Ph.D. Thesis

Doctoral Program in Aerospace Science & Technology

Precise GPS-based position, velocity
and acceleration determination:
Algorithms and tools

Dagoberto José Salazar Herndndez

Advisor:
Dr. Jaume Sanz Subirana

Research group of Astronomy and Geomatics (gAGE)

Depts. of Applied Mathematics IV and Applied Physics
Universitat Politecnica de Catalunya (UPC), Spain

March 8, 2010

Precise GPS-based position, velocity and acceleration determination:
Algorithms and tools

Dagoberto Salazar, 2010.

Doctoral Program in Aerospace Science & Technology
Technical University of Catalonia

This dissertation is available on-line at the Theses and Dissertations On-line (TDX) repository,
which is managed by the Consortium of University Libraries of Catalonia (CBUC) and the
Supercomputing Centre of Catalonia (CESCA), and sponsored by the Generalitat (government)
of Catalonia. The TDX repository is a member of the Networked Digital Library of Theses
and Dissertations (NDLTD) which is an international organisation dedicated to promoting
the adoption, creation, use, dissemination and preservation of electronic analogues to the
traditional paper-based theses and dissertations

http:www.tesisenxarxa.net
PhD. Thesis made with the support of:

Research group of Astronomy and Geomatics (gAGE/UPC)
Polytechnic School of Castelldefels (EPSC/UPC)

©0le)

This work is licensed under the Creative Commons Attribution-Non-commercial-No Derivative Work
3.0 License. To view a copy of this license, visit http:creativecommons.orglicensesby-nc-nd3.0 or send

a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Dedicated to the memory of my father: A man who was patient enough to
teach his 4-year-old son the difference between voltage and current...

...I believe | finally got it, Dad.

Acknowledgements

| want to start thanking my wife, Rocio. I've received from her much more
support, comprehension and love than any husband deserves.

| also thank my children, Vanessa and Ricardo. They have enriched my life in
SO many ways.

My “compadre” Ignasi deserves a special mention here: He has been a “guardian
angel” for us, and this thesis could well not have existed without his initial
support. The same can be said from Jordi, whom | resort everytime | have a
big problem, or when | just want to have a good laugh.

Mam3, Dangel, Darvin, Lorena, Erika, Daniela, Oscar... thank you very much
for always been there.

| owe a huge debt to my mentors, gAGE senior researchers Jaume, Miguel and
Manuel. I've been so lucky of been able to drink from their deep wells of wisdom
and knowledge everyday during all these years.

Thanks to Angela, Alberto, Pere, Radl, Pedro and Adrid, my gAGE comrades.
You've made the hard work lighter, and you've been there to help me with my
doubts and ideas. Pere and Raul: | owe you a big one.

| also want to thank the GPSTk team: You've done a terrific job that I've taken
advantage of. Special thanks go to Ben, who has been so supportive from the
very beginning.

The EPSC school has provided a great support during these years. Thanks to
Directors Miguel Valero and Jordi Berenguer for being so flexible. Also a big
thank goes to the “Aeronautic bunch”: Adeline, Jorge, Xavi, Luis, Pep, Santi
and Consol, it is so fun to work with you guys.

My friends José, Oscar and Pinar: Thanks because although you are far away,
you are also here with me.

| want to close this section thanking the GPSTk users: Everytime | receive your

vi Acknowledgements

support requests, | have to learn new things and think in new ways about what
I'm doing, making me feel that what I'm doing is worthwhile.

Contents

Acknowledgements

List of Figures

List of Tables

Acronyms list

Abstract

Resumen

Introduction

1 The GPS Toolkit

1.1 GPSTk general description
1.2 GPSTk development philosophy
1.3 GPSTkstructure.
1.4 GPSTk documentation
1.5 GPSTk portability

1.6 Initial GPSTk functionality

1.7 Validation of the GPSTk with BRUS

xiii

XV

xvii

viii CONTENTS
1.7.1 Validation at range domain 24

1.7.2 Validation at position domain 25

1.8 Summary 26

2 GNSS Data Structures 29
2.1 Motivation 29
2.2 Explaining GNSS Data Structures 31
221 GDSexamples 31

2211 RINEXfiles 32

2212 Signal model L. 34

2.2.1.3 Equationsystems 35

2.2.1.4 Other datasources 36

2.3 GDS implementation 37
2.4 GDS Processing Paradigm 37
2.5 Examples of code-based data processing 39
2.5.1 GPS Standard Positioning Service (SPS) 39

2.5.2 (1 smoothed pseudorange with WMS 43

2.5.3 lonosphere-free smoothed pseudorange (PC) with WMS 44

254 PCand WMS with additional information 46

2.5.5 Differential GPS (DGPS) with WMS 47

2.5.6 Differential GPS (DGPS) with Kalman Filter 50

2.6 Summary 51

3 Phase-based positioning 53
3.1 Precise Point Positioning (PPP) 53
3.1.1 Handling configuration files 54

3.1.2 Handling Antenna Exchange Format (ANTEX) files . . . 55

CONTENTS ix
3.1.3 Computing tidal values 55
3.1.4 GPSTk exception handling mechanism and its uses . . . 56

3.2 PPP data processing 58
321 StaticPPPresults. 60
3.2.2 Kinematic PPPresults 61
3.2.3 Forward-backward PPP results 63

3.3 Carrier phase-based DGPS 65

3.4 Abstraction and flexibility 66
3.4.1 ProcessingVector and ProcessingList 67
3.4.2 Abstraction of equation solvers 68

35 Summary 69

Precise Orbits Positioning 71

4.1 Background 71

4.2 POP description 72

4.3 POP implementation 74

4.4 POP data processing 78

45 POP convergence time 81

4.6 Summary 82

Velocity and acceleration determination 85

5.1 Background 85

5.2 Carrier phase method fundamentals. 86
5.2.1 Velocity determination L. 86
5.2.2 Acceleration determination 90
5.2.3 Numerical differentiation 91
5.2.4 Covariance model 92

X CONTENTS
5.2.4.1 Variance of a single measurement 93
5.2.4.2 Covariance between two satellites 94
5.2.4.3 Covariance between two receivers 94

5.2.4.4 Covariance between different receivers and satel-
lites 95
5.2.45 Comments on covariance model 95
5.3 Improving velocity results 96
5.4 EVA: Extended velocity and acceleration determination 99
5.4.1 Computing the velocity 99
5.42 Computing the acceleration 101
5.5 Applying EVA method to aircraftdata 102
5.5.1 Aircraft description 102
5.5.2 Data collection description 102
5.5.3 Aircraft data processing 104
5.6 Applying EVA method to very long ranges 108
5.7 Summary 111
Conclusions 113
A GNSS fundamentals 119
Al Partsofa GNSS 119
A.2 GNSS measurements 120
A2.1 Code measurements 120
A.2.2 Carrier phase measurements 121
A.3 Observable combinations 123
A.3.1 lonospheric-free combinations 123

A.3.2 lonospheric combinations 124

CONTENTS

xi

A.3.3 Narrow-lane and wide-lane combinations 124
A.3.4 Melbourne-Wiibbena combination 124

A.4 Solving the navigation equations 125
A.5 Differential positioning L 126
A.6 Double differences positioning 127
A.7 Ambiguity resolution.o 128
A.8 Tides modeling 128
AB8.1 Solidtides 130
AB8.2 Oceanloading, 131
A83 Poletides 131

B C++ basics 133
Bl C++4+ Basics 133
B.1.1 Object-oriented programming 133
B.1.2 Inheritance 135
B.1.3 Polymorphic methods 137
B.1.4 Operator overloading 137
B.15 Templates 138
B.1.6 Exception handling 139
B.1.7 CH+summary 140

C GPSTk basics 141
C.1 GPSTkoverview 141
C.2 Some current GPSTk features 142
C.3 GPSTkadvantages 143
C.4 GPSTkdisadvantages 143
C.5 How to compile the GPSTk 144

xii

CONTENTS

C.6 GPSTk examples
C6.1
C.6.2
C6.3
C.6.4
C6.5
C.6.6
C.6.7
C.6.8

Vectors.
Matrices
Solvers
Time management

Position

RINEX observation files

Ephemeris files.

Solid tides

D GPSTk documentation

D.1 SolverPPP Class Reference

E Porting the GPSTk to the Gumstix

E.1 Description of Gumstix boards

E.2 Installing the cross-compiling tools
E.3 Compiling the GPSTk for the Gumstix

E.4 Compiling and running GPSTk-based applications

Bibliography

Index

190

List of Figures

1.1

1.2

1.3

1.4

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

3.1

3.2

3.3

3.4

35

Basix 200 Gumstix embedded board. 21
Difference in Prefilter Residuals. EBRE2002/01/30.. 25
Comparison of vertical error. COCQ000/07/26. 26
Comparison of horizontal error. COCQ000/07/26. 27
Single-epoch RINEX data structure. 32
RINEX dataset. 33
More efficient RINEX dataset. 33
Representation of a GNSS signal propagation model. 35
Pseudorange-based data processing. EBRE 2002/01/30. 45
PC processing (horizontal). EBRE 2002/01/30. 48
PC processing (vertical). EBRE 2002/01/30. 48
DGPS data processing. EBRE 2002/01/30. 51
Static PPP processing. MADR 2008/05/27. 60
Static PPP processing 3D errors. MADR 2008/05/27. 61
Kinematic PPP processing. MADR 2008/05/27.. 62
Zenith path delay for several PPP processing tools. 64

Static phase-based DGPS errors regarding IGS. 66

xiv LIST OF FIGURES
4.1 POP network. MADR 2008/05/27. 78
4.2 POP versus kinematic PPP processing. MADR 2008/05/27. . . 79
4.3 POP versus kinematic PPP processing. TLSE 2008/05/27. . . . 80
4.4 POP results for 4 and 5-stations networks. TLSE 2008/05/27. . 80
4.5 POP results for 2 and 4-stations networks. TLSE 2008/05/27. . 81
4.6 Convergence time. TLSE 2008/05/27. 82
5.1 RX-SV geometry for carrier phase method. 87
5.2 Average velocity 3D error (5 minutes interval) for UPC2. 97
5.3 Station network for Pyrenees flight. 103
5.4 Aircraft Robin DR400-140B. 104
5.5 Aircraft horizontal velocity. 105
5.6 Aircraft velocity differences of EVA with respect to modified-

Kennedy. 106
5.7 Aircraft vertical velocity during static section. 107
5.8 South America network. 109
5.9 Vertical velocity for BOGT station. 110
E.1 Vertical error. EBRE 2002/01/30. 182
E.2 Horizontal error. EBRE 2002/01/30. 182

List of Tables

1.1

1.2

3.1
3.2

3.3

5.1
5.2
5.3

5.4

55

5.6

57

Some basic GPSTk classes. 22
Some additional GPSTk classes. 23
PPP processing objects and classes. 59

3D-RMS for Kinematic PPP position differences regarding 1GS
solution. 63

RMS for zpd differences regarding IGS combined solution. . . . 64

Velocity averages and sigmas for static results (UPC2-UPC1). . 97

Acceleration averages and sigmas for static results (UPC2-UPC1). 98

Velocity and accelerations results for PLAN-EBRE. 98
Aircraft velocity and acceleration averages and sigmas for static

period. L 107
South America network data. 108

Velocity and accelerations results for BOGT-CRO1 (Modified-
Kennedy method). L 109

Velocity and accelerations results for BOGT (EVA method). . . 110

Xvi LIST OF TABLES

Acronyms

list

ANTEX
ANSI
API
ARL
AT&T
BRUS
CODE
DGPS
DOP
ECEF
EGNOS
EKF
EPSC
ERP
ESA
ESTB
EVA
EWL
FFMC
FIR

Antenna Exchange Format

American National Standards Institute
Application Programming Interface

Advanced Research Laboratory

American Telephone and Telegraph

Basic Research Utilities for SBAS

Center for Orbit Determination in Europe
Differential GPS

Dilution Of Precision

Earth-Centered, Earth-Fixed

European Geostationay Navigation Overlay System
Extended Kalman Filter

Escuela Politécnica Superior de Castelldefels
Earth Rotation Parameters

European Space Agency

EGNOS System Test Bed

Extended Velocity and Acceleration determination
Extra Wide Lane

Full Function Miniature Computers

Finite Impulse Response

xviii Acronyms list
gAGE Group of Astronomy and Geomatics

GDS GNSS Data Structures

GLONASS GLObal NAvigation Satellite System

GNSS Global Navigation Satellite System

GNU GNU'’s Not Unix

GPS Global Positioning System

GPST GPS Time

GPSTk GPS Toolkit

IBM International Business Machines Corporation
ICC Institut Cartografic de Catalunya

IEC International Electrotechnical Commission
IERS International Earth Rotation and Reference Systems Service
IGS International GNSS Service

IIR Infinite Impulse Response

INS Inertial Navigation System

IONEX lonosphere Map Exchange

ISO International Organization for Standardization
LGPL GNU Lesser General Public License

LMS Least Mean Squares

MOPS Minimum Operational Performance Standards
NAVSTAR Navigation System with Time And Ranging
NEU North-East-Up

NIMA National Imagery and Mapping Agency

ooP Object-Oriented Programming

PC Personal Computer

PDA Personal Digital Assistant

PLL Phase Lock Loop

Acronyms list xix

POP
PPP
PRN
PVT
RAIM
RINEX
RMS
RS-MMC
RTK
RX
SBAS
SINEX
SP3
SPS
STL
Y,
TECU
TGD
UEN
UPC
uT
VFR
VRS
WMS

Precise Orbits Positioning

Precise Point Positioning
Pseudo-Random Noise

Position, Velocity, Time

Receiver Autonomous Integrity Monitoring
Receiver INdependent EXchange format
Root Mean Square

Reduced Size Multi Media Card

Real Time Kinematics

Receiver

Satellite-Based Augmentation System
Solution Independent Exchange
Standard Product #3

Standard Positioning Service
Standard Template Library

Space Vehicle

Total Electron Content Unit

Total Group Delay

Up-East-North

Universitat Politecnica de Catalunya
Universal Time

Visual Flight Rules

Virtual Reference Station

Weighted-Least Mean Squares

XX

Acronyms list

Abstract

This work is a Ph.D. Thesis for the Doctoral Program in Aerospace Science &
Technology from the Universitat Politecnica de Catalunya (UPC), focusing on
the development of algorithms and tools for precise Global Positioning System
(GPS)-based position, velocity and acceleration determination very far from
reference stations in post-process mode.

One of the goals of this thesis was to develop a set of state-of-the-art Global
Navigation Satellite System (GNSS) data processing tools, and make them avail-
able for the research community. Therefore, the software development effort
was done within the frame of a preexistent open source project called the GPS
Toolkit (GPSTk). Validation of the GPSTk pseudorange-based processing capa-
bilities was carried out comparing the results with a trusted GPS data processing
tool, confirming the viability of the GPSTk as a source code base for developing
reliable GNSS data processing software.

GNSS data management proved to be an important issue when trying to extend
GPSTk capabilities to carrier phase-based data processing algorithms. In order
to tackle this problem the GNSS Data Structures (GDS) and their associated
processing paradigm were developed, preserving both the data and correspond-
ing metadata. With this approach the GNSS data processing becomes like an
“assembly line", where all the processing steps are performed sequentially, pro-
viding an easy and straightforward way to write clean, simple to read and use
software that speeds up development and reduces errors.

The extension of GPSTk capabilities to carrier phase-based data processing
algorithms was carried out with the help of the GDS, adding important ac-
cessory classes necessary for this kind of data processing and providing refer-
ence implementations. The performance comparison of these relatively sim-
ple GDS-based source code examples with other state-of-the art Precise Point
Positioning (PPP) suites demonstrated that their results are among the best,
confirming the validity of using the GPSTk combined with the GDS to get
easy to write and maintain, yet powerful, GNSS data processing software. Fur-
thermore, given that the GDS design is based on data abstraction, it allows a

2 Abstract

very flexible handling of concepts beyond mere data encapsulation, including
programmable general solvers, among others.

The problem of post-process precise positioning of GPS receivers hundreds of
kilometers away from nearest reference station at arbitrary data rates was dealt
with, overcoming an important limitation of classical post-processing strategies
like PPP. The advantages of GDS data abstraction regarding solvers, and in
particular the possibility to set up a “general solver” object, were used to im-
plement a kinematic PPP-like processing based on a network of stations. This
procedure was named Precise Orbits Positioning (POP) because it is indepen-
dent of precise clock information and it only needs precise orbits to work. The
results from this approach were very similar (as expected) to the standard kine-
matic PPP processing strategy, but yielding a higher positioning rate. Also, the
network-based processing of POP seems to provide additional robustness to the
results, even for receivers outside the network area.

The last part of this thesis focused on implementing, improving and testing
algorithms for the precise determination of velocity and acceleration hundreds
of kilometers away from nearest reference station. Special emphasis was done
on the Kennedy method because of its good performance. A reference imple-
mentation of Kennedy method was developed, and several experiments were
carried out. Experiments done with very short baselines showed a flaw in the
way satellite velocities were computed, introducing biases in the velocity solu-
tion. A relatively simple modification was proposed, and it reduced the RMS of
5-min average velocity 3D errors by a factor of over 35.

Then, borrowing ideas from Kennedy method and the POP method, a new ve-
locity and acceleration determination procedure was developed and implemented
that greatly extends the effective range. This method was named “Extended
Velocity and Acceleration determination (EVA)".

An experiment using a light aircraft flying over the Pyrenees showed that both
the modified-Kennedy and EVA methods were able to cope with the dynamics
of this type of flight. EVA performance was a little behind RTK-derived velocity
estimations, but modified-Kennedy and EVA outperformed RTK in acceleration
estimations.

Finally, both modified-Kennedy and EVA method were applied to a very wide
network on equatorial South America, near local noon, with baselines over 1770
km. Under this scenario, the EVA method showed a clear advantage in both
averages and standard deviations for all components of velocity and acceleration.
This confirms that EVA is an effective method to precisely compute velocities
and accelerations when the distance to the nearest reference station is over one
thousand kilometers.

Resumen

Este trabajo es una tesis doctoral para el Programa de Doctorado en Ciencia
y Tecnologia Aeroespacial de la Universidad Politecnica de Catalunya (UPC).
Esta tesis llevd a cabo el estudio, desarrollo e implementacién de algoritmos
para la navegacién con sistemas globales de navegacién por satélite (GNSS),
enfocandose en el desarrollo de algoritmos y herramientas para la determinacidn
precisa de la posicidn, la velocidad y la aceleracién usando el sistema GPS, en
modo de post-procesado y muy lejos de estaciones de referencia.

Uno de los objetivos de esta tesis era el desarrollar herramientas avanzadas de
procesado de datos GNSS, y hacerlas disponibles para la comunidad investi-
gadora. Por ello, el esfuerzo de desarrollo del software se hizo dentro del marco
de un proyecto preexistente de software libre llamado la GPS Toolkit (GPSTk).
El Capitulo 1 presenta caracteristicas generales de ese proyecto tales como su
estructura, funcionalidades bdasicas y filosofia de desarrollo, mostrando ademas
el gran nivel de portabilidad que presenta la GPSTk.

Una de las primeras tareas realizadas durante el curso de esta tesis fue la valida-
cién de las capacidades de la GPSTk para el procesado de datos de pseudorango.
Los resultados de las comparaciones con una herramienta de procesamiento de
datos probada (BRUS) mostraron un acuerdo excelente, tanto en el modelado
como en la solucién final de la posicién, confirmando la viabilidad de la GPSTk
como una base de cédigo fuente confiable para el desarrollo de software de
procesado de datos GNSS.

La gestion de datos GNSS demostré ser un asunto importante a tratar cuando
se intentd extender las capacidades de la GPSTk al procesamiento de datos
obtenidos de las fases de las ondas portadoras de la sefnal GPS. Esta tarea
se desarrollé en el Capitulo 2, donde se presentaron las “Estructuras de Datos
GNSS” (GDS por sus siglas en inglés). Se explicé alli la motivacién para el
desarrollo de las GDS, una visién general de su implementacién, asi como el
paradigma de procesamiento asociado. En el Capitulo 2 también se incluyeron
varias estrategias de procesado de datos basadas en el pseudorango con el fin
de mostrar con claridad como pueden ser usadas las GDS.

4 Resumen

La principal contribuciéon de las GDS consiste en el hecho de que ellas preservan
tanto los datos como las relaciones existentes entre ellos, indexando interna-
mente toda la informacién relevante. Combinadas con su paradigma de proce-
samiento, el procesado de datos GNSS se convierte entonces en una especie de
“linea de ensamblado”, donde las fases de procesado son realizadas de manera
secuencial en lugares especificos. Este enfoque proporciona una manera facil y
directa de encapsular y procesar los datos, permitiendo escribir software que es
“limpio”, facil de leer y simple de usar, acelerando el proceso de desarrollo y
reduciendo los errores de dicho proceso.

En el Capitulo 3 se traté la extension de las capacidades de la GPSTk a los
algoritmos de procesado de datos basados en la fase. Se presentaron alli al-
gunas aplicaciones de las GDS a este tipo de procesamiento, asi como impor-
tantes clases accesorias que facilitan el trabajo. También se proporcionaron
implementaciones de referencia para su uso por parte de la comunidad GNSS,
encontrandose éstas en el directorio examples del proyecto GPSTk.

Cuando se compara el rendimiento en el procesado de datos “Precise Point
Positioning (PPP)" de estos ejemplos relativamente simples basados en las GDS
con otras aplicaciones de reputaciéon ya establecida, se encontré que sus resul-
tados destacan entre los mejores. Esto confirma la validez de utilizar la GPSTk
combinada con las GDS para obtener software de procesado de datos GNSS que
es a la vez potente y facil de escribir y mantener. Es mds, dado que el diseiio de
las GDS estd basado en la abstraccién de datos, éstas permiten un manejo muy
flexible de conceptos que estan mas alld de la simple encapsulacién de datos,
incluyendo, por ejemplo, resolvedores de ecuaciones genéricos y programables.

El Capitulo 4 se enfocé en el problema de obtener la posicién precisa, en post-
proceso, de un receptor GPS que se encuentra a cientos de kilémetros de la
estacidn de referencia mas cercana. Un requisito adicional era el uso de tasas de
datos arbitrarias, resolviendo una importante limitacién del método PPP clésico.
Las ventajas aportadas por la abstraccién de datos de las GDS a los resolvedores
de ecuaciones, y en particular la posibilidad de utilizar un “resolvedor genérico”,
fueron una pieza clave en la implementacién de un procesado semejante a un
PPP cinematico basado en una red de estaciones de referencia. Esta estrategia
fue bautizada como “Precise Orbits Positioning (POP)" porque sélo necesita
Orbitas precisas para trabajar y es independiente de la informacién de los relojes
de los satélites GPS.

La estrategia POP involucra miltiples estaciones separadas cientos de kilémetros,
y presenta un gran nimero de incégnitas de diferentes tipos. Algunas incégnitas
estdn indexadas por receptor (es decir, son especificas de un receptor dado,
como las coordenadas o el retraso troposférico), otras incégnitas estdn indexa-
das por satélite (como el desfase de los relojes atémicos de a bordo), y otras
estan indexadas tanto por receptor como por satélite (las ambigiiedades de fase,

Resumen 5

por ejemplo). Por tanto, el nimero de incégnitas en un instante dado presenta
una gran variacion, dependiendo ésta de las estaciones de referencia disponibles
y del nimero de satélites visibles. Durante esta tesis se desarrollé la clase de
la GPSTk llamada SolverGeneral que ayuda a implementar esta clase de
sistemas describiendo (en vez de escribiendo en el cédigo fuente del software),
las ecuaciones, las variables, sus relaciones y los modelos estocasticos asociados
a cada una. El programa exampleld.cpp se proporciona como una imple-
mentacion de referencia de este método de procesado de datos.

Los resultados de este enfoque fueron muy similares (como era de esperar) a
los del método PPP cinematico estdndar, pero proporcionando soluciones de
posicién con una tasa mayor. Asimismo, la estrategia POP parece proporcionar
una mayor robustez a los resultados, incluso para aquellos receptores que se en-
cuentran fuera del drea de la red. La distancia desde el receptor mévil (“rover")
a la estacion de referencia mds cercana no parece ser un factor critico, dado que
en las pruebas realizadas los resultados no se degradaron de manera significativa
cuando esta distancia se duplicé.

Por otra parte, el tiempo de convergencia con POP disminuye conforme el
nimero de estaciones de la red se incrementa, pero hasta cierto punto. Este
asunto representa un problema si se desea aplicar el método POP a vehiculos,
especialmente si los arcos de datos son cortos.

La dltima parte de esta tesis se enfocd en la implementacién, mejora y prueba
de algoritmos para determinar con precision la velocidad y aceleracién de un
receptor GPS a cientos de kilémetros de la estacion de referencia mas cer-
cana. El Capitulo 5 revisé varios métodos para calcular la velocidad y acelera-
cién, haciendo énfasis en el método de las fases de Kennedy debido a su buen
rendimiento. Dicho método fue explicado con detalle.

Se desarrollé una implementacién de referencia del método Kennedy vy se llevaron
a cabo varias pruebas. Los experimentos hechos con lineas de base muy cortas
mostraron que habia una falla en el procedimiento propuesto originalmente por
Kennedy para el cdlculo de las velocidades de los satélites, introduciendo sesgos
en la solucién de velocidad. Se propuso entonces una modificacién relativamente
sencilla, y ésta redujo en un factor mayor que 35 el RMS de los errores 3D en
velocidad (promedios a 5 minutos), conduciendo a una versién modificada de
dicho método. Adicionalmente, resultados preliminares obtenidos experimen-
tando con los modelos de covarianzas de errores sugieren que versiones mas
sencillas y rapidas pueden proporcionar resultados equivalentes al del modelo
completo propuesto por Kennedy.

Entonces, y tomando ideas del método de Kennedy modificado y del método
POP presentado en el Capitulo 4, se desarrollé e implementé un nuevo pro-
cedimiento de determinacién de velocidad y aceleraciéon que extiende en gran

6 Resumen

medida el rango efectivo. Este método fue llamado “Extended Velocity and
Acceleration determination (EVA)".

Un experimento usando una aeronave ligera volando sobre los Pirineos mostré
que tanto el método de Kennedy modificado como el método EVA son capaces
de responder ante la dindmica de este tipo de vuelos. Cuando se compararon
los resultados de estos métodos con una zona de velocidad cero los resultados
fueron muy similares, mostrando el método de Kennedy modificado una ligera
ventaja. El rendimiento del método EVA estuvo un poco por detrds de las
estimaciones de velocidad derivadas de posiciones RTK, pero tanto Kennedy
modificado como EVA superaron ampliamente a RTK en lo que a estimaciones
de aceleracion se refiere.

Finalmente, tanto el método de Kennedy modificado como el método EVA
fueron aplicados a una red muy amplia en la zona ecuatorial de Sur América,
alrededor del mediodia local y con lineas de base mayores a 1770 km. En este
escenario el método EVA mostré una clara ventaja tanto en los promedios como
en las desviaciones estdndar para todas las componentes de la velocidad vy la
aceleracién. Esto confirma que EVA es un método efectivo para calcular con
precisién las velocidades y aceleraciones cuando la distancia a la estacién de
referencia mas cercana supera los mil kilémetros.

Contribuciones

El desarrollo de las GNSS Data Structures (GDS) y su paradigma de proce-
samiento es una de las contribuciones de esta tesis. Las GDS solucionan al-
gunos aspectos de la gestion de datos GNSS preservando tanto los datos como
los metadatos, y proporcionando una manera de escribir software que acelera el
desarrollo y reduce los errores.

El procedimiento POP se considera otra contribucién. Aunque no es una es-
trategia original (métodos similares han sido reportados previamente en la lite-
ratura) su implementacién representa una manera nueva de resolver este tipo
de problemas. Es particularmente notable el uso de un resolvedor de ecuaciones
programable en tiempo de ejecucién (SolverGeneral) donde las ecuaciones,
las variables, sus relaciones y los modelos estocdsticos asociados a cada una
son descritos en vez de escritos en el software. Asimismo, este enfoque es lo
suficientemente flexible como para ser utilizado en otros tipos de problemas
complejos, como se demostré en el Capitulo 5.

El estudio de métodos de determinaciéon de la velocidad y la aceleracién basa-
dos en la fase representa otra contribucién: En particular, la modificacion de la
manera como el método Kennedy calcula las velocidades de los satélites con-

Resumen 7

dujo a mejoras de un orden de magnitud en los sesgos de las estimaciones de
velocidad.

Adicionalmente, el desarrollo del nuevo método “Extended Velocity and Acceler-
ation determination (EVA)" soluciona el problema de la determinacién precisa en
post-proceso de la velocidad y la aceleracién a miles de kilémetros de la estacién
de referencia mas cercana. Esta se considera una contribucién original e impor-
tante que pudiera tener un impacto en campos tales como la aerogravimetria,
donde se aplicaba el método de Kennedy original.

Otras contribuciones relativamente menores fueron la validacién inicial del cédigo
basico de la GPSTk, la demostracién de su proceso de adaptacién a una plata-
forma de célculo embebida, la extension de las capacidades de la GPSTk para
procesar datos basados en la fase, y en particular el procesado PPP. Las im-
plementaciones de referencia de varias estrategias de procesado de datos deben
ser muy Utiles para investigadores y estudiantes en el area GNSS.

Como comentario de cierre, el autor de esta tesis quiere enfatizar que este
trabajo no solamente proporcioné contribuciones cientificas, sino que también
dio fruto a contribuciones logisticas para la comunidad GNSS en su conjunto,
esforzandose en proporcionar herramientas que incrementen la productividad de
los investigadores GNSS.

Publicaciones
Este trabajo de tesis resulté en una publicacién en una revista arbitrada:

Salazar, D., Hernandez-Pajares, M., Juan, J.M. and J. Sanz. "“GNSS data
management and processing with the GPSTk”. GPS Solutions, DOI:
10.1007/s10291-009-0149-9, 20009.

También estuvieron relacionadas con esta tesis un cierto nimero de publica-
ciones en proceedings de congresos:

Salazar, D., Hernandez-Pajares, M., Juan, J.M. and J. Sanz. "Rapid Open
Source GPS software development for modern embedded systems: Using
the GPSTk with the Gumstix". Proceedings of the 3rd ESA Workshop
on Satellite Navigation User Equipment Technologies NAVITEC '2006.
Noordwijk. The Netherlands. December 2006.

Salazar, D., Hernandez-Pajares, M., Juan, J.M. and J. Sanz. “The GPS
Toolkit: World class open source software tools for the GNSS research

8 Resumen

community”. Proceedings of the 7th Geomatic Week. Barcelona. Spain.
February 2007.

Harris, R.B., Conn, T., Gaussiran, T.L., Kieschnick, C., Little, J.C., Mach,
R.G., Munton, D.C., Renfro, B.A., Nelsen, S.L., Tolman, B.W., Vorce, J.
and D. Salazar. “The GPSTk: New Features, Applications and Changes”.
Proceedings of the 20th International Technical Meeting of the Satellite
Division of the Institute of Navigation (ION GNSS 2007). Fort Worth,
Texas. September 2007.

Salazar, D., Hernandez-Pajares, M., Juan, J.M. and J. Sanz. “Open source
Precise Point Positioning with GNSS Data Structures and the GPSTK”.
Geophysical Research Abstracts, Vol 10, EGU2008-A-03925, 2008.

Salazar, D., Hernandez-Pajares, M., Juan, J.M. and J. Sanz. “High accuracy
positioning using carrier-phases with the open source GPSTk software”.
Proceedings of the 4th ESA Workshop on Satellite Navigation User Equip-
ment Technologies NAVITEC 2008. Noordwijk. The Netherlands. De-
cember 2008.

Salazar, D., Sanz-Subirana, J. and M. Hernandez-Pajares. “Phase-based GNSS
data processing (PPP) with the GPSTk". Proceedings of the 8th Geo-
matic Week. Barcelona. Spain. February 2009.

Gaussiran, T.L., Hagen, E., Harris, R.B., Kieschnick, C., Little, J.C., Mach,
R.G., Munton, D.C., Nelsen, S.L., Petersen, C.P., Rainwater, D.L., Ren-
fro, B.A., Tolman, B.W., and D. Salazar. “The GPSTk: GLONASS,
RINEX Version 3.00 and More”. Proceedings of the 22nd International
Technical Meeting of the Satellite Division of the Institute of Navigation
(ION GNSS 2009). Savannah, Georgia. September 2009.

Finalmente, un articulo de investigacién acerca del método EVA estd siendo
preparado actualmente, y serd enviado a una revista arbitrada en un futuro
cercano.

Futuras lineas de investigacion

Durante el desarrollo de esta tesis surgieron varias lineas adicionales de investi-
gacién. A continuacién se presenta una lista con aquéllas que se consideraron
mas prometedoras.

e El tiempo de convergencia del método POP se acelera conforme el nimero
de estaciones aumenta, pero hasta cierto punto, y lo mismo puede decirse

Resumen 9

de las mejoras en los valores del error 3D-RMS. Deberia investigarse la
topologia éptima de las redes de referencia para garantizar un nivel dado
de rendimiento con el minimo uso de recursos computacionales.

e El tiempo de convergencia es un problema cuando se aplica el método
POP a vehiculos en movimiento, especialmente si los arcos de datos son
cortos. Un futuro tépico de investigacion deberia ser el encontrar estrate-
gias para reducir el tiempo de convergencia, con el fin de aumentar la
utilidad de esta estrategia de procesado de datos.

e La exactitud y el tiempo de convergencia del método POP se podrian
mejorar considerablemente si se le pudieran aplicar estrategias de fijacidn
de ambigliedades. Trabajos recientes sobre fijacién de ambigiiedades en
PPP hechos por [Wang and Gao, 2006] y [Ge et al., 2008], entre otros,
proporcionan una base que pudiera ser aplicada también a POP.

e Resultados preliminares obtenidos cuando se hacian pruebas con el método
de Kennedy sugieren que se podrian utilizar modelos de covarianzas de
errores simples y mds rapidos, obteniendo no obstante resultados equiva-
lentes en la determinacion de la velocidad y la aceleraciéon. Este aspecto
deberia ser explorado para proporcionar mejores modelos de covarianzas.

e Trabajos previos tales como [Serrano et al., 2004] han intentado exten-
der el método de Kennedy a las aplicaciones en tiempo real, usando un
nico receptor, efemérides “broadcast” y un filtro diferenciador simple de
primer orden. El autor de esta tesis considera que se podrian obtener
mejores resultados usando un filtro diferenciador mas sofisticado, de tipo
Infinite Impulse Response (IIR), e incluyendo en el algoritmo correcciones
proporcionadas por sistemas SBAS.

e Un trabajo hecho por [Kubo, 2009] mostré cémo se puede usar infor-
macién de velocidad para mejorar el rendimiento del proceso de fijacidn
de ambigliedades en RTK. El autor de esta tesis considera que seria in-
teresante intentar fusionar los métodos POP y EVA con las estrategias
de fijacién de ambigliedades en PPP previamente mencionadas, para asi
crear un sistema robusto y preciso de posicionado en post-proceso capaz
de operar a miles de kilémetros de la estacién de referencia mas cercana.

10

Resumen

Introduction

This work is a Ph.D. Thesis for the Doctoral Program in Aerospace Science
& Technology from the UPC, focusing on the development of algorithms and
tools for precise GPS-based position, velocity and acceleration determination in
post-process.

Also, one of the goals of this thesis is to develop a set of state-of-the-art GNSS
data processing tools and make them available for the research community. In
order to maximize the usefulness, ease of reuse, modification, maintenance and
distribution among researchers of these tools, it was decided that the software
development effort would be done within the frame of the open source GPSTk
project, being this thesis work strongly related to the development of the GPSTk.

Motivation

The last decade has witnessed an explosive growth of GNSS, term coined to
collectively refer to several operational or planned satellite-based navigation
systems such as the American Navigation System with Time And Ranging
(NAVSTAR) GPS, the Russian GLObal NAvigation Satellite System (GLONASS)

and the future European Galileo.

The current pace of adoption of GNSS products in multiple scientific, commer-
cial and daily life applications is nothing but accelerating. Beyond the original
goal of positioning for military use, further uses have evolved along time such
as geodesy, timing, ionosphere and troposphere research.

This acute and ever growing demand of GNSS-related techniques in multiple
areas has spurred a wealth of research. Several different data processing tech-
niques have appeared along time, and these techniques often must meet tight
and conflicting demands of space, processing speed, power consumption, ro-
bustness and weight.

12 Introduction

Additionally, the aforementioned fast pace of adoption requires a short design-
to-market cycle. Development, implementation and testing of robust, innovative
and advanced GNSS data processing software in such a small time span is
therefore a resource-consuming, error-prone daunting task. Hence, in order to
ease this development process a solid code base to build upon is a must.

Although there exists a huge amount of GNSS data processing software avail-
able, most of it is closed source and/or they approach GNSS problems in an ad
hoc fashion. Reusability of the source code is hard, and documentation is often
scarce. Therefore, easy availability and reusability of the source code, as well
as abundant documentation will be important aspects regarding the algorithms
and tools developed in this work.

In this sense, the GPSTk is presented as a way to achieve these goals. The
GPSTk project is an open source project initiated and maintained by the Applied
Research Laboratories of the University of Texas, aiming to provide a world class
GNSS library computing suite to the satellite navigation community.

An important advantage of working upon an open source framework is increased
flexibility. For instance, part of the work done regarding this thesis work was
to port the GPSTk to the Gumstix computing platform (see Appendix E for
details). Such flexibility, going from a full fledged Pentium-DualCore 64-bits
workstation platform to a tiny Gumstix board, is a huge advantage in a research
environment. Adding to this advantage a set of solid, tested, powerful and freely
available algorithms will be an important contribution to the GNSS research
community.

