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es presenta en aquesta memòria per optar al grau de Doctor en Medi Ambient (Itinerari
de Tecnologia i F́ısica Ambientals) per la Universitat de Girona.
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Xavi M., Arnau, Roger, Rosaĺıa, Mireia N., Christian, Maribel, Neus, Meri, Xavi P.,
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Chapter 1

Introduction

1.1 An environmental motivation

One of the most important applications of Life and Earth sciences to our everyday
life is the assessment of environment quality. This concept arose recently, after more
than one century of industrial use and abuse of our environment. In a natural environ-
ment, pollution of running or still water, air and soil, as well as the damage on living
beings, has been the concern of environmentalists since the 70s. In urban areas of de-
veloped countries, an interest has also arisen on the quality of the environment, from
air pollution to the potability of supplied water. Humans, like all living beings, use the
environment as a resource, and demand a minimal quality of it. But at the same time,
this very use alters the quality of this resource, most usually lowering it. The resolution
of this contradiction, and the quest for a tradeoff between maximal use and minimal
quality alteration, is the subject of environmental management policies. A reasonable
environmental management policy calls for an assessment of the environmental quality,
as well as of the potential uses of an environmental resource.

To provide policy makers with such an assessment, scientists have been developing
environmental quality indices for the last 20 years. A quality index is intended as an
objective quantitative measure of the suitability of a resource for a given use. There
are many types of indices, according to which method they use to measure quality:
color, chemical elements or microorganism concentration, counts of sensitive macro-
invertebrates, etc. to give but a few from the huge variety of physical, chemical,
microbial or biological quality indices available. Note the variety of characteristics of
the sample space of these variables: some are qualitative (color), some numerical of
discrete nature (counts), and other are continuous, either unbounded (temperature)
or bounded (concentrations). However, the measures should be simple and give an
integrated information on the state of the environment, and this is not common: the
most integrated and powerful quality indices are so complex that only an expert can use
them as objective measures. Statistics have there a tool to offer, which can integrate
as many information of any kind as one can model and offers a final quantitative
continuous measure of quality: probability.
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2 Introduction

In natural risk assessment, one uses the concepts of hazard, vulnerability and risk.
Hazard of a given event is defined as the probability of occurrence of this event. Vul-
nerability informs of the loss that will occur if this hazardous event takes place; it is
usually measured in terms of money or human lives. Risk is then the expected loss,
or the product of hazard by vulnerability. This simple scheme can become so complex
as desired, by introducing many simple hazardous events, or events which accept dif-
ferent degrees of danger. By comparing them with environmental quality issues, one
might interpret the use of a resource as a vulnerability, while hazard can be seen as an
environmental quality measure: the higher the hazard the lower the quality.

Usually, natural hazard is associated to a place and a moment, and so may be also
an environmental quality measure. In this way, one may take measures e.g.of a given
water quality index in a river, both in time at a single place, or along the flow in a
given moment. It is then needed to take into account some sort of relation between
the measurements, since they are clearly not independent. Summarizing, a probabilis-
tic water quality index calls for statistical techniques of computation of probabilities
which take full profit of all the characteristics of the measurements involved, mainly
their mutual dependence and their different sample spaces, and with different scales of
comparison in them.

1.2 Statement of the problem

The sample space of a variable is its set of possible values. Although it is an old
statistical concept, its practical importance has been seldom considered in the applied
sciences. In particular, it came to the geosciences through the context of Compositional
Data Analysis [Aitchison, 1986]. It is nevertheless quite easy to take it into account,
when the sample space may be given an Euclidean structure.

Geostatistics [Matheron, 1965] is the name of a series of techniques devised to treat
data sets with mutual dependence, something which precludes using on them classical
statistical techniques. Geostatistical techniques may be divided in two groups: those
predicting the value of a variable, and those estimating its probability distribution.
In a conventional framework, both types assume almost always (implicit or explicitly)
the variables to have a real unbounded sample space. However, many variables do
not satisfy this requirement: their sample spaces are either subsets of the real space,
or a set of categories. This is not an unimportant issue: by taking into account
possible structures for the sample space, new light is cast on old geostatistical problems,
e.g.those affecting positive variables assumed to be lognormally distributed. In this
way, we may estimate better the probability distribution as a tool for hazard/quality
assessment.

The goal of this Thesis is to integrate these considerations on the structure of the
sample space of the variables into the existing geostatistical techniques, in the case
that this sample space can be given a meaningful Euclidean structure. We will show
that geostatistical tools and concepts are objects or operations in this space structure,
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which means that they have a sense on their own, independently of the way they are
represented.

1.2.1 Hazard

Hazard assessment is essentially committed with the estimation of the probability of
occurrence of events, which are regarded as dangerous [Hewitt, 1997]. The first step
is then the definition of a dangerous event, or a family of ordered events. One might
think on the danger of, e.g.presence of carbon monoxide in the air (lethal in parts-
per-billion), or the concentration of ammonia in a lake. The first case would give us
a single dangerous event—being above the toxicity threshold—, while the second one
would give rise to a family of events ordered in an increasing degree of damage—being
above each of the toxicity thresholds for fishes, for human beings, for agricultural uses,
etc.—.

In probabilistic terms, hazard assessment reduces to the estimation of the proba-
bility of occurrence of an event. A Bernoulli event is the simplest model to devise: at
each trial, a probability of success is defined as the probability p of occurrence of the
desired event, and the probability of failure is its complementary q = 1− p. These two
probabilities do not change from trial to trial, and the result of each trial is independent
from all the others.

There are several philosophical approaches to the concept of probability. Each of
them yield different procedures to estimate p or q, being complementary. We will speak
about the frequentist and about the Bayesian approach, following the exposition of
Leonard and Hsu [1999]. The frequentist approach defines the probability of occurrence
of an event as the limit of the number of times the event occurred divided by the total
number of trials, when this number of trials tends to infinity. The Bayesian approach
regards the value of p as a subjective reliability of occurrence of the event. In the
frequentist case, the estimator p̂ of p will be the number of times the event occurred
divided by the number of trials, although this number of trials is finite. The Bayesian
estimation procedure takes the prior reliability assessment of the possible values of p,
updates it by the information brought by the observed events, and obtains a posterior
assessment of the reliability of this occurrence. From the differences between them, we
highlight: a) the Bayesian approach needs a prior assessment of the possible values of p,
and b) it offers a posterior assessment of the possible values of p, while the frequentist
approach yields a single estimate which only depends on the data, and not on prior
knowledge.

When attending to a family of ordered dangerous events, we face the estimation
of a probability distribution function, i.e.a function which describes the reliability of
each possible outcome of a random variable. This is achieved by assuming a para-
metric model for that random variable (e.g.the normal or Gaussian distribution), and
estimating the parameters of the model. The Bernoulli case may be seen as a par-
ticular case, where the Bernoulli model is described by the parameter p. Both the
frequentist and the Bayesian approaches allow such an estimation, using a sample, a
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set of independent realizations of the random variable, i.e.independent measurements.
Once the parameters are estimated, the probability function is completely specified,
and the probability of any dangerous event can be computed. In the second example
above, once we know the probability function of the ammonia concentration we can
compute the probability of being above each of the mentioned thresholds. Obviously,
these probabilities are expected to be ordered, as were the thresholds themselves.

1.2.2 Regionalized variable

The term regionalized variable was coined by Matheron [1965] to describe those sets
of measurements, distributed across time and space, presenting a mutual dependence
inherited from the proximity of their sampling locations. Its generalization to region-
alized vectors is usually referred to as coregionalization. The set of techniques used to
analyze regionalized variables and vectors is known as geostatistics.

The coregionalized paradigm is used to investigate structural dependencies among
spatially-distributed variables, like e.g.joint covariation of porosity and log-permeabi-
lity in an aquifer or of several climatic variables along a mountain range. This spatial
structural analysis of covariation is usually followed by an interpolation procedure: the
coregionalization assumption allows the estimation of the whole vector, or of some of
its components, at any non- or partially-sampled location, jointly with a measure of
the incurred error. A further assumption, the joint normality of all variables at all
locations, delivers a stronger result: the estimate and its error define the distribution
of uncertainty on the true predicted value, conditional on the observations. Using this
result, hazard assessments have been conducted for regionalized variables.

When joint multivariate normality is not a valid model assumption, but the proba-
bilities of some hazardous events have to be determined, there are other useful geosta-
tistical techniques. One of them works with indicator functions [Journel, 1983]: these
are valued as one at those places where the hazardous event was actually observed, and
as zero elsewhere at the sampled locations. Then, these indicator values are considered
a coregionalization, and interpolated: the obtained values are finally interpreted as
the conditional probability of observing the event. This technique is very frequently
used, due to its simplicity and straightforward application, in spite of the rather high
frequency in which it delivers results impossible to interpret as a probability.

The other approach used to deal with non-normally distributed coregionalizations
is based on transformations: coregionalizations are assumed to follow a joint multi-
variate normal model after application of a specified marginal transformation, e.g.a
logarithm. Then, classical methods are applied to the transformed scores, and finally
interpolations are either used to define the joint model (and to compute hazard esti-
mates) or back-transformed. This approach has a long history of application in positive
and compositional coregionalizations, which are expected to become tractable after a
logarithmic or a logistic transformation. However, the obtained results after back-
transformation are regarded as non-optimal, since we cannot minimize simultaneously
the error in the transformed and back-transformed spaces: with an example, if we
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interpolate a permeability (or [H3O
+]) as a positive variable by using its logarithm,

we cannot simultaneously obtain an optimal estimate of this permeability (or [H3O
+])

which corresponds to an optimal log-permeability (or pH), and viceversa.

1.2.3 Sample space

These considerations on the optimality properties of back-transformed estimates lead
us to the keystone of this work. It deals exclusively with data which scale is captured
by a particular structure of the sample space: an Euclidean structure. Briefly speaking,
the sample space of a variable is the set of its possible results; the scale of a variable
(or a data set) is the analyst’s interpretation of how different are its values; finally, the
structure given to the sample space is a choice of operations, and with them the analysts
pretends to adequately describe the scale of the random variable. These concepts are
well-known in statistics, but its practical implications in applied sciences have been
seldom taken into account, until the work of Pawlowsky-Glahn [2003]. Exploring their
applications and implications to the geostatistical case form the keystone of this Thesis.

Most statistical methods (both under independence assumptions, and from the
geostatistical perspective) assume the data set to be drawn from the real unbounded
Euclidean space: this is seldom explicitly said, but comes implicitly when taking as
a measure of the prediction error a squared difference, or the squared Euclidean dis-
tance between the prediction and the target. In the case of parametric methods, this is
much clearer, because most of them assume the data set to be generated by a normal
distribution, which has an unbounded domain. Those methods developed for other
models essentially work with transformations of the data, sometimes called link func-
tions [Leonard and Hsu, 1999], intended to deliver real unbounded results. An example
of such a procedure may be found in the definition of the lognormal distribution.

Usually, strictly positive variables are applied a logarithmic transformation, with
the aim to obtain normally-distributed scores. The original variable is said then to
follow a lognormal distribution, which takes into account the fact that intervals in
the transformed space do not have the same length as in the original one. But the
sample space of this distribution, the positive real line, can be given a real vector space
structure (indeed, an Euclidean one), and standard algebra can be applied. First,
a basis (a set of vectors univocally generating the whole space) may be chosen, and
then any vector (fixed or random) of this space can be univocally expressed with its
coordinates with respect to this basis. By definition, these coordinates are real and
unbounded, and the Euclidean distance is well-suited for them, as is any hypothesis
of normality. From this point of view, for instance, the arithmetic average of real
numbers should be replaced by the geometric average when dealing with variables with
a positive scale, as we will see in chapter 5.

Following the same approach, compositional data—positive vectors which compo-
nents sum up to 100%, or any other fixed constant—can be treated in a new way
if their sample space, the Simplex, is given an Euclidean space structure [Billheimer
et al., 2001, Pawlowsky-Glahn and Egozcue, 2001]. This structure arises if we assume
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that compositions only convey information about the relative importance of each part
in a total. In this structure, a D-part composition (for instance, the content in Pb,
Hg and Fe of some moss species) is expressed as a vector of real unbounded coordi-
nates with respect to a basis formed with D − 1 compositions. Then statistics can be
applied to these real scores, and those results defining a geometric object (a mean, a
confidence region, a line) may be applied to the chosen basis to recover a compositional
object. Such procedure, for instance, advocates for the closed geometric mean as the
best central tendency indicator of a compositional data set [Aitchison, 1982].

1.3 Structure of the Thesis

To address these concepts, this document is structured as follows.
First chapter has already outlined the main concepts involved in this study, and it

will end with a presentation of the case studies used to illustrate it.
Second and third chapters are a state-of-the-art, devoted to present the founding

ideas and methods used throughout the rest of the document. The second chapter
is devoted to sample space considerations, based on the concept of Euclidean space,
focusing on its geometric characterization and introducing probability distributions and
inference techniques on it, particularly for the Simplex. A preliminary investigation is
conducted on the three case studies to illustrate the concepts introduced. The third
chapter summarizes existing geostatistical techniques, and develops one of the case
studies.

Fourth chapter is the central part of this work, since it generalizes the main geo-
statistical techniques in order to deal with variables valued on an arbitrary Euclidean
space. Three particular cases—with their respective case studies—are included in this
Thesis: the third chapter was devoted to real variables, the fifth is centered on positive
ones, and the sixth on compositional vectors.

Seventh chapter presents possible applications of the results in the preceding sec-
tions (mainly chapter six) to estimate the probability distribution of a broader class of
variables, not necessarily valued on an Euclidean space.

The last chapter closes this work with a discussion on the results obtained in the
analyzed case studies—focusing on the comparison of the hazard results obtained with
each technique—and some methodological conclusions and open issues.

Some of these chapters begin with a short summary of their theoretical content, and
all finish with a sort of preliminary conclusions regarding that specific chapter. The idea
of these introductory and final summaries is to put each chapter in the general context
of the work. Also, some chapters contain a final addendum, where some complementary
explanations and proofs are included. A summary of the notation is included in a last
chapter in the fashion of an appendix.
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1.4 Case studies

1.4.1 The Tordera river at Gualba (Spain)

The Tordera River is located in north-eastern Spain, in the Catalan provinces of
Barcelona and Girona. It drains a basin of 835 km2, between three mountain systems
(figure 1.1), the Montseny Massif, the Montnegre Range and the Guilleries Range. The
studied station is located at UTM 461050.01 easting and 4618241.4 northing, in the
municipality of Gualba. It is placed in the upper valley, and its catchment area repre-
sents approximately a fourth of the total basin, with contributions from the two first
mountain systems. These are similar granitic massifs, with some metamorphic pelitic
rocks—from phillite to orthogneiss—and small marble outcrops. The river itself flows
through quaternary siliceous infills.

Most of the basin surface (figure 1.2) is occupied with meadows and woods, some of
them under special protection plans (Montseny Natural Park and Montnegre-Corredor
Natural Park). The Sant Celoni waste-water treating plant dumps its effluents up-
stream of this station. This village had 14278 registered inhabitants in year 2004;
it is a small industrial center, with chemical industries and pharmaceutical facilities
[Idescat, 2005, April 15]. These industries have their own waste-water treating plants,
which also dump into the river. The human impact on the river is considered as
moderate.

The Gualba station belongs to the XACQA (water quality automatic control net-
work), integrated by 33 stations distributed along the main rivers in Catalunya. It is
the only one of this kind in the Tordera basin. At these stations, the river water is
sampled almost continuously, measuring some parameters to monitor urban and indus-
trial pollution: pH, water temperature, Ammonia content, dissolved Oxygen content,
conductivity, cloudiness, etc. These measures are used to define some categories of ac-
ceptable water uses [Poch, 1999]. Table 1.1 shows them as function of the parameters
studied here, which were kindly provided by Llúıs Godé from the Agència Catalana de
l’ Aigua (ACA, Catalan Water Control Agency).

Table 1.1: Water quality categories used by the ACA (Catalan Water Control Agency),
as functions of conductivity, pH and ammonium content [Poch, 1999].

Conductivity pH Ammonium
category uses min max min max min max

1 quality-demanding uses 0 1000 6.5 8.5 0 0.05
2 general uses 0 1000 6.5 8.5 0.05 1
3 non-demanding uses 0 1000 6.5 8.5 1 4
4 minimal uses 1000 2500 6.5 9.0 4 20

µS/cm — mg/l

In this context, focus is mainly put on monitoring Nitrogen, due to its key impor-
tance in the eutrophication processes. Eutrophication is an uncontrolled increase of
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algae populations in rivers or lakes due to too much availability of Nitrogen and Phos-
phor, the main nutrients controlling the growth of living beings. In granitic basins,
Phosphor is naturally present, and the limiting factor becomes Nitrogen. Indepen-
dently of its eutrophication action, Ammonia (NH3) is an interesting parameter in
itself: apart from the limits in table 1.1, Spanish legal dispositions order Ammonia
(not Ammonium) content to be kept below 0.025ppm, due to its poisonous character
[Mapfre, 2000].

Ammonia (NH3) is very difficult to measure, due to its volatility properties. It is
kept in aqueous solution in the form of Ammonium (NH+

4 ), which is far less danger-
ous. Ammonium behaves as a weak acid, and returns to Ammonia form due to the
equilibrium equation

NH+
4 + H2O ⇋ NH3 + H3O

+,

characterized by the equilibrium constant

[NH3] · [H3O
+][

NH+
4

] = Ka, (1.1)

being [X] the molar concentration or molarity (mol/l) of species X. The equilibrium
constant is inversely related to the absolute temperature due to thermodynamic rela-
tions. It can nevertheless be reasonably approximated by a polynomial [Mart́ı, 2004,
pers. comm.]

pKa = 4 · 10−8 · T 3 + 9 · 10−5 · T 2 − 3.56 · 10−2 · T + 10.072, (1.2)

where pKa = − log10Ka, and T is measured in Celsius degrees. Using this decimal
logarithm, expression (1.1) becomes

pNH3 = pKa + pNH4 − pH, (1.3)

with pX = − log10 [X]. Then, although it can be hardly measured, the Ammonia
content may be computed using expressions (1.2) and (1.3), once Ammonium content,
pH and water temperature are known.

Tolosana-Delgado [2004] showed that the Ammonia system is strongly affected in
this river by a periodic drift, mainly of 24h-period, which was suggested to be related to
solar radiation through water temperature and dissolved oxygen content. This would
imply that fluctuation of chemical parameters in this river may not only be caused by
humans, but also be due to the natural dynamics of its ecosystem.

The goal will be the inference of the hazard of Ammonia pollution—exceedance of
the 0.025ppm legal threshold—as a function of the measured parameters, as well as
the assessment of water quality as a function of these parameters, following table 1.1,
and taking into account possible periodic drifts.

1.4.2 Air pollution in the Carpathian Range (Ukraine)

The Carpathian Range crosses eastern Europe describing a 1500 km long arch from the
Czech Republic to Romania, crossing Poland and Ukraine, and surrounding Hungary
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Figure 1.1: Lithologic map of the Tordera basin, distinguishing between: (A) granitic
and other acid-intermediate plutonic rocks, (B) other igneous rocks (mainly lava flows),
(C) metasedimentary and metamorphic siliceous rocks, (D) siliceous sedimentary series,
(E) carbonate and meta-carbonare rocks, and (F) Quaternary infills. Note that (E)
materials represent the only major source of HCO−

3 . The star is placed in the studied
station.

Figure 1.2: Map of land uses of the Tordera basin, distinguishing between: (A) urban
areas and structures, (B) agricultural areas, (C) forests and natural areas, (D) rivers
and continental water, and (E) the Mediterranean sea. The star is placed in the studied
station.
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Figure 1.3: Location of the Carpathian range.

Figure 1.4: Mean features of the studied region of the Ukrainian Carpathian range:
height curves, main cities (dots, size shows three categories of cities according to their
industrial importance and size) and sampling locations (stars).
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(figure 1.3). Although it is not a high range, it has an important influence on the
winds of the region and, consequently, on air pollution dynamics. To monitor these
dynamics in the Ukrainian part of the Carpathians (figure 1.4), a sample of two species
of moss—regarded as proxies for air pollution—was collected: at each sampled loca-
tion, five whole moss individuals were mixed and processed to analyze their content in
several metals: Cd, Pb, Cr, Fe, Hg, etc. Since these plants live several years, results
might be interpreted as the average pollution in the last 3-5 years. This data set and
the information gathered here were kindly provided by Dr. Tyutyunnik Yulian Gen-
nadievich, with permission from Dr. Blum Oleg Borisovich, chief of the Laboratory
of Bio-indication of the National Botanic Garden of the Ukrainian National Science
Academy.

From this data set three components have been selected —Pb,Fe and Hg—due to
their known connection with major air pollution phenomena in the region. Lead (Pb)
is a by-product of combustion of petrol fuels. Regulations about lead content in fuels
were not fully implanted in Ukraine during the sampling period. It forms small-size
particle aerosols, with a medium transportability, and it is expected to have a strong
influence around cities and along the main roads. Iron (Fe) particles—related to open-
air corrosion processes—are transported through the air also in aerosols, but of bigger
particles: they are consequently more difficult to carry. Iron is then expected to be
found mainly around cities. Finally, quicksilver (Hg) is transported through the air
dissolved in water vapor, and is deposited with rain. Thus, Hg is highly transportable,
up to thousands of kilometers; in fact, in this area it is considered a regional pollutant,
originating in the industrial areas of central Europe [Tyutyunnik, 2005, pers. comm.].
The goal in this data set will be to assess the relative influences of these three processes.
The relative character is highlighted because the total amount of the studied three parts
may be related to exposure time, and to age of collected plants, thus masking absolute
intensity of pollution.
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Chapter 2

Preliminary concepts from Algebra
and Statistics

Real data are uncertain: experimental values are affected by different sources of ran-
domness, models may not take into account important processes, or measurements
might be affected by instrumental errors. We usually model such a situation with
random variables, from which one wants to extract a central characteristic value and
a dispersion indicator. The range of values considered as possible outcomes of such a
variable is called the sample space. Most interesting sample spaces can be given a struc-
ture, describing meaningful uncertainty-generating processes (or operations). Here and
throughout this Thesis, the term ”meaningful” expresses the subjective assessment of
the analyst on how the structure given to a sample space describes the scale considered
for the observed data set.

In this chapter the algebraic structure known as Euclidean space is summarized,
with its operations and elements. This part can be found in any first-course Algebra
textbook, e.g. in Rojo [1986]. On an Euclidean space structure, some measure concepts
have been introduced, basically those related to random variables and its moments.
Furthermore, the Normal distribution on an Euclidean space have been defined [Eaton,
1983, Pawlowsky-Glahn, 2003]. Finally, inference on the parameters of this normal
distribution is outlined, closely following the classical inference approach as can be
found in any basic bayesian statistics textbook, e.g. in Leonard and Hsu [1999]. Three
data sets are used to illustrate the concepts of sample space, scale and structure, as
well as the estimation of central tendency parameters and hazard probabilities. To
close this chapter, a summary of some existing distributions to deal with data in the
Simplex is included.

2.1 General basic notation

Throughout this work, a set of objects is represented with double uppercase characters,
like E, F or S; in particular, R will denote the set of all real numbers, and R

D the D-
dimensional real space. Also, the following notation will be used. The elements of one

13
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of these sets a ∈ E will be denoted by lowercase boldface Latin characters, but the
real scalar values α ∈ R by lowercase Greek characters. A finite set of elements will
be denoted by an uppercase boldface Latin character, A = {a1, a2, . . . , aN}. A simple
underlining of a lowercase Greek character will represent a vector of real values α ∈ R

D,
and a double underlining of a character ϕ, a matrix of real coefficients. Furthermore, an

operator T (·) (either a Greek or an uppercase Latin character) acting in an element a
will be represented by Ta = T (a). The next section introduces further notation related
to Euclidean spaces. A complete notation summary is included in the last chapter.

2.2 Geometry of the sample space

2.2.1 Vector space

Definition 2.1 (Real vector space) Let E be a set, and let (R,+, ·) represent the
scalar field of real numbers, with classical sum and product defined on it. The set
E equipped with two closed operations, called for convention inner sum and external
product and denoted respectively by ⊕ and ⊙, is called a real vector space (or, simply,
vector space) if the following properties are satisfied. For any a, b, c ∈ E and λ, µ ∈ R,

• commutative inner sum: a⊕b = b⊕a,

• associative inner sum: (a⊕b)⊕c = a⊕(b⊕c),

• existence of a neutral element with respect to the inner sum: a⊕n = a,

• existence of an opposite element for any other: a⊕ā = n; one shall denote
alternatively ā = ⊖a, and interpret ⊖ as the inverse operation of ⊕,

• external product distributive with respect to the inner sum:
λ⊙(a⊕b) = λ⊙a⊕λ⊙b,

• external product distributive with respect to the sum of the scalar field:
(λ+ µ)⊙a = λ⊙a⊕µ⊙a,

• external product associative with the product of the scalar field:
λ⊙(µ⊙a) = (λ · µ)⊙a,

• existence of a neutral element in the scalar field with respect to the external prod-
uct:
1⊙a = a.

Then, the elements of E are called vectors.

The properties stated allow for an extensive and unambiguous treatment of all
vectors in E through the concepts of linear combination and linear independence.
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Definition 2.2 Given a set E ⊂ E formed with D vectors, E = {e1, e2, . . . , eD}, and
a set of scalar coefficients λ1, λ2, . . . , λD, a linear combination of E is a vector b ∈ E

computed as

b = λ1⊙e1⊕λ2⊙e2⊕ · · ·⊕λD⊙eD =
⊕D

i=1
λi⊙ei. (2.1)

Using this, the following concepts are introduced:

1. if there are no λi which allow to obtain b with (2.1), then b is linearly independent
of E; otherwise, when these λi exist, then b is said to be linearly dependent of E,

2. E is said to be linearly independent if all its vectors are linearly independent of
the others,

3. if all the vector in E are linearly dependent of E, then E is called a generating
system of E,

4. if E is a linearly independent generating system, then it is called a basis of E,
and the number of vectors in E is identified with the dimension of E.

Definition 2.3 The unique values λi needed to obtain a vector b as a linear combina-
tion of a basis E are called the coordinates of b in the basis E.

Definition 2.4 Let F be a subset of E. If any linear combination (2.1) of vectors of
F is included in F, then F is called a vector subspace of E.

All properties and concepts defined in this section can be equally applied to vector
subspaces with the same inner sum and external product operations.

Definition 2.5 (Scalar product) Let a, b, c be elements of E, and λ ∈ R; then, any
function 〈·, ·〉E : E × E → R is called a scalar product between elements of E if it
satisfies the following conditions

1. it is symmetric, 〈a, b〉E = 〈b,a〉E,

2. it is linear with respect to the vector space operations,
〈a⊕λ⊙b, c〉E = 〈a, c〉E + λ〈b, c〉E,

3. the scalar product of a vector with itself is positive, 〈a,a〉E ≥ 0,

4. the scalar product of a vector with itself is zero only for the neutral element,
〈a,a〉E = 0 ⇔ a = n.

Definition 2.6 (Euclidean space) A set E is a D-dimensional Euclidean space if
it is a D-dimensional real vector space equipped with a scalar product. It is usually
denoted by the compact form {E,⊕,⊙, 〈·, ·〉E}.
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Definition 2.7 In an Euclidean space, the norm ‖ · ‖E : E → R+ of a vector is defined
as ‖a‖E =

√
〈a,a〉E. By using the norm of the difference, one can define a distance in

an Euclidean space, as d(a, b) = ‖a⊖b‖E.

Property 2.1 Let a, b, c be elements of E, then the distance function

d(·, ·) : E × E → R+

computed as d(a, b) = ‖a⊖b‖E satisfies the following conditions:

1. it is positive, d(a, b) ≥ 0,

2. d(a, b) = 0 ⇔ a = b,

3. it is symmetric, d(a, b) = d(b,a),

4. it satisfies the triangular inequality, d(a, c) + d(c, b) ≥ d(a, b).

5. it is invariant by translation (or application of the inner sum operation), d(a⊕c, b⊕c) =
d(a, b),

6. it is scaled by the application of an external product, d(λ⊙a, λ⊙b) = |λ| · d(a, b).

The cosine of an angle θ between two vectors a and b is given by

cos(θ) =
〈a,b〉E

‖a‖E · ‖b‖E

,

from which the angle θ itself is obtained. This allows the introduction of the concepts
of

1. parallelism: a and b are parallel if θ = 0 or, equivalently, 〈a,b〉E = ‖a‖E · ‖b‖E,

2. orthogonality : a and b are orthogonal if θ = π/2 or, equivalently, 〈a,b〉E = 0;

Note that parallelism implies linear dependence, whereas two vectors a,b 6= n are
linearly independent if they are orthogonal.

Definition 2.8 (Orthogonal basis) A basis E = {e1, e2, . . . , eD} is said to be or-
thogonal if all its elements are orthogonal to each other.

Any vector b ∈ E can be univocally expressed as a linear combination (2.1) of the
elements of such an orthogonal basis by

b =
⊕D

i=1
βi⊙ei; βi =

〈b, ei〉E

〈ei, ei〉E

, (2.2)

where the values βi are the coordinates with respect to that basis.
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Definition 2.9 (Orthonormal basis) A basis is said to be orthonormal if it is or-
thogonal and its elements have unitary norm,

〈ei, ej〉E = δij =

{
1, i = j
0, i 6= j.

The use of orthonormal bases further simplifies the computation of the coordinates βi

of a vector b with respect to a basis E, since βi = 〈b, ei〉E in equation (2.2).

Property 2.2 Once an orthonormal basis is specified, any element of the space E is
univocally determined by the real vector of its coordinates β = (βi) ∈ R

D in that basis,
and all vector operations in the space can be defined as follows:

1. if g = a⊕b then γ = α+ β,

2. if b = λ⊙a then β = λ · α,

3. 〈a, b〉E = 〈α, β〉R =
∑D

i=1 αi · βi,

4. ‖a‖E = ‖α‖R =
√∑D

i=1 α
2
i ,

5. dE(a, b) = dR(α, β) =
√∑D

i=1 (αi − βi)
2,

where α, β and γ represent the vectors of coefficients of respectively a, b and g in
the given basis. In other words, given an orthonormal basis, any D-dimensional Eu-
clidean space {E,⊕,⊙, 〈·, ·〉E} and its space of coordinates {RD,+, ·, 〈·, ·〉R} are com-
pletely equivalent.

2.2.2 Linear applications

Definition 2.10 (Linear transformation) Let {E,⊕,⊙} and {F,+, ·} be two dif-
ferent vector spaces, with different rules of addition and product with a scalar. Then,
an application T (·) from E onto F is called a linear transformation if and only if it
satisfies

T (a⊕λ⊙b) = Ta + λ · Tb

for any a ∈ E, b ∈ F and λ ∈ R.

Some short comments about linear transformations follow.

• With the same vector operations of {F,+, ·}, the set of linear applications L(E,F)
is itself a vector space, denoted by {L(E,F),+, ·}.

• Fixed suitable basis for E and F (with respectively dimensions D and C), the lin-
ear transformation T is univocally identified by a C×D matrix of real coefficients
T .



18 Preliminary concepts

• If the vectors a and b are represented in these respective basis as α and β, column
matrices, then

b = Ta ⇔ β = T · α.
• Linear applications can be composed, and the result is still a linear application.

For instance, if B : V1 → V2 and C : V2 → V3, then we may define a new linear
transformation (CB) ≡ C ◦B ≡ A : V1 → V3.

• Given suitable basis for the spaces V1,V2,V3, the following relation between the
matrix representation of these applications is satisfied: A = C ·B.

Definition 2.11 (Adjoint transformation) Let {E,⊕,⊙, 〈·, ·〉E} and {F,+, ·, 〈·, ·〉F}
be two different Euclidean spaces. Then, for any linear transformation T (·) : E → F,
there exists another linear transformation T t(·) : F → E such that

〈Ta, b〉F = 〈a, T tb〉E

for any a ∈ E, b ∈ F. The linear transformation T t is called adjoint transformation of
T , and vice-versa.

Definition 2.12 (Endomorphism on E) Let E be a D-dimensional vector space. A
linear transformation T (·) from and onto E is called an endomorphism.

Regarding endomorphisms, note the following comments.

• Once fixed a basis E, an endomorphism may be represented by a D×D matrix.

• If we change the basis of representation to F, we may obtain the new matrix
expression of the endomorphism as ϕ−1 · T · ϕ, where ϕ contains the coordinates

of the vectors of F with respect to the basis E.

• Composition of endomorphisms is an inner operation of the space L(E,E), since
it takes two endomorphisms and returns another endomorphism. Therefore this
space has further structure than a simple vector space. Note that it plays de
role of a product, and is associative but not commutative, like the product of
matrices.

Two particular endomorphisms are interesting, once we introduce the composition
operation.

Definition 2.13 (Identity on E) Let E be a D-dimensional vector space, and L(E,E)
the space of endomorphisms on E. Then, there exists an application I(·) ∈ L(E,E)
such that for any T (·) ∈ L(E,E), the composite satisfies IT = TI = T . The matrix
representation of this endomorphism is the identity matrix of D columns and rows.

Definition 2.14 (Inverse endomorphism) Let E be a D-dimensional vector space,
and L(E,E) the space of endomorphisms on E. If a pair of applications T1(·), T2(·) ∈
L(E,E) satisfy that their composition is T1T2 = T2T1 = I the identity, they are called
invertible, and one is considered the inverse of the other, denoted by T−1

1 = T2. The
matrix representations of these endomorphisms are mutually inverse matrices.
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2.3 Probability laws on coordinates

2.3.1 Measure considerations

Notation

In this section, E ⊂ R
D is taken as a C-dimensional Euclidean space included in the

D-dimensional real space, with C ≤ D. We will identify α and β as the vectors of

coordinates of a and b in a basis of E, and a and b as real vectors in R
D.

Lebesgue measure on R
D

The Lebesgue measure of an interval (a, b) ⊂ R is defined as the length of the interval,
or the distance between its extreme points, λ(a, b) = dR(a, b) = |a − b|. To extend
the concept to higher dimensions, first the D-interval must be defined: it is the hyper-
rectangle defined by two extreme points of a diagonal and sides parallel to the axis
defined by the basis of R

D. The Lebesgue measure of a D-interval defined by vectors
a and b is simply the product of the length of each side of the hyper-rectangle,

λRD = λ(a, b) =
D∏

i=1

|ai − bi|.

Measure and other related concepts are the concern of Measure Theory, a subject
treated by many advanced manuals, see for instance [Nielsen, 1997]. The approach of
this Thesis is much simpler, focusing on the definition of alternative measures, how to
change between them, and their influence in inference procedures.

Lebesgue measure on E

Definition 2.15 The Lebesgue measure of a C-interval defined by two vectors a and
b in an arbitrary Euclidean space E with respect to a basis E is

λE = λ(a, b) =
C∏

i=1

|αi − βi|, (2.3)

where αi and βi are the coordinates of a and b.

Finally, the Lebesgue measure of a subset A ⊂ E is defined as the Lebesgue measure
of the subset of R

C formed with the coefficients of A, extending the classical definition
of λ(A). As stated by Pawlowsky-Glahn [2003], this connection between the geometric
space structure of E and its Lebesgue measure does not imply that there is just one
measure for E. For instance, when E ⊂ R

D one can apply the measure of R
D to the

elements of E.



20 Preliminary concepts

Probability measures

The kind of measures most often used throughout this work are probability measures,
denoted by P (·). This well-established subject is treated by many textbooks, like
in Nielsen [1997], already cited, or more specifically, in Rényi [1976]. Probability
considers the measure of the whole space to be one, P (E) = 1. They are interpreted in
conjunction with a random vector Z ∈ E, and the measure of a subset A is equivalent
to the probability Pr [Z ∈ A] = P (A) that the random vector falls inside A. We can
therefore define a function FZ(·) that relates each possible subset A ⊂ E with its
probability measure: FZ(A) = Pr [Z ∈ A] = P (A). This function is called a probability
law , and its relationship to the random vector is explicitly encoded in the subindex
Z. It is more useful to characterize the probability measure by its density function, a
function

fZ(·) : E → R+

z fZ(z),

so that

P (A) =

∫

A

dP (z) =

∫

A

f(z)λ(z),

where the measure P (·) is said to be dominated by the measure λ(·), which means
that wherever λ(z) = 0 then P (z) = 0. The function f(z) tells us how dense is the
probability measure of the random vector Z around each vector z ∈ E, or which set of
values is more or less likely to occur. The density function can be obtained from

fZ(z) =
dFZ(z)

dλ(z)
= fZ,λ(z), (2.4)

called the Radon-Nykodym derivative of FZ(z) with respect to the measure λ. If we
change the measure used in the space, the probability density will change, whereas
the probability law will remain the same. There exists nevertheless an easy relation-
ship between the two densities. For a given pair of measures λ1 and λ2 (where λ2 is
dominated by λ1), the following relationship holds

fZ,λ1
(z) =

dFZ(z)

dλ1(z)
=
dλ2(z)

dλ1(z)
· dFZ(z)

dλ2(z)
=
dλ2(z)

dλ1(z)
· fZ,λ2

(z). (2.5)

To avoid carrying both the index for the random vector and for the measure used,
a measure will be always specified (either the Lebesgue measure in R

D or in E) and
denote a density of a random vector Z by fZ(z).

2.3.2 First and second-order moments

Moments on coordinates

Proposition 2.1 If Z is a random vector in E a C-dimensional Euclidean space, then
its vector of coordinates ζ is also a random vector but defined in R

C.
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As a random vector, Z may be characterized through its moments.

Definition 2.16 (Moments on E) The moment coordinates of a random variable in
E are defined as the equivalent real moments of the coordinate random variable, if they
exist [Pawlowsky-Glahn, 2003].

Pawlowsky-Glahn [2003] suggests to apply these moments to the basis and recover
elements of the space, which are called characteristic elements. The moments which
are not expressed as vectors of the space are called then characteristic measures. In
particular, we will be interested in characteristic element of central tendency, and in
measures of dispersion or spread.

However, the analyst might ask whether results will not depend on the chosen basis.
The next sections define means and variances-covariances as objects in the Euclidean
structure of E, following Eaton [1983]. These objects are not basis-dependent. Then,
we proof that, given a basis, object definitions may be identified with coordinate ones,
proving that the coordinate approach gives the same result whatever basis is used. One
should take into account that, although means can be expressed in any basis, variances
and covariances should only be expressed in orthonormal basis. The discussion of this
limitation is beyond the scope of this thesis.

Expectation on E

Definition 2.17 (Expectation on E) The expectation (or mean) of a random vari-
able Z in a C-dimensional Euclidean space is a vector z̄ ≡ EE [Z] satisfying for any
vector x ∈ E

〈x, z̄〉E = E [〈x,Z〉E] , (2.6)

where E [·] is a real expectation [Eaton, 1983].

Proposition 2.2 Let Z be a random variable in E an Euclidean space. Then, the
mean of the coordinates of Z equal the coordinates of the mean of Z on E with respect
to any basis

A proof can be found in Eaton [1983, p. 72], or in this chapter addendum.

Variance and Covariance on E

Definition 2.18 (Variance on E) The variance of a random variable Z in an Eu-
clidean space is an endomorphism Σ ≡ VarE [Z] satisfying for any pair of vectors
x,y ∈ E

〈x,Σy〉E = E [〈x,Z⊖z̄〉E〈y,Z⊖z̄〉E] , (2.7)

where E [·] is a real expectation [Eaton, 1983].

Proposition 2.3 Let Z be a random variable on E an Euclidean space. Then, the
variance matrix Σ of the coordinates of Z with respect to an orthonormal basis equals
the matrix representation of the variance (as an endomorphism Σ) of Z on E with
respect to that basis.



22 Preliminary concepts

A proof is again included in this chapter addendum, as well as in [Eaton, 1983, p.
73]. Summarizing, we may identify the expectation vector and the variance endomor-
phism of a random vector (Eaton [1983] version) with the expectation and variance of
the coordinates of this random vector in an orthonormal basis (Pawlowsky-Glahn [2003]
version), thus they do not truly depend on the basis. However, their representation
does depend on it, and to keep expressions simple we will consider only orthonormal
basis from now on. Note also that this identification may also be extended to covariance
between vectors in different spaces, although we introduce here only its definition.

Definition 2.19 (Covariance) The covariance of a random variable Z1 on another
random variable Z2, each in its Euclidean space {E,⊕,⊙, 〈·, ·〉E} and {F,+, ·, 〈·, ·〉F}, is
a linear transformation Σ12 ≡ CovE [Z1,Z2] : F → E satisfying for any pair of vectors
x ∈ E and y ∈ F

〈x,Σ12y〉E = E [〈x,Z1⊖z̄1〉E · 〈y,Z2 − z̄2〉F] , (2.8)

where E [·] is a real expectation, and z̄i is the expectation of Zi, i = 1, 2 in its space
[Eaton, 1983, p. 85].

2.3.3 Normal probability distributions

The normal distribution is the standard distribution in real geometry. It has interesting
properties, and most basic statistical analysis and tests are based upon the assumption
that data are outcomes of it. This section extends this special distribution and defines
its equivalent on other spaces.

Again, two different definitions will be given for the normal probability distribu-
tion on an Euclidean space E. One of them is defined on the coordinates, and takes
coordinate parameters (Pawlowsky-Glahn [2003] version). The other is defined using
projections, and takes as parameters a vector and an endomorphism (Eaton [1983]
version). We state here that both definitions are equivalent, given the identification of
means and variances done in the last section (propositions 2.2 and 2.3).

Definition 2.20 (Normal distribution on E with coordinate parameters) The
random vector Z is said to follow a normal distribution on E (denoted Z ∼ NE(µ,Σ))

if its vector of coefficients follow a (multivariate) normal distribution on R
C with co-

ordinate mean a real vector µ and coordinate covariance matrix a real positive-definite
symmetric matrix Σ [Pawlowsky-Glahn, 2003].

Definition 2.21 (Normal distribution on E with object parameters) The ran-
dom vector Z is said to follow a normal distribution on E (denoted Z ∼ NE(m,Σ))
for a given mean vector m and a positive definite symmetric endomorphism Σ on E

if for any testing vector x the random projection 〈x,Z〉E follows a classical univariate
normal distribution with expectation 〈x,m〉E and variance 〈x,Σx〉E.
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If the variance of Z is invertible, the density of this normal distribution with respect
to the Lebesgue measure on E is

fZ(z) ≡ fζ(ζ) = |Σ|−1 (2π)−C/2 exp

[
−1

2
(ζ − µ)t · Σ−1 · (ζ − µ)

]
. (2.9)

In the object notation, this density will read

fZ(z) = |Σ−1| (2π)−C/2 exp

[
−1

2
〈z⊖m,Σ−1(z⊖m)〉E

]
.

If the density with respect to any other measure is sought, then equation (2.5) is
enough to compute it. The normal distribution on E inherits all the nice properties
of the normal distribution on R

C . For instance, the characteristic measures of central
tendency and dispersion of a multivariate normal random vector are respectively µ and
Σ. Equation (2.6) gives the characteristic element of central tendency. As is expected
in a normal distribution, this element coincides with the mode or most-frequent value
of (2.9), and when C = 1, also with its median. Further properties can be found in
Pawlowsky-Glahn [2003].

A comment is due with regard positive definiteness. Symmetric matrices are known
to be positive definite when their eigenvalues are all positive (or zero, in case of semi-
definiteness). Positive definite endomorphisms have not been defined in this work.
However, it is also known that changes of basis do not change eigenvalues of a ma-
trix. Therefore, a positive definite endomorphism may be taken as that for which its
representation in any basis is a positive definite matrix.

