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Bianca, Pous, Silvana, Pepllúıs, Montse, Anna, Toni i companyia, per la vostra ajuda,

alegria i el vostre sentit de l’humor. A tots us he d’agrair aquests darrers anys que m’han

format no tan sols com a doctora i professora sino també com a persona. Gràcies als

companys del laboratori de visió, Arnau, David i molt especialment a l’Anna. Als meus

companys de laboratori: Carles, Tudor, Ela, Ricard, Arman, Pio, Josep, Nuno, Olivier i
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Sant Miquel i les matinals d’esqúı de muntanya als Pirineus que m’han permès evadir-me
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Abstract

In the recent years 3D reconstruction has become a very important research topic in

computer vision community, involving a wide range of applications such quality control

in industry, modeling of large scenarios in robot navigation or reconstruction of buildings,

statues and cultural heritage among others. All these tasks rely on surface mapping

processes, which imply several steps, including image acquisition, 3D registration and

view integration, to obtain the final model of the object/scene. An unsolved problem

when registering large objects or scenes resides in the propagation of the error during the

registration process, leading to inaccuracies in the alignment of the partial views. This

thesis presents a discussion of the 3D registration techniques and proposes a new approach

to deal with the misalignment problems, reducing the accumulated error by means of a

multiview registration strategy.

The first part of this work presents an accurate analysis of the most relevant 3D regis-

tration techniques, including initial pose estimation, pairwise registration and multiview

registration strategies. A new classification has been proposed, based on both the appli-

cations and the approach of the methods that have been discussed. This analysis is the

basis of the main contribution of this thesis, since it has allowed to identify the strong

and weak points of the existing methods in order to propose a novel contribution that

improves the performance of all the previous ones.

The second and main contribution of this thesis is the proposal of a new 3D multiview

registration strategy. The proposed approach detects revisited regions obtaining cycles of

views that are used to reduce the inaccuracies that may exist in the final model due to

error propagation. The method takes advantage of both global and local information of

the registration process, using graph theory techniques in order correlate multiple views

and minimize the propagated error by registering the views in an optimal way.



The proposed method has been tested using both synthetic and real data, in order

to show and study its behavior and demonstrate its reliability. In addition, some of the

most relevant 3D multiview registration methods have also been tested under the same

conditions. From the obtained results it can be extracted that the techniques based

on graphs provide a good solution to the problem of the propagated error, improving

considerably the results obtained by metaview approaches and being more efficient than

simultaneous minimization in large scenes. Besides, detecting cycles does not only help

improving the process in terms of error propagation, but the use of information related to

visited scenes improve significantly the global results.



Resum

Durant els últims anys, la reconstrucció 3D s’ha convertit en un camp de recerca d’alta

rellevància dins de la visió per computador, amb aplicacions com el control de qualitat,

la modelització d’escenes de grans dimensions en la navegació robòtica o la reconstrucció

d’edificis, estàtues i llegat cultural entre d’altres. Totes aquestes tasques depenen de

processos de mapeig de superf́ıcies, incloent diferents passos com l’adquisició d’imatges, el

registre 3D i la integració de les vistes, per tal d’obtenir el model final de l’objecte/escena.

Un problema encara no resolt es la propagació de l’error en el registre d’objectes de

grans dimensions, que pot comportar a desalineaments entre les vistes parcials. Aquesta

tesis presenta un estudi de les tècniques de registre 3D i proposa un nou mètode per tal

de tractar amb els problemes de desalineament, reduint l’error acumulat mitjançant el

registre de múltiples vistes.

La primera part d’aquest treball presenta una anàlisi acurada de les tècniques de reg-

istre 3D mes rellevants, incloent tècniques d’estimació de la posició inicial, registre pairwise

i registre entre múltiples vistes. S’ha proposat una nova classificació de les tècniques, de-

penent de les seves aplicacions i de l’estratègia utilitzada. Aquesta anàlisi i classificació

representa la base de la principal aportació de la tesi ja que ha permès identificar els

punts forts i febles de cada mètode per tal de proposar una nova contribució que millora

el rendiment de les tècniques ja existents.

La contribució mes important d’aquesta tesi és la proposta d’un nou mètode de registre

3D utilitzant múltiples vistes. El mètode proposat detecta regions ja visitades prèviament,

obtenint cicles de vistes que s’utilitzen per tal de reduir els desalineaments en el model final

deguts principalment a la propagació del error durant el procés de registre. Aquest mètode

utilitza tant informació global com local, correlacionant les vistes mitjançant tècniques de

grafs que permeten minimitzar l’error propagat i registrar les vistes de forma òptima.



El mètode proposat ha estat provat utilitzant dades sintètiques i reals, per tal de

mostrar i analitzar el seu comportament i demostrar la seva eficàcia. Per comparar el

rendiment, també s’han provat en les mateixes condicions alguns dels mètodes de registre

3D mes rellevants. A partir dels resultats es pot extreure que les tècniques basades en grafs

presenten bones solucions al problema de la propagació de l’error, millorant considerable-

ment els resultats obtinguts per les tècniques de metaview i mostrant una eficiència mes

elevada que la minimització simultània en escenes de grans dimensions. Cal afegir que el fet

de detectar cicles utilitzant informació de àrees prèviament visitades no nomes contribueix

a millorar el procés en termes de propagació de l’error sinó que millora significativament

els resultats globals.
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Chapter 1

Introduction

This chapter presents the origin of this work and how it is related with the work cur-

rently under development in the Computer Vision and Robotics Group of the University of

Girona. An overview of the 3D registration problem is described with the aim of focusing

the objectives of this thesis and the potential applications of its contributions. In addition,

an outline of the thesis is presented at the end of the chapter.

1.1 Research background

There has been considerable progress on computer vision in the last decade. We are at the

edge of understanding how the eye works and how it perceives what it is seen, as a previous

step for translating such information to computers in the most accurate way. However,

there is no general solution to recover the geometry of space and objects that works in

any case and environment condition. A long way has been done since Aristotle, who

believed the eye emitted rays that reached out and brought back the visible information

to the viewer. Nowadays, although enormous progress has been made towards simulating

the real world using computers, we are still far away from obtaining an efficient system

dealing with the understanding of the environment and reconstructing the real world.

From autonomous navigation to quality control applications, scene reconstruction ap-

pears to be one of the most relevant research fields in computer vision. Since 1992, our

research group (VICOROB) has been working in several projects related to image process-

1



2 Chapter 1. Introduction

Figure 1.1: Autonomous Underwater vehicle prototypes GARBI (left) and URIS (right).

ing and computer vision with applications to active surveillance [66], medical image [65],

3D reconstruction [54] and robotics [7] among others.

In the robotics field, one of our main research lines has been related to underwater

robotics navigation. The group has developed its own autonomous vehicles, including Uris

and Garbi, which have been used as a valuable testing platform to perform research in

computer vision (see Figure 1.1). In this context, several approaches for 2D and 3D scene

reconstruction have been presented as a key to safety navigation. In [29] Garcia proposed

the construction of 2D mosaics (visual maps of the ocean floor), with the aim of recovering

the pose and motion of the vehicle. Recently, the research of the group has been focused in

Simultaneous Localization and Mapping (SLAM) techniques using predictive filters with

the aim of estimating the robot pose and building a 3D map of the scene simultaneously. In

this context, some relevant contributions has been published [80] [70]. More specifically a

new technique to reconstruct large 3D scenes from a sequence of video images by combining

3D computer vision and Bayesian filtering was presented. The approach performs the

alignment of a sequence of 3D partial reconstructions of the seafloor thanks to the re-

observations of passive landmarks by means of a Kalman filter-based SLAM approach.

Early works related with the present doctoral thesis were associated with these robotic

platforms. The developed work concerned the simulation of Multi-AUV (Autonomous

Undewater Vehicles) in underwater environments [74] [75] [76], and was a fundamental step

for understanding the associated problems with navigation and environment perception [6].

In this context 3D scene understanding and reconstruction techniques were proved to be

fundamental for outdoor scenes and underwater navigation applications.

Aspects such as sensoring, camera modelling and calibration, structured light projec-

tion and 3D registration can be considered the background of the present work and future
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research proposals [25]. Related to theses subjects, several thesis have been presented in

the group during the last years. Armangué presented a deep study about stereovision sys-

tems, with the aim of recovering 3D geometric information of the environment, including

topics such as camera calibration, epipolar geometry and egomotion estimation among

others [2]. Two years latter Pages proposed a new coded pattern projection technique and

its application in assisted visual servoing focused to robot positioning and simplifying the

problem of dealing with featureless environments (see Figure 1.2) [67].

Figure 1.2: Example of coded structured light for 3D surface reconstruction.

Matabosch focused his work in data acquisition and 3D registration of small ob-

jects [53]. One of the main contributions of this work resides on the design of a 3D

hand-held multi-slit laser scanner to acquire 3D views without any motion restriction. In

addition, the author proposed a new approach for 3D registration of small objects. Widen-

ing the line of research, the present thesis faces the problem of 3D registration of large-scale

objects, without loosing small details and features and obtaining a high resolution model.

1.2 Motivations and objectives

The present thesis has been mainly developed in the context of three research projects

funded by the Spanish government: a) DAFSEC-VIC (TIC2003-08106-C02-02), focused

on active vision systems for surveillance tasks in large scenarios such as airports and train

stations; b) AQUAVISION (DPI2007-66796-C03-02) that deals with the development of

3D computer vision algorithms for underwater cartography; and c) AIRSUB (DPI2005-

09001-C03-01), that faced visual inspection of hard accessible scenarios such as harbors

or dams with the aim of detecting problems such as fissures and holes.
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(a) (b) (c)

Figure 1.3: Example of 3D reconstruction developed by Matabosch. (a) Industrial manip-
ulator used in the experiments. (b) Real plaster object. (c) 3D reconstruction.

These projects addressed to industrial and research developments need of 3D computer

vision and 3D image understanding. Historically, computer vision and image processing

have proved to be fundamental to improve visual inspection in industrial quality control.

Early applications concerned the assessment of manufactured parts correctness with re-

spect to a known model by 2D imaging, using wide range of techniques starting from image

morphology up to complex image filters. Nevertheless, depending on the complexity of the

objects, it is still difficult to introduce a reliable quality control in terms of 3D information.

Nowadays, recent contributions in 3D registration permit quality assessment tasks based

on the comparison of a 3D scanned manufactured part and its corresponding 3D model.

These techniques are not only focused on the detection of object imperfections (such as

surface bumps, cracks and fissures) in tiny or medium size objects, but also in large sce-

narios such as the inspection of automotive and avionics manufactured parts, submerged

parts of harbors and dams, and even the complete acquisition of ancient remains and large

sculptures.

Focusing on what is the main subject of this thesis, that is the 3D acquisition of

large-scale objects, several chained processes are involved from previous data acquisition

to a ultimate view integration procedure. Note that the complete acquisition of large-

scale objects requires to consider the imaging of a sequence of partial views while the

object or the acquisition system is moving. Hence, surface registration is an intermediate

step consisting in transforming all the partial views of that object/surface to a common

reference. Several techniques have been proposed by different communities (computer
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vision, robotics, photogrammetry), differing considerably depending on the application.

Computer vision and Photogrammetry fields of research usually focused on obtaining

accurate reconstruction of the 3D objects for applications such as quality control and

statue digitalization, among others. Here it is not so important to work in real time but

to obtain an accurate result. The main problem of these approaches is the propagation

error present in the registration process of large surfaces. This problem has also been

faced in the robotics community, where scene reconstruction plays an important role in

safe autonomous navigation. Several techniques have been presented, focused mainly in

the localization of the vehicle and the mapping the environment simultaneously (SLAM),

providing reliable solutions to the problem of error propagation. Here, the resolution of the

map is not as important as the accurate localization of the obstacles and the identification

of the correct path.

Although the efforts of the scientific community to provide reliable methods to recon-

struct 3D objects and surfaces, the problem of remove (reduce) the accumulated error in

the registration process has not been solved. This problem worsens when the size of the

object and the resolution desired increase. Therefore, a reliable approach to deal with this

problem presents a real challenge that has motivate the development of this work.

The purpose of this thesis is to develop a new approach with the aim of solving the is-

sues of the 3D registration of large-scale objects. Two main problems need to be solved: (1)

The registration of the 3D partial views and (2) the minimization of the accumulated error

during the alignment process. After analyzing the most important registration techniques

available in the literature, a new algorithm based on multi-view graph-based techniques

is proposed. The algorithm takes advantage of the information provided when a region is

revisited and uses this information to correct the movement between the registered views,

reducing the misalignment in the final model.

1.3 Thesis outline

This thesis is structured in 6 chapters, including this introduction detailed in Chapter 1.

In chapter 2, a survey of surface registration for 6DOF (Degrees of Freedom) robot/camera

pose estimation is presented. The study is divided in three main sections. The first is

related with methods for obtaining an initial coarse pose estimation, including a detailed
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description of different feature extraction and matching techniques. The second describes

fine registration methods that refine the alignment departing from a close solution given

by the coarse method. Finally, the third and main part of the survey concerns the pre-

sentation of the most representative error minimization techniques, including graph-based

techniques, simultaneous minimization and SLAM approaches. A detailed list of works

and several bibliographical references are briefly explained and exhaustively classified ac-

cording to their applications and the methodology used.

Chapter 3 describes some fundamentals on graph theory with the aim of presenting

the basics that are used in the succeeding chapters. The basic definitions of graphs are

provided together with the description of several algorithms focused on finding paths and

cycles that are important in 3D registration. This chapter provides a theoretical framework

for the correct understanding of the new contributions described in this thesis.

Chapter 4 describes a new technique for 3D registration and error minimization of

large-scale objects. The method detects revisited regions obtaining cycles of views that

are used to reduce the misalignments in the final model.

Validation and testing experiments are presented in chapter 5. Results of the new

proposed approach using both synthetic and real data are analyzed. With the aim of

proving the rightness of the new method, a subset of the most representative techniques

of the survey has been implemented and executed with the same data set. The chapter

includes a comparison of the new approach with the programmed techniques and ends

with a discussion of the obtained results.

Finally, chapter 6 presents the conclusions of this work, the contributions published in

journals and conferences and the further work that still remains to be done.



Chapter 2

State of the art

In recent years, 6 Degrees Of Freedom (DOF) Pose Estimation and 3D Registration and

Mapping are becoming more important not only in the robotics community for applications

such as robot navigation but also in computer vision for the registration of large surfaces

such as buildings and statues. In both situations, the robot/camera position and orienta-

tion must be estimated in order to be used for further alignment of the 3D map/surface.

Although the techniques differ slightly depending on the application, both communities tend

to solve similar problems by means of different approaches. In this chapter a survey of

pose estimation and 3D registration methods is presented. The surveyed techniques have

been compared pointing out their pros and cons and their potential applications.

2.1 Introduction

6DOF Localization and Mapping is a growing research field among scientists involved in a

wide range of 3D applications covering from registration of large surfaces in photogramme-

try to mapping of complex scenarios in robot navigation. The process of surface mapping

implies several steps, including image acquisition, 3D registration and view integration,

to obtain the final model of the object/scene. This work will be centered mainly on reg-

istration techniques, focusing in error minimization methods. Registration is the process

of determining the Euclidian motion between range images. That is, given a set of partial

views of an object, the main goal is to represent them in a common coordinate system

7
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(see Figure 2.1). Registration process implies several steps, from initial pose estimation

to multiview error minimization. In this process, robot/camera pose estimation is crucial

in order to obtain accurate results in the final model.

Figure 2.1: Pairwise registration process.

Until now, robot navigation has been focused on 2D mapping in flat terrains and

usually restricted to indoor structured scenarios [87]. Recently, the need to explore com-

plex and unstructured environments has increased [59], requiring six-degree-of-freedom

(6DOF) movement for dealing with the unevenness of the terrains and the environmental

complexity. Therefore, 6DOF localization and 3D mapping have become an important

research field in the robotics community. Moreover, in the field of computer vision, the

growing interest in the 3D modeling of large objects and scenes has forced the scientific

community to face new challenges, with the aim of reducing the propagation error present

in the registration process [85]. In both situations, the robot/camera pose is estimated in

order to be used in a further alignment of the 3D map/surface. Although techniques differ

slightly depending on the application, both communities tend to solve similar problems

by means of different approaches [26] [73].

This chapter presents a survey of the most significant 3D registration techniques, an-

alyzing their pros and cons and potential applications. In general, a good estimation of

the initial position is always required independently of the approach or technique used.

Hence, Section 2.2 provides a classification of the most important methods used to obtain

a coarse pose estimation, including inertial navigation, visual odometry and surface-to-

surface based matching, among others. Once initial pose estimation is obtained, pair-wise

registration approaches such as the Iterative Closest Point are used to refine the alignment

between two clouds of points. These techniques are described in Section 2.3. Finally, any

error accumulated between correlated views is minimized by means of cycles and over-



2.2 Coarse one-to-one pose estimation 9

lapping regions common among the acquired views. Hence, Section 2.4 discusses a new

classification of these techniques including metaview registration, simultaneous minimiza-

tion approaches, techniques based on graphs and statistic techniques (in the context of

Simultaneous Localization and Mapping). These techniques are compared and discussed

analyzing their pros and cons. The chapter ends with a summary of the most relevant

conclusions.

2.2 Coarse one-to-one pose estimation

The first step in 3D image registration process consists in obtaining an initial estimation

of the Euclidian motion between two views as a previous step for further refinements.

The coarse pose registration techniques used can differ considerably depending on several

factors such as the vision system used and the camera movement. The initial pose can be

obtained using two well-known approaches, as shown in Table 2.1. The former is based

on the use of some sort of device: a) sensors, such as odometers, compasses or inertial

systems; or b) mechanisms, such as rotating tables, robot arms or conveyors. The latter

is based on direct analysis of visual images (given by cameras) or surface acquisitions

(given by scanners) looking for correspondences which are used to solve the alignment and

consequently, the pose.

2.2.1 Initial pose estimation by mechanical devices

In the field of mobile robotics, odometry is the most extended positioning system. Odom-

etry is based on the use of motion sensors/encoders that provide information such as the

rotation of the wheels to determine the distance traveled by the vehicle from a known po-

sition. However, sometimes the motion of the wheels does not correspond to robot motion,

due to some typical problems such as wheel differences and irregularities of the ground

(bumps, holes, etc). Nevertheless when the environment is nearly planar and the distance

traveled by the vehicle is small, odometry provides good accuracy. However, when the

environment is rough and unstructured several problems such as glides can cause some

errors that are accumulated and increased with the distance traveled. Usually, unstruc-

tured terrains imply 6 Degrees Of Freedom (6DOF) motion of the vehicle, that is, three

linear degrees of freedom (x,y,z) for the position and three rotational degrees of fredoom
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Figure 2.2: Odometry over rough terrains

(roll, pitch and yaw) for the orientation (see Figure 2.2). Therefore, when dealing with

6DOF movement, inertial data must be added in order to provide the attitude variations

and compensate the errors caused by navigating through rough terrains [26]. Several iner-

tial navigation systems such as Inertial Measurement Unit (IMU) are usually mounted on

the mobile vehicles and, combined with odometry, provide better accuracy for navigation.

Usually, these kind of systems have been used in order to make a coarse approximation of

the camera/vehicle pose. Some authors proposed to estimate the egomotion of the mobile

robot by using a feature-matching algorithm in which odometry is used to predict the

region where the search for features starts [59]. In addition, as will be seen in Section 2.4,

data provided by sensors can also be used for Kalman Filter initialization in many SLAM

(Simultaneous Localization and Mapping) approaches [26].

Figure 2.3: Scanning process from the ”Digital Michelangelo Project”. Left and center:
Scanner mounted in a mechanical structure. Right: 3D Model of Michelangelo’s David
head.
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In the computer vision field and when the 3D reconstruction of small objects is consid-

ered, cameras and scanning lasers are mounted on rotating tables or mechanical structures

in order to scan the whole object. In this case, the initial pose can be estimated by means

of calibration of these mechanisms and the use of encoders. In many cases, the position

given by the mechanics is combined with some sort of range image processing. Figure 2.3

shows the scanning process of David of Michelangelo in the context of Michelangelo’s

project, where a combination of mechanical instrumentation and interactive alignment is

used for obtaining the motion among views [73]. Other mechanical instruments such as a

magnetic tracker, used to capture the translation and rotation coordinates of the camera,

have also been considered to provide a starting point for a further alignment [9]. The

problems with using this kind of mechanisms is the area restrictions and movement con-

straints. That is, objects must be placed in precise positions, even though sometimes it is

not possible to move the object from its original position or to install the mechanisms in

a given environment.

Finally, as will be shown in next section, the use of range or visual image processing

becomes crucial when dealing with large objects or environments due to the problems

associated to odometry and the high cost of using specific mechanisms to cover the whole

scanning surface.

2.2.2 Initial pose estimation by computer vision

When sensors or mechanical devices can not be used or when their measure is rough

or inaccurate, an estimation of the initial position by means of computer vision may

be a good choice. The main objective is to compute the motion between two views by

determining the point correspondences between them. Two main groups of techniques

have been proposed: (1) image-to-image correspondences, dealing with 2D images directly

acquired by a stereohead or a moving camera; and (2) surface-to-surface correspondences,

dealing with 3D features or clouds of points acquired by any 3D acquisition technique such

as stereo, laser triangulation or time-of-flight lasers, among others.

All these methods process the 2D/3D points of the given images/surfaces to extract sig-

nificant points which are used in the matching process [34] [85] [20]. Hence the techniques

are classified according to: a) feature-to-point approach when the significant points are

only those that satisfy a given feature and b) point-to-feature approach when an arbitrary
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Table 2.1: Classification of coarse one-to-one pose estimation techniques.

