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ABSTRACT 

Introspection on Control-grounded Capabilities.  
An Agent-inspired Approach for Control. 

By Christian Giovanny Quintero Monroy 
 

Advisors: Dr. Josep Ll. de la Rosa 
   Dr. Josep Vehí 

 
 
 

Introspective reasoning on physical agents’ dynamics will have an important impact 

on both individual and cooperative decisions in multi-agent environments. 

Introspection, a self-reflection process that plays a central role in human reasoning and 

currently a type of cognitive ability coming from the agent metaphor, allows agents to 

be aware of their capabilities to perform correctly the tasks proposed by other agent-

based entities or humans. Agents can then make better decisions. Introspection, mainly 

on physical constraints or capabilities related to dynamics, provides agents a reliable 

reasoning for achieving sure and trustworthy commitments in cooperative systems by 

means of more intelligent self-control. To that end, control-grounded capabilities, 

inspired by the agent metaphor, are used in this approach. Such control-grounded 

capabilities guarantee an appropriate and explicit agent-oriented representation of the 

dynamics, specifications and other relevant details encapsulated in every automatic 

controller of a controlled system. Currently, the conventional control techniques tend 

to either ignore or do implicit and naïve suppositions on the dynamics of the 

controllers. In this sense, it is looked for an integration vision of the agent with the 



 

vi 

environment because the agent’s physical body, its intelligence, as well as the 

environment itself, are continuously interacting.  

This new approach is a challenge, as it changes and improves the way how agents 

can coordinate with each other to perform the proposed tasks and how they manage 

their interactions and commitments in real cooperative environments. The approach is 

tested on several scenarios where coordination is relevant, beneficial and necessary. 

Experimental results and conclusions emphasizing the advantages and importance of 

introspection in the improvement of multi-agent performance in coordinated tasks and 

task allocation problems are presented. 
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Chapter 1 

Introduction 

This chapter provides an introduction to the work presented in this thesis. Specifically, the 

motivation in the research area, the pursued aims and the main contributions are briefly 

described.  Finally, the chapter concludes with an overview of the structure and contents of the 

thesis. 

 

1.1 Motivation 

Several recent efforts in automatic control are related to building computer-

controlled systems able to solve some well-known control challenges [Halang et al., 05] 

[Murray et al., 03]. High levels of control, coordination and autonomy are looked for in 

distributed, asynchronous and networked environments. However, the recent 

approaches have a great deal of complexity that makes them less applicable to real-life 

problems. Several aspects induce the above complexity: real-time requirements, 

embedded and limited resources, fault-tolerant behaviors, distributed and 

heterogeneous components, artificial intelligence tools and large-scale structures [Sanz 

et al., 03].  Complex control systems are therefore, in most cases, intensive software 

applications and highly sophisticated control algorithms that use advanced design 

technologies. Moreover, these systems have generally requirements that go beyond
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single disciplines (from control engineering to computer sciences), further increasing their 

complexity [Sanz et al., 03]. Unfortunately, more complexity does not necessarily mean 

better performance, and a reorientation effort by the control research community in 

this respect seems necessary.  

In the last years, there has been some work toward combining Artificial Intelligence 

(AI) approaches with traditional control theory to obtain intelligent systems. In this 

direction, the advances of the AI community in planning, adaptation, learning, logic-

based theories and knowledge representation together with the techniques in the 

control community for modeling, analysis and design of control systems, have 

presented a fresh path for further progress [Murray et al., 03]. In particular, some 

research trends have led to managing complex control systems using agents. Agents 

are defined as computer systems capable of flexible and autonomous actions in 

dynamic, unpredictable and typically cooperative environments [Luck et al., 05]. 

Nevertheless, agents are also generally referred as a design metaphor. Nowadays, 

complex control systems must be then considered as a multi-agent system that requires 

coordination and cooperation to achieve global goals [Jennings and Bussmann, 03] 

[Stone and Veloso, 00].  

Several results have been obtained for control systems designed using agent 

technology [Jennings and Bussmann, 03]. Agent technology helps to solve complex 

problems in real control scenarios by means of its cooperative problem-solving 

paradigm. However, these agents lack an appropriate reasoning on their knowledge 

about the physical features of the controlled system. In this thesis, such physical 

knowledge is directly related to the inertial dynamics and the specifications, structure 

and other relevant details encapsulated in the automatic controllers of the controlled 

system. Moreover, such relevant knowledge is not appropriately reflected and 

communicated by the agents. These lacks do not allow agents to make feasible joint 

decisions when these are requested. Explicitly, lack of appropriate reasoning on 

physical knowledge results in a lower cooperative performance between agents, 

especially in coordinated tasks and task allocation problems where a proper 
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communication of such information is quite relevant to achieve sure and 

trustworthy commitments. In fact, these lacks are currently significant impediments to 

reducing complexity and achieving appropriate levels of control, coordination and 

autonomy in control systems [Murray et al., 03].  

Here, the controlled system’s dynamics are mainly related to two sources: the inertial 

dynamics of the system components and the dynamics of the task execution resulting 

from the actions of automatic controllers. 

The thesis argues that in the near future, any autonomous system (e.g., cars, aircrafts, 

mobile robots, house artifacts) controlled by agents will only complete its tasks 

correctly and make proper decisions, if it is able to reflect, consider and communicate 

its knowledge on its physical capabilities taking into account its dynamics.  

For instance, Fig. 1.1 shows two agent-controlled robots trying to pass a ball between 

them in robot soccer. The robots have an obstacle-free movement trajectory and have a 

set of controllers to move in the environment. The passer must strike the ball towards 

the interception point in a suitable way. The shooter must intercept and shoot the ball 

with the intention of scoring in the opposite goal. Thus, the passer and the shooter 

must coordinate to perform the task successfully. 

 

Fig. 1.1.  General scheme of passing a ball in robot soccer. 
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In light of this, the passer can propose a pass to the shooter with specific spatial and 

temporal requirements (See Fig. 1.2a). The shooter must then look for and evaluate its 

capabilities to perform such task with its available controllers according to the 

established conditions (See Fig. 1.2b).  The shooter tells later the passer that it can or 

cannot perform the proposed task (See Fig. 1.2c). Depending on the shooter reflection 

on its knowledge related to the dynamics resulting from the actions of its controllers, 

the robots can undertake or not the execution of the task (See Fig. 1.2d).  

 

Fig. 1.2.  The task of passing a ball in robot soccer: a). An agent (passer) proposes passing the ball to other agent 

(shooter); b). Shooter evaluates its capabilities to perform the proposed task; c). Shooter tells that it can perform the 

task d). Agents commit and they can perform the task successfully. 

However, several passes are not physically feasible due to robots’ physical 

limitations. In particular, sometimes there are not controllers to execute a pass or the 
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robots’ dynamics do not allow it. In this sense, robots must agree the type of control to 

apply for the pass and the moment to execute it, based on the knowledge they have of 

their dynamics. The proposal is to ensure passing between robots by physically 

achievable decisions. For some undesirable situations, the control system must 

therefore be redesigned to satisfy the dynamics of the robots. Such redesign induces 

generally more complexity than does not necessarily impact in a better performance. 

This thesis argues that the above alternative is not a good solution. Therefore, a 

solution beyond good control and perfect controllers must be implemented. In this 

sense, an alternative is that agents reason on their knowledge related to the robots' 

dynamics and consider this knowledge in their decision-making. The agents can then 

negotiate, make coordinated decisions and modify their actions according to the 

information about these dynamics. Thus, agents’ decisions will be inhibited whenever 

the robots’ dynamics do not allow the execution of the proposed actions and will be 

renegotiated until the agents agree.  

Therefore, explicit reasoning on robots’ dynamics in the agents’ decision-making will 

prevent, most of the time, undesirable situations. As it has been mentioned before, the 

dynamics of the robots’ physical bodies can be modified by their automatic controllers. 

Here, agents are then proposed to be aware of the set of controllers of their physical 

bodies. In this sense, control engineers need practical tools for developing this new 

type of agents and their controllers, taking into account their dynamics. 

Similarly, cooperative robots and humans working jointly in search and rescue 

operations [Murphy, 04] [Davids, 02] (see Fig. 1.3a) could optimize their multi-agent 

team work coordination if the robots know and they are able to reflect and 

communicate their knowledge on their physical limitations or capabilities. 

For instance, consider a search team of three agent-controlled mobile robots trying to 

sweep a disaster zone within a fixed deadline. These robots have three different 

movement controllers, and their control laws can generate different dynamics. 

Therefore, the same search operation can be performed in different ways by the robots 
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within the required time (see Fig. 1.3b). However, if the temporal constraints change, 

some robots cannot perform correctly the proposed tasks (see Fig. 1.3c). Thus, an 

alternative is that agents reflect on their knowledge related to the robots’ dynamics and 

consider this knowledge in their decision-making to find a suitable task allocation in 

search and rescue operations (see Fig. 1.3d).  

 

Fig. 1.3. a). General scheme of a rescue system; b). Robots trying to move towards the disaster zone; c). Only some 

robots can reach the disaster zone when the temporal constraints change; d). A new task allocation based on the 

robots’ dynamics. 

In summary, agents do not reflect on their knowledge related to the controlled 

systems’ dynamics and this knowledge is not currently properly taken into account 

in the agents’ decision-making. The thesis then states that reflection on dynamics is an 

interesting agent-oriented perspective implemented in automatic control scenarios.  

In particular, the above control-oriented knowledge is directly related to the 

automatic controllers specifications established for a controlled system by the control 

engineer’s criteria. To incorporate appropriately all this embedded information (mainly 
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about dynamics) in rational decision-making, it must be first developed a suitable 

representation for dynamics in the agents’ knowledge base which is general, accessible, 

understandable, comparable and computationally tractable for these agents. This 

agent-oriented representation makes it easier for agents to manage and communicate 

the controlled system’s dynamics aiming at making physically feasible decisions. Such 

decisions improve the multi-agent performance in cooperative scenarios.  

Physical agents are particular examples of controlled systems [De la Rosa et al., 07]. 

Here, physical agents are understood as physical and encapsulated entities with 

control architectures that satisfy the agent design metaphor. In recent years, mobile 

robots one typical representation of physical agents, have become progressively more 

autonomous and cooperative. So, mobile robots are used in this approach without loss 

of general applicability. Such autonomous mobile cooperating robots must then have 

reliable self-knowledge if they are to improve their performance when executing 

coordinated tasks. This self-knowledge must be based on an appropriate agent-

oriented representation of the physical agents’ dynamics in the knowledge bases. With 

this representation, any physical agent could reflect and consider appropriately its 

physical body whenever it is committed to carry out a task or assume specific 

behaviors in a multi-agent scenario. Thus, a physical agent is an intelligent entity, and 

its actions and cooperation with other agents or humans, to achieve the desired goals 

in a real environment, are limited and conditioned by the dynamic behavior of its 

physical body. Intelligence is here understood as the appropriate exploitation of 

knowledge about dynamics to perform better [Sanz et al., 01] and achieve enhanced 

levels of performance and autonomy [Sanz et al., 00]. 

In this sense, the thesis proposes then an introspection approach to provide agents a 

cognitive ability for reasoning on their dynamics, aiming at making physically feasible 

decisions and getting reachable and physically grounded commitments to improve the 

cooperative multi-agent performance. To that end, control-grounded capabilities, 

inspired by the agent metaphor, are used in this approach. Such control-grounded 

capabilities guarantee an appropriate and explicit agent-oriented representation of the 
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dynamics, specifications and other relevant details encapsulated in every automatic 

controller. As will be shown, the research on introspection on control-grounded 

capabilities proves the impact of this agency property, and its effectiveness in 

cooperative intelligent agents. 

 

1.2 Objectives 

The research addressed in this dissertation is focused on including knowledge on 

physical agents’ dynamics in their decision-making. Such challenge has been worked 

from a control-oriented viewpoint. 

 

1.2.1 Thesis Question 

The principal question addressed in this dissertation is: 

Can physical agents make physically feasible joint decisions to obtain sure and 

trustworthy commitments and improve the multi-agent performance in coordinated 

control environments when they include physical knowledge, mainly related to their 

dynamics, in their decision-making? 

More specifically, the thesis presents an appropriate alternative to include control-

oriented knowledge in the physical agents’ decision-making and represent explicitly 

such knowledge in a set of control-grounded capabilities.  The thesis looks for then to 

bridge the gap between the high abstraction level of agents and the low abstraction 

level of the automatic control architectures. 
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It was necessary to fulfill the following goals to achieve the aim of the thesis:  

• To look for a way of taking advantage of control-oriented information related to 

the physical agents’ dynamics and outline the way of including such knowledge in the 

agents’ decision-making. 

• To determine relevant control-oriented knowledge related to the physical 

agents’ bodies (mainly about their automatic controllers) to obtain reliable low level 

information to use in the high level decision-making.  

• To establish the requirements that the above control-oriented knowledge must 

achieve to be a reliable agent-oriented representation and a useful decision tool.  

• To demonstrate the utility and feasibility of the overall proposed approach on 

several examples of coordination in physical multi-agent environments. 

 

1.2.2 Approach 

The primary interests in this research to answer the thesis question include the 

following topics: 

• Introspective Reasoning on Physical Agents' Dynamics 

• Control-grounded Capabilities inspired by the Agent Metaphor 

Introspection, a self-reflection process that plays a central role in human reasoning 

and currently a type of cognitive ability coming from the agent metaphor, allows 

agents to be aware of their capabilities to perform correctly the tasks proposed by other 

agent-based entities or humans. Agents can then make better decisions. Introspection, 

mainly on physical agents’ dynamics, provides agents with a reliable reasoning for 

achieving sure and trustworthy commitments in cooperative systems by means of 

more intelligent self-control. 
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Control-grounded capabilities constitute the proposal aimed at closing the gap 

between agents and the low abstraction level of automatic control architectures. These 

capabilities, inspired by the agent metaphor, aim at guaranteeing an appropriate and 

explicit agent-oriented representation regarding the dynamics, specifications, structure 

and other relevant details encapsulated in every controller. Otherwise, this specific 

embedded knowledge about every controller is not taken into account and never 

reused to achieve better agent cooperation. This cooperation is measured in terms of 

physically grounded and reliable commitments which results in a better performance 

of any group of cooperating agents. 

 

1.3 Contributions 

This thesis makes the following contributions: 

• A formal design methodology based on introspective reasoning to use control-

oriented knowledge in an agent-oriented manner. 

• A formulation based on control-grounded capabilities to represent explicitly 

control-oriented information of agent-controlled systems. 

• A decision-making tool based on introspection on control-grounded capabilities as 

a bridge to the gap between the high abstraction level of agents and the low abstraction 

level of the automatic control architectures. 

 

1.4 Reader’s Guide to the Thesis 

Following is a general description of the contents of this dissertation. This doctoral 

thesis is organized in three main parts constituted by several chapters. 
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Part I: Introduction and Related Work 

Chapter 1 presented a motivational introduction on the main topics, objectives and 

contributions regarding this dissertation. 

Chapter 2 gives a general overview of background information regarding artificial 

intelligence, agent technology and robotics which is required to develop the agent-

inspired approach described in chapters 4 and 5. 

Chapter 3 provides a general survey of the most relevant work related to the 

research addressed in this thesis. 

 

Part II: Proposed Approach 

Chapter 4 describes the formal aspects of the novel introspection approach presented 

in this thesis. 

Chapter 5 presents the implementation on several test beds of the approach 

proposed in chapter 4. The chapter also contributes to complete the description of such 

proposal. 

 

Part III: Results and Conclusion 

Chapter 6 provides experimental results of the implemented approach. Empirical 

evaluations that evidence the utility, feasibility and reliability of the overall approach 

are provided in this chapter.  

Chapter 7 discusses and analyses the results, summarizes the conclusions and 

contributions of this thesis and outlines the most promising directions for future work.  
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Chapter 2 

Background Information  

This chapter introduces and reviews general concepts of agents, multi-agent systems and 

robotics, such that an agent-inspired approach for automatic control scenarios is proposed and 

discussed later. 

 

2.1 Agent Technology 

In recent years, agent technology is one of the most relevant and useful contribution 

in the Information Technology (IT) world. Agent-based systems emerge as an 

appropriate alternative to improve the traditional computing and the current 

algorithms and software applications especially in dynamic and open environments, 

where heterogeneous systems must interact effectively to achieve specific goals.  In this 

sense, agent-oriented developments are seen as fundamental to enable systems to 

respond in a suitable, effective and reliable way to changing conditions while trying to 

achieve the design objectives. 

The agent paradigm has found currency in several sub-disciplines of information 

technology, including computer networks, software engineering, artificial 

intelligence, human-computer interaction, distributed and concurrent systems, mobile 
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systems, telematics, computer-supported cooperative work, control systems, decision 

support, information retrieval and management, and electronic commerce [Luck et al., 

05]. In particular, agent technology offers fundamentally new ways of design, 

standardization and support for IT applications through distinct and independent 

software components interacting to provide better performance and valuable 

functionality. In such context, agent technology constitutes a proper way to 

conceptualise and implement the present and future computer systems. 

 

2.2 Agent Concept 

There are several agent definitions in the current literature and introducing the 

concept of agent in a precise and technical manner is difficult. The agent concept is a 

general abstraction appropriated to a large range of applications. However, several 

criteria allow distinguishing between what is an agent and what is not at an 

engineering level. Such criteria are based on a reasonable model of the agents’ features 

and behaviors.  In this sense, some of the most cited definitions are highlighted. 

Agents can be defined as computer systems capable of flexible and autonomous 

actions in dynamic, unpredictable and typically multi-agent domains [Luck et al., 05].   

More specifically, agents can be defined as autonomous and problem-solving 

computational entities capable of effective operation and flexible autonomous actions 

in dynamic, unpredictable and open environments. Agents are often deployed in 

environments in which they interact, and maybe cooperate, with other agents that have 

possibly conflicting aims. Such environments are known as multi-agent systems [Luck 

et al., 03].  

In addition, an agent denotes a software-based computer system that has several 

properties as autonomy, introspection, social ability, reactivity, pro-activeness, 

mobility, rationality, etc., which is capable of independent action to achieve some 

goals or desires [Wooldridge, 02]. 
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In summary, agents are [Jennings and Bussmann, 03]: 

1. Clearly identifiable problem-solving entities with well-defined boundaries and 

interfaces. 

2. Situated (embedded) in a particular environment over which they have partial 

control and observability.  

3. Designed to fulfill a specific role, they have particular objectives to achieve. 

4. Autonomous, they have control over both their internal state and their own 

behavior. 

5. Capable of exhibiting flexible problem-solving behavior in pursuit of their design 

objectives, being both reactive (able to respond in a timely fashion to changes that 

occur in their environment) and proactive (able to opportunistically adopt goals and 

take the initiative). 

To avoid confusions with other agent meanings and contexts, the above agents are 

also commonly known as software agents. 

 

2.3 Agent Metaphor 

Agent technology finds a stronger applicability when is used as a design metaphor of 

well-structured approaches for solving real-life IT challenges. Currently, agents 

provide software designers and developers an appropriate way of structuring software 

tools and applications around autonomous, communicative, situated and problem-

solving entities to achieve the required design goals [Jennings, 01]. In this sense, the 

agent metaphor offers a promising route to the development of computational systems, 

especially in open and dynamic environments of several real-world domains [Luck et 

al., 05].  In addition, the agent concept provides elegant tools/methods for abstraction 

and encapsulation.  
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2.4 Agent Architectures 

The internal structure of an agent is determined by its control architecture. The 

architecture determines the mechanisms used by an agent to interact under external 

and internal conditions given some specifications of its desired behavior.  

There are several control architectures that allow describing the internal structure of 

an agent. However, four main perspectives can be mentioned: the deliberative (think 

hard, then act), the reactive (don’t think, react), hybrids of the above two (think and act 

independently, in parallel) and a behavior-based strategy (think the way you act).  

Deliberative and reactive architectures embrace two basic ideas related to the agent 

concept respectively: the need of deliberation for long term reasoning based on a 

symbolic knowledge representation, and quick answers for suitable agent’s behaviors 

according to the current situation.   

A relevant deliberative architecture is the BDI (Belief-Desired-Intention) architecture 

[Rao and Georgeff, 95]. The BDI model has been developed to provide solutions in 

uncertain and dynamic environments where agents have a partial knowledge of the 

problem and usually manage limited resources.  Beliefs, desires and intentions 

constitute then important parts of the agents’ state in these systems under the above 

conditions. The beliefs represent the domain knowledge embedded in the agents. The 

desires represent the objectives or the expected final state. Additionally, it is necessary 

to define a planning mechanism that allows identifying the agents’ intentions to reach 

the pursued objectives taking into account the current beliefs. In this sense, the plans 

related to the attainment of objectives constitute the intentions. The type of modelling 

used by a deliberative agent is usually very elaborate. 

However, the associated problem to a symbolic representation has led to the study of 

more effective models for knowledge representation. In this sense, reactive 

architectures are an alternative. Subsumption [Brooks, 91] is a relevant reactive 

architecture. Such architecture is based on the hypothesis that “intelligence” is an 

emergent property of some complex systems and it allows generating suitable 
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behaviors without symbolic models or any internal representation of the environment.  

Agents react to the current sensory information in a “stimulus-response” manner. This 

allows agents to respond very quickly to changing and unstructured environments. 

The Subsumption architecture manages a hierarchy of tasks for defining the agent’s 

behaviors and they are usually organized in layers from a low to a high abstraction 

level. A great amount of applications of this type of architecture is found in the 

development of controllers in robotics. In this sense, Subsumption architecture for 

mobile robots is based on a given priority to different controllers under different 

circumstances.  Here, robots can be considered as real or physical agents that act in a 

real and changing environment. The need of interacting in an unpredictable 

environment favours the adoption of reactive architectures.  Limitations to this 

approach are that such robots, because they only look up actions for any sensory input, 

do not usually keep much information around, have no memory, no internal 

representation around them, and no ability to learn over time. 

In addition, there have been some proposed hybrid architectures [Ferguson, 92] 

[Müller, 97] [Low et al., 02] aimed at combining aspects related to deliberative and 

reactive architectures and to overcome their limitations. Such architectures adopt a 

layered organization generally distributed in three abstraction levels [Mas et al., 05]: 

Reactive (low level) is related to decision-making based on real time environment 

conditions. Knowledge (intermediate level) is related to the domain knowledge based 

on a symbolic representation of the environment. Social (high level) is related to social 

aspects in the environment, exchange information between agents, etc. The agent’s 

global behavior is then defined by the interaction between all the above levels. 

However, such interaction could be different for different hybrid architectures.  

On the other hand, behavior-based approaches [Arkin, 98] [Matarić, 99] are an 

extension of reactive systems that fall between the purely reactive and the planner-

based extremes.  The behavior-based approach is a methodology for designing 

autonomous agents and robots. The behavior-based methodology imposes a general, 

biologically inspired, bottom-up philosophy, allowing for a certain freedom of 
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interpretation. Its goal is to develop methods for controlling artificial systems (usually 

physical robots, but also simulated robots and other autonomous software agents) and 

to use robotics to model and better understand biological systems. In behavior-based 

approaches, the decomposition of the control system is performed in a task-oriented 

manner.  Unlike reactive systems, behavior-based systems are not limited in their 

expressive and learning capabilities: behaviors themselves can have a state (internal 

and particular view of the world), and can form representations when networked 

together. 

 

2.5 Multi-agent Systems  

Several approaches, where a number of entities work together to cooperatively solve 

problems, fall into the area of distributed systems. The combination of distributed 

systems and artificial intelligence is collectively known as Distributed Artificial 

Intelligence (DAI). Traditionally, DAI is divided into two areas [Stone and Veloso, 00]. 

The first area, distributed problem solving, is usually concerned with the 

decomposition and distribution of a problem-solving process among multiple slave 

components, and the collective construction of a solution to the problem. The second 

area, Multi-Agent Systems (MAS), emphasizes the joint behaviors of agents with some 

degree of autonomy and the complexities arising from their interactions [Panait and 

Luke, 05]. 

In recent years, multi-agent systems have been studied by several research groups. 

There are also several multi-agent systems definitions.  The most widely accepted 

definitions are here summarized. 

Multi-agent systems are systems with a varying number of interacting, autonomous 

agents that communicate with each other using flexible and complex protocols, in 

order to achieve particular goals or perform some set of tasks. In multi-agent systems 
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“the intelligence” arises from the aggregation of simple competitions as well as the 

task assigned to every individual is as important as the collective task [Weiss, 99].  

According to the distributed artificial intelligence, a multi-agent system is a network 

of entities able to solve problems, working jointly to find answer to problems that are 

beyond the capacity and the individual knowledge of each entity. Thus, in multi-agent 

environments, agents must generally coordinate their actions and they must 

communicate the proper knowledge and information. In addition, there are constraints 

in a multi-agent environment such that agents may not at any given time know 

everything about the world that other agents know [Panait and Luke, 05].  

In summary, the multi-agent system term is used to define all types of systems with 

multiple autonomous components that have the following elements and features 

[Jennings et al., 98]: 

- A common environment. 

- Agents. 

- Interaction among agents. 

- Interactions among agents and dynamic environment. 

- Each agent has the capacity to solve the problem partially. 