2.3.4 Regression on E

The concept of regression on E helps in understanding the posterior developments of
this Thesis. In particular, we will look for a linear prediction of a random vector Z on
E either using as predictand another random vector Y on E, or using a real random
vector X on R

A. Therefore, the general case will be explained following Eaton [1983],
and proofs of these assertions are omitted. An alternative approach yielding the same
result was presented by Daunis-i-Estadella et al. [2002].

Let Z1 and Z2 be two random vectors, respectively taking values in {F,+, ·} and
{E,⊕,⊙}. Let mi and Σii be the vector expectation and operator variance of Zi (for
i = 1, 2) given by definitions 2.17 and 2.18. Let finally Σ12 and Σ21 be the operator
covariances (definition 2.19) respectively of Z1 on Z2, and of Z2 on Z1.

Let L(F,E) be the set of linear transformations from F to E. We look for a linear
transformation B ∈ L(F,E) and a constant vector b0 ∈ E such that the affine linear
transformation

Ẑ2 = b0⊕BZ1 (2.10)

gives predictions of Z2 with minimal error ǫ, defined as

ǫ = E
[
‖Z2⊖Ẑ2‖E

]
. (2.11)
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With these definitions, the optimal predictions are obtained by using the linear trans-
formation

B = Σ21Σ
−1
11 (2.12)

and constant
b0 = m2⊖Σ21Σ

−1
11 m1. (2.13)

Recall that Σ−1
11 is the inverse application of Σ11.

The joint vector (Z1,Z2) has as sample space the cartesian product F×E, with an
Euclidean structure inherited from the structures of F and E. Then, the definition of
a joint normal is suitable. In this case, regression yields the conditional distribution
of Z2 given Z1 = z1. This distribution is a normal one on E, with conditional mean
m = m2⊕Σ21Σ

−1
11 (z1⊖m1) and conditional variance Σ22⊖Σ21Σ

−1
11 Σ12. Fixed suitable

orthonormal bases for all the spaces involved, these properties may be expressed in
matrices, yielding exactly the same results obtained with classical real multivariate
regression and real normal distributions, as can be found for instance in Fahrmeir and
Hamerle [1984].

2.4 Inference on coordinates

2.4.1 Frequentist estimation

Despite the dual definitions of the last chapters, the estimation of the characteristic
measures of distributions on E is done on the coordinate space R

C [Pawlowsky-Glahn,
2003]. If z1, z2, . . . , zN is a (random, independent) sample from a NE(µ,Σ), its likeli-
hood will be

L
(
µ,Σ; z1, z2, . . . , zN

)
= Pr

[
z1, z2, . . . , zN ;µ,Σ

]
=

N∏

n=1

Pr
[
zn;µ,Σ

]
= (2.14)

=
(
2π|Σ|

)−(N ·C)/2
exp

[
−1

2

N∑

n=1

(ζ
n
− µ)t · Σ−1 · (ζ

n
− µ)

]
.

where ζ
n

is the vector of coordinates of zn with respect to the basis of E used to express
µ and Σ. Note that the first equality is only valid when samples are independent. In
these conditions, the maximum likelihood is attained at the values

µ̂ =
1

N

N∑

n=1

ζ
N

= ζ̄ , and Σ̂ = (σ̂ij) where σ̂ij =
1

N

N∑

n=1

ζni · ζnj − ζ̄i · ζ̄j, (2.15)

and ζni is the i-th coordinate of the n-th observation.
The estimators (2.15) are maximum likelihood estimators in E, and satisfy the same

properties as the classical maximum likelihood estimators of the parameters of a normal
distribution, as summarized in most statistical textbooks, e.g.Fahrmeir and Hamerle
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[1984]. In particular, the mean is the best linear unbiased estimator of E
[
ζ
]
, the first

moment of the real coordinates of Z.
Being functions of a random sample, these estimators are random themselves too.

It is useful then to replace the point estimations, specially for central tendency measure,
by confidence region estimations for a given error probability α. Using the fact that

Q =
N(N −D)

D(N − 1)
(ζ̄ − µ)t · Σ̂−1 · (ζ̂ − µ) ∼ F(D,N −D), (2.16)

it is possible to define an hyper-ellipsoid centered on the estimator ζ̄ which contains
the true value of µ with a confidence of 1 − α,

Pr

[
(ζ̄ − µ)t · Σ̂−1 · (ζ̂ − µ) ≤ D(N − 1)

N(N −D)
· Fα(D,N −D)

]
= 1 − α, (2.17)

being F(D,N −D) Fisher’s F distribution with D and N −D degrees of freedom, and
Fα(D,N − D) its upper tail α quantile. These concepts and equalities are extracted
from Fahrmeir and Hamerle [1984].

Finally, if we are interested on point or confidence-region estimations of a central
tendency characteristic element, we can apply the results of equations (2.15) and (2.17)
to the basis of E. The obtained element is the best linear unbiased estimator of the
first moment of Z regarding the geometry of E [Pawlowsky-Glahn and Egozcue, 2001,
Pawlowsky-Glahn, 2003].

2.4.2 Bayesian estimation

If we assume that the parameters themselves µ and Σ are also random, as the esti-
mations resulting from (2.15), there is another way to estimate them from a sample
z1, z2, . . . , zN ∼ NE(µ,Σ). This uses Bayes’ Theorem. This is again a classical issue,
and many textbooks may be found which treat it. We loosely follow the exposition by
Leonard and Hsu [1999]. The next section presents examples of such an estimation.

The first step in the Bayesian estimation procedure is the collection and encoding
of all the available prior information on the sought parameters. This encoding assigns
a prior distribution to these parameters, denoted by Pr

[
µ,Σ

]
. In this way, the analyst

explains which of their values are more or less likely in her opinion.
The second step is the computation of the likelihood of the sample using (2.14).

The final step is the combination of both through Bayes’ Theorem,

Pr
[
µ,Σ|z1, z2, . . . , zN

]
∝ Pr

[
z1, z2, . . . , zN |µ,Σ

]
· Pr

[
µ,Σ

]
, (2.18)

to obtain the so-called posterior distribution of (µ,Σ). Expression (2.18) integrates
the information and uncertainties on the knowledge of the values of the parameters
before looking at the sample, and the information drawn from the sample. If instead
of the whole distribution we look for a single value of the parameters, either the mode,
the mean or the median (in single-parameter cases) of their joint posterior distribution
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could be chosen, and it is equally possible to define a suitable posterior confidence
region.

However, in this work interest lies in the computation of probabilities that Z lies
in certain hazardous regions. In this situation, we want to take into account all the
information available, even the information on how uncertain is the obtained prediction.
Given a region A ⊂ E for each value of (µ,Σ) we can compute a hazard probability

p(A) = Pr
[
Z ∈ A|µ,Σ

]
=

∫

A

fZ(z;µ,Σ)dz,

which will appear in a proportion Pr
[
µ,Σ|z1, z2, . . . , zN

]
. Since these proportions sum

up to one, they represent the probability density of p(A). Again, we can characterize
this density either by confidence intervals, quantiles, or through its mean value,

p̄(A) =

∫
Pr
[
Z ∈ A|µ,Σ

]
· Pr

[
µ,Σ|z1, z2, . . . , zN

]
d(µ,Σ). (2.19)

Expression (2.19) gives the predictive distribution of Z. Pay attention to the fact that
here Z is a random vector and zi are known vectors. Finally, the predictive density
can be readily obtained using the Radon-Nykodym derivative (eq. 2.4), although it is
seldom used in this work.

2.5 Case studies

2.5.1 Water conductivity as a real random variable

Before heading to more complicated (and interesting) cases, let us consider the con-
ductivity variable of the Gualba data set. Let Z be the random variable measured
conductivity. Conductivity is defined as the ability of a medium (water) to allow the
flow of electrons. In this case, it is measured in µS/cm. Water conductivity is the ad-
ditive result of the contributions of each one of the present ions, weighted in function
of their electric charge. Thus, it seems reasonable to consider that differences among
samples of conductivity should be measured using substraction. This points out to the
use of an additive scale for conductivity, although its sample space is the set of positive
real numbers (denoted by R+).

The real line with an additive scale structure (denoted by {R,+, ·}) is the classical
Euclidean space. Given a = (a),b = (b) ∈ E = R and λ ∈ R, its main operations are
defined as the classical ones:

inner sum: sum of components, a⊕b = (a+ b)

external product: product of the components by the scalar, λ⊙a = (λ · a)

distance: absolute difference of the components,

d(a,b) = |a− b| (2.20)
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scalar product: direct product of the components, 〈a,b〉E = a · b.

With these operations, the following vectors of R deserve to be mentioned:

neutral element: n = (0)

basis: either e = (1) or ē = (−1) can be considered as (ortho)normal basis of R as an
Euclidean space; if we take the first one, the coordinate of a vector a ∈ R in this
basis will be

α = 〈a, e〉E = a.

Thus, if E = R we identify as the same thing the vector a, its value (a), and its
coordinate α. But this will not be the case in other spaces.
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Figure 2.1: Histogram of conductivity data set against the normal distribution, with
maximum likelihood estimates of the parameters. This data set was taken at the
Gualba station, during July 2002, and it contains 725 samples. Note the clear bi-
modality of the data set, which we will ignore in this step. The analysis of this data
set is completed in section 3.6.

The normal distribution on R can be found in all textbooks on statistics, since it
is the classical normal distribution. Figure 2.1 shows the shape of this distribution
compared with the histogram of the conductivity data set. Note that the histogram
classes have the same length according to (2.20). Note also that the fit of the model is
unacceptable, since it does not capture the clear bi-modality of the data. However, at
this step of the analysis, we use this data set only for illustration. A further discussion
will follow in future chapters (section 3.6 is devoted to its analysis). The estimated
parameters of this normal distribution are µ = (µ̃) and Σ = (σ̃2) are the maximum
likelihood estimates of the sample,

µ̃ = 996.309µS/cm and σ̃2 = 22992.3 (µS/cm)2 .
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Figure 2.2: Joint posterior distribution of µ and σ parameters for conductivity of the
Tordera river at Gualba, measured during July 2002. Some isodensity levels—from
10−30 to 0.5—are shown. The only information provided by the prior distribution are
the limits of this map. The shape is inherited from the likelihood of the sample.
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Figure 2.3: Complementary of the predictive distribution of conductivity at Gualba for
the month of July 2002, jointly with the 5% and 95% quantiles of the distribution of
hazard of exceedance. For a certain threshold, the predictive probability and confidence
intervals for it can be read from the plot.
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A confidence interval for the mean as a characteristic measure can be easily computed
attending to the fact that for D = 1 and N = 725, the distribution of

√
Q ∼ t(N − 1)

in (2.16) is a Student’s t, which implies that expression (2.17) is simplified to

Pr

[∣∣∣∣
µ̃− µ

σ̃

∣∣∣∣ ≤ t0.975(N − 1)

]
= 0.95,

and, provided that t0.975(N − 1) ≈ N (0, 1) = 1.96, we can be 95% confident that the
true mean µ will satisfy

µ ∈ (µ̃− 1.96 · σ̃, µ̃+ 1.96 · σ̃) = (699.11, 1293.51)µS/cm.

To try a Bayesian approach, we must first define a prior joint distribution for both µ and
σ. After considering the characteristics of the basin, essentially the small proportion of
carbonate landscape and the low-medium human presence, we believe that the mean
conductivity will be reasonably below 1250µS/cm, and above 750µS/cm. Without
more information, the central quarter of this range seems to be a good range of variation
for µ. If we consider the mean to be in the center of the guessed range of variation,
and this range to be roughly equivalent to a 95% interval for conductivity, this would
imply an approximate σ equal to the range divided by four, thus 125µS/cm. A possible
range of variation of σ could be to take the half and the double of this value. Lacking
more information, the prior distribution is a flat distribution between these values.

Updating this distribution by the likelihood of the sample of conductivity through
(2.18), we obtain the joint posterior distribution of µ and σ represented in figure 2.2.

However, we finally want to compute the hazard that Z > z, at each interesting
threshold z. Table 1.1 summarizes the thresholds of the ACA (Catalan Water Control
Agency), to determine to which uses a water mass may be devoted, as a function of
its conductivity. Figure 2.3 shows two quantiles of hazard of exceeding 1000 µS/cm,
and the predictive distribution (2.19) of conductivity, which tells that one can be 95%
confident that the hazard of exceeding the level 1000µS/cm is below a probability of
0.51, with a predictive probability of 0.49.

In conclusion, if we would like to assess the water quality of the Tordera river
at Gualba station according to the hazard of exceeding the threshold 1000µS/cm,
we would say that this hazard is at most 0.51 probable. Whether this is finally an
acceptable level or not will obviously depend on the water management policy and the
expected water use.

2.5.2 Ammonia system as a positive random vector

In the Gualba data set we have the information to characterize the ammonia chemical
system of this river. Ammonia (NH3) is not directly measurable, but it can be computed
by using the equilibrium constant equation (1.3). The content in the phases of the
system plus the equilibrium constant Ka can be regarded as a random vector Z =(
H3O

+,Ka,NH+
4 ,NH3

)
with positive components. Attending to the fact that acidity is
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always accounted for through pH instead of by direct H3O
+ content, we will consider

that the sample space for Z, the positive orthant of R
4 (writen as R

4
+), may be given

a relative scale where comparison between vectors should be done on their component
logarithms.

To build an Euclidean space structure on R
4
+ describing this logarithmic scale, we

need the following operations

inner sum: product of vectors component-wise, a⊕b = (a1 · b1, a2 · b2, a3 · b3, a4 · b4)

external product: component-wise power of the vector by the scalar,

λ⊙a = (aλ
1 , a

λ
2 , a

λ
3 , a

λ
4),

distance: square root of the squared difference among logarithms of components,

d(a,b) =

√
log2

10

a1

b1
+ log2

10

a2

b2
+ log2

10

a3

b3
+ log2

10

a4

b4
(2.21)

scalar product: sum of component-wise product of logarithms,

〈a,b〉E = log10 a1 log10 b1 + log10 a2 log10 b2 + log10 a3 log10 b3 + log10 a4 log10 b4.

where a = (a1, a2, a3, a4),b = (b1, b2, b3, b4) ∈ R
4
+ and λ ∈ R. With these operations,

the vectors of R
4
+ with a special meaning are:

neutral element: n = (1, 1, 1, 1)

basis: a set of four vectors, with 1 in all components, except by 1/10 in one, like
e2 = (1, 1/10, 1, 1). There are four vectors of this kind in this orthonormal basis,
and the i-th coordinate of any vector a ∈ R

4
+ will be

αi = 〈a, e〉E = log10 0.1 · log10 ai = −1 · log10 ai = − log10 ai,

which corresponds to the chemical potential of the i-th component. Thus, the real
vector of potentials ζ = (pH, pKa, pNH4, pNH3) is exactly the vector of coordinates

of Z =
(
H3O

+,Ka,NH+
4 ,NH3

)
. From this point of view, the equilibrium equation

of Ammonia (1.3) define a 3-dimensional vector subspace of R
4
+ or, alternatively, a 1-

dimensional space, that of ammonia content, a random variable Z4 ∈ R+ as Z4 = [NH3].
The normal distribution on R+ was defined by Mateu-Figueras et al. [2002]. It

is compared in figure 2.4 with the histogram of the computed Z4 values. Note that
the classes of this histogram have the same length according to the distance in R+

(2.21). We assume the coordinate ζ4 to be normally distributed in R, so that we can
apply the same procedures of section 2.5.1 to estimate its parameters. These estimates
are summarized in table 2.1. If interest lies on computing a mean value of ammonia
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Figure 2.4: Histogram of ammonia content (ζ4), compared with a normal on R+ dis-
tribution using maximum likelihood estimates for the parameters. This data set was
taken at the Gualba station, during July 2002, and it contains 745 samples. Note that
the horizontal scale is represented in molarity units

variable model mean 95% confidence interval
ζ4 Normal on R 5.77 (5.035 , 6.526)
Z4 Normal on R+ 16.75 · 10−7 (3.04, 92.17) · 10−7

Z4 Lognormal (on R) 19.74 · 10−7 -

Table 2.1: Point and interval estimates of the mean of ammonia coordinate ζ4, as well
as ammonia mean value, considered as a normal variable on R+, and as a lognormal
variable on R. Note that, when taken as a vector of an Euclidean space, Z is written
using a boldface latin character, whereas we use a normal character when it is consid-
ered as a real value. The data set was taken at the Gualba station, during July 2002,
and it contains 745 samples.
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Figure 2.5: Joint posterior distribution of µ and σ parameters for ammonia content in
the Tordera river at Gualba during July 2002. Some isodensity levels—from 10−30 to
0.5—are shown. The only information provided by the prior distribution are the limits
of this map. The shape is provided by the likelihood of the sample.
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Figure 2.6: Complementary of the predictive distribution of ammonia content in the
Tordera river at Gualba during July 2002, jointly with the 5% and 95% quantiles of the
distribution of hazard of exceedance. For a certain threshold, the predictive probability
and confidence intervals for it can be read from the plot. Note that the horizontal scale
is expressed in molarities.
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content, then we must apply the central tendency estimate to the basis of the sub-space
of Z4,

E+ [Z4] = µ̃⊙e4 =

(
1

10

)µ̃

,

which is a valid procedure for both point and interval estimates (table 2.1). The normal
distribution in R+ has exactly the same probability law as the lognormal distribution
[McAlister, 1879, Aitchison and Brown, 1957]. However, they are defined on differ-
ent spaces, respectively R+ and R, and their densities are different, as well as their
expectations. The expectation of Z4 as a lognormal variable is defined in R as

E [Z4] =

(
1

10

)(µ̃+ 1

2
σ̃2)

. (2.22)

Table 2.1 includes also this lognormal expectation, without confidence intervals, be-
cause there exists no clear way to build them, according to Mateu-Figueras et al. [2002].
These authors give also a detailed comparison of these two distributions, their moments
and properties.

We followed a Bayesian estimation procedure defined on the coordinate ζ4 as we
did for conductivity in the last section. Again, the prior distribution was considered
uniform between a set of limits chosen a priori. Updating through (2.18) by the
likelihood of the sample of Z4, ammonia content, we obtained the posterior map (figure
2.5). The shape of this posterior distribution is essentially inherited from the likelihood,
while the limits were informed through the prior distribution.

Using this posterior distribution, we computed the hazard associated with each
possible threshold value of ammonia content. The distribution (figure 2.6) of this
hazard is expressed through some quantiles and the predictive distribution for Z4 given
the observed sample. In this plot, one reads the hazard of exceeding the level of
0.025mg/l (molarity ∼ 1.5 · 10−6) of ammonia content as being below 0.58 with a 95%
of confidence, or with a predictive probability of 0.56.

Therefore, if we want a water quality index to measure the hazard of exceeding the
threshold of 0.025mg/l of ammonia content, in the Gualba station we would say that
this hazard is slightly below 0.6 probable in the period comprised between July 1, 2002
and July 31, 20002. Again, this will surely be an unacceptable level, but it depends on
the water management policy and use.

2.5.3 Moss pollution as a random composition

In the Ukrainian Carpathian Range data set we are interested in the concentration of
three heavy metals in moss samples: content in iron (Fe), lead (Pb) and quicksilver
(Hg). These heavy metals are either given in parts per million (ppm), proportions
(parts per one) or in relative mass percentage (%), which indicates that they are
compositional data. The sample space of compositional data is the D-part Simplex,
denoted by S

D. A meaningful scale for compositional data takes into account that
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Figure 2.7: Ternary diagram of the composition (Fe,Pb,Hg), compared with some
isodensity levels (corresponding to 50%, 90%, 95% and 99% probability regions) of
a normal distribution on S

3 distribution using maximum likelihood estimates for the
parameters. The red star indicates the center of the diagram, and the red solid circle
the true mean of the data set. The sample (black circles) is perturbed, so that its mean
coincides now with the center of the diagram.
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Figure 2.8: Ternary diagram of the composition (Fe,Pb,Hg) (left) and scatter-plot of
their coordinates (right), with 90%, 95% and 99% confidence regions drawn on the
center (red star) and the mean value (red solid circle) respectively. Note that the
coordinate diagram shows the true position of the sample (black dots), around its
mean, whereas in the ternary diagram the sample has been perturbed to the center.
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the total sum of a composition is not a relevant information: either the composition
has been artificially forced to sum up to a constant (it has been closed), or this total
amount is conditioned by the sampling procedure and does not inform us about the
studied process. A compositional scale considers also information only from relative
importance of components.

Let Z = (Fe,Pb,Hg) be the random composition indicating the proportion of these
three elements in each sample. Its sample space is E = S

3, and it can be given an
Euclidean structure satisfying its relative scale [Billheimer et al., 2001, Pawlowsky-
Glahn and Egozcue, 2001] through the following set of operations:

inner sum: perturbation [Aitchison, 1982], closed product of vectors component-by-
component, a⊕b = C (a1 · b1, a2 · b2, a3 · b3)

external product: power operation [Aitchison, 1986], closed component-wise power
of the vector by the scalar, λ⊙a = C

(
aλ

1 , a
λ
2 , a

λ
3

)

distance: proportional to the square root of the squared difference among all possible
log-ratios of components [Aitchison, 1982]:

dA(a,b) =

√√√√ 1

D

D∑

i<j

(
ln
ai

aj

− ln
bi
bj

)2

, (2.23)

with D = 3, the number of parts;

scalar product: sum of component-wise product of log-ratios [Aitchison, 1984],

〈a,b〉A =
3∑

i=1

log
ai

3
√
a1 · a2 · a3

log
bi

3
√
b1 · b2 · b3

.

where a = (a1, a2, a3),b = (b1, b2, b3) ∈ S
3 are two composition, λ ∈ R is a real value,

and C(·) represents the closure operation, which divides each part in the composition by
their sum in order to obtain proportions. With these operations, the following vectors
of S

3 have a special meaning:

neutral element: n = C(1, 1, 1) = (1/3, 1/3, 1/3)

basis: one possible orthonormal basis is [Egozcue et al., 2003]

e1 = C
(

exp
2√
6
, exp

−1√
6
, exp

−1√
6

)
e2 = C

(
1, exp

1√
2
, exp

−1√
2

)

and the corresponding coordinates of any vector a ∈ S
3 will be computed using

(2.2), which gives the expressions

α1 =
1√
6

ln
Fe2

Pb · Hg
, α2 =

1√
2

ln
Pb

Hg
. (2.24)
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Since the dimension of the D-part Simplex is always D − 1, the basis has only two el-
ements. Consequently, three-part compositions have only two degrees of freedom, and
can be meaningfully plotted in 2-D plots, usually called ternary diagrams. We assume
these two coordinates (α1, α2) of the random composition Z to follow a joint normal
distribution, thus Z follows a normal distribution in the simplex [Mateu-Figueras et al.,
2003]. A formal definition is included in section 2.6. Figure 2.7 represents the studied
sample, previously centered and with some isodensity levels of the fitted normal dis-
tribution on the Simplex. The centering operation perturbs the sample to the center
of the plot, without altering the spread structure of the data set and enhancing its in-
terpretability [von Eynatten et al., 2002]. The normal distribution appearing in figure
2.7 has as parameters the maximum likelihood estimates of mean and variance matrix
for the data set coordinates, which are

µ̃ =

(
µ̃1

µ̃2

)
=

(
−5.8567
2.6782

)
, Σ̃ =

(
σ̃11 σ̃12

σ̃12 σ̃22

)
=

(
0.4332 0.0048
0.0048 0.2067

)
.

If we want to translate this characteristic measures to the Simplex as characteristic
elements, we can apply directly the maximum likelihood mean estimate to the vectors
of the basis, and obtain the so-called (metric) center of the composition [Aitchison,
1982, Pawlowsky-Glahn and Egozcue, 2001],

cen(Z) = µ̃1⊙e1⊕µ̃2⊙e2 =
(
1.13 · 10−4, 0.977, 2.21 · 10−2

)
.

As was stated in section 2.4, this characteristic element of central tendency is an
unbiased estimator of the mean of Z in the Simplex, n = EA [cen(Z)⊖EA [Z]]. The
same operation can be applied to the confidence regions drawn with help of expression
(2.17). Figure 2.8 shows the data set, its center and some confidence regions in both
the space of coordinates and the Simplex.

Though the high dimension of the problem, a Bayesian approach would be inher-
ently no more difficult in this case as it was for conductivity or ammonia content in the
other case studies. After specifying a joint prior distribution for the five parameters
of the system, the updating of the prior by the likelihood of expression (2.14) would
be a straightforward task. The only problems would involve computation time and
representation of the posterior maps, since the five dimensions cannot be represented
at a time. Also, its usefulness in this problem is low, because here we are not interested
in computing probabilities of hazardous events.

2.6 Distributions on the Simplex

This section summarizes some useful distributions of random vectors on the Simplex,
which are afterwards used in chapters 6 and 7.

Let S
D be the D-part Simplex, the set of vectors z = (z1, z2, . . . , zD) so that zi ≥ 0

and
∑D

i=1 zi = 1. Aitchison et al. [2002] showed that the Simplex, jointly with the
operations of perturbation and powering, is a vector space, and Billheimer et al. [2001]
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and Pawlowsky-Glahn and Egozcue [2001] that it may be indeed given an Euclidean
space. This structure is detailed in section 2.5.3. Taking profit of it, Pawlowsky-Glahn
[2003] defines a Lebesgue measure on the Simplex (2.3), which we will denote as λSD .
The relationship between this measure and the classical Lebesgue measure λRD−1 on
R

D−1 embedding S
D is given by

dλS(z)

dλRD−1(z)
=

1√
Dz1 · z2 · · · zD

.

The following distributions will be defined with respect to either one of these measures.
The other definition follows immediately by application of equation (2.5).

2.6.1 The Dirichlet distribution

Definition 2.22 Let Z be a random vector on the Simplex. Then it has a Dirichlet
distribution with a vector of positive parameters θ = (θ1, θ2 . . . , θD) with respect to the
classical Lebesgue measure λR if its density function f(z) can be expressed as

Z ∼ D(θ) ⇔ f(z) =
1

z1 · z2 · · · zD

· Γ(θ0)∏D
i=1 Γ(θi)

·
D∏

i=1

zθi

i I
{
z ∈ S

D
}
, (2.25)

where Γ(θ) is the gamma function, and θ0 =
∑D

i=1 θi [Abramovitz and Stegun, 1965].

This distribution is continuous, and completely bounded in the Simplex S
D. In the

case D = 2, it corresponds to the Beta distribution [Abramovitz and Stegun, 1965].

Property 2.3 With respect to the classical Lebesgue measure λR, the characteristic
descriptors of a Dirichlet variable are:

1. mode: zδ = C(θ1 − 1, θ2 − 1, . . . , θD − 1) = 1
θ0−D

(θ1 − 1, θ2 − 1, . . . , θD − 1),

2. mean: z̄ = E [Z] = C(θ1, θ2, . . . , θD) = 1
θ0

(θ1, θ2, . . . , θD),

3. variances: σ2
i = Var [Zi] = θi(θ0−θi)

θ2
0
(θ0+1)

, i = 1, 2, . . . D,

4. covariances: σij = Cov [Zi, Zj] = − θiθj

θ2
0
(θ0+1)

, i, j = 1, 2, . . . D,

5. covariance matrix: Σ = Var [Z] = 1
θ0+1

(diag [z̄] − z̄ · z̄t)

with C(·) denoting the closure operation, and considering z̄ as a column-vector.

Actually, the density (2.25) is obtained as the closure of a vector of random variables
following independent equally-scaled gamma distributions. The correlation structure
exhibited by the parts of a vector Z ∼ D(θ) is particularly weak due to this parental
independence, and it is completely inherited from the closure operation. This same
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closure is also responsible for the fact that the covariance matrix Σ of Z (in property
2.3.5) is singular.

The Dirichlet distribution has some interesting properties of pseudo-marginalization
with respect to the parts. To summarize them we need the following definitions, due
to Aitchison [1986].

Definition 2.23 A selection matrix S is a (C × D) matrix (1 ≤ C ≤ D) with C
elements equal to one, exactly one of them in each row and not more than one in each
column. The remaining C(D − 1) elements are zero.

Definition 2.24 An amalgamation matrix A is a (C ×D) matrix (1 ≤ C ≤ D) with
D elements equal to one, exactly one of them in each column and not less than one in
each row. The remaining D(C − 1) elements are zero.

These properties are stated in the form of propositions. Formal proofs can be found
in Haas and Formery [2002], jointly with other properties.

Proposition 2.4 If Z ∼ D(θ), for any selection matrix S, the vector C
(
S · Z

)
has as

its sample space the C-dimensional Simplex, and as distribution a Dirichlet distribution
on S

C with a vector of parameters S · θ.

Proposition 2.5 If Z ∼ D(θ), for any amalgamation matrix A with two rows, the

vector C
(
A · Z

)
has as its sample space the 2-dimensional Simplex, and as distribution

a Dirichlet distribution on S
2 (or a beta distribution) with a vector of parameters A · θ.

Definition 2.25 The Dirichlet probability density function with respect to the Lebesgue
measure in the Simplex is

f(z) =
√
D

Γ(θ0)∏D
i=1 Γ(θi)

·
D∏

i=1

zθi

i I
{
z ∈ S

D
}
, (2.26)

which corresponds to the application of equation (2.5) to change the measure of repre-
sentation of a probability density.

As far as we know there is no closed analytical expression for the mean vector and
the covariance matrix of the Dirichlet distribution with respect to the geometry of the
Simplex.

Property 2.4 The mode of the distribution is

zδ = C(θ1, θ2, . . . , θD) =
1

θ0

(θ1, θ2, . . . , θD),

and it coincides with the value of the mean in the R
D geometry.

Proof The equations of the densities (2.26) with parameters θi and (2.25) with pa-
rameters αi = θi + 1 are proportional. Replacing this second set of parameters in the
expression of the mode in property 2.3 yields directly the result. �
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2.6.2 The Normal distribution on the Simplex

Definition 2.26 (Normal distribution on the Simplex) Let Z be a random vec-
tor on the Simplex. Then it has a Normal distribution on the Simplex [Mateu-Figueras
et al., 2003] with respect to the Lebesgue measure on the Simplex, λS, if its density
function f(z) can be expressed as

Z ∼ NSD(µ,Σ) ⇔ f(z) =
I
{
z ∈ S

D
}

(2π·)(D−1)/2 ‖Σ‖1/2
×

× exp

(
−1

2

(
log

z−D

zD

− µ

)t

· Σ−1 ·
(

log
z−D

zD

− µ

))
,

with parameters µ = (µ1, µ2 . . . , µD−1) and Σ = (σij), a positive definite symmetric
matrix. The vector z−D stands for the vector z without the last component.

Alternatively, this density can also be expressed by

f(z) ∝
D∏

i=1

eθi log zi ·
D−1∏

i=1

D−1∏

j=1

e
φij log

zi
zD

log
zj

zD ,

with θ−D = Σ−1 · µ, θD = −∑D−1
j=1 θj and φ = −Σ−1/2. Mateu-Figueras et al. [2003]

defined this distribution in terms of the coordinates of Z with respect to an orthonormal
basis of the Simplex, and showed the equivalence between it and definition 2.26. This
equivalence is also implied by the specification of the normal distribution using a vector
mean and an endomorphism variance, as in definition 2.21.

Property 2.5 With respect to the Lebesgue measure in the Simplex, the characteristic
descriptors of a normally-distributed (on the Simplex) random vector are:

1. mode: zδ = C(expµ1, expµ2, . . . , expµD−1, 1) = C(expµ, 1)

2. mean: z̄ = EA [Z] = C(expµ, 1)

3. covariance matrix: VarA [Z] = Σ.

A proof follows immediately from the properties of the normal distribution and the
definitions of mean and variance of section 2.3.2. It can be found also in Mateu-
Figueras et al. [2003].

Definition 2.27 The additive-logistic-Normal distribution function (with respect to
the classical Lebesgue measure) is

Z ∼ ALN (µ,Σ) ⇔ f(z) =
I
{
z ∈ S

D
}

∏D
i=1 zi

(
2π · ‖Σ‖

)(D−1)/2
×

× exp

(
−1

2

(
log

z−D

zD

− µ

)t

· Σ−1 ·
(

log
z−D

zD

− µ

))
,
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which corresponds to the application of equation (2.5) to change the measure of repre-
sentation of a normal on the Simplex density (definition 2.26).

Proposition 2.6 If Z ∼ NSD

(
µ,Σ

)
, and S is a selection matrix taking at least the

last element, the vector C
(
S∗ · Z

)
has as its sample space the C-dimensional Simplex,

and as distribution a Normal distribution on S
C with a vector of means S∗ · µ, and

a variance matrix S∗ · Σ∗ · S∗t, where S∗ is S without the last row and column. An
equivalent property holds for additive-logistic-normal distributions.

2.6.3 The A distribution

Definition 2.28 (Aitchison’s A distribution) Let Z be a random vector on the
Simplex. Then it has an Aitchison’s A distribution with respect to the Lebesgue measure
on the Simplex, λS, if its density function f(z) can be expressed as

Z ∼ A(θ, φ) ⇔ log f(z) = κ(θ, φ) +
D∑

i=1

θi log zi +
D−1∑

i=1

D−1∑

j=1

φij log
zi

zD

log
zj

zD

, (2.27)

with parameters a vector θ and a matrix φ. It is useful also to call θ0 =
∑D

i=1 θi. Note

that κ(θ, φ) is here an accessory function, closing the density to integrate to one. The

conditions on the parameters to obtain a proper distribution are either:

1. the symmetric negative definite character of φ (thus its invertibility) and θ0 ≥ 0,

2. the non-positive-definite character of φ, and θi > 0 for all i.

Property 2.6 (Density decomposition and quasi-moments) If the matrix φ is

invertible, the A distribution can be parametrized using θ0, a matrix Σ = −2φ−1, and

a vector µ = Σ · θ∗, with θ∗ = θ−D − θ0/D, which gives

log f(z) = κ(θ0, µ,Σ)+
θ0

D

D∑

i=1

log zi−
1

2

(
log

z−D

zD

− µ

)t

·Σ−1 ·
(

log
z−D

zD

− µ

)
. (2.28)

Under the first set of conditions for properness of the A distribution, its density is
proportional to a normal in the Simplex density multiplied by a symmetric Dirichlet
density. When θ0 = 0, the Dirichlet contribution is a uniform, and the Aitchison
distribution becomes the Normal distribution on the Simplex. Thus the parameters
µ and Σ give approximations to the measures of central tendency and dispersion of
the distribution for small θ0, and they are exactly these parameters when θ0 = 0, in
accordance with property 2.5.
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Proof: Call ζ = log z−D

zD
=
(
log zi

zD

)
to simplify the expressions. To proof the identity of

expressions (2.27) and (2.28), it is enough to take φ = −Σ/2, and develop the products

by components:

log f(z) = κ(θ0, µ,Σ) +
θ0

D

D∑

i=1

log zi +

(
log

z−D

zD

− µ

)t

· φ ·
(

log
z−D

zD

− µ

)
=

= κ+
D∑

i=1

θ0

D
log zi + ζt · φ · ζ + µt · φ · µ−

(
µt · φ · ζ + ζt · φ · µ

)
=

= (κ+ µt · φ · µ) +
D∑

i=1

θ0

D
log zi + ζt · φ · ζ −

(−1

2
θ∗t · ζ + ζt · θ∗ · −1

2

)
=

= κ∗ +
D∑

i=1

θ0

D
log zi + ζt · φ · ζ + ζt · θ∗ =

= κ∗ +
D∑

i=1

θ0

D
log zi +

D−1∑

i=1

D−1∑

j=1

ζiφijζj +
D−1∑

i=1

ζiθ
∗
i =

= κ∗ +
D∑

i=1

θ0

D
log zi +

D−1∑

i=1

θ∗i log
zi

zD

+
D−1∑

i=1

D−1∑

j=1

log
zi

zD

φij log
zj

zD

=

= κ∗ +
D∑

i=1

θ0

D
log zi +

D∑

i=1

θ∗i log zi +
D−1∑

i=1

D−1∑

j=1

log
zi

zD

φij log
zj

zD

,

using the symmetry of φ, and the equivalence φ · µ = −Σ/2 · µ = −θ∗/2 introduced

in definition 2.26. Note that θ∗D = −∑D−1
i=1 θ∗i . The sought identity directly results by

taking θi = θ∗i + θ0/D.
Taking exponentials of the vector (2.28), we obtain

f(z) ∝ exp

(
D∑

i=1

θ0

D
log zi

)
· exp

(
−1

2

(
log

z−D

zD

− µ

)t

· Σ−1 ·
(

log
z−D

zD

− µ

))
,

clearly showing that the density of the A distribution (under the assumptions of def-
inition 2.28.1) is proportional to the product of a normal in the Simplex distribution,
and a symmetric Dirichlet distribution. This property will have its importance when
simulating samples from an A distribution. �

Proposition 2.7 (Posterior density) The updating of a normal distribution on the
Simplex by a multinomial likelihood delivers a posterior distribution following an Aitchi-
son’s A distribution with respect to a Lebesgue measure on the Simplex. In general, the
Aitchison’s A distribution is a conjugate prior of the multinomial distribution.
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Proof: This proposition follows immediately from definitions 2.26 (normal distribution
on the Simplex) and 2.28 (A distribution on the Simplex), the fact that a multinomial
likelihood is proportional to a Dirichlet distribution, and property 2.6. �

Definition 2.29 The A density function [Aitchison, 1986] with respect to the classical
Lebesgue measure is

log f(z) = κ(θ, φ) +
D∑

i=1

(θi − 1) log zi +
D−1∑

i=1

D−1∑

j=1

φij log
zi

zD

log
zj

zD

,

which corresponds to the application of equation (2.5) to change the measure of repre-
sentation of an A density (definition 2.28).

This is the original definition given by Aitchison [1986], with a slightly different
parametrization of φ.

Property 2.7 (Maximum) The A distribution has its mode at the value z satisfying
the non-linear system of equations

0 = θ−D − θ0 · z−D + 2φ · log
z−D

zD

,

under the Lebesgue measure on the Simplex.

Proof: Using ζ = log z−D

zD
, we want to maximize expression (2.27) with respect to ζ.

This is achieved by taking the first derivative and equating it to zero:

0 =
d log f(z)

dζ
=
d log z

dζ
· θ + 2φ · ζ,

where
d log zi

dζj
=

1

zi

dzi

dζj
=

{
1 − zj i = j;
−zj, i 6= j.

}
= δij − zj,

given that

dzi

dζj
=

d

dζj

eζi

1 +
∑D−1

k=1 e
ζk

=






eζj(1+
∑D−1

k=1
eζk)−eζj eζj

(1+
∑D−1

k=1
eζk)

2 = zj − z2
j , i = j;

− eζieζj

(1+
∑D−1

k=1
eζk)

2 = −zizj, i 6= j.
(2.29)

Note that the particular case i = D is also included, by considering ζD = 0. Then, for
the j-th equation we need to know

d log z

dζj
· θ =

D∑

i=1

d log zi

dζj
θi =

D∑

i=1

(δij − zj)θi = θj − zj

D∑

i=1

θi = θj − zjθ0



2.7 Remarks 43

which yields for each equation

0 = θj − zjθ0 + 2
D−1∑

i=1

φji log
zi

zD

,

thus obtaining the desired expression. To be sure that it is a maximum, we take a
second derivative, write expression (2.29) in matrix form, and obtain

d

dζ

(
θ−D − θ0 · z−D + 2φ · ζ

)
= 2φ− θ0 ·

(
diag [z−D] − z−D · zt

−D

)
.

This is a non-positive definite matrix (φ) minus a positive definite matrix (being a

full-rank minor of the variance of a Dirichlet-distributed variable, in accordance with
property 2.3.5), and consequently the function is convex everywhere and has a maxi-
mum. �

2.7 Remarks

Up to here, we have been considering the effect of choosing an Euclidean structure
to describe the scale and the sample space of a random vector on some classical sta-
tistical issues. We have shown through three examples that many sample spaces can
be meaningfully structured as Euclidean spaces. This allows us to express the data
as coordinates in a given basis, and work on these coordinates as real numbers, using
a classical approach on them. This is what we could call the principle of working on
coordinates [Pawlowsky-Glahn, 2003].

After realizing the importance of taking into account a meaningful geometry of the
sample space, we sought a way to monitor the uncertainty affecting the estimations.
Since we are interested in hazard estimates, i.e.in probabilities of being above certain
toxic thresholds, we applied conventional Bayesian methods to estimate it, and ob-
tained both their central estimates (the predictive) and their whole distribution (as a
family of quantiles).

These hazard estimates were used to quantify the quality of water in the studied
river. The conductivity quality index had a value of ∼ 0.50 which corresponded with
the 95% upper bound of the estimates of the probability of exceeding the threshold
1000µS/cm. Equivalently, the ammonia quality index gave a value of 0.6, associated
with the threshold of 0.025ppm. Given the relatively low human impact on the basin,
the high value of these indices is unexpected, and could be related to a kind of uncer-
tainty we have not monitored up to now: time dependence.

The methodology applied is based on the assumption that the different samples
are independent of each other, explicitly stated in section 2.4. However, from the
observation of time evolution (figure 2.9) of these measurements it is evident that they
are mutually strongly dependent, with a clear daily drift.
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Figure 2.9: Time evolution over July 2002 of all the measured variables, expressed in
coordinates in their respective sample spaces. From top to bottom: pKa, pH, conduc-
tivity (in µS/cm with reference to the right scale), pNH3 and pNH4.
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2.8 Addendum: invariance of coordinate mean and

variance

We include here the proofs of the identification between means and variances both in
coordinates and as vectors/endomorphisms, or, in other words, that the definitions of
these moments given by Eaton [1983] and Pawlowsky-Glahn [2003] are consistent.

Proposition 2.2 Let Z be a random variable in E an Euclidean space. Then, the
mean of the coordinates of Z equal the coordinates of the mean of Z on E with respect
to any basis (page 21)

Proof: Let E be an orthogonal basis of E (definition 2.8), and ei its i-th vector. Then,
using the definition of mean on E (2.6) one may write

〈ei, z̄〉E = E [〈ei,Z〉E]

Dividing both sides by 〈ei, ei〉E, one obtains

〈ei, z̄〉E

〈ei, ei〉E

=
E [〈ei,Z〉E]

〈ei, ei〉E

.

Note that this expression is always valid because ei 6= n, and thus 〈ei, ei〉E > 0. Taking
into account that 〈ei, ei〉E is constant with respect to Z, one can exchange the division
with the expectation,

〈ei, z̄〉E

〈ei, ei〉E

= E

[ 〈ei,Z〉E

〈ei, ei〉E

]
.

which thanks to expression (2.2) ensures us that the coordinates of the mean of Z on
E will be the mean of the coordinates of E in an orthogonal basis. If we denote by Z
the coordinates of Z, and by ζ those of z̄, we may write this last expression as

ζ̄ = E [Z] . (2.30)

Now consider F an arbitrary basis. To change coordinates from E to F we need the
matrix of change of basis ϕ, containing in each column the coordinates of an element of

E with respect to the basis F. Note that both this matrix and the vectors of expression
(2.30) are real, and they can be operated with standard real algebra. In particular, to
change the basis in which vectors are represented we use matrix multiplication,

ϕ · ζ̄ = ϕ · E [Z] ,

and since this product is a linear operation, it commutes with the expectation operator,
giving

ϕ · ζ̄ = E
[
ϕ · Z

]
,

thus
ζ̄
F

= E [Z
F
] ,
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where the subindex ·F denotes the basis used, which now is an arbitrary one. �

Proposition 2.3 Let Z be a random variable on E an (C-dimensional) Euclidean
space. Then, the variance matrix Σ of the coordinates of Z with respect to an orthonor-
mal basis equals the matrix representation of the variance (as an endomorphism Σ) of
Z on E with respect to that basis.