Technique Author DOF Sensor Scene

Coarse
one-to-one

pose
estimation

Folkesson, 2003 [26] 6R TOF outdoor
Mechanical Sensors Nüchter, 2004 [59] 6 TOF outdoor

devices Kohlhepp, 2004 [44] 6R TOF indoor
Pulli, 1999 [73] 6 LT object

Mechanisms Bernardini, 2002 [9] 6 LT object
Huang, 1989 [37] 6 monocular indoor

Feature Shang, 1998 [101] 6 binocular indoor
Image to Davison, 2003 [18] 6 monocular indoor

to point Burschka, 2004 [13] 6 monocular outdoor
image Ashbrook, 1995 [4] 6R database object

Point to Lowe, 1999 [48] 6 binocular indoor
feature Se, 2002 [81] 6R trinocular indoor

Stamos, 2003 [85] 6 TOF outdoor
Computer Feature Wyngaerd, 2003 [99] 6 DLP object

vision to Nister, 2004 [64] 6 monocular outdoor
Surface point Triebel, 2005 [92] 6R TOF outdoor

to Chua, 1997 [17] 6 database object
surface Chen, 1998 [15] 6 DLP object

Point Johnson, 1999 [40] 6 DLP object
to Carmichael, 1999 [14] 6 DLP object

feature Kim, 2002 [43] 6 database object
Huber, 2003 [39] 6 LT object

R: Restricted (some DOF are constrained in a limited range); TOF: Time-of-flight;
LT: Laser Triangulation; DLP: Digital Light Projector.

group of points are characterized obtaining a set of features that differ one from another

depending on point neighbourhood. Some of the most common feature-to-point methods

are the corner detector proposed by Harris for 2D images [34] and the straight line-based

method proposed by Stamos [85] for 3D views. In these methods, points with similar

features are potential matchings in the registration process. Referring to point-to-feature

approaches, some of the most used methods are the Scale Invariant Feature Transform

(SIFT) algorithm proposed by Lowe [48] for 2D images and the point signature proposed

by Chua [17] for 3D views. All mentioned methods are explained in detain within the

following sections and classified in Table 2.1.

Image-to-image correspondences

Some 3D pose estimation approaches are based on 2D image-to-image matching, which

also concerns camera egomotion [35] [100]. Since 1980s, methods based on both discrete
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and differential epipolar constraint have been proposed. The discrete case is used mainly

in self-calibration of stereo-heads (both monocular and binocular), whereas the differential

case deals with a unique moving camera at high image rate. The discrete case is based

on the so-called Essential Matrix, when the intrinsic camera parameters are known, or

the Fundamental Matrix in the uncalibrated case [2]. The differential case is based on

the optical flow and the differential epipolar constraint [3]. An early work was developed

by Huang, who proposed a linear matching algorithm based on the Essential Matrix for

determining 3D motion by using eight point correspondences in two views [37]. Another

method for the motion estimation of a moving uncalibrated stereo ring was proposed by

Zhang in 1996 [101]. Even using stereo pairs, the fact that they are not calibrated makes

it comparable to the motion estimation of a unique moving camera. Zhang’s proposal

was based on computing the fundamental matrix and then estimating the motion up

to a scale factor by solving the well-known Kruppa equations computing a perspective

reconstruction. The Euclidean reconstruction was obtained by taking any metric measure

from the scene that allows the determination of the scale factor, usually a distance between

two 3D features [18] [86].

In summary, techniques based on the discrete epipolar geometry have been widely

studied and nowadays robust solutions are available even in 6DOF [13]. Besides, the

differential movement estimators are quite sensitive to noise. Therefore, these methods

are usually adapted to the application constraining the number of DOF with the aim of

reducing the error in the estimation.

Note that image-to-image methods are commonly based on feature-to-point approaches.

However, in 1995 Ashbrook et. al. [4] proposed a robust feature-to-point technique called

Pairwise Geometric Histogram that used histograms to recognize 2D rigid shapes. The

method starts performing edge extraction and then approximating detected edges by line

segments. The next step of the algorithm consists in characterizing each edge (feature)

by means of the histograms of their corresponding segments. Finally, matches between

histograms can be performed. Some years latter, in 1999, Lowe proposed a new feature

extraction algorithm called SIFT (Scale Invariant Feature Transform), which has been

widely used in the last years especially dealing with 2D images. The method is classified

as a point-to-feature approach since the main contribution of the method is the characteri-

zation of significant points according to scale invariant features. However, the method first

selects the significant points by using a feature-to-point approach, such as Harris Corner

Detector, so both approaches are combined in the SIFT technique [48].
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Surface-to-surface correspondences

Many authors proposed techniques that process directly the clouds of points provided by

any 3D acquisition system. Here, the main difference is found in the way of selecting the

matching points.

As explained before, some approaches, which have been classified as feature-to-point,

are based on searching points that satisfy a given feature and use then these points to

solve the matching. Here, some authors propose to extract 2D features from the images,

such as corners or straight lines. Subsequently, features are tracked over time to solve

the matching with their corresponding 3D points already acquired, obtaining an initial

estimate of the movement. Following this idea a new concept named Visual Odometry

was introduced by Nister et al. in 2004 [64]. The authors proposed a new algorithm for

stereo camera pose estimation based on the well known preemptive RANSAC algorithm.

Other techniques deal directly with 3D features extracted from the clouds of points, such

as the straight line-based method proposed by Stamos [85], who used a range segmentation

algorithm in order to extract planar regions and linear features, and the curved line-based

method presented by Wyngaerd [99], who proposed a coarse motion estimation between

views by matching bitangent curves (see Figure 2.4). Other methods such as the Algebraic

Surface Models and the Principal Curvature, explained in detail in the survey presented

by Salvi et al. [79], can also be included in the same group.

Figure 2.4: Bitangent curves. The distance between a two bitangent points (X, X
′
) is

expressed by a invariant signature of bitangent curve.

Other approaches are based on characterizing the points by using their neighborhood

information to obtain a set of features. Once obtained, these features are sought within

the cloud of points in subsequent views to solve the matching. That is the reason why

they have been classified as point-to-feature. Two of the most used approaches of this

group are the Spin Image and the Point Signature.
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Spin Image is a point descriptor based on projecting neighboring 3D points onto a

2D plane tangent at a given point, obtaining as a result a 2D Image (feature) for that

point. Considering a region around a given point, and computing the distance between

the normal vector of that point to a point p in the range image and the distance between

a point p and the 2D tangent, the spin image is determined [40]. That is, given a point

p, the first step of the method is to create an ”oriented point” using the position of p and

the surface normal n at this point p. A tangent plane P at this given point p is computed

using the position of its neighboring points. Then, a set of points (x1, . . . , xn) that belong

to a region around the given point p are considered to characterize such point. That is, two

distances from each neighbor point x are computed to determine what the author called

the spin-map SO: the distance α between each point x to the normal vector through the

tangent plane P and the perpendicular distance β from such point to the plane P (see

Figure 2.5).

α =
√
‖x− p‖2 − (n · (x− p))2

β = n · (x− p)
(2.1)

where p is the given 3D point that we want to characterize, n is the normal vector at

this point and (x1, . . . , xn) the set of neighboring points used to generate the spin image.

(a) (b)

Figure 2.5: (a) Spin image axis. Representation of the oriented point and the surface
normal. (b) Spin image generation process, where a plane spins around oriented point,
accumulating points at each step.

Once all the distances are obtained, a nxn table is built, where α represents the x-axis

and β the y-axis. Each cell of the table contains the number of points that belong to
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Figure 2.6: Spin image point characterization. Spin image is represented by a matrix
where dark parts reflect regions with a huge amount of points.

the local region, forming the spin image (see Figure 2.6). When several spin images from

different views are computed, a matching process can determine the best correspondences

between them. A variant of this method was proposed by Carmichael, carrying out an

interpolation of a set of points inside every triangular mesh with the aim of normalizing

the number of points in every spin image [14].

In 1997 Chua proposed a new point-to-feature method named Point Signature, that

consists in a new 3D point representation with the aim of describing 3D form surfaces by

using the structural neihbourhood of a point [17]. Given a point p, the author placed a

sphere of radius r centered on p. The intersection of this sphere with the surface gives

the contour of points C, whose orientation is defined by the normal vector n1, a reference

vector n2 and the vector obtained by the cross-product of the other vectors. The point

signature method defines the distance between the 3D points that compose this contour to

the reference plane where they are projected (see Figure 2.7). Therefore, each point of C is

characterized by the distance from the contour to its projection to the plane and the angle

from the reference vector n2. The description of a 3D point is given by the characterization

of all the points of the contour. Once the points of the two views are characterized using

point signatures, they can be compared in order to find the correspondences.

Other authors proposed the use of the Principal Component Analysis in order to esti-

mate the main axis of the whole cloud of points. Subsequent views are aligned assuming

that the main axis in two consecutive acquisitions do not vary significantly [43]. Other

methods propose to estimate the motion between surfaces by using algebraic surface mod-

els. That is, all the points of the surface are represented (characterized) by polynomial

models. Therefore, these techniques can also be considered as point-to-feature [96].
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(a) (b)

Figure 2.7: Point signature definition process.

In general the main problem of most point-to-feature algorithms is the time involved

in computing the point descriptors. Although the matching process is very fast and effi-

cient, the points of both surfaces must be characterized before searching correspondences.

For example, Point signature method needs to search for the neighbors and interpolate

the surface in order to find the contour. This usually implies a huge amount of time in

comparison with the segmentation methods used to search corners or lines.

In this section we have presented the most representative coarse pose estimation tech-

niques. Although initial pose estimation methods based on mechanical devices provide

good results in flat terrains, a combination of both mechanical and computer vision me-

thods is usually required in the presence of rough and unstructured environments. Tech-

niques based on the discrete epipolar geometry have been widely studied and nowadays

robust solutions are available even in 6DOF. Besides, the differential movement estimators

are quite sensitive to noise. Hence, these methods are, in general, adapted to the applica-

tion constraining the number of DOF with the aim of reducing the error in the estimation.

Therefore, surface-to-surface alignment is more adequate for complex 3D scenarios, but

then we have to avoid symmetries in the views to obtain accurate registrations.
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2.3 Fine One-to-One Pose Estimation

Once an initial 3D pose is estimated by any coarse registration technique, an iterative

minimization should be applied to obtain a refined pose and hence a better alignment

between both views improving the quality of the registration. In this section, the me-

thods are classified according to the minimization function, which is usually the distance

between corresponding points (point-to-point) or the distance between points and their

corresponding planes (point-to-plane) as shown in Table 2.2 and discussed in the following

paragraphs.

2.3.1 Point-to-point

Point-to-point alignment such as the Iterative Closest Point (ICP) focuses on minimizing

the distance between point correspondences [10]. Once an initial estimation of the motion

is known, all points are transformed to the same reference frame applying the Euclidian

motion. Then, every point in the first image is taken into consideration to search for

its closest point in the second image. The distance between these correspondences is

minimized, and the process is iterated until convergence is achieved.

Some modifications of ICP have been presented in recent years to improve the efficiency

of the algorithm [31] [92] and also to decrease the computing time [41]. In addition, other

authors proposed some improvements to increase the robustness of ICP. For instance,

Trucco [Trucco et al., 1999] implemented the RICP method making use of the Least

Median of Squares approach [94].

Overall, ICP is the most common fine registration method and the results provided so

far are satisfactory. However, this method usually presents problems with convergence, re-

quiring many iterations and in some cases converging to a local minima [30] [77]. Moreover,

unless a robust implementation is used, the algorithm can only be used in surface-to-model

registration [54].

2.3.2 Point-to-plane

The problem with point-to-point distance is that the correspondence of a given point in

the first view may not exist in the second view because of the limited number of points
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Table 2.2: Classification of fine one-to-one pose estimation techniques.
Technique Author DOF Sensor Scene

Fine
one-to-one

pose
estimation

(Pair-wise)

Besl, 1992 [10] 6 LT outdoor
Trucco, 1999 [94] 6 database object

Point to Greenspan, 2001 [31] 6 DLP object
point Jost, 2002 [41] 6 database object

Guidi, 2004 [32] 6 DLP object
Triebel, 2005 [92] 6R TOF outdoor
Chen, 1991 [16] 6 DLP object

Point to Pulli, 1999 [73] 6 LT object
plane Gagnon, 1994 [28] 6 monocular object

Park, 2003 [68] 6 database object
R: Restricted (some DOF are constrained in a limited range); TOF: Time-of-flight;

LT: Laser Triangulation; DLP: Digital Light Projector.

acquired by the sensor, especially considering low resolution surfaces. To address this

problem, some authors use the point-to-plane distance. The Point-to-plane algorithm

proposed by Chen [16] is an alternative to ICP. The algorithm is based on distance min-

imization between points and planes. Given a point in the first image, the intersection

of the normal vector at this point with the second surface determines a second point in

which the tangent plane is computed (see Figure 2.8). The distance between this plane

and the initial point is the function to minimize.

Figure 2.8: Distances between points in surface P and planes in surface Q

Different algorithms have recently been presented with the aim of speeding up the

computation of the difference between points and planes. Gagnon et al. [28] presented a

new method based on Chen’s idea but using a different approach. The authors proposed

the use of a grid where the surface of the second image and each normal vector at a given
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point in the first image are projected. In 2003, Park [Park and Subbarao, 2003] proposed

a fast variant based on recursively computed the intersection between the line and the

3D surface. This technique is based on a iterative point-to-projection, obtaining fast and

accurately results.

This method is more robust to local minima and, in general, better results are obtained.

Moreover, the method is less influenced by the presence of regions with few overlap since

only the control points whose normal vector intersects the second view are considered in the

matching, differing from ICP, where all points in the first cloud are used in the registration.

Moreover, point-to-plane approaches usually require fewer iterations compared to point-

to-point ones.

2.4 Multiview Minimization

In the previous sections, this survey was focused on techniques based on the one-to-one

alignment of two views (pairwise). However, the full reconstruction of a 3D object/scene

usually implies the use of multiple views that must be registered to obtain a complete

model. The sequential pairwise alignment of several views causes a drift that is propagated

throughout the sequence. Therefore, some authors have improved their algorithms by

adding a final step that uses the information of all the acquired views in the registration

process. These approaches, known as multi-view registration, spread one-to-one pair-wise

registration errors throughout the sequence of views.

Some techniques try to minimize the error of all the views at the same time. Other

methods try to reduce the propagating error benefiting from the existence of loops and

re-visited regions. Therefore, Multiview techniques are classified into: (1) metaview, (2)

graph-based, (3) statistic and (4) simultaneous minimization methods, depending on the

methodology used, as shown in Table 2.3. These techniques will be described in detail in

the following sections.

2.4.1 Metaview techniques

Early approaches proposed the aggregation of subsequent views in a single metaview that

was progressively enlarged each time another view was registered [16]. The main constraint
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Table 2.3: Classification of Multiview minimization techniques.
Technique Author DOF Sensor Scene

Chen, 1991 [16] 6 DLP object
Metaview Pulli, 1999 [73] 6 LT object

Nüchter, 2004 [59] 6 TOF outdoor
Triggs, 2000 [93] 6 database object

Pollefeys, 2000 [72] 6 monocular outdoor
Simultaneous Fitzgibbon, 2001 [24] 6 database object
minimization Masuda, 2002 [51] 6 LT object

Silva, 2003 [83] 6 database object
Multiview Mouragnon, 2007 [58] 6 monocular outdoor

minimization Bergevin, 1996 [8] 6 monocular object
Neugebauer, 1997 [62] 6 LT object

Graph analysis Huber,2003 [39] 6 LT object
Sharp, 2004 [82] 6 DLP indoor

Guivant, 2000 [33] 6 TOF outdoor
Martinelli,2005 [49] 6R TOF indoor

Statistic Liu, 2003 [47] 6R TOF outdoor
techniques Bosse, 2003 [12] 6 TOF outdoor

Estrada, 2003 [23] 6R TOF outdoor
Montemerlo, 2002 [57] 6R TOF outdoor

R: Restricted (some DOF are constrained in a limited range); TOF: Time-of-flight;
LT: Laser Triangulation; DLP: Digital Light Projector.

of this strategy is the lack of flexibility to re-register views already merged in the metaview.

Method of Chen

In 1991, Chen and Medioni [16] proposed an early approach for registering and matching

multiple 3D scans. Their method started by registering two views and merging them in a

single metaview, using a previously obtained coarse pose estimation. Afterwards, the new

views were sequentially registered and merged within the metaview, using the point-to-

plane pairwise method explained in the previous section. As an initial step of the multiview

registration process, the author converts the acquired views into cylindrical or spherical

coordinate systems, using the data provided by the pairwise registration, obtaining an in-

termediate representation of the object. In this way, the elevation and angular coordinates

of the points can also be used to determine the correspondences in overlapping areas. Once

the registration process ends, the views are represented again in the Cartesian coordinates.

The main advantage of this method, when it is compared to the ones based only on

sequentially pairwise alignments is that the whole information from the integrated sur-
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face can be used in each new registration step. Although the views are not registered

simultaneously, this method can be considered as the beginning of multiview registration.

However, this method does not allow to re-register views already merged in the metaview.

The success depends on the accuracy of the movement estimation between views, since

there is no way back to modify already merged sequences. Therefore, bad movement es-

timations lead to registration errors which will be accumulated through the subsequent

registrations. This problem increases with the size of the objects, decreasing the accuracy

of the method. This approach has been followed for several authors such as Masuda [52],

who proposed a similar method with the main difference that outliers were detected and

removed before the global registration leading to a more robust solution.

Method of Pulli

In 1999, Pulli [73] proposed an ICP relaxation method based on the previous metaview

approach but considering all the potential alignments between views before proceeding

with the multi-view registration. The main idea of the method is to use the constraints

imposed by pairwise registration for global alignment in multiview, avoiding to keep all

scan data in memory. In addition this method takes into account the information of all

the overlapping areas allowing that the already registered regions can be analyzed again

for further re-registrations. In order to obtain the set of constraints for the later multi-

view step, the approach starts by performing a pairwise registration using the previously

explained point-to-plane technique (or method of Chen). Regarding the alignment step,

the concept of the virtual mate approach has been introduced. This approach uses the

relative transformations between the scans provided by pairwise registration in order to

predict were a point from the first scan should be situated on the second one, creating a

virtual mate for each point (correspondences between points).

Once all pairwise constraints are obtained, multi-view registration is carried out. The

algorithm follows the idea of the metaview approach, adding into a set of consistent views

one scan each time, spreading the error uniformly between pairwise registration (see al-

gorithm 2.4.1). That is, we have an initial list of related scans, what the author called

dormant set. The goal is to create a list, active set, containing a final set of accurate

aligned views. The multiview algorithm analyses the scans contained in the dormant set

with the already classified views in the active set. This procedure selects the view from
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the dormant set which has more connection with the ones contained in the active set and

memorizes it into both a temporal queue and active set. The next step is to remove the

first scan of the queue and align it with the overlapping views of the active set using the

pairwise constraints. If the error is reduced enough this set of neighbours are merged into

the queue, repeating this step until it becomes empty. This process is repeated iteratively

for each component of the dormant set, spreading the error among all views. Notice that

in order to initialize the active set the procedure starts analysing all the views of the

dormant set choosing the best correlated one. To refine the final model, the set of views

obtained at the end of the algorithm can be considered a new dormant set, restarting the

global process again.

Algorithm 2.4.1: Multiview Registration (views)

dormant set = views

curr = most links(dormant set, dormant set)

active set.add(curr)

dormant set.remove(curr)

while not empty dormant set

do





curr = most links(dormant set, active set)

active set.add(curr)

dormant set.remove(curr)

queue.pusch(curr)

while not empty queue

do





curr = queue.pop()

nbors = active set.neighbors(curr)

relative change = align.(curr, nbors)

if relative change > tolerance

then
{

queue.merge(nbors)

return

Pulli’s multiview approach is independent of the initial alignment chosen, so that

the most suitable pairwise can be used in every case. The author proposed a point-to-
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plane pairwise that provides more robustness to local minima and requires fewer iterations

compared to point-to-point ICP. However, a main constrain of this multiview relaxation

method is the need of preserving the pairwise alignments of the overlapping regions as

much as possible. Therefore, good initial pose estimation plays an important role for ob-

taining accurate 3D models. On the other hand, since registration pairwise is used before

multiview alignment, the high cost that entails to align and merge range views simulta-

neously can be avoided. In addition, the use of constraints instead of the full set of views

reduces the memory space needed, allowing large data sets to be used.

Method of Nüchter

In 2004 a similar approach was developed by Nüchter [59]. The method provides a new

solution to the simultaneous 6DOF localization and mapping oriented to Autonomous

Mine Mapping (see Figure 2.9). The author presented a global relaxation method called

simultaneous matching based on Pulli’s proposal but with the main difference that no

iterative pair-wise alignment is required. At the beginning stage of the algorithm, the

reference system is determined by the first obtained scan (master scan). Then, using the

initial pose estimation provided by odometry or other coarse pose estimation technique,

a simple pairwise alignment is carried out to obtain a start motion estimation for further

alignments. When a new scan is obtained, a queue is initialized with it and starts the

iterative process. The first scan of the queue is removed and a set of scans overlapping

with it is calculated (neighbors of the current scan). The current scan is aligned with all

its neighbours by using the well known ICP method. If the scan has changed its location,

all its neighbours are added to the queue. This process is repeated iteratively for each

component of the queue until it is empty, spreading the error among all views. Note that

in order to reduce the data for ICP algorithm the author uses a combination between a

median and a reduction filter. In addition, kD-trees are used to speed up the data access

for matching process.