As said in the opening lines, an important avenue of work is to research on the
development of algorithms and tools for precise GPS-based position, velocity
and acceleration determination in post-process. The original pseudorange-based
positioning techniques, giving precisions in the order of meters, have long been
replaced by phase-based techniques in the state-of-the-art research lines. Pro-
viding tools that help other researchers to apply the most modern techniques is
another important goal of this thesis.

It must be noted that carrier phase ambiguity-solving methods have been tra-
ditionally used for precise positioning both in real time (for instance, Real Time
Kinematics (RTK)) and in post-process techniques. In this regard, aircraft
positioning with phase-based methods is a very challenging scenario because
airplanes usually operate with long baselines from reference stations®, and their
dynamics are hard to predict and model.

This is a problem this Ph.D. thesis will approach to, providing a first set of

'While typical carrier phase ambiguity-solving methods only work a few tens of kilometers
from nearest reference station.

Introduction 13

tools to estimate, in post-process mode, the position, velocity and acceleration
of GPS receivers located very far from reference stations.

Research objectives

The general objective of this thesis will be to study, develop and implement
different algorithms for GNSS navigation, focusing on precise® position, velocity
and acceleration determination in post-process.

Within the framework of this general goal, several specific objectives are also
set:

e To extend GPSTk capabilities implementing carrier phase-based data pro-
cessing algorithms. The classes providing such algorithms must be devel-
oped taking into account issues of documentation, maintainability, ex-
tensibility and ease of use, therefore maximizing their usefulness for the
GNSS research community.

e To develop and implement GNSS data management strategies allowing
the simplification of source code, in order to enhance the productivity of
GNSS researchers and enable them to focus on more complex problems.

e To develop, implement and test algorithms allowing post-process pre-
cise positioning of GPS receivers hundreds of kilometers away from near-
est reference station, improving positioning rate regarding classical post-
processing strategies like Precise Point Positioning (PPP).

e To implement, improve and test algorithms allowing precise determination
of velocity and acceleration, hundreds of kilometers away from nearest
reference station, providing valuable tools for other areas such as aero-
gravimetry.

As it can be seen, this thesis work not only pursues the scientific contributions
but also includes logistic contributions for the GNSS research community at
large.

Methodology

The methodology to be used consists of the development of software applications
and classes (mainly written in C++) in order to implement and assess different

2In this context, the term precise is used for positioning errors below the decimeter level.

14 Introduction

navigation algorithms and methods.

The performance of these methods will then be validated comparing them with
other GNSS data processing software suites. Also, the implementations will be
tested using data from fixed receivers and rover receivers.

In order to maximize the usefulness of the results of this work to the GNSS
research community, the implementation of these methods will be open source,
and released in the context of the GPSTk.

Finally, modifications to current methods or new methods will be proposed when
deemed applicable.

Structure of this thesis

This thesis consists of the following parts:

e Introduction. The current section, presenting the motivation, objectives,
methodology and structure of this thesis.

e Chapter 1: The GPS Toolkit. In this part, the basic characteristics of the
GPSTk will be introduced, as well as its state of development when this
thesis work started and the initial work done.

e Chapter 2: GNSS Data Structures. Given the complexity of GNSS data
processing software, a novel way to handle GNSS data management is-
sues was developed, as well as an associated “processing paradigm”. This
chapter explains these developments and presents some simple pseudorange-
based examples.

e Chapter 3: Phase-based positioning. It contains the author efforts to add
phase-based capabilities to the GPSTk, including the full implementation
of the PPP strategy. The results are compared with other state-of-the-art
GNSS software suites.

e Chapter 4: Precise Orbits Positioning. The advantages of the data ab-
straction provided by the GNSS Data Structures are pushed forward and a
PPP-like network method, that computes satellite clock offsets on the fly,
is implemented. This method is tested and applied to aircraft positioning.

e Chapter 5: Velocity and acceleration determination. In this chapter, a
known carrier phase-based method for precise velocity and acceleration
determination is implemented and modified, improving its precision. Tak-
ing ideas from this method and the method explained in Chapter 4, a new

Introduction 15

method called "Extended Velocity and Acceleration determination (EVA)”
is proposed, that greatly extends the effective range.

e Conclusions. The final part presents overall conclusions from this thesis,
as well as a list of further research lines that follow from the present work.

Also, in order to improve reader’'s awareness about the topics presented in the
former chapters, several appendices are added:

e Appendix A, GNSS fundamentals. Introduces fundamental concepts re-
lated to this thesis. It delivers an introduction to the GNSS and their
observables, plus the usual methods for building and solving the equation
systems.

e Appendix B, C++ basics. This appendix presents a general review of
American National Standards Institute (ANSI) C++ concepts.

e Appendix C, GPSTk basics. A very simple introduction to the GPSTk is
provided in this appendix, including short programs and their results.

e Appendix D, GPSTk documentation. An example of the excellent qual-
ity of Doxygen -generated documentation is found in this appendix (for
SolverPPP class).

e Appendix E, Porting the GPSTk to the Gumstix. Here the process to port
part of the GPSTk to an embedded hardware platform (the Basix 200
Gumstix) is described.

16

Introduction

Chapter 1

The GPS Toolkit

One of the goals of this thesis is to develop a set of state-of-the-art GNSS data
processing tools and make them available for the research community. In order
to maximize their usefulness, those tools should be designed and developed
in such a way that it would ease their reuse, modification, maintenance and
distribution among researchers.

Taking the former specifications into account, it was decided that the software
development effort would be done within the frame of the open source GPSTk
project. When the work of this thesis started, the capabilities of the GPSTk
library were mainly limited to pseudorange-based GNSS data processing. From
this starting point further capabilities were added, aiming to develop full carrier
phase-based processing facilities.

This chapter explains the characteristics of this project, how it can be ported
to some embedded hardware platforms, and the first contributions made during
the development of this work (pseudorange-based only), setting the basis for
the additional contributions explained in the following chapters.

1.1 GPSTk general description

The GPSTk project is an advanced open source GNSS data processing suite
initiated and supported by the Applied Research Laboratories of the University
of Texas (ARL:UT), aiming to provide a world class GNSS library computing
suite to the satellite navigation community.

One of the main goals of the GPSTk is to free the research community from
implementing common GNSS algorithms, providing a publicly accessible soft-
ware repository, well documented and extensible, where those algorithms may
be found and freely used.

18 The GPS Toolkit

The initial code of the GPSTk was released in summer 2004 and presented at
the ION GNSS 2004 congress [Tolman et al., 2004], and its functionality has
been continuously improving. A very brief list of the tools provided by the
GPSTk includes:

Handling of observation data and ephemeris in RINEX and SP3 formats.

Mathematical, statistical, Matrix and Vector algorithms.

Time handling and conversions.

lonospheric and tropospheric models.

Cycle slip detection and correction.

Least Mean Squares (LMS) solvers and extended Kalman filters, etc.

The website of the project may be found at http://www.gpstk.org.

1.2 GPSTk development philosophy

As an open source project, the GPSTk is released under the GNU Lesser Gen-
eral Public License (LGPL), allowing freedom to develop both commercial and
non-commercial software based on it, and it is actively maintained by a dozen
developers around the world using the Internet as communication medium.

The GPSTk Project is heavily based on object-oriented programming principles,
ensuring a modular, extensible and maintainable source code. It also provides
recommended coding standards for its developers, in order to foster easily legible
code.

Although being an open source project, prior to July 2006 the source was pro-
vided only as compressed snapshots ([Harris et al., 2006]). The first contribu-
tions done in the framework of this PhD. thesis were provided as separated
source code “patches”. Other developers external to ARL:UT sent their contri-
butions via email, to be later merged with an internal repository.

Currently, the source code is managed using the development facilities provided
by the popular SourceForge open source application repository. In particular,
the repository is accessed using the Subversion source code management
tool.

1.3. GPSTk structure 19

The advantage of this system is that currently the users have direct access to
the last development version. It is enough to write the following line from the
console of a Linux/Unix system?:

$ svn checkout https://svn.sourceforge.net/svnroot/gps tk

For users looking for the last stable version instead of the development one, it
can be downloaded from the project website at http://www.gpstk.org.

1.3 GPSTk structure

The GPSTk software suite consists of a core library, some accessory libraries
and extra applications.

The core library provides several functions that solve common processing prob-
lems associated with GNSS (for instance, proper parsing of Receiver INdepen-
dent EXchange format (RINEX) files) and it is the basis for more advanced
applications distributed as part of the GPSTk suite.

On the other hand, the accessory libraries provide classes that, although useful
in GNSS data processing, are very specialized or do not meet the portability
standards of the core library, requiring libraries or system functions that are
broadly available but not part of the C++ standard. Those libraries are found
in the gpstk/dev/lib subdirectory.

Apart from the libraries, the GPSTk suite comes with a wealth of GNSS appli-
cations ready to run, explore and include in new developments. Full applications
may be found in the gpstk/dev/apps subdirectory, and interesting and easy
to follow examples are located at gpstk/dev/iexamples

1.4 GPSTk documentation

A very important feature of a project of this nature is its documentation. In this
regard, the GPSTk is profusely documented using the Doxygen documentation
system, providing a very complete Application Programming Interface (API).

Doxygen allows the user to create a very complete set of documentation right
from the GPSTk source code. Using special comment tags, the GPSTk devel-
opers write the documentation while they write the code.

!There are Subversion clients available for other operative systems.

20 The GPS Toolkit

In order to generate the documentation from a Linux or Unix system, the user
must install the Doxygen tool, change to the gpstk/dev/ subdirectory, and
invoke the tool from the command line:

$ doxygen

For other platforms, the APl from the last stable version is available in the
project website at http://www.gpstk.org.

In Appendix D you will find an example of Doxygen -generated documentation
for SolverPPP class.

1.5 GPSTk portability

The GPSTk provides a highly platform-independent software code base thanks
to the use of the ANSI C4++ programming language. It is reported to run on
Microsoft Windows, as well as Linux, Solaris, Macintosh OS X, AlX, and other
UNIX-based operating systems.

Also, it may be compiled using several versions of free and commercial compilers,
such as g++, Microsoft Visual Studio C++ .NET 2003 (Version 7), Microsoft
Visual C++ Express 2005 (Version 8), Forte Developer, International Business
Machines Corporation (IBM) VisualAge, etc. Compilation can be carried out
both in 32 bits and 64 bits platforms.

One of the first tasks carried out in this thesis was to test the capabilities of
the GPSTk and, in particular, its portability. The results of porting part of the
GPSTk to the Gumstix embedded boards are included in the proceedings of
the 3rd. ESA Workshop on Satellite Navigation User Equipment Technologies
(NAVITEC'2006) [Salazar et al., 2006].

In that work the lowest-end board was used: The Basix 200, running at 200 MHz
with 64MB SDRAM, 4MB Strataflash and a Reduced Size Multi Media Card
(RS-MMC) slot. This board has a power requirement of less than 250 mA at full
load, and its price was about 80 Euros. Figure 1.1 shows a Basix 200 Gumstix
board.

The process to port the GPSTk to the Basix 200 Gumstix can be found in
Appendix E. Also, please consult [Salazar et al., 2006].

1.6. Initial GPSTk functionality 21

Figure 1.1: Basix 200 Gumstix embedded board.

1.6 Initial GPSTk functionality

The GPSTk library provides several different modules grouping the classes by
common functions. It is important to emphasize that when this author started
his work on the GPSTK, the facilities provided by the library were mainly limited
to pseudorange data processing?.

Table 1.1 summarizes some of the the most important and used classes available
when this work started. This list is by no means exhaustive, but gives a very
rough idea of the initial GPSTk capabilities.

It can be seen that the GPSTk already provided a very important set of facilities
for researchers in the GNSS area. Worth of mention are class DayTime for
time management, classes Vector and Matrix , RINEX files-related classes
(RinexObsStream , RinexNavStream , etc.) and satellite ephemeris classes
(RinexEphemerisStore and SP3EphemerisStore , among others).

The author of this work started from that point, developing several additional
classes aiming to enhance and ease the pseudorange-based data processing tasks.
A few of those additional initial classes are presented in Table 1.2.

1.7 Validation of the GPSTk with BRUS

After the first additional classes were added, it was considered that GPSTk
validation was a priority in order to confirm that the initial classes provided a

2At the time, some carrier phase-based data processing support was provided as part of
vecsol and DDBase applications, but not as separated, easy to use classes.

22

The GPS Toolkit

FUNCTION CLASS NAME REMARKS
Time ANSITime "Seconds since Unix epoch” representation
handling CivilTime Common year/month/day/hour/min/sec time
DayTime Time representation for all common formats
Formatted I/O FFStream Formatted File Stream
FFData Formatted File Data

RinexObsStream
RinexNavStream
RinexMetStream

I/O on RINEX Observation files
I/O on RINEX Navigation files
I/O on RINEX Meteorological files

SP3Stream 1/O on SP3 files
Atmospheric lonoModel Klobuchar ionospheric model
models SimpleTropModel Simple Black tropospheric model
SaasTropModel Saastamoinen tropospheric model
NBTropModel New Brunswick tropospheric model
GGTropModel Goad and Goodman tropospheric model
Ephemeris EngAlmanac Almanac information for the GPS constellation
EngEphemeris Ephemeris information for a single satellite
RinexEphemerisStore Interface to read RINEX Navigation data
SP3EphemerisStore Interface to read SP3 Navigation data
Solution PRSolution Compute a position and time solution using RAIM
algorithms
Math Vector Mathematical vector representation
tools Matrix Mathematical matrix representation
SVD Singular value decomposition of a matrix
LUDecomp Performs the lower/upper triangular decomposition
PolyFit Computes a polynomial fit
RungeKutta4 Provides a collection of integration routines
Stats Conventional statistics for one sample
TwoSampleStats Conventional statistics for two samples
Expression Solves general mathematical expressions at run time
Coordinates ECEF Earth centered, Earth fixed geodetic coordinates
Position Common 3D geographic position format
Triple Three-dimensional vectors
Xvt Earth centered, Earth fixed position/velocity/clock
GPSGeoid Geodetic model defined in ICD-GPS-200
WGS84Geoid Geodetic model defined in NIMA TR8350.2

Miscellanea

CommandOption
BasicFramework
Exception
FileFilter
FileHunter

Set of several command line options

Basic framework for programs in the GPS Toolkit
Base class for all exception objects

Sorts and filters file data

Finds files matching specified criteria

Table 1.1: Some basic GPSTk classes.

1.7. Validation of the GPSTk with BRUS 23

FUNCTION CLASS NAME REMARKS

Atmospheric ~ GCAT TropModel Tropospheric model for GCATsoftware

models MOPSTropModel RTCA/DO-229D tropospheric model
NiellTropModel Tropospheric model with Niell mapping functions

Math Cholesky Computes Cholesky decomposition of a matrix

tools CholeskyCrout Implements Cholesky-Crout algorithm
SimpleKalmanFilter Implements basic Kalman filter algorithm

Solution Bancroft Algorithm to get initial guess of receiver position

algorithms ModeledPR Compute modeled pseudoranges
SimplelURAWeight Assigns weights to satellites based on IURA
MOPSWeight Assigns weights to satellites based on DO-229D
DOP Computes Dilution Of Precision values
SolverLMS Computes the Least Mean Squares (LMS) solution
SolverWMS Computes the Weighted-Least Mean Squares (WMS) solution
CodeKalmanSolver ~ Computes pseudorange-based EKF solution

Observable CodeSmoother Smoothes code observable with corresponding phase

handling ExtractData Eases data extraction from RinexObsData objects
ExtractPC Extracts and compute PC combination

Miscellanea ConfDataReader Parses and manages configuration data files
SunPosition Computes Sun position in ECEF

MoonPosition

Computes Moon position in ECEF

Table 1.2: Some additional GPSTk classes.

24 The GPS Toolkit

solid base to work upon.

Therefore, a validation study of those initial GPSTk capabilities was carried out
and the results were reported in the proceedings of the 7th. Geomatics Week
([Salazar et al., 2007]). The following sections present a brief summary of that
work.

For validation purposes, in this section the data results from one of the afore-
mentioned example programs (example-b.cpp) will be compared with the
results yielded by the “Basic Research Utilities for SBAS (BRUS)" software
package.

BRUS [Hernandez-Pajares et al., 2003b] is a software package developed by
gAGE/UPC and designed to be compliant with [RTCA/SC-159., 2006] (Min-
imum Operational Performance Standards (MOPS)). BRUS has been in use
since January 2002, first in the EGNOS System Test Bed (ESTB) Data Collec-
tion and Evaluation project of EUROCONTROLS to process and analyze weekly
data sets, and currently to monitor the real EGNOS signal for its operational
certification. Thence, it is a tested software suitable for comparison purposes.

BRUS in composed of three different parts: B2AConv (Binary to ASCIl GPS
measurements Converter), BNAV(BRUS NAVIGATOR) and BNAL(BRUS NAV-
IGATION ANALYZER). In particular, the part relevant to this comparison is the
navigation module BNAV Version 3.2.1 was used.

Given that the GPSTk has not yet implemented the modules regarding EGNOS
messages, then BNAV was configured to ignore EGNOS messages and only
implement the MOPS standards regarding modeling.

1.7.1 Validation at range domain

In order to compare the results, the first approach to validate the results has
been to compare the modeling of some important parameters for a given station,
time span and satellite. The work leading to [Salazar et al., 2007] included a
thorough comparison of all the modeled parameters involved in GPS' Standard
Positioning Service (SPS).

To be brief, in this section only the comparison of the “Prefilter Residuals”# for
EBREstation and satellite PRN #14 at 2002/01/30 will be shown. For this type
of validation, the comparison of “Prefilter Residuals” is the most important part
because they combine the information of all modeling algorithms, and therefore

SEUROCONTROL is the European Organisation for the Safety of Air Navigation.
“Difference between observations and modeled estimations. Please consult Section A.4 for
further information.

1.7. Validation of the GPSTk with BRUS 25

the difference of their values for a pair of GNSS data processing tools is an
effective way of compare their performance.

In this case, Figure 1.2 shows that the agreement is remarkably good: Differ-
ences between Prefilter Residuals are within 1 mm (i.e., within quantization
noise given that the output resolution was 1 mm), confirming that the applied
algorithms are equivalent.

Ditference in Prefit Residuals between GPSTk and BRUS. EBRE 2002/01/30. PRN 14

0.01 . :
Prefit Residuals difference +

0.005

PREFIT_gpstk - PREFIT_brus (m)
(=)

-0.005

-0.01

290000 295000 300000 305000 310000 315000 320000 325000 330000 335000
Seconds of week (s)

Figure 1.2: Difference in Prefilter Residuals between example-b and BRUS. EBRE
2002/01/30. PRN #14.

1.7.2 Validation at position domain

A second approach to compare the results is to compute the vertical and hor-
izontal positioning errors for a fixed receiver with known coordinates. In this
section, COCGtation (ecuatorial latitude) at 2000/07 /26 was used.

It can be seen in Figure 1.3 how the GPSTk-based program match very well
with BRUS, typically better than several centimeters, for the vertical error at
COCOThe main differences, specially at the end of the data set, are due to
satellites being dropped by example-b.cpp (i.e., the GPSTk) before being
dropped by BRUS, and both tools must implement their equation solvers in
slightly different ways.

26 The GPS Toolkit

Comparison of positioning in altitude between GPSTk and BRUS. COCO 2000/07/26

35

T
example-b +
BRUS =

Altitude difference {m)

o] 10000 20000 30000 40000 50000 60000 70000 80000 90000
Seconds of day (s)

Figure 1.3: Comparison of vertical error between example-b and BRUS. COCO
2000/07/26.

On the other hand, Figure 1.4 shows a similar agreement in horizontal error at

COCO

1.8 Summary

In this chapter the general characteristics of the GPSTk project were presented,
such as structure, basic facilities and development philosophy

In particular, it was shown the high level of portability of the GPSTk, combin-
ing it with an advanced embedded system (Gumstix Basix 200) in an easy an
effective way to develop applications able to process GNSS data.

The former work resulted in a publication in the congress proceedings of the
3rd. European Space Agency (ESA) Workshop on Satellite Navigation User
Equipment Technologies (NAVITEC'2006): [Salazar et al., 2006].

Also, the validation of the pseudorange-based processing capabilities was carried
out. For this, the BRUS software package developed by gAGE/UPC has been
used, given its proven performance during the development of the ESTB project
and the current monitoring of the EGNOS system.

1.8. Summary 27

Comparison of positioning in horizontal plane between GPSTk and BRUS. COCO 2000/07/26

sstple-b: RMS = 7.49m +
Eo#AV: RMS = 7.50 m #

-10

Latitude ditference {m)
@

-12

-14

-16

-18
-10 -8 -6 -4 2 0 2 4 6

Longitude difference (m)

Figure 1.4: Comparison of horizontal error between example-b and BRUS. COCO
2000/07/26.

The results of BRUS and the GPSTk show an excellent agreement both in the
positioning domain (vertical and horizontal components of error for a couple sta-
tions at different latitudes and epochs) and in the modeling data. This confirms
the viability of the GPSTk as a source code base for developing reliable GNSS
data processing software. The GPSTk validation study resulted in a publication
in the congress proceedings of the 7th. Geomatics Week ([Salazar et al., 2007]).

In summary, during the first part of this thesis work it was demonstrated that
the GPSTk, although then mostly limited to pseudorange-based data processing
only, already provided very interesting characteristics for the GNSS research
community, and it represented a solid source code base to build upon.

28

The GPS Toolkit

Chapter 2

GNSS Data Structures

This chapter presents the GDS, a novel GNSS data management strategy that
makes possible to organize complex problems in simple ways.

The GDS and their associated “processing paradigm” are considered an impor-
tant contribution of this thesis, because the source code resulting from using
them is remarkably compact and easy to follow, yielding better code maintain-
ability and supporting the overall GPSTk design goal of “to free researchers to
focus on research, not lower level coding” ([Harris et al., 2006]), resulting in an
increased researcher productivity.

2.1 Motivation

After validating the code-based results from the GPSTk, and confirming its
good portability characteristics, the author started to add carrier phase-based
processing capabilities.

Shortly after starting this task, some project developers started to face, with
increasing frequency, several data management issues that were difficult to deal
with when using just vectors and matrices.

The task of writing source code supporting complex data processing, and being
at the same time compact and easy to follow and maintain, was increasingly
hard to achieve.

In order to illustrate this situation, let's consider the simple case of using C1
code pseudoranges from a RINEX observation file!, smoothing them with cor-
responding L1 phases:

This discussion is also valid for real-time settings, but it will be restricted to post-process
for simplicity sake.

30 GNSS Data Structures

e The RINEX file is parsed and C1 and L1 observables are extracted. Each
observation must be related to (or indexed by) the satellite it belongs to.
Also, the receiver-generated cycle slip (CS) flags should also be parsed,
indexed and stored for cycle slip detection purposes.

e A capable CS detector should implement algorithms taking into account
data biases and variances. This extra information must also be indexed by
source and satellite. Additionally, epoch-related information (for instance,
to compute filter window length) is needed.

e With these extra data, and corresponding relationships among them, the
code-smoothing routine may proceed.

A wide number of approaches are used by researchers to implement this kind of
code. Vectors and matrices are commonly used to store observations and other
intermediate data, and each researcher develops some type of ad hoc look up
tables to store the relationships among data.

However, this common approach to the GNSS data management problem has
a very important disadvantage: it is difficult to scale. For instance, relations
among data will change when visible satellites change, prompting appropriate
refreshing of the tables; also, using more than one source (for instance, in DGPS)
adds more tables that must be linked with the previous ones. More complex
processing requires different types of relationships, yielding yet more types of
look up tables.

Therefore, the complexity of the software grows very fast when pursuing so-
phisticated GNSS processing strategies, dramatically increasing the possibility
of errors. As a result, the GNSS researcher devotes an ever increasing amount
of time looking for errors in his own code. Besides, each processing strategy
generates software that is crafted in a very specific way (because of the very
particular data relations it needs), which impairs code reuse. Therefore the re-
searcher also devotes a lot of time readapting his own previous routines to solve
an already solved problem (but in a different context), potentially introducing
more errors in this process.

Facing this situation, this thesis introduces a novel approach to GNSS data
processing software development. This approach is based in a hierarchy of data
structures coping with data management issues in a consistent way. That is the
origin of the GDS and the associated “GDS Processing Paradigm”.

2.2. Explaining GNSS Data Structures 31

2.2 Explaining GNSS Data Structures

In order to solve the GNSS data management problem in a flexible, consistent
and comprehensive way, the GDS were developed and added to the procframe
auxiliary library of the GPSTk. First introduced in [Harris et al., 2007], the GDS
and their associated “"GDS Processing Paradigm” have been continuously evolv-
ing and improving since their inception. See for instance [Salazar et al., 2008a],
[Salazar et al., 2008b] and [Salazar et al., 2009b].

The GDS hold several kinds of GNSS-related data, indexed by station, epoch,
satellite and type. In this way, both the data and corresponding “metadata’
(data relationships) are preserved, and data management issues are properly
addressed. The indexing is done automatically (i.e., without researcher explicit
intervention) because classes conforming to the “"GDS Processing Paradigm”
must fulfill some requirements including proper metadata handling and data
indexing.

GDS take advantage of the observation that several types of GNSS-related data
structures share some common characteristics, and thence they can be handled
in an unified way. These structures index each data value with four different
indexes:

Source: The GNSS receiver the data is related to.

Epoch: The time the data belongs to.

Satellite: The satellite the data value is related to.

Type: The type of data the value represents, for instance C1, P1, L2,
cycle slip flag on L1, etc.

Those indexes are implemented in the GPSTk as C+-+ classes named SourcelD
SatlD , TypelD , and DayTime . Objects associated with these classes provide

the researcher with a large set of methods to work with them in an easy way.

Please refer to GPSTk's API document for details.

2.2.1 GDS examples

In the following sections some conceptual examples about how GDS are used
to encapsulate GNSS-related data will be presented.

32 GNSS Data Structures

2.2.1.1 RINEX files

For a better understanding of how GDS work, the typical structure of a RINEX
observation file will be reviewed. The data structure for any given RINEX epoch
record may be modeled as an “inverted tree”, as shown in Figure 2.1.

Figure 2.1: Single-epoch RINEX data structure. General model at left, example with
indexes at right.

It can be seen that the data in a RINEX observation file is organized using a
hierarchy of indexes providing access to any given value. In Figure 2.1 the data
values themselves (i.e., the observations) are not shown: they are “attached”
to the indexes at the bottom level of the inverted tree.

Traversing the tree in a top-down direction, the first level is the epoch (time),
second level corresponds to satellite Pseudo-Random Noise (PRN) (one satellite
per row in RINEX Version 2 observations files?), and then comes the type the
observation belongs to (related to columns in the data file). The right part of
Figure 2.1 shows an example of how this tree may look with some indexes set.

Please note that there is an implicit index on top of this tree: The source. Each
RINEX observation file usually stores the data from one GNSS receiver only3,
Also, note the fact that for this data structure, the source and epoch indexes
are common for all values, whereas the satellite PRN and data type indexes are
value-specific.

It is important to emphasize that only four indexes were needed to fully identify
each RINEX data value: SatID , TypelD , SourcelD and DayTime . Besides,
with a careful implementation of these indexes (in particular SatlD), several
types of GNSS (GPS, Galileo, GLONASS, etc.) may be transparently handled.

2Support for RINEX Version 3 files is an ongoing work.

3From RINEX Version 2 onwards it is allowed to include observations from more than one
site, but it is not recommended, [Gurtner, 2001]. For multiple antenna cases, each antenna
must be handled as a different receiver.

2.2. Explaining GNSS Data Structures 33

The researcher then has to move along a given branch of the data tree in order
to get an specific observable out of a RINEX data file. This is represented by the
blue dashed shape at right side of Figure 2.1, and it implies that every RINEX
GNSS observable value may be unequivocally identified by the aforementioned
four indexes: source, epoch, satellite ID, and data type. Whether the use of
all or part of these indexes is necessary for a given application is a matter of
convenience, but nevertheless they are always explicitly or implicitly present.

Another common example is a RINEX data set, i.e., a set of observable values
from a given source, epoch and observation type, but differing in satellite ID. It
appears, for instance, when all C1 observations for a given epoch are extracted.
Figure 2.2 shows a typical tree composed of the required branches.

| TYPEk ‘ | 'I'YPEk| --------- | TYPEk|

Figure 2.2: RINEX data set.

However, given that all values share the same type, a more efficient way to
represent the former data structure is the one shown in Figure 2.3.

SAT1 SAT2 | revenvann SATn

Figure 2.3: More efficient RINEX data set.

These structures will be revisited in the next sections.

34 GNSS Data Structures

2.2.1.2 Signal model

The GDS may be used to model several different GNSS-related data structures,
for instance, the typical signal propagation model for pseudorange processing:

P! = pl +c(dt; — dt?) +rel] + T) + ayl} + K3, + M), +¢p, (2.1)
Where:

o Pz.j : Pseudorange observation for satellite j (SV7) from receiver i (RX;).
° pg : Geometric distance between SV7 and RX; antenna phase centers.
o dt/ : Offset of SV7 clock with respect to GPS Time.

e dt; : Offset of RX; clock with respect to GPS Time.

e rel’ : Bias due to relativistic effects (linked to SV7 orbit eccentricity).
° Tij : Tropospheric delay.

° afIZ.j . lonospheric delay. This effect is frequency-dependent (af =
40.3 - 10'6/f2 when I is expressed in TECU and f is in Hz).

° K}l . Frequency-dependent term due to the instrumental delays in SV
and RX; electronics.

° ijgi : Multipath effect. It is environment-dependent, including frequency
and code dependencies.

° 6%% : Noise and unmodeled effects for code measurements. It is code-
dependent.

Each term of Equation 2.1 is identified by its type (P, p, rel, etc.), receiver it
belongs to (i), and satellite (j). Please note that in this case the epoch index
is implicit: It is supposed that a given model is valid for a specific epoch.

Also, it is important to bear in mind that in this case data types are beyond the
typical RINEX observables: Tropospheric, ionospheric and relativity delays are
some examples. Therefore, it is important for TypelD to include a wide range
of data types used in GNSS data processing and, if possible, it should be easily
extensible.

The ability to grow beyond the original RINEX data types is paramount: A very
important data abstraction level is achieved in this way.

2.2. Explaining GNSS Data Structures 35

Figure 2.4 represents this kind of “data structure” applied to the GNSS signal
propagation model. Comparing Figure 2.4 with Figure 2.3 it can be confirmed
that, although the data structures are different, the same four basic indexes are
used and the major difference lies on which indexes are common to the values.

| TYPE1

Figure 2.4: Representation of a GNSS signal propagation model.

If several structures such as Figure 2.4 were put together (holding data of several
satellites), the resulting structure would look just like Figure 2.1.

2.2.1.3 Equation systems

Following the former data abstraction methodology, GNSS equation systems are
also good candidates to have generic data structures. This could be useful when
using solving methods where data is added and removed in a dynamic way.

When solving code-based, one-receiver GNSS data, it is common to build an
equation system composed of equations like Equation 2.2:

.]) s
Prefit] = (%)dwi + (M)dyi + <ZZ(;7.Z)dzi +c.dt; (2.2)
i0

Pio Pio
Where:

° Prefit{ . Prefilter residual, i.e., difference between observation and mod-
eled effects for satellite SV7 as seen from RX;.

e (x40, Yi0, zio) : A priori position of receiver i.

e ply: A priori geometric distance between receiver i and satellite j antenna
phase centers.

36 GNSS Data Structures

(27,47, 27) : Position of satellite SV/.

(dx;, dy;, dz;) : Corrections to (0, Yio, zio). (Parameters to be estimated
by the solver).

e dt; : Offset of receiver clock with respect to GPS Time.

¢ : Speed of light.

Equation 2.2 may also be modeled with a data structure like Figure 2.4 (just as
Equation 2.1 was). Putting several of these equations together in an equation
system, it is evident that each row in the equation system corresponds to the
data structure shown in Figure 2.4, whereas each column is represented by
the data structure in Figure 2.3 (different satellites, same type). Moreover, the
whole equation system may also be represented by something akin to the RINEX
data tree in Figure 2.1.

In summary, some structures are “rows” (Figure 2.4), while others are “columns”
(Figure 2.2 and Figure 2.3), the full setis a “matrix” (Figure 2.1), and a specific
observable, combination, coefficient or correction is just an element of a matrix.

Therefore, a properly implemented set of GNSS data structures may effectively
and comprehensively encompass a wide range of data relationships, well beyond
the rather simple relations stated in a RINEX file. The former simplifies data
management and code reuse issues.

2.2.1.4 Other data sources

Often, the GNSS receiver is a subsystem of a more complex positioning system.
Therefore, the GDS should be able to handle data from sources not directly
related to GNSS systems.

For instance, with the emergence of hybrid GNSS-INS receivers it may be nec-
essary to take into account other data streams. Imagine, for example, handling
“the angular velocity read at epoch 3201.3 s by the second gyroscope of the
aircraft inertial system number 1".

The data structures presented so far also fit this kind of data streams. For
instance, if in the former example data stream the INS poses as SourcelD ,
the gyroscope as SatlD (this class is extensible and non-standard “satellites”
may be easily added), and the angular velocity is classified as a given TypelD
(this class is also extensible), then each INS data value can also be represented,
and therefore it can be included in our unified data processing chain.

2.3. GDS implementation 37

A similar approach may be used to handle other data sources like differential
corrections.

2.3 GDS implementation

An efficient implementation of GDS should store just once those indexes that
are common to all the GNSS data values (for instance, look at the structure in
Figure 2.3). This approach cuts off as much overhead as possible, preserving
at the same time the full set of information to completely identify each of the
GNSS data values.

Therefore, the implementation of these structures should have something like a
header, holding all the common indexes, and a body, storing the variable indexes
and the data values themselves.

The “inverted tree” data structures presented in the former figures may be
thought of as composed in this way: The trunk of the tree corresponds to the
header, and the branches will form the body of the GDS.

This header/body approach to GDS eases implementation and improves ef-
ficiency. Moreover, the GPSTk extensively uses the C+-+ Standard Template
Library (STL), a set of data structures and associated algorithms that efficiently
implement and support this approach.

It is very important to emphasize, however, that the encapsulation provided by
GDS makes unnecessary for the researcher to know the implementation details
in order to effectively use the GDS.

2.4 GDS Processing Paradigm

Apart from the GDS themselves, a “GDS Processing Paradigm” was also devel-
oped in this thesis, where GNSS Data Structures are complemented with several
associated processing classes.

With the GDS paradigm the GNSS data processing becomes like an “assembly
line", where all the processing steps are performed sequentially. The GDS are
treated like white boxes that “flow” from one “workstation” (processing step)
to the next in such assembly line.

Thence, the GDS are always used as both the input and output of each process-
ing step, providing an easy and straightforward way to encapsulate and process
data. This paradigm allows developing clean, simple to read and use software

38 GNSS Data Structures

that speeds up development and reduces errors.

The objects from these processing classes reach into the GDS and add, delete
and/or modify what is needed (according to their function), and leave the results
in the same GDS, appropriately indexed. These processing objects are designed
to use sensible defaults in their parameters, but may be tuned to suit specific
needs.

For instance, a ModeledPR (Modeled Pseudorange) object may take as pa-
rameters observable type, ephemeris, ionosphere and troposphere models, and
will add to the incoming GDS some extra data such as geometric range, satel-
lite elevation and azimuth, prefilter residuals, and so on, properly indexed by
receiver-satellite pair. It will also automatically remove satellites missing crit-
ical data (as ephemeris, for example). Once the object is properly configured
for a given task, the data processing is carried out without needing further
adjustments.

Thanks to C++ object-oriented capabilities, all processing classes “inherit"
from a single class: ProcessingClass . This is a “pure virtual” class that
sets a common behavior to which all processing classes must adhere. As shown
later, this approach furthers the data abstraction and code reuse of software
using the GDS paradigm.

The former ideas are coupled with a redefinition of C4++ operator “>>", im-
plemented in such a way that several operators may be concatenated. It allows
a programming style that clearly shows how the data is flowing along the pro-
cessing steps (resembling the “pipes” concept used in UNIX-based systems).

In order to show the flexibility of this approach, some simple examples are
presented. In the first one, a single epoch worth of data will be extracted out
of a RINEX observation file, and that data will be put into a GDS:

1 RinexObsStream rinexFile("ebre0300.020");
2 gnssRinex gpsData;

3 rinexFile >> gpsData;

Line #1 declares an object of class RinexObsStream , which is used to han-
dle RINEX observation files. That object receives (in this case) the name of
rinexFile . and it will take care of “ebre0300.020 " RINEX observations
file. On the other hand, line #2 declares an object of class gnssRinex . This
is a GDS and data will be stored in this object, which will be called gpsData .

Finally, line #3 takes one epoch of data out of rinexFile and will put it into
gpsData . No more code is needed for this action, and line #3 is referred to

2.5. Examples of code-based data processing 39

as the “processing line". Please note how the C++ operator “>>" is used to
convey the idea that data “flows” out of the RINEX file into the GDS “box"
that will carry GNSS data around.

It is important to emphasize that the statement rinexFile >> gpsData
implies that a full epoch worth of data is taken out of the RINEX observation
file and “poured” into gpsData , filling in a structure just as the one showed in
Figure 2.1 with several different satellites and their corresponding observations,
everything appropriately organized.

Also, the statement rinexFile >> gpsData has the additional property
that it is evaluated as TRUEIf operation completes successfully, and as FALSE
otherwise (for instance, when the end of RINEX file is reached). This property
allows us to modify the former example to get a much more useful behavior:

1 RinexObsStream rinexFile("ebre0300.020");
2 gnssRinex gpsData;

3 while(rinexFile >> gpsData) {
// ...put your GNSS data processing code here . ..
4}

In this case the while loop will repeat itself until the end of RINEX file is
reached, and in each repetition a single epoch data set of RINEX observations
is automatically encapsulated into gpsData , fully available for processing.

