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Chapter 1

Introduction

1.1 An environmental motivation

One of the most important applications of Life and Earth sciences to our everyday
life is the assessment of environment quality. This concept arose recently, after more
than one century of industrial use and abuse of our environment. In a natural environ-
ment, pollution of running or still water, air and soil, as well as the damage on living
beings, has been the concern of environmentalists since the 70s. In urban areas of de-
veloped countries, an interest has also arisen on the quality of the environment, from
air pollution to the potability of supplied water. Humans, like all living beings, use the
environment as a resource, and demand a minimal quality of it. But at the same time,
this very use alters the quality of this resource, most usually lowering it. The resolution
of this contradiction, and the quest for a tradeoff between maximal use and minimal
quality alteration, is the subject of environmental management policies. A reasonable
environmental management policy calls for an assessment of the environmental quality,
as well as of the potential uses of an environmental resource.

To provide policy makers with such an assessment, scientists have been developing
environmental quality indices for the last 20 years. A quality index is intended as an
objective quantitative measure of the suitability of a resource for a given use. There
are many types of indices, according to which method they use to measure quality:
color, chemical elements or microorganism concentration, counts of sensitive macro-
invertebrates, etc. to give but a few from the huge variety of physical, chemical,
microbial or biological quality indices available. Note the variety of characteristics of
the sample space of these variables: some are qualitative (color), some numerical of
discrete nature (counts), and other are continuous, either unbounded (temperature)
or bounded (concentrations). However, the measures should be simple and give an
integrated information on the state of the environment, and this is not common: the
most integrated and powerful quality indices are so complex that only an expert can use
them as objective measures. Statistics have there a tool to offer, which can integrate
as many information of any kind as one can model and offers a final quantitative
continuous measure of quality: probability.
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In natural risk assessment, one uses the concepts of hazard, vulnerability and risk.
Hazard of a given event is defined as the probability of occurrence of this event. Vul-
nerability informs of the loss that will occur if this hazardous event takes place; it is
usually measured in terms of money or human lives. Risk is then the expected loss,
or the product of hazard by vulnerability. This simple scheme can become so complex
as desired, by introducing many simple hazardous events, or events which accept dif-
ferent degrees of danger. By comparing them with environmental quality issues, one
might interpret the use of a resource as a vulnerability, while hazard can be seen as an
environmental quality measure: the higher the hazard the lower the quality.

Usually, natural hazard is associated to a place and a moment, and so may be also
an environmental quality measure. In this way, one may take measures e.g.of a given
water quality index in a river, both in time at a single place, or along the flow in a
given moment. It is then needed to take into account some sort of relation between
the measurements, since they are clearly not independent. Summarizing, a probabilis-
tic water quality index calls for statistical techniques of computation of probabilities
which take full profit of all the characteristics of the measurements involved, mainly
their mutual dependence and their different sample spaces, and with different scales of
comparison in them.

1.2 Statement of the problem

The sample space of a variable is its set of possible values. Although it is an old
statistical concept, its practical importance has been seldom considered in the applied
sciences. In particular, it came to the geosciences through the context of Compositional
Data Analysis [Aitchison, 1986]. It is nevertheless quite easy to take it into account,
when the sample space may be given an Euclidean structure.

Geostatistics [Matheron, 1965] is the name of a series of techniques devised to treat
data sets with mutual dependence, something which precludes using on them classical
statistical techniques. Geostatistical techniques may be divided in two groups: those
predicting the value of a variable, and those estimating its probability distribution.
In a conventional framework, both types assume almost always (implicit or explicitly)
the variables to have a real unbounded sample space. However, many variables do
not satisfy this requirement: their sample spaces are either subsets of the real space,
or a set of categories. This is not an unimportant issue: by taking into account
possible structures for the sample space, new light is cast on old geostatistical problems,
e.g.those affecting positive variables assumed to be lognormally distributed. In this
way, we may estimate better the probability distribution as a tool for hazard/quality
assessment.

The goal of this Thesis is to integrate these considerations on the structure of the
sample space of the variables into the existing geostatistical techniques, in the case
that this sample space can be given a meaningful Euclidean structure. We will show
that geostatistical tools and concepts are objects or operations in this space structure,
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which means that they have a sense on their own, independently of the way they are
represented.

1.2.1 Hazard

Hazard assessment is essentially committed with the estimation of the probability of
occurrence of events, which are regarded as dangerous [Hewitt, 1997]. The first step
is then the definition of a dangerous event, or a family of ordered events. One might
think on the danger of, e.g.presence of carbon monoxide in the air (lethal in parts-
per-billion), or the concentration of ammonia in a lake. The first case would give us
a single dangerous event—being above the toxicity threshold—, while the second one
would give rise to a family of events ordered in an increasing degree of damage—being
above each of the toxicity thresholds for fishes, for human beings, for agricultural uses,
etc.—.

In probabilistic terms, hazard assessment reduces to the estimation of the proba-
bility of occurrence of an event. A Bernoulli event is the simplest model to devise: at
each trial, a probability of success is defined as the probability p of occurrence of the
desired event, and the probability of failure is its complementary ¢ = 1 — p. These two
probabilities do not change from trial to trial, and the result of each trial is independent
from all the others.

There are several philosophical approaches to the concept of probability. Each of
them yield different procedures to estimate p or ¢, being complementary. We will speak
about the frequentist and about the Bayesian approach, following the exposition of
Leonard and Hsu [1999]. The frequentist approach defines the probability of occurrence
of an event as the limit of the number of times the event occurred divided by the total
number of trials, when this number of trials tends to infinity. The Bayesian approach
regards the value of p as a subjective reliability of occurrence of the event. In the
frequentist case, the estimator p of p will be the number of times the event occurred
divided by the number of trials, although this number of trials is finite. The Bayesian
estimation procedure takes the prior reliability assessment of the possible values of p,
updates it by the information brought by the observed events, and obtains a posterior
assessment of the reliability of this occurrence. From the differences between them, we
highlight: a) the Bayesian approach needs a prior assessment of the possible values of p,
and b) it offers a posterior assessment of the possible values of p, while the frequentist
approach yields a single estimate which only depends on the data, and not on prior
knowledge.

When attending to a family of ordered dangerous events, we face the estimation
of a probability distribution function, i.e.a function which describes the reliability of
each possible outcome of a random variable. This is achieved by assuming a para-
metric model for that random variable (e.g.the normal or Gaussian distribution), and
estimating the parameters of the model. The Bernoulli case may be seen as a par-
ticular case, where the Bernoulli model is described by the parameter p. Both the
frequentist and the Bayesian approaches allow such an estimation, using a sample, a
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set of independent realizations of the random variable, i.e.independent measurements.
Once the parameters are estimated, the probability function is completely specified,
and the probability of any dangerous event can be computed. In the second example
above, once we know the probability function of the ammonia concentration we can
compute the probability of being above each of the mentioned thresholds. Obviously,
these probabilities are expected to be ordered, as were the thresholds themselves.

1.2.2 Regionalized variable

The term regionalized variable was coined by Matheron [1965] to describe those sets
of measurements, distributed across time and space, presenting a mutual dependence
inherited from the proximity of their sampling locations. Its generalization to region-
alized vectors is usually referred to as coregionalization. The set of techniques used to
analyze regionalized variables and vectors is known as geostatistics.

The coregionalized paradigm is used to investigate structural dependencies among
spatially-distributed variables, like e.g.joint covariation of porosity and log-permeabi-
lity in an aquifer or of several climatic variables along a mountain range. This spatial
structural analysis of covariation is usually followed by an interpolation procedure: the
coregionalization assumption allows the estimation of the whole vector, or of some of
its components, at any non- or partially-sampled location, jointly with a measure of
the incurred error. A further assumption, the joint normality of all variables at all
locations, delivers a stronger result: the estimate and its error define the distribution
of uncertainty on the true predicted value, conditional on the observations. Using this
result, hazard assessments have been conducted for regionalized variables.

When joint multivariate normality is not a valid model assumption, but the proba-
bilities of some hazardous events have to be determined, there are other useful geosta-
tistical techniques. One of them works with indicator functions [Journel, 1983]: these
are valued as one at those places where the hazardous event was actually observed, and
as zero elsewhere at the sampled locations. Then, these indicator values are considered
a coregionalization, and interpolated: the obtained values are finally interpreted as
the conditional probability of observing the event. This technique is very frequently
used, due to its simplicity and straightforward application, in spite of the rather high
frequency in which it delivers results impossible to interpret as a probability.

The other approach used to deal with non-normally distributed coregionalizations
is based on transformations: coregionalizations are assumed to follow a joint multi-
variate normal model after application of a specified marginal transformation, e.g.a
logarithm. Then, classical methods are applied to the transformed scores, and finally
interpolations are either used to define the joint model (and to compute hazard esti-
mates) or back-transformed. This approach has a long history of application in positive
and compositional coregionalizations, which are expected to become tractable after a
logarithmic or a logistic transformation. However, the obtained results after back-
transformation are regarded as non-optimal, since we cannot minimize simultaneously
the error in the transformed and back-transformed spaces: with an example, if we
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interpolate a permeability (or [H3OT]) as a positive variable by using its logarithm,
we cannot simultaneously obtain an optimal estimate of this permeability (or [H3O%])
which corresponds to an optimal log-permeability (or pH), and viceversa.

1.2.3 Sample space

These considerations on the optimality properties of back-transformed estimates lead
us to the keystone of this work. It deals exclusively with data which scale is captured
by a particular structure of the sample space: an Euclidean structure. Briefly speaking,
the sample space of a variable is the set of its possible results; the scale of a variable
(or a data set) is the analyst’s interpretation of how different are its values; finally, the
structure given to the sample space is a choice of operations, and with them the analysts
pretends to adequately describe the scale of the random variable. These concepts are
well-known in statistics, but its practical implications in applied sciences have been
seldom taken into account, until the work of Pawlowsky-Glahn [2003]. Exploring their
applications and implications to the geostatistical case form the keystone of this Thesis.

Most statistical methods (both under independence assumptions, and from the
geostatistical perspective) assume the data set to be drawn from the real unbounded
Euclidean space: this is seldom explicitly said, but comes implicitly when taking as
a measure of the prediction error a squared difference, or the squared Fuclidean dis-
tance between the prediction and the target. In the case of parametric methods, this is
much clearer, because most of them assume the data set to be generated by a normal
distribution, which has an unbounded domain. Those methods developed for other
models essentially work with transformations of the data, sometimes called link func-
tions [Leonard and Hsu, 1999], intended to deliver real unbounded results. An example
of such a procedure may be found in the definition of the lognormal distribution.

Usually, strictly positive variables are applied a logarithmic transformation, with
the aim to obtain normally-distributed scores. The original variable is said then to
follow a lognormal distribution, which takes into account the fact that intervals in
the transformed space do not have the same length as in the original one. But the
sample space of this distribution, the positive real line, can be given a real vector space
structure (indeed, an Euclidean one), and standard algebra can be applied. First,
a basis (a set of vectors univocally generating the whole space) may be chosen, and
then any vector (fixed or random) of this space can be univocally expressed with its
coordinates with respect to this basis. By definition, these coordinates are real and
unbounded, and the Euclidean distance is well-suited for them, as is any hypothesis
of normality. From this point of view, for instance, the arithmetic average of real
numbers should be replaced by the geometric average when dealing with variables with
a positive scale, as we will see in chapter [5.

Following the same approach, compositional data—positive vectors which compo-
nents sum up to 100%, or any other fixed constant—can be treated in a new way
if their sample space, the Simplez, is given an Euclidean space structure [Billheimer
et al., 2001, Pawlowsky-Glahn and Egozcue, 2001]. This structure arises if we assume
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that compositions only convey information about the relative importance of each part
in a total. In this structure, a D-part composition (for instance, the content in Pb,
Hg and Fe of some moss species) is expressed as a vector of real unbounded coordi-
nates with respect to a basis formed with D — 1 compositions. Then statistics can be
applied to these real scores, and those results defining a geometric object (a mean, a
confidence region, a line) may be applied to the chosen basis to recover a compositional
object. Such procedure, for instance, advocates for the closed geometric mean as the
best central tendency indicator of a compositional data set [Aitchison, 1982].

1.3 Structure of the Thesis

To address these concepts, this document is structured as follows.

First chapter has already outlined the main concepts involved in this study, and it
will end with a presentation of the case studies used to illustrate it.

Second and third chapters are a state-of-the-art, devoted to present the founding
ideas and methods used throughout the rest of the document. The second chapter
is devoted to sample space considerations, based on the concept of Euclidean space,
focusing on its geometric characterization and introducing probability distributions and
inference techniques on it, particularly for the Simplex. A preliminary investigation is
conducted on the three case studies to illustrate the concepts introduced. The third
chapter summarizes existing geostatistical techniques, and develops one of the case
studies.

Fourth chapter is the central part of this work, since it generalizes the main geo-
statistical techniques in order to deal with variables valued on an arbitrary Euclidean
space. Three particular cases—with their respective case studies—are included in this
Thesis: the third chapter was devoted to real variables, the fifth is centered on positive
ones, and the sixth on compositional vectors.

Seventh chapter presents possible applications of the results in the preceding sec-
tions (mainly chapter six) to estimate the probability distribution of a broader class of
variables, not necessarily valued on an Euclidean space.

The last chapter closes this work with a discussion on the results obtained in the
analyzed case studies—focusing on the comparison of the hazard results obtained with
each technique—and some methodological conclusions and open issues.

Some of these chapters begin with a short summary of their theoretical content, and
all finish with a sort of preliminary conclusions regarding that specific chapter. The idea
of these introductory and final summaries is to put each chapter in the general context
of the work. Also, some chapters contain a final addendum, where some complementary
explanations and proofs are included. A summary of the notation is included in a last
chapter in the fashion of an appendix.
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1.4 Case studies

1.4.1 The Tordera river at Gualba (Spain)

The Tordera River is located in north-eastern Spain, in the Catalan provinces of
Barcelona and Girona. It drains a basin of 835 km?, between three mountain systems
(figure1.1), the Montseny Massif, the Montnegre Range and the Guilleries Range. The
studied station is located at UTM 461050.01 easting and 4618241.4 northing, in the
municipality of Gualba. It is placed in the upper valley, and its catchment area repre-
sents approximately a fourth of the total basin, with contributions from the two first
mountain systems. These are similar granitic massifs, with some metamorphic pelitic
rocks—from phillite to orthogneiss—and small marble outcrops. The river itself flows
through quaternary siliceous infills.