- There is no a global control system. 

- The data are not centralized. 

- The computation is asynchronous. 

Three common types of interactions are described:  

- Cooperation: working together towards a common goal. 

- Coordination: organising problem solving activities so that harmful interactions are 

avoided and beneficial interactions are exploited. 

- Negotiation: coming to an agreement which is acceptable to all the parties involved. 

Agents interact to share information and achieve the proposed tasks and objectives 

in cooperative environments. In this sense, the interaction is understood as a 

mechanism to articulate the cooperation, coordination and negotiation between agents. 
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There are three key elements to obtain the multi-agent interaction: 

- A common language and communication protocol. 

- A common communication format. 

- A shared ontology. 

 

2.5.1 Coordination 

Coordination refers to ensuring that the actions of independent agents in an 

environment are coherent in some way [Luck et al., 05]. The most widely accepted 

definition of coordination has its origins in the organization theory.  In this sense, 

coordination is the management of dependences between organizational activities 

[Malone and Crowston, 94]. Taxonomy of such dependences and a set of coordination 

actions assigned for each dependence must be established according to the multi-agent 

system’s features. [D’Inverno and Luck, 04] presents a formalization of possible 

different relations between agents in multi-agent environments. Thus, the coordination 

process is related to the attainment of two main tasks: To establish the dependences 

and to make decision on which coordination action must be performed. A coordination 

mechanism determines the way of how one or several agents perform the above tasks 

[Ossowski, 99].  

From a practical perspective, it is possible to understand the coordination as an 

effort to manage the interactions between agents [Busi et al., 01] [Wegner, 97]. From a 

design perspective, the challenge is how agents can interact in an appropriate way to 

solve the dependences and make the related decisions. There are several approaches in 

the literature on the matter [Scerri et al., 04]. Multi-agent scheduling, negotiation, 

organizational structures, norms, trust, etc., are some of them. The aim of the above 

approaches is to determine the interaction space. The applications of these mechanisms 

depend on the characteristics of the coordination problem. 
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2.5.2 Cooperation and Collaboration 

Cooperation refers to coordination with a common goal in mind [Luck et al., 05]. 

Cooperation between agents has been widely studied in the distributed artificial 

intelligence field. There are several works related to cooperation [Mayoh, 02] [Watson 

et al., 02] [Jennings, 00]. These works address the problem from a deliberative 

architectures viewpoint, though the cooperation has been also studied in reactive 

agents [Molina et al., 04]. However, there is not a global vision about cooperation and 

all the current contributions are related to the cooperation advantages from a 

perspective aimed at answering of how cooperation can be performed, or how agents 

must interact to cooperate. Cooperation embraces the allocation and coordination of 

tasks. They are key factors in order that the cooperation arises. In this sense, there are 

studies focused on methods to allocate tasks between agents in a set of synchronized 

actions in time and resources. In addition, collaboration refers to a suitable allocation 

of information, tasks and resources between agents in multi-agent systems [Ferber, 99] 

[Lesser, 99]. Such allocation must take into account the agents’ capabilities, the tasks’ 

nature and the social structure of the system.    

 

2.5.3 Negotiation 

Agents in a multi-agent environment typically have conflicting goals and not all 

agents may satisfy their respective goals simultaneously. In this sense, agents will 

need to negotiate with each other to resolve conflicts [Luck et al., 05] [Beer et al., 99]. 

Recently, several efforts have been devoted to negotiation protocols, resource-

allocation methods, and optimal division procedures based on ideas from computer 

science, artificial intelligence and socio-economic sciences. 

Negotiation is a key coordination mechanism for interaction that allows to a group 

of agents to reach an agreement according to their beliefs, goals or plans. 
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The negotiation process can be performed of different ways as auctions, contract net, 

etc. The negotiation consists therefore in reaching an agreement between agents that 

benefits them when each one has its own interest. 

 

2.5.4 Commitments 

A commitment refers to an acquired obligation when an agent interacts with others 

[Mallya et al., 03]. A need of finding suitable ways to fulfil such commitment then 

arises.  Therefore, agents will base their actions on their capabilities, the capabilities of 

others and the developed work framework. There are coordination mechanisms that 

allow an organized way to perform actions in group. Thus, an agent decides to commit 

to others when it is able to fulfil the proposed tasks, to interact with other agents and to 

communicate with its action partners.  

 

2.6 Agents and Robots 

Robotics is a research field where the agent concept can be directly applied. There is 

a direct equivalence between robots and agents in a rigorous sense. A robot is a real or 

physical agent situated in a real environment unlike an agent who just is a software 

entity. Physical agents are then understood as physical and encapsulated entities with 

control architectures that satisfy the agent design metaphor. 

An agent’s architecture in robotics is equivalent to a robot’s control architecture 

[Matellán and Borrajo, 01]. It is necessary to identify a set of actions (agent’s 

capabilities) that allows robot to interact within the environment in all control 

architectures. The set of capabilities needs different hierarchic levels (grouping of 

capabilities to achieve a goal) in the control structure [Oller, 02]. Such control levels 

depend on the features of the tasks to perform and the available resources. There are 

then mainly two control levels following the above considerations. The high level 
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performs long term reasoning and task planning while the low level performs the 

easiest tasks, solving the more immediate problems that not need planning. 

In summary, the fact that a robot is autonomous and physically independent has 

driven to the utilization of the agent technology as something slightly natural. 

 

2.6.1 Mobile Robotics and Multi-robot Systems 

In particular, mobile robotics refers to the application field of robotics where the 

essential feature of robots is the ability of autonomous motion [Oller, 02]. The motion 

allows the robot the accomplishment of movements in more or less structured 

environments and forces it to be equipped with specific sensors to know the 

environment’s state. 

On the other hand, the study of multiple-robot systems naturally extends research on 

single-robot systems [Parker, 00] [Cao et al., 97]. Multiple-robot systems can 

accomplish tasks that no single robot can accomplish [Arai et al., 02]. Multiple-robot 

systems are also different from other distributed systems because of their implicit “real 

world” environment, which is presumably more difficult to model and reason. 

There are three general problems to study in the mobile robotics that are relevant in 

this thesis [Parker, 00]: 

• The movement control of the mobile robot like an individual entity. 

• The control of a system composed by diverse robots: the cooperation. 

• The planning of the actions to perform, depending on the temporal and spatial                               

restrictions. 

A more deep and extensive analysis of related works on multi-robot systems and 

mobile robotics, focused specifically on the research topics addressed in this thesis, is 

presented in Sections 3.3, 3.4, 3.5 and 3.6. 
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Chapter 3 

Related Work 

This chapter presents an overview of the main works focused on the topics addressed in this 

dissertation.     

 

3.1 Challenges in Control Systems 

In recent years, control is an increasingly essential element for managing systems 

with enormous amounts of data to process and communicate, providing high 

performance, high confidence, and reconfigurable operation in the presence of 

uncertainties [Murray et al., 03]. Control systems are then constituted as a 

heterogeneous collection of physical and information systems. Such systems must have 

intricate interconnections and interactions with higher levels of decision making 

especially in dynamic and uncertain environments. In this sense, among the challenges 

currently facing the field are [Murray et al., 03]:  

1. New formalisms for ensuring stability, performance, and robustness in the control 

of distributed, asynchronous and networked environments.  

2. Advances toward high-levels of decision-making, coordination and autonomy in 

control systems if they are to perform reliably in realistic settings.  
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3. Next-generation systems must combine logical operations (such as symbolic 

reasoning and decision making) with continuous quantities, i.e., control of systems 

with both symbolic and continuous dynamics.   

4. Researchers need to develop much more powerful design tools that automate the 

entire control design process. Namely, future engineering systems will require the 

ability to rapidly design, redesign, and implement control software.  

5. Researchers need to build very reliable systems from unreliable parts. 

Increasingly, this requires designs that allow the systems to automatically reconfigure 

themselves so that their performance degrades gradually rather than abruptly.  

In particular, advances in robotics are needed in many fields to improve the robots 

ability to locomote, interpret complex sensory inputs, perform higher level reasoning, 

and cooperate together in teams. Here, the opportunity to combine the advances of the 

AI community in planning, adaptation, and learning with the techniques in the control 

community for modeling, analysis, and design of control systems presents a renewed 

path for progress.  Therefore, it is possible to think in the “agent technology” as an 

appropriate alternative to manage complex control system and solve some challenges 

presented in the modern control systems to obtain better results and performance 

[Halang et al., 05]. 

 

3.2 Agent-based Control Systems 

Current control systems are highly complex. They generally have a large number of 

interacting parts. Designing and implementing such complex control systems as a 

collection of interacting, autonomous and flexible components (as agents) affords 

software and control engineers several significant advantages over contemporary 

methods [Jennings and Bussmann, 03]. 
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The role of any new software engineering paradigm is to provide structures and 

techniques that make the complexity easier to handle. Software and control engineers 

have several fundamental tools as decomposition, abstraction and organization to help 

manage this complexity. 

When adopting an agent-oriented view, it soon becomes apparent that most 

problems require or involve multiple agents (multi-agent systems).  From a control 

perspective, this view of software systems has several similarities to work on 

heterarchical system in distributed control. The work on heterarchical control tends to 

concentrate on the distributed systems nature and the autonomy of the individual 

components of these control systems. The agent metaphor applied in complex control 

system contributes to satisfy then the above first challenge in automatic control. 

In general, complex systems consist of a number of subsystems organized in a 

hierarchical structure. Such subsystems work together to achieve the functionality of 

the whole system. For the autonomous components to fulfill both their individual and 

collective objectives, they need to interact. However, the system’s inherent complexity 

means it is impossible to a priori know about all potential interactions. For that reason, 

it is necessary to endow the components with the ability to make decisions about the 

nature and scope of their interactions in a flexible manner. It is apparent that the 

natural way to modularize a complex system is in terms of multiple autonomous 

components that act and interact in flexible ways to achieve their objectives. In 

particular, given this, agent-inspired approaches are simply the best fit to satisfy the 

second challenge in automatic control.  

In the case of complex systems, subsystems naturally correspond to agent 

organizations. Agents systems are invariably described in terms of “cooperating to 

achieve common objectives”, “coordinating their actions”, or, “negotiating to resolve 

conflicts”. Complex systems involve changing relationships among their various 

components according to their role in the existing subsystems in the organization.   
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Agent-oriented approaches emerge then as a suitable alternative to manage control 

systems according to the third challenge in automatic control. 

Additionally, agent-oriented systems are evolutionary and incremental, as legacy 

software can be incorporated in a relatively straightforward manner. The technique 

used is to place wrapping software around the legacy code to serve as an agent 

interface to the other software components. Thus, from the outside, the wrapper looks 

like any other agent; on the inside, it performs a two-way translation function: taking 

external requests from other agents and mapping them into calls in the legacy code and 

taking the legacy code’s external requests and mapping them into the appropriate set 

of agent communication commands. This ability to wrap legacy systems means agents 

may initially be used as an integration technology according to the specifications in 

automatic control commented in the fourth challenge.  

As new requirements are placed on the system, however, bespoke agents may be 

developed and added. This feature enables a complex system to grow in an 

evolutionary fashion while continually maintaining a working version of the system 

and allow systems continue to operate even when individual components fail so that 

its performance degrades gradually rather than abruptly as is mentioned in the fifth 

challenge of automatic control. 

In summary, this section has sought to justify precisely why agent-oriented 

approaches are well suited to developing complex software systems in general and 

control systems in particular. Agent technology provides a way to conceptualise these 

systems as comprising interacting autonomous entities, each acting, learning or 

evolving separately in response to interactions in their local environments  [Luck et al., 

05] [Jennings and Bussmann, 03]. 

[Jennings and Bussmann, 03] believes that agent-based systems provide several 

advantages to the next generation of control systems. They provide a decentralized 

solution based on local decision making that gives the system a high degree of 

flexibility, autonomy and robustness.  
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According to the above advantages of an agent-inspired design for control systems, 

this thesis presents particularly agent-inspired techniques focused on the control 

system of the physical agents within cooperative multi-agent environments. Such 

physical agents are represented in the implementation as cooperative mobile robots. 

Thus, some relevant related works on this subject are presented next. 

 

3.3 Origins of the Control-grounded Capabilities 

The design of a control system for an autonomous physical agent has an important 

impact on the agent’s overall functionality.  The control architecture constraints the 

way a physical agent senses, reasons and acts, thus affecting its task performance. 

However, an agent-based framework provides a well-structured way for a better 

understanding of relevant aspects related to the arisen complex control problems. In 

this sense, Dynamical Physical Agents Architecture DPA2 [Oller et al., 99] [Oller, 02] is 

a layered architecture aimed at combining the requirements of control systems 

architectures with the requirements of multi-agent systems architectures. Currently, 

physical agents have to fulfil real time and real world requirements when performing 

tasks in a multi-agent environment. Situated behaviours, goal-oriented behaviours, 

efficiency and coordination are among them. Such requirements are closely related to 

the control architectures and the multi-agent design. The DPA2 uses three main 

modules (control, supervisor and agent) for integrating the requirements. Fig. 3.1 

shows the different layers and the different abstraction levels of this architecture. 

According to DPA2, the agents must check some external and internal parameters to 

decide their behaviours after other agents’ requests. The external parameters can be 

obtained by information exchange with other agents. The internal parameters must 

describe the different states of the physical agents’ body, at both low and high 

abstraction levels. 
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Fig. 3.1. DPA2 architecture. 

The following set of capabilities is proposed in DPA2 to represent the internal 

parameters depending on the information abstraction level: 

Atomic Capabilities: These represent control-oriented knowledge that describes the 

physical agents' controllers. This knowledge helps the physical agents to increase the 

awareness about their bodies and the perception of the environment through these 

bodies from a control-oriented viewpoint. Such self-knowledge enhances the 

adaptation, performance and learning skills of the physical agents in a real 

environment. 

Basic Capabilities: These represent task-oriented knowledge that emerges from 

different sets of atomic capabilities. This knowledge helps the physical agents to select 

the most suitable resources to perform the proposed tasks according to the 

requirements of the tasks. 

Symbolic Capabilities: These represent role-oriented knowledge that emerges from 

different sets of basic capabilities. This knowledge helps the physical agents to perform 

collective behaviours. Such behaviours take into account the certainty related to the 

execution of the assigned roles in the acquisition of commitments.  
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In summary, knowledge based on capabilities provides physical agents with reliable 

information about their physical features. Thus, physical agents are able to decide with 

a high certainty level if their physical bodies allow them to perform the requested 

tasks. In this sense, the relevance of the atomic capabilities like key support of the DPA2 

architecture is evident. However, it is therefore necessary to obtain a more adequate, 

accurate, reliable and general definition that gathers control-oriented knowledge in an 

agent-oriented manner. This definition is summarized in the thesis in the control-

grounded capabilities, a specialized set of atomic capabilities focused on the physical 

agents’ dynamics. 

 

3.4 Approaches for Coordinated Tasks 

Several authors have studied the problems related to the control, coordination and 

cooperation between physical agents when executing coordinated tasks. These 

approaches take into account the physical features of the physical agents’ bodies from a 

control-oriented viewpoint. However, a general formalization based on control-

grounded capabilities has not been completely carried out. For instance, [Oller et al., 

99] introduces dynamic aspects into the design of physical agents. The approach is 

introduced into this concept that takes dynamics into account to evaluate the difficulty 

of agent actions.  

Reference [De la Rosa et al., 01] shows an approach applied to a ball passing 

experiment between two robots. The purpose of the example is to show the usefulness 

of inter-agent negotiation with explicit representations of dynamics in the decision-

making structure. This approach also shows the improvement in the decision of when 

and how to carry out the passing with respect to static knowledge.  

References [Oller et al., 99] and [De la Rosa et al., 00] consider a convoy of two 

autonomous mobile robots controlled by agents. The rear agent has the responsibility 

of avoiding collisions, but both are responsible for the reliability of sure decisions 
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based on dynamics. The cooperative decisions based on dynamics provide the 

controllers with safer set points and a better coordinated control.  

The aim of [Innocenti et al., 01] is to find some attributes to describe the dynamics of 

the physical agent’s body. Such attributes are used in a decision algorithm to let the 

agent know about its physical limitations for deciding feasible actions.  

Reference [Quintero et al., 04] shows an example of a set of capabilities and how it is 

a proper option to represent knowledge related to the physical agent’s body. Thus, 

[Quintero et al., 04] focuses on introspective reasoning on these capabilities to show 

how the performance of the multi-agent system is improved. In this approach, the 

physical agents can manage their bodies by taking into account the capabilities 

associated with their automatic controllers.   

An example of a set of capabilities is used in [Zubelzu et al., 04] to represent the 

dynamics of the physical agents as well as to generate and obtain diversity in 

dynamics.  

The mentioned works present suitable approaches to represent the knowledge 

related to the physical features of the agent-controlled systems. However, it is still 

difficult to choose necessary and enough information to include in the agents’ decision-

making. In spite of this, it is possible to assume that such knowledge must be directly 

related to the automatic controllers of the physical agents. Thus, reliable information 

must be extracted from the controllers to obtain an appropriate control-oriented 

knowledge of the physical agent’s body. In this sense, such knowledge can be 

represented by means of specific attributes (capabilities) focused mainly on control-

oriented features as it will be shown in the next chapters. 
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3.5 Task Allocation Approaches 

Several authors have studied the problems related to task allocation, especially in 

multi-robot environments, based on utility/cost functions. These approaches mainly 

take into account domain knowledge in the agents’ decision-making. However, an 

approach based on control-oriented features has not been completely carried out. 

For instance, [Goldberg and Matarić, 00] presents a behaviour-based controller for a 

multi-robot collection task that is easily modifiable to obtain new controllers. However, 

it does not perform any controller/agent selection. 

Reference [Dias and Stentz, 00] introduces a free market architecture for distributed 

control of multi-robot systems solving decomposable tasks. The free market approach 

defines revenue and cost functions across the possible plans for executing a specified 

subtask. The robots negotiate amongst themselves to execute the tasks while trying to 

minimize their costs and maximize their profits. 

Reference [Gerkey and Matarić, 02] presents the MURDOCH system for the 

allocation of tasks using auctions. Regarding metrics, it only states that “it should 

represent the robot's fitness for a task” and that “it could perform any arbitrary 

computation". It gives as examples of metrics: (a) Cartesian distances from the robot's 

position to the goal position, and (b) the offset of an object in the robot's camera image. 

An effective approach to action selection is presented in [Scheutz, 02]. It does not 

refer to utility/costs at all. 

The aim of [Balakirsky and Lacaze, 02] is to describe a graph search technique to 

select appropriate behaviours for single and multiple robots. Regarding costs, it 

computes the cost of each different option in order to select the best one. This cost is 

computed as the weighted sum of several features (such as road conditions, risk and 

path length). 
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Reference [Goldberg et al., 03] shows a market-based architecture for multi-robot 

coordination. The robots compute their cost according to the distance to travel and the 

opportunity cost (that is, how much each time step is valued). 

A short review of different task allocation methods, analyzing their efficiency 

(solution quality versus computation and communication costs) is provided in [Gerkey 

and Matarić, 04]. It defines utility as the difference between the quality of task execution 

and the cost of executing the task. However, it does not indicate how this quality and 

cost should be computed. 

The approach presented in [Dahl et al., 04] uses Q-learning to establish task utilities 

(which task is the most profitable among a set of possible tasks) in a multi-robot 

transportation scenario. This utility is computed as the reward (fixed) obtained by 

executing the task (weighted according to the execution time), and is used to decide 

which task to engage in next. 

Reference [Lagoudakis et al., 05] establishes several bidding rules for auction based 

multi-robot coordination. The different rules use path costs (minimum, maximum or 

average) to compute the bid for a given target. 

Continuing the work in [Lagoudakis et al., 05], [Koenig et al., 06] presents another 

auction based method to coordinate robots, and the bids are also based on shortest paths 

to target locations. 

An auction method for multi-robot exploration tasks is explained in [Sariel and 

Balch, 06]. The different heuristics used to compute cost are based on distances between 

robots and goal locations. 

Reference [Ramos et al., 06] presents a fuzzy approach to action (behaviour) 

selection. Each behavior computes its cost using a set of fuzzy rules and activation 

levels, and the one with the lowest cost is the one executed. These rules use several 

features, such as who has the ball, where a given player is, etc. 
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The above-mentioned works present suitable approaches to task/action selection 

where the criteria to bid in such multi-agent task allocation are usually classified by: 

cost (spatial/temporal) and embodiment (physical features, actuator and preceptor 

capabilities, etc).  In this sense, such basic utility/cost functions are only related to the 

physical components of the physical agents where dynamics are not taken into 

account. However, the next chapters show how introspection on control-grounded 

capabilities contributes to a more suitable task allocation by considering the physical 

agents’ bodies in a better and more reliable way. Such consideration is directly related 

to the automatic controllers of the physical agents. Thus, appropriate control-oriented 

knowledge must be extracted from the controllers of the physical agent’s body. In this 

sense, such knowledge is represented by means of specific control-grounded 

capabilities as it will be also experimentally shown later where physical agents’ 

dynamics are included in task allocation problems.   

 

3.6 Dynamics in Agents’ Decisions 

The performance of a robot is related to the dynamics of the interactions among its 

control system, its physical body and its environment. The conventional control 

techniques for robots tend to either ignore or do implicit and naïve suppositions on the 

dynamics of their controllers. In this sense, it is looked for an integration vision of the 

robot with the environment because the robot’s physical body, its intelligence, as well 

as the environment itself, are continuously interacting.  

In particular, the effects of the restrictions of the real world as imprecision or 

uncertainty are very important in mobile robotics due to that they influence the 

execution quality of the movements/actions. Therefore, it is necessary to take into 

account all these effects in the decision stage. Thus, software agents must incorporate 

the problems that characterize the physical systems to analyze such effects [Asada et 

al., 97]. 
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The above cognitive integration forces to design and implement robotics systems 

with methodologies of artificial intelligence and control theory. Preliminary interfaces 

among the high level employed at the AI (based generally on the calculation off-line) 

and the low level of the control theory (based generally on the calculation on-line)  

have been obtained [Oller, 02]. The coordination among these two levels is not 

completely carried out and it provokes difficulties to analyze the behavior of this kind 

of system [Beer, 00]. 

For some years, several authors as [Müller, 97] [Asada et al., 97] [Beer, 00] and [Oller, 

02] have proposed to join the numerical knowledge common of the dynamics of the 

systems with the symbolic knowledge usual of the dialectical reasoning, the 

automatons, and the structures of arguments and planning of the agents. In this 

direction, this thesis presents an approach focused on introspection on control-

grounded capabilities that look for then to bridge the gap between the high abstraction 

level of agents and the low abstraction level of the automatic control architectures. 

 

3.7 Final Remarks 

Agent must know the implications of the commitments with other agent-based 

entities or humans and they must know if they can carry out them. To that end, it is 

necessary to have some physical knowledge of the system to know what it is physically 

possible to perform and what it is not possible. In this sense, physical inputs and 

outputs towards and from the environment must be integrated to the agent’s 

knowledge base. This is due to the fact that the agent is contained in a physical body 

(embodied and situated) which it must control and move by means of decisions. 

The current works with physical agents do not appropriately evaluate the associated 

problems with the agent’s dynamics and they only interpret the arisen problems from 

the viewpoint of supervision or damages detection [Oller, 02]. Therefore, if it is taken 

into account that the movements of a robot can be commonly described with 
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differential equations, the automatic control theory is then necessary for the analysis of 

the dynamics of such physical agent, and its effects in the decision-making that 

generally is implemented by using artificial intelligence techniques. 

In summary, the physical knowledge is obtained from the dynamics of the physical 

body. This dynamics is represented of a declarative way through control-grounded 

capabilities extracted by means of introspection, which are the two principal research 

topics in this doctoral dissertation.  
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Chapter 4 

Introspection Approach 

This chapter presents the introspection approach proposed in this dissertation to provide 

agents a cognitive ability for reasoning on their dynamics, aiming at making physically feasible 

decisions and getting reachable and physically grounded commitments that improve the 

cooperative multi-agent performance. The main definitions, formalization aspects and the 

algorithms for control and decision used in this work are introduced in this chapter. As will be 

shown in next chapters, the research on introspection proves the impact of this agency property, 

and its effectiveness in cooperative intelligent agents. 

 

4.1 Problem  Statement  

The main problem addressed in this dissertation is concerned to the agents’ lack of 

appropriate reasoning on physical knowledge mainly related to their dynamics. Such 

relevant knowledge is not properly taken into account in the current agents’ decision-

making and it is not appropriately reflected and communicated by the agents. Agents 

cannot then make feasible joint decisions when these are requested. Explicitly, lack of 

appropriate reasoning on physical knowledge results in a lower cooperative 

performance between agents, especially in coordinated tasks and task allocation 

problems where a proper communication of such information is quite relevant to 
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achieve sure and trustworthy commitments. The above lacks are currently significant 

impediments to reducing complexity and achieving appropriate levels of control, 

coordination and autonomy in control systems.   

