented in
the context of electromagnetism [Berenger (1996)]. The Perfectly Matched Layer
method for the Yee algorithm was presented also in 1995 [Maloney & Cummings
(1995)] for acoustic and elastic modelling. It was further developed for the
acoustics using either FDTD methods [Hu (1996)] or PSTD algorithm [Liu
(1999)]. Conversely, using the wave equation, PML have only been presented for
FDTD methods [Zhou & Huang (2001)] since their formulation is considerably
more difficult than the Eulerian PML equations. Although these extra nodes
increase the computational cost of the algorithm, It is reported in the literature,
[Zhou & Huang (2001); Liu (1999)] that only of the order of 16 nodes are required
to absorb completely all the acoustic field. If big enclosures are considered,
such as concert halls or theatres, the increase of the computational cost due to
the PMLs can be considered irrelevant. We left in the appendix A the numerical
algorithms for different formulations.

4.8 Numerical Validation in 2D Algorithms

In this section we present a general numerical methodology for computing
c/cnum via simulations of any FDTD algorithm in 2D. In the method presented,
a numerical plane wave is employed to validate dispersion relations as originally
proposed by Zhao and Mäkinen [Zhao & Mäkinen (2004)]. In this paper, the
authors show that a plane wave is more suitable than the commonly used
point source [Namiki & Ito (2000); Sun & Trueman (2003)], for the purpose of
verifying dispersion relations numerically. Our proposal allow for a statistical
determination of the numerical speed of sound and is suitable for any FDTD
scheme and for reasonable low values of the number of cells per wavelength.

We apply our methodology to qualitatively different types of FDTD schemes:
the original algorithm by Yee [Yee (1966)] and its recent extensions;[Wagner
& Schneider (2005)] the acoustic version of the MacCormack scheme;[Garriga
et al. (2005)] and the recently developed pseudospectral techniques (PSTD) [Liu
(1997)].

The results obtained prove that the methodology provides very accurate
computations of c/cnum even for low cells per wavelength. This, together with
the fact that it is easily generalizable to 3D, makes it a suitable technique to
faithfully research on numerical dispersion errors in the implementation of
FDTD algorithms in acoustic problems.

In this section, we present a general methodology for computing the numeri-
cal speed of sound in two-dimensional FDTD schemes. The method consists on
creating plane waves travelling in different orientations and following their prop-
agation throughout the mesh. The plane waves are created by exciting a set of
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Figure 4.5: Upper row: schematic representation of wavefronts propagating within the
mesh, at a 26 degrees angle with respect to the axes. Lower row: the result of
sampling the pressure field along a line parallel to the propagation direction.
Left column: only points directly over such line are considered, leading to a
small density of sampling points (square dots). Right column: all other mesh
points are projected, leading to a larger sampling density.

mesh points with a time-varying sinusoidal pressure signal p|ni, j = p0 sin(2πνn∆t).
Here, ∆t is the time discretization interval, n is the time step, (i, j) are the two-
dimensional spacial coordinates and ν the frequency of the plane wave. We
always set p0 = 100 Pa for illustrative purposes. The orientation of the plane
waves, i.e. the angle θ between the wavefront and the x-axis, is fixed by selecting
the excited points to be those for which tanθ = j

i . This, in turn, implies that the
wavefront propagates with velocity parallel to the vector ( j,−i).

In order to avoid numerical reflections and to obtain accurate results, we
have considered huge lattices 1, with large Perfectly Matched Layers [Berenger
(1996)] (PML) at the boundaries. We have chosen PML absorbing boundary
conditions not only for their good performance [Yuan et al. (1997)] but also
for preserving the numerical stability of the algorithms. Finally, we measure

1Each dimension is about one hundred times the wavelength
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the pressure in a region 2 near the center of the mesh at a time sufficiently
short to ensure stationarity. Considering only the pressure at a set of points
along the direction of propagation ( j,−i) as shown in Fig. 4.5 (upper-left hand
corner) we obtain a snapshot like the one in Fig. 4.5 (lower-left hand corner).
However, it is worth emphasizing that for most angles, the number of points
per wavelength obtained by the previous procedure is very small. One simple
way to greatly improve the accuracy is to project the pressure information of
other mesh points to the line ( j,−i) perpendicular to the wave front, Fig. 4.5
(upper-right hand corner). This leads to a substantial increase on the density of
points per wavelength, as observed in Fig. 4.5 (lower-right hand corner), and,
therefore, to a reduction of the error in cnum associated to the fit.

Finally, by fitting a simple sinusoidal function

p = p0 sin(knumx+φ) , (4.40)

we can easily obtain the numerical wavelength, and therefore the numerical
speed of sound,

cnum =
2πν

knum
. (4.41)

4.8.1 The Yee Algorithm

The scheme is defined on a Cartesian staggered grid with pressure and particle
velocity components located at interleaved positions. Spatial and temporal
derivatives of the governing partial differential equations are approximated by
central-differences leading to second-order accuracy in time and space. As
we mentioned, the analysis of the dispersion error is obtained with the 2D
algorithm of the leap-frog scheme that can be straightforwardly derived from
Eq. (4.16).

In order to test our methodology, we compared the values of c/cnum obtained
from our simulations to those expected from the analytic equation (4.20) by
fixing φ = 0. Fig. 4.6 shows the comparison in two cases with equal S = 1/

√
2,

but different Nλ . The continuous lines are obtained from the analytic result, Eq.
(4.20), whereas dots and error bars were obtained with our methodology after
averaging over 15 different different times (snapshots). As it can be seen, the
results of the numerical simulations are excellent and the magnitude of error is
of order 1/1000 even for Nλ = 10 cpw.

2The length is about five times the wavelength
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Figure 4.6: Analytical (continuous line) and numerical (dots) results for different angles
of propagation in Yee’s algorithm. (up), Nλ = 10 cpw; (down), Nλ = 20 cpw. In
both cases S = 1/

√
2.

4.8.2 A Parametric FDTD Algorithm

In this section, we discuss a family extensions of Yee’s algorithm that improves
its accuracy in terms of isotropy. The spatial derivatives employ a combination
of differences between nearest neighbors and a next-to-nearest neighbors, Eq.
(4.28). Following Wagner et al. conventions, [Wagner & Schneider (2005)] this
family of algorithms is parameterized by a constant, Ψ, within the range [0,1/2]
(see Sec. 4.4). In two dimensions, it turns out that for the particular value
Ψ = 1/6, the scheme leads to fourth order accuracy in isotropy. Moreover, the
original scheme by Yee is recovered simply by setting Ψ = 0.
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Figure 4.7: Analytical (continuous line) and numerical (dots) results for the family of
Yee’s extensions at the maximum allowed value of S, Nλ = 10cpw and Ψ = 1/6.

The dispersion relation following from a Von-Newmann analysis reads

S−2 sin2
(

πS
Nλ

)
=

[
1−Ψ+Ψcos

(
2πcsinθ

Nλ cnum

)]
sin2

(
πccosθ

Nλ cnum

)
+

[
1−Ψ+Ψcos

(
2πccosθ

Nλ cnum

)]
sin2

(
πcsinθ

Nλ cnum

)
. (4.42)
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Figure 4.8: Analytical (continuous line) and numerical (dots) results for the family of
Yee’s extensions at the maximum allowed value of S, Nλ = 10cpw and Ψ = 1/4
(left) and Ψ = 1/8 (right).

Finally, we present the values of c/cnum obtained applying our method to
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this family of algorithms in Figs. 4.8 and 4.7. Again, the continuous lines are
derived from the analytic result, whereas dots and error bars were obtained with
our methodology after averaging over 15 different times. The results obtained
have the same accuracy than for the Yee algorithm in all cases tested.

4.8.3 The MacCormack Algorithm

The numerical scheme is obtained by integrating the equations of motion in
two steps. The 2D algorithm can be obtained straightforwardly from Eqs. (4.32)
and (4.33). Moreover, in Sec. 4.5 we present the analytic expression of the disper-
sion error observing a rather complicated equation that its analytic dispersion
relation is complex enough to render it almost unusable. In cases like this, our
methodology presents a simpler and more straightforward way to study the
dispersion error.
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Figure 4.9: Comparison of analytical (continuous line) and numerical (dots) results for
MacCormack’s algorithm, with Nλ = 30 cpw and S = 1/

√
2.

The comparison with our methodology is presented in Fig 4.9, where excel-
lent agreement is observed again. As can be shown in Fig. 4.9 we have obtained
again accuracies of the order of 1/1000 averaging only over 15 snapshots.

4.8.4 PSTD Method

The FDTD methods are a simple, robust and powerful technique to simulate
transient acoustic phenomena. However, the standard lore indicates that a spa-
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tial sampling density above 10−15 cells per wave-length is needed to produce
accurate results. This problem becomes even more critical in large acoustic
problems (such as rooms with long reverberation times), making it necessary to
increase the spatial sampling rate beyond this range to reduce the cumulative
numerical dispersion error.[Taflove (1995)] PSTD methods improve this situa-
tion significantly by using more refined approximations for spatial derivatives.
For example, those PSTD methods based on Fourier transforms essentially use
all the points in a given row of the mesh to approximate the partial derivative
along the row direction.
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Figure 4.10: Dispersion error versus angle at fixed Nλ = 10cpw, NT = 50. Note the almost
perfect isotropy.

The results of our methodology applied to the Fourier transform PSTD
scheme are compared to the analytical ones derived from Eqs. (4.36) and they
are shown in Figs. 4.10 and 4.11. Once more, the agreement proves to be ex-
cellent in all the situations studied. Finally, we remark that this methodology
is capable to mesaure the non-dependence in the variation of the spatial dis-
cretizations (i.e. Nλ ) showing accurate results even for low cells per wavelength.
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Figure 4.11: Analytical curve (continuous line) compared to numerical simulations
(dots). Up: dispersion error versus time discretization NT for different Nλ , at
a fixed angle θ = 0. Note the remarkable independence of the results of Nλ .
Down: dispersion error versus NT for different angles, at fixed Nλ = 10 cpw.

4.9 Conclusions and Remarks

In the previous section we have presented a general statistical methodology
for studying and validating the dispersion error of generic FDTD algorithms by
direct computation of the numerical speed of sound. The procedure is simple
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but powerful, as it easily generates enough data to obtain computationally
accuracies of the order of 1/1000. We have shown that it applies equally well
to a wide variety of qualitatively different schemes in 2D: FDTD in staggered
and non-staggered meshes, isotropic extensions of FDTD, and pseudospectral
techniques in time domain. We also have shown that the methodology works
excellently even at low values of the number of cells per wavelength.

Finally, the methodology extends rather straightforwardly to 3D cubic meshes.
To create plane waves, all that is needed is to excite a whole plane of the 3D
mesh. The normal to the plane corresponds to the propagation direction, which
can be used to sample the pressure field as described in Sec. 4.8, fit a sinusoidal
function, and easily obtain the behavior of c/cnum.

As observed, one of the most important disadvantage of the FDTD methods
for room acoustic applications is the inherent dispersion error [Taflove (1995);
Hoffman (1992)]. As an example, we consider the dispersion relation for the
classical leapfrog scheme in two dimensions [Yee (1966)]:

S−2 sin2
(

πS
Nλ

)
= sin2

(
πc

Nλ cnum
cosθ

)
+ sin2

(
πc

Nλ cnum
sinθ

)
. (4.43)

From Eq. (4.43) it can be seen that the numerical speed of sound, cnum, depends
strongly not only on the Courant stability number, S, and the number of cells
per wavelength, Nλ , but also on the direction of wave propagation across the
two dimensional domain, θ .

One remarkable property of the PSTD method is the isotropy of the numer-
ical speed of propagation instead of the FDTD techniques. More specifically,
for large enough numerical domains a simple dispersion relation can be ob-
tained, Eq. (4.36). Note that the dispersion error does not depend on the spatial
discretization Nλ either. This fact allows to easily correct the dispersion error
(at each frequency) avoiding erroneous results in the computation of acoustic
impulse responses.

In the last years, some research has been devoted to the improvement of
dispersion errors in FDTD/DWM methods [Savioja & Välimäki (2003); Fontana
& Rocchesso (1998); Wagner & Schneider (2005)]. These algorithms improve the
isotropy of the numerical sound propagation at the expense of computational
cost. Figure 4.12 plots the dispersion error as a function of the angle of propa-
gation (with respect the x-axis) using the minimum value of S allowed for each
algorithm and for different Nλ .

Observe that the dispersion error in the leapfrog FDTD scheme depends
strongly on the angle instead of PSTD method. Moreover, it is worth mentioning
that PSTD gives less severe values of cnum at each Nλ . Therefore, from the
dispersion error point of view, the PSTD method is clearly more suitable for
room acoustic applications.

Another important feature of the PSTD method in comparison with FDTD
methods is the reduction in computational cost. On the one hand, PSTD simu-
lations require the computation of Fourier transforms which can be computed
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very efficiently through the Fast Fourier Transform algorithms [Cooley & Tukey
(1965)]; on the other hand - and probably the most compelling feature - PSTD
do not produce phase error even for two cells per wavelength, i.e Nλ = 2. This
last property allows for a simulation of large spaces and computation of very
long acoustic impulse responses.



Chapter 5

Source Generation in Numerical
Methods

5.1 Introduction

During the previous chapter, some aspects concerning to the wave propagation
have been considered. We presented either formulations based on FDTD meth-
ods (see from Sec. 4.3 to Sec. 4.5) or Fourier PSTD methods (See Secs. 4.6 and
4.7). In Sec. 4.8, an already propagating wave was assumed and no issues con-
cerning to the wave generation has been addressed. This chapter is focused on
the different ways to include sources and which are the possible consequences
when a particular kind of source is selected. So far, technical literature has not
highlighted some phenomena that appear as a consequence of the scenario
dimension and how this would affect to the spectra of a propagated wave. For
that reason, this chapter contributes with a deep analysis of the different source
models and the effects derived from their use, even as a function of the scenario
dimension.

In Sec. 5.3 we present the mathematical formulation derived from the
Green’s theory of the 2D and 3D sound propagation in the free space. Moreover,
the numerical approximations of the source generation are overviewed in Sec.
5.4. In addition, we present a numerical experiment capable to measure the
error produced by the numerical approximations (see in Sec. 5.5). Finally, Sec.
5.6 expose the conclusions derived from the analytical and numerical analysis.

5.2 Background

In time-domain numerical room acoustics, the source generation and nearly
related topics have been barely pointed out. Currently, the way to excite a time-
domain algorithm has been taken from the numerical electromagnetism basis.
In that field, sources have been always assumed to be soft or hard [Taflove
(1995)] (more details will be done at Secs. 5.4.1 and 5.4.2, respectively), and
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same theoretical background has been adopted for numerical acoustics. The
effect of both kind of sources have been analyzed from the point of view of how
they might produce undesirable scattering effects, specially hard sources, but
no deep analysis about their propagation characteristic has been found neither
in time-domain numerical acoustics nor in room-acoustics topic.

From a deep review of the technical literature, few attempts to carry out
some research concerning to source modeling have been made, which it might
be classified in two big groups:

• In order to overcome the scattering effects produced by these kind of
source implementations, Schneider et al. propose a new type of source
called transparent sources [Schneider et al. (1998)]. That implementa-
tion was provided to be working with FDTD using Euler equations, and
although reported results demonstrate the accuracy of that method, it
requires a considerable increasing of memory and the room acoustic rele-
vant publications do not use that kind of sources, giving a considerable
success to soft sources or interrupted hard sources. Apart from that pub-
lication, this challenging topic has not been addressed in more works
related to architectural acoustics.

• In sound source modeling, the directivity is a fundamental feature to
a final simulation result. Unfortunately, there have only been a few at-
tempts to solve this problem for such particular discrete-time methods,
as they can only consider sources as monopoles. [H. Hacıhabiboğlu &
Kondoz (2007)] proposes a method for a Wave Digital Waveguide Mesh
(W-DWM) [Murphy et al. (2007)], achieving source modeling with a fre-
quency -independent directivity and for those directivity diagrams which
have dipole or quadrupole shapes. However, this is not a generalized
method that can be used in other discrete-time methods, since W-DWM
works with characteristic (wave) variables [Murphy et al. (2007)]. Fur-
thermore, the same authors proposed an alternative method, also for a
W-DWM, which was inspired from a well-known antenna theory principle
[H. Hacıhabiboğlu & Kondoz (2008)]; this method provides very interest-
ing and accurate results which are also frequency-dependent. However,
in the results, they do not explore gradual transitions between the differ-
ent directivity diagrams at consecutive frequencies and the impact of the
mesh dispersion.