The approach proposed by Nuchter does not strongly require loop detections since the

error can be diffused appropriately over all the 3D scans. However, if a view of a revisited

area is obtained, the result of the multiview registration can be considerably improved. If

a loop is detected after the coarse matching, the error can be spread over the 3D scans as

a previous step for posterior refinement. That is, there is a transformation matrix (R, t)
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(a) (b) (c)

Figure 2.9: 3D reconstruction project of Mathias mine. (a) Pose estimation provided by
Odometry (b) Pose estimation after 5 iterations of the algorithm (c) Final alignment.

that describes where the scan that closes the loop should be. The author proposes to

distribute the total error transformation (R, t) proportionally to each view of the path

(Ri, ti), were Ri and ti are the rotation and translation of each view i. A weight ci is

assigned to each scan depending on its distance to the first one.

ci =
distance(initial scan, current scan)

total distance of the path
(2.2)

Therefore, the translation ti that should be applied to each corresponding scan can be

calculated as: ti = cit

The rotation matrix Ri is represented as:

Ri =




cos(ciθ) + a2
x(1− cos(ciθ)) azsin(ciθ) + axay(1− cos(ciθ)) −aysin(ciθ) + axaz(1− cos(ciθ))

−azsin(ciθ) + axay(1− cos(ciθ)) cos(ciθ) + a2
y(1− cos(ciθ)) −axsin(ciθ) + ayaz(1− cos(ciθ))

aysin(ciθ) + axaz(1− cos(ciθ)) −axsin(ciθ) + ayaz(1− cos(ciθ)) cos(ciθ) + a2
z(1− cos(ciθ))




(2.3)

Where a and θ are computed by:
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a =




qx√
1−q2

0

qy√
1−q2

0

qz√
1−q2

0




; θ = 2arcos(q0) (2.4)

Note that the rotation by an axis a and the angle θ, are described by the quaternion q.

q =




q0

qx

qy

qz




=




1
2

√
trace(R)

1
2

r3,3−r3,2√
trace(R)

1
2

r2,1−r2,3√
trace(R)

1
2

r1,2−r1,1√
trace(R)




, where R is the total error rotation matrix (2.5)

When compared to Pulli’s approach, this method does not require to acquire and reg-

ister all the views previously, allowing to simultaneously localize de vehicle and mapping

the environment in real time. In addition, Nuchter approach turns out to be more reli-

able in large environments since loop constrains allow to reduce the accumulated error.

However the success of this method depends on a correct initial pose estimation of the

vehicle. Another challenge appears when the robot has to deal with featureless environ-

ments, requiring the use of specific methods such as Kalman Filter extensively explained

in Section 2.4.4.

2.4.2 Simultaneous Minimization

The main problem of metaview approaches is that the already merged surfaces can not

be modified when a new view is registered. Therefore the information provided by the

new acquired views can not be used for decreasing the error of the previous registrations.
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Some authors have proposed several techniques in order to register multiples views and

minimize the accumulated error simultaneously. These techniques make use of all the

acquired views at the same time and have been classified as simultaneous minimization

techniques.

Signed distance Field of Masuda

In 2002 Masuda proposed a new method that registers and integrates all views simultane-

ously, rejecting outliers in the iterative process. The method is based on Matching Signed

Distance Fields and works as follows: Initially a coarse registration is carried out in order

to transform all views to a common reference frame, where the data shapes are integrated.

In the next step, data shapes are alternatively registered and integrated in an iterative

process until convergence is achieved. The main idea is to generate a grid of arbitrary 3D

points that are used as key points for the Signed Distance Field approach. The goal is to

establish correspondences (the closest point) between the key points and the 3D points

of the object surface, computing the distance between them. Once correspondences have

been obtained the new motion parameters are calculated and the process is repeated again

until residual error converges. Note that points are weighted depending on the computed

distances in order to detect and reject outliers.

The main advantage of this method is that all views are registered simultaneously

and consequently the error does not accumulate among them. In addition outliers are

automatically removed leading to a robust method. On the other hand, the need of

having in advance the complete set of 3D views of the object/scene leads to high memory

requirements when dealing with large objects, together with the impossibility of working

in real time.

Genetic Algorithms

Other authors have proposed the use of methods based on Genetic Algorithms (GA) for

multiple view registration, as an alternative to the ICP-based approaches. In 2003 Silva

et al. [83] proposed an algorithm to register multiple range images based on GA that

allow to deal with low-overlapping views. The main contribution of their method is the

introduction of a novel robust measure called the Surface Interpenetration Measure (SIM)

that quantifies the visual registration error in order to determine the overlapping area

between two partial views. Following this idea, they use the SIM along with a robust
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estimator in order to implement a Genetic Algorithm in the transformation space, where

the results of the SIM of each chromosome are used in each generation to choose the ones

that yield the most accurate transformations. Note that each chromosome is composed

by 6 parameters (three components for the translation vector and three components for

the rotation angles).

Registration methods based on GAs provide accurate solutions in multiple view regis-

tration, presenting interesting solutions to problems such as local minima or error prop-

agation. In addition, this kind of algorithms presents good results in the presence of

outliers and low-overlaping views. However, all this advantages are subject to the size of

the population used. That is, the most important drawback of methods based on GA is

the high computational time required to converge to a good solution.

Bundle Adjustment

Other simultaneous minimization methods has been recently proposed. In the last few

years, a photogrammetric technique called Bundle Adjustment has increased popularity

in the computer vision community and it is also growing in robotics. Bundle adjustment

deals with the problem of refining a visual reconstruction to produce jointly optimal 3D

structure and viewing parameters (camera pose and/or calibration) estimates [93]. There-

fore, bundle adjustment techniques have been used in both robot/camera localization and

3D mapping in many fields such as camera calibration, robot navigation and scene recon-

struction providing reliable solutions to the error accumulation in the registration process.

Since bundle adjustment is a non-linear minimization problem, it is solved by means of it-

erative non-linear least squares or total squares methods such as Levenberg-Marquardt or

M-estimator techniques [24] [53]. Recently, a new improvement of the bundle adjustment

was proposed by Mouragnon et al. [58]. The authors proposed a generic real-time method

based on bundle adjustment approach that permits an incremental 3D registration and

reconstruction of the scene minimizing the angular error simultaneously.

Although bundle adjustment is commonly classified as a multiview technique, some

authors have used it in consecutive pairwise alignment as a technique to reduce error

propagation [72].
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2.4.3 Graph Analysis

Another alternative are the registration techniques based on graphs. Here the main idea is

to use the relation between views in multiview registration. For instance, several methods

try to find the optimal path between views to obtain an accurate registration [39], while

other methods use the information obtained when a part of the object/scene is revisited

to detect a cycle and spread the error among the views that compose it [82].

Method of Bergevin-Gagnon

Bergevin et al. [8] can be considered the precursors of this kind of methods. The authors

presented a multi-view registration technique based on graph theory, that considers all

views as a whole and treats them simultaneously. The graph is created as follows: views

are associated to nodes while edges represent the transformations T among them. A path

between two nodes is represented by a sequence of transformation matrices, one for each

link. Different graph topologies can be obtained depending on the way that range views

have been acquired. When using mechanisms such as a rotating table the graph acquires

a lineal shape (Figure 2.10a). On the other hand, when the images have been acquired by

a free moving camera one node can have more than two nodes linked to it (Figure 2.10b).

In such a case the graph acquires a more general topology.

Figure 2.10: Example of different network topologies. (a) Lineal network topology, (b)
General topology, (c) Star-shaped topology.
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The main goal of Bergevin approach is to obtain what the author calls a well-balanced

network , which is a network where (1) all transformations between views have a similar

error, and (2) there is a unique transformation matrix between two different views, re-

gardless the path used between them. This last condition is automatically accomplished

when using star topology, where all nodes have only one link that joins them to a central

node and therefore there is a unique path between two views. Therefore, the first step of

the Bergevin approach is to transform these obtained graphs to star-shape topology (see

Figure 2.11). A central node is selected and only one transformation matrix separates

it from the rest of the nodes. In this way the path between two nodes includes at most

two transformation matrices. The range view represented by the central node enforces the

reference system and its transformation matrix remains fixed during all the process. The

view selected as the central node is the one for which all other views can be transformed

using the smallest number of matrix multiplications.

Figure 2.11: Example of transformation from a linear network topology to a star-shape.

Once the central view Vc is defined, the algorithm computes the motion between each

view Vi and all the other non-central views, using two transformation matrices each time.

The first matrix Mi,c defines the motion of Vi to the central reference frame Vc, and

the second M−1
j,c , the motion from Vc to the other non-central view Vj . Finally, the

transformation errors are minimized using the version of the point-to-plane algorithm

explained in Section 2.3. That is, correspondences between points of Vi and tangent planes

of each view Vj are used to minimize the error and compute the new transformation

matrices using least-square technique. In this way the set of views is considered as a

whole and the error in transformation matrices is uniformly distributed obtaining what the

author calls a ”well-balanced network”. The algorithm converges when the transformation

matrix between two non-central views tends to the Identity matrix (see Equation (2.6)).

C =
∑

(∆Ti,j − Ii,j)2 (2.6)
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A similar approach was proposed by Neugebauer [62] also based on the star-shape

graph topology. The main difference with the previous method is that the author read-

justed the transformation matrices by minimizing the distances between correspondences

using Levenberg-Marquardt, adding an statistical termination criteria instead of using a

predefined threshold to indicate when the algorithm converged. Another important aspect

is the reduction of the computational cost in the matching process thanks to what the

author called ”resolution hierarchically”. In order to speed up the refinement process only

few points are used in the initial iterations while the rest of the points are incrementally

added to the system in further iterations.

Notice that performing matching and alignment at each iteration leads to a high com-

putational cost and large memory requirements. Moreover, the star-shape topology can

present a constraint working with high dimensional objects/environments, when the regis-

tered view is far from the one used as a reference system. In addition, if two views are close

to each other but far away from the central node it is obvious that the star-shape topology

deteriorate the computation of the best transformation between both views. Working with

this kind of scenes the method can hardly converge since usually a huge overlapping bet-

ween regions is required. When two views are strongly bad-registered, the error is spread

over the other ones providing poor results, since the transformation matrix obtained by

least squares is an average of all the matches. In this cases, techniques based on other

graph topologies or even some metaview approaches are able to provide better accuracies.

Multiview surface matching of Huber

In 2002 Huber proposed a new multiview approach that automatically registers 3D data

sets without requiring any initial pose estimation of the views, what the author calls

multiview surface matching [38]. The method is also based on graph theoretical approach,

were nodes are the input views and edges represent each pairwise match between two

overlapping regions. The algorithm, apart from an initial surface triangulation process,

involves two main steps: (1) local registration and (2) global registration. The main goal of

the local registration is to create a ”model graph” with all the potential alignments between

views by using a pairwise matching algorithm based on Spin Images [40]. Although refining

the obtained results using a a pairwise registration algorithm (ICP) some graphs may

contain huge amount of incorrect matches which have to be removed (see Figure 2.13).

In order to detect them the author proposed a local consistency test based on three
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consistency criteria: overlap distance, free space violation (FSV) and occupied space vi-

olation (OSV). The first one analyzes the average distance of overlapping regions trying

not to exceed a defined threshold. According to the author, given two surfaces Si and Sj ,

a point p ∈ Si overlaps the surface Sj when given a non-boundary point q ∈ Sj close to

point p the angle between the surface normals at p an q and their Euclidian distances are

less that a threshold. Therefore, the average overlap distance between two surfaces Si and

Sj can be calculated as:

OD(Si, Sj) =

∑
f∈F0

wfA(f)∑
f∈F0

A(f)
(2.7)

Where F0 represents a set of faces (obtained by triangulation process) on Si that overlap

Sj , A(f) the surface area of each face f and Wf the average distance between the three

corners of f .

(a) (b) (c)

Figure 2.12: Visibility consistency. (a) Consistent surface. (b) Free space violation. (c)
Occupied space violation.

The second and third criteria, globally named ”visibility consistence”, take advantage

of the sensor viewing volume, searching for occlusions and missing surfaces in the sensor

line of sight by projecting a ray from the center of the sensor C to the point p that we want

to analyze. These two inconsistencies are known as: (a) free space violation (FSV), that

occurs when a region blocks the visibility of another from the point of view of the sensor,

and (b) occupied spaces violation (OSV), that occurs when a region is not observed form

C, though it should be (see Figure 2.12).

Therefore, the local registration step involves an exhaustive pairwise alignment followed
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by a posterior refinement using these surface consistency restrictions. When one or more

of such criteria appear in a view, it is considered incorrect and has to be removed from the

graph. Then a new graph GLR (Local Registration Graph) without incorrect alignments

is obtained (see Figure 2.13).

(a) (b) (c)

Figure 2.13: Local registration Model Graphs. (a) Exhaustive pairwise registration though
spin image. (b) Refined pairwise registration. (c) Registration after local consistency
filtering.

The next step is to obtain a final subgraph with only correct matches by performing

a global registration process, using the locally consistent matches of the graph GLR. The

process of global registration is divided in a continuous and a discrete optimization problem

(error minimization). In the discrete optimization process a modified version of Kruskal’s

algorithm [45] is used to construct several spanning trees using the edges of GLR graph with

the aim of obtaining acyclic subgraphs. Here, the iterative merging method starts with

a graph containing only nodes. In each iterative step of the algorithm two best-matching

views are merged using pairwise information and verifying the global consistency (see

Figure 2.14). In this kind of structures, there is at most one path between two views and

therefore the chances of obtaining incorrect matches are reduced. In addition, this allows

to directly compute absolute pose estimation to initialize the continuous optimization

process, where point to plane correspondence error is minimized using Nebauer’s approach,

previously explained [62], spreading the pairwise errors among all the graph.

A distinctive characteristic of this algorithm is that previously knowledge of neither

the scanning positions nor the scanning sequence is required. However, in case that an

incorrect match is added to the final graph the global model can become irremediably

inconsistent, implying restarting the full process. In addition, the visibility consistency
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Figure 2.14: Global registration process.

techniques require the projection of a ray from the sensor to the scene, which apart from

the camera requires the use of a laser. Therefore, images obtained only by cameras can not

be filtered using visibility consistency techniques and overlap distance consistency method

usually become insufficient.

Cycle-based detection methods

Other authors proposed to reduce the propagating error of the pairwise registration pro-

cess benefiting from the existence of cycles and re-visited regions and considering the

uncertainty in the alignment.

In 2004, another multi-view approach based on graph theory was presented by Sharp [82].

Similarly to the previous method the problem is treated in two main steps, starting by

solving the local registration problem and finishing with a global error minimization. Ini-

tially the graph is decomposed in basic cycles, using a ring-shape topology, with the aim

of first solving the local motion estimation errors. As it can be seen in Figure 2.15 a cycle

is composed by a set of views aligned sequentially until the first and the last view match

together. A cycle can be created by adding edges to a normal spanning tree. Transforma-

tions between views, obtained by odometry or pairwise registration results, are represented

by a rotation and a translation matrix (Ri,j , ti,j). A cycle can be considered ”consistent”

when the rotations or rigid transformations compose to identity (see Figure 2.15).

Therefore, the main goal is to reduce the error distribution within a cycle with the aim

of obtaining a consistent set of aligned views. As rotation and translation are considered

independent, the local error minimization implies two main steps: (a) Translational Error

Distribution and (b) Rotational Error Distribution.

Translational Error Distribution step tries to find a consistent rigid transformation set
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Figure 2.15: Cycle composed by several views aligned sequentially.

tk,k+1, one for each view of the cycle, and minimize their mean square distances in order to

satisfy the linear constraint
∑

j tj,j+1 = 0. This problem has been solved by least-squares

estimation using Lagrange multipliers (see Equation (2.8)), finding the best translation by

distributing uniformly the error among all views of the cycle:

tk,k+1 = tk,k+1 − 1
n

n∑

j=1

tj,j+1 (2.8)

Next step is the Rotational Error Distribution process, which attempts to minimize

the rotation error among a cycle of views. First of all, the total error of the cycle is

spread along all the views of the cycle (see Figure 2.16). That is, the error is divided and

distributed to each rotation between views. Note that the Rotation matrix is transformed

to axis-angle representation.

Figure 2.16: Distribution of the rotation error.
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Since initial estimations of the movements are obtained by odometry or pairwise regis-

tration, the error among the alignments (angular error) might not be equally distributed.

Therefore, a different weight is associated to each edge depending on the confidence in

each measurement, in order to improve the accuracy of local registration.

Rk,k+1 = Rk,k+1E
<1/n>
k,k+1 (2.9)

Once the new rotations has been obtained, the next step attempts to minimize the

sum of squared angular errors among the rigid transformations, taking into account that

the product of the rotations must be equal to identity matrix ( R1,2 ∗R2,3 ∗ · · · ∗Rn,1 = Id)

and that the rotations must be as close as possible to the initial ones.

∑

k

(∠R−1
k,k+1R̂k,k+1)2 ≤

∑

k

(∠R−1
k,k+1R̃k,k+1)2 (2.10)

Once a set of consistent cycles has been obtained, the next step of the approach consists

in minimizing the error of the complete graph. Following the same idea of Translational

and Rotational error distribution of the local process a global error minimization is com-

puted taking into account the results obtained by pairwise registration and the consistency

constraints of all the partial cycles. Some nodes of a basic cycle can also be members of

other cycles, forming circuits. The global register process has to guarantee a global con-

sistency, not only of the cycles but also of the circuits. The inconsistency of a complete

graph can be defined as:

inconsistency(G,B) =
n∑

j=1

m(j)∑

i=1

(Ei
j)

2 (2.11)

Where G represents the spanning tree of the graph and B the basis cycles. The

inconsistency value decreases in each minimization process. Therefore, a graph can be

considered consistent when its inconsistency value is equal to 0.

The main characteristic that differentiates this method from previous ones is the use

of information from already visited regions, detecting cycles. This procedure provides the

global registration process with valuable information that can be used in order to spread

the error through all views. The error is spread proportionally using the weights related

to the residue obtained in the local registration process. Since only pairwise registration
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is required, the method becomes very fast. However the method is not reliable when

partial results present misalignments, since the global process only takes into account

the constraints imposed by local registration. Hence, the views are not analyzed and

registered again, only rotation and translation constraints among cycles are taken into

account. Therefore, the success of this method is directly related to the accuracy of the

pairwise registration. In addition, all views must be acquired before starting the iteration

process, constraining the use in real time applications.

2.4.4 Statistical techniques

The same problem of registering 3D views in a sequence has been also faced by means

of probabilistic approaches, especially in mobile robot navigation [80]. The efforts of this

community have been centered in developing new efficient techniques for safety navigation,

treating the problem of Simultaneous Localization and Mapping (SLAM) where both the

vehicle/camera pose and the structure of the environment are estimated at the same time.

Recently, techniques have been focused in using probabilistic methods, in which the main

difference from analytic multiview techniques is that the uncertainty in the measure is not

neglected. Hence, two main groups of techniques have been considered depending on the

way of representing such uncertainty: a) Gaussian filters and b) non-parametric filters,

which are discussed in the following paragraphs.

Gaussian Filters

Both Kalman Filter (KF) for linear systems and Extended Kalman Filter (EKF) for

non-linear systems are undoubtedly the most well-known Gaussian filters for treating the

SLAM problem, where the belief is represented by a Gaussian distribution. This section

focuses in Extended Kalman Filter rather than Kalman filter since robot and camera

movements are usually non-linear. The main goal of EKF is the estimation of the current

state of a dynamic system by using data provided by the sensor measurements. Extended

Kalman Filter is a recursive system, that is, it only uses the information of the previous

step and the actual measurements in order to estimate the current state and update

the system. Whenever a landmark is observed by the on-board sensors of the robot,

the system determines whether it has been already registered and updates the filter. In

addition, when a part of the scene is revisited, all the gathered information from past
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observations is used by the system to reduce uncertainty in the whole mapping, strategy

known as closing-the-loop.

Figure 2.17: Extended Kalman Filter iterative process

In EKF-based SLAM approaches, the environment is represented by a stochastic map

M = (x̂, P ), where x̂ is the estimated state vector (mean), containing the location of the

camera/vehicle R and the features of the environment F1 · · ·Fn, and P is the estimated

error covariance matrix, where all the correlations between the elements of the state vector

are defined (see Equations (2.12) and (2.13)). All data is represented in the same reference

system. The map M is built incrementally, using the set of measurements zk obtained by

sensors such as cameras or lasers. For each new acquisition, data association process is

carried out with the aim of detecting correspondences between the new acquired features

and the previously perceived ones.

x̂ = E[x] =




x̂R

x̂F1

...

x̂Fn




(2.12)

P = E[(x− x̂)(x− x̂)] =




PR · · · PRFn

...
. . .

...

PFnR · · · PFn


 (2.13)

The state xk and the measurement zk of the process can be represented by the non-linear

stochastic equations (2.14) and (2.15), where wk and vk represent the process measurement

noise:

xk = f(xk−1, uk, wk) (2.14)

zk = h(xk, vk) (2.15)
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As mentioned above, Extended Kalman Filter is a recursive filter that consist in two

main steps: a) Prediction step, which estimates the current state by using the temporal

information of previous states; and b) Update step, which uses the current information

provided by robot on-board sensors to refine prediction. In the prediction step, the prior

estimation of the state vector x̂k|k−1 and the error covariance Pk|k−1 are calculated using

the following equations:

x̂k|k−1 = f(x̂k−1, uk, 0) (2.16)

Pk|k−1 = AkPk−1A
T
k + WkQk−1W

T
k (2.17)

where x̂k represents the state vector (the estimation of the state at time k), uk a driving

function, and the parameter equal to 0 represents zero mean process noise (wk = 0).

Qk−1 represents the process noise covariance matrix, which will reflect how reliable is our

system. This parameter might contain the uncertainty of our system’s model such as

the known odometry errors or the noise concerning camera calibration parameters among

others. This will cause the growing of uncertainty at each step of the SLAM process,

essential in order to predict the pose of the vehicle or the elements of the environment

(see Figure 2.18). Note that the accuracy introducing the uncertainty of the model can

be crucial for the success of the process.

Figure 2.18: Growing uncertainty represented by eclipses.

Since f is a non-linear function, it needs to be linearized before being applied in the

covariance equation (see Equation (2.17)). The linear approximation of this function can
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be calculed using a Jacobian Matrix of partial derivatives . Therefore, Ak and Wk are the

Jacobian Matrices at step k and are computed as:

Ak[i,j] =
∂f[i]

∂x[j]

∣∣∣∣∣
(x̂k−1,uk,0)

; Wk[i,j] =
∂f[i]

∂w[j]

∣∣∣∣∣
(x̂k−1,uk,0)

(2.18)

The next step of the process is the update step, where the measurements previously

acquired are used in order to obtain a posteriori estimation.