The cause of the mentioned lack of reasoning is the absence of an appropriate 

representation related to the physical features of the physical agents, namely the 

absence of an explicit agent-oriented representation about the agents’ inertial dynamics 

and the specifications, structure and other relevant details encapsulated in their 

automatic controllers.  Otherwise, this specific embedded knowledge about every 

controller is not taken into account and never reused to achieve better agent 

cooperation. This cooperation is measured in terms of physically grounded and 

reliable commitments which results in a better performance of any group of 

cooperating agents.   

Decisions made by agents concerning their actions depend on the information they 

receive. Therefore, receiving and sending the right information related to physical 

knowledge is essential for a proper performance and a coherent behaviour of the 

overall multi-agent system. 

To incorporate appropriately physical knowledge in rational decision-making, a 

suitable representation for dynamics must be first developed in the agents’ knowledge 

base which is general, accessible, understandable, comparable and computationally 

tractable for these agents.  To that end, control-grounded capabilities constitute an 

alternative. These capabilities aim at guaranteeing an appropriate and explicit agent-

oriented representation of the physical agents’ dynamics. The thesis claims that the 

introspection approach on such control-grounded capabilities makes then easier for 

agents to reflect and communicate the above knowledge, aiming at making physically 

feasible and safer decisions, getting secure, reachable and physically grounded 

commitments, preventing from undesirable situations, and achieving a better 

coordinated control. Such advantages result in the improvement of the multi-agent 

performance in coordinated control scenarios. 
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4.2 Introspection on Control-grounded Capabilities in Agents’ 

Decisions 

Several researches in artificial intelligence try to build computer-controlled systems 

that imitate conscious-level reasoning and problem solving of humans [Bolander, 03]. 

Humans use sentences to express the things they know and sequences of sentences to 

express reasoning. In this sense, artificial intelligent systems (agents) aim at simulating 

human conscious-level reasoning and problem solving by representing facts internally 

as sentences and using formal derivations from these sentences as the reasoning 

mechanism of the system [Bolander, 03]. 

The set of facts represented as sentences internally in an agent is usually known as its 

knowledge base. The knowledge base of the agent is a model of the agent’s 

environment, since the objects in the knowledge base represent (or model) properties 

of the objects in this environment. For that, the knowledge base contains information 

about the world that the agent takes to be true, facts known or propositions believed by 

the agent.  

Before an agent starts a task, it should make a plan for how to reach a given goal. 

This planning requires the agent to have knowledge about the environment, 

knowledge that can be represented in the agent’s knowledge base. It is the agent’s 

ability to model its own environment that makes it able to reason about this 

environment, to plan its actions and to predict the consequences of performing these 

actions. However, much intelligent behavior seems to involve an ability to model not 

only the agent’s external environment but also itself and the agent’s own reasoning. 

Such ability is called introspection [Bolander, 03]. 
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4.2.1 Agent Introspection  

Introspection is a self-reflection process of human reasoning by which people come 

to be attentively conscious of mental states they are currently in [Wilson and Keil, 01]. 

We know that self-reflection plays a central role in human cognition - it is one of the 

primary abilities setting us apart from animals - and we would therefore expect this 

ability to play an equally important role in artificial intelligence. We use introspection 

whenever we reason about the way we carry out certain tasks, and whenever we 

reason about how to improve our routines for carrying out these tasks. Thus, 

introspection is fundamental for our ability to consciously improve ourselves.  

Specifically, to have introspection in an artificial intelligence system means that the 

system is able to reflect on its own knowledge (or ignorance), its own reasoning, 

actions, tasks and planning [Bolander, 03]. 

For instance, before an agent commits in the execution of a task, the agent should 

register the fact of knowing if it can or cannot perform the task, this needs 

introspection, due to the agent has to look introspectively into its own knowledge base 

and from it to arrive at a suitable decision. In addition, in order to decide how well the 

agent is doing or will do the proposed task, an agent will also need this self-

examination capability (introspection) [McCarthy, 99].  

To express introspective reasoning, the agent should refer to its own knowledge as 

objects in its world. In this sense, the agent is non-introspective when no information 

in the knowledge base expresses facts concerning the agent itself. Any non-

introspective agent only models its external environment. This mean that there is a 

complete separation between the model (the knowledge base) and the reality being 

modelled (the external environment). 

Otherwise, introspective agents differ from non-introspective ones by modelling not 

only their external environment but also themselves. It is by also have models of 

themselves they are given the ability to introspect [Bolander, 03]. 
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Humans also have models of themselves, since we generally believe that we can 

predict our own reactions to most situations that can occur to us. We rely heavily on 

this ability when we plan our actions. So it turns out then desirably to have agents with 

this cognitive skill. 

In particular, introspection on physical agents’ dynamics is a previously unexplored 

research area. So this thesis focused the work just on this topic for examining its impact 

in the performance of cooperative multi-agent decisions. 

 

4.2.2 Introspection on Physical Agents’ Dynamics 

Physical agents require a sense of themselves as distinct and autonomous 

individuals able to interact with others in cooperative environments, i.e., they require 

an identity [Duffy, 04]. A complete concept of identity therefore constitutes the set of 

internal and external attributes associated with any given physical agent based on 

introspection of its physical and “mental” states and capabilities. In this work, the 

notion of internal and external relates to the attributes of a single embodied physical 

agent analogous to Shoham’s notion of capabilities in multi-agent systems [Shoham, 

93]. It follows that in order to address the issue of embodiment; there are two distinct 

attributes that are local and particular to each physical agent within a cooperative 

system: 

• Internal Attributes: beliefs, desires, intentions, the physical agent’s knowledge of self, 

experiences, a priori and learned knowledge. 

• External Attributes: the physical presence of the agent in an environment; its actuator 

and preceptor capabilities (e.g., automatic controllers), the physical features (e.g., 

physical dimensions).    

In this sense, an agent’s knowledge of its attributes (models of themselves) therefore 

allows a sufficient degree of introspection to facilitate and maintain the development of 
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cooperative work and social relationships between groups of agent entities [Duffy, 04]. 

When an agent is “aware” of itself, it can explicitly communicate knowledge of self to 

others in a social and cooperative environment to reach a goal. This makes 

introspection particularly important in connection with multi-agent systems. 

In particular, a subset of internal attributes (control-grounded capabilities) is used to 

describe the physical agents’ dynamics. Thus, 

Definition 1: Introspection on physical agents’ dynamics refers to the self-examination by a 

physical agent of a subset of internal attributes (control-grounded capabilities) to perform tasks. 

This self-examination mainly considers the agent body’s dynamics. Introspection on control-

grounded capabilities is a self-reflection process that refers then to a self-examination that allows 

agents to be aware of what they are able to do.  

In this context, physical agents must reach an agreement in cooperative groups to 

obtain sure and trustworthy commitments in the execution of coordinated tasks. Thus, 

Definition 2: Sure and trustworthy commitments refer to commitments accepted by the 

agents only when they have a high certainty about correctly performing the related task. Such 

commitments are directly related to a better system response to undesired events and better 

coordinated control in cooperative decisions.  

To achieve sure and trustworthy commitments, each physical agent must be aware of 

its ability to perform the requested tasks before committing to them. Therefore, if an 

agent proposes a coordinated task to another agent, both must introspect, consider and 

communicate their capabilities before performing the task. Thus, agents would have a 

high certainty about the correct performance of the task when they acquire 

commitments.  
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4.2.3 Formalization Aspects 

Let us suppose that a physical agent Aα is a part of a cooperative group G. A 

cooperative group must generally involve more than one physical agent for the 

execution of a task (see Fig. 4.1). That is, 

AAGandAA|GA,A
kk taskjitaskji ⊆≠∈∃  

Where AA is the set of all possible physical agents in the environment. 

 

Fig. 4.1. General scheme of the physical agents within the environment. 

Let us define the set of automatic controllers C, with different control algorithms and 

different control laws, as a subset of the external attributes EA of a physical agent Aα,, 

each one designed to control the plant under particular operating conditions [Breemen, 

01], and whose actions provoke the physical agent’s dynamics, such that: 

)A(EA)A(C αα ⊆  

Where jiji cc|)A(Cc,c ≠∈∃ α , thus  { }m321 c,c,c,c)A(C K=α  

The controllers allow and limit the tasks’ executions. So they are key at the moment 

physical agents introspect on their capabilities to perform tasks.  



Chapter 4: Introspection Approach 

Introspection on Control-grounded Capabilities – Doctoral Thesis – Christian G. Quintero M.               46 
 

Let us consider the domain knowledge DK for a physical agent Aα made up of a set 

of environmental conditions EC (e.g., agents’ locations, targets’ locations), a set of 

available tasks to perform T (e.g., foraging, object transportation, exploration, flocking) 

and a set of tasks requirements TR (e.g., achieve the target, avoid obstacles, time 

constraints, spatial constraints, energy costs) as is described by (4.1). 

)1.4()A(TR)A(T)A(EC)A(DK αααα ∪∪=  

Where jiji ecec|)A(ECec,ec ≠∈∃ α ,  

jiji tasktask|)A(Ttask,task ≠∈∃ α  and jiji trtr|)A(TRtr,tr ≠∈∃ α  

Thus }ec,ec,ec,ec{EC o321 K= , }task,task,task,task{T p321 K=  and 

 }tr,tr,tr,tr{TR q321 K=  

This gives: }tr,,tr,task,task,ec,,ec{)A(DK q1p1o1 KKK=α  

Here, domain knowledge refers to specific knowledge to model the environment in 

which the physical agents operate and interact.  In this context, environmental 

conditions refer to the needed information to describe the state of the environment. The 

available tasks refer to well-defined set of real-time actions that usually need 

coordination to achieve the goals of the multi-agent system. The task requirements 

refer to the set of conditions over the proposed task that must be accomplished under 

the current environmental conditions. 

The information acquired by the agents’ sensors usually constitutes the 

environmental conditions, while the tasks and their requirements refer generally to the 

information communicated by other agents in the multi-agent system.  

Here, each task has associated a subset of possible controllers for its execution (see 

Fig. 4.2) such that: 

)A(C)A(C),A(Ttask
ktaskk ααα ⊆∃∈∀  

Where jitaskji cc|)A(Cc,c
k

≠∈∃ α , thus  { })task(m321task kk
c,c,c,c)A(C K=α  
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Fig. 4.2. General scheme of the physical agent’s external attributes and controllers. 

Let us define the set of control-grounded capabilities CC to represent the physical 

agent’s dynamics as a subset of the internal attributes IA of a physical agent Aα such 

that: 

)A(IA)A(CC αα ⊆  

Where jiji cccc|)A(CCcc,cc ≠∈∃ α , thus  { }n321 cc,cc,cc,cc)A(CC K=α  

Definition 3: Control-grounded capabilities constitute a set of internal attributes that form 

part of the internal state of a physical agent. Such capabilities represent (or model) the physical 

agent’s dynamics in its knowledge base, allowing computational treatment to be accessible and 

understandable by the agents in the system, i.e., an explicit agent-oriented representation of the 

physical agents’ dynamics. Such representation allows comparing the same kind of capabilities 

and combining them with other different capabilities to be exploited as a decision tool by the 

cooperative group where the agents are involved. 

The control-grounded capabilities representation provides then the possibility of 

representing different automatic controllers with different control algorithms and 

different control laws. Such effective representation enables the physical agents to use 

the capabilities as a decision tool and to manage their bodies in a more reliable way. 
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All controllers involve in the same task has associated the same kind on control-

grounded capabilities (see Fig. 4.3) such that: 

)A(CC)A(CC),A(Cc
kik task,ctaski ααα ⊆∃∈∀  

Where jitask,cji cccc|)A(CCcc,cc
ki

≠∈∃ α , thus  

{ })task(r321task,c kki
cc,cc,cc,cc)A(CC K=α  

 

Fig. 4.3. General scheme of the physical agent’s internal attributes and control-grounded capabilities. 

The control-grounded capabilities
ki task,cCC for a controller i in the execution of a 

particular task k are obtained, as in (4.2), taking into account the agent’s domain 

knowledge 
ktaskDK (see Fig. 4.4) related to the proposed task such that: 

)A(IA)A(CC)A(CC
ki task,c ααα ⊆⊆  and )A(DK)A(DK

ktask αα ⊆ | 

)2.4())A(DK()A(CC
kkiki tasktask,ctask,c αα Ψ=  

ki task,cΨ  is a self-inspection function that allows physical agents introspect on their 

capabilities using the controller i for the task k. 
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Fig. 4.4. General scheme of the physical agent’s domain knowledge. 

The capabilities of all controllers within the same task can be grouped as a subset 

such that: 

)A(CC)A(CC ktasktask,c ki αα ⊆  

Where jitaskji cccc|)A(CCcc,cc
k

≠∈∃ α , thus  

{ })task(r*)task(m321task kkk
cc,cc,cc,cc)A(CC K=α  

In addition, each controller has then associated a subset of capabilities (see Fig. 4.5) 

such that: 

)A(CC)A(CC),A(Cc
ici ααα ⊆∃∈∀  

Where jicji cccc|)A(CCcc,cc
i

≠∈∃ α , thus { })c(r321c ii
cc,cc,cc,cc)A(CC K=α  

Likewise, each controller has associated a subset of tasks such that: 

)A(T)A(T),A(Cc
ici ααα ⊆∃∈∀  

Where jicji tasktask|)A(Ttask,task
i

≠∈∃ α , thus 

{ })c(p321c ii
task,task,task,task)A(T K=α  
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Fig. 4.5. General scheme of the physical agent’s internal attributes and capabilities for a specific controller. 

A self-evaluation function 
ki task,cΦ  uses the control-grounded capabilities in an 

appropriate way to allow physical agents know a certainty index 
ki task,cci related to the 

correct execution of the proposed task k using the controller i as is described in (4.3). 

)3.4())A(CC()A(ci
kikiki task,ctask,ctask,c αα Φ=  

The set of all certainty indexes for a specific task k is constituted by all 
ki task,cci of the 

possible controllers in this task (see Fig. 4.6) such that: 

)A(CI)A(ci),A(Cc
kkik tasktask,ctaski ααα ⊆∃∈∀ | )A(CI)A(CI

ktask αα ⊆  

Where jitaskji cici|)A(CIci,ci
k

≠∈∃ α , thus  { })task(m321task kk
ci,ci,ci,ci)A(CI K=α  

CI constitutes the set of all certainty indexes related to the available tasks T for the 

agent Aα. Thus, 

Definition 4: A certainty index provides physical agent a measure of conviction concerning 

its knowledge and physical actual ability to perform a particular task.  

Each controller has also associated a set of certainty indexes (see Fig. 4.6) such that: 

)A(CI)A(ci),A(Cc
ii cci ααα ⊆∃∈∀ | )A(CI)A(CI

ic αα ⊆  
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Where jicji cici|)A(CIci,ci
i

≠∈∃ α , thus { })c(s321c ii
ci,ci,ci,ci)A(CI K=α  

 

Fig. 4.6. General scheme of the physical agent’s certainty indexes. 

In addition, a suitability function 
ki task,cΘ provides physical agent an appropriate 

alternative to measure the suitability of each possible controller i in the execution of a 

proposed task k according to its capabilities. For that, the certainty index of each 

controller is jointly used with its respective control-grounded capabilities as is 

described in (4.4). 

)4.4())A(CC),A(ci()A(sr
kikikiki task,ctask,ctask,ctask,c ααα Θ=  

The set of all suitability rates for a specific task k is constituted by all 
ki task,csr of the 

possible controllers in this task such that: 

)A(SR)A(sr),A(Cc
kkik tasktask,ctaski ααα ⊆∃∈∀ | )A(SR)A(SR

ktask αα ⊆  

Where  jitaskji srsr|)A(SRsr,sr
k

≠∈∃ α , thus { })task(m321task kk
sr,sr,sr,sr)A(SR K=α  

Thus, each controller has then associated a set of suitability rates such that: 

)A(SR)A(sr),A(Cc
ii cci ααα ⊆∃∈∀ | )A(SR)A(SR

ic αα ⊆  

Where  jicji srsr|)A(SRsr,sr
i

≠∈∃ α , thus { })c(s321c ii
sr,sr,sr,sr)A(SR K=α  
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SR constitutes the set of all suitability rates related to the available tasks T for the 

agent Aα. Thus,  

Definition 5: A suitability rate provides physical agent a fitness measure of its capabilities 

for the execution of a specific task.  

So a comparative analysis 
ktaskζ between all possible suitability rates of 

ktaskSR of the 

controllers in a specific task allows physical agents to select the most suitable controller 

for the execution of this task.  Similarly, an analysis of 
icSR allows physical agents to 

identify the task where the controller i has its better performance. 

Let us define then the physical agent’s knowledge of self related to its dynamics as in 

(4.5). 

)5.4()A(SR)A(CI)A(CC)A(C)A(SK ααααα ∪∪∪=  

In particular, the physical agent’s knowledge of self in a specific task k (see Fig. 4.7) is 

given by (4.6). 

)6.4()A(SR)A(CI)A(CC)A(C)A(SK
kkkk tasktasktasktaskktask ααααα ∪∪∪=  

 

Fig. 4.7. General scheme of the physical agent’s knowledge of self from a task-oriented perspective. 

In the same way, the physical agent’s knowledge of self related to each controller i 

(see Fig. 4.8) is given by (4.7). 
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)7.4()A(T)A(SR)A(CI)A(CC)A(SK
iiiii ccccc ααααα ∪∪∪=  

 

Fig. 4.8. General scheme of the physical agent’s knowledge of self from a controller-oriented perspective. 

This self-knowledge varies then along four main parameters: content (physical 

agent’s dynamics), manner or mode of representation (control-grounded capabilities, 

certainty indexes, and suitability rates), domain of application (physical multi-agent 

systems) and means of acquisition (functions, algorithms and techniques of soft-

computing and automatic control). 

The physical agent’s knowledge base KB (see Fig. 4.9) is therefore founded on the 

union of both its domain knowledge DK and its self-knowledge SK as in (4.8). 

)8.4()A(SK)A(DK)A(KB ααα ∪=  

In summary, the functions (Ψ, Φ, Θ) provide physical agents powerful tools, 

independent of particular implementation technologies, for introspection-level 

reasoning and suitable model of themselves. Such functions constitute a novel design 

methodology of physical agents establishing the degree of introspection I (see Fig. 4.10) 

used by such agents in the reasoning related to the execution of proposed tasks as is 

defined in (4.9). 

)9.4(),,(I ΘΦΨ=  f  
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Fig. 4.9. General scheme of the physical agent’s knowledge base. 

 

Fig. 4.10. General scheme of the physical agent’s introspection degree. 

The design methodology is then constituted by three main components:  

1. Agent’s reasoning on its own environment makes it able to know its 

capabilities to perform the available tasks in such environment )(I Ψ= f .  

2. Agent’s reasoning on its capabilities makes it able to predict the certainty 

related to its physical actual ability to perform such tasks ),(I ΦΨ= f .  

3. Knowledge on the above agent’s capabilities and certainties allows it reason 

on its suitability for the proper execution of the proposed tasks ),,(I ΘΦΨ= f .  

So, the physical agent’s introspection degree is going to depend on how much 

knowledge physical agent wants to consider or need in its decision-making. In this 
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sense, physical agents might need to acquire more knowledge or increase their 

introspection degree (increase the abstraction level) to carry out certain tasks. 

Currently, there are several alternatives to implement independently or jointly the 

above functions. Thus, soft-computing techniques (e.g., neural networks, case-based 

reasoning and fuzzy logic) and control techniques (e.g., model-predictive control, 

multiple model adaptive controllers and switching control systems) are commonly 

used. 

 In consequence, the proposed design methodology implicates a change in the 

current way of designing physical agents by means of a declarative and explicit 

knowledge of their automatic controllers. Such methodology is inspired by the KISS 

principle of engineering that states that design simplicity should be a key goal and 

unnecessary complexity should be avoided. In this sense, the practical work addressed 

in this dissertation constitutes an engineering approach easily applicable. 

 

4.2.4 Decision Algorithm for Coordinated Tasks 

One of the most important physical agent’s jobs is to make decisions, that is, to 

commit to particular actions or tasks. To that end, the connection between logical 

reasoning and decision making is simple: the physical agent must conclude, based on 

its knowledge, that a certain action or task is best. In addition, this decision is 

influenced by the goal of the agent, the skills required to accomplish its tasks and the 

resources that are needed. So, agents make rational decisions. In this sense, with 

introspection, this thesis argues that agents can discriminate between the trials in 

which they have a chance of performing a proposed task and those in which they have 

no chance.  

For instance, let us consider two physical agents Aα and Aβ aiming at undertaking a 

coordinated task. It is assumed that agents use an agent communication language to 

communicate information and knowledge and they follow the BDI philosophy 
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[Shoham, 93]. So the decision algorithm (see Fig. 4.11) executed by the agents for the 

execution of a particular task is as follows: 

 

Fig. 4.11.  Decision algorithm executed by the agents for the execution of a particular task. 

Proposition:  An agent Aα proposes to other agent Aβ a coordinated task k with some 

requirements (e.g., time constraints).   

( )k1 task,t,A,AREQUEST βα  

Introspection: Aβ looks for and evaluates its capabilities 
ktaskCC  to perform the 

proposed task with its available resources (e.g., controllers) 
ktaskC and domain 

knowledge
ktaskDK . 

{ })A(SK,task,AKNOW
k

2
taskk

t
A βββ

        [ ]{ })A(,taskCANBELIEFAND
k

22
taskk

t
A

t
A βζ

ββ
 

Answer: Aβ tells Aα that it can perform the task with reliability
ktaskζ .     

[ ]{ }⎟
⎠
⎞⎜

⎝
⎛ ζ βαβ ββ

)A(,taskCANBELIEF,t,A,AINFORM
k

22
taskk

t
A

t
A3  
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Decision:  If Aα agrees that 
ktaskζ is large enough then the agents commit (Commitment) 

and they can perform the task successfully (Execution).        

If Aα considers that 
ktaskζ is too low then Aα inhibits the commitment in the execution 

of the task and proposes to Aβ the same task with other requirements or a new task 

(New Proposition) until the agents agree. 

( ){ })A(ENOUGHBELIEFIF
k

4
task

t
A βζ

α
 

( )k5 task,t,A,ACOMMITTHEN βα  

( )lk5 tasktask,t,A,AREQUESTELSE ∨′βα  

 

4.2.5 Decision Algorithm for Task Allocation 

Several authors have studied the problems related to task allocation, especially in 

multi-robot environments, based on utility/cost functions. These approaches mainly 

take into account domain knowledge in the agents’ decision-making. However, an 

approach based on control-oriented knowledge has not been completely carried out. In 

this sense, the thesis aims at showing how introspection on control-grounded 

capabilities contributes to a more suitable task allocation by considering the physical 

agents’ bodies in a better and more reliable way. With introspection, the approach 

looks for that agents can discriminate between the tasks that they can perform and 

those in which they have no chance.  

For instance, let us consider a group of physical agents }A,,A,A{G N21 K=  aiming 

at undertaking several tasks }task,,task,task{T M21 K=  under the supervision of an 

omniscient and omnipotent centralized agent SA [Stone, 00]. So the decision algorithm 

executed by the agents for allocating the available tasks is as follows: 

 Proposition:  A request related to all proposed tasks with some requirements (e.g., 

time constraints, spatial constraints) is done by the SA to all agents in the group G.    
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( )}task,,task,task{,t},A,,A,A{,SAREQUEST M211N21 KK  

Introspection: Agents  N) 1,...,  i (Ai = look for and evaluate their control-grounded 

capabilities M,,1kCC
ktask K=  to perform each proposed task with their available 

resources (e.g., controllers) M,,1kC
ktask K= and domain knowledge M,,1kDK

ktask K= .  

{ })}A(SK,),A(SK),A(SK{},task,,task,task{,AKNOW itaskitaskitaskM21i
t
A M21

2
i

KK        

[ ]{ })}A(,),A(),A({,}task,,task,task{CANBELIEFAND itaskitaskitaskM21
t
A

t
A M21

2
i

2
i

ζζζ KK  

Agents sort in a decreasing order their introspected reliabilities 

)}A(,),A(),A({ itaskitaskitask M21
ζζζ K  in the execution of the proposed tasks. In this 

sense, agents are able generally to perform a set of tasks )A(T iOK whose reliabilities 

)A( iζ  are greater than a decision threshold Th. The used reliabilities are directly 

related to the introspection degree established. It means that the reliabilities can 

embrace a comparative analysis of certainty indexes )A(CI i  or a comparative analysis 

of suitability rates )A(SR i . 

Answer: Each agent informs to SA the set of tasks TOK that it can perform and its 

respective set of reliabilities )A( iζ .  

[ ]{ }( ))A(,)A(TCANBELIEF,t,SA},A,,A,A{INFORM iiOK
t
A

t
A3N21

2
i

2
i

ζK  

Decision:  If more than one agent can perform the same task then the supervisor agent 

SA allocates such task to the agent with the greater reliability (the most suitable agent). 