Most of the basin surface (figure 1.2) is occupied with meadows and woods, some of
them under special protection plans (Montseny Natural Park and Montnegre-Corredor
Natural Park). The Sant Celoni waste-water treating plant dumps its effluents up-
stream of this station. This village had 14278 registered inhabitants in year 2004;
it is a small industrial center, with chemical industries and pharmaceutical facilities
[Idescat, 2005, April 15]. These industries have their own waste-water treating plants,
which also dump into the river. The human impact on the river is considered as
moderate.

The Gualba station belongs to the XACQA (water quality automatic control net-
work), integrated by 33 stations distributed along the main rivers in Catalunya. It is
the only one of this kind in the Tordera basin. At these stations, the river water is
sampled almost continuously, measuring some parameters to monitor urban and indus-
trial pollution: pH, water temperature, Ammonia content, dissolved Oxygen content,
conductivity, cloudiness, etc. These measures are used to define some categories of ac-
ceptable water uses [Poch, 1999]. Table [1.1]shows them as function of the parameters
studied here, which were kindly provided by Lluis Godé from the Agéncia Catalana de
I’ Aigua (ACA, Catalan Water Control Agency).

Table 1.1: Water quality categories used by the ACA (Catalan Water Control Agency),
as functions of conductivity, pH and ammonium content [Poch, 1999].

Conductivity pH Ammonium
category uses min max min max min max
1 quality-demanding uses 0 1000 6.5 8.5 0 0.05
2 general uses 0 1000 6.5 85 0.05 1
3 non-demanding uses 0 1000 6.5 8.5 1 4
4 minimal uses 1000 2500 6.5 9.0 4 20
wuS/em — mg/1

In this context, focus is mainly put on monitoring Nitrogen, due to its key impor-
tance in the eutrophication processes. Eutrophication is an uncontrolled increase of
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algae populations in rivers or lakes due to too much availability of Nitrogen and Phos-
phor, the main nutrients controlling the growth of living beings. In granitic basins,
Phosphor is naturally present, and the limiting factor becomes Nitrogen. Indepen-
dently of its eutrophication action, Ammonia (NHj) is an interesting parameter in
itself: apart from the limits in table |1.1, Spanish legal dispositions order Ammonia
(not Ammonium) content to be kept below 0.025ppm, due to its poisonous character
[Mapfre, 2000].

Ammonia (NHj) is very difficult to measure, due to its volatility properties. It is
kept in aqueous solution in the form of Ammonium (NH]), which is far less danger-
ous. Ammonium behaves as a weak acid, and returns to Ammonia form due to the
equilibrium equation

NHZr + HQO — NH3 + H30+,

characterized by the equilibrium constant
[NH;] - [H307]
[NH{]

- K., (1.1)

being [X] the molar concentration or molarity (mol/l) of species X. The equilibrium
constant is inversely related to the absolute temperature due to thermodynamic rela-
tions. It can nevertheless be reasonably approximated by a polynomial [Marti, 2004,
pers. comm.|

pKe=4-10"%-T%4+9.107°. 7% —3.56-10"% - T + 10.072, (1.2)
where pK, = —log,, K,, and T is measured in Celsius degrees. Using this decimal
logarithm, expression (1.1) becomes

pNH; = pK, + pNH, — pH, (1.3)
with pX = —logy,[X]. Then, although it can be hardly measured, the Ammonia

content may be computed using expressions (1.2) and (1.3), once Ammonium content,
pH and water temperature are known.

Tolosana-Delgado [2004] showed that the Ammonia system is strongly affected in
this river by a periodic drift, mainly of 24h-period, which was suggested to be related to
solar radiation through water temperature and dissolved oxygen content. This would
imply that fluctuation of chemical parameters in this river may not only be caused by
humans, but also be due to the natural dynamics of its ecosystem.

The goal will be the inference of the hazard of Ammonia pollution—exceedance of
the 0.025ppm legal threshold—as a function of the measured parameters, as well as
the assessment of water quality as a function of these parameters, following table
and taking into account possible periodic drifts.

1.4.2 Air pollution in the Carpathian Range (Ukraine)

The Carpathian Range crosses eastern Europe describing a 1500 km long arch from the
Czech Republic to Romania, crossing Poland and Ukraine, and surrounding Hungary
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Figure 1.1: Lithologic map of the Tordera basin, distinguishing between: (A) granitic
and other acid-intermediate plutonic rocks, (B) other igneous rocks (mainly lava flows),
(C) metasedimentary and metamorphic siliceous rocks, (D) siliceous sedimentary series,
(E) carbonate and meta-carbonare rocks, and (F) Quaternary infills. Note that (E)
materials represent the only major source of HCO3. The star is placed in the studied
station.
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Figure 1.2: Map of land uses of the Tordera basin, distinguishing between: (A) urban
areas and structures, (B) agricultural areas, (C) forests and natural areas, (D) rivers
and continental water, and (E) the Mediterranean sea. The star is placed in the studied
station.
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Figure 1.3: Location of the Carpathian range.
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Figure 1.4: Mean features of the studied region of the Ukrainian Carpathian range:
height curves, main cities (dots, size shows three categories of cities according to their
industrial importance and size) and sampling locations (stars).
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(figure 1.3). Although it is not a high range, it has an important influence on the
winds of the region and, consequently, on air pollution dynamics. To monitor these
dynamics in the Ukrainian part of the Carpathians (figure(1.4), a sample of two species
of moss—regarded as proxies for air pollution—was collected: at each sampled loca-
tion, five whole moss individuals were mixed and processed to analyze their content in
several metals: Cd, Pb, Cr, Fe, Hg, etc. Since these plants live several years, results
might be interpreted as the average pollution in the last 3-5 years. This data set and
the information gathered here were kindly provided by Dr. Tyutyunnik Yulian Gen-
nadievich, with permission from Dr. Blum Oleg Borisovich, chief of the Laboratory
of Bio-indication of the National Botanic Garden of the Ukrainian National Science
Academy.

From this data set three components have been selected —Pb, Fe and Hg—due to
their known connection with major air pollution phenomena in the region. Lead (Pb)
is a by-product of combustion of petrol fuels. Regulations about lead content in fuels
were not fully implanted in Ukraine during the sampling period. It forms small-size
particle aerosols, with a medium transportability, and it is expected to have a strong
influence around cities and along the main roads. Iron (Fe) particles—related to open-
air corrosion processes—are transported through the air also in aerosols, but of bigger
particles: they are consequently more difficult to carry. Iron is then expected to be
found mainly around cities. Finally, quicksilver (Hg) is transported through the air
dissolved in water vapor, and is deposited with rain. Thus, Hg is highly transportable,
up to thousands of kilometers; in fact, in this area it is considered a regional pollutant,
originating in the industrial areas of central Europe [Tyutyunnik, 2005, pers. comm.].
The goal in this data set will be to assess the relative influences of these three processes.
The relative character is highlighted because the total amount of the studied three parts
may be related to exposure time, and to age of collected plants, thus masking absolute
intensity of pollution.
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Chapter 2

Preliminary concepts from Algebra
and Statistics

Real data are uncertain: experimental values are affected by different sources of ran-
domness, models may not take into account important processes, or measurements
might be affected by instrumental errors. We usually model such a situation with
random variables, from which one wants to extract a central characteristic value and
a dispersion indicator. The range of values considered as possible outcomes of such a
variable is called the sample space. Most interesting sample spaces can be given a struc-
ture, describing meaningful uncertainty-generating processes (or operations). Here and
throughout this Thesis, the term ” meaningful” expresses the subjective assessment of
the analyst on how the structure given to a sample space describes the scale considered
for the observed data set.

In this chapter the algebraic structure known as Euclidean space is summarized,
with its operations and elements. This part can be found in any first-course Algebra
textbook, e.g. in Rojo [1986]. On an Euclidean space structure, some measure concepts
have been introduced, basically those related to random variables and its moments.
Furthermore, the Normal distribution on an Euclidean space have been defined [Eaton,
1983, Pawlowsky-Glahn, 2003]. Finally, inference on the parameters of this normal
distribution is outlined, closely following the classical inference approach as can be
found in any basic bayesian statistics textbook, e.g. in Leonard and Hsu [1999]. Three
data sets are used to illustrate the concepts of sample space, scale and structure, as
well as the estimation of central tendency parameters and hazard probabilities. To
close this chapter, a summary of some existing distributions to deal with data in the
Simplex is included.

2.1 General basic notation

Throughout this work, a set of objects is represented with double uppercase characters,
like E, F or S; in particular, R will denote the set of all real numbers, and R” the D-
dimensional real space. Also, the following notation will be used. The elements of one

13
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of these sets a € E will be denoted by lowercase boldface Latin characters, but the
real scalar values o € R by lowercase Greek characters. A finite set of elements will
be denoted by an uppercase boldface Latin character, A = {a;,as,...,ay}. A simple
underlining of a lowercase Greek character will represent a vector of real values a € R?,
and a double underlining of a character ¢, a matrix of real coefficients. Furthermore, an
operator T(-) (either a Greek or an uppercase Latin character) acting in an element a
will be represented by T'a = T'(a). The next section introduces further notation related
to Euclidean spaces. A complete notation summary is included in the last chapter.

2.2 Geometry of the sample space

2.2.1 Vector space

Definition 2.1 (Real vector space) Let E be a set, and let (R,+,-) represent the
scalar field of real numbers, with classical sum and product defined on it. The set
E equipped with two closed operations, called for convention inner sum and external
product and denoted respectively by & and ©, is called a real vector space (or, simply,
vector space) if the following properties are satisfied. For any a, b, c € E and A\, € R,

e commutative inner sum: abb = bda,
e associative inner sum: (adb)Pec = ad(bdce),
e cuistence of a neutral element with respect to the inner sum: adn = a,

e cxistence of an opposite element for any other: ada = m; one shall denote
alternatively a = Sa, and interpret © as the inverse operation of @,

e cxternal product distributive with respect to the inner sum:
AO(adb) = \OadAODb,

e cxternal product distributive with respect to the sum of the scalar field:
A+ p)Oa = \oaduda,

e cxternal product associative with the product of the scalar field:
AO(uoa) = (A- p)oa,

e cxistence of a neutral element in the scalar field with respect to the external prod-
uct:
1®a = a.

Then, the elements of & are called vectors.

The properties stated allow for an extensive and unambiguous treatment of all
vectors in E through the concepts of linear combination and linear independence.
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Definition 2.2 Given a set E C E formed with D vectors, E = {e;, es,...,ep}, and
a set of scalar coefficients \i, Ao, ..., Ap, a linear combination of E is a vector b € E
computed as

D
b=\0edA0ed - GApoey = P Noe. (2.1)
Using this, the following concepts are introduced:

1. if there are no \; which allow to obtain b with (2.1), then b is linearly independent
of E; otherwise, when these \; exist, then b is said to be linearly dependent of E,

2. E is said to be linearly independent if all its vectors are linearly independent of
the others,

3. if all the vector in E are linearly dependent of E, then E is called a generating
system of E,

4. if E is a linearly independent generating system, then it is called a basis of E,
and the number of vectors in E is identified with the dimension of E.

Definition 2.3 The unique values \; needed to obtain a vector b as a linear combina-
tion of a basis E are called the coordinates of b in the basis E.

Definition 2.4 Let F be a subset of E. If any linear combination (2.1) of vectors of
F is included in F, then F is called a vector subspace of E.

All properties and concepts defined in this section can be equally applied to vector
subspaces with the same inner sum and external product operations.

Definition 2.5 (Scalar product) Let a, b, ¢ be elements of E, and A € R; then, any
function (-;)g : Ex E — R is called a scalar product between elements of B if it
satisfies the following conditions

1. it is symmetric, (a, b)g = (b, a)g,

2. it 1s linear with respect to the vector space operations,
(aBAODb, ¢)g = (a, c)g + \(b, C)E,

3. the scalar product of a vector with itself is positive, (a, a)g > 0,

4. the scalar product of a wvector with itself is zero only for the neutral element,
(a,a)p =0 & a=n.

Definition 2.6 (Euclidean space) A set E is a D-dimensional Euclidean space if
it 15 a D-dimensional real vector space equipped with a scalar product. It is usually
denoted by the compact form {E,®,®, (-, )x}.
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Definition 2.7 In an Euclidean space, the norm ||-||g : E — Ry of a vector is defined
as ||a|lg = \/{a, a)g. By using the norm of the difference, one can define a distance in
an Euclidean space, as d(a, b) = ||aSb||k.

Property 2.1 Let a, b, c be elements of E, then the distance function
() :ExE — R,
computed as d(a, b) = ||asSb||x satisfies the following conditions:
1. it is positive, d(a,b) >0,

2. d(a,b) =0< a=b,

co

it is symmetric, d(a,b) = d(b, a),

=~

it satisfies the triangular inequality, d(a, ¢) + d(¢c, b) > d(a, b).

S

d(a,b),
6. it is scaled by the application of an external product, d(A®a, \Ob) = || - d(a, b).

The cosine of an angle 6 between two vectors a and b is given by

— <aa b>IE
lalls - [[blle’

from which the angle @ itself is obtained. This allows the introduction of the concepts

of

cos(6)

1. parallelism: a and b are parallel if § = 0 or, equivalently, (a,b)g = ||a||g - ||b]|&,
2. orthogonality: a and b are orthogonal if = 7/2 or, equivalently, (a,b)r = 0;

Note that parallelism implies linear dependence, whereas two vectors a,b # n are
linearly independent if they are orthogonal.

Definition 2.8 (Orthogonal basis) A basis E = {e;, es,...,ep} is said to be or-
thogonal if all its elements are orthogonal to each other.

Any vector b € E can be univocally expressed as a linear combination (2.1) of the
elements of such an orthogonal basis by

<b7 ei>IE
(e@', ei>1E7

b=(D Aoe; fi= (2.2)

where the values [3; are the coordinates with respect to that basis.

it 1s invariant by translation (or application of the inner sum operation), d(a® e, bdc) =
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Definition 2.9 (Orthonormal basis) A basis is said to be orthonormal if it is or-
thogonal and its elements have unitary norm,

e )L e=y
<eivej>E_5ZJ_{0’ Z#]

The use of orthonormal bases further simplifies the computation of the coordinates j3;
of a vector b with respect to a basis E, since ; = (b, e;)r in equation (2.2).