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
K + VkRkV

T
k )−1 (2.19)

x̂k = x̂k|k−1 + Kk(zk − h(x̂k|k−1, 0)) (2.20)

Pk = (I −KkHk)Pk|k−1 (2.21)

where Kk is the Kalman gain that minimizes the error covariance, Rk is the measurement

noise covariance (the uncertainty in our measurements), and I is the identity matrix. Hk

and Vk are the jacobian matrices of partial derivatives of h respect to x and v at step k:

H[i,j] =
∂h[i]

∂x[j]

∣∣∣∣∣
(x̂k,0)

; V[i,j] =
∂h[i]

∂v[j]

∣∣∣∣∣
(x̂k,0)

(2.22)

Several methods based on EKF have been proposed during the last years with a variety

of applications such as mobile robot localization [81], autonomous airbone navigation [42]

or scene reconstruction [18] among others, working in a huge variety of indoor, outdoor

and underwater scenarios. Although EKF presents good accuracy in reduced scenes, when

it comes to deal with large environments in which tons of data are gathered, Gaussian

filters state vectors increase considerably leading to inefficiency in terms of computational

cost. Hence, some authors have proposed different techniques such as the Compressed

Extended Kalman Filter CEKF to cope with computational cost and memory size [33].

Some techniques try to reduce complexity by doing an accurate selection of the landmarks

and discarding the unnecessary ones, decreasing the filter size [49]. Other approaches

such as Atlas [12], Graphical SLAM [27] and Hierarchical SLAM [23] use graph based

techniques to reduce the complexity. Another interesting problem arises in the presence of
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data provided by bearing-only sensors such as omnidirectional or unique moving cameras,

loading to a new challenge known as Bearing-Only SLAM.

Compressed Extended Kalman Filter

As it has been seen, the use of EKF in large environments requires a high computational

cost, due to the huge amount of data that is gathered. Every time a new landmark is

observed, it has to be correlated with the already existing ones in the map, establishing

a relation between them. In 2001 Guivan proposed an algorithm to reduce this high

computational cost by using a compressed version of the EKF, that permits to update

only a part of the map at every step [33]. The author introduces the idea of the local map

A, as a part of a global map G, where the vehicle is operating for a period of time (see

Figure 2.19).

Figure 2.19: Local area A included in a global map G

The main goal of the proposed approach is to reduce the number of features to be

treated by the filter, analyzing and updating only the local area of the map A, instead of

working with the full map G. Therefore, there is no need to update all the map in each

step of the process. Only the data from the local area is added to the filter, which reduces

the computational cost of the algorithm to the square of the number of landmarks of the

region. The map is divided in a grid were the size of each rectangle is usually determined

by the range of the sensor used (see Figure 2.20). There is a central region r where the

vehicle is navigating. The area composed by the rectangle r and all its eight neighbors

are considered the local area A. This area is perfectly defined and if a landmark that

overpasses the limits is observed (i.e when the range of the sensor is larger than the area

of the region), it can be immediately discarded. While the vehicle remains in this region,

only this part of the map is updated.

Therefore, in the update step, the state vector is divided in two parts, one with the
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Figure 2.20: Global and local map. The lined area represents the local map A, centered
in r.

state of the region A and the other with the state of the full map G:

X =

[
XA

XG

]
,

XA ∈ RNA

XG ∈ RNG

X ∈ RN (2.23)

were XA is the state vector of the region A and XG is the state vector of the global map.

Note that the state representing the vehicle/camera pose are also included in the state

vector XA.

During the period that the robot remains in the region r, the state vector will only

involve the states on vector XA, and therefore, measurements of the environment are

represented by:

h(X) = h(XA) (2.24)

Therefore, in order to linearize h, the partial derivative of h with respect to x has been

computed as:

Hk =
∂h

∂X

∣∣∣∣∣
(x̂k−1,uk,0)

=
∂h

∂(XA, XG)

∣∣∣∣∣
(x̂k−1,uk,0)

=
[

∂h

∂XA

∂h

∂XG

]
=

[
Ha 0

]
(2.25)

where Ha do not depend on Xb Following the Equation (2.26) explained above, the Kalman

gain is computed as:
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K = PHT S−1 =

[
PaaH

T
a S−1

PgaH
T
a S−1

]
=

[
Wa

Wg

]
(2.26)

where:

P =

[
Paa Pag

Pga Pgg

]
(2.27)

S = HaPaaH
T
a + R (2.28)

When the vehicle leaves region r, a new local area is defined and the full map needs to

be updated. The relation between the local and global map is defined in the covariance

matrix with the terms Pag and Pga, that together with the global map covariance matrix

Pgg and the local one Paa, will be used when a full map update is required. This process

requires the complexity of a normal EKF SLAM process, but it is not need at each step.

Note that when the full map is updated, some boundary landmarks associated to a region

can move to another local area. Detailed equations of the process can be found in [33].

The Compress Extended Kalman Filter proposed by Guivant has supposed a great

improvement in EKF-based approaches, specially in the ones where real-time is critical.

The algorithm has reduced the computational time drastically from ∼ O(N3) to ∼ O(N2)

(being N the number of features), where the complexity is totally independent of the size

of the global map. In addition, working in local areas allows to increase the frequency

of the external sensors, obtaining more data per step increasing the accuracy of the final

results without penalizing the global complexity cost.

Constrained Local Submap Filter

William [98], following the idea of the Compresed Extended Kalman Filter, proposed

to reduce the complexity of EKF by using local maps linked among them forming a tree

structure, presenting the so-called Constrained Local Submap Filter (CLSF) [98]. The

local map is composed by a set of landmarks located in the surrounding navigation area

of the vehicle/sensor. Each single map has its own reference system and all the landmarks

are defined with respect to that reference. A relation between the coordinate system of

each submap and the global map is computed. Each time a new local map is created, a

new covariance matrix is defined containing only the new local landmarks and the pose of

the vehicle/camera, initialized in the origin of the submap with zero uncertainty. In this
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way, the EKF update step of each submap does not require to deal with a huge amount

of data and the partial accumulated error is relatively small. The state vector of the

submap might contain not only the relative estimation of all the landmarks but also the

global position of some of them and the relationship between the local and the global map

(see Figure 2.29). In this way the system will detect duplicate landmarks, finding their

correspondences in the global map in a data association process.

At every instant of time, data from local maps are merged with the global map taking

into account all the global information and several constraints detailed in [63] to ensure

the global consistency. The state vector at state k is defined as:

x̂(k) =




Gx̂L(k)
Gx̂1(k)
Lx̂1(k)
Lx̂2(k)

...
Lx̂n(k)




(2.29)

where Gx̂L determine the relation between the local and the global reference frame and
Gx̂i and Lx̂i indicate the location of a landmark i with respect to the global frame G and

the local frame L. Figure 2.21 shows a detailed scheme of a local and global map.

During the local update step, only the local covariance matrix is updated, what is

defined as:

P (k) =

[
GP (k) 0

0 LP (k)

]
(2.30)

were LP (k) represents the covariance matrix of the local area, that is, the correlation

of vehicle/sensor and all the landmarks between each other, and GP (k) represents the

estimate covariance of the local map and its element respects to the global reference.

LP (k) =

[
LPvv(k) LPvm(k)
LPvm(k) LPmm(k)

]
(2.31)

GP (k) =

[
GPLL(k) GPmL(k)
GPmL(k) GPmm(k)

]
(2.32)
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Figure 2.21: Local submap and global map estimation.

where v represents the vehicle or the sensor, and m the local landmarks.

When a global update is required, the process needs to determine the global position

of each feature. As can be seen in 2.29, each local map contains some features that are

both related to local and global reference frame. Therefore, using this information and the

relation between the landmark’s local map and the global frame, the constraint detailed

in Equation (2.33) must hold on in order to guarantee the stability of the global system

and ensure the correctness of the landmark pose prediction.

Gx̂i(k)− (Gx̂L(k)⊕ Lx̂i(k)) = 0 (2.33)

In summary, the CLSF method presented by Williams provides a reliable solution to

reduce the high computational cost of EKF when dealing with a huge amount of data.

Some improvements have been presented from the Compressed Extended Kalman Filter

previously explained. The first one is related to the fact of not using all landmarks for

aligning the local and global maps, that implies a considerably reduction of the data

association process. In addition, the global constrains added at the global alignment

process guarantee a more accuracy in the final map. However, when dealing with huge

sensor noise, the method is restricted to small environments due to the lack of closing-the-

loop constraints. That is, when the uncertainty of the measurements grows considerably,
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global constrains might not be enough to assure success in the global estimation process.

Sparse Extended Information Filter

This method was proposed by Thrun [90] with the aim of solving the complexity problems

of EKF-based methods working in large environments. The author proposed the use of the

extended information filter (EIF), the dual of Extended Kalman Filter. Both filters are

based on representing the uncertainty by Gaussian, with the main difference that in the

EIF the map estimations are created using pairwise constraints between landmarks, while

in EKF the correlation between landmarks are defined in a normalized covariance matrix

called correlation matrix. SEIF uses the inverse covariance matrix P−1 called information

matrix. As it can be seen in Figure 2.24, only neighbor landmarks are linked, whose are

represented by the dark regions, and the other elements of the matrix are 0. Therefore,

since the majority of the matrix elements are equal to 0, the computational problem can

be drastically reduced.

(a) (b)

Figure 2.22: (a) Correlation Matrix (normalized covariance matrix). (b) Information
Matrix (inverse covariance matrix).

The state vector and the measurements in EIF approach are represented in the same

way that has been seen in previous EKF-based methods (see Equations (2.14) and (2.15)).

The information filter can be represented in terms of the EKF filter, obtaining the co-

variance matrix Pk = Y −1
k and the estimated state vector x̂k = Pkŷk, where Y −1

k is the

information matrix and ŷk the information vector. In order to build the map, the au-

thor proposed three iterative steps: the Measurement update, the motion update and the
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sparsification. In the first step, the relation between the observed landmarks and the ve-

hicle/sensor is defined. As it can be seen in Figure 2.23, when a landmark y1 is observed

by the sensor, a link is created between them in the information matrix Y. Therefore, and

since the information matrix is simetric, the links Yx1,y1 and Yy1,x1 are defined. Note that

diagonal elements always contain links since every observed landmark is related to itself.

When a new landmark is observed from the same position of the vehicle, a new link is

added between this landmark and the sensor.

Figure 2.23: Example of information matrix generation. When a vehicle xt observe a
feature yn, a link between them is generated.

However, links between two landmarks will not be generated until the robot/sensor

change its position (motion step). During this second step, new links can be introduced

between the features that where indirectly related through the robot position, that is when

two landmarks were linked to the vehicle at the same time step (see Figure 2.24). The

initial defined links can become less strong due to the uncertainty introduced by the sensor

noise. In parallel, other links can be reinforced by using the data obtained by the new

measurements.

Figure 2.24: Information matrix before vehicle motion (left). Effect after motion (right).
A link between features y1 and y2 is generated.

Finally, when the number of links increases considerably, exceeding a determinate

threshold, some of them are removed in order to guarantee the low computational cost
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of the system. Therefore, sparsification step consists in removing the less strong and

unnecessary links, reinforcing alternatively paths in order to guarantee the stability of the

system.

It must be taken into account that every time a new feature is observed, data as-

sociation process is usually required in order to determine whether it has already seen

previously and localize it in the environment. When the position information provided

by sensors is not enough, a maximum likelihood estimation is used to determine which

feature of the map has more probability to be the new observed one (the best match) (see

Equation (2.34)). However, if the best match probability does not exceed a determinate

threshold it is considered as a new feature and is added to the map consequently.

n∗t = arg max
n

p(nt|zt, ut) (2.34)

The presented method provides a reliable solution for mapping large environments. The

proposed Information filter has better computational time compared to the EKF-based

methods that deal with submaps (∼ O(N) instead of ∼ O(N2)). However, when there is

a lot of links between features the computational cost increases and some of these links

should be removed, which might cause the lost of valuable information deteriorating scene

reconstruction. Therefore, since this method offers a good solution for real-time problems

such as robot navigation, the sparsification step might not be appropriated for detailed

scene reconstruction.
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Hierarchical SLAM

In 2005, Estrada presented a new approach focused on SLAM in the presence of large

environments. Following the idea of the graph-based methods, the author proposed the

creation of independent stochastic local maps with the aim of reducing the computational

cost of mapping large environments. In addition, a new ”Closing the loop” method was

proposed in order to reduce the error propagation and ensure the consistency of the system.

Similarly to [98] two main levels, local and global, are used in order to represent the

environment (see Figure 2.25). The local level contains the information of the local areas

where features and vehicle are represented with respect to a local reference frame. The

global level consists on a graph in which the relative locations between local maps are

described. The size of local maps can be determined depending on each situation.

(a)

(b)

Figure 2.25: Hierarchical SLAM model. (a) Global level representation. (b) Local level
composed by the local maps M0, M1 and M2.

Each local map MB = (x̂B, PB) is composed by: a) the state vector x̂B, containing

the pose of the vehicle R and the features F with respect to the reference system B and
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b) the covariance matrix PB with all the relations between them (see Equations (2.12)

and (2.13)). Data association process is carried out using Individual Compatibility Nearest

Neighbor (ICCN) to establish correspondences and Joint Compatibility test to ensure the

robustness of the matchings. Detailed explanation of these data association techniques

can fe found in [60]. In addition, each local map must contain the relation between its

reference frame and the one of its neighbors, in order to estimate the global position of

the vehicle when it is required. The global map is composed by a graph where nodes

correspond to local maps (Mi,Mj , . . .) and edges to the relative locations between their

reference frames (xij = xBi

Bj
), represented by an estimation value.

x̂u =




...

x̂ij

...


 ; Pu =



· 0 0

0 Pij 0

0 0 ·


 (2.35)

were xu and Pu represent the state vector and covariance matrix of global stochastic map.

As observed in Equation (2.35), local maps are independent and therefore the covariance

matrix P only includes diagonal elements.

While the vehicle is navigating, a set of local maps are built and an estimation of

the vehicle pose is computed. As seen in Figure 2.26, uncertainty grows considerably as

the robot is moving within the environment (the size of the elipses increases what means

that uncertainty increases). Therefore, the author proposed to reduce such uncertainty

and correct the misalignments by benefiting of the information provided when the vehicle

crosses already visited areas. These techniques are known as ”Closing the loop”. The main

idea is to use the information of the robot pose, provided by the relation between the local

maps, and the relocation algorithm RS detailed in [61] in order to predict whether an area

has already been visited. Once a loop is detected, the next step is to fuse both maps MB
i

and MB′
j that are representing the same area. The author proposes a local map joining

technique presented in detain in [87] (see Equation (2.36)).

MB
i+j = (x̂B

i+j , P
B
i+j) (2.36)
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(a) (b)

Figure 2.26: Hierarchical SLAM experimentation. (a) Map before closing-the-loop restric-
tion. (b) Map after closing-the-loop.

were x̂j,j and Pi,j represent the state vector and the covariance resultant of the fusion of

the maps Mi and Mj .

Since the relative reference frames of both maps are known, the main goal of the

algorithm is to transform one of the maps and its features into the reference system of

the other one. In order to guarantee the stability of the global map, some closing-the-loop

constraints are added. Similarly to some previous described analytic methods, one of the

main requirements is that the composition of all the transformations [x1 . . . xn] between

the local maps in a loop must be equal to zero:

h(x) ≡ x1 ⊕ x2 ⊕ . . .⊕ xn−1 ⊕ xn = 0 (2.37)

were xi represent the set of transformations between local maps.

Therefore, the maximum likelihood estimation of the relative relations between local

maps is the problem to be minimized. Since h(x) is non-linear, non-linear least square is

used in order to minimize the loop constraint function:

minx f(x) = minx
1
2(x− x̂u)T P−1

u (x− x̂u)

h(x) = 0

(2.38)
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were x is the vector of the relative transformations between local maps and x̂u the state

vector of the global map representing the loop.

In the same manner, the whole map can be refined using the same optimization tech-

nique, allowing uncertainty minimization of several loops at the same time. In addition,

when the loop area is revisited again, the information is used to refine the pose estimation.

The huge improvement that supposes the use of closing-the-loop constraints is shown in

Figure 2.26, where the uncertainty grows considerably in 2.26a while the closing-the-loop

constraints forces to minimize such uncertainty in 2.26b. Techniques presented previously

only propose global constrains without taken into account ”closing the loop” consistency,

which can cause misalignments when dealing with large scenes. Therefore, the presented

approach provides a reliable solution to the problem of Localization and Mapping in large

areas, specially in mobile robot navigation.

Non-Parametric Filters

In mobile robots, Simultaneous Localization and Mapping (SLAM) problem has also been

tackled by using non-parametric filters such as the histogram filter or the particle filter

(PF). The main difference compared to Gaussian filters is the possibility of dealing with

multimodal data distribution, using multiple values (particles) to represent the belief [89].

That is, each estate Xk of the environment can be represented for multiple particles, one

for each hypothesis.

Xk = {xk,[m]}m = {x[m]
1 , x

[m]
2 , . . . , x

[m]
k } (2.39)

where each particle x
[m]
t represents m different hypotheses of the estimation of the vehi-

cle/camera pose at a time step k, represented as:

x
[m]
k ∼ p(xk|uk, x

[m]
k−1) (2.40)

were xk and uk represent the estimated state of the vehicle and the measurements at time

step k.

In comparison with EKF-based filters, PF present more robustness to periods of con-

siderably uncertainty and sensor noise, due to its multi-modal data distribution. However,

Gaussian filters usually have a polynomic computational cost, whereas the computational

cost of a non-parametric filter may be exponential. During last years, several interesting
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approaches based on particle filters have been presented as an alternative to EKF-based

techniques [44] [57] [84], with the aim of solving the SLAM problem. Stachniss proposes the

use of a Rao-Blackwellized particle filter for local map representation, combined with some

techniques for particle reduction and a ”Closing the loop” strategy [84]. The strongest

point of this approach is the possibility of dealing with periods of great uncertainty, due to

its ability to recover already vanished hypotheses. This represents a considerable improve-

ment with respect to EKF-based approaches, which do not allow to recover hypotheses

that have been already vanished in the past even if these hypotheses were correct.

Alternatively, Montemerlo has proposed a new PF-based approach named FastSlam,

which combines the use of particles with Kalman filters for map representation [57]. That

is, each particle xk,[m] (composed by all the hypothesis of the robot pose estimation at

time state k) has, at the same time, K Kalman filters representing each landmark pose

estimation with respect to the vehicle pose.

St = {xk,[m], x̂
[m]
1 , P

[m]
1 , . . . , x̂

[m]
K , P

[m]
K } (2.41)

were xk,[m] represents all the hypotheses of the robot pose estimation at state k (see

Equation (2.39)) and x̂
[m]
K and P

[m]
K represents the estimate state vector (mean) and the

covariance matrix of each landmark with respect to each particle. Note that update process

in FastSlam is carried out in the same way as in EKF approaches. In addition, a weight

is assigned to each particle depending on its reliability.

This hybrid method has provided reliable solutions to several problems of EKF-based

approaches such as the high computational cost that requires to update filters containing

considerable amount of data. That is, since the problem is divided into multiple small

Kalman Filters containing only Gaussians of two dimensions (for 2D feature location), the

computational cost can be reduced to O(MlogK), where M is the number of particles and

K the number of landmarks. However, if the complexity of the environment requires the

use of 3D data the computational cost increases considerably, forcing the reduction of the

number of features at each step, which has a direct effect on the quality of the results.

Bearing-only SLAM

Recently, some approaches have been focused on solving the problem problem that arises

in the presence of data provided by bearing-only sensors such as omnidirectional or unique
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moving cameras. Since depth information is not provided, EKF can not be directly ini-

tialized, leading to a new challenge known as Bearing-Only SLAM. An early approach

was proposed by Deans [19], who combined Kalman filter and bundle adjustment in filter

initialization, obtaining accurate results at the expense of increasing filter complexity. Be-

sides, Davison [18] proposed a top-down Bayesian framework for unique moving camera

localization based on a particle filter, which benefits from the initialization of using an A4

piece of paper as a landmark to recover metric information of the scene. Then, whenever a

scene landmark is observed a set of depth hypotheses are made along its direction. In sub-

sequent steps, the same landmark is seen from different positions reducing the number of

hypotheses and leading to an accurate landmark pose estimation. Recently, Lemaire [46]

proposed a 3D Bearing-Only SLAM algorithm based on EKF filters, in which each feature

is represented by a sum of Gaussians.

Overall, we conclude that SLAM methods offer accurate solutions for localization and

mapping in reduced environments. Since PF methods can handle multiple hypotheses

they present more robustness in periods of global uncertainty and sensor noise, but are

less efficient than EKF in terms of computational costs. However, when dealing with large

environments both methods present problems associated to the increasing uncertainty and

the huge amount of data treated. This drawback can be solved by using methods based

on building submaps such as CEKF, which present more robustness against uncertainty

compared to methods based on a unique global map. Some methods impose global restric-

tions for global map joining, providing accurate solutions in the presence of short loops.

However, loop consistency constraints used in methods such as Hierarchical SLAM can be

essential to handle larger loops and prevent inconsistency and misalignments in the final

map.

2.5 Conclusions

In this section we have presented a state of the art of the most representative techniques for

6DOF pose estimation and 3D registration of large objects and maps. The most referenced

articles over the last few decades have been discussed analyzing their pros and cons as

well as their potential applications.

Related to coarse pose estimation, surveyed methods have been classified into two main
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groups. The first one benefits from sensors or other mechanical devices while the second

one focuses on computing the initial pose by solving the matching problem among surface

views (computer vision techniques). Although techniques based on mechanical devices

such as odometry provide good results in flat terrains, a combination of both methods is

usually required in the presence of rough and unstructured environments. Computer vision

techniques have been divided in two main groups: image-to-image (dealing with 2D views)

and surface-to-surface (3D views). In this section a new classification of feature extraction

techniques has been proposed, published in the ”Journal of Electronic Imaging” [78]. The

features have been classified as Feature-to-point, (corners, lines, etc) and Point-to-Feature

(Spin image, Point Signature, etc). In our opinion, when dealing with 2D views, SIFT

(Scale Invariant Feature Transform) is the feature extraction method that provides more

accuracy, since it presents more robustness against rotation and scale changes that other

methods such as Harris corner Detector or Line-based ones. However, these last methods

are less complex and more adequate for real time applications. When dealing with 3D views

of unstructured scenes, were usually a huge amount of points are required, Spin image is the

method that has presented more accuracy. The main problem associated to this technique

is the computational time required to find a solution, since point descriptors need to

be computed. Furthermore, it has been observed that image-to-image (2D) alignment

presents good results in the presence of nearly planar areas where depth can be neglected.