2.5 Examples of code-based data processing

In the following sections a set of short examples providing pseudorange-based
data processing with the GDS will be presented, in order to illustrate how dif-
ferent classes and structures may be combined to implement several data pro-
cessing strategies.

2.5.1 GPS Standard Positioning Service (SPS)

In this example the GPS SPS ([DoD, USA, 2008]) will be presented. For space
reasons most of the initialization phase is skipped. For further details, please
consult the GPSTk API).

Also, the GPSTk provides carefully explained examples: Look at example6.cpp
and example7.cpp in the examples directory*. Most of the examples pre-

A detailed list of GPSTk examples may be found online at:

40 GNSS Data Structures

sented here are modified versions of the aforementioned programs.

This example starts with the lines handling broadcast ephemeris data:

1 RinexNavStream rnavin("bahr1620.04n");

2 RinexNavHeader rNavHeader;

3 rnavin >> rNavHeader;

4 lonoModel ioModel;

5 ioModel.setModel(rNavHeader.ionAlpha, rNavHeader.ion Beta);

6 lonoModelStore ionoStore;

7 ionoStore.addlonoModel(DayTime::BEGINNING_OF_TIME, i oModel);

8 RinexNavData rNavData;

9 GPSEphemerisStore bceStore;

10 while (rnavin >> rNavData) {

11 bceStore.addEphemeris(rNavData);
12 }

Lines #1 and #2 declare objects to take care of a broadcast ephemeris RINEX
file and its associated header. Line #3 reads the header and stores it. Klobuchar
ionospheric coefficients are stored in the ephemeris RINEX header, so this step
is important for lines #4 to #7. The first two of them declare an “ionospheric
model” object (ioModel) and fill it with Klobuchar coefficients, and then
they declare an ionospheric model store (ionoStore) and push the previously
defined model into it.

After that, the ephemeris data is read and stored in a proper object (bceStore),
which is filled with all available ephemeris data, one epoch at a time, in a similar
way as what was already explained for observation data.

Afterwards, some model initialization is necessary:

http://www.gpstk.org/doxygen /examples.html

2.5. Examples of code-based data processing 11

13 Position nominalPos(3633909.1016, 4425275.5033, 279986 1.2736);

14 MOPSTropModel mopsTM(nominalPos.getAltitude(),
nominalPos.getGeodeticLatitude(),

162);

15 ModelObs gpsModel(nominalPos,
ionoStore,
mopsTM,
bceStore,
TypelD::C1);

16 SolverLMS solver;

17 RinexObsStream rinexFile("ebre0300.020");
18 gnssRinex gpsData;

Line #13 declares the nominal position of receiver in Earth-Centered, Earth-
Fixed (ECEF) coordinates, line #14 setups a tropospheric model (there are
several types available), and line #15 creates a ModelObs object (gpsModel).

This “modeler” object (gpsModel) takes as input the nominal receiver posi-
tion, ionospheric and tropospheric models, ephemeris data and type of observ-
able it will work with, and then it carries up the tasks related with SPS-GPS
data modeling. Once it is fed with gpsData , gpsModel computes all the
delays defined by the standards and uses them to get the prefilter residuals and
geometric coefficients that will later be used by a “solver” object. All these
data is automatically inserted and indexed in the GDS.

Then, line #16 declares the “solver”, the object in charge of building and
solving the equation system. In this case it uses a simple LMS solving algorithm
(there are several algorithms available). The function of lines #17 and #18
was already described.

Finally, it comes the final while loop that extracts RINEX data, runs the GPS
model, solves the navigation equations and prints the results:

19 while(rinexFile >> gpsData)

{
20 gpsData >> gpsModel >> solver;
21 cout << solver.getSolution(TypelD::dx) << " ”;
22 cout << solver.getSolution(TypelD::dy) << ” "
23 cout << solver.getSolution(TypelD::dz) << endl;

42 GNSS Data Structures

Please remember from Section 2.4 that lines #20 to #23 will be carried out
for each epoch of data while line #19 evaluates as TRUE i.e., while there are
epochs to process still available in rinexFile . The GNSS processing is done
in line #20 (the “processing line"): The epoch-worth of data that was just
taken out from rinexFile and put into gpsData , is then pushed through
gpsModel (to generate the values associated with SPS-GPS signal modeling)
and solver (to build and solve the navigation equation system).

Some important remarks are in order: It can be seen that the first part of
line #20 is gpsData >> gpsModel , which generates the model. During
that phase, all new data generated by the model is stored and indexed in
gpsData . For instance, the relativistic delay between receiver and satellite,
let's say, PRN17, is computed and stored with all metadata needed to tell it
apart from relativistic delays from other satellites. This is the reason it has been
previously emphasized that although GNSS data structures and TypelD ’'s may
initially be seen as associated with RINEX data, they represent much more than
that.

Also, if a given satellite is missing a critical piece of data (like ephemeris data,
for example), it will be deleted from the gpsData GDS to avoid problems
further down in the data processing chain.

Additionally, the output of expression gpsData >> gpsModel is the modi-
fied gpsData structure, including the data generated by the gpsModel ob-
ject. In this way, gpsData >> gpsModel becomes again gpsData , where
the new gpsData is a superset of the original.

Therefore, the second part of line #20 then becomes gpsData >> solver
and solver object will find inside gpsData all the information it needs to
build and solve the navigation equation system.

This process is efficiently implemented using the aforementioned C++ STL. A
24-hours RINEX observation file (at a 30 s data rate) processed in this way
takes less than 0.2 seconds in an average laptop PC with Linux.

The final lines #21 to #23 take care of printing the solution to the screen using
the standard C++ cout printing object. Take note of the way to get solution
values out of solver objects, which represents the consistent way to refer to data
types along all the GDS processing paradigm.

Take note that in the examples presented in this chapter only the coordinates and
the receiver clock will be estimated by the solvers, while the other parameters
are either modeled or taken from broadcast values. More complex setups will
be shown in later chapters.

2.5. Examples of code-based data processing 43

2.5.2 C1 smoothed pseudorange with WMS

The very basic processing presented in Section 2.5.1 will be extended to do
something a little more complex: The next example will use C1 observables
smoothed with corresponding L1 phases, detect cycle slips, and include weight-
ing into the solver. The solution will be presented in a North-East-Up (NEU)
reference frame instead of ECEF.

The initialization phase for this processing chain is almost the same as the for-
mer example, so it will be skipped. The main change is in line #2, which
in spite of spanning several physical lines, it is performed in a single pro-
cessing line. New processing objects were added: Object markCSC1 (from
OneFreqCSDetector class) takes care of detecting and marking cycle slips
using a one-frequency-only algorithm. Then, smoothC1 object (belonging to
CodeSmoother class) applies a C1/L1 smoothing filter.

1 while(rinexFile >> gpsData)

{
2 gpsData >> markCSC1 >> smoothCl >> gpsModel
>> mopsW >> baseChange >> wSolver;
3 cout << wSolver.getSolution(TypelD::dLat) << ” ;
4 cout << wSolver.getSolution(TypelD::dLon) << " ”;
5 cout << wSolver.getSolution(TypelD::dH) << endl;

The gpsModel object is the same as in the previous section, while mopsWob-
ject computes the relative weights to be applied to the satellites. There are sev-
eral ways to achieve this, and mopsW(belonging to ComputeMOPSWeights
class) applies the algorithms described in [RTCA/SC-159., 2006] to compute
weights. It is important to emphasize that all this objects are highly config-
urable and may be easily extended (please consult GPSTk's API).

Then, the baseChange object (from XYZ2NEUclass) reaches into the GDS-
encapsulated information and computes the geometry matrix coefficients corre-
sponding to a NEU reference system. After that, the wSolver object (which
belongs to SolverWMS class) solves the equation system using the appropriate
geometry matrix parameters and weights.

Please take note that the reference system to be used by wSolver was con-
figured in the (skipped) initialization part.

Finally, the wSolver object contains the NEU solution. TypelD 's dLat ,
dLon and dH are used to obtain the results.

44 GNSS Data Structures

2.5.3 lonosphere-free smoothed pseudorange (PC) with WMS

The following example deals with ionosphere-free pseudorange processing. In
this case several additional tasks must be carried out:

e Compute the ionosphere-free combinations: The GPSTk provides several
means to compute observable combinations. In this case, an object from
class ComputePC, named getPC , will be used.

Given that the PC combination will be smoothed, the ionosphere-free car-
rier phase combination must also be computed. For that, object getLC
from class ComputeLC will be used.

e Compute cycle slips: Cycle slip detection is a previous necessary step to
make the smoother object smoothPC (from class PCSmoother) prop-
erly work.

Therefore, object markCSLI (from class LICSDetector) and object
markCSMWMWCSDetector) are declared.

These objects implement to different but complementary cycle slip detec-
tion algorithms based on ionospheric and Melbourne-Wubbena combina-
tions.

Then, additional objects to compute those combinations are also added:
getLl (ComputeLl) and getMW (ComputeMelbourneWubbena).

e Sometimes, a missing observable at the time of combination computation
may cause wild variations in solver input data. Therefore, an object is
inserted in the processing line (pcFilter from class SimpleFilter)
that simply removes from the GDS those satellites whose PC combinations
are outside some reasonable range®.

e Given that the Total Group Delay (TGD) is not applicable when using
PC observables, the object in charge of the modeling (gpsModel , from
ModelObs) is configured to ignore the TGD.

The rest of the processing code follows the same pattern set at previous sections:

SimpleFilter objects can be configured to act on other parameters, and they have
adjustable limits.
This criteria is only valid when PC combination is computed using P1 and P2 observables.

2.5. Examples of code-based data processing 45

1 while(rinexFile >> gpsData)
{
2 gpsData >> getPC >> getLC >> getLl >> getMW
>> markCSLI >> markCSMW
>> smoothPC >> pcFilter >> gpsModel
>> mopsW >> baseChange >> wSolver;
3 cout << wSolver.getSolution(TypelD::dLat) << " ;
4 cout << wsSolver.getSolution(TypelD::dLon) << " 7,
5 cout << wSolver.getSolution(TypelD::dH) << endl;
}

The results from this processing, as well as the results from Sections 2.5.1 and
2.5.2, are presented in Figure 2.5, which shows the northing and easting error
from nominal position” obtained with the former processing strategies for station
EBRE, January 30th, 2002.

The results are well within what it is expected from these data processing strate-
gies.

GPSTk code-based data processing for EBRE 2002/01/30.

15
' SPS(2DRMS: 3548 m) +
C1smoothed+WMS (2DRMS: 3.391 m) #
PCsmoothed+WMS (2DRMS: 2.170 m) *
+
e T '
" 3
¥ o+
it
£ s
o
£
£
5
=
0 I—
*
5
-4 2 0 2 4 6 8 10

Easting (m)

Figure 2.5: Pseudorange-based data processing. EBRE 2002/01/30.

"For these examples, the nominal position was taken from RINEX observation file header.

46 GNSS Data Structures

2.5.4 PC and WMS with additional information

In this case, a similar processing as of Section 2.5.3 will be carried out, but it
will shown how additional information could be added to the solver.

The core of this example is to add a new equation to the equation system®. In
this particular case such equation states that there are NO changes in height
for the receiver, i.e.:

dH =0 (2.3)

This can be accomplished adding to the GDS the information corresponding
to a “fake" satellite. From the solver's point of view, an additional satellite
means an additional equation, and the following source code (inserted in the
initialization phase) sets the extra information:

1 SatlD satEq(1,SatlD::systemUserDefined);

2 typeValueMap equTVMap;

3 equTVMap[TypelD::prefitC] = 0.0;

4 equTVMap[TypelD::dLat] = 0.0;

5 equTVMap[TypelD::dH] = 1.0;
6 equTVMap[TypelD::cdt] = 0.0;

7 equTVMap[TypelD::weight] = 4.0;

The former code lines start declaring a new “user defined” satellite called satEq
from class SatlD (line #1). Afterwards, a GDS called equTVMap is created.
This GDS will contain the geometry matrix equation coefficients corresponding
to Equation 2.3. Those coefficients are set in lines #3 to #6. Please note that
the only coefficient that is not zero is the one for TypelD::dH

Finally, line #7 assigns a relative weight to this information. Given that weights
are indeed the inverse of variances, if we assign to our new equation a confidence
of 0.5 m of sigma, it means that we should use a weight of 1/(0.5%) =4 m~2.
This is the value set in line #7.

After the data structure is fed with the additional information, the data pro-
cessing is similar to Section 2.5.3, but the extra “satellite” is added just before
the solver.

In the following source code, line #10 achieves just that: It takes the extra

8More complex examples will be shown in next chapters

2.5. Examples of code-based data processing 47

data in equTVMap and inserts it into the body of the main GDS (gpsData),
indexing (or linking) the information to our user-defined satellite satEq :

8 while(rinexFile >> gpsData)
{
9 gpsData >> getPC >> getLC >> getLl >> getMW
>> markCSLI >> markCSMW
>> smoothPC >> pcFilter >> gpsModel
>> mopsW >> baseChange;
10 gpsData.body[satEq] = equTVMap;
11 gpsData >> wSolver;
12 cout << wSolver.getSolution(TypelD::dLat) << ” ”;
13 cout << wSolver.getSolution(TypelD::dLon) << " "
14 cout << wSolver.getSolution(TypelD::dH) << endl;
}

After inserting the extra information, line #11 calls the solver (wSolver) and
lines #12 to #14 print the solution. Figures 2.6 and 2.7 show the results (as
error regarding nominal position) in both horizontal and vertical coordinates.
The major changes are in the vertical coordinates, as expected according to
Equation 2.3. Figure 2.7 also includes results when extra equation sigma is set
to 5 and 10 m.

Please note that in this example the data abstraction provided by the GDS
allowed to implement a different processing strategy with minor changes in
code with respect to the previous processing (Section 2.5.3).

2.5.5 Differential GPS (DGPS) with WMS

This example applies pseudorange-based differential GPS techniques mixed with
code smoothing. Several details are left out, but you will find more information,
including several full DGPS implementations, in the GPSTk examples. The
advantage of DGPS techniques is that the errors in satellite clocks are cancelled
out, and strongly spatially correlated errors such as orbital and ionospheric errors
are greatly attenuated.

The example starts partially processing data from a reference station (gpsDataRef),
and assigning the resulting GNSS data structure as the reference data of a
DeltaOp object named delta

48 GNSS Data Structures

PC-based data processing (horizontal) for EBRE 2002/01/30.

6
" PCsmoothed+WMS (2DRMS: 2170 m) +
PCsmoothed+WMS+dH info (2DRMS: 2.063 m) #
. % %
4
2
E
jo)]
£
£
5 0
=z
-2
.
-4
s
-4 -3 -2 -1 0 1 2 3 4

Easting (m)

Figure 2.6: PC processing with extra information. Horizontal coordinates. EBRE
2002/01/30.

PC-based data processing (vertical) for EBRE 2002/01/30.

T T T
No dH info (RMS: 3.229 m) +
dH sigma = 10 m (RMS: 1.138 m) s
8 dHsigma=5m (RMS: 0.400 m) _
dH sigma = 0.5 m (RMS: 0.005 m a}

(o]
+

;.
"

Vertical {m)

s |
0 10000 20000 30000 40000 50000 60000 70000 80000 90000

Seconds of day (s)

Figure 2.7: PC processing with extra information. Vertical coordinates. EBRE
2002/01/30.

2.5. Examples of code-based data processing 49

1 Synchronize synchro(rinexRefFile, gpsData);

2 while(rinexFile >> gpsData)

{
3 gpsDataRef >> synchro >> markCSC1Ref
>> smoothC1Ref >> gpsModelReference;
4 delta.setRefData(gpsDataRef.body);

Note the new synchro object, belonging to Synchronize class. It is pre-
configured to take care of epoch synchronization between the data structures
for the receiver station and the rover receiver (gpsDataRef and gpsData |,
respectively).

In line #1, the synchro object is instructed to take data out of the reference
receiver RINEX file (managed by object rinexRefFile) in synchronism with
the gpsData data structure.

Therefore, initially the gpsDataRef data structure in line #3 is empty, but
after calling the first part of the processing line (gpsDataRef >> synchro),
gpsDataRef fills up with the appropriate synchronized data, and then the
reference station data processing may proceed.

The processing in line #3 includes cycle slip detection, pseudorange observable
smoothing with phase carrier observation, and standard modeling.

After processing the reference receiver data, the rover receiver data (gpsData)
is processed in full:

5 gpsData >> markCSC1Rov >> smoothClRov
>> gpsModel >> delta >> mopsW
>> baseChange >> wSolver;

6 cout << wSolver.getSolution(TypelD::dLat) << ” 7,

7 cout << wSolver.getSolution(TypelD::dLon) << ” ”;

8 cout << wSolver.getSolution(TypelD::dH) << endl;
}

The inserted delta object will substract gpsDataRef prefilter residuals from
the corresponding gpsData residuals, deleting (by default) satellites not com-
mon to both receivers. The rest of the data processing is as shown in the
previous examples.

50 GNSS Data Structures

2.5.6 Differential GPS (DGPS) with Kalman Filter

This case presents a DGPS strategy with a Kalman Filter® solver configured in
static mode. This means that the coordinates are considered as constant, and
the receiver clock offset will be handled as a white noise process with very high
sigma.

The source code is essentially the same as Section 2.5.5, but the SolverWMS
object (wSolver) is replaced by a CodeKalmanSolver object (solverEKF).
This is an important difference with respect to the WMS solver used in the pre-
vious section, where all the variables where handled as white noise.

Another important change is that the solverEKF object must be configured
to solve the equation systems in an NEU reference frame (instead of ECEF).
The former is achieved with the following source code:

1 TypelDSet typeSet;

2 typeSet.insert(TypelD::dLat);

3 typeSet.insert(TypelD::dLon);

4 typeSet.insert(TypelD::dH);

5 typeSet.insert(TypelD::cdt);

6 gnssEquationDefinition newEq(TypelD::prefitC, typeSet);

7 CodeKalmanSolver solverEKF(newEQ);

The main idea is that object solverEKF must be fed with an appropriate
description of the equation system it is going to solve. In this simple case, this
can be achieved with a gnssEquationDefinition structure (newEq) that
contains the TypelD 's of both the equation coefficients and the independent
term.

Line #1 creates a TypelDSet to hold the coefficient types, and lines #2 to #5
set those types for a NEU reference frame. Then, line #6 creates the equation
description setting the independent term type (TypelD::prefitC) and the
coefficient type set.

After the former is done, the new EKF solver is created in line #7, setting the
new equation description in the initialization. No further changes are needed.

Again, GDS data abstraction allowed to modify a previous data processing strat-
egy with minimum changes.

Results from both DGPS examples are presented in Figure 2.8, which shows

°0r, more properly, an Extended Kalman Filter (EKF) given that the system is linearized.

2.6. Summary 51

the northing and easting errors regarding nominal position for stations EBRE
(Rover) and BELL (Reference), for January 30th, 2002, with a baseline of
about 115 km. The results are well within what it is expected from these data
processing strategies, and the improvements for the EKF case come from the
fact that static positioning is used.

DGPS data processing strategies for EBRE 2002/01/30.

DGPS+WMS (2DRMS: 0536 m) +
DGPS+EKF (2DRMS: 0164 m) -

Northing {(m)

+ o+

-2 -1.5 -1 -0.5 o] 0.5 1 1.5 2
Easting (m)

Figure 2.8: DGPS data processing. EBRE 2002/01/30.

2.6 Summary

In this chapter the GNSS Data Structures (GDS) were presented, including the
motivation for their development, rationale, the implementation overview, and
their associated processing paradigm. Also, several types of pseudorange-based
data processing strategies were included, in order to better show how they can
be used.

The key to understand the contribution of the GDS is to realize that they
preserve both the data and corresponding “metadata” (data relationships), in-
ternally indexing all the GNSS-related information.

With the GDS paradigm the GNSS data processing becomes like an “assembly
line", where all the processing steps are performed sequentially. The GDS are
treated like white boxes that “flow” from one “workstation” (processing step)

52 GNSS Data Structures

to the next in such assembly line, providing an easy and straightforward way to
encapsulate and process data. This approach allows developing clean, simple to
read and use software that speeds up development and reduces errors.

The GDS form a fundamental part of the work developed during this thesis.
Their inclusion in the GPSTk code base prompted an invitation to participate
as coauthor in a joint publication with the ARL:UT development team at ION
GNSS 2007 congress proceedings ([Harris et al., 2007]), where the GDS were
presented for the first time.

Also, the GDS have enabled the work leading to several other publications in
congress proceedings, for instance [Salazar et al., 2008b], [Salazar et al., 2008a],
and [Salazar et al., 2009b], as well as being an integral part of a paper at the
GPS Solutions journal ([Salazar et al., 2009a]). More about this work in the
following chapters.

Finally, reference implementations for most of the algorithms presented in this
chapter have been provided in the GPSTk examples directory, so GNSS stu-
dents and researchers may easily understand and implement the GNSS data
processing strategies indicated here. Those reference implementations are files
example6.cpp and example7.cpp

Chapter 3

Phase-based positioning

The GNSS Data Structures (GDS) were introduced in the previous Chapter 2,
and several examples of use for pseudorange-based GNSS data processing were
presented.

However, the advantages provided by the GDS become more evident when
dealing with more complex software, such as carrier phase-based GNSS data
processing. Indeed, it was just when the phase-based capabilities were added to
the GPSTk, that the need for advanced, consistent and easy to use GNSS data
structures became evident.

In this chapter the application of the GDS to carrier phase-based GNSS data
processing will be shown, highlighting the flexibility and power of the capabilities
added to the GPSTk during the development of this thesis. Most of the work will
be focused in the implementation and results of the Precise Point Positioning
(PPP) data processing strategy.

3.1 Precise Point Positioning (PPP)

Precise Point Positioning (PPP) implementation ([Kouba and Heroux, 2001]),
is an important example of carrier phase-based GNSS Data Processing. PPP is
a complex task, and issues like wind-up effects, solid, oceanic and polar tides,
antenna phase centers variations, etc. must be taken into account.

Also, International GNSS Service (IGS) SP3 final precise satellite orbits and
clocks are used in PPP, but these products are typically provided each 900 s,
while observations are usually provided each 30 s. Therefore, time management
issues also arise.

The following sections will present some accessory classes that ease these com-

54 Phase-based positioning

plex issues. However, take into account that, again, most initialization de-
tails are skipped. For complete carrier phase-based processing implementations
please read example8.cpp , example9.cpp and examplelO.cpp in the
GPSTk development repository. The GPSTk APl is also a mandatory read.

3.1.1 Handling configuration files

Given the potentially high number of PPP processing parameters involved, read-
ing configuration files is an important ability in order to avoid recompilation of
source code each time we want to change a given parameter.

The GPSTk provides ConfDataReader , a powerful class to parse and manage
configuration data files. It supports multiple sections, variable descriptions and
value descriptions (such as units), and a wide range of variable types.

Given a configuration file named configuration-file.txt , whose con-
tent is:

Default section
tolerance, allowed difference between epochs = 1.5, secs
[BELL]

reference = TRUE

Then a typical way to use this class follows:

1 ConfDataReader confRead;
2 confRead.open("configuration-file.txt");

3 double tolerance = confRead.getValueAsDouble("toleranc e");
4 cout << confRead.getVariableDescription("tolerance") < < endl;
5 cout << confRead.getValueDescription("tolerance") << en dl;

6 bool bellRef = confRead.getValueAsBoolean("reference",
"BELL");

Lines #1 and #2 declare the ConfDataReader object and open the configu-
ration file. Line #3 declares a double precision variable called tolerance and
feeds it with the value read from configuration file.

Then, line #4 prints the description of variable tolerance (the phrase “al-
lowed difference between time stamps”) and line #5 prints the description of

3.1. Precise Point Positioning (PPP) 55

the corresponding value (in this case the word “secs”).

3.1.2 Handling Antenna Exchange Format (ANTEX) files

Starting from GPS week #1400 (Nov 5th, 2006), the International GNSS
Service (IGS) adopted the use of “absolute’ antenna phase center values, drop-
ping the “relative” values used so far ([Gendt, 2005]).

These values are now stored in ANTEX ([Rothacher and Schmid, 2006]) format
files. The GPSTk provides the AntexReader class to parse these files, and
the Antenna class to manage antenna data.

Then, these objects should be fed to others from processing classes that will
take care of applying the corresponding corrections: CorrectObservables

to manage receiver antenna corrections, and ComputeSatPCenter to handle
satellite antenna corrections.

A typical way to use it follows:

1 AntexReader antexread;
2 antexread.open("igs05.atx");

3 ComputeSatPCenter svPcenter(nominalPos);
4 svPcenter.setAntexReader(antexReader);

5 Antenna rXAntenna;
rXAntenna = antexread.getAntenna("AOAD/M_T NONE");

6 CorrectObservables corr;
7 corr.setAntenna(rXAntenna);

3.1.3 Computing tidal values

An important part of PPP modelling is the estimation of tidal effects caused by
solid tides, ocean loading tides and pole movement-induced tides.

The GPSTk supplies several classes to manage tidal effects, providing the re-
spective correction vectors in an unified format (class Triple). These vectors
must then be fed to a CorrectObservables object to be added to the
other corrections (like the aforementioned antenna phase center variations. See
Section 3.1.2).

In the following code snippet, line #1 declares a time-handling object called
epoch (from DayTime class) initialized at 22:00:00 hours of August 12th,

56 Phase-based positioning

2008. Then, the tides-handling objects are declared in lines #2 through #4.
Note that OceanLoading objects need to load ocean loading parameters
files (provided by [0SO, 2009]), and that PoleTides objects need = and y
pole displacement parameters, in arcseconds, supplied by IGS’ Earth Rotation
Parameters (ERP) files.

Then, line #5 computes a Triple which is a combination of the computed
tidal values. The source code ends declaring a CorrectObservables object
and feeding it with the total tidal correction.

1 DayTime epoch(2008, 08, 12, 22, 00, 0.0);

2 SolidTides solid;

3 OceanlLoading ocean("OCEAN-GOTO00.dat");

4 PoleTides pole(0.02094, 0.42728);

5 Triple tides = solid.getSolidTide(epoch, nominalPos) +
ocean.getOceanLoading("ONSA", epoch) +

pole.getPoleTide(epoch, nominalPos));

6 CorrectObservables corr;
7 corr.setExtraBiases(tides);

For more information about the GPSTk implementation of these models, please
refer to Section A.8.

3.1.4 GPSTk exception handling mechanism and its uses

In software as complex as GNSS data processing software it is unavoidable to
find many situations that impair proper operation. Issues as invalid values, time
desynchronization, singular matrices and many others are common, and should
be adequately handled in running time.

In order to manage these events, the GPSTk provides a powerful and com-
plete set of exception handling classes, built upon the native C++ exception
mechanism.

This approach is convenient and flexible, and may be extended to include other
situations that, although not being run-time errors, may benefit from the same
approach.

Decimation in PPP is one of those situations. Given that IGS precise satellite
orbits and clocks are typically provided each 900 s, while observations are given

3.1. Precise Point Positioning (PPP) 57

at 30 s intervals, it turns out that for accurate cycle slip detection it is convenient
to process data at the highest possible rate, but that data must not be feed to
the solver except when accurate orbits and clocks are available.

In this regard, it is convenient to add that the main problem is related with the
availability of precise clocks matching the corresponding observation epochs:
The interpolation of precise orbits yields an accurate result, but clock interpola-
tion is not accurate enough. Some GNSS data processing centers like Center for
Orbit Determination in Europe (CODE) now provide precise clocks with rates
down to 30 s, but only final IGS products are used in this chapter.

Source code below shows how decimation is approached in the GPSTk. Line #1
declares a Decimate object configured to decimate data each 900 s, with a
tolerance of 5 s, and according to values stored in the SP3 ephemeris handling
object called SP3EphList

Then, data is extracted from RINEX observation files with the typical while
loop (between lines #2 and #17), but now the processing line #4 is enclosed
in a try - catch block.

In this way, if data epoch is not a multiple of 900 s then object decimateData
in line # 4 will issue an “exception” (or more properly, a DecimateEpoch
exception), effectively halting further processing of line #4.

Such DecimateEpoch exception is then “caught” by the catch block in
lines #6 to #8, that just tells the program to continue processing the next
epoch. Decimation is so achieved in an effective, efficient and compact way.

Besides, if processing line #4 encounters any other GPSTk-defined problem, the
catch block between lines #9 and #12 takes over, printing an error message
and continuing with next epoch processing.

Finally, any other unrecognized exception is handled by block #13 to #16,
issuing a different message and continuing processing.

58

Phase-based positioning

15
16
17

Decimate decimateData(900.0,

while(rinexFile >> gpsData) {

try {

gpsData >> ... >> decimateData >>

}

catch(DecimateEpoch& d) {
continue;

}

catch(Exception& e) {
cout << "Exception at epoch:

continue;

}
catch(...) {
cout << "Unknown exception at epoch:

continue;

5.0,
SP3EphList.getlnitial Time());

<< epoch << "; " << e << endl;

<< epoch << endl;

3.2 PPP data processing

After explaining the basic accessory classes, we are ready to present the core
PPP processing code. Several of these objects need initialization, but that part
is omitted here. Again, please consult GPSTk examples and API. Table 3.1
summarizes names, classes they belong to, and purpose of the objects in the
following source code lines:

gpsData >> requireObs >> linearl >> markCSLI

>>
>>
>>
>>
>>
>>

markCSMW >> markArc >> decimateData
basicModel >> eclipsedSV >> grDelay
svPcenter >> corr >> windup
computeTropo >> linear2 >> pcFilter
phaseAlign >> linear3 >> baseChange
cDOP >> pppSolver;

The GDS processing data chain is a single C++ line, although in this case (for
clarity sake) it spans seven physical lines. This line must be enclosed within a
loop to process all available epochs, and also within a try - catch

while

3.2. PPP data processing

59

OBJECT CLASS NAME PURPOSE
requireObs RequireObservables Checks if required TypelD 's are present
linearl ComputelLinear Computes linear combinations used to detect cycle slips
markCSLI LICSDetector2 Detect and mark cycle slips using ionospheric (LI)
markCSMW MW(CSDetector and Melbourne-Wubbena combinations
markArc SatArcMarker Keeps track of satellite arcs
decimateData Decimate If not a multiple of 900 s, then decimates data
basicModel BasicModel Computes the basic components of a GNSS model
eclipsedSV EclipsedSatFilter Removes from GDS satellites in eclipse
grDelay GravitationalDelay Computes gravitational delay effect due to
changing gravity field along SV-RX ray.
svPcenter ComputeSatPCenter Computes the effect of satellite antenna phase center
corr CorrectObservables Corrects observables from tides, antenna phase
center, eccentricity, etc.
windup ComputeWindUp Computes phase wind-up correction
computeTropo ComputeTropModel Models delays due to troposphere
linear2 ComputelLinear Computes ionosphere-free combinations for
code (PC) and phase (LC)
pcFilter SimpleFilter Filters out spurious data in PC combination
phaseAlign PhaseCodeAlignment Aligns phase with code values, preserving the
the integer nature of phase ambiguities
linear3 ComputeLinear Computes code and phase prefilter residuals
baseChange XYZ2NEU Prepares GDS to use a North-East-Up reference
frame in pppSolver
cDOP ComputeDOP Computes DOP values
pppSolver SolverPPP Solves the equation system with an Extended Kalman

Filter (EKF) configured in PPP mode

Table 3.1: PPP processing objects and classes.

60 Phase-based positioning

block to manage exceptions.

Particular mention deserves object pppSolver , belonging to SolverPPP
class. This object is an Extended Kalman Filter (EKF) preconfigured to solve
the PPP equation system in a way consistent with [Kouba and Heroux, 2001]:
Coordinates are treated as constants (static), receiver clock is considered white
noise, the residual vertical wet tropospheric delay is processed as a random walk
stochastic model (using the Niell mapping functions), and carrier phase am-
biguities are treated as white noise when cycle slips happen and as constants
thereafter. All of these parameters are configurable.

3.2.1 Static PPP results

Figure 3.1 plots the results from this PPP processing code applied to station
MADR, May 27th., 2008, using the default configuration for SolverPPP ob-
jects (PPP with static coordinates) and a NEU coordinate frame.

The a priori position used was the one provided by the IGS in Solution Indepen-
dent Exchange (SINEX) files for that epoch. These results are consistent with
what it is expected from this processing strategy, showing a small residual bias
in the “Up" coordinate of about 17 millimeters, reaching errors below 5 cm in
less than 1.5 h of processing.

031 dN
£ | B
3 o W
IS
S o01jp
@ \
Qe 0 k- S — S W S —
(o))
=
o
S .01
()]
g
5 -0.2
i
-0.3

0 10000 20000 30000 40000 50000 60000 70000 80000 90000
Seconds of Day (s)

Figure 3.1: Static PPP processing. MADR 2008/05/27.

Figure 3.2 plots the 3D-positioning differences with respect to the IGS nominal
position using several PPP processing tools provided by “The Precise Point Po-
sitioning Software Centre" (http://gge.unb.ca/Resources/PPP). This
tool receives RINEX observation files and sends them to several on-line PPP
processing facilities (using their corresponding standard configurations) such as:

3.2. PPP data processing 61

CSRS-PPP (NRCAN):

http://www.geod.nrcan.gc.ca/online _data _e.php

GPS Analysis and Positioning Software (GAPS):
http://gaps.gge.unb.ca/

Automatic Precise Positioning Service (APPS), formerly Auto-GIPSY :

http://apps.gdgps.net/

MagicGNSS (MAGIC):
http://magicgnss.gmv.com/ppp

0.060 [: GPSTk

0.050 | APPS .

0.040

0.030

0.020

3D-Positioning difference
regarding IGS nominal (m)

0.010 Lertdbl
,\/\7 /\,A,/

0.000
10000 20000 30000 40000 50000 60000 70000 80000 90000

Seconds of Day (s)

Figure 3.2: Static PPP processing 3D errors. MADR 2008/05/27.

This figure confirms that this relatively simple GPSTk-based PPP code com-
pares both in precision and convergence time with other PPP processing tools
(note that APPS and MAGIC work in static, forward-backward mode, providing
only the last position solution).

3.2.2 Kinematic PPP results

The pppSolver has some preassigned stochastic models, but those models
may be tuned and changed at will, given that they are objects inheriting from a
general class called StochasticModel . This is a very important advantage
of abstraction, and processing coordinates as white noise (kinematic mode) may
be achieved in a very simple way:

62 Phase-based positioning

1 WhiteNoiseModel newCoordinatesModel(100.0);

2 pppSolver.setCoordinatesModel(&newCoordinatesModel) ;

In line #1, a white noise stochastic model object (with a sigma of 100 meters)
is declared, while in line #2 the pppSolver object is configured to use the
new model for coordinate estimation. The vertical wet tropospheric effect is still
treated as a random walk process, and the receiver clock continues as another
white noise process (with a higher sigma).

Figure 3.3 presents the results, confirming the good quality of GPSTk model:
the coordinates are consistently within 10 cm of the IGS values, with a 3D-RMS
of 0.047 m for the convergence phase (from 1.5 h onwards).

0.3 .
= 0.2 : TR .
g au =
£ i
s oaf
n A%
9 0 Ew“ \‘, N o A
X TN AS

o L J
£ P
ko] :
S .01
o
o
§ -0.2
L

-0.3

0 10000 20000 30000 40000 50000 60000 70000 80000 90000
Seconds of Day (s)

Figure 3.3: Kinematic PPP processing. MADR 2008/05/27.

The services of the “The Precise Point Positioning Software Centre” were used
again, this time to compute the kinematic positioning®. Table 3.2 presents the
3D-RMS position difference with respect to the IGS SINEX position (for the
convergence phase).

Another important characteristic of class SolverPPP is that the preassigned
stochastic models for coordinates can be changed globally (like in the previous
case), but they also may be adjusted for each coordinate. This can be done with
the methods setXCoordinatesModel() , setYCoordinatesModel()

and setZCoordinatesModel()

Note that these methods work both in ECEF and NEU reference frames, de-
pending how the SolverPPP was configured.

! MagicGNSS results are not shown because it provides only static solutions.

3.2. PPP data processing 63

PPP positioning tool 3D-RMS (m)

APPS 0.034
GAPS 0.067
GPSTk 0.047
NRCAN 0.073

Table 3.2: 3D-RMS for Kinematic PPP position differences regarding IGS solution.

The former capability may be very useful when dealing with kinematic position-
ing of surface vehicles: If some information about the vertical and horizontal
velocities is known, then the corresponding stochastic models in the filter may
be adjusted to match the expected vehicle behavior.

3.2.3 Forward-backward PPP results

The previous results were obtained with a Kalman filter that only runs forward.
However, given that PPP is done in post-processing mode, an improved solution
can be obtained running the filter in forward-backward mode, where ambiguity
convergence achieved in a given forward run is used for the next backward run.
It may be iterated at will.

An object of class SolverPPPFB s used for this. It encapsulates SolverPPP
class functionality and adds a data management and storage layer to handle the
whole process.

From the user's point of view, the main change is to replace the SolverPPP
object (pppSolver) with a new SolverPPPFB object (fopppSolver) in-
side the while loop that reads and processes the RINEX observation file.

After the first forward processing is done (and data is internally indexed and
stored), it is simply a matter of telling the fopppSolver object how many
forward-backward cycles we want it to “re-process”. For instance:

fbpppSolver.ReProcess(4);

After that, one last forwards processing is needed to get the time-indexed solu-
tions out of fopppSolver

64 Phase-based positioning

PPP positioning tool 3D-RMS (m)

APPS 0.0018
GPSTk 0.0048
MAGIC 0.0052
NRCAN 0.0069

Table 3.3: RMS for zpd differences regarding IGS combined solution.