Property 2.2 Once an orthonormal basis is specified, any element of the space E is
univocally determined by the real vector of its coordinates 3 = (3;) € RP in that basis,
and all vector operations in the space can be defined as follows:

1. if g = a®b then vy = a + f3,
2. if b= XAOa then =\ q,

3. {a,b)g = (., ) = 2 i - i,

D
4 Nalle = llalle = /322 of,

5. ds(a,b) = dg(a, ) = /S0, (0 — 6)*,

where a, B and v represent the wvectors of coefficients of respectively a,b and g in
the given basis. In other words, giwen an orthonormal basis, any D-dimensional Eu-
clidean space {E,®,®, (-, )g} and its space of coordinates {R” +. - (-,-)r} are com-
pletely equivalent.

2.2.2 Linear applications

Definition 2.10 (Linear transformation) Let {E,®,®} and {F,+,-} be two dif-
ferent vector spaces, with different rules of addition and product with a scalar. Then,
an application T(-) from B onto F is called a linear transformation if and only if it
satisfies

T (a®AOb) =Ta+ \-Th

forany a€ E,beF and \ € R.

Some short comments about linear transformations follow.

e With the same vector operations of {F, +, -}, the set of linear applications L(E, IF)
is itself a vector space, denoted by {L(E,F),+,-}.

e Fixed suitable basis for E and F (with respectively dimensions D and C'), the lin-
ear transformation 7" is univocally identified by a C'x D matrix of real coefficients

T.
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e If the vectors a and b are represented in these respective basis as a and 3, column
matrices, then
b=Tas =T:qa.

e Linear applications can be composed, and the result is still a linear application.
For instance, if B : Vi — V5 and C' : Vo — V3, then we may define a new linear
transformation (CB)=CoB=A:V; — Vj.

e Given suitable basis for the spaces Vi, Vy, V3, the following relation between the
matrix representation of these applications is satisfied: A= C - B.

Definition 2.11 (Adjoint transformation) Let{E,®,®, (-, )g} and{F,+,-, (-, )r}
be two different Euclidean spaces. Then, for any linear transformation T(:) : E — F,
there exists another linear transformation T'(-) : F — E such that

<Ta, b)]F = (a, Ttb>E

for any a € E, b € F. The linear transformation T* is called adjoint transformation of
T, and vice-versa.

Definition 2.12 (Endomorphism on E) Let E be a D-dimensional vector space. A
linear transformation T(-) from and onto E is called an endomorphism.

Regarding endomorphisms, note the following comments.

e Once fixed a basis E, an endomorphism may be represented by a D x D matrix.

e If we change the basis of representation to F, we may obtain the new matrix
expression of the endomorphism as £—1 T - ¢, where p contains the coordinates
of the vectors of F with respect to the basis E. n

e Composition of endomorphisms is an inner operation of the space L(E,E), since
it takes two endomorphisms and returns another endomorphism. Therefore this
space has further structure than a simple vector space. Note that it plays de
role of a product, and is associative but not commutative, like the product of
matrices.

Two particular endomorphisms are interesting, once we introduce the composition
operation.

Definition 2.13 (Identity on E) LetE be a D-dimensional vector space, and L(E, E)
the space of endomorphisms on E. Then, there exists an application I(-) € L(E,E)
such that for any T(-) € L(E,E), the composite satisfies IT = TI = T. The matriz
representation of this endomorphism is the identity matriz of D columns and rows.

Definition 2.14 (Inverse endomorphism) Let E be a D-dimensional vector space,
and L(E,E) the space of endomorphisms on E. If a pair of applications Ty(-), Tz(+) €
L(E,E) satisfy that their composition is T1Ty = T5T) = I the identity, they are called
invertible, and one is considered the inverse of the other, denoted by T;' = Ty. The
matriz representations of these endomorphisms are mutually inverse matrices.
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2.3 Probability laws on coordinates

2.3.1 Measure considerations
Notation

In this section, E C R” is taken as a C-dimensional Euclidean space included in the
D-dimensional real space, with C' < D. We will identify o and 3 as the vectors of
coordinates of a and b in a basis of E, and a and b as real vectors in R”.

Lebesgue measure on R”

The Lebesgue measure of an interval (a,b) C R is defined as the length of the interval,
or the distance between its extreme points, A(a,b) = dg(a,b) = |a — b|]. To extend
the concept to higher dimensions, first the D-interval must be defined: it is the hyper-
rectangle defined by two extreme points of a diagonal and sides parallel to the axis
defined by the basis of RP”. The Lebesgue measure of a D-interval defined by vectors
a and b is simply the product of the length of each side of the hyper-rectangle,

D
Ao = Mg, b) = [ [ la; — bi].
=1

Measure and other related concepts are the concern of Measure Theory, a subject
treated by many advanced manuals, see for instance |[Nielsen, 1997]. The approach of
this Thesis is much simpler, focusing on the definition of alternative measures, how to
change between them, and their influence in inference procedures.

Lebesgue measure on E

Definition 2.15 The Lebesque measure of a C-interval defined by two vectors a and
b in an arbitrary Fuclidean space & with respect to a basis E is

C

AE = /\(aa b) = H |ai - ﬁz|a (23)

=1

where a; and (; are the coordinates of a and b.

Finally, the Lebesgue measure of a subset A C E is defined as the Lebesgue measure
of the subset of R¢ formed with the coefficients of A, extending the classical definition
of A\(A). As stated by Pawlowsky-Glahn [2003], this connection between the geometric
space structure of E and its Lebesgue measure does not imply that there is just one
measure for E. For instance, when E C R” one can apply the measure of R” to the
elements of E.
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Probability measures

The kind of measures most often used throughout this work are probability measures,
denoted by P(:). This well-established subject is treated by many textbooks, like
in Nielsen [1997], already cited, or more specifically, in Rényi [1976]. Probability
considers the measure of the whole space to be one, P(E) = 1. They are interpreted in
conjunction with a random vector Z € E, and the measure of a subset A is equivalent
to the probability Pr[Z € A] = P(A) that the random vector falls inside A. We can
therefore define a function Fz(-) that relates each possible subset A C E with its
probability measure: Fz(A) = Pr|Z € A] = P(A). This function is called a probability
law, and its relationship to the random vector is explicitly encoded in the subindex
Z. 1t is more useful to characterize the probability measure by its density function, a

function
fa(): E — R,
z fZ(Z)7
so that

P) = [ ap@) = [ @),

where the measure P(-) is said to be dominated by the measure A(-), which means
that wherever A(z) = 0 then P(z) = 0. The function f(z) tells us how dense is the
probability measure of the random vector Z around each vector z € E, or which set of
values is more or less likely to occur. The density function can be obtained from

sz(Z)
fa(z) = d(z)

= fz(2), (2.4)

called the Radon-Nykodym derivative of Fz(z) with respect to the measure \. If we
change the measure used in the space, the probability density will change, whereas
the probability law will remain the same. There exists nevertheless an easy relation-
ship between the two densities. For a given pair of measures \; and Ay (where )\ is
dominated by A1), the following relationship holds

. sz(Z) B d)\Q(Z) sz(Z) . d)\g(Z)
T dh(z) dh(z) dha(z)  dM(z)

fz.,(2) “fz.0,(2). (2.5)

To avoid carrying both the index for the random vector and for the measure used,
a measure will be always specified (either the Lebesgue measure in R” or in E) and
denote a density of a random vector Z by fz(z).

2.3.2 First and second-order moments
Moments on coordinates

Proposition 2.1 If Z is a random vector in E a C-dimensional FEuclidean space, then
its vector of coordinates ¢ is also a random vector but defined in R¢.
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As a random vector, Z may be characterized through its moments.

Definition 2.16 (Moments on E) The moment coordinates of a random variable in
E are defined as the equivalent real moments of the coordinate random variable, if they
exist [Pawlowsky-Glahn, 2003].

Pawlowsky-Glahn [2003] suggests to apply these moments to the basis and recover
elements of the space, which are called characteristic elements. The moments which
are not expressed as vectors of the space are called then characteristic measures. In
particular, we will be interested in characteristic element of central tendency, and in
measures of dispersion or spread.

However, the analyst might ask whether results will not depend on the chosen basis.
The next sections define means and variances-covariances as objects in the Euclidean
structure of E, following Eaton [1983]. These objects are not basis-dependent. Then,
we proof that, given a basis, object definitions may be identified with coordinate ones,
proving that the coordinate approach gives the same result whatever basis is used. One
should take into account that, although means can be expressed in any basis, variances
and covariances should only be expressed in orthonormal basis. The discussion of this
limitation is beyond the scope of this thesis.

Expectation on E

Definition 2.17 (Expectation on E) The expectation (or mean) of a random vari-
able Z in a C-dimensional FEuclidean space is a vector z = Eg [Z] satisfying for any
vector ¢ € E

(2,2)e = E[(%, Z)x], (2.6)

where E[-] is a real expectation [Eaton, 1983].

Proposition 2.2 Let Z be a random variable in E an Euclidean space. Then, the
mean of the coordinates of Z equal the coordinates of the mean of Z on E with respect
to any basis

A proof can be found in Eaton [1983, p. 72], or in this chapter addendum.

Variance and Covariance on E

Definition 2.18 (Variance on E) The variance of a random variable Z in an Eu-
clidean space is an endomorphism ¥ = Varg [Z] satisfying for any pair of vectors
r,yck

(x,Xy)r = E[(z, Zo2)p(y, ZO2)K] , (2.7)

where E[-] is a real expectation [Faton, 1983].

Proposition 2.3 Let Z be a random wvariable on E an Euclidean space. Then, the
variance matriz X of the coordinates of Z with respect to an orthonormal basis equals
the matriz representation of the variance (as an endomorphism ) of Z on E with
respect to that basis.
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A proof is again included in this chapter addendum, as well as in [Eaton, 1983, p.
73]. Summarizing, we may identify the expectation vector and the variance endomor-
phism of a random vector (Eaton [1983] version) with the expectation and variance of
the coordinates of this random vector in an orthonormal basis (Pawlowsky-Glahn [2003]
version), thus they do not truly depend on the basis. However, their representation
does depend on it, and to keep expressions simple we will consider only orthonormal
basis from now on. Note also that this identification may also be extended to covariance
between vectors in different spaces, although we introduce here only its definition.

Definition 2.19 (Covariance) The covariance of a random variable Z, on another
random variable Zy, each in its Euclidean space {E, &, ®, (-, )g} and {F,+,-, (-, )¢}, is
a linear transformation X195 = Covg [Zy, Zs) : F — E satisfying for any pair of vectors
zecEandyelF

(. %12y) = E[(z, 21021)s - (Y, Z2 — 5], (2.8)

where B[] is a real expectation, and Z; is the expectation of Z;, i = 1,2 in ils space
[Eaton, 1985, p. 85].

2.3.3 Normal probability distributions

The normal distribution is the standard distribution in real geometry. It has interesting
properties, and most basic statistical analysis and tests are based upon the assumption
that data are outcomes of it. This section extends this special distribution and defines
its equivalent on other spaces.

Again, two different definitions will be given for the normal probability distribu-
tion on an Euclidean space E. One of them is defined on the coordinates, and takes
coordinate parameters (Pawlowsky-Glahn [2003] version). The other is defined using
projections, and takes as parameters a vector and an endomorphism (Eaton [1983]
version). We state here that both definitions are equivalent, given the identification of
means and variances done in the last section (propositions 2.2 and 2.3)).

Definition 2.20 (Normal distribution on E with coordinate parameters) The
random vector Z is said to follow a normal distribution on E (denoted Z ~ Ng(p, X))
if its vector of coefficients follow a (multivariate) normal distribution on RY with co-
ordinate mean a real vector u and coordinate covariance matriz a real positive-definite
symmetric matriz X [Pawlowsky-Glahn, 2005].

Definition 2.21 (Normal distribution on E with object parameters) The ran-
dom vector Z is said to follow a normal distribution on E (denoted Z ~ Ng(m,3))
for a giwen mean vector m and a positive definite symmetric endomorphism ¥ on E
if for any testing vector x the random projection (x, Z)g follows a classical univariate
normal distribution with expectation (x, m)g and variance (x, L.
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If the variance of Z is invertible, the density of this normal distribution with respect
to the Lebesgue measure on E is

fal®) = 1) =[5l @n) Pexp | 3¢ - 2T -] @9
In the object notation, this density will read
fala) = 57 (2n) P exp |~ (zom, 5 (gom))s .

If the density with respect to any other measure is sought, then equation (2.5) is
enough to compute it. The normal distribution on E inherits all the nice properties
of the normal distribution on R®. For instance, the characteristic measures of central
tendency and dispersion of a multivariate normal random vector are respectively p and
2. Equation gives the characteristic element of central tendency. As is expected
in a normal distribution, this element coincides with the mode or most-frequent value
of (2.9)), and when C' = 1, also with its median. Further properties can be found in
Pawlowsky-Glahn [2003].

A comment is due with regard positive definiteness. Symmetric matrices are known
to be positive definite when their eigenvalues are all positive (or zero, in case of semi-
definiteness). Positive definite endomorphisms have not been defined in this work.
However, it is also known that changes of basis do not change eigenvalues of a ma-
trix. Therefore, a positive definite endomorphism may be taken as that for which its
representation in any basis is a positive definite matrix.

2.3.4 Regression on E

The concept of regression on E helps in understanding the posterior developments of
this Thesis. In particular, we will look for a linear prediction of a random vector Z on
[E either using as predictand another random vector Y on E, or using a real random
vector X on R4, Therefore, the general case will be explained following Eaton [1983],
and proofs of these assertions are omitted. An alternative approach yielding the same
result was presented by Daunis-i-Estadella et al. [2002].

Let Z; and Z, be two random vectors, respectively taking values in {F,+,-} and
{E,®,®}. Let m; and ¥;; be the vector expectation and operator variance of Z; (for
i = 1,2) given by definitions 2.17 and [2.18. Let finally ¥;5 and X9, be the operator
covariances (definition 2.19) respectively of Z; on Zs, and of Z, on Z;.

Let L(F,E) be the set of linear transformations from F to E. We look for a linear
transformation B € L(F,E) and a constant vector by € E such that the affine linear
transformation

Z, = by®BZ, (2.10)

gives predictions of Zy with minimal error €, defined as

c=E {||zgezz||E] . (2.11)
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With these definitions, the optimal predictions are obtained by using the linear trans-

formation
B =Yy2 ] (2.12)

and constant
bo = mg@ZmEl_llml. (213)

Recall that ¥7}! is the inverse application of ¥y;.