Otherwise, the alignment produces artifacts ruining the registration. Therefore, surface-to-

surface alignment (3D) is more adequate for 3D scenarios, but we have to avoid symmetries

in the views to obtain accurate registrations.

Once a coarse pose between two views is estimated, a refinement step can be applied

in order to provide a more accurate alignment. Two main methods and their variants have

been discussed: Point-to-point and Point-to-plane. Although the first method is the most

commonly used, a huge amount of iterations is required and the method may converge to

a local minima. Besides, the point-to-plane method has demonstrated to work better in

the presence of regions with less overlap and usually converges faster. In addition, point-

to-point is the most used in surface-to-model registration, while point-to-plane is the most

accurate in surface-to-surface registration.

Finally, a consistent classification of multiview registration and mapping techniques

has been proposed. The techniques have been classified as Metaview, Simultaneous Min-

imization, Graph Analysis and Statistic techniques. From our point of view, techniques

based on metaview provides good results when dealing with small objects. However, when
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dealing with larger object/scenes the accumulated error present in the registration pro-

cess increases considerably leading to poor results. This is mainly due to the lack of

flexibility to re-register views already merged in the metaview. Simultaneous minimiza-

tion approaches present a reliable solution to the problem of error propagation present in

multiview registration, avoiding problems such as being stuck in local minima. Moreover,

they present robustness against outliers and low-overlapping views. However, the most

important drawback of these methods is the high complexity in terms of computational

cost, which make them poor candidates for large object registration. Besides, graph-based

approaches provide better results that the ones based on metaview for large objects. Al-

though these methods are not robust as the ones based on Simultaneous Minimization,

they require less computational time and present better solution for large scene mapping.

In addition, it could be observed that include cycle detection and minimization presented

more accuracy than the others that do not consider information provided by revisited

areas. Although multiview registration methods have demonstrated to provide accurate

solutions, misalignments can appear in the presence of featureless environments, symme-

tries and smooth objects. Note that an accurate treatment of outliers and the removal

of the less confident paths in the graph are also compulsory steps to ensure an accurate

registration. Finally, statistical techniques present good results reducing error propagation

specially in large objects/scenes due to the fact that the uncertainty is considered in the

minimization process. These methods are mainly used in robot navigation and are globally

known as SLAM approaches. The advantage of statistical methods with respect to analyt-

ical ones is their performance in the presence of less reliable sensors, complex environments

and unstructured scenes with few features and landmarks. However, they are not recom-

mended for handling tons of data since the manipulation of large state vectors derives

to an inefficient computation. Depending on the way of representing the uncertainty of

the environment these methods have been divided on Gaussian (Extended Kalman Filter,

Information Filter) and non-parametric (Particle Filter). In the first group we would like

to highlight methods such as CEKF, SEIF and Hierarchical SLAM which use local maps

in order to reduce the computational cost involved in EKF map update. Although some of

these techniques use global constraints, only Hierarchical SLAM imposes loop consistency,

preventing from misalignments leading to an accurate mapping. Therefore we consider

Hierarchical SLAM the most reliable EKF-based method for mapping large environments.

Finally, it is interesting to point out that non-parametric methods such as the Fast-SLAM

(based on PF) are more suitable than Gaussians when the mobile robot is in phases of
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global uncertainty, despite the high computational cost. This is due to the possibility of

handling multiple hypotheses of the state of the environment. Although SLAM techniques

have been usually faced to 2D mapping due to the high computational time required for

filter updating (critical for real time operations), the presented methods can also be used

in 3D applications. However, they are limited to the use of reduced number of points,

which involves less accuracy on the final results.
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Chapter 3

Graph Theory

In this chapter some fundamentals on graph theory with specific relevance for the present

work are reviewed. Graph theory permits to relate a set of nodes by edges and provides

techniques to find paths and cycles and costs throughout the pathway. Graph theory is

crucial in the computation of 3D multiview registration since permits to establish relations

among partial views (nodes) and their corresponding transformations (edges) in a formal

way, leading to more accurate and less computing intensive algorithms. In this chapter

we emphasize the importance of some algorithms of moving around graphs but focused on

finding paths, cycles and the minimum spanning tree that are important in 3D registration.

3.1 Introduction

Graph theory is widely used in 3D registration techniques since provides an abstract

model that permits to relate partial views (nodes) and their corresponding transformations

(edges) in a formal way. Some of the contributions in 3D registration surveyed in the

previous chapter take advantage of Graph theory and Graph theory is also the cornerstone

of the new approaches proposed in this thesis. This chapter is divided into 5 sections. In

Section 3.1 the basics of Graph theory is given. Then, Sections 3.2, 3.3 and 3.4 review

the most important algorithms we use in 3D registration applications. Finally Section 3.5

presents a summary of conclusions.

59
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Basic Definitions

A graf G(V, E) is an abstract model composed by a set of vertices (nodes) V = (v1, v2..., vn),

and a set of edges (lines) E = (e1, e2..., en), where each edge joins two vertices (see Fig-

ure 3.1). A graph is used to represent some elements and their relations. A simple example

could be a group of cities and the roads that connect them; in this case the vertices of

a graph would depict the cities and each one of the edges can be associated to a road

between two of that cities. Besides, in 3D registration, we represent every partial view by

vertices and the relation (Euclidean transformation, overlapping rate, registration error,

etc) among them by edges.

Figure 3.1: The data structure of a graph composed by a set of nodes connected by edges.

Depending on the way the edges of a graph are defined, a graph is classified according

to the following criteria:

A directed graph is a graph where the edges have a direction, usually represented by an

arrow going from a start vertex to an end vertex (Figure 3.2-b). An undirected graph is a

graph in which none of the edges have fixed directions so they are considered bidirectional

(Figure 3.2-a).

A weighted graph is a graph where a numerical value is associated to each edge (Fig-

ure 3.2-b,d). This value is known as the weight of the edge and represents the cost of

going throughout that edge in a hypothetic path. Should we go back to the example

where nodes symbolize cities and edges the roads among them, the distances between

cities are represented by the weights of the edges. In 3D registration, where the par-

tial views are represented by nodes, the weight of the edges may represent the Euclidean

distance between these views.
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A simple graph is an undirected and weightless graph that does not contain self-loops

(edge that joins a vertex to itself) and where each pair of vertices are related by one edge

at most (Figure 3.2-a). A simple graph where each pair of vertices is connected by a an

edge is called complete graph (see Figure 3.2-c). A pseudograph, as opposite to the simple

graph, is a graph where the two previous mentioned features (self-loops and multiple edges

between two vertices) are permitted (Figure 3.2-d).

Figure 3.2: Examples of different types of graphs: (a) Simple Graph; (b) Directed weighted
graph; (c) Complete graph; (d) Pseudograph.

A subgraph G′(V ′, E′) of a graph G(V, E) is a graph where V ′ ⊆ V and E′ ⊆ E. That

is, if G contains G′, then G′ is a subgraph of G. In this case, G is said to be a supergraph

of G′. Figure 3.3 shows a subgraph of Figure 3.2-a.

Figure 3.3: Subgraph of the graph from Figure 3.2-a

Having this definitions in mind, we here introduce several concepts that are crucial for
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our purposes:

A path between two vertices is the set of connected nodes that link them. Figure 3.4-a

shows the path between v1 and v10.

A cycle is a special path where the starting vertex coincides with the ending vertex. In

Figure 3.4.b a cycle composed by the vertices C = (v1, v4, v6, v5, v1) is depicted. If the path

does not contain any repeated vertex then the path is called a simple path. Analogously,

a cycle with no repeated vertices (apart from the starting vertex) is called a simple cycle.

A Hamiltonian cycle is a cycle that connects all the vertices of a graph by visiting each

vertex only once (see Figure 3.4-c).

Figure 3.4: Examples of paths and cycles: (a) A simple path coloured in red; (b) A cycle
in blue; and (c) a Hamiltonian cycle in green.

A tree is a connected, undirected graph without cycles. When a tree contains all the

vertices of a graph, it is called a spanning tree. Note that a graph may have several

different spanning trees. For example, the red path in Figure 3.5 represents a possible

spanning tree of that graph. Considering G(V, E) a graph in which the edges are weighted

with non-negative costs, a minimum spanning tree is the tree where the sum of the costs of

the edges is minimum. Now that the basics on Graph theory are reviewed, the following

sections deal with the algorithms of vertex touring throughout graphs focusing on 3D

Registration.

3.2 Traversing graph algorithms

One of the most fundamental problems of graph theory is how to traverse a graph ensuring

that every edge and every node is visited. The most common strategies proposed in
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Figure 3.5: Spanning tree.

the literature are the Breadth first search (BFS) and the Depth first search (DFS). The

difference between both algorithms resides in the way of exploring all the possible paths

in the graph.

3.2.1 Breadth first search

The Breadth first search strategy prioritizes the parallel exploration of all the possible

paths from the current vertex. This algorithm begins by choosing a vertex (the root in

case of a tree) which is labeled with the 0. The next step consists in exploring all the

neighbors of this node (adjacent vertices), which are labeled with the 1. Then, for each of

the nodes of this level the algorithm explores their neighboring nodes labeling them with

the corresponding label. The process ends when all the vertices have been visited.

Led V = {Vi} be the set of vertices of a graph G:

1. Start with all the vertices unlabeled.

2. Select an starting vertex and label it with 0.

3. j = 0 (j represents the level of the visited vertices).

4. From each node labeled j, select all the non-labeled vertices adjacent to it and label
them as j + 1. If there is no more unlabeled nodes the process ends.

5. j = j + 1 (increment one level). Go to step 4.

Table 3.1: Breadth first search algorithm.

The result of the Breadth first search algorithm is depicted in Figure 3.6, where the
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vertices have been visited following the path: P = {v1, v2, v4, v5, v3, v8, v6, v9, v7, v10}

Figure 3.6: Graph traversing using breadth first search algorithm.

3.2.2 Depth first search

The Depth first search algorithm prioritizes the exploration of a single path from the

selected node before backtracking. The first step of this algorithm is to select a vertex

(the root in case of a tree), which will be considered the current vertex. Then, the idea is

to extend the path to an unvisited vertex neighbor of the current vertex, and so on, going

as far as possible along the branch, performing a depth search. When no unvisited vertices

are found, a backtracking process is carried out and a new alternative path is considered.

The algorithm ends when all the vertices have been visited. Notice that some vertices

can be visited more than once, so that only the first visit is considered in the path. This

process and the resultant tree is shown in Figure 3.7, where the vertices have been visited

following the path: P = {v1, v2, v3, v7, v4, v8, v6, v5, v9, v10}

Figure 3.7: Graph traversing using depth first search algorithm.
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Led V = {Vi} be the set of nodes of a graph G:

1. Start with all the vertices labeled as unvisited

2. Select a unvisited vertex, label it as visited and consider it the current vertex

3. Select a neighbor (adjacent) vertex of the current vertex, mark it as visited and
consider it the current vertex

4. If the current vertex has not any unvisited vertex then go back along the path to
its parent and consider it again as the current node. If there are unvisited vertices
adjacent to the current vertex, repeat steps 3 and 4.

5. If there are unvisited nodes in the graph, go to step2

Table 3.2: Depth first search algorithm.

Considerations

Both Breadthfirstsearch and Depthfirstsearch algorithms provide reliable solutions to

the problem of traversing a graph. Besides, these algorithms can be used as well for other

problems such as the generation of trees and spanning trees. Although both algorithms

deal with the same kind of problems, they have several differences that must be taken

into account. That is, depending on the problem we are dealing with, one algorithm may

perform better than the other. One of the differences between these algorithms resides in

the memory requirements. DFS strategy requires less memory than BSF, since only the

path of the current explored branch is recorded. In addition, DFS results very efficient

dealing with a searching problem with several solutions where each solution is in a similar

depth level of the tree/graph. However, if the searching is along a branch that does

not contain any solution, DFS can become very inefficient. Although BFS requires more

memory, it usually requires less steps to find the solution (shortest path). For instance,

should we have a graph containing a very deep branch and several short branches where

the solution of our problem resides in one of the shortest branch, then BFS should be more

appropriate than DFS. As it is shown in the following chapters, DFS and BFS algorithms

are closely related to several 3D multiview registration techniques. Some related problems

such as the order in which the partial views should be registered are determined using DFS

and BFS. The graph traversing strategy used in each situation depends on several factors

such as the way in which we want to register the views, the sort of object to be registered

and the trajectory followed by the camera while the partial views were acquired.
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3.3 Minimum spanning trees algorithms

Another important algorithm in 3D registration is the computation of the minimum span-

ning tree of a graph which is equivalent to determine the best way (minimum cost) of

registering a set of views in a graph. Consider G(V, E) a graph where the edges are

weighted with non-negative costs, a minimum spanning tree is the tree where the sum of

the costs of its edges is minimum (see Figure 3.8). In this section, the two most common

algorithms to determine the minimum spanning tree of a graph are discussed: Prim’s

algorithm and Kruskal’s algorithm, whose both are greedy algorithms. Note that greedy

algorithms always try to find the best local solution without taking into account how this

local solution contributes to the global solution.

Figure 3.8: Minimum spanning tree

3.3.1 Kruskal’s algorithm

Kruskal’s algorithm generates a spanning tree by selecting at each step the edge with

minimum cost and avoiding the selection of any edge that generates a cycle. When two or

more edges have the same cost, the order in which they are added does not alter the final

result and therefore can be chosen randomly. The algorithm finishes when all the nodes

are connected. In order to make this algorithm clear, the method is depicted in Figure 3.9.
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Let V = {vi} be the set of nodes and E = {ei} the edges of a graph G(V, E). Let n be
the number of edges:

1. Start with a graph containing only nodes and no edges: Gt = (V, φ).
k = 0;

2. Arrange the edges of G in order of increasing cost, generating a list of ordered edges

3. Select the first non-used edge from the list that does not form a cycle and add the
edge to Gt.
k=k+1;

4. If k < n-1 go to step 3. Otherwise, terminate the process, being Gt the minimum
spanning tree.

Table 3.3: Kruskal’s algorithm.

Figure 3.9: Spanning tree generation using Kruskal’s algorithm. The process goes from
left to right and from top to bottom

3.3.2 Prim’s algorithm

Prim’s algorithm generates the minimum spanning tree by adding one vertex at each

step. The procedure works as follows: A vertex is selected randomly. The edge with the

minimum cost connected to that vertex is selected, adding another vertex to the tree. At

each step, the edge with the minimum cost that connects any of the visited vertices with

an unvisited vertex is selected. The algorithm ends when all the vertices are connected.

Figure 3.10 illustrates the process of generating a minimum spanning tree using Prim’s

algorithm.
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Led V = {vi} be the set of nodes and E = {ei} the edges of a graph G(V, E).

1. Select an arbitrary vertex vi from G(V, E) to start the spanning tree Gt

2. Select the edge with minimum cost between a vertex of Gt and a non-visited vertex
(vertex do not included in Gt).

3. Add the new edge and the new visited vertex to Gt

4. If there are still vertices of G that are not in Gt, repeat steps 3 and 4. Otherwise,
the process terminates, being Gt the minimum spanning tree.

Table 3.4: Prim’s algorithm.

Figure 3.10: Spanning tree generation using Prim’s algorithm. The process goes from left
to right and from top to bottom

Considerations

Both Kruskal’s and Prim’s algorithms provide the minimum spanning tree of a graph.

Although both algorithms return similar solutions (the same solution if every edge has a

different cost), the process followed to deliver this solution differs considerably. Kruskal’s

algorithm selects a set of vertices (choosing the one with the minimum cost at each step)

and then joins them generating the spanning tree. In Prim’s algorithm a node is selected

and the spanning tree is growing while adding, at each step, the ”best” edge (the one with

minimum cost) that connects the current node with an unvisited node. Note that Kruskal’s

algorithm is more complex than Prim’s one due to the fact that it has to check at each step

whether the added vertex generates a cycle, and discard it if it does. Therefore, the use of
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Prim’s algorithm is more appropriate when dealing with dense graphs. In 3D multiview

registration, the partial views to be registered are the vertices and the edges can be the

Euclidean distances between these partial views. It is well known that usually, the shorter

the distance between two views is, the larger is the overlapping between these two views

and hence the better the registration is. Therefore, finding the minimum spanning tree in

3D registration provides a way of registering all the partial view according to minimum

distances. Consequently, it is a method to obtain better global registration results in the

presence of multiple views.

3.4 Cycle detection

A cycle is a special path where the starting vertex coincides with the ending vertex. Con-

cretely, a fundamental cycle is a cycle without repeated vertices (apart from the starting

vertex) and that does not contain any cycle in it. For example, consider a graph with an 8-

shape (see Figure 3.11); this graph contains a cycle (C = {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10,

v11}) composed of two fundamental cycles (red and blue in Figure 3.11).

Figure 3.11: An example of a graph with two fundamental cycles.

Several algorithms have been proposed in order to determine cycles in a graph. This

section focuses on the techniques for detecting fundamental cycles and minimum cycles in

a graph. Note that a minimum cycle is the cycle in which the sum of the edge weights

that compose the cycle is minimum.

A common way to determine the fundamental cycles in a graph is to adapt the al-

gorithms presented in the last sections. As we have seen, these algorithms discard the

vertices that compose cycles when generating the traversing path or the spanning tree.

Therefore, several techniques take advantage of this information to detect fundamental

cycles.
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A widely used method was presented by Paton in 1969 [69]. The author proposes

to detect the fundamental cycles of an weightless graph by using a Breadth first search

strategy. The idea is to start by generating a spanning tree of a graph, while detecting

the already visited vertices in the process. Each time a visited vertex is detected, a cycle

is generated using both the new edge and some of the edges that compose the tree. The

algorithm has been detailed below:

Let V = {vi} be the set of vertex and E = {ei} the set of edges of a graph G(V,E). Let
T be the set of vertices of the spanning tree and X the non-examined vertices. Initially,
T = φ,X = V .

1. Select an arbitrary vertex v from X to start the tree T . Then T = {v}, X = V

2. Select the first vertex z included in both T and X. If there are no vertices, the
process ends.

3. Consider each vertex w adjacent to z.

4. If w ⊂ T , a fundamental cycle is found. The cycle is composed by the path going
from z to w added to the unique path going from w to z using the edges that
compose the tree T

5. Otherwise (if T does not contain z), add the edge from z to w and the vertex w to
the tree T

6. When all the edges from z have been examined, remove it from X and go to step 2

Table 3.5: Paton’s cycle detection algorithm

The process of this algorithm, step by step, can be followed in Figure 3.12. Note

that the spanning tree has been represented in red, and the edges that compose a cycle

in blue. However, it should be taken into account that the blue edges does not belong

to the tree. Therefore, the algorithm has detected two fundamental cycles in this graph:

C1 = {v1, v2, v5, v3, v1} and C2 = {v1, v3, v6, v4, v1}.
Other approaches for detecting fundamental cycles in an non-weighted graph have been

proposed using modified versions of Breadth first search and Depth first search strategies

or even a combination of both [21]. Some authors have focused they efforts in detecting

fundamental cycles in directed graphs. In 1970, Tiernan proposed an algorithm based

on exploring elementary paths, using a modified version of Depth first search algorithm,

looking for cycles [91]. This algorithm starts by choosing a vertex randomly and traverse

the graph generating an elementary path. When no more unvisited vertices can be found

throughout this path, the algorithm backtracks to an already visited vertex of the path
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Figure 3.12: Process of detecting fundamental cycles using Paton’s algorithm (from left
to right and from top to bottom)

and chooses another edge to traverse to a new vertex. If this new vertex is adjacent to the

first vertex of the elementary path, a cycle has been found. The process continues until

al the vertices have been explored. Other techniques for searching fundamental cycles in

a directed graph have been proposed by different authors [97] [88].

Other authors have faced the problem of finding the minimum cycles of a graph, that

is to find a set of cycles where the sum of the edge weights that compose the cycles is

minimum [71] [36]. A common way to solve this problem is to modify the fundamental cycle

detection techniques studied previously. For example, Amaldi [1] proposed a new strategy

using the fundamental cycle detection method proposed by Paton [69]. The algorithm

starts finding the spanning tree and the fundamental cycles. Then, the idea is to perform

edge swaps, removing and adding edges to the tree. Every time an edge is swapped, the

cost of the new cycle basis is calculated. The goal is to determine which composition

of the tree will give us the minimum cycle of the graph. This process modifies both the

spanning tree and the fundamental cycles considerably. Note that minimum spanning tree

algorithms can also be used for finding the minimum cycles with slightly modifications.

Considerations

Cycle detection methods take advantage of graph traversing and spanning tree algorithms.

The differences between these methods reside in both the complexity and efficiency of

the algorithms as well as in the final results. It is known that methods using Breadth
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First Search (BFS) strategy (such as the one proposed by Paton [69]), generate shorter

fundamental cycles that the ones using Depth First Search (DFS) strategy due to the

differences in the shape of the obtained spanning trees. This is because shorter branches

are obtained when BFS is used. The differences in complexity and efficiency of each

algorithm also may depend on the used strategy. It is known that DFS strategy might be

less efficient dealing with dense graphs. Consequently, cycle detection methods based on

DFS result less efficient than the ones based on BFS. In addition, the way in which the

algorithm explores the path for detecting the cycles can be determinant for the algorithm

efficiency. For example, some algorithms such as Tiernan [91] explore more paths than

needed, slowing the algorithm unnecessarily.

3.5 Conclusions

In this chapter we have reviewed the fundamental concepts of graph theory from basic defi-

nitions up to detailed description of the most common algorithms used in 3D registration.

The chapter has focused mainly in three main problems: traversing a graph, generat-

ing the minimum spanning tree, and detecting cycles. The different problems and the

best techniques to solve them have been analyzed, both theoretically and using practical

examples.

Two main techniques for traversing graphs have been described: Breadth first search

(BFS) and Depth first search (DFS). Although both techniques provide reliable results for

searching and traversing graphs, BFS strategy usually provides faster and more optimal

results, mainly when the problem has more than a single solution or when the solution

resides in a short branch. In addition, in the presence of graphs with large branches, the

DFS strategy can become very inefficient or even it can get stuck without returning a

solution.