1 while(fbpppSolver.LastProcess(gpsData))

{
2 cout << fbpppSolver.getSolution(TypelD::dLat) << ” ”;
3 cout << fbpppSolver.getSolution(TypelD::dLon) << " ”;
4 cout << fbpppSolver.getSolution(TypelD::dH) << endl;
}

In this case, the forward-backward processing (in static mode) is used to com-
pute the zenith path delay estimation (zpd) for a full day. Figure 3.4 shows the
results for APPS, MAGIC, GPSTk and NRCAN, as well as the official, combined
IGS zpd. NRCAN only provides forward estimates, and GAPS does not provide
zpd estimations. Table 3.3 presents the RMS of the zpd differences with respect
to IGS values.

2.24 :
APPS —
2.23 GPSTK .
MAGIC
T 222 NRCAN N
£ IGS
7 221 S
8 22f e
6-6 2.19 SR - A Vi
£ 218 D e
N 2.17 e L i
2.16
2.15

0 10000 20000 30000 40000 50000 60000 70000 80000 90000
Seconds of Day (s)

Figure 3.4: Zenith path delay for several PPP processing tools. MADR 2008/05/27.

3.3. Carrier phase-based DGPS 65

3.3 Carrier phase-based DGPS

The techniques presented in Sections 2.5.5 and 2.5.6 for pseudorange-based
DGPS may be combined with the ones for PPP, and with relatively minor
modifications implement carrier phase-based DGPS processing with broadcast
orbits and clocks:

1 Synchronize synchro(rinexRefFile, gpsData);

2 while(rinexFile >> gpsData)

{

3 gpsDataRef >> synchro >> requireObs >> linearl
>> markCSLIRef >> markCSMWRef
>> markArcRef >> refBasicModel
>> eclipsedSV >> refGravDelay
>> refSVPcenter >> refCorr >> refWindup
>> refComputeTropo >> linear2
>> pcFilter >> linear3;

4 delta.setRefData(gpsDataRef.body);

5 gpsData >> requireObs >> linearl >> markCSLI
>> markCSMW >> markArc >> decimateData
>> basicModel >> eclipsedSV >> grDelay
>> svPcenter >> corr >> windup
>> computeTropo >> linear2 >> pcFilter
>> phaseAlign >> linear3 >> delta
>> baseChange >> cDOP >> pppSolver;

6 cout << pppSolver.getSolution(TypelD::dLat) << " ;
cout << pppSolver.getSolution(TypelD::dLon) << ” ”
8 cout << pppSolver.getSolution(TypelD::dH) << endl;

~

As can be seen, three lines represent the core of code to achieve this type of
GNSS data processing. Line #3 is in charge of processing reference station data,
and line #4 sets the delta object. Please remember from Section 2.5.5 that
delta objects belongs to class DeltaOp , and it is in charge of subtracting
gpsDataRef prefilter residuals from the corresponding gpsData residuals,
deleting (by default) satellites not common to both receivers. Finally, line #5
processes rover data.

Remember that object synchro synchronizes data between receivers (as in the
pseudorange-based DGPS case). Also, take notice of the fact that some objects
are shared between processing chains while others must be used for a given
receiver only. This is partly because of initialization issues (for instance, some
objects need the nominal position of a specific receiver), and partly because

66 Phase-based positioning

objects like cycle slip detectors are state-aware, and thence must not be shared
between different data processing streams.

Line #5 is very similar to the main PPP example (Section 3.2), with the impor-
tant addition of object delta just after computing prefilter residuals (linear3
object), taking care of computing single differences.

Please note that the former decimateData object is no longer needed: Broad-
cast orbits and clocks are now used, and therefore the processing works at
arbitrary sampling rates.

Figure 3.5 presents the errors regarding IGS nominal position for this carrier
phase-based differential processing with static coordinates and floated phase am-
biguities for EBRE station as rover and BELL station as reference, 2002/01/30
(baseline 115 km).

Error regarding IGS nominal (m)

0 10000 20000 30000 40000 50000 60000 70000 80000 90000
Seconds of Day (s)

Figure 3.5: Static phase-based DGPS errors regarding IGS nominal position. EBRE
2002/01/30. Phase ambiguities are floated.

This code is fully implemented in examplel0.cpp of the GPSTk. Be aware
that better results could be obtained using RTK techniques (not covered here),
but usually those techniques are limited to baselines shorter than 20 km.

3.4 Abstraction and flexibility

Data abstraction is a very important part of what the GDS processing paradigm
uses to get code that is both powerful and easy to read. Also, a good deal of
its flexibility lies upon the abstraction concept. Some examples follow.

3.4. Abstraction and flexibility 67

3.4.1 ProcessingVector and Processi ngLi st

As was mentioned before, all processing classes inherit from a common, pure
virtual class called ProcessingClass

Due to this design feature it is possible to write other classes that work with
processing classes in an unified way. For instance, the standard STL template
class named std::vector was modified to create a "vector” of processing
classes?.

This feature, although it may seem strange at first, allows writing very flexi-
ble and compact code. For example, the ProcessingVector class and its
“push _back() " method may be used to store the PPP processing line pre-
sented in Section 3.2:

1 ProcessingVector pVector;

2 pVector.push_back(requireObs);
3 pVector.push_back(linearl);

// ...store the other PPP processing classes here . ..
4 pVector.push_back(baseChange);

pVector.push_back(cDop);
6 pVector.push_back(pppSolver);

o1

After that, all the PPP data processing can be expressed in a very compact way:

7 while(rinexFile >> gpsData)

{
8 gpsData >> pVector;

}

This way of code management is not only compact, but also very flexible because
it may change dynamically during run time. Moreover, given that reporting the
name of their class is a requirement that all processing classes must fulfill, then
things like the following are easy to implement:

2A std::list -based version, ProcessingList , is also available.

68 Phase-based positioning

1 ProcessingVector pVector;
// ... fill pVect or with processing classes . ..

2 ProcessingVector pVectorNew;

3 for(int i = 0; i < pVector.size(); ++i)
4 { if(filtersDisabled &&
pVector[i].getClassName() == "SimpleFilter")

5 { continue;

}
6 else

{
7 pVectorNew.push_back(pVector[i]);

}

}

8 pVector = pVectorNew;

The code snippet above is a simple yet effective way to dynamically modify
the (previously) defined processing data chain according to some condition that
should be met (filtersDisabled flag is set to TRUB, removing all process-
ing objects belonging to class “SimpleFilter ". Of course, the former can be
achieved in other ways, but using the GDS-provided classes is usually very effi-
cient (they are STL-based) and less error-prone, potentially saving considerable
time.

Indeed, the ProcessingVector class is in turn a ProcessingClass , so
it is possible to build “vectors” of “processing vectors”, if such a construct were
needed.

3.4.2 Abstraction of equation solvers

The data abstraction approach can be extended to several areas of GNSS data
processing, and a class called SolverGeneral takes this concept far into the
“solver” realm.

The SolverGeneral class is an Extended Kalman Filter (EKF) implementa-
tion that relies on another class named EquationSystem . As mentioned in
Section 2.2.1.3, the equation systems may be modeled just as any other data
structure.

Therefore, EquationSystems objects are composed of Equations , and
the former are a set of rules in charge of generating all the vectors and matrices

3.5. Summary 69

that SolverGeneral will internally need to compute the GNSS solution.

In turn, Equations are composed of a set of Variable objects. The later
encapsulate information such as their TypelD , the SourcelD 's and SatlD 's
they are applicable to, and the stochastic models associated with them.

With this design, the GNSS researcher will be able of establishing a set of
rules to “tune” the solver to solve a given problem: He just needs to redefine
the variables and equations. Complex multi-station and/or hybrid GNSS-INS
problems can be tackled in this way with relatively few code lines, encouraging
code reusability.

This subject will be further developed in Chapter 4.

3.5 Summary

In this chapter some applications of the GDS to carrier phase-based GNSS data
processing strategies were presented, as well as important accessory classes
that ease tackling these complex tasks. Reference implementations of these
strategies are provided for the GNSS community in the GPSTk examples
directory, as files example8.cpp , example9.cpp and examplel0.cpp

When comparing the performance of these relatively simple GDS-based source
code examples with other state-of-the art PPP suites, it was demonstrated that
their results are among the best, confirming the validity of using the GPSTk
combined with the GDS to get easy to write and maintain, yet powerful, GNSS
data processing software.

Furthermore, given that the GDS design is based on data abstraction, it allows
a very flexible handling of concepts beyond mere data encapsulation, including
programmable general solvers, among others.

The application of GNSS Data Structures (GDS) to carrier phase-based data
processing led to three publications in congress proceedings: [Salazar et al., 2008b],
[Salazar et al., 2008a], and [Salazar et al., 2009b].

It also represents an important part of the paper published at the GPS Solutions
journal ([Salazar et al., 2009a]).

70

Phase-based positioning

Chapter 4

Precise Orbits Positioning

Former Section 3.4.2 briefly presented the advantages of GDS data abstraction
regarding solvers, in particular, the possibility of establishing a set of rules to
“tune” a solver to solve a given problem.

In this chapter, those advantages will be used to implement a kinematic PPP-like
processing based on a network of stations, where satellite clock offsets will be
estimated on-the-fly. This procedure is independent of precise clock information
and only needs precise orbits to work; therefore it will be called Precise Orbits
Positioning (POP).

4.1 Background

Kinematic positioning using GPS is an important research line, and in particular
airborne kinematic GPS positioning is a tough problem with an extense literature
([Castleden et al., 2004], [Mostafa, 2005], and [Zhang and Forsberg, 2007], to
cite only a few). Different techniques have been applied to this problem, ranging
from pseudorange-based DGPS to carrier phase-based techniques such as RTK,
network-based RTK, and PPP, among others.

Among the differential techniques, RTK typically yields the best accuracy (at
the centimeter level, when ambiguities are fixed), but it needs reference stations
near the operation area (closer than 20 km for adequate performance), while
pseudorange-based DGPS operates well with reference stations more than 100
km away, at the expense of decreased accuracy (at the meter level). Network-
based RTK techniques like Virtual Reference Station (VRS) fill an intermediate
niche with ambiguity fixing-level accuracy at about 50 km range from nearest
reference station.

On the other hand, PPP is a standalone strategy, avoiding the expense and

72 Precise Orbits Positioning

logistics of ad hoc reference stations®. However, it has the limiting factor that
solution rate is set by the availability of precise satellite clock offsets, given
that precise orbits can be interpolated without losing accuracy, whereas satellite
clock offsets can not.

The former has been a recurrent problem when applying PPP techniques to
kinematic positioning. Nevertheless, relatively recent developments have al-
lowed data processing centers such as CODE to generate precise satellite clock
corrections with higher data rates (typically 30 s, and more recently down to
5 s), using techniques consisting on phase-consistent interpolation of precise
5-minute clock results ([Hugentobler et al., 2006]).

However, in this chapter a completely different approach will be carried out:
satellite clock offsets will be estimated on-the-fly. This procedure is independent
of precise clock corrections and, therefore, it can achieve an arbitrary positioning
rate (only limited by observation data rate), opening a window of opportunity
to very interesting precise positioning techniques.

In order to achieve this in an efficient and reusable way, this chapter relies on the
facilities provided by the GPSTk, and in particular on the GNSS Data Structures
data processing paradigm (see Chapter 2).

The author of this dissertation considers that the use of the open source GPSTk-
provided tools represents an important advantage for researchers, because in
this way they will have a reference implementation available to test and ex-
periment with. Therefore, he developed a reference implementation that is lo-
cated at the examples directory of the GPSTk development repository, named
“exampleld.cpp "

4.2 POP description

The POP procedure starts with selecting a set of reference stations and setting
one of them as the MASTER station. Master's clock will be set as the reference
for the network, so all the other clocks will be computed with respect to it. The
other unknowns for the master station will be the zenith tropospheric delay and
the ambiguities.

Therefore, the corresponding equations for pseudorange and phase are:

PrefitPCj = tmapg.ztdg —c.dt! (4.1)

1Of course, PPP needs precise ephemeris products generated by an extense network of IGS
reference stations, but they are already in place.

4.2. POP description 73

PrefitLCj = tmapé.ztdo + Bcé —c.dt? (4.2)

Where:

° PrefitPCg and Prefz'tLCé . These values are, respectively, the prefilter
residual (observation minus modeled effects) of ionosphere-free pseudor-
ange and phase combinations for satellite SV7 and master station 0.

° tmap% : Tropospheric mapping function (Niell).
e ztdy : Zenith tropospheric path delay.

e c.dt’ : Relative clock delay between satellite SV7 and master station 0,
in meters.

° Bcé . lonosphere-free carrier phase ambiguity.

The other “reference” stations will have similar equations, but adding their
clock offsets (with respect to master clock) as an additional unknown. Hence,

PrefitPC] = tmap],.ztdy + c.dty, — c.dt’ (4.3)

PrefitLC,z = tmapi,.ztdk + Bc,i + c.dty — c.dt? (4.4)

where c.dt;, is the relative clock delay between reference station k and master
(in meters).

Finally, the “rover” receiver will have an equation similar to the standard PPP
process, but adding the estimation of satellite clock offsets:

PrefitpCd = (2ot (MY ay 4 (s

Pro Pl Pro (4.5)

+tmap3;.ztdr + c.dt, — c.dt?

. _ o _ .
PrefitLC} = (M>dx + (u)dy + (M)dz
j j j
prO pTO prO (46)

+tmap¥«'.ztdr + Bd + e.dt, — c.dt?

74 Precise Orbits Positioning

where (0, 30, 20) is the a priori rover receiver position, (27,17, 27) is the position
of satellite SV, and parameters (dz, dy, dz) are the corrections to (o, yo, 20)-

It can be seen that the connection between receivers is achieved by the simulta-
neous estimation of satellite clock offsets. As said, this procedure allows rover
precise positioning without precise satellite clock products.

Although the observations are not explicitly differentiated, the systems of Equa-
tions 4.1 to 4.6 is equivalent to a carrier phase-based differential DGPS system
using the ionosphere-free combination of observations. The simultaneous esti-
mation of the satellite clock offsets allow them to become the ligatures between
the equations.

4.3 POP implementation

Please note that implementation of an equation system for Equations 4.1 to 4.6
is a complex task. This system involves multiple stations separated hundreds of
kilometers and there are a great number of unknowns of several kinds: Some
unknowns are receiver-indexed (or receiver-specific, like. ztd;, dz, dy, etc.),
some are satellite-indexed (dt’), and others are both receiver- and satellite-
indexed, like Bcﬁ. Therefore, the number of unknowns at a given epoch has a
wide variation depending on the available station data and the number of visible
satellites.

The GPSTk provides a class, SolverGeneral | to help implementing this kind
of systems. The idea behind SolverGeneral is that equations and variables
are described (as opposed to being hard coded in the software), indicating their
stochastic models and relationships.

Then, at each epoch the SolverGeneral object will match the incoming
data (observations and ephemeris) with the equations and variables descriptions,
building the appropriate equation system for that epoch.

Implementation starts with declaration and initialization of the Variable ob-
jects to be used, as well as their associated stochastic models:

4.3. POP implementation 75

1 WhiteNoiseModel coordinatesModel(100.0);
TropoRandomWalkModel tropoModel;
3 PhaseAmbiguityModel ambiModel;

N

4 Variable dLat(TypelD::dLat, &coordinatesModel,
true, false, 100.0);
5 Variable dLon(TypelD::dLon, &coordinatesModel,
true, false, 100.0);
6 Variable dH(TypelD::dH,&coordinatesModel,true,false, 100.0);

7 Variable cdt(TypelD:cdt);
cdt.setDefaultForced(true); // Force coefficient (1.0)

8 Variable tropo(TypelD::wetMap,&tropModel,true,false, 10.0);

9 Variable ambi(TypelD::BLC, &ambiModel, true, true);
ambi.setDefaultForced(true); /I Force coefficient

10 Variable satClock(TypelD::dtSat, false, true);
satClock.setDefaultCoefficient(-1.0); // Set coefficie nt
satClock.setDefaultForced(true); /I Force coefficient

11 Variable prefitPC(TypelD::prefitC);
12 Variable prefitLC(TypelD::prefitL);

In the former code, lines #1 to #3 set the stochastic models to be used.
Line #4 declares a Variable called dLat , of TypelD “dLat ", with a white
noise stochastic model (kinematic positioning). The first “true " parameter
indicates that this Variable is “source-indexed” (i.e., it is a distinct variable
for each SourcelD , i.e., receiver), and the following “false " parameter tells
that it is not “satellite-indexed”, meaning that the same variable will be used
for all visible satellites. The final numeric value (100.0) sets the initial sigma.
Variables dLon and dH (lines #5 and #6) follow the same pattern.

Line #7 declares cdt , the Variable representing receiver clock offsets. The
defaults are used (white noise model, source-indexed, not satellite indexed, big
preset sigma), and it is forced to always use the value “1.0" as coefficient (by
default, coefficients are looked for inside the GDS).

Declaration of variables tropo , ambi (ambiguities), and satClock (SV clock
offsets) are similar, with the exception that ambiguities are source- and satellite-
indexed, whereas satellite clocks are only satellite-indexed. The last couple of
lines (#11, #12) declare default, dummy “variables” representing the indepen-
dent terms of equations, prefitPC and prefitLC

Again, it is important to emphasize that in the former procedure the variables
characteristics were described, instead of declaring a variable for each possible

76 Precise Orbits Positioning

receiver-satellite combination.

Once the Variable s are properly declared and initialized, it is the turn of
describing the Equation objects. First, let's declare the equations for master
station:

1 Equation equPCMaster(prefitPC);

2 equPCMaster.addVariable(tropo);
equPCMaster.addVariable(satClock);
4 equPCMaster.header.equationSource = master;

w

5 Equation equLCMaster(prefitLC);

6 equLCMaster.addVariable(tropo);

7 equLCMaster.addVariable(satClock);

8 equLCMaster.addVariable(ambi);

9 equLCMaster.header.equationSource = master;

10 equLCMaster.setWeight(10000.0);

Line #1 declares the Equation object for pseudorange, setting the indepen-
dent term type. Then, lines #2 and #3 add the variables to the equation and
finally line #4 sets what receiver (data source) this equation applies to: master
is an object of class SourcelD holding the information corresponding to the
master station.

Declaration of the equation for carrier phase is very similar, except for line #8,
that adds an additional variable (ambi), and line #10 that sets the relative
weight of this equation: the carrier phase sigma is 100 times smaller, so the
associated weight is 100*100 times larger.

Equations for reference stations and rover receiver are declared in the same way.
However, it must be noted that reference stations form a SourcelD set, instead
of a single station, so they need an additional treatment. Thus equPCRef and
equLCRef are the equations for the reference stations’ pseudorange and carrier
phase, respectively:

4.3. POP implementation 77

1 equPCRef.header.equationSource = Variable::someSource S;
2 equlLCRef.header.equationSource = Variable::someSource S;
3 for(std::set<SourcelD>::const_iterator

itSet = refStationSet.begin();
itSet != refStationSet.end();

++itSet)
4 A
5 equPCRef.addSource2Set((*itSet));
6 equLCRef.addSource2Set((*jtSet));
70}

The special SourcelD called “Variable::someSources indicates that
equations eqUPCRef and equLCRef will apply to more than one data source.
Thus, it is necessary to add those data sources to each equation’s internal set.
The “for " loop spanning from line #3 to line #7 achieves this in a general,
reusable way.

Finally, once all the Equation objects, and their corresponding Variable s,
have been described, they are added to an EquationSystem , which in turn
feeds a SolverGeneral object:

1 EquationSystem equSystem;

equSystem.addEquation(equPCRover);
equSystem.addEquation(equLCRover);
equSystem.addEquation(equPCRef);
equSystem.addEquation(equLCRef);
equSystem.addEquation(equPCMaster);
equSystem.addEquation(equLCMaster);

~No oA~ N

8 SolverGeneral solver(equSystem);

From now on, object solver is an Extended Kalman Filter configured to solve
the defined equation system (equSystem), building its internal matrices and
vectors automatically according to the incoming data. It just needs to be fed
with the appropriate GDS.

As previously said, program “examplel4.cpp is a reference implementation
of the POP algorithm, and it is freely available as open source software in the
development version of the GPSTk at the examples directory. Please refer to
the GPSTk website (http://www.gpstk.org) for details about downloading and
installing the development version.

78 Precise Orbits Positioning

4.4 POP data processing

The approach to this multi-station problem is to pre-process all the stations,
one by one, in a way similar to the one explained in Section 3.2 (PPP), but
without applying the solver object.

The results from this preprocessing are stored in an appropriate multi-epoch,
multi-station GNSS data structure that automatically takes care of all indexing
(structure gnssDataMap is used for this). Then, an epoch-worth of data is
extracted each time from the gnssDataMap GDS and fed to solver, and the
results are printed.

For this experiment, 5 IGS stations were used: ACORMADRSCOA SFERand
TLSE, forming a network across Iberian Peninsula spanning 1023 km (SFER
TLSE). Station ACORwas set as the “master”, while MADRwas the “rover”,
392 km away from nearest reference station (SCOA. This network comprises
more than 580,000 km? and can be seen in Figure 4.1.

350 355 o
[

p———y | -

0__100 200

350 355 o
Figure 4.1: POP network. MADR 2008/05/27.
Standard IGS products (precise orbits and satellite clocks) with a 900 s data

rate were used, but the data was processed at 30 s, the rate given by the RINEX
observation files. Note again that in this case the IGS satellite clocks were not

4.4. POP data processing 79

interpolated, but ignored: The SV clocks used for this POP positioning were
estimated on-the-fly.

Figure 4.2 shows the good results from this approach, presenting both the 3D-
error in position (with respect to the known IGS position) of POP, and the
3D-error for the standard kinematic PPP processing (see Section 3.2.2).

The results are very similar, as was expected: a 3D-RMS of 0.046 m for the
kinematic PPP case versus a 3D-RMS of 0.049 m for the POP case (from 2 h
onwards), but POP yields a higher positioning rate.

0.2 ' ' Precise Orbits bositioﬁing (PbP) ffffffff N
‘ Kinematic Precise Point Positioning (PPP) ---—+---

0.15 ::'

0.4 f

0.05

3D-Positioning difference
regarding IGS nominal (m)

0 /
0 10000 20000 30000 40000 50000 60000 70000 80000 90000
Seconds of Day (s)

Figure 4.2: POP versus kinematic PPP processing. MADR 2008/05/27.

As previously said, although the observations are not explicitly differentiated, the
POP procedure is equivalent to a carrier phase-based differential system using
the ionosphere-free combination of observations. However, it is a network-base
processing and this provides additional robustness to the results, even when
using long baselines and for receivers outside the network area.

Take, for instance, the network shown in Figure 4.1 but with TLSE station as
“rover” and station MADRas just another reference station. In this case, TLSE
will be outside the network area and 257 km away from nearest reference station
(SCOA.

The 3D-position error from this new processing is shown in Figure 4.3, and it
can be seen that in this case the POP solution behaves better between epochs
35000 s and 50000 s, when some problem is affecting the kinematic PPP solu-
tion2. 3D-RMS values (from 2 h onwards) are 0.069 m for PPP and 0.044 m
for POP.

2 At this epoch, TLSE receiver suffered from the sudden lost and posterior gain of 2 satellites.

80 Precise Orbits Positioning

02 7 ' Precise Orbits Positioning (POP) |
t Kinematic Precise Point Positioning (PPP) ---—+----

0.15

0.1

0.05

3D-Positioning difference
regarding IGS nominal (m)

0) | | ! ! |
0 10000 20000 30000 40000 50000 60000 70000 80000 90000
Seconds of Day (s)

Figure 4.3: POP versus kinematic PPP processing. TLSE 2008/05/27.

Also, distance from “rover” to nearest reference station does not seem to be a
critical factor. If station SCOAIs taken out from Figure 4.1 leaving a 4 station
network (including “rover”) with TLSE still as “rover” and station MADRas
nearest reference station (588 km away), the results are not significantly de-
graded as Figure 4.4 shows: In this case, the POP 3D-RMS values (from epoch
7200 s on) barely increases from 0.044 m to 0.049 m.

o2 ' POP \;vith 4 stétions
! POP with 5 stations

0.15 ‘!““ ‘

3D-Positioning difference
regarding IGS nominal (m)
o
=

oL "M R B M I il
0 10000 20000 30000 40000 50000 60000 70000 80000 90000

Seconds of Day (s)

Figure 4.4: POP results for 4 and 5-stations networks. TLSE 2008/05/27.

The important aspect here is that the satellites being used should be in view from
as many network stations as possible, because that will provide better on-the-fly
estimations of the satellite clock offsets. When using the POP strategy with
only two stations (MADRas “master” and TLSE station as “rover"), the data
processing effectively becomes the aforementioned carrier phase-based DGPS

4.5. POP convergence time 81

with a 588 km-long baseline. With such a long baseline the results will degrade,
given that the estimations of satellite clocks will not be as accurate, and there
will be satellites that are not common for both stations.

Figure 4.5 illustrates this case. The POP 3D-RMS values (from 2 h on) for the
2 station processing raises to 0.061 m (compared with 0.049 m of the 4 station
case).

0.2 fr " POP with 2 stations
‘ POP with| 4 stations -

| |
0.15 fi ¢

0.05 f--fi

3D-Positioning difference
regarding IGS nominal (m)
o
'_\

0 10000 20000 30000 40000 50000 60000 70000 80000 90000
Seconds of Day (s)

Figure 4.5: POP results for 2 and 4-stations networks. TLSE 2008/05/27.

4.5 POP convergence time

Regarding convergence time, Figure 4.6 plots the resulting 3D-RMS of error as
function of the epoch since it is computed and the data processing strategy
used. The values shown correspond to starting computing the 3D-RMS of error
from 1800 s, 3600 s, 5400 s and 7200 s (i.e., 30 min, 1 h, 1 h:30 min and 2 h).

Convergence accelerates as the number of station increases, but up to some
point, and the same can be said about the improvements in the 3D-RMS error
figure, suggesting that the improvements achieved by having more observations
available reach a limit shortly after 5 or 6 stations for a network of this size (this
aspect should be further researched in the future). The results for a standard
PPP processing with IGS products are shown for reference purposes.

The convergence time poses a problem when applying the POP to moving
vehicles, specially if data arcs are short. Strategies to reduce convergence time
should be a topic of future research in order to extend the usefullness of this
data processing strategy.

82 Precise Orbits Positioning

o 0.2 - 'PPP with IGS data —+—
2~ POP with 2 stations -
%é 0.18 POP with 4 stations -]
% .E 0.16 POP with 5 stations & |

S
(@]
8 8 0.12
.g O]
Q—E 0.1
noT
AL 006 T S — S me

O SRS SRR RN -
™ 5] fa é é
0.04

1000 2000 3000 4000 5000 6000 7000 8000
Seconds of Day (s)

Figure 4.6: Convergence time. TLSE 2008/05/27.

4.6 Summary

In this chapter, the advantages of GDS data abstraction regarding solvers, and
in particular the possibility to set up a “general solver” object, has been used
to implement a kinematic PPP-like processing based on a network of stations.
This procedure was named Precise Orbits Positioning (POP) because it is inde-
pendent of precise clock information and it only needs precise orbits to work.

This procedure involved multiple stations separated hundreds of kilometers and
there are a great number of unknowns of several kinds: Some unknowns are
receiver-indexed (or receiver-specific, like ztd;, dz, dy, etc.), some are satellite-
indexed (dt’), and others are both receiver- and satellite-indexed, like Bc].
Therefore, the number of unknowns at a given epoch has a wide variation
depending on the available station data and the number of visible satellites. The
GPSTk-provided class SolverGeneral helps implement this kind of systems,
describing (rather than hard coding the procedure in software), the equations,
variables, and their associated stochastic models and relationships. Besides,
the program examplel4.cpp s provided as reference implementation in the
examples directory of the GPSTk.

The results from this approach were very similar (as expected) to the standard
kinematic PPP processing (see Section 3.2.2) strategy, but yielding a higher
positioning rate. Also, the network-based processing of POP seems to provide
additional robustness to the results, even for receivers outside the network area.
The distance from “rover” to nearest reference station does not seem to be a
very critical factor, because in our test cases the results are not significantly
degraded when this distance nearly doubled.

4.6. Summary 83

The convergence time improves in POP as the number of station in the network
increases, but up to a limit. This issue still poses a problem when applying the
POP method to moving vehicles, specially if data arcs are short.

These results have shown how the GPSTk-provided GDS, with their associated
paradigm, allows one to develop code that is simple to read and maintain, but
able to carry out complex GNSS data processing in an effective way. This work
represented the main part of a paper published at the GPS Solutions journal
([Salazar et al., 2009a]).

84

Precise Orbits Positioning

Chapter 5

Velocity and acceleration
determination

The former chapter presented the POP method to obtain, in post-process, the
precise position of a vehicle using a wide network of reference receivers and
precise orbits information.

This chapter extends the previous work to the precise estimation of velocity and
acceleration. Taking as starting point a known carrier phase-based acceleration
estimation method, several improvements are suggested and implemented, and
the range of the previous method is greatly extended.

5.1 Background

GNSS-based velocity and acceleration determination can be obtained with sev-
eral methods. A common method is by time-differentiating successive position
solutions of the moving vehicle. However, this approach has several disadvan-
tages, like: The velocity and acceleration precision are strongly dependent on
position accuracy and the gain or loss of a satellite can introduce discontinuities
([Bruton, 2000]).

Another common approach is to use the Doppler observable, when available (see,
for instance, [Parkinson and Spilker Jr., 1996]). The problem with this method
is that the raw Doppler observable can be much noisier than the Doppler value
obtained by deriving the carrier phase observable (see [Cannon et al., 1997],
[Szarmes et al., 1997], [Hofmann-Wellenhof et al., 2008]).

A different method was proposed by [van Graas and Soloviev, 2004], where sin-
gle differences between consecutive epochs of carrier phase observables are used.
That paper reported, in static mode, standard deviations of velocity noise of

86 Velocity and acceleration determination

7.9 mm/s for the Up component, and 2.2 mm/s and 3.1 mm/s for the East and
North components. Also, for a DC-3 aircraft test flight with low dynamics the
standard deviations with respect to a position-based, DGPS-computed reference
solution were 9.7 mm/s, 2.6 mm/s and 3.7 mm/s in the Up, East and North
components, respectively.

A fourth approach, related to the former and the one to be followed in this work,
is to use the carrier phase as observable and to numerically derivate it to get both
range rate and range acceleration. This method, originally focused on accelera-
tion estimation for airborne gravimetry purposes, was presented in [Jekeli, 1994]
and [Jekeli and Garcia, 1997], and later expanded by [Kennedy, S., 2002b].

5.2 Carrier phase method fundamentals

The paper by [Jekeli and Garcia, 1997] implemented the carrier phase method
using the measurements from only four satellites. This method was later ex-
panded by [Kennedy, S., 2002a] and [Kennedy, S., 2002b] to incorporate all
available measurements, adding a covariance model to weight them.

5.2.1 Velocity determination

The explanation of [Kennedy, S., 2002b] method will start with the geometry
set up in Figure 5.1. From that figure it can be seen that:

xb = pbeb (5.1)

Where pl, is the geometric distance between SV? and RX,, antenna phase
centers, and e}, is the unit vector in the RX,,-SV? direction. Satellite SV?
will be our reference satellite.

Another equation closely related to Equation 5.1 is:

pb =eb - xb (5.2)
Differentiating Equation 5.2 yields:
P = €5, - Xy, + €, - X, (5.3)

If we substitute Equation 5.1 into Equation 5.3, the later becomes:

5.2. Carrier phase method fundamentals 87
X
Figure 5.1: RX-SV geometry for carrier phase method.
P = Pr(€], - €7,) + e, - X7, (5.4)
However, &b, and e}, are orthogonal, so Equation 5.4 becomes:
= eb, %, (5.5)
Now, let's introduce an equation for an additional satellite SV¢:
p, = el X2, (5.6)
If we carry out single differences between satellites SV? and SV?:
VA = e X — eh % —
Vokl = el - x1—el %y — (e - X —€b, - %) =
VplP+eb %P =el -xT—el %X, +eb % (5.7)

88 Velocity and acceleration determination

If we subtract e}, - x? from both sides of Equation 5.7, it yields:

Vol +eh - xP —eh, - x1 = e, -x1—el, Xy +€h, %, —eh %1 =
VAT b (0) = el () el (K- Xp) =
VAL + e (5 - %) = (ef, e, - %, (5.8)

In Equation 5.8, if the position of the receiver is known with an accuracy better
than a few meters, the direction vectors ef, and e}, could be computed without
affecting the results ([Jekeli, 1994]). The satellite velocities XP and x? may be
computed by different methods (more on this issue later), and the unknown is
X It is missing, then, the V! term.

In order to get that term, let's present the expression for carrier phase measure-
ments ¢}, between satellite p and receiver m (more details in Section A.2):

Ohy = photc(dty —dtP) +rell +Th —ayIh + B +wi +my | +el - (5.9)
Where:

ph: Geometric distance between SV? and RX,, antenna phase centers.

e dtP: Offset of Space Vehicle (SV) clock with respect to GPS Time
(GPST).

e dt,,: Offset of Receiver (RX) clock with respect to GPST.
e relh,: Bias due to relativistic effects (linked to SVP orbit eccentricity).
e TF: Effect of the tropospheric delay.

e alh, : Effect due to the ionospheric delay. This effect is frequency-
dependent (ay = 40.3 - 10'°/f2? when I is expressed in TECU and f is

in Hz).

e Bl The phase ambiguity term, including the carrier phase instrumental
delays.

° Wg,m: This is the wind-up effect that appears in GNSS systems as GPS.

° m{;m: Multipath effect. This effect is much smaller than in the code-

based measurements.

5.2. Carrier phase method fundamentals 89

° 5gm: Unmodeled noise for the phase measurement (it is in the millimeter
range).

The method by [Kennedy, S., 2002b] uses the carrier phase measurements in L1
frequency due to wider availability and lower noise figure than L2 measurements
and LC (ionosphere-free) combination.

Assuming that no cycle slip happens, differentiating Equation 5.9 regarding
time remove the phase ambiguity term and most part of systematic errors and
slow-varying terms, resulting in:

&, = b, + cdtm — dt’) + 25 (5.10)

Where the é{; ., Noise term absorbs the higher order terms.

In order to eliminate the clock drift a reference station & may be included,
resorting to double differencing of Equation 5.10 between nearby receivers. This
yields the approximation stated in Equation 5.11.

AVHLY ~ AVLE (5.11)

Working with Equation 5.11, an approximation for term V7! is obtained:

AVGIP =~ AV, =
AVOEP ~ Vol - vpl? =
VpRP ~ AVLE + Vit (5.12)

Where the term Vp,‘i’p is accurately known because it belongs to reference
station k.

Substituting Equation 5.12 into Equation 5.8 and rearranging:

AV + VP + e - (K —%1) = (el —eh) - Xh =
AVORI + VP + el kP —epx? = (e, —ep) (X1 — %) =
AV + VP + e — el 31 = (e, —el) %n (5.13)

Equation 5.13 is the expression used to compute the rover receiver velocity.

90 Velocity and acceleration determination

5.2.2 Acceleration determination

In order to obtain an expression for carrier phase-based acceleration, Equa-
tion 5.5 is differentiated a second time:

pb, =eb -xb +éb . %P (5.14)
On the other hand, differentiation of Equation 5.1 yields:

Xin = P + Pl (5.15)

From there, term é%, can be found:

1 .
e = - DX = nen] (5.16)
m
Substituting Equation 5.16 into Equation 5.14:
R A A A Ry AR —
Pro = e X+ o [|X0 = phemxi] —
P = e (R —%n) + |2 - (50)?] =
1) .
P — €l % — =[x, = (ph)2] = —el, % (5.17)
m

Introducing an equation for an additional satellite SV, and carrying out single
differences between satellites SV¢ and SV?:

N A N LA (8N

o (B = (78] = (et — eh) - (5.18)

Now, Equation 5.12 is differentiated again:

Vi = AVGR + V" (5.19)

m,k

And substituting Equation 5.19 into Equation 5.18 and rearranging yields the
expression for the carrier phase-based acceleration:

5.2. Carrier phase method fundamentals 91

AV + VP 4 eh -3 — e %0+ |[%,7 = (7h,)’

o [P = ()] = (e —et) & (520)

Note that the rover velocity is a prerequisite to compute the acceleration. This
is evident in terms like x7,, but also to compute terms like pi, = ef, - Xih.
Also, approximations of p}, and ph, are used, but the error will be small if rover

position is known with an accuracy better than a few meters.

5.2.3 Numerical differentiation

Numerical differentiation of GNSS observables to find velocity and accelera-
tion is an issue thoroughly studied in [Bruton, 2000] and [Bruton et al., 1999].
Several types of differentiation filters are studied there, including Taylor series
approximations, Fourier series-based filters, Remez Algorithm Exchange-based
filters, etc., comparing them with the ideal differentiator and weighting in their
practical advantages in a GNSS data processing setting.

Relying on [Bruton, 2000], the filters that are used in [Kennedy, S., 2002a]
and [Kennedy, S., 2002b] are of the Finite Impulse Response (FIR) kind be-
cause they have linear phase, meaning that they introduce a constant time
delay that facilitates a correct time-tagging of the data. Also, only odd-length
filters were used to maintain integer time delay and avoid interpolation.

Specifically, the work at [Kennedy, S., 2002b] proposes the use of a 5th order
Taylor series approximation® FIR filter. When using a 1 Hz sampling rate, the
bandwidth of that filter appropriately covers the typical dynamics found in air-
borne gravimetry applications, finding a compromise between bandwidth, sim-
plicity and noise suppression ([Bruton et al., 1999] and [Kennedy, S., 2002b]).

The impulse response of the 5th order Taylor series approximation FIR filter is
shown in Equation 5.21, where T is the sampling period in seconds.

hs] 1 1 -5 5 =5 5 0 -5 5 =5 5 -1
nl = — —_— —_— —_— —_— — _— —_— —_— —_— —_—
> T 11260 504 84 21 6 6 21 84 504 1260

(5.21)

The filter at Equation 5.21 is the one to be used to find terms like Anglbg’lpk and
AV(%Z’Z ., as well as VP, etc.