At about the same time, an alternative method was proposed [Escolano
et al. (2007)], based on a weighted combination of monopoles, in which
the far-field pressure distribution is equal to that of a defined directivity.
One of the main advantages of this method relies on the fact that, since
it works with monopoles, it can be easily implemented in any discrete-
time method, such as FDTD and PSTD. However, this method is limited
to sinusoidal sources. More recently, that method has been extended
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incorporating broadband directive sources with a frequency-dependent
directivity [Escolano et al. (2009)].

5.3 Theoretical Analysis

As mentioned, there is a poor contribution in the literature according to the
analysis of the punctual source generation. In this section we derive the Green’s
functions for the wave equation, both in 2 and 3 spatial dimensions. The Green’s
function is an essential building block in the simulation of sound propagation
because, due to the linearity of the wave equation, the propagation of an arbi-
trary sound source can be simply expressed as a linear combination of suitably
weighted and time-delayed Green’s functions, the convolution operation (see in
Secs. 2.3.2 and 2.3.4).

We will study only the direct sound, and therefore consider simple boundary
conditions whereby the acoustic field vanishes at infinity. This will suffice to
illustrate that, in 2D, a pulse emitted at one point propagates, not only over
a spherical shell (whose radius increases with time), but it actually creates
non-null values of the pressure field inside the shell.

In Sec. 2.3.2 we presented the 1D formulation of the Green’s function for the
wave equation. The Green’s function gD for the wave equation in D dimensions
is, by definition, the unique solution of:(

− 1
c2

∂ 2

∂ t2 −∇
2
(D)

)
gD(x, t;x0, t0) = δ (t− t0)δ (D)(x−x0) , (5.1)

gD(x, t;x0, t0) = 0 for t < t0 , (5.2)

gD(x, t;x0, t0) → 0 as |x| → ∞ , (5.3)

where

∇(D) =
(

∂

∂x1
, ...,

∂

∂xD

)
δ

(D)(x−x0) = δ (x1) ...δ (xD) , (5.4)

are the D-dimensional gradient operator and delta function, respectively. The
source is located at x = x0, and it is active only at t = t0. Note that the second
condition in Eq. (5.1) is just the causality condition, whereas the third one
is just a requirement that there are no sound sources at infinity (i.e. that all
sources are located in a bounded region of space). It is straightforward to show
that the Green’s function depends only on the relative distance to the source
r = |r|= |x−x0| and the time difference τ = t− t0, which we will use to simplify
notation and write gD(r,τ).

A convenient expression to start the study of 2D and 3D Green’s functions
follows from performing a variables separation in the wave equation, going to
the Fourier domain, and expressing the Green’s function as a linear combination
of normal-modes:

gD(r,τ) = u(τ)
c

(2π)D

∫
dDk

sin(|k|cτ)
|k|

eik·r , (5.5)
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where dDk = dk1 ...dkD is the D-dimensional volume element, and u(τ) is the
unit step function. From this expression, which is valid for any dimension1, we
will now obtain the explicit results in 2D and 3D.

5.3.1 Green’s Function in 2D, Afterglow

In two dimensions, the integrals appearing in Eq. (5.5) can be performed using
cylindrical coordinates:

g2(r,τ) =
u(τ)c
(2π)2

∫
∞

0
d|k||k|

∫ 2π

0
dθ

sin(|k|cτ)
|k|

ei|k||r|cosθ

=
u(τ)c

2π

∫
∞

0
d|k|sin(|k|cτ)J0(|k|r) =

c
2π

u(cτ− r)√
c2τ2− r2

. (5.6)

The integral involving the zero order Bessel function J0 is rather standard (see,
for example, [Barton (1989)]. It is convenient to rewrite Eq. (5.6) in terms of the
time of arrival of the first wavefront, ta = R/c,

g2(r,τ) =
1

2π

u(τ− ta)√
τ2− t2

a
. (5.7)

The result of Eq. (5.7) has one main difference with respect to the 3D coun-
terpart, Eq. (5.10): as soon as the impulse is created, the acoustic field (pressure
and velocity) is non-null in the whole interior of a shell, the radius of which
grows at the speed of sound. In other words, a ideal microphone located at
a fixed distance R from the source will record non-zero pressure values for an
infinitely long time after the arrival of the first wavefront.

Let us analyze with detail what such a microphone would record. The arrival
of the first wavefront would produce an initial divergent signal (just as in 3D,
being a consequence of the delta-source idealization). After that moment, the
intensity of the signal would decrease monotonically. For times much larger
than the time of arrival of the first front, t� r/c, the measured pressure signal
would decrease a t−1, implying a 6 dB decrease every time t→ 2t.

This particular feature of the 2D propagation is known as afterglow phe-
nomenon and has also important consequences in the Fourier domain. The
microphone located at a fixed distance r, instead of measuring a signal which is
flat in the frequency domain and with linear phase, would measure the Fourier
Transform of Eq. (5.6), which is

G2(ωta) =
1√
2π

∫
∞

−∞

dτ eiωτ G2(r,τ) =
1√
8π
× (5.8)

×
[

J0(ωta) [2log2−2log(ωta)+ iπ]−2H(1,0)
0

[
1,−1

4
(ωta)2

]]
1In particular, it can be used to show that afterglow is a phenomenon present in all cases where

D is even, and absent where D is odd.
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where J0 is the 0th order Bessel Function,

H(1,0)
0 [1,z] :=

∂H0[α,z]
∂α

∣∣
α=1 , (5.9)

and H0[α,z] is the regularized confluent hypergeometric function. Note that the
Green’s function in the frequency domain Eq. (5.8) depends on the frequency,
position of the listener, and sound speed, only via the combination ωta. We
observe that the amplitude of G2 decreases abruptly for ωta � 1, and in an
almost linear fashion in the opposite regime ωta� 1. On the other hand, the
phase of G2 is linear in a very good approximation; it shows indeed a slight
sub-linear dependency.

It is remarkable that G2 is, to a very good approximation, a minimum-phase
function. Although we do not have an analytic proof, it can be obtained a plot
of g2(t) and the associated minimum-phase function (computed numerically
via homomorphic methods [Proakis & Manolakis (1998))]. In control theory and
signal processing, a linear, time-invariant system is said to be minimum-phase
if the system and its inverse are causal and stable [Smith (2007)]. As remarked in
the introduction, this is a very important property which implies that the inverse
of g2 can be computed safely. This in turn implies that, if desired, it is possible
to perform 2D simulations and equalize them by convolving with the inverse
of g2. This would erase the afterglow phenomenon, making microphones in
2D record signals that look like passing delta-functions, in the same way that
happens in 3D.

5.3.2 Green’s Function in 3D

Although the results in 3D are very well-known, as a matter of check, let us
rederive them from Eq. (5.5). Using spherical coordinates with respect to axes
aligned with r, the integral Eq. (5.5) becomes:

g3(r,τ) =
u(τ)c
(2π)3

∫
∞

0
d|k| |k|2

∫ 2π

0
dφ

∫
π

0
dθ sinθ

sin(|k|cτ)
|k|

ei|k||r|cosθ

=
u(τ)c
2π2|r|

∫
∞

0
d|k| sin(|k|cτ)sin(kr)

= cu(τ)
δ (cτ− r)

4πr
. (5.10)

The details of the integration steps can be found, for example, in Barton [Barton
(1989)]. This is the very well-known result that an impulsive delta-source creates
a sound field where the energy is concentrated in an infinitely thin shell the
radius of which increases at the speed of sound; pressure and velocity is zero
outside the shell.
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5.4 Numerical Source Generation

Sound propagation in enclosures is a very complex phenomenon since the
definition of boundary conditions complicates the formulation of the problem.
The solution of the boundary value problem is not possible to be analytically
achieved, therefore, numerical simulations arises as an alternative for sound
predictions. One of the common methods in room acoustic applications are
the wave-methods in the time domain since these methods are based on the
motion equations that, in the case of sound propagation in enclosures, are the
wave equation (see Sec. 2.2 for more details).

As mentioned in Sec. 2.3, the computation of the acoustic response in closed
scenarios becomes one of the main topics in room acoustics. The mathematical
foundations derived from this specific physical problem define a set of PDE that
control the effects of the sources, the wave propagation and the boundaries of
the enclosure. To computationally solve any PDE, it is necessary to discretise
the simulated domain, consequently, the PDE system turns into an algebraic
system of update equations that can be easily solved. Numerical simulations
are commonly used in the low frequency range since in room simulations the
wave behavior, such as diffraction, is only observed in a small acoustic range of
wavelengths that typically goes from 0.1−1 m. The accuracy of these methods
is strongly related to the size of the mesh cells. For example, in FDTD it is
demanded at least Nλ = 10 cpw (i.e 10 cells per maximum wavelength simulated)
for obtaining acceptable results. Due to the discretization, it is essential to give
some approximation to the Dirac delta source while it is defined as a singularity
in the space and/or time making the numerical simulations completely unstable.
Any approximation, no matter which, must keep a flat spectrum in the low
frequency range as well as Dirac delta function.

For example, the Gaussian pulse which is commonly used in numerical
simulations, fixes the amplitude with a parameter γ . In the time domain, the
amplitude of the waveform is given by

s(t) = δ (t− t0)∼ Ae−[(n−n0)∆t]2/2γ , (5.11)

where A = 1 is the maximum amplitude, and γ is the pulse half-duration at the
time 1/e. One important property of these type of sources is that they transform
into Fourier space keeping the same form than the temporal signal Eq. (5.11)
but with a pulse half-duration of 1/γ . Consequently, if we generate a Gaussian
pulse with a short half-duration time, it would have a long decay to zero in the
Fourier space. Therefore, it could be interesting to consider this type of pulses
as a proper approximation of the Dirac delta source, since the amplitude of the
spectrum in the low frequency range would be almost constant.

In figure 5.1 (left), we illustrate in the temporal domain either a Dirac delta
source (up) or a numerical Gaussian pulse with γ = 200 (down). We fixed γ = 200,
n0 = 80 and ∆t = 1/16000 and the numerical δ was obtained converting t→ n∆t.
With these assumptions, we generated a thin Gaussian pulse (see in Fig. 5.1
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Figure 5.1: (Left) Numerical implementations of different unit impulse signals in the
time domain. The x-axis represents the discrete time step n and the y-axis
plots the normalized amplitude. (Right) Frequency spectrum of the signals
where the x-axis represents the frequency and the y-axis is the modulus
between the real and the imaginary part of the transformed pulse. In all
the cases, we fix ∆t = 1/16000 s and n0 = 80: (Up) Dirac delta source; (Down)
Gaussian pulse with γ = 200

down and left) observing that the Fourier spectrum of the signal transform into
a thick Gaussian that can be considered almost flat from 0 to 2000 Hz (see in
Fig. 5.1 down and right). Therefore, the computation of impulse responses of
the acoustic field in the low frequency bandwidth is guaranteed while Gaussian
pulses are chosen to approximate the Dirac delta function. Conversely, the
amplitude plotted from f > 2000 Hz exhibits a linear decay that goes from 40 to
5 dB and appears in the range of frequencies 2000 < f < 5000 Hz (see in figure 5.1
right and down). This behavior is far from the flat spectrum of the transformed
delta function plotted in Fig. 5.1 (right and up). In fact, the most important
drawback of Gaussian pulses is that parameter γ is not directly related to the
frequency, f , difficulting the control of the total amount of energy emmited by
the source.

In order to improve this situation, we present the numerical analysis of
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Figure 5.2: (Left) Numerical implementations of a sinc-function in the time domain.
The x-axis represents the time step n and the y-axis plots the normalized
amplitude. (Right) Frequency spectrum of the signals where the x-axis repre-
sents the frequency and the y-axis is the modulus between the real and the
imaginary part of the transformed pulse. In all the cases, we fix ∆t = 1/16000
s and n0 = 80: (Up) sinc-function with f = 2500 Hz; (Down) sinc-function with
f = 1000 Hz.

another representation of the unit impulse signal which is the sinc-function,
and its explicit form is

s(t) = δ (t− t0)∼
sin(2π f (n−n0)∆t)

2π f (n−n0)∆t
. (5.12)

For infinite signals, function (5.12) has a perfectly flat frequency spectrum since
it transform in the Fourier space to the step function. The size of the step is fixed
by the frequency f . Therefore, we would ideally control the total amount of
energy through the physical parameter, f . Nevertheless, in real simulations the
radiation of the unit impulse signal is limitated in the time introducing changes
in the Fourier transform.

In Fig. 5.2, we illustrate two low-frequency approximations of a windowed
sinc-function. All the sources are represented in both, the temporal (left) and
the frequency (right) domain. As in the other pulses, ∆t = 1/16000 s, n0 = 40.
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Moreover, we study two different values of the frequency, f = 2500 Hz (up) and
f = 1000 Hz (down). In these cases, we constrain the source only radiating
during a certain time, nt = 80.

The effects of windowing the sinc-function are observed in Figs. 5.12 (right).
Note that although it appears a residual energy for frequencies greater than f ,
the decay of the energy in both cases, is faster than in the Gaussian spectrum.
Observe that this function has a perfectly flat frequency spectrum, instead of
the Gaussian pulse which spectrum is approximately flat. Another remarkable
fact is the flexibility of Eq. (5.12) since the amplitude frequency bandwidth is
easily fixed through the frequency, f .

5.4.1 Soft Sources

Once approximated the Dirac Delta function, we are ready to study the different
manners to introduce a source in FDTD or PSTD schemes. Typically, there exist
three different types of sources: the hard, the soft and the transparent sources.
In this section the two first types of sources are analyzed in detail, whereas the
transparent source has not been considered for two reasons: firstly, they are de-
fined in staggered meshes and, in this chapter, the source propagation analysis
has been treated with non-staggered algorithms. Secondly, their formulation
is rather complicated while it needs to store auxiliary quantities increasing
considerably the computational cost of the algorithms.

On the one hand, the soft sources are one of the most common alternatives
implemented in numerical simulations. There are many references that use soft
sources in different fields such as electromagnetisms, acoustics, aeroacoustics
or room acoustics applications. In this case, the impulse generation is obtained
by introducing an additional term in the PDE system. In Sec. 2.2.3, we presented
the analytical formulation of the sound sources generation for either the wave
equation (2.36) or the Euler equations (2.33). For both formulations, the discrete
pressure update equation (PUE) of a source node is given by

p|n+1
source = PUE+ s|n , (5.13)

where PUE is obtained from any PSTD or FDTD algorithm (see Chap. 4)
and s|n is defined as a multivalued discrete functions which form strongly de-
pends on the PDE used in the simulation. For example, Eulerian algorithms
straightforwardly define s|n from the analytical equation (2.33) reading as

s|n =


n

∑
i=0

100
[

sin(2π f (i−n0)∆t)
2π f (i−n0)∆t

]
∆t if n≤ nt ,

s|nt if n > nt .

(5.14)

Observe that s|n is the low-frequency discrete representation of Eq. (2.33) ,
where s(t) was represented with the temporal integral of the Dirac delta func-
tion. Moreover, in order to control the energy of the source generation, it is
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convenient to limitate the radiation of the unit impulse signal by emitting only
during a finite time nt > n0. Similarly, the discrete formulation of these type of
sources applied to the wave equation are directly derived from the analytical
equation (2.36). Therefore, the soft-source update equation is obtained from
the PUE, adding the source term s|n as follows

s|n =

{
100

[
sin(2π f (i−n0)∆t)

2π f (i−n0)∆t

]
if n≤ nt ,

0 if n > nt .
(5.15)

It is worth mentioning the fact that this source generation is based on the
physical assumptions explained in Sec. 2.2.3. We will see in the next section,
that this is the main difference between hard and soft sources, since the first
ones use a completely different update equation. Finally, we note that the soft-
source node does not influence in the medium since travelling sound waves pass
through the source node without being diffracted due to the impulse radiation.