Proof: If we work in an orthonormal basis, we may use property 2.2 to express each of
the vectors and operators from (2.7) in coordinates with respect to this basis, yielding

〈ξ,Σ · υ〉 = E
[
〈ξ, Z − ζ̄〉〈υ, Z − ζ̄〉

]
,

which can be developed as

C∑

i=1

ξi

C∑

j=1

Σijυj = E

[
C∑

i=1

ξi
(
Zi − ζ̄i

) C∑

j=1

υj

(
Zj − ζ̄j

)
]
,

and reordered to

C∑

i=1

C∑

j=1

ξiυjΣij =
C∑

i=1

C∑

j=1

ξiυjE
[(
Zi − ζ̄i

) (
Zj − ζ̄j

)]
.

This expression must be true for all ξ and υ, which implies that the coefficients must
be equal,

Σij = E
[(
Zi − ζ̄i

) (
Zj − ζ̄j

)]
. (2.31)

Note that there is a conceptual difference between both sides of the equality. The
left-hand side is the (i, j) element of the matrix associated with the endomorphism Σ
once it is expressed in an orthonormal basis. The right-hand side is the (real classical)
covariance of the (i, j) coordinates of the random variable Z expressed in the same basis.
In other words, we have proven that Pawlowsky-Glahn [2003] definition of characteristic
element of dispersion is equivalent to the definition of variance on E as an operator
given by Eaton [1983]

�



Chapter 3

Geostatistics in the real space

This chapter presents the basics of the theory of regionalized variables, or geostatis-
tics, originally developed by Matheron [1965]. These techniques allow the treatment
of samples which are non-independent due to their spatial proximity. Recall that
classical statistical methods call for an independent, identically-distributed sample.
Instead, geostatistics assumes some sort of spatial stationarity, and a known model of
dependence of the regionalized variable. This is usually the variogram, which explains
how different become two samples as the distance between their sampling locations
increase. Using the variogram and the stationarity assumption, both inference (esti-
mation of the mean) and prediction (estimation of the value at an unsampled location)
can be achieved with kriging techniques. Kriging yields best linear unbiased estimators
and predictors, and allows to describe the uncertainty attached to the prediction with
an error variance. These results give the probability function of the sought variable, in
the case of a Gaussian model. Geostatistics deals also with support effects: a property
is always measured over samples of a given volume (area, length, duration). We can
define a different regionalized variable for each support, and model the relationship
between them. The final interest of such an approach is the inference of spatial (or
time) averages on given blocks (e.g.ten-minutes average of conductivity) from data
measured in smaller supports (e.g.five-seconds average of conductivity). Apart from
the seminal work by Matheron [1965], a classical comprehensive reference on geostatis-
tics is Journel and Huijbregts [1978], and introductory ones Clark [1979] and Clark and
Harper [2000]. An introductory approach focused on multivariate cases can be found
in Wackernagel [1998]. We closely follow the exposition of Chilès and Delfiner [1999],
a recent comprehensive textbook. All results summarized in this chapter are extracted
from this last book, if not stated otherwise.

3.1 Random function

A look at figure 2.9 shows that each series of the represented measurements present
a mixture of two patterns. From one side, there is a clear oscillatory trend. From
the other, a quite homogeneous noise blurs these series. The observations present

47
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a mixture of randomness and dependence. Geostatistics allows to do inference with
the random character of this sample, exploiting its non-independence through a pre-
specified structure of dependence. This section introduces the basic concepts, the next
one deals with the specification of these dependence structures, and section 3.3 presents
the inference procedure.

Let ~x ∈ D ⊂ R
p be a point in a domain D of the space-time real space R

p, with
typically p ∈ {1, 2, 3, 4}. We denote by Z(~x) ∈ R

D a vector-valued function of the
location ~x which image has as sample the D-dimensional real space, denoted R

D.

Definition 3.1 (Random function) Let the function Z(~x) have as image a random
vector for any ~x ∈ D ⊂ R

p. Then Z(D) is called a random function (abbreviated as
RF).

Definition 3.2 (Realization) Any outcome z(~x) of this RF can be viewed as a map-
ping z(·) : R

p → E, called a realization (or sample function).

In accordance with the notation introduced in chapter 2, a given realization at any
location will be denoted by lowercase characters, z(~x) = (ζ1(~x), ζ2(~x), . . . , ζD(~x)) =
ζ(~x), since, being a real-valued random vector, its coordinates coincide with its values.
Uppercase characters Z(~x) = (Z1(~x), Z2(~x), . . . , ZD(~x)) = Z(~x) denote consequently a
RF. Recall that an underlining (e.g.ζ) will represent a real-valued vector, and a double
underlining a matrix of real coefficients.

Most usually, the domain D is either a bounded continuous region, e.g.a volume of
the physical space, or an infinite series of time moments, e.g.extending from the present
to the future. A RF may be seen as an infinite collection of random vectors, where
each random vector is linked to a given position ~x in the domain D. In the case of
RFs on continuous bounded domains, this collection has uncountably many elements.
The realization is then an infinite collection of fixed values, forming a mapping on the
domain D. The infinite nature of RFs and realizations preclude any direct observation
of them as a whole: instead one can only observe a given regionalized sample, the
observed values of the RF at some locations. To estimate characteristics of the RF,
or predict its value at unsampled locations, one need some further theoretical assump-
tions, discussed in detail in e.g.Chilès and Delfiner [1999]. We will only concern about
stationarity.

Definition 3.3 (Stationarity) Let Z(~x) be a RF with domain D ⊂ R
p and image

R
D. Then it is called

1. strongly stationary, when for any set of Bn ⊂ R
D and for all set of locations

{~xn} ∈ D, the following probability is invariant by translation ~h:

Pr
[
(Z1(~x + ~h) ∈ B1) ∩ (Z2(~x + ~h) ∈ B2) ∩ . . . ∩ (ZN(~x + ~h) ∈ BN)

]
=

= Pr [(Z1(~x) ∈ B1) ∩ (Z2(~x) ∈ B2) ∩ . . . ∩ (ZN(~x) ∈ BN)] ;
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2. second-order stationary, when for any pair of locations ~xn, ~xm ∈ D, the first two
moments are translation-invariant, or

E [Z(~xn)] = µ and Cov [Z(~xn),Z(~xm)] = C(~xm − ~xn) = C
nm

;

3. intrinsic, when for any pair ~xn, ~xm ∈ D, the increments (Z(~xm) − Z(~xn)) have
zero mean and stationary variance:

E [Z(~xm) − Z(~xn)] = 0 and Var [Z(~xm) − Z(~xn)] = γ(~xm − ~xn);

Definition 3.4 (Gaussian RF) A RF Z is called Gaussian if for any sample {~xn}
inside its domain D, the joint distribution is a multivariate normal,

Z(~x1, ~x2, . . . , ~xN) ∼ N
(
µ,Σ

)

with parameters

µ =





E [Z(~x1)]
E [Z(~x2)]

...
E [Z(~xN)]




and Σ =





C
11

C
12

· · · C
1N

C
21

C
22

· · · C
2N

...
...

. . .
...

C
N1

C
N2

· · · C
NN





with
C

nm
= C(~xn, ~xm) = E

[
(Z(~xn) − µ(~xn)) · (Z(~xm) − µ(~xm))t] . (3.1)

A RF is called intrinsic Gaussian if for any sample {~xn} inside its domain D, the
joint distribution of the increments Y(~xi) = Z(~xi) − Z(~xN) is a centered multivariate
normal,

Y(~x1, ~x2, . . . , ~xN−1) ∼ N
(
0, γ
)
,

with γ a block matrix equivalent to Σ, but containing variances γ
nm

.

When ~xn = ~xm, C
nm

gives the variance-covariance matrix of the function Z(~xn) at
location ~xn, whereas for ~xn 6= ~xm one obtain the cross-covariance matrix between the
random vectors located at ~xn and ~xm.

For intrinsic RFs, knowledge of the mean of the RF is not available, even it could
not exist. Thus expression (3.1) cannot be used to encode the relationship between
variables at different locations. In these situations, an auxiliary function matrix is
used, which is called cross-variogram (γ(~xn, ~xm)), and is defined as

γ
nm

= γ(~xn, ~xm) = E
[
(Z(~xm) − Z(~xn)) · (Z(~xm) − Z(~xn))t] . (3.2)

From now on, it will be considered that the RF is a Gaussian function. Gaussian
RFs are a very usual assumption, and the theory of regionalized variables was originally
developed for them. They have many interesting, simplifying properties, e.g.they are
completely specified by their means and covariances (3.1). This implies that strong
stationarity of a Gaussian RF is ensured with second-order stationary.
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3.2 Structural analysis

3.2.1 General aspects

Under second-order stationarity, the covariance matrix (3.1) between the random vec-
tors Z(~xn) and Z(~xm), located respectively at ~xn and ~xm, does not depend on these

exact locations, but on their relative position ~h = ~xm − ~xn. This implies that it can be
expressed as

C(~h) =





C11(~h) C12(~h) · · · C1D(~h)

C21(~h) C22(~h) · · · C2D(~h)
...

...
. . .

...

CD1(~h) CD2(~h) · · · CDD(~h)




=
(
Cij(~h)

)
. (3.3)

Note that this is not necessarily a symmetric matrix. The elements of the diagonal,
Cii(~h) are called (auto)-covariance functions, while those outside the diagonal, Cij(~h)
are called cross-covariance functions. The structural analysis characterizes the RF
through the study of these functions of ~h.

From a practical point of view, these functions are a priori never known, and they
must be estimated from the available data. When the mean µ is known, and for any

direction ~h, the covariance between the variables Zi and Zj is estimated using

Ĉij(~h) =
1

2N(~h)

N(~h)∑

~xn−~xm≈~h

(ζi(~xn) − µi) · (ζj(~xm) − µj), (3.4)

where N(~h) represents the number of pairs of observed locations ~xn, ~xm such that their

difference is approximately equal to ~h, with a certain tolerance [Chilès and Delfiner,
1999, p. 36]. When the mean is not known, the variogram can still be estimated as

γ̂ij(~h) =
1

2N(~h)

N(~h)∑

~xm−~xn≈~h

(ζi(~xm) − ζi(~xn)) · (ζj(~xm) − ζj(~xn)). (3.5)

3.2.2 Auto-covariance functions

Definition 3.5 (Auto-covariance function) For a given real univariate RF Zi(~x) ∈
R, ~x ∈ D, the auto-covariance function is defined, according to (3.1), as

Cii(~h) = E
[
(Zi(~x) − µi)) · (Zi(~x + ~h) − µi)

]
,

provided that the mean µi exists and is stationary.
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Property 3.1 The covariance function Cii(~h) explains the degree of similarity of two

measurements taken at two different locations at a lag distance ~h. It satisfies:

1. it is a continuous function, everywhere except at the origin ~h = ~0;

2. it is an even function, Cii(~h) = Cii(−~h);

3. it tends to zero with increasing ~h, lim~h→∞Cii(~h) = 0;

4. it is a positive definite function

Note: item 3 requires the RF to be ergodic [see Chilès and Delfiner, 1999, pag 19-22,
for a proper definition].

Condition 4 is maybe the most important, because it implies that any combination of
Zi taken at different locations will have a valid positive variance; it has two practical
implications:

• the covariance function has a maximum at the origin, |Cii(~h)| < Cii(~0) = Var [Z(~x)];
this allows us to define an auto-correlation function,

ρi(~h) =
Cii(~h)

Cii(~0)
; (3.6)

• the spectral representation of the covariance is always strictly positive, and ap-
proaches zero when ~u tends to infinity. Under certain regularity conditions [Chilès
and Delfiner, 1999, p. 64, 325-326], this spectral representation is given by

Fjj(~u) =

∫

Rp

exp
(
−2πi

〈
~h|~u
〉)

· Cjj(~h) · d~h > 0, (3.7)

where ”i” is the imaginary unit, and the symbol
〈
~h|~u
〉

represents the classical

scalar product of the vectors ~h and ~u. If Zjj(~x = t) is a stochastic process in
time, then Fjj(u) is interpreted as the energy carried by each frequency u.

Definition 3.6 (Variogram) The variogram of the RF is defined as

γii(~h) = Var
[
Zk(~x + ~h) − Zk(~x)

]
.

The variogram is frequently used as a structural tool, even under the second-order
stationarity assumption, because it does not demand the mean to be known. Pro-
vided that both exist, there is an easy relationship between covariance functions and
variograms,

γ(~h) = C(~0) − C(~h). (3.8)
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Even when the covariance does not exist, this expression can be equally applied with
C(~0) an arbitrarily-chosen upper bound, and C(~h) an equivalent covariance function.
The only condition imposed to the variogram is that this equivalent covariance function
satisfies the conditions stated above for true covariance functions. Thus, variograms
are even positive functions, and are continuous everywhere except at the origin, where
they must have a zero value γii(~0) = 0. In general, towards infinity, the variogram
can increase infinitely. However, when the covariance exists, or the RF is second-order
stationary, then it has an upper bound at γii(~h) < 2 ·C(~0), and towards infinity it must

tend to lim~h→∞ γii(~h) = C(~0); this value is called the sill of the variogram.

0 a

0
c 0

c

range

sill

nugget

γ(h)

C(h)

h

Figure 3.1: Synthetic representation of a covariance and its associated variogram, with
their most common features.

Variograms (and hence covariance functions) are described through the following
characteristic elements (figure 3.1).

Sill: when it exists, the sill is the value around which the variogram stabilizes for long
distances, lim~h→∞ γii(~h) = C(~0), and corresponds to the theoretical variance of
the RF.

Range: when the sill exists, the range is the distance at which at least 95% of its
value is attained; in terms of covariance function, it is the distance at which
the covariance drops to (almost) zero, and is thus interpreted as the radius of
influence of a location.

Nugget effect: the variogram (and the covariance) can be discontinuous at the origin;

though γii(~0) = 0, it can happen that lim~h→~0 γii(~h) = c0 6= 0. This discontinuity
is called the nugget effect, and its value is usually represented by c0.
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Behavior around the origin: the shape of the variogram near the origin informs of
the degree of continuity of the RF. This shape might be approximated by a curve
like γ(~h) ∝ ‖h‖α with 0 < α < 2 (figure 3.2), with the special cases: α = 0
gives a nugget effect and implies discontinuity of the RF; α = 1 is linked with
a (piecewise) continuous function; α = 2 is a parabolic behavior, which ensures
that the RF is at least piecewise differentiable, and highly regular [Chilès and
Delfiner, 1999, p. 51].

Hole effect: this characteristic is identified as a significant oscillation in the variogram
or covariance at relatively long distances. This effect indicates a tendency of
high values in the RF to be surrounded by low values, and viceversa. Periodicity
and quasi-periodicity, particularly in time, are special cases of hole effects. A
hole effect in more than one dimension must be forcefully dampened, in order
to approach the sill as the distance increases. Note that an non-dampened hole
effect does not approach the sill, but it is still a valid covariance model in one
dimension [Chilès and Delfiner, 1999, p. 92-93]. Figure 3.3 shows how a hole
effect variogram looks like.

Anisotropy: when the shape of the variogram depends only on the length of ‖~h‖R = h
and not on its direction, we call the structure an isotropic one. Naturally, an
anisotropic variogram depends on this direction. Essentially there are two types
of anisotropy: geometric (the most commonly considered) and zonal anisotropy.
Geometric anisotropy is present when the shape of the variogram in all directions
is the same, and the only change is in the ranges; it can be transformed to
an isotropic variogram by rotating and scaling the system of reference. Zonal
anisotropy implies even different shapes and sill values in each direction, and it
is by far much more difficult to deal with.

The classical approach to estimate variogram and covariance functions implies com-
puting their experimental versions (3.4-3.5), and fitting to them a valid model, which
must have some of these characteristics. Standardized isotropic classical models—with
sill equal to one, thus representing correlation functions of equation (3.6)—are plotted
in figures 3.2 and 3.3 and are defined as follows.

Definition 3.7 (Generalized linear or power-law model)

γ(h) = hα h > 0; 0 < α < 2.

For α = 0, it is a pure nugget effect. For α = 1, it is a linear model, which gives its
name to the family. The generalized linear model has no sill, and both the variogram
and the associated RF present properties of self-similarity and fractal character: the
Gaussian RFs with such a variogram are Brownian motions.

Definition 3.8 (de Wijsian or logarithmic model)

γ(h) ≈ log

(
h

a

)
+

3

2
, h > 0; a > 0.
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Figure 3.2: Some variogram models without sill.
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Figure 3.3: Some variogram models with a sill.
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For a regularized support, this variogram model has no analytical expression. However,
this equation is an approximation for h > 2a. This variogram model presents no sill.
It has strong ties with the lognormal distribution, and presents also a fractal character.

Definition 3.9 (Spherical)

γ(h) =

{
1 − 3h

2a
+ r3

2a3 , if r ≤ a
1, if r ≥ a

h > 0; a > 0. (3.9)

It is a valid variogram and covariance model for any positive value of a, and this value
coincides with the range of the model: at greater distance than a, the covariance is
identically 0. It is classically linked to diffusion phenomena with a limited area of
influence. It is one of the most-frequently used.

Definition 3.10 (Generalized exponential or Stable)

γ(h) = 1 − exp

(
−
(

3h

a

)α)
, h > 0; 0 < α ≤ 2; a > 0. (3.10)

This family reaches the sill asymptotically, and the range is defined as the distance at
which the correlation coefficient drops to 5%. Two members of this family are commonly
used. The exponential model (α = 1) is very similar to the spherical one, and is
associated to diffusion processes with infinite area of influence. The Gaussian model
(α = 2) is highly continuous at the origin, which makes its corresponding RF to be
infinitely differentiable, exceptionally regular, and almost deterministic; it is a good
model for potential fields ( e.g.gravity) and, in general, deterministic phenomena [Chilès
and Delfiner, 1999, p. 85,90].

Definition 3.11 (Hole effect)

γ(h) = 1 − exp

(
−3h

ad

)
· cos

(
2π

h

at

)
, h > 0; ad, at > 0 (3.11)

where at is the period of the variogram, and ad the dampening range: at a distance
greater than ad, the hole effect has been reduced to 5% of its original importance, thus
considered as zero. In one dimensional problems, any positive values for at, ad are
allowed, but for high dimensions the dampening range must be significantly smaller
than the period. It describes periodic behavior of variograms and covariance functions.

Definition 3.12 (Composed models) Valid variogram models for any variable can
be defined as a linear combination of the previous models for correlograms (thus with
unit sill), each one multiplied by a certain constant, showing its contribution to the
total variance,

γT
ii (h) = c0 +

K∑

k

c(k) · γ(k)(h) h > 0; c0, c(k) > 0.
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An identical expression exists for covariance functions, whenever the models used are
linked to valid covariance models,

C(h) = c0 +
K∑

k

c(k) ·
(
1 − γ(k)(h)

)
. (3.12)

Usually, composed models have at least the nugget effect term (denoted by c0), apart
from a correlogram model.

3.2.3 Cross-covariance functions

Definition 3.13 (Cross-covariance function) For a pair of univariate RFs (Zi(~x), Zj(~x)) ∈
R

2, ~x ∈ D, their cross-covariance function is defined, according to (3.1), as

Cij(~h) = E
[
(Zi(~x) − µi)) · (Zj(~x + ~h) − µj)

]
,

provided that the means (µi, µj) exist and are stationary.

Generalizing the auto-covariance function concept, the cross-covariance function ex-
plains the mutual linear information of a measurement of two different variables taken
respectively at two different locations (separated by a lag vector ~h). Remember that
in general the cross-covariance functions are not symmetric, although

Cij(~h) = Cji(−~h).

This means that cross-covariance functions are neither odd nor even functions. They
are bounded by the auto-covariance functions through Cauchy-Schwarz’s inequality,

Cij(~h) ≤
√
Cii(0) · Cjj(0).

Cross-covariances can be described through the same elements used with auto-covariances
(figure 3.1), plus a delay or off-set effect : maximum correlation between two different
variables does not necessarily occur at the same location, but displaced a certain lag
~h. In particular, hole effects apply also to cross-covariances. Also, ranges in both posi-
tive and negative directions can be identified, where cross-covariance vanishes. Finally,
cross-covariances can have nugget effects elsewhere, not only at the origin [Chilès and
Delfiner, 1999]. However, cross-covariance functions are not modelled by using only
particular models, since they can seldom ensure that the resulting set of covariance
functions (3.3) is a valid joint covariance model.

Property 3.2 (Cramér, 1940) Under certain regularity conditions, the set of auto-

and cross-covariance functions Cjk(~h) form a valid model if

Fjk(~u) =

∫

Rp

exp
(
−2πi

〈
~h|~u
〉)

· Cjk(~h) · d~h, (3.13)
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i.e. the set of spectral densities Fjk(~u) associated to all Cjk(~h), form a positive definite
Hermitian matrix for all frequencies ~u [Chilès and Delfiner, 1999]. Recall that here i

represents the imaginary unit, and
〈
~h|~u
〉

is the classical scalar product between vectors

~h and ~u.

This formulation of Cramér criterion is more restrictive than the original one, which
does not demand the densities to exist, but only their measures. However, this approach
is enough in the scope of this Thesis.

Definition 3.14 (Cross-variogram) Cross-variograms are defined as

γij(~h) = E
[(
Zi(~x) − Zi(~x + ~h)

)
·
(
Zj(~x) − Zj(~x + ~h)

)]
,

Cross-covariograms present the following relationship with cross-covariances

γij(~h) = Cij(~0) − 1

2

(
Cij(~h) + Cij(−~h)

)
, (3.14)

Note that cross-variograms do not capture asymmetric features of the covariance struc-
ture. Cressie [1991] introduces a measure of joint variation which keeps this informa-
tion. His definition uses increments between different variables, which may have no
physical sense. On the other hand, van den Boogaart and Brenning [2001] shows that
a generalized cross-covariance can be computed with an estimated mean value, and
that prediction results this generalized covariance will yield are equivalent (up to the
addition of a constant, as is explained in next section) to those obtained with the true
cross-covariance.

Equation (3.14) implies that cross-variograms are even functions, and satisfy γij(~0) =
0. Using variograms and cross-variograms, a coefficient of codispersion [Wackernagel,
1998] is defined,

Rij =
γij(~h)√

γii(~h) · γjj(~h)
. (3.15)

The coefficient of codispersion is bounded to |Rij(~h)| ≤ 1, since by Cauchy-Schwarz
inequality

γij(~h) ≤
√
γii(~h) · γjj(~h).

These conditions on cross- and auto- correlations and variograms are necessary condi-
tions to ensure that the joint model (3.2) or (3.3) is a valid one. But the necessary
and sufficient condition is that (3.13) defines a positive definite matrix of frequency
spectra.

To implement these conditions and obtain a valid covariance or variogram system,
there are some particular methodologies. From them, the linear model of corregional-
ization will be used. The linear model of corregionalization generalizes (3.12) through
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a decomposition of the whole covariance matrix

C(~h) =
K∑

k

(
1 − γ(k)(~h)

)
· C

(k)
,

where γ(k)(~h) are K valid variogram models (possibly including a nugget effect), and
C

(k)
form a set of K matrices. The model is automatically valid when the matrices

are all positive definite. However, this condition is a sufficient but not necessary one.
In fact, it is very restrictive: for instance, it cannot handle offset effects in cross-
covariances [Wackernagel, 1998]. Instead, Yao and Journel [1998] suggest to validate a
discrete version of the joint covariance model by obtaining a valid frequency spectrum
(as described in proposition 3.2). This is a general validation approach, but it still
lacks a straightforward implementation.

3.3 Linear prediction

3.3.1 General universal kriging

The main use of the RF formalism and the structural analysis functions is interpo-
lation. As was said in section 3.1, a RF Z(D) as a whole cannot be observed, and
instead one have always a regionalized sample, a collection of observations at different
locations zn = z(~xn), ~xn ∈ D, n = 1, . . . , N . The goal will be the estimation of (some
of the components of) the vector Z(~x0), by using the observed sample. A measure of
the error incurred is also sought. Kriging is a technique which provide these estima-
tions through linear combinations of the observed data, and is regarded as best linear
unbiased estimator, in the sense that its error has minimal variance among all linear
combinations of observations. When the RF Z ∈ R

C is a Gaussian one, it is known
that kriging delivers also the conditional distribution of Z(~x0) on the observed data. In
the literature, the term kriging usually applies to univariate RFs, and cokriging is used
when RFs have a vector as image. We will not do such a distinction, simply calling all
these techniques by the generic name of kriging.

In general, all the coordinates of the vector Z shall not be observed at all locations, a
situation called non-collocated sampling, or undersampled case [Journel and Huijbregts,
1978]. Contrarily, when at all sampled locations a whole vector is obtained, it is called
a collocated sampling . In the first case, the most generic, one must consider each
coordinate separately as an univariate RF, Zk(D). The sampled values observed for
this RF, being real values, will be denoted by ζk(~xn), n = 1, . . . , Nk. Assume that the
mean µk(~x) of these RFs is not known, but that it is known to be a linear combination
of (A + 1) known functions {f0(~x), f1(~x), . . . , fA(~x)} called drift functions . Usually,
these function are polynomials or trigonometric functions, and f0(~x) ≡ 1 is also a
common assumption. In this situation, the best linear predictor (denoted by ζ∗0 ) of the
value of Zk(~x0) at an unsampled location ~x0 ∈ D, using the available information on
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the drift and the observed values, is called universal kriging (UK) and is defined as a
weighted arithmetic average

ζ∗0 =
C∑

i=1

Ni∑

n=1

λni · ζi(~xn). (3.16)

The error variance attached to this estimator is called kriging variance, and its value
is

σ2
UK = E

[
(z∗0 − Zk(~x0))

2] = Ckk(~x0, ~x0) − 2
C∑

i=1

Ni∑

n=1

λni · Cik(~xn, ~x0) +

+
C∑

i,j=1

Ni∑

n=1

Nj∑

m=1

λniλmjCij(~xn, ~xm), (3.17)

where Cij(~xn, ~xm) = Cij(~xm−~xn) is the covariance function between Zi(~xn) and Zj(~xm).
The weight values λni are obtained by minimizing the variance (3.17) subject to the
so-called universality conditions, one for each function of the drift and each variable
involved:

Ni∑

n=1

λnifa(~xn) = δikfa(~x0). (3.18)

Using Lagrange coefficients νa, the weights can be computed through the system of
equations

C∑

j=1

Nj∑

m=1

λmjCij(~xn, ~xm)+
A∑

a=0

νafa(~xn) = Cik(~xn, ~x0) , i = {1, . . . , C} ;n = {1, . . . , Ni}

Ni∑

n=1

λnifa(~xn) = δikfa(~x0) , i = {1, 2, . . . , C}; a = {0, 1, . . . , A}. (3.19)

Note that in these equations, k is the index of the predicted variable, a the drift
function index, i the predictand variable index, n the datum index, and 0 the index
of the predicted location. For each i-th variable, the system has Ni +A+ 1 equations
and unknowns, one for each location i and one for each drift function a. Although
fairly large, this system of equations can be solved through classical methods for linear
systems. Three particular and simpler cases will be considered now: ordinary kriging,
kriging of the drift and simple kriging.

In the first case, when only the constant drift function is considered f0(~x) ≡ 1,
the method here described amounts to simply considering the mean to be constant
but unknown. This case is the most common, and it is called ordinary, or general,
kriging . It can be performed using variograms and generalized cross-covariance instead
of covariances. Recall that cross-variograms can replace generalized cross-covariance
functions when these are symmetric.
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3.3.2 Kriging of the drift

Now the goal is the estimation of the drift coefficients for a single variable Zk. Since it
will be used here only this variable, the index for the k-th variable is dropped in this
section. Considering other variables would simply imply the extension of the covariance
and drift matrices involved, in a similar fashion to what is done in the last section.

Recall that the drift µ(~xn) has an expression

µ∗(~xn) =
A∑

a=1

αafa(~xn), or µ = F · α

which allows a decomposition of observed values ζ(~x) in drift and residual values

ζ = F · α+ υ

We use here a matrix notation, where α = (αa) is the vector of drift coefficients,
ζ = (ζ(~xn)) are the observed values of Z at the sampled locations, υ = (υ(~xn)) are
the residuals of Z after substracting the drift, F = (Fna)) = (fa(~xn)) is the matrix
of drift functions computed at each sampled location, and Σ = (C(~xn, ~xm)) is the
covariance matrix of the residuals at each sampled location, with a = 0, 1, . . . , A and
n,m = 1, 2, . . . , N .

Generalized least squares theory allows us to estimate the vector of coefficients α
through the matrix expression

α∗ =
(
F t · Σ−1 · F

)−1 · F t · Σ−1 · ζ. (3.20)

The variance-covariance error matrix associated to the estimator 3.20 is computed as

Cov [α∗, α∗] =
(
F t · Σ−1 · F

)−1
. (3.21)

Kriging of the drift gives the same results as universal kriging (in its univariate form)
when the covariance between the data set and the kriged location has dropped to zero:
in the system of equations of expression 3.19, the right-hand terms of the equations of
the first kind are all zero. Outside the range, universal kriging results coincide with
the drift [Chilès and Delfiner, 1999, p. 179]. It is interesting to note that the kriging
variance of the drift itself at a given location can be easily computed using (3.21) by

σ2
KD = Var [m∗(~xn)] = E

[
(µ∗(~xn) − µ(~xn))2] = f t

n
·
(
F t · Σ−1 · F

)−1 · f
n
, (3.22)

where f
0

= (fa(~x0)) is the vector of drift functions at location ~x0.

3.3.3 Simple kriging

For a single variable Zk, which mean µk(~x) is known everywhere in the domain ~x ∈ D,
the technique used is called simple kriging (SK). Since k will be a constant, in this
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section it is dropped from the notation: Z = Zk is the RF, µ(·) = µk(·) its known mean,
λn = λnk the kriging weights, ζ(·) = ζk(·) the regionalized sample, and C(·) = Ckk(·)
the covariance matrix. The predictor is

ζ∗0 =
N∑

n=1

λnζ(~xn) +

(
1 −

N∑

n=1

λn

)
µ(~x0). (3.23)

The weights λn are obtained by solving the system of equations

N∑

m=1

λmC(~xn, ~xm) = C(~xn, ~x0), n = 1, 2, . . . , N, (3.24)

which minimizes the simple kriging variance

σ2
SK =

N∑

n,m=1

λnλmC(~xn, ~xm) − 2
N∑

n=1

λnC(~xn, ~x0) + C(~x0, ~x0). (3.25)

Note that the extension of this technique to incorporate information from other
variables can be done in a straightforward way by considering cross-covariances in the
matrix C = (C(~xn, ~xm)). A full study of this case is the subject of the next chapter.

3.3.4 Properties of kriging estimators

Simple kriging predictor (3.23) is the best linear unbiased predictor, once the mean
is known. It satisfies the unbiasedness condition E [ζ∗0 − Z(~x0)] = 0, and its error
variance Var [ζ∗0 − Z(~x0)] is minimal by construction. In a Gaussian RF, simple kriging
predictor can be interpreted as the result of a regression of the unknown variable at
the unsampled location by using as predictands the variables at the sampled locations.
The regression equation is (3.23), the joint distribution is a multivariate normal with
parameters delivered by equation (3.1), the normal equations that must be solved to
obtain the regression are (3.24), and the error variance attached to the regression is
(3.25). As a standard result of regression theory, the conditional distribution of the
predicted variable is

[Z(~x0)|ζ(~x1), ζ(~x2), . . . , ζ(~xN)] ∼ N
(
ζ∗0 , σ

2
SK

)
. (3.26)

This implies that

E [ζ∗0 |ζ(~x1), ζ(~x2), . . . , ζ(~xN)] = E [Z(~x0)|ζ(~x1), ζ(~x2), . . . , ζ(~xN)] . (3.27)

So, conditionally to the observed data, the expectation of the predictor and the expec-
tation of the unsampled variable are equal. Furthermore, ζ∗0 satisfies the conditional
unbiasedness property

E [Z(~x0)|ζ∗0 ] = ζ∗0 ,
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which is even of greater importance than the minimum variance condition. Indeed,
for instance in water management, the decision to accept or reject a water volume for
agricultural use may depend on the estimated conductivity, whereas its effects in the
functions depend on the true conductivity. Conditional unbiasedness ensures that, on
the average, we get what we expect [Chilès and Delfiner, 1999, p. 164].

All these properties of simple kriging (be it univariate or multivariate) disappear
when the mean is unknown. Universal kriging is also by construction an unbiased linear
predictor of minimum variance, but it is no longer conditionally unbiased, nor equation
(3.27) holds. However, kriging tends to minimize the conditional bias in any case, even
for non-Gaussian functions, since the kriging variance admits a decomposition

Var [Z(~x0) − ζ∗0 ] = E [Var [Z(~x0)|ζ∗0 ]] + E
[
(E [Z(~x0)|ζ∗0 ] − ζ∗0 )2] ,

where the first term on the right side is the expected conditional variance, and the
second one is the variance of the conditional bias. Thus, one can be confident that the
true conditional distribution is not far from an equivalent distribution to (3.26) with
mean ζ∗0(UK) and variance σ2

UK . An assessment of this approximation is given by the

analysis of the slope β of the regression of the true value Z(~x0) on its predictor ζ∗0 ,

β =
Cov [Z(~x0), ζ

∗
0 ]

Var [ζ∗0 ]
= 1 −

(
1 −

N∑

n=1

λn(SK)

)
Var [m∗(~x0)]

Var [ζ∗0 ]
. (3.28)

Here λn(SK) are weights of simple kriging (3.24), Var [ζ∗0 ] is the variance of the kriging
method used, and Var [m∗(~x0)] is the variance of the drift (3.22). The more similar β
to one, the better the approximation of SK by UK is. This is achieved either by SK
weights summing up to one, or by a small variance of the drift.

3.4 Bayesian Methods

3.4.1 Bayesian kriging

Omre [1987] introduced a model which essentially considers the drift functions of uni-
versal kriging to be a smooth RF, which first and second moments are known, a so-
called qualified guess. Let us explain it in an univariate case: Z(~x) is a RF in a domain
~x ∈ D, and its qualified guess is M(~x), also a RF in the same domain. Let the moments
of M(~x) be known, but not necessarily stationary,

E [M(~x)] = µM(~x)

Cov [M(~xn),M(~xm)] = CM(~xn, ~xm),

and let the conditional moments of Z(~x) on M(~x) satisfy a generalized second-order
stationarity condition

E [Z(~x)|M(~x)] = a0 +M(~x)

Cov [Z(~xn), Z(~xm)|M(~x)] = CZ|M(~xn − ~xm).
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Due to standard relationships between conditional and non-conditional moments of
random variables, the non-conditional versions of the moments of Z(~x) are

E [Z(~x)] = a0 + µM(~x)

Cov [Z(~xn), Z(~xm)] = CZ|M(~xn − ~xm) + CM(~xn, ~xm). (3.29)

Notice that this model amounts to the classical RF with an unknown but constant drift.
Thus, it can be treated by ordinary kriging (page 59) with a composite covariance given
by equation (3.29).

Finally, the model offers estimates of the RF Z(~x0) at unsampled locations, as well
as a kriging variance. Under the assumption that both M(~x) and Z(~x) form a jointly
bi-variate Gaussian function, these two measures can be interpreted as the mean and
the variance of a normal distribution at the unsampled location ~x0. The validity of
this interpretation is nevertheless subject to the limitations exposed in section 3.3.4
regarding the conditional expectation properties of universal kriging. No further as-
sessment of uncertainty affecting the estimates was derived by Omre [1987] from this
bayesian framework.

Further steps in the bayesian treatment of spatial problems were given by Le and
Zidek [1992] and Handcock and Stein [1993], who introduced different bayesian models
for estimation of parametric covariances. Diggle et al. [1998] account for these and other
bayesian improvements of the estimation process, specially regarding its uncertainty.
In this line, Chilès and Delfiner [1999, p. 190] note that the bayesian modelling of the
drift tends to reduce the uncertainty of the final estimates, while a bayesian modelling
of covariance parameters tends to increase it.

3.4.2 Model-based geostatistics

Diggle et al. [1998] introduce another model, which has the same relationship with
kriging as generalized linear models [Nelder and Wedderburn, 1972] have with linear
regression. In the scope of their model, the available data (a sample y1, y2, . . . , yN) are
assumed to be generated by a model like

Y (~x) = µ+ S(~x) + Z,

with µ a constant mean effect, S a stationary Gaussian RF with E [S(~x)] = 0 and
Cov [S(~xn), S(~xm)] = σ2ρ(~xm − ~xm), and Z ∼ N (0, τ 2) a white noise, independent
of location. This model has the particular property that, conditional on the values
of S(~x), the Y (~x) are mutually independent variables with distribution Y |S(~x) ∼
N (µ+ S(~x), τ 2).

The next step is assuming the existence of a series of explanatory variables for S(~x),
and replacing the normal assumption by a generalized linear model, which says that
for a known link function h(·),

h (E [Y |S(~x)]) =
A∑

a=1

fa(~x)βa + S(~x).



64 Geostatistics in the real space

The explanatory variables fa(~x) play the role of the drift functions of universal kriging,
and the βa parameters of the drift coefficients.

The model is specified through the marginal distribution of S(~x) and the conditional
distribution of Y (~x) on S(~x). In a bayesian framework, inference on the various param-
eters of the model (µ, σ, τ, βa) or any parameter of the correlation structure ρ(~xn−~xm)
would require the use of the likelihood of the marginal distribution of the observable
Y (~x), which is not directly available. Then the authors use extensive computation
methods (namely Markov Chain Monte Carlo, or MCMC methods) to:

1. estimate the posterior distribution of the correlation parameters from the marginal
distribution of S(~x), which is known,

2. estimate the joint distribution of S(~x) and Y (~x),

3. estimate the posterior distribution of S(~x) conditional on the data, the estimated
posterior distribution of correlation parameters and the prior distribution of re-
gression parameters,

4. estimate with it the posterior distribution of the regression parameters βa,

5. estimate with all of them the joint posterior distribution of S(~x) and Y (~x) in-
cluding the locations to be predicted.

The objective in each one of these steps is estimated by simulating a large sample of
the known distributions, using standard simulation techniques—Metropolis-Hastings
algorithms —and the estimate is obtained as an average of the simulations, following
the standard Monte Carlo procedure. The final result is a set of posterior distributions
for each one of the parameters of the model, and the predictive distribution at each
one of the desired locations.

These kind of models are highly elastic, since they can handle many different prob-
ability distributions (not only Gaussian-related ones) and several parameters with non-
linear relations (like the link function h(·)) with the data. Clifford [1998] poses never-
theless some criticism to MCMC techniques, regarding the objectivity and reproduc-
tivity of obtained results. Other model-based bayesian estimation techniques can be
found on the literature applied to spatial hazard problems, e.g.[Besag et al., 1991].

3.4.3 Bayesian/maximum entropy geostatistics

The primary interest of bayesian/maximum entropy methods, or BME [Christakos,
1990], is the estimation of the distribution of a RF Z(~x0) at unsampled locations
given the observed sample z1, z2, . . . , zN , where for short zn = z(~xn), and some generic
objective constraints, e.g.fixed means, covariances, plausible intervals, quantiles, or any
other information on the values of Z or its probability.

Consider the joint distribution f(Z0, Z1, Z2, . . . , ZN) of {Z(~x0), Z(~x1), . . . , Z(~xN)}
to be known. Then, given the observed sample, the RF has a distribution at the
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unsampled location equal to

f(Z0|z1, z2, . . . , zN) =
f(Z0, z1, z2, . . . , zN)

f(z1, z2, . . . , zN)
∝ f(Z0, z1, z2, . . . , zN)

due to the definition of conditional probability. Note that uppercase characters indi-
cate a free-varying random variable, while lowercase characters are observed samples,
i.e.fixed numbers. In words, if the joint distribution was known, the BME would de-
liver simply the conditional distribution at the unsampled location given the observed
sample.

Now, the BME approach does not a priori assume any model for this joint distri-
bution, as does the model-based technique of the last section and all Gaussian-related
kriging techniques. Instead, it takes as joint distribution for the {Zn} the less infor-
mative existing distribution among those which satisfy a series of previously-known
constraints. From the existing measures of information, Christakos [1990] chooses to
use Shannon [1948] Entropy. Therefore, the joint distribution will be provided by Boltz-
mann’s Theorem , which ensures that the maximum-entropy density is the exponential
of a linear combination of the constraints [see, e.g.Leonard and Hsu, 1999, p. 122, for
a complete account]. As a result, the distribution obtained with BME estimation is
always from an exponential family, which gives the method some good analytical and
numerical properties, e.g.to use MCMC methods, when no closed analytical form is
available.

BME methods are extremely flexible, since they can incorporate any kind of ob-
jective information in the estimation procedure. As particular cases, if the available
information is the mean and the covariance structure of the RF, then the joint dis-
tribution is a multivariate normal one, and the BME predictor coincides with simple
kriging delivering the conditional Gaussian expectation. If the available information is
given by the assumptions explained in the last section, then BME model coincides with
the generalized linear geostatistical model. Finally, an example on the handling of cat-
egorical variables through BME methods is addressed in section 7.1. Other examples
can be found in the monograph on the subject by Christakos [2000].

On the side of the flaws, BME method lacks simplicity. Its implementation usually
is analytically untractable—in fact, the interesting cases of BME are those which do no
evolve into closed analytical forms—, and most usually it relies on extensive computing
techniques.

3.5 Change-of-support problems

Consider in this section only an univariate RF Z(~x) defined on the whole real line R:
Z will represent both the element of R as a vector and its coordinate in the canonical
basis of R, as was defined in section 2.5.1. Recall that this chapter began with the
assumption that the RF Z(~x) ∈ R was defined on a point-support ~x ∈ D ∈ Rp. This is
obviously an unrealistic assumption, since any physical property must be measured in a
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given amount of time-space or matter, what it is called a block-support. Let Zv(~x) ∈ R

be then another RF defined on block-supports of volume v, which centers are located
at ~x ∈ D. Now geostatistics can offer an answer to the following questions:

• which is the relationship between both RFs, on point and block-support?

• how can we predict the RF on block support by using measurements regarded as
measured on point-support?

• which is the uncertainty linked to such a prediction? how can we compute the
distribution of the RF on the block-support?

Obviously, this difference between point and block-support admits more than one sin-
gle level: it is also possible to work with a series of nested volumes, like ~x ∈ v ⊂ V ⊂
W ⊂ D, where even the domain is finally considered as a block. This situation would
arise when several possible risk management policies were linked to different volumes,
e.g.water control in a waste-water-treating plant which needs to monitor that the av-
erage of Ammonia of the effluents in half an hour do never exceed a certain threshold,
and at the same time that when it exceeds another threshold during more than ten
minutes an alarm should be triggered.

3.5.1 Relationship between point and block-support RFs

If the point-support RF is known, then the values of any block-support RF can be
computed.

Definition 3.15 (Sampling function) A sampling function is a function p(~x) ∈
R+, with positive real images, defined on the whole domain ~x ∈ D, such that

∫
D p(~x)d~x =

1.