1The filter order represents the number of samples used on either side of the central
differentiator.

92 Velocity and acceleration determination

The convolution summation is used to apply the former differentiating filter to
a discrete data set x[n], obtaining a differenced signal x'[n]:

M
X[i] = > huljlxli —) (5.22)
j=—M

Where M is the order of the differentiating filter hj/[n]. Equation 5.22 already
compensates for the constant time delay introduced by a 2M + 1 kernel length
filter.

5.2.4 Covariance model

Equation systems build from Equation 5.13 or Equation 5.20 can be solved using
either Least Mean Squares (LMS) or Weighted-Least Mean Squares (WMS)
solvers. If the later is used, a covariance model is needed.

It can be shown ([Kennedy, S., 2002a]) that a covariance model developed for
carrier phase observations may be adapted to be used for carrier phase observa-
tions derivatives. Given that the numerical differentiation is a linear combination
of carrier phases, then the variances can be propagated into the derivatives, as
done in single and double differencing.

There is, however, one condition for this: That the variances are constant over
the time period where the differencing filter works. When using a 1 Hz sampling
rate and a 5th order FIR filter this interval is 10 seconds, and this assumption
reasonably holds.

Under the former conditions, if the covariance matrix of the carrier phase ob-
servables is C and the filter kernel is h[n] (see Equation 5.21 for an example
kernel), the resulting covariance matrix of the carrier phase derivatives (CdS) is:

Cy=> h[n]’Cy (5.23)
0

And for the second carrier phase derivatives:

;= (3 hnP)C, (5.24)
0

Regarding the covariance model itself, [Kennedy, S., 2002b] takes a model by
[Radovanovic et al., 2001] which modeled tropospheric variances and expanded

5.2. Carrier phase method fundamentals 93

it to include ionospheric variances ([Kennedy, S., 2002a]). The covariance model
is elevation-based and it also models the physical correlations between measure-
ments as function of the separation angle between satellites and the baseline
length between receivers.

5.2.4.1 \Variance of a single measurement

According to [Kennedy, S., 2002a], the model for the variance of a single mea-
surement from satellite p to receiver k is shown in Equation 5.25.

O‘ZQ = mr(ep)’or® + mi(ep)’or® + omp’ (5.25)

Where:

° aff: Variance from satellite p to receiver k.
e ¢, Elevation angle of satellite p.

e o2 Tropospheric variance. In this model, this parameter is fixed at

0.022 m?.
e 072 lonospheric variance.

° O'mp22 Multipath variance. It is considered constant, with a value of
0.0052% m?.

e mr(): Mapping function for troposphere.

e my(): Mapping function for ionosphere.

Regarding the mapping functions, mp() corresponds to Niell's ‘dry’ mapping
function ([Niell, 1996]), used in the UNB3 tropospheric model ([Collins, 1999]),
while mz() is the ionospheric mapping function in [Misra and Enge, 2006] and
presented at Equation 5.26.

2
my(e) = \/1 - [%] (5.26)

Where h is the height of the ionospheric shell (350 km), and R. is Earth's
radius.

The last term to be defined is the ionospheric variance o;2. Its computation is
done with the following procedure:

94 Velocity and acceleration determination

e For a given flight leg, find the satellite with the highest elevation, SVP.

e For SVP, compute the LC (ionosphere-free carrier phase) combination for
each epoch.

e Compute (L1 - LC) to get the first order ionospheric error.

e Subtract from the former a ‘line of best fit’ to eliminate ionosphere first
order trend. This will leave ionospheric second and third order effects,
and carrier-phase noise (increased by LC computation).

e The ionospheric variation (according to previous steps) is mapped to
zenith using the aforementioned mapping function.

e The variance of former ionospheric variation results will be taken as the
ionospheric variance for the whole flight leg.

5.2.4.2 Covariance between two satellites

In order to compute the covariance between measurements from a receiver p to
two satellites p and ¢ (denoted as ¢(¢%, ¢7)), Equation 5.27 is used.

c(¢h, of) = mr(ep)mr(eg)e P or® +mi(ep)mi(eg)eCor* (5.27)

The separation angle between satellites p and ¢ is 6, and it is computed with
the expression:

cos(f) = sin(ep) sin(eq) + cos(ep) cos(egq) cos(Ap — Ay) (5.28)

Where A, and A, are the azimuth angles for satellites p and ¢, respectively, and
Q is the correlation angle. The value of this correlation angle is set empirically
to 40 degrees ([Kennedy, S., 2002al).

5.2.4.3 Covariance between two receivers

Equation 5.29 presents the covariance between measurements from two receivers
m and k to a common satellite p.

5.2. Carrier phase method fundamentals 95

Being d the baseline length between receivers m and k, and D the correlation
distance. According to [Radovanovic et al., 2001], the value of D is set to
350 km.

5.2.4.4 Covariance between different receivers and satellites

Finally, the covariance between measurements made to different satellites from
different receivers is shown in Equation 5.30.

c(@h,, ¢1) = mr(ep)mr(eg)e /e Por® +my(ep)my(eq)e e Po
(5.30)

Where all terms have been already defined in the previous sections.

5.2.4.5 Comments on covariance model

The implementation and testing of the covariance model explained in the former
sections raised some issues that it is worth commenting:

e The expressions 5.29 and 5.30 concerning two receivers propose using the
same correlation distance D for both troposphere and ionosphere. These
are very different physical phenomena with different correlation distances,
and therefore those equations may not accurately portray the covariances
they are intended to compute.

e Under some input conditions, the implementation of the full covariance
model yielded covariance matrices that were ill-conditioned and very dif-
ficult to invert.

e The implementation of scaled-down versions of the proposed covariance
model, using only Equation 5.25 and Equation 5.27, or just Equation 5.25
(simple diagonal covariance matrix) generated software that ran several
times faster and produced results with negligible differences regarding the
full covariance model implementation.

It is out of the scope of this work to evaluate the best covariance model to
use with the carrier phase-based method of velocity and acceleration determi-
nation. Nevertheless, assessing simpler alternatives for these covariance models
is suggested as a future research line.

96 Velocity and acceleration determination

5.3 Improving velocity results

The first proposed change to [Kennedy, S., 2002b] method is straightforward
and consists in modifying the way satellite velocities and accelerations are com-
puted.

At page #966, [Kennedy, S., 2002b] writes:

“Satellite velocities and accelerations are also required in the car-
rier phase method of receiver acceleration determination. These
quantities can be derived from the Lagrange polynomials as well.
Numerical differentiation would require satellite positions at several
epochs to calculate velocity and acceleration. This is inconvenient
and unnecessary. The Lagrange polynomial functions can be ana-
lytically differentiated and evaluated at the desired time.”

Regarding the former paragraph, it must be stated that the analytically differen-
tiated Lagrange polynomial functions® also require satellite positions at several
epochs to work. Therefore, they don't represent an advantage in this respect.

More importantly, the analytical differentiation of Lagrange polynomial inter-
polation does not necessarily reflect the physical nature of satellite orbits. The
Lagrange polynomial fit of a given set of points may yield oscillations, an ef-
fect called “Runge phenomenon” (see for instance [Dahlquist and Bjork, 1974]).
Those oscillations may not pose a problem when computing satellite positions,
but they may (and indeed do) introduce unwanted biases in the satellite velocity
determination.

Therefore, the modification consists in also using differentiator FIR filters to
compute satellite velocity and acceleration. In order to test the effects of this
change, 5 hours of data from two static GPS stations called UPCland UPC2
were processed using the full Kennedy method. Those stations have a very
short baseline (37.86 m), so most observation errors are cancelled during double
differences. Data rate was 1 Hz and data collection corresponds to August 8th,
20009.

The results in Figure 5.2 show 5 minutes averages of 3D velocity errors for both
approaches: Lagrange differentiator vs. FIR differentiator.

It can be seen that the difference between using one method or the other is
remarkable: The RMS of the 5-min average velocity 3D error using the Lagrange

?|agrange polynomial functions are used to interpolate satellite positions from SP3 precise
ephemeris files ([Hofmann-Wellenhof et al., 2008]).

5.3. Improving velocity results 97

0.005 :
0 Numeric derivation (FIR) ——
E Lagrange derivation -
= 0.004
e
@
Q 0.003
2
‘C
2 0.002
(5]
>
S
 0.001
(5]
>
< -

0 S N S U R S PN S— -

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000
Seconds of Day (s)

Figure 5.2: Average velocity 3D error (5 minutes interval) for UPC2.

FIR average FIR o Lagrange average Lagrange o
(mm/s) (mm/s) (mm/s) (mm/s)
Up 0.02 3.51 -2.15 3.63
East 0.01 1.65 -0.58 1.69
North 0.00 1.68 0.51 1.76

Table 5.1: Velocity averages and sigmas for static results (UPC2-UPC1).

analytical differentiation is 2.52 mm/s, while the corresponding RMS value for
the FIR differentiator is under 0.07 mm/s.

Most of this difference comes from biases, specially in the Up velocity compo-
nent. Table 5.1 presents the averages and standard deviations for Up, East and
North components for both approaches.

The results for acceleration yield negligible differences when using one method
or the other, as Table 5.2 shows. This may be explained by looking back at
Equation 5.20, where relative velocity errors are scaled down by a factor of p3V,
which is a very large value. This is further explained in [Kennedy, S., 2002a].

Please note that the static error sigmas for velocities in the FIR case (Table 5.1)
are below what is reported by [van Graas and Soloviev, 2004] (please refer to

98 Velocity and acceleration determination

FIR average FIR o Lagrange average Lagrange o
(mm/s?) (mm/s?) (mm/s?) (mm/s?)
Up —4.01073 5.45 —4.2107° 5.45
East 3.21073 2.57 3.21073 2.57
North 0.71073 2.61 0.31073 2.61

Table 5.2: Acceleration averages and sigmas for static results (UPC2-UPC1).

Velocity average Velocity o | Acceleration average Acceleration o
(mm/s) (mm/s) (mm/s?) (mm/s?)
Up —0.13 4.47 3.31073 6.92
East 0.06 2.22 2.4107° 3.43
North 0.03 2.42 —4.2107° 3.76

Table 5.3: Velocity and accelerations results for PLAN-EBRE.

Section 5.1). Thence, the question that arises is if the results will be still good
if the receivers were separated a longer distance.

In order to test the former hypothesis, 3 hours of data at 1 Hz data rate were
processed for receivers PLAN (rover) and EBRE (reference) for January 15th,
2010. The baseline between those receivers is 142 km.

Table 5.3 presents the results for this longer baseline. It can be seen that al-
though the results are not as good as with the very short baseline (as expected),
they still show consistently better sigmas than [van Graas and Soloviev, 2004]
static velocity results, specially in the Up direction (opp, = 7.9 mm/s, orqst
= 2.2 mm/s, and onoren = 3.1 mm/s).

5.4. EVA: Extended velocity and acceleration determination 99

5.4 EVA: Extended velocity and acceleration deter-
mination

Kennedy's method uses L1 carrier phase observable because of its lower noise
figure, and relies on double differencing to eliminate or minimize error sources.

This approach limits the baseline length between rover receiver and reference
station because, depending on the ionospheric conditions, a point will be reached
where the errors not cancelled out by the double differencing will offset the
advantages of using the L1 carrier phase.

The following sections will present modifications to this method where undiffer-
enced LC (ionosphere-free) carrier phase combinations are used to overcome the
baseline limitation. The new method borrows ideas from the POP method pre-
sented in Chapter 4 to estimate clock drift and clock drift rates, and will hence-
forth be called “Extended Velocity and Acceleration determination (EVA)".

5.4.1 Computing the velocity

Let's start considering Equation 5.6. It may be rewritten as:

p—el %1 =—el %, (5.31)

The idea is to find a way to estimate the term pf,. In order to achieve that,
Equation 5.9 is rewritten to consider the ionosphere-free carrier phase combi-

nation ¢, .

OLom = P tc(dtym —dt?)+rell + T +0Th +BCOL+w] o Mot elom
(5.32)

Where, in addition to the terms previously explained, we have:

e 6T},: Unmodeled tropospheric delay.

e BCY,: lonosphere-free phase ambiguity .

Now, let's introduce a reference clock dty to which all the other clocks will refer
to. Hence:

100 Velocity and acceleration determination

AT = dbm — dtg
dr? = dt?— dt,

And Equation 5.32 becomes:

¢%c,m —reld —T4 —w%am = pd +c(dry—dr?)+0TL+BCY +m%c,m+ng’m
(5.33)

Where terms to the left are the observation minus modelable effects, and they
will be denoted as ¢ ,,,. Arranging terms yields:

pl = (Z)g,m —c(dry, — d7?) — 6T, — BC1 — E%Cm (5.34)

Where term quC,m is considered as absorbed into 5qLC7m. Derivating Equa-
tion 5.34 regarding time, and assuming that no cycle slip happens, results in
Equation 5.35.

The former Equation 5.35 could be considered as equivalent to Equation 6.33
at page 218 of [Misra and Enge, 2006]. If we further consider that troposphere
variation rate 67}, is negligible, as well as first order errors, then:

P, = 43, — cdim + cdi? (5.36)

For Equation 5.36 to properly work, receiver clock millisecond adjustments must
be taken care of, either preprocessing RINEX observation files or using clock
steering-style receivers. Then, combining Equation 5.36 with Equation 5.31
results in the new equation for rover velocity estimation:

B — € X1 = —el, - Xy + cdiy — cdi? (5.37)

The unknowns in the former equation are the rover velocity x,,, the rover clock
drift cd7,,, and the satellite clock drift cd79.

Following the ideas set forth for POP method in Chapter 4, let's introduce a
fixed master station “0". The receiver clock of this station is the reference
clock dtg introduced earlier. Then, Equation 5.37 for master station becomes:

5.4. EVA: Extended velocity and acceleration determination 101

&f o — el %1 = —cdi! (5.38)

As it can be seen, the equations corresponding to master station allow to esti-
mate satellite clock drifts3. Following the same procedure, let's introduce some
reference stations denoted with “k”:

b —el %1 = cdiy — cdit (5.39)

The equations provided by the reference stations reinforce the estimation of
satellite clock drifts. As in Section 4.3, Equations 5.37 to 5.39 allow to build
an equation system suitable to be solved using the GPSTk SolverGeneral
class.

5.4.2 Computing the acceleration

From Equation 5.17, we have for a satellite ¢ that:

- e, %7 — o [IKLP = (50)?] = —ef, - % (5.40)

q
m

On the other hand, further derivating Equation 5.36 regarding time yields:

Pl = Gf — CdFp + cdF (5.41)

Combining Equation 5.40 and Equation 5.41 we obtain the new equation to
estimate rover acceleration:

1

3 — e X7 = =[xl (50,)?] = —el S + e — cdi? (5.42)

P

Introducing again a master station “0" and several reference stations “k":
" . 174 . .
oo —ef-x1— — “X = (pg)z} = —cd71 (5.43)
; pl

. 1 r.-
T [1x"[2 = (52| = cdi, — cart (5.44)
k

3In fact, satellite clock drifts with respect to master station clock drift.

102 Velocity and acceleration determination

The former equation system can also be solved using the GPSTk SolverGeneral
class.

5.5 Applying EVA method to aircraft data

In this section, an application of the EVA method to aircraft velocity and ac-
celeration determination was tested. The data comes from the flight of a light
aircraft from Perpignan airport, south of France, to La Cerdenya aerodrome, in
Spain's Pyrenees, with a previous pass close to Llivia aerodrome. The distance
from Perpignan to Llivia are about 79 km, and the distance between Llivia and
La Cerdenya are 13 km.

This experiment will use data from five Institut Cartografic de Catalunya (ICC)
reference stations: AVEL, CREU EBRE LLIV and MATA(Please see Fig-
ure 5.3). The LLIV (Llivia) station will not be used for EVA method data
processing, being saved for reference determination purposes with Kennedy's
method, while the remaining four-station network has MATAas the closest sta-
tion to LLIV , 111 km away.

It is important to note that the Kennedy method used for comparisons is the
modified version according to Section 5.3.

5.5.1 Aircraft description

The aircraft used was a Robin DR 400-1408B, shown in Figure 5.4. This is a light
airplane with some properties that make it very appropriate for this experiment:

e It is a low-wing aircraft, with an excellent sky view from the cockpit.
e Most of the cockpit roof is made of Plexiglas, transparent to radiowaves.

e Most of the aircraft structure is made of wood and fabric instead of metal,
minimizing multipath.

5.5.2 Data collection description

The GPS receiver used was a two-frequency geodetic-grade Septentrio PolaRx2.
The antenna was a two-frequency AERAT277543 model, and it was attached
on the upper right side of the instrument panel, inside the cockpit.

5.5. Applying EVA method to aircraft data 103

Figure 5.3: Station network for Pyrenees flight.

104 Velocity and acceleration determination

Figure 5.4: Aircraft Robin DR400-140B.

The test flight was carried out on March 21st, 2009, under Visual Flight Rules
(VFR) with clear skies along the flight path. It lasted a little over 1 hour (from
11:36 to 12:40, local time) and was composed of the following phases:

1. Preflight check (with the GPS receiver on) at Perpignan airport parking
area.

2. Takeoff from Perpignan airport.
3. Cruise flight to the Pyrenees, passing over the “Coll de la Percha” pass.

4. Approach maneuver to Llivia aerodrome, followed by a missed approach
(previously planed).

5. Approach maneuver, and not-previously-planned missed approach, to La
Cerdenya aerodrome.

6. Final approach maneuver and landing at La Cerdenya aerodrome.

7. Postflight check (with the GPS receiver on) at La Cerdenya aerodrome
parking area.

5.5.3 Aircraft data processing

In order to process data with the EVA method the aircraft a priori position has to
be updated each epoch. For this, the ionosphere-free pseudorange observable

5.5. Applying EVA method to aircraft data 105

smoothed with the ionosphere-free carrier phase, was used at each epoch to
generate an approximate position (see Section 2.5.3 for a similar procedure),
which would then be used as a priori for the modeling phase. The rest of the
procedure is as explained in Section 5.4.

On the other hand, the Kennedy method was also implemented but including
the improvements proposed in Section 5.3 (called hereafter modified-Kennedy)?,
and the fixed LLIV station was used as reference. It is important to remark
here that the data was processed when the aircraft was relatively close to LLIV
(less than 37 km).

Figure 5.5 shows the results for aircraft horizontal velocity using both ap-
proaches. The match is remarkable, and the apparent differences in the plot
are due to areas where one method is providing solutions while the other is not.
The flat area at lower right is because the aircraft has already landed and it is
parked.

70 'Modifiea-Kenneldy method T
A xk ¢ EVA method

60 |

50

40

30

20

Aircraft horizontal velocity (m/s)

10

o
Fwwtxxwtwwutxﬁ

40600 40800 41000 41200 41400 41600 41800 42000 42200
Seconds of Day (s)

Figure 5.5: Aircraft horizontal velocity.

Figure 5.6 plot the differences in velocities of EVA with respect to modified-
Kennedy for the three coordinates. The standard deviation of velocity differ-
ences is 6.68 mm/s for the “Up” component and 2.75 mm/s for both the
“East” and “North” velocity components. Regarding acceleration, the corre-
sponding standard deviation values are 8.39 mm/s? (Up), 3.35 mm/s? (East)
and 3.41 mm/s? (North). This results can be considered as very good, specially

*The modified-Kennedy method is used instead of the original one in order to achieve a
thirty-fold improvement in the velocity biases estimation.

106 Velocity and acceleration determination

taking into account that in this scenario the aircraft is always close to modified-
Kennedy's reference station (LLIV), and the EVA method closest reference
station is over one hundred kilometers away.

0.04 VUp |
p +
" VEast

0.03 VNorth * 1
)
2 002
£ 0.0 ‘
> i . -
= T T— e AR
§ 00l et ' i St e R
g
c 0
0
3
S 001
o
NS
£ 002

-0.03 o

-0.04

40500 41000 41500 42000 42500 43000 43500
Seconds of Day (s)

Figure 5.6: Aircraft velocity differences of EVA with respect to modified-Kennedy.

A better way to assess the results of each method is to study the period of
time when the aircraft is parked at La Cerdenya airport, at 13 km from LLIV
reference station. This period spans from second of day 42130 s up to 43790 s.
For comparison purposes, a RTK solution generated with the RTKLIB tool
([Takasu and Yasuda, 2009]) was also included. The RTK solution was twice
numerically differenced using the FIR filter described in Section 5.2.3 in order
to obtain both velocity and acceleration reference values. The LLIV station
was also used as fixed station for the RTK procedure.

As Figure 5.7 shows, the results of the three methods are not very different when
compared to a known reference velocity, being the modified-Kennedy method
the one producing slightly better results.

The acceleration estimation yields similar results, although modified-Kennedy
and EVA methods show an advantage with respect to RTK. Table 5.4 presents
a summary of average and standard deviations for the “Up” components during
the static period.

Overall, the results of these three methods are similar and very good, although
modified-Kennedy method shows some advantages. On the other hand, EVA is
a little behind RTK regarding velocity estimation, but both modified-Kennedy

5.5. Applying EVA method to aircraft data 107

0.04 T T

RTK |
EVA x
0.03 Modified-Kennedy — +]

0.02

0.01

-0.01

Vertical velocity (m/s)
o

-0.02

-0.03

-0.04

42200 42400 42600 42800 43000 43200 43400 43600 43800
Seconds of Day (s)

Figure 5.7: Aircraft vertical velocity during static section.

RTK Modified-Kennedy EVA

VUp AVG (mm/s) 0.004 —0.015 0.158
VUp o (mm/s) 4.890 4.447 5.299
AUp AVG (mm/s?) | 0.025 —-0.017 —-0.017
AUp o (mm/s?) 7.942 6.750 6.870

Table 5.4: Aircraft velocity and acceleration averages and sigmas for static period.

108 Velocity and acceleration determination

Station Latitude Longitude Distance to BOGT

AREQ —16.47° —71.49° 2339 km
BOGT 4.64° —74.08° -

CRO1 17.76° —64.58° 1777 km
GLPS —0.74° —90.3° 1893 km
KOUR 5.25° —52.81° 2347 km

Table 5.5: South America network data.

and EVA outperform RTK in acceleration estimation. All studied methods have
better performance than [van Graas and Soloviev, 2004].

5.6 Applying EVA method to very long ranges

The previous section compared EVA method performance with differential meth-
ods when there was a reference station near the working area. However, the
purpose of EVA method is to provide velocity and acceleration estimations when
there is no nearby reference station, and it is in this scenario where EVA method
excels.

In order to test the EVA method in a demanding setting, a very wide area in
equatorial South America was processed, using 1 Hz data taken from January
15th., 2010, from 19:00 to 20:00 UT (about local noon). The processed network
had 5 stations, using BOGTas “rover” and station CROlas “master”. Table 5.5
shows station data, while Figure 5.8 presents a map of this network.

The modified-Kennedy method was used for comparison purposes taking station
CRO1as reference. Table 5.6 shows the results for velocity and acceleration
when using modified-Kennedy method, while Table 5.7 presents EVA method
results.

It can be seen that given the distances, the latitude, and the epoch of day
involved, modified-Kennedy method results could be considered as good, but
the results obtained with the EVA method are considerable better.

The former statement is reinforced when the vertical velocity component is plot
for both methods, as Figure 5.9 shows. Not only the EVA method has consid-

5.6. Applying EVA method to very long ranges

109

Figure 5.8: South America network.

Velocity average Velocity o | Acceleration average Acceleration o
(mm/s) (mm/s) (mm/s?) (mm/s?)
Up 0.54 6.90 0.6107° 10.27
East 0.67 2.31 1.8107° 3.34
North 0.48 4.74 6.8107° 7.08

Table 5.6: Velocity and accelerations results for BOGT-CRO1 (Modified-Kennedy

method).

110 Velocity and acceleration determination

Velocity average Velocity o | Acceleration average Acceleration o
(mm/s) (mm/s) (mm/s?) (mm/s?)
Up —9.51073 1.67 —6.31073 2.37
East 0.02 1.29 561073 1.84
North —0.02 0.95 —2.71073 1.35

Table 5.7: Velocity and accelerations results for BOGT (EVA method).

0.04 Modified-kennedy'method' + T
. + EVA method =~
0.03 i
MRS AT
p
~ 002 e
IS At
£ om %ﬁ%
> st L
8
° 0
>
S -0t
o
*
Z 002 e o %
+ R
< +
-0.03 ot
+
-0.04

68000 68500 69000 69500 70000 70500 71000 71500 72000
Seconds of Day (s)

Figure 5.9: Vertical velocity for BOGT station.

5.7. Summary 111

erable less dispersion, but also shows less biases. The same behavior can be
observed for the rest of velocity and acceleration components. This improve-
ment was expected, and it is ascribable both to the improved geometry provided
by the network and to the use of ionosphere-free carrier phase observations.

5.7 Summary

In this chapter several methods to compute velocity and acceleration were re-
viewed, emphasizing on the carrier phase-based Kennedy method because of its
good performance. This method was explained in detail.

A reference implementation of Kennedy method was developed, and several ex-
periments were carried out. Experiments done with very short baselines showed
a flaw in the way satellite velocities were computed, introducing biases in the
velocity solution.

A relatively simple modification was proposed to fix the former issue. The
modified version reduced the RMS of 5-min average velocity 3D errors by a
factor of over 35. Also, preliminary results suggest that simpler and faster
covariance models could yield equivalent results, and this is proposed as a future
research line.

Then, borrowing ideas from the modified-Kennedy method and the POP method
presented in Chapter 4, a new velocity and acceleration determination procedure
was developed and implemented that greatly extends the effective range. This
method was named “Extended Velocity and Acceleration determination (EVA)".

An experiment was setup using a light aircraft flying over the Pyrenees. This
experiment showed that both the modified-Kennedy and EVA methods were
able to cope with the dynamics of this type of flight. An additional RTK-
derived solution was also generated, and when comparing the three methods
to a known zero-velocity reference, the results were very similar, although the
modified-Kennedy method showed some advantages. EVA was a little behind
RTK regarding velocity estimation, but both modified-Kennedy and EVA out-
performed RTK in acceleration estimation.

Afterwards, modified-Kennedy and EVA method were applied to a very wide
network on equatorial South America, near local noon, with baselines over 1770
km. Under this scenario, the EVA method showed a clear advantage in both
averages and standard deviations for all components of velocity and acceleration,
confirming its effectiveness with long baselines.

Finally, a research article summarizing these results is being written, and refer-
ence implementations of both modified-Kennedy and EVA methods (as well as

112 Velocity and acceleration determination

its associated classes) are currently under development and will be added to the
GPSTk project in the near future.

Conclusions

The work carried out during the development of this Ph.D. thesis achieved both
the general and specific research objectives set forth in the Introduction of this
document, including the study, development and implementation of algorithms
for GNSS navigation, focusing on precise position, velocity and acceleration
determination very far from reference stations in post-process mode.

Given that one of the goals of this thesis was to develop a set of state-of-
the-art GNSS data processing tools, and make them available for the research
community, the software development effort was done within the frame of the
preexistent open source GPSTk project. In particular, Chapter 1 presented
the general characteristics of that project such as structure, basic facilities and
development philosophy, showing the high level of portability of the GPSTk.

Validation of the GPSTk pseudorange-based processing capabilities was carried
out during this phase of the work. The results of comparisons with a trusted
GPS data processing tool (BRUS) showed an excellent agreement both in the
positioning and the modeling domains, confirming the viability of the GPSTk
as a source code base for developing reliable GNSS data processing software.

GNSS data management proved to be an important issue when trying to ex-
tend GPSTk capabilities to carrier phase-based data processing algorithms.
This task was tackled in Chapter 2, where the GNSS Data Structures (GDS)
were presented, including the motivation for their development, the implemen-
tation overview, and their associated processing paradigm. Several types of
pseudorange-based data processing strategies were included in Chapter 2 in or-
der to better show how the GNSS Data Structures (GDS) can be used.

The main contribution of the GDS relies in the fact that they preserve both the
data and corresponding “metadata” (data relationships), internally indexing
all the GNSS-related information. With the associated GDS paradigm, the
GNSS data processing then becomes like an “assembly line", where all the
processing steps are performed sequentially. This approach provides an easy
and straightforward way to encapsulate and process data, allowing writing clean,

114 Conclusions

simple to read and use software that speeds up development and reduces errors.

The extension of GPSTk capabilities to carrier phase-based data processing algo-
rithms was the focus of Chapter 3. In that chapter some applications of the GDS
to carrier phase-based GNSS data processing strategies were presented, as well
as important accessory classes that ease tackling these complex tasks. Reference
implementations of those strategies were provided for the GNSS community in
the GPSTk examples directory, as files example8.cpp , example9.cpp
and examplel0.cpp

The performance comparison of these relatively simple GDS-based source code
examples with other state-of-the art Precise Point Positioning (PPP) suites,
demonstrated that their results are among the best, confirming the validity of
using the GPSTk combined with the GDS to get easy to write and maintain,
yet powerful, GNSS data processing software. Furthermore, given that the
GDS design is based on data abstraction, it allows a very flexible handling
of concepts beyond mere data encapsulation, including programmable general
solvers, among others.

Chapter 4 dealt with the problem of post-process precise positioning of GPS
receivers hundreds of kilometers away from nearest reference station at arbi-
trary data rates, overcoming an important limitation of classical post-processing
strategies like PPP. The advantages of GDS data abstraction regarding solvers,
and in particular the possibility to set up a “general solver” object, were used
to implement a kinematic PPP-like processing based on a network of stations.
This procedure was named Precise Orbits Positioning (POP) because it is inde-
pendent of precise clock information and it only needs precise orbits to work.

The POP procedure involved multiple stations separated hundreds of kilometers
and there are a great number of unknowns of several kinds: Some unknowns are
receiver-indexed (or receiver-specific, like ztd;, dz, dy, etc.), some are satellite-
indexed (dt’), and others are both receiver- and satellite-indexed, like Bc].
Therefore, the number of unknowns at a given epoch has a wide variation
depending on the available station data and the number of visible satellites.
The GPSTk-provided class SolverGeneral , developed during this thesis,
helps implement this kind of systems, describing (rather than hard coding the
procedure in software), the equations, variables, and their associated stochastic
models and relationships. The program examplel4.cpp was provided as a
reference implementation of this data processing method.

The results from this approach were very similar (as expected) to the standard
kinematic PPP processing strategy, but yielding a higher positioning rate. Also,
the network-based processing of POP seems to provide additional robustness
to the results, even for receivers outside the network area. The distance from
“rover” to nearest reference station does not seem to be a critical factor, because

Conclusions 115

in the tests carried out the results were not significantly degraded when this
distance nearly doubled.

On the other hand, the convergence time improves in POP as the number of
station in the network increases, but up to a limit. This issue poses a problem
if the POP method is going to be applied to vehicles, specially if data arcs are
short.

The last part of this thesis focused on implementing, improving and testing
algorithms for the precise determination of velocity and acceleration hundreds
of kilometers away from nearest reference station. Chapter 5 reviewed several
methods to compute velocity and acceleration, emphasizing on the carrier phase-
based Kennedy method because of its good performance, explaining it in detail.

A reference implementation of Kennedy method was developed, and several ex-
periments were carried out. Experiments done with very short baselines showed
a flaw in the way satellite velocities were computed, introducing biases in the
velocity solution. A relatively simple modification was proposed, and it reduced
the RMS of 5-min average velocity 3D errors by a factor of over 35, leading
to a modified version of the Kennedy method. In addition, preliminary results
experimenting with the covariance models suggested that simpler and faster
covariance models could yield equivalent results to the full model originally pro-
posed by Kennedy.

Then, borrowing ideas from Kennedy method and the POP method presented
in Chapter 4, a new velocity and acceleration determination procedure was de-
veloped and implemented that greatly extends the effective range. This method
was named “Extended Velocity and Acceleration determination (EVA)".

An experiment using a light aircraft flying over the Pyrenees showed that both
the modified-Kennedy and EVA methods were able to cope with the dynamics of
this type of flight. When comparing these methods to a known zero-velocity ref-
erence the results were very similar, although modified-Kennedy method showed
some advantages. EVA performance was a little behind RTK-derived velocity
estimations, but modified-Kennedy and EVA outperformed RTK in acceleration
estimations.

Finally, both modified-Kennedy and EVA method were applied to a very wide
network on equatorial South America, near local noon, with baselines over 1770
km. Under this scenario, the EVA method showed a clear advantage in both
averages and standard deviations for all components of velocity and acceleration.
This confirms that EVA is an effective method to precisely compute velocities
and accelerations when the distance to the nearest reference station is over one
thousand kilometers.

116 Conclusions

Contributions

The development of the GNSS Data Structures (GDS) and its processing par-
adigm is one of the contributions from this thesis work. The GDS solve some
GNSS data management issues preserving both data and metadata, providing
a way to write software that speeds up development and reduces errors.

The POP procedure is considered another contribution. Although not an orig-
inal strategy (similar methods have been previously used in the literature), its
implementation is a novel approach to solve this kind of problems, using a run-
time programmable solver (SolverGeneral) where the equations, variables,
and their associated stochastic models and relationships are described rather
than hard coded in software. Also, this approach is flexible enough to be used
in other types of complex problems, as it was demonstrated in Chapter 5.

The study of carrier phase-based velocity and acceleration methods provided
other contribution: The modification of way the Kennedy method computes
the satellite velocities yielded improvements of over one order of magnitude in
the biases of velocity estimations.

Additionally, the development of the new “Extended Velocity and Accelera-
tion determination (EVA)”" method solves the problem of post-process precise
velocity and acceleration determination thousands of kilometers from nearest
reference station. This is considered an important and original contribution
that could have an impact in fields such as aerogravimetry, where the original
Kennedy method was applied.

Other relatively minor contributions were the validation of the initial GPSTk
code base, the demonstration of its porting process to an embedded platform,
and the extension of GPSTk capabilities to process carrier phase-based data, in
particular PPP processing. The reference implementations of several data pro-
cessing strategies should also be very useful for GNSS researchers and students.

In summary, this work has provided both scientific and logistic contributions
for the GNSS research community, striving to provide tools to increase the
productivity of GNSS researchers.

Publications

This thesis work resulted in a publication in a peer-reviewed journal:

Salazar, D., Hernandez-Pajares, M., Juan, J.M. and J. Sanz. "“GNSS data

Conclusions 117

management and processing with the GPSTkK”. GPS Solutions, DOI:
10.1007/s10291-009-0149-9, 20009.

Also, several publications in congress proceedings were related to this thesis:

Salazar, D., Hernandez-Pajares, M., Juan, J.M. and J. Sanz. "Rapid Open
Source GPS software development for modern embedded systems: Using
the GPSTk with the Gumstix". Proceedings of the 3rd ESA Workshop
on Satellite Navigation User Equipment Technologies NAVITEC '2006.
Noordwijk. The Netherlands. December 2006.

Salazar, D., Hernandez-Pajares, M., Juan, J.M. and J. Sanz. “The GPS
Toolkit: World class open source software tools for the GNSS research

community”. Proceedings of the 7th Geomatic Week. Barcelona. Spain.
February 2007.

Harris, R.B., Conn, T., Gaussiran, T.L., Kieschnick, C., Little, J.C., Mach,
R.G., Munton, D.C., Renfro, B.A., Nelsen, S.L., Tolman, B.W., Vorce, J.
and D. Salazar. “The GPSTk: New Features, Applications and Changes”.
Proceedings of the 20th International Technical Meeting of the Satellite
Division of the Institute of Navigation (ION GNSS 2007). Fort Worth,
Texas. September 2007.

Salazar, D., Hernandez-Pajares, M., Juan, J.M. and J. Sanz. "Open source
Precise Point Positioning with GNSS Data Structures and the GPSTk".
Geophysical Research Abstracts, Vol 10, EGU2008-A-03925, 2008.

Salazar, D., Hernandez-Pajares, M., Juan, J.M. and J. Sanz. “High accuracy
positioning using carrier-phases with the open source GPSTk software”.
Proceedings of the 4th ESA Workshop on Satellite Navigation User Equip-
ment Technologies NAVITEC 2008. Noordwijk. The Netherlands. De-
cember 2008.

Salazar, D., Sanz-Subirana, J. and M. Hernandez-Pajares. “Phase-based GNSS
data processing (PPP) with the GPSTk". Proceedings of the 8th Geo-
matic Week. Barcelona. Spain. February 2009.

Gaussiran, T.L., Hagen, E., Harris, R.B., Kieschnick, C., Little, J.C., Mach,
R.G., Munton, D.C., Nelsen, S.L., Petersen, C.P., Rainwater, D.L., Ren-
fro, B.A., Tolman, B.W., and D. Salazar. “The GPSTk: GLONASS,
RINEX Version 3.00 and More". Proceedings of the 22nd International
Technical Meeting of the Satellite Division of the Institute of Navigation
(ION GNSS 2009). Savannah, Georgia. September 2009.

Finally, a research article about the EVA method is currently being prepared to
be submitted to a peer-reviewed journal.