The joint vector (Z1, Zs) has as sample space the cartesian product F x E, with an
Euclidean structure inherited from the structures of F and E. Then, the definition of
a joint normal is suitable. In this case, regression yields the conditional distribution
of Zs given Z; = z;. This distribution is a normal one on E, with conditional mean
m = my®Yy X} (z16m;) and conditional variance YpyOY9 X1 Y1, Fixed suitable
orthonormal bases for all the spaces involved, these properties may be expressed in
matrices, yielding exactly the same results obtained with classical real multivariate
regression and real normal distributions, as can be found for instance in Fahrmeir and
Hamerle [1984].

2.4 Inference on coordinates

2.4.1 Frequentist estimation

Despite the dual definitions of the last chapters, the estimation of the characteristic
measures of distributions on E is done on the coordinate space R [Pawlowsky-Glahn,
2003]. If z1,2s,...,2zy is a (random, independent) sample from a Ng(u, X), its likeli-
hood will be -

L(H,;;Zl,Z27...,ZN) = Pr [Zl,ZQ,.. JZNG D HPr Zn; by 2 (2.14)
= (2nlz) " exp —li@ —w' BT, )
- 2 n=1 - N - - =

where C is the vector of coordinates of z,, with respect to the basis of [E used to express
v and Z Note that the first equality is only valid when samples are independent. In
these conditions, the maximum likelihood is attained at the values

L
:NZ

and (,; is the i-th coordinate of the n-th observation.

The estimators (2.15) are mazimum likelihood estimators in E, and satisfy the same
properties as the classical maximum likelihood estimators of the parameters of a normal
distribution, as summarized in most statistical textbooks, e.g.Fahrmeir and Hamerle

=>
IJ\\

N
. ) 1 .
and X = (0y) where 06y = N Z Cui = Goj — G- G5, (2.15)
n=1
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[1984]. In particular, the mean is the best linear unbiased estimator of E [¢], the first
moment of the real coordinates of Z.

Being functions of a random sample, these estimators are random themselves too.
It is useful then to replace the point estimations, specially for central tendency measure,
by confidence region estimations for a given error probability «. Using the fact that

N(N — D)
D(N —1)

-1

[0

Q= C-w'-E -((—p~FDN-D), (2.16)

it is possible to define an hyper-ellipsoid centered on the estimator § which contains
the true value of p with a confidence of 1 — a,

-1

. D(N —1)
TSN D)

1)

Pr @ — E)t . -Fo(D,N —=D)| =1—q, (2.17)
being F(D, N — D) Fisher’s F distribution with D and N — D degrees of freedom, and
Fo(D, N — D) its upper tail o quantile. These concepts and equalities are extracted
from Fahrmeir and Hamerle [1984].

Finally, if we are interested on point or confidence-region estimations of a central
tendency characteristic element, we can apply the results of equations (2.15) and (2.17)
to the basis of E. The obtained element is the best linear unbiased estimator of the
first moment of Z regarding the geometry of E [Pawlowsky-Glahn and Egozcue, 2001,
Pawlowsky-Glahn, 2003].

2.4.2 Bayesian estimation

If we assume that the parameters themselves © and X are also random, as the esti-
mations resulting from (2.15), there is another way to estimate them from a sample
Z1,Z9,...,2y ~ Ng(p,X). This uses Bayes’ Theorem. This is again a classical issue,
and many textbooks may be found which treat it. We loosely follow the exposition by
Leonard and Hsu [1999]. The next section presents examples of such an estimation.
The first step in the Bayesian estimation procedure is the collection and encoding
of all the available prior information on the sought parameters. This encoding assigns
a prior distribution to these parameters, denoted by Pr [E, Z} . In this way, the analyst
explains which of their values are more or less likely in her opinion.
The second step is the computation of the likelihood of the sample using (2.14).
The final step is the combination of both through Bayes’ Theorem,
Pr M,gzl, Zo, ... ,ZN] x Pr [zl,ZQ, e ,Z]ﬂﬁ,é} - Pr [H’ E} , (2.18)

to obtain the so-called posterior distribution of (u,X). Expression (2.18) integrates
the information and uncertainties on the knowledge of the values of the parameters
before looking at the sample, and the information drawn from the sample. If instead
of the whole distribution we look for a single value of the parameters, either the mode,

the mean or the median (in single-parameter cases) of their joint posterior distribution
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could be chosen, and it is equally possible to define a suitable posterior confidence
region.

However, in this work interest lies in the computation of probabilities that Z lies
in certain hazardous regions. In this situation, we want to take into account all the
information available, even the information on how uncertain is the obtained prediction.
Given a region A C E for each value of (u,X) we can compute a hazard probability

p(A) = Pr [Z € Alﬂ?é] = /Afz(z;g,;)dz,

which will appear in a proportion Pr [H,gzl, Zo, ... ,zN] . Since these proportions sum
up to one, they represent the probability density of p(A). Again, we can characterize
this density either by confidence intervals, quantiles, or through its mean value,

p(A) = /Pr [Z € Alp,X] - Pr [p, 2|21, 2o, ..., zn] d(p, X). (2.19)

Expression (2.19) gives the predictive distribution of Z. Pay attention to the fact that
here Z is a random vector and z; are known vectors. Finally, the predictive density
can be readily obtained using the Radon-Nykodym derivative (eq. 2.4), although it is
seldom used in this work.

2.5 Case studies

2.5.1 Water conductivity as a real random variable

Before heading to more complicated (and interesting) cases, let us consider the con-
ductivity variable of the Gualba data set. Let Z be the random variable measured
conductivity. Conductivity is defined as the ability of a medium (water) to allow the
flow of electrons. In this case, it is measured in uS/cm. Water conductivity is the ad-
ditive result of the contributions of each one of the present ions, weighted in function
of their electric charge. Thus, it seems reasonable to consider that differences among
samples of conductivity should be measured using substraction. This points out to the
use of an additive scale for conductivity, although its sample space is the set of positive
real numbers (denoted by R,).

The real line with an additive scale structure (denoted by {R,+,-}) is the classical
Euclidean space. Given a = (a),b = (b) € E = R and A € R, its main operations are
defined as the classical ones:

inner sum: sum of components, adbb = (a + b)
external product: product of the components by the scalar, \oa = (A - a)
distance: absolute difference of the components,

d(a,b) = |a — b| (2.20)
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scalar product: direct product of the components, (a,b)g = a - b.
With these operations, the following vectors of R deserve to be mentioned:
neutral element: n = (0)

basis: either e = (1) or € = (—1) can be considered as (ortho)normal basis of R as an
Euclidean space; if we take the first one, the coordinate of a vector a € R in this
basis will be
a = (a,e)g = a.

Thus, if E = R we identify as the same thing the vector a, its value (a), and its
coordinate . But this will not be the case in other spaces.
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Figure 2.1: Histogram of conductivity data set against the normal distribution, with
maximum likelihood estimates of the parameters. This data set was taken at the
Gualba station, during July 2002, and it contains 725 samples. Note the clear bi-
modality of the data set, which we will ignore in this step. The analysis of this data
set is completed in section 3.6.

The normal distribution on R can be found in all textbooks on statistics, since it
is the classical normal distribution. Figure 2.1 shows the shape of this distribution
compared with the histogram of the conductivity data set. Note that the histogram
classes have the same length according to (2.20). Note also that the fit of the model is
unacceptable, since it does not capture the clear bi-modality of the data. However, at
this step of the analysis, we use this data set only for illustration. A further discussion
will follow in future chapters (section [3.6]is devoted to its analysis). The estimated
parameters of this normal distribution are y = (i) and ¥ = (62) are the maximum
likelihood estimates of the sample, B N

i = 996.309S/cm  and 62 = 22992.3 (uS/cm)? .
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Figure 2.2: Joint posterior distribution of u and o parameters for conductivity of the
Tordera river at Gualba, measured during July 2002. Some isodensity levels—from
107% to 0.5—are shown. The only information provided by the prior distribution are
the limits of this map. The shape is inherited from the likelihood of the sample.
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Figure 2.3: Complementary of the predictive distribution of conductivity at Gualba for
the month of July 2002, jointly with the 5% and 95% quantiles of the distribution of
hazard of exceedance. For a certain threshold, the predictive probability and confidence
intervals for it can be read from the plot.
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A confidence interval for the mean as a characteristic measure can be easily computed
attending to the fact that for D =1 and N = 725, the distribution of \/Q ~ t(N — 1)
in (2.16) is a Student’s t, which implies that expression (2.17) is simplified to

H— < 1. 975(N — 1>:| = 0.95,

and, provided that tgg75(N — 1) ~ N (0,1) = 1.96, we can be 95% confident that the
true mean p will satisfy

pwe (p—196-6,0+1.96-0) = (699.11,1293.51) uS/cm.

To try a Bayesian approach, we must first define a prior joint distribution for both p and
o. After considering the characteristics of the basin, essentially the small proportion of
carbonate landscape and the low-medium human presence, we believe that the mean
conductivity will be reasonably below 1250u.S/cm, and above 750uS/cm. Without
more information, the central quarter of this range seems to be a good range of variation
for . If we consider the mean to be in the center of the guessed range of variation,
and this range to be roughly equivalent to a 95% interval for conductivity, this would
imply an approximate o equal to the range divided by four, thus 125uS/cm. A possible
range of variation of ¢ could be to take the half and the double of this value. Lacking
more information, the prior distribution is a flat distribution between these values.

Updating this distribution by the likelihood of the sample of conductivity through
(2.18), we obtain the joint posterior distribution of 1 and o represented in figure[2.2!

However, we finally want to compute the hazard that Z > z, at each interesting
threshold z. Table 1.1 summarizes the thresholds of the ACA (Catalan Water Control
Agency), to determine to which uses a water mass may be devoted, as a function of
its conductivity. Figure 2.3/ shows two quantiles of hazard of exceeding 1000 w.S/cm,
and the predictive distribution (2.19) of conductivity, which tells that one can be 95%
confident that the hazard of exceeding the level 10001S/cm is below a probability of
0.51, with a predictive probability of 0.49.

In conclusion, if we would like to assess the water quality of the Tordera river
at Gualba station according to the hazard of exceeding the threshold 1000uS/cm,
we would say that this hazard is at most 0.51 probable. Whether this is finally an
acceptable level or not will obviously depend on the water management policy and the
expected water use.

2.5.2 Ammonia system as a positive random vector

In the Gualba data set we have the information to characterize the ammonia chemical
system of this river. Ammonia (NHj) is not directly measurable, but it can be computed
by using the equilibrium constant equation (1.3). The content in the phases of the
system plus the equilibrium constant K, can be regarded as a random vector Z =
(H30+, K., NH;, NHg) with positive components. Attending to the fact that acidity is
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always accounted for through pH instead of by direct H3O% content, we will consider
that the sample space for Z, the positive orthant of R* (writen as R?%), may be given
a relative scale where comparison between vectors should be done on their component
logarithms.

To build an Euclidean space structure on ]Ri describing this logarithmic scale, we
need the following operations

inner sum: product of vectors component-wise, adb = (ay - by, as - ba, a3 - bs, ay - by)
external product: component-wise power of the vector by the scalar,

A A A A
)\@El - (al,CLQ,CL3,CL4),

distance: square root of the squared difference among logarithms of components,

a a a a
d(a,b) = \/IOg%o b_l + logi, b_2 + log, b_3 + logi, b_4 (2.21)
1 2 3 4

scalar product: sum of component-wise product of logarithms,

(a,b)g = logy, a1 log;, b1 + logy, azlog, by + logy azlog,, bs + log, as logyg ba.

where a = (a1, a2, a3, a4),b = (b1, ba,b3,b4) € R} and A € R. With these operations,
the vectors of R} with a special meaning are:

neutral element: n = (1,1,1,1)

basis: a set of four vectors, with 1 in all components, except by 1/10 in one, like
ey = (1,1/10,1,1). There are four vectors of this kind in this orthonormal basis,
and the i-th coordinate of any vector a € R% will be

which corresponds to the chemical potential of the i-th component. Thus, the real
vector of potentials ¢ = (pH, pKa,pNHy, pNH3) is exactly the vector of coordinates
of Z = (H30+7KQ,NHI,NH3). From this point of view, the equilibrium equation
of Ammonia (1.3) define a 3-dimensional vector subspace of Ri or, alternatively, a 1-
dimensional space, that of ammonia content, a random variable Z, € R, as Z4 = [NHj].

The normal distribution on R, was defined by Mateu-Figueras et al. [2002]. It
is compared in figure 2.4 with the histogram of the computed Z, values. Note that
the classes of this histogram have the same length according to the distance in R,
(2.21). We assume the coordinate (4 to be normally distributed in R, so that we can
apply the same procedures of section 2.5.1/to estimate its parameters. These estimates
are summarized in table 2.1. If interest lies on computing a mean value of ammonia
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Figure 2.4: Histogram of ammonia content ((4), compared with a normal on R, dis-
tribution using maximum likelihood estimates for the parameters. This data set was
taken at the Gualba station, during July 2002, and it contains 745 samples. Note that

the horizontal scale is represented in molarity units

variable model mean 95% confidence interval
@ Normal on R 5.77 (5.035 , 6.526)
Z, Normal on R, | 16.75- 107" (3.04,92.17) - 1077
Zy Lognormal (on R) | 19.74-1077 -

Table 2.1: Point and interval estimates of the mean of ammonia coordinate (4, as well
as ammonia mean value, considered as a normal variable on R, and as a lognormal
variable on R. Note that, when taken as a vector of an Euclidean space, Z is written
using a boldface latin character, whereas we use a normal character when it is consid-
ered as a real value. The data set was taken at the Gualba station, during July 2002,

and it contains 745 samples.
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Figure 2.5: Joint posterior distribution of x4 and o parameters for ammonia content in
the Tordera river at Gualba during July 2002. Some isodensity levels—from 107" to
0.5—are shown. The only information provided by the prior distribution are the limits
of this map. The shape is provided by the likelihood of the sample.
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Figure 2.6: Complementary of the predictive distribution of ammonia content in the
Tordera river at Gualba during July 2002, jointly with the 5% and 95% quantiles of the
distribution of hazard of exceedance. For a certain threshold, the predictive probability
and confidence intervals for it can be read from the plot. Note that the horizontal scale

is expressed in molarities.
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content, then we must apply the central tendency estimate to the basis of the sub-space
of Z4,
1 B
E. [Z4) = 1 ==
ol =je = (1)

which is a valid procedure for both point and interval estimates (table(2.1). The normal
distribution in R, has exactly the same probability law as the lognormal distribution
[McAlister, 1879, Aitchison and Brown, 1957]. However, they are defined on differ-
ent spaces, respectively R, and R, and their densities are different, as well as their
expectations. The expectation of Z, as a lognormal variable is defined in R as

! )(H% . (2.22)

E[Z)] = (E

Table 2.1 includes also this lognormal expectation, without confidence intervals, be-
cause there exists no clear way to build them, according to Mateu-Figueras et al. [2002].
These authors give also a detailed comparison of these two distributions, their moments
and properties.