A sampling function represents an averaging process: it gives a weight to each point
in the domain, so that all weights are positive and sum up to one. For instance, if

pv(~x) =

{
1
v
, ~x ∈ v

0, otherwise,
(3.30)

then Zv(~x) is simply the arithmetic average of the point-support RF inside the block.

Definition 3.16 (Regularized RF) Let Z(~x) be a point-support RF. Then the block-
support RF can be computed as the convolution

Zv(~x) =

∫
pv(~h)Z(~x + ~h)d~h, (3.31)

where the sampling function p(~h) represents the averaging process.
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Definition 3.17 (Regularized structural functions) Let Z(~x) be a point-support

RF characterized by a covariance function C(~h). Then the block-support RF of defini-
tion 3.16 is characterized by the covariance function

Cv(~h) =

∫
Pv(~x)C(~h+ ~x)d~x, (3.32)

where Pv is the auto-convolution of pv by itself

Pv(~x) =

∫

Rp

pv(~x)pv(~x + ~h)d~h.

It is also possible to compute the variogram of the block-support RF by using expression
(3.8) with block covariance (3.32). These covariance and variogram functions linked to
the block-support RF are called regularized.

The regularized and point-support versions of these structural functions keep the
following relationships

1. the shape of the functions (either the variogram or the covariance) is more or less
the same,

2. however, around the origin, the regularized function is more likely to exhibit a
parabolic behavior, which implies that the regularized RF is more regular than
its point version,

3. and for second-order stationary RFs, the sill

Cv(0) = Var [Zv] =

∫ ∫
p(~h1)C(~h1 − ~h2)p(~h2)d~h1d~h2 < C(0) (3.33)

of the regularized version is smaller or equal to the original sill C(0) = Var [Z(~x)].
The difference between the point-support and the regularized sills coincides with
the dispersion variance of ~x in v.

Definition 3.18 (Dispersion variance) The dispersion variance of a small block v
partitioning a bigger one V in an intrinsic RF is defined as

σ2(v|V ) =

∫ ∫
pV (~h1)γ(~h1 − ~h2)pV (~h2)d~h1d~h2 −

∫ ∫
pv(~h1)γ(~h1 − ~h2)pv(~h2)d~h1d~h2,

where γ(·) represents the point-support variogram. The dispersion variance is inter-
preted as the error variance affecting the value of ZV in the bigger support when esti-
mated using the value Zv in the smaller support, or equivalently as the variance of Zv

in V .
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Using the weighting function of equation (3.30), the dispersion variance becomes

σ2(v|V ) =
1

V 2

∫

V

∫

V

γ(~h1 − ~h2)d~h1d~h2 −
1

v2

∫

v

∫

v

γ(~h1 − ~h2)d~h1d~h2 =

=
1

v2

∫

v

∫

v

C(~h1 − ~h2)d~h1d~h2 −
1

V 2

∫

V

∫

V

C(~h1 − ~h2)d~h1d~h2,

where the second equality only holds for second-order RFs.

Property 3.3 (Krige’s relationship) Dispersion variances satisfy the following ad-
ditivity property for nested blocks,

σ2(v|W ) = σ2(v|V ) + σ2(V |W ).

Note that, taking v = ~x and W = D, we find: a) σ2(~x|D) is the variance of the
point-support RF in the whole domain, its total variance, or the sill of its variogram;
b) σ2(V |D) is equivalently the sill of the regularized variogram; and, c) the difference
is the dispersion variance of the point-support ~x in the volume V .

3.5.2 Universal block kriging

A classical change-of-support problem is the estimation of an average (3.31) of a block
v at ~x0 through a linear combination of point-support observations ζn = ζ(~xn), ~xn ∈
D, n = 1, . . . , N . In general, this block v does not coincide with the regularization
block explained in the last section, but will be bigger. Following step-by-step the case
of point kriging (section 3.3) but for a single variable, the following elements are needed:

• the average value of the drift functions fa(~x0 ∈ v) inside the block

fa(v) = fa(~x0 ∈ v) =

∫
fa(~x0 + ~h)pv(~h)d~h,

• the covariance between each sample ~xn and the block

C(~xn, v) = C(~xn, ~x0 ∈ v) =

∫
C(~xn, ~x0 + ~h)pv(~h)d~h,

• and the variance of the block (3.33), here denoted by C(v, v).

Definition 3.19 (Universal block kriging predictor) With these expressions, the
univariate universal block kriging predictor is

ζ∗0 =
N∑

n=1

λnζn,
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where the weights are obtained by minimizing the system

N∑

m=1

λmC(~xn, ~xm) +
A∑

a=0

νafa(~xm) = C(~xn, v) , n = {1, 2, . . . , N},

N∑

n=1

λmfa(~xm) = fa(v) , a = {0, 1, . . . , A}.

Note that this system is exactly equivalent to (3.19) but with all the expressions involving
~x0 replaced by their block counterparts defined above. Regarding the kriging variance,
it corresponds to

σ2
K =

N∑

n,m=1

λnλmC(~xn, ~xm) − 2
N∑

n=1

λnC(~xn, v) + C(v, v).

Equivalently, a block simple kriging predictor can be defined by adapting expression
(3.24). Finally, it is worth summarizing the main properties of these simple and uni-
versal block kriging predictors.

Property 3.4 (Optimality of block kriging predictors) The simple kriging (SK)
and universal kriging (UK) predictors satisfy for block RFs the following properties:

1. the SK predictor is unbiased and of minimal variance among the predictors ex-
pressed as linear combinations;

2. in a Gaussian RF, the true block average value is also normally distributed, with
the SK estimator and its kriging variance as the parameters of the conditional
distribution, like in expression (3.26);

3. the UK predictor is also a best linear unbiased predictor, which takes into account
the shape of the drift; however, it provides no longer the conditional distribution
of the true block average value, neither in the Gaussian function case;

4. again, the departure of the block UK predictor from the distribution of the true
block average will depend on the relation (3.28), like in point-support RFs.

Block kriging is particularly well-suited for Gaussian RFs, because if a point-support
RF is a Gaussian one, then any of the regularized block-support RFs one could define
on it is also a Gaussian one. This justifies the fact that block simple kriging estimates
the conditional distribution.

3.5.3 Global change-of-support

In this section, we look for a way to describe the variability of the mean value of the
RF Z(~x) on blocks of size v partitioning the whole domain D. This is achieved by
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giving the probability distribution function for the value of the mean in a block taken
at random from all the blocks in D. However, some assumptions must be done on the
properties of the RFs. These assumptions are called a global change-of-support.

In the last section, we introduced a known way to compute the mean of a RF for a
block-support conditional to the data around and inside it: the kriging predictor. In
the case of a Gaussian RF, this predictor and its variance yield also the distribution of
the mean of the RF inside the block. Thus, block kriging with all the available data
constitutes a global change-of-support model. As we will see, this coincides with the
so-called multi-Gaussian model [Verly, 1983] for a very specific case.

Other change-of-support models (either conditional to the data set, or without
conditioning) have been developed for cases where a Gaussian assumption was not
allowed. These models relate the distribution of a point-support (~x) RFs with that
of a block-support (V ) RF, or the distributions associated with two different block-
supports (v ⊂ V ). The main condition expected for a change-of-support model is that
the distribution of bigger blocks should be less selective than that of smaller blocks.

To understand the concept of selectivity, it is useful to recall its origin. When
mining a mineral deposit, the rock is cut in blocks, which are sent either to the mill
(as ore) or considered as waste using an estimated average of its content in metal (the
so-called grade). This implies that a certain amount of metal is not processed, because
it was in a block considered as waste. To avoid that, we should exploit the deposit in
blocks of the smallest volume possible. In other words, the small blocks are considered
more selective than the bigger ones, because if we could use them we would better
select ore from waste blocks.

Chilès and Delfiner [1999] present some of the classical change-of-support models,
as well as its commonly recognized limitations:

Definition 3.20 (Affine correction) Let Z(~x), Zv(~x) be a pair of point- and block-
support Gaussian RFs; then they satisfy

Z(~x) − µ

σ
∼ Zv(~x) − µ

σv

∼ N (0, 1). (3.34)

The affine correction assumes this identity of the distributions even in the case of a
non-Gaussian RF.

In practical cases, the distribution of the block-support is derived from the experimental
cumulative histogram of point-supports, whereas means and variances are obtained
from a classical variography analysis.

Definition 3.21 (Discrete Gaussian model) Let φ(·) be a transformation, such
that the transformed point and block-support RFs form a bi-normally distributed pair,
with a regression coefficient r; the distribution φv(zv) of the block value zv is computed
by using

φv(zv) = E
[
φ
(
r · zv + u ·

√
1 − r2

)]
, (3.35)

where u is an auxiliary standard normal variable.
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In applications, one must estimate the correlation coefficient. This is selected so that
the variance of the block-support satisfies condition (3.33).

Definition 3.22 (Multi-Gaussian model) Assume that φ(·) transforms the point-
support RF Z(~x) into a Gaussian RF ζ(~x) = φ (Z(~x)). Then the transformation of
the RF at any set of locations will follow a multi-Gaussian distribution. Thus, block
kriging will yield the distribution of the block-support RF. This distribution can be back-
transformed through φ−1(·) to obtain the distribution of the block-support Z(~x) [Verly,
1983].

These methods rely on different hypothesis, but when assuming joint Gaussianity of
the RF they coincide: in this case, the transformations involved in the last definitions
are the identity φ(z) = z, and the discrete Gaussian model coincides with the multi-
Gaussian and with the affine correction.

Note that if they are not Gaussian, all this models are approximations, which
should be carefully used to avoid inconsistent results. The nowadays usefulness of
these change-of-support models is decreasing, as computers are more powerful and
large simulations are possible. These models were defined to compensate the limi-
tations of computers with approximate analytical expressions drawn from theoretical
assumptions. Their current interest may be instead focused in understanding the pro-
cesses underlying the RF.

One of the usual ways to express the final estimated distributions is through the
selectivity curves, which are almost always applied to strictly positive variables. Thus,
they are further discussed in section 5.4.

3.6 Case study: conductivity

This section illustrates the methods of this chapter using the example already presented
in section 2.5.1. This data set is a series of measurements of water conductivity ob-
tained automatically by an online control station at different time moments. Figure 3.4
shows its time evolution during the years 2002-2003, as well as the evolution of water
temperature. Figure 3.5 shows two details of this evolution, during July 2002 and July
2003. The presence of a drift in both series, specially in temperature, is self-evident,
as is its connection with daily and yearly periods. To confirm this, the frequency spec-
trum of water temperature was studied: it is displayed in figure 3.6. Computation was
done using function fft from the statistical software R [R Development Core Team,
2004].

This suggest the presence of two main contributions, the 24-hour period and the
1-year period drifts, as well as other complementary wave drifts of approximate periods
of 2.5 days, 10 days, 25 days (a month), 42 days, 100 days (a season) and a year. The
degree to which this simplification captures the variability of water temperature may
be visually assessed by the scatter-plot of figure 3.7 Given the dynamic link assumed
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to exist between solar radiation, water temperature and conductivity (section 1.4.1),
the drift functions used in the kriging techniques are

f0(t) = 1, f2i−1(t) = cos

(
2πt

τi

)
, f2i(t) = sin

(
2πt

τi

)
, (3.36)

with the periods included in table 3.1. Note that not all periods from figure 3.6 were
used, due to reasons explained below.

Table 3.1: Periods τ (in days) of the trigonometric drift functions considered in equation
(3.36), extracted from figure 3.6.

i 1 2 3 4
τi 1 2.5 10 25

Here, the spatial dependence vector ~x has been replaced by a scalar time dependence
t, which simplifies the notation. As an example, a separate study of the two months of
July 2002 and July 2003 is conducted. This is the reason why periods higher than the
month have not been considered in this analysis. Classical regression of conductivity
data set during each one of these two months against the drift functions, for instance
using expression (3.20) with uncorrelated residuals, gives a set of coefficients summa-
rized in table 3.2. However, the assumption of uncorrelated residuals is verified to be
false after looking at their estimated auto-covariance function (3.4), displayed in figure
3.8. This shows also the covariance function of the original conductivity data sets.
Comparing them, one can visually assess the degree to which the drift has been suc-
cessfully removed by this regression fitting: specially visible in July 2002, the 24-hour
drift period has been mostly removed from the covariance, once the drift accounts for
it.

Note that self-correlation of residuals makes regression an invalid technique. In
particular, residuals have no longer zero mean in all the sampled period, nor are they
homoscedastic. However, the regression functions are trigonometric functions of time,
and the sampled time is relatively long, with a high and quite regular sampling density.
These reasons allow us to assume the regression residuals to be practically homoscedas-
tic and have zero mean. Thus, one has ground to interpret them as a second-order
stationary RF, denoted as Z(t). Its covariance is displayed in figure 3.8.

We apply afterwards universal kriging to the original data set, using the covariance
function of the residuals as a structural tool. The final drift estimates are listed in table
3.2, while figure 3.9 shows also the final kriging auto-covariance of the residuals. Its
experimental auto-covariance is represented in figure 3.9. The fitted covariance model
is

C(h) = (8 · Sph(h|a = 0.25) + 6 · Exp(h|a = 2.5) + 3 · Hole(h|at = 4, ad = 8)) · 103,
(3.37)

with all ranges (a) and time (t) expressed in days. Recall that these models are defined
in equations (3.9-3.11).
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Figure 3.4: Time evolution of conductivity in µS/cm (top), and water temperature in
oC (bottom), during the years 2002-2003 at the Gualba station.
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Figure 3.5: Time evolution of conductivity in µS/cm (top), and water temperature
in oC (bottom), during the months of July 2002 (left) and July 2003 (right) at the
Gualba station. Note the different vertical scales.



74 Geostatistics in the real space

1
10

0
10

00
0

period (h)

E
ne

rg
y

2h 4h 1d 2.5d 10d 25d 6w 3m 1y

Figure 3.6: Frequency spectrum of water temperature, at Gualba station. Some clusters
of high energy in high periods are detected, from which some representative periods
were selected: those of 1, 2.5, 10, 25, 42, 100 and 365 days.
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Figure 3.7: Scatter plot of observed water temperature against its regression prediction
using the functions of equation (3.36).



3.6 Case study: conductivity 75

0 5 10 15

−
20

00
0

0
20

00
0

40
00

0

lag distance (days), July 2002

co
va

ria
nc

e

conductivity

residual

0 5 10 15

−
20

00
0

0
20

00
0

40
00

0

lag distance (days), July 2003

conductivity

residual

Figure 3.8: Covariance function of conductivity original data set (black, squares), and
residuals of regression (violet, dots), for July 2002 (left) and July 2003 (right), at the
Gualba station. The means for these covariances has been fixed as the constant value
of the drift a0 and zero respectively. Although the variability of both original series
was strongly different, their de-trended series present a more similar behavior. Note
that regression has removed an important part of the 24h-period.
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Figure 3.9: Covariance function of conductivity residuals.
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Figure 3.10: Time evolution of residual conductivity: residual data set (dots) and
estimates (continuous line) for both July 2002 and 2003 series.

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

time (days), July 2002

co
nd

uc
tiv

ity

0 2 4 6 8 11 14 17 20 23 26 29

14
00

16
00

18
00

20
00

22
00

time (days), July 2003

0 2 4 6 8 11 14 17 20 23 26 29

Figure 3.11: Time evolution of conductivity: data set (dots) and final estimates (con-
tinuous line).
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Table 3.2: Fitted drift coefficients for classical regression (left) and kriging of the
drift (right), expressed both as coefficients for sine and cosine wave functions, and as
amplitude (m2i =

√
a2

2i−1 + a2
2i) and phase (α2i = τi

2π
arctan a2i−1

a2i
, in days) of a cosine.

The upper table contains the coefficients fitted to July 2002 series, and the lower table
those for July 2003.

Standard regression Kriging of the drift
i a2i−1 a2i m2i α2i a2i−1 a2i m2i α2i

0 0 994.24 994.24 0 0 982.73 982.73 0
1 52.14 -20.33 55.97 -0.19 50.96 -17.59 53.91 -0.20
2 20.01 -11.66 23.16 -0.42 15.90 -20.84 26.21 -0.26
3 48.50 14.70 50.68 2.03 31.37 26.77 41.24 1.38
4 97.07 77.04 123.93 3.58 67.02 55.24 86.85 3.51
0 0 1688.01 1688.01 0 0 1656.97 1656.97 0
1 -11.41 7.43 13.62 -0.16 -19.74 22.75 30.12 -0.11
2 19.63 32.13 37.65 0.22 18.38 20.31 27.39 0.29
3 -149.18 62.59 161.78 -1.87 -95.67 45.28 105.85 -1.80
4 120.03 117.89 168.24 3.16 94.26 131.02 161.41 2.48

Simple kriging, as explained in section 3.3.3, is the best option to interpolate a
RF with known mean. To ensure that residuals and drifts coefficients have been sat-
isfactorily estimated, simple kriging is conducted on the regression residuals using the
experimental covariance (3.37). Figure 3.10 shows the results of this simple kriging,
jointly with the observed residual values, obtained with both GSLIB programs [Deutsch
and Journel, 1992], and predict.gstat from package gstat [Pebesma and Wesseling,
1998] for R.

Therefore, the parameters of this global model have been estimated satisfactorily,
and both the trigonometric drift and the auto-correlation of the residuals are taken into
account. Figure 3.11 represents this interpolation, jointly with the original conductivity
data set.

By assuming expression (3.26) for these last kriging predictions, one can compute
the hazard probability of exceeding the thresholds of 1000µS/cm and 2500µS/cm at
each moment (see table 1.1). These probabilities may be taken as indicators of the water
quality, the lower the probability the higher the quality. Figure 3.12 clearly shows the
strong influence of the drift on the water quality, specially of the 60hour period. In
spite of these fluctuations, conductivity measures were almost surely between 1000 and
2500µS/cm during July 2003, whereas in 2002 they were approximately half of the time
above 1000µS/cm, and the other half below this threshold.
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Figure 3.12: Time evolution of the hazard of exceeding 1000µS/cm of conductivity in
the year 2002, and of 2500µS/cm in the year 2003. Red line marks the level of 0.10,
yellow the 0.05 and green the 0.01 of probability.

3.7 Remarks

In this chapter some techniques for dependent data were summarized. Most of them
were developed primarily by Matheron [1965], or they were based on this seminal work
on geostatistics of RFs. All these prediction techniques yield particularly well-suited
results when they work on real Gaussian RFs. Actually, the simple kriging predictor
and its kriging variance were the estimates of the mean and the variance of the Gaussian
distribution at unsampled locations, conditional to the observed data set. When the
RF was not a Gaussian one, some techniques are useful, which essentially tried to
transform the function to another one which was assumed to be Gaussian. This issue
will be further developed in chapter 5.

The Gaussian assumption allows the computation of hazard probabilities of exceed-
ing certain thresholds. Here, a case study on a time-dependent conductivity data set
yielded a series of hazard estimates, which showed a strong oscillation. This hazard
probability could be taken as a water quality index, based only on conductivity. How-
ever, in both studied cases these variations were not able to change the state of the river:
during July 2002 conductivity was always below the quality threshold of 2500µS/cm,
but occasionally it was above the 1000µS/cm threshold. Contrarily, during July 2003
(a very dry year) conductivity measurements were always above 1000µS/cm, but sel-
dom above 2500µS/cm too. In management terms, water in this river during July
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2002 might enter categories 1 (quality-demanding uses) to 3 (restricted uses), whereas
in July 2003 it was clearly inside category 4 (minimal uses). Another issue is the clear
2.5 day-period oscillation detected in both series. This oscillation might be connected
to the solar energy supply on the river, but this will be further discussed in chapter 8.
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3.8 Addendum: validity of change-of-support mod-

els

Here we present the conditions that render a valid change-of-support model, according
to Chilès and Delfiner [1999]. This material complements the exposition of section 3.5.3,
and is again used in section 5.4, devoted to discuss the case of lognormal variables.

Property 3.5 (Conditions on a valid change-of-support model) A valid change-
of-support model linking a point-support RF with a block-support RF must satisfy the
following conditions:

1. they have the same mean,

E [Z(~x)] = E [Zv(~x)] = E [ZV (~x)] = m

2. the variance of the block RF is linked through (3.33) to the covariance function
of the point random-function,

3. the distribution of the bigger blocks is less selective than that of the smaller
ones, which is in turn less selective that the distribution of the point-support
RF (Cartier’s relation).

According to Chilès and Delfiner [1999], the concept of selectivity can be mathe-
matically formulated in the following form.

Definition 3.23 (Selectivity) A cumulative distribution F1(z) is more selective than
another F2(z) if there exists a bivariate distribution FZ1Z2

(z1, z2) with marginals F1 and
F2 such that

E [Z1|Z2] = Z2, (3.38)

which is equivalent to say that the regression line of Z1 on Z2 is the identity line.

Following [Emery, 2004], Cartier’s relation (property 3.5.3) is by far the most re-
strictive condition on the change-of-support models, and it actually entails per se all
the three conditions of property 3.5.



Chapter 4

Geostatistics in an arbitrary
Euclidean space

This chapter is the central part of this work. In the last one, we summarized the
general geostatistical tools and techniques, essentially developed for Gaussian, thus
real random functions (RF). In this chapter we generalize them by interpreting these
classical definitions as if they were applied to the coordinates of a vectorial RF, what
is called principle of working on coordinates[Pawlowsky-Glahn, 2003]. Then, we re-
define all geostatistical concepts, estimators and its properties in terms of vectors and
operators in an Euclidean space. Finally, we confirm that they are consistent with the
principle of working on coordinates. In this way, we ensure that choosing a coordinate
system does not affect our results.

4.1 Notation

Recall of Definition 2.6 (Euclidean space) A set E is a D-dimensional Euclidean
space if it is a D-dimensional real vector space equipped with a suitable scalar product.
It is usually denoted by {E,⊕,⊙, 〈·, ·〉E}.

The following notation will be used. The vectors of the space a ∈ E will be denoted
by lowercase boldface Latin characters, and the scalars by lowercase Greek characters;
the Abelian group operation, or sum, will be ⊕, and the external product ⊙; the neutral
element with respect to this sum is denoted with n, and the inverse element of a by ⊖a,
where ⊖ is the inverse operation to sum, thus satisfying a⊖a = n; the scalar product
will be 〈·, ·〉E, and its associated norm and distance ‖ · ‖E and d(·, ·), respectively. A
basis of this space will be denoted by E = {e1, e2, · · · eD}, and the coordinates of any
vector a with respect to it by using the equivalent lowercase Greek character α, where
the underline indicates that it is a vector of R

D. Slightly forcing the notation, we use
also an expression like a = α⊙E to say that we apply the coordinates to the basis and
recover the original vector. Note also that throughout the next chapters, the neutral
element of this Euclidean structure (replacing the zero vector 0) is denoted by n.

81
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Any linear application T (·) : E → F acting on a vector a will be written as Ta =
T (a). Note that this application may have different image and origin spaces. Given
basis E of E and F of F, these applications are fully characterized by a matrix T , where
the j-th column contains the coordinates of the image of T (ej) in the basis F.

Finally, if E and F are two basis of E, there exists a matrix ϕ containing in each

column the coordinates of an element of F with respect to the basis E. The inverse
ϕ−1 contains by columns the coordinates of an element of E with respect to the basis

F. It these two basis are orthonormal ones, then the matrix satisfies ϕ−1 = ϕt and it

contains in the columns the coordinates of each element of E with respect to the basis
F, and in the rows the coordinates of the elements of the basis E with respect to the
basis F.

4.2 Random function

Let ~x ∈ D ⊂ R
p be a point (or the center of a block v) in a domain D of the space-time

real space, with p ∈ {1, 2, 3, 4}. Let Z(~x) ∈ E be a vector-valued RF, and Z(~x) ∈ R
D be

the coordinates of Z with respect to a given basis E. Let z(~x1), z(~x2), . . . , z(~xN) be an
observed sample of this vector-valued RF, and ζ(~x1), ζ(~x2), . . . , ζ(~xN) the coordinates
of this sample. The goal of this chapter will be the prediction of the RF Z(~x0) at an
unsampled location ~x0, and of its error variance-covariance matrix.

Definition 4.1 (Stationarity in E) Let Z(~x) be a RF with domain D ⊂ R
p and

image E. Then it is called

1. strongly stationary, when for any set of Bn ⊂ E and for all set of locations
{~xn} ∈ D, the following probability is invariant by translation ~h:

Pr
[
(Z1(~x + ~h) ∈ B1) ∩ (Z2(~x + ~h) ∈ B2) ∩ . . . ∩ (ZN(~x + ~h) ∈ BN)

]
=

= Pr [(Z1(~x) ∈ B1) ∩ (Z2(~x) ∈ B2) ∩ . . . ∩ (ZN(~x) ∈ BN)] ;

2. second-order stationary, when for any pair of locations ~xn, ~xm ∈ D, the mean
vector and the covariance operator are translation-invariant, or

EE [Z(~xn)] = µ and Cov [Z(~xn),Z(~xm)] = C(·; ~xm − ~xn);

3. intrinsic, when for any pair ~xn, ~xmD, the increments (Z(~xm)⊖Z(~xn)) have neutral
vector mean and stationary variance operator:

EE [Z(~xm)⊖Z(~xn)] = n and VarE [Z(~xm)⊖Z(~xn)] = γ(·; ~xm − ~xn);

The covariance and variance operators are shown in this case with an argument and a
parameter, e.g.C(·; ~xm − ~xn). Any possible vector on E is the argument instead of the
dot, whereas the lag distance plays the role of a parameter.
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Property 4.1 A vector-valued RF Z(~x) ∈ E is stationary (strong, second-order, or
intrinsic sense) on E if its coordinates Z(~x) ∈ R

D form a stationary RF (strong,
second-order, or intrinsic sense).

Proof immediately follows from the identification between probability laws for vectors
and its coordinates (for strong stationarity), and the identification of mean vector and
variance/covariance operators with their coordinate counterparts (for second-order or
intrinsic stationarity). Furthermore, this identification is the conceptual proof of the
following proposition.

Proposition 4.1 A second-order stationary RF on E with respect to a basis is also
second-order stationary with respect to any other basis of E. An intrinsic RF E with
respect to a basis satisfies also the intrinsic hypothesis with respect to any other basis
of E.

Definition 4.2 (Gaussian RF on E) A vector-valued RF Z(~x) ∈ E is said to be a
Gaussian RF on E, if for any testing vector z0 ∈ E, the projection 〈z0,Z(~x)〉E form a
real Gaussian RF.

4.3 Structural analysis

This section focuses on the characterization of the structural functions according to
definition 4.1: the operators of covariance C(·; ~xm − ~xn) and variogram γ(·; ~xm − ~xn).
From now on, the dot in these expressions is dropped, so that,e.g. C(~xm − ~xn) ≡
C(·; ~xm − ~xn). Here we show that for any given basis, the basic properties of the
covariance and variogram expressed in coordinates are kept. In particular, the validity
of a system (i.e., its positive-definite character), the symmetry of a system and the
global range of a system are treated.

Property 4.1 states that given the stationarity of the RF with respect to a basis,
it is stationary with respect to any other basis of the space. Not only so, but also
there is a linear relationship between the expectations or the covariance functions or
variograms in the two basis,

E [Z
E
] = ϕ · E [Z

F
] ,

C
E
(~h) = ϕ · C

F
(~h) · ϕt,

γ
E

(~h) = ϕ · γ
F

(~h) · ϕt. (4.1)

It is worth noting that these properties are not restricted to orthonormal bases, and
the following results will be valid for them.

Note that in expressions (4.1) and (4.1), the matrices C and γ contain respectively

auto-covariance functions (definition 3.5) and direct variograms (definition 3.6) in the
diagonal, whereas the off-diagonal terms are cross-covariance functions (definition 3.13)
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and cross-variograms (definition 3.14), all of them defined on the coordinates with
respect to a basis. In this context the matrix of coefficients of codispersion (3.15) at

a lag distance ~h might be interpreted as the correlation matrix of the increments of a
RF like Z(~x + ~h) ⊖ Z(~x).

Proposition 4.2 If C(~h) forms a valid covariance system ( i.e.with positive definite

spectral densities, according to proposition 3.2) then K(~h) = [ϕ ·C(~h) ·ϕt] is also valid.

Proof: Consider an integral applied to a matrix of functions as the matrix of the

integrals of each component of the matrix,
∫
C(~h)d~h =

∫ (
Cij(~h)

)
d~h =

(∫
Cij(~h)d~h

)
.

Given the linearity of the integral operator, the Fourier Transform operator—denoted

by F (·)—is also a linear one. Thus, F
(
K
)

= F
(
ϕ · C · ϕt

)
= ϕ · F

(
C
)
· ϕt. Then

F
(
K
)

is a positive definite matrix since, for any complex vector λ ∈ C
D,

λ · F
(
K
)
· λ̄ = λ ·

(
ϕ · F

(
C
)
· ϕt
)
· λ̄ =

(
λ · ϕ

)
· F
(
C
)
·
(
ϕt · λ̄

)
=

= µ · F
(
C
)
· µ̄ ≥ 0,

as λ · ϕ = ϕt · λ̄ = µ̄, due to standard properties of conjugation and transposition of

complex matrices. �

Proposition 4.3 If C(~h) is symmetric for a given basis, then it is symmetric for any
other basis of E.

This is straightforward to show, attending to the fact that
(
A ·B · C

)t
= Ct ·Bt · At.

Proposition 4.4 If C(~h) is zero for a given basis at a given lag ~h, then it is zero
for any other basis of E at that lag. Consequently, beyond the global range of all the
covariances in a given basis, the covariance is zero for any basis.

It is interesting to note that beyond that global range, the covariance endomorphism
is the null one: C(z;~h) = n for all z ∈ E.

4.4 Linear prediction

In this section we closely follow the exposition of kriging predictor and its properties
given by Pawlowsky-Glahn and Olea [2004, p. 69-76], who in turn use a matrix notation
due to Myers [1982]. Here we generalize these expressions to deal with a RF valued
on any Euclidean space. In this section we present some results which hold for vectors
or endomorphisms of the space, thus are basis-independent, and some which rely upon
the orthogonality of a basis. A special attention should be paid to this detail. We
use the regression concepts introduced in section 2.3.4, given the connection between
kriging and regression stated in section 3.3.4.
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4.4.1 The general case of kriging

At an unsampled location ~x0, the unknown Z(~x0) is estimated from the available sample
by means of a sum of affine linear functions of the observed data,

z∗(~x0) = c⊕
⊕N

n=1
λnz(~xn), (4.2)

where c ∈ E is a vector of constants and, for each n = 1, 2, . . . , N , λn is an endo-
morphism. Given a basis of E, we may express λn as a matrix λ

n
Element λn

ij of λ
n

measures the influence of the j-th coordinate of observation z(~xn) on the i-th coordinate
of z∗(~x0).

Let z = (z(~x1), z(~x2), . . . , z(~xN)) be the vector containing all the available observa-
tions of the RF Z(~x). It is clear that its sample space is F = E

N , and that z has D ·N
components We can define on F an Euclidean structure inherited from that of E, and
we can also use a N -tuple replication of a basis of E as a basis for F. Equation (4.2)
can be written as

z∗(~x0) = c⊕Λz, (4.3)

where Λ : F → E is a linear transformation. Given a basis of E and its associated basis
in F, this linear transformation is expressed as a D×(D ·N) matrix Λ = (λ

1
λ

2
· · · λ

N
),

where each λ
n

is the matrix of each endomorphism λn. Equation (4.3) expresses the
kriging predictor as a single affine linear function.

Property 4.2 For the true but unknown Z(~x0) and its predictor z(~x0) defined in equa-
tion (4.2), the following properties hold:

1. the vector of expected values of z∗(~x0) is EE [z∗(~x0)] = c⊕⊕N
n=1λnm, where m =

EE [Z(~x)];

2. the variance operator of z∗(~x0) is

VarE [z∗(~x0)] =
⊕N

n=1

⊕N

m=1
λnC(~xm − ~xn)λt

m,

where λt represents the adjoint operator of λ (definition 2.11);

3. the vector of expected prediction errors is EE [z∗(~x0)⊖Z(~x0)] = c⊖m⊕⊕N
n=1λnm;

4. the variance operator of prediction errors is

ΣK,E = VarE [z∗(~x0)⊖Z(~x0)] =
⊕N

n=1

⊕N

m=1
λnC(~xm − ~xn)λt

m⊕C(~0)⊕

⊖
⊕N

n=1

(
λnC(~x0 − ~xn)⊕Ct(~x0 − ~xn)λt

n

)
;

5. the predictor z∗(~x0) is unbiased if and only if c = m⊖⊕N
n=1λnm.
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Sketch of a proof: The proof of item 1 follows from the linearity of the expectation
EE [·] and of the predictor (4.2) with respect to the operations of the space, ⊕ and
the application of endomorphisms, as well as from the second order stationarity of
the vector RF. Proof of item 2 is derived using expression (4.3) and the fact that
VarE [a⊕ΛZ] = ΛVarE [Z] Λt for any constant vector a, any linear operator Λ and any
random vector Z [Eaton, 1983, p. 76]. This item also needs to take into account
the relationship between the variance of the observed data vector and the covariance
function: VarE [z] may be understood as an array of endomorphisms, where cell (n,m)
contains the operator CovE [z(~xn), z(~xm)], which by definition is equal to C(~xm − ~xn).
Proof of item 3 directly follows from the first property. The proof of item 4 is derived
using equation (4.3), writing

VarE [z∗(~x0)⊖Z(~x0)] =

= VarE [Λz]⊕VarE [Z(~x0)]⊖CovE [Λz,Z(~x0)]⊖ (CovE [Λz,Z(~x0)])
t

and considering the fact that CovE [Λz,Z(~x0)] =
⊕N

n=1λnC(~x0 − ~xn), again due to the
definition C(~x0 − ~xn) ≡ CovE [z(~xn),Z(~x0)]. Item 5 is the direct application of the
definition of unbiasedness and item 3. Note that all covariances in these proofs are
defined as operators, and consequently any representation in any coordinate system
will be valid. �

As can be seen from item 4 of property 4.2, a covariance operator of prediction errors
exists. The classical geostatistical optimization criterion is to minimize a scalar measure
of dispersion, but not an operator-valued one. However, if we switch to the coordinate
context, we may use Myers [1982] approach: he defined the prediction variance for
Z(~x0), i.e.the value to minimize in the kriging procedure, as the trace of the variance
matrix,

σ2
K,E = Tr [VarE [z∗(~x0)⊖Z(~x0)]] . (4.4)

Note that this definition is also well-suited for operators, because the trace of the matrix
of an operator does not change with changes of basis. Therefore, σ2

K,E is a property of
the variance operator, and is basis-independent.

From equation (4.4), item 4 in property 4.2, and the fact that the adjoint operator
has the same associated trace as the original one, the following equation results

σ2
K,E =

N∑

n=1

N∑

m=1

Tr
[
λnC(~xm − ~xn)λt

m

]
+ Tr

[
C(~0)

]
− 2

N∑

n=1

Tr [λnC(~x0 − ~xn)] .

Note that traces are real numbers, and they are operated with classical sum and prod-
uct.

Property 4.3 The kriging predictor minimizes the expectation of the squared distance
in E between the true value Z(~x0) and its prediction z∗(~x0).
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Proof: Given the identification of the distance in E between two vectors and the
distance in R

D between its coordinates in an orthonormal basis, it holds that

E
[
d2(z∗(~x0),Z(~x0))

]
= E

[
D∑

i=1

(ζ∗(~x0)i − Zi(~x0))
2

]
=

D∑

i=1

E
[
(ζ∗i (~x0) − Zi(~x0))

2] =(4.5)

=
D∑

i=1

Var [ζ∗(~x0)i − Zi(~x0)] = Tr [VarE [z∗(~x0)⊖Z(~x0)]] , (4.6)

Thus, the trace of the covariance matrix of equation (4.4) computed with orthonormal
coefficients is equal to the expected squared distance between the prediction and its
true value. Minimizing the first, we minimize the second. This proof is only valid for
kriging systems built using orthonormal bases. However, since we know that both the
distance and the trace of the variance operator are not-coordinate dependent, we may
be sure that this is valid for any basis. Note the coincidence of this criterion with the
minimal-norm criterion of regression (section 2.3.4). Furthermore, this property will
be generalized using coordinate arguments in the next sections.

�

4.4.2 Simple kriging

Definition 4.3 (Simple kriging) The simple kriging predictor of Z(~x0) is the affine
lineal transformation of kriging (eq. 4.2) subject to unbiasedness, which is achieved by

c =
(
I⊖
⊕N

n=1
λn

)
m = m⊖

⊕N

n=1
λnm. (4.7)

Therefore, simple kriging needs a known mean vector m of the RF.

Some particular comments on simple kriging (usually abbreviated as SK) follow.

• Note that this definition ensures the unbiasedness of the predictor z∗(~x0) for any
set of endomorphisms {λn, n = 1, 2, . . . , N}.

• SK is also useful when the mean is not constant but known. In this case, a
residual RF is computed as Y(~x) = Z(~x)⊖m(~x), and simple kriging is applied
to it, taking c = n. Final predictions are then recovered by adding the mean to
the simple kriging predictor z∗(~x0) = m(~x0)⊖y∗

0

To derive the endomorphisms {λn}, take the compact notation of the kriging pre-
dictor (4.3) and its minimization criterion expressed as minimal distance of error in
equation (4.5). It is clear that the SK predictor and its error are exactly equivalent to
regression predictor (2.10) and its error (2.11). Therefore, solution of SK is the same
as obtained for regression (equations 2.12 and 2.13). In particular, the joint operator
Λ is found to be

Λ = (CovE [Z(~x0), z]) (VarE [z])−1 , (4.8)
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and the constant value is equal to (4.7). Recall that z is the concatenated vector of all
observed vectors.

This operator-valued solution ensures us the independence of results with respect
to the chosen basis. However, it is difficult to work with it. Therefore, we switch here
to the coordinate approach, and derive some interesting properties of the SK predictor
and error variance structure. The following results assume a fixed basis of E, not
necessarily an orthonormal one.

Property 4.4 If the vector of expected values m is known, then the prediction variance
σ2

K,E reaches a minimum when the set of matrices {λ
n
, n = 1, 2, . . . , N} satisfies the

system of equations

N∑

n=1

λ
n
· C(~xm − ~xn) = C(~xm − ~x0), m = 1, 2, . . . , N.

This system can be written in a compact form as C·Λt = c
0
, where C contains ND×ND

covariances among all the coordinates in all the sampled locations, and c
0

contains the
ND×D covariances between all the coordinates in the sampled locations and those in
the predicted location ~x0. With this notation, Λt = C−1 · c

0
.

Note the coincidence of this last expression for Λ and equation (4.8) for an orthonormal
basis.

Property 4.5 The prediction covariance between the i-th and the j-th coordinate of
the SK predictor is

σij = Cij(~0) −
N∑

n=1

D∑

k=1

λkj,nCki(~x0 − ~xn). (4.9)

The resulting matrix σ = (σij) is the symmetric covariance matrix of kriging errors
[Chilès and Delfiner, 1999, p. 311]. Recall that for an orthonormal basis, σ is equal to
the matrix of the endomorphism ΣK,E obtained in property 4.2.4.

Property 4.6 The prediction variance of the SK predictor is

σ2
SK,E =

D∑

i=1

σii = Tr
[
C(~0)

]
−

N∑

n=1

Tr
[
λ

n
· C(~x0 − ~xn)

]
.

Proofs of these properties are omitted, since they involve only covariance functions,
which are defined in the real coordinates. Equivalent proofs for real vector RFs can be
found in Myers [1982], Chilès and Delfiner [1999, p. 311] or Pawlowsky-Glahn and Olea
[2004, p. 72-75]. However, the next property is proven, without using operator-driven
arguments, to show that the coordinate approach is also self-consistent.
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Property 4.7 The SK prediction does not depend on the basis chosen to represent the
vectors of E. The kriging error variance matrix, being always expressed in coordinates,
depends on the basis, but satisfies the standard conditions of change of basis (4.1).

Proof: In this proof we drop the double underlining of matrices, because all the elements
involved are of this kind. Also, without loss of generality, we consider the mean m to
be the neutral element of E, so its coordinates are 0. Let ϕ be the D × D matrix of
change of coordinates from basis F to E, and denote the coordinates with respect to
these basis of the spatial distribution {z(~xn), n = 1, 2, . . . , N} with the matrices ζ and
ξ, both with (ND×1) elements. Then ζ = ϕN ·ξ, where ϕN represents aND×ND block
diagonal matrix, with N diagonal blocks equal to ϕ, and all the elements outside the
diagonal equal to zero. Let C(~h) represent the variance structure of the representation

ζ, and K(~h) the variance structure of ξ. Then equation (4.1) shows us that it holds

C(~h) = ϕ ·K(~h) · ϕt. Following property 4.4, let C and K represent respectively the
variance matrices of the ζ and ξ coordinate vectors of the spatial distribution, thus
C = ϕN · K · ϕt

N . The independent terms of the SK equation (in property 4.4) are
denoted respectively by c0 and k0 and they satisfy the same expression c0 = ϕN ·k0 ·ϕt.
Finally, let the predictions obtained be respectively ζ0 = Λc · ζ and ξ0 = Λk · ξ. These
weights can be computed according to property 4.4 as Λt

c = C−1 · c0 and Λt
k = K−1 ·k0.

Then

Λt
c = C−1 · c0 =

(
ϕN ·K · ϕt

N

)−1 ·
(
ϕN · k0 · ϕt

)
= ϕ−t

N ·K−1 · ϕ−1
N · ϕN · k0 · ϕt =

= ϕ−t
N ·K−1 · k0 · ϕt = ϕ−t

N · Λt
k · ϕt.

Replacing these weights in the predictor

ζ0 = Λc · ζ =
(
ϕ−t

N · Λt
k · ϕt

)t · ϕN · ξ = ϕ · Λk · ϕ−1
N · ϕN · ξ = ϕ · Λk · ξ = ϕ · ξ0,

which implies that the predictor itself satisfies the same change of coordinates relation-
ship as the spatial distribution, and thus z∗(~x) = ζ0⊙E = ξ0⊙F.

Regarding the kriging variance, we can write Σc = C(~0)−Λc · c0 and Σk = K(~0)−
Λk · k0, where Σc and Σk are the variance matrices of kriging errors expressed in the
two coordinate systems. Then

Σc = ϕ ·K(~0) · ϕt −
(
ϕ−t

N · Λt
k · ϕt

)t · ϕN · k0 · ϕt =

= ϕ ·K(~0) · ϕt − ϕ · Λk · ϕ−1
N · ϕN · k0 · ϕt =

= ϕ ·K(~0) · ϕt − ϕ · Λk · k0 · ϕt = ϕ ·
(
K(~0) − Λk · k0

)
· ϕt = ϕ · Σk · ϕt.

Consequently, the kriging variance matrix obtained using a basis can be linearly trans-
formed to the kriging variance matrix expressed in any other basis, in accordance with
equation (4.1). �
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Proposition 4.5 If the vector RF Z(~x) is a stationary Gaussian one on E according
with definition 4.2, then SK vector predictor and its operator variance give the pa-
rameters of the normal distribution on E for Z(~x0) conditional on the observed spatial
distribution z(~x1), z(~x2), . . . , z(~xN),

[Z(~x0)|z(~x1), z(~x2), . . . , z(~xN)] ∼ NE (z∗(~x0),ΣK,E) .