5.4.2 Hard Sources

On the other hand, the hard source is defined independently of the algorithms
used for the propagation nodes. It means that the numerical representation
of the impulse signal needs a pressure update equation completely different
than the propagation scheme. In fact, this is one of the main difference between
the hard and the soft sources since the last ones are introduced in the numer-
ical motion equations. The explicit form of a node which is represented by a
punctual hard source reads as follows:

p|nsource = 100
[

sin(2π f (n−n0)∆t)
2π f (n−n0)∆t

]
if n≤ nt , (5.16)

In the Euler equations, note that only the pressure update equation is re-
placed by Eq. (5.16) since the update equations for the velocity keep employing
the discrete mass equations of the Euler formulation, Eqs. (2.12)-(2.14). Like-
wise, the source generation during a finite time, nt , is obtained by replacing the
impulse emission by p|nsource = 0 when n≥ nt , ensuring that p|nt−1

source is close to 0
just to get an smooth transition between the different assignations of the source
node. We should note that once we use a hard source to represent a unit impulse
signal in Eulerian simulations, there is no possibility to replace Eq. (5.16) by the
PUE of any algorithm, even for perfectly continuous transitions at the critical
time step nt (i.e. p|nt

source = 0). Hence, the source node of the Eulerian simulation
always updates its pressure value, p|n+1 using different expressions than those
derived from FDTD or PSTD methods. Therefore, for n≥ nt , the punctual source
acts as a periodic boundary node diffracting whole the acoustic field that strikes
on it.

Conversely, if the discrete wave equation is used, the hard source node can be
replaced at n = nt by the propagation algorithm keeping the simulation perfectly
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stable and accurate. This fact gives an advantage to the wave equation, since
once the source node has emmited all the input signal, it can be transformed
into a propagation node avoiding the discontinuity produced due to hard source
implementation.

5.5 Numerical Implementations

We have seen that there are different manners to generate proper unit impulse
signals, depending on the PDE chosen to numerically solve the room impulse
response. In this Thesis, the analysis of the numerical source propagation has
been done by using FDTD (see in Sec. 4.3) and PSTD (see in Sec. 4.6) methods.
Furthermore, we also compare the sound source propagation by using either
the formulations of the Eulerian or wave algorithms.

On the one hand, In Chap. 4 we rewrote the original staggered FDTD and
PSTD Eulerian algorithms by converting into their centered extension with ex-
actly the same accuracy, stability and dispersion error than the staggered ones.
The acoustic quantities, (p,v), were defined at the same time, n, and position
(i, j,k). In FDTD, the partial derivatives of the PDE were obtained by combining
the forward and the backward finite difference operators leading to a second
order accuracy scheme in time and space. Remark that the numerical scheme,
Eq. (4.22) preserves either the Courant stability number, Eq. (4.21), or the disper-
sion relation, Eq. (4.20), obtained with the classical leap-frog scheme, Eq. (4.16).
Similarly, the PSTD algorithm, Eq. (4.38), can be directly obtained applying to
the temporal derivative the same methodology used in FDTD algorithms, while
the spatial derivatives were computed with the spectral derivative, Eq. (4.14)
(see Sec. 4.2 for more details). It is worth emphasysing the convenience of the
non-staggered formulations for the numerical Eulerian algorithms since they
are less restrictive in the mesh generation than the staggered ones.

On the other hand, algorithms based on the wave equation are originally
defined in centered meshes since they only compute the acoustic pressure. In
Sec. 4.3, we presented the explicit form of the FDTD 3D algorithm Eq. (4.23),
which stability Courant number and dispersion error are exactly the same than
for the leap-frog scheme. Similarly, the PSTD 3D algorithm for the discrete wave
equation, Eq. (4.39), is presented in Sec. 4.6, also showing that they preserve
the stability and accuracy than the Eulerian PSTD formulations.

Once defined the non-staggered algorithms, we are ready to study the 2D
and 3D propagation of the approximated unit impulse signal chosen to simulate
computationally the Dirac delta function. As we said before, the Dirac delta
function must be approximated for stability reasons. One of the proper possibil-
ities is the sinc-function, since it represents the best choice to characterize the
Dirac delta source at low frequencies. Furthermore, the way of introducing the
input signal in the numerical simulation generates different possibilities that
would affect the sound propagation within the room.
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5.5.1 2D Results

In this section, we show a comparative analysis of the numerical source prop-
agation using 2D FDTD and PSTD algorithms. In both methods, we present
experimental data of the impulse-signal propagation obtained in numerical
experiments. In all the simulations done, the experimental setup is defined in
a 2D centered mesh of 2500× 2500 nodes and the time discretization is fixed
to ∆t = 1/16000 s, no matter which method is used. Independently of the type
of source, we use a sinc-function with f = 2500 Hz, n0 = 40 and nt = 80 at node
(1750,1750). Moreover, we locate receivers at R1 = 1, R2 = 3 and R3 = 5 m from
the source measured along the axis and the diagonal. The numerical data are
compared to the expected propagation of a analytical sinc-function derived
from Eqs. (5.6) and (5.8).

FDTD Algorithms

For these experiments, we use the 2D extension of the non-staggered leap-
frog scheme, Eq. (4.22), that computes all the acoustic quantities, p and v =
(vx,vy), and the discrete-pressure wave equation (4.23) that only calculates the
pressure. In both algorithms, the spatial discretization δ is fixed through ∆t
and the Courant stability number, which in this case is S = 1/

√
2. With these

assumptions, the receiver locations R1, R2 and R3 m correspond to 33, 98 and
163 nodes of distance since δ = 0.030052 m.

On the one hand, in Fig. 5.3, a), b) and e), f ), we show the results obtained
with the soft source generation, Eq. (5.13), using the two different representa-
tions of the source term, s(t), defined in Eqs. (5.14) and (5.15). The solid lines
correspond to R1, the dashed ones, R2 and dotted lines, R3 along the axis or
the diagonal. Moreover, the grey and black lines represent the analytical and
numerical results, respectively.

In both algorithms, the accuracy of the results is remarkable in the whole
frequency range of the signal. Observe that the numerical results fit perfectly
with the analytical curve from 0 to approximately 1500 Hz. For the rest of the
frequency range, the accuracy decreases leading to numerical errors that can
also be considered more than acceptable. Another remarkable consequence
is observed when the results obtained along the axis are compared to those
measured in the diagonal. As expected, the last ones exhibit slightly better
accuracies at high frequencies due to the fact that there is no dispersion error at
this orientation.

On the other hand, in Fig. 5.3 (c) and d), g) and h)) we illustrate the results
obtained by using the hard source generation with either the Euler or the Wave
algorithms. In this case, the numerical curves differ from the analytical ones in
almost all the frequency range, since this manner to generate the impulse is not
derived from the analytical formulation of the source generation.
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Figure 5.3: Numerical results in 2D FDTD experiments. Black lines represents the nu-
merical results, whereas grey lines are the analytical data. R1, R2 and R3 is
represented by solid, dashed and dotted lines, respectively. (Up) Simulations
done with the Eulerian algorithm, Eq. (4.22). Figures a) and b) plot the results
along the axis and the diagonal respectively, using the soft source generation.
Figures c) to d) show the results obtained with the hard source representation.
(Down) In this case, the simulations use the discrete wave equation (4.23)
for the propagation nodes. From e) to f ), the results of the soft source along
the axis and the diagonal are represented. Finally, from g) to h) we show the
results obtained with the hard source generation.

PSTD Algorithms

Likewise, we present a complete analysis of the numerical sound source prop-
agation using PSTD methods that, in the case of the discrete wave equation,
it is analyzed for the first time in the acoustics. As well as FDTD methods, we
use both, the Eulerian and the Wave algorithms, Eqs. (4.38) and (4.39) respec-
tively. For both formulations, we use the maximum Courant stability number
allowed by PSTD methods which is S = 2

π
√

2
fixing the spatial discretization to

δ = 0.047056 m. For this method, the nodal distance of the receivers R1, R2 and
R3 are 21, 64 and 106. Note that we need less nodes than in FDTD algorithms
since δPST D is π/2 greater than δFDT D.

In general, the results obtained in PSTD methods are similar than FDTD
(see Fig. 5.3). As mentioned, the soft source generation gives better results than
hard source generation since the soft ones are based on the mathematical and
physical foundations of the source generation (see in Sec. 2.2.3). On the other
hand, there is no difference between the results obtained along the axis and the
diagonal, since the dispersion error in PSTD method is non-angular dependent.
Furthermore, it is worth mentioning that in PSTD simulation, a non-physical
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Figure 5.4: Numerical results in 2D PSTD experiments. Black lines represents the nu-
merical results, whereas grey lines are the analytical data. R1, R2 and R3 is
represented by solid, dashed and dotted lines, respectively. (Up) Simulations
done with the Eulerian algorithm, Eq. (4.38). Figures a) and b) plot the results
along the axis and the diagonal respectively, using the soft source generation.
Figures c) to d) show the results obtained with the hard source representation.
(Down) In this case, the simulations use the discrete wave equation (4.39)
for the propagation nodes. From e) to f ), the results of the soft source along
the axis and the diagonal are represented. Finally, from g) to h) we show the
results obtained with the hard source generation.

artifact appears at f = 1900 Hz that is produced due to the use the punctual
sources. We will see in 3D results that this error becomes critical suggesting to
change the manner of generating the impulse. Nevertheless, in 2D this error
can be considered negligible since the accuracy in PSTD is sensibly improved
in the measures done using soft sources. Similarly, the numerical results of the
hard source propagation in PSTD do not correspond to the analytical behavior
since its formulation is not based in any physical assumptions.

5.5.2 3D Results

In what follows, we present the numerical results of the 3D experimental setup
defined independently of the numerical method employed. As for 2D setup, we
fix ∆t = 1/16000 s and a sinc-function with f = 2500 Hz, n0 = 40 and nt = 80. For
these simulations, a 3D mesh of (150×150×150) nodes is required locating the
receivers R1, R2 and R3 at 1, 2 and 3 m. Finally, the numerical data is compared
with the Green’s function of a sinc-function straightforwardly derived from Eq.
(5.10).
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FDTD Algorithms

For these simulations we fixed S = 1/
√

3 and δ = 0.0368. Consequently, R1,
R2 and R3 are located at nodal distance of 27, 54 and 81 from the source. In
Fig. 5.5 we show the remarkable accuracies obtained with both types of sound
generation. In this case, the spectrum of energy is almost flat in all the simulated
range preserving high accuracies at frequencies greater than 2000 Hz.

Surprisingly, the results obtained with the hard source generation show that
it can be used for computing the impulse response of enclosures, however its
formulation is not based in any physical representation.

0 0.5 1 1.5 2 2.5 3
-20
-10

0
10
20
30
40
50
60

A
m

pl
it

ud
e 

(d
B

)

Frequency (kHz)
0 0.5 1 1.5 2 2.5 3

-20
-10

0
10
20
30
40
50
60

A
m

pl
it

ud
e 

(d
B

)

Frequency (kHz)

0 0.5 1 1.5 2 2.5 3
-20
-10

0
10
20
30
40
50
60

A
m

pl
it

ud
e 

(d
B

)

Frequency (kHz)
0 0.5 1 1.5 2 2.5 3

-20
-10

0
10
20
30
40
50
60

A
m

pl
it

ud
e 

(d
B

)

Frequency (kHz)
0 0.5 1 1.5 2 2.5 3

-20
-10

0
10
20
30
40
50
60

A
m

pl
it

ud
e 

(d
B

)

Frequency (kHz)
0 0.5 1 1.5 2 2.5 3

-20
-10

0
10
20
30
40
50
60

A
m

pl
it

ud
e 

(d
B

)

Frequency (kHz)

0 0.5 1 1.5 2 2.5 3
-20
-10

0
10
20
30
40
50
60

A
m

pl
it

ud
e 

(d
B

)

Frequency (kHz)
0 0.5 1 1.5 2 2.5 3

-20
-10

0
10
20
30
40
50
60

A
m

pl
it

ud
e 

(d
B

)

Frequency (kHz)

a) b) c) d)

e) f) g) h)

Figure 5.5: Numerical results in 3D FDTD experiments. Black lines represents the nu-
merical results, whereas grey lines are the analytical data. R1, R2 and R3 is
represented by solid, dashed and dotted lines, respectively. (Up) Simulations
done with the Eulerian algorithm, Eq. (4.22). Figures a) and b) plot the results
along the axis and the diagonal respectively, using the soft source generation.
Figures c) to d) show the results obtained with the hard source representation.
(Down) In this case, the simulations use the discrete wave equation (4.23) for
the propagation nodes. From e to f , the results of the soft source along the
axis and the diagonal are represented. Finally, from g to h we show the results
obtained with the hard source generation.

PSTD Algorithms

The numerical experiments for PSTD use a 3D mesh of 150×150×150 nodes
and have been carried out with S = 2

π
√

3
and δ = 0.0578. The source is located at

the center of the mesh (i.e. (75×75×75)). In this cases the receivers R1, R2 and
R3 are located at the nodal distance 17, 34 and 51 nodes. In Fig. 5.5, it is plotted
the numerical results compared to the analytical data.



82 CHAPTER 5. SOURCE GENERATION IN NUMERICAL METHODS

Observe that in this case, all the results obtained, no matter which PSTD
algorithm or punctual source generation is used, show errors sufficiently rel-
evant to consider them completely unacceptable. More specifically, this error
becomes critical in measures done along the axis of the source node.

In Fig. 5.7, we show the temporal signals of the receiver R2 using the punctual
soft source generation for the Eulerian algorithms. In the left, we plot the
temporal signal measured in the axis observing that the aforementioned artifact
is appeared during the emission of the source. Conversely, the temporal signal
measured in the diagonal is not affected by this error since, as mentioned, it
only affects along the axis of the source node (see in Fig. 5.7 (right)).
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Figure 5.6: Numerical results in 3D PSTD experiments. Black lines represents the nu-
merical results, whereas grey lines are the analytical data. R1, R2 and R3 is
represented by solid, dashed and dotted lines, respectively. (Up) Simulations
done with the Eulerian algorithm, Eq. (4.38). Figures a) and b) plot the results
along the axis and the diagonal respectively, using the soft source generation.
Figures c) to d) show the results obtained with the hard source representation.
(Down) In this case, the simulations use the discrete wave equation (4.39) for
the propagation nodes. From e to f , the results of the soft source along the
axis and the diagonal are represented. Finally, from g to h we show the results
obtained with the hard source generation.

It is reported by Lee and Hagness [Lee & Hagness (2004)] that punctual
sources introduce a numerical error that can be solved by defining a volumetric
source called quadruplet source. In fact, the hard and the soft source generation
are presented for the 1D and 2D Eulerian PSTD algorithms. In this case, the
soft source generation is achieved through Eq. (5.13) by defining the source
term, s|n, as Eq. (5.15). Note that this representation does not correspond to
the punctual soft source generation defined for the Eulerian algorithms in Sec.
5.4.1. On the other hand, the volumetric hard sources for either the Euler or the
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Wave equations are implemented by using the expression Eq. (5.16), which is
the same equation used for the punctual sources.
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Figure 5.7: (Left) Impulse propagation at R2 along the axis. Observe the artifact produced
due to the emission of the source. (Right) Impulse propagation at R2 along the
diagonal. In this case, there is no error produced by the source generation.

In order to overcome the critical error obtained in the 3D PSTD simulations,
we carried out several simulations using the volumetric sources. Basically, the
idea consist on using more than one node for defining the source emission.
More concretely, the source is defined by using a pair of nodes by each axis.
Hence, In a 3D simulation, volumetric source is obtained with 6 source nodes
leading to a numerical source of cubical shape. Moreover, we simulate either
the Eulerian algorithm, Eq. (4.38), or the discrete wave equation (4.39) using
both, the hard and the soft representation presented in Eqs. (5.16) and (5.15),
respectively. In this case, the soft source generation for the Eulerian algorithm
is also defined with s(t) derived from the discrete-wave representation of the
soft-source generation, thus Eq. (5.15).