Although using traversing graph techniques the different spanning trees of a graph can

be obtained, sometimes the minimum spanning tree is required. Here, two main techniques

have been analyzed: Kruskal’s and Prim’s algorithm. As we have seen, both techniques

provide similar results (the same if all edges have different values) but using different

methodologies. However, Kruskal’s algorithm has demonstrated to be less efficient, since

it must verify at each step that the new added edge does not compose a cycle.
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Finally, the techniques for detecting cycles in a graph have been analyzed and divided

into the detection of fundamental cycles and minimum cycles. These algorithms take

advantage of the searching algorithms in order to detect the cycles of a graph. Depending

on the searching technique used, the complexity and efficiency of these algorithms can vary

considerably. It is well known that techniques based on DFS strategy are less efficient and

generates larger fundamental cycles than the ones based in BFS. However, depending on

the problem we are trying to solve, some techniques may result more appropriate than

others.

To conclude, graph techniques can provide reliable solutions to the problem of reg-

istering multiple 3D views, mainly when dealing with large objects or scenes, where the

number views to be registered is huge. In the present work, some of these algorithms have

been used to determine the relation between these 3D views and to determine the best

order in which the views should be registered. Therefore, this chapter has presented a re-

view of the fundamental concepts of graph theory, as well as the most common algorithms

adequate to our purposes, with the aim of providing a base for a better understanding of

the following chapters. Further details in graph theory can be found in [5] [22] [11].
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Chapter 4

Multiview registration based on

cycle minimization

An unsolved problem when registering large objects or scenes resides in the propagation

error accumulated during the pairwise registration process, leading to inaccuracies in the

alignment of the partial views. This chapter presents a new approach to deal with the 3D

registration of multiple views thanks to cycle detection and cycle minimization strategies.

The technique cope with the propagation error and yet deliver accurate alignments of the

set of partial views.

4.1 Introduction

The process of creating a complete model of an object or scene involves several steps,

including data acquisition, pairwise registration and multiview minimization (see Fig-

ure 4.1). In Chapter 2 we have discussed that pairwise (one-to-one) alignment of views

accumulates an error that is propagated throughout all the sequence of views, producing

a drift in the registration. This problem worsens in the presence of large scenes, since the

number of views to be registered increases. As we have seen in Chapter 2, some techniques

have been proposed to deal with multiview registration.

In this chapter we present a new multiview registration technique with the aim of re-

75
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ducing error propagation in the presence of large sequences of views and providing accurate

3D registration models. The new approach takes advantage of graph theory techniques to

deal with cycle detection and cycle minimization. Besides, the approach benefits from one-

to-one pairwise registration techniques as a technique to compute the correlation among

the partial views, determining the most adequate way to register such views. The idea is

to detect the existence of cycles and re-visited regions and use this information to reduce

the propagation error by means of the Levenverg-Mardquart minimization technique.

Although the main contribution of this work is in the proposal of a new multiview

minimization technique, this chapter also describes all the steps involved from the acqui-

sition up to the pairwise registration of partial views, with the aim of providing a better

understanding of the whole algorithm.

The chapter is divided as follows. Section 4.2 details briefly the process of acquiring

the set of 3D partial views and the method used to perform the pairwise registration

between these views. Section 4.3 is focused on the new multiview registration approach

describing in the detail all the steps involved in both cycle detection and propagation error

minimization. The chapter ends with a summary of conclusions detailing the pros and

cons of the new method compared to literature 4.4.

4.2 Pairwise registration

Partial views acquisition

The first step in 3D modeling is to acquire the set of 3D partial views of the object

to be registered. These views can be acquired by any Shape-from-X technique such as

stereovision, laser triangulation, laser scanning and pattern projection (see Chapter 2).

Acquisition differs from the technique used but all of the techniques tend to deliver a

cloud of 3D points referenced with respect to the pose of the measuring sensor.

Since the goal of this thesis is in the registration of the views instead of in their

acquisition, we have preferred to use already acquired views available in the web1. This

decision has been also made to facilitate the comparison of the technique since these sets

of views are nowadays used by several researchers. Besides, we have also simulate a virtual

scanner to acquire synthetic partial views of a virtual object. Synthetic data is extremely

1http://www.csse.uwa.edu.au/ ajmal/3Dmodeling.html
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Figure 4.1: Scheme of the multi-view registration process.

important during algorithm development since is the only way to analyze the accuracy of

the method compared to ground truth.

Once all the partial views have been acquired, the next step is to align them in order

to obtain the final model. In general, a former coarse registration should be used to

get an initial estimation of the alignment from some surface features. Then, the coarse

registration is considered as an initial solution for a fine registration minimization. Note

that, the initial solution is crucial to avoid local minima.
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However, in the present work, views have been acquired sequentially both in synthetic

and real data (see Chapter 5), ensuring a sufficient overlapping region between them. In

this case, the motion between each two consecutive views is very small (a huge amount of

surface is shared) and the fine pairwise registration process can be initialized considering

that this motion is null. This assumption avoids the expensive computational time required

to compute the initial estimations (coarse registration) of the motion, without penalizing

the accuracy of the process. However, not in all the real cases this small amount of motion

can be assumed. In order to apply this assumption, the motion between consecutive views

should be small enough to provide a significant overlapping when possible. In cases where

such condition could not be assumed, additional techniques should be previously applied

to pre-align the views, such as the mentioned coarse registration. The pairwise registration

method used is explained in the following section.

Partial views registration

Pairwise registration consists in aligning the views sequentially while their are acquired.

The fast Point-to-plane strategy proposed by Park [68] has been used, though some mod-

ifications have been made to increase accuracy and reduce computational time [53].

A common strategy to accelerate pairwise registration is to reduce the number of

treated points. The idea is to consider only a sample of significative points from each

view without losing surface information. Note also that the removal of despicable points

should also increase registration accuracy so that the method use to perform the sampling

is extremely important.

Several sampling techniques have been presented in the literature, including uniform

sampling [50] [95] and random sampling [52], among others. In 2001, Rusinkiewicz et al.

presented a new approach called Normal space sampling [77]. The author proposed to

discard the points that do not provide useful information by selecting more points from

the regions where the normal is different from the other parts of the surface.

In a similar way, a variation of the method proposed by Rusinkiewicz has been used

in our registration process. The strategy tries to eliminate redundant information by

discarding points from the planar areas and keeping a high percentage of points on the

uneven areas of the surface. Detailed information of this approach can be found in [53].

Once the new sets of points have been obtained, the next step is to perform a refined
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alignment of the views. The method used is a variation of the fast point-to-plane approach

proposed by Park [68], from the original Chen’s point-to-plane technique [16]. The idea is

to compute the intersection between lines and surfaces using a recursive strategy. Initially,

the points from one view (previous view) are projected orthographically onto the XY plane

of the camera. Then, a grid composed of 50x50 square cells is generated and scaled so

that it contains the projection of all the points. Next step is to project a point p0 from the

current view to the grid and analyze all the projected points from the previous view that

reside in the same cell, looking for the closest one, obtaining qp0. The projection of point

qp0 to the normal vector of p0 defines a new point p1, which is actually an approximation

of the intersection. This approximation is refined recursively by projecting new points pi

until norm(pi − qpi) is smaller than a threshold (see Figure 4.2). Finally, the process is

repeated for all the points conforming to the current view and a set of correspondences is

obtained.

Then, the motion between these views is computed by minimizing the function:

f =
1

Np

Np∑

i=1

‖mi −Rpi − t‖2 (4.1)

where Np is the number of correspondences; mi is the set of points selected in the

former view that have a correspondence in the present view; pi are the correspondences

of mi in the present view; and R and t are the rotation matrix and the translation vector

that align both views.

The function of Equation 4.1 is minimized by iteratively refining R and t, using quater-

nions [10]. The algorithm stops when the mean of the square errors (distances between

correspondences) is smaller than a given threshold. See Park [68] for a extended review

of this method.

The pairwise registration method here explained aligns two consecutive views delivering

the motion between them; a residue or aligning error is always present due to the intrinsic

noise of the technique used in point acquisition. In the registration of small sequences

of views, this error can be neglected. However, if the number of views to be registered

increases, the propagated error may become larger leading to inaccuracies that produce

important misalignments. Error propagation can be tackled by using a multiview regis-

tration technique. As we have seen in Section 2.4, several techniques have been proposed
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Figure 4.2: Strategy used to compute the intersection between the tangent plane and the
surface Sq along the orthogonal vector p̂.

that include metaview, simultaneous minimization, graph and statistic approaches. Next

section proposes a new multiview approach with the aim of dealing with error propagation.

4.3 Multiview registration

In this section a new multiview registration technique is presented. The method used is

classified in the so-called graph technique since it takes advantage of the detection of cycles

due to revisited regions to minimize the propagated error. The technique is composed of

three main parts: cycle detection, virtual cycle generation and error minimization.

The proposed method uses the information provided by the pairwise registration ex-

plained in Section 4.2 to correlate the partial views. That is, when two views are registered,

the Euclidian transformation between them is obtained. As we have seen in Chapter 3,

we can construct a graph using this information, where the vertices are the acquired views

and the edges the transformation T between these views (T = [R t] where R is the rota-

tion matrix and t the translation vector; see Figure 4.3). Here, the motion between two

non-consecutive views can be estimated from the product of all the consecutive motions

throughout the path that links that two views. For example, the motion between views

V1 and V7 depicted in Figure 4.3 is: 1T2 ∗ 2T3 ∗ 3T4 ∗ 4T5 ∗ 5T6 ∗ 6T7.
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Figure 4.3: Trajectory followed by a camera: The nodes represent the views and the edges
the motion (transformation matrix T ) between them.

During partial views acquisition, it is possible that some object regions may be visited

(acquired) more than once depending on the trajectory followed by the sensor. Therefore,

two partial views obtained at different periods of time may belong to the same object

region. If the registration process is accurate, the position of the two views should be

quite similar. However, since an error is propagated during the process, the final position

may vary considerably. For example, the views V1 and V6 in Figure 4.3 represent the

same region but they are located in a sightly different position due to the propagation

error. If we are able to detect that the two non-consecutive views share to the same object

region (re-visitation), then we have detected a cycle and we can use this information to

recalculate the motion between the views throughout the sequence and obtain a better

registration of the object. In addition, the views composing the cycle may share some

object regions among them, providing useful information for the minimization process.

However, first two important questions must be answered: (1) How can we detect that

an area has been revisited? and (2) How can we use this information to minimize the

propagation error in the registration process?. Following sections gives an answer to these

questions and detail the three main steps of the new multiview minimization approach:

cycle detection, virtual cycle generation and cycle error minimization.
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4.3.1 Cycle detection

It is agreed that the problem of detecting revisited regions (cycles) of an object/scene is

not an easy task. Some authors proposed the use of odometry and inertial systems in

order to determine the motion of the acquisition sensor. Others used computer vision

techniques to extract image/surface features of the scene to use a sort of correlation.

The cycle detection method we proposed is based on both the transformations between

views, provided by the pairwise registration step, and the characteristics of these partial

views. Remember that the position of one view with respect to another is the product

of the Euclidian transformations throughout the path that links those two views. In the

proposed method, two views compose a cycle if the following conditions are accomplished:

(1) the accumulated translation between views is close to zero; (2) the views share a

common object region; (3) the mean of the normals of both views are similar; and (4) the

motion between the two end-views is small.

Translation vector

The basic principle for detecting a cycle is to find two non-consecutive views where the

motion between them is close to zero. When an scene is revisited, the motion between

the views that compose the cycle can be obtained by the product of all the consecutive

transformation matrices throughout the path that links them. In an ideal situation, the

translation vector of this motion must be zero. Hence, if the translation is less than a

threshold and the views are not consecutive, then we can consider that a potential cycle

has been detected. In order to choose the appropriate threshold several considerations

have been taken into account: If the threshold is too large, views close to the one that

composes the cycle may be considered as candidates before the ideal view is analyzed,

slowing down the process or even causing a wrong cycle detection: If the chosen threshold

is too small, this lead to the misdetection of potential cycles, mainly at later stages of the

process, where the translation error is larger. Therefore, it is important to fix a balance

between the amount of cycles detected and their confidence. After several empirical tests

a threshold of 17% of the width of the view was fixed, since it has been demonstrated to

perform optimally according to our needs (see chapter5). Be aware that we can also add

an additional constraint to force the cycle to have a minimum number of views.

This method has an important constraint that must be taken into account: If the
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ti,j =
j−1∑

k=i

iRk ∗ ktk+1

Figure 4.4: Graph representing a potential cycle. If t1,j < threshold, the cycle is consid-
ered.

camera acquires two views from the same position but with a different orientation (different

rotation angle), the translation between these two views is zero, but the analyzed region

is completely different. Figure 4.5 shows the problem. In conclusion, this condition is

necessary but not sufficient and more tests are required.

Figure 4.5: Acquisition from the same camera position but different orientation.

Overlapping area

If two views are candidates to compose a cycle, then they must share a common surface.

Therefore, once a potential cycle is detected the next step is to verify that the overlapping

area between these views is large enough. Otherwise they may not represent the same

region.

To compute this overlapping region, the idea is to generate two bounding boxes con-

taining the 3D points of each candidate view. The intersection of the bounding boxes gives

an approximation of the overlapping area between them. In order to reduce the complexity

of a 3D intersection, the points of each bounding box have been projected onto the three
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2D planes (XY, XZ and YZ) computing three overlapping areas (see Figure 4.6). When

the maximum of these three overlapping areas is larger than a determined threshold, then

it could be considered that the two candidate views form a cycle.

Figure 4.6: Projection of the bounding boxes of two different views in the XY , XZ and
YZ planes.

The main problem of this technique resides in the presence of outliers. That is, if one

of the views contains an outlier, the size of its bounding box can increase considerably,

depending on the position of the outlier (see Figure 4.7). In this case, the intersecting

area between two bounding boxes may not reflect the real overlapping area between the

two views. As we will see in Chapter 5, using synthetic data this situation is unlikely to

happen, because the model does not contain outliers. However, when dealing with real

data, this technique should be combined with the others proposed in this section to ensure

a correct detection of the cycle.

Figure 4.7: Bounding box of set of points (2D representation). In black the ideal bounding
box. In red, the bounding box containing the outliers

Another situation that may cause the failure of this method is when the two views are
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really close in space but represent two completely different regions (for example the front

and the back of a thin object). Then, some of the 2D bounding boxes may have a huge

overlapping area, but the views are completely different. This problem can be solved by

comparing the mean of the normals of the two views.

Mean of surface normals

If two views represent the same region, the mean of their normals should be similar, so

that if they differ less than a threshold, the cycle is considered.

This strategy solves the problem mentioned in the previous section in which two views

belonging to the front and the back regions of a thin object were considered. Even though

they may share a huge overlapping area and the distance between them is quite small,

their normals are oriented to a completely opposite direction.

Besides, note that this technique is again necessary but not sufficient since two com-

pletely different regions may be similarly oriented and hence may have similar means of

normals.

Closing the cycle: Motion between the two end-views

The last step in the cycle detection process is to compute the pairwise between the two

end-views that close the cycle, that is the transformation matrix T = [R t] that aligns

both end views. Therefore we can say that two views compose a cycle if there is almost no

motion between them. In order to verify that the rotation between the two views is small

enough, the axis-angle representation has been used. Here, the rotation is represented by

a unit vector (direction of directed axis) and an angle representing the rotation about the

axis. After several tests it has been determined that in order to detect the cycle properly,

the angle (from axis-angle representation) between two views should be smaller than 0.025

radians (1.4 degrees).

The pairwise registration also gives the error accumulated during the process when both

end views coincide. That is, the rotation error is the difference between the rotation and

the identity matrices, and the translation error is the translation vector (see Figure 4.8).

The main constraint of this step is its high computational cost. Therefore, the previ-

ous steps explained in former sections are crucial to ensure that only views with a high

probability of composing a cycle are registered.
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Rerror = nR1 − Id

terror = nt1 − Id

Figure 4.8: Rotation and translation errors between the two views closing the cycle.

Once a cycle has been detected, this information can be used to minimize the error

accumulated in the registration process, following the strategy presented in Section 4.3.3.

However, with the aim of improving the accuracy of the final result, an intermediate step is

proposed: virtual cycles generation. A description of the virtual cycles generation strategy

and the advantages of including it in the multiview minimization process are provided in

next section.

4.3.2 Virtual cycles generation

Once a cycle (real cycle) has been detected, the cycle is analyzed to detect views within

the cycle that share common object regions with the aim of generating virtual cycles. The

main difference between a real cycle and a virtual cycle is that the first one is originated

as the result of revisiting an area during the acquisition process, while the last one is

generated artificially, using information that correlates the views within the cycle.

Until now, views have been acquired and registered sequentially. However, some of

the non-sequential views composing the real cycle may be close to each other and could

be related using several parameters such as the distance between them or the registration

error. The proposed method takes advantage of the information that can provide the

registration of these neighbor views within the cycle, with the aim of adding new constrains

in the minimization process.

The first step for virtual cycle generation is to determine which views of the real cycle

are close to each other. Then, a weighted graph is generated in which views are the nodes

of the graph and the edges are the distances between the related views. Finally the funda-

mental cycles of this graph are detected. The process concerning virtual cycle generation

includes several steps: neighbor view detection, graph generation and fundamental cycle
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detection steps. This process is detailed in the following subsections.

Neighbor view detection and graph generation

An accurate way of detecting neighbors within a cycle is to register each view with all the

others composing the cycle and determine the closest ones depending on the registration

results. The views with lower distances between point correspondences are chosen. How-

ever, as it has been mentioned in previous sections, this method has a high computational

cost. An alternative is to use a variation of the cycle detection technique, proposed in

Section 4.3.1, adapted to the new purpose. That is, it must be taken into account that

two neighbor views do not represent the same region and, in consequence, the thresholds

used in the cycle detection strategy must be relaxed. Figure 4.9 shows an example of

the obtained graph after determining the views that are close to each other within a real

cycle. The trajectory followed by the camera is showed in black, and the edges that relate

neighbor views in red. Note that the cycle is closed by the views V1 and V15

Figure 4.9: Graph representing the correlations between acquired views. Black edges show
the sequential path followed by the camera and red edges the neighbor views.

Once the graph relating the closest views is generated, weights could be assigned to

each edge. The weights can represent several parameters such as the distances between the

neighbor views or the registration error between them. Depending on the characteristics of

the object/scene to be registered and the trajectory followed by the camera, one parameter

may be more appropriate than the other. For example, if a cycle contains a huge number

of views, then the propagation error along the sequence can lead to a poor calculation of

the translation between the two views, mainly if one of the views resides in the last part of

the cycle. In that case, the use of the registration error between views may offer a better

solution. Be aware that the discrepancy between view distances are more significative
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than the discrepancy between registration errors and therefore, when the situation allows

it, it is more recommendable to weight the graph using such distances between views.

The distances between two views can be calculated by computing the norm of the

accumulated translation motion between them, as showed in Equation 4.2.

ei,j = ‖ti,j‖ = ‖
j−1∑

k=i

iRk ∗ ktk+1‖ (4.2)

were ei,j is the edge that joins the partial views i and j, iRk is the 3×3 rotation matrix

that transforms the views k to the view i, and ktk+1 is the translation between views k

and k + 1.

Figure 4.10 shows the weighted graph where edges represent the distances between

views. In the chosen example it can be verified that some of the non-consecutive views

are really close to each other, sometimes even closer than two consecutive views. Notice

that for example views V2 and V14 have a distance of 0.14 (norm of the translation vector

between them) while the distance between the consecutive views V2 and V3 is 0.54. This

demonstrates that the registration of two non-consecutive neighbor views can provide a

valuable additional information of the views and contributes to a more accurate error

minimization process.

Figure 4.10: Weighted Graph where edges represent the distances between acquired views.

Virtual cycles

Once the weighted graph is obtained, the following step is to detect all the virtual cycles

within it. Remember that these cycles are considered virtual because the path between

the views that compose the cycle do not follow the real trajectory of the acquisition

system. The idea is to use the correlations between views in order to determine the
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fundamental cycles of the graph. If the graph is weighted, then a minimum cycle can

be obtained. As shown in chapter 3, several techniques have been proposed in order to

detect the fundamental cycles of a graph [69] [21]. In this work, a variation of the strategy

proposed by Paton has been used [69]. First, the minimum spanning tree of the graph is

generated using Kruskal’s algorithm [22]. Then, the tree is traversed and edges composing

fundamental cycles are progressively added.

An example of virtual cycles within a graph can be observed in Figure 4.11. Edge

weights have not been represented to facilitate figure understanding.

Figure 4.11: Virtual cycles within a real cycle.

Figure 4.12: New virtual cycles obtained by joining several cycles of the graph depicted
in Figure 4.11

Once the real and all the virtual cycles have been detected, the next step is to minimize

the registration error. As it is described in the following section, each cycle includes a

constraint in the minimization process. Hence, the more virtual cycles we have, the more

information can be used to minimize the error. However, every time a new constraint is

added to the minimization process, the efficiency of the algorithm decreases. Therefore, it

is important to find a balance between efficiency and accuracy and sometimes the number

of virtual cycles should be limited. A way to reduce the number of virtual cycles is to



90 Chapter 4. Multiview registration based on cycle minimization

detect and merge the cycles that have an edge in common, that is to merge adjacent cycles

depending on the desired size (number of nodes) of a cycle (see Figure 4.12).

4.3.3 Cycle error minimization

Once a set of partial views conforming a cycle is detected, the next step consists in cycle

minimization, that is the minimization of the propagation error within the cycle. This

step tries to minimize simultaneously the distances between correspondence points in all

the views that conform the real cycle and the virtual cycles using a Levenberg-Marquardt

approach. Besides, some minimization constraints have been specified, both in real and

virtual cycles.

In the real cycle minimization, the minimization constraint used forces that the overall

motion in the cycle is null and hence the position of the initial and the final views coincide.

Note that as shown in Figure 4.13, the propagated error along the sequence cause a drift,

which is pretended to be minimized with such constraint.