Given the identification between the normal distribution of Z(~x) on E and that of
its coordinates Z(~x) on R

D, this property is equivalent to the conditional expectation
satisfied by SK in R. For a proof of the identification between the SK predictor and
variance with the parameters of the multivariate normal distribution in the R

D case
see Pawlowsky-Glahn and Olea [2004].

4.4.3 Universal kriging

In the usual situation, the mean is not known, and it might even be considered not a
constant. In this case, simple kriging is not applicable. Therefore, we cannot ensure
unbiasedness of the kriging predictor (4.2) by satisfying the unbiasedness condition on
the constant (4.7) and leaving the endomorphisms λn free. Instead, we take c = n
to filter the unknown mean from the predictor, and then look for restrictions on the
endomorphisms. The resulting predictor is called Universal Kriging. Let us explain
this step by step.

Definition 4.4 (Drift functions) Assume the mean of a RF to be unknown, but a
linear function of (A+ 1) known real-valued functions ga(~x), a = 0, 1, . . . , A:

m(~x) =
⊕A

a=0
ga(~x)⊙ba. (4.10)

These functions are called drift functions.

Property 4.8 Unbiasedness of the kriging linear predictor (4.2) is achieved by forcing

ga(~x0)I =
⊕N

n=1
ga(~xn)⊙λn, (4.11)

with a = 0, 1, . . . , A. These A+ 1 vector equations are called universality conditions.

Proof: Taking the condition for unbiasedness from property 4.2.5, we obtain

n = c =
(
I⊖
⊕N

n=1
λn

)
m = Tm,

with operator T = I⊖⊕N
n=1λn. Now replacing the mean by its expression as a combi-

nation of the drift functions, it yields

n = T
(⊕A

a=0
ga(~x)⊙ba

)
=
⊕A

a=0
ga(~x)⊙Tba
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by linearity of the operator T . Since this equality with the neutral element has to be
fulfilled for all possible ba ∈ E, then each of the operators T ′

a = (ga(~x)⊙T ) must be
the null operator

N = ga(~x)⊙T = ga(~x)⊙
(
I⊖
⊕N

n=1
λn

)
.

Recall that the null operator satisfies Na = n for any a ∈ E, and it is the neutral
element of the vector space of endomorphisms L(E,E). Given the linearity of the
external product, we may rearrange this expression and obtain equation (4.11). �

Definition 4.5 (Universal kriging) The universal kriging predictor is a linear trans-
formation of the observations (eq. 4.2), with c = n and endomorphisms satisfying the
universality condition (4.11) for each drift function.

Some comments regarding particular cases of universal kriging follow.

• If we take a single drift function considered constant, g0(~x) ≡ 1, then the tech-
nique is called general or ordinary kriging (abbreviated OK). In this ordinary
case, the variogram functions are enough to apply kriging, because they filter di-
rectly the unknown but constant mean. However, recall that variograms do not
capture asymmetry features of the covariance structure. Also the universality
conditions are in this ordinary case simply

I =
⊕N

n=1
λn.

• The term universal kriging (abbreviated UK) is usually reserved for the case
when gi(~x) are the polynomials of some degree of location ~x, always including
the constant as the first drift function.

• If we take as drift functions the constant and a known external variable, which
depends also on location g1(~x) (e.g.topography trying to predict a yearly tem-
perature RF for instance), then the obtained technique is usually called kriging
with an external drift or trend kriging (abbreviated TK).

Despite these variations, we will refer to all of them in the next developments under
the term universal kriging (UK). Note that this model is connected to regression in an
Euclidean space, as was explained in section 2.3.4.

As happened with simple kriging, UK system expressed in operators is particularly
cumbersome. Therefore, we introduce again an arbitrary basis of the space and derive
matrix formulae, so that the procedure is better understood.

If we express all endomorphisms and vectors with respect to a chosen basis of E,
then the prediction variance σ2

K,E has to be modified to include (through Lagrange
multipliers) the set of universality conditions expressed in coordinates:

0 =
N∑

n=1

ga(~xn) · λ
n
− ga(~x0)ID

a = 0, 1, . . . , A.
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Note that in total, there are (A + 1)D2 universality conditions, which weighted sum
with their Lagrange multipliers can be expressed as:

A∑

a=0

D∑

i=1

D∑

j=1

νa,ij

(
N∑

n=1

ga(~xn) · λn,ij − ga(~x0)δij

)
=

= Tr

[
A∑

a=0

ν
a

(
N∑

n=1

ga(~xn) · λt

n
− ga(~x0) · ID

)]
.

The final quantity to minimize is then

Q = Tr

[
N∑

n=1

N∑

m=1

λ
n
· C

nm
· λt

m
+ +C

00
− 2

N∑

n=1

λ
n
· C

n0
+

A∑

a=0

ν
a

(
ga(~xn) · λt

n
− ga(~x0) · ID

)]
,

where C
nm

≡ C(~xm − ~xn). Note that the matrix inside Tr[·] has been simplified
attending to the fact that the trace of a matrix coincides with that of its transpose. By
derivation of Q as a function of λn,ij and νa,ij, equating the result to 0, and rearranging
it in matrices, it can be shown that Q reaches a minimum when the set of matrices
{λ

n
, n = 1, 2, . . . , N} satisfy the system of equations

N∑

n=1

λ
n
· C(~xm − ~xn) +

A∑

a=0

ga(~xn) · ν
a

= C(~xm − ~x0) m = 1, 2, . . . , N. (4.12)

N∑

n=1

ga(~xn) · λ
n

= ga(~x0)ID
a = 0, 1, . . . , A. (4.13)

This system can be written in a compact form as Ĉ · Λ̂t
= ĉ

0
, where

Ĉ =





Gt

1

C
...
Gt

N

G
1

· · · G
N

0





contains the ND × ND covariance matrix C of the simple kriging system, and the

set of N block matrices Gt

n
=
(
g0(~xn)1

D
, . . . , gA(~xn)1

D

)
, where each block contains D

identical rows and columns; also,

Λ̂
t
=

(
Λt

ν

)
,

contains the matrix ofD×ND weights Λ of equation (4.3), and the Lagrange multipliers
νa,ij involved in each one of the (A+1)D2 universality conditions, arranged in a column
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block matrix

ν =





ν
0

ν
1
...
ν

A





with ν
a

= (νa,ij); finally,

ĉ
0

=

(
c0
Gt

0

)
,

contains the covariance c
0

between all the coordinates in the sampled locations and
those in the predicted location ~x0, as well as G

0
, the independent terms of the univer-

sality conditions (4.11). With this notation, the solution is obtained with

Λ̂
t
= Ĉ

−1 · ĉ
0
.

Property 4.9 The prediction covariance between the i-th and the j-th coordinate of
the universal kriging predictor is [Chilès and Delfiner, 1999, p. 311]:

σij = Cij(~0) −
N∑

n=1

D∑

k=1

λkj,nCki(~x0 − ~xn) −
A∑

a=0

νa,ijga(~x0).

Therefore, the prediction variance of the universal kriging predictor is

σ2
SK,E =

D∑

i=1

σii = Tr
[
C(~0)

]
−

N∑

n=1

Tr
[
λ

n
· C(~x0 − ~xn)

]
−

A∑

a=0

ga(~x0)Tr
[
ν

a

]
.

Property 4.10 The universal kriging prediction does not depend on the basis chosen to
represent the vectors of E. The kriging error covariance matrix, being always expressed
in coordinates, depends on the basis, but satisfies the standard conditions of change of
basis (4.1).

Sketch of a proof: The proof is exactly equivalent to that of property 4.7 by using the
same notation and taking into account that

Ĉ = ϕ(N+1) · K̂ · ϕt
(N+1)

ĉ0 = ϕ(N+1) · k̂0 · ϕt

ga(~x)⊙ca = ga(~x)ca⊙E = ga(~x)⊙(ϕka⊙F) = (g(~x) · ϕ)⊙k.

Note that Ĉ, K̂, ĉ0 and k̂0 are real-valued covariance matrices, while ca,ka ∈ E are the
vectors of constants which describe the mean of the function m =

⊕
ga(~x0)⊙ca jointly

with the drift functions ga(~x). Finally, ca, ka ∈ R
D are the coordinates of these vectors

of constants. �
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Recall of Property 4.3 The kriging predictor minimizes the expectation of the
squared distance in E between the true value Z(~x0) and its prediction z∗(~x0).

Proof: Given the independence of the simple and universal kriging predictors with
respect to the basis (properties 4.7 and 4.10) and the fact that the distance in E does
not depend on the basis chosen for the space, note that this property 4.3 is now valid
for any basis, not necessarily an orthonormal one. �

4.5 Remarks

Here we presented a generalization of some of the most-frequently used geostatistical
concepts and techniques to deal with dependent observations which sample space can
be meaningfully structured as an Euclidean space. It this chapter, we have shown
many results, which deserve a clear summary.

• Concepts related to real RFs easily translate into vector-valued RFs.

• The structural functions can be defined as endomorphisms depending on a param-
eter (the lag distance). This ensures that their properties (positive-definiteness,
symmetry, ranges) are intrinsic to them, and not artifacts induced by the choice
of a basis. However, we have proven this intrinsic character also by choosing two
arbitrary basis and comparing the properties of the obtained structural functions.

• Kriging predictors can be built as affine linear transformations of the observed
data. The kriging procedure looks for those endomorphisms which produce a
smaller error variance operator. The concept of size of an operator is chosen to
be the trace of any of its matrices in a basis, because the trace of a matrix is
invariant by changes-of-basis. This coincides with Myers [1982] approach.

• The kriging error variance is defined as an endomorphism, which again does not
depend on any basis of representation. However, we have proven again that the
kriging error matrices obtained with two bases are related with the standard
formulae of change-of-basis.

Summarizing, we have built the most usual geostatistical concept, tools and techniques
directly using vectors and endomorphisms in an Euclidean space, without using any
basis. Therefore, the choice of a basis will not affect our results. However, the devel-
opment of all results in terms of vectors and endomorphisms is quite cumbersome, and
difficult to deal with. Fortunately, in practical application we can choose any basis
and work with the coordinates with respect to it, following the principle of working
on coordinates [Pawlowsky-Glahn, 2003]. This chapter ensure that this choice will not
affect the final results, thus it is a confirmation of the applicability of this principle in
the geostatistical field.

This chapter does not contain any example, because other chapters of this thesis
present particular cases, which may serve as illustration. The real space has been
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already treated in chapter 3, and further examples will be given in chapter 5 (the
positive real space), and in chapters 6 and 7 (the Simplex, for compositions and for
discrete probability densities, respectively).
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Chapter 5

Geostatistics in the positive real
space

5.1 Lognormal kriging

Let ~x ∈ D ⊂ R
p be a point (or the center of a block v) in a domain D of the space-time

real space, with p ∈ {1, 2, 3, 4}. Let Z(~x) ∈ R+ be a positive random function (RF),
where R+ denotes the positive part of the real line, R. Let z(~x1), z(~x2), . . . , z(~xN)
be an observed sample of this RF. The fact that these values are positive preclude
in general to assume Z(~x) to be a Gaussian RF, since this should be defined on the
whole R. Then, a logarithmic transformation may be applied to the data set (specially
if it has a positively-skewed histogram) to obtain scores ζ(~xn) = log z(~xn), which are
assumed to form the sample of Z(~x), a Gaussian function. This implies that the
original untransformed RF Z(~x) is assumed to be a lognormal one. In this section
the bold uppercase letter Z represents the positive RF, and its lowercase counterparts
z(~xn) are the observed sample. The logarithmically transformed samples are denoted
by the Greek lowercase counterpart ζ(~xn) and its real-valued RF by Z. Whenever any
of these samples or RFs form a vector of real values, this will be indicated by a simple
underlining, like zn or Z respectively.

Assuming Z ∈ R to be a Gaussian function, either stationary or intrinsic, the
theory and methods introduced in chapter 3 are applicable. Thus, using covariances,
variograms and drift functions defined on the ζ(xn) values, each kriging technique will
provide the best linear unbiased estimate for Z(~x0) at an unsampled location ~x0, with
the usual assumptions for each of these methods. Let then ζ∗SK and σ2

ζ,SK denote
the simple kriging predictor (3.23) and its variance (3.25) for a real-valued RF, and
equivalently, let ζ∗UK and σ2

ζ,UK be their universal kriging counterparts (3.16) and (3.17).

Property 5.1 (lognormal kriging predictor) With the notations already introduced,
the conditional expectation of Z(~x0) is

z∗SK = exp

(
ζ∗SK +

1

2
σ2

ζ,SK

)
, (5.1)

97
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and its variance is
σ2

z,SK = (z∗SK)2 ·
(
exp

(
σ2

ζ,SK

)
− 1
)
. (5.2)

Sketch of a proof: These properties are directly deduced from the relationship between
lognormal and normal expectations given by equation (2.22) and by the fact that SK
predictor and variance give the conditional expectation (3.26). Due to these arguments,
(5.1) is called the lognormal kiging predictor, and this is the reason why we used
notations z∗SK and σ2

z,SK , explicitly marking their role as kriging predictors. �

Simple kriging is seldom applicable, since it needs the mean to be known. A possi-
ble solution consists in replacing the z∗SK predictor by z∗UK . However, it is unknown to
which extent expressions (5.1) and (5.2) keep their meaning of conditionally unbiased
predictors of Z(~x0) and its variance. Also, it is unclear whether it is better to replace
in these equations the simple kriging variance σ2

ζ,SK by its universal estimate σ2
ζ,UK—

opinion of Cressie [1991], according to Clark and Harper [2000, p. 323]—or to leave it
unchanged—as proposed by Journel and Huijbregts [1978]—. All these authors notice
the extreme sensitivity of predictor (5.1), since any error in the kriging or variance
estimations become exponentially magnified. The uncertain fitting of the sill is partic-
ularly important, as it has a direct effect on the kriging variance. Moreover, deviations
from lognormality of the data may dramatically invalidate its use [Clark and Harper,
2000, David, 1977].

In addition, Journel and Huijbregts [1978, p. 572] show that equation (5.1) is
usually locally biased: given z̄, the estimated expected value of Z, they propose to
modify (5.1) by a multiplicative factor

K =
z̄∑

~x0∈D z∗SK(~x0)

This correction was proposed for block kriging and, according to Chilès and Delfiner
[1999, p. 192], should be avoided in point kriging problems, since the obtained predictor
is no longer an exact interpolator.

Likewise, Equation (5.1) was shown to be a bad estimator of the local conditional
expectation by Roth [1998]. His example shows a case with final estimates surpassing
the convex envelope of the observed data, being all kriging weights strictly positive.
He blames the presence of the kriging variance for this behavior, and advocates for
the estimation of the median, instead of the mean. In agreement with this proposal,
Chilès and Delfiner [1999, p. 191] explain that good results are obtained working with
quantiles, since they simply follow the logarithmic transformation. In other words,
the direct relationship mZ = logmZ between the medians mZ and mZ allows an easy
estimation of the median of Z as a central tendency measure. This approach offers
a way to compute confidence intervals around the median, like in expression (2.17),
which gives a 95% confidence interval

Z ∈ (exp (z∗SK − 1.96σζ,SK); exp (z∗SK + 1.96σζ,SK)) . (5.3)
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However, confidence intervals (5.3) are not considered to be optimal, as they do not
have minimal Euclidean length in R. According to Clark and Harper [2000], this
issue was studied in the non-geostatistical case by Sichel [1971], who obtained a set of
multiplicative coefficients intended to compute unbiased means and optimal confidence
intervals for the lognormal distribution. These coefficients depend on the sample size
and the logarithmic variance, but they do not capture explicitly spatial correlation,
and their application must be restricted to low-variance data. Another option is to use
expressions (5.1) and (5.2) to compute directly a nominal interval with them, based on
Gaussian assumptions, although its physical meaning is dubious: as shown by Tolosana-
Delgado and Pawlowsky-Glahn [2003], it might include a fairly high proportion of
negative values.

If the interest is simulation, then (5.1) and (5.2) are seldom used [Deutsch and
Journel, 1992, p. 76]. Instead, the kriging prediction (either z∗SK or z∗UK) and its
variance σ2

ζ,K are used to simulate normal scores of ζ, that afterwards are transformed
to simulations of z through z = exp(ζ). This procedure is consistent with the median
estimates and confidence intervals like (5.3).

Block lognormal kriging is a far more complex issue, which involves many theoret-
ical and practical considerations, being the most important one the so-called perma-
nence of lognormality: having lognormal point values, any weighted arithmetic mean,
e.g.any kriging predictor (5.1) or a spatial average like (3.31), will never be lognormal.
This well-known result formally invalidates the rigorous application of basic change-
of-support models to lognormal sets, although Rendu [1979] shows that the discrete
Gaussian model gives fairly good empirical results. Journel [1980] presents an ap-
proximate but elegant solution based on point lognormal kriging, specially suited to
describe detailed local variability through block distribution functions and selectivity
curves (see section 5.4) instead of by a detailed kriged map. Marcotte and Groleau
[1997] try a complex solution, assuming joint lognormality of the estimator and the
real value, and obtain an estimator similar to (5.2), by replacing the kriging variance
by a conditional variance which is usually smaller. Dowd [1982] develops an alternative
requiring the numerical resolution of a system of integral equations, without assuming
permanence of lognormality.

5.2 Positive real line space structure

The problems of lognormal kriging might be related to the fact that it does not take
full profit of an own Euclidean structure for the positive real line R+. This structure
is particularly suited to capture multiplicative processes, and compares individuals in
a logarithmic scale. It has been detailed throughout chapter 2, and specially in section
2.5.2. In particular, given a basis of R+ like e = (a) 6= (1), the coefficient of any
element z of the space is

ζ = loga z.
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Using these coefficients, a Lebesgue measure (2.3) can be defined in the Euclidean
structure of R+, which allows to introduce the normal distribution on R+ as an alter-
native to the lognormal distribution [Mateu-Figueras et al., 2002]. Both this normal
distribution and the Lebesgue measure on R+ are represented in figure 2.4. At the
sight of these measure considerations, it seems clear that lognormal kriging follows a
two-step estimation procedure,

1. first, it estimates the logarithm of the RF at the unsampled location, by mini-
mizing the natural distance between the true value of ζ(~x0) and its estimate ζ∗·K
on R+;

2. second, it estimates the RF at the unsampled location z(~x0) as the mean of a
lognormal distribution; recall that this distribution is built with reference to the
Lebesgue measure on R.

It might be argued that such a procedure mixes a logarithmic distance and a Lebesgue
measure which are not fully compatible. This lack of compatibility may be the source
of lognormal kriging problems.

5.3 Kriging in the positive real space

Taking into account that the positive real line R+ may be given an Euclidean space
structure, we can apply the general kriging techniques of chapter 4 to any RF with
a positive scale. In this case, the space is one-dimensional, and the coordinate is
computed by taking the logarithm, thus giving as the kriging predictor

ζ∗0 = loga z∗0 = loga c +
N∑

n=1

λn · loga z(~xn) = loga(c) +
N∑

n=1

λn · ζ(~xn),

where unbiasedness is ensured setting loga c = 0 in Universal Kriging, and loga c =
µ(1−∑λn) in Simple Kriging (property 4.2.5, and definitions 4.3 and 4.5). Its kriging
variance is

σ2
K,R+

= Var [loga z∗0 − loga Z(~x0)] ,

These values are equivalent to respectively ζ∗SK and σ2
ζ,SK or their universal kriging

counterparts, introduced in section 5.1, and used in the first step of lognormal kriging,
as has been explained in section 5.2. Thus, the kriging system to be solved with kriging
in R+ is exactly equivalent to that of lognormal kriging. However, the best unbiased
linear predictor of Z(~x) is

z∗(~x0) = ζ∗0⊙e = exp (ln(a) · (ζ∗0 )), (5.4)

which coincides with the estimator of the median1, proposed as an alternative to the
lognormal kriging predictor by some authors (section 5.1). Consequently, the normal

1Note that in the last section, we introduced the possibility of using any basis a for the logarithm,

which in fact does not change the results, only their scale of representation. However, a = e in most

of the cases.
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kriging in R+ predictor (5.4) is a good estimator of the local conditional expectation
[Roth, 1998], it is unsensitive to the fitting of the variogram sill and so robust against
departures from normality on R+ as classical kriging is for departures from normality
on R. Furthermore, a 95% confidence interval built by assuming an underlying normal
on R+ distribution is equivalent to (5.3), but here it can be considered to be optimal,
in the sense that it has minimum logarithmic length. It is worth note that predictor
(5.4) yields a weighted geometric average of the data,

z∗(~x0) = c ·
N∏

i=1

zλn(~xn).

Although this section explained only the univariate case, a kriging prediction of positive-
valued RFs is not more difficult than classical multivariate kriging, once the observa-
tions and the predictors are expressed in coordinates. This coordinates are always
real-valued, which allows for a direct application of the kriging techniques explained in
chapter 3, and particularly universal kriging (section 3.3.1). Other multivariate cases
are further explained in chapter 6.

5.4 Change-of-support problems

5.4.1 Lognormal change-of-support model

Consider a set of measurements of ammonia in the effluents of a waste-water treating
plant (WWTP), regularly taken each minute during a week. Note that ammonia con-
tent is a positive variable, and a logarithmic scale may be considered fit to it. Due to
its pernicious effects on the fluvial environment, this pollutant is strictly controlled,
and WWTPs must report to the public management agencies any event of dumping an
excess of ammonia to the river. However, agencies do not regulate the quasi-continuous
measurement, but put an upper bound to the allowed average concentration of ammo-
nia during an hour. The managers of the WWTP decide that they do not want to risk
the fine in more than 5% of the cases. In such a case, we would have measurements
in a 1-minute support (considered as point-support), but our questions would concern
the probability distribution of an average in a time period of 60 minutes. Lognormal
block kriging would give us estimates of the hourly averages, and a lognormal change-
of-support model would allow us to approximate the distribution of hourly averages
during a day, so that we can compute which is the probability of getting a fine each
day. If this would be greater than the acceptable level, some corrections on the WWTP
should be done.

The application of logarithmic transformations to block kriging (for local estima-
tion) is a complex issue, which primarily involves the so-called conservation of log-
normality assumption. Conservation of lognormality assumes that given a lognormal
point-support RF, the linked block-support RF will be also a lognormal one. Although
actually this cannot be strictly true, there is an empirical evidence of its fitness as
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long as the blocks remain small compared with the range [Chilès and Delfiner, 1999,
p. 433].

Recall that change-of-support models (for global estimation) put forward possible
approximate relations between these point- and block-support RFs in order to approx-
imate the distribution of the later with data from the former (section 3.5.3). In the
case of lognormal RFs, one uses either a special case of the discrete Gaussian model,
or a direct application of the multi-Gaussian model (definitions 3.21 and 3.22). Both
cases are based on a transformation, which in this case is φ(·) = log(·). By using the
first model, the distribution of the block-support RF (3.31) is a lognormal distribution,

Zv ∼ L
(

logmz −
1

2
rσζ , (rσζ)

2

)
,

where r is the correlation coefficient of the discrete Gaussian model, computed as

r2 =
log
(
1 + σ2

v,z/m
2
z

)

log (1 + σ2
z/m

2
z)
,

and mz, σ
2
z are the mean and variance of the original variable Z, σ2

ζ is the variance of its
logarithmic transformation, and σ2

v,z is the variance of the block RF for Z. It is worth
noting again that these models are approximations, which cannot strictly speaking be
true. However, they were used to obtain approximate analytical expressions of the
distribution of the RF in block support.

A classical way to deal with these block distributions is through the selectivity
curves. These were introduced in mining applications by Lasky [1950]. Goovaerts
et al. [1997] presented some applications to environmental issues. Selectivity curves
are alternative ways to represent the estimated probability law in a block. These
curves are represented in figure 5.1.

Definition 5.1 (Selectivity curves) For any arbitrary positive distribution F (·) we
may define the following associated functions:

1. the total tonnage, T (z), corresponds to the complementary of the cumulative
distribution, and explains the proportion of blocks in a deposit which average
mineral content is above a cutoff value z,

T (z) =

∫ +∞

z

dF (u) = 1 − F (u);

in this work, it has been already used to characterize the hazard of high conduc-
tivity on time units in section 3.6;

2. the quantity of metal, Q(z), is the expected metal (or pollutant) content above a
certain threshold z

Q(z) =

∫ +∞

z

u · dF (u);
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Figure 5.1: Selectivity curves for a lognormal distribution (µ = 0;σ = 1). Decreasing
ones, from top to bottom: quantity of metal, conventional income, tonnage. Increasing
one: mean grade.

3. the mean grade, m̃(z), is the expected quantity of metal (or pollutant) conditional
to be above the threshold z

m̃(z) = E [Z|Z ≥ z] =
Q(z)

T (z)
; (5.5)

4. the conventional income, B(z), is the expected income (or remediation cost) of
removing and processing a rich block, either for its high mineral or pollutant
content:

B(z) =

∫ +∞

z

(u− z) · dF (u) =

∫ +∞

z

T (u) · du. (5.6)

This curve is always continuous and non-increasing, independently of the nature
of the RF. It is bounded by its value at the origin, the mean of the RF m =
B(0) ≥ B(z), and tends to zero with high values of z. Figure 5.2 shows that it
decreases slower when the distribution is more selective (definition 3.23).

Returning to our WWTP case example, we would obtain directly the sought hazard
by plugging the legal threshold (say, z0 = 0.025mgNH3/l) into T (z0). If we were
interested in the average ammonia concentration of these hazardous events, these would
be obtained with m̃(z0). Finally, we could assume that the fine could be proportional
to the excess over the threshold, with proportionality constant a$l/mgNH3. In this
case, if the managers asked for the expected cost of the fine, we could look at a ·B(z0).

5.4.2 Normal on R+ change-of-support model

Note that in the example of the last section, we considered the average in the block
as an arithmetic mean of point values. This is not necessarily a good model. Such an
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Figure 5.2: Comparison of conventional income curves expected for different supports:
from top to bottom, variances of 4, 1 and 1/4.

average value in a block should reproduce what is observed in nature. For instance,
the average permeability of a block should be defined as the value which gives exactly
the same results in a flow simulation than the true heterogeneous block. In two-
dimensional problems, for instance, it has been proven that this representative average
is the geometric mean [Samper-Calvete and Carrera-Ramı́rez, 1990, Chilès and Delfiner,
1999, p. 598-599].

Once we put an Euclidean structure on the positive real line, the representative
value of the block RF may be defined in terms of the coordinates, which means that
instead of (3.31), we will work with the RF

ζv(~x) =

∫
pv(~h)ζ(~x + ~h)d~h, (5.7)

defined on the coordinates ζ(~x) = log Z(~x), and using the same sampling function
introduced in section 3.5. Pay attention to the fact that the exponential of (5.7)
corresponds to a weighted geometric mean of the point RF in the block, as was said to
be advisable for permeability.

By definition, if Z follows a normal distribution on R+, then ζ is normally dis-
tributed, and consequently ζv too, in accordance with the fact that both ζ and ζv are
Gaussian RFs. In this case, equation (5.7) defines a valid change-of-support model.

Property 5.2 The RF (5.7) satisfies the conditions stated in property 3.5 (in the
addendum of chapter 3).

Proof

1. Both RFs have the same mean,

E+ [Z(~x)] = exp (µ) = exp (µv) = E+ [Zv(~x)] ,
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since µ = µv is the mean of a Gaussian RF, which was already shown to be
invariant by change-of-support in section 3.5;

2. Their variances and covariance functions are related through (3.33), which is
satisfied directly due to the fact that covariances and variograms are defined in
coordinates, and the coordinate of a normal on R+ RF is a Gaussian RF in R,

3. The distribution of the point-support RF is more selective than that of the block-
support RF, since they fulfill Cartier’s relationship (3.38), which in R+ is

E+ [Z|Zv] = exp (E [ζ|ζv]) = exp (ζv) = E+ [Zv] ;

the second equality holds due to the fact that Cartier’s relation is always fulfilled
by a Gaussian RF under the affine correction, as is applicable to the coordinates
ζ and ζv. The other two equalities are simply the definition (2.6) of expectation
in R+, as is expressed in equation (5.4).

�

It is very important to note that classical lognormal change-of-support models are
approximations, whereas this normal in R+ change-of-support model is exact. However,
this theoretical fitness has been obtained only for some cases: those where the geometric
mean is a characteristic average in a block. This essentially means that both models,
the lognormal and the normal in R+, are possible models to choose after answering
the question: which is the way to compute a characteristic value, according to the
scale of my data?. This issue affects too the selectivity curves, since they summarize
some characteristic values of the proportion of blocks in the domain D with a value
of Z above a threshold z, and do it for all possible values of the threshold. These
characteristics are respectively

1. the number of selected blocks, which is equivalent to their volume or mass (as-
suming a constant specific weight and equal block volume),

2. the mass of Z in the selected blocks,

3. the average of Z in the selected blocks,

4. the benefit of exploitation (or the cost of remediation) of removing and processing
the selected blocks.

These curves can be viewed as transformations of the distribution of Z. In this case,
being integral transformations, they involve the measure assumed for R+, the sample
space of Z. The question may be restated then as: which is the measure associated to
each one of these characteristics?. And the answers may be the following.

1. The number of selected blocks defines the total tonnage to be extracted from the
domain, made relative to the total tonnage of the whole domain; if we represent
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by N the total number of blocks in D, and by N(Z > z) the number of selected
blocks, the total tonnage is

T (z) =
N(Z > z)

N
=

∑N
n=1 I{Z > z}

N
=

∫ +∞

Z

dF (Z)

which finally does not depend on the chosen measure for R+; in fact, F (z) itself
acts as this measure; seen from that point of view, the total tonnage is the
measure of the selected part of the domain. In the WWTP example, T (z) would
be proportional to the dumped liters of polluted water.

2. The mass of Z in the selected blocks defines the quantity of metal, again relative
to the mass of metal in the whole domain; this property is additive in nature,

Q(z) =

∫ +∞

z

Z · dF (Z) =

∫ +∞

z

Z · f(Z) · dZ,

thus depending on an additive structure. Consequently, here we should use a
classical Lebesgue measure for Z. In the WWTP example, this would be the
mass of ammonia dumped to the river only during the hazardous events.

3. The average of Z in the selected blocks define the mean grade, which depends on
the measure selected for the space; this can be seen from definition 5.1.3 itself,
which involve an expectation; its definition from an R+-Euclidean point of view
yields

m̃+(z) = E+ [Z|Z > z] =
1

T (z)

∫ +∞

z

log Z · f(log Z) · d log Z,

which is different from the classical definition (5.5) of mean grade; in particular,
it has no longer a relationship with the quantity of metal above the threshold,
since mass (Z ∈ R) is assumed additive, whereas grade (Z ∈ R+) is assumed
multiplicative. Note that we have made explicit this difference by using in the
mean grade definition a boldface character, the notation used when Z ∈ R+

considered as an Euclidean space, and a regular character Z ∈ R+ ⊂ R when
taking the positive real line as a subset of R. In the WWTP example, this would
be the characteristic mean concentratio of ammonia dumped to the river only
during the hazardous events.

4. The benefit of exploitation of the selected blocks gives the conventional income,
which is a monetary measure; benefits and costs follow an additive scale, thus
the measure to use in this case should be again the Lebesgue measure on R. the
expression of conventional income (5.6) remains consequently the same, as its
interpretation.
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Of the four selectivity curves, one (tonnage) is not measure-dependent, two (quan-
tity of metal and conventional income) should be constructed with a classical Lebesgue
measure on R, and one (grade) accept a dual approach, according to which is the char-
acteristic average: an arithmetic mean (in the lognormal case) or a geometric one (in
normal kriging in R+ case). These arguments here are nevertheless a first approxima-
tion to the subject. Further understanding of these considerations on selectivity curves
is left for future work.

5.5 Case study: ammonia pollution risk

The concepts introduced in this chapter are here illustrated by using the ammonia
system variables in the Gualba data set for the months of July 2002 and July 2003:
acidity constant, acidity conditions, ammonia content and ammonium content. Re-
call that this data set is not fully observed: in fact, ammonia content is not present,
due to its inherent sampling difficulties, and must be computed using equation (1.3).
This system has been described in section 2.5.2, where a classical (non-geostatistical)
analysis was applied, which took into account the positive nature of the data set
by taking the potentials of these variables and working on the real random vector
Z = (ζ1, ζ2, ζ3, ζ4) = (pH, pKa, pNH4, pNH3). Its time dependence, specially the 24h
periodic drift, is nevertheless self-evident in a time series plot (figure 5.3). Apart, the
three observed components of Z (pH, pKa and pNH4) are neither equally nor regularly
sampled.
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Figure 5.3: Time series of observed potential ammonium, potential hydrogen, and
potential acidity constant.

As was explained in section 1.4.1, the drift of the full Gualba system is assumed
to be controlled by the solar radiation dynamics, which were characterized through
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Figure 5.4: Experimental auto- and cross-correlation functions at short range. All plots
share the same vertical scale.
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Table 5.1: Fitted drift coefficients using classical regression for potential acidity con-
stant (pKa), potential hydrogen (pH) and potential ammonium (pNH4). The upper
table recalls the periods obtained from the Fourier analysis of section 3.6, although
here we have only used the first four and a constant term.

index i 1 2 3 4 5 6 7
period(days) τi 1 2.5 10 25 42 100 365

i a2i−1 a2i m2i α2i

pH during July 2002
0 0 7.75 7.75 0
1 -0.28 -0.31 0.42 -0.38
2 0.03 -0.05 0.05 1.04
3 -0.05 -0.02 0.06 -3.01
4 0.01 0.08 0.08 0.70

pKa during July 2002
0 0 9.28 9.28 0
1 0.03 0.10 0.11 0.04
2 -0.01 0 0.01 -0.64
3 0.01 0.03 0.03 0.37
4 0.04 -0.01 0.04 7.54

pNH4 during July 2002
0 0 4.19 4.19 0
1 -0.13 -0.17 0.22 -0.40
2 0 0 0 0.45
3 -0.09 -0.12 0.14 -3.97
4 -0.14 0.01 0.14 -6.09

i a2i−1 a2i m2i α2i

pH during July 2003
0 0 7.66 7.66 0
1 -0.20 -0.32 0.38 -0.41
2 0 0.01 0.01 -0.29
3 -0.07 -0.03 0.08 -3.18
4 -0.15 0 0.15 -6.26

pKa during July 2003
0 0 9.17 9.17 0
1 0.02 0.13 0.13 0.02
2 0 0 0.01 -0.85
3 -0.01 -0.01 0.01 -3.61
4 -0.03 0.02 0.04 -3.80

pNH4 during July 2003
0 0 3.87 3.87 0
1 -0.01 -0.17 0.17 -0.49
2 0.01 -0.01 0.02 0.89
3 -0.04 0.01 0.05 -2.00
4 -0.19 -0.05 0.19 -7.28
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Fourier analysis of water temperature frequency spectrum (figure 3.6) in section 3.6.
We take here the same trigonometric functions (3.36) to explain the drift of Z by using
classical regression with uncorrelated residuals (eq. 3.20). The obtained coefficients
are listed in table 5.1.

Note that strictly speaking, this regression method is not applicable here, because
residuals are correlated (5.4). However, the experience and arguments developed in
section 3.6, regarding the analysis of conductivity on the same control station, suggest
that the approximation will be satisfactory. Therefore, the resulting regression was
taken as the drift. This drift was subtracted from the observed data, and the residuals
were used to compute the auto- and cross-covariance functions between pH, pKa and
pNH4, using equation (3.4), taking into account that the mean of all these residuals
can be considered zero. Figure 5.4 shows the estimated correlation functions, without
any assumption of symmetry: it is interesting to note the strong cross-correlation of
pH and pNH4, and the periodic hole effect present in both pH and pKa. This figure
shows also that there is no need to consider the covariance structure to be asymmetric.
Attending to these facts, the covariances have been modeled with a linear model of
coregionalization, displayed in figures 5.5 (short range) and 5.6 (long range) jointly
with the estimated covariances, and corresponding to the following composite model:

C(h) =




Var [pH] Cov [pH, pKa] Cov [pH, pNH4]

Cov [pKa, pH] Var [pKa] Cov [pKa, pNH4]
Cov [pNH4, pH] Cov [pNH4, pKa] Var [pNH4]



 =

=




0.04 0 0.01
0 0.00125 0

0.01 0 0.022



 · Exp(a = 2) +

+




0.0075 0 0.0045

0 1e− 06 0
0.0045 0 0.008



 · Hol(at = 7, ad = ∞) +

+




0.01 0 0.0065
0 0.00025 0

0.0065 0 0.007



 · Hol(at = 1, ad = ∞) +

+




0 0 0
0 5e− 04 0
0 0 0



 · Hol(at = 0.5, ad = ∞)

Note the four components considered: an exponential covariance of a = 2 days (6-days
effective range), and three non-dampened hole effects of periods: a week, a day and
half a day. Note also that this last half-day-period is only present in the pKa series, but
it is its most important structure. Recall that the lineal model of corregionalization is
only valid if the matrices involved are symmetric positive (semi-) definite, as is in our
case.

With this covariance model we may attempt prediction of the value of the vector
z at each full hour. From this vector, we are particularly interested in the fourth
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Figure 5.5: Experimental (dots and black line) and fitted (red line) auto- and cross-
covariance functions at short range. All plots in a row share the same vertical scale.
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Figure 5.6: Experimental (dots) and fitted (line) auto- and cross-covariance functions
at long range. Note that all plots in a row share the same vertical scale.
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Figure 5.7: Predicted coordinates of the vector z(t0) for each predicted time moment
using simple kriging, between the beginning of July 1 and the end of July 31, both
for the years 2002 (top) and 2003 (bottom). In each plot, from top to bottom, the
series are: ζ2 = pKa, ζ1 = pH (with a reference level at pH = 8.5), ζ4 = pNH3 (with a
reference level corresponding to 0.025 mg/l of NH3), and ζ3 = pNH4 (with two reference
levels of 1mg/l and 4 mg/l of NH+

4 ). Note that, due to the definition of the coordinate
as a potential (pX = − log10 [X]), an increase in the value of pX represents a decrease
in the concentration of X.
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Figure 5.8: Log-hazard of exceeding each of the thresholds defining the water quality
categories of table 1.1. Values are computed at each hour, between the beginning of
July 1 and the end of July 31, both for the years 2002 (left) and 2003 (right). In each
of these plots, three reference lines mark the probability levels of 0.01, 0.05 and 0.10.
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Figure 5.9: Probability of being in each category of water quality, as a function of a
single component: ζ1 = pH (top), z3 =

[
NH+

4

]
(middle) and z4 = [NH3] (bottom),

computed for all hours between the beginning of July 1 and the end of July 31, both
for 2002 (left) and 2003 (right). The colors and reference levels are summarized in the
following table:

.

color categories
plot variable reference level below above below above
top pH 8.5 1,2,3 4

middle
[
NH+

4

]
1 mg/l 1,2 3,4

middle
[
NH+

4

]
4 mg/l 1,2,3 4

bottom [NH3] 0.025 mg/l (admissible) (inadmissible)
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coordinate, ζ4 = pNH3. Though not observed, this variable is deterministically related
to the observed ones through a linear equation (1.3), of the general form

ζ4(t0) = α1 · ζ1(t0) + α2 · ζ2(t0) + α3 · ζ3(t0),

where (α1, α2, α3) = (−1, 1, 1). Since no simultaneous measure of the three real vari-
ables (ζ1, ζ2, ζ3) is available, we will predict at each moment the residual of potential
ammonia replacing the other residual values by their simple kriging predictors, avail-
able in function predict.gstat of the gstat [Pebesma and Wesseling, 1998] package
for R [R Development Core Team, 2004].

The obtained kriging predictions are displayed in figure 5.7. This figure displays
also some reference levels extracted from table 1.1. Recall that we want to compute
the probability that hourly averages of the chemical variables fall in certain fields of
their domain. We have to assume then a change-of-support model, from which we
choose the normal in R+ one. Therefore, using the obtained predictions and their
kriging variances as moments of the Normal on R+ distributions of the true Z(t0) for
each predicted t0, we may compute the probability of exceeding each of the interesting
thresholds (figure 5.8), and finally the sought probability of being in each category
from those defined in table 1.1 (figure 5.9).

The impact of the daily influence on all these results is evident. Figure 5.7 shows for
instance that Ammonium tends to be maximal at noon (pNH4 is minimal) and minimal
at midnight, whereas Ammonia behavior is usually the opposite. Ammonium content
is classically used as a proxy for Ammonia content (which is not directly measured due
to sampling problems), since accordingly with equation (1.3) they are proportionally
related. However, in a river like the studied one, pH (maximal after midnight also) and
pKa (minimal after midnight) fluctuations are much more regular, stronger, and both
favor the ammonia behavior. Consequently, we see that Ammonium daily fluctuations
are mainly produced by fluctuations of pH and temperature, which propagate to pNH4

due to the equilibrium reaction (1.1), and not by direct dumping of NH+
4 to the river.

This has a very important management implication: Ammonium is not enough in
this river to account for Ammonia content, and pH variations become an essential
information.

Probability oscillations show also this strong daily control: in all plots of figure
5.8 we almost always see sharp pulses with a 1 day-periodicity. There are very few
situations in which the probability of exceeding each threshold is between the reference
levels of 0.01 and 0.1. This strong certainty is also evident in figure 5.9. This is an effect
of the small kriging variances, something related to the high density of the sampling.

Finally, a last word is due with regard to the choice of a geometric mean as char-
acteristic average. One might argue that the total mass of Ammonia flowing through
the station must be measured in an additive scale, and thus we should use a lognormal
approach. However, interest lies on the effects that this pollutant might have on living
beings, and this is related to its chemical behavior. Some points suggest that the choice
of a normal on R+ change-of-support model (thus, a weighted geometric mean) might
be better in these conditions:
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• the river is an open system, and Ammonia is an extremely volatile compound;
thus, it is expected that its mass will leave the system;

• the amount of Ammonia leaving the system will depend on its equilibrium with
pH, which we know to be linear in terms of the species involved in the reaction
(equation 1.3),

• linearity in the logarithms of Z imply that the model for Z itself is a multiplicative
one.

However, these are suggestions, and not true arguments. In absence of a better model,
both the arithmetic and the geometric approach might be possible.

5.6 Remarks

Positive variables—either in classical or regionalized problems—are usually treated
through a logarithm, which is expected to yield unbounded scores with a higher sym-
metry, and a better fit to a normal model. This simple procedure defines the log-normal
distribution, and in the geostatistical case, a log-normal RF. Usually, the mean of this
distribution—or this RF—is estimated as the exponent of the transformed mean, mul-
tiplied by a correction factor which depends on the variance and accounts for the
different measures considered in these spaces. Such a correction has been related in
this chapter to some problems in the behavior of these estimators, specially in the geo-
statistical case: the local conditional expectation character of predictions is unclear,
and change-of-support models and block kriging are theoretically inconsistent.

However, this logarithm is not an arbitrary transformation, but a decision on the
scale to be used to compare positive observations. Furthermore, it coincides with
the way to compute the coordinates of the observations with respect to a basis of
the positive real line regarded as an Euclidean space on its own. Such a natural
coordinate system arises in the definition of pH, and has some algebraic advantages,
e.g.it linearizes equilibrium equations. In this Euclidean space structure, we used the
normal distribution on R+, an alternative model to the log-normal one, to naturally
define normal RFs on R+. Estimation and prediction in these RFs is theoretically
robust against departures of the normality on R+ of the data. Moreover, it yields
a valid change-of-support model, once the conditions used to validate a model are
adequately interpreted.