The selected agent commits (Commitment) and can then perform the task successfully 

(Execution). For the remaining tasks and remaining agents, the SA repeats the above 

process taking into account the remaining reliabilities of the agents for these tasks. The 

above task allocation algorithm aims at allocating the most possible amount of 

remaining tasks for all remaining agents. Such process depends on the number of 

available agents and the reliability of each agent in relation to each proposed task. 
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Fig 4.12 shows an example of the decision algorithm for task allocation. In this case, 

there are six agents }A,A,A,A,A,A{G 654321=  and six tasks 

}task,task,task,task,task,task{T 654321=  and it is established, for illustrative reasons, a 

decision threshold Th = 0.75.  The example shows the set of tasks that each agent can 

perform with their respective reliabilities in a decreasing order. In three cycles of the 

algorithm, the SA allocates several tasks to the most suitable agent (task1 → A1, task3 → 

A5, task4 → A6 and task5 → A3). However, in this example, the agents A2 and A4 cannot 

perform any task according to their capabilities (it means that their reliabilities are not 

enough to perform correctly any task). Additionally, the task6 cannot be performed by any 

agent and the task2 can not finally be allocated. 

 

Fig. 4.12. Task allocation example. 

Here, only the reliability parameter is used for allocating tasks. However, the task 

allocation algorithm can be implemented in the same way if several coordination 

parameters are jointly used with the reliability in the utility/costs functions for 

allocating tasks. More details about how it can be implemented are provided in 

Sections 5.1.4 and 5.1.6.3. 
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Roughly speaking, introspective skills in physical agents provide them a suitable 

alternative for appropriate task allocation and appropriate task execution in 

cooperative multi-agent environments. The big interest is then to see how this physical 

knowledge of dynamical capabilities affects the cooperative behavior of the whole 

cooperative world. To that end, the decision algorithms for coordinated tasks and task 

allocation, presented in Sections 4.2.4 and 4.2.5 respectively, constitute particular and 

illustrative alternatives. Therefore, other decision algorithms, depending on the 

objectives of the multi-agent system, could be perfectly designed.   

 

4.2.6 Control-grounded Capabilities for Linear Control Systems 

At the automatic control level, the control-grounded capabilities definition must take 

into account the design of the control system. In this sense, the study and design of a 

control system are generally based on the system’s response. Control engineers should 

know the specifications that the system’s response must achieve before designing the 

controllers for the system. However, controllers design must also involve 

considerations of the dynamical behaviour of the plant.  In addition, the specifications 

are usually given in terms of the transient and the steady-state performance, and 

controllers are designed to meet these specifications. Such specifications describe then 

the response of the controlled system. They can be used to complete the control-

grounded capabilities according to the control theory foundations. However, this 

information must be complemented in order to accomplish the requirements 

mentioned for the control-grounded capabilities (see Definition 3). 

The following set of control-grounded capabilities has been proposed and defined 

according to the scope of this work, to be applied in linear control systems (Single-

Input Single-Output, Multi-Input Single-Output, Single-Input Multi-Output and Multi-

Input Multi-Output, i.e., SISO, MISO, SIMO and MIMO systems respectively). Such set 

of capabilities is adopted, expecting them to have direct relevance to represent the 

controllers, although this set is not complete. (Note: m represents the number of 



Chapter 4: Introspection Approach 

Introspection on Control-grounded Capabilities – Doctoral Thesis – Christian G. Quintero M.               61 
 

outputs and n represents the number of inputs of the controlled system in the 

definitions). 

A. Overshoot ( μ ): 

The overshoot is related to the maximum value reached by the transient response of 

the controlled system with reference to its steady-state value. Let ys(j,k) be the unit-step 

response taking into account the k-th input and the j-th output of the controlled system. 

Let ymax(j,k) denote the maximum value of ys(j,k); and yss(j,k), the steady-state value of 

ys(j,k).  The overshoot is defined as μ(j,k) = ymax(j,k) - yss(j,k). The μ capability is often 

represented as a percentage of the final value of the step response. However, the 

desired condition is a low μ  capability as shown in (4.10). 

( )
( ) ( )

( )( )
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aμ(j,k) represents the k-th weight coefficient, between [0,1], for the k-th overshoot 

μ(j,k)(%) in the j-th output, and bμ(j) represents the j-th weight coefficient, between [0,1], 

for the j-th overshoot.  

B. Speediness ( σ ): 

The speediness represents an indicator of the controlled system’s speed when it 

reaches the set point. The speediness is defined in (4.11) as a percentage relation 

between the settling time of the closed-loop system ts(j,k) and the settling time of the 

open-loop system ts-ol(j,k), taking into account k-th input and the j-th output.   
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aσ(j,k) represents the k-th weight coefficient, between [0,1], for the k-th speediness 

σ(j,k)(%) in the j-th output, and bσ(j) represents the j-th weight coefficient, between 

[0,1], for the j-th speediness.  

If σ(%)>0 for all controllers, then the fastest controller is the one with the largest 

value of σ(%) between them. If σ(%)<0 for all controllers, the closed loop systems are 

slower than the open loop system, then the largest negative value of σ(%) between 

them correspond to the fastest. Controlled systems with σ(%) > 0% are always faster 

than those with σ(%) < 0%. 

C. Persistence ( γ ): 

This represents the capability of the controlled system to follow the set point when 

there are external signals affecting the value of the system’s output. The persistence is 

related to the capability of the controlled system to reject disturbances and maintain 

the output signal at a suitable value. Rejecting disturbances is sometimes a 

specification of the controller design. The evaluation of such rejections depends on the 

control engineer’s criteria. However, (4.12) and (4.13) provide the persistence for the 

two most common disturbances, the step signal and the pulse signal in the SISO case. 

For the step disturbances: 

( ) )12.4(%edisturbanc_%
A

IAE1(%) ⎥
⎦

⎤
⎢
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⎡
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⎜
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IAE is the integrated absolute error IAE = ∫
2

1

t

t
dt)t(e , τ is the open-loop time 

constant, A is the amplitude of the step disturbance and %_disturbance is the 

percentage of times that this disturbance affects the system. 

For the pulse disturbances: 

( ) )13.4(%edisturbanc_%
B

IAE1(%) ⎥
⎦

⎤
⎢
⎣

⎡
×⎟
⎠
⎞

⎜
⎝
⎛ − = γ  

B is the area of the pulse signal, B = (Amplitude of the pulse)*(Duration of the pulse).  

If γ(%) < 0% then γ(%) = 0% and the system does not reject then disturbances. If there 

is more than one kind of disturbance, then the value of γ(%) will be the maximum of 

the corresponding persistence values. Equation (4.14) shows the MIMO case. 
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aγ(j,k) represents the k-th weight coefficient, between [0,1], for the k-th persistence 

γ(j,k)(%) in the j-th output, and bγ(j) represents the j-th weight coefficient, between [0,1], 

for the j-th persistence.  

D. Aggressiveness ( α ): 

This capability represents the quickness of the system to react to the set point 

changes. The aggressiveness is defined in (4.15) as the percentage relation between the 

rise time tr(j,k) and the settling time ts(j,k) for the k-th input and j-th output of the 

controlled system. 
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aα(j,k) represents the k-th weight coefficient, between [0,1], for the k-th aggressiveness 

α(j,k)(%) in the j-th output, and bα(j) represents the j-th weight coefficient, between 

[0,1], for the j-th aggressiveness. 

E. Precision ( δ ): 

This represents the capability of the controlled system to follow the changes of set 

point. The precision is related to the error of the controlled system when it is excited by 

a ramp input signal r(j,k) with slope τ, after 2τ seconds.  Let yr(j,k) be the ramp response 

and let τ be the time constant of the open-loop system taking into account the k-th 

input and the j-th output of the system. Precision is defined in (4.16). 
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aδ(j,k) represents the k-th weight coefficient, between [0,1], for the k-th precision 

δ(j,k)(%) in the j-th output, and bδ(j) represents the j-th weight coefficient, between [0,1], 

for the j-th precision. 
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F. Robustness ( ρ ): 

This describes the capability to maintain the output of the controlled system inside 

an acceptable range when there are internal disturbances in the system. The phase 

margin and gain margin provide a measurement of the system’s stability. These 

margins without variations in the open-loop system parameters (MP(j,k)nom and 

MG(j,k)nom) and with the maximum variations of these parameters (MP(j,k) and 

MG(j,k)), taking into account the k-th input and the j-th output of the system, are used 

in the robustness definition proposed in (4.17). 

( )
( ) ( )

( )( )

( )( )

2
)k,j(MG

)k,j(MG
)k,j(MF

)k,j(MF

)k,j(

)17.4(

jb1m

k,ja1n

k,jk,ja
jb

nomnom

m

1j

m

1j n

1k

n

1k

+
=ρ

−−

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−−

ρ∗
∗

=ρ
∑

∑
∑

∑

=
ρ

=

=
ρ

=
ρ

ρ

 

aρ(j,k) represents the k-th weight coefficient, between [0,1], for the k-th robustness 

ρ(j,k) in the j-th output, and bρ(j) represents the j-th weight coefficient, between [0,1], for 

the j-th robustness. 

G. Control Effort ( ε ): 

This capability describes the controlled system’s effort in driving the output towards 

the desired value. The control effort is defined in (4.18). 
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u(k) is the k-th control signal, u(k)max denotes the maximum value of u(k), u(k)min 

denotes the minimum value of u(k), cs represents the number of control signals, aε(k) 

represents the k-th weight coefficient, between [0,1], for the k-th control effort ε(k) in j-th 

output, and bε(j) represents the j-th weight coefficient, between [0,1], for the j-th control 

effort.  

A comparison between the controllers with respect to the ε capability is defined in 

(4.19). In this sense, we have assigned the highest percentage (100%) to the controller 

with the lowest ε  capability. 

)19.4(m1i,c%,100
)min(

(%) i
c

c
c

i

i
i

K=∀×
ε

ε
=ε  

H. Control Kind ( κ ): 

This capability identifies the type of controller that is being analysed. Thus, only 

controllers of the same kind are compared. (E.g., position controllers → κ = 1, velocity 

controllers → κ = 2, etc.). 

In the above definitions, the weight coefficients are used to assign the relevance 

degree of every k-th and j-th component in the calculation of the capabilities. Therefore, 

such relevance degrees determine the influence of every input and every output of the 

system in the agents’ decision-making.  

Hence, the set of all control-grounded capabilities )A(CC
ic α , associated with the 

controller i, where i = 1,…,m for a physical agent Aα , is shown in (4.20):  

)20.4(m,,1i},,,,,,,,{)A(CC
ic K=κερδαγσμ=α  

However, as it was shown in Section 4.2.3, the set of control-grounded capabilities 

associated with a specific controller depends on if such capabilities are needed in the 

involved tasks for such controller. Fig 4.13 depicts an example scheme of the physical 

agent’s capabilities for a linear control system. 
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Fig. 4.13. General scheme of the physical agent’s capabilities for a linear control system. 

 

4.3 Final Remarks 

This chapter argues the need for introspective skills about dynamics in physically 

grounded agents to improve the agents’ decision-making performance in both 

individual and cooperative decisions. Here, introspection allows agents to achieve sure 

and trustworthy commitments, to prevent undesirable situations, to make safer 

decisions, to drive a better coordinated control and to obtain enhanced levels of 

performance and autonomy in any group of cooperating agents especially in 

coordinated tasks and task allocation problems. 

 This work claims the relevance of introspection for both individual and cooperative 

decisions about commitments between physical agents. In such decisions, the 

introspection allows an agent to know about its physical body’s ability to perform the 

proposed tasks. Therefore, physical agents can behave intelligently when they 

negotiate commitments with other agents or humans. Here, intelligence is understood 

as the appropriate exploitation of knowledge about dynamics to perform better [Sanz 

et al., 01] and achieve enhanced levels of performance and autonomy [Sanz et al., 00]. 

In this sense, introspection contributes to increasing the level of intelligence in physical 
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agents by means of a suitable self-examination capability. In particular, with 

introspection, physical agents will have a great deal of flexibility and self-control that 

will make them more intelligent. Likewise, introspection is closely related to self-

awareness. Research on self-aware control systems aims at building systems that 

exhibit flexible, autonomous and goal-directed behaviours and provides an application 

domain for research and development of agent technologies [Sanz et al., 04] [Luck et 

al., 05]. The emergence of the self-aware control systems’ behaviors is based on a deep 

understanding of the world and the self. Since introspection is related to self-knowing, 

it could help to fulfill the aims of self-aware control systems and also be a contribution 

to agent-based computing theory and practice. 

The chapter considered a representation based on capabilities related to the agent 

body’s dynamics. These capabilities are managed in an introspective manner when 

agents are required to make a decision or to commit to the fulfillment of a task. 

Nevertheless, it is still difficult to choose the necessary information to include in the 

capabilities to represent dynamics. Here, introspection on dynamics is closely related 

to automatic controllers of physical agents. From the controllers, suitable information is 

extracted to obtain reliable control-oriented knowledge of the agent body’s dynamics. 

However, in many cases the correspondence among controllers and capabilities is not 

possible of establishing in an analytical way by using the traditional control theory, 

that is generally concerned with the analysis of the dynamical behavior of controlled 

systems, often in terms of differential equations [Breemen, 01]. The above can be due to 

the characteristics of the plant (plants of dynamics of high order, multi-variables, not 

linear, etc), of the controllers (non-linear controllers, fuzzy controllers, neural networks 

controllers, etc), or the environment (very noisy environments with high disturbances). 

In these cases, it will be necessary to establish the correspondence by using, as 

alternatives, techniques of machine learning or soft-computing to establish an 

appropriate relation as it is shown with some examples in the following chapters. 
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Chapter 5 

Implementation 

This chapter presents the application of the proposed approach on several coordinated control 

scenarios. It describes how physical agents can introspect on their control-grounded capabilities 

in coordinated tasks and task allocation problems of three different test beds. Specifically, robot 

soccer has been used as the test bed 1. The passing a ball, the offside maneuver and a team-work 

coordination case are presented in robot soccer. A search team of agent-controlled mobile robots 

in a rescue environment represents the test bed 2. Finally, convoys of agent-controlled vehicles 

in a traffic flow environment constitute the test bed 3. The chapter provides a general 

description of these three test beds while specifying their details as they are used for empirical 

testing. 

 

5.1   The Test bed 1: Robot Soccer 

Autonomous, cooperating mobile robots represent multi-agent systems. The robot 

soccer test bed is a challenge for autonomous mobile cooperating robots [Burkhard et 

al., 02] . This test bed is a rich domain for the study of topics related to multi-agent 

systems [Kim and Vadakkepat, 00]. Robot soccer has many features found in a real-

world system such as complexity, dynamism, uncertainty and goal variability, together 

with both cooperating and competing robots [Oller et al., 97]. In addition, working 
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with robot soccer is a great opportunity to deal with a lot of different kinds of technical 

subject areas. It is possible to deal with every technology, which is necessary for an 

autonomous system [Novak, 02].  The emergence of robot soccer competitions as 

RoboCup (http://www.robocup.org/) and FIRA (http://www.fira.net/) is then an 

interesting trend that control researchers should explore for developing new 

approaches. In this case, stronger links with the AI community should be explored, 

because that community is currently at the forefront of many of these applications 

[Murray et al., 03]. 

In particular, the agent paradigm is commonly proposed as a solution to controlling 

a robot community [De la Rosa et al., 97] [Rocher and Duhaut, 98]. The global behavior 

problem of a robot soccer team provides the opportunity to apply agent theory because 

of the distributed architecture of the mobile robots. The problem itself implies 

coordination, competition and cooperation by means of communication between the 

robot soccer players. Specifically, the multi-agent control algorithm, in such active 

environment, must then comprise a low level kinematics and dynamics and high level 

decision-making.    

Robot soccer has been used as the main test bed for these reasons. Robots employed 

in disaster control and response operations, household activities, traffic control and 

industrial operations can profit from the results gained by researching and enhancing 

the game of these small mobile robots. 

 

5.1.1 Robot Soccer System 

Basically, robots, a vision system, a host computer and a communication system are 

needed for a robot soccer game (see Fig. 5.1). A vision-based soccer robot system has 

been used as operating method implemented as a remote-brainless soccer robot system 

[Kim and Vadakkepat, 00]. Each robot has its own driving mechanism, communication 

board and CPU board in the remote-brainless soccer robot system. The computational 

http://www.robocup.org
http://www.fira.net
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part controls the robot’s velocity according to the command data received from a host 

computer. All calculations on vision data processing, decision-making, strategies, 

position control of robots, are done in a host computer which controls the robots via 

radio communication. In robot soccer different kinds of system configurations exist. 

The configuration used in this work is called MiroSOT (Micro Robot Soccer 

Tournament) [Kim and Vadakkepat, 00]. Specifically, Fig. 5.2 shows the team of real 

MiroSOT robots used in the experiments. 

 

Fig. 5.1. Overall robot soccer system. 

 

Fig. 5.2.  Team of real MiroSOT robots. 
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5.1.2 Robot Modeling 

The state S(t) of the MiroSOT robots can be established by any set of the following 

representations: (see Fig.  5.3) 

}v,v,,y,x{)t(Sor},v,,y,x{)t(Sor}v,v,,y,x{)t(S yxrl θ=ωθ=θ=  

The relation among the different representations is established from the following 

kinematics relations:   

rrll Rv;Rv ω=ω=  

 

Fig. 5.3. Variables that describe the robots’ state, L=7.5 cm, R=2.25 cm, G: geometric center. 

Where lv  and rv  are the linear velocities of the wheels left and right respectively, 

lω  and rω  are the angular velocities of the wheels left and right respectively and R is 

the radius of the wheels. Also, it can be shown that: 

L
vv

and
2

vv
v rlrl −

=ω
+

=   

Where v  is the linear velocity of the mobile robot; ω  is the robot's angular velocity 

and L is the distance between the wheels. The projections of the linear velocity on the X 

and Y axes are given by:  
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)sin(vvand)cos(vv yx θ=θ=   

From the above relations is observed the need of controlling the linear velocities of 

each wheel )v,v( rl  to be able of controlling the movement of the geometrical center of 

the robot (G) represented by means of the coordinates (x, y, θ). 

A mobile robot is then a MIMO (Multi-Input Multi-Output) system and its control is 

typically too complex to be developed and operated when it must include the 

specifications of the system’s response. These specifications must take into account the 

dynamical limitations and the non-holonomic features of the mobile robot and the 

geometric and kinematics properties of the movement path. In this sense, Equation 

(5.1) provides the robot model used. 
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Other higher order transfer functions, non-linearities and other variables will be 

analysed in future work.  

 

5.1.3 Selected Coordinated Tasks 

Two coordinated tasks of the robot soccer test bed have been selected to evaluate the 

proposed approach: passing a ball (task1) and the offside maneuver (task2).  

 

5.1.3.1 Passing a Ball 

The passing experiment is here described as follows: Two physical agents, passer (Ap) 

and shooter (As), are involved in passing a ball. The physical agents have an obstacle-

free movement trajectory and have a set of controllers to move in the environment. The 

passer must strike the ball towards the interception point in a suitable way. The 
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shooter must intercept and shoot the ball with the intention of scoring in the opposite 

goal. Thus, the passer and the shooter must coordinate to perform the task 

successfully. Fig. 5.4 shows an example of this task. 

 

Fig. 5.4. Task1: passing a ball between physical agents. 

Passing a ball is then represented as follows: the initial distance (D1) between the ball 

and the interception point (IP), the initial velocity of the ball (V0) and the initial 

distance (D2) between the shooter and the IP. For the sake of simplicity, the passer and 

shooter are not moving at the beginning of the task. The IP is arbitrarily selected in a 

region near the opposite goal. The V0 determines the behavior of the ball and depends 

on the impact of the passer.  Additionally, this task takes into account dynamic and 

non-holonomic constraints inherent to the physical agents’ bodies, and time constraints 

of the physical agents’ controllers. Time constraints are considered because the 

environment’s dynamics impose time limitations on passing a ball.  

Here, the passer’s orientation when it strikes the ball is important to execute a well-

coordinated task. The impact orientation determines the future path of the ball as 

shown in Fig. 5.5. This determination is required because the passer’s orientation is 

influenced by the above dynamic, non-holonomic and time constraints. Therefore, the 

interception point is recalculated when the passer strikes the ball and it is informed to 

the shooter. Equation (5.2) shows this recalculation. 
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( ) ( ) )2.5(sinDyy,cosDxx P1BIPnewP1BIPnew θ+=θ+=  

 

Fig. 5.5. Path of the ball when the passer strikes it. 

In the same sense, the variables to represent the shooter are the following: the 

minimal time that needs the shooter to perform the task (TimeA), the initial distance (D2) 

between the shooter and the IP, and a compound orientation of the shooter (θ A). The 

compound orientation is described in (5.3). Fig. 5.6 shows the variables that describe 

the shooter’s state. 

)3.5(FLIL21A θ−θ+θ−θ=α+α=θ  

 

Fig. 5.6. Variables that describe the shooter’s state. 
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5.1.3.2 Offside Maneuver 

In the offside maneuver, two physical agents, defender1 (Ad1) and defender2 (Ad2), are 

involved. Such physical agents have also a set of controllers to move in the 

environment. Defender1 and defender2 must coordinate between them to perform a 

maneuver able to avoid a successful passing a ball between two opposing physical 

agents. Fig. 5.7 shows an example of this task. 

 

 

Fig. 5.7. Task2: offside scheme. a). Before the play; b). After the play. 

It is possible to describe the offside maneuver by means of the following variables: 

the time that the opposing passer strikes the ball (TimeP), the distances (D3) and (D4) 

between each defender and the offside line (OL) as well as their respective generic 

orientations (θ B) and (θ C), (similar to θ A , see Equation 5.3, but using OL as reference). 
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Here, as a simplification, the offside line is selected by the defenders knowing the IP of 

the passed ball, and taking into account the size of their bodies, around 7.5 cm x 7.5 cm 

as described in (5.4).  

(5.4)7.5cm   x x IPOL +=  

In summary, there are two cooperative groups: 
1taskG -attack- and 

2taskG -defense-, 

each one is involved in the execution of a coordinated task of the set of tasks T within 

the multi-agent system AA such that: 

}A,A{}shooter,passer{G sptask 1
==  

}A,A{}defender,defender{G 2d1d21task 2
==  

}task,task{}offside,gsinpas{T 21==  

AAGAAG
21 tasktask ⊆∧⊆   

Where }goalkeeper,defender,defender,shooter,passer{AA 21=  

 

5.1.4 Team-work Coordination Case Study 

A task allocation problem in the robot soccer test bed has been also selected to 

evaluate the proposed approach. To that end, a heterogeneous team of physical agents 

has been designed such that G = {A1, A2, A3, A4, A5}, where each agent has a set of 

movement controllers to interact in the environment. There are three scenes S = {attack, 

midfield, defense} in such environment as it is shown in Fig. 5.8.  

Here, scenes refer to the spatial regions where agents must meet and work jointly to 

perform the proposed tasks. The current scene is established taking into account the 

current ball’s location.  

For the sake of simplicity, the main task to allocate in each scene is to kick the ball 

with the intention of scoring in the opposite goal. In this sense, the physical agents 

must coordinate between them by using several coordination parameters in their 
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utility/cost functions to select the most suitable agent for the main task. The other 

remaining agents follow a fixed strategy according to the conditions established for the 

current scene. Fig. 5.9 shows an example of this task allocation case study. 

 

Fig. 5.8. Scenes and agents in the robot soccer environment. 

 

Fig. 5.9. Example of the task allocation case study in robot soccer. 
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5.1.5 Linear Control System Case Study  

In addition, a linearized second-order model [Oller and Garcia, 02] of the mobile 

robot’s dynamics has been also used in this approach.  The movement of each robot 

))t( y(t), (x(t), θ  is then controlled such that the robot follows the horizontal axis x with a 

constant linear velocity v.  A control law based on the poles location method in which 

the values of the angular velocity ω are obtained in terms of the robot location 

))t((y(t),θ  is proposed in (5.5). 

)5.5()t()()t(y
v

)t( 21
21 θα+α+

αα
−=ω  

Where 2
nn2,1 1j ζ−ω±ζω−=α , 2,1α  are the poles of the system, ζ is the damping 

factor and ωn is the natural frequency of the characteristic equation of a second-order 

system. Thus, the linear controlled system using the movement variables (y,θ) of the 

robot is represented by (5.6) and (5.7). 
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The step responses expressions of the above linearized model are shown in (5.8) and 

(5.9). 
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Where 2
nd 1 ζ−ω=ω , ωd is the damping natural frequency. 



Chapter 5: Implementation 

Introspection on Control-grounded Capabilities – Doctoral Thesis – Christian G. Quintero M.               80 
 

In this case, the above linear model for each mobile robot has been used in the 

coordinated tasks described in Sections 5.1.3.1 and 5.1.3.2.  Here, different situations 

can appear in the execution of such proposed tasks. These situations must be taken into 

account when the physical agents make cooperative decisions. In this domain, space 

limitations SL: reduced space for movement due to the presence of other agents, 

motion disturbances MD: collisions with other physical agents, time constraints TC: 

deadlines in the tasks due to the environment’s dynamics, energy performance EP: 

different energy expenses according to the tasks, and special behaviours like 

aggressiveness AB and quickness QB are considered and their combinations in the 

coordinated tasks are examined. Every situation has an influence degree ID to establish 

the relevance of each one on the agents’ decisions. The sum of all IDs of the examined 

situations is equal to 100%. 