118 Conclusions

Further research

There are several research lines suggested by the development of this thesis. A
list follows with the lines considered as most promising.

e The convergence time of the POP method accelerates as the number of
station increases, but up to some point, as well as the improvements in
the 3D-RMS error figure. Optimum or near-optimum network topology
should be researched in order to guarantee a given degree of performance
with the minimum use of computational resources.

e The convergence time is a problem when applying the POP to moving
vehicles, specially if data arcs are short. Strategies to reduce convergence
time should be a topic of future research in order to extend the usefulness
of this data processing strategy.

e Accuracy and convergence time of the POP method could be greatly
improved if ambiguity solving strategies could be applied to it. Recent
work on PPP ambiguity fixing by [Wang and Gao, 2006], [Ge et al., 2008]
and [Laurichesse et al., 2009], among others, provide a foundation that
could be also applied to POP.

e Preliminary results when doing tests with the Kennedy method suggested
that simpler and faster covariance models could yield equivalent results for
velocity and acceleration determination. This finding should be further
explored to provide better covariance models for both short and long
baselines.

e Previous works such as [Serrano et al., 2004] have tried to extend the
Kennedy method of velocity and acceleration determination to the real
time realm, using an stand-alone receiver, broadcast ephemerides and a
simple first order differentiator. The author of this thesis believes that
better results could be obtained by using more advanced Infinite Impulse
Response (IIR) differentiating filters and including SBAS-provided correc-
tions into the computation.

e Work by [Kubo, 2009] showed how velocity information could be used
to improve the performance of RTK integer ambiguity resolution. The
author of this thesis work thinks that it would be interesting to try to
fuse the POP and EVA methods with the aforementioned PPP ambiguity
solving strategies to create a robust and precise post-process positioning
system, able to operate thousands of kilometers from nearest reference
station.

Appendix A

GNSS fundamentals

This appendix will describe the characteristics of GNSS. Given that GPS is
currently the only full-operating GNSS, most of the references are related to that

system. However, a great deal of the material presented here is also applicable
to other GNSS systems such as GLONASS and Galileo.

A.1 Parts of a GNSS

In general, GNSS are composed of three main parts or segments:

e Space Segment : This segment includes all satellites (called SV) in charge
of transmitting the ranging signals.

e Control Segment : It is the responsible for the proper operation of all the
system, and it is in charge of several critical tasks such as:

To control and monitor the health and configuration of all SV's.

To predict SV's ephemeris and on board clocks.

— To keep the time scale used by the system (GPST in the case of
GPS).

To update SV's navigation messages.

e User Segment : This comprises the GNSS signal receivers. Its main
function is to compute an estimation of Position, Velocity, Time (PVT)
for the current location of the receiver.

All the former parts work together in order to provide the users the information
they need, which usually is the PVT estimation. However, more sophisticated
users may require additional sources of information in order to fulfill their goals.

120 GNSS fundamentals

One of this extra information sources is the International GNSS Service (IGS) ,
which acts as a supplemental part of the GNSS systems providing precise or-
bits and clocks data, Earth rotation parameters, ionospheric delay corrections,
etc. [Beutler et al., 1999].

General details describing GPS, GLONASS and Galileo systems may be found
in [Hernandez-Pajares et al., 2001], [Enge and Misra, 1999], [Daly, 1993] and
[Hein et al., 2001].

A.2 GNSS measurements

There are several GNSS measurements, or observables to work with. Each one
of them have several distinctive characteristics, being the noise level one of the
most important ones.

In the following sections the most important observables are discussed.

A.2.1 Code measurements

In general terms, the basic observable in the current GNSS systems is the travel-
ing time of the signal from the antenna phase center of the transmitter (satellite)
to the antenna phase center of the receiver. This traveling time, At, is found
correlating the satellite code received with a copy of it stored in the receiver.
See for instance [Leick, 1995] or [Parkinson and Spilker Jr., 1996].

Once this At is escalated by the speed of light, the pseudorange! or code-based
measurement is found:

P! = At = c[t;(Ty) — t7(T1)] (A1)

(2

In the former expression it is important to emphasize that:

e 1;(T3) is the reception time, measured according to receiver "i" clock, in
the receiver's time scale (73).

e t/(T}) is the transmission time, measured according to satellite ”j" clock,
in the transmitter’s time scale (71).

This is not the real SV-RX distance because it is altered by other effects

A.2. GNSS measurements 121

Both clocks have their respective clock bias with respect to the official time
scale of the given GNSS (for instance, GPST in the case of GPS).

The term PZ? defined in this way is taking into account the traveling time, as
said before. This implies that the geometric SV-RX distance is included here,
but there are also other elements that have exerted influence on traveling time
as well. When taking into account those elements, the corresponding expression
becomes:

P! = pl +c(dt; — dt?) +rel] + T) + ayI] + K3, + M}, + b, (A2)
Where:

° p{: Geometric distance between SV7 and RX; antenna phase centers.
e dt/: Offset of SV clock with respect to GPST.

e dt;: Offset of RX clock with respect to GPST.

. rel{: Bias due to relativistic effects (linked to SV orbit eccentricity).
° Tij: Effect of the tropospheric delay.

° afIij . Effect due to the ionospheric delay. This effect is frequency-
dependent (ay = 40.3 - 1016/ f2 when I is expressed in TECU and f is
in Hz).

° K}Z Frequency- and code-dependent term due to the instrumental delays
in SV and RX electronics.

° ijgi: Multipath effect. It is frequency-dependent and code-dependent
(depends on the the chip rate of the code used).

° gigi: Unmodeled noise for the code measurement. It is also code-dependent
and ranges in the meters.

For code-based positioning, further details regarding how to model these terms
may be found in [ARINC Research Corp., 2000].

A.2.2 Carrier phase measurements

The alignment between the carrier of the received signal and the copy generated
inside the RX yields another method to measure the apparent distance between
SV and RX: The phase measurement [Leick, 1995].

122 GNSS fundamentals

In order to align the received signal and its copy, it is necessary to take into ac-
count the Doppler shift in the frequency. This can be achieved using Phase Lock
Loop (PLL) circuits and their associated carrier loop discriminators and filters
([Hofmann-Wellenhof et al., 2008]), which are able to get phase measurements
with precisions in the order of 1% of carrier cycle. Given that typical carrier
frequencies for GNSS are in L-band, this implies centimeter-level (or better)
precision per observation.

When the PLL locks the SV signal, it is then able to accurately measure the
change in the SV-RX distance. However, it is unable to know how many signal
cycles have elapsed before signal locking.

This unknown integer number of cycles is what is called the phase ambiguity,
and it is necessary to solve it in order to be able to use the more precise phase-
based measurement methods. The phase ambiguity term, denoted from now on
as B?, is particularly important in the context of this work.

2!

Then, the expression for phase measurements may be written:

Lz = pg + c(dt; — dt’) + relf + Tij - oszZ»j + Bg + w]L, + m]Lz + EJLJ- (A.3)
Where the new terms with respect to Equation A.2 mean:

° wii: This is the wind-up effect that appears in GNSS systems as GPS.
In this case, the signals are circular-polarized and therefore, a relative
rotation between the antennas is (erroneously) interpreted as a change in
distance.

° Bg: The phase ambiguity term, including the carrier phase instrumental
delays.

° afIZJ: Effect due to the ionospheric delay. Note that the sign is opposite
than in the code-based measurements case.

o mi ;- Multipath effect. This effect is much smaller than in the code-based
measurements.

5%1.: Unmodelled noise for the phase measurement. As said before, it
is about 1000 times smaller than the pseudorange-based measurements
noise (in the millimeter range).

As long as the receiver keeps the lock with SV signal, the phase ambiguity re-
mains constant and it is said that observations are within a given arc. However,

A.3. Observable combinations 123

several events may produce a momentary loss of lock, and when such an event
occurs the former phase ambiguity integer is no longer valid and it is said that
a cycle slip has occurred.

A.3 Observable combinations

Given the measurements or observables presented in the former sections, it
is possible to define combinations of those measurements that have different
characteristics.

A.3.1 lonospheric-free combinations

The ionospheric effect is an important one and it is difficult to model. For in-
stance, the Klobuchar model ([ARINC Research Corp., 2000]) is able to remove,
in average, just about 50% of this effect.

Hence, the GNSS's are designed to work with at least two frequencies®. As
stated in A.2.1, the ionospheric effect depends on the frequency squared (ay =
40.3/ff2). Taking this into account, it is possible to cancel out this effect both
in code (P) and phase (L) measurements using the following combinations of
measurements for two different frequencies:

2P — 3P,

PC =
fi— 13

(A.4)

_ fiLy— fiLo

LC = A.
R=75 "9

These combinations have an equivalent wavelength different than the original
signals. For instance, in the case of GPS A\, = 10.7 cm, instead of the original
19.03 cm (A1) and 24.42 cm (\2).

Also, it is important to emphasize that the ambiguity of this combination for
the phase case is no longer an integer number of A. wavelengths.

%In the case of GPS, however, the second frequency is reserved for military uses.

124 GNSS fundamentals

A.3.2 lonospheric combinations

These combinations cancel the non-dispersive effects and leave just the iono-
spheric effect and the instrumental delays:

PI=P—P (A.6)

LI =1Ly — Ly (A7)

A.3.3 Narrow-lane and wide-lane combinations

The expressions for these combinations are:

P+ fo P

o= 1+ fo (A8)
il — folo

Lw = B (A.9)

The wide-lane (LW') combination has the advantage of yielding an observable
with a relatively long wavelength (\,, = 86.2c¢m in the GPS case). This is very
useful for cycle slip detections.

On the other hand, more modern GNSS (Galileo, modernized GPS) will provide
Extra Wide Lane (EWL) combinations, with an equivalent wavelength of about
5.9 meters [Hernandez-Pajares et al., 2003a].

A.3.4 Melbourne-Wiibbena combination

This combination is used along the wide-lane in order to detect cycle slips and
to estimate the wide-lane ambiguity, as well. Its equation follows:

W =LW — P§ (A.10)

A.4. Solving the navigation equations 125

A.4 Solving the navigation equations

Each satellite in view from a given receiver yields several equations as A.2 and
A.3, depending on the number of frequencies used an the capability of the
receiver to supply phase measurements.

Taking as example code measurements, equation A.2 may be rewritten as:

P/t cdt! —rell —T! — oI — Kfl = pl + cdt; + M)+, (A11)

Given that:

Pl = \/(x_xj)2_|_(y_yj)2+ (z — 29)2 (A12)

Therefore equation A.11 is not linear. If p is linearized around a reference point
(70, %0, 20), that represents an approximate position for receiver3, then equation
A.11 becomes:

— — 2) .
D= Tdr + =Ly + 2=z + edty + M, +), (A13)
Po P Po

20

prefit] =

Where the prefilter residual (prefit!) represents the difference between the
zo—2) yo—y z0—2’
, O

unity vectors pointing from SV to receiver's a priori position (zo, 3o, 20), and
dx, dy, dz are the differences between the real RX coordinates and the a priori

position.

measurement and the modeled terms, the terms are the

If the terms making up the prefit residual where properly measured/modeled,
in general it can be supposed that biases are small respect to noise levels and
therefore noise terms (Mljjvi,egﬁ) have zero mean. If such conditions apply, the
set of n available equations may be written in matrix form:

3This point may be found in several ways, being the Bancroft method a typical one. See
[Bancroft, 1985] and [Yang and Chen, 2001] for references.

126 GNSS fundamentals

1 1 1
1 zo—z' wo—yl z—z' 4 dr
prefit 2 o o d
: = : : . . (A.14)
prefit" zo—2" yo—y" z—z" CZ ,
P o P cati

Please note that SV's clock offsets are taken as terms that can be modeled,
but RX clock offset is treated as an unknown. Also, it is taken for granted that
SV's positions are somehow known.

The system presented in A.14 is, in general, overdimensioned* and incompatible.
It may be solved using several methods such as LMS, WMS or the Kalman
filter (please see [Bierman, 1977] or [Hernandez-Pajares et al., 2001] for further
details).

A.5 Differential positioning

If instead of one receiver there are two receivers available, and the second RX
has fixed, known coordinates and is located not too far away from the first one,
then a significant improvement in positioning may be achieved.

This is due to the fact that several of the errors are common to both receivers
(SV ephemeris and clocks, ionosphere, troposphere to some extent, etc.). Then,
the receiver with known coordinates (named from now on reference receiver)
is able to compute range corrections for each satellite in view and most of the
common errors are canceled out.

Therefore, equation system A.14 may be expanded using the additional infor-
mation provided by the reference receiver. This is called differential positioning.

For a reference RX with known coordinates the equivalent equation to A.13 may
be written:

prefitg = cdt; + M},Z + E%,J- (A.15)

Hence, subtracting A.15 from A.13 yields:

*Usually, there are more than 4 SV's in view

A.6. Double differences positioning 127

, —J) — 5 . ,
Aprefit] = ydx—l— Yo jy dy + =0 jz dz + A(cdt) + AMp,; + Acp,

Lo o o

(A.16)

As said before, in the former equation the most common errors of term Aaz;.i
should have canceled out. On the other hand, take into account that multipath
errors are strictly local, and no reduction may be achieved using this method.

Like in the case of A.14, if the error is supposed to have zero mean, the following
equation system can be built and solved with the same methods mentioned
before:

_pl ! _ 1
Aprefit! K R
o= i (A17)
Aprefit" Iop_gf” yo;%y ZO;{ 1 A(cdt)

Please take into account that in this case just the relative difference between
receivers' clocks biases (A(cdt)) is estimated, and not the bias relative to the
GNSS system time.

A.6 Double differences positioning

It is possible to take method explained in A.5 one step further and take not
only a reference station, but also a reference satellite (usually the SV with the
highest elevation at the given epoch).

In order to present this method, the following notation is introduced:

AO* = 0%y — Oherrx
VO, =0 — O
AVO = VOl — VOB = AOpx — AORpesrx

Whereas the single differences between receivers (A) tend to cancel out common
terms associated with the satellite (SV clock bias, ephemeris errors, atmospheric
propagation...), and the single differences between satellites tend to cancel out
common errors associated with receivers (implying A(cdt) = 0), therefore the
corresponding equation system may be written as:

128 GNSS fundamentals

. Trx0—x! YrRx,0—Y zrx,0—2"
AVprefztl v [P}%X,o :| v [P}ax,o] v [P}zx,o :| dx
= : : . dy
AVprefit" \Vi [JERX,O*I”} \VA |:yRX,O*yn:| \Vi |:ZRX,O*Zn:| dz
PEX,0 PEX,0 PRx,0
(A.18)

J
PRX,0

the one took as reference SV.

Where terms like V [W} mean the single difference between SV j-th and

The same techniques mentioned before are applicable in this case to solve the
equation system.

A.7 Ambiguity resolution

A relatively simple way of dealing with ambiguity resolution is to extend the
method presented in Section A.6 to also include phase measurements. In this
case, the (double-differenced) phase ambiguities will be added to the vector
holding the unknowns, resulting in the equation system at A.19.

Such equation system may be solved using a Kalman filter. Each double-
differenced ambiguity AV B? may be considered as constant as long as no cycle
slip happens, and as white noise at the epoch when a cycle slip appears. This
way of ambiguity resolution is often called “floated ambiguities” .

The former strategy not only works for double-differenced ambiguities, but also
for single-differenced and undifferenced ambiguities. The later case is what is
used in Precise Point Positioning (PPP) data processing.

A.8 Tides modeling

In precise GNSS data processing using undifferenced equations, such as PPP, a
good modeling of phenomena such as tidal effects caused by solid tides, ocean
loading tides and pole movement-induced tides is a must.

The GPSTk supplies several classes to manage tidal effects, providing the respec-
tive correction vectors in an unified format (class Triple). More information

AVprefit(P)*
AVprefit(L)*!

AVprefit(P)"
AVprefit(L)"

TRX,0—%
1
PRX,0

T
PRX,0

'3
PRX,0

'
PRX,0

TRX,0—T

[2px0—2™]

Trx,0—x"

<

Yrx,0-y"
1
PRX,0

T
PRX,0

[yrx,0—y"]

[yrx,0—y™ |

YrRx,0-y"

T
PRX,0

1
PRX,0

T
PRX,0

[zrx,0—2"]

ZrRXx,0—%"

'
PRX,0

ZRX,0—%

zrx.0=2"

'
PRX,0

'
PRX,0

dx

dy

dz
AV B!

AV B

AV B!

| AVB® |
(A.19)

Suijepow sap1) g’y

6CI

130

GNSS fundamentals

about the current GPSTk implementation follows.

A.8.1 Solid tides

For the solid tides the model used is the simple quadrupole response model
described by [Williams, 1970] and implemented in the GIPSY/OASIS software
([Sovers and Border, 1990]).

In this model, and assuming a phase lag ¢ = 0 degrees®, the tidal displacement
vector J in a topocentric Up-East-North (UEN) reference frame may be found
by the sum of the perturbations from several perturbing sources s:

Being:

93s =

_ 3Busry

R5

S

Where:

5 = Z [h9157 ngsa lng]T (A20)
3usry | (rp - Rg)? 12R2
s = - A.21
o RS 2 6 (A.21)
RYTI e r
" (rp - Re)(Yoxy — Xsyp)ﬂ (A.22)

92s = Tp5
g e+
z
(rp - Rs) Zs\/ %2) + y;% - 7P(Xs$p — Ysyp) (A.23)
$2 + y2
\V/“p T Ip

e h and [are the Love numbers.

® i is the ratio of the mass of the disturbing object s to the Earth mass.

e R, = [X,,Y;, Zs" is the vector to the disturbing object s, given in an

T'p

Earth-Centered, Earth-Fixed (ECEF) reference frame.

= [p,Yp, 2p] is the vector to the location of interest (GPS receiver
position), given in an ECEF reference frame.

>This is a common assumption for these models.

A.8. Tides modeling 131

A.8.2 Ocean loading

The variation in ocean mass distribution due to tides, and the associated load
on the Earth crust, produce time-varying deformations on the Earth surface that
may reach up to 0.1 m ([IERS, 2009]) and is called “ocean loading” .

According to [IERS, 2009], the ocean loading at a particular place due to a
given tidal harmonic is computed integrating the tide height with a weighting
function (Green's function), and the total loading may be obtaining by summing
the effect of all harmonics, as shown by Equation A.24.

6= Z Acj cos(x;(t) — ;) (A.24)

J

Where 0 is the displacement in a given direction, A.; and ¢.; are respectively
the amplitudes and phases of the loading response for the position being studied,
and x;(t) is an astronomical argument computed from the main 11 tides and
that can be computed using the IERS-provided ARG.f subroutine.

The main 11 tides considered are the semidiurnal waves My, So, No and Ko,
the diurnal waves K1, O1, P and @1, and the long-period waves My, M,, and
Ssa ([IERS, 2009]). Those tides may be found, for several models, from the
Scherneck’s free ocean loading provider service ([Scherneck, 1991]) at:

http://www.oso.chalmers.se/ loading/

Amplitudes and phases for other tidal components may be obtained interpolating
from the main eleven, and the IERS currently proposes using 342 constituent
tides found by spline interpolation. If only the main components are used (the
GPSTk current approach), errors may go up to 5 mm RMS at high latitudes.

A.8.3 Pole tides

The movement of the instantaneous Earth rotation pole generates Earth crust
deformations, called “pole tides”, that may produce GNSS receiver displace-
ments up to 25 mm in the radial direction, and up to 7 mm in the horizontal
plane.

Given a location with longitude A\ and co-latitude 6, the IERS conventions
([IERS, 2009]) propose the expressions at Equations A.25 to A.27 in order to

132 GNSS fundamentals

compute the displacements in the “Up” (.S;), “South” (Sp) and “East” (S))
directions, in meters.

Sy = —0.033 sin(26)(my cos(A) + masin(A)) (A.25)
Sp = —0.009 cos(26)(m1 cos(A) + ma sin(N)) (A.26)
Sy = 0.009 cos(#)(my sin(A) — ma cos(N)) (A.27)

Where terms mj and mq are the secular variations of Earth’s mean rotation
pole computed from the IERS-provided polar motion variables (z,,y,) and the
corresponding running averages T, and 7, (all in arcseconds), as shown in Equa-
tion A.28.

mi = Tp — Tp, ma = —(Yp = Up) (A.28)
In order to estimate the averages it is used the IERS conventional mean pole

linear model in Equations A.29 and A.30, where ¢ is in calendar years, g is year
2000.0, and the variations rates are in arcseconds per year.

Tp(t) = Tp(to) + (t — to)Tp(to) (A-29)

p(t) = 7, (to) + (t — o)y, (to) (A.30)

Tp(to) = 0.054, T,(to) = 0.00083

U,(to) = 0357, F,(to) = 0.00395

Appendix B

C++ basics

In order to understand what is the GPSTk and its characteristics, it is necessary
to explain some characteristics of the C++ programming language. Skip this
appendix if you already have knowledge about C++.

B.1 C+4+4 Basics

The C++ programming language was developed by Bjarne Stroustrup and its
first official version was used in 1983 by American Telephone and Telegraph
(AT&T) [Guerin, 2005]. Stroustrup’s intention was to keep C language con-
cepts but adding better type checking, data abstraction and Object-Oriented
Programming (OOP) [Stroustrup, 2006a]. In this sense, C++ may be seen as
a kind of superset of C.

One of the advantages of C4++ is that it is a modern language, emphasizing
in clean and structured code writing. It is also very portable given that since
1997 there is an ANSI/International Organization for Standardization (ISO)
C++ standard in place: 1SO/International Electrotechnical Commission (IEC)
14882 [Stroustrup, 2006b]. The last revision of the standard was issued in 2004.

In the following sections some of the most relevant characteristics of C++ are
briefly explained.

B.1.1 Object-oriented programming

OOP is a style of programming that relays in the concepts of inheritance, en-
capsulation and polymorphism. In the context of C++ this means programming

134 C++ basics

using classes [Stroustrup, 2006a].

A class may be defined as an abstraction that encapsulates certain types of data
(fields) and the operations (methods) that apply on that data. The concept of
method is akin to C functions, but focusing in acting on class data, and not on
arbitrary data [Karniadakis and Kirby, 2005].

Classes represent ideas and concepts, thus helping to organize code. Given that
classes encapsulate data and operations on that data, the user of a well defined
class is presented with a clean and simple interface.

On the other hand, the developer’s task is eased because the implementation
of the class is hidden from users, implying that changes in implementation can
be made without interfering with the rest of the code.

The following example, adapted from the GPSTk, shows how to declare a class
named Triple to represent three-dimensional vectors. The implementation is
not shown, just the declaration:

class Triple

{
public:

/I Default constructor. Initializes triple as (0,0,0).
Triple();

/I Construct from three doubles.
Triple(double a, double b, double c);

/Il Destructor
virtual “Triple();

/I Computes the Magnitude of this vector
double mag();

/I Computes Dot Product of this Triple and "otherTriple"
double dot(Triple otherTriple);

/I Computes Cross Product of this Triple and "otherTriple"
Triple cross(Triple otherTriple);

}. /I End of class Triple

If a class is an abstract representation of a concept, then the programmer needs
an specific way to use or instantiate a real-life example of that class. Such an
example is called an object (from here the term OOP) and the way to create
an object is using a special method called Constructor.

In the former example, the Triple objects are constructed using three doubles,

B.1. C++ Basics 135

and therefore, a Triple object named receiverLocation may be declared this way:

Triple receiverLocation(23450.0, 32124.5, 98403.1);

Please note that, for all practical purposes, declaring a new class is equivalent
to creating a new data type (look at how we put " Triple” in front of " receiver-
Location”). So, even though Triple encapsulates data and operations, it is at
an equivalent level as classic plain data: doubles, integers, chars, etc.

Each time an object is instantiated, computational resources are allocated.
When the object is no longer needed, those resources should be freed. That
is the task of another special method called Destructor, and denoted with the
same name of the constructor, but prefixed with ~.

In the former example class, some useful methods for working with triples have
been added: mag() computes the magnitude, dot() calculate the scalar product
of two triples, and cross() computes their vectorial product.

A way to use these methods would be:

double sizeA, dotAB;

Triple rxA(350.0, 214.2, 98.4);
Triple svB(3340.0, 4323.5, 1803.1);
Triple result();

sizeA = rxA.mag(); /I Get rxA magnitude an put it in sizeA
dotAB = rxA.dot(svB); /I Compute dot product
result = rxA.cross(svB); // Get cross product between rxA an d svB,

/I store it in "result" object (a Triple)

Please take note of the object.member notation to gain access to class members.

B.1.2 Inheritance

In the former sections it was asserted that C4++ emphasizes structured coding
and at the same time eases developer's work. Inheritance is a way to achieve
this.

Class Triple allows representation of tridimensional vectors. Now, let's suppose
that some of those vectors may represent a position on a geodetic reference
ellipsoid. This new abstraction is related with Triples, but adds new character-
istics. Then, it is possible to create a new Position class that is a " child" of, or
inherits from, class Triple.

136 C++ basics

/I This class is adapted from Position class in GPSTk

#include "Triple.hpp" /I File with declaration of Triple
#include "GeoidModel.hpp" // File with declaration of Geoi dModel
class Position : public Triple
{
public:
/I Constructor from doubles
Position(double a, double b, double c, GeoidModel * geoid=NULL);
/I Constructor from Triples
Position(Triple ABC, GeoidModel *geoid = NULL)

/I Destructor
“Position();

I Extra Methods /T

/I Get geodetic latitude.
double getGeodeticLatitude();

/I Get geodetic longitude.
double getGeodeticLongitude();

}. /I End of class Position

As can be seen, the new class Position is a descendant from Triple but takes
into account a new parameter: The model of the geoid the position is given on.
Also, it adds two new methods that are only related to positions: getGeodeti-
cLatitude() and getGeodeticLongitude().

Take into account that that Position inherits from Triple all the Triple methods:
mag(), dot(), etc.

In this way, inheritance has helped to achieve two key goals:

e The developer is forced to think in advance about the abstractions he or
she is working on, and the different relations among them. This tends to
produce more logic code.

e Given that inherited methods (as mag(), for example) are declared and
encapsulated in the parent classes, if any of them needs to be modified,
it will be changed only once in the original class implementing it, and the
changes will be automatically transferred to the children classes.

B.1. C++ Basics 137

B.1.3 Polymorphic methods

Another useful characteristic of C++ is that it accepts polymorphism. This
means that a single method may have many forms, each one with a different set
of input parameters. The compiler will automatically determine which instance
of the method is called according to those parameters.

An example of polymorphism was presented in the former section in the Position
constructor: It may be called using three doubles and a GeoidModel, or with a
Triple and a GeoidModel:

/I Constructor from doubles
Position(double a, double b, double ¢, GeoidModel *geoid = NULL);

/I Constructor from Triples
Position(Triple ABC, GeoidModel xgeoid = NULL)

B.1.4 Operator overloading

A powerful yet somewhat strange feature of C++ is operator overloading. This
implies that a given class may redefine the way common operators (i.e.: +, -,
* =, etc.) behave when applied to it.

For instance, let's overload the + operator for Triple class:

Triple Triple::operator+(Triple otherTriple)

{
Triple temp;
temp.theArray = this->theArray + otherTriple.theArray;
return temp;

}

Several explanations are in order regarding this example:

e The notation Triple::operator4 means that we are implementing the op-
erator "+" from " Triple” class.

e The field named theArray is an internal field from the Triple class holding
the three doubles. It did not appear before because the implementation
of Triple has not yet been shown.

138 C++ basics

e this is a special pointer pointing to the current object. When using objects
pointers instead of plain objects, access to members is done with ->
instead of dot (.).

From now on, the following code is perfectly correct:

Triple rxA(350.0, 214.2, 98.4);
Triple svB(3340.0, 4323.5, 1803.1);
Triple result();

result = rxA + svB;

Remember that thanks to inheritance, the overloaded "+" operator of class
Triple is also enjoyed by class Position®.

B.1.5 Templates

Often, a given class has members that need to be of different types in different
situations. Sometimes using polymorphism may be a solution, but it is not
always the case [Stephens et al., 2006].

What the developer needs is a class that allows to choose the types to work on
when it is instantiated, instead of having them fixed. This is achieved with Class
Templates. With Templates, the developer writes the class with placeholders
instead of types. In that way, the user is allowed to choose which type to work
with.

Let's suppose we have a class named Vector, and we want to be able to use
Vector objects with doubles, integers, etc. Then, the Vector class may be
defined as:

template <class T>
class Vector

{
public:

/I Default constructor
Vector();

1 This is a simple example and, as such, an overloaded " +" operator may not have sense for
Position class. However, an overloaded equality operator (==), taking tolerance as an extra
parameter, may be very useful for both classes.

B.1. C++ Basics 139

/I Constructor giving an initial size and default value
/I for all elements.
Vector(integer size, T defaultValue);

/... More fields and methods here ... /I

}; /I End of class Vector

The line template <class T> just at the start of class declaration indicates that
this is not an ordinary class, but one that will work with the type T, supplied
by the user.

Using this feature, it is allowed to write:

Vector <bool> boolVect; /I Vector of booleans elements
Vector <integer> intVect; // Vector of integers

Vector <double> doubVect; // Vector of doubles

Vector <Position> posVect; // Vector of Position objects

Templates offer much flexibility at the expense of code more difficult to read.

B.1.6 Exception handling

During the execution of a program it may appear exceptional circumstances,
errors or anomalies (such as numerical overflow, division by zero, memory un-
available, etc.) that hamper the normal behavior of the program. In C++,
exceptions provide a way to react to those circumstances [Soulie, 2006].

Exceptions transfer the control to handlers, special functions designed to deal
with the problem. In order to be able to catch exceptions, the code under watch
must be enclosed in a try block. On the other hand, handlers are enclosed in
catch blocks.

Each time an exception occurs, it must be thrown. An example follows:

try {

/I Potential problem here, throwing an integer
if (problemWithinteger()) throw 20;

/I Potential problem here, throwing a char
if (problemWithChar()) throw 'z’;

140 C++ basics

} /I End of try block. Handlers follow
catch(int parameter) { printf("Integer exception."); }
catch(char parameter) { printf("Char exception.”); }
catch(...) { printf("Other exception."); }

As can be seen, the throw keyword is in charge of throwing the exception. Then,
processing flow will jump to the proper handler. The ellipsis (...) are used in
the last catch block as a default exception, in case a problem arose but no other
handler caught the exception.

Given that thrown is able to use several different data types, the C++ Standard
Template Library (STL) [Silicon Graphics, Inc., 2006] supplies an specific base
class called exception designed to declare objects to be thrown as exceptions.

This provides a lot of flexibility when handling exceptions in programs. For
instance, the GPSTk takes advantage of this fact and declares specific exception
classes to deal with different kinds of problems. In this way, we find classes such
as Invalid TropModel, OutOfMemory, NoEphemerisFound, InvalidDOP, etc.

B.1.7 C++4 summary

As a summary of the former sections the following may be said regarding C++:

e |t is a portable, modern and standards-based programming language.

e Programming with C++ tends to produce an organized, easy to maintain
code.

e |t is powerful and very flexible language.
o Flexibility makes C++ a complex language.

e C++ syntaxis may look “esoteric” for the unaware programmer, particu-
larly if templates are used.

Appendix C

GPSTk basics

This appendix presents a simple introduction to the GPSTk, including short
programs and their results.

C.1 GPSTk overview

The GPSTk is both a set of libraries to write GNSS software, and a suite of
example applications. It is “Open Software”, released under the GNU Lesser
General Public License (LGPL), allowing to develop both non-commercial and
commercial applications.

In particular, the LGPL license means that:

e The original code belonged to the Advanced Research Laboratory (ARL)
of the University of Texas (ARL:UT), but it was later released to the
public.

e New features added to the library are property of their authors, but them
must be also released as LGPL.

e New software developed taking advantage of the GPSTk library (linking)
is property of their authors.

Initiated at ARL:UT, the GPSTk now also includes several official developers
around the world. The main place where development efforts are coordinated is
the project website at http://www.gpstk.org.

The GPSTk is written in ISO-standard C++, following object-oriented princi-
ples. This approach eases maintenance and extensibility, lowering overall pro-
gramming costs.

142 GPSTk basics

Also, the ISO-standard C+—+ provides a great deal of portability to the project,
both from the operative system point of view (it works on Microsoft Windows,
as well as Linux, Solaris, Macintosh OS X, AIX, etc.) and from the hardware
platform point of view (it works in big servers and small embedded systems,
both 32 and 64 bits).

Last but not least, the GPSTk is very well documented thanks to the use of the
Doxygen documentation system, providing a very complete API.

C.2 Some current GPSTk features

It follows a brief list of some current features provided by the GPSTk and its
accessory libraries:

e Time handling and conversions.

e RINEX files reading/writing:

— Observation.
— Ephemeris.

— Meteorological.

e Ephemeris computation both in broadcast and SP3 formats.

e Mathematical tools: Matrices, vectors, interpolation, numeric integration,
Least Mean Squares (LMS) and Weighted-Least Mean Squares (WMS)
solvers, extended Kalman filters, etc.

e Application development support:

— Exceptions handling.
— Command line framework.

— Configuration files management.

e Cycle slip detection and correction.

e Code positioning, Receiver Autonomous Integrity Monitoring (RAIM),
Differential GPS (DGPS) and Precise Point Positioning (PPP) support.

e Several tropospheric models like Saastamoinen, Goad-Goodman, New
Brunswick, Niell, etc.

e Support for Klobuchar ionospheric model as well as lonosphere Map Exchange

(IONEX) files.

C.3. GPSTk advantages 143

e Classes for precise modeling: Antenna phase centers (relative and abso-
lute), Antenna Exchange Format (ANTEX) files, wind-up effects, gravi-
tational delay, etc.

e Tidal models: Solid tides, ocean loading, pole tides.
e Probabilistic functions (normal, chi-square, etc.) and stochastic models.
e Run-time programmable solvers.

e Advanced GNSS Data Structures (GDS) for data processing and manage-
ment.

C.3 GPSTk advantages

The use of the GPSTk in GNSS-related projects will provide numerous advan-
tages that can be summarized as follows:

e Programmers don't have to “reinvent the wheel”:

— The programmer doesn’t have to use his time to program, test and
debug common, non-interesting routines (like RINEX parsing, for
instance).

— The programmer uses his time to learn and experiment.

— The programmer uses his time to develop new techniques.

e The GPSTk can be trusted: Its performance has been validated with other
state-of-the-art GNSS data processing software suites.

e |t includes data management facilities that support clean and easy to
maintain source code.

e The GPSTk is open-source, and therefore:

— It is excellent for learning how complex algorithms work.

— It eases reimplementation in other languages and/or hardware.

C.4 GPSTk disadvantages

As convenient as it may be, the GPSTk also has some disadvantages with
respect to other ways to tackle GNSS data processing problems. Some of those
disadvantages are:

144 GPSTk basics

e The programmer needs C++ knowledge to use it effectively.

e The C+4+ language is very flexible and powerfull, but it may become
complex and “exotic”.

e The compilation process is slower and more complex than when using
interpreted languages.

e Many engineers are more confortable with tools like MATLAB (although
they are very slow compared with a compiled GPSTk-based program).

C.5 How to compile the GPSTk
In order to compile the GPSTk, it is needed:

o A C++ compiler like g++, Microsoft Visual Studio C++ .NET 2003 (Ver-
sion 7), Microsoft Visual C++ Express 2005 (Version 8), Forte Developer,
IBM VisualAge, etc.

e A compilation system such as jam or make!.
The compilation process is relatively simple?, and detailed instructions for differ-

ent operative systems are provided in the project website (http://www.gpstk.org).
In general, it is composed of four steps:

Download the stable source code from GPSTk website, or the last devel-
opment version from subversion repository.

Decompress if needed.

Compile. The jam process is currently the easiest way.

After compiling, install the library and accessory files in the system.

In a Linux/UNIX platform with the jam tool installed, once the corresponding
tar.gz ball is downloaded the specific compilation steps are:

$ tar xvzf gpstk.tar.gz
$ cd gpstk

!Note that some compiler suites provide their own compilation system. In such cases, the
jam or make instructions must be adapted to the compiler suite used.
2Besides, there are pre-compiled binaries available for selected platforms.

C.6. GPSTk examples 145

$ jam
$ su
jam install

C.6 GPSTk examples

In the following sections the source code of some simple GPSTk-based programs
is presented, in order to provide an initial help to those new to GPSTk and C++.

C.6.1 Vectors

The following example explains how to use the GPSTk-provided Vector class.

1 #include <iostream>
#include <cmath>
3 #include "Vector.hpp"

N

4 using namespace std;
5 using namespace gpstk;

6 int main()

7 A

8 cout << fixed << setprecision(1); /I Set output format
9 Vector<double> vectl(4);

10 Vector<double> vect2(4);

11 for(int i = 0; i < 4; ++i)

12 {

13 vectl(i) = 3.0 + i;

14 vect2(i) = 5.0 - 2.5 *

15 }

16 Vector<double> vect3 = vectl + vect2;

17 cout << "My first GPSTk program using Vector class." << endl;
18 cout << vectl << endl;

19 cout << vect2 << endl

20 cout << vect3 << endl;

21 exit(0);

2}

146 GPSTk basics

In this example, lines #1 and #2 include standard C++ libraries dealing with
output (iostream) and mathematics (cmath), while line #3 includes the
non-standard, GPSTk-provided Vector class.

After that, lines #4 and #5 sets the “namespaces” to be used. The practical
consequence of these lines is that any class name not found by the compiler,
will be looked for in the “standard” and “gpstk” namespaces.

The program starts in line #6 and ends in line #22. The initial action is to set
a proper output format, instructing the “standard output” object cout to use
fixed precision with one decimal place (line #8).

The first use of Vector appears in lines #9 and #10. This class takes ad-
vantage of the “template” characteristics provided by the Standard Template
Library (STL), and therefore the Vector declarations must include the type
of objects that the new Vector s will contain (in this case, they are made
up of double precision numbers). Both objects, vectl and vect2 , will be
composed of 4 elements, and lines #11 to #15 just initialize them with some
data.

Then, line #16 will declare a third Vector called vect3 , that is composed of
the sum of vectl andvect2 . Note how the “sum” operator (+) is overloaded,
i.e., it is redefined to properly take care of the sum between Vector s.

Next, lines #17 to #20 print out the results using the iostream object cout .
First, line #17 prints a string followed by a new line (object endl), and the
other lines print the vectors, one line each. Again, note how the operator (<<)
is overloaded to allow simple printing of Vector objects. Finally, line #21
ends the program, returning “0" to the operative system.