Taking into account this natural structure and the expected time dependence, we
treated the Gualba Ammonia series already introduced in section 1.4.1, and described
from an univariate point of view in section 2.5.2. In that section, we derived a global
probability of 0.6 of being above the threshold of 0.025 mg NH3/l, something consid-
ered as too much in that basin, with a relatively low pollution history. Taking into
account clear periodic drifts and a strong auto-correlation structure underlying the
series of Ammonium content, pH and water temperature (and its surrogate, the acidity
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constant potential, pKa), we predicted the Ammonia content, and saw that Ammo-
nium fluctuations might not be due to the human action, but to fluctuations of pH.
According to Tolosana-Delgado [2004], these fluctuations are probably linked to the
photosynthesis-respiration processes in the river.

Here, the final interest was the assessment of water quality, and not the causes of
these fluctuations. Roughly, the predictions of actual concentration of Ammonia sug-
gest that water quality is better during the night, but becomes poorer during daylight.
To complement this, we computed the probability of being above each threshold of
interest for each variable used. This was achieved thanks to the fact that kriging in R+

predictor and its kriging variance are the moments of the normal on R+ distribution
describing the conditional expectation of the predicted variables. These results mainly
showed a strong daily drift, and a clear definition of each category: almost always, one
of the categories was highly sure, thus reducing the usefulness of this probabilistic ap-
proach. It is nevertheless expected to be more useful in situations with higher kriging
variance.

These results were nevertheless only obtained after discussing two different geome-
tries for the Ammonia concentration in the river. Both the classical arithmetic average
and the suggested geometric average of measurements in a block were considered. The
second one was chosen, due to the characteristics of the problem: mainly, the fact that
in an open system (as is a river with Ammonia, which is highly volatile) mass is not
conservative, and therefore there are no arguments in favor of using an additive scale.
In contrast, a multiplicative scale is consistent with the equilibrium reaction governing
Ammonia stability in the dissolution. These considerations on which is the underlying
process should be always done before choosing a characteristic average.



Chapter 6

Geostatistics in the Simplex

6.1 Kriging of compositions

Let ~x ∈ D ⊂ R
p be a point (or the center of a block v) in a domain D of the space-

time real space, with p ∈ {1, 2, 3, 4}. Let Z(~x) = (Z1(~x), Z2(~x), . . . , ZD(~x)) ∈ S
D

be a D-part compositional random function (RF), and call Zi the i-th component of
the composition. Due to the nature of compositional data, at any location ~x all the
components are non-negative and closed,

Zi(~x) ≥ 0 and
D∑

i=1

Zi(~x) = κ, (6.1)

with κ equal to the value of the whole composition. Usually, κ = 100 (percentages)
or κ = 1 (proportions). For the sake of simplicity, we work with the latter, without
loss of generality. Note that the concept of compositional RF we use here is exactly
equivalent to the regionalized compositions of Pawlowsky-Glahn and Olea [2004].

Let z(~x1), z(~x2), . . . , z(~xN) be an observed sample of this RF, which is assumed to
be fully observed. The goal will be the estimation of the composition Z(~x0) at an
unsampled location, and of its error variance-covariance matrix. As happened with
positive RFs (chapter 5), the fact that compositions are constrained should discourage
us to assume Z(~x) to be a Gaussian RF, which is defined on the whole real space
R

D. Moreover, it is well-known that classical statistical methods based on the covari-
ance matrix of compositional data sets cannot be interpreted in the usual way due
to a negative bias introduced by the closure in the covariances [Chayes, 1960, 1971].
Although geostatistical methods are also based on the covariance matrix [Pawlowsky-
Glahn, 1984], today most of the references found in the literature on structural analysis
and kriging of compositional data simply do not consider the problem, e.g.Wackernagel
[1998]; an extensive list may be found in Pawlowsky-Glahn and Olea [2004]. It is ar-
gued that when the total sum of the interesting/available variables is far from one, the
closure has no noticeable effect, but the fact is that it might yield non-sense estima-
tions, e.g.negative or not summing up to one [Isaaks and Srivastava, 1989, Pawlowsky
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et al., 1994, 1996]. Furthermore, the addition of any non-relevant variable or the forced
closure of the system can lead to totally inconsistent conclusions. Two different and
incompatible approaches have been developed to deal with this: transforming the data
set, and constraining the admissible solutions.

Walwoort and de Gruijter [2001] propose a method, based on constraining the pre-
dictions of D simultaneous kriging systems (3.16) to sum up to one and have positive
values. This is achieved first by adding to the universality conditions (3.18) a further
constraint with the constant sum condition (6.1). Second, the positivity of the com-
ponents is ensured by using the concept of active constraint [Wismer and Chattergy,
1978]. This is a further non-linear constraint which acts only when the linear kriging
prediction would be negative. In this case, this new constraint simply ensures that the
negative predictions will be zero, and consequently changes the kriging variance. The
authors warn that as a result, kriging offers no more an estimate of the conditional dis-
tribution. This solution is a non-linear interpolation procedure, which may be difficult
to compare with a linear one. In [Walwoort and de Gruijter, 2001] opinion, it should
be taken simply as an interpolation technique.

Based on the characterization of the Simplex by Aitchison [1986, also detailed in
section 2.5.3], Pawlowsky [1986] developed a transformation strategy, which relies on
similar ideas to those used in lognormal kriging. First, the data set is transformed to
a set of real vectors

{
ζ(~xn)

}
; afterwards geostatistical techniques are applied to the

transformed scores to obtain, e.g.a prediction at an unsampled location ζ∗(~x0); finally
the kriging prediction is back-transformed to obtain a prediction z∗(~x0) of the com-
position itself at the unsampled location. The transformations studied by Pawlowsky
[1986] and Pawlowsky-Glahn and Olea [2004] are three:

• the centered log-ratio transformation [Aitchison, 1986, clr], which maps S
D, the

Simplex of D-parts, into an hyperplane of R
D through

ζi = clri(Z) = log
Zi

g(Z)
, i ∈ {1, 2, . . . , D}, (6.2)

where g(Z) represent the geometric mean of all components of Z. The fact that
the image space of this mapping is again constrained hinders its use in geostatisti-
cal applications, essentially due to the singularity of the resulting kriging system
matrix; consequently, Pawlowsky-Glahn and Olea [2004] discouraged its use;

• the additive log-ratio transformation [Aitchison, 1986, alr], a mapping between
S

D and the space R
D−1 through

ζi = alri(Z) = log
Zi

ZD

, i ∈ {1, 2, . . . , D − 1}, (6.3)

is presented as the most-adequate, due to its unconstrained character. Following
the procedure of lognormal kriging, we can assume the RF to follow an addi-
tive logistic normal model, and obtain an unbiased predictor for the composition
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by using in a direct way a numerical Hermitian integration method [Aitchison,
1986], which should be consequently called additive logistic normal kriging (ALN-
kriging). However, this predictor is seldom used in practice, due to the compli-
cation of such a numerical integration;

• the basis method, which can be applied only when an independent auxiliary RF
t(~x) representing the size of the composition is available. Then the product
t(~x) ·Zi(~x), called a basis, defines a strictly positive RF, which should be treated
with the techniques introduced in chapter 5. Note that the concept of basis is
here different from the algebraic-geometric concept introduced in chapter 2.

The clear connection of these methods with lognormal kriging may help us to un-
derstand them and their limitations. Again, the numerically-obtained ALN-kriging
predictor is considered optimal, as the lognormal predictor was. However, the same
family of problems found on lognormal kriging are expected for ALN-kriging. In par-
ticular, the conclusion of Roth [1998] about the inadequateness of lognormal kriging
for local conditional expectation is also applicable here. To construct confidence re-
gions, one can attempt to obtain also an estimate of the covariance matrix of Z by
using again Hermitian numerical integration; afterwards, this covariance matrix may
be used to build D-dimensional confidence regions around the ALN-kriging predictor.
However, this confidence region contains mostly values which cannot be compositions,
since their components are not necessarily positive, nor sum they up to one [Pawlowsky-
Glahn and Olea, 2004]. Following the same reasoning applied to lognormal kriging, it
is better to build a confidence region around the prediction ζ∗ = (ζ∗i (~x0)) by using the
kriging covariance matrix, and afterwards back-transform the obtained region through
the additive generalized logistic transformation,

z = agl(ζ) = C (exp (ζ1), exp (ζ2), . . . , exp (ζD−1), 1) , (6.4)

the inverse transformation to (6.3). Simulation of compositional RFs become also
straightforward by simulating (D − 1)-dimensional real RFs and transforming them
to compositions through (6.4). Regarding block kriging, the same problems arising in
lognormal kriging around conservation of lognormality are also valid here (section 5.4).

Following this strategy, Tjelmeland and Lund [2003] present an implementation of
the generalized linear predictor (section 3.4.2) based on the additive-logistic normal
distribution. Their work is essentially a straightforward application of model-based
geostatistical techniques [Diggle et al., 1998] on the alr-transformed values, where a
Gaussian assumption is fully natural and consequently MCMC techniques are expected
to be efficient. Afterward, results are back-transformed to compositions through (6.4).
The advantage of their approach lies on the ability to process compositions with lost
components, and estimate them as well as predict unsampled locations with a bayesian
account of their uncertainty. The main disadvantage of this method is the need of the
MCMC simulation, which require usually extensive computations.
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6.2 Simplex space structure

Following the arguments of section 5.1 regarding the problems of lognormal kriging,
it is interesting to consider the Euclidean structure of the Simplex, denoted by S

D, in
order to understand the known and expected problems of ALN-kriging and its possible
solutions. This structure has been detailed throughout chapter 2, and specially in
section 2.5.3. Recall that it is based on the vector space operations called perturbation
and power transformation, in the Aitchison distance (2.23) and its associated scalar
product. Given an orthonormal basis of S

D, the coefficient vector ζ of any element z
of the space can be computed with

ζ = ϕ · clr(z) = ϕ · log(z), (6.5)

where log(z) = (log z1, log z2, . . . , log zD)t, and ϕ is a matrix associated to the used

basis, with (D − 1) rows by D columns which rows sum up to zero

D∑

j=1

ϕij = 0, i = 1, 2, . . . , D − 1, (6.6)

and satisfies a kind of orthogonality conditions, coming from the orthonormality of the
basis,

ϕ · ϕt = I
(D−1)

ϕt · ϕ = I
D
− 1

D
· 1

D
. (6.7)

In these expressions, I represents the identity matrix and 1 a matrix with all elements
equal to 1, while the subindexes show their dimension. For these reasons, the coef-
ficients ζ in equation (6.5) are called isometric log-ratio coordinates (ilr), and define
another log-ratio transformation to use as the clr and alr (6.2-6.3).

In particular, the elements of the basis themselves can be retrieved from matrix ϕ

by taking the closed exponential of each one of its rows ϕ
i
, i = 1, 2, . . . , D − 1,

ei = C
(
exp

(
ϕ

i

))
= C (expϕi1, expϕi2, . . . , expϕiD) . (6.8)

With coefficients (6.5), a Lebesgue measure (2.3) can be defined in S
D, which allows

to introduce the normal distribution on S
D as an alternative model to the ALN distri-

bution [Mateu-Figueras et al., 2003]. This normal distribution on S
D is illustrated in

figure 2.7.
In this context, ALN-kriging can be considered to follow a two-step procedure like

lognormal kriging:

1. first, estimate the log-ratios of the vector RF at the unsampled location, by
minimizing the distance on S

D between the true value of ζ(~x0) and its estimate
ζ∗

K
;
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2. second, estimate the compositional RF at the unsampled location z(~x0) as the
mean of an ALN distribution, with reference to the Lebesgue measure on R

D,
using multivariate Hermite integration.

This is a mixture of two mutually-inconsistent criteria, based respectively on Aitchison
distance and Lebesgue measure.

6.3 Structural analysis

Pawlowsky-Glahn and Olea [2004] present four different specifications of the covariance
structure of a regionalized composition, plus their corresponding variogram structures.

spatial covariance structure is the basic specification which includes D4 functions,
showing which is the relationship between all the possible log-ratios at the two
locations,

σij·kl(~h) = Cov

[
log

(
zi(~x)

zk(~x)

)
, log

(
zj(~x + ~h)

zl(~x + ~h)

)]
;

this is mostly superfluous, since it can be specified with a small number of func-
tions, without assuming any kind of symmetry;

lr cross-covariance is the D ×D matrix of covariance functions of each log-ratio

τi·j(~h) = Cov

[
log

(
zi(~x)

zj(~x)

)
, log

(
zi(~x + ~h)

zj(~x + ~h)

)]
= σii·jj, T(~h) =

(
τi·j(~h)

)
,

it is characterized by the fact that τi·i = 0, and it describes the whole covariance
structure, given that

σij·kl =
1

2
(τi·l + τj·k − τi·j − τk·l) ;

clr cross-covariance is the D × D matrix of cross-covariance functions of the clr-
transformed data (6.2),

ξi·j(~h) = Cov

[
log

(
zi(~x)

g(z(~x))

)
, log

(
zj(~x + ~h)

g(z(~x + ~h))

)]
, Ξ(~h) =

(
ξi·j(~h)

)
,

(6.9)

it is a singular matrix for any ~h, and it univocally specifies the covariance struc-
ture through

σij·kl = ξi·j + ξk·l − ξi·l − ξk·j;
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alr cross-covariance is the (D− 1)× (D− 1) matrix of cross-covariance functions of
the alr-transformed data (6.3),

σij(~h) = Cov

[
log

(
zi(~x)

zD(~x)

)
, log

(
zj(~x + ~h)

zD(~x + ~h)

)]
= σij·DD, Σ(~h) =

(
σij(~h)

)
;

this is the favored specification, because it has the lowest number of elements, the
resulting matrix is non-singular, and it still completely specifies the covariance
structure, since

σij·kl = σij + σkl − σil − σkj.

These definitions, the properties of all these covariance specifications and its variogram
counterparts, as well as the relationships between them were exposed by Pawlowsky-
Glahn and Olea [2004]. From the point of view of the Simplex space structure, these
covariance structures will be replaced by the coordinate cross-covariance.

Definition 6.1 (coordinate cross-covariance) The matrix of auto- and cross-covariance
functions

Cij(~h) = Cov
[
ζi(~x), ζj(~x + ~h)

]
.

of the coordinates of the data set with respect to a basis (6.5) form a (D− 1)× (D− 1)
matrix, called coordinate cross-covariance function matrix.

Property 6.1 The coordinate cross-covariance function matrix (definition 6.1) and
the clr cross-covariance matrix (equation 6.9) satisfy

C(~h) = ϕ · Ξ(~h) · ϕt,

which can be inverted to
Ξ(~h) = ϕt · C(~h) · ϕ,

in the case of an orthonormal basis.

Proof: In matrix terms, this covariance specification can be related to the clr covariance
structure,

C(~h) = Cov
[
ζ(~x), ζ(~x + ~h)

]
= E

[(
ζ(~x) − µ

)t ·
(
ζ(~x + ~h) − µ

)]
=

= E
[
ϕ · (clr(z(~x)) − clr(m))t ·

(
clr(z(~x + ~h)) − clr(m)

)
· ϕ
]

=

= ϕ · E
[
(clr(z(~x)) − clr(m))t ·

(
clr(z(~x + ~h)) − clr(m)

)]
· ϕt =

= ϕ · Cov
[
clr(z(~x)), clr(z(~x + ~h))

]
· ϕt =

= ϕ · Ξ(~h) · ϕt.
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The inverse relationship is proven by considering equation 6.7:

C = ϕ · Ξ · ϕt

ϕt · C · ϕ = ϕt · ϕ · Ξ · ϕt · ϕ

ϕt · C · ϕ =

(
I − 1

D
1

)
· Ξ ·

(
I − 1

D
1

)t

ϕt · C · ϕ = Ξ − 1

D

(
1 · Ξ + Ξ · 1

)
+

1

D2
1 · Ξ · 1

ϕt · C · ϕ = Ξ,

given the fact that Ξ sums up to zero both by rows and columns. �

The advantage of the coordinate cross-covariance structure lays on the fact that,
since the coordinates are real-valued RFs, their covariance functions can be interpreted
in a classical way. However, the relationship between each original part in the compo-
sition and the coordinates is not one-to-one, which hinders a direct interpretation in
terms of the parts.

Recall that the choice of a basis does not affect such structural concepts as range,
independence, anisotropy and validity of a cross-covariance model, as was shown in
section 4.3. Note also that matrix ϕ allows us to pass from clr transformation scores

(6.2) to ilr coordinates (6.5), whereas in section 4.3 it represented an arbitrary change-
of-basis matrix of full rank, e.g.between two different coordinate systems.

6.4 Kriging in the Simplex

In the case of the D-part Simplex S
D, the so-called isometric log-ratio (ilr) coordinates

are taken first by computing either the clr (6.2) or the logarithms of the parts, and
afterwards applying the matrix operation described in equation (6.5). This yields

ζ∗
0

= ϕ · clr(z∗0) = c+
N∑

n=1

λ
n
· ζ(~xn), (6.10)

with c = ϕ · clr(c) ensuring unbiasedness by setting c = 0—in universal kriging, thus

satisfying the unbiasedness conditions of equation (4.11)—or c =
(
I

D
−∑λ

n

)
· µ (in

simple kriging) and µ the vector of known mean values of the ilr coordinates.
The optimal predictor is obtained by minimizing the kriging error variance (eq.

4.4) using covariance functions of definition 6.1, subject to the classical universality
conditions (eq. 3.18), if universal kriging is used. Properly expressed in coordinates,
the system is reduced to a collocated real kriging, like that explained in chapter 3. The
final predictor is obtained applying the result of (6.10) to the basis of the space

z∗0 = C
(
exp

(
ϕ · ζ∗

0

))
. (6.11)
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Consider now the simplest case: the weight matrices as scalars (λ
n

= λn ·1). Aitchi-
son [1997] showed—in the non-geostatistical case—that predictor (6.11) is equivalent
to a closed weighted geometric average of the data set. As a kriging system, it is equiv-
alent to the ALN kriging system of Pawlowsky [1986], although ALN-Kriging yielded
an estimator which optimality properties were unclear, while (6.11) has been shown
in chapter 4 to be the optimal predictor in the Euclidean structure of S

D. In particu-
lar, it minimizes the expected Aitchison distance (2.23) between the true composition
Z(~x0) and its prediction z∗0 (property 4.3). Finally, the predictor (6.10) and its kriging
variance are the parameters of the normal distribution on the Simplex, conditional to
the observed data set (proposition 4.5).

Regarding block kriging and global change-of-support models, the same consider-
ations expressed for positive variables (section 5.4) apply to kriging in the Simplex.
Block kriging (for local estimation) does not yield any new problem as those already
treated in section 5.4. The multivariate character of compositions must nevertheless be
taken into account when applying any change-of-support model (for global estimation),
like e.g.the affine correction (3.34). Consider for instance the Cholesky decomposition
of the covariance matrix, denoted as Σ = Σ1/2 · Σt/2. Then, the affine correction can
be expressed in the Simplex as

Σ−1/2⊙ (Z⊖m) ∼ Σv
−1/2⊙ (Zv⊖m) ∼ NSD

(
0, I

D−1

)
,

which summarizes both the relationship between the coordinates and the compositions,
and the fact that the affine correction is applied to the coordinates due to its Gaussian
distribution.

6.5 Case study: air quality index

The data set of moss pollution by Fe, Pb and Hg, at the Ukrainian Carpathian Range
is an example of regionalized composition. Its compositional character was introduced
in section 2.5.3, where we ignored its spatial dependence. Figure 6.1 shows this data
set, with each element in a different map.

To analyze this composition, we will take into account the fact that its sample
space is the 3-part Simplex. So, let Z = (Fe,Pb,Hg) ∈ S

3 be the random composition
indicating the proportion of these three elements in each sample. Its sample space,
E = S

3, can be given an Euclidean structure [Billheimer et al., 2001, Pawlowsky-Glahn
and Egozcue, 2001], characterized by the operations explained in section 2.5.3. This
Euclidean structure captures a scale for compositions as closed relative vectors: they
only convey information on the relative importance of a part within a whole, and the
total amount of this whole is irrelevant.

Switching to the notation in expression (6.5), the orthonormal coordinates used
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Figure 6.1: Maps of concentration of each element at the sampled locations. The circles
represent the experimental quartiles for each element, according to the following table
(units in mg/100g):

A B C D
Hg 0.008-0.024 0.024-0.039 0.039-0.054 0.054-0.114
Fe 66-198 198-311 311-496 496-1326
Pb 2.3-4.2 4.2-6.8 6.8-10.9 10.9-32.7
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Figure 6.2: Omnidirectional variograms (diagonal plots) and cross-variogram (left bot-
tom plot) for the coordinates of the moss pollution system, jointly with the number of
pairs (top right plot) used in the computations.

Table 6.1: Parameters of definition of the auto- and cross-variograms used for (ζ1, ζ2).
Both contain a nugget, and two nested spherical structures, with a short (a = 0.5) and a
long (a = 1.5) range. Note that they are used into a linear model of corregionalization,
which needs these variances and covariances to define a valid covariance matrix for
each structure.

variable nugget sill (a=0.5) sill (a=1.5)
ζ1 0.113 0.137 0.001
ζ2 0.102 0.107 0.218

ζ1 vs. ζ2 -0.001 0.101 0.017
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here can be expressed as

ζ =

(
ζ1
ζ2

)
= ϕ ·




ln (Fe)
ln (Pb)
ln (Hg)



 = ϕ · ln (Z), ϕ =

(
2√
6

−1√
6

−1√
6

0 1√
2

−1√
2

)
.

Note that the rows of matrix ϕ are the clr transforms of each component of the two

elements of the basis used, according with equation (6.8)

e1 = C
(

exp
2√
6
, exp

−1√
6
, exp

−1√
6

)
e2 = C

(
1, exp

1√
2
, exp

−1√
2

)
.

These coordinates are chosen because we expect Fe to be more noisy than Pb,
which in turn should be less continuous than Hg; to better keep the smoothness of Hg,
we balance it against Pb in the second coordinate, and these two against Fe in the
first coordinate. We will then interpret the first coordinate as a balance between the
influences of short- and long-range pollution, and the second coordinate will inform us
on which is the dominant character of the long-range pollution.

Once the basis and the coordinates are fixed, covariance or variograms are com-
puted. In this case, we do not know the mean of the RF, and we expect to use ordinary
kriging in the predictions. Variograms are thus preferable, although they would not be
able to capture an asymmetric structure. However, we will assume that the covariance
function is isotropic, therefore it must be symmetric [Chilès and Delfiner, 1999, p. 324]
Using the classical formula for estimation of variograms and cross-variograms (3.5),
we estimate the omni-directional variogram and cross-variogram functions displayed in
figure 6.2, jointly with the fitted model, which is described in table 6.1. Recall that
this model is a linear corregionalization. Thus each nested structure must be linked to
a valid variance-covariance matrix.

The ordinary kriging predictor is:

ζ∗(~x0) =

(
ζ∗1 (~x0)
ζ∗2 (~x0)

)
=

N∑

n=1

(
λ11(~xn) λ12(~xn)
λ21(~xn) λ22(~xn)

)
·
(
ζ1(~xn)
ζ2(~xn)

)
=

N∑

n=1

λ(~xn) · ζ(~xn),

subject to the universality conditions

N∑

n=1

(
λ11(~xn) λ12(~xn)
λ21(~xn) λ22(~xn)

)
= I

2
,

which yields as solution of the system (3.19) the matrix [Myers, 1982]





λ(~x1)
...

λ(~xN)
ν




=





Γ(~x1, ~x1) · · · Γ(~x1, ~xN) 1
2

...
. . .

...
...

Γ(~xN , ~x1) · · · Γ(~xN , ~xN) 1
2

1
2

· · · 1
2

0
2





−1

·





Γ(~x1, ~x0)
...

Γ(~xN , ~x0)
I

2




.
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Here, the Lagrange multipliers used to satisfy the universality conditions are in the
matrix ν, whereas the 2 × 2 matrices Γ are formed by the variograms γij(~xn, ~xm).
Results of this kriging system are displayed in figure 6.3. They were obtained with
function predict.gstat of package gstat [Pebesma and Wesseling, 1998] for R [R
Development Core Team, 2004].

Afterwards, these results are applied to the basis to obtain the final estimates,
computed as

z∗(~xn) = ζ∗1 (~xn)⊙e1⊕ζ∗2 (~xn)⊙e2.

Figure 6.4 represents respectively the predicted values for Hg, Fe and Pb in clr scale.
These maps might be interpreted as showing the relative influence of each pollution
process. The higher relative influence of corrosion processes (clrFe map) is at the west
of the city of Chernovtśı (with a lesser area near Drogóbich), whereas combustion
pollution (clrPb map) is relatively most important in the southwestern basin, around
the urban center of Uzhgorod. Finally, the highest relative impact of regional pollution
(clrHg map) is found in the low polluted area at the northeast of the Carpathians, in
the rainy north face of the mountains.

6.6 Remarks

This chapter presented a straightforward generalization of the log-normal and normal
in R+ kriging techniques to deal with compositional data. It essentially served as
illustration of the theory in chapter 4 and, as we will see, to present some tools for
the next chapter. With the first aim, we derived maps of influence of each of three
pollution processes, which were deemed relative. This relative character comes from
the assumption that the total size of the composition is only an irrelevant artifact of
the sampling strategy.

Kriging techniques have been shown to provide optimal predictions of RFs which
sample space may be given a meaningful Euclidean structure, in particular the Sim-
plex and the positive real line. An Euclidean space structure allows us to select an
orthonormal basis, compute the real coordinates of any object in this space with re-
spect to this basis, and apply known methods to them. Thus, we defined variogram
or covariance functions on the coordinates, and used kriging techniques applied to the
coordinates themselves. Afterwards, predictions were applied to the basis to recover
objects of the Euclidean space itself. The same techniques could be applied both to
RFs with point-support and with block-support.

Alternatively, we showed that the kriging predictor and its error variances provided
the characteristic measures of central tendency and dispersion needed to define a normal
distribution on the Simplex. This was regarded as the distribution of the true value of
the RF conditional to the observed data, which allowed us to compute probabilities of
various hazardous events. This powerful result is however valid under the assumption
that the RF is Gaussian, and provided that we know exactly its mean and covariance
structure. If the RF was not Gaussian, there were some techniques still applicable,
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Figure 6.3: Maps of predicted values for each coordinate (here represented as z1 and
z2) in the moss pollution system. Longitude corresponds to direction x, and latitude
to direction y.

which relied upon transforming the observed data to have a Gaussian marginal and
assuming the joint distribution to be Gaussian.

Given the importance of the information provided by the distribution on the charac-
terization of hazard, some other techniques have been developed in the last years, which
focus on directly estimating probabilities. They are addressed in the next chapter.
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Figure 6.4: Predicted values for each element in clr scale: from top to bottom clrHg,
clrFe and clrPb. Longitude corresponds to direction x, and latitude to direction y.



Chapter 7

Geostatistics for probability
functions

Geostatistics offers some techniques aimed to estimate the probability distribution
of a random function (RF) without assuming its joint Gaussianity—with a possible
preliminary transformation—, inherent in the lognormal and ALN-methods (and the
alternatives we put forward) of the last chapters. Most of these non-Gaussian tech-
niques are based on the application of indicator functions, which transform the original
RF into a boolean one: at any location, the transformed RF is one if the original fulfills
a certain condition (e.g.”being above a given threshold”), and zero otherwise. Then,
this boolean RF is treated with classical geostatistics. Kriging results are finally inter-
preted as the conditional probability of fulfilling the stated condition at an unsampled
location. However, this probability may be negative or larger than one. We propose
a solution based on considering probabilities as compositions, and applying to them
kriging in the Simplex, as explained in the last chapter. However, compositions with
zeroes and ones, as obtained from indicator transforms, are placed at the infinity of the
Simplex when seen from the log-ratio point of view. Consequently, we cannot use these
transforms to estimate the sought conditional probability. To overcome this problem,
we first develop kriging in the Simplex for probabilities which are assumed to be di-
rectly observed. Afterwards, we put forward a method—which does not yield zeroes
or ones—to replace the classical indicator transform. Then, this generalized indicator
transform is used in conjunction with kriging in the Simplex, and we study its prop-
erties in detail. Finally, we put forward a global method, integrating these two steps
into a joint estimation method, which bears more resemblances to bayesian estimation
than to geostatistical techniques.

133
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7.1 Indicator kriging and other probability estima-

tion techniques

7.1.1 Random function

Let ~x ∈ D ⊂ R
p be a point (or the center of a block v) in a domain D of the space-

time real space, with p ∈ {1, 2, 3, 4}. Let Z(~x) ∈ A be a RF in a set A admitting a
partition. Let z(~x1), z(~x2), . . . , z(~xN) be an observed sample of this RF. The goal will
be the estimation of the probability distribution of Z at an unsampled location ~x0,
either its density (pdf, both for continuous and discrete variables) or its cumulative
distribution (cdf). To do so, A =

⋃D
i=1Ai is partitioned in D disjoint sets {Ai},

e.g.according to one of the following cases:

1. A is a (totally) ordered set (not necessarily with a specific space structure); then,
we can define {z0, z1, . . . , zD}, a set of D+1 cutoffs or reference levels for Z which
in turn define a set of intervals Ai = (zi−1, zi] partitioning A; using them, the RF
Z is transformed to the set of indicator functions

Ii(~x) = Ii(Z(~x)) =

{
1, Z(~x) ≤ zi

0, Z(~x) > zi,
i ∈ {1, 2, . . . , D − 1} , (7.1)

which define a vector I(~x) of D − 1 ordered boolean RFs, since i < j → Ii(~x) ≤
Ij(~x) necessarily for any ~x ∈ D;

2. Z(~x) is a categorical RF, and A is the finite set of its outcomes; we can define
then a set of D indicator functions

Ji(~x) = Ji(Z(~x)) =

{
1, Z(~x) = Ai

0, Z(~x) 6= Ai,
i ∈ {1, 2, . . . , D} , (7.2)

which define a vector J(~x) of D disjunctive boolean RFs, where necessarily at
each sampled location ~x ∈ D one and only one of the Ji is equal to one and the
rest are zero; if these categories can be ordered, e.g.Ai is the event ”Z ′ belongs
to the interval (zi−1, zi]” (with Z ′ an auxiliary RF in an ordered set fulfilling the
conditions of the first point), then the trivial relation holds

Ii(~x) =
∑

j<i

Jj(~x); (7.3)

3. A is a subset of a multidimensional vector space admitting a partition, e.g.the set
of wind directions (the unit circle) or the metamorphic phase pressure-temperature
space (the positive quadrant R

2
+); in this case, the RF Z is transformed through

(7.2), since usually no cumulative relation is naturally defined on multidimen-
sional spaces.
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These three cases contain most of the possible situations, although other possibilities
could be devised: the key condition is the possibility to univocally partition the image
set A, and define an associated categorical RF satisfying the second case. Then the
following techniques can be applied to this associated RF, and the computed prob-
abilities may be finally transferred to the original. This procedure will obviously be
meaningful only when that partition has a physical sense.

7.1.2 Structural analysis

For a given index i, the real expectations of both functions Ii (7.1) and Ji (7.2) are
related respectively to the cdf FZ(z) (specially in the continuous case) and the pdf
fZ(z) (specially in the discrete case):

E [Ii(~x)] = Pr [Z(~x) < zi] = FZ(zi) and E [Ji(~x)] = Pr [Z(~x) = Ai] = fZ(Ai).
(7.4)

Journel [1983] put forward the possibility to apply geostatistical methods to the ordered
indicator transforms of the observed data set, denoted by i(~xn), to estimate FZ(z) =
E [I(~x)]. To do so, he defined cross-covariance {Cij} and variogram {γij} functions
for the indicator transforms, and showed that they satisfied the following relationships
with the bivariate cumulative probability distribution:

Kij(~h) = E
[
Ii(~x) · Ij(~x + ~h)

]
= Pr

[
{Z(~x) ≤ zi} ∩ {Z(~x + ~h) ≤ zj}

]

= FZZ(zi, zj), (7.5)

Cij(~h) = Cov
[
Ii(~x), Ij(~x + ~h)

]
= FZZ(zi, zj) − FZ(zi) · FZ(zj),

Cii(~0) = Cov [Ii(~x), Ii(~x)] = Var [Ii(~x)] = FZ(zi) − F 2
Z(zi) =

= E [Ii(~x)] (1 − E [Ii(~x)]) = γii(∞), (7.6)

γij(~h) = FZ(zi)δij − FZ(zi) · FZ(zj).

Equation (7.5) shows the non-centered cross-covariance of the random variables Ii(~x)

and Ij(~x + ~h), which was used by Carle and Fogg [1996] to define the transition prob-
ability,

tij(~h) = E
[
Ij(~x + ~h)|Ii(~x)

]
=

Pr
[
{Z(~x) ≤ zi} ∩ {Z(~x + ~h) ≤ zj}

]

Pr [Z(~x) ≤ zi]
=
FZZ(zi, zj)

FZ(zi)

Equation (7.6) shows that knowledge of the sill of the variogram or the covariance at
the origin of a single indicator is equivalent to the knowledge of its mean value. Simi-
lar relationships can be established between the bivariate discrete probability density
function of the events Ai and covariance functions between disjunctive indicators Ji.
For instance, a non-centered cross-covariance can be also defined as

Kij(~h) = E
[
Ji(~x) · Jj(~x + ~h)

]
= Pr

[
{Z(~x) = Ai} ∩ {Z(~x + ~h) = Aj}

]

= fZZ(Ai, Aj), (7.7)
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and a transition probability as

tij(~h) = E
[
Jj(~x + ~h)|Ji(~x)

]
=

Pr
[
{Z(~x) = Ai} ∩ {Z(~x + ~h) = Aj}

]

Pr [Z(~x) ≤ zi]
=
fZZ(Ai, Aj)

fZ(Ai)
(7.8)

7.1.3 Linear prediction

Journel [1983] proposed also to estimate FZ(zi) = E [I(~x)] by kriging of the transformed
data i(~xn). Given the fact that knowledge of the variogram or the covariance system
implies knowledge of the mean of I(~x), simple kriging predictor

i∗SK =
N∑

n=1

λ
n
· i(~xn) −

(
I −

N∑

n=1

λ
n

)
· E [I] (7.9)

is the most suitable linear technique to use. This is a clear case of collocated kriging,
since at each location the whole vector i(~xn) is defined. Consequently, the error variance
to minimize is defined as

σ2
SK = Tr (Var [i∗SK − E [I(~x0)]])

and the kriging system to solve is equivalent to (3.24), taking C(~xn, ~xm) = (Cij(~xn, ~xm))
to be full matrices of cross-covariance,

N∑

m=1

λ
m
· C(~xn, ~xm) = C(~xn, ~x0), n = 1, 2, . . . , N, (7.10)

As a simpler alternative, indicator kriging can be also implemented, by using the kriging
predictor (3.23) independently for each level i, which is equivalent to let C(~xn, ~xm) be
a diagonal matrix; resulting weights λ are also diagonal matrices in this simplified case.
Again, an equivalent approach to (7.9) can be implemented on the J(~x) to compute
estimates of fZ(Ai) = E [J(~x)]. All these techniques are usually called Indicator Kriging
(IK).

Simultaneous independent indicator kriging (the variant with diagonal weight and
covariance matrices) has as its best advantage its simplicity over the full indicator co-
kriging (i.e.the simultaneous kriging of all indicator levels, accounting for their cross-
covariance) and many other techniques presented later, whereas full indicator co-kriging
is expected to yield better predictions, in the sense of lower error variance. However,
it is reported that the arbitrary fitting of the cross-covariance functions needed for
full co-kriging counters this theoretical advantage [Goovaerts, 1994]. Furthermore, the
sufficient conditions which a set of cross-covariances must satisfy to be an admissible
model for probabilities are unknown: only some necessary conditions were exposed by
Journel and Posa [1990]. In particular, Bogaert [2002] points that the linear model
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of coregionalization is only valid with a proportional covariance, which turns out to
simplify the co-kriging system to a set of independent kriging systems of each variable,
thus spoiling the advantage of co-kriging. But the worse flaw of indicator kriging
techniques is the fact that usually they yield results which are impossible to interpret
as probabilities. In the predictor (7.9) or in the system of equations (7.10), nothing
guarantees that the result remains positive, or lower than 1, conditions which should
be satisfied by any individual probability. Furthermore, even in the kriging case, the
estimates of I(~x0) are not necessarily ordered which, due to expression (7.3), implies
that the estimates of J(~x0) may be negative or larger than one. Finally, if the system
is built on J(~x0), its component estimates do not necessarily sum up to one. These are
usually addressed as the order relation problems of indicator kriging, the major source
of concern about the adequateness of this technique.

7.1.4 Indicator kriging family techniques

To solve these problems, a set of techniques have been developed which essentially
take into account complementary information in the indicator kriging system, with the
hope of reducing uncertainty and consequently order relation problems. In this context,
probability kriging [Sullivan, 1984] complements the indicator transform with a rank
transform, which takes into account the order of the samples. The resulting technique
is median unbiased but still presents order problems [Carr and Mao, 1993], which gives
ground to Carr [1994] and Bogaert [1999] to suggest two different smoothing approaches
of the estimated quantiles through trans-Gaussian-type curves which automatically
correct most order-relations, although they have a rather weak theoretical basis. In
a very similar fashion, the technique called cumulative distribution function of order
statistics kriging [Juang et al., 1998] takes into account the deviation between the
observed value and the cutoff, like the rank transform, and offer similar predictions
with similar flaws. Another way of reducing the order relation problems is based on
the better characterization of the covariance structure between several cutoffs. In this
way, indicator principal component kriging [Suro-Perez and Journel, 1991] looks for
a principal component decomposition of the covariance structure in order to skip the
modeling of cross-covariances, and successive kriging of indicators [Vargas-Guzman and
Dimitrakopoulos, 2003] does the same by considering successively the data samples by
groups, and applying kriging to estimate the residual probabilities with respect to the
already-used data. Transition probabilities [Carle and Fogg, 1996] were also shown to
reduce the number of order relation occurring in a classical indicator kriging. Pardo-
Igúzquiza and Dowd [2005] proposed an easy correction, based on fitting a logistic
regression model using generalized least squares (e.g.see section 3.3.2) to the kriged
quantiles, and replacing those quantiles which violate order-relation by their prediction
using the obtained logistic regression.

The most-used straightforward patch applied to indicator kriging to reduce the
number of order relation problems is using the same covariance for all the estimated
cutoff levels. This solution, already proposed by Journel [1983] in his seminal paper
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on indicator kriging, is equivalent to assume a mosaic model for the spatial structure
[Chilès and Delfiner, 1999, p. 384]. In this simple model, Z(~xn) and Z(~xm) are assumed
either equal with probability ρ(~xn − ~xm) and the distribution of their common value
is F (z), or independent and each has the same F (z) distribution. In other words, the
space is partitioned in cells where the RF is constant. This picture does not always fit
the many applications of indicator kriging.

7.1.5 Disjunctive kriging

Another classical alternative to indicator kriging is disjunctive kriging [Matheron,
1976]. Assume that Z(~x) is a continuous variable in a totally ordered set (usually
a subset of the real line), satisfying the first case in page 134. As exposed by Chilès
and Delfiner [1999], disjunctive kriging amounts to the joint kriging of all indicator
functions associated with all possible cutoff levels zi. To model the infinite number
of covariances associated with it, disjunctive kriging must assume one of a particular
group of models for the joint bivariate distribution: those accepting an isofactorial
decomposition. This means that there exists a series of functions {ψn} indexed by a
natural number n ∈ N, which form an orthogonal system with respect to the bivariate
probability distribution F (z1, z2),

∫
ψn(z)ψm(z + ~h)dF (z(~x), z(~x + ~h)) = δnmTn(~h),

where δnm is the Kronecker delta function, and the Tn(~h) functions are the coefficients
of the bivariate density function in that orthogonal system. Note that the series of
functions {ψn} are an orthogonal basis of L2(R), the Hilbert space of square-integrable
real functions of a real variable [Berberian, 1961].

Then the joint bivariate distribution of two random variables can be expressed as
a product of their marginals scaled by a given simple mixing function. In a Gaussian
case with correlation coefficient ρ(~h), it holds that Tn(~h) = ρn(~h), and consequently

F (z1, z2) =
∞∑

n=0

ρn(~h)ψn(z1)ψn(z2)φ(z1)φ(z2),

being ψn(z) the Hermite polinomial of n-th degree, and φ(z) the univariate normal
density law. There are other isofactorial decompositions for the most-frequently used
probability models [Armstrong and Matheron, 1986a,b]. The K-order approximation
to the true probability distribution offered by disjunctive kriging is

F ∗(Z0) =

(
1 +

K∑

k=1

N∑

n=1

ψk(Z0)λknψk(yn)

)
Φ(Z0),

where the weights λkn for each one of the k orders are obtained from an independent
simple kriging system built with a covariance function C(h) = Tn(h). The result of
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disjunctive kriging F ∗(Z0) is regarded as the best approximation to F (Z0) of order K
in the mean square sense. This points to one of the flaws of disjunctive kriging, since
nothing guarantees that F ∗(Z) > 0, and indeed for moderate degrees of approxima-
tion K, the tails of the estimated distribution present negative values. In summary,
although much more theoretically grounded (and rather complicated) than indicator
kriging, disjunctive kriging may offer also impossible estimates of the probability dis-
tribution.

These problems of indicator and disjunctive kriging might be related to the fact
that both deliver the best approximation in the sense that the L2(R) distance between
the estimated function and the true distribution is minimal. This distance is defined
as

d2(f, f∗) =

∫

R

(f(z) − f ∗(z))2dz,

which is a flawed distance between densities, given that it does not take into account
their specific properties, i.e.they must be positive and integrate to one.

7.1.6 Bayesian/maximum entropy method

The Bayesian-Maximum Entropy formalism [Christakos, 1990] offers also an alterna-
tive to kriging of indicators, particularly suited for the case of disjunctive indicators.
Following the reasoning exposed in section 3.4.3, Bogaert [2002] argues that the best
way to encode the relationship between two categorical variables placed at two lo-
cations separated a lag distance ~h is the two-way contingency table, defined in the
context of disjunctive indicator variables as the non-centered covariance at lag ~h (7.7).
Then, he estimates the maximum-entropy (N + 1)-way contingency table by fitting a
non-saturated log-linear model

log fZ(Z0 = z0, Z1 = z1, . . . , ZN = zN) =

η0 +
N∑

i=1

(
η1(Zi = zi) +

N∑

j 6=i

η2(Zi = zi, Zj = zj)

)

involving only a constant term (ensuring that the final probability estimates sum up
to one) and first and second-order interactions. This fitting is done using standard
numerical algorithms, given the nonexistence of analytical forms for these distributions.
The final estimate of the distribution is the vector of values fZ(Z0, Z1 = z1, . . . , ZN =
zN), with Z0 varying among all its possible outcomes.

The main advantage of BME in general, and of this application in particular, is the
extreme flexibility of the method. As the author points out, e.g.if we had three-way
contingency tables as data, we should simply add a third-order interaction, and so on
with higher orders. Also, it is important to notice that it does not estimate a probability
by minimizing a squared error, as did indicator kriging and disjunctive kriging; instead
it uses a logarithmic criterion, which implies that the obtained results will be always
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valid positive probabilities. On the side of the disadvantages, BME methods have
a difficult implementation, and most usually involve extensive computation. In the
special case of BME for categorical variables, one has to add a theoretical inconsistency:
according to van den Boogaart [2005, pers. comm.], given No data, the contingency
tables of order No + 1 and No + Np (say, with one single predicted location and with
Np simultaneously-predicted locations) are not compatible.