 

5.1.6 Implementations in Robot Soccer 

In the implementations, each physical agent has a set of movement controllers to 

execute the proposed coordinated tasks. Three different controllers (c1, c2, and c3) have 

been designed such that: 

}c,c,c{)A(C)A(C)A(C)A(C 3212d1dsp ====  and 

}c,c,c{)A(C)A(C)A(C)A(C 3212dtask1dtaskstaskptask 2211
====  

Fig. 5.10 shows how these controllers produce different dynamics in the execution of 

the tasks. The results of the tasks’ executions will be different if the controllers have 

different control laws under the same environmental conditions and task requirements. 

Thus, it is possible to obtain a set of capabilities associated with each controller for the 

current environmental conditions and the proposed task requirements. These 

capabilities describe the dynamic features of the system during the execution of the 

tasks with a specific controller. The representation of dynamics based on capabilities 

could be by means of performance indicators according to features of the path. 
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Fig. 5.10. a). Spatial evolution of the physical agent with each controller; b). Temporal evolution of the physical 

agent’s orientation with each controller. 

For instance, Fig. 5.11 shows the spatial evolution of a physical agent with each 

designed controller (c1, c2, and c3) under some specific environmental conditions ( initial 

location: ( 150cm, 50cm, 0° ), final location: ( 50cm, 150cm, 190° ) ) and task requirements 

(temporal constraint of 4 seconds).  

 

Fig. 5.11.  Spatial evolution of the physical agent for a temporal constraint of 4 seconds from an initial location of 

(150cm, 50cm, 0°) to a final location of (50cm, 150cm, 190°). 

The following set of capabilities have been then supposed for this task: the minimal 

time to perform the task (TimeA), the distance error (ΔDA) and the orientation error 

(ΔθA) with respect to the final target, the final linear velocity (vA), the maximal linear 
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and angular velocities (max_vA and max_ωA), and the control effort (CEA) in the 

execution of the task. Table 5.1 presents the set of the above capabilities associated with 

each controller for the conditions shown in Fig. 5.11. 

Table 5.1.  Set of capabilities of the physical agent for a temporal constraint of 4 seconds. 

 

However, there are many cases where is not possible to fulfil simultaneously all the 

required conditions. Fig 5.12 shows, for instance, how the physical agent’s dynamics 

are different when the task requirements change (temporal constraint of 1 seconds) under 

the same environmental conditions ( initial location: ( 150cm, 50cm, 0° ), final location:  

(50cm, 150cm, 190° ) ).  

 

Fig. 5.12.  Spatial evolution of the physical agent for a temporal constraint of 1 second from an initial location of 

(150cm, 50cm, 0°) to a final location of (50cm, 150cm, 190°). 

Likewise, Table 5.2 shows how the controllers have different capabilities to perform 

the same task. In some cases, the proposed task is not correctly performed since the 

associated capabilities are not the most appropriate to perform it. 
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Table 5.2.  Set of capabilities of the physical agent for a temporal constraint of 1 second. 

 

Thus, it should be noted that the information provided by the capabilities about 

dynamics results quite relevant for physical agents to avoid undesirable situations and 

to fulfill correctly the proposed tasks. The implementation aspects and examples of the 

algorithms for control and decision used in this work for the passing a ball, the offside 

maneuver and the team-work coordination case in robot soccer are introduced next. 

 

5.1.6.1 Implementation in the Passing a Ball 

The following set of capabilities has been used for passing a ball described in Section 

5.1.3.1: the minimal time that needs the shooter to perform the task (TimeA), the 

distance error (ΔDA) and the orientation error (ΔθA) with respect to the final target, and 

the control effort (CEA) in the execution of the task such that: 

3,2,1i},CE,,D,Time{)A(CC AAAAstask,c 1i
=θΔΔ=  

The environmental conditions are related to the shooter’s initial state, represented by 

(D2, θA). The task requirements are related to the proposed execution time of the task 

(TimeT). It takes into account the ball initial state represented by (V0, D1) in the approach 

presented in [De la Rosa et al., 04] where a neural network calculates TimeT such that: 

}Time{TR},,D{)A(EC TA2s =θ=  | }Time,task,,D{)A(DK T1A2stask1
θ=  

The self-inspection functions )A( stask,ic 1
Ψ  are here implemented by using neural 

networks that take into account the agent’s domain knowledge )A(DK stask1
 to obtain 
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the agent’s capabilities )A(CC stask,c 1i
 according to the available controllers 

)A(C stask1
such that: 

3,2,1i)),A(DK()A(CC stasktask,cstask,c 11i1i
=Ψ=  

})Time,task,,D({}CE,,D,Time{ T1A2task,cicAAAA 1i
θΨ=θΔΔ  

Fig. 5.13 shows an example of these capabilities.  

 

Fig. 5.13. Example of the capabilities for passing a ball. 

Where: u(t)→ velocity control signal, TimeT → proposed execution time of the task. 

The self-evaluation functions )A( stask,ic 1
Φ  are also implemented by using neural 

networks that calculate the certainty indexes ]1,0[)A(ci stask,c 1i
∈ for each controller in 

the proposed task according to its capabilities {ΔDA, ΔθA} and the possibility of 

performing the task given by the condition ({TimeA} < TimeT) such that: 

3,2,1i)),A(CC()A(ci stask,ctask,cstask,c 1i1i1i
=Φ=  

})TimeTime,,D({)A(ci TAAAtask,cstask,c 1i1i
<θΔΔΦ=  

The resulting neural networks for each controller were feed-forward back-

propagation networks. The networks were not found by an exhaustive search for the 

optimal configuration to suit this task, but rather were the quickest and most successful 

of some alternatives with different numbers of hidden units and different learning 

rates. 
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In addition, a fuzzy-based suitability function )A( stask,ic 1
Θ  helps physical agent to 

know the suitability ]1,0[)A(sr stask,c 1i
∈  of each controller in the task according to the 

evaluation of its respective capabilities. For that, the certainty indexes are jointly used 

with the capability {CEA} in a fuzzy decision maker such that: 

3,2,1i)),A(}CE{),A(ci()A(sr stask,cAstask,ctask,cstask,c 1i1i1i1i
=Θ=  

This decision maker selects the most suitable controller to execute the task by means 

of a comparative analysis )A( stask1
ζ . The fuzzy decision maker is useful when more 

than one certainty index shows that the task can be correctly performed by more than 

one controller and the maximal certainty index is not enough to decide the most 

suitable controller. In this sense, it is necessary to optimize the decision-making 

structure (increase the introspection degree) for this selection problem. Fig. 5.14 shows the 

criterion to select the controller that best matches the requirements.  

 

Fig. 5.14. Fuzzy decision maker. 

The selection is based on suitability rates )A(SR stask1
. A high or medium 

)A(sr stask,c 1i
 indicates that the task can be performed, but with different performance 

levels. A low )A(sr stask,c 1i
 indicates that the task cannot be performed. Appropriate 

decision thresholds to implement this decision-making structure have been selected. 
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According to Fig. 5.14 is possible to conclude for each controller: 

If (Certainty Index is high) and (Control Effort is low) then (Suitability Rate is high)   

If (Certainty Index is high) and (Control Effort is high) then (Suitability Rate is medium) 

If (Certainty Index is low) and (Control Effort is high) then (Suitability Rate is low) 

If (Certainty Index is low) and (Control Effort is low) then (Suitability Rate is low) 

 

5.1.6.1.1 Decisions Example in the Passing a Ball 

The introspection approach based on neural networks (see Section 5.1.6.1) is 

illustrated for the passing a ball, where each physical agent has the set of controllers 

shown in Fig. 5.10. An example of the decision algorithm executed by the agents in this 

task is as follows: 

1. Proposition: The passer proposes to the shooter that they perform the pass with a 

TimeT = 0.39 s. The shooter is (D2 = 41.23 cm, θA= 362.18°) away from the interception 

point. 

)task,t,A,A(REQUEST 11sp  where }s39.0,gsinpas,18.362,cm23.41{)A(DK stask1
°=  

2. Introspection: The shooter looks for (self-inspection) and evaluates (self-evaluation) 

its capabilities to perform the task with its available controllers )A(C stask1
 and domain 

knowledge )A(DK stask1
 (see Table 5.3). 

{ })A(SK,task,AKNOW stask1s
t
A 1

2
s

 and [ ]{ })A(,taskCANBELIEF stask1
t
A

t
A 1

2
s

2
s

ζ  

Table 5.3.  Introspection of the shooter on the first passing opportunity. 
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3. Answer: The shooter tells the passer that it can perform the task with the 

following maximal reliability )A( stask1
ζ = 15%. 

[ ]{ }( ))A(,taskCANBELIEF,t,A,AINFORM stask1
t
A

t
A3ps 1

2
s

2
s

ζ  

4. Decision: The passer considers that this reliability is too low. 

5. New proposition: The passer proposes to the shooter that they perform the pass 

with a TimeT = 0.536 s. 

)ktas,t,A,A(REQUEST 15sp ′  where }s536.0,gsinpas,18.362,cm23.41{)A(DK sktas 1
°=′  

6. Introspection: The shooter looks for and evaluates its capabilities to perform the 

task with this )A(DK sktas 1′  (see Table 5.4). 

{ })A(SK,ktas,AKNOW sktas1s
t
A 1

6
s ′′  and [ ]{ })A(,ktasCANBELIEF sktas1

t
A

t
A 1

6
s

6
s ′ζ′  

Table 5.4. Introspection of the shooter on the second passing opportunity. 

 

7. Answer: The shooter tells the passer that it can perform the task with the 

following maximal reliability )A( sktas 1′ζ = 50%. 

[ ]{ }( ))A(,ktasCANBELIEF,t,A,AINFORM sktas1
t
A

t
A7ps 1

6
s

6
s ′ζ′  

8. Decision: The passer considers that this reliability is too low. 

9. New proposition: The passer proposes to the shooter that they perform the pass 

with a new TimeT = 0.759 s. 

)ktas,t,A,A(REQUEST 19sp ′′  where }s759.0,gsinpas,18.362,cm23.41{)A(DK sktas 1
°=′′  
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10. Introspection: The shooter looks for and evaluates its capabilities with this new 

time (see Table 5.5). 

{ })A(SK,ktas,AKNOW sktas1s
t
A 1

10
s ′′′′  and [ ]{ })A(,ktasCANBELIEF sktas1

t
A

t
A 1

10
s

10
s ′′ζ′′  

Table 5.5. Introspection of the shooter on the third passing opportunity. 

 

11. Answer: The shooter tells the passer that it can perform the task with the following 

maximal reliability )A( sktas 1′′ζ = 85.80%. 

12. Decision: The passer agrees the reliability is large enough and they can perform the 

pass. The shooter selects then the most suitable controller (c3) to perform its movement. 

( )112sp ktas,t,A,ACOMMIT ′′  

 

5.1.6.2 Implementation in the Offside Maneuver 

In the offside maneuver described in Section 5.1.3.2, the introspective reasoning (see 

Section 4.2.3) is based on the Case-Based Reasoning (CBR) methodology. Here, the 

minimal time that needs the defenders to execute the task (TimeA) and the control effort 

(CEA) in the execution of the task, have been used as capabilities such that: 

3,2,1i},CE,Time{)A(CC AA1dtask,c 2i
==  

3,2,1i},CE,Time{)A(CC AA2dtask,c 2i
==  

The defenders must be able to select the most suitable controller of )A(C 1dtask2
 and 

)A(C 2dtask2
 to perform the maneuver. Thus, each defender performs introspective 
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reasoning in relation to its body to enhance its decision ability and guarantee sure and 

trustworthy commitments in this coordinated task. 

A case consists of spatial (DA, θA), temporal (TimeA) and energy (CEA) conditions 

under which each defender can perform the task using the controller i taking into 

account the information about the physical body’s dynamics. The case database 

contains continuously updated representative data of the type: Case = {DA, θA, TimeA, 

CEA, (c1 or c2 or c3)}. The environmental conditions are related to the defenders’ initial 

states, represented by (D3, θB) (D4, θC). The task requirements are related to the time 

that the opposing passer strikes the ball (TimeP) such that: 

}Time{TR},,D{)A(EC},,D{)A(EC PC42dB31d =θ=θ= |

}Time,task,,D{)A(DK P2B31dtask2
θ=  and }Time,task,,D{)A(DK P2C42dtask2

θ=  

The self-inspection functions )A( 1dtask,ic 2
Ψ  and )A( 2dtask,ic 2

Ψ , perform a 

progressive filtering (retrieve: filter 1 and filter 2) on the case database. The filtering 

takes into account the agents’ domain knowledge )A(DK 1dtask2
 and )A(DK 2dtask2

 to 

obtain the agent’s capabilities )A(CC 1dtask,c 2i
 and )A(CC 2dtask,c 2i

 respectively from the 

cases most similar to the current situation of each defender such that: 

3,2,1i)),A(DK()A(CC 1dtasktask,c1dtask,c 22i2i
=Ψ= |

})Time,task,,D({}CE,Time{ P2B3task,ccAA 2ii
θΨ=  

3,2,1i)),A(DK()A(CC 2dtasktask,c2dtask,c 22i2i
=Ψ= | 

})Time,task,,D({}CE,Time{ P2C4task,ccAA 2ii
θΨ=  

Where )A( 1dtask,c 2i
Ψ :  

Filter 1: ?cm10DDcm10D 3A3 +≤≤−   

                  Filter 2: ?3030 BAB °+θ≤θ≤°−θ   

And )A( 2dtask,c 2i
Ψ :  

Filter 1: ?cm10DDcm10D 4A4 +≤≤−   

                    Filter 2: ?3030 CAC °+θ≤θ≤°−θ   
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The self-evaluation functions )A( 1dtask,ic 2
Φ  and )A( 2dtask,ic 2

Φ   (filter 3) allow 

selection of the set of controllers with which the agents can perform the task. In 

addition, the self-evaluation calculates the certainty indexes ]1,0[)A(ci 1dtask,c 2i
∈  and 

]1,0[)A(ci 2dtask,c 2i
∈  for each controller. The calculation takes into account the ratio 

between the retrieved cases (RCases_ci) for the controller i and all retrieved cases 

(AllRCases). 

3,2,1i)),A(CC()A(ci 1dtask,ctask,c1dtask,c 2i2i2i
=Φ=  

3,2,1i)),A(CC()A(ci 2dtask,ctask,c2dtask,c 2i2i2i
=Φ=  

Where )A( 1dtask,c 2i
Φ : Filter 3: PA TimeTime < ,  

)A(AllRCases
)A(c_RCases

)A(ci
1d

1di
1dtask,c 2i

=  

Where )A( 2dtask,c 2i
Φ : Filter 3: PA TimeTime < ,    

)A(AllRCases
)A(c_RCases

)A(ci
2d

2di
2dtask,c 2i

=  

Similarly to the introspection approach for passing a ball, the certainty indexes can 

be jointly used with the capability {CEA} in the fuzzy decision maker shown in Fig. 5.14. 

In this sense, it has been selected as {CEA}, for the controller i, the minimum among all 

the retrieved cases for the same controller. Thus, the defenders select then the most 

suitable controllers to execute the offside. 

A new solution (reuse) is generated from the retrieved cases according to the problem 

conditions. A revision of the proposed solution is done (revise) to evaluate the obtained 

results and verify that the solution is satisfactory. Finally, the problem conditions and 

the proposed solution are indexed (retain) to use in successive iterations of the CBR 

cycle if the results after the evaluation have been satisfactory. 

The tasks performance improves with these new and effective approaches because 

the physical agents can manage their physical bodies according to their capabilities. 

Thus, physical agents have introspection on what they can and cannot do and how 

they are able to perform the tasks according to their physical limitations, mainly 

related to their dynamics. 
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5.1.6.2.1 Decisions Example in the Offside Maneuver 

Similarly, an example of the decision algorithm executed by the defenders in the 

offside maneuver using the introspection approach based on CBR (see Section 5.1.6.2) 

is as follows: 

1. Proposition: The passer of the opposite team has a time (TimeP = 0.63 s) to pass 

the ball. Thus, defender 1 proposes an offside maneuver to defender 2. Defender 1 is (D3 = 

44.72 cm, θB = 337.38°) away from the offside line. Defender 2 is (D4 = 63.23 cm, θC = 

355.14°) away from the same offside line. 

)task,t,A,A(REQUEST 212d1d where 

}s63.0,offside,38.337,cm72.44{)A(DK 1dtask2
°= and

}s63.0,offside,14.355,cm23.63{)A(DK 2dtask2
°=  

2. Introspection: The defenders look for and evaluate their capabilities to perform 

the task (see Table 5.6). 

{ })A(SK,task,AKNOW:A 1dtask21d
t
A1d 2

2
1d

 and [ ]{ })A(,taskCANBELIEF 1dtask2
t
A

t
A 2

2
1d

2
1d

ζ  

{ })A(SK,task,AKNOW:A 2dtask22d
t
A2d 2

2
2d

 and [ ]{ })A(,taskCANBELIEF 2dtask2
t
A

t
A 2

2
2d

2
2d

ζ  

Table 5.6. Introspection of the defenders about the first offside opportunity. 

 

3. Answer: Defender 2 tells defender 1 that it can perform the task with the following 

maximal reliability )A( 2dtask2
ζ  = 50%. 



Chapter 5: Implementation 

Introspection on Control-grounded Capabilities – Doctoral Thesis – Christian G. Quintero M.               92 
 

[ ]{ }( ))A(,taskCANBELIEF,t,A,AINFORM 2dtask2
t
A

t
A31d2d 2

2
2d

2
2d

ζ  

4. Decision: Defender 1 considers that this reliability is too low, so the defenders do 

not commit to perform the task and instead wait for a new opportunity to avoid a pass 

between two opposing physical agents. 

5. New proposition: At another time the task requirement is (TimeP = 0.74 s), and the 

environmental conditions are (D3 = 41.23 cm, θB = 362.18°), (D4 = 60.83 cm, θC = 382.26°) 

for a new offside line. 

)ktas,t,A,A(REQUEST 252d1d ′ where 

}s74.0,offside,18.362,cm23.41{)A(DK 1dktas 2
°=′ and

}s74.0,offside,26.382,cm83.60{)A(DK 2dktas 2
°=′  

6. Introspection: Each defender looks for and evaluates the controllers with which 

they can perform the offside maneuver in this new opportunity (see Table 5.7). 

{ })A(SK,ktas,AKNOW:A 1dktas21d
t
A1d 2

6
1d ′′  and [ ]{ })A(,ktasCANBELIEF 1dktas2

t
A

t
A 2

6
1d

6
1d ′ζ′  

{ })A(SK,ktas,AKNOW:A 2dktas22d
t
A2d 2

6
2d ′′  and [ ]{ })A(,ktasCANBELIEF 2dktas2

t
A

t
A 2

6

2d

6

2d ′ζ′  

Table 5.7. Introspection of the defenders about the second offside opportunity. 
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7. Answer: Defender 2 tells defender 1 that it can perform the task with the following 

maximal reliability )A( 2dktas 2′ζ  = 85.84%. Likewise, defender1 has the following 

reliability )A( 1dktas 2′ζ  = 85.80%. 

[ ]{ }( ))A(,ktasCANBELIEF,t,A,AINFORM 2dktas2
t
A

t
A71d2d 2

6
2d

6
2d ′ζ′  

8. Decision: Defender 1 agrees the reliability is large enough and they can perform 

the task. Defenders 1 and 2 identify the most suitable controller (c3) to perform the 

coordinated task and commit to executing it. In this example, the defenders selected 

the same controller to perform the task, but this not always happens. 

( )282d1d ktas,t,A,ACOMMIT ′  

 

5.1.6.3 Implementation in the Team-work Coordination Case Study 

In the literature, there are several coordination parameters to take into account in the 

utility/cost functions for allocating tasks. However, in this implementation, the 

introspection has been considered as one of them jointly with two more: proximity and 

trust. 

Here, each physical agent has a set of movement controllers to execute the tasks 

described in Section 5.1.4 such that: 

}c,c,c{)A(C)A(C)A(C)A(C)A(C 32154321 =====  and 

}c,c,c{)A(C)A(C)A(C)A(C)A(C 3215task4task3task2task1task kkkkk
=====  

In addition, the following set of capabilities has been used to represent the physical 

agents’ dynamics: the distance error )D( AΔ  and the orientation error )( AθΔ  with 

respect to the desired final target such that: 

5,4,3,2,1jand3,2,1i},,D{)A(CC AAjtask,c ki
==θΔΔ=  
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The introspection (see Section 4.2.3) is implemented using feed-forward back-

propagation neural networks. The environmental conditions EC are related to the 

agents’ initial state, represented by the distance jD  and orientation jθ  of each agent 

with respect to the final target. The task requirements TR are related to the current 

scene in the environment )s( l .  

}s{TR},,D{)A(EC ljjj =θ=  | }s,task,,D{)A(DK lkjjjtaskk
θ=  

The self-inspection function )A( jtask,ic k
Ψ  (set of neural networks 1) takes into account 

the agent’s domain knowledge )A(DK jtaskk
 to obtain the agent’s capabilities 

)A(CC jtask,c ki
 according to the available controllers )A(C jtaskk

such that: 

5,4,3,2,1jand3,2,1i)),A(DK()A(CC jtasktask,cjtask,c kkiki
==Ψ=  

3,2,1l5,4,3,2,1jand3,2,1i})s,task,,D({},D{ lkjjtask,cicAA ki
===θΨ=θΔΔ  

The self-evaluation function )A( jtask,ic k
Φ  (set of neural networks 2) calculates the 

certainty index ]1,0[)A(ci jtask,c ki
∈ for each controller in the proposed task according to 

its capabilities },D{ AA θΔΔ  such that: 

5,4,3,2,1jand3,2,1i)),A(CC()A(ci jtask,ctask,cjtask,c kikiki
==Φ=  

}),D({)A(ci AAtask,cjtask,c kiki
θΔΔΦ=  

The set of all certainty indexes )A(CI jtaskk
 for a specific task k is constituted by all 

ki task,cci of the possible controllers of the agent jA in this task.  

The introspection parameter ]1,0[)A(i jtaskk
∈  is then calculated by means a 

comparative analysis between all possible certainty indexes )A(CI jtaskk
 that allows 

physical agent, if it is possible, to select a controller for the execution of this task as is 

described in (5.10). 

)10.5())A(CImax()A(i jtaskjtask kk
=  
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A high )A(i jtaskk
 value represents that the agent jA  can correctly perform the task k. 

Likewise, a low )A(i jtaskk
 value indicates that the agent cannot perform the task. Fig 

5.15 depicts a scheme of the agents in the environment. 

 

Fig. 5.15. General scheme of the robot soccer environment for the introspection calculation. 

On the other hand, proximity represents the physical situation of each agent within 

an environment. The proximity parameter ]1,0[)A(p jtaskk
∈  is related to the distance 

between the current location of the agent jA  and the location of the target as is 

described in (5.11). 

)11.5(
d

)A(d
1)A(p

max

jtask
jtask

k
k ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=  

Where  )A(d jtaskk
 is the distance between the physical agent jA  and the target 

ktask  and maxd  establishes empirically a fixed maximal radius limit according to the 

target’s location. Here, a radius limit of maxd  = 110 cm has been used. Physical agents 

outside of such limit have a )A(p jtaskk
= 0. Fig. 5.16 depicts a scheme of the physical 

agents’ state for the proximity calculation. 
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Fig. 5.16. General scheme of the robot soccer environment for the proximity calculation. 

Trust represents the social relationship among physical agents that rule the 

interaction and behavior of them. The trust parameter ]1,0[)A(t jtaskk
∈  takes into 

account the result of the past interactions of a physical agent with others. The 

performance of the proposed task is then evaluated based on )A(t jtaskk
. Equation (5.12) 

shows the reinforcement calculus if goals are correctly reached by the agent. 

Otherwise, the agent is penalized if goals are not reached using (5.13).  

)12.5()A(a)A(t)A(t jtaskjtaskjtask kkk
Δ+=  

)13.5()A(p)A(t)A(t jtaskjtaskjtask kkk
Δ−=  

Where )A(a jtaskk
Δ  and )A(p jtaskk

Δ  are the awards and punishments given to jA  in 

the task k respectively. For the sake of simplicity, a task is correctly performed by an 

agent when it kicks the ball and the ball goes toward the opposite goal. The agent is 

then awarded. Otherwise, a task is not well performed when the agent kicks the ball 

and the ball goes toward its own goal. The agent is then penalized. 

A high )A(t jtaskk
 value represents a more trusted physical agent in the task. 

Specifically, different trust values have been established for each agent depending on 

the scene as in (5.14) and (5.15): 
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)14.5()A(a)A(t)A(t js,taskjs,taskjs,task lklklk
Δ+=  

)15.5()A(p)A(t)A(t js,taskjs,taskjs,task lklklk
Δ−=  

Where appropriate values for the awards and punishments have been empirically 

selected for each scene. In particular, if s1 = defense, s2 = midfield and s3 = attack then 

1.0)A(a js,task 1k
=Δ ,  04.0)A(a js,task 2k

=Δ , 05.0)A(a js,task 3k
=Δ , 1.0)A(p js,task 1k

=Δ , 

08.0)A(p js,task 2k
=Δ , 1.0)A(p js,task 3k

=Δ . Fig 5.17 depicts a scheme of the robot 

soccer environment for the trust calculation. 