In Fig. 5.8 we show the results obtained from the numerical experiments.
On the one hand, the artifact of punctual source simulations is disappeared
leading to smoother frequency spectra of the results. On the other hand, we
observe for both algorithms that only the volumetric hard source generation
simulate almost perfectly the behavior derived from the analytical expressions.
Conversely, the results obtained with volumetric soft sources are far from those
analytically expected in terms of the amplitude. We should remark that the
volumetric soft sources in the Eulerian PSTD algorithm, Eq. (5.15), are not
based on any physical assumption, instead of the punctual soft sources, Eq.
(5.14). Therefore, it seems reasonable that these numerical sources do not
behave as a physical source. Finally, we conclude that volumetric hard sources
are, so far, the best choice in 3D PSTD simulations, although the soft source
generation need to be improved since their results sensibly differs from the
analytical curves.
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Figure 5.8: Numerical results in 3D PSTD experiments using volumetric sources. Black
lines represents the numerical results, whereas grey lines are the analytical
data. R1, R2 and R3 is represented by solid, dashed and dotted lines, respec-
tively. (Up) Simulations done with the Eulerian algorithm, Eq. (4.38). Figures
a) and b) plot the results along the axis and the diagonal respectively, using
the soft source generation. Figures c) to d) show the results obtained with
the hard source representation. (Down) In this case, the simulations use the
discrete wave equation (4.39) for the propagation nodes. From e) to f ), the
results of the soft source along the axis and the diagonal are represented.
Finally, from g) to h) we show the results obtained with the hard source
generation.

5.6 Conclusions

In this current chapter, we present a carefully analysis of the numerical source
generation in FDTD and PSTD. Firstly, the mathematical formulation of the unit
impulse propagation has been formulated either for the 2D and the 3D case
(see in Sec. 5.3). In two dimensions, the afterglow phenomenon is observed
leading to a different propagation than in 3D.

In Sec. 5.4, we discuss two of the main manners to approximate the Dirac
delta source concluding that the sinc-function is the best choice to approach
the unit impulse signal in the low frequency range. Moreover, we formulated
either the soft or the hard source generation, observing that only the soft ones
are based on physical background (see in Secs. 5.4.1 and 5.4.2).

In addition, we carried out different numerical simulations in order to com-
pare the numerical results of the source propagation to the analytical data.
On the one hand, the 2D results presented in Sec. 5.5 show that only the soft
source representation obtains high accuracies, since these formulations are
based on the physical assumptions. On the other hand, All 3D results exihibit
high accuracies except those obtained in PSTD simulations using both, the
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soft and the hard numerical sources. In Sec. 5.5.2 we observed that punctual
source generates along the axis of the source node an artifact that critically
affects to the numerical results. In order to overcome this situation, we also
analyzed the volumetric sources that were created for solving this problem in
the 2D PSTD Eulerian formulation [Lee & Hagness (2004)]. In this chapter, we
extend this works to the 3D discrete wave and Eulerian formulation, providing
an analysis that has been never done before. However, the best accuracies were
observed in the results obtained by using the hard source generation. this fact
is completely expected since the volumetric soft source generation is not based
in any physical assumptions.

Finally, in the next chapter we present a complete analysis of different nu-
merical implementations of the locally reacting model for FDTD and PSTD. The
study of these particular boundary conditions methods in PSTD has never been
treated before in the technical literature.





Chapter 6

Locally-Reacting Boundary
Conditions

6.1 Introduction

In this chapter we overview the formulation of most common numerical BCs,
based on the formulation presented in Sec. 2.3.1, for FDTD (see in Sec. 6.4) and
PSTD (see in Sec. 6.5) methods. We perform different simulations, based on an
experimental setup explained in Sec. 6.3, of several numerical BCs either for
the Euler equations or the wave equation. The numerical results are compared
with those obtained through the analytical relation, Eq. (2.42). Therefore, we
discuss which boundary conditions are appropriate for room acoustics, since
the locally reacting impedance behavior has to be simulated.

Conversely, the issue of impedance boundary conditions for PSTD has never
been treated in the technical literature since only periodic BCs are suitable
for PSTD simulations. In Sec. 4.9 we present an efficient way to eliminate
this critical error defining PML beyond the impedance boundary nodes. It
opens the possibility of using pseudo-spectral techniques in room acoustics
and other related fields of research. Hence, in Sec. 6.5 we present for the first
time impedance boundary conditions for the Eulerian and the wave PSTD for-
mulation. The results obtained from these novel BCs are tested and validated by
means of a multidimensional experiments. Finally, we extend their formulation
to FDTD methods obtaining results as accurate as those presented in Sec. 6.4.
Finally, in Sec. 6.6 we expose the conclusion of the Chapter.

6.2 Problem Overview

Over the past decade, many studies in the area of FDTD and DWM modelling of
2D and 3D acoustic systems have focused on reducing and/or compensating for
the dispersion error. Recently, more attention has been given to the problem of
formulating better numerical approximations of boundaries, and in particular

87
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the obtention of locally-reacting boundaries. Generally, realistic boundaries
can be approximated by locally-reacting ones even at narrow frequency ranges.

Basically, an impedance boundary assumes that the acoustic pressure and
the outward normal direction of the particle velocity is related linearly by the
acoustic impedance Z (see Sec. 2.3.1 for more details). If we assume that Z is de-
fined as a real positive constant (i.e. locally-reacting BCs), the relation between
the amplitude of the reflexion coefficient, R, and the acoustic impedance when
a planar wave strikes on the wall is given by Eq. (2.42). It is worth mentioning
that R depends strongly on the orientation of the planar waves.

Different equations arise by combining Eq. (2.41) and the mass conservation
equation, Eq. (2.43), which are able to fit the time evolution of the acoustic
quantities of an impedance boundary (see in Sec. 2.3.1 for more information).

The first contributions of FDTD impedance boundary conditions for either
the lineralized Euler equations or the wave equation were presented by Bootle-
dooren [Botteldooren (1995)] and Huopaniemi et al. [Huopaniemi et al. (1997)],
respectively. These contributions served as an inspiration for the acoustics
community, leading to a number of works that, in some cases, improve the
initial results [Kowalczyk & van Walstijn (2007)].

In fact, we present different contributions of numerical BCs for either the
Euler or the wave FDTD and PSTD algorithms that, even so, they have not been
analyzed together, in order to get an objective analysis of the results. Thus, it
would be very interesting for the room acoustics community to provide a fair
comparative study between different numerical BCs.

6.3 Experimental Setup

In this section we define the experimental setup in order to test the accuracy of
any numerical boundary conditions as a locally reacting ones when combined
with FDTD or PSTD. The experimental setup used is inspired on Kelloniemi et
al [Kelloniemi et al. (2005); Kelloniemi (2005)]. The system consists on a two
dimensional rectangular interpolated mesh with a sound source located at xs.
Many receivers, xτξ

and x
τ
′
ξ

, where ξ = 1,2,3..., are placed along the parallel

lines τ and τ ′ as it is shown in Fig. 6.1.
Within the experimental setup of Fig. 6.1, two simulations are carried out:

a first simulation in which a layer of boundary nodes, ∂V , is located in the
middle; and a second free space simulation without the boundary layer. In both
simulations the sound source xs emits an unit acoustic impulse.

In the first simulation, sound pressure signals are measured in all the re-
ceiver’s positions, xτξ

, ξ = 1,2,3.... This signals contain not only the direct sound,
but also the sound reflected from the boundary, ∂V . In the second simulation
(in free space), sound pressure signals are measured both at xτξ

and at x
τ
′
ξ

.

Therefore, the direct signal component radiated from the sound source to the
receivers xτξ

measured in the first simulation can be erased by using the data



6.3. EXPERIMENTAL SETUP 89

Figure 6.1: An illustrative representation of the experimental setup: The source is located
at xs, the receivers are situated over the lines τ and τ ′, finally, ∂V represents
the boundary layer which is at the same distance from xτ to xτ ′ .

obtained in the unbounded second simulation.
In order to fit the reflection factor, the resulting frequency responses ob-

tained from the first simulation (once the direct sound is eliminated) at the
receivers, xτξ

, are compared to the reference signals obtained from the un-
bounded simulation at the mirror locations x

τ
′
ξ

.

To sum up: for each receiver xτξ
we get a value of the reflection factor by

comparing the spectra of the signals measured at the receiver location xτξ
and at

the mirror location x
τ
′
ξ

. Due to the fact that the different receivers correspond to

different angles of incidence, we can compute in a single numerical experiment,
the absolute error,

ε = 20log10 ‖Rth−Rmeas‖ , (6.1)

for any frequency and angle, just by comparing the numerical reflection factor
Rmeas with the theoretical predictions Rth, Eq. (2.42). Finally, the right half of the
Hann window function has to be used for windowing the last half of the signals
to avoid the truncation error in calculation of the spectra.

In this particular experiment, a two dimensional domain V of 2000×2000
nodes is generated with a boundary layer located at the nodes (i,1000). In this
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case the sound source is located at node (520,900). Moreover, the input signal
is an acoustic impulse approximated by1 the hard source, Eq. (5.16), Note that
this function has a flat frequency spectrum from 0 to f . All the cases are tested
with f = 2500 Hz, n0 = 40, nt = 80, ∆t = 1/16000 s and the minimum value of the
Courant stability number for a 2D simulation, given by the algorithm employed
for the propagation nodes.

The distance between the source and the receiver is varied between 0 and
800 spatial sampling intervals, corresponding to the incident angle θ ∈ [0,80◦],
approximately. It is true that angle values are not distributed homogeneously
under this experiment; however, for illustrative purposes, unknown angles are
linearly interpolated. Finally, the simulation is run for 1024 time steps in order
to avoid the numerical rebounds which generate the exterior boundaries and
which may produce some disturbances in the analysis of the spectra.

6.4 Boundary Conditions in FDTD Methods

Different approximations can be achieved depending on the election of the PDE
system chosen to be numerically solved. For example, if the Euler equations
are employed, the numerical treatment of the boundary conditions is strongly
influenced by the type of mesh used in the discretization of the space. If an
staggered mesh is demanded (see Fig. 4.1 (right)), the boundary layers can only
be defined at velocity nodes, [Botteldooren (1995)]. Therefore, the numerical
boundary conditions are obtained with only one update equation for the ve-
locity. On the other hand, if a centered mesh is used (see Fig. 4.1 (left)), the
boundary layers are defined either pressure and velocity nodes. In this case, the
numerical boundary scheme needs an update equation for pressure or velocity.
Conversely, if the wave equation is approximated, the numerical boundary con-
ditions are obtained with a pressure update equation since it is only computed
the information for the acoustic pressure, [Huopaniemi et al. (1997); Kowalczyk
& van Walstijn (2007)].

In this chapter, we present a complete analysis of the most common numer-
ical boundary conditions derived from the analytical expressions presented in
Sec. 2.3. In the next section, we formulate the numerical staggered BCs for the
Euler equations [Botteldooren (1995)] and we tested comparing the numerical
experiments with the analytic relation, Eq. (2.41). In Sec. 6.4.2, two different
formulations of the BCs for the wave equation are presented and studied in
detail. Finally, in the last section we expose the conclusions.

6.4.1 Boundary Conditions for the Euler Equations

In 1995[Botteldooren (1995)], it was presented a numerical expression of gen-
eral boundary conditions for the staggered leap-frog scheme, Eq. (4.16). This

1For Eulerian algorithms we use the soft source representation, Eq. (5.13), to simulate the unit
impulse signal
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algorithm only requires to define a velocity update equation for the boundary
layer, since it is defined in a staggered mesh (see Sec. 4.3 for more details). The
velocity nodes which belong to ∂V (see Fig. 6.1), are governed by the analytical
linear relation, Eq. (2.41), which linearly relates the normal component of the
velocity and the pressure through the acoustic impedance Z of the material. The
numerical equation derived from these assumptions is obtained by assuming
an asimetric finite difference approximation for the space derivative. The re-
sulting equation is capable of simulating either dependent or non-dependent
frequency impedance BCs. In this section, we only study the cases when the
acoustic impedance, Z, does not depend on the frequency. Moreover, although
we focus the analysis on the leap-frog scheme, these boundary conditions can
be directly combined with the family of algorithms presented in Sec. 4.4. The
numerical equation of the local impedance velocity nodes is achieved by

vx|n+1/2
i+1/2, j = γvx|n−1/2

i+1/2, j−β p|ni, j , (6.2)

with

γ =
1−Z/ZFDT D

1+Z/ZFDT D

β =
1

1+Z/ZFDT D
(6.3)

ZFDT D =
ρδ

∆t
.

Note that γ and β are adimensional constants which strongly depends on the
acoustic impedance of the material. Since Z ∈ [0,+∞[, it is more convenient to ex-
press the different boundary conditions by using the theoretic reflection factor,
Rth ∈ [−1,1], as a parameter related with Z by Eq. (2.42) (see Sec. 2.3.1 for more
details). The simulations have been carried out for values of Rth =−1,−0.9, . . . ,1
(∆Rth = 0.1). Therefore, we compute the average error, ε , of the numerical mea-
sured reflection factor Rmeas with respect to the theoretic reflection factor Rth,
expressed in dB.

In what follows we will show and analyze the results obtained within the
experimental setup defined in the previous section. The simulations were
carried out with ∆t = 1/16000 s and the maximum Courant stability number
S = 1/

√
2. The results of the numerical experiments confirm the suitability of

the boundary conditions given in Eq. (6.2) for room acoustic applications.
These results are illustrated in Fig. 6.2 . Each plot corresponds to the absolute

error given by Eq. (6.1) as a function of the angle of incidence, θ , and the
frequency. The error is plotted in a graded scale where black corresponds to
errors of a few negative dBs whereas white corresponds to errors less than -40dB.
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Figure 6.2: The absolute error in decibels for different values of the normal reflection
coefficient Rn obtained with the numerical BCs, Eq. (6.2), combined with the
leap-frog scheme. From up to down and left to right: a) Rn = 1, b) Rn = 0.9,
c)Rn = 0.8, d) Rn = 0.7, e) Rn = 0.6, f ) Rn = 0.5, g) Rn = 0.4, h) Rn = 0.3, i) Rn = 0.2,
j) Rn = 0.1, k) Rn = 0, m) Rn =−0.1, n) Rn =−0.2, o) Rn =−0.3, p) Rn =−0.4, q)
Rn =−0.5, r) Rn =−0.6, s) Rn =−0.7, t) Rn =−0.8, u) Rn =−0.9 and v) Rn =−1.
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The label of each plot is the reflection factor for normal incidence, Rn, which
fixes the value of the impedance Z in the numerical simulation via Eq. (2.42)
with θ = 0. Therefore for each value of Rn (i.e. of Z) the numerical experiment
defined in Sec. 6.3 is performed and the absolute error is computed for different
angles given by the receiver locations, xτξ

, for all frequencies less than 2500 Hz.

The accuracy of the BCs is remarkable since the absolute error is smaller
than −30dB in almost all range of Rn for all frequencies and angles. Only for
Rn→ 0.3, this error is increased homogeneously to−20dB which is sufficiently
small to consider it irrelevant. Although the agreements with the predicted
values are excellent, it is worth emphasizing the fact that this BCs are defined in
a staggered mesh. It means that the definition of a boundary layer is strongly
constrained since it can only be defined at velocity nodes. In order to solve this
problem, in the Sec. 6.5.2 we present a numerical BCs defined in a centered
mesh. The results obtained with this novel method are very similar than those
depicted in Fig. 6.2.

6.4.2 Boundary Conditions for the Wave Equation

The first approximation of the boundary conditions in room acoustics for the
FDTD methods is presented by Huopaniemi et al. [Huopaniemi et al. (1997)].
Where the starting point appears in the definition of 1-D digital waveguide
boundaries. One straightforward way tosecBC set BCs in digital waveguide
mesh, is the structure in which each boundary node has only one neighbor.
The simplest boundary conditions is the reflection coefficient. The difference
equation for such boundary node is

p|n+1
i, j = (1+Rn)p|ni−1, j−Rn p|n−1

i, j . (6.4)

We have chosen this boundary conditions because it has never been ana-
lyzed its two-dimensional locally-reacting behavior. For nodes which do not
belong to ∂V , we chose the numerical formulation derived from the wave equa-
tion, Eq. (4.23) with a time discretization ∆t = 1/16000 s and the maximum
Courant stability number S allowed for the algorithm.

The results are presented in Fig. 6.3. Observe that only for Rn ≥ 0.8 and
Rn ≤−0.6 the Bcs, Eq. (6.4), gives values of the absolute error smaller than−20
dB. Conversely, for the rest of Rn, the absolute error is quite relevant since it is
bigger than−20 dB. It is worth mentioning that highly absorbing materials are
unusual in most real scenarios, i.e. room acoustics, where materials use to have
at least an absorption coefficient α (α = 1−||Rn||2) which varies between 0 and
0.5. Under these circumstances, the results are most than acceptable for many
purposes such as room acoustics, aeroacoustic, . . .