7.2 Kriging in the Simplex for multinomial proba-

bility vectors

7.2.1 Random function

From now on, we will focus on the disjunctive indicator approach (eq. 7.2), the second
case in page 134. Let P(~x) be a vector RF satisfying at all locations ~x ∈ D

• the components of the vector RF are positive: Pi(~x) ≥ 0 for all i = 1, 2, . . . , D,

• the sum of all components is one:
∑D

i=1 Pi(~x) = 1.

Then let Z(~x) ∼ M(P(~x); 1) be the realization of a single-trial multinomial distribution
at location ~x, where each component of the RF indicates the probability of obtaining
a given category: Pi(~x) = Pr [Z(~x) = Ai]. Thus we are assuming here a two-step
stochastic process, where first a RF of probability vectors is realized, and afterwards at
each location an independent realization of a multinomial distribution is drawn. From
this point of view, the vector of disjunctive indicators J(~x) (7.2) is nothing else than a
different encoding of the result of this multinomial realization.

The two-step random process suggested here was already used by Diggle et al.
[1998] to model the relative incidence of campylobacter infections among other en-
teric infections. They assumed P(~x) to be a logistic-normal RF, which is equivalent
to transforming the function through a logistic transformation and assuming a nor-
mal distribution for the transformed scores. However, they had more than one single
replication of the associated binomial variable.

7.2.2 The D-part Simplex, a space structure for multinomial
probability vectors

Let us first head to the case where we observe directly the probability vector RF:
p(~x1),p(~x2), . . . ,p(~xN) is an observed sample. From the conditions stated above on
the positive and closed character of these vectors, it is evident that their sample space
is the D-part Simplex (SD). The following considerations suggest that the Euclidean
space structure explained in section 2.5.3 is applicable to probability vectors, because
they describe a meaningful scale of this vectors.
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The closure operation C(·) converts a likelihood vector into a probability vector.
Perturbation is equivalent to the updating of two probability vectors p,q (or likeli-
hoods) to obtain another one r, as shown by Aitchison [1982],

r = (r1, r2, . . . , rD) =
(p1q1, p2q2, . . . , pDqD)

∑D
i=1 piqi

= C (p1q1, p2q2, . . . , pDqD) = p⊕q. (7.11)

Power operation is interpreted then as the self-updating of a probability vector or
likelihood.

Log-odds, with a long history in the fitting of probability models (e.g.logistic re-
gression), are obtained as the result of the alr transformation (6.3). Following this, the
coordinate vector π with respect to a basis E = {ei} has D−1 components, computed
with scalar products like

πi = 〈p, ei〉A = ϕ
i· · clr (p) = ϕ

i· · log (p) = log
D∏

j=1

p
ϕij

j , (7.12)

where ϕ
i· represents the vector of the i − th row of the matrix ϕ characterizing the

basis of the Simplex used (6.5). This vector components sum up to zero (6.6), which
means that the last part of this equality is the logarithm of a fraction, and we may
consider it a generalized log-odd. Aitchison introduced them in the standard analysis
of compositional data under the name of log-contrasts. Recall that the vectors of the
basis themselves can be retrieved from the matrix by equation (6.8).

Also, Egozcue [2002] suggested that the Aitchison norm of a probability vector may
be interpreted as a measure of the information carried by this vector, thus offering a
connection between the metric structure of the Simplex and entropy and information
formalism [Shannon, 1948]. Furthermore, Egozcue and Dı́az-Barrero [2003] extended
this Euclidean space structure for discrete multinomial probabilities to a Hilbert space
structure for bounded continuous densities [Egozcue et al., 2006]. Finally, van den
Boogaart [2004] established an equality between the Aitchison distance between distri-
butions and the mean information for discrimination between them [Kullback, 1997].

7.2.3 Linear prediction

Given the results of the preceding sections, we can predict the P(~x) RF at an unsampled
location ~x0 conditionally on the observed sample p(~xn), by using any coordinate system
and the kriging technique for multi-dimensional Euclidean spaces of chapter 4. The
optimization criterion will be the minimization of the error variance, defined as

σ2
k = Tr [Var [p∗

K⊖E [P(~x0)]]] = Tr[Σ
K,SD

] = E
[
d2

S
(p∗

K ,P(~x))
]
,

where p∗
K is the kriging estimator, and P(~x0) the true value of the RF P(~x) at the un-

sampled location ~x0. Recall that Σ
K,SD

= Var [p∗
K⊖E [P(~x0)]] is the variance-covariance

matrix between the errors of the coordinates, according to property 4.2.4, showing us
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the stochastic dependence of the uncertainty about the different components of predic-
tor vector.

The coordinate vector of the kriging predictor itself π∗
K is a weighted linear com-

bination (4.2) of the coordinates of the observed data, where the weights are derived
from a system of equations like (3.19). Thus they are D − 1 algebraically independent
quantities, in contrast with what is obtained in classical indicator kriging, where they
must either be ordered or sum up to one. However, the results of kriging in the Simplex
are not probabilities before they are applied to the basis used through

p∗
K =

⊕D−1

i=1
π∗

i (~x0)⊙ei. (7.13)

This prediction p∗
K is the best unbiased linear approximation to the true P(~x0) in the

Euclidean structure of the Simplex, as it is a kriging predictor on the coordinates.
Furthermore, assuming a joint normal distribution on the Simplex for the RF, we can
be sure that

P(~x0) ∼ NSD(P∗
k,Σk,SD), since Π(~x0) ∼ NRD−1(π∗

K ,ΣK,SD
),

being Π(~x) the vector of coordinates of the RF P(~x). Thus, it yields the conditional
distribution of the unknown P(~x0). In other words, all the optimality properties at-
tached to the different kriging techniques for point and block-support will be preserved
under the very special assumption of joint Gaussianity of the RF of P(~x).

7.3 Kriging in the Simplex for generalized indica-

tors

7.3.1 The generalized indicator function

General case

In section 7.2.1, we stated that this chapter would consider Z(~x) ∼ M(P(~x); 1) in-
dependently drawn from multinomial distributions which probability vectors formed
a RF, in a two-step stochastic process. Afterwards, we derived a kriging technique
based on log-odds of this probability RF P(~x), and assuming that this was partially
observed. This is an unrealistic assumption, since what we have is the value of Z(~x) at
the sampled locations ~x1, ~x2, . . . , ~xN , or alternatively its disjunctive encoding through
equation (7.2): j(~x1), j(~x2), . . . , j(~xN). Thus, before any kriging method shall be ap-
plied, we need to obtain at each sampled location ~xn the value of p(~xn) from the single
observation j(~xn). Classical indicator kriging does so by simply taking

p∗(~xn) = j(~xn), n = 1, 2, . . . , N

and Journel [1983] interprets it as the conditional probability

p∗(~xn) = Pr [Z(~xn) = Ai|z(~xm), m = 1, 2, . . . , N ] ,
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which afterwards is to be introduced in the kriging procedure. For our purposes, we
cannot do so, because log-odds are not defined when the probability vector has zeros.
Also, this estimation is inconsistent with the two-step stochastic nature of Z(~x), since it
states that another realization of this process would yield the same result at a sampled
location.

Thus, we look for an alternative procedure. Under the two-step stochastic model,
after observing the occurrence of category Ak at a sampled location, we may subjectively
attach to each category Ai an own probability p∗i|k. Organizing these probabilities in
an array, we obtain what is called a design matrix : after observing event Ak, column
k of this matrix tells us the conditional probability of occurrence of all the events at
that location, both the observed and the non-observed. With this matrix we could, for
instance, determine that the observation of category Ak would give to this category
a 70% of the probability, the two nearest categories (if there is an order, Ak−1 and
Ak+1) would equally share a 20%, and the rest of the categories would equally share the
exceeding 10%. Note that such an approach would give the analyst a big deal of freedom
in modeling the relationship between the categories, but demands the determination
of many parameters. Instead, we introduce here a simpler approach, the generalized
indicator function,

p∗i|k =

{
a, i = k

1−a
D−1

, i 6= k
. (7.14)

This depends only on one parameter a ∈ (0, 1), which logically should be a > 1/D in
order to obtain a higher probability for the observed category. Indicator kriging in its
classical form uses the extreme case a = 1. Note that all the categories which were
not observed receive exactly the same estimated probability, regardless of whether they
are ”near” or ”far” from the observed one. A Bayesian justification of this generalized
indicator is discussed in this chapter addendum (page 175), and it is also used to ground
section 7.4.

Results of expression (7.14) form a compositional vector p∗(~x), which falls inside the
D-part Simplex. Thus, the prediction approach developed in section 7.2 for unsampled
locations of the RF P(~x) can be also applied to this case. The next properties detail how
to compute the coordinates of the generalized indicator function, and its expectation,
both in coordinates and as a probability.

Property 7.1 (Coordinates of the generalized indicator function) Assuming the
k-th category to be observed, the coordinate vector of the generalized indicator function
(7.14) is proportional to the k-th column of the matrix of ilr coordinates ϕ,

π∗ = α · ϕ
k

= α · ϕ · jk. (7.15)
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Proof:

π∗
i = log

D∏

j=1

(
p∗j
)ϕij = log

(
aϕik

(
1 − a

D − 1

)∑
j 6=k ϕij

)
=

= log

(
aϕik

(
1 − a

D − 1

)−ϕik

)
= ϕik log

a
1−a
D−1

= ϕik · α,

The first equality comes from (7.12), the second is the application of the predictor
(7.14) once we consider that we observed the k-th category (jk = 1), the third equality
holds due to the fact that all rows of matrix ϕ sum up to zero (6.6), and the rest of

the equalities are simple algebraic manipulations. �

Definition 7.1 (Canonical generalized indicator transformation) We consider
canonical the generalized indicator transformation where α = 1.

Property 7.2 The expectation of the generalized indicator function expressed in coor-
dinates, a measure of central tendency, is

E [π∗
i ] =

D∑

k=1

ϕik · α · pk, (7.16)

where pk is the true probability of observing the k-th category.

Property 7.3 The expectation in the Simplex of the generalized indicator function
itself, a the central tendency element, is

EA [p∗] = C
((

a(D − 1)

1 − a

)p1

,

(
a(D − 1)

1 − a

)p2

, . . . ,

(
a(D − 1)

1 − a

)pD
)
. (7.17)

Proof:

EA [p∗] =
⊕D−1

i=1

(
D∑

k=1

ϕikαpk

)
⊙ei =

⊕D−1

i=1

(
D∑

k=1

ϕikαpk

)
⊙C (exp (ϕij)) =

= C
(

exp

(
D∑

k=1

D−1∑

i=1

ϕijϕikαpk

))
= C

(
exp

(
D∑

k=1

(
δkj −

1

D

)
αpk

))
=

= C
(

exp

(
αpj −

1

D
α

D∑

k=1

pk

))
= C

(
exp (αpj) · exp

(
− 1

D
α

))
=

= C exp

(
pj log

a(D − 1)

1 − a

)
⊕C
(
exp

(
− α

D

))
= C

((
a(D − 1)

1 − a

)pj
)
,
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The first equality comes from (7.16), the second one is implied by the definition of each
element of the basis (6.8), the third is an application of standard manipulation of coor-
dinates in an Euclidean space, the fourth is true due to the orthogonality properties of
matrix ϕ (6.7), the fifth and sixth come from the properties of Dirac delta function and

standard algebraic manipulation, the seventh is the definition of perturbation-updating
(7.11), and the last holds due to the fact that

(
exp

(
− α

D

)
, exp

(
− α

D

)
, . . . , exp

(
− α

D

))
is

a constant vector, which is the neutral element of perturbation. �

Two-categories case

Note that in the simplest two-categories case, the matrix of definition of the or-
thonormal basis is A =

(
1/
√

2,−1/
√

2
)
, which means that the unique basis element

e = C
(
exp

(
1/
√

2,−1/
√

2
))

. This yeilds as the unique coordinate

π = 〈p, e〉A = 〈(p1, p2) ,
(
e1/

√
2, e−1/

√
2
)
〉A

1√
2

log
p1

p2

=
1√
2

log
p

1 − p
. (7.18)

In this simplest case, with two mutually-exclusive categories or a single cutoff, the
generalized indicator function is

p∗2 =

{
a, j2(~x) = 1

1 − a, j2(~x) = 0
, (7.19)

and p∗1 = 1 − p∗2. This yields, by using coordinate (7.18), the expectation of the
generalized indicator coordinate equal to

E [π∗] = α
1√
2
(p1 − p2), (7.20)

where p1, p2 are the true probabilities of obtaining respectively categories A1 and A2

in the binomial experiment. The expectation as a probability vector is

EA [p∗] = C
((

a

1 − a

)p1

,

(
a

1 − a

)p2
)
. (7.21)

7.3.2 Structural analysis

General case

Let us now head to the structural characterization of the RF P(~x), ~x ∈ D from the
available information on the observations of j(~xn), i.e.from the estimates p∗(~xn) and
their coordinates π∗(~xn) obtained with equation (7.15).

Property 7.4 (Covariance of the generalized indicator function) The covariance

function of the generalized indicator function, represented by C(~h), can be obtained from

the covariance of the disjunctive indicator function, represented with CJ(~h), through

C(~h) = α2ϕ · CJ(~h) · ϕt.
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This relationship can be inverted to

CJ = α−2ϕt · C · ϕ. (7.22)

Proof: We are interested in the set of coordinate cross- and auto-covariances like

Cij(~h) = E
[
πi(~x) · πj(~x + ~h)

]
− E [πi(~x)] · E

[
πj(~x + ~h)

]
.

The negative terms of this expression are provided by equation (7.16), whereas the
positive part is, as an expectation, equal to

E
[
πi(~x) · πj(~x + ~h)

]
=

D∑

k1=1

D∑

k2=1

αϕik1
Pr
[
{jk1

(~x) = 1} ∩ {jk2
(~x + ~h) = 1}

]
αϕjk2

=

=
D∑

k1=1

D∑

k2=1

α2ϕik1
ϕjk2

Kk1k2
(~h), (7.23)

with Kk1k2
(~h) the non-centered cross-covariance for lag ~h (7.7) between categories k1

and k2. Consequently, the covariance function is

Cij(~h) =
D∑

k1=1

D∑

k2=1

α2ϕik1
ϕjk2

Kk1k2
(~h) −

D∑

k1=1

αϕik1
pk1

(~x)
D∑

k2=1

αϕjk2
pk2

(~x + ~h) =

=
D∑

k1=1

D∑

k1=1

α2ϕik1
ϕjk2

(Kk1k2
(~h) − pk1

(~x)pk2
(~x + ~h)) =

=
D∑

k1=1

D∑

k1=1

α2ϕik1
ϕjk2

CJ
k1k2

(~h), (7.24)

where CJ
k1k2

(~h) represents the covariance function at lag ~h computed with disjunctive
indicators for the categories k1 and k2.

The inverse relatioship (7.24) is derived from property 6.1, given the fact that the
matrix CJ is the raw covariance of a composition, which sums up to zero both by rows
and columns, like the matrix of clr-transformed compositions,

D∑

i=1

CJ
ij(
~h) =

D∑

i=1

(fZZ(zi, zj) − fZ(zi)fZ(zj)) =

=
D∑

i=1

fZZ(zi, zj) − fZ(zj)
D∑

i=1

fZ(zi) =

= fZ(zj) − fZ(zj)
D∑

i=1

fZ(zi) = fZ(zj)

(
1 −

D∑

i=1

fZ(zi)

)
= 0.
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Properties 7.2 and 7.4 show that the value of α only scales means and covariance
functions, thus the structural analysis does not depend on which generalized indicator
function of type (7.14) we are effectively using. In other words, in this step we can
simply choose the canonical one (definition 7.1) and do all computations for covariances
with it, as well as fit models. The influence of α will be further discussed in the next
section.

Another interesting issue shown in this section is the relationship between classical
indicator structural functions (7.5-7.8) and both non-centered and centered covariance
functions on coordinates (7.23-7.24). Given a set of non-centered cross-covariances
for disjunctive indicators (7.8) and a basis of S

D, all the structural functions of the
coordinate approach can be computed with simple linear combinations of disjunctive
indicator covariances.

The use of the coordinate covariance functions nevertheless clarifies the structural
analysis. Covariance functions of disjunctive indicators must sum up to zero at each
lag, while covariance of the coordinates are free of this limitation: relation (7.22)
ensures that any coordinate indicator covariance will be linked to a disjunctive indicator
covariance which sums up to zero both by rows and columns. Both covariances tend to
zero beyond their range, and the linearity of (7.22) ensures that if this happens with
one of them (either the coordinate or the disjunctive indicator), it happens with the
other. The knowledge of the mean of the RF (7.17) allows the direct computation of
the covariance at the origin, which must be

Cij(~0) =
D∑

k=1

ϕikpkϕjk −
(

D∑

k=1

ϕikpk

)
·
(

D∑

k=1

ϕjkpk

)

in order to keep consistency with the covariance of disjunctive indicators. In this ex-
pression pk represents the marginal probability of category Ak. Furthermore, ensuring
that the (D− 1)2 cross-covariances form a valid covariance system ensures the validity
of the D2 disjunctive covariances, due to the linearity of the Fourier Transform. Last
but not least, a covariance system which does not satisfy relationship (7.24) may still
be a valid covariance model for the original compositional RF (that of section 7.2.3),
although it is directly related neither to a generalized indicator nor to a classical dis-
junctive indicator RF.

Two-categories case

In the simplest case, with two mutually exclusive categories or a single cutoff, the
coordinate covariance can be computed using the relation between covariances (7.24)
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and the coordinate expression (7.18), which yields

C(~h) = α2
(

1√
2

− 1√
2

)
·
(

p11 − p2
1 p12 − p1p2

p21 − p1p2 p22 − p2
2

)
·
(

1√
2

− 1√
2

)
=

=
α2

2

(
p11 − p2

1 + p22 − p2
2 − p12 − p21 + 2p1p2

)
=

=
α2

2

(
p11 + p22 − (p12 + p21) − (p1 − p2)

2
)
,= (7.25)

=
α2

2

(
1 − 2p12 − 2p12 − (1 − 2p2)

2
)

=
α2

2

(
1 − 4p12 + 4p2 − 1 − 4p2

2

)
=

= 2α2
(
−p12 + p2 − p2

2

)
= 2α2

(
p22 − p2

2

)
,

with pi = fZ(Ai) and pij = fZZ(Ai, Aj) as in (7.7). Note the validity of the last step
because p2 = p12 + p22. Considering the intermediate step of expression (7.25), the
covariance of the coordinate is the difference between the mean deviations of inde-
pendence observed between the diagonal and the terms outside it in the contingency
table. This expression is still easily adapted to the non-stationary case, whereas in
the final simplifications we took into account that with only two categories, assuming
stationarity implies symmetry of the contingency table. Note that this final covariance
expression for the coordinate of the generalized indicator function is proportional to
the covariance of the J2(~x) disjunctive indicator function.

7.3.3 Linear prediction

General case

Finally, we can head to the prediction of the distribution of Z(~x0) at an unsam-
pled location, or the value of P(~x0) conditional to the observed generalized indicators
p∗(~xn), n = 1, 2, . . . , N (7.14), by using exactly the same kriging procedure explained
in section 7.2.3. Consequently this will not be repeated here. Some considerations
need nevertheless to be taken into account, in order to understand the implications of
such a procedure:

• which is the influence of the value of α in the kriging results?

• which is the final predictor for the sought probability distribution, namely p∗(~x0)?

• how can we choose a value of α, and most important, which is its interpretation?

As seen in equations (7.16) and (7.24), the parameter α derived from the gener-
alized indicator function (7.14) only scales the problem, and does change neither the
shape of the covariances nor the proportions among their sills or the means. It is then
straightforward to show that the kriging weigths and results satisfy some proportion-
ality relationships with this factor α.
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Property 7.5 Given a generalized indicator transformation (7.14), with a suite of
coordinates proportional to α, and the canonical generalized transformation (definition
7.1), it holds:

1. the coordinates (7.15) of both suites (π∗
(α) and π∗ respectively) satisfy

π∗
(α)(~xn) = α · π∗(~xn),

for all sampled locations ~xn,

2. the expectations (7.17) of both suites are proportional, with proportionality con-
stant α

E
[
π∗

(α)(~x)
]

= α · E [π∗(~x0)]

3. the covariance functions (7.24) of both suites are proportional, with proportion-
ality constant α2

Cov
[
π∗

(α)(~x0), π
∗
(α)(~x0 + ~h)

]
= α2 · Cov

[
π∗(~x0), π

∗(~x0 + ~h)
]
,

4. the matrix of kriging weights attached to each datum ~xn by both system suites are
identical

λ
n,(α)

= λ
n

5. the Lagrange multipliers of both system suites are proportional, with proportion-
ality constant α2

ν(α) = α2 · ν,
provided that the system to solve is a universal kriging system,

6. the kriging predictors (4.2) of both suites are proportional, with proportionality
constant α

π∗
(α)(~x0) = α · π(~x0),

7. the kriging error variance (4.9) of both suites are proportional, with proportion-
ality constant α2

σ2
K(α) = α2 · σ2

K .

Sketch of a proof: Items 1, 2 and 3 come directly from their definitions, according with
equations (7.15), (7.17) and property 7.22 respectively.

Items 4 and 5 are a classical result in kriging with proportional covariance systems.
They can be easily proven using the same matrix notation of property 4.7: Λ and
Λ(α) are the D × (D · N) matrices of all kriging weights obtained with a covariance
system proportional to 1 and to α respectively; thanks to item 3, C and α2 · C are
the (D × N) × (D · N) matrices of covariances used in the two kriging system, and c
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and α2 · c the corresponding right-side terms, matrices of (D×N)×D elements. It is
straightforward to show that

Λ(α) =
(
α2 · C

)−1 ·
(
α2 · c

)
= α−2α2 · C−1 · c = 1 · Λ.

Eventually, adding row and column block matrices of basis functions (also scaled by
α2 to keep consistency) to matrices C and c, like in solving the UK system (page 91),
yields again a matrix of weights Λ which do not depend on α. However, Λ includes
now a row block matrix with the Lagrange multipliers ν to be multiplied by the basis
functions. The α2 factor which artificially scaled the basis functions is transferred to
the Lagrange multipliers, in order to keep the basis functions themselves unchanged.

The coordinate predictor is affected by α exactly as the data set or the mean, as
seen comparing items 1, 2 and 6. This is simply proven when considering that this
predictor is of the form

π∗(~x0) =

(
I

D
−

N∑

n=1

λ
n

)
· E [π∗(~x)] +

N∑

n=1

λ
n
· π∗(~xn), (7.26)

applying items 1, 2 and 4. Regarding the kriging error variance, item 7 is also directly
obtained by applying to property 4.2.4 items 3 and 4. �

Proposition 7.1 (Probability vector predictor) The final predictor of the proba-
bility vector is

p∗(~x0) = C
((

a(D − 1)

1 − a

)ξ1

,

(
a(D − 1)

1 − a

)ξ2

, . . . ,

(
a(D − 1)

1 − a

)ξD

)
, (7.27)

with

ξk =
D−1∑

i=1

π∗
iϕik,

where π∗
i is the predicted value for i-th coordinate using the canonical generalized indi-

cator transform. A vectorial expression for ξk is also

ξ = ϕt ·
(
λ

(0)
· ϕ · p +

D∑

k=1

λ
(k)

· ϕ · jk

)
, (7.28)

with λ
(k)

the sum of all kriging weights attached to the locations where we observed

the k-th category, jk the classical disjunctive indicator function result of observing this
k-th category, p the mean probability (extracted e.g.from the sills of the variograms in
a structural analysis), and λ

0
= I −∑D

k=1 λ(k)
.

Proof: Replacing the definition of the basis (6.8) in the final predictor (7.13), one
obtains

p∗(~x0) =
⊕D

i=1
α · π∗

i (~x0)⊙C (expϕi1, expϕi2, . . . , expϕiD) ,
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being π∗
i (~x0) the predictor obtained with the canonical indicator transformation. Then

the k-th element is (up to the closure) equal to

p∗k(~x0) =
D∏

i=1

(expϕik)
α·π∗

i (~x0) = (expα)
∑D

i=1
ϕik·π∗

i (~x0) ,

which yields exactly the desired expressions by realizing that expα = a(D−1)
1−a

.
To proof the vectorial expression (7.28), we shall recall that at every location ~xn

where the k-th category was observed, the data used is exactly the same, offered by
equation (7.15). Then, representing by λ

(k)
the sum of all kriging weights attached to

these locations, and given the linearity of the kriging predictor (7.26), we immediately
therefrom derive

ϕ · ξ = λ
(0)

· ϕ · p +
D∑

k=1

λ
(k)

· ϕ · jk,

by simply taking into account equation (7.16), regarding the coordinates of the mean of
the RF, and equation (7.15) about the coordinates of the generalized indicator function
at those places where the k-th category was observed. The ”inversion” of the ϕ function

is achieved using its quasi-orthonormality properties of equation (6.7), which yields

ξ′ = ϕt ·
(
λ

(0)
· ϕ · p +

D∑

k=1

λ
(k)

· ϕ · jk

)
= ϕt ·ϕ ·ξ =

(
I − 1

D
1

)
·ξ = ξ− 1

D
1 ·ξ = ξ−C

where C = 1
D

1 · ξ is a constant vector, and we can write ξ = ξ′ + C. Then, taking
exponentials and closing the result we would obtain

C (exp (α · ξj)) = C
(
exp (α · ξ′j)

)
⊕C (exp (α · C), exp (α · C), . . . , exp (α · C)) ,

which shows us that C evolves into a perturbation by the neutral element of the Simplex
due to the effect of the closure. Consequently, ξ ≡ ξ′, proving equation (7.28). �

Note that expression (7.27) results always in a positive set of D values which sum
up to one (thanks to the closure operator), thus automatically satisfying the conditions
of a multinomial vector. This implies that kriging in the Simplex applied to generalized
indicator transformations does never present order problems as indicator kriging did.

Two-categories case

In the case of two categories, or a single cut-off, the kriging predictor of the coordinate
(7.18) by using covariance function (7.25) and simple kriging predictor,

π∗(~x0) =
N∑

n=1

λnπ
∗(~xn) +

(
1 −

N∑

n=1

λn

)
E [π∗] , (7.29)
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is equivalent to classical kriging of the disjunctive indicator j1(~x) (7.2). By replacing
expressions (7.19-7.21) on (7.29), we get

αϕ11(2j
∗
1(~x0) − 1) =

N∑

n=1

λnαϕ11(2j
∗
1(~xn) − 1) +

(
1 −

N∑

n=1

λn

)
E [αϕ11(2j

∗
1(~x) − 1)] ,

which is reduced to simple kriging of j1(~x).
Furthermore, (7.29) is reduced to

π∗(~x0) =
α√
2

(λ1 − λ2 + (1 − λ1 − λ2)(p1 − p2)) =
α√
2

(p1(1 − 2λ2) − p2(1 − 2λ1))

where λ1 = λ(1) represents the sum of the kriging weights for all those locations where
category A1 was observed, and so π∗(~xn) = α√

2
. Equivalently λ2 = λ(2) is the sum of

all those location where A2 was observed, and π∗(~xn) = − α√
2
. Applying this to the

basis used, with some manipulations parallel to those in expression (7.21), we obtain
as final predictor of the probability vector P(~x0)

p∗(~x0) = C
((

a

1 − a

)p1(1−2λ2)

,

(
a

1 − a

)p2(1−2λ1)
)

= C
((

a

1 − a

)p1

,

(
a

1 − a

)p2
)
⊕C
((

a

1 − a

)−2p1λ2

,

(
a

1 − a

)−2p1λ2

)
=

= EA [p∗]⊕C
((

a

1 − a

)2λ1p2

,

(
a

1 − a

)2λ2p1

)
,

which in terms of the operations described in section 7.2.2 correspond to the bayesian
updating of the mean probability vector by the evidence in favor of one or another
category.

We will consider now three simple possibilities.

1. When we try prediction at an actually-sampled location, it is known that simple
kriging prediction gives a single weight λ = 1 to that location and zero to all
others, since it is an exact interpolator. Assume for instance that we observed
A1, thus λ1 = 1 and λ2 = 0. Then the final prediction will be

p̃(~x0) = C
((

a

1 − a

)p1

,

(
a

1 − a

)−p2

)
= C

(
a

1 − a
, 1

)
= C (a, 1 − a) ,

which is the result of (7.19), and consequently this kriging method is also an
exact interpolator.

2. If we try to predict a location out of the range of the covariance, which implies
that all weights will be equal to zero, λ1 = λ2 = 0, then the prediction reduces
to the mean.
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Figure 7.1: Predicted (empty squares) and true (filled circles) conditional probability
as a function of the true probability of success in the datum location, for several
correlation coefficients, for a value of a = 0.95.
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Figure 7.2: Predicted (black lines) and true conditional probability (color line), as a
function of the true probability of success in the datum location, for several values of the
a parameter. Predicted lines correspond to values of a equal to 0.7, 0.8, 0.9, 0.95, 0.99
and 1.0. The left-side plot (cyan line) shows the case λ = 0, whereas the right-side plot
explains the cases with correlation coefficient λ = 0.66 (blue) and λ = −0.66 (yellow).

3. In the situation of prediction with a single datum placed at ~x1, the simple kriging
weight used to predict an unsampled location ~x0 from the information in this
single sample is the correlation coefficient between them, which ranges between
the two previously-described cases: λ = 1 for a perfect correlation, and λ = 0
for a null correlation. Finally, a moderate degree of negative correlation can also
be modelled, which amounts to slightly weighting up the probability of the non-
observed category. Perfect negative correlation is only compatible with p1 = p2 =
0.5: figure 7.1 shows the relation between the true conditional probability and
the estimated probability obtained with logistic indicator kriging with a value
a = 0.95 (α = ln a

1−a
≈ 2.8), for several values of the correlation coefficient. This

figure shows also which marginal probabilities and correlation coefficients are
compatible with a valid two-way contingency table, i.e.with all cells containing
a positive probability: the non-allowed combinations are simply not plotted.
Figure 7.2 represents some selected predicted probabilities, compared with the
true conditional probabilities, for several values of α = ln a

1−a
. It can be seen that

the final predicted distribution of kriging in the Simplex is smoother than the true
distribution, in the sense that predictions tend to a when the true conditional
probability is above 0.5, and to 1−a when it is below. Note in figure 7.2 that the
case a = 1 yields a degenerate estimator, with events at the predicted location
either absolutely sure or impossible.
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Bayesian interpretation of the generalized indicator scaling

The last considerations regarding the single datum problem, as well as the definition
itself of the generalized indicator function (7.14), show us that essentially, α is a sub-
jective assessment of the log-odds of the observed category against the unobserved ones.
Classical indicator kriging places an infinite odd to this relationship, whereas coordi-
nate indicator kriging leaves it open to the analyst. This value can be fixed previously
to kriging, either as a guess or following one of the criteria detailed in this chapter
addendum (section 7.7). In this case, kriging will offer a way to combine these odds
through a series of weights which minimize an Aitchison error between the prediction
and the true probability vector.

But we can also consider leaving α free for all the kriging procedure, since the
kriging results do not depend on the value of this parameter, given the proportionality
property 7.5. Then, assuming that the kriging results have no error, proposition 7.1
and particularly equation (7.28), provides us with D quantities, the vector ξ, that may
be reasonably interpreted as the equivalent number of relative observed samples in each
category: these values always sum up to zero, thus some of them must be negative;
then, if we select the minimum of them and add its opposite to all the ξk values, we
will obtain a set of D positive values (and one of them equal to zero), which we will
represent by ξ′k. In this situation, we can apply the bayesian framework of section 7.7
and update the chosen prior f 0

P
(p) by the derived likelihood to obtain a posterior

fP(p) ∝ f 0
P
(p)

D∏

k=1

p
ξ′
k

k .

Assuming the prior distribution f 0
P
(p) to be of the Dirichlet type, with parameters

b = (b1, b2, . . . , bD), then the posterior distribution is also of the same type with pa-
rameters b+ ξ′. Again, we will have to choose a value from this distribution by taking
into account a loss criterion. So, the decision on the value of α is not avoided, but only
delayed to this moment.

Note in passing that the global equivalent sample size ξ′T = ξ′1 + ξ′2 + · · · + ξ′D has
no sense, since it is a function of the minimum. Instead, we can consider the relative
number of observations in the most-observed category, as the length of the range of ξ.
In particular, at a sampled location, the range is exactly one. This implies that in this
model, a sampled location does not receive any information from the samples around
it, as was shown in the first simple case of page 152. This is an effect of the exact-
interpolator character of kriging, which in this case we regard as a limitation: it would
be better to have a way to accumulate concomitant information of nearby samples,
e.g.the probability of obtaining result A1 at a sampled location where we observed A1

should be greater (the event, surer) if this location is surrounded by many sampled
locations where the same A1 was also observed.
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7.4 A Bayesian method

Following the ideas of bayesian methods, like those applied by Diggle et al. [1998] to
binomial counts (section 3.4.2) or Tjelmeland and Lund [2003] to compositional data,
we may want to assume a global a priori distribution for the whole compositional RF
P(~x), and update it by all the observations. In contrast, the model presented in section
7.3 (and further justified in this chapter addendum) assumed an individual prior for
each sampled location, and updated independently each one of them by the observation
at that location.

Haas and Formery [2002] propose a similar model, applied to simulation of pro-
portions of facies, where at each location a Dirichlet distribution is assumed as the
marginal model, and the joint model is implicitly constructed by specifying a valid set
of auto- and cross-covariance models. Their model is however not used for estimation,
but as a simulation tool. To our knowledge, there is no direct and easy definition of a
Dirichlet N -variant model, which would in fact be a (D− 1)×N -variant distribution.

Instead of using a Dirichlet distribution, with its strong independence structure and
the problems to build a joint model for all locations of interest, we propose to use a
joint N -variate normal model in the D-part Simplex. Let pN denote a block vector of
N compositions pn, n = 1, 2, . . . , N , where each one has D components. Assume this
vector to be jointly normally distributed in the D-part Simplex (definition 2.26), with
a density like

log f 0(pN |θN , φ
N

) =
N∑

n=1

θt
n · πn +

N∑

n=1

N∑

m=1

πt
n · φ

nm
· πm,

where θN = Σ−1

N
· µ

N
, being µ

N
= (µ

n
), where each µ

n
is the vector of expectations of

πn = (πi)n =
(
log pi

pD

)

n
, the vector of (D−1) alr transformations (6.3) of the composi-

tion p. Also, with Σ
N

the block matrix of cross-covariances (σij)nm = Cov [(πi)n, (πj)m]

already used in the proof of property 4.7, we may express by φ
N

= −Σ−1

N
/2, where

matrix φ
nm

= (φij)nm represents the interaction between the components of πn = (πi)n

and those of πm = (πj)m. In geostatistical terms, n,m are called locations, and i, j
variables, or coordinates in the approach of this Thesis. If we denote by πN = (πn) the
block vector of these coordinates, then we can write the density also as

log f 0(pN |θN , φ
N

) = θt
N · πN + πt

N · φ
N
· πN , (7.30)

Before considering the next step, one has to obtain or fix the auto- and cross-covariances
of this prior distribution. In most of the situations, this must be estimated, for instance
using the considerations of section 7.3.2. However, a much more rigorous approach
would be to follow Tjelmeland and Lund [2003] and apply a hierarchical bayesian
approach, parametrizing the covariance structure with prior distributions for the range
and the covariance at the origin. This will be left for further studies.
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We encode the observations in J = (Jin) = (I(zn = Ai)), a vector with (D − 1)N
elements, where the first D − 1 elements are a set of zeroes and ones (bits) indicating
which category was observed at location n = 1, the second block of D−1 bits indicates
which was observed at n = 2, and so on. Note that at most, only one of these bits may
be 1 in each block, and even all can be zero if we observed category AD or if we had no
observation there. Moreover, M represents a vector of N elements, where Mn shows
how many observations we obtained at the n-th location (so, usually at most one).

Proposition 7.2 (Likelihood of the joint sample) The likelihood of the sample as-
suming an independent multinomial model at each location is the cell of the N -way
contingency table defined by crossing all the observed categories at each location,

L(pN |J,M) = pJ,M =
N∏

n=1

p
Mn−

∑D−1

j=1
Jjn

Dn

D−1∏

i=1

pJin

in .

Proof: Note that this expression is simply the product of those marginal pin observed
at location n, since when Jin = 0 then pin disappears from the expression, and if we
observed category D at location n, then Mn = 1, but Jjn = 0, for j = 1, 2, . . . , D − 1,
and thus we keep only pDn. Given that the realizations at each location are consid-
ered independent, the joint probability is simply the product of the observed marginal
probabilities. �

Proposition 7.3 (Posterior distribution) With the introduced notation and prior
(7.30), the posterior is

f(pN |θN , φ
N
, J,M) ∝ exp

(
(θN + J)t · πN + πt

N · φ
N
· πN +M t · log p

D

)
, (7.31)

where log p
D

is the vector of logarithms of the probabilities of the D-th category at all
locations.

Proof: First we rearrange the likelihood,

L(pN |J,M) =
N∏

n=1

pMn

Dn

p
∑D−1

j=1
Jjn

Dn

D−1∏

i=1

pJin

in =
N∏

n=1

pMn

Dn

D−1∏

i=1

(
pin

pDn

)Jin

,

and take logarithms of it

logL(pN |J,M) =
N∑

n=1

Mn log pDn +
D−1∑

i=1

Jin log
pin

pDn

= M t · log p
D

+ J t · πN .

Then, the logarithms of the posterior is, due to Bayes Theorem

log f(pN |θN , φ
N
, J,M) = κ+ log f 0(pN |θN , φ

N
) + logL(pN |J,M),
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which directly yields the desired result, given that κ only normalizes the density to
sum up to one. �

Note that the posterior density follows an N -block Aitchison’s A distribution (def-
inition 2.28). Once the posterior distribution has been obtained, we look for a p∗

N ,
representative of the whole density, by choosing any of the loss criteria explained in
section 7.7. We will consider here the logistic mean and the maximum.

The logistic mean is not available through any analytical expression, and one must
rely on Monte Carlo estimation methods. The process consists on:

1. the simulation of a large sample of size K from the posterior Aitchison’s A
distribution; due to property 2.6 about the decomposition of A distributions as
products of a normal and Dirichlet distributions, simulations can be efficiently
generated by drawing samples from the prior normal distribution, and applying
an acceptance-rejection technique [Lantuéjoul, 2002] to them using the closed
likelihood, which is of Dirichlet type;

2. by direct averaging of the coordinates of the simulated set we will obtain an
estimate of

π∗
N =

1

K

K∑

k=1

π
(k)
N ;

alternatively, instead of rejecting-accepting each sample π(k) as a function of its
Dirichlet density, this very density may be taken as the weight to use in a weighted
arithmetic mean of the simulated values;

3. this will yield an estimate of p∗
N by application of the inverse alr transformation

(6.4) to each block of p∗
n.

Note that, although the simulation should be done on the whole domain (SD)N , the av-
eraging and back-transformation steps may be done by blocks. Techniques for simulat-
ing large joint normal distributions may be borrowed from geostatistics, in particular,
sequential Gaussian simulation.

Property 7.6 (Maximum of the posterior distribution) The mode of the poste-
rior distribution (7.31) is attained at pN solving the non-linear system of equations

0 =
d log f(p)

dπ
= θN + J + 2φ

N
· πN + ∆ ·M, (7.32)

with ∆ a (D − 1)N × N -identity-block matrix, where each block in the diagonal is a

(D−1)-element column vector containing the derivative d log pD

dπ
= ((∆i)nm), and outside

the diagonal containing identically-zero column vectors,

(∆i)nm =
d log(pD)m

d(πi)n

=

{
0, n 6= m
(p−D)n, n = m

,

denoting by (p−D)n the closed composition at location n, and without the last element.
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System (7.32) can be simplified if we assume ∆ · M ≈ 0. Following the re-
parametrization in terms of means and variances of the original normal distribution on
the Simplex, we attain a maximum density at

π∗ = µ+ Σ · J,
or in other words, the final (rather rawly simplified) maximum posterior estimate is the
prior mean µ displaced a unit following the variance-covariance vector ΣJi

associated
to each of the observed categories. Recall that the elements of J sum up at most to N .
Proof: Taking derivatives of the log-density with respect to π and equating to zero we
obtain directly expression (7.32), following the same steps as in property 2.7 regarding
the mode of an A distribution. Note that system of equations (7.32) is a non-linear
one, and can be seen as the concatenation of N systems like those appearing in this
property 2.7, one for each location, with interactions between locations exclusively due
to φ, a function of the prior covariance model.

Assuming ∆ ·M = 0, we get

0 = θN + J + 2φ
N
· π∗

N

−2φ
N
· π∗

N = θN + J

Σ−1

N
· π∗

N = Σ−1 · µ
N

+ J

π∗
N = Σ

N
· Σ−1

N
· µ

N
+ Σ

N
· J

which finally yields the simplified version. �

In the simplified interpretation, observing a category (e.g.Ai) which log-ratio highly
correlates with the log-ratio of another one (a high Corr [log pi/pD, log pj/pD]) would
imply a collateral increase on the certainty of the second (the j-th category); conversely,
observing one of two categories with negatively-correlated log-ratios would increase the
certainty of the observed one and decrease the certainty of the other; finally, observing
one of the categories involved in two non-correlated log-ratios would not affect the
other one. In the spatial context, we would have as a particular result that beyond
the range (all covariances dropped to zero) any estimation would provide simply the
unchanged prior mean. Although this simplified version allows us to interpret what is
occurring in the system, it must be taken with caution. On the side of the flaws, note
that if we observe category AD, this information is lost in the simplification and we do
not modify the maximum posterior estimate accordingly.

7.5 Case study: estimation of high conductivity

hazard

7.5.1 Kriging in the Simplex for generalized indicators

Let us illustrate the techniques here presented with the conductivity data set introduced
in section 1.4.1 and already treated in section 3.6. Recall that we considered the
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measurements to be the addition of a periodic drift and a real RF. The drift was
estimated with equation (3.36), and the residuals for the first 10 days of July 2003 are
represented in the upper part of figure 7.3. Deciles were estimated using the whole
residuals for July 2003 conductivity series, and they are also represented in the same
figure. These deciles are summarized in table 7.1.