The output of this program is as follows:

My first GPSTk program using Vector class.
3.0 40 5.0 6.0
50 25 0.0 -25
8.0 6.5 5.0 3.5

There are several ways to compile the former program, depending on the com-
piler used. For instance, in a Linux environment this program should be compiled
with a single command line3 such as:

$ g++ -Wall -ansi -pedantic test-vector.cpp -0 test-vector
-l/usr/local/include/gpstk/ -L/usr/local/lib/ -lgpstk -lm

3The compilation command line is a single line, although it may appear as two lines because
of typesetting constraints.

C.6. GPSTk examples 147

Where:

e g++ is the name of the GNU compiler,

e -Wall , -ansi and -pedantic are compiler flags to show all compila-
tion warnings and enforce strict ANSI compliance,

e test-vector.cpp and test-vector are the names of the input
source and output binary files, respectively,

e -l/usr/locall/include/gpstk/ is the default place where GPSTk
include or header (*.hpp) files are installed,

e -L/usr/localllib/ is the default place where GPSTk library (and
accessory libraries) are installed, and

e -lgpstk and -Im are the flags to call GPRSTk and mathematical libraries,
respectively.

C.6.2 Matrices

This example presents the GPSTk-provided Matrix class. Lines #1 to #38
are very similar to the Vector example, but in this case the GPSTk-provided
Matrix class is included, and the output configured to use fixed precision with
3 decimal places.

Lines #9 to #12 define the matrices to be used: Matrix A has a size of 3x3

and all its elements have a value of 5.0, Matrix | is an identity matrix of the
same size as A, while Matrix B is a linear combination of matrices A and |
(note the overloading of operators “-" and "*").

Matrix C is declared with size 3x3 but its elements are left undefined. Af-
terwards, lines #13 to #19 will input specific values for the elements of this
matrix.

Then, line #20 defines a new Matrix , CT, as the transpose of Matrix C ,
while line #21 defines Matrix D es the inverse of the product of C and its
transpose CT.

Finally, lines #22 to #27 print the results (again, note the overloading of
operator <<), and line #28 ends the program.

148

GPSTk basics

1 #include <iostream>
2 #include <cmath>
3 #include "Matrix.hpp"
4 using namespace std;
5 using namespace gpstk;
6 int main()
7 A
8 cout << fixed << setprecision(3); // Set output format
9 Matrix<double> A(3, 3, 5.0);
10 Matrix<double> | = ident<double>(3);
11 Matrix<double> B = A - 2.0 *|;
12 Matrix<double> C(3, 3);
13 for(int row = 0; row < 3; ++row)
14 {
15 for(int col = 0; col < 3; ++col)
16 {
17 C(row, col) = row+0.9 * B(row,col);
18 }
19 }
20 Matrix<double> CT = transpose(C);
21 Matrix<double> D = inverseChol(CT *C);
22 cout << A << endl << endl;
23 cout << | << endl << endl
24 cout << B << endl << endl;
25 cout << C << endl << endl
26 cout << CT << endl << endl;
27 cout << D << endl << endl;
28 exit(0);
29 }
C.6.3 Solvers

The GPSTk-provided solver classes are very useful when combined with Vector

and Matrix

Squares (LMS) solver.

objects. The following example shows how to use a Least Mean

Lines #1 to #8 are very similar to the former examples, but including the
GPSTk-provided SolverLMS class. This class in turn needs Vector and
classes to work so those classes are included from SolverLMS . That

Matrix

C.6. GPSTk examples 149

is the reason because those class are also available from within our example
without explicit inclusion.

1 #include <iostream>

2 #include <cmath>

3 #include "SolverLMS.hpp"

4 using namespace std,;

5 using namespace gpstk;

6 int main()

7 A

8 cout << fixed << setprecision(3); /I Set output format
9 Vector<double> vect(3, 0.0);

10 vect(0) = 94.50;

11 vect(l) = 112.01;

12 vect(2) = 121.86;

13 Matrix<double> mat(3, 2, 0.0);

14 for(int row = 0; row < 3; ++row)
15 for(int col = 0; col < 2; ++col)
16 mat(row, col) = 1.5 + row + 0.9 * FOW * col;
17 SolverLMS solver;

18 solver.Compute(vect, mat);

19 cout << solver.solution(0) << " : "

20 << solver.solution(1) << endl,

21 exit(0);

2 }

Next, lines #9 to #16 simply declare and initialize a Vector (for independent
terms) and a Matrix (for equation coefficients).

Then, line #17 declares a SolverLMS object to solve the equation system
defined by the former Vector and Matrix objects using a Least Mean Squares
(LMS) method. The solution of the equation system is achieved in line #18,
where the Compute() method is invoked.

In order to print the solution to the equation system the lines #19 and #20
query the solution() field of the solver object.

150

GPSTk basics

C.6.4 Time management

10

11
12

13
14
15
16

17

#include <iostream>
#include <cmath>
#include "DayTime.hpp"

using namespace std;
using namespace gpstk;

int main()

{

}

cout << fixed << setprecision(3); // Set output format
DayTime epoch1(2009,10,28,10,30,0.0);
DayTime epoch2 = epochl + 3600.0;

cout << epochl << endl
<< epoch2 << endl;

cout << epochl.GPSfullweek() << " "
<< epochl.DOY() << "
<< epochl.GPSsecond() << endl;

exit(0);

Time management is a very important aspect of every GNSS data processing
software. The GPSTk has several classes to manage time, and one of the most
important one is the DayTime class.

In the source code above, at line #9 a DayTime object is declared (epochl),
initialized to October 28th. 2009 at 10:30:00. Afterwards, line #10 declares an-
other DayTime object (epoch2), initializing it as epochl plus 3600 seconds
(one hour). Note again the overloading of “+".

Lines #11 to #15 print the results, starting with both epochs and then printing
the GPS week number, day of year and GPS seconds of week for epochl . The
output of this program follows:

10/28/2009 10:30:00
10/28/2009 11:30:00
1555 301 297000.000

C.6. GPSTk examples 151

C.6.5 Position

Proper handling of the position of points on or near Earth surface is another
important part of GNSS data processing software. The Position class is one
of the facilities provided by the GPSTk to ease such handling.

1 #include <iostream>
2 #include "Position.hpp"

3 using namespace std;
4 using namespace gpstk;

5 int main()

6 {

7 cout << fixed << setprecision(3); /I Set output format
8 Position posBCN(4789031.0, 176583.0, 4195015.0);

9 Position posHANOI,

10 posHANOI.setGeodetic(21.033, 105.85, 308.0);

11 Position posSAT(-22300542.564, 9466839.117, 10798193.3 75);
12 cout << posBCN << endl

13 << posHANOI << endl

14 << posHANOI.elevation(posSAT) << "

15 << posHANOI.azimuth(posSAT) << endl;

16 exit(0);

17}

In the former piece of code, line #8 defines a Position class object called
posBCN, initializing it with a set of Earth-Centered, Earth-Fixed (ECEF) coor-
dinates (in meters) corresponding to a place in Barcelona city, Spain. Line #11
does a similar job for a fictitious satellite.

On the other hand, lines #9 and #10 define another Position object, but
it is initialized using a geodetic set of coordinates, i.e., latitude, longitude and
ellipsoidal height (in this case, for Hanoi city, Vietnam).

The most interesting part happens in lines #12 to #15, where printing takes
place. The output follows:

4789031.0000 m 176583.0000 m 4195015.0000 m
21.03300000 degN 105.85000000 degE 308.0000 m
30.993 : 76.113

152 GPSTk basics

In the first two lines the positions are printed, but note that the Position
objects remember the reference frame used (ECEF for posBCN and geodetic
for posHanoi).

On the other hand, internal conversions are carried out automatically when
needed: Lines #14 and #15 compute and print the elevation and azimuth
of posSat satellite with respect to posHanoi , although both objects were
initialized using different reference frames.

C.6.6 RINEX observation files

Parsing of Receiver INdependent EXchange format (RINEX) files is a funda-
mental task, and the GPSTk provides several classes for this. In the following
code a RINEX observations file is processed in a very simple way.

1 #include <iostream>

2 #include <iomanip>

3 #include "RinexObsBase.hpp"
4 #include "RinexObsHeader.hpp"
5 #include "RinexObsData.hpp"

6 #include "RinexObsStream.hpp"

7 using namespace std;
8 using namespace gpstk;

9 int main()

10 {

11 RinexObsStream rinexFile("bahr1620.040");
12 RinexObsHeader rinexHeader;

13 rinexFile >> rinexHeader;

14 cout << rinexHeader.markerName << " : "
15 << rinexHeader.antType << "

16 << rinexHeader firstObs << endl;

17 RinexObsData obsData;

18 while(rinexFile >> obsData)

19 {

20 obsData.dump(cout);

21 }

22 exit(0);

23}

C.6. GPSTk examples 153

It can be seen from the include lines that RINEX handling requires using
several different classes. One of those classes is shown in line #11, where
the “bahrl1620.040 " observations file is “opened” by a RinexObsStream
object.

Then, the RINEX “header” is handled in lines #12 and #13. Note how the over-
loading of >> operator allows to take RINEX header data out of rinexFile
and into rinexHeader . After that, several fields from the header (marker

name, antenna type and epoch of first observation) are printed out in lines #14
and #16.

The observations are dealed with using a RinexObsData object. That object
(called obsData in this example) is able to encapsulate a single-epoch worth of
data from the observations file, and therefore, a mechanism is needed to query
the rinexFile object in an epoch-by-epoch basis.

Such mechanism is provided by the use of the overloaded >> operator inside
a while loop, as lines #18 to #21 shown. The rinexFile object will
“pour” one epoch of data into obsData object while there is data left in
bahr1620.040 file. When the end of file is reached, a FALSE condition is

returned, leaving the “while " loop and ending the program (line #22).

For each epoch the dump() method of obsData is called (line #20), printing
the data to the screen. In a full-fledged GNSS application this line would be
replaced by the data processing we are interested in.

C.6.7 Ephemeris files

Ephemeris files are other important part of GNSS data processing. This example
will show a basic way to manage SP3 files for precise ephemeris.

The SP3 file is “loaded” into a SP3EphemerisStore object in line #10, and
given that this example will query about the orbit of an specific GPS satellite
(PRN 10), a SatlD object is created to represent it (line #11). Afterwards,
two DayTime objects are created to store the beginning and end epochs of
SP3 file (lines #12 and #13).

Lines #14 to #30 comprise a “while " loop that will take care of querying for
sat position every minute (line #16) while the end epoch of SP3 file data is
not exceeded (line #14).

The position and velocity of the satellite will be stored in a Xvt class object
called svPos . Line #20 uses getXvt() = method to achieve this for a specific
satellite-epoch combination, and lines #21 to #24 print the epoch (in seconds
of day) and the three ECEF coordinates (in meters).

154

GPSTk basics

11

12
13

14
15

16

17

18
19
20
21
22
23
24
25
26
27
28
29

30

31

32

#include <iostream>
#include <iomanip>

#include "SP3EphemerisStore.hpp"

using namespace std;
using namespace gpstk;

int main()

{

cout << fixed << setprecision(3); // Set output format

SP3EphemerisStore SP3EphlList;
SP3EphList.loadFile("igs13354.sp3");

SatlD sat(10, SatlD::systemGPS);

DayTime epoch(SP3EphList.getinitialTime());
DayTime epochEnd(SP3EphList.getFinalTime());

while(epoch < epochEnd)

{
epoch += 60.0;
Xvt svPos;
try
{
svPos = SP3EphList.getXvt(sat, epoch);
cout << epoch.DOYsecond() << " "
<< svPos.x[0] << " "
<< svPos.x[1] << "
<< svPos.x[2] << endl;
}
catch (InvalidRequest& e)
{
continue;
}
}
exit(0);

}

Please note the use of a “try -catch " combination to protect against the
posibility that no orbit information is available for the desired satellite at a
given epoch. Such situation would make the program to abort, but this is
avoided when line #26 “catches” the issued InvalidRequest exception, and

C.6. GPSTk examples 155

properly handles the situation in line #28 telling the program to just continue
with the next iteration.

C.6.8 Solid tides

Precise GNSS data processing requires modelling of several parameters. In this
example, the GPSTk-provided tools to model solid tides are presented.

1 #include <iostream>

2 #include "SolidTides.hpp"

w

using namespace std;
4 using namespace gpstk;

5 int main()

6

7 cout << fixed << setprecision(3); /I Set output format
8 Position posHANOI,

9 posHANOI.setGeodetic(21.033, 105.85, 308.0);

10 SolidTides solid;

11 DayTime epoch(2009,10,28,0,0,0.0);

12 DayTime epochEnd(2009,10,29,0,0,0.0);

13 while(epoch < epochEnd)

14 {

15 Triple hanoiTide = solid.getSolidTide(epoch, posHANOI);
16 cout << epoch.DOYsecond() << " "

17 << hanoiTide[0] << "

18 << hanoiTide[1] << " "

19 << hanoiTide[2] << endl;

20 epoch += 300.0;

21 }

22 exit(0);

23}

The solid tide effect will be computed for Hanoi city, Vietnam. Therefore,
lines #8 and #9 declare and initialize a Position object (posHANOI) with

156 GPSTk basics

the proper coordinates. After that, a SolidTides object is declared: it en-
capsulates all the modeling.

The computations will be done for October 28th, 2009, and lines #11 and #12
define DayTime objects encompassing such 24 h period.

The “while " loop in lines #13 to #21 takes care of computing and printing
the tidal values. Line #15 is the main statement, calling the solid object’s
getSolidTide() method taking as parameters the epoch and position of
interest. The result is stored in a Triple object: A handy encapsulation of a
3D vector.

The printing is simple: First the seconds of day for the current epoch and
then the tidal effects (in meters) given in a topocentric Up-East-North (UEN)
reference frame.

Finally, line #20 increments the epoch of interest in 5 minutes (300 seconds)
intervals, and the loop will repeat itself until the first second of the next day is
reached.

Appendix D

GPSTk documentation

The GPSTk has an excellent documentation thanks to its use of the Doxygen
documentation system. This is a very important feature of the project because
in this way it provides a very complete API to the programmer.

Doxygen allows to create a very complete set of documentation right from the
GPSTk source code. Using special comment tags, the GPSTk developers write
the documentation at the same time they write the code.

As an example, in the following section there is an abridged version of the
documentation generated for the SolverPPP class.

D.1 SolverPPP Class Reference

#include <SolverPPP.hpp >

Inheritance diagram for SolverPPP:

| SolverBase | | ProcessingClass

SolverLMS

CodeKalmanSolver

SolverPPP
SolverPPPFB

$classgpstk_1_1SolverPPPFB.html
$classgpstk_1_1CodeKalmanSolver.html
$classgpstk_1_1SolverLMS.html
$classgpstk_1_1SolverBase.html
$classgpstk_1_1ProcessingClass.html

158 GPSTk documentation

Detailed Description

This class computes the Precise Point Positioning (PPP) solution using a Kalman
solver that combines ionosphere-free code and phase measurements.

This class may be used either in a Vector- and Matrix-oriented way, or with
GNSS data structure objects from " DataStructures” class (much more simple
to use it this way).

A typical way to use this class with GNSS data structures follows:

/I INITIALIZATION PART

/I EBRE station nominal position
Position nominalPos(4833520.192, 41537.1043, 4147461.5 60);
RinexObsStream rin("ebre0300.020"); // Data stream

/I Load all the SP3 ephemerides files
SP3EphemerisStore SP3EphlList;
SP3EphList.loadFile("igs11512.sp3");
SP3EphList.loadFile("igs11513.sp3");
SP3EphList.loadFile("igs11514.sp3");

NeillTropModel neillTM(nominalPos.getAltitude(),
nominalPos.getGeodeticLatitude(),
30);

/I Objects to compute the tropospheric data
BasicModel basicM(nominalPos, SP3EphList);
ComputeTropModel computeTropo(neillTM);

/I More declarations here: ComputeMOPSWeights, SimpleFil ter,
/I LICSDetector, MWCSDetector, SolidTides, OceanlLoading ,
/I PoleTides, CorrectObservables, ComputeWindUp, Comput eLinear,

/I LinearCombinations, etc.

/I Declare a SolverPPP object
SolverPPP pppSolver;

/I PROCESSING PART
gnssRinex gRin;

while(rin >> gRin)
{
try
{
gRin >> basicM
>> correctObs
>> compWindup
>> computeTropo
>> linearl /I Compute combinations

D.1. SolverPPP Class Reference

159

}

catch(...)

{

cerr << "Unknown exception at epoch: " << time << endl;

>> pcFilter

>> markCSLI2
>> markCSMW
>> markArc
>> linear2

>> phaseAlign
>> pppSolver;

continue;

/I Print results

cout
cout
cout
cout
cout
cout

<<
<<
<<
<<
<<
<<

time.DOYsecond()
pppSolver.solution[1]
pppSolver.solution[2]
pppSolver.solution[3]
pppSolver.solution[0]
endl;

/I Compute prefit residuals

<< "
<< "
<< "
<< "

<< " " /] Output field #1
"/l dx: Output field #2
"Il dy: Output field #3
"/l dz: Output field #4
" Il wetTropo: Out field

The "SolverPPP" object will extract all the data it needs from the GNSS data
structure that is " gRin" and will try to solve the PPP system of equations using
a Kalman filter. It will also insert back postfit residual data (both code and
phase) into "gRin" if it successfully solves the equation system.

By default, it will build the geometry matrix from the values of coefficients
wetMap, dx, dy, dz and cdt, IN THAT ORDER. Please note that the first field
of the solution will be the estimation of the zenital wet tropospheric component

(or at least, the part that wasn't modeled by the tropospheric model used).

You may configure the solver to work with a NEU system in the class constructor
or using the "setNEU()" method.

In any case, the "SolverPPP" object will also automatically add and estimate
the ionosphere-free phase ambiguities. The independent vector is composed of
the code and phase prefit residuals.

This class expects some weights assigned to each satellite. That can be achieved
with objects from classes such as " ComputelURAWeights”, " ComputeMOP-

SWeights", etc.

If these weights are not assigned, then the " SolverPPP" object will set a value
of "1.0" to code measurements, and "weightFactor’ to phase measurements.
The default value of "weightFactor” is "10000.0". This implies that code sigma
is 1 m, and phase sigma is 1 cm.

#5

160 GPSTk documentation

By default, the stochastic models used for each type of variable are:

Coordinates are modeled as constants (StochasticModel).

Zenital wet tropospheric component is modeled as a random walk (see
class RandomWalkModel), with a gPrime value of 3e-8 m«m/s.

Receiver clock is modeled as white noise (WhiteNoiseModel).

Phase biases are modeled as white noise when cycle slips happen, and as
constants between cycle slips (PhaseAmbiguityModel).

You may change this assignment with methods " setCoordinatesModel()", " setX-
CoordinatesModel()", "setYCoordinatesModel()", "setZCoordinatesModel()",
"setTroposphereModel()" and "setReceiverClockModel()". However, you are
not allowed to change the phase biases stochastic model.

For instance, in orden to use a 'full kinematic' mode we assign a white noise
model to all the coordinates:

/I Define a white noise model with 100 m of sigma
WhiteNoiseModel wnM(100.0);

/I Configure the solver to use this model for all coordinates
pppSolver.setCoordinatesModel(&wnM);

Be aware, however, that you MUST NOT use this method to set a state-aware
stochastic model (like RandomWalkModel, for instance) to ALL coordinates,
because the results will certainly be erroneous. Use this method ONLY with non-
state-aware stochastic models like 'StochasticModel’ (constant coordinates) or
"WhiteNoiseModel'.

In order to overcome the former limitation, this class provides methods to set
different, specific stochastic models for each coordinate, like:

/I Define a white noise model with 2 m of sigma for horizontal
/I coordinates (in this case, the solver is previously set to
/I dLat, dLon and dH).

WhiteNoiseModel wnHorizontalModel(2.0);

/I Define a random walk model with 0.04 m *m/s of process spectral
/I density for vertical coordinates.
RandomWalkModel rwVerticalModel(0.04);

/I Configure the solver to use these models
pppSolver.setXCoordinatesModel(&wnHorizontalModel);
pppSolver.setYCoordinatesModel(&wnHorizontalModel);
pppSolver.setZCoordinatesModel(&rwVerticalModel);

use

D.1. SolverPPP Class Reference 161

Warning;:

"SolverPPP" is based on a Kalman filter, and Kalman filters are objets
that store their internal state, so you MUST NOT use the SAME object to
process DIFFERENT data streams.

See also:

SolverBase.hpp, SolverLMS.hpp and CodeKalmanSolver.hpp for base
classes.

Examples:

examplel0.cpp, example8.cpp, and example9.cpp.

Definition at line 210 of file SolverPPP.hpp.

Public Member Functions

e SolverPPP (bool useNEU=false)

Common constructor.

e virtual int Compute (const Vector< double > &prefitResiduals, const
Matrix< double > &designMatrix, const Matrix< double > &weight-
Matrix) throw (InvalidSolver)

Compute the PPP Solution of the given equations set.

e virtual int Compute (const Vector< double > &prefitResiduals, const
Matrix< double > &designMatrix, const Vector< double > &weightVec-
tor) throw (InvalidSolver)

Compute the PPP Solution of the given equations set.

e virtual gnssSatTypeValue & Process (gnssSatTypeValue &gData) throw
(ProcessingException)

Returns a reference to a gnnsSat TypeValue object after solving the previously
defined equation system.

e virtual gnssRinex & Process (gnssRinex &gData) throw (ProcessingEx-
ception)

Returns a reference to a gnnsRinex object after solving the previously defined
equation system.

162 GPSTk documentation

e virtual SolverPPP & Reset (const Vector< double > &newState, const
Matrix< double > &newErrorCov)

Resets the PPP internal Kalman filter.

e virtual SolverPPP & setNEU (bool useNEU)
Sets if a NEU system will be used.

e virtual double getWeightFactor (void) const

Get the weight factor multiplying the phase measurements sigmas.

e virtual SolverPPP & setWeightFactor (double factor)

Set the weight factor multiplying the phase measurement sigma.

e StochasticModel « getXCoordinatesModel () const

Get stochastic model pointer for dx (or dLat) coordinate.

e SolverPPP & setXCoordinatesModel (StochasticModel xpModel)

Set coordinates stochastic model for dx (or dLat) coordinate.

e StochasticModel * getYCoordinatesModel () const

Get stochastic model pointer for dy (or dLon) coordinate.

e SolverPPP & setYCoordinatesModel (StochasticModel xpModel)

Set coordinates stochastic model for dy (or dLon) coordinate.

e StochasticModel * getZCoordinatesModel () const

Get stochastic model pointer for dz (or dH) coordinate.

e SolverPPP & setZCoordinatesModel (StochasticModel «pModel)

Set coordinates stochastic model for dz (or dH) coordinate.

e virtual SolverPPP & setCoordinatesModel (StochasticModel xpModel)

Set a single coordinates stochastic model to ALL coordinates.

e virtual StochasticModel *« getTroposphereModel (void) const

Get wet troposphere stochastic model pointer.

e virtual SolverPPP & setTroposphereModel (StochasticModel xpModel)

Set zenital wet troposphere stochastic model.

SolverPPP Class Reference 163

virtual StochasticModel * getReceiverClockModel (void) const

Get receiver clock stochastic model pointer.

virtual SolverPPP & setReceiverClockModel (StochasticModel xpModel)

Set receiver clock stochastic model.

virtual StochasticModel *« getPhaseBiasesModel (void) const

Get phase biases stochastic model pointer.

virtual SolverPPP & setPhaseBiasesModel (StochasticModel xpModel)

Set phase biases stochastic model.

virtual Matrix< double > getPhiMatrix (void) const

Get the State Transition Matrix (phiMatrix).
virtual SolverPPP & setPhiMatrix (const Matrix< double > &pMa-
trix)

Set the State Transition Matrix (phiMatrix).

virtual Matrix< double > getQMatrix (void) const

Get the Noise covariance matrix (QMatrix).

virtual SolverPPP & setQMatrix (const Matrix< double > &pMa-
trix)

Set the Noise Covariance Matrix (QMatrix).

virtual int getlndex (void) const

Returns an index identifying this object.

virtual std::string getClassName (void) const

Returns a string identifying this object.

virtual ~SolverPPP ()

Destructor.

164 GPSTk documentation

Classes

e struct filterData

A structure used to store Kalman filter data.

Constructor & Destructor Documentation
SolverPPP (bool useNEU = false)

Common constructor.

Parameters:

useNEU If true, will compute dLat, dLon, dH coordinates; if false (the
default), will compute dx, dy, dz.

Definition at line 57 of file SolverPPP.cpp.

References SolverPPP::setNEU().

virtual ~SolverPPP () [inline, virtual]

Destructor.

Definition at line 484 of file SolverPPP.hpp.

Member Function Documentation

int Compute (const Vector< double > & prefitResiduals, const Matrix<
double > & designMatrix, const Matrix< double > & weightMatrix)
throw (InvalidSolver) [virtual]

Compute the PPP Solution of the given equations set.

Parameters:

prefitResiduals Vector of prefit residuals
designMatrix Design matrix for the equation system

weightMatrix Matrix of weights

D.1. SolverPPP Class Reference 165

Warning;:

A typical Kalman filter works with the measurements noise covariance
matrix, instead of the matrix of weights. Beware of this detail, because
this method uses the later.

Returns:

0 if OK -1 if problems arose

Reimplemented from CodeKalmanSolver.
Definition at line 168 of file SolverPPP.cpp.

References SimpleKalmanFilter:: Compute(), SolverBase::covMatrix, GPSTK_-
RETHROW, GPSTK_THROW, gpstk::inverseChol(), ConstMatrixBase::isSquare(),
SimpleKalmanpFilter::P, SolverBase::postfitResiduals, Matrix::rows(), SolverBase::solution,
SolverBase::valid, and SimpleKalmanFilter::xhat.

Referenced by SolverPPP::Compute(), and SolverPPP::Process().

int Compute (const Vector< double > & prefitResiduals, const Matrix<
double > & designMatrix, const Vector< double > & weightVector)
throw (InvalidSolver) [virtual]

Compute the PPP Solution of the given equations set.

Parameters:

prefitResiduals Vector of prefit residuals
designMatrix Design matrix for the equation system

weightVector Vector of weights assigned to each satellite.

Warning;:

A typical Kalman filter works with the measurements noise covariance
matrix, instead of the vector of weights. Beware of this detail, because this
method uses the later.

Returns:

0 if OK -1 if problems arose

Reimplemented from CodeKalmanSolver.

166 GPSTk documentation

Definition at line 117 of file SolverPPP.cpp.

References SolverPPP::Compute(), GPSTK_THROW, and SolverBase::valid.

gnssSatTypeValue & Process (gnssSatTypeValue & gData) throw (Pro-
cessingException) [virtual]

Returns a reference to a gnnsSatTypeValue object after solving the previously
defined equation system.

Parameters:

gData Data object holding the data.

Reimplemented from CodeKalmanSolver.
Reimplemented in SolverPPPFB.
Definition at line 284 of file SolverPPP.cpp.

References gpstk::StringUtils::asString(), gnssData::body, SolverPPP::getClassName(),
SolverPPP::getIndex(), GRSTK_THROW, gnssRinex::header, and Exception::what().

Referenced by SolverPPPFB::LastProcess(), SolverPPPFB::Process(), and method
SolverPPPFB::ReProcess().

gnssRinex & Process (gnssRinex & gData) throw (ProcessingException)
[virtual]

Returns a reference to a gnnsRinex object after solving the previously defined
equation system.

Parameters:

gData Data object holding the data.

Reimplemented from CodeKalmanSolver.
Reimplemented in SolverPPPFB.
Definition at line 325 of file SolverPPP.cpp.

References gpstk::StringUtils::asString(), gnssData::body, SolverPPP::Compute(),
SolverBase::covMatrix, TypelD::CSL1, field SolverLMS::defaultEqDef, method

D.1. SolverPPP Class Reference 167

SolverPPP::getClassName(), SolverPPP::getIndex(), StochasticModel::getPhi(),
StochasticModel::getQ(), GRSTK_THROW, gnssData::header, TypelD::postfitC,
TypelD::postfitL, SolverBase::postfitResiduals, TypelD::prefitL, method Stochas-
ticModel::Prepare(), SimpleKalmanFilter::Reset(), Vector::resize(), Matrix::resize(),
SolverBase::solution, TypelD::weight, and Exception::what().

virtual SolverPPP& Reset (const Vector< double > & newState, const
Matrix< double > & newErrorCov) [inline, virtual]

Resets the PPP internal Kalman filter.

Parameters:

newState System state vector
newErrorCov Error covariance matrix
Warning:
Take care of dimensions: In this case newState must be 6x1 and newEr-
rorCov must be 6x6.
Definition at line 290 of file SolverPPP.hpp.

References SimpleKalmanFilter::Reset().

SolverPPP & setNEU (bool useNEU) [virtual]
Sets if a NEU system will be used.

Parameters:

useNEU Boolean value indicating if a NEU system will be used

Reimplemented in SolverPPPFB.
Definition at line 730 of file SolverPPP.cpp.

References gnssData::body, TypelD::cdt, SolverLMS::defaultEqDef, TypelD::dH,
TypelD::dLat, TypelD::dLon, TypelD::dx, TypelD::dy, TypelD::dz, gnssData::header,
TypelD::prefitC, and TypelD::wetMap.

Referenced by SolverPPPFB::setNEU(), SolverPPP::SolverPPP(), and method
SolverPPPFB::SolverPPPFB().

168 GPSTk documentation

virtual double getWeightFactor (void) const [inline, virtual]

Get the weight factor multiplying the phase measurements sigmas.
This factor is the code_sigma/phase_sigma ratio.
Definition at line 307 of file SolverPPP.hpp.

References gpstk::sqrt().

virtual SolverPPP& setWeightFactor (double factor) [inline, virtual]

Set the weight factor multiplying the phase measurement sigma.

Parameters:

factor Factor multiplying the phase measurement sigma

Warning;:

This factor should be the code_sigma/phase_sigma ratio. For instance, if
we assign a code sigma of 1 m and a phase sigma of 10 cm, the ratio is
100, and so should be "factor”.

Definition at line 319 of file SolverPPP.hpp.

StochasticModelx getXCoordinatesModel () const [inline]

Get stochastic model pointer for dx (or dLat) coordinate.
Reimplemented from CodeKalmanSolver.

Definition at line 324 of file SolverPPP.hpp.

SolverPPP& setXCoordinatesModel (StochasticModel x pModel) [inline]

Set coordinates stochastic model for dx (or dLat) coordinate.

Parameters:

pModel Pointer to StochasticModel associated with dx (or dLat) coor-
dinate.

D.1. SolverPPP Class Reference 169

Reimplemented from CodeKalmanSolver.

Definition at line 333 of file SolverPPP.hpp.

StochasticModel« getYCoordinatesModel () const [inline]

Get stochastic model pointer for dy (or dLon) coordinate.
Reimplemented from CodeKalmanSolver.
Definition at line 338 of file SolverPPP.hpp.

SolverPPP& setYCoordinatesModel (StochasticModel « pModel) [inline]

Set coordinates stochastic model for dy (or dLon) coordinate.

Parameters:

pModel Pointer to StochasticModel associated with dy (or dLon) coor-
dinate.

Reimplemented from CodeKalmanSolver.
Definition at line 347 of file SolverPPP.hpp.
StochasticModelx getZCoordinatesModel () const [inline]

Get stochastic model pointer for dz (or dH) coordinate.
Reimplemented from CodeKalmanSolver.

Definition at line 352 of file SolverPPP.hpp.

SolverPPP& setZCoordinatesModel (StochasticModel « pModel) [inline]

Set coordinates stochastic model for dz (or dH) coordinate.

Parameters:

pModel Pointer to StochasticModel associated with dz (or dH) coordi-
nate.

170 GPSTk documentation

Reimplemented from CodeKalmanSolver.

Definition at line 361 of file SolverPPP.hpp.

SolverPPP & setCoordinatesModel (StochasticModel « pModel) [virtual]

Set a single coordinates stochastic model to ALL coordinates.

Parameters:

pModel Pointer to StochasticModel associated with coordinates.

Warning;:

Do NOT use this method to set the SAME state-aware stochastic model
(like RandomWalkModel, for instance) to ALL coordinates, because the
results will certainly be erroneous. Use this method only with non-state-
aware stochastic models like 'StochasticModel’ (constant coordinates) or
"WhiteNoiseModel'.

Reimplemented from CodeKalmanSolver.

Definition at line 774 of file SolverPPP.cpp.

virtual StochasticModel« getTroposphereModel (void) const [inline,
virtual]

Get wet troposphere stochastic model pointer.

Definition at line 380 of file SolverPPP.hpp.

virtual SolverPPP& setTroposphereModel (StochasticModel « pModel)
[inline, virtual]

Set zenital wet troposphere stochastic model.

Parameters:

pModel Pointer to StochasticModel associated with zenital wet tropo-
sphere.

D.1. SolverPPP Class Reference 171

Warning;:

Be aware that some stochastic models store their internal state (for in-
stance, 'RandomWalkModel" and 'PhaseAmbiguityModel’). If that is your
case, you MUST NOT use the SAME model in DIFFERENT solver objects.

Definition at line 394 of file SolverPPP.hpp.

virtual StochasticModelx getReceiverClockModel (void) const [inline,
virtual]

Get receiver clock stochastic model pointer.
Reimplemented from CodeKalmanSolver.

Definition at line 399 of file SolverPPP.hpp.

virtual SolverPPP& setReceiverClockModel (StochasticModel « pModel)
[inline, virtual]

Set receiver clock stochastic model.

Parameters:

pModel Pointer to StochasticModel associated with receiver clock.

Warning:

Be aware that some stochastic models store their internal state (for in-
stance, 'RandomWalkModel" and 'PhaseAmbiguityModel’). If that is your
case, you MUST NOT use the SAME model in DIFFERENT solver objects.

Reimplemented from CodeKalmanSolver.

Definition at line 413 of file SolverPPP.hpp.

virtual StochasticModel+ getPhaseBiasesModel (void) const [inline,
virtual]

Get phase biases stochastic model pointer.

Definition at line 418 of file SolverPPP.hpp.

172 GPSTk documentation

virtual SolverPPP& setPhaseBiasesModel (StochasticModel « pModel)
[inline, virtual]

Set phase biases stochastic model.

Parameters:

pModel Pointer to StochasticModel associated with phase biases.

Warning;:

Be aware that some stochastic models store their internal state (for in-
stance, 'RandomWalkModel" and 'PhaseAmbiguityModel’). If that is your
case, you MUST NOT use the SAME model in DIFFERENT solver objects.
This method should be used with caution, because model must be of
PhaseAmbiguityModel class in order to make sense.

Definition at line 435 of file SolverPPP.hpp.

virtual Matrix<double> getPhiMatrix (void) const [inline, virtual]

Get the State Transition Matrix (phiMatrix).
Reimplemented from CodeKalmanSolver.

Definition at line 440 of file SolverPPP.hpp.

virtual SolverPPP& setPhiMatrix (const Matrix< double > & pMatrix)
[inline, virtual]

Set the State Transition Matrix (phiMatrix).

Parameters:

pMatrix State Transition matrix.

Warning:

Process() methods set phiMatrix and qMatrix according to the stochastic
models already defined. Therefore, you must use the Compute() methods
directly if you use this method.

D.1. SolverPPP Class Reference 173

Reimplemented from CodeKalmanSolver.

Definition at line 453 of file SolverPPP.hpp.

virtual Matrix<double> getQMatrix (void) const [inline, virtual]

Get the Noise covariance matrix (QMatrix).
Reimplemented from CodeKalmanSolver.

Definition at line 458 of file SolverPPP.hpp.

virtual SolverPPP& setQMatrix (const Matrix< double > & pMatrix)
[inline, virtual]

Set the Noise Covariance Matrix (QMatrix).

Parameters:

pMatrix Noise Covariance matrix.

Warning;:

Process() methods set phiMatrix and gMatrix according to the stochastic
models already defined. Therefore, you must use the Compute() methods
directly if you use this method.

Reimplemented from CodeKalmanSolver.

Definition at line 471 of file SolverPPP.hpp.

int getindex (void) const [virtual]

Returns an index identifying this object.
Reimplemented from CodeKalmanSolver.
Reimplemented in SolverPPPFB.
Definition at line 43 of file SolverPPP.cpp.

Referenced by SolverPPP::Process().

174 GPSTk documentation

std::string getClassName (void) const [virtual]

Returns a string identifying this object.

Reimplemented from CodeKalmanSolver.

Reimplemented in SolverPPPFB.

Definition at line 48 of file SolverPPP.cpp.

Referenced by SolverPPP::Process().

The documentation for this class was generated from the following files:

e SolverPPP.hpp
e SolverPPP.cpp

Appendix E

Porting the GPSTk to the
Gumstix

The GPSTk is a highly platform-independent software code base thanks to its
use of the ANSI C++ programming language.

In order to explore both the portability characteristics of the GPSTk and its
capabilities to work in very small embedded system, the author carried out
some research in this area during the development of this thesis, presenting the
results in the proceedings of the 3rd. ESA Workshop on Satellite Navigation
User Equipment Technologies (NAVITEC '2006) [Salazar et al., 2006].

The process to port part of the GPSTk to the Basix 200 Gumstix is now briefly
described. For more details, please consult [Salazar et al., 2006].

E.1 Description of Gumstix boards

The Gumstix computer boards are tiny Full Function Miniature Computers
(FFMC), measuring just 80 mm x 20 mm x 6.3 mm and weighting about 8 g,
based on the Intel PXA-255 processor. These FFMC's are addressed for markets
needing high function, low cost development and production platforms (for an
example of their use in research, see [Holland et al., 2005]).

All Gumstix boards include a complete Linux kernel (version 2.6) and cross-
compile tools that allow programmers to develop and test applications on a
host Personal Computer (PC) before transferring them to the embedded board.

Similar hardware products have already been used in the context of Euro-
pean Geostationay Navigation Overlay System (EGNOS) applications, notably
a SISNeT-enabled Personal Digital Assistant (PDA) running with a processor

176 Porting the GPSTk to the Gumstix

akin to the Intel PXA-255 ([Toran-Marti et al., 2002]).