94 CHAPTER 6. LOCALLY-REACTING BOUNDARY CONDITIONS

aaaaaa

 

 

0.5 1 1.5 2 2.5
 

  

  

  

 

 

 

 

 

 

 

  

 

  

0

20

40

60

a)

0.5 1 1.5 2 2.5

b)

0.5 1 1.5 2 2.5

c)

0.5 1 1.5 2 2.5

 
0

d)

0.5 1 1.5 2 2.5

e)

0.5 1 1.5 2 2.5

f)

0.5 1 1.5 2 2.5

 
0

g)

0.5 1 1.5 2 2.50

h)

0.5 1 1.5 2 2.5

i)

0.5 1 1.5 2 2.5

 
0

j)

0.5 1 1.5 2 2.5

k)

0.5 1 1.5 2 2.5

m)

0.5 1 1.5 2 2.5

 
0

n)

0.5 1 1.5 2 2.5

o)

0.5 1 1.5 2 2.5

p)

0.5 1 1.5 2 2.5

 
0

q)

0.5 1 1.5 2 2.5

r)

0.5 1 1.5 2 2.5

s)

0.5 1 1.5 2 2.5

 
0

t)

0.5 1 1.5 2 2.5

u)

0.5 1 1.5 2 2.5

v)
80

d
eg
re
es

(º
)

d
eg
re
es

(º
)

d
eg
re
es

(º
)

d
eg
re
es

(º
)

d
eg
re
es

(º
)

d
eg
re
es

(º
)

d
eg
re
es

(º
)

f (kHz) f (kHz) f (kHz)

0

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

0

20

40

60

20

40

60

20

40

60

0

0

80

80

80

0

0

0

0

0

0

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

0

20

40

60

20

40

60

20

40

60

0

20

40

60

80

0

0

80

80

80

80

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

0 0

0

0

0

0

0

[dB]

-40

-30

-20

-10

0

Figure 6.3: The absolute error in decibels for different values of the normal reflection
coefficient Rn obtained with the numerical BCs, Eq. (6.4), combined with the
leap-frog scheme . From up to down and left to right: a) Rn = 1, b) Rn = 0.9,
c)Rn = 0.8, d) Rn = 0.7, e) Rn = 0.6, f ) Rn = 0.5, g) Rn = 0.4, h) Rn = 0.3, i) Rn = 0.2,
j) Rn = 0.1, k) Rn = 0, m) Rn =−0.1, n) Rn =−0.2, o) Rn =−0.3, p) Rn =−0.4, q)
Rn =−0.5, r) Rn =−0.6, s) Rn =−0.7, t) Rn =−0.8, u) Rn =−0.9 and v) Rn =−1.
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Figure 6.4: The absolute error in decibels for different values of the normal reflection
coefficient Rn obtained with the numerical BCs, Eq. (6.5), combined with the
leap-frog scheme. From up to down and left to right: a) Rn = 1, b) Rn = 0.9,
c)Rn = 0.8, d) Rn = 0.7, e) Rn = 0.6, f ) Rn = 0.5, g) Rn = 0.4, h) Rn = 0.3, i) Rn = 0.2,
j) Rn = 0.1, k) Rn = 0, m) Rn =−0.1, n) Rn =−0.2, o) Rn =−0.3, p) Rn =−0.4, q)
Rn =−0.5, r) Rn =−0.6, s) Rn =−0.7, t) Rn =−0.8, u) Rn =−0.9 and v) Rn =−1.
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Nevertheless, there exist other numerical BCs formulations that improve
the results in all the range of Rn. For example, in Kowalczyk and van Walstijn
[Kowalczyk & van Walstijn (2007)], a FDTD boundary model of a locally react-
ing surface can be obtained by approximating the first-order spatial and time
derivatives with centered finite difference operators.

The resulting equation can be written as an expression for the point lying
outside of the modelled space, also referred to as a ‘ghost point’, which for the
right boundary yields

p|n+1
i, j =

1
(1+Zλ )

[
2(1−2λ

2)p|ni−1, j +λ
2(p|n−1

i, j+1 + p|n−1
i, j−1)+2λ

2 p|ni−1, j

+ (Zλ −1)p|n−1
i, j

]
. (6.5)

Given the use of the 2D wave equation in the boundary model derivation, the
upper stability bound is matched for both the boundary and the interior of the
room by setting λ = 1/

√
2. Therefore, the choice of the Courant number in the

2D model is unambiguous.
The numerical experiment of Eq. (6.5) has been carried out under the same

assumptions than those derived from Eq. (6.4). The results of the simulations
are depicted in Fig. 6.4 where the scale graded representation shows almost
perfect accuracies over all the acoustic impedance range. the absolute error
is smaller than −30 dBs, which represents an error of the order of 1/1000, in
all the frequency and angle range. Therefore, Eq. (6.5) seems to be the most
appropriate numerical BCs in order to deal with room acoustics applications
even for general acoustics problems that involve absorbing BCs since they also
give excellent results for Rn→ 0.

Conversely, the strong dependence in the parameter λ , which is directly
related with the Courant stability number S, complicates either the formulation
of Eq. (6.5) combined with PSTD methods, Eq. (4.39), or the extension to three
dimensional numerical simulations.

6.4.3 Remarks

In this section we reviewed several formulations of FDTD numerical BCs for
either the Euler equations, Eq. (4.16), or the wave equation, Eq. (4.23). First, we
discussed the numerical BCs presented by Botteldooren [Botteldooren (1995)]
observing accuracies of the order of−30 dB in almost all the range of Rn. There-
fore the BCs, Eq. (6.2), are suitable for any acoustics simulation that involves this
kind of impedance boundary conditions. However, it is worth emphasizing that
Eq. (6.2) requires an staggered mesh since the acoustic pressure and velocities
are evaluated at interleaved positions and times. This fact affects to the location
of the impedance boundary walls of any numerical enclosure. More specifically,
the walls of the numerical domain are restricted at particle velocity nodes in-
stead of centered algorithms whose BCs are defined anywhere in the numerical
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space since each node carries information of all the acoustic quantities. In order
to solve this problem in Sec. 6.5.1 we present for the first time in the acoustics
a semi-empirical BCs for the Eulerian PSTD methods. These numerical BCs
require a centered mesh for their implementation; moreover, the flexibility of
the semi-empirical BCs are remarkable since they can be easily extended to
FDTD methods (see Sec. 6.5.2).

Similarly, we studied two different BCs suitable for algorithms based on the
wave equation formulation. First, we analyzed the BCs presented by Huopaniemi
et al. [Huopaniemi et al. (1997)], Eq. (6.4), observing acceptable results only in a
small range of Rn. We also discussed another formulation presented by Kowal-
czyk and van Walstijn [Kowalczyk & van Walstijn (2007)] where the numerical
BCs update equation is based on the physical properties of an impedance wall.
The results derived from this BCs improve the accuracy in all the range of Rn
obtaining errors of the order of−35 dB for every angle and frequency. On the
other hand, one important drawback of Eq. (6.5) is the strong dependence on
the parameter λ which is directly related with the Courant stability number.
In the case exposed before, we saw that the election of the parameter λ was
unambiguous since it takes the same value than the leap-frog scheme which
is 1/
√

2. Conversely, in the next chapter BCs, Eq. (6.5), are combined with the
PSTD methods observing that in this case the election of λ is confusing since
there are two possible values of the Courant stability number.

6.5 Boundary Conditions in PSTD Methods

In the recent years new numerical approaches for solving acoustics problems
have appeared: the Pseudo-Spectral Time-Domain (PSTD) methods [Liu (1997)].
In contrast with the common FDTD methods, PSTD methods are character-
ized by an isotropic dispersion relation. In the last years they have been suc-
cessfully applied in many different fields such as the propagation of acoustic
waves [Liu (1998)], modelling of piezoelectric transducers [Filoux et al. (2008)]
or simulation of photonic devices [Pernice (2008)]. However, the formulation of
impedance boundary conditions (BC) in the framework of PSTD methods is not
reported yet in the technical literature.

In Secs. 6.5.1 and 6.5.3, we present for the first time numerical BCs for ei-
ther the Eulerian centered algorithms, Eq. (4.38) or the discrete wave equation
(4.39). On the one hand, Eulerian BCs are based in a semi-empirical approxi-
mation defined through a parameter ξ that is directly related with the acoustic
impedance Z. On the other hand, we will see that numerical BCs FDO2 are the
best choice to simulate locally-reacting walls when discrete wave equation is
used. This formulation is based on finite difference update equation leading
to an hybrid formulation of the room acoustics PSTD simulation. Finally, we
extend both formulations to FDTD methods (Secs. 6.5.2 and 6.5.4) observing
similar accuracies than those studied in Secs. 6.4.1 and 6.4.2.
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6.5.1 Boundary Conditions for the Euler Equations

In this section, a novel algorithm capable of simulating frequency-independent
impedance BCs is presented by using a semi-empirical approach. We formulate
both, the one and two-dimensional BCs for the Fourier PSTD method observing
that this novel algorithm provides fairly good results making it suitable for
accurate simulations in different fields of acoustics.

In order to implement a partially reflecting BCs within Fourier PSTD method
in one dimension we define a parameter, ξ , which controls the ratio between
the acoustic pressure and the velocity. Our proposal for those points i that
belong to the boundaries is:

• For ξ ≤ 1:

vx|n+1
i = vx|ni −

∆t
ρ

F−1
x

[
ι

2πnx

Nx∆x
Fx[p|n: ]

]
,

p|n+1
i = ξ

(
p|ni −ρc2

∆tF−1
x

[
ι

2πnx

Nx∆x
Fx[vx|n+1

: ]
])

.

• For ξ > 1:

vx|n+1
i =

1
ξ

(
vx|ni −

∆t
ρ

F−1
x

[
ι

2πnx

Nx∆x
Fx[p|n: ]

])
,

p|n+1
i = p|ni −ρc2

∆tF−1
x

[
ι

2πnx

Nx∆x
Fx[vx|n+1

: ]
]

.

(6.6)

By looking at Eq. (6.6), for ξ = 1 we recover the one-dimensional Fourier
PSTD scheme directly derived from Eq. (4.38). It is clear from Eq. (6.6) that ξ has
to be related with the reflection factor R of the wall. In order to find this relation,
we carried out a set of numerical experiments. The experiments were performed
on a one dimensional line where an acoustic impulse was located at a relative
distance of 50 cells from the wall. The acoustic impulse was approximated
by Eq. (5.16). In our experiments we fix the values f = 2500 Hz, n0 = 19 and
∆t = 1/16000. The results are shown in Figs. 6.5 and 6.6 where we plot the
parameter ξ as a function of the measured reflection coefficient.

From the numerical data we can conclude two interesting properties: on the
one hand, the numerical reflection coefficients do not depend on the frequency;
on the other hand, there is a strong dependence on the Courant number.

More interesting is the fact that there exist an analytical relation between ξ

and R:
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Figure 6.5: Plot of the functional relation between the boundary parameter ξ and the
modulus of the reflection coefficient for ξ ≤ 1 in one dimension. The points
represent the numerical values obtained for S = 2
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π
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bottom to top), while the lines correspond to Eq. (6.7).

• For ξ ≤ 1:

ξ =
1+R

1+R−2SR
, (6.7)

• For ξ > 1:

ξ =
1−R+2SR

1−R
. (6.8)

In Figs. 6.5 and 6.6 we can clearly see that the analytic expressions, Eqs. (6.7)
and (6.8), fit perfectly with the numerical data. In these plots we have shown
only three different values of the Courant stability number, S = 2

π
, S = 2

π
√

2
and

S = 2
π
√

3
which are the optimum values of S for 1D, 2D and 3D simulations

respectively. We have to remark that the analytical expressions, Eqs. (6.7) and
(6.8) are valid for all values of S tested (data not shown).

Finally, it is worth mentioning the fact that for S = 1 we have ξ = 1+R
1−R = Z,

where Z is the impedance of the wall.
The results obtained for the one-dimensional case can be easily extended to

two dimensions allowing for the construction of a locally reacting BCs.
In order to implement a partially absorbing BCs for ∂V , we follow the same

strategy as for the one-dimensional case. Therefore, for those nodes located
in the wall, we introduce the boundary parameter ξ in the two dimensional
Fourier PSTD equations obtaining:
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Figure 6.6: Plot of the functional relation between the boundary parameter ξ and the
modulus of the reflection coefficient for ξ > 1 in one dimension. The points
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• For ξ ≤ 1:

vx|n+1
i, j = vx|ni, j−

∆t
ρ

F−1
x

[
ι

2πnx

Nx∆x
Fx[p|n:, j]

]
,

vy|n+1
i, j = vy|ni, j−

∆t
ρ

F−1
y

[
ι

2πny

Ny∆y
Fy[p|ni,:]

]
,

p|n+1
i, j = ξ

(
p|ni, j−ρc2

∆tF−1
x

[
ι

2πnx

Nx∆x
Fx[vx|n+1

:, j ]
])

,

• For ξ > 1:

vx|n+1
i, j =

1
ξ

(
vx|ni, j−

∆t
ρ

F−1
x

[
ι

2πnx

Nx∆x
Fx[p|n:, j]

])
,

vy|n+1
i, j = vy|ni, j−

∆t
ρ

F−1
y

[
ι

2πny

Ny∆y
Fy[p|ni,:]

]
,

p|n+1
i, j = p|ni, j−ρc2

∆tF−1
x

[
ι

2πnx

Nx∆x
Fx[vx|n+1

:, j ]
]

. (6.9)

Note that the updating equations for the acoustic pressure in Eq. (6.9) only
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consider the gradient in the x direction, thus taking into account the fact that
the wall is parallel to the y−axis.

From the results obtained for the one-dimensional system we expect that
the scheme at the boundaries, Eq. (6.9), produce locally reacting BCs according
to,

• For ξ ≤ 1:

ξ =
1+R

1+R+Scos(θ)(1−R)−S(1+R)
, (6.10)

• For ξ > 1:

ξ =
RS +S + cos(θ)(RS−S +1−R)

cos(θ)(1−R)
. (6.11)
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Figure 6.7: The error function for different values of ξ as a function of the angle and
the frequency. The plots correspond to: a) ξ = 0; b) ξ = 0.25; c) ξ = 0.5;
d) ξ = 0.75; e) ξ = 1; f ) ξ = 2.5; g) ξ = 5; h) ξ = 7.5; i) ξ = 10.

In order to verify the relation between the parameter ξ and the reflection
coefficient given by Eqs. (6.10) and (6.11), we perform numerical experiments
explained in Sec. 6.3. We perform the experiments using the centered PSTD
Eulerian algorithm, Eq (4.38), for different values of the boundary parameter ξ .
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For each value of ξ , Eqs. (6.10) and (6.11) provide an analytic relation between
the modulus of the reflection coefficient and the angle of incidence. By compar-
ing the numerical reflection factor, Rnum, with the theoretical one provided by
Eqs. (6.10) and (6.11).

In Fig. 6.7 we plot the results for nine values of ξ : 0, 0.25, 0.5, 0.75, 1, 2.5,
5, 7.5 and 10 (from a) to i) respectively). Thus practically covering the whole
range of values of the reflection coefficient. The simulations show remarkable
good results for low angles of incidence (θ ≤ 40◦) where the deviations from
the analytic relation are lower than−30dB for all values of ξ . Deviations from
the theoretic behavior are more relevant as the angle of incidence increases
and for high frequencies. These results can be easily understood taking into
account the fact that the number of cells per wavelength for high frequencies is
very low; in particular, for f = 2500 Hz we have only three cells per wavelength2.
This suggests that the results are acceptable for frequencies f ≤ 2000 Hz with
the space and time discretizations used in the numerical experiments. Finally,
it is worth mentioning the fact that errors below−20 dB correspond to regions
in which the modulus of the reflection coefficient itself is very low such as for
the case in which ξ = 1 (graph e) in Fig. 6.7).