We followed a Bayesian estimation procedure defined on the coordinate (4 as we
did for conductivity in the last section. Again, the prior distribution was considered
uniform between a set of limits chosen a priori. Updating through (2.18) by the
likelihood of the sample of Z,, ammonia content, we obtained the posterior map (figure
2.5). The shape of this posterior distribution is essentially inherited from the likelihood,
while the limits were informed through the prior distribution.

Using this posterior distribution, we computed the hazard associated with each
possible threshold value of ammonia content. The distribution (figure 2.6) of this
hazard is expressed through some quantiles and the predictive distribution for Z, given
the observed sample. In this plot, one reads the hazard of exceeding the level of
0.025mg/l (molarity ~ 1.5-107°%) of ammonia content as being below 0.58 with a 95%
of confidence, or with a predictive probability of 0.56.

Therefore, if we want a water quality index to measure the hazard of exceeding the
threshold of 0.025mg/l of ammonia content, in the Gualba station we would say that
this hazard is slightly below 0.6 probable in the period comprised between July 1, 2002
and July 31, 20002. Again, this will surely be an unacceptable level, but it depends on
the water management policy and use.

2.5.3 Moss pollution as a random composition

In the Ukrainian Carpathian Range data set we are interested in the concentration of
three heavy metals in moss samples: content in iron (Fe), lead (Pb) and quicksilver
(Hg). These heavy metals are either given in parts per million (ppm), proportions
(parts per one) or in relative mass percentage (%), which indicates that they are
compositional data. The sample space of compositional data is the D-part Simplex,
denoted by SP. A meaningful scale for compositional data takes into account that
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Figure 2.7: Ternary diagram of the composition (Fe, Pb,Hg), compared with some
isodensity levels (corresponding to 50%, 90%, 95% and 99% probability regions) of
a normal distribution on S* distribution using maximum likelihood estimates for the
parameters. The red star indicates the center of the diagram, and the red solid circle
the true mean of the data set. The sample (black circles) is perturbed, so that its mean
coincides now with the center of the diagram.

Figure 2.8: Ternary diagram of the composition (Fe, Pb, Hg) (left) and scatter-plot of
their coordinates (right), with 90%, 95% and 99% confidence regions drawn on the
center (red star) and the mean value (red solid circle) respectively. Note that the
coordinate diagram shows the true position of the sample (black dots), around its
mean, whereas in the ternary diagram the sample has been perturbed to the center.
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the total sum of a composition is not a relevant information: either the composition
has been artificially forced to sum up to a constant (it has been closed), or this total
amount is conditioned by the sampling procedure and does not inform us about the
studied process. A compositional scale considers also information only from relative
importance of components.

Let Z = (Fe, Pb, Hg) be the random composition indicating the proportion of these
three elements in each sample. Its sample space is E = S*, and it can be given an
Euclidean structure satisfying its relative scale [Billheimer et al., 2001, Pawlowsky-
Glahn and Egozcue, 2001] through the following set of operations:

inner sum: perturbation [Aitchison, 1982], closed product of vectors component-by-
component, adb = C (a; - by, as - by, az - b3)

external product: power operation [Aitchison, 1986], closed component-wise power

of the vector by the scalar, \&a =C (ai\, ay, ag)

distance: proportional to the square root of the squared difference among all possible
log-ratios of components [Aitchison, 1982]:

da(a,b) = DZ(I ——1 —)2 (2.23)

1<) J

with D = 3, the number of parts;

scalar product: sum of component-wise product of log-ratios [Aitchison, 1984,

b;
b)s = 1 )
a A Z 8 ‘3/0,1 a9 - CL3 \3/ b1 . bg . bg

where a = (ay, as,a3),b = (b, by, b3) € S® are two composition, A € R is a real value,
and C(-) represents the closure operation, which divides each part in the composition by
their sum in order to obtain proportions. With these operations, the following vectors
of S? have a special meaning:

neutral element: n=C(1,1,1) =(1/3,1/3,1/3)

basis: one possible orthonormal basis is [Egozcue et al., 2003]

er=C (x0T Zrew 1) e =C (Lo sen )

and the corresponding coordinates of any vector a € S* will be computed using
(2.2), which gives the expressions
1 Fe? 1  Pb

= —=1 =—In—. 2.24
o= el = sl (224)
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Since the dimension of the D-part Simplex is always D — 1, the basis has only two el-
ements. Consequently, three-part compositions have only two degrees of freedom, and
can be meaningfully plotted in 2-D plots, usually called ternary diagrams. We assume
these two coordinates (aq, ) of the random composition Z to follow a joint normal
distribution, thus Z follows a normal distribution in the simplex [Mateu-Figueras et al.,
2003]. A formal definition is included in section 2.6. Figure 2.7 represents the studied
sample, previously centered and with some isodensity levels of the fitted normal dis-
tribution on the Simplex. The centering operation perturbs the sample to the center
of the plot, without altering the spread structure of the data set and enhancing its in-
terpretability [von Eynatten et al.; 2002]. The normal distribution appearing in figure
2.7/ has as parameters the maximum likelihood estimates of mean and variance matrix
for the data set coordinates, which are

(i [ —5.8567 5 _ on o012 \ _ ( 0.4332 0.0048
\ e ) 2.6782 =\ gp 09 )\ 0.0048 0.2067 |-

If we want to translate this characteristic measures to the Simplex as characteristic
elements, we can apply directly the maximum likelihood mean estimate to the vectors

of the basis, and obtain the so-called (metric) center of the composition [Aitchison,
1982, Pawlowsky-Glahn and Egozcue, 2001],

=2

cen(Z) = ji0e;Bfis®ey = (1.13-107%,0.977,2.21 - 107?) .

As was stated in section 2.4, this characteristic element of central tendency is an
unbiased estimator of the mean of Z in the Simplex, n = E4 [cen(Z)SE4 [Z]]. The
same operation can be applied to the confidence regions drawn with help of expression
(2.17). Figure 2.8/shows the data set, its center and some confidence regions in both
the space of coordinates and the Simplex.

Though the high dimension of the problem, a Bayesian approach would be inher-
ently no more difficult in this case as it was for conductivity or ammonia content in the
other case studies. After specifying a joint prior distribution for the five parameters
of the system, the updating of the prior by the likelihood of expression (2.14) would
be a straightforward task. The only problems would involve computation time and
representation of the posterior maps, since the five dimensions cannot be represented
at a time. Also, its usefulness in this problem is low, because here we are not interested
in computing probabilities of hazardous events.

2.6 Distributions on the Simplex

This section summarizes some useful distributions of random vectors on the Simplex,
which are afterwards used in chapters |6/ and 7.

Let S be the D-part Simplex, the set of vectors z = (21, 2s, ..., zp) so that z; > 0
and 3P 2 = 1. Aitchison et al. [2002] showed that the Simplex, jointly with the
operations of perturbation and powering, is a vector space, and Billheimer et al. [2001]
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and Pawlowsky-Glahn and Egozcue [2001] that it may be indeed given an Euclidean
space. This structure is detailed in section 2.5.3. Taking profit of it, Pawlowsky-Glahn
[2003] defines a Lebesgue measure on the Simplex (2.3), which we will denote as Agp.
The relationship between this measure and the classical Lebesgue measure Agp-1 on
RP~! embedding S” is given by

d)\g(z) 1

d)\RDA(Z) N \/521 <29 - "ZD.

The following distributions will be defined with respect to either one of these measures.
The other definition follows immediately by application of equation (2.5).

2.6.1 The Dirichlet distribution

Definition 2.22 Let Z be a random vector on the Simplex. Then it has a Dirichlet
distribution with a vector of positive parameters 8 = (61,05 . ..,0p) with respect to the
classical Lebesgue measure Ag if its density function f(z) can be expressed as

ZND(Q)@W):ZI_; — H F( qu{zesf)} (2.95)

where T'(6) is the gamma function, and 6y = 3.1, 6; [Abramovitz and Stegun, 1965].

This distribution is continuous, and completely bounded in the Simplex S”. In the
case D = 2, it corresponds to the Beta distribution [Abramovitz and Stegun, 1965].

Property 2.3 With respect to the classical Lebesque measure Ag, the characteristic
descriptors of a Dirichlet variable are:

1. mode: 2520(91—1,92—1,...,9D—1) = 91—1,92—1,...,9[)—1),

7Dl
2. mean: z=E[Z] =C(01,0,,...,0p) = %(01,92,...,01)),

3. variances: o2 = Var[Z;] = 2%t v —1 9 D,

62 (60+1)°
4. covariances: 0;; = Cov [Z;, Z;] = %, .7 =1,2,...D,
5. covariance matriz: ¥ = Var [Z] = ;=5 L (diag[2] — z- Z)

with C(-) denoting the closure operation, and considering z as a column-vector.

Actually, the density (2.25) is obtained as the closure of a vector of random variables
following independent equally-scaled gamma distributions. The correlation structure
exhibited by the parts of a vector Z ~ D(f) is particularly weak due to this parental
independence, and it is completely inherited from the closure operation. This same
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closure is also responsible for the fact that the covariance matrix ¥ of Z (in property
5) is singular. -

The Dirichlet distribution has some interesting properties of pseudo-marginalization
with respect to the parts. To summarize them we need the following definitions, due
to Aitchison [1986].

Definition 2.23 A selection matriz S is a (C x D) matriz (1 < C < D) with C
elements equal to one, exactly one of them in each row and not more than one in each
column. The remaining C(D — 1) elements are zero.

Definition 2.24 An amalgamation matriz A is a (C' x D) matriz (1 < C < D) with
D elements equal to one, exactly one of them in each column and not less than one in
each row. The remaining D(C — 1) elements are zero.

These properties are stated in the form of propositions. Formal proofs can be found
in Haas and Formery [2002], jointly with other properties.

Proposition 2.4 If Z ~ D(0), for any selection matriz S, the vector C (é Z) has as
its sample space the C'-dimensional Simplex, and as distribution a Dirichlet distribution
on S with a vector of parameters S-0.

Proposition 2.5 If Z ~ D(6), for any amalgamation matrix A with two rows, the

vector C (é Z) has as its sample space the 2-dimensional Sz'mple;, and as distribution
a Dirichlet distribution on S* (or a beta distribution) with a vector of parameters A-0.

Definition 2.25 The Dirichlet probability density function with respect to the Lebesgue
measure in the Simplex is

flz) = @%~H2§U{z€8’j}, (2.26)

which corresponds to the application of equation (2.5) to change the measure of repre-
sentation of a probability density.

As far as we know there is no closed analytical expression for the mean vector and
the covariance matrix of the Dirichlet distribution with respect to the geometry of the
Simplex.

Property 2.4 The mode of the distribution is
1

2520(91,02,...,9[)) 9
0

(917927 <. 79D)7

and it coincides with the value of the mean in the RP geometry.

Proof The equations of the densities (2.26) with parameters #; and (2.25) with pa-
rameters a; = 0; + 1 are proportional. Replacing this second set of parameters in the
expression of the mode in property yields directly the result. O
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2.6.2 The Normal distribution on the Simplex

Definition 2.26 (Normal distribution on the Simplex) Let Z be a random vec-
tor on the Simplex. Then it has a Normal distribution on the Simplex [Mateu-Figueras
et al., 2003] with respect to the Lebesque measure on the Simplez, )s, if its density
function f(z) can be expressed as

I {z € SD}
X
(2m )PV g2

Z ~ Ngp(p,X) & f(2) =

with parameters p = (py, pla - .., ip-1) and X = (o), a positive definite symmetric
matriz. The vector z_p stands for the vector z without the last component.
Alternatively, this density can also be expressed by

D—-1D-1

D
fi@) oc [Ler o= [T TL ™7™,
=1

i=1 j=1

with 0_, =X""pu, 0p = — Zf;ll 0, and ¢ = —X~'/2. Mateu-Figueras et al. [2003]
defined this distribution in terms of the coordinates of Z with respect to an orthonormal
basis of the Simplex, and showed the equivalence between it and definition [2.26. This
equivalence is also implied by the specification of the normal distribution using a vector
mean and an endomorphism variance, as in definition [2.21.

Property 2.5 With respect to the Lebesque measure in the Simplex, the characteristic
descriptors of a normally-distributed (on the Simplex) random vector are:

1. mode: zs = C(exp fu1, exp iy, . .., exp pp_1,1) = C(exp i, 1)
2. mean: z=E, [Z] = C(expp, 1)
3. covariance matriz: Vary [Z] = X.

A proof follows immediately from the properties of the normal distribution and the
definitions of mean and variance of section [2.3.2. It can be found also in Mateu-
Figueras et al. [2003].

Definition 2.27 The additive-logistic-Normal distribution function (with respect to
the classical Lebesgue measure) is

I{zesP}
Z ~ ALN(p,X) < f(z) = /2
a T2, = (2 - 1)

=1

1 _ ! _
X exp <—§ <logZZ—DD _E> .;*1, <logzz—DD _H>> ,
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which corresponds to the application of equation (2.5) to change the measure of repre-
sentation of a normal on the Simplex density (definition[2.26).

Proposition 2.6 If Z ~ Ngp (H,g), and S is a selection matriz taking at least the
last element, the vector C (é* . Z) has as its sample space the C-dimensional Simplex,
and as distribution a Normal distribution on S¢ with a vector of means S" - p, and

a variance matriz S* - X* -é*t, where S* is S without the last row and column. An
equivalent property holds for additive-logistic-normal distributions.