 

Fig. 5.17. General scheme of the robot soccer environment for the trust calculation. 

The utility/cost function ]1,0[)A(u jtaskk
∈  is therefore constituted as a proper average 

of the element-by-element multiplication of the tuples as in (5.16). 

( )
)16.5(

Ok

)A(PaOkTh
)A(u

k

kkk
k

task

jtasktasktask
jtask ∑
∑ ⋅⋅

=  

Where )A(Pa jtaskk
 is a tuple formed by the coordination parameters such that: 

)]A(t)A(p)A(i[)A(Pa jtaskjtaskjtaskjtask kkkk
=  
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ktaskTh is a set of flags (1 or 0) that establishes if the above coordination parameters 

fulfill their respective decision thresholds such that: 

]th_tth_pth_i[Th
kkkk tasktasktasktask =  

Appropriate decision thresholds to set or not the above flags have been empirically 

selected. For this implementation, the thresholds to overcome for each coordination 

parameter are: 5.0lim_t,5.0lim_p,65.0lim_i
kkk tasktasktask === . 

ktaskOk is a set of flags (1 or 0) that establishes if the above coordination parameters 

are currently taking into account in the utility/cost function calculation such that: 

]ok_tok_pok_i[Ok
kkkk tasktasktasktask =  

Thus, a task is allocated to the most suitable physical agent according to the value of 

its utility/cost function (see Equation 5.16) (1st level of decision).  However, if more than 

one agent can perform the task correctly, taking into account all the above-mentioned 

conditions for such functions, then a calculus ]1,0[)A(ur jtaskk
∈  based on the raw values 

of the coordination parameters is made (2nd level of decision). Such calculus does not 

consider the decisions thresholds represented in (5.16) by the flags 
ktaskTh .  If the raw 

calculus does not allow selecting an agent, in this implementation, the agent is then 

selected taking into account some previous knowledge of its physical capabilities (3rd 

level of decision).  

In summary, to achieve sure and trustworthy task allocations, each physical agent 

must use the above coordination parameters in the utility/costs functions before 

performing such tasks. Specifically, introspection contributes to improve the efficiency 

of the multi-agent system. Without introspection, physical agents would try to perform 

actions with no sense, decreasing the number of successful tasks performed.  
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5.1.6.3.1 Task Allocation Example in the Team-work Coordination Case Study 

The following tables show real data related to the proposed approach and the case 

study described in Section 5.1.6.3. The SimuroSOT simulator has been used in this 

empirical testing. An example of the decision algorithm executed by the agents to 

allocate the tasks is as follows: 

 Ten (10) trials have been arbitrarily selected from the logs of a simulation where our 

team with 
ktaskOk = [1 1 1] play versus a default opponent robotic team provided by the 

simulator. Table 5.8 presents the distances of each agent jA  to the target ktask of the 

scene ls .  

Table 5.8. Distances between agents and target. 

 

It is possible the calculation of the proximity parameter by using the above distances. 

Thus, Table 5.9 shows the values of the proximity parameter for each agent in each 

trial, highlighting those that overcome the established decision threshold  
ktasklim_p . 

Likewise, Table 5.10 and Table 5.11 show the values of the introspection and trust 

parameters for each agent in each trial, highlighting those that overcome the 

established decision thresholds 
ktasklim_i and 

ktasklim_t  respectively. 

The flags 
ktaskth_i , 

ktaskth_p  and 
ktaskth_t  are then set to 1 for the highlighted 

values while they are set to 0 for the remaining cases.  
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Table 5.9. Values of the proximity parameter. 

 

Table 5.10. Values of the introspection parameter. 

 

Table 5.11. Values of the trust parameter. 
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The values of the utility/cost functions are calculated by using (5.16) according to the 

information provided in Tables 5.9, 5.10 and 5.11 and the tuples 
ktaskOk and 

ktaskTh . 

Table 5.12 presents the results for these calculations. In this table, it is highlighted the 

highest value in the trials where it is possible to select easily the most suitable agent to 

perform the task. However, in the trials 4, 6 and 8 is necessary the raw values 

calculation. In these cases, it is more difficult to discern, with a certainty greater than 

98%, the most suitable agent between the agents with the highest values of the 

utility/cost function.  

Table 5.12. Values of the utility/cost functions. 

 

Therefore, Table 5.13 shows mainly the raw values calculation for the trial 4, 6 and 8.  

Table 5.13. Raw values of the utility/cost functions. 
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However, it is difficult again to select for the case 6, with a high certainty, an agent 

between the most possible. In this sense, the selection is based on some previous 

knowledge of their physical capabilities. A task is then allocated to A2, A5, A3 and A4 

respectively, where A2 is the quickest agent and A4 is the slowest agent. 

In summary, the example shows in Table 5.14 the final results of our task allocation 

algorithm. The table presents the agent (A1 or A2 or A3 or A4 or A5) selected for the 

execution of the proposed task in the current scene (s1 or s2 or s3) and the level of 

decision (1 or 2 or 3) used for the allocation.  

Table 5.14. Selected agent Aj in the scene sl. 

 

 

5.1.6.4 Implementation in the Linear Control System Case Study 

Different dynamics can be designed by using the linearized model provide in (5.6) 

and (5.7) depending on the control engineer’s criteria.  The following couples {ζ, ωn} = 

{0.4, 6}, {0.6, 10}, {0.8, 4} have been selected to design three movement controllers (c1, c2, 

and c3). Such controllers generate different dynamics as it is shown in the Fig. 5.18 

according to the paths described by the robot. Fig. 5.19 shows the step responses of this 

model for the designed controllers. 
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Fig. 5.18. Different dynamics generated with three different controllers.  a). 1c ; b). 2c ; c). 3c . 

 

 

Fig. 5.19.  Step responses components: a). Y(s)/y(0); b). Y(s)/θ(0); c). θ(s)/θ(0); d). θ(s)/y(0). 

Essentially, this work focuses on the relevance of control-grounded capabilities in the 

decision-making of physical agents. Some control-grounded capabilities were then 

calculated by using the definitions described in Section 4.2.6 and the step responses in 

Fig. 5.19. In this particular implementation, all the weight coefficients are fixed to 1 to 

give the maximum relevance degree for each capability component. Moreover, it has 

been supposed that 100% of disturbances that affect the system are steps with 

amplitude of 3.75 cm and duration of 1 s (e.g., a probable crash with other mobile 
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robot.).  Table 5.15 shows the control-grounded capabilities calculated for each 

movement controller. 

Table 5.15. Control-grounded capabilities of the movement controllers. 

 

For instance, Table 5.16 shows the information about the rise time tr and the settling 

time ts using the step responses in Fig. 5.19. These are useful to calculate the 

aggressiveness of each controller as it is shown for c1 in (5.17) using (4.15). 

Table 5.16. Rise time and settling time for each controller. 
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Likewise, the aggressiveness can be calculated for the other controllers using the 

respective rise times and the settling times based on (4.15). 

The following set of capabilities has been then used for the execution of the 

coordinated tasks (passing a ball and offside maneuver): the overshoot ( μ ), the speediness 

( σ ), the persistence ( γ ), the aggressiveness ( α ), the control effort ( ε ) and the control 

kind ( κ ) such that: 
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For the passing a ball: 

3,2,1i},,,,,,{)A(CC stask,c 1i
=κεαγσμ=  

For the offside maneuver: 

3,2,1i},,,,,,{)A(CC 1dtask,c 2i
=κεαγσμ=  

3,2,1i},,,,,,{)A(CC 2dtask,c 2i
=κεαγσμ=  

The self-inspection functions )A( stask,ic 1
Ψ , )A( 1dtask,ic 2

Ψ  and )A( 2dtask,ic 2
Ψ  allow 

the calculation of the capabilities according to the considerations established by the 

corresponding equations presented in Section 4.2.6. 

Specifically, the introspection takes into account the environmental conditions and 

the task requirements in order to obtain the agent’s certainty indexes )A(CI stask1
,  

)A(CI 1dtask2
 and )A(CI 2dtask2

 in the execution of the proposed tasks with each 

available controller of the sets )A(C stask1
,  )A(C 1dtask2

 and )A(C 2dtask2
 respectively. 

For passing a ball, the environment conditions are related to the shooter initial state 

represented by (D2, θA).  The task requirements are related to the proposed execution 

time of the task (TimeT). A combination of the situations mentioned before with their 

influence degrees )ID(
1task  must be also taken into account in the task requirements 

such that: 

}ID,Time{TR},,D{)A(EC
1taskTA2s =θ=  | 

}ID,Time,task,,D{)A(DK
11 taskT1A2stask θ=  

Likewise, for the offside maneuver the environment conditions are related to the 

initial state of the defenders (D3, θB) and (D4, θC) and the task requirements correspond 

to (TimeP), in the analysed combination of situations with a set of influence degrees 

)ID(
2task  such that: 

}ID,Time{TR},,D{)A(EC},,D{)A(EC
2taskPC42dB31d =θ=θ= |

}ID,Time,task,,D{)A(DK
22 taskP2B31dtask θ=  and 

}ID,Time,task,,D{)A(DK
22 taskP2C42dtask θ=  
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The self-evaluation functions )A( stask,ic 1
Φ , )A( 1dtask,ic 2

Φ  and )A( 2dtask,ic 2
Φ  (set of 

neural networks) calculate the certainty indexes ]1,0[)A(ci stask,c 1i
∈ , ]1,0[)A(ci 1dtask,c 2i

∈  

and ]1,0[)A(ci 2dtask,c 2i
∈ for each controller in the respective tasks. 

 The suitability functions )A( stask,ic 1
Θ , )A( 1dtask,ic 2

Θ  and )A( 2dtask,ic 2
Θ  help 

physical agents to know the suitability of each controller to execute the tasks according 

to the evaluation of its respective capabilities. For that, the certainty indexes are jointly 

used with the control-grounded capabilities and the influence degrees of the involved 

situations such that: 

For the passing a ball: 

3,2,1i)),A(CC),A(ci()A(sr stask,cstask,ctask,cstask,c 1i1i1i1i
=Θ=  

For the offside maneuver: 

3,2,1i)),A(CC),A(ci()A(sr 1dtask,c1dtask,ctask,c1dtask,c 2i2i2i2i
=Θ=  

3,2,1i)),A(CC),A(ci()A(sr 2dtask,c2dtask,ctask,c2dtask,c 2i2i2i2i
=Θ=  

The control-grounded capabilities used in this particular application (see Section 

5.1.5) have a direct relation with the studied situations, (e.g. μA with SL, σA with QB, γA 

with MD, αA with AB, εA with EP). For instance, if the influence degrees IDs of SL, QB, 

MD, AB, and EP are taken into account, a suitability rate can be obtained for each 

controller such that: 

For the passing a ball: 

]%ID ID ID ID [ID  ID EPABMDQBSLtask1
=  

( ) ( )ε⋅+α⋅+γ⋅+σ⋅+μ⋅⋅= EPABMDQBSLstask,cstask,c IDIDIDIDID)A(ci)A(sr
1i1i

 

For the offside maneuver: 

]%ID ID ID ID [ID  ID EPABMDQBSLtask 2
=  

( ) ( )ε⋅+α⋅+γ⋅+σ⋅+μ⋅⋅= EPABMDQBSL1dtask,c1dtask,c IDIDIDIDID)A(ci)A(sr
2i2i

 

( ) ( )ε⋅+α⋅+γ⋅+σ⋅+μ⋅⋅= EPABMDQBSL2dtask,c2dtask,c IDIDIDIDID)A(ci)A(sr
2i2i
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A high suitability rate indicates that the tasks can be performed. A low suitability 

rate indicates that the tasks cannot be performed. The controller with the highest 

suitability rate is the most suitable to be used in the task execution of all controller with 

a high certainty index. Appropriate decision thresholds have been empirically selected 

to implement this decision-making structure.  

 

5.2 The Test bed 2: A Simulated Rescue Environment 

A disaster environment is a dynamic environment with unpredictable situations. The 

set of rescue activities that take place depend on the kind of disaster. Such activities can 

range from searching and rescuing victims, extinguishing forest fires, re-establishing 

urban services, cleaning beaches, etc. Rescue resources must be assigned in a way that 

guarantees the achievement of the required tasks for the optimal recovery of the 

disaster zone. Technology must be able to make a contribution in this socially 

significant situation. To that end, several initiatives have been developed in order to 

promote research in such complex scenarios [Tadokoro et al., 00]. In particular, the 

designed simulated rescue environment provides a suitable test bed where several 

technologies can be examined and integrated. Such artificial scenario is restricted to 

specific rescue conditions making the problem easier to tackle.    

In such rescue scenario, several heterogeneous rescue agents must interact with one 

common purpose: to maximize the number of rescued victims.  The key issue in this 

environment is then that rescue agents must coordinate between them to perform the 

proposed tasks according to their capabilities.   

 

5.2.1 Rescue Case Study 

In the simulated rescue environment there are rescue agents RA = {A1, A2, A3,…, AN} 

and victims V = {V1, V2, V3,…, VM}. Here, tasks allocation is related to allocating victims 
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to save for each rescue agent. So, there are M tasks T = {task1, task2, task3,…, taskM} to 

allocate.  A victim has been saved when a rescue agent arrives to its location before its 

death time. In this sense, a saved victim constitutes a successful task performed by a 

rescue agent. Rescue agents are represented by non-holonomic mobile robots in this 

case study. The robots have just one controller for its movements in the environment. 

Therefore, these physical agents must coordinate their moves to save the greatest 

number of victims by means of a suitable task allocation. Fig. 5.20 shows an example of 

this case study. 

 

Fig. 5.20. Simulated rescue environment. 

For the sake of simplicity, at the beginning of each simulation, the rescue agents are 

not moving. In addition, the rescue agents’ locations, the victims’ death time and their 

locations are arbitrarily selected in each simulation.  

The rescue operation is mainly represented as follows: the initial distance )task,A( ji
D  

between each rescue agent iA of RA and each victim jtask of T, the death time of each 

victim 
jtaskTime  and a compound orientation )task,A( ji

θ  of each rescue agent with 

respect to each victim.  The orientation of a rescue agent is described in (5.18). 
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( ) ( )
( ) ( ) ( ) ( )

)18.5(
||||

||||

jijijiji

jijiji

task,AFtask,ALtask,AItask,AL

task,A2task,A1)task,A(

θ−θ+θ−θ=

α+α=θ
 

Fig. 5.21 shows an example of the variables that describe the rescue agent’s state. 

 

Fig. 5.21. Variables that describe the rescue agent’s state. 

 

5.2.2 Implementation in the Rescue Case Study 

In this implementation, each rescue agent has a different movement controller to 

execute the above tasks. Three different physical agents RA = {A1, A2, A3} have been 

designed with their specific movement controllers such that C(A1) = {c1}, C(A2) = {c2} 

and C(A3) = {c3}. There are four victims V = {V1, V2, V3, V4}, i.e., four tasks T = {task1, 

task2, task3, task4} to test this approach. Fig. 5.22 shows how the physical agents have 

different dynamics in the execution of the tasks.  

It is therefore possible to obtain a set of control-grounded capabilities associated with 

each physical agent. These capabilities describe the dynamic features of the physical 

agents’ bodies during the execution of the tasks. Fig. 5.23 shows an example of these 

capabilities. 
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Fig. 5.22. Temporal evolution of the physical agents: a). In X-axis; b). In Y-axis. 

 
Fig. 5.23. Example of the capabilities in the rescue case study.                                                                                   

Where: u(t)→ velocity control signal, Timetaskj → proposed execution time of the task. 

The following set of control-grounded capabilities has been used for the physical 

agents: the minimal time to perform the task (TimeA), the distance error (ΔDA) and the 

orientation error (ΔθA) with respect to the taskj, and the control effort (CEA) in the 

execution of the task such that: 

4,3,2,1jand3,2,1i},CE,,D,Time{)A(CC AAAAitask,c ji
==θΔΔ=  

The introspective reasoning (see Section 4.2.3) is implemented using feed-forward 

back-propagation neural networks. The environmental conditions are related to the 

physical agents’ initial state, represented by ),D( )task,A()task,A( jiji
θ . The task 

requirements are related to the proposed execution time of the task )Time(
jtask  such 
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that: 

}Time{TR},,D{)A(EC
jjiji task)task,A()task,A(i =θ= | 

}Time,task,,D{)A(DK
jjijij taskj)task,A()task,A(itask θ=  

The self-inspection function )A( itask,ic j
Ψ  (set of neural networks 1) takes into account 

the agent’s domain knowledge )A(DK itask j
 to obtain the agent’s capabilities 

)A(CC itask,c ji
 according to the available controllers )A(C itask j

such that:   

4,3,2,1jand3,2,1i)),A(DK()A(CC itasktask,citask,c jjiji
==Ψ=  

The self-evaluation function )A( itask,ic j
Φ  (set of neural networks 2) calculates the 

certainty index ]1,0[)A(ci itask,c ji
∈  for each controller in the proposed task according to 

its capabilities {ΔDA, ΔθA} and the possibility of performing the task given by the 

condition (
jtaskA Time  }{Time < ) such that:   

4,3,2,1jand3,2,1i)),A(CC()A(ci itask,ctask,citask,c jijiji
==Φ=  

})TimeTime,,D({)A(ci
jjiji taskAAAtask,citask,c <θΔΔΦ=  

A fuzzy-based suitability function )A( itask,c ji
Θ  helps physical agent to know its 

suitability to execute the tasks. To that end, the certainty indexes are jointly used with 

the capability {CEA} in a fuzzy decision maker (as the Fig. 5.14) such that: 

4,3,2,1jand3,2,1i)),A(}CE{),A(ci()A(sr itask,cAitask,ctask,citask,c jijijiji
==Θ=  

This decision maker selects the most suitable task to execute by means of a 

comparative analysis  )A( itask j
ζ  (task1 or task2 or task3 or task4 or none).  

The selection is then based on suitability rates )A(SR itask j
. A high or medium 

)A(sr itask,c ji
 indicates that the task can be performed, but with different performance 
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levels. A low )A(sr itask,c ji
 indicates that the task cannot be performed. Appropriate 

decision thresholds have been empirically selected to implement this decision-making 

structure.  

In addition, each physical agent sorts the tasks that it can perform in an increasing 

order based on 
jtaskTime . Therefore, in the simulated rescue environment, each rescue 

agent saves the victim with the lowest death time of all victims that it can rescue. 

However, if there is more than one rescue agent able to save the same victim, the 

selected rescue agent is the one with the highest ]1,0[)A(sr itask,c ji
∈  while the others go 

to save the next victim in their rescue scheduling. If there are rescue agents with no 

more victims in their scheduling, then these agents go to save the same victim as the 

agent with the highest )A(sr itask,c ji
.  

The task allocation performance improves with this new and effective approach 

because the physical agents can achieve a most suitable task allocation according to 

their capabilities. Thus, physical agents have introspection on what they can and 

cannot do and how they are able to perform the tasks according to their physical 

limitations, mainly related to their dynamics. Introspection on control-grounded 

capabilities is then an appropriate alternative to take into account in the current 

utility/cost functions for task/action selection. 

 

5.2.2.1 Task Allocation Example in the Rescue Case Study 

The task allocation case study is exemplified by comparing our proposal with other 

approaches. For comparative purposes, different task allocation approaches have been 

defined as follows: 

Random: Rescue agents decide whether or not to save a victim in a random manner. 

That is to say, physical agents decide randomly which task to perform or not perform. 
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Proximity: Rescue agents decide to save their nearest victim. That is to say, physical 

agents decide to perform the nearest task according to their initial positions in the 

environment.  

Deadline: Rescue agents decide to save the victims according to their death time. The 

victims are allocated to A2, A1 and A3 respectively in an increasing death time order, 

where A2 is the quickest rescue agent and A3 is the slowest rescue agent. That is to say, 

physical agents decide which task to perform, taking into account deadline constraints 

and some minimal knowledge of their bodies. 

Introspection: Rescue agents decide whether or not to save a victim based on 

introspection on their control-grounded capabilities in line with the considerations 

outlined in Section 5.2.2.  

Let us then consider the application of the above approaches to the rescue case study 

described in Section 5.2.1. The following tables show real data related to the agents’ 

domain knowledge and the task requirements for the four proposed tasks. The tables 

also show and highlight the allocated task for each agent and if the task was performed 

correctly by such agents ( : the allocated task was successfully performed by the selected 

agent or the agent made a right decision, : the allocated task was not successfully performed or 

the agent made a wrong decision).  Specifically, Tables 5.17 and 5.18 show the data for the 

task allocation case study by using the random approach.  

Table 5.17. Trial 1 for the random approach. 
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Table 5.18. Trial 2 for the random approach. 

 

In these cases, the tasks are randomly allocated to each agent without any 

consideration. Such random decision does then possible that agents decide sometimes 

not to execute any task. In addition, there is not any guarantee that agents can correctly 

perform the allocated tasks. 

On the other hand, Tables 5.19 and 5.20 show the data for the task allocation case 

study by using the proximity approach. In the tables is highlighted and allocated the 

nearest task to each agent. In this sense, agents use just domain knowledge to make 

decisions, i.e., information about the agents’ locations. Again by using this approach, 

the agents can or cannot correctly perform the allocated tasks. It means that it is not 

enough the nearness of the agents to the tasks for guaranteeing the correct execution of 

them. 

Table 5.19. Trial 1 for the proximity approach. 
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Table 5.20. Trial 2 for the proximity approach. 

 

In addition, Tables 5.21 and 5.22 show the data for the task allocation case study by 

using the deadline approach. The tasks are allocated according to their death time 

requirements from the quickest agent to the slowest agent respectively how it is 

highlighted in the tables. 

Table 5.21. Trial 1 for the deadline approach. 

 

Table 5.22. Trial 2 for the deadline approach. 
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However, there are cases where agents can not correctly perform the task. Again 

there is not enough information for a suitable task allocation. 

Finally, Tables 5.23, 525, and 5.27 show the data for the task allocation case study by 

using the introspection approach. In addition, Tables 5.24, 5.26 and 5.28 show the 

certainty indexes and the suitability rates for each agent in each task, highlighting 

those that overcome the established decision threshold. 

Table 5.23. Trial 1 for the introspection approach. 

 

Table 5.24. Introspection of the agents on the first trial. 

 

Table 5.25. Trial 2 for the introspection approach. 
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Table 5.26. Introspection of the agents on the second trial. 

 

Table 5.27. Trial 3 for the introspection approach. 

 

Table 5.28. Introspection of the agents on the third trial. 

 

The tables show that each physical agent sorts the tasks that it can perform in an 

increasing order based on 
jtaskTime . Therefore, each agent performs the task with the 

lowest 
jtaskTime  of all tasks that it can perform. However, if there is more than one 

agent able to perform the same task, the selected agent is the one with the highest 

)A(sr itask,c ji
 while the others go to perform the next tasks, deleting the allocated task 

for the selected agent in their scheduling. If there are agents with no more tasks in their 

scheduling, then these agents go to perform the same task as the agent with the highest 

)A(sr itask,c ji
. Agents with a low )A(sr itask,c ji

 know that they cannot perform the 

respective task. So introspection guarantees the agents sure decisions, i.e., 

independently if agents can perform or not the proposed tasks, the agents be aware of 
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their decisions. Agents can discriminate between the tasks in which they have a chance 

of correct performing and those in which they have no chance. 

 

5.3 The Test bed 3: A Simulated Convoys Environment 

Automobile has become the dominant transport mode in the world in the last 

century. In order to meet a continuously growing demand for transport, one solution is 

to change the control approach for vehicle to full driving automation, which removes 

the driver from the control loop to improve efficiency and reduce accidents [Parent and 

de la Fortelle, 05]. Recent work shows that there are several realistic paths towards this 

deployment. Cars of the future are vehicles with fully automated driving capabilities in 

order to have a real door-to-door service (cars can be called at any location and can be 

left anywhere because of their autonomous driving capability) [Baber et al., 05]. Such 

cars will crash if they do not consider their dynamics in both braking and accelerating 

movements when vehicle spacing is tight. In this sense, such autonomous vehicles 

must know, inspect and communicate their physical features to avoid collisions and 

traffic flow congestion. In particular, the simulated convoys environment provides a 

suitable test bed where the above problem can be examined. For illustrative purposes, 

such artificial scenario is restricted to specific conditions making the problem easier to 

tackle.    

In the convoys scenario, several heterogeneous agent-controlled vehicles must 

interact by pairs with one common purpose: to minimize the number of collisions 

between them. Each vehicle is then a closed loop dynamical system governed by an 

agent who makes decisions.  The key issue in this environment is that the agent-

controlled vehicles must coordinate between them to achieve an autonomous driving 

free of collisions taking into account their dynamics.   
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5.3.1 Convoys Case Study 

In the simulated convoys environment there are agent-controlled vehicles AV = {A1, 

A2, A3,…, AN} that form N/2 convoys. A problem arises when the agents in a convoy try 

to keep a constant security distance D between them. The distance between the 

vehicles continually changes because each vehicle has an own different dynamics, even 

though their static behaviour is equally achievable. Therefore, the possibility of 

collisions increases with velocity changes of the guiding vehicles. The guiding vehicles 

decide commonly to accelerate or decelerate without considering the dynamics of the 

other vehicles. In this case, the rear vehicles have the responsibility of keeping the 

distance constant and avoiding collisions in their respective convoy. For that, the 

traditional solution is to keep some minimum static distance and design the best 

possible control system [Horowitz and Varaiya, 00]. This alternative facilitates steady-

state control solutions [Belkhouche and Belkhouche, 05]. However, a decision to 

change the velocity of the convoys is not correct under some conditions (e.g., if the 

security distances are changed), even though the control of the vehicles has been well 

designed. As a result, the vehicles sometimes cannot avoid colliding.  