6.5.2 Additional Remarks

In the present section we have formulated a new BCs for PSTD methods by
introducing a boundary parameter, ξ , in the numerical scheme of the Euler
equations. These BCs have been analyzed numerically both, in one and two
dimensions. From these studies we have found a very useful relations between
ξ and the reflection coefficient (see Eqs. (6.10) and (6.11)). These relations can
be written in terms of the wall impedance, Z, as follows:

• For ξ ≤ 1:

ξ =
Z/(ρc)

S +Z/(ρc)−ZS/(ρc)
, (6.12)

• For ξ > 1:

ξ = ZS/(ρc)−S +1 , (6.13)

where S is the Courant stability number.
The locally reacting behavior of Eqs. (6.12) and (6.13) has been tested in two

dimensions with proper numerical setup (see Sec. 6.3). The low errors found
indicate that the proposed BCs can be used in many practical acoustic problems
within the powerful emerging PSTD techniques.

2This value is the result of the time discretization and the Courant number used: ∆t = 1/16000
and S = 2

π
√

2
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Therefore, the present study develops the necessary ingredients (not previ-
ously covered in the technical literature) for using PSTD techniques in many
different acoustic problems. It is worth mentioning the fact that, for most
practical cases, the presented BCs should be combined with the well-known
Perfectly Matched Layer (PML) techniques [Berenger (1996); Yuan et al. (1997)]
in order to avoid spurious reflections and the Gibbs effect inherent to all PSTD
simulations [Fornberg (1996)].

Moreover, the flexibility of this BCs is a remarkable fact since it can be
extended directly to any FDTD Eulerian algorithms formulated in a centered
mesh (except the MacCormack scheme). For example, The BCs for the centered
leap-frog scheme is easily achieved replacing the spatial Fourier derivatives of
Eq. (6.9) by the forward/backward finite difference operators. The explicit form
of the scheme is given by

• For ξ ≤ 1:

vx|n+1
i, j = vx|ni, j−a1(p|ni+1, j− p|ni, j) ,

vy|n+1
i, j = vy|ni, j−a1(p|ni, j+1− p|ni, j) ,

p|n+1
i, j = ξ

[
p|ni, j−a2(vx|n+1

i, j − vx|n+1
i−1, j)

]
,

• For ξ > 1:

vx|n+1
i, j =

1
ξ

[
vx|ni, j−a1(p|ni+1, j− p|ni, j)

]
,

vy|n+1
i, j = vy|ni, j−a1(p|ni, j+1− p|ni, j) ,

p|n+1
i, j = p|ni, j−a2(vx|n+1

i, j − vx|n+1
i−1, j) . (6.14)

As we mentioned, the spatial derivatives of this numerical BCs are computed
through finite difference operators, instead of the Fourier pseudo-spectral BCs,
Eq. (6.9). Surprisingly, the numerical BCs, Eq. (6.14), keeps the same relation
between ξ and the acoustic impedance Z than the pseudo-spectral formulation
(see Eqs. (6.12) and (6.13)). It means that these semi-empirical boundary
conditions are not dependent on the numerical approximation used for the
spatial derivatives. Therefore, It would be extremely useful to find a theoretical
framework to prove the generality of Eqs. (6.12) and (6.13).

In order to test the locally-reacting behavior of Eq. (6.14), we carried out
different simulations within a 2D FDTD centered algorithm, Eq. (4.22), fixing
∆t = 1/16000 s and S = 1/

√
2 which is the maximum Courant stability number

allowed for the leap-frog scheme. The results of the experiments are plotted in
Fig. 6.8. The results exihibit high accuracies since the absolute error is smaller
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Figure 6.8: The error function for different values of ξ as a function of the angle and
the frequency. The plots correspond to: a) ξ = 0; b) ξ = 0.25; c) ξ = 0.5;
d) ξ = 0.75; e) ξ = 1; f ) ξ = 2.5; g) ξ = 5; h) ξ = 7.5; i) ξ = 10.

than−20 dB for all the range of ξ . Only for ξ = 1 we observe an absolute error
bigger than−20 dB at high angles, θ > 40. Hence, as in the BCs, Eq. (6.9), based
on the Fourier pseudo-spectral techniques, highest absolute errors correspond
to regions in which the modulus of the reflection coefficient itself is very low
such as for the case in which ξ = 1 (see in Fig. 6.8 e)). Nevertheless, it is
worth mentioning that the improvement of the results are plausible in all the
range of ξ , achieving notorious accuracies for ξ ≥ 1. Another remarkable fact
is that the accuracy of the results is preserved until 2500 Hz instead of those
obtained with PSTD methods (see Fig. 6.7). It happens because the Courant
stability number in FDTD methods (S = 1/

√
2) is less restrictive than in PSTD

methods (S = 2/(π
√

2)). Consequently, the spatial discretization of the FDTD
simulations is decreased by a factor 2/π , letting the numerical meshes become
considerably thinner than those employed in PSTD simulations. In case the
FDTD simulations had been carried out with S = 2/(π

√
2), deviations from the

theoretical behavior would be more relevant for high frequencies.
Finally, we compare Eq. (6.14) with the results obtained by using the BCs,

Eq. (6.2), proposed by Bottledooren [Botteldooren (1995)] for the staggered
formulation of the leap-frog scheme (see Fig. 6.2). The main difference between
both formulations is the type of mesh employed for discretizing the space,
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since the ones, Eq. (6.14), require a centered mesh for their implementation.
Apart from this, both experiments were carried out with either the same time
discretization or the Courant stability number. Therefore, the study of both,
Eqs. (6.14) and (6.2), leads to a fair comparative of the numerical BCs in terms
of their accuracy since they are defined under the same assumptions. The
similarity of the results is observed in all the acoustic impedance range since
the absolute error is lower than −20 dB. Moreover, highest errors appear in
both BCs when the reflection coefficients Rn tend to 0 (i.e. ξ tends to 1). Hence,
we conclude that the semi-empirical BCs, Eq. (6.14), are more appropriate for
FDTD room acoustics simulations given their higher flexibility in numerical
domain -characterization of walls in enclosures, allowing for a less restrictive
definition than those made in staggered meshes.

6.5.3 Boundary Conditions for the Wave Equation

In the present section, several proposals are made in order to include appro-
priate impedance boundary condition using the PSTD methods, Eq. (4.39), for
room acoustics. Instead of Eulerian problems, we follow a different strategy
for obtaining an accurate solution since the most suitable formulation for the
numerical BCs are obtained using FDTD methods for the BCs update equation.
The results obtained with this algorithms are sufficiently accurate to consider it
suitable for room acoustics applications.

The first step consists on discretizing the boundary condition (see Eq. (2.44))
with a uniform spatial sampling frequency ∆. Without loss of generality, from
now on we shall consider that the boundary is located parallel to the y-axis on
the right hand side of a two-dimensional domain, as illustrated in Fig. 2.4.

In order to implement an impedance boundary condition, one may think
about using a PSTD-based algorithm to perform the spatial derivatives on Eq.
(2.44), resulting on the following scheme for those nodes (i, j) located at the
boundaries:

p|n+1
i, j = p|ni, j−

Z∆t
ρ

F−1
x [ιkxFx[p|n:, j]] . (6.15)

The first step after the proposal of a finite difference scheme, is to analyze
the stability of the finite difference itself. Then, a Von Neumann analysis of the
stability is performed [Strikwerda (2004)], which consists on assuming a planar
wave, p(x, t) = ξ t/∆te−ιkT

0 x, and to find under which conditions ‖ξ‖ ≤ 1 occurs.
k0 is the wavenumber vector of the plane wave and T indicates transposition.
For Eq. (6.15), this analysis indicates that Z has to be purely imaginary in order
to keep stable that scheme (see the Appendix B for details). This result indicates
that this scheme is unconditionally unstable, since in the time domain, this will
result into a non physic impedance boundary condition (Z(ω) 6= Z∗(−ω), see
[Rienstra (1975)] for details).
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In order to overcome this handicap, an alternative form of Eq. (2.44) is
proposed, which consists on applying a time derivative at both sides of Eq.
(6.15),

∂ 2 p(x, t)
∂ t2 =−Z

ρ

∂ 2 p(x, t)
∂ t∂x

. (6.16)

This new equation does not essentially change Eq. (2.44), but the finite differ-
ences schemes derived from this equation could differ substantially. According
to the PSTD algorithm, we obtain a new scheme for the impedance boundary
condition,

p|n+1
i, j = 2p|ni, j− p|n−1

i, j

− Z∆t
2ρ

F−1
x [ιkxFx[p|n+1

:, j − p|n−1
:, j ]]. (6.17)

From now on, the former PSTD boundary condition, Eq. (6.15), will be
named as PSO1 (Pseudo-Spectral Order 1), whereas the latter Eq. (6.17), will be
refereed as PSO2 (Pseudo-Spectral Order 2). The results from the Von Neumann
analysis on PSO2 show that it is an unconditionally stable scheme (see the
Appendix B for details).

Despite Eq. (6.17) seems to be an appropriate solution, let us propose a local
use of a finite difference time domain scheme at the boundaries. Although the
number of hybrid methods involving a PSTD algorithm is really small [Fan et al.
(2005)], it will be shown later how a hybrid solution gives fairly better results
than a purely PSTD method.

A first approach consists on a central finite difference operator for the time
derivatives whereas the spatial derivative uses a forward/backward finite differ-
ence operator, depending on the orientation of n̂. As before, we shall consider
that the boundary is located parallel to the y-axis. The scheme for those nodes
(i, j) located at the boundary is given by:

p|n+1
i, j = p|ni, j−

Z∆t
ρ∆

(p|ni, j− p|ni−1, j) . (6.18)

Unfortunately, the previous scheme (FDO1 from now on) is stable if Z ≤
ρcS−1, where S = c∆t/∆ (see the Appendix), which is a small range of impedance
values. In order to overcome this handicap we follow the same procedure as
before by using Eq. (6.16). In this case, central finite differences are applied
to both first and second order time derivatives, whereas the spatial derivative
requires a forward/backward finite difference operator again, just to avoid
checking information of the grid points which are located before/after the
boundary, respectively. Finally, the numerical scheme reads:
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p|n+1
i, j =

2ρ∆

ρ∆+0.5Z∆t
p|ni, j−

ρ∆−0.5Z∆t
ρ∆+0.5Z∆t

p|n−1
i, j +

+
0.5∆tZ

ρ∆+0.5Z∆t
(p|n+1

i−1, j− p|n−1
i−1, j) . (6.19)

The Von Neumann analysis over this particular difference scheme (from now
on, FDO2) demonstrates that it is unconditionally stable for all values of Z (see
the Appendix B for a detailed derivation).

Although PSO2 and FDO2 seem to be both appropriate as candidates to be
used in numerical simulations, a basic situation is simulated in order to confirm
the suitability of all the previous presented schemes. The experimental system
consists on a 1D scenario where the input signal is located at a relative distance
of 50 cells of the impedance boundary condition. In this simple experiment, the
input signal is an acoustic impulse approximated by Eq. (5.16),

All the cases are tested with f = 2500 Hz, n0 = 19, ∆t = 1/16000 s and the
minimum value of the Courant stability number, given by Eq. (4.37), which
means that at the highest frequency ( f = 2500) a minimum value of the number
of cells per wavelength is obtained: Nλ ' 3 cpw. The simulation is run during a
convenient number of time steps in order to avoid spurious numerical signals
and to minimize the truncation error in the analysis of the spectra. Therefore,
we compute the average error, ε , of the numerical measured reflection factor
Rmeas with respect to the theoretic reflection factor Rth, expressed in dB

Figure 6.9 shows the results of that simulation. As expected from the previous
analysis, the PSO1 is unconditionally unstable since Z has to be purely imaginary.
Surprisingly, despite PSO2 is an unconditionally stable scheme, results are stable
from Rth =−1 until Rth =−0.6 (Z = 0.25ρc). The reason is not clear; however, in
the technical literature it is reported that pseudo-spectral methods can be very
sensitive to boundaries [Fornberg (1996)]. Which means that the incorporation
of impedance boundary conditions could produce serious instabilities, that
they are even independent of the time stepping used.

Fortunately, the finite differences approach give considerable better results.
The results of FDO1 (see Fig. 6.9) are in accordance with the Von Neumann
analysis. Since the scenario is a 1D simulation, the Courant number is S = 2/π

implying that the simulation should be stable until Z ≤ 1.57ρc (Rth = 0.22),
which is confirmed by the numerical simulations where a divergence is found
at Rth ≈ 0.2. However, by using FDO2 the results are completely stable for all
the range of values of Z (and hence for all Rth). This option is clearly the best
option among the rest of proposed methods, since is the unique method which
is unconditionally stable and the error is below -30 dB from Rth =−1 to Rth = 0.5
(Z ∈ [0,3ρc]), and around -20 dB for the rest of values. Furthermore, it is also
noticeable that for those values of Z for which all the schemes are stable, the
error is lower using finite-difference schemes at the boundaries than using a
purely PSTD approach.
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Figure 6.9: Average error, ε , between the measured numerical reflection factor, Rmeas,
and the theoretical one Rth in dB.

Then, as a first conclusion, the use of a finite-difference scheme FDO2, Eq.
(6.19), for boundary conditions in PSTD schemes provide a unconditionally
stable scheme which results have demonstrated good accuracy.

In order to test the suitability of FDO2, Eq. (6.19), combined with mul-
tidimensional PSTD simulations, we carried out different numerical experi-
ments according to those defined in Sec. 6.3. The time discretization is fixed to
∆t = 1/16000 s and the Courant stability number is the maximum allowed for the
PSTD methods which is S = 2/(π

√
2) The agreement with the theoretical predic-

tions is remarkable. The numerical simulations fit fairly good (ε ≤−25 dB) from
Rn =−1 to Rn =−0.3, for all frequencies and angles of incidence. From Rn =−0.2
to Rn = 0.2, the absolute error increases in the region of high frequencies and
small angles of incidence. From Rn = 0.2 to Rn = 0.8 the results are again more
than acceptable with errors ε ≤ −20 dB. Finally, for Rn = 0.9 and Rn = 1, the
absolute error is homogeneous with errors of the order of−15 dB.

It is worth mentioning that highly absorbing materials are unusual in most
real scenarios. Therefore, the results are most than acceptable for many pur-
poses such as room acoustics or aeroacoustic. Nevertheless, a non-reflecting
boundary condition may be accurately approached by using a Perfectly Matched
Layer [Berenger (1996); Yuan et al. (1997); Liu (1999)] if needed.
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Figure 6.10: The absolute error in decibels for different values of the normal reflection
coefficient Rn obtained with the numerical FDO2 scheme, Eq. (6.19). From
up to down and left to right: a) Rn = 1, b) Rn = 0.9, c)Rn = 0.8, d) Rn = 0.7,
e) Rn = 0.6, f ) Rn = 0.5, g) Rn = 0.4, h) Rn = 0.3, i) Rn = 0.2, j) Rn = 0.1, k)
Rn = 0, m) Rn =−0.1, n) Rn =−0.2, o) Rn =−0.3, p) Rn =−0.4, q) Rn =−0.5,
r) Rn =−0.6, s) Rn =−0.7, t) Rn =−0.8, u) Rn =−0.9 and v) Rn =−1.
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These results are not unexpected: on the one hand, the regions with values
of the absolute error greater than−10 dB coincide with those regions in which
the theoretic reflection coefficient, Rth, is smaller than−35 dB when considered
in logarithmic scale (see Fig. 6.11). These are quasi-perfect absorbing regions
that can not be easily performed for any multidimensional numerical method
(as it is well reported in the technical literature [Taflove (1995)]); on the other
hand, the increase of error in the range of Rn > 0.8 suggests that the use of a
finite difference boundary condition FDO2 with a PSTD approximation for the
propagation equation gives an inherent error which gets unacceptable only for
Rn→ 1.

Figure 6.11: Different representations of Eq. (2.42) for different impedances fixed by Rn.
On the top it is plotted Rn from−1 to 0 and at the bottom from 0 to 1.