2.6.3 The A distribution

Definition 2.28 (Aitchison’s A distribution) Let Z be a random wvector on the
Sitmplex. Then it has an Aitchison’s A distribution with respect to the Lebesgue measure
on the Simplex, Xs, if its density function f(z) can be expressed as

D—-1D-1

Z ~ A9, ¢) < log f(2) Z 0;log z; + Z Z ®ij log — log —, (2.27)

=1 j=1

with parameters a vector 0 and a matriz ¢. It is useful also to call 6y = Zi’il 0;. Note
that k(0, ¢) is here an accessory functz’on,_ closing the density to integrate to one. The
conditions on the parameters to obtain a proper distribution are either:

1. the symmetric negative definite character of ¢ (thus its invertibility) and 6y > 0,

2. the non-positive-definite character of ¢, and 0; >0 for all i.

Property 2.6 (Density decomposition and quasi-moments) If the matriz ¢ is

invertible, the A distribution can be parametrized using 0y, a matriv X = —29_1, “and
a vector =X -0, with " =0 _p, — 0o/ D, which gives B

t
log f(2) = K(0o, 1, 2 Zlog 55 (log 2D _ u) DIy (logz_—D — H) . (2.28)
ZD
Under the first set of conditions for properness of the A distribution, its density is
proportional to a normal in the Simplex density multiplied by a symmetric Dirichlet
density. When 6y = 0, the Dirichlet contribution is a uniform, and the Aitchison
distribution becomes the Normal distribution on the Simpler. Thus the parameters
p and X give approximations to the measures of central tendency and dispersion of
the distribution for small 0y, and they are exactly these parameters when 0y = 0,
accordance with propertyl2.5.
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Proof: Call ¢ = = (log ;—;) to simplify the expressions. To proof the identity of
expressions (2.27) and (2.28), it is enough to take ¢ = —X/2, and develop the products
by components: B

D t
log f(z) = li(eo,ﬂ,g)‘f'_ozlogzi"‘ <10gZZ_—D—g) :

[
/;\
@)
o
SHIS
|
|
~__
Il

D D—1D-1
= Z Elog Zi + Z Z <1¢13C] + Z Cze* =
=1 1
D " D—1D-1
= —1—2 logzz—i—ZQlog——i—ZZlog QS”log—:
Zz Dl111:)J11

— ZﬁologzanZQ*logzz—l-Zzlog—¢zg10g—

i=1 i=1 j=1

using the symmetry of ¢, and the equivalence ¢ - p = —X/2 - p = —0"/2 introduced

in definition Note that 05 = — Zfi—ll or. The sought identity directly results by
taking 6, = 0 + 6,/ D.
Taking exponentials of the vector (2.28]), we obtain

D t
00 1 Z_p 1 Z_p
f(z)ocexp(E —logzz») -exp( (109;——,“) on (log——,u>>
i=1 D “D ZD

clearly showing that the density of the A distribution (under the assumptions of def-
inition 2.28|1) is proportional to the product of a normal in the Simplex distribution,
and a symmetric Dirichlet distribution. This property will have its importance when
simulating samples from an A distribution. O

Proposition 2.7 (Posterior density) The updating of a normal distribution on the
Simplex by a multinomial likelihood delivers a posterior distribution following an Aitchi-
son’s A distribution with respect to a Lebesque measure on the Simplex. In general, the
Aitchison’s A distribution is a conjugate prior of the multinomial distribution.
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Proof: This proposition follows immediately from definitions2.26 (normal distribution
on the Simplex) and [2.28 (A distribution on the Simplex), the fact that a multinomial
likelihood is proportional to a Dirichlet distribution, and property 2.6. O

Definition 2.29 The A density function [Aitchison, 1986] with respect to the classical
Lebesque measure s

D D-1D-1

log f(2) = v(8:¢) + > (6~ Dlogzi+ ) > éylog zZ_D o »:_;

- 4 i=1 j=1
which corresponds to the application of equation (2.5) to change the measure of repre-
sentation of an A density (definition 2.28).

This is the original definition given by Aitchison [1986], with a slightly different
parametrization of ¢.

Property 2.7 (Maximum) The A distribution has its mode at the value z satisfying
the non-linear system of equations

0=0_p 00 2zp+20 log =2,
= ZD

under the Lebesgue measure on the Simplex.

Proof: Using ¢ = log Z;D, we want to maximize expression (2.27) with respect to ¢.

D
This is achieved by taking the first derivative and equating it to zero:

dlog f(z) dlogz

0= = 2¢ -
TS i Ll
where
dlog z; 1 dz 1—2; i=y; 5
= - = 3 3 = 04 — Z',
de Z; dCJ Zj, 7 7é - J J
given that
TR ),
dZi _ ie—g _ (1+Z€;11 e<k>2 = Zj Zja =17, (229)
dG; dG 1+ e e iz, i # 7.

<1+sz;11 ek )2

Note that the particular case ¢ = D is also included, by considering (p = 0. Then, for
the j-th equation we need to know

D

dlogz dlog z;
. 9 pr— 6@ =
g~ 2 dg;

NE

D
((Sij — Zj)el' = 9]‘ — Zj Z@l = (9]' — zj(%
i=1

i=1 i=1
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which yields for each equation
D-1 .
0=0; — 200 +2  ¢jlog—,
J 370 ; J Zp

thus obtaining the desired expression. To be sure that it is a maximum, we take a
second derivative, write expression (2.29) in matrix form, and obtain

d

d_C <Q—D —00 *Z_p —|—2££> = 22—6’0 . (dlag [Z_D] —Z_p 'Zt_D) .

This is a non-positive definite matrix (¢) minus a positive definite matrix (being a
full-rank minor of the variance of a Dirichlet-distributed variable, in accordance with
property , and consequently the function is convex everywhere and has a maxi-
mum. U

2.7 Remarks

Up to here, we have been considering the effect of choosing an Euclidean structure
to describe the scale and the sample space of a random vector on some classical sta-
tistical issues. We have shown through three examples that many sample spaces can
be meaningfully structured as Euclidean spaces. This allows us to express the data
as coordinates in a given basis, and work on these coordinates as real numbers, using
a classical approach on them. This is what we could call the principle of working on
coordinates [Pawlowsky-Glahn, 2003].

After realizing the importance of taking into account a meaningful geometry of the
sample space, we sought a way to monitor the uncertainty affecting the estimations.
Since we are interested in hazard estimates, i.e.in probabilities of being above certain
toxic thresholds, we applied conventional Bayesian methods to estimate it, and ob-
tained both their central estimates (the predictive) and their whole distribution (as a
family of quantiles).

These hazard estimates were used to quantify the quality of water in the studied
river. The conductivity quality index had a value of ~ 0.50 which corresponded with
the 95% upper bound of the estimates of the probability of exceeding the threshold
1000pS/em. Equivalently, the ammonia quality index gave a value of 0.6, associated
with the threshold of 0.025ppm. Given the relatively low human impact on the basin,
the high value of these indices is unexpected, and could be related to a kind of uncer-
tainty we have not monitored up to now: time dependence.

The methodology applied is based on the assumption that the different samples
are independent of each other, explicitly stated in section 2.4. However, from the
observation of time evolution (figure|2.9) of these measurements it is evident that they
are mutually strongly dependent, with a clear daily drift.
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Figure 2.9: Time evolution over July 2002 of all the measured variables, expressed in
coordinates in their respective sample spaces. From top to bottom: pK,, pH, conduc-
tivity (in uS/cm with reference to the right scale), pNH3 and pNH,.
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2.8 Addendum: invariance of coordinate mean and
variance

We include here the proofs of the identification between means and variances both in
coordinates and as vectors/endomorphisms, or, in other words, that the definitions of
these moments given by Eaton [1983] and Pawlowsky-Glahn [2003] are consistent.

Proposition (2.2 Let Z be a random variable in E an Euclidean space. Then, the
mean of the coordinates of Z equal the coordinates of the mean of Z on E with respect
to any basis (page|21)

Proof: Let E be an orthogonal basis of E (definition 2.8), and e; its i-th vector. Then,
using the definition of mean on E (2.6) one may write

(ei,Z)r = E[(e;, Z)g]
Dividing both sides by (e;, €;)r, one obtains

(e,2)s _ E[(es, Z)g]
<eiaei>E (ei,eihz '

Note that this expression is always valid because e; # n, and thus (e;, e;)g > 0. Taking
into account that (e;, e;)g is constant with respect to Z, one can exchange the division

with the expectation,
(ei,Z)p B [(emzﬁa}
(ei, ek (ei, ek
which thanks to expression (2.2) ensures us that the coordinates of the mean of Z on

E will be the mean of the coordinates of E in an orthogonal basis. If we denote by Z
the coordinates of Z, and by ¢ those of z, we may write this last expression as

§ =E[Z]. (2.30)
Now consider F' an arbitrary basis. To change coordinates from E to F we need the
matrix of change of basis , containing in each column the coordinates of an element of
E with respect to the basis F. Note that both this matrix and the vectors of expression
(2.30) are real, and they can be operated with standard real algebra. In particular, to
change the basis in which vectors are represented we use matrix multiplication,

p-C=y-ElZ],
and since this product is a linear operation, it commutes with the expectation operator,
giving

2 {=Elg-2],
thus

Cp = EZel,



46 Preliminary concepts

where the subindex - denotes the basis used, which now is an arbitrary one. U

Proposition (2.3 Let Z be a random variable on E an (C-dimensional) Euclidean
space. Then, the variance matrix X of the coordinates of Z with respect to an orthonor-
mal basis equals the matriz representation of the variance (as an endomorphism %) of
Z on E with respect to that basis.

Proof: If we work in an orthonormal basis, we may use property|2.2 to express each of
the vectors and operators from (2.7) in coordinates with respect to this basis, yielding

€2 vV=E[Z-0O,Z-0],

which can be developed as

c  c c < i
Zfizzijvj:E Zfi (Zi_Ci)ZUj (Z;—G) |,
=1 7=1 =1 7=1

and reordered to

NS s, =SS B (46 (7 -0)]

i=1 j=1 i=1 j=1

This expression must be true for all £ and v, which implies that the coefficients must
be equal, B
S =E(Zi-G) (- ¢)]- (2.31)
Note that there is a conceptual difference between both sides of the equality. The
left-hand side is the (i, j) element of the matrix associated with the endomorphism %
once it is expressed in an orthonormal basis. The right-hand side is the (real classical)
covariance of the (7, j) coordinates of the random variable Z expressed in the same basis.
In other words, we have proven that Pawlowsky-Glahn [2003] definition of characteristic
element of dispersion is equivalent to the definition of variance on [E as an operator
given by Eaton [1983]
0



Chapter 3

Geostatistics in the real space

This chapter presents the basics of the theory of regionalized variables, or geostatis-
tics, originally developed by Matheron [1965]. These techniques allow the treatment
of samples which are non-independent due to their spatial proximity. Recall that
classical statistical methods call for an independent, identically-distributed sample.
Instead, geostatistics assumes some sort of spatial stationarity, and a known model of
dependence of the regionalized variable. This is usually the variogram, which explains
how different become two samples as the distance between their sampling locations
increase. Using the variogram and the stationarity assumption, both inference (esti-
mation of the mean) and prediction (estimation of the value at an unsampled location)
can be achieved with kriging techniques. Kriging yields best linear unbiased estimators
and predictors, and allows to describe the uncertainty attached to the prediction with
an error variance. These results give the probability function of the sought variable, in
the case of a Gaussian model. Geostatistics deals also with support effects: a property
is always measured over samples of a given volume (area, length, duration). We can
define a different regionalized variable for each support, and model the relationship
between them. The final interest of such an approach is the inference of spatial (or
time) averages on given blocks (e.g.ten-minutes average of conductivity) from data
measured in smaller supports (e.g.five-seconds average of conductivity). Apart from
the seminal work by Matheron [1965], a classical comprehensive reference on geostatis-
tics is Journel and Huijbregts [1978], and introductory ones Clark [1979] and Clark and
Harper [2000]. An introductory approach focused on multivariate cases can be found
in Wackernagel [1998]. We closely follow the exposition of Chiles and Delfiner [1999],
a recent comprehensive textbook. All results summarized in this chapter are extracted
from this last book, if not stated otherwise.

3.1 Random function

A look at figure [2.9 shows that each series of the represented measurements present
a mixture of two patterns. From one side, there is a clear oscillatory trend. From
the other, a quite homogeneous noise blurs these series. The observations present

47
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a mixture of randomness and dependence. Geostatistics allows to do inference with
the random character of this sample, exploiting its non-independence through a pre-
specified structure of dependence. This section introduces the basic concepts, the next
one deals with the specification of these dependence structures, and section 3.3 presents
the inference procedure.

Let ¥ € D C RP be a point in a domain D of the space-time real space RP, with
typically p € {1,2,3,4}. We denote by Z(Z) € R” a vector-valued function of the
location # which image has as sample the D-dimensional real space, denoted RP.

Definition 3.1 (Random function) Let the function Z(Z) have as image a random
vector for any & € D C RP. Then Z(D) is called a random function (abbreviated as
RF).

Definition 3.2 (Realization) Any outcome z(Z) of this RF can be viewed as a map-
ping z(+) : RP — E, called a realization (or sample function).

In accordance with the notation introduced in chapter 2, a given realization at any
location will be denoted by lowercase characters, z(Z) = ((1(Z), (%), ..., (p(Z)) =
((&), since, being a real-valued random vector, its coordinates coincide with its values.
Uppercase characters Z(Z) = (Z,(Z), Zo(%), ..., Zp(Z)) = Z(&) denote consequently a
RF. Recall that an underlining (e.¢.¢) will represent a real-valued vector, and a double
underlining a matrix of real coefficients.

Most usually, the domain D is either a bounded continuous region, e.g.a volume of
the physical space, or an infinite series of time moments, e.g.extending from the present
to the future. A RF may be seen as an infinite collection of random vectors, where
each random vector is linked to a given position Z in the domain D. In the case of
RF's on continuous bounded domains, this collection has uncountably many elements.
The realization is then an infinite collection of fixed values, forming a mapping on the
domain D. The infinite nature of RFs and realizations preclude any direct observation
of them as a whole: instead one can only observe a given regionalized sample, the
observed values of the RF at some locations. To estimate characteristics of the RF,
or predict its value at unsampled locations, one need some further theoretical assump-
tions, discussed in detail in e.g.Chiles and Delfiner [1999]. We will only concern about
stationarity.