In this sense, the author believe that, given the closed nature of a PDA, a
more “Open Software/Open hardware” approach would benefit a wider range
of potential applications, and therefore, the GPSTk could be very useful. The
argument for this is that a faster, more reliable and flexible developing process
may be achieved thanks to the advantage of having a widely portable, solid,
tested and easily reusable open code base to build upon.

In this work the lowest-end board was used: The Basix 200, running at 200 MHz
with 64MB SDRAM, 4MB Strataflash and a RS-MMC slot. This board has a
power requirement of less than 250 mA at full load, and its price was about
80 Euros. Figure 1.1 shows a Basix 200 Gumstix board.

E.2 Installing the cross-compiling tools

In order to compile software for the Gumstix boards, a “buildroot” needs to
be installed. A buildroot consists of several “Makefiles” and patches used to
generate cross-compilation tools, as well as the “root” filesystem to be installed
in the embedded system ([Petazzoni et al., 2006]). The cross-compilation tools
are critical, because they allow compiling software for a different type of pro-
cessor (called “target”) from the processor acting as “host” system (usually, a
common PC).

The buildroot used for the Gumstix is described in [Waysmall Computers, 2006],
and it is designed for use in Linux. In order to download it, a “subversion”
[CollabNet Inc., 2001] client is needed on the host. Please note that the Gumstix
board used in [Salazar et al., 2006] was flashed with buildroot version 773.

The next step is to build the buildroot, but the C4++ library and compiler must
be enabled before (they are disabled by default). How to do this depends on
the buildroot version. For version 773 the process is simple and implies to go
into the downloaded “gumstix-buildroot " directory and modifying the
“Makefile” file there. In that file, the variable “INSTALL _LIBSTDCPP’ must
be set to “true ". After enabling C++, the buildroot is generated issuing the
command “make”. This is a lengthy process involving downloading several
software packages from the Internet.

After this process is finished, the new C++ library is found in the directory
“build _arm _nofpu/root/lib " and it is called "libstdc++.50.6.0.2
After installing the library on the Gumstix board, it is ready to run C4++ soft-
ware. No further repetitions of this process are needed, unless you want to
change your Gumstix buildroot version.

E.3. Compiling the GPSTk for the Gumstix 177

E.3 Compiling the GPSTk for the Gumstix

In order to cross-compile the GPSTk, the first step is to download it using
the same subversion client mentioned above. Once this is done, change to the
“dev" subdirectory (where all the GPSTk software resides).

Before any further action, you must be sure that the cross-compile tools (specif-
ically, the arm-linux-g++ compiler) are in your “PATH . They may be found
in the subdirectory:

gumestix-buildroot/build_arm_nofpu/staging_dir/bi n

Please be sure to add the full path to this directory to your current "PATH
variable!.

Please note that the GPSTk uses the “"GNU build " system ([Taylor, I.L., 1998])
to ease the compilation process. This implies that the following tools must be
installed in your host system: aclocal , autoconf , automake and make.

Then, the next step is to modify the file “configure.ac in order to dis-
able some characteristics that cause problems in the Gumstix PXA-255 proces-
sor. Please find the lines "ACFUNCMALLOC and “ACFUNCREALLOC and

delete or disable them.

Once the former steps are complete, we may proceed to prepare the GPSTk for
cross-compilation issuing the following commands in the dev directory:

aclocal

autoconf

automake -a

Jconfigure --host=arm-linux

The former process creates a complex Makefile with all the instructions
needed to cross-compile the GPSTk library object files, applications and ex-
amples. In order to proceed with the real compilation, you must then use the
command make.

The compilation is a long process. Please be aware that you are dealing with a
development version and, from time to time, some errors may appear, in par-
ticular in the companion applications. If that happens, try to re-issue the make

1The process to achieve this varies according to the Linux shell used in your host system

178 Porting the GPSTk to the Gumstix

command and, if it does not work, disable the problematic application in the cor-
responding Makefile.am file and rerun the process from the automake -a
command.

Once the compilation is finished, all the library object files must be collected
into a single dynamic library. Change to the dev/src subdirectory and issue
the following command:

arm-linux-ar -rs libgpstk.so * .0

The GPSTk library and applications are now ready to be transferred to the
Gumstix board.

E.4 Compiling and running GPSTk-based applications

Once the cross-compilation tools are installed in the host system, and the C++
and GPSTk libraries have been transferred to the Gumstix board, the system is
ready to start developing GPSTk-based applications.

One of the great advantages of the GPSTk is its flexibility and ease of use. In
this section, such flexibility will be emphasized by taking an example application
(example5.cpp) that comes included? and adapting it, with very little effort,
to carry out three different kinds of GNSS pseudorange processing strategies.
From there, three new examples will be developed:

e example-a.cpp : This program will process C1 pseudoranges applying
an standard ionospheric model (Klobuchar), a simple tropospheric model
(called “GCAT and described in [Hernandez-Pajares et al., 2001]), and
the solution will be found using a standard LMS algorithm.

e example-b.cpp : An improvement with respect to the former one, it
will process C1 pseudoranges and apply Klobuchar ionospheric model,
but the tropospheric model will be the one described in the RTCA/DO-
229D document (called the Minimum Operational Performance Standards
(MOPS) [RTCA/SC-159., 2006]). The solution will be found using a
WMS algorithm, computing the weights according the aforementioned
MOPS document. It is worth noting that the MOPS algorithms are used
in Satellite-Based Augmentation System (SBAS) systems receivers such
as EGNOS ones, although EGNOS-broadcasted information has not been
used in this simple example.

2example5.cpp was added to the GPSTk by this author, and shows how to carry out a
basic C1 pseudorange-based positioning with some GPSTk’s high-level classes.

E.4. Compiling and running GPSTk-based applications 179

e example-c.cpp : Very similar to example-b.cpp , in this case the
ionosphere-free pseudorange (PC) observables are used, and therefore the
ionospheric model is dropped. Tropospheric and solver algorithms remain
the same as before (MOPS).

All these programs will read the observables and ephemeris data from cor-
responding RINEX files. Broadcast ephemeris will be used (although simple
changes allow for SP3 ephemeris), and the output will be epoch (in seconds of
day) and deviations in latitude, longitude and height (in meters) from a nominal
position. The full source code for these examples is not shown.

A typical use of the GPSTk follows: In the following lines you will find the code
added to exampleb.cpp in order to allow example-a.cpp , example-b.cpp
and example-c.cpp output the data in the format explained above:

/I Object holding nominal position
1 Position nominalPos(4833520.2269, 41537.00768, 4147461 .489);

/I Object that will hold the difference in position
2 Position diffPos;

/I Difference between current solution and nominal positio n
3 diffPos = solPos - nominalPos;

/I Azimuth, elevation of solution with respect to nominal
4 double azimuth = nominalPos.azimuthGeodetic(solPos);
5 double elev = nominalPos.elevationGeodetic(solPos);

/I Magnitude of the difference between solution and nominal

6 double magnitude = RSS(diffPos.X(), diffPos.Y(), diffPos Z())
/I Print results

7 cout << rData.time.DOYsecond() << " " /I Secs of day

8 cout << magnitude =sin(azimuth *DEG_TO_RAD) << " " /I Lon change

9 cout << magnitude =*cos(azimuth *DEG_TO_RAD) << " "; // Lat change

10 cout << magnitude =sin(elev *DEG_TO_RAD) << " " /I Alt change

As can be seen in the former lines, GPSTk objects encapsulate much of the
functionality needed to do common tasks in GNSS data processing. Several
details are worth noting regarding the previous sample code:

e At line #1, an object named nominalPos (from class Position) is
declared in order to hold the nominal position, which in this case is also
set simultaneously in ECEF coordinates.

e At line #2, another Position object named diffPos is declared to

180

Porting the GPSTk to the Gumstix

hold the difference between the “solution position” (solPos) and the
nominal one.

Note that the substraction (“-") operator in line #3 is overloaded for
Position objects in order to allow them to be easily subtracted.

Position objects encapsulate several handy methods to operate on
them. For instance, the relative azimuth and elevation between the
nominal position and the solution position are found using the meth-
ods azimuthGeodetic() and elevationGeodetic() in lines #4
and #b5, respectively.

When printing the results in lines #7 to #10, please note the method
used in the object rData.time (from class DayTime) in order to easily
get the proper output format: DOYsecond() .

There are plenty of features like these in the GPSTk.

Other small modifications remain in order to allow the original example-5.cpp
to fulfill the requisites stated above for example-a.cpp

e Declaring an object gcatTM of class GCATTropModel (tropospheric

modelling).

e Declare object solver belonging to class SolverLMS (standard LMS

algorithm).

Please remember that the purpose of these additional examples is just to show
how several different processing strategies may be carried out with minor changes.
For specific details about what these classes implement please consult the
GPSTk's APl document.

The main modifications to convert example-a.cpp into example-b.cpp
include:

e Tropospheric modelling will be carried out by object mopsTM of class

MOPSTropModel.

e solver object now must belong to class SolverWMS (WMS algorithm).

e A new object, mopsWeights , belonging to MOPSWeight class, must

be added to compute weights.

E.4. Compiling and running GPSTk-based applications 181

Some minor details remain: for instance, solver invocation must include a
vector of weights supplied by the field mopsWeights.weightsVector , and
mMopsTM need to be initialized, but it is easy to change from a processing
strategy to another thanks to GPSTk encapsulation of important algorithms.

Finally, the change from example-b.cpp to example-c.cpp involves mainly
three simple modifications:

e Object obsC1, originally belonging to class ExtractC1l , must be de-
clared as belonging to class ExtractPC

e Given that the Total Group Delay (TGD) is not applicable when us-
ing PC observables?, the object in charge of modeling the pseudoranges
(modelPR, of class ModeledPR) will be configured to ignore the TGD
(modelPR.useTGD = false).

o All references to Klobuchar ionospheric modelling are now useless and
must be deleted.

The source code files for these new programs were stored in a new subdirectory:
dev/itmp . In order to cross-compile them for the Gumstix board, change to
that directory and issue commands as the following (it is a single command
line):

arm-linux-g++ -ansi -pedantic example-a.cpp -0 example-a
-l../src/ -L..Isrcl -Igpstk

The resulting executables were transferred to the Gumstix board and used to
process data for station EBRE corresponding to January 30th, 2002. Figure E.1
plots the vertical error regarding the nominal position as a function of time for
these three programs, while Figure E.2 shows the horizontal error, with the cor-
responding horizontal Root Mean Square (RMS) values for each strategy. The
results are consistent with what it is expected from these processing strategies.

3When they are formed using P1 and P2 observables. However, this statement is not true
when using the C1 observable to compute PC.

182 Porting the GPSTk to the Gumstix

GPETE code positioning irmprovarment in cltitued e wsing severzl strategies. EBRE 2002/01/30

25
emmple-al: 1, simfle tropo, KIobuchar..LI'-.-’Ié !
azrmpla-lv G1, MOPS tropa, Kldbwchar, WLME «
exzmple-c: PG, MEPE trupf: Vgl hIS -
20 | Pl
; i3
i N i X
T — | §+ | -
N
i + &
10 - T,
£

Altitude difference (m)
m

[T R— g’ ; e

5 i i i i
g 10000 Zooao Fa00g 4Q000 Eil vl BOMOD FRoQa aonog 2000w

Sacands of dry (5]

Figure E.1: Vertical error for different processing strategies. EBRE 2002/01/30.

GFETK code pesitioning improvement using diffarant siratagies. EERE 2002/01/30

1z T T T
exnamphe-a; HMS = 3,33 m !
lgsample-t: BMS =293m =
+ siamplec: FMZ = 2.30m + |
AR i P
R A T
: [[it B
#
1t
— . g—
£
an
b=
=
o
o
=
=
& _d
=
=
"
— -
5 i i i i
B -4 -2 a 2 + B B 10

Langitude ditfarenca (m]

Figure E.2: Horizontal error for different processing strategies. EBRE 2002/01/30.

Bibliography

[ARINC Research Corp., 2000] ARINC Research Corp., 2000. Navstar GPS
Space Segment / Navigation User Interfaces (ICD-GPS-200).

[Bancroft, 1985] Bancroft, S., 1985. An algebraic solution of the GPS equa-
tions. |EEE Transactions on Aerospace and Electronic Systems. 21(7),
pp. 56-59.

[Beutler et al., 1999] Beutler, R., Rothacher, M., Schaer, S., Kouba, J. and
Neilan, R., 1999. The International GPS Service (IGS): An interdisciplinary
service in support of Earth sciences. Advances in Space Research 23(4),
pp. 631-653.

[Bierman, 1977] Bierman, G. J., 1977. Factorization Methods for Discrete Se-
quential Estimation. Mathematics in Science and Engineering, Vol. 128,
Academic Press.

[Bruton, 2000] Bruton, A. M., 2000. Improving the Accuracy and Resolution of
SINS/DGPS Airborne Gravimetry. PhD thesis, Department of Geomatics
Engineering, University of Clagary, Calgary, Alberta, Canada. Report No.
20145.

[Bruton et al., 1999] Bruton, A. M., Glennie, C. L. and Schwarz, K. P., 1999.
Differentiation for High-Precision GPS Velocity and Acceleration Determi-
nation. GPS Solutions 2(4), pp. 7-21.

[Cannon et al., 1997] Cannon, M. E., Lachapelle, G., Szarmes, M. C., Hebert,
J. M., Keith, J. and Jokerst, S., 1997. DGPS Kinematic Carrier Phase
Signal Simulation Analysis for Precise Velocity and Position Determination.
Journal of the Institute of Navigation 44(2), pp. 231-246.

[Castleden et al., 2004] Castleden, N., Hu, G. R., Abbey, D. A., Weihing, D.,
Ovstedal, O., Earls, C. J. and Featherstone, W. E., 2004. First results from
Virtual Reference Station (VRS) and Precise Point Positioning (PPP) GPS
research at the Western Australian Centre for Geodesy. Journal of Global
Positioning Systems 3(1-2), pp. 79-84.

184 BIBLIOGRAPHY

[CollabNet Inc., 2001] CollabNet Inc., 2001. Subversion. Website:
http://subversion.tigris.org.

[Collins, 1999] Collins, J., 1999. Assessment and Development of a Tropo-
spheric Delay Model for Aircraft users of the Global Positioning System.
Technical Report 203, The University of New Brunswick, New Brunswick,
Canada.

[Dahlquist and Bjork, 1974] Dahlquist, G. and Bjork, A., 1974. Numerical
Methods. Prentice Hall. ISBN 0-13-627315-7.

[Daly, 1993] Daly, P., 1993. Navstar GPS and GLONASS: global satellite nav-
igation systems. Electronics & Communication Engineering Journal 5(6),
pp. 349-357.

[DoD, USA, 2008] DoD, USA, 2008. Global Positioning ~ Sys-
tem Standard Positioning Service Performance Standard
http://pnt.gov/public/docs/2008/spsps2008.pdf.

[Enge and Misra, 1999] Enge, P. and Misra, P., 1999. Special Issue on Global
Positioning System. In: Proceedings of the IEEE 87(1), pp. 3-15.

[Ge et al., 2008] Ge, M., Gendt, G., Rothacher, M., Shi, C. and Liu, J., 2008.
Resolution of GPS carrier-phase ambiguities in Precise Point Positioning
(PPP) with daily observations. Journal of Geodesy 82(7), pp. 389-399.

[Gendt, 2005] Gendt, G., 2005. Switch the absolute an-
tanne model within the IGS. IGSMAIL-5272. Website:
http://igscb.jpl.nasa.gov/mail /igsmail /2005 /msg00193.html.

[Guerin, 2005] Guerin, B., 2005. Lenguaje C++. Ediciones Software SL, Po
Ferrocarriles Catalanes 97-117, 2da planta, Ofic 18, Barcelona, Spain.

[Gurtner, 2001] Gurtner, W., 2001. RINEX: the Receiver In-
dependent Exchange Format Version 2.10. Website:
http://www.ngs.noaa.gov/CORS /Rinex2.html.

[Harris et al., 2007] Harris, R. B., Conn, T., Gaussiran, T., Kieschnick, C.,
Little, J., Mach, R., Munton, D., Renfro, B., Nelsen, S., Tolman, B.,
Vorce, J. and Salazar, D., 2007. The GPSTk: New Features, Applications
and Changes. In: Proceedings of the 20th International Technical Meeting
of the Satellite Division of the Institute of Navigation. ION GNSS 2007,
Forth Worth, Texas, USA, pp. 1286-1296.

[Harris et al., 2006] Harris, R. B., Craddock, T., Conn, T., Gaussiran, T., Ha-
gen, E., Hughes, A., Little, J., Mach, R., Nelsen, S., Renfro, B. and Tol-
man, B., 2006. Open Signals, Open Software: Two Years of Collaborative
Analysis using the GPS Toolkit. In: Proceedings of the 19th International

BIBLIOGRAPHY 185

Technical Meeting of the Satellite Division of the Institute of Navigation.
ION GNSS 2006, Long Beach, California, USA, pp. 2865-2876.

[Hein et al., 2001] Hein, G., Godet, J., Issler, J., Martin, J., Lucas-Rodriguez,
R. and Pratt, T., 2001. The GALILEO Frecuency Structure and Signal
Design. In: Proceedings of ION GPS'01, Salt Lake City, Utah, USA,
pp. 1273-1282.

[Hernandez-Pajares et al., 2001] Hernandez-Pajares, M., Juan-Zornoza, J. and
Sanz-Subirana, J., 2001. GPS Data Processing: Code and Phase. Algo-
rithms, Techniques and Recipes. CPET, UPC, Barcelona, Spain.

[Hernandez-Pajares et al., 2003a] Hernandez-Pajares, M., Juan-Zornoza, J.,
Sanz-Subirana, J. and Colombo, O., 2003a. Feasibility of Wide-Area Sub-
decimeter Navigation With GALILEO and Modernized GPS. IEEE Trans-
actions on Geoscience and Remote Sensing. 41(9), pp. 2128-2131.

[Hernandez-Pajares et al., 2003b] Hernandez-Pajares, M., Juan-Zornoza, J.,
Sanz-Subirana, J., Prats, X. and Baeta, J., 2003b. Basic Research Utilities
for SBAS (BRUS). In: 5th Geomatics Week, Barcelona, Spain.

[Hofmann-Wellenhof et al., 2008] Hofmann-Wellenhof, B., Lichtenegger, H.,
K. and Wasle, E., 2008. GNSS - Global Navigation Satellite Systems..
Springer-Verlag, Wien, Austria.

[Holland et al., 2005] Holland, O., Woods, J., De Nardi, R. and Clark, A., 2005.
Beyond swarm intelligence: the ultraswarm. In: Swarm Intelligence Sym-
posium, 2005. SIS 2005. Proceedings 2005 IEEE, pp. 217-224.

[Hugentobler et al., 2006] Hugentobler, U., Meindl, M., Beutler, G., Bock, H.,
Dach, R., Jaggi, A., Urschl, C., Mervart, L., Rothacher, M., Schaer, S.,
Brockmann, E., Ineichen, D., Wiget, A., Wild, U., Weber, G., Habrich,
H. and Boucher, C., 2006. CODE IGS Analysis Center. Technical Report
2003/2004, Jet Propulsion Laboratory (JPL), Pasadena, California, USA.
Gowey K., Neilan R., Moore A. (eds). IGS 2004 technical reports. 1GS
Central Bureau.

[IERS, 2009] IERS, 2009. IERS Conventions update: Chapter 7.
http://tai.bipm.org/iers/convupdt/convupdt_c7.html.

[Jekeli, 1994] Jekeli, C., 1994. On the Computation of Vehicle Accelerations Us-
ing GPS Phase Accelerations. In: Proceedings of the International Sympo-
sium on Kinematic Systems in Geodesy, Geomatics and Navigation (KIS94),
Banff, Canada, pp. 473-481.

[Jekeli and Garcia, 1997] Jekeli, C. and Garcia, R., 1997. GPS Phase Accel-
erations for Moving-base Vector Gravimetry. Journal of Geodesy 71(10),
pp. 630-639.

186 BIBLIOGRAPHY

[Karniadakis and Kirby, 2005] Karniadakis, G. E. and Kirby, R. M., 2005. Par-
allel Scientific Computing in C++ and MPI. Cambridge University Press,
New York, USA.

[Kennedy, S., 2002a] Kennedy, S., 2002a. Acceleration Estimation from GPS
Carrier Phases for Airborne Gravimetry. PhD thesis, Department of Geo-

matics Engineering, University of Clagary, Calgary, Alberta, Canada. Report
No. 20160.

[Kennedy, S., 2002b] Kennedy, S., 2002b. Precise Acceleration Determination
from Carrier Phase Measurements. In: Proceedings of the 15th Interna-

tional Technical Meeting of the Satellite Division of the Institute of Navi-
gation. ION GPS 2002, Portland, Oregon, USA, pp. 962-972.

[Kouba and Heroux, 2001] Kouba, J. and Heroux, P., 2001. Precise Point Po-
sitioning Using IGS Orbit and Clock Products. GPS Solutions 5(2), pp. 12—
28.

[Kubo, 2009] Kubo, N., 2009. Advantage of velocity measurements on instan-
taneous RTK positioning . GPS Solutions 13(4), pp. 271-280.

[Laurichesse et al., 2009] Laurichesse, D., Mercier, F., Berthias, J., Broca, P.
and Cerri, L., 2009. Integer Ambiguity Resolution on Undifferenced GPS
Phase Measurements and lts Application to PPP and Satellite Precise Orbit
Determination. NAVIGATION 56(2), pp. 135-149.

[Leick, 1995] Leick, A., 1995. GPS Satellite Surveying. John Wiley & Sons.

[Misra and Enge, 2006] Misra, P. and Enge, P., 2006. Global Positioning Sys-
tem. Signals, Measurements and Performance.. Ganga-Jamuna Press, Mas-
sachusetts, USA.

[Mostafa, 2005] Mostafa, M. M. R., 2005. Precise Airborne GPS Position-
ing Alternatives for the Aerial Mapping Practice. In: Proceedings of FIG
Working Week 2005 and GSDI-8, Cairo, Egypt.

[Niell, 1996] Niell, A. E., 1996. Global mapping functions for the atmo-
sphere delay at radio wavelengths. Journal of Geophysical Research (101),
pp. 3227-3246.

[0SO, 2009] OSO, 2009. Ocean tide loading provider. Website:
http://www.oso.chalmers.se/™ loading/.

[Parkinson and Spilker Jr., 1996] Parkinson, B. W. and Spilker Jr., J. J., 1996.
Global Positioning System: Theory and Applications. Volumes | & II. Amer-
ican Institute for Aeronautics and Astronautics, Inc.

BIBLIOGRAPHY 187

[Petazzoni et al., 2006] Petazzoni, T., Kruse, K., Ludd, N. and Her-
ren, M., 2006. Buildroot - Usage and documentation. Website:
http://buildroot.uclibc.org/buildroot.html.

[Radovanovic et al., 2001] Radovanovic, R. S., EI-Sheimy, N. and Teskey, W.,
2001. Rigorous Combination of GPS Data From Multiple Base Stations
for Mobile Platform Positioning. In: Proceedings of the 3rd. International
Symposium on Mobile Mapping Technology, Cairo, Egypt.

[Rothacher and Schmid, 2006] Rothacher, M. and Schmid, R., 2006.
ANTEX: the antenna exchange format version 1.3. Website:
ftp://igscb.jpl.nasa.gov/pub/station/general /antex13.txt.

[RTCA/SC-159., 2006] RTCA/SC-159., 2006. Minimum Operational Perfor-
mance Standards For Global Positioning System / Wide Area Augmenta-
tion System Airborne Equipment. Technical Report RTCA-D0O229D, Radio
Technical Commission for Aeronautics.

[Salazar et al., 2006] Salazar, D., Hernandez-Pajares, M., Juan, J. and Sanz, J.,
2006. Rapid Open Source GPS software development for modern embedded
systems: Using the GPSTk with the Gumstix. In: Proceedings of the
3rd. ESA Workshop on Satellite Navigation User Equipment Technologies.
NAVITEC '2006, Noordwijk, The Netherlands.

[Salazar et al., 2007] Salazar, D., Hernandez-Pajares, M., Juan, J. and Sanz,
J., 2007. The GPS Toolkit: World class open source software tools for the
GNSS research community. In: Proceedings of the 7th. Geomatic Week,
Barcelona. Spain.

[Salazar et al., 2008a] Salazar, D., Hernandez-Pajares, M., Juan, J. and Sanz,
J., 2008a. High accuracy positioning using carrier-phases with the open
source GPSTk software. In: Proceedings of the 4th. ESA Workshop on
Satellite Navigation User Equipment Technologies. NAVITEC '2008, No-
ordwijk, The Netherlands.

[Salazar et al., 2008b] Salazar, D., Hernandez-Pajares, M., Juan, J. and Sanz,
J., 2008b. Open source Precise Point Positioning with GNSS Data Struc-
tures and the GPSTk. In: Geophysical Research Abstracts. EGU2008-A-
03925, Vol. 10, Vienna, Austria.

[Salazar et al., 2009a] Salazar, D., Hernandez-Pajares, M., Juan, J. and Sanz,
J., 2009a. GNSS data management and processing with the GPSTk. GPS
Solutions.

[Salazar et al., 2009b] Salazar, D., Sanz, J. and Hernandez-Pajares, M., 2009b.
Phase-based GNSS data processing (PPP) with the GPSTk. In: Proceed-
ings of the 8th. Geomatic Week, Barcelona. Spain.

188 BIBLIOGRAPHY

[Scherneck, 1991] Scherneck, H., 1991. A parametrized solid Earth tide mode
and ocean loading effects for global geodetic base-line measurements. Geo-
physical Journal International 106(3), pp. 677-694.

[Serrano et al., 2004] Serrano, L., Kim, D. and Langley, R., 2004. A Single
GPS Receiver as a Real-Time, Accurate Velocity and Acceleration Sensor.
In: Proceedings of the 17th International Technical Meeting of the Satellite
Division of the Institute of Navigation (ION GNSS 2004), Long Beach, CA,
USA, pp. 2021-2034.

[Silicon Graphics, Inc., 2006] Silicon Graphics, Inc., 2006. Standard Template
Library Programmer’s Guide. http://www.sgi.com/tech/stl/index.html.

[Soulie, 2006] Soulie, J., 2006. C++ Language Tutorial.
http://www.cplusplus.com/doc/tutorial /.

[Sovers and Border, 1990] Sovers, O. J. and Border, J. S., 1990. Observation
Model and Parameter Partials for the JPL Geodetic GPS Modeling Software
'"GPSOMC'. Technical Report 87-21, Rev. 2, Jet Propulsion Laboratory
(JPL), Pasadena, California, USA.

[Stephens et al., 2006] Stephens, D. R., Diggins, C., Turkanis, J. and Cogswell,
J., 2006. C++ Cookbook. O’'Reilly Media Inc., Sebastopol, California,
USA.

[Stroustrup, 2006a] Stroustrup, B., 2006a. Bjarne Stroustrup’s FAQ.
http://www.research.att.com/~ bs/bs_faq.html.

[Stroustrup, 2006b] Stroustrup, B., 2006b. The C++ Programming Language.
http://www.research.att.com/~ bs/c++.html.

[Szarmes et al., 1997] Szarmes, M., Ryan, S., Lachapelle, G. and Fenton, P.,
1997. DGPS High Accuracy Aircraft Velocity Determination Using Doppler
Measurements. In: Proceedings of the International Symposium on Kine-
matic Systems (KIS97), Banff, Alberta, Canada.

[Takasu and Yasuda, 2009] Takasu, T. and Yasuda, A., 2009. Development of
the low-cost rtk-gps receiver with an open source program package rtklib.
In: Proceedings of International Symposium on GPS/GNSS, Jeju, Korea.

[Taylor, I.L., 1998] Taylor, I.L., 1998. The GNU configure and build system.
Website: http://www.airs.com/ian/configure/.

[Tolman et al., 2004] Tolman, B. W., Harris, R. B., Gaussiran, T., Munton, D.,
Little, J., Mach, R., Nelsen, S., Renfro, B. and Schlossberg, D., 2004. The
GPS Toolkit - Open Source GPS Software. In: Proceedings of ION GNSS
2004, Long Beach, California, USA.

BIBLIOGRAPHY 189

[Toran-Marti et al., 2002] Toran-Marti, F., Ventura-Traveset, J. and Chen, R.,
2002. The esa sisnet technology: Real-time access to the egnos services
through wireless networks and the internet. In: Proceedings of the 15th
International Technical Meeting of the Satellite Division of the Institute of

Navigation ION GPS 2002.

[van Graas and Soloviev, 2004] van Graas, F. and Soloviev, A., 2004. Precise
Velocity Estimation Using a Stand-Alone GPS Receiver. NAVIGATION:
Journal of The Institute of Navigation 51(4), pp. 283-292.

[Wang and Gao, 2006] Wang, M. and Gao, Y., 2006. GPS Un-Differenced Am-
biguity Resolution and Validation. In: Proceedings of the 19th International
Technical Meeting of the Satellite Division of the Institute of Navigation
(ION GNSS 2006), Fort Worth, Texas, USA., pp. 292-300.

[Waysmall Computers, 2006] Waysmall Computers, 2006. Buildroot. Website:
http://docwiki.gumstix.org/Buildroot.

[Williams, 1970] Williams, J. G., 1970. Solid Earth Tides. Technical Report
IOM 391-109, Jet Propulsion Laboratory (JPL), Pasadena, California, USA.

[Yang and Chen, 2001] Yang, M. and Chen, K., 2001. Performance Assess-
ment of a Noniterative Algorithm for Global Positioning System (GPS)
Absolute Positioning. In: Proceedings National Science Council ROC(A),
Vol. 25number 2, pp. 102-106.

[Zhang and Forsberg, 2007] Zhang, X. and Forsberg, R., 2007. Assessment of
long-range kinematic GPS positioning errors by comparison with airborne
laser altimetry and satellite altimetry. Journal of Geodesy 81(3), pp. 210—
211.

Index

~SolverPPP
gpstk::SolverPPP, 164

AlX, 20, 142
Ambiguity resolution, 128
ANSI, 20, 175
antenna
phase center, 53, 55, 59
ANTEX, 55, 143
API, 19, 20, 31, 39, 58, 142, 157, 180
Applied Research Laboratories, 17

Bancroft method, 125

BRUS, 3, 21, 24-27, 113
B2AConv, 24
BNAL, 24
BNAV, 24

buildroot, 176

C++, 13, 15, 20, 31, 37-39, 42, 56,
133, 135, 137, 139, 140, 175,
176, 178
Exception handling, 139
Inheritance, 135
OOP, 133
Operator overloading, 137
Polymorphic methods, 137
Templates, 138
carrier phase, 1, 14, 17, 21, 29, 44, 53,
54, 65, 66, 69, 71, 76, 85, 86,
88, 89, 95, 99, 113-116, 121
ionosphere free, 59, 73, 89, 94, 99,
111, 123
clock bias, 121

Compute
gpstk::SolverPPP, 164, 165
cycle slip, 30, 31, 43, 44, 57, 59, 60,
66, 89, 123, 124

DayTime, 31, 32, 150

DGPS, 30, 47, 50, 65, 66, 71, 74, 80,
86, 142

differential positioning, 126

Dilution of precision, 23, 59

Doppler, 85, 122

double differences positioning, 127

Doxygen, 15, 19, 20, 142, 157

Earth rotation parameters, 56
ECEF, 22, 23, 41, 43, 50, 62, 179
EGNQOS, 24, 26, 175, 178
ESTB, 24, 26
Ephemeris, 18, 22, 142
Broadcast, 22, 40, 65, 66, 179
broadcast, 142
SP3, 18, 22, 53, 57, 142, 153, 179
EUROCONTROL, 24
Exception handling, 22, 56
Extended velocity and acceleration de-
termination, 69, 99, 102, 104,
106, 108, 111, 115-118

Filter
Finite Impulse Response, 91, 92

g++, 20, 144
gAGE, 24, 26
GDS, 29, 31, 37

INDEX

191

Processing paradigm, 29-31, 37

Geomatics Week, 24, 27
geometric distance, 86, 88, 121
getClassName
gpstk::SolverPPP, 173
getIndex
gpstk::SolverPPP, 173
getPhaseBiasesModel
gpstk::SolverPPP, 171
getPhiMatrix
gpstk::SolverPPP, 172
getQMatrix
gpstk::SolverPPP, 173
getReceiverClockModel
gpstk::SolverPPP, 171
get TroposphereModel
gpstk::SolverPPP, 170
getWeightFactor
gpstk::SolverPPP, 167
getXCoordinatesModel
gpstk::SolverPPP, 168
getY CoordinatesModel
gpstk::SolverPPP, 169
getZCoordinatesModel
gpstk::SolverPPP, 169
GNSS
Control Segment, 119
Space Segment, 119
User Segment, 119
GPSTKk, 1, 3, 11, 17, 113, 133
gpstk::SolverPPP, 157
~SolverPPP, 164
Compute, 164, 165
getClassName, 173
getindex, 173
getPhaseBiasesModel, 171
getPhiMatrix, 172
getQMatrix, 173
getReceiverClockModel, 171
get TroposphereModel, 170
getWeightFactor, 167
getXCoordinatesModel, 168
getYCoordinatesModel, 169
getZCoordinatesModel, 169

Process, 166
Reset, 167
setCoordinatesModel, 170
setNEU, 167
setPhaseBiasesModel, 171
setPhiMatrix, 172
setQMatrix, 173
setReceiverClockModel, 171
setTroposphereModel, 170
setWeightFactor, 168
setXCoordinatesModel, 168
setYCoordinatesModel, 169
setZCoordinatesModel, 169
SolverPPP, 164

Gumstix, 12, 15, 20, 26, 175-178, 181
Basix 200, 20, 176

IGS, 53, 55, 56, 60, 62, 64, 66, 72, 78,
79, 81, 120

INS, 36, 69

instrumental delays, 121

IONEX, 142

ionosphere, 88, 121

Kalman filter, 23, 50, 63, 126, 128
Extended, 18, 23, 50, 51, 59, 60,
68, 77, 142
Klobuchar, 40, 178, 181

Least Mean Squares, 18, 23, 41, 92,
126, 142, 178, 180
Weighted, 23, 43, 44, 46, 47, 50,
92, 126, 142, 178, 180
LGPL, 18
Linux, 19, 20, 42, 142, 144, 146, 175

Macintosh OS X, 20, 142
metadata, 31, 51, 113
Microsoft
Visual C++ Express, 20, 144
Visual Studio C++, 20, 144
Windows, 20, 142
MOPS, 23, 24, 43, 178, 180
multipath, 121

192

INDEX

navigation equations, 125
differential positioning, 127
double differences positioning, 128
equations system, 126

NEU, 43, 50, 60, 62

Niell mapping function, 23, 60

Observable combinations, 123

lonospheric, 124

LC, 123

LI, 124

LW, 124

Melbourne-Wiubbena, 124

Narrow-lane, 124

PC, 123

Pdelta, 124

Pl, 124

W, 124

Wide-lane, 124
observation arc, 122
operator, 180

overload, 180

PDA, 175
phase ambiguity, 12, 59, 60, 66, 73,
75, 88, 99, 122-124
PLL, 122
Precise Orbits Positioning, 2, 4-6, 8,
9, 71, 72, 79-83, 85, 99, 100,
111, 114-116, 118
Precise Point Positioning, 1, 2, 4, 5, 7,
9, 53-56, 58, 59, 65, 67, 69,
71-73, 78, 79, 81, 82, 114,
116, 118, 128
Forward-backward, 63
Kinematic, 61
Static, 60
prefilter residual, 24, 25, 35, 38, 41,
49, 59, 65, 66, 125
Process
gpstk::SolverPPP, 166
pseudorange, 17, 21, 23, 29, 34, 38,
39, 51, 53, 65, 71, 76, 113,
120, 122, 178

ionosphere free, 44, 46, 59, 73,
104, 105, 123, 179, 181
smoothing, 43, 47
PXA-255, 175

Real Time Kinematic, 71
Real Time Kinematics, 12, 66
relativity, 88, 121
Reset
gpstk::SolverPPP, 167
RINEX, 19, 32, 34, 36, 38, 40, 49, 57,
60, 63, 100, 152

SatlD, 31, 32, 36, 46, 69
SBAS, 178
setCoordinatesModel
gpstk::SolverPPP, 170
setNEU
gpstk::SolverPPP, 167
setPhaseBiasesModel
gpstk::SolverPPP, 171
setPhiMatrix
gpstk::SolverPPP, 172
setQMatrix
gpstk::SolverPPP, 173
setReceiverClockModel
gpstk::SolverPPP, 171
set TroposphereModel
gpstk::SolverPPP, 170
setWeightFactor
gpstk::SolverPPP, 168
setXCoordinatesModel
gpstk::SolverPPP, 168
setY CoordinatesModel
gpstk::SolverPPP, 169
setZCoordinatesModel
gpstk::SolverPPP, 169
SISNet, 175
Solaris, 20, 142
Solution Independent Exchange, 60, 62
SolverPPP
gpstk::SolverPPP, 164
SourceForge, 18
SourcelD, 31, 32, 36, 69

INDEX 193

Standard Positioning Service, 24, 39,
41, 42

Standard Template Library, 37, 42, 67,
68, 140

Stroustrup, Bjarne, 133

Subversion, 176

Tides, 128
ocean loading, 55, 128, 131
pole movement, 55, 128, 131
solid, 55, 128, 130, 155
Total Group Delay, 44, 181
troposphere, 88, 99, 121
TypelD, 31, 32, 34, 36, 43, 50, 59, 69

UNIX, 19, 20, 38

validation, 21
position domain, 25
range domain, 24
Virtual Reference Station, 71

wind-up, 53, 59, 88, 122, 143