It is also possible that the designed distance control for a convoy will not work when 

a new vehicle with different dynamics is used in this convoy, such that the vehicles 

cannot avoid colliding. The control system must therefore be redesigned to satisfy the 

new dynamics of the vehicles. The above alternative is not a good solution. Such 

redesign induces generally more complexity than does not necessarily impact in a 

better performance. 

In particular, these physical agents must then coordinate their moves by pairs to 

reduce the number of possible collisions in their deceleration maneuvers from an initial 

velocity HV  to a final velocity LV , ( )VV LH >  at a given time dTime  by means of a 

suitable coordination based on their dynamics. Fig 5.24 shows a general scheme of the 

test bed.  
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Fig. 5.24.  Simulated convoys environment. 

In this sense, autonomous driving free of collisions constitutes a successful task 

performed by the agents. Agent-controlled vehicles develop a straight-line and one-

dimensional movements in this case study. The vehicles have just one distance 

controller in their movements within the environment. For the sake of simplicity, at the 

beginning of each simulation, the vehicles are not moving. In addition, the agents’ 

initial locations, the initial and final velocities, the deceleration time and the security 

distance between the vehicles are selected arbitrarily in each simulation.  

In this case study, there are then two possible behaviours for the agents: reactive 

(without introspection) and deliberative (with introspection). In the first, the guiding 

agents decide to decelerate without taking into account the dynamics of their 

respective rear vehicles. However, the rear agents are responsible for not colliding. In 

the second, the agents can negotiate and make coordinated decisions by exchanging 

information about these dynamics. In this case, the guiding vehicles modify their 

actions according to the information provided by the other vehicles about their own 

dynamics and vice versa. Thus, agents’ decisions will be inhibited whenever the 

vehicles’ dynamics do not allow the execution of the proposed actions and will be 

renegotiated until the agents agree. Thus, the reliability of sure decisions based on 

dynamics will be of both of them. In particular, the guiding agents communicate to the 

rear agents their decisions of decelerating at a given time dTime . The rear agents 
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introspect about their behaviour and answer to their respective guiding agents the 

certainty indexes ]1,0[)A(ci jtask,c kj
∈  associated to these actions. These certainty indexes 

let guiding agents to decide about the actions. If there is no agreement, then the 

guiding agents propose to perform more reliable actions in a different execution time 

deTim ′  and a different deceleration velocity LV′ . These steps can be repeated until to 

obtain an agreement (see Section 4.2.4: the decision algorithm for coordinated tasks). 

 

 5.3.2 Implementation in the Convoys Case Study  

In this implementation, transfer functions are used for analysing dynamics of each 

vehicle. Only very ideal systems will be analysed in this case study, then first order 

transfer functions are the proper way to represent dynamics in linear speed for one-

dimensional movements. Other higher order transfer functions, non-linearities and 

other variables (like angular orientation, etc.) will be analysed in future work. Eight 

different physical agents AV = {A1, A2, A3, A4, A5, A6, A7, A8} that form four convoys  

with their specific distance controllers have been designed, i.e., four tasks T = {task1, 

task2, task3, task4}. 

The real linear velocity of each vehicle is then modelled as is described in (5.19) 

)19.5(8,...,1j,v)s(Gv )A(linearj)A(real jj
==  

Where )A(linear j
v  is the speed step input and )s(G j  is the corresponding first order 

transfer function as is described in (5.20). 

)20.5(8,...,1j,
1s

K
)s(G

j

j
j =

+τ
=  

Where jK  is a static gain and jτ  is the time constant for each vehicle. 

More specifically, the guiding agents have their internal controls that are apparently 

independent of rear agents. The rear agents have inherently more complicated 
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structures since they have the responsibility for convoying and avoiding possible 

collisions.  

Let us assume that a guiding agent’s dynamics shows a first order transfer function 

)s(G1 , and its corresponding rear agent has a similar behaviour )s(G 2 , then the 

convoying behaviour of the rear agent is indeed a high order transfer function. This is 

due to the dependency of the speed set points of the rear agent on the controller 

designed to keep the security distance D between vehicles, i.e., 0)xx(D 21 ≈−− . Fig 

5.25 shows a general scheme to describe the agents’ state in a convoy. 

 

 

Fig. 5.25. Variables that describe the agents’ state in a convoy. 

The distance controller is accomplished by the use of a PI controller (Kp, Ki) whose 

output signal controls the velocity )A(real 2
v  of the rear vehicle. Under the above 

assumptions, if )s(G1 and )s(G 2  are first order systems, then the convoying behaviour 

of the rear agent is indeed a high order system response as it is here deduced: 

)A(linear2)A(real 22
v)s(Gv =  

22 i)A(real2 xv
s
1x +⎟
⎠
⎞

⎜
⎝
⎛=  

11 i)A(real1 xv
s
1x +⎟
⎠
⎞

⎜
⎝
⎛=  

Where 1x  and 2x  are the current position of each vehicle and 
1ix and 

2ix are the 

initial positions (t=0) of the same ones.   

[ ])xx(D
s

K
Kv 21

i
p)A(linear 2

−−⎟
⎠

⎞
⎜
⎝

⎛ +−=  
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Similar considerations can be established for the other convoys. Thus, the 

deliberative cooperative decisions based on dynamics must provide the controllers 

with safer set points. The fact is that not only feedback control is necessary for keeping 

the distance, but also the cooperative aspects of AI must be integrated as it will be 

shown later.  

Here, the environmental conditions are related to the physical agents’ initial state, 

represented by )x,x(
21 ii  and the initial and final velocities HV  and LV  in the 
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deceleration maneuver. The task requirements are related to the proposed deceleration 

time dTime  and the desired security distance D such that: 

}D,Time{TR},V,V,x{)A(EC},V,V,x{)A(EC dLHi2LHi1 21
=== | 

}D,Time,task,V,V,x{)A(DK dkLHijtask jk
=  

The self-evaluation functions )A( jtask,c kj
Φ  calculate the certainty indexes 

]1,0[)A(ci jtask,c kj
∈ , for each rear agent in each convoy. 

The decision is then based on the certainty.  The guiding agent determines whether 

any action has to be done or not. The innovation is that the decision is also based on the 

dynamics of rear agent. For the rear agent, an action is possible if it can move from an 

initial state HV  to a final state LV  within the specified time for action dTime   that the 

guiding agent proposes. Once both agents agree, that is, the certainty about the 

decision is high enough, they trigger their respective decisions.  

 

5.3.2.1 Decisions Example in the Convoys Case Study 

The approach is illustrated for a convoy of two different agent-controlled vehicles A1 

and A2, where each one has a different dynamics such that: 

1s185.0
1)s(G1 +

=  and 
1s810.0

1)s(G 2 +
=  

The designed distance controller for this convoy (task1) has the following parameters 

Kp = 3.5 and Ki = 0.5. In this example, A1 decides to decelerate from VH = 70cm/s to VL = 

30cm/s at the Timed = 10s. The agents’ initial positions are given by 
1ix  = 67.5cm and 

2ix = 32.5cm. The security distance between agents must be D = 20cm such that: 

}cm20,s10{TR},s/cm30,s/cm70,cm5.32{)A(EC},s/cm30,s/cm70,cm5.67{)A(EC 21 ===  
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}cm20,s10,task,s/cm30,s/cm70,cm5.67{)A(DK 11task1
=  and 

}cm20,s10,task,s/cm30,s/cm70,cm5.32{)A(DK 12task1
=  

Without introspection, A1 decides to decelerate without taking into account the 

dynamics of A2. However, A2 is responsible for not colliding. Fig 5.26 shows the 

velocity responses of the agents and the evolution of the distance between them for this 

example. The distance between vehicles continually changes. Fortunately, there is not 

collision in this case.   

 

Fig. 5.26. a). Velocity responses of the guiding vehicle A1 and the rear vehicle A2  for a security distance D=20cm;    

b). Evolution of the distance between A1 and A2  without introspection. 

However, a decision to change the velocity of the convoy is not correct under some 

conditions (e.g., if the security distances is changed to D=10cm), with the same control 

of the vehicles. As a result, the vehicles sometimes cannot avoid colliding as it is shown 

in Fig. 5.27.  

It is also possible that the designed distance control for a convoy will not work when 

a new rear vehicle A3 with different dynamics 
1s10.1

1)s(G3 +
=  is used in this convoy, 

such that the vehicles cannot avoid colliding as it is shown in Fig. 5.28. 

 

a) b) 
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Fig. 5.27. a). Velocity responses of the guiding vehicle A1 and the rear vehicle A2  for a security distance D=10cm;    

b). Evolution of the distance between A1 and A2 without introspection. 

 

Fig. 5.28. a). Velocity responses of the guiding vehicle A1 and the rear vehicle A3  for a security distance D=20cm;    

b). Evolution of the distance between A1 and A3 without introspection. 

On the other hand, the decision algorithm executed by the agents by using 

introspection in this task allows avoiding the undesirable situations shown in Fig. 5.27 

and 5.28 as it is shown in Fig 5.29 and 5.30 respectively. Here, the new deceleration 

time and velocity are given by jdd 5TimeeTim τ+=′  and 
2

VV
V LH

L
+

=′ , where jτ  

corresponds to the time constant of the first order transfer functions of the rear vehicles 

A2 and A3. 

Collision 

a) b) 

Collision 

a) b) 
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Fig. 5.29. a). Velocity responses of the guiding vehicle A1 and the rear vehicle A2  for a security distance D=10cm;    

b). Evolution of the distance between A1 and A2 with introspection. 

 

Fig. 5.30. a). Velocity responses of the guiding vehicle A1 and the rear vehicle A3  for a security distance D=20cm;    

b). Evolution of the distance between A1 and A3 with introspection.   

Due to the high order nature of the convoying system, it can be clearly asserted that 

static information for deceleration decision is not enough at all. Then, decisions based 

only on static are dangerous in case of dealing with physical agents with dynamics. 

 

 

a) b) 

a) b) 
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Chapter 6 

Experimental Results 

This chapter presents the empirical experiments and testing that have been carried out for the 

proposed test beds.  The results depicted in this chapter demonstrate the utility, feasibility and 

reliability of the overall proposed approach presented in the previous chapters. 

 

6.1 Results in Robot Soccer 

Insofar as the main goal of any test bed is to facilitate the trial and evaluation of ideas 

that have promise in the real world, robot soccer proved to be an excellent test bed for 

this thesis. Robot soccer has drawn a lot of attention over the past years as a platform 

to conduct research in the field of multi-agent systems. One of the main features of this 

test bed is the need for cooperation with other agents, in a changing and adversarial 

environment. These features make it extremely attractive for researchers interested in 

the deployment of multi-agent systems in scenarios where coordination is relevant and 

necessary. Research on MAS in the soccer domain can be conducted either on real 

robots or on simulators. On the one hand, real robots allow working on MAS on real 

systems, coping with the limitations of real systems and problems associated to them. 

On the other hand, the type of algorithms and strategies that can be tested must be 

simple, as malfunctions, communication problems, physical limitations, etc. affect real
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robots. Simulators overcome the limitations of real robots allowing researchers to 

develop and test more complex algorithms and strategies. 

All of the thesis contributions were originally developed in a simulated robot soccer 

environment. However, in order to test the generality of the simulation results, the 

proposed techniques have been also transferred to the real robot system. 

 

6.1.1 Results in the Passing a Ball 

Table 6.1 presents the proposed empirical experiments using the passing a ball for 

testing the system performance when the introspection approach is used. 

The tests in simulation used the robot models of the SimuroSOT simulator available 

from http://www.fira.net/soccer/simurosot/overview.html. The simulator facilitates 

extensive training and testing of this proposal. The selected simulation experiments for 

each case consist of a predefined number of trials that satisfy the restrictions 

established in Table 6.1. 

Table 6.1. Proposed empirical experiments with passing a ball. 

 (Pos→ Position, Vel→ Velocity, Traj→ Trajectory, f→ fixed, v→ variable). 

 

For instance, all the experiments labeled as case 5, the worst case, are those where the 

position, velocity and trajectory of the ball, the position of the interception point, the 

position and velocity of the passer and the position and velocity of the shooter are 

uniformly distributed in a pseudo-random way within delimited regions in every trial. 

http://www.fira.net/soccer/simurosot/overview.html
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Similar considerations classify the other cases studied. Fig. 6.1 sketches the regions 

where the ball, the interception point, the passer and the shooter were located in case 5.  

 

Fig. 6.1. Regions sketch to generate different trials in passing a ball for the case 5.                                                  

Level 1: successful trials, level 0: unsuccessful trials. 

The shooter performance has been tested with a large number of examples (5000 for 

each case). Fig. 6.2 displays the results for case 5 where in each curve is computed the 

arithmetic mean of successes (scores or right decisions) of the most recent trials using a 

sliding window up to the current trial. Several t-tests comparing the values of the 

curves have been performed, and the levels of significance for important comparisons 

using the p-value have been reported. Reasonable decision performance is achieved in 

all cases when the introspective skill is used. Specifically, Fig. 6.2 shows how the task 

performance (successful scores) of each controller with and without introspection does 

not make a significant difference (low confidence c1: p = 0.0104, c2: p = 0.4966, and c3: p 

= 0.0283) and how significantly higher performance is achieved by selecting the most 

suitable controller using introspection. This curve remains ahead of all the others, with 

(p = 1.3466e-014 vs. c1, p = 4.7589e-024 vs. c2, and p = 1.0477e-022 vs. c3. Comparison 

with c1, c2 and c3 using introspection) (see Fig. 6.2a, 6.2c, 6.2e). But more importantly, 

the decision performance (successful decisions) of each controller is significantly better 
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(c1: p = 5.9525e-027, c2: p = 3.1106e-037 and c3: p = 4.0583e-039) when the agent uses 

introspection than when the agent does not use it (see Fig. 6.2b, 6.2d, 6.2f). 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.2. Performance results for case 5. a). Task success scores for controller c1 with and without introspection 

compared to random selection and selection with introspection; b). Successful decisions with controller c1, with and 

without introspection; c)., d). as for a) and b) but using controller c2; e)., f). as for a) and b) but using controller c3. 

 

a) b)

c) d)

e) f)
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In addition, Fig. 6.3 sketches the regions where the ball, the interception point, the 

passer and the shooter were located in cases 1, 2, 3 and 4. 

 

 

Fig. 6.3. Regions sketch of successful trials in passing a ball. a). Case 1; b). Case 2; c). Case 3; d). Case 4. 

Fig, 6.4, 6.5, 6.6 and 6.7 show the results for theses cases.  These figures confirm the 

preliminary conclusion disclosed for the case 5: with introspection increase the 

performance as the result of most suitable controller selection in the system. The 

system performance always improves when the physical agents take into account their 

physical capabilities based on introspection. The figures also confirm that successful 

decisions related to the task increase when agents use introspection. 
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Fig. 6.4. Performance results for case 1. a). Task success scores for controller c1 with and without introspection 

compared to random selection and selection with introspection; b). Successful decisions with controller c1, with and 

without introspection; c)., d). as for a) and b) but using controller c2; e)., f). as for a) and b) but using controller c3. 

 

a) b) 

c) d)

e) f)
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Fig. 6.5. Performance results for case 2. a). Task success scores for controller c1 with and without introspection 

compared to random selection and selection with introspection; b). Successful decisions with controller c1, with and 

without introspection; c)., d). as for a) and b) but using controller c2; e)., f). as for a) and b) but using controller c3. 

a) b)

c) d)

e) f)
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Fig. 6.6. Performance results for case 3. a). Task success scores for controller c1 with and without introspection 

compared to random selection and selection with introspection; b). Successful decisions with controller c1, with and 

without introspection; c)., d). as for a) and b) but using controller c2; e)., f). as for a) and b) but using controller c3. 

a) b)

c) d)

e) f)
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Fig. 6.7. Performance results for case 4. a). Task success scores for controller c1 with and without introspection 

compared to random selection and selection with introspection; b). Successful decisions with controller c1, with and 

without introspection; c)., d). as for a) and b) but using controller c2; e)., f). as for a) and b) but using controller c3. 

a) b)

c) d)

e) f)
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The performance does not improve significantly beyond about 1500 cases for any 

example. This number of trials is therefore used initially to confirm the task 

performance.  

Table 6.2 shows the successful scores obtained when the shooter uses each controller 

(c1, c2 and c3) with and without introspection in all cases.  

Table 6.2 also presents the performance with random selection of controllers and 

selection by using introspection. The approach without introspection in Table 6.2 takes 

into account only the proposed execution time of the task TimeT by using a supervised 

learning method described in [De la Rosa et al., 04]. 

Table 6.2. Successful scores using the controllers in passing a ball. 

 

Table 6.3 summarizes the task performance rates and the improvement rates. The 

results shown in Table 6.3 take into account the average of the achieved successful 

scores for different simulation points (from 1500 to 5000 with a window of 500 trials). 

Table 6.3. Information about task performance in passing a ball. 
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Tables 6.2 and 6.3 show that the task performance always improves when the shooter 

selects its controller taking into account its physical capabilities based on introspection. 

These tables also corroborate how the task performance of each controller with and 

without introspection is similar for all cases studied. However, in spite of a similar task 

performance with and without introspection, Table 6.4 shows that the successful 

decisions related to the task are increased when agents use introspection: agents can 

make better decisions and can consequently make more sure and trustworthy 

commitments. 

Table 6.4. Information about decision performance in passing a ball. 

 

Table 6.5 shows the controller selection rates of the shooter’s movement controllers 

when this agent selects the most suitable controller using introspection. The selected 

automatic controller has the best performance in the execution of the proposed task. 

The management rates disclose how the physical agent really manages its controllers. 

In fact, some experiments are only correctly performed by a specific controller. Other 

experiments can be performed by more than one controller with different performance 

indicators. The remaining experiments cannot be performed with any of the available 

controllers. Thus, both self-examination and management of the physical agent’s body 

based on introspection on its capabilities is in fact a proper alternative to solve this 

decision-making problem. 
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Table 6.5. Management rates of the controllers for passing a ball. 

 

 

6.1.1.1 Comparison with other Approaches 

Experimental results of the successful use of neural networks for learning low-level 

behavior are presented in [Stone, 00]. This learned behavior, namely shooting a moving 

ball, is crucial to successful action in the multi-agent domain and illustrates how 

learned individual skills can be used as a basis for higher level multi-agent learning. To 

simplify the problem, shooting a moving ball will be considered as intercepting a 

moving ball. According to the above constraints, a comparative analysis between the 

proposed approach based on neural networks and the CMU approach [Stone, 00] is 

shown in Table 6.6. 

Table 6.6. Comparative numerical results in intercepting a moving ball. 

 

The misses are not included in the CMU results because these shots are so wide that 

the agent does not have much chance of even reaching the ball before it goes past. The 

CMU approach and the approach without introspection have similar performance. In 

addition, the improvement rate (+8.36 %) of the introspection approach over the CMU 

approach is caused by the possibility of including the misses in the agents’ decisions. In 

fact, this is an advantage of introspection. Agents can discriminate between the trials in 



Chapter 6: Experimental Results 

Introspection on Control-grounded Capabilities – Doctoral Thesis – Christian G. Quintero M.           143                       

which they have a chance of performing the task and those in which they have no 

chance. 

 

6.1.2 Results in a SimuroSOT Middle League 

Empirical experiments featuring simulated robot soccer games have been established 

following the considerations established in Sections 5.1.4 and 5.1.6.3 to test the system 

performance when mainly introspection on physical agents’ dynamics is taken into 

account.  

The coordination between agents is based on the decision-making parameters 

described in Section 5.1.6.3.  By modifying the set of flags 
ktaskOk is then defined the 

coordination parameters used in the utility/cost functions for allocating the proposed 

tasks.  Table 6.7 summarizes the combinations of flags (8 cases) that have been used in 

this study. 

Table 6.7. Combinations of flags for the coordination parameters.                                                                                 

(0: it is not taken into account, 1: it is taken into account) 

 

Thirty (30) games have been run for each case described in Table 6.7.  Our team 

played versus a default opponent robotic team provided by the simulator where the 

initial state of each physical agent in the playground was randomly set at every game. 
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Table 6.8 shows the results of the experiments performed for each case. The ranking 

is sorted in a decreasing order taking into account the number of won games to 

highlight the case with higher performance. 

Table 6.8. Empirical results for the cases defined in Table 6.7.                                                                                  

(WG: won games, TG: tied games, LG: lost games). 

 

With the aim of stressing the relevance of managing the diversity in dynamics of the 

physical agents from a control-oriented perspective, the analysis has been focused on 

the influence on the agents’ decisions of the physical knowledge at the moment of 

executing the proposed tasks. So, a comparison used the obtained results has been 

performed in order to note how the system performance improves when agents take 

into account their physical body in their decision-making. Namely, the relevance of 

introspection on the multi-agent performance. 

Table 6.9 presents a classification of the cases when considering or not the proximity, 

without taking into account the trust, it is observed how the introspection influence. In 

this sense, the system performance improves when introspection is taken into account 

(cases B and D), than when not (cases A and C). 

Likewise, Table 6.10 presents a classification of the cases when considering or not the 

trust, without taking into account the proximity, it is observed how the introspection 

influence. In the same way, the system performance is better when introspection is 

taken into account (cases F and H) than when not (cases E and G).  With introspection, 

physical agents are able to decide based on a suitable knowledge of their capabilities 

and physical limitations when they can commit to perform a particular task. 
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Table 6.9. Introspection without taking into account the trust, (X: in any case). 

 

Table 6.10. Introspection without taking into account the proximity, (X: in any case). 

 

The above results show clearly how physical agents can make decisions that carry a 

better system performance when they use knowledge related to their bodies 

(introspection) to perform the proposed tasks. Table 6.11 summarizes and concludes 

the obtained results. 
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Table 6.11. Classification of the cases with and without introspection, (X: in any case). 

 

Table 6.11 discloses the influence of the introspection in the system performance. In 

particular, there is an improvement of around a 65% in this case study. 

In addition, empirical experiments featuring simulated robot soccer tournaments 

have been established to corroborate the relevance of the introspection on physical 

agents’ dynamics in the system performance. The selected simulation experiments 

consist of a predefined number of championships (10), each one with a predefined 

number of games (10). The performance is measured as a ratio between the total points 

(won game: 3 points, tied game: 1 point) achieved by our team in each championship and 

the all possible points (30) in this championship where our team played versus a 

default opponent robotic team provided by the simulator. The initial state of each 

physical agent  in the playground was randomly set at every game. 

In particular, the following teams were compared: R vs. I (case 0 vs. case 2), T vs. T + 

I (case 1 vs. case 3), P vs. P + I (case 4 vs. case 6), and P + T vs. P + T + I (case 5 vs. case 

7)(see Table 6.7),  where R → random, I → introspection, P → proximity and T → trust. 

Fig. 6.8 illustrates how the best system performance is achieved by using 

introspection in all cases.  
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Fig. 6.8.   Performance comparison. a) R vs. I; b). P vs. P + I; c). T vs. T + I; d). P + T vs. P + T + I.  

Here follows a preliminary conclusion: the composition of any parameters with 

introspection increases the performance as the result of most suitable task allocation in 

the system. The system performance always improves when the physical agents take 

into account their physical capabilities based on introspection. The figure also confirms 

that successful decisions related to task allocation increase when agents use 

introspection: agents can make better decisions and can consequently make more sure 

and trustworthy task allocations. In addition, it should be noted that the improvement 

rate of the introspection approach over the other approaches is a result of the 

possibility of including the misses in the agents’ decisions. In fact, this is an advantage 

of introspection. Agents can discriminate between the trials in which they have a 

chance of successfully performing the tasks and those in which they have no chance.  

a) b) 

c) d) 
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6.1.3 Results for the Linear Control System Case Study 

Tables 6.12 and 6.13 present the proposed empirical experiments using the passing a 

ball and the offside maneuver respectively for testing the system performance for the 

linear control system case study described in Section 5.1.6.4. 

Table 6.12. Proposed empirical experiments with passing a ball.                                                                            

(Pos→ Position, Vel→ Velocity, Traj→ Trajectory, f→ fixed, v→ variable). 

 

Table 6.13. Proposed empirical experiments with offside maneuver.                                                                       

(Pos→ Position, Vel→ Velocity, f→ fixed, v→ variable). 

 

The selected simulation experiments for each case consist again of a predefined 

number of trials that satisfy the restrictions established in Tables 6.12 and 6.13. For 

instance, all the experiments labeled as case 3 in Table 6.12, are those where the 

position, velocity and trajectory of the ball, the position of the interception point, the 

position and velocity of the passer and the position and velocity of the shooter can 

change randomly within delimited regions in every trial. Similar considerations 

classify the other cases studied. 