Besides, depending on the acquisition system used, the two views closing the cycle

may not represent exactly the same region but have slight variations. For example, when

using a hand-held sensor, the trajectory followed may not be as precise as when using a

sensor coupled to a moving mechanical device. Therefore, with the aim of dealing with

this situation, an edge between the last and the first view has been added to the path of

the cycle. This edge is the result of the registration between the first and the last view of

the cycle. Hence, the overall motion within the cycle is ensured to be null.

iTj =
j∏

k=i+1

k-1Tk

iTj ∗ (jTi)−1 = Id

Figure 4.13: Real cycle motion constraint.

Note that this constraint states that the motion between the two end-views j and i

(jTi) should be equal to the motion between these two views throughout the whole path

(iTj =
∏j

k=i+1
k-1Tk). This constraint adds robustness to the minimization process.
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In the case of the virtual cycle minimization strategy, the cycles have been generated

artificially joining neighbor views. In these type of cycles, the initial and the final view is

the same. Therefore, there is no need to add an additional edge between the first and the

last view. As in the real cycle strategy, the overall motion along the cycle is assumed to

be null (see Figure 4.14)

i+1Tk ∗ kTk+1 ∗ k+1Ti+1 = Id

Figure 4.14: Virtual cycle motion constraint. Virtual cycle has been represented in red.

Once all the constraints corresponding to the detected cycles have been defined, the

algorithm minimizes iteratively the distances between that correspondences. With the aim

of reducing the computational cost of the algorithm, the correspondence points used in the

minimization are those obtained from the results of the pairwise registration. In the same

way, the point correspondences between non-sequential views in virtual cycles have been

obtained from the pairwise registration performed during the virtual cycle generation.

A Levenberg-Marquardt minimization is applied to determine the most accurate motion

among views in the cycle. The minimizing parameters are the rotation matrices (repre-

sented as quaternion vectors) and the translation vectors of the Euclidean transformations

between views. The minimization function minimizes the sum of distances between point

correspondences. In an ideal situation the residue of the minimization should be zero; in

practice the residue depends on the noise intrinsic to the point acquisition system. The

function to be minimized, for each real cycle, is:

min{
N−1∑

i=1

Np∑

k=1

(Pi(k)− iTi+1 × Pi+1(k) + j+1Ti × Pi(k)− Pi+1(k))} (4.3)

where Pi(k) and Pj(k) are the points that configure the k correspondence between

views i and j; Np is the number of points correspondences; N is the number of views; and
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iTj and jTi are the Euclidean motions (see Fig. 4.13) that transform points from i to j

and from j to i, respectively.

Note that equation 4.4 minimizes the distances between correspondences from i to j

and from j to i. That is, the path between two views is considered in both senses of the

cycle to improve the robustness of the minimization process.

In the case of virtual cycles, only one sense of the trajectory is considered. The rea-

son is that a real cycle may contain an significative number of virtual cycles and the

consideration of just one of both senses decreases the computational time considerably.

Besides, since virtual cycles usually contain a reduced number of views, the minimization

of the correspondences in both senses may not apport significant additional information.

Therefore, the function to be minimized for each virtual cycle is:

min{
N−1∑

i=1

Np∑

k=1

(Pi(k)− iTi+1 × Pi+1(k)} (4.4)

where Pi(k) and Pj(k) are the points that configure the k correspondence between

views i and j; Np is the number of points correspondences; N is the number of views; and
iTj is the Euclidean motion (see Fig. 4.14) that transform points from i to j.

As mentioned above, a motion constraint is added to the minimization process forcing

that the product of all the matrices throughout the cycle is null. This constraint takes

into account the rotation and translation and it is expressed as follows:

εcr = εR + sfεt (4.5)

where εR is the rotation constraint, εt is the translation constraint, and sf is the scale

factor that express the translation in the same range of the rotation parameters.

εR = sum(abs(Raccum − I3x3))

εt = ‖t‖

where Raccum is the product of all partial rotation matrices, I3x3 is the identity matrix

and ‖t‖ is the norm of the translation vector obtained as a multiplication of all partial

motions.
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As mentioned before, every time a real cycle is detected, it is minimized simultaneously

with the virtual cycles within it. However, there is another situation that must be taken

into account: the possibility that a real cycle contains another real cycle within it. For

example, a 8-shape trajectory contains a big cycle englobing two small real cycles as it is

depicted in Figure 4.15.

Figure 4.15: 8 Shape trajectory containing a big cycle and two small cycles within it.

To take advantage of the information that can provide such a situation, a new con-

straint has been added to the minimization process. That is, if a real cycle contains

another real cycle within it, the new cycle is minimized taken into account the constraints

of the old one. That is, the error between correspondences in the small cycle should also

be minimum. This avoids that the new cycle minimization process causes misalignments

in an already minimized cycle.

In addition, it should be mentioned that depending on the object to be registered

and the trajectory followed, different weights can be assigned to the different constraints,

giving more or less priority to the minimization of every cycle.

4.4 Conclusions

In this chapter, a new multiview error minimization technique has been presented with

the aim of minimizing the error accumulated during the pairwise registration process. As

shown in chapter 2.4, several multiview registration techniques have been proposed in the

literature. The techniques have been classified in: metaview registration, simultaneous

minimization, graph-based and statistical techniques. The proposed method takes advan-

tage of the graph theory techniques in order to detect path and cycles among the views,

minimizing the propagated error by registering the views in an optimal way. Therefore,

the technique belongs to the group of multiview registration techniques based on graph.
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In contrast to most of existing multiview registration strategies, the proposed approach

uses the information provided by revisiting regions in order improve the final alignment.

First, a pairwise registration between the consecutive views is performed, with the aim

of obtaining an accurate alignment between views. During this alignment process, the

method searches for revisited regions taking into account the distances between views,

their overlapping surface and the orientation of their normals. Once a revisited region is

detected, a graph composing a cycle is generated, where views are nodes and edges the

motion between these nodes. Here, the two views belonging to the same region are the

two end-views of the cycle, which motion is computed by means of pairwise registration

and added to the path to close the cycle. Once a cycle is detected, neighbor views within

the cycle are determined and virtual cycles are generated. Finally, the accumulated error

of the cycle is minimized by using the information provided by both the real cycles and

the virtual cycles. The Levenberg-Marquardt minimization algorithm is used.

The multiview registration techniques presented in chapter 2.4 have several drawbacks

that has been solved with the new approach here proposed. One of the main problems

of the metaview techniques is the propagation error when dealing with large objects.

The main problem of these kind of techniques resides in the lack of flexibility to re-register

already merged views. Therefore, when the number of views to be registered increases, the

accumulated error causes huge misalignments in the final result. Although this methods

provide good local solutions, metaview is unable to deal with the global error propagation

problem. Besides, simultaneous minimization minimizes all the views together so it is

quite inefficient especially when the overlapping between views is limited and the number

of views increases drastically. The method proposed solves these problems by detecting

revisited regions, detecting and minimizing cycles and always re-registering views with

the aim of keeping the overall residue minimal. In this sense, statistic strategies follow

more or less the same strategy in the so-called ”closing the loop” approach. However,

the main drawback of statistic strategies compared to the method proposed is the memory

requirements needed for the stochastic maps and convergence problems due to uncertainty

specially when dealing with large sequence of views and huge amount of data.

The proposed method also presents several advantages in comparison with similar

graph based approaches. For example, Huber [39] proposed a new graph-based strategy

taking advantage of the minimum spanning tree algorithms to find the best way in which

views should be registered, following the path in where the accumulated error is minimum.

Apart from the fact that all the views must be acquired previously, this method requires



4.4 Conclusions 95

an exhaustive pairwise registration to relate the views and detect the closest neighbors,

leading to a high computational cost. In addition, once the error is propagated in a branch

of the tree or an erroneous path is followed, the results are totally inaccurate. Comparing

to this approach, the method proposed in this thesis presents several improvements. The

first one is that it is not required to have all the partial views acquired before starting the

registration process. That is, views can be acquired and registered sequentially, allowing

to deal with real-time problems. In addition, it is not needed to perform an exhaustive

pairwise for detecting neighboring views, since the new cycle detection strategy proposed

uses the results of the previous pairwise registration.

The method presented it is more accurate than the cycle minimization method pro-

posed by Sharp [82]. In Sharp a global multiview process refines point correspondences

spreading the transformation error (rotation and translation) given by pairwise registration

throughout the whole cycle [82]. Views within the cycle are not minimized iteratively with

the purpose of keeping a reduced computational cost. Hence, the success of this method

is directly related to the accuracy of the pairwise registration. In our approach, point

correspondences are iteratively minimized in every cycle so that initial coarse pairwise

registration can be refined and refined every time a cycle is detected.

To conclude, the new multiview approach proposed in this chapter provides a reliable

solution to the problem of reducing the propagation error produced during pairwise reg-

istration especially dealing with large sequences of views. However, it is required that

the trajectory followed by the sensor visits two or more times the same region of the ob-

ject/scene to ensure the detection of cycles. In chapter 5, experimental results show the

performance of the new approach in the presence of both synthetic and real data.
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Chapter 5

Experimental Results

This chapter presents the experimental results obtained from the testing of the multiview

error minimization technique proposed in this thesis. The technique has been compared

to some of the most significative methods, which have been implemented and executed

with the same data set to evaluate their performance. Experiments have been obtained

using both synthetic and real data under quantitative and qualitative evaluation.

5.1 Introduction

The main goal of this chapter is to determine the performance of the proposing technique

being compared to some of the most well-known and used multi-view registration tech-

niques present in the literature. Every technique has been programmed and executed with

the same data set. In the presence of synthetic data, obtained results are compared to

ground truth obtaining a quantitative evaluation of the accuracy of every method. Besides,

although experiments with real data might provide a better evaluation of the algorithms,

accuracy can only be evaluated qualitatively since in most situations ground truth is not

available.

Synthetic results are obtained testing the set of techniques in the presence of an increas-

ing Gaussian noise and comparing registration results to ground truth. In this situation,

registration inaccuracies are directly related to the performance of the technique and per-

mit to obtain a quantitative evaluation. Be aware that in order to follow a standard and

97
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general camera model, we assume that Gaussian noise may be present in our data. Other

noise models could be considered, but Gaussian noise is mostly used in the literature while

other types of noise could be applied in not so general cases.

However, synthetic data does not model reality accurately and hence some of the

essential characteristics in 3D acquisition such as noise and outliers are not modelled

formally. Besides, the trajectory performed by an acquisition system such as a hand-held

or a rotating table laser scanner is only approximately known. Hence, we assume ground

truth is unavailable and only qualitative results are reported. With the aim of testing the

new method in real situations, two different datasets have been used. The first dataset has

been obtained from the 3D models used by Mian et.al. in [56] [55]. The second dataset

has been acquired in our lab by using a one-shot hand-held scanner especially developed

for this purpose.

This chapter provides a detailed description of the experiments carried out and the

methodology followed for each type of data. Section 5.2 describes the experiments per-

formed using synthetic data, including a description of the methodology used to simulate

a real camera. In section 5.3 real data experiments are presented. Finally, a discussion of

the obtained results and a summary of conclusions is detailed in Section 5.4.

5.2 Synthetic Data

To carry out the synthetic experiments, and with the aim of using a common and known

comparative dataset, a 3D synthetic model of Beethoven courtesy of INRIA1 has been

used. The complete 3D model was represented by a set of 3D points and the triangles

that compose the surface. The next step was to acquire a set of partial views of the 3D

object by simulating a real camera. As can be seen in Figure 5.1 the trajectory of the

sensor was based on a set of consecutive cycles.

Since one of the objectives is to analyze the performance of the methods working with

both small and large objects, two different set of views were acquired. The main difference

between these sets was the dimension of the views. In the first set (set A), the virtual

camera acquired high dimension views while in the second one (set B), the size of each

view was considerably reduced (see Figure 5.3).

1http://www-c.inria.fr/gamma/download/STATUE/index0.php
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Figure 5.1: 3D partial views acquisition. Trajectory composed by a total of 6 cycles with
17 views each.

Figure 5.2: Example of several partial views of the beethoven model.

In addition, dataset B contains a higher number of views than dataset A. That is,

the acquisition shots have been performed with a higher frequency to ensure that the

consecutive views overlap, even if their size is small.

In dataset A, each partial view embrace a large part of the object to be registered. This

causes all the partial views to share an important overlapping area among them. In dataset

B, the views have a small size and hence represent a limited area of the object. As a result,

only subsequent views overlap. Therefore, the first set of views share large overlapping

while in the second set only some views overlap and the overlapping is quite limited.

Hence, dataset B permits to analyze the performance of the algorithm in the presence of

a drift produced by a propagating error and how the presence of cycles permits to reduce

such a drift.
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Figure 5.3: Camera acquisition simulation. (a) Large view size (0.5X0.5 units) simulating
small object acquisition. (b) Small view size (0.3X0.3) simulating large object acquisition.

A virtual scanning was programmed in Matlab so that a virtual camera is moved as

required around a measuring virtual object. Only the 3D points observed by the camera

were acquired at every camera pose simulating a virtual acquisition. Note that 3D points

were transformed to be related with respect to that camera pose with the aim of simulating

a real acquisition system. Figure 5.4 shows the differences in the acquisition of the two

datasets (A and B). Dataset A contains 6 cycles of 19 views per cycle, while dataset B

contains 6 cycles of 35 views per cycle.

Figure 5.4: Virtual scanning showing camera trajectory and acquisition: Left: dataset A.
Right: dataset B.

The performance of the cycle-detection strategy has been presented in Table 5.1. As

can be observed, the cycles are detected optimally when no noise is present in the data.
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Table 5.1: Cycle detection strategy performance. Theoretical cycles versus detected cycles.

Dataset
Theoretical Detected cycle (for each different Gaussian noise)

cycle 0% 0.5% 1% 1.5% 2%
V1 − V19 V1 − V19 V1 − V19 V1 − V19 V1 − V19 V1 − V19

V11 − V29 V11 − V29 V11 − V29 V11 − V29 V11 − V29 V11 − V29

A V21 − V39 V21 − V39 V21 − V39 V21 − V39 V21 − V39 -
V31 − V49 V31 − V49 V31 − V49 V31 − V49 - -
V41 − V59 V41 − V59 V41 − V59 V41 − V59 - -
V51 − V69 V51 − V69 V51 − V69 - - -
V1 − V35 V1 − V35 V1 − V35 V2 − V34 V2 − V34 V2 − V34

V20 − V54 V20 − V54 V20 − V53 V20 − V53 V20 − V52 -
B V39 − V73 V39 − V73 V39 − V73 V39 − V72 V40 − V71 -

V58 − V92 V58 − V92 V58 − V91 V58 − V92 - -
V77 − V111 V77 − V111 V78 − V109 - - -
V96 − V130 V96 − V129 V96 − V128 V95 − V129 - -

However, as the amount of noise increases, less amount of cycles are detected and some of

them are not composed by the optimal views (theoretical cycle). This situation worsens

when dealing with cycles that contain a huge amount of views (dataset B). That is, the

fact that the cycles of dataset B contain higher number of views (35 views/cycle instead of

19 views/cycle as in dataset A) causes the propagation error to be larger at the moment

when the cycle is closed. This have a direct effect on the position of the views, affecting

the translation motion between the two candidates (first step in cycle detection algorithm)

and the overlapping area between them (second step in cycle detection algorithm), causing

the non-optimal selection of the views that compose a cycle. For example, in dataset B,

for an error of 0.5%, the algorithm has detected a cycle between views 78 and 109, when

the views that theoretically compose this cycle are the 77 and 111. Besides, as the noise

increases, the accumulated error also increases and fewer cycles are considered (see column

of 2% noise). In some cases cycles are not detected because the algorithm exceeds the fixed

thresholds (see Chapter 4 Section 4.3.1 for threshold value). In other cases the algorithm

discards the detected cycles that could affect negatively the performance of the registration

process (i.e. discarding a cycle between views 6 and 30, when the theoretical is between

views 1 and 35).

Experimental results are shown in Table 5.2 and Table 5.3. The proposed method is

compared to some of the most representative multiview registration techniques in terms
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of both translation and rotation accuracies and in the presence of both dataset A and

dataset B. Note that zero-mean Gaussian noise was added to point correspondences and

incremented progressively in each experiment (sigma values from σ = 0 to 0.01 (0% to

2%)). Translation errors were calculated as norm of the discrepancy between the estimated

translation given by registration and the ground truth obtained from the synthetic data,

as expressed in the following equation.

terror = ‖test − treal‖ (5.1)

In order to calculate the rotation error, all rotation matrices given by the registration

were transformed to axis-angle representation. Thus, rotation was represented by a vector

(in the direction of the rotation axis) which norm is the rotation angle around this vector.

Therefore, the registration error was determined as the norm of the differences between

Table 5.2: Experimental results obtained by the multiview registration methods using the
synthetic dataset A.

Noise Method error t error R(rad) MSE
Chen 0.0170 0.0186 0.0058

0% Pulli 0.0125 0.0172 0.0049
Sharp 0.0232 0.0267 0.0063
Our approach 0.0162 0.0182 0.0056
Chen 0.0209 0.0097 0.0094

0.5% Pulli 0.0172 0.0084 0.0069
Sharp 0.0388 0.0129 0.0255
Our approach 0.0393 0.0149 0.0153
Chen 0.0285 0.0287 0.0019

1% Pulli 0.0279 0.0138 0.0020
Sharp 0.0874 0.0473 0.0165
Our approach 0.0553 0.0341 0.0135
Chen 0.0646 0.0310 0.0196

1.5% Pulli 0.0529 0.0262 0.0089
Sharp 0.0902 0.0559 0.0378
Our approach 0.0748 0.0367 0.0361
Chen 0.1842 0.0401 0.0295

2% Pulli 0.0718 0.0296 0.0178
Sharp 0.1674 0.0673 0.0713
Our approach 0.1327 0.0435 0.0659
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Table 5.3: Experimental results obtained by the multiview registration methods using the
synthetic dataset B.

Noise Method error t error R(rad) MSE
Chen 0.0917 0.0362 0.0513

0% Pulli 0.0808 0.0232 0.0455
Sharp 0.0572 0.0298 0.0157
Our approach 0.0433 0.0164 0.0192
Chen 0.1354 0.0771 0.0626

0.5% Pulli 0.1226 0.0609 0.0561
Sharp 0.0607 0.0543 0.0383
Our approach 0.0596 0.0277 0.0281
Chen 0.3516 0.0796 0.0933

1% Pulli 0.2061 0.0751 0.0623
Sharp 0.1597 0.0679 0.0687
Our approach 0.1351 0.0482 0.0324
Chen 0.5064 0.2952 0.2570

1.5% Pulli 0.5527 0.1813 0.1580
Sharp 0.2452 0.0942 0.0937
Our approach 0.1967 0.0797 0.0766
Chen 0.6979 0.8532 0.7731

2% Pulli 0.6534 0.7913 0.7359
Sharp 0.3411 0.1502 0.0959
Our approach 0.2854 0.1319 0.0881

these two vectors, as detailed in Equation (5.2).

Rerror = ‖~neste
θest − ~nreale

θreal‖ (5.2)

where ~nest, ~nreal represent the estimated and ground truth axis of rotation and θest and

θreal are the estimated and ground truth angle of rotation, respectively.

The comparison is completed analyzing the discrepancy between the 3D points aligned

by every registration technique with respect to the ground truth given by the synthetic

model of the object. This comparison was done by computing the Mean Squared Error

(MSE) from the distances between every point of the synthetic object to the closest point

in the registered object, as it is shown in the last column of Tables 5.2 and 5.3

The main objective of all these experiments was to validate the proposed multiview

technique compared to similar techniques available in the literature. For the comparison,



104 Chapter 5. Experimental Results

we have considered the widely used Metaview techniques proposed by Chen [16] and

Pully [73] and the recent Graph-based technique proposed by Sharp [82].

Figure 5.5: Beethoven model: Left: Synthetic model. Right: Registration of a set of
partial views.

As it is shown in Table 5.2, Metaview approaches provided good results when dealing

with views that presented huge overlapping areas among them (simulating registration

of small objects). That is, situations where all the partial views composing the objects

are not far apart from each other. Since the success of these techniques is closely related

to the results of the pairwise registration (when the overlapping region between views is

large), these methods provided accurate results, sometimes even better than those obtained

by using methods based on cycle detection. Nevertheless, when the size of the views is

reduced (decreasing the overlapping area among views), Metaview approaches provided

poor results (see Table 5.3). In this case, the method of Pulli provided better results than

the method proposed by Chen, since the former is more flexible and permits to spread the

error uniformly along the views. Finally, techniques based on Metaview strategies become

less accurate when the Gaussian noise increases (see Table 5.3).

Besides, methods based on graphs and cycle detection techniques were more accurate

than Metaview techniques dealing with large objects where the overlapping is quite limited.

This is mainly due to the advantage of taking information of all the already registered

views in order to proportionally spread the error among the views of the cycle. Moreover,

the technique proposed in this thesis considers also the generation of virtual cycles within

detected cycles obtaining even more constraints in the minimization and yet better results.

That is, the residue given by the pairwise registration of views in cycles have been taken

into account and it is simultaneously minimized throughout all the views of the cycle and
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the virtual cycles within it. So, our method is more robust against Gaussian noise and

limited overlapping areas that provokes poor registration alignments and, hence, it is the

one obtaining better results in dataset B (see Table 5.3).

Figure 5.6: Rotation error evolution: Left: Metaview-based method. Right: Cycle error
minimization method. Note that these results have been obtained using dataset B

Figure 5.7: Translation error evolution: Left: Metaview-based method. Right: Cycle error
minimization method. Note that these results have been obtained using dataset B

Finally, the comparison is completed comparing our technique to the method of Sharp.

It can be observed that both methods provide accurate results when Gaussian noise is low

and, hence, pairwise registration alignments are good. That is, when the propagated error

is not very large. However, when Gaussian noise increases so that the pairwise registration

alignments are less accurate, Sharp’s method distributes the propagated error throughout
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the cycle, while our technique thanks to the iterative refinement obtains better results,

though we need more computing time.