In order to understand more the behavior of FDO2, we test this boundary
conditions using the FDTD scheme for the free space propagation, Eq. (4.23).
The simulations has been run with the same time discretization, ∆t, but with
different Courant stability number, and therefore, with different spatial dis-
cretization. For these experiments, we fixed the optimum Courant stability
number allowed by the leap-frog scheme, S = 1/

√
2. The results are presented in

Fig. 6.12. Observe that the accuracy is improved considerably respect the results
obtained when FDO2 was combined with PSTD method. More concretely, the
results are clearly better in the range of Rn > 0.3. Hence, it affirms that the com-
bination of finite differences for the boundaries and psudospectral techniques
for the propagation yields an inherent error that for Rn→ 1 can be sufficiently
relevant to consider critical. On the other hand, the absolute error is increased
when the reflection coefficient tends to 0, instead of the porpousal made by
[Kowalczyk & van Walstijn (2007)] which achieve almost perfect results in all
the range of R, even for the most absorbing impedances. Thus, It suggests that
FDO2 leads to considerably high error where R is near to 0, independently of
the algorithm employed for the propagation nodes.
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Figure 6.12: The absolute error in decibels for different values of the normal reflection
coefficient Rn obtained with the numerical FDO2 scheme, Eq. (6.19) com-
bined with the FDTD algorithm, Eq. (4.23). From up to down and left to
right: a) Rn = 1, b) Rn = 0.9, c)Rn = 0.8, d) Rn = 0.7, e) Rn = 0.6, f ) Rn = 0.5,
g) Rn = 0.4, h) Rn = 0.3, i) Rn = 0.2, j) Rn = 0.1, k) Rn = 0, m) Rn = −0.1, n)
Rn =−0.2, o) Rn =−0.3, p) Rn =−0.4, q) Rn =−0.5, r) Rn =−0.6, s) Rn =−0.7,
t) Rn =−0.8, u) Rn =−0.9 and v) Rn =−1.
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6.5.4 Discussion

In the previous sections we have presented several formulations of numerical
BCs for the wave equation based on FDTD and Fourier PSTD methods. We
observed that the most suitable BCs for PSTD methods are those based on an
hybrid formulation since the numerical BCs FDO2, Eq. (6.19), employs finite
differences operators for the spatial derivatives. The results obtained with the
hybrid BCs can be used in room acoustics application since the best results
appear in the range of the acoustic impedance which corresponds to the one
used for characterizing walls in real scenarios.

Moreover, we compare the results of FDO2 combined with PSTD methods
to a purely FDTD numerical scheme observing several interesting properties.
On the one hand, the hybrid formulation of numerical BCs, Eq. (6.19), gives
an inherent error which turns critical for R→ 1. On the other hand, indepen-
dently of the propagation algorithm employed for the numerical simulation,
the highest errors are obtained in the regions where the reflection coefficient
tends to 0, thus, we can consider without lost of generality that BCs FDO2 does
not simulate accurately the locally reacting behaviour of high absorbing walls.

At this point, it is important to confirm whether the best option to imple-
ment BCs for the Fourier PSTD methods is the one obtained with the hybrid
formulation FDO2. Perhaps, Keeping the strategy of building hybrid algorithms,
one could define more appropriate finite difference BCs. Therefore, we carried
out several experiments using the numerical BCs presented in Sec. 6.4.2 but, in
this case, using the Fourier PSTD algorithm for the propagation nodes.

Firstly, we analyze the suitability for PSTD methods of numerical BCs, Eq.
(6.4), presented by Huopaniemi et al. [Huopaniemi et al. (1997)]. The poor
accuracy exhibit by these BCs combined with the leap-frog scheme for the prop-
agation nodes (see Fig. 6.3), added to the inherent error due to the formulation
of an hybrid algorithm, suggests that BCs, Eq. (6.4), would not be sufficiently
appropriate for PSTD simulations.

Nevertheless, the numerical analysis of Eq. (6.4) is presented since it would
give information of hybrid formulations for solving room acoustics scenarios.
The numerical experiments have been run under the same conditions than the
experiments done with Eq. (6.19). So, we use the BCs, Eq. (6.4), for the boundary
nodes and the PSTD update equation (4.39) for the propagation nodes, fixing
∆t = 1/16000 s and S = 2/(π

√
2) which is the maximum Courant stability number

for this algorithm. The results of the experiments are depicted in Fig. 6.13. As
we expected, the absolute errors in almost all the range of Rn are higher than
−15 dB which is too relevant to consider for PSTD simulations. It is worth
emphasizing that the absolute error is increased respect the one obtained with
FDTD methods. Therefore, it reaffirms that the combination of Fourier PSTD
and FDTD methods adds an inherent error which in this case makes BCs, Eq.
(6.4), unacceptable for room acoustics. In order to improve the results obtained
with Eq. (6.4), we tested the BCs equation (6.5) proposed by Kovalczyk and van
Walstijn [Kowalczyk & van Walstijn (2007)] within a PSTD simulation.
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Figure 6.13: The absolute error in decibels for different values of the normal reflection
coefficient Rn obtained with the numerical BCs, Eq. (6.4), using the PSTD
algorithm, Eq. (4.39), for the propagation nodes. From up to down and left
to right: a) Rn = 1, b) Rn = 0.9, c)Rn = 0.8, d) Rn = 0.7, e) Rn = 0.6, f ) Rn = 0.5,
g) Rn = 0.4, h) Rn = 0.3, i) Rn = 0.2, j) Rn = 0.1, k) Rn = 0, m) Rn = −0.1, n)
Rn =−0.2, o) Rn =−0.3, p) Rn =−0.4, q) Rn =−0.5, r) Rn =−0.6, s) Rn =−0.7,
t) Rn =−0.8, u) Rn =−0.9 and v) Rn =−1.
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Figure 6.14: The absolute error in decibels for different values of the normal reflection
coefficient Rn obtained with the numerical BCs, Eq. (6.5), fixing λ = 1/

√
2

and using the PSTD algorithm, Eq. (4.39), for the propagation nodes. From
up to down and left to right: a) Rn = 1, b) Rn = 0.9, c)Rn = 0.8, d) Rn = 0.7,
e) Rn = 0.6, f ) Rn = 0.5, g) Rn = 0.4, h) Rn = 0.3, i) Rn = 0.2, j) Rn = 0.1, k)
Rn = 0, m) Rn =−0.1, n) Rn =−0.2, o) Rn =−0.3, p) Rn =−0.4, q) Rn =−0.5,
r) Rn =−0.6, s) Rn =−0.7, t) Rn =−0.8, u) Rn =−0.9 and v) Rn =−1.
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Figure 6.15: The absolute error in decibels for different values of the normal reflection
coefficient Rn obtained with the numerical BCs, Eq. (6.5), fixing λ = 2/(π

√
2)

and using the PSTD algorithm, Eq. (4.39), for the propagation nodes. From
up to down and left to right: a) Rn = 1, b) Rn = 0.9, c)Rn = 0.8, d) Rn = 0.7,
e) Rn = 0.6, f ) Rn = 0.5, g) Rn = 0.4, h) Rn = 0.3, i) Rn = 0.2, j) Rn = 0.1, k)
Rn = 0, m) Rn =−0.1, n) Rn =−0.2, o) Rn =−0.3, p) Rn =−0.4, q) Rn =−0.5,
r) Rn =−0.6, s) Rn =−0.7, t) Rn =−0.8, u) Rn =−0.9 and v) Rn =−1.
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On the one hand, we expect better results than those obtained with Eq. (6.4)
since the numerical experiments of Eq. (6.5) combined with the FDTD scheme
achieve the most accurate results presented in this Thesis. On the other hand,
one important drawback of Eq. (6.5) is that the election of the parameter λ

is ambiguous due to the close relation between λ and the stability Courant
number of the propagation algorithm.

Therefore, we carried out two experiments combining Eq. (6.5) with the
PSTD method for the propagation junctions. In one simulation, we fixed λ =
1/
√

2 and in the other, λ = 2/(π
√

2). The election of the coefficients is directly
related with the optimum S allowed to be stable by each method. Therefore,
both experiments were run with the two dimensional optimum S for PSTD
methods. Figs. 6.14 and 6.15 illustrate the numerical results obtained in the
simulations. Surprisingly, in both cases, the absolute error is homogeneous and
bigger than −10 dB in whole the range of Rn. Only in Rn ≤ −0.8, the absolute
error is of the order of−20 dB, which can be considered acceptable. Although
we expected an inherent error due to the combination of different numerical
methods, the high errors obtained in a wide range of Rn for both simulations
is completely unexpected. Moreover, the best results of BCs, Eq. (6.5), yield
when λ = 1/

√
2. more concretely, for Rn < −0.3, the absolute error decreases

homogeneously from−20 dB to−40 dB which are very low errors and similar to
those obtained with our proposal, Eq. (6.19). The results of these experiments
confirm that FDO2 BCs is, so far, the best option when PSTD methods are used
to solve numerical problems.

6.6 Conclusions

PSTD techniques based on Fourier transforms are used nowadays in many
different fields such as the propagation of electromagnetic waves [Liu (1997)] or
the simulation of photonic devices [Pernice (2008)]. In all the cases reported in
the literature, PSTD is combined with Perfectly Matched Layer [Berenger (1996)]
absorbing boundary conditions. In order to use these PSTD methods in room
acoustics we develop and validate a numerical implementation of impedance
boundary conditions. We have proposed several alternatives in order to sim-
ulate locally reacting impedance boundary conditions. More concretely, we
separate the analysis depending on the PDE chosen to be numerically solved.

On the one hand, we present for the first time in acoustics a novel semi-
empirical BCs for 1D and 2D algorithms for the Eulerian problems. This BCs
are obtained through a parameter ξ , which controls the ratio between the
acoustic pressure and the velocity. The results obtained in the simulations
show that these BCs, Eq. (6.9), are sufficiently accurate to be considered in
any room acoustics simulation. Moreover, we extend their formulation into
FDTD algorithms defined through centred meshes. The accuracy of FDTD
simulations outperforms those obtained with PSTD schemes in the whole range
of Rn, getting similar results than those proposed by Bottledooren [Botteldooren
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(1995)]. Additionally, the centered formulation of the semi-empirical BCs, Eqs.
(6.9) and (6.14), allows to model easily complex enclosures since BCs can be
defined at any node of the discrete domain.

On the other hand, among the proposed boundary schemes for the wave
equation, we found that the conditions labelled as FDO2 are the most stable
and accurate. The FDO2 is defined by Eq. (6.19) which is the numerical finite-
difference approach of the second order impedance boundary condition, Eq.
(6.16). In this case, we show the convenience of combining Eq. (6.19) with
the PSTD scheme for the propagation nodes, Eq. (4.39), for the locally reacting
boundary condition.

We performed numerical experiments in order to test the locally reacting
behavior of the proposed boundary conditions obtaining fairly good results.
In these experiments we computed the absolute error between the numerical
and the theoretical reflection factors, analyzing the dependence with frequency
and angle of incidence. The absolute error obtained in most cases is below
that−25 dB demonstrating the suitability of the method for the computation
of acoustic impulse responses. To sum up: we developed and tested a new
impedance boundary conditions for PSTD schemes with applications in room
acoustics.

Moreover, we tested the boundary conditions FDO2 by using the discrete
wave FDTD algorithm, Eq. (4.22), observing better results than in Fourier PSTD
simulations. It suggests that the combination of different numerical methods
for computing impedance boundary problems gives an inherent error which is
increased for positive values of Rn. In order to confirm this assumption, we car-
ried out different experiments with several finite difference BCs [Huopaniemi
et al. (1997); Kowalczyk & van Walstijn (2007)] within a PSTD simulation. The
results obtained from the numerical experiments confirm either the best accu-
racy of FDO2 for PSTD applications or the increase of error due to the hybrid
formulation employed for PSTD simulations.

In the near future, in order to improve this results, it would be very interesting
to give efforts in the study of impedance boundary conditions which are not
based on hybrid formulations.





Chapter 7

Conclusions and Outlooks

7.1 Summary and Conclusions

Room acoustics is the science devoted to study the sound propagation in enclo-
sures. Although the mathematical and physical problem is perfectly stated (see
Chapter 2), the analytical solution, as a function of the space and time, of the
sound propagation in closed environments is in general impossible to obtain.
Therefore, the use of computers has emerged as a proper manner to get accu-
rate solutions of the sound phenomena. These computer simulations have a
considerable interest of engineers and architects, and also for the entertainment
industry, as well as virtual reality applications.

In fact, in this Thesis we presented different approximations used to solve
the inhomogeneous boundary problem. Each computational approach gives
different advantages and drawbacks that were commented with detail in Chap-
ter 3. For example, the main advantage of geometrical methods is the velocity
of the algorithms, letting to construct efficient algorithms, even for real time
applications. Conversely, the main drawback of these methods is that they
cannot simulate wave phenomena such as diffraction or interference. On the
other hand, the wave-based methods take into account the PDE which governs
the sound propagation, directly simulating those phenomena that geometrical
methods could not perform. More concretely, the use of discrete-time mod-
elling is justified since it allows relatively efficient simulations with a high level
of accuracy. Moreover, since these methods are defined in the time-domain,
only one simulation is demanded to calculate the impulse response of any
room. For these reasons, we decided to study carefully the main aspects of
either FDTD methods, which is one of the most important wave-based methods
in the time-domain, or PSTD methods, which is a new emerging technique
successfully applied in fields such as electromagnetism or optics.

The main motivation of this thesis consists on contributing in the main
topics of numerical methods in the time-domain. Firstly, we overviewed the
formulation of several FDTD and PSTD algorithms (Chapter 4). Then, we ana-
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lyzed the sound source generation for unit impulse signals (see Chapter 5), and
finally, we reviewed and made contributions to different implementations of
numerical impedance boundary conditions either for FDTD or PSTD methods
(Chapter 6).

On the one hand, we overviewed the most popular FDTD and PSTD algo-
rithm for either the Euler or the wave equation. Moreover, we presented an
analytical formulation of the dispersion error, supported by numerical experi-
ments of high accuracy. Finally, we rewrote the Eulerian algorithms in terms
of non-staggered meshes, in order to improve their flexibility when numerical
boundary conditions are required.

On the other hand, the sound source generation of a unit impulse signal was
studied and analyzed carefully. We presented the 2D and 3D Green’s function
which give information of the impulse propagation in the free space, observing
that a phenomenon so-called afterglow is appeared when the dimension of
the problem is 2. Furthermore, we carried out different numerical experiments
of the two most relevant numerical source generation: the soft and the hard
sources. Both sources were tested using FDTD and PSTD algorithms observing
the best results in the soft source simulations, since they are based on physical
assumptions. In fact, the 2D results using the hard source generation are un-
acceptable since the data obtained in numerical simulations did not fit with
the analytical curves. In 3D results, high accuracies are obtained no matter
which source generation is employed to simulate the impulse signal. It is worth
mentioning, that in PSTD Eulerian algorithm, the punctual source emission gen-
erates an artifact that appears along the axis and increases with the dimension
of the problem. A proper solution of this consits on using volumetric sources
for the generation of the impulse.

Finally, this Thesis deals with the locally reacting impedance concept. Ba-
sically, the acoustic pressure and the particle velocity is related through an
impedance value which simplifies considerably the boundary model. With this
assumption, we analyzed the most common numerical boundary conditions
presented in the last decade for FDTD methods using either the Euler or the
wave formulation. Moreover, we presented for the first time in room acous-
tics the formulation of numerical boundary conditions for the Fourier PSTD
methods. Firstly, we defined a semi-empirical boundary conditions for the
Eulerian algorithms observing acceptable accuracies of the reflexion coefficient.
Secondly, we presented numerical boundary conditions suitable for the discrete
wave equation. This scheme combines the PSTD methods for the propagation
nodes and FDTD methods for the boundary equation. Finally, we extended the
PSTD boundary conditions to FDTD formulations leading to remarkable results
in terms of accuracy.

7.2 Contributions of the Thesis

In this Thesis, the main contributions can be highlighted as follows:
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• Reformulation of FDTD and PSTD algorithms using a centered space and
time numerical meshes (Chapter 4). These formulations allow to easily
define proper boundary conditions and source generations. Moreover, we
formulated the PSTD methods using the wave equation, see in Sec. 4.6.

• A novel methodology for computing the dispersion error via 2D numerical
simulations. The accuracies of the results are remarkable, since it gives
high accuracies even for algorithms with isotropic dispersion error, see in
Sec. 4.8.

• A complete source analysis in 2 and 3 dimensions. We reviewed the most
typical source generation using either FDTD or PSTD methods for the
propagation nodes (Chapter 5). It is worth emphasizing that the analysis
of the source generation using the discrete PSTD wave equation has never
been done before.

• A deep overview of the most commonly used numerical boundary condi-
tions for FDTD methods, (Sec. 6.4). We define two novel discrete boundary
conditions based on both, the Eulerian and the wave algorithms leading
to remarkable accuracies, see in Secs. 6.5.2 and 6.5.4, respectively.