Table 7.1: Estimated deciles for the residual conductivity of July 2003, after substrac-
tion of the periodic drift (done in section 3.6).

i probability decile
1 10% -191.49
2 20% -108.03
3 30% -55.87
4 40% -2.16
5 50% 24.51
6 60% 44.41
7 70% 67.06
8 80% 100.93
9 90% 143.67

Using these deciles, a set of 10 disjunctive indicators was defined, by application
of equation (7.2). We considered a preliminary value α = 1 to use in the generalized
indicator function (7.15), and the matrix ϕ of definition of an ilr basis (eq. 6.5) was

taken as

ϕ =





0 0 0 0 1√
2

−1√
2

0 0 0 0

0 0 0 1√
2

0 0 −1√
2

0 0 0

0 0 1√
2

0 0 0 0 −1√
2

0 0

0 1√
2

0 0 0 0 0 0 −1√
2

0
1√
2

0 0 0 0 0 0 0 0 −1√
2

0 0 0 1
2

−1
2

−1
2

1
2

0 0 0
0 0 2√

12
−1√
12

−1√
12

−1√
12

−1√
12

2√
12

0 0

0 3√
24

−1√
24

−1√
24

−1√
24

−1√
24

−1√
24

−1√
24

3√
24

0
4√
40

−1√
40

−1√
40

−1√
40

−1√
40

−1√
40

−1√
40

−1√
40

−1√
40

4√
40





,

Each row of this matrix defines an element of the basis of the Simplex used in this
case, obtained by taking closed exponentials. Note that the first 5 vectors balance the
left and right categories at each side of the median, and the last four vectors balance
each one of these groups from the center to the tails of the distribution. This matrix is
expected to particularly describe the symmetry of the distribution of the conductivity
residuals, and the importance of the tail against the mode. It was chosen to minimize
the impact of a bad estimation in any category, since each has no influence on at least
4 vectors.
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Figure 7.3: In the upper part, residual conductivity data set of the first 10 days of
July 2003, with the estimated deciles. In the lower part, estimated distribution at
each hour, discretized according to the deciles of the upper part. In the middle part,
equivalent relative number of observations of the most favored category against the
least favored one in the predicted locations.
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Figure 7.4: Matrix of generalized indicator auto- and cross-variogram plots. Note the
symmetry of the figure, since γij(h) = γji(h).
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Table 7.2: Parameters for the models defining each auto-covariance function of the
coordinates of the generalized indicator function. Short and long ranges are described
through spherical models, whereas the hole effect is taken as a non-dampened cosine.

short range long range hole effect
variable nugget sill range sill range sill period
π1 0.02 0.070 0.25 0.02 1.5
π2 0.07 0.023 0.23 0.011 2.29
π3 0.05 0.037 0.25 0.035 25.98
π4 0.03 0.028 0.09 0.036 2.017
π5 0.070 0.22 0.030 4.125
π6 0.02 0.070 0.25 0.02 1.4
π7 0.05 0.050 0.50
π8 0.02 0.068 0.21 0.004 1.170
π9 0.02 0.031 0.12 0.051 1.848
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Figure 7.5: Generalized indicator variogram plots, with fitted models.
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The resulting 9 coordinates of the generalized indicator function were treated through
function variogram to compute auto- and cross-variograms, shown in figure 7.4. The
low impact expected for the cross-variograms [Goovaerts, 1994] and the fact that mod-
elling 36 functions will obviously introduce much more arbitrariness than modelling
only 9 (the direct variograms) suggests to apply simple kriging to each coordinate in-
dependently. Thus, we modelled only these direct variograms, described in table 7.2
and plotted in figure 7.5.

Mean values for all these coordinates were taken as 0, given the fact that the original
categories are equally probable: using equation (7.16), it is easy to show that

0 = E [π] = α · ϕ · p = α · ϕ ·
(

1

10
,

1

10
,

1

10
, . . . ,

1

10
,

)
.

Simple kriging was conducted using function predict.gstat. It yielded results plotted
in figure 7.6, jointly with the generalized-indicator-transformed data set. Applying the
transposed ilr matrix (introduced in section 6.5) to these kriged values we obtain the
vector of exponents ξ of proposition 7.1. For each predicted location, the lengths of
their ranges inform us of the relative number of observations in favor of the preferred
category in front of the least favored one. This might be interpreted as an equivalent
relative sample size, and is plotted in the middle part of figure 7.3. Multiplying them
by a suitable value, e.g.α = 3.04, and taking closed exponentials we obtain the final
predicted distributions at each location, plotted in the lower part of figure 7.3. Note
that this value of α = 3.04 corresponds to a value of a = 0.7 in equation (7.14), which
implies that after observing a given category, we will consider it to have a probability of
70% of occurrence, and the remaining 9 categories will be equally probable with a total
probability of 30%. Figure 7.7 shows the final predictions obtained with other suitable
α values, and the real influence of this α value: it finally conditions the certainty in
the obtained predictions.

A closer look at the plots in figure 7.3 shows us some interesting properties of
the logistic generalized indicator approach. The equivalent sample size, for instance,
gives us an assessment of the reliability of the prediction itself: those areas were the
residual conductivity falls constantly in the same category present higher equivalent
sample sizes, which might be even slightly above one (see e.g.the green area around 1.5
days), whereas this sample size drops to near zero either at distances from the samples
beyond the range of the variograms (e.g.the second half of the 10th day), or when the
residual conductivity suffers a sudden change (e.g.the end of the 5th day). Note that
the equivalent sample size rarely rises above one.

This method has been applied to the whole residual conductivity series of July 2002
and July 2003, using the same indicator levels of table 7.1, their covariance models
of table 7.2 and figure 7.5, and a mean value of zero for all RFs. These residual
conductivity series and the results of the method (using α = 3.04) are plotted in figure
7.8. Some of these estimated distributions for the residual conductivity have been
represented in figure 7.9. Note that in most of the distributions, a category is preferred
above the others, but the others are more or less equally probable. The exceptions are:
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Figure 7.6: Generalized indicator values (dots) and simple kriging predictions (line).
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Figure 7.7: Final distribution predictions obtained (from top to bottom) with values
of α equal to 1, 3.04, 5.14 and 13.71, corresponding to a values of 23%, 70%, 95% and
99.999%.
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Figure 7.8: In the upper part, residual conductivity data set of the whole months
of July 2002 (left) and 2003 (right), with the estimated deciles. Recall that these
deciles were obtained using only the July 2003 series. In the lower part, estimated
discrete distribution at each hour. In the middle part, equivalent relative number of
observations of the most favored category against the least favored one in the predicted
locations. Vertical color lines in the upper and middle plots mark some time moments,
which estimated probability distribution is shown in figure 7.9; note that in the middle
plots, the symbols are placed in the value of the equivalent sample size of each of these
estimated distributions.
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Figure 7.9: Estimated distributions of some selected prediction moments (see figure 7.8
for the corresponding symbols), for the residual conductivity (left) and the re-trended
one (right), using the estimated regression trend of table 3.2. In the second plot, a
vertical dotted line shows the reference value of 1000µS/cm.
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Figure 7.10: Estimated hazard of exceeding 1000µS/cm of conductivity, obtained using
a linear spline to interpolate the discrete version of the probability distribution provided
by figure 7.8.
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a curve marked with ⊕ symbols (electric blue), which is almost 1/10 for all categories
(the mean of the vector RF), and two with symbols × (red) and ∗ (green-blue), showing
two equally favored categories.

Finally, these re-trended distributions were computed at each predicted location,
and we obtained from them the hazard of being above 1000 µS/cm, using the same
linear spline represented in figure 7.9 (right). This was done only for July 2002, because
conductivity was always above this threshold during July 2003. This hazard is plotted
in figure 7.10.

7.5.2 Kriging in the Simplex for a single indicator

Given that the interest lies on a single category of the original (non-detrended) conduc-
tivity series, it seems also reasonable to use the presented methodology with a single
threshold of 1000µS/cm, only for July 2002, although this is not a stationary series.
The generalized indicator obtained using expression (7.19) is in this case a simple

p∗2 =

{
0.95, j2(~x) = 1
0.05, j2(~x) = 0

,

where p2 represents the estimated probability of being above a threshold at an observed
location, and j2 = 1 when the observation was actually above the threshold, or zero
otherwise. The coordinate of such a generalized indicator becomes

π∗ = log
0.95

0.05

{
+ 1√

2
, j2(~x) = 1

− 1√
2
, j2(~x) = 0

}
= α

1√
2

{
+1, j2(~x) = 1
−1, j2(~x) = 0

, (7.33)

with α = 2.94 = log 0.95
0.05

, the log-odd of the probabilities p2 and p1, of success against
failure, which we subjectively assign to an actually-observed success. This value of 0.95
was suggested by figure 7.2.

Considering α = 1, we obtained the so-called canonical generalized indicator, which
was used in the actual computations. An experimental variogram was computed with
function variogram, and a model was fitted to it. Both are plotted in figure 7.11, and
the model is described by

γ(h) = 0.02 + 0.365 · Exp(a = 2.5) + 0.035 · Hol(at = 1), (7.34)

with h, a and at measured in days.
The threshold was exceeded 335 times of 725 observation, which would yield a direct

estimation of the probability of exceedance of 0.46. Given that the data set is not an
independent one and conventional statistics may be biased, it seemed reasonable to
parsimoniously assume a probability of 0.5 for both events of being below and above
the threshold. Then, equation (7.20) yielded a mean value of zero, which was used
in simple kriging. Using function predict.gstat, a prediction for π (the coordinate
of the generalized indicator function) was computed, one at each full hour during the
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Figure 7.11: Experimental variogram (dots) and fitted model (line) of the coordi-
nate of the generalized indicator function of conductivity above/below the threshold
1000µS/cm. Note that a better fit would be obtained if the hole effect was dampened,
something not allowed by the software used.

month of July 2002. Results were then scaled by the value α = 2.94 and multiplied
by the matrix of coordinates ϕ. A prediction for the pair of probabilities (p1, p2) was

obtained by
(p1, p2)

∗ = C (exp(αϕ11π
∗), exp(αϕ12π

∗)) . (7.35)

Results are plotted in the lower part of figure 7.12. Note that the conductivity data set
is plotted in the upper part of this figure, whereas the equivalent number of observations
in favor of the preferred category is plotted in the middle. This equivalent number may
be computed in this simple case as

ξ′ = |π∗ · (ϕ11 − ϕ12)| =
∣∣∣
√

2π∗
∣∣∣ .

The final prediction of these probabilities of being below or above the threshold (figure
7.12) should be compared with the estimation of the hazard of exceeding the threshold
of 1000 µS/cm of conductivity computed with an estimated discrete version of the
probability distribution (figure 7.10), and with a joint Gaussian assumption (figure
3.12).
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Figure 7.12: In the upper part, conductivity series of July 2002, with a single cutoff at
1000 µS/cm. In the middle, equivalent number of observations in favor of the preferred
category; note that this drops to almost zero in the regions were observations fluctuate
around the threshold. In the lower part, final predicted (discrete binomial) distribution,
where the probabilities of being above and below the threshold are marked respectively
in red and green.
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Figure 7.13: In the lower plot, probability estimates of being above (red) and below
(green) the threshold of 1000 µS/cm for the predicted nodes, one each hour. Note the
slight periodicity of high probabilities of exceedance (red spikes) of approximately 24
hours in areas which are mainly below it (green areas). In the upper plot, estimated
hazard of being above the threshold, for both the observed (black dots) and the pre-
dicted nodes (blue line). Note the log-scale of this upper plot, and the three horizontal
reference lines.)
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7.5.3 Bayesian estimation in the Simplex for a single indicator

With the structural analysis of the last example (the variogram of figure 7.11 and a
mean value of zero), we may assume that the probability vector p(t) = (p1(t), p2(t))
follows a Gaussian model in the two-part Simplex, which means that π = 1√

2
log p2

p1
fol-

lows a joint normal model with zero mean, and a covariance described by the variogram
of equation (7.34). We assume that the vector π = (π(tn)), where n = 1, 2, . . . No +Np,
with No = 725 (the number of observed locations) and Np = 745 (the number of pre-
dicted locations), a priori follows a multivariate normal distribution with mean value
a vector of zeroes, and covariance matrix Σ defined by the variogram (7.34).

Given an observation of the true conductivity Z(tn) at tn, n = 1, 2, . . . No, we may
easily define the indicator of being above the threshold

j2(tn) =

{
1, Z(tn) ≥ 1000µS/cm
0, Z(tn) < 1000µS/cm

,

which forms a vector J = (j2(tn)) of observations of the indicator RF, with a probability
parameter a priori distributed according to the normal model of the last paragraph.
Using then proposition 7.3 we get an expression for the posterior distribution of this
indicator RF. Recall that this distribution is of Aitchison type (definition 2.28).

From this distribution, we may choose as representative value (our final estimate)
either its maximum or its mean. The mean value may be estimated by a Monte
Carlo procedure, e.g.that already outlined in page 158. Using the sequential Gaussian
simulation available in function predict.gstat, we simulated a large sample (with
10000 samples) of the prior distribution. For a given simulation, the Dirichlet density
(properly a beta distribution) of the obtained value was computed at each observed
node, using as parameters the observations j2 and j1 at that node. The product of all
these densities defines the joint likelihood of an observation like that simulation: this
likelihood gives us the weight of such a particular simulation. The weighted arithmetic
average of all of the simulations of π is our mean estimate. The final probabilities
of being above and below the threshold will be estimated by application of equation
(7.35).

Results are plotted in figure 7.13, where we have represented the predicted nodes in
two different ways. From one side, a log-hazard plot of being above the threshold shows
the final estimated hazard for both the observed and the predicted locations. This plot
should be compared with the left one in figure 3.12 (obtained under assumption of
joint Gaussianity of the conductivity measures) and with figure 7.10 (obtained after
estimating the probability function by approximating it through its deciles). From the
other side, a barplot shows the final probability of being above and below the threshold
only for the predicted nodes, since they are regularly spaced. This second plot should
be compared with figure 7.12.

These comparisons show us that kriging in the Simplex applied to a single indica-
tor mainly captures information on the observation of the indicators themselves, being
a kriging technique, and there is no accumulation of information in the oversampled
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areas. Contrarily, the bayesian estimation on the Simplex of a single indicator yields
more extreme probabilities in highly sampled areas, and it includes more informa-
tion (e.g.24h-periodicity) coming from the variogram, which forms the a priori model
assumption.

7.6 Remarks

In this final chapter we applied kriging in the Simplex to estimate finite discrete dis-
tributions, since they could be viewed as compositional vectors. We took profit of
some old and (relatively) new comparisons between the structure of the Simplex and
classical operations for probabilities, like bayesian updating or information measures,
and kriging was showed to be applicable in a straightforward fashion. It kept all its
properties of unbiasedness, minimal variance and conditional expectation.

However, we pretended to offer an alternative to indicator kriging, which is usually
applied to estimate a finite discrete version of the cumulative probability function of
a RF at an unsampled location. We devised a two-step stochastic model, where we
observe realizations of independent multinomial variables which proportion parameter
form a compositional RF. Adapting kriging in the Simplex to this formalism required
the introduction of design matrices (or a bayesian approach developed in the adden-
dum). Finally we obtained a method which combines kriging and bayesian updating, so
that a prior distribution for the unknown probability vector was updated by a multino-
mial likelihood where the equivalent relative number of observation was obtained from
kriging. The method always yields admissible probabilities, with an account of the
uncertainty attached to them, due to the Bayesian interpretation.

A second method was derived, which can be viewed as a bayesian refinement: this
essentially is the joint updating of a general prior by the whole set of observations. The
prior may be derived from the same hypothesis sustaining the first method. Results do
not differ significantly between them, although the bayesian method seems to better
capture information coming from the structural analysis.

The uncertainty of both methods has shown to be generally high, due to the small
sample size derived from the predictions. Uncertainty is complementary of information:
when only one sample at each location is available, information is sparse, and we can
only increase it by assuming models: the bayesian method tried so, by assuming a model
for the log-ratios of probabilities, yet keeping the model of the original variable general
enough. Not too much should be expected of model-free techniques in geostatistical
applications: they are highly uncertain by nature.
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7.7 Addendum: Bayesian estimation of probability

vectors

Here we present an alternative procedure to the ad-hoc generalized indicator approach
used from section 7.3 on. This approach is based on Bayesian estimation (section 2.4.2),
given that this technique allows us to complement the scarcity of the sample, a single
realization, with prior information on the plausible values of P(~x). In this section, we
do not use the spatial dependence in any sense.

Binomial estimation

In the most simple situation, we are interested in determining the probability that
Z(~xn) is above or below a single cutoff z1, or in other words, in the probability of success
(p = p(~xn)) of a binomial random variable given the observation of that binomial
variable exactly once: j(~xn). In a bayesian framework, one has to define a prior
distribution for this probability of success, f 0

P (p), update it by the likelihood of the
sample to obtain a posterior distribution

fP (p) ∝ f 0
P (p) · pj(~xn)(1 − p)1−j(~xn), (7.36)

and finally select from this posterior distribution an estimate of p∗ accordingly to a
previously specified loss criterion. There are then two decisions in the hands of the
analyst before an estimate can be obtained: the prior and the loss criterion to use.

Leonard and Hsu [1999, p. 134-146] suggest that scientists should never consider
that they have no prior information on a phenomenon. Even when nothing can be
really said, they can choose between a range of prior distributions, considered as non-
informative:

• a classical decision in the face of no information is assuming the parameter p to
have a prior uniform distribution in its range of variation, thus p ∼ U(0, 1);

• Jeffreys suggested to use a prior distribution of the beta family [Abramovitz
and Stegun, 1965] with parameters a1 = a2 = 1

2
, due to the fact that Fisher

information

F (a) = −E

[
∂2 log f(a)

∂a2

]
,

provided by this prior distribution is unaltered for most regular transformations
of p; also, Leonard and Hsu [1999] notice that the posterior (7.36) is quite appeal-
ing when j(~xn) is either zero or one, and they deem as excellent the frequency
properties of the confidence intervals computed with the posterior distributions;

• these two prior distributions are in fact special cases of the beta distribution
β(a1, a2), with parameters a1, a2 positive; another classical option is to take a
so-called vague prior, a beta with a1, a2 → 0; however, this vague prior may not
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be adequate for this case, because the posterior obtained with a single datum
(7.36) will not be a proper distribution;

• one can choose the parameter to be logistic-normally distributed with a real mean
and a positive variance, p ∼ LN (µ, σ); again, a vague prior could be obtained
by making σ → ∞, although the posterior obtained would be in this case also an
improper distribution

• finally, given this last option, the parameter can be also a priori distributed as a
normal on the 2-part Simplex p = (p, 1 − p) ∼ NS2(µ, σ), which implies that its
coordinate with respect to the Aitchison geometry (7.12) is normally distributed
π ∼ N (µ, σ) where

π = 〈p, e〉A =
1√
2

log
p1

p2

=
1√
2

log
p

1 − p
.

Note that these two last cases are equivalent, except for the factor 1√
2

and the

change of the Lebesgue measure [Mateu-Figueras et al., 2003].

When the prior distribution follows a beta model β(α1, α2), then the posterior
distribution (7.36) follows also a beta model β (α1 + j(~x), α2 + (1 − j(~x))). This good
analytic property is not satisfied by the logistic-normal or the normal in the Simplex
prior distributions, since their posteriors do not follow any normal distribution, which
call for numerical methods to handle them.

Proposition 7.4 The selection of a value of p∗ from this posterior depends on both
the chosen loss criterion and the measure used with p:

1. the maximum is chosen when the loss function is a Dirac delta,

2. the median minimizes the absolute value of the error;

3. the arithmetic mean minimizes the squared substraction (Euclidean) error, and
corresponds to the expectation of the posterior under a classical Lebesgue measure

4. the logistic mean minimizes the squared Aitchison error, and corresponds to the
expectation of the posterior under a logistic measure (2.3); given the general con-
text of this alternative to indicator kriging, this criterion should be the preferred
one.

The final estimator of p∗ as a function of the prior and the loss function is of the form

p∗ =

{
a, j(~x) = 1
1 − a, j(~x) = 0

;

where a is detailed in table 7.3.
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Proof: Except for the last one, the loss function criteria are standard, and proofs of
these propositions will not be included here. Regarding the logistic one, we look for
the value p∗ such that E [d2

A(p∗,P)] is minimal:

E
[
d2

A(p,P)
]

=

∫
d2

A(p,P)dF (P),

which is equivalent to the concept of metric variance around p introduced by Pawlowsky-
Glahn and Egozcue [2001], or to the trace of the variance matrix of P around p. Then,
these authors proof that the minimum is achieved by the metric center,

p∗ = EA [P] .

The values of table 7.3 are obtained directly using property 2.3 (mode and mean of
a Dirichlet-distributed variable under a classical real geometry), property 2.4 (mode
of a Dirichlet-distributed variable under a logistic geometry), or applying numerical
integration methods (to compute the median with a Jeffreys prior, and the logistic
mean). �

Table 7.3: Estimators p∗ for several loss criteria and prior distributions. The table
contains the estimator when j(~x) = 1; for j(~x) = 0, it is obtained taking 1 − p∗

uniform prior Jeffreys prior
maximum posterior (classical) 1 1
maximum posterior (logistic) 2/3 3/4

median 1/
√

2 0.836806
arithmetic mean 2/3 3/4

logistic mean ∼ 0.73 ∼ 0.88

Multinomial estimation

Following the same approach in the case of multinomial vectors, we are interested in
the probability that Z(~xn) takes each one of its possible outcomes {A1, A2, . . . , AD}.
Thus we want to estimate the components of a vector p(~xn) = (p1, p2, . . . , pD) from a
single observation, which may be encoded in the vector of disjunctive indicators j(~xn)
(7.2). Given a prior distribution of this vector, f 0

P
(p), the posterior distribution is

fP(p) ∝ f 0
P
(p) ·

D∏

i=1

p
ji(~xn)
i .

Possible choices for the prior distribution are again either

• the Dirichlet D(a1, a2, . . . aD), the multidimensional version of the beta distribu-
tion, including the case of uniformly-distributed values on the Simplex S

D when
ai = 1; in this case, the posterior distribution is from the same class D(ai+ji(~x));
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• the additive logistic normal ALN (µ,Σ)[Aitchison, 1982], or its counterpart nor-
mal on the D-part Simplex [Mateu-Figueras et al., 2003], which give an Aitchi-
son’s A-distributed posterior (definition 2.28), that can be handled only with
numerical methods.

The last step is selecting from this posterior distribution an estimate of p∗, following
the loss criteria already introduced. For a uniform prior distribution, for instance, the
resulting posterior distribution is D(1 + j1, 1 + j2, . . . 1 + jD)-distributed (by direct
application of property 2.3). The posterior moments have no closed expression from
the point of view of the geometry of the Simplex, which does not allow us to use the
logistic loss criterion from a practical point of view. Moreover, the median is undefined
in multidimensional problems, so the absolute value loss criterion is also useless. The
criterion of the maximum yields again the same prediction as indicator kriging in its
classical form (property 2.4). The remaining possibility is taking the arithmetic mean,
which yields an estimator

p∗
E = C(1 + j) → p∗i =

{
2

D+1
, ji(~x) = 1

1
D+1

, ji(~x) = 0
,

and, according to 2.4, coincides with the criterion of the maximum under an Aitchison
geometry of the Simplex.

Note that the multinomial likelihood assumed for Z(~x) as a categorical variable
yields the same estimated probability for all non-observed categories, independently of
any order or distance relationship between them. This is always the case, for all the
loss criteria and for any prior distribution which does not favor any category. In other
words, this Bayesian approach yields in the end a generalized indicator function (7.14)
with an a value dependent on the prior and the loss function.



Chapter 8

Conclusions

8.1 Discussion of case studies

8.1.1 Water pollution

Series characterization

From the Gualba series, we have studied five parameters: water conductivity, pH, am-
monium content, ammonia content, and water temperature, either directly or trans-
formed to pKa, the potential acidity constant governing the equilibrium between am-
monium and ammonia. For each of these parameters, a sample space was chosen, an
Euclidean space structure was built on them, and coordinates were taken with respect
to arbitrary bases of these spaces. This information is summarized in table 8.1.

Table 8.1: Summary of geometries considered for each parameter of interest in the
Gualba station.

chapter parameter variable space coordinate
3 conductivity C = (C) R+ ⊂ R C
3 water temperature T = (T ) R T
5 hydrogen ion Z = [H3O

+] R+ − log10 [H3O
+] = pH

5 ammonium Z =
[
NH+

4

]
R+ − log10

[
NH+

4

]
= pNH4

5 ammonia Z = [NH3] R+ − log10 [NH3] = pNH3

5 acidity constant Z = [Ka] R+ − log10 Ka = pKa

The coordinates were then analyzed by taking into account their link to solar radia-
tion, which is known to change periodically in time. Since direct information about this
solar radiation is not available, we took water temperature as a proxy for it, and ana-
lyzed its decomposition in periodic waves, using Fourier analysis. Its energy spectrum
(figure 3.6) gave some important waves, from which we highlight those with periods of
1, 2.5, 10 and 25 days, and 1 year. Regression techniques were then applied to compute
the amplitudes and phases of each of these waves for all the variables of interest, inde-
pendently for each month of July 2002 and July 2003. The coefficients can be found
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in table 3.2 (for conductivity) and in table 5.1 (for the ammonia system parameters).
We point out that, accordingly with these regression results, maximal pKa (minimal
water temperature) occurs before 1 a.m. (approximately 0.03 days after midnight),
pH is maximal between 2 and 3 p.m., ammonium reaches its minimum (maximum
pNH4) between midnight and 2:30 a.m., and conductivity is maximal between 2:30 and
4:30 p.m., depending on the year and the method of estimation. Such fluctuations are
clearly displayed in figures 3.5 and 5.3, portraying the data sets, and figures 3.11 and
5.7, containing the final predictions.

Residuals obtained from regression (jointly considering both July 2002 and 2003)
were regarded as RFs, characterized by a zero mean and covariance structures domi-
nated by hole effects (see figures 3.9 and 5.4-5.6). From these covariance functions, it
is interesting to note a ∼ 80% positive cross-correlation between pH and ammonium
(figure 5.4).

It is worth recalling that, in a strict sense, if the regression residuals are self-
correlated, classical regression is not applicable, and we should use instead kriging of
the mean; however, since we found the differences between both techniques to be small
in the case of conductivity (table 3.2), we consider for the rest of variables the simpler
regression as a good approximation to the theoretically-better kriging of the mean.

Hazard and water quality

The characterization of the series explained in the last section allowed us to obtain
an estimation of the mean and the variance of the values of all those variables at all
full hours, during the months of July 2002 and 2003. Explicitly assuming the random
functions to be Gaussian on their respective sample spaces (accordingly with table 8.1),
we used these values to compute the probability of exceeding each of the hazardous
thresholds shown in table 1.1 and defining water quality categories. The hazard of
conductivity above 1000 µS/cm is displayed in figure 3.12, whereas figure 5.8 shows
the hazard associated to pH, ammonia and ammonium. These two figures display a
very different picture. In the case of ammonia system, probability of exceeding each
threshold presents sharp clear-cut pulses from almost zero to almost one, indicating that
the thresholds are almost-daily exceeded. In contrast, the probability of conductivity
above 1000 µS/cm is more constantly below or above the threshold, and the only
periodicity to be seen has an approximate 2.5-day period. However, we regard this last
periodic picture as an artifact derived from the sampling strategy and the properties
of kriging variance, since this periodicity is not so strongly seen in conductivity series.

If we do not want to assume a Gaussian model for the random function, we have
also the option of using indicator techniques to directly estimate probabilities. We
tried to approximate the distribution of conductivity through a discretization of its
domain by deciles, and use it to compute the hazard of being above 1000 µS/cm, and
also to directly estimate the distribution of the auxiliary variable ”being above that
threshold” (or ”having a water quality index of 4 due to high conductivity”). Both sets
of variograms (those used in the decile case and that used in the single-threshold case)
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presented 1-day hole effects and relatively short-range structures. It is not surprising
then that the estimated probabilities of being above and below the threshold (see
figures 7.10, 7.12 and 7.13) present always 1-day fluctuations, which were not displayed
by the Gaussian-related technique of the first paragraph, dominated by the 2.5-period
explained there.

Using any of these techniques, it is evident that the probability of exceeding each
threshold varies along time, mainly with a daily basis. The presence of these strong
variations implies that a single measurement of any chemical parameter may be mean-
ingless. We have seen in the previous section that this effect should be particularly
born in mind with reactive pollutants, since it might be possible to reach highly toxic
moments passing unnoticed: e.g.we could measure a low ammonia concentration at
night, but the day after produce pollution conditions. Then online control stations
are far more important in these situations, since they allow us to continuously control
pollution parameters, but also to prematurely estimate the probability of hazardous
future situations.

8.1.2 Air pollution

The system {Fe,Pb,Hg} of moss sample data set obtained from the ukrainian carpathian
range was regarded as compositional, since its components are measures of the relative
amount of each one of these elements in the whole. Furthermore, knowledge of the
pollution processes dominant in the area suggested to interpret the relative amount of
Fe as a measure of the influence of corrosion pollution, the relative Pb amount as a
proxy for combustion, and Hg as a relative indicator of regional pollution by industrial
emissions. The combined amount of these three pollutants could be a measure of to-
tal pollution impact. However, we decided to disregard it, and focus only on relative
influences of these three processes, because this total amount can also be conceptually
related to the time of exposure, thus to the plant age, which is not known.

The sample space of the data is then a 3-part Simplex. We chose a basis which
contains two elements: the first balances Fe against the other two pollutants, and the
second balances Pb against Hg. The first coordinate is then an indicator of the influence
of big particles against gases, whereas the second coordinate indicates whether the
gases come mainly from combustion local sources or from regional industrial emissions.
Unsurprisingly, the variogram of the first coordinate has a clearly shorter range than
the variogram of the second one (figure 6.2).

Prediction of these two coordinates across the studied region (figures 6.3 and 6.4)
shows that regional pollution is most important on the northern face of the mountains
(comparing the pollution maps with figure 1.4), corrosion is predominant near the cities
of Drogóbich and Chernovtśı, whereas combustion dominates the southwestern basin
east of Uzhgorod.

Results of kriging could also be used in this case to compute probabilities of pre-
senting certain hazardous amounts of each of these metals, if these hazardous levels
were known. We would follow the same approach as in the water pollution case, but
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using bi-variate normal distributions in the Simplex. However, the fact that here we
were only interested in relative changes reduces the interest of this computation: no
environmental quality index could be obtained from this problem, but only a balance
between different sources of pollution.

8.2 Discussion of methods

The concepts of sample space and scale of a data set are well-known in statistics.
However, its practical importance in applied data analysis has passed mainly unnoticed,
in particular in the environmental and geological sciences. During the sixties, a concern
in the geological community arose about these concepts regarding compositional data.
Its sample space, the Simplex, could be given a meaningful (=compatible with the
desired scale) Euclidean space structure. This led to the introduction of algebraic
concepts (basis, coordinates, projections) before statistics were used, and after results
were obtained.

These ideas were summarized by Pawlowsky-Glahn [2003] in the operative principle
of working on coordinates: as a zero step of any statistical analysis, we must identify the
sample space and a scale for our data, and when this space has a meaningful Euclidean
structure, take coordinates with respect to any of its orthonormal basis; statistics may
be applied then to the coefficients with respect to that basis, and the obtained results
might be applied again to the basis to recover objects from the original sample space.

Geostatistical techniques represent no exception to this principle. The very concept
of random function and its essential properties (mean value, covariance structure, sta-
tionarity) are well-defined on the coordinates with respect to any basis of an Euclidean
space. Furthermore, we have shown that these essential properties may be understood
as object or operations in the Euclidean space itself. In this way, the mean value is a
vector minimizing the spread around it, the covariance structure is an endomorphism
describing this spread, etc.

The case of covariance/variogram functions is particularly important. Covariance
structures defined on the coordinates with respect to two different basis of the same
space present the same properties of symmetry, or validity by Fourier transforms, and
their global range of independence are equal. These are intrinsic properties of the
covariance structures (seen as endomorphisms), and not artifacts of the basis.

Estimation and prediction (kriging) present also no problem of definition: either
using coordinates (and applying the results to the basis in use) or defining kriging as
a linear transformation, the final predictions are exactly the same, as are confidence
regions built around them. From a theoretical point of view, kriging in an Euclidean
space is thus independent of the chosen basis. Among the interesting optimal prop-
erties, this kriging predictor minimizes the expected distance between the prediction
and the true value.

Even the strongest geostatistical result, the conditional expectation character of
simple kriging in a Gaussian random function, is reproduced for vector-valued random
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functions. The Gaussian assumption allows then to go a step beyond the simple estima-
tion: it makes normal kriging in an Euclidean space yield the probability distribution
on the Euclidean space.

These considerations have shown their capital importance in two common sample
spaces: the positive real line (and its multivariate version, the positive orthant of the
real space), and the Simplex. These spaces can be given an Euclidean space structure
based on simple operations (product and powering), and respecting a meaningful log-
relative metric.

The case of a positive variable is better known, since it usually appears in ap-
plications. Ignoring its sample space structure gives the classical estimator—known
as lognormal kriging—a set of well-known problems: unclear character of conditional
expectation estimator when simple kriging is not applicable, non-optimal confidence
intervals, local bias in block kriging, and generally bad properties of local conditional
expectation estimation. Taking into account the sample space structure, we obtain
kriging in the positive real line, which has none of these problems. Furthermore, change-
of-support models get clear and valid definitions in such a framework.

The generalization of these results to compositional data (considering the Simplex
as an Euclidean space) is straightforward, and kriging in the Simplex is then the best
unbiased linear predictor of a compositional vector in the geometry of the Simplex. It
yields valid compositions as results, positive and closed, something which is not always
true for other existing interpolation techniques applied to compositions.

It is well established that there is a link between the structure of the Simplex
and classical operations for multinomial probability vectors, like Bayesian updating or
information measures. Based on this link, we apply kriging in the Simplex to estimate
multinomial probability vectors—or finite discrete probability distributions of variables
in any set, not necessarily an Euclidean space—. In the case that we truly observed
them, kriging in the Simplex applied to multinomial probability vectors keeps all its
properties of unbiasedness, minimal variance and conditional expectation character,
and always yields valid probability vectors, positive and summing up to one.

But these probability vectors are in practice seldom observed. Instead, one observes
a sample of the regionalized variable from which the conditional probability distribu-
tion is wanted at any location. The classical approach here—indicator kriging—is
the application of indicator functions defined at some cutoffs and the geostatistical
treatment of the indicator-transformed data set. This method often yields impossible
probability estimates.

To deal with this framework, we devise a two-step stochastic model, where at each
sampled location we observe a single-trial realization of an independent multinomial
variable, which probability vector forms a random function. Using this formalism, the
multinomial probability vectors may be estimated in a Bayesian framework at each
sampled location updating a non-informative prior by the indicator-transformed data
set. Afterwards, these bayesian estimations are introduced in the geostatistical tech-
niques to interpolate them. The resulting kriging in the Simplex applied to generalized
indicators also yields admissible probabilities, positive and summing up to one.
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The preliminary estimation procedure does not change the shape or the range of
the covariance structure of the estimated multinomial vectors, and it only scales this
structure. This implies that existing indicator variography software is perfectly useful.
Moreover, it is proven that such a scaling has no effect in the kriging procedure.

We put also forward a refined method, which essentially tries the joint updating
of a general prior covering the whole domain by all the observations. This prior is
derived from the same hypothesis underlying kriging in the Simplex applied to general-
ized indicators. Results do not differ significantly between them, although this method
is able to modify the estimated probability distribution at a sampled location using
information coming from nearby samples. On the side of the disadvantages, this joint
Bayesian method needs extensive computation.

In all these non-parametric cases, uncertainty of results is far higher than those
obtained with Gaussian assumptions. Not too much should be expected of model-free
techniques in geostatistical applications. When a single sample is available—the case
of geostatistics—models become a necessary complement. The last Bayesian method
assumed a model for the log-ratios of probabilities, yet trying to let the model for the
original variable be the most general possible.

8.3 Future work

This work covers a relatively wide range of statistical techniques, theoretical issues and
practical cases, which have not been totally explored. This is not only a matter of time,
but of coherence. Here we used basic concepts of Algebra, Probability and Measure
Theory, jointly with fundamental Geostatistics, to show how a general technique of
statistical analysis, the principle of working on coordinates, applies to regionalized
variables and, doing so, it solves many of their classical inference problems. Some
environmental case studies have been used to illustrate these concepts. We left for
further work avenues which diverge too far from this picture.

• Selectivity curves in the context of positive variables are briefly explained here,
and they still lack practical studies to assess their usefulness beyond its theoretical
correctness. The same can be said of change-of-support models: although we
presented here a theoretical justification based on Cartier’s relation, it would be
interesting to apply it to real and simulated cases.

• Compositional data sets have a particular characteristic: their coordinates are not
one-to-one-related to their components. This clearly hinders the interpretation of
results. An interesting preprocessing would be the selection of an optimal basis,
not necessarily an orthonormal one, which keeps to a minimum the influence of
every component and, if possible, minimizes the cross-covariances between coor-
dinates. Bi-plot representations of the covariance at some selected lag distances
might be useful.
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• One of the main theoretical problems of indicator kriging is the need of indica-
tor covariance systems which yield valid probability estimates. Unfortunately,
the conditions defining this validity are not fully known. kriging in the Simplex
applied to multinomial probability vectors is independent of this limitation, be-
cause it yields valid probabilities in any case. However, it is unclear whether this
independence is transferred to kriging in the Simplex applied to generalized indi-
cators. It would be interesting to conduct simulation or theoretical studies of the
properties of covariance systems computed from known probability distributions.

• The bayesian technique applied to indicators was here presented as a way to
integrate into the estimated probability distribution of a sampled location infor-
mation from nearby samples. A full characterization of this technique still lacks
the exploration of, at least, three different avenues.

– The posterior is fully characterized, but obtaining its maximum implies the
solution of a huge multivariate non-linear system of equations. Preliminary
studies suggest that the size of the system might be more problematic than
the non-linear part.

– Instead of the maximum of the posterior, its mean can also be computed—
using Monte Carlo estimation methods—. The simulation of large random
vectors is known to be problematic, because it is difficult to adequately
sample the full multivariate distribution. It would be interesting then to
study the marginal properties of the N -block Aitchison distribution, and
try to draw first an optimal estimate for the sampled locations, and use it
afterwards for the unsampled ones. This makes sense, because the unsam-
pled locations do not carry any information, and they should not affect the
estimation on the sampled ones.

– Assuming a hierarchical model is another way to drastically reduce the di-
mension of the random vector to sample in the Monte Carlo method. Fol-
lowing Tjelmeland and Lund [2003], we may assume the covariance func-
tion between the unknown probability vectors to be of a particular type
(e.g.spherical) with a random range and a random covariance matrix at
the origin. Models for these parameters might be respectively an exponen-
tial distribution and a Wishart distribution. Then MCMC (Markov Chain
Monte Carlo) methods should be applied to estimate the posterior distribu-
tion of all these parameters.

• We have briefly mentioned a generalization of indicator kriging to continuous
distributions, disjunctive kriging. This technique yields as predictor of the dis-
tribution a linear combination of univariate functions of the data set which best
approximates the true conditional probability in an L2 sense (page 7.1.5). But
we also said that Egozcue and Dı́az-Barrero [2003] and van den Boogaart [2004]
suggest that this distance is flawed to deal with probability distributions, and



186 Conclusions

they introduce alternative Hilbert space structures to the classical L2 space of
functions. The development of a disjunctive kriging-like technique based in these
alternative Hilbert spaces is a powerful idea.

• Finally, the Gualba data set is only superficially explored. Using the whole two-
year series of all the available chemical parameters implies no theoretical problem,
but practical ones: the size of the sample, more than 70000 measurements, and
the fact that most of them are not simultaneous, make the treatment of this data
set a problem in itself.



Chapter 9

Notation summary

Algebra and geometry page
E,A generic vector of Euclidean space, set of elements 15

F generic vector subspace 15
R

D D-dimensional real space 26
R

D
+ D-dimensional real positive space 29

S
D D-part Simplex 33

⊕ Abelian group operation, inner sum 14
⊖ inverse inner sum
⊙ external product
〈·, ·〉E scalar product 15
‖ · ‖E norm 16
d(·, ·) distance 16
a,b, c,g vectors (boldface lowercase Latin character) 14

n neutral element vector
ei i-th basis element

λ, µ scalars 14
E,F vector sets (boldface uppercase Latin character)

E generating system 15
E basis 15
E orthogonal basis 16
E orthonormal basis 17

α, β, γ vectors of coordinates (underlined lowercase Greek character) 15
T , ϕ matrices of scalar values (double-underlined character) 81

ϕ matrix of change of basis

I
D

identity matrix in a D-dimensional space

1
D

D ×D one matrix 122

T,Σ,C,γ operators (endomorphisms) 81
Σx operator acting on a vector x 81
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Geometry of the Simplex page
a,b, c,g compositions (boldface lowercase Latin character) 33
⊕ perturbation 35
⊙ power operation 35
〈·, ·〉A compositional scalar product -
‖ · ‖A compositional norm -
dA(·, ·) compositional distance 35
C(·) closure operation 35
alr(·) additive log-ratio transform 120
clr(·) centered log-ratio transform 120
ilr(·) isometric log-ratio transform 122
ϕ rectangular matrix relating clr and ilr transforms

agl(·) inverse additive log-ratio transform 121
Measure and probability
λE Lebesgue measure in the space E 19
λR classical real Lebesgue measure 19

P (·) probability measure 20
F (·) probability law 20
f(·) density function 20

Pr [·] probability of an event 20
Distribution models
µ position parameter vector 39
Σ scale-dispersion parameter matrix 39
θ alternative position parameter vector 37,39
φ interaction parameter matrix 39

D(θ) Dirichlet distribution 37
NSD

(
µ,Σ

)
normal distribution on the Simplex 39

A
(
θ, φ
)

Aitchison distribution 40

Random variables
Z random variable (uppercase character) -
z outcome of a random variable (lowercase character) -
Z random vector in a generic Euclidean space 20
z outcome of a random vector in a generic Euclidean space
ζ random vector in the real space 20

Moments and inference
EE [·] vector expectation in E 20
VarE [·] covariance matrix in E (of the components of a vector) 20
CovE [·, ·] covariance matrix in E (of two vectors) 20
z1, z2, . . . zN sample of size N 24
z̄ arithmetic mean of the sample -

θ generic parameter -

θ̂ estimator of θ -

θ̃ estimation of θ -
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Random functions (RF) page
R

p physical space 47
D ⊂ R

p domain of the RF
~x ∈ D physical location
~x1, ~x2, . . . , ~xN location set -
~x0 predicted location 58
n,m ∈ (0, )1, 2, . . . , N location index -
~h lag distance (difference vector) 48
h lag distance (difference vector norm) -

E sample space (space image, support) 81
Z(~x) vector RF 48
{z(~xn)} observed regionalized sample
ζi(~x) i-th coordinate RF of Z(~x)
i, j ∈ 1, . . . , D coordinate index -

C
nm

= C(~xn, ~xm) (coordinate) covariance between locations 49

γ
nm

= γ(~xn, ~xm) (coordinate) variogram between locations 49

Cij(~h) covariance between coordinates 50

Kij(~h) non-centered covariance between coordinates 135

Ĉij(~h) experimental covariance
fa(~x) drift function 58
a ∈ 1, 2, . . . , A drift function index
νa Lagrange multiplier of the a-th drift function

z∗0 kriging predictor 59
~x0 predicted location 58
λni kriging weight 59
σ2

XK X-kriging variance (simple, universal, drift)
Λ kriging weight matrix 85
σij kriging covariance between coordinates

v, V,W ⊂ D physical blocks
Zv(~x) sampling function 66
Zv(~x) regularized RF

Cv(~h) regularized covariance
σ(v|V ) dispersion variance 67

φ(·) transformation (to Gaussian marginals) 70
T (·), Q(·), m̃(·), B(·) selectivity functions 102
Ii(·) i-th cutoff (cumulative) indicator transform 134
Ji(·) i-th category (disjunctive) indicator transform 134

I,J full indicator RFs
i(~xn), j(~xn) fully-observed indicator vector

P multinomial probability vector RF 140
p,q multinomial probability vectors -

Note: references with blank page number are related to the preceding one.
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