Definition 3.3 (Stationarity) Let Z(Z) be a RF with domain D C RP and image
RP. Then it is called

1. strongly stationary, when for any set of B, C RP and for all set of locations
{Z,} € D, the following probability is invariant by translation h:

Pr|[(Zi(Z+h) € B) N (Zo(@+h) € Bo)N ... (Zy(@ + ) € By)| =

= Pr((Zi(%) € B)) N (Z:(Z) € Bo) N ... N (Zn(&) € By)];
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2. second-order stationary, when for any pair of locations Z,, T, € D, the first two
moments are translation-invariant, or

E[Z(Z,)] =p and Cov[Z(7,), Z(7))| = C(Ty — Tn) =C

3. intrinsic, when for any pair Z,,Z,, € D, the increments (Z(Z,,) — Z(Z,)) have
zero mean and stationary variance:

E[Z(Z,) — Z(%,)] =0 and Var|Z(Z,)— Z(Z,)] = l(fm — Zp);

Definition 3.4 (Gaussian RF) A RF Z is called Gaussian if for any sample {Z,}
inside its domain D, the joint distribution is a multivariate normal,

Z(flvf%"'af]\f) NN(H,Z)

with parameters

E[Z(z))] ¢, ¢, =IN
E [Z(1)] ¢, C, Con
M= and Y= = =
b [Z(fN)] gNl QNQ QNN
with
C = C(TnTm) = B [(2(F) — (Tn)) - (Z(Z) — (Tm))'] (3.1)

A RF is called intrinsic Gaussian if for any sample {Z,} inside its domain D, the
joint distribution of the increments Y(Z;) = Z(Z;) — Z(Zn) is a centered multivariate
normal,

Y@, B i) ~ N (09))

with v a block matrix equivalent to X, but containing variances y
= - =nm

When 7, = T, C  gives the variance-covariance matrix of the function Z(%,) at
location 7, whereas for ¥, # &, one obtain the cross-covariance matrix between the
random vectors located at @,, and Z,,.

For intrinsic RF's, knowledge of the mean of the RF is not available, even it could
not exist. Thus expression cannot be used to encode the relationship between
variables at different locations. In these situations, an auxiliary function matrix is
used, which is called cross-variogram (v(Z,, %)), and is defined as

v = (E, E) = B[(Z(T) - Z(T0)) - (Z(Tm) - Z(T))] - (3:2)

From now on, it will be considered that the RF is a Gaussian function. Gaussian
RFs are a very usual assumption, and the theory of regionalized variables was originally
developed for them. They have many interesting, simplifying properties, e.g.they are
completely specified by their means and covariances (3.1). This implies that strong
stationarity of a Gaussian RF is ensured with second-order stationary.
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3.2 Structural analysis

3.2.1 General aspects

Under second-order stationarity, the covariance matrix (3.1) between the random vec-
tors Z(Z,) and Z(Z,,), located respectively at %, and &,,, does not depend on these
exact locations, but on their relative position h= Zm — Tp. This implies that it can be
expressed as

Cn@) 012(’2) Cm@)
G e B (7 0) R CES
Cpi(h) Cpa(h) --- Cpp(h)

Note that this is not necessarily a symmetric matrix. The elements of the diagonal,
Cii(h) are called (auto )-covariance functions, while those outside the diagonal, C,-j(ﬁ)
are called cross-covariance functions. The structural analysis characterizes the RF
through the study of these functions of h.

From a practical point of view, these functions are a priori never known, and they

must be estimated from the available data. When the mean p is known, and for any

direction E, the covariance between the variables Z; and Z; is estimated using

N(h)

Cij(h) = IN () D (G(@a) = i) - (G(Tm) — 1y), (3.4)

Tn—Tm~h

-

where N (h) represents the number of pairs of observed locations &, Z,, such that their
difference is approximately equal to h, with a certain tolerance [Chiles and Delfiner,
1999, p. 36]. When the mean is not known, the variogram can still be estimated as

N(h)

Y (G@En) = GE) - (G(En) = (). (3.5)

3.2.2 Auto-covariance functions

Definition 3.5 (Auto-covariance function) For a given real univariate RF Z;(¥) €
R, Z € D, the auto-covariance function is defined, according to (3.1), as

Calh) = B [(Z(@) = ) - (Z:(7 + B) - u)]

provided that the mean u; exists and s stationary.
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—

Property 3.1 The covariance function Cy(h) explains the degree of similarity of two
measurements taken at two different locations at a lag distance h. It satisfies:

1. it is a continuous function, everywhere except at the origin h= 6;
2. it is an even function, Cn(ﬁ) = Cii(—ﬁ),'

3. it tends to zero with increasing h, limy Cii(h) = 0;

4. it is a positive definite function

Note: item 3 requires the RF to be ergodic [see Chilés and Delfiner, 1999, pag 19-22,
for a proper definition].

Condition 4 is maybe the most important, because it implies that any combination of
Z; taken at different locations will have a valid positive variance; it has two practical
implications:

e the covariance function has a maximum at the origin, |C; (k)| < Cy(0) = Var [Z(Z)):
this allows us to define an auto-correlation function,

Cii(h)
Cy(0) 30

Pz(ﬁ) =

e the spectral representation of the covariance is always strictly positive, and ap-
proaches zero when 1 tends to infinity. Under certain regularity conditions [Chiles

and Delfiner, 1999, p. 64, 325-326], this spectral representation is given by
Fb(ﬁ):‘/‘exp(—Qﬂi<ﬁw>)-C&Aﬁ)-dﬁ:>0, (3.7)
RP

29
7

where is the imaginary unit, and the symbol <ﬁ|ﬁ> represents the classical

scalar product of the vectors h and @. If Z;;(# = t) is a stochastic process in
time, then F};(u) is interpreted as the energy carried by each frequency w.

Definition 3.6 (Variogram) The variogram of the RF is defined as
YalR) = Var | Z4(# + R) = Zu(7)]

The variogram is frequently used as a structural tool, even under the second-order
stationarity assumption, because it does not demand the mean to be known. Pro-
vided that both exist, there is an easy relationship between covariance functions and
variograms,

y(h) = C(0) — C(h). (3.8)
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Even when the covariance does not exist, this expression can be equally applied with
C(0) an arbitrarily-chosen upper bound, and C (/_7:) an equivalent covariance function.
The only condition imposed to the variogram is that this equivalent covariance function
satisfies the conditions stated above for true covariance functions. Thus, variograms
are even positive functions, and are continuous everywhere except at the origin, where
they must have a zero value ’y“((j) = 0. In general, towards infinity, the variogram
can increase infinitely. However, when the covariance exists, or the RF is second-order

- -,

stationary, then it has an upper bound at v;;(h) < 2-C(0), and towards infinity it must
tend to lim; _ 7;(h) =C (0); this value is called the sill of the variogram.

sill

Figure 3.1: Synthetic representation of a covariance and its associated variogram, with
their most common features.

Variograms (and hence covariance functions) are described through the following
characteristic elements (figure 3.1).

Sill: when it exists, the sill is the value around which the variogram stabilizes for long
distances, lim; __7;(h) = C(0), and corresponds to the theoretical variance of

the RF.

Range: when the sill exists, the range is the distance at which at least 95% of its
value is attained; in terms of covariance function, it is the distance at which
the covariance drops to (almost) zero, and is thus interpreted as the radius of
influence of a location.

Nugget effect: the variogram (and the covariance) can be discontinuous at the origin;
though 7;;(0) = 0, it can happen that limy 57ii(h) = co # 0. This discontinuity
is called the nugget effect, and its value is usually represented by cy.
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Behavior around the origin: the shape of the variogram near the origin informs of
the degree of continuity of the RF. This shape might be approximated by a curve
like v(k) o< ||A]|* with 0 < a < 2 (figure 3.2), with the special cases: o = 0
gives a nugget effect and implies discontinuity of the RF; a = 1 is linked with
a (piecewise) continuous function; ov = 2 is a parabolic behavior, which ensures
that the RF is at least piecewise differentiable, and highly regular [Chiles and

Delfiner, 1999, p. 51].

Hole effect: this characteristic is identified as a significant oscillation in the variogram
or covariance at relatively long distances. This effect indicates a tendency of
high values in the RF to be surrounded by low values, and viceversa. Periodicity
and quasi-periodicity, particularly in time, are special cases of hole effects. A
hole effect in more than one dimension must be forcefully dampened, in order
to approach the sill as the distance increases. Note that an non-dampened hole
effect does not approach the sill, but it is still a valid covariance model in one
dimension [Chiles and Delfiner, 1999, p. 92-93]. Figure 3.3/ shows how a hole
effect variogram looks like.

Anisotropy: when the shape of the variogram depends only on the length of ||/2|[g = &
and not on its direction, we call the structure an isotropic one. Naturally, an
anisotropic variogram depends on this direction. Essentially there are two types
of anisotropy: geometric (the most commonly considered) and zonal anisotropy.
Geometric anisotropy is present when the shape of the variogram in all directions
is the same, and the only change is in the ranges; it can be transformed to
an isotropic variogram by rotating and scaling the system of reference. Zonal
anisotropy implies even different shapes and sill values in each direction, and it
is by far much more difficult to deal with.

The classical approach to estimate variogram and covariance functions implies com-
puting their experimental versions (3.443.5), and fitting to them a valid model, which
must have some of these characteristics. Standardized isotropic classical models—with
sill equal to one, thus representing correlation functions of equation (3.6)—are plotted
in figures(3.2/ and 3.3 and are defined as follows.

Definition 3.7 (Generalized linear or power-law model)
v(h) =h" h>0;0<a<?2.

For a =0, it is a pure nugget effect. For a = 1, it is a linear model, which gives its
name to the family. The generalized linear model has no sill, and both the variogram
and the associated RF present properties of self-similarity and fractal character: the
Gaussian RFs with such a variogram are Brownian motions.

Definition 3.8 (de Wijsian or logarithmic model)

h 3
y(h)zlog(a)—i-? h > 0; a>0.
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¥(h)

de Wijsian

(%) generalized linear

Figure 3.2: Some variogram models without sill.

hole effect

gaussiain

sﬁherical

exponential

Figure 3.3: Some variogram models with a sill.
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For a reqularized support, this variogram model has no analytical expression. However,
this equation is an approximation for h > 2a. This variogram model presents no sill.
It has strong ties with the lognormal distribution, and presents also a fractal character.

Definition 3.9 (Spherical)

3

1 -3 + ifr<a
— 2a 2a3 .
v(h) { 1, ifr> h > 0; a> 0. (3.9)

It is a valid variogram and covariance model for any positive value of a, and this value
coincides with the range of the model: at greater distance than a, the covariance is
tdentically 0. It is classically linked to diffusion phenomena with a limited area of
influence. It is one of the most-frequently used.

Definition 3.10 (Generalized exponential or Stable)

3h\“
7(h)=1—exp<—(;) ), h>0,0<a<2;a>0. (3.10)

This family reaches the sill asymptotically, and the range is defined as the distance at
which the correlation coefficient drops to 5%. Two members of this family are commonly
used. The exponential model (a« = 1) is very similar to the spherical one, and is
associated to diffusion processes with infinite area of influence. The Gaussian model
(o = 2) is highly continuous at the origin, which makes its corresponding RF to be
infinitely differentiable, exceptionally reqular, and almost deterministic; it is a good
model for potential fields (e.g.gravity) and, in general, deterministic phenomena [Chilés
and Delfiner, 1999, p. 85,90].

Definition 3.11 (Hole effect)

v(h) =1—exp (—%> - oS (2%5), h > 0; ag,ar >0 (3.11)
t

where a; 1s the period of the variogram, and agq the dampening range: at a distance

greater than agq, the hole effect has been reduced to 5% of its original importance, thus
considered as zero. In one dimensional problems, any positive values for a;, aq are
allowed, but for high dimensions the dampening range must be significantly smaller
than the period. It describes periodic behavior of variograms and covariance functions.

Definition 3.12 (Composed models) Valid variogram models for any variable can
be defined as a linear combination of the previous models for correlograms (thus with
unit sill), each one multiplied by a certain constant, showing its contribution to the
total variance,

K
i (h) = co+ ) cw - wm(h) > 0;co,cay > 0.
k



56 Geostatistics in the real space

An identical expression exists for covariance functions, whenever the models used are
linked to valid covariance models,

K

C(h) =co+ Y cu- (1= m(h)). (3.12)

k

Usually, composed models have at least the nugget effect term (denoted by ), apart
from a correlogram model.

3.2.3 Cross-covariance functions

Definition 3.13 (Cross-covariance function) For a pair of univariate RFs (Z;(%), Z;(¥)) €
R2, % € D, their cross-covariance function is defined, according to (3.1), as

—

Cij(R) = B|(Z(@) = ) - (Z(F + ) = )|
provided that the means (j;, j1;) exist and are stationary.

Generalizing the auto-covariance function concept, the cross-covariance function ex-
plains the mutual linear information of a measurement of two different variables taken
respectively at two different locations (separated by a lag vector ﬁ) Remember that
in general the cross-covariance functions are not symmetric, although

Cij(h) = Cji(—=h).

This means that cross-covariance functions are neither odd nor even functions. They
are bounded by the auto-covariance functions through Cauchy-Schwarz’s inequality,

Cij(h) < \/ Cii(0) - Cy;(0).

Cross-covariances can be described through the same elements used with auto-covariances
(figure 3.1), plus a delay or off-set effect: maximum correlation between two different
variables does not necessarily occur at the same location, but displaced a certain lag
h. In particular, hole effects apply also to cross-covariances. Also, ranges in both posi-
tive and negative directions can be identified, where cross-covariance vanishes. Finally,
cross-covariances can have nugget effects elsewhere, not only at the origin [Chiles and
Delfiner, 1999]. However, cross-covariance functions are not modelled by using only
particular models, since they can seldom ensure that the resulting set of covariance
functions (3.3) is a valid joint covariance model.

Property 3.2 (Cramér, 1940) Under certain reqularity conditions, the set of auto-
and cross-covariance functions Cj(h) form a valid model if

Fi(@) = /R exp (—zm' <ﬁ|ﬁ>> - Ciy(R) - dh, (3.13)
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—

i.e. the set of spectral densities Fj, (@) associated to all Cjk(ﬁ), form a positive definite
Hermitian matriz for all frequencies @ [Chilés and Delfiner, 1999]. Recall that here i

represents the imaginary unit, and <ﬁ|ﬁ> 18 the classical scalar product between vectors

h and .

This formulation of Cramér criterion is more restrictive than the original one, which
does not demand the densities to exist, but only their measures. However, this approach
is enough in the scope of this Thesis.