All cases were tested using a typical scene that involved three situations mentioned 

in Section 5.1.6.4, SL (space limitations), MD (motion disturbances) and EP (energy 

performance) selecting empirically to this set a 
21 tasktask IDID =  = [40(SL) 0(QB) 20(MD) 
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0(AB) 40(EP)]%. Tables 6.14 and 6.15 show the successful actions obtained when the 

physical agents performed the proposed coordinated tasks in the empirical 

experiments.   

Table 6.14. Successful scores in the passing a ball. 

 

Table 6.15. Successful offsides in the offside maneuver. 

 

These tables show how the performance is improved when the introspection 

approach is used for individual and cooperative decisions in order to perform correctly 

the required tasks. Table 6.14 shows the successful scores obtained when the shooter 

uses each controller (c1, c2, and c3) individually. Table 6.14 also presents the 

performance with random selection of controllers and selection using introspection.  

Tables 6.14 shows that the passing a ball performance always improves when the 

shooter selects its controller taking into account its control-grounded capabilities.  

Table 6.15 shows a comparison about successful offsides obtained when the 

defender1 and the defender2 select their controllers randomly and when they do the 

selection using introspection. Tables 6.15 shows that the offside performance always 

improves when the defenders select their controller taking into account their control-

grounded capabilities.  
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According to the above results, agents can make better decisions and can 

consequently make more sure and trustworthy commitments using their control-

grounded capabilities. 

Table 6.16 shows the controller selection rates of the shooter’s movement controllers 

when this agent selects the most suitable controller for passing a ball. The selected 

automatic controller has the best performance in the execution of the proposed task. 

The management rates disclose how the physical agent really manages its controllers.  

Table 6.16. Management rates of the controllers for passing a ball in the linear control system case study. 

 

Fig. 6.9 shows the management rates of each controller (c1, c2, and c3) using several 

successful actions of the experiment 3 described in Table 6.12 (609 successes scores in 

the opposite goal of 752 attempts) when the task involves the following situations, SL, 

QB, MD, AB, and EP with different influence degrees.  

The results in Fig. 6.9 show how the control-grounded capabilities help to select the 

most skilled controller (aggressive, fast, persistent, with low control effort, etc) with the 

best performance for the execution of the proposed task according to each set of 

situations and the influence degrees in the task. Thus, the physical agent really 

manages its automatic controllers, according to the explicit information embedded in 

its control-grounded capabilities.  

A better self-examination and management of the agent’s physical body taking into 

account its capabilities is in fact a proper alternative to solve this decision problem.  

This approach improves the performance in coordinated tasks based on a deep 

understanding of the physical features of the physical agents’ structures from a 

control-oriented viewpoint. 



Chapter 6: Experimental Results 

Introspection on Control-grounded Capabilities – Doctoral Thesis – Christian G. Quintero M.           151                       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.9. Management rates of each controller (c1, c2, and c3) for 10 different cases that involve different IDs of SL (1), 

QB (2), MD (3), AB (4), and EP (5). 
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6.2 Results in the Simulated Rescue Case Study 

Here, several empirical experiments featuring a simulated rescue environment are 

proposed when introspection on control-grounded capabilities is used. The tests follow 

the specifications described in Section 5.2.2 for this case study.  

A predefined number of trials constitute the selected simulation experiments. They 

satisfy the following restrictions: the rescue agents’ locations, the victims’ death times 

and their locations change randomly in every trial.  

The system performance has been tested by comparing the proposal with other task 

allocation approaches: random, proximity and deadline described in Section 5.2.2.1. In 

these approaches, the arithmetic mean of successes (rescues or right decisions) of the 

most recent trials using a sliding window up to the current trial is computed in all 

curves. 

The task allocation performance was tested with a large number of examples (5000). 

Fig. 6.10 illustrates how reasonable better performance (all successful rescues) is 

achieved by using introspection.  

 

Fig. 6.10.  Comparison of task allocation performance. 
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Fig. 6.11 shows for instance the successful number of tasks performed by the 

physical agents 1 and 2 respectively. 

 

Fig. 6.11. a). Successful tasks of physical agent 1; b). Successful tasks of physical agent 2. 

Fig. 6.12 shows a comparison of the successful performances of tasks 1, 2, 3 and 4, i.e. 

successful rescues of victims 1, 2, 3 and 4 respectively. The figures show how the best 

performance is achieved in all proposed tasks when the physical agents use their 

introspective skills. 

The decision performance (successful decisions) of each physical agent is better when 

the agent uses introspection than when the agent does not use it (see Fig. 6.13). 

Successful decisions are related to the ratio between the number of successful tasks 

performed by the agent and the total number of decided tasks by the same agent. 

Performance does not improve significantly beyond about 1500 cases for any 

experiment.  

The figures show that system performance always improves when the physical 

agents take into account their physical capabilities based on introspection. These 

figures also confirm that successful decisions related to task allocation increase when 

agents use introspection: agents can make better decisions and can consequently make 

more sure and trustworthy task allocations.  

a) b) 
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Fig. 6.12. a). Successful performance of task 1; b). Successful performance of task 2; c). Successful performance of task 

3; d). Successful performance of task 4. 

 

Fig. 6.13.  a). Successful decisions of the physical agent 1; b). Successful decisions of the physical agent 2. 

a) b) 

c) d) 

a) b) 
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In addition, it should be noted that the improvement rate of the introspection 

approach over the other approaches is a result of the possibility of including the misses 

in the agents’ decisions. In fact, this is an advantage of introspection. Agents can 

discriminate between the trials in which they have a chance of successfully performing 

the tasks and those in which they have no chance. 

 

6.3 Results in the Simulated Convoys Case Study 

Empirical experiments featuring four different simulated convoys are presented in 

this section to test the system performance related to avoid collisions. The tests follow 

the specifications described in Section 5.3.2 for this case study.  

The selected simulation experiments consist of a predefined number of trials that 

satisfy the following restrictions: the agents’ initial locations, the initial and final 

velocities, the deceleration time and the security distance between the vehicles can 

change randomly in every trial.  

The first order transfer functions to represent the dynamics of the agent-controlled 

vehicles for the four convoys, as it is described in Section 5.3.2, are: 

Convoy 1: 
1s485.0

1)s(G1 +
=  and 

1s510.0
1)s(G 2 +

=  

Convoy 2: 
1s385.0

1)s(G3 +
=  and 

1s610.0
1)s(G 4 +

=  

Convoy 3: 
1s285.0

1)s(G5 +
=  and 

1s710.0
1)s(G 6 +

=  

Convoy 4: 
1s185.0

1)s(G7 +
=  and 

1s810.0
1)s(G8 +

=  
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The designed distance controllers for the convoys have the following parameters 

convoy 1: Kp = 5.5 and Ki = 0.5, convoy 2: Kp = 4.5 and Ki = 0.5, convoy 3: Kp = 6 and Ki = 0.5, 

and convoy 4: Kp = 3.5 and Ki = 0.5. 

A large number of experiments (2000) have been made. Fig. 6.14 illustrates how 

reasonable better performance (successful tasks: autonomous driving free of collisions) 

is achieved by the agents when they use introspection. As a strong result, a greater 

amount of collisions can be avoided using introspection than when it is not used. 

 

 

Fig. 6.14.   Performance comparison related to autonomous driving free of collisions for a). Convoy 1; b). Convoy 2; 

c). Convoy 3; d). Convoy 4. 

 

a) 

c) 

b) 

d) 
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It should be noted that the distance controllers are the same in both reactive (without 

introspection) and deliberative (with introspection) decisions. However, better 

decisions are now obtained for better execution of the autonomous driving free of 

collisions by the implemented controllers with introspection. 

In addition, Fig. 6.14 discloses how the diversity in dynamics impact in the system 

performance. In this sense, as a natural conclusion, a greater amount of collisions is 

avoided when the vehicles’ dynamics in the convoy are similar (e.g., Fig 6.14a) than 

when they are progressively different (e.g., Fig. 6.14b → 6.14c → 6.14d). 
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Chapter 7 

Conclusions and Future Work 

This chapter summarizes the main conclusions arisen of the analysis and discussion of the 

results reported in this work. The chapter also reviews the dissertation’s scientific contributions 

and then discusses promising directions for future research and application in certain topics in 

which the work of this thesis can continue. Finally, some concluding remarks are drawn. 

 

7.1 Analysis and Discussion of Results 

The work and results presented in Chapters 4, 5 and 6, show that a good decision 

tool based on introspective reasoning can increase the autonomy and self-control of 

agents in coordinated tasks and allows obtaining reliable utility/costs functions in the 

agents’ decision-making for task allocation problems.   

Introspection and decisions based on capabilities give a trustworthy indication of the 

real reliability with which each agent make commitments in cooperative systems and 

embody well-defined concepts to enable an effective agents’ performance to meet high-

level goals. 

This new and effective approach contributes to improve multi-agent efficiency and 

performance in a cooperative scenario because the physical agents can know 
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and inform opportunely if they can perform the required tasks. If they cannot, the 

agents can make another decision depending on the general interests of the multi-agent 

system. Thus, physical agents have some introspection on what they can or cannot do. 

Without introspection, physical agents would try to perform actions without no sense, 

decreasing generally the whole system performance. 

 

7.2 Main Contributions 

Motivated by the challenges mentioned in Chapter 1 and the problem statement 

detailed in Chapter 4, this thesis contributes with powerful tools, independent of 

particular implementation technologies, for building intelligent artificial agents with 

strong introspective reasoning mainly related to their dynamics, aiming at a correct 

execution of tasks in cooperative environments. More specifically, the thesis presents 

an appropriate alternative to include control-oriented knowledge in the physical 

agents’ decision-making and represent such knowledge in a set of control-grounded 

capabilities. The conventional control techniques tend to either ignore or do implicit 

and naïve suppositions on the dynamics of the controllers, however this thesis shows 

that an explicit representation of dynamics based on control-grounded capabilities is 

possible and useful. The thesis has then shown how to bridge the gap between the high 

abstraction level of agents and the low abstraction level of the automatic control 

architectures. 

The main contributions of this thesis are summarized as follows: 

• A formal design methodology based on introspective reasoning to use control-oriented 

knowledge in an agent-oriented manner. 

The thesis reported a way of taking advantage of control-oriented information related 

to the physical agents’ dynamics and outlined the way of including such knowledge in 

the agents’ decision-making. For that, an agent-inspired approach based on 
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introspective reasoning that embraces concepts and techniques from automatic control, 

mobile robotics and artificial intelligence was proposed. 

• A formulation based on control-grounded capabilities to represent explicitly control-

oriented information of agent-controlled systems.  

Here, control-grounded capabilities are seen as a proper alternative used by physical 

agents to include the knowledge of them related to their physical bodies obtained by 

means of introspection. More specifically, the capabilities consist in parameters that 

describe the dynamical behavior of the physical agents when they used an specific 

automatic controller in a proposed task, i.e., capabilities embed relevant control-

oriented knowledge related to the physical agents’ bodies (mainly about their 

automatic controllers) to obtain reliable low level information to use in the high level 

decision-making.  

• A decision-making tool based on introspection on control-grounded capabilities as a bridge 

to the gap between the high abstraction level of agents and the low abstraction level of the 

automatic control architectures. 

The requirements that the control-oriented knowledge must achieve to be a reliable 

agent-oriented representation and a useful decision tool were established, and the 

utility and feasibility of the overall proposed approach on several coordinated control 

examples were demonstrated. 

 

7.3 Related Publications 

 The work developed for this thesis has led to several contributions presented and 

discussed in different conferences and congresses. The most relevant works are listed 

below. 
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De la Rosa J. Ll., Figueras A., Quintero M. Christian G., Ramón J. A., Ibarra S., and Esteva S. 
“Outline of Modification Systems”. Studies in Computational Intelligence, vol. 57, pp. 55 – 69, 
Springer-Verlag, ISSN: 1860-949X, 2007. 
 

New hints for engineers to design control systems are presented. We propose that control 
engineers may keep KISS design in the control dimension, by explicitly introducing awareness 
(introspection) and interaction (trust) that let improve the performance of a machine while 
keeping the design simplicity. 

 

 Quintero M. Christian G., Busquets D., de la Rosa J., and Vehí J. “Introspection on Control-
grounded Capabilities. Relevance in Task Allocation Problems”. In Proceedings of 
the European Control Conference ECC 2007, vol. 1, pp. 2833 – 2840, ISBN: 978-960-89028-5-5, 
Kos – Greece, Jul 2, 2007. 
 

An approach for reliable task allocation in cooperative agent-controlled systems by means of 
introspection on control-oriented features is presented. In particular, this proposal is 
demonstrated in the successful performing of rescue operations by cooperative mobile robots in a 
simulated environment.  

 

Quintero M. Christian G., Ibarra S., de la Rosa J., and Vehí J. “Introspection on Control-
grounded Capabilities. A Task Allocation Case Study in Robot Soccer”. In Proceedings of the 4th 
International Conference on Informatics in Control, Automation and Robotics ICINCO 2007, 
vol. 2, pp. 461 – 467, INSTICC Press, ISBN: 978-972-8865-87-0, Angers – France, May 9, 2007. 
 

A proposal for task allocation in physical multi-agent systems by means of novel coordination 
parameters in the task utility/cost functions is presented. The composition of any parameters 
with introspection increases the performance as the result of most suitable task allocation. This 
proposal is demonstrated in the successful performing of tasks by cooperative mobile robots in a 
simulated robot soccer environment.  

 

Quintero M. Christian G., Ibarra S., de la Rosa J., and Vehí J. “A Coordination Approach for 
Task Allocation. Case Study in Robot Soccer”. In Proceedings of the 2nd Spanish Congress on 
Computer Science CEDI 2007, vol. 1, pp. 35 – 42, Thomson-Paraninfo Press, ISBN: 978-84-9732-
597-4, Zaragosa – Spain, Sep. 11, 2007. 
 

An illustrative example in robot soccer of new coordination parameters to improve the 
coordination among physical agents in task allocation problems is shown. Our approach 
proposes introspection, proximity, and trust as key parameters in the utility/cost functions to 
achieve the above aim. These parameters were managed in a holistic manner to select the most 
suitable agent to perform the proposed tasks.  

 

Ibarra S., Quintero M. Christian G., Busquets D., Ramón J., de la Rosa J., and Castán J. 
“Improving the Team-work in Heterogeneous Multi-agent Systems. Situation Matching 
Approach”. Frontiers in Artificial Intelligence and Applications – AI Research & 
Development, vol. 146, pp. 275 – 282, IOS Press, ISSN: 0922-6389, Amsterdam – Netherlands, 
Oct., 2006. 
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A “Situation Matching” method that aims at improving cooperative tasks in heterogeneous 
multi-agent systems is proposed. The situation matching represents a match between the system 
requirements and the agents’ capabilities. We studied how the heterogeneous agents’ 
performance improves by means of such “situation matching” in the robot soccer test bed.  

 

Quintero M. Christian G., Ibarra S., de la Rosa J., and Vehí J. “Dynamics Features on Robots 
Decisions. A Perspective based on Control-grounded Capabilities”. In Proceedings of 5th IEEE 
International Symposium on Robotics and Automation ISRA 2006, vol. 1, pp. 199 – 206, ISBN: 
970-769-070-4, Hidalgo – México, Ago. 25, 2006. 
 

Theoretical and practical groundwork based on control-grounded capabilities to include 
dynamics features on the decision-making of cooperative mobile robots from a control-oriented 
viewpoint is presented. We stress the advantages of our approach in coordinated tasks of robot 
soccer. 

 

Ibarra S., Quintero M. Christian G., Ramón J. A., de la Rosa J., and Castán J. “Studies about 
Multi-agent Team Work Coordination in the Robot Soccer Environment”. In Proceedings of the 
FIRA Robot World Congress 2006, vol. 1, pp. 63 – 67, ISBN: 3-00-019061-9, Dortmund – 
Germany, Jun. 30 - Jul. 1, 2006. 
    

A mechanism based on a characteristic of physical agents named “degrees of situation” that aids 
to improve the coordination among heterogeneous agents is suggested. These systems can be 
represented by means of the “physical agent” paradigm. We studied how the team work can be 
improved by the “degrees of situation” management in robot soccer.  

 

Quintero M. Christian G., de la Rosa J., and Vehí J. “Self-Knowledge based on the Atomic 
Capabilities Concept. A Perspective to Achieve Sure Commitments among Physical Agents”. In 
Proceedings of the 2nd International Conference on Informatics in Control, Automation and 
Robotics ICINCO 2005, vol. 3, pp. 425 – 430, INSTICC Press, ISBN: 972-8865-30-9, Barcelona –
 Spain, Sep. 14 - 17, 2005. 
 

An example based on the CBR methodology to manage the atomic capabilities of physical agents 
executing an offside maneuver in robot soccer is established. This approach allows to each agent a 
reliable self-knowledge which concludes in achieving sure commitments and intelligent self-
control in cooperative environments.  

 

Quintero M. Christian G., de la Rosa J., and Vehí J. “Studies about the Atomic Capabilities 
Concept for Linear Control Systems in Physical Multi-Agent Environments”. In Proceedings of 
the IEEE International Conference on Computational Intelligence in Robotics and 
Automation CIRA 2005, vol. 1, pp. 727 – 732, IEEE Catalog Number: 05EX1153, ISBN: 0-7803-
9355-4, Espoo – Finland, Jun. 27 - 30, 2005. 
 

The impact of the atomic capabilities concept to include control-oriented knowledge of linear 
control systems in the decision-making of physical agents is highlighted. This approach is 
presented using an introspective reasoning approach and control theory based on the specific 
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tasks of passing a ball and executing the offside maneuver between physical agents in the robot 
soccer test bed.  

 

Quintero M. Christian G., de la Rosa J., and Vehí J. “Physical Intelligent Agents’ Capabilities 
Management for Sure Commitments in a Collaborative World”. Frontiers in Artificial 
Intelligence and Applications – AI Research & Development, vol. 113, pp. 251 – 258, IOS 
Press, ISSN: 0922- 6389, ISBN: I 58603 466 9, Amsterdam – Netherlands, 2004. 
 

A way of improving the management of commitments among physical agents by exploiting all 
knowledge related to their physical bodies represented in their atomic capabilities is proposed. 
This approach is implemented using interconnected neural networks and fuzzy sets in the 
specific task of passing a ball among physical agents along with their results in a robotic soccer 
game. 
 

Zubelzu J., de la Rosa J., Ramon J. A., and Quintero M. Christian G., “Managing Heterogeneity 
in a Robot Soccer Environment”. Frontiers in Artificial Intelligence and Applications – AI 
Research & Development, vol. 113, pp.  317 – 322, IOS Press, ISSN: 0922- 6389, ISBN: I 58603 
466 9, Amsterdam – Netherlands, 2004. 
 

The development of a physical multi-agent system based on the concepts of heterogeneity, scenes 
or meetings among agents and introspection, using a robot soccer simulator is presented. The 
benefits of managing heterogeneous systems are also addressed. We claim diversity is desirable if 
it is managed by the agent introspection. The impact of managing heterogeneous multi-agent 
systems on performance is also analysed.  

 

Wan J., Quintero M. Christian G., Luo N., and Vehí J., “Predictive Motion Control of a MiroSOT 
Mobile Robot”. In Proceedings of the World Automation Congress WAC 2004, vol. 15, pp. 325 -
330, IEEE Catalog Number: 04EX832C, Seville – Spain, Jun. 28 - Jul. 1, 2004. 
 

The dynamic model of a MiroSOT robot has been deduced with the consideration of the whole 
process including robot, vision, control and transmission systems. An integrated predictive 
control algorithm is proposed to control such complex dynamic system with either stationary or 
moving obstacle avoidance. Simulation results demonstrate the feasibility of such control 
strategy for the deduced dynamic model. 

 

De la Rosa J., Quintero M. Christian G., and Vehí J., “About the Value of Introspection for 
Physically Grounded Commitments of Cooperative Intelligent Agents”. In Proceedings of the V 
Workshop on Physical Agents WAF 2004, vol. 1, pp. 131 – 137, ISBN: 84-933619-6-8, Girona –
 Spain, Mar. 25 - 27, 2004.  
 

How relevant is introspection for individual and cooperative agents’ decisions in order to be 
aware of “to be or not to be able” to perform correctly a mission, task or set point is addressed. 
Interconnected neural networks sets are used as an implemented machine learning technique in 
the specific task of passing a ball among physical agents in the game of robotic soccer. 
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7.4 Future Research and Directions 

In this thesis, introspection on control-grounded capabilities has been extensively 

studied in the robot soccer domain. The obtained results present some features that 

could extend to other domains and applications that may also benefit from the explicit 

knowledge on dynamics mentioned in this work. In this sense, preliminary results in 

other simulated test beds as teams of agent-controlled mobile robots in rescue 

environments and agent-controlled vehicles for automation driving in future highways 

are provided. However, extensive deepening in these case studies and more complex 

scenarios is necessary, principally through real experimentation in real cooperative 

environments. 

The current efforts and results of this thesis show that the control-grounded 

capabilities notion and the agent introspection concept are very useful for cooperative 

control systems. However, it is still difficult to choose the necessary information to be 

included in the capabilities as well as the most suitable particular implementation 

technologies for imitating conscious-level reasoning in physical agents. As preliminary 

steps, this thesis reports some results obtained by using quite efficient machine 

learning and soft-computing techniques for building introspective agents. Such agents 

managed successfully their behaviour controllers by using the information included in 

their control-grounded capabilities associated with them. In spite of this, more 

extensive studies on these topics should be carried out to guarantee a better agent-

oriented representation of the agents’ inertial dynamics and the specifications, 

structure and other relevant details encapsulated in their automatic controllers. 

Introspection on control-grounded capabilities has been studied in this thesis mainly 

in the context of the dynamics resulting from the actions of automatic controllers. 

Although it has been shown its relevance in the multi-agent performance especially in 

cooperative mobile robots, introspection on other interesting types of capabilities 

should be explored more in depth to enrich the agents’ decision-making with self-

knowledge related to other aspects of their physical bodies and control architectures.   
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In addition, studies on self-modeling, self-reference and proprioception could be 

carried out to increase and improve the physical agents’ self-knowledge. 

The thesis has also presented how introspection can contribute in a holistic manner 

when is integrated with other coordination parameters in the utility/cost functions for a 

more reliable agents’ decision-making design. Nevertheless, one of the most interesting 

aspects to study in the future is how introspection on control-grounded capabilities 

will give new hints to engineers to design control systems. In the future, control 

engineers may keep KISS design in control systems of physical agents [De la Rosa et 

al., 07], by explicitly introducing introspection on control-grounded capabilities in such 

design in slightly natural way.  

 

7.5 Concluding Remarks 

This thesis argues the need for introspective reasoning on control-grounded 

capabilities in physically grounded agents to improve the agents’ decision-making 

performance in both individual and cooperative decisions and close the gap between 

agents and the low abstraction level of automatic control architectures. Introspection 

on control-grounded capabilities allows agents to achieve sure and trustworthy 

commitments in cooperative systems, improving the performance of agents in 

coordinated tasks and task allocation problems. The thesis has shown how 

introspective skills help to prevent undesirable situations, to make safer decisions, to 

drive a better coordinated control and to obtain enhanced levels of performance and 

autonomy in any group of cooperating agents. In both individual and cooperative 

decisions about commitments between physical agents, the introspection allows an 

agent to know about its physical body’s actual ability to perform all proposed 

coordinated tasks. Therefore, physical agents can behave intelligently when they 

negotiate commitments with other agents or humans. Here, intelligence is understood 

as the appropriate exploitation of knowledge about dynamics to perform better and 

achieve enhanced levels of performance and autonomy. In this sense, the thesis claims 
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that introspection contributes to increasing the level of intelligence in physical agents 

by means of a suitable self-examination capability. In particular, with introspection, 

physical agents have a great deal of flexibility and self-control that make them more 

intelligent. Likewise, introspection is closely related to self-awareness. Self-aware 

control systems research aims at building systems that exhibit flexible, autonomous 

and goal-directed behaviors. The emergence of such behaviors is based on a deep 

understanding of the world and the self. Since introspection is related to self-knowing, 

it helps to fulfill the aims of self-aware control systems. 

A representation based on capabilities related to the agent body’s dynamics has been 

considered. These capabilities were managed in an introspective manner when agents 

were required to make a decision or to commit to the fulfillment of a task. 

Nevertheless, it is still difficult to choose the necessary information to include in the 

capabilities to represent control-oriented knowledge mainly related to dynamics. In 

spite of this, the experimental results have shown that introspection on control-

grounded capabilities helps agents to make physically feasible decisions and to form 

sure, reachable and physically grounded commitments. Here, control-grounded 

capabilities were closely related to automatic controllers of physical agents. From the 

controllers, suitable information was extracted to obtain reliable control-oriented 

knowledge of the agent body’s dynamics. There is still much to explore about how to 

take advantage of this approach. In particular, in the future, it is necessary to extend 

the contributions to other controlled systems. Furthermore, selection of a paradigm for 

the implementation of these concepts is not trivial at all, and its development is still an 

open question.  
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