• A novel implementation of numerical boundary conditions for PSTD, but
in this case, using the Eulerian algorithms. The boundary conditions are
defined through a constant ξ which is related with the impedance, Z, and
the Courant stability number, S. Moreover, we showed the numerical
results of 2D experiments observing remarkable accuracies, (Sec. 6.5.1).

• Another implementation of numerical impedance boundary conditions
for the Eulerian PSTD algorithms. In this case, we defined an hybrid for-
mulation since we used a finite difference operator to build the numerical
boundary conditions. Moreover, we presented 2D numerical experiments
that confirmed the suitability of the porpousal (Sec. 6.5.3).

Some parts of this thesis have been presented previously, at journal and
conferences papers. These publications are listed as follows:

Journal articles

• C. Spa, T. Mateos and A. Garriga. "Methodology for Studying the Numerical
Speed of Sound in Finite Difference Scheme". Acta acustica united with
Acustica.95(4) pp 690−695. 2009.

• C.Spa, J. Escolano and A. Garriga. "Impedance Boundary Conditions for
Pseudo-Spectral Time-Domain Methods in Room Acoustics". Applied
Acoustics. Accepted.
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• C. Spa, A. Garriga and J. Escolano."Semi-empirical Boundary Conditions
for the Linearized Acoustic Euler Equations using Pseudo-Spectral Time-
Domain Methods". Journal of Sound and Vibration. Submitted.

• C. Spa, A. Garriga, T. Mateos and J. Escolano. "Analysis of Different Sound
Source Generation in Multidimensional Numerical Algorithms". IEEE
Transactions on Audio, Spech and Language Processing. Preprint.

Conferences articles

• A. Garriga, C. Spa and V. López. "Computation of the Complete Acoustic
Field with Finite Difference Algorithms".Proceeding of the Forum Acus-
ticum. Budapest. 2006

• C. Spa, T. Mateos and A. Garriga. "General Impedance Boundary Condi-
tions in Pseudospectral Time-Domain Methods for Room acoustics", ASA
Conference ACOUSTICS’08. Paris. 2008.

7.3 Future Research Lines

From the conclusions of this work, some new and challenging research lines
could be proposed, being some of them already open. Future work may follow
the lines listed here:

• In order to compare with the FDTD and PSTD methods, it would be inter-
esting to explore formulations using different DWM (rectangular, interpo-
lated, triangular/hexagonal...). This analysis would complete the study of
the wave-based methods in the time-domain.

• In numerical source generation, the complete analysis of volumetric
sources for PSTD methods is an interesting line of research, since punctual
sources introduces an undesired artifact in the axis of the simulation that
needs to be improved.

• Regarding the PSTD numerical boundary conditions, it would be inter-
esting to obtain analytical background for the semi-empirical impedance
boundary conditions based on the Eulerian formulation, since their results
can be easily extended into FDTD methods.

• To formulate proper numerical boundary conditions for the PSTD discrete
wave equation capable to improve the results that those obtained with
FDO2, using either hybrid formulations, as presented in this Thesis or
with purely PSTD algorithms.

• To include frequency dependent boundary conditions such as those cre-
ated by Escolano and Jacobsen [Escolano & Jacobsen (2007)] , in order to
obtain more realistic models of simulated walls.
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• To compute numerical impulse responses according to experimental mea-
sures, such as the Round-Robin room [Bork (2000); Vorländer & Mom-
mertz (2000)]. These simulations would give information of the accuracy
of the different numerical boundary conditions presented in this Thesis.
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Appendix A

Different Formulations of Perfectly
Matched Layers

In this appendix we present the basic formulation of the PML equations for
either the Euler equation or the wave equation. On the one hand, the analytical
equations of the PML in three dimensions read as follows

∂vx(x,y,z, t)
∂ t

+σxvx(x,y,z, t) =
∂ p(x,y,z, t)

∂x
,

∂vy(x,y,z, t)
∂ t

+σyvy(x,y,z, t) =
∂ p(x,y,z, t)

∂y
,

∂vz(x,y,z, t)
∂ t

+σzvz(x,y,z, t) =
∂ p(x,y,z, t)

∂ z
. (A.1)

Observe that this equation is similar than Eqs. (2.12) to (2.14) except by an
additional term proportional to vµ , where refers to the spatial coordinate x, y or
z. Conversely the pressure equation (2.15) differs from the PML equations since
it is necessary to define three auxiliary quantities, (px, py, pz) that are governed
by

∂ px(x,y,z, t)
∂ t

+σx px(x,y,z, t) =
∂vx(x,y,z, t)

∂x
,

∂ py(x,y,z, t)
∂ t

+σy py(x,y,z, t) =
∂vy(x,y,z, t)

∂y
,

∂ pz(x,y,z, t)
∂ t

+σz pz(x,y,z, t) =
∂vz(x,y,z, t)

∂ z
, (A.2)

where p = px + py + pz. In this case, we the three quantities are calculated sepa-
rately since the coefficient σ = (σx,σy,σz) ∈ [0,1] is related with the absorption
of the sound field along the outward normal direction noting that for σ = (0,0,0)
the Euler equations are recovered. The absorption direction is obtained through
the outward direction of the impedance walls (see Fig. 4.4).
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Firstly, we present the 3D PML algorithm for the non-staggered leap-frog
scheme mentioning that they can be easily extended to the parametric algo-
rithm presented in section . For velocity nodes defined in a non-staggered mesh
(i.e. x = (i, j,k)) the numerical update equations for the PML yield

vx|n+1
i, j,k =

(
vx|ni, j,k−a1(p|ni+1, j,k− p|ni, j,k)

1+σx

)

vy|n+1
i, j,k =

(
vy|ni, j,k−a1(p|ni, j+1,k− p|ni, j,k)

1+σy

)

vz|n+1
i, j,k =

(
vz|ni, j,k−a1(p|ni, j,k+1− p|ni, j,k

1+σz

)
(A.3)

On the other hand, the pressure update equation is achieved splitting p in px, py
and pz as

px|n+1
i, j,k = (1−σx)px|ni, j,k−a2(vx|n+1

i, j,k− vx|n+1
i−1, j,k)

py|n+1
i, j,k = (1−σx)py|ni, j,k−a2(vy|n+1

i, j,k− vy|n+1
i, j−1,k)

pz|n+1
i, j,k = (1−σx)pz|ni, j,k−a2(vz|n+1

i, j,k− vz|n+1
i, j,k−1) (A.4)

(A.5)

Similarly, the PML equations for the PSTD algorithm are directly obtained by
replacing the spatial finite difference operators by the spectral derivative, see
Sec. 4.2. The explicit for the velocity of the numerical scheme reads

vx|n+1
i, j,k =

vx|ni, j,k−
∆t
ρ

F−1
x

[
ι

2πnx
Nx∆xFx[p|n:, j,k]

]
1+σx


vy|n+1

i, j,k =

vy|ni, j,k−
∆t
ρ

F−1
y

[
ι

2πny
Ny∆yFy[p|ni,:,k]

]
1+σy


vz|n+1

i, j,k =

vz|ni, j,k−a1
∆t
ρ

F−1
z

[
ι

2πnz
Nz∆zFz[p|ni, j,:]

]
1+σz

 (A.6)

and for the pressure,

px|n+1
i, j,k = (1−σx)px|ni, j,k−a2ρc2

∆tF−1
x

[
ι

2πnx

Nx∆x
Fx[vx|n+1

:, j,k ]
]

py|n+1
i, j,k = (1−σx)py|ni, j,k−ρc2

∆tF−1
y

[
ι

2πny

Ny∆y
Fy[vy|n+1

i,:,k ]
]

pz|n+1
i, j,k = (1−σx)pz|ni, j,k−ρc2

∆tF−1
z

[
ι

2πnz

Nz∆z
Fz[vz|n+1

i,k,: ]
]

(A.7)



We conclude that PML for the Euler equations are a simple and powerful alter-
native for computing perfectly absorbing BCs.

Conversely, the formulation of PML for the wave equation is not obtained as
easy as those achieved using the Euler equations. In this case, it is needed to
define two mathematical quantities, D1 and D2, without any physical meaning.
For illustrative reasons, we focus the analysis for absorptions along the x-axis
since it can be straightforwardly derived for other orientations. Therefore, the
PML for the wave equation for σ = (σx,0,0) takes the following form

∂D1(x,y,z, t)
∂ t

−σρc2D1(xy,z, t) =
∂P(x,y,z, t)

∂x
∂D2(x,y,z, t)

∂ t
−σρc2D2(x,y,z, t) = =

∂ 2D1(x,y,z, t)
∂ t∂x

∂ 2P(x,y,z, t)
∂ t2 = c2 ∂D2(x,y,z, t)

∂ t
(A.8)

where this PDE is derived from Eulerian formulation of the PMLs. Moreover, D1

has been discretized in interleave times and positions, D1|n+1/2
i+1/2 and D2 only in

interleave times D2|n+1/2
i .

D1|n+1/2
i+1/2 =

(
1−σa1/2
1+σa1/2

)
D1|n−1/2

i+1/2 +
∆t

∆x(1+σa1/2)
(Pn

i+1−Pn
i )

D2|n+1/2
i =

(
1−σa1/2
1+σa1/2

)
D2|n−1/2

i +
D1|n+1/2

i+1/2 −D1|n+1/2
i−1/2 −D1|n−1/2

i+1/2 +D1|n−1/2
i−1/2

∆x(1+σa1/2)

Pn+1
i = Pn−1

i +2Pn
i + c2

∆t(D2|n+1/2
i −D2|n−1/2

i ) (A.9)

In order to obtain the optimum absorption and to minimize the numerical
reflexion due to a abrupt changes in medium, σ follows the following expression

σi =−
(

i
Npml

)m (m+1) logR0

a1Npml∆x
(A.10)

where Npml refers to the total number of PML modes in µ-direction, m and R0
are two constants that are 10−2 and 5 respectively. With this non-constant σ it is
obtained a smooth change of the medium that it sufficiently absorbing with only
16 grid points. One important drawback of this numerical boundary conditions
is that they cannot be extended to PSTD formulations, since it is no posible
to compute the spectral derivative of D1. In PSTD simulations, it is possible
to use the FDTD formulation already presented leading to stable simulations.
Nevertheless, in order to achieve acceptable absorptions, we must reduce the
spatial sampling, δ . Therefore, it would be very interesting to dedicate efforts in
the implementation of perfectly absorbing BCs with a purely PSTD algorithm
just to avoid the limitations of the hybrid formulations.





Appendix B

Stability Analysis of Numerical
Boundary Conditions

In this Appendix, the stability of the proposed boundary conditions is computed
through a Von Neumann analysis. For all cases, it is assumed a numerical plane
wave of the form p(x, t) = Ξt/∆te−ιkT

0 x, with a wavenumber k0. The scope is to
find the range of values for Z which verify the condition ‖Ξ‖ ≤ 1 (or alternatively,
‖Ξ‖2 ≤ 1) [Strikwerda (2004)].

FDO1 Stability

In this section we analyze the stability of the FDO1 boundary condition (see Eq.
(2.44). After applying the Von Neumann procedure to Eq. (2.44), it yields

Ξ
n+1e−ι(kx0 i∆+ky0 j∆) = Ξ

ne−ι(kx0 i∆+ky0 j∆) (B.1)

− Z∆t
ρ∆

Ξ
ne−ι(kx0 i∆+ky0 j∆)

− Z∆t
ρ∆

Ξ
ne−ι(kx0 (i−1)∆+ky0 j∆))

where kx0 = ‖k0‖cosθ and ky0 = ‖k0‖sinθ . After simplifying by the factor Ξne−ι(kx0 i∆+ky0 j∆)

we obtain:

Ξ = 1− Z∆t
ρ∆

(1− eιkx0 ∆). (B.2)

Therefore, we get for ‖Ξ‖2,
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‖Ξ‖2 =
(

1− Z∆t
ρ∆

(1− cos(kx0 ∆))
)2

+
(

Z∆t
ρ∆

sin(kx0 ∆)
)2

= 1+2

((
Z∆t
ρ∆

)2
+

Z∆t
ρ∆

)
(1− cos(kx0 ∆))

≤ 1+4

((
Z∆t
ρ∆

)2
+

Z∆t
ρ∆

)
. (B.3)

Since the stability of the numerical scheme is guaranteed when ‖Ξ‖2 ≤ 1, the
range of allowed values for Z is:

Z∆t
ρ∆

+1≤ 0. (B.4)

Finally, this scheme is stable if, and only if, Z ≤ ρcS−1 , where S = c∆t/∆.

FDO2 Stability

Following the same procedure, the stability of Eq. (6.16) leads to the next
equation

Ξ =
2ρ∆

ρ∆+0.5Z∆t
− ρ∆−0.5Z∆t

ρ∆+0.5Z∆t
Ξ
−1 +

0.5∆tZ
ρ∆+0.5Z∆t

(Ξ−Ξ
−1)eιkx0 ∆ (B.5)

which could be seen as a second order polynomial and where Ξ is solved as

Ξ =
{

1,1− 2ZS/(ρc)
1+ZS/(ρc)± ι cot(kx0∆/2)

}
. (B.6)

Although there exist the solution Ξ = 1, one should focus on the more re-
strictive solution. The next step is to obtain ‖Ξ‖, which is calculated as

‖Ξ‖= 1− 4ZS/(ρc)
(1+ ZS

ρc )2 + cot2 (kx0∆/2)
. (B.7)

Since cot(x) ∈]−∞,∞[ and it is situated in the denominator, it maximizes the
fraction when cot2 (kx0∆/2) = 0, leading to an expression which is always smaller
or equal than the unity, concluding that this scheme is unconditionally stable.

PSO1 Stability

The application of the Von Neumann analysis to a PSTD-based equation re-
quires to take some care with the spatial derivatives. This section deals with
the stability of Eq. (6.15). After applying p(x, t) = Ξt/∆te−ιkT

0 x on this particular
equation, the following equation yields



Ξ
n+1 e −ι(kx0 i∆+ky0 j∆) = Ξ

ne−ι(kx0 i∆+ky0 j∆) (B.8)

− Z∆t
ρ

F−1
x [ jkxFx[Xine−ι(kx0 i∆+ky0 j∆)]]

= Ξ
ne−ι(kx0 i∆+ky0 j∆)

− Z∆t
ρ

Ξ
ne−ιky0 j∆F−1

x [ jkxFx[e−ιkx0 i∆]].

From the basis of the Fourier transform, let us to define

Fx[e−ιkx0 i∆] = 2πδ (kx− kx0) (B.9)

F−1[ιkx2πδ (kx− kx0)] =
∂{e−ιkx0 i∆}

∂ (i∆)

= −ιkx0e−ιkx0 i∆ (B.10)

After that, Eq. (B.8) becomes

Ξ = 1+ ιkx0

Z∆t
ρ

(B.11)

Therefore, after apply the operator ‖ · ‖2 at both sides of the equation, it
yields

‖Ξ‖2 = 1+
(

kx0

Z∆t
ρ

)2

. (B.12)

That means this scheme is stable only if Z is purely imaginary.

PSO2 Stability

The stability of Eq. (6.17) follows the same steps than the previous scheme.
After applying same the algebraic simplifications once a plane wave is assumed
in the equation, it yields

Ξ = 2−Ξ
−1 +

Z∆t
2ρ

ιkx0(Ξ−Ξ
−1) (B.13)

Rearranging this equation, next equation is obtained

Ξ
2(1− ιkx0

Z∆t
2ρ

)−2Ξ+(1+ ιkx0

Z∆t
2ρ

) = 0 (B.14)

Since Eq. ( B.14) is a second order polynomial, their roots are calculated as

(Ξ−1)(Ξ−
1+ ιkx0

Z∆t
2ρ

1− ιkx0
Z∆t
2ρ

) = 0 (B.15)



The first root (Ξ−1) accomplishes with the stability condition. Therefore,
the second root has to be analyzed in detail. After calculating the modulus of
this root, it is obtained the following expression

‖Ξ‖=

∥∥∥∥∥1+ ιkx0
Z∆t
2ρ

1− ιkx0
Z∆t
2ρ

∥∥∥∥∥= 1, (B.16)

it shows that this scheme is unconditionally stable.
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