In order to present graphically the problem of the accumulated error throughout the

registration process, several graphs showing the evolution of the rotation and translation

error per view are presented in Figures 5.6 and 5.7. The observation of these figures

demonstrates that Metaview techniques accumulate the error so that increases directly

proportional to the number of views. This increment is even worst in the presence of

dataset B, where views had less overlapping areas (see Figure 5.6). Besides, the methods

based on cycle minimization permits to decrease (to nearly 0 in same cases) such propa-

gation error every time a cycle is detected. That’s the reason why in large objects where

the drift is considerably, cycle minimization techniques provide better results.

(a) (b)

(c) (d)

Figure 5.8: Multiview qualitative results using synthetic data (Set B): (a) Chen and
Medioni’s method. (b) Pulli’s method. (c) Sharp et al.’s method. (d) Our method.
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(a) (b)

(c) (d)

Figure 5.9: Multiview qualitative results using synthetic data (Set B): (a) Chen and
Medioni’s method. (b) Pulli’s method. (c) Sharp et al.’s method. (d) Our method.

Finally, quantitative results are complemented with qualitative results. Figures 5.8

and 5.9 shows the registered object obtained for every technique implemented by means of

dataset A and dataset B. Looking at Figure 5.8, it can be observed that all the results of

dataset A are similar. As we have seen before, all methods perform well when dealing with

small objects, were the overlaping area among all the views is huge. However, when the

sice of the viws is reduced (dataset B) the graph-based methods based on cycles present

less misalignments than the paraview-based ones (see Figure 5.9). This results can be

compared to the synthetic model of the object depicted in figure 5.5
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5.3 Real Data

With the aim of testing the same techniques with real data, two new datasets have been

used. The first dataset was obtained from the complete collection of scanned objects

available at the available at the webpage of the School of Computer Science and Software

Engineering, courtesy of Mian et.al. 2. The second dataset is acquired from a hand-held

multi-slit laser scanner developed in the 3D Perception Lab of the University of Girona.

5.3.1 Dataset obtained from known web collections

Although full collections of partial views are provided in the webpage of the School of

Computer Science and Software Engineering, courtesy of Mian et.al.2, a new set of partial

views have been generated from the set of 3D points that compose the 3D model with the

aim of simulating cycles and limited overlapping but with real data. Figure 5.10 shows

the 3D model used. In this model a virtual camera has acquired a set of partial views

forming 6 cycles with 35 views per cycle.

(a) (b) (c)

Figure 5.10: Real dataset courtesy of [56]. (a) real object used, in particular an object
representing a chef. (b) 3D model of the object without texture. (c) 3D points composing
the object.

2http://www.csse.uwa.edu.au/ ajmal/3Dmodeling.html
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Table 5.4: Experimental results obtained using real data by the multiview registration
methods.

Method error t error R(rad) MSE
Chen 0.1761 0.0561 0.0677
Pulli 0.0994 0.0359 0.0591
Sharp 0.0683 0.0274 0.0394
Our approach 0.0557 0.0203 0.0201

Note that, since real data is used, there is no need to add Gaussian noise and outliers

artificially. As it is depicted in Figure 5.10-b, the model already contains noisy points and

outliers.

Table 5.3 provides quantitative results computed using the same methodology ex-

plained in the previous section. Note that, although we are using real data, ground truth

is available because partial views have been obtained using the simulated camera and,

hence, real positions between views are known. Again, our technique is compared to the

Metaview techniques of Pully [73] and Chen [16] and the cycle minimization technique of

Sharp [82]. Qualitative results are depicted in Figure 5.11. This results can be compared

to the synthetic model of the object in Figure 5.10b.

(a) (b) (c) (d)

Figure 5.11: Results of the registration of the real data (chef model): a) Chen’s proposal;
b) Pulli’s proposal; c) Sharp’s proposal; d) Our proposal.
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As can be observed in Table 5.3, the two methods based on graphs provide better re-

sults than the ones based on Metaview. Although Sharp’s proposal obtained good results

at the end of the cycle, the problem of this method resides in the inaccurate distribution

of the error along the cycle. To improve this situation, the proposed approach re-registers

point correspondence in the minimization process if needed, leading to a more accurate

distribution and minimization of the error. Figure 5.11 depicts the differences on accu-

racy obtained when using both Graph-based methods. This performance is also reported

computing the MSE error between both methods that it is shown Table 5.3.

5.3.2 Dataset acquired in our lab

A hand-held multi-slit 3D scanner was developed to take partial views of an object. The

sensor was composed by a camera and a 635 nm laser emitter (see Figure 5.12). A

complete description of the scanner is available at [53]. Since the scanner was hand-held

during the acquisition, the exact pose of the scanner at every partial view was unknown

and, therefore, the ground truth for this experiment was not available. Thus, in this

section only qualitative results are presented.

Figure 5.12: 3D hand-held prototype composed by a camera and a 635 nm laser emitter

During the acquisition process, 40 views were acquired from a ceramic object repre-

senting the Greek mythology god Zeus (see Figure 5.13.a). Each view was composed by a

set of about 4000 points. Here, the trajectory of the scanner formed two cycles describing

an 8-shape.
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Figure 5.13: Results of the registration of a real object (Zeus object): a) Chen’s proposal;
b) Pulli’s proposal; c) Sharp’s proposal; c) Our proposal

Figure 5.13 illustrates the qualitative results. Observe that methods based on Metaview

clearly provided worse results than those based on graph with cycle detection. The least

accurate result was obtained by the method of Chen, as can be observed in Figure 5.13a.

Although Pully improves these results, misalignments in the final model are clearly ob-

served in Figure 5.13b. Both Sharp’s technique and the proposed approach present good

final alignments. However, a more accurate solution is generated by the proposed ap-

proach, as can be observed in Figures 5.13c and 5.13d, demonstrating the robustness

against noise and outliers.

5.4 Conclusions

This chapter has presented experimental results that demonstrate the accuracy of our mul-

tiview registration technique compared to some of the most used registration techniques

in the literature.

The first experiment was obtained from synthetic data so that ground truth was ex-

actly known. In this case, the motions obtained by the multiview registration process were

compared to the ground truth motions, providing a reliable way of analyzing the perfor-

mance of every method. In particular, motion errors (rotation and translation) and MSE

have been analyzed. Qualitative results have also been presented. In order to simulate real

problems, Gaussian noise is added. Besides, with the aim of analyzing the performance
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of each method when registering small and large objects, two different sets of synthetic

views have been generated. The differences between these two sets reside in the size of

the views and the distance between acquisition shots.

As it can be observed looking at both quantitative and qualitative results, all multiview

strategies provide good alignments when the Gaussian noise is small and partial views

have large overlapping areas. However, when the size of the object increases and more

Gaussian noise is added to the partial views, the Metaview-based techniques present severe

misalignments. Although Metaview techniques are good solving local problems, they do

not provide a good strategy to deal with propagating error due to their greedy approach.

Better alignments were obtained by using cycle-based techniques, which provide better

strategies to detect and minimize the drift propagated throughout the acquisition path.

Despite results obtained with both cycle-based algorithms are very similar when noise is

small, our multiview approach provides better results when noise increases thanks to the

minimization of cycles. That is, while Sharp’s approach only considers the motion between

views in the minimization process, our approach considers also the distances between point

correspondences and the re-registration of views within a cycle.

Additionally, experiments with real data have been performed with the aim of demon-

strating the performance of our method in non-ideal conditions (presence of acquisition

noise and outliers). Here, two new datasets have been used. The former were obtained

from a collection of partial views available in the web 3, while the second was acquired

from a hand-held multi-slit scanner developed in our lab. In both cases, our technique

achieved better results compared to the surveyed techniques.

To conclude, this chapter has demonstrated the rightness of our multiview registra-

tion technique in both synthetic and real data, especially when the acquisition trajectory

performs cycles that are detected and minimized by the technique.

3http://www.csse.uwa.edu.au/ ajmal/3Dmodeling.html
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Conclusions

This chapter presents the conclusions of this work which includes a summary and the list

of the main contributions. The chapter lists the articles published in journals and interna-

tional and national conferences during the progressing of this thesis. Finally, further work

and new research lines that lie open are discussed.

6.1 Conclusions

This thesis is focused on the 3D registration of large-scale objects and scenes. Chap-

ter 2.1 defined registration as the process of aligning a set of 3D partial views of a given

object/scene by determining the Euclidian motion between these views with respect to a

reference. The main problem when registering a set of partial views resides in the residue

accumulated during the registration process, leading to a propagation error that is quite

significant especially with large-scale objects/scenes. This thesis proposed a new multi-

view registration approach based on graphs and cycle detection strategies to cope with

such propagation error.

The thesis surveyed the most representative 3D registration techniques. 3D registra-

tion involves three main steps: 1) initial pose estimation; 2) pairwise registration; and

3) multiview registration. The most representative techniques have been analyzed and

compared, discussing their pros and cons and their potential applications. An updated

and detailed classification of the surveyed techniques is presented. This survey can be

113
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considered as a useful tool for any reader interested in 3D registration to determine the

best technique available for any given application.

The first step in a registration process is to obtain an initial estimation of the motion

between views (coarse registration). As detailed in Section 2.2, the initial pose estimation

techniques have been classified in two main groups: 1) initial pose estimation by mechani-

cal devices; and 2) initial pose estimation by computer vision (correspondences matching).

The reliability of these techniques depend on each situation. For example, some techniques

based on mechanisms such as odometry provide good solutions dealing with planar areas

but results are inaccurate in rough and unstructured environments. Computer vision

techniques are based on searching and matching of correspondences between views and

they have demonstrated to provide accurate solutions. However, the main drawbacks of

these techniques are the necessity to get differentiate features between the images and the

exhaustive search needed for the matching, which require high computational cost.

Next step in the registration process is the refinement of the initial coarse registration

thanks to a pairwise registration. Refinement techniques are based on minimizing the

distances between correspondence points. Here, the techniques have been classified in two

main groups: point-to-point and point-to-plane. One of the main weaknesses of the point-

to-point strategy is that a huge amount of iterations are required and it may converge

to a local minima. Point-to-plane strategy presents more robustness against outliers and

converges faster in the presence of regions with less overlapping area. In addition, point-

to-point performs better in surface-to-model registrations, while point-to-plane is the most

accurate in surface-to-surface registrations.

Finally, the most important multiview registration techniques have been analyzed an

compared among them. These techniques have been classified as: Metaview, Simultaneous

Minimization, Graph-based approaches and Statistic techniques. The main goal of these

techniques is to reduce the error propagated during the registration process.

Metaview provides good solutions registering small objects and are accurate solving

local problems. However, metaview presents significant misalignments when the number

of views to be registered increases. This is mainly due to the lack of flexibility to re-register

already merged views, being impossible to reduce the propagation error in the metaview.

Simultaneous minimization solves this problem by minimizing all the views at the same

time. This strategy presents robustness against outliers and limited overlapping between

the views and avoids convergence to local minima. However, simultaneous minimization



6.1 Conclusions 115

requires to have all the views already acquired before the registration process starts, being

not suitable for real-time applications. Besides, the computational time of treating all

the views simultaneously is huge, becoming a real problem when the size of the object

increases, and inefficient, especially when the overlapping between views is rather limited.

The techniques based on graphs provide a good solution to the problem of the prop-

agated error, improving considerably the results obtained by metaview approaches and

being more efficient than simultaneous minimization in the presence of sequences of views

with limited overlapping. Graph-based techniques permit to determine the best way in

which the views should be registered to obtain the optimal solution. In addition, some

graph-based approaches have added a cycle detection step that permits to minimize the

propagated error when an object area is revisited. Although these methods are not as

robust as the ones based on simultaneous minimization, they require less computational

time and they are more efficient in large-scale objects and scenes.

One of the main problems of any multi-view technique resides in the presence of fea-

tureless objects/scenes which may contain many symmetries. This problem may be treated

using statistical techniques, which consider the uncertainty in the measurement to predict

and correct robot/camera pose. These techniques provide reliable solutions to the regis-

tration of large-scale scenes but they need high memory requirements and they are quite

inefficient dealing with huge amount of data (high resolution models).

Fundamentals on graph theory applied to registration algorithms is provided in chap-

ter 3. The chapter includes the basics on graph definition and detailed descriptions of the

algorithms used in this thesis. Graph theory provides an conceptual model that permits

to relate points and views among them. Therefore, the use of traversing graph strategies

and minimal spanning trees algorithms provide a useful tool to determine the best order

in which views should be registered. Besides, several techniques for detecting fundamental

cycles and minimum spanning trees in a graph have been analyzed. The complexity and

efficiency of the algorithms may vary considerably depending on the technique used. For

example, cycle detection based on Depth First Search (DFS) is less efficient and generates

larger fundamental cycles than Breadth First Search(BFS). Besides, DFS usually requires

less memory than BFS. Therefore, depending on the problem and the situation we are

treating, some methods may be more appropriate than others.

The main contribution of this thesis is the proposal of a new multiview registration

technique based on cycle detection and minimization. This approach takes advantage of
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the results obtained by the sequential pairwise registration of the partial views (while they

are acquired) to detect fundamental cycles and revisited regions. Once a cycle is detected,

the views composing the cycle are analyzed searching for correspondences and leading to

a set of virtual cycles. Finally, the accumulated error within the cycle is minimized taking

into account the views of the fundamental and virtual cycles. Additionally, motion con-

straints are added to increase the accuracy of the minimization. The proposed technique

provides better accuracy than similar techniques surveyed in this thesis. One reason is

that the proposed technique takes into account the correspondences between views in the

minimization, while for instance Sharp’s [82] strategy only considers the motion. Besides,

the proposed technique considers the information provided by virtual cycles within the

fundamental cycle to provide more robustness in the minimization process. Although

Sharp’s approach reduces the global error along the cycle, this error is not always well

distributed. Besides, the success of the Sharp’s strategy depends on the accuracy of the

pairwise registration process. As a conclusion, the proposed strategy provides more ro-

bustness in the multiview error minimization problem, and the obtained results are more

accurate in the presence of noise and outliers. However, the technique proposed is re-

stricted to the presence of revisited regions. Besides, the virtual cycle generation requires

that some of the views of the cycle are close to each other. Otherwise, only the information

provided by the consecutive views composing the cycle can be used.

Finally, experimental results have been performed to validate the proposed approach

and compare it with similar techniques available in the literature. Both synthetic and real

data have been used. Synthetic data permitted to analyze the robustness of the surveyed

techniques in the presence of Gaussian noise comparing registration results to ground

truth. Besides, synthetic data permitted to analyze the efficiency of the techniques dealing

with small and large objects since partial views and overlapping areas where simulated

by using the same 3D model. Two experiments with real data completes the chapter and

demonstrates the accuracy of the technique.

To summarize, the main contributions of this thesis are:

• A state-of-the-art on 3D registration techniques, including initial pose estimation,

pairwise registration and multiview error minimization approaches.

• A new classification of the surveyed methods have been proposed, which, to the

best of our knowledge has not been published before. The classification has been

published at the Journal of Electronic Imaging [78].
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• A robust multiview error minimization approach based of graph theory techniques

and cycle detection strategy has been presented. The main contributions reside in

the cycle detection strategy and the minimization of the error using multiple virtual

cycles within the cycle detected.

• Experimental tests comparing some of the most representative multiview registra-

tion techniques with the proposed method have been performed. Here it has been

demonstrated the robustness of the proposed approach in comparison to other meh-

ods, mainly in the presence of noise and outliers

6.2 Publications and scientific collaborations

The work developed during this thesis has lead to the publications of two journal articles,

several contributions to international conferences and one contribution in a book chapter.

These contributions are detailed below:

Articles published in international journals

• J. Salvi, E. Batlle, C. Matabosch, X. Lladó. Overview of Surface Registration

Techniques Including Loop Minimization for 3D Modeling and Visual Inspection.

Journal of Electronic Imaging, 17(3):1-16.

• C. Matabosch, D. Fofi, J. Salvi, E. Batlle. Registration of Surfaces Minimizing Error

Propagation for a One-Shot Multi-Slit Hand-Held Scanner. Pattern Recognition

41(6), pp 2055-2067, 2008.

International conferences

• J. Salvi, Y. Petillot, E. Batlle. Visual SLAM for 3D Large-Scale Seabed Acquisi-

tion Employing Underwater Vehicles. IEEE International Conference on Intelligent

Robots and Systems, IROS’08, Nice (France) September 22-26, 2008.

• Y. Petillot, J. Salvi, E. Batlle. 3D Large-Scale Seabed Reconstruction for UUV

Simultaneous Localization and Mapping. IFAC Workshop on Navigation, Guidance

and Control of Underwater Vehicles, NGCUV’08, Killaloe (Ireland) April 8-10, 2008
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• E. Batlle, C. Matabosch, J. Salvi. Summarizing image/surface registration for 6DOF

robot/camera pose estimation. 3rd Iberian Conference on Pattern Recognition and

Image Analysis, IbPRIA’07, Girona, Spain, June 2007. Published in Lecture Notes

in Compter Science, volume 4478, pages 105-112.

• E. Batlle, C. Matabosch, J. Salvi. Overview of 3D registration techniques including

loop minimization for the complete acquisition of large manufactured parts and com-

plex environments. 8th International Conference on Quality Control by Artificial

Vision, QCAV’07, Le Creusot, France, May 2007. (Best paper prize)

• C. Matabosch, E. Batlle, D. Fofi and J. Salvi. A variant of point-to-plane registration

including cycle minimization. Photogrammetric Computer Vision, PCV’06 , pages

61-66. Bonn, Germany, September 2006.

• E. Batlle, C. Matabosch, J. Salvi. Overview of Pose Estimation and 3D Registration

techniques. Recerca en automàtica, visió i robòtica. Editorial: Barcelona Digital,

pages 153-160. ISBN: 84-7653-885-5, 2006.

• E. Batlle, P. Ridao and N. Palomeras. A survey of Graphical Simulators for UUV

Development. International Workshop on Underwater Robotics IWUR, pages 185-

194. Genoa, Italy, November, 2005.

• P. Ridao, E. Batlle and N. Palomeras. First steps in remote Experimentation with

UUVs. Workshop Internacional en telerobótica y realidad aumentada para teleop-

eración, June 2005. ISBN: 84-7484-173-9

• P. Ridao, E. Batlle, D. Ribas, and M. Carreras. NEPTUNE: A HIL simulator for

multiple UUVs. In Oceans MTS/IEEE, volume 1, pages 524-531. Kobe, Japan,

November 2004.

• P. Ridao, D. Ribas, E. Batlle, and E. Hernandez. Simulation of physical agents. An

application to underwater robots. V Workshop on Physical Agents, pages 119-129.

Girona, Spain, march 2004.

Book chapters

• J. Batlle, P. Ridao, R. Garcia, M. Carreras, X. Cuf́ı, A. El-Fakdi, D. Ribas, T.

Nicosevici, E. Batlle. Automation for the Maritime Industries. Editorial: Aranda
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Armada De la Cruz, pages 177-203, ISBN: 84-609-3315-6, 2004.

Scientific collaborations

This thesis has been mainly developed in the Computer Vision and Robotics group of the

University of Girona. In addition, two research stays has been done in the groups detailed

above:

• 2-month stay in the Department of Computer Science, Illinois Institute of Technol-

ogy, Chicago, USA. Supervisor: Dr.Gady Agam.

• 4-month stay in the Laboratoire Modélisation, Information et Systèmes, University

of Picardy - Jules Verne, Amiens, France. Supervisor: El Mustapha Mouaddib.

These research stays have been supported by the BE Mobility grant from the Gener-

alitat de Catalunya.

The work carried out during each research stay has contributed to the development of

this thesis, acquiring better knowledge in topics such as feature extraction in scenes and 3D

acquisition systems. Besides, an important part of the ultimate experiments of this thesis

were carried out during the research stay in the Laboratoire Modélisation, Information et

Systèmes (MIS), Amiens.

6.3 Future work

The work done in this thesis can be extended so that from my point of view the following

issues are still opened:

First, further work should be done in order to improve the robustness of the cycle

detection strategy. A weaknesses of the technique proposed may appear when the cycle is

composed by a large number of views. In this situation, the accumulated error becomes

really important causing a failure in the detection of a cycle. Note that in the proposed

technique, the first constraint for a cycle to be detected is that the accumulated translation

between the two end-views is small. Besides, a relaxation of the constraint may detect

false cycles. A solution to this problem may reside in the use of statistic approaches such

as SLAM (Simultaneous localization and Mapping) that considers uncertainty measuring
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and predicting the motion between views. Besides, the pairwise between the two end-views

of the cycle will need an initial solution in the minimization that can be provided by a

coarse registration technique based on 3D feature extraction such as point signatures [17]

or spin images [40].

Second, I propose to apply multiview registration to surfaces apart from objects, which

is a crucial part in 3D mapping for underwater and aerial robotics. 3D mapping can be

used for both obtain the cartography of an area and localize the vehicle with respect to

that area, and it has many applications such as environment monitoring (rainforest, coral

reefs), archeology (ancient settlements and shipwrecks), and forensic applications (plane

crashes, shipwrecks), among many others. The obtaining of the 3D cartography of an

underwater environment is a key goal of one of the funded projects that started in the

group in late 20071. Although surface registration is similar somehow to object recon-

struction, some modifications should be done to ensure the reliability of the technique.

For example, computation time becomes crucial when the mapping is required as an input

in the navigation of the vehicle. In the technique proposed in this thesis we have empha-

sized accuracy, while in real-time applications we should emphasize time constraints even

though that means a relaxation in the accuracy.

Third, the multiview registration technique here proposed could be transferred to

AQSense SL (spinout of the University of Girona) . AQSense commercializes 3D surface-

to-model pairwise software for quality control applications2. So, it may be interested to

perform a multiview registration of partial views before comparing the registration to the

model. This technique may extend the field of applications of AQSense technology to the

quality control of large objects such as the ones present in automotive and aeronautics.

Fourth, the proposed method only minimizes the error every time a cycle is detected.

The proposed method does not perform a final global minimization once all the views are

already acquired. Although in the experimental tests the registration residue is negligible

and the final alignment is accurate enough, many other techniques consider this final

alignment and further tests should be done to check if the residue is really minimized.

Finally, 3D registration should be completed, depending on application, laying the

texture and color of the object on the 3D surface. This requires to research on image

registration especially to smoothing the artifacts produced by inconstant lightning.

1Project AQUAVISION (DPI2007-66796-C03-02)
2www.aqsense.com
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