Definition 3.14 (Cross-variogram) Cross-variograms are defined as
Yi(B) =B | (2:43) - 2@+ B)) - (@) - ZE+ D))
Cross-covariograms present the following relationship with cross-covariances

() = Cy®) — 5 (Ol + Oy (3.14)
Note that cross-variograms do not capture asymmetric features of the covariance struc-
ture. Cressie [1991] introduces a measure of joint variation which keeps this informa-
tion. His definition uses increments between different variables, which may have no
physical sense. On the other hand, van den Boogaart and Brenning [2001] shows that
a generalized cross-covariance can be computed with an estimated mean value, and
that prediction results this generalized covariance will yield are equivalent (up to the
addition of a constant, as is explained in next section) to those obtained with the true
cross-covariance.

Equation (3.14) implies that cross-variograms are even functions, and satisfy 7;,(0) =
0. Using variograms and cross-variograms, a coefficient of codispersion [Wackernagel,
1998] is defined,
i (1)

Yii(h) = 55 (

Ri]’ -

. (3.15)
)

The coefficient of codispersion is bounded to |Ry;(h)| < 1, since by Cauchy-Schwarz

inequality
Yig (h) < A7 (R) - 335 ().

These conditions on cross- and auto- correlations and variograms are necessary condi-
tions to ensure that the joint model (3.2) or (3.3) is a valid one. But the necessary
and sufficient condition is that (3.13) defines a positive definite matrix of frequency
spectra.

To implement these conditions and obtain a valid covariance or variogram system,
there are some particular methodologies. From them, the linear model of corregional-
ization will be used. The linear model of corregionalization generalizes (3.12) through

Ny
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a decomposition of the whole covariance matrix

g(ﬁ) = i (1 - V(k)(ﬁ)> 'g(ky

—

where () (h) are K valid variogram models (possibly including a nugget effect), and
&} ) form a set of K matrices. The model is automatically valid when the matrices
are all positive definite. However, this condition is a sufficient but not necessary one.
In fact, it is very restrictive: for instance, it cannot handle offset effects in cross-
covariances [Wackernagel, 1998]. Instead, Yao and Journel [1998] suggest to validate a
discrete version of the joint covariance model by obtaining a valid frequency spectrum
(as described in proposition [3.2). This is a general validation approach, but it still

lacks a straightforward implementation.

3.3 Linear prediction

3.3.1 General universal kriging

The main use of the RF formalism and the structural analysis functions is interpo-
lation. As was said in section [3.1, a RF Z(D) as a whole cannot be observed, and
instead one have always a regionalized sample, a collection of observations at different
locations z,, = z(Z,), %, € D,n =1,...,N. The goal will be the estimation of (some
of the components of) the vector Z(Zy), by using the observed sample. A measure of
the error incurred is also sought. Kriging is a technique which provide these estima-
tions through linear combinations of the observed data, and is regarded as best linear
unbiased estimator, in the sense that its error has minimal variance among all linear
combinations of observations. When the RF Z € R® is a Gaussian one, it is known
that kriging delivers also the conditional distribution of Z(Zy) on the observed data. In
the literature, the term kriging usually applies to univariate RF's, and cokriging is used
when RF's have a vector as image. We will not do such a distinction, simply calling all
these techniques by the generic name of kriging.

In general, all the coordinates of the vector Z shall not be observed at all locations, a
situation called non-collocated sampling, or undersampled case [Journel and Huijbregts,
1978]. Contrarily, when at all sampled locations a whole vector is obtained, it is called
a collocated sampling . In the first case, the most generic, one must consider each
coordinate separately as an univariate RF, Z;(D). The sampled values observed for
this RF, being real values, will be denoted by (x(Z,),n = 1,..., Nx. Assume that the
mean i (Z) of these RFs is not known, but that it is known to be a linear combination
of (A + 1) known functions { fo(Z), f1(Z),..., fa(Z)} called drift functions. Usually,
these function are polynomials or trigonometric functions, and fo(#) = 1 is also a
common assumption. In this situation, the best linear predictor (denoted by () of the
value of Z,(7p) at an unsampled location Zy € D, using the available information on
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the drift and the observed values, is called universal kriging (UK) and is defined as a
weighted arithmetic average

C N;

G =20 Aai Gil@). (3.16)

=1 n=1

The error variance attached to this estimator is called kriging variance, and its value
1S

c N
obx = E[(z — Zu(d))?] = Cul(do, o) — 2 Z Z Ani » Cig(Tn; To) +
=1 n=1
C N; Nj

1,j=1 n=1 m=1

where C;;(Z,, Z,) = Cij(Z,,—7,) is the covariance function between Z;(7,,) and Z;(Z,,).
The weight values \,; are obtained by minimizing the variance (3.17) subject to the
so-called universality conditions, one for each function of the drift and each variable
involved:

N;
ZAm‘fa(fn) = ikfa(fﬂ>' (318)
n=1

Using Lagrange coefficients v,, the weights can be computed through the system of
equations

c N;j A
DN AniCij(Ens En) + D> Vafa(#n) = Cin(En, To), i ={1,...,C}sn={1,...,N;}
a=0

j=1 m=1

N;
D Nifal(@n) = dufa(Fo), i={1,2,....Cha={0,1,...,A}. (3.19)

Note that in these equations, k is the index of the predicted variable, a the drift
function index, i the predictand variable index, n the datum index, and 0 the index
of the predicted location. For each i-th variable, the system has N; + A + 1 equations
and unknowns, one for each location ¢ and one for each drift function a. Although
fairly large, this system of equations can be solved through classical methods for linear
systems. Three particular and simpler cases will be considered now: ordinary kriging,
kriging of the drift and simple kriging.

In the first case, when only the constant drift function is considered fo(Z) = 1,
the method here described amounts to simply considering the mean to be constant
but unknown. This case is the most common, and it is called ordinary, or general,
kriging. It can be performed using variograms and generalized cross-covariance instead
of covariances. Recall that cross-variograms can replace generalized cross-covariance
functions when these are symmetric.
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3.3.2 Kriging of the drift

Now the goal is the estimation of the drift coefficients for a single variable Zj. Since it

will be used here only this variable, the index for the k-th variable is dropped in this

section. Considering other variables would simply imply the extension of the covariance

and drift matrices involved, in a similar fashion to what is done in the last section.
Recall that the drift (%) has an expression

1=
I

A
p(En) =Y afaln), or p=
a=1

which allows a decomposition of observed values ((Z) in drift and residual values
(=F-a+tv

We use here a matrix notation, where a = («,) is the vector of drift coefficients,
¢ = (¢(#,)) are the observed values of Z at the sampled locations, v = (v(Z,)) are
the residuals of Z after substracting the drift, F = (F,,)) = (fu(Z,)) is the matrix
of drift functions computed at each sampled location, and ¥ = (C(Z,, %)) is the
covariance matrix of the residuals at each sampled location, with = 0,1,..., A and
nm=12,...,N.
Generalized least squares theory allows us to estimate the vector of coefficients o
through the matrix expression
Q* _ (£t _gfl . F)—l . Et ';71 é (3_20)

The variance-covariance error matrix associated to the estimator 3.20/is computed as

Covla, o= (F'- 27 F)fl . (3.21)

Kriging of the drift gives the same results as universal kriging (in its univariate form)
when the covariance between the data set and the kriged location has dropped to zero:
in the system of equations of expression|3.19] the right-hand terms of the equations of
the first kind are all zero. Outside the range, universal kriging results coincide with
the drift [Chiles and Delfiner, 1999, p. 179]. It is interesting to note that the kriging
variance of the drift itself at a given location can be easily computed using (3.21) by
ohp = Var [m*(&,)] = B [(u"(#,) — w(@)°] = £ (- E) - f, (3.22)

In S— =

where f = (fa(Zo)) is the vector of drift functions at location .

3.3.3 Simple kriging

For a single variable Zy, which mean p (%) is known everywhere in the domain ¥ € D,
the technique used is called simple kriging (SK). Since k will be a constant, in this
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section it is dropped from the notation: Z = Zj is the RF, pu(-) = ug(-) its known mean,
An = Anx the kriging weights, ((-) = (x(+) the regionalized sample, and C(-) = Cyx(-)
the covariance matrix. The predictor is

G =) AC(@n) + (1 - An> (o). (3.23)

The weights \,, are obtained by solving the system of equations

N
> AnC(Zn, E) = C(&n, To), n=12,...,N, (3.24)

m=1

which minimizes the simple kriging variance

N N
0ok = > AAnC(En, Tn) =2 MC(&,, 7o) + C(Fo, 7). (3.25)
n=1

n,m=1

Note that the extension of this technique to incorporate information from other
variables can be done in a straightforward way by considering cross-covariances in the
matrix C' = (C(Zy, 7). A full study of this case is the subject of the next chapter.

3.3.4 Properties of kriging estimators

Simple kriging predictor (3.23) is the best linear unbiased predictor, once the mean
is known. It satisfies the unbiasedness condition E[(f — Z(Z))] = 0, and its error
variance Var [(} — Z(Zp)] is minimal by construction. In a Gaussian RF, simple kriging
predictor can be interpreted as the result of a regression of the unknown variable at
the unsampled location by using as predictands the variables at the sampled locations.
The regression equation is (3.23), the joint distribution is a multivariate normal with
parameters delivered by equation (3.1), the normal equations that must be solved to
obtain the regression are (3.24), and the error variance attached to the regression is
(3.25). As a standard result of regression theory, the conditional distribution of the
predicted variable is

This implies that

EG1C(#1), ¢(Z2), - -, ((Zn)] = E[Z(Z0)[C(71), ((T2), - -, C(Zn)] (3.27)

So, conditionally to the observed data, the expectation of the predictor and the expec-
tation of the unsampled variable are equal. Furthermore, (; satisfies the conditional
unbiasedness property

E[Z(70)I] = G
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which is even of greater importance than the minimum variance condition. Indeed,
for instance in water management, the decision to accept or reject a water volume for
agricultural use may depend on the estimated conductivity, whereas its effects in the
functions depend on the true conductivity. Conditional unbiasedness ensures that, on
the average, we get what we expect [Chiles and Delfiner, 1999, p. 164].

All these properties of simple kriging (be it univariate or multivariate) disappear
when the mean is unknown. Universal kriging is also by construction an unbiased linear
predictor of minimum variance, but it is no longer conditionally unbiased, nor equation
(3.27) holds. However, kriging tends to minimize the conditional bias in any case, even
for non-Gaussian functions, since the kriging variance admits a decomposition

Var [Z() — (5] = E[Var [Z(20)|G5)] + E [(E[Z(Z0)I¢] — 6)°] -

where the first term on the right side is the expected conditional variance, and the
second one is the variance of the conditional bias. Thus, one can be confident that the
true conditional distribution is not far from an equivalent distribution to (3.26) with
mean gg(U K) and variance o7 ,. An assessment of this approximation is given by the
analysis of the slope (3 of the regression of the true value Z(Z,) on its predictor (f,

 Cov[Z(T0),¢) al Var [m*(7))]
6= Var [Cg] =1- <1 — ; >\n(SK)> VT[CS] (3.28)

Here A\, (sk) are weights of simple kriging (3.24), Var [(;] is the variance of the kriging
method used, and Var [m*(Z)] is the variance of the drift (3.22). The more similar [
to one, the better the approximation of SK by UK is. This is achieved either by SK
weights summing up to one, or by a small variance of the drift.

3.4 Bayesian Methods

3.4.1 Bayesian kriging

Omre [1987] introduced a model which essentially considers the drift functions of uni-
versal kriging to be a smooth RF, which first and second moments are known, a so-
called qualified guess. Let us explain it in an univariate case: Z(Z) is a RF in a domain
7 € D, and its qualified guess is M (Z), also a RF in the same domain. Let the moments
of M (%) be known, but not necessarily stationary,

EM(Z)] = pu()
Cov [M(Z,), M(Zp)] = Cu(Zn, ),

and let the conditional moments of Z(Z) on M (Z) satisfy a generalized second-order
stationarity condition

E[Z(Z)|M(Z)] = a0+ M(T)
Cov [Z(Z), Z(Zm)IM(T)] = Czpi(Tn — Tm).
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Due to standard relationships between conditional and non-conditional moments of
random variables, the non-conditional versions of the moments of Z(¥) are

BZ(F)] = o+ ()
Cov [Z(%y), Z(Zm)] = Cym(Zn — Tp) + Ori(@n, Tn). (3.29)

Notice that this model amounts to the classical RF with an unknown but constant drift.
Thus, it can be treated by ordinary kriging (page 59)) with a composite covariance given
by equation (3.29).

Finally, the model offers estimates of the RF Z(Z)) at unsampled locations, as well
as a kriging variance. Under the assumption that both M (%) and Z(Z) form a jointly
bi-variate Gaussian function, these two measures can be interpreted as the mean and
the variance of a normal distribution at the unsampled location Zy. The validity of
this interpretation is nevertheless subject to the limitations exposed in section 3.3.4]
regarding the conditional expectation properties of universal kriging. No further as-
sessment of uncertainty affecting the estimates was derived by Omre [1987] from this
bayesian framework.

Further steps in the bayesian treatment of spatial problems were given by Le and
Zidek [1992] and Handcock and Stein [1993], who introduced different bayesian models
for estimation of parametric covariances. Diggle et al. [1998] account for these and other
bayesian improvements of the estimation process, specially regarding its uncertainty.
In this line, Chiles and Delfiner [1999, p. 190] note that the bayesian modelling of the
drift tends to reduce the uncertainty of the final estimates, while a bayesian modelling
of covariance parameters tends to increase it.

3.4.2 Model-based geostatistics

Diggle et al. [1998] introduce another model, which has the same relationship with
kriging as generalized linear models [Nelder and Wedderburn, 1972] have with linear
regression. In the scope of their model, the available data (a sample 1, ys,...,yn) are
assumed to be generated by a model like

Y(%) = p+S@F) + 7,

with 1 a constant mean effect, S a stationary Gaussian RF with E[S(Z)] = 0 and
Cov [S(Z,), S(Z)] = 0?p(Tm — &), and Z ~ N(0,7%) a white noise, independent
of location. This model has the particular property that, conditional on the values
of S(¥), the Y (&) are mutually independent variables with distribution Y'|S(Z) ~
N+ S(Z), 7).

The next step is assuming the existence of a series of explanatory variables for S(Z),
and replacing the normal assumption by a generalized linear model, which says that
for a known link function h(-),

A

h(EY[S@E)]) =) ful@)Ba + S(@).

a=1
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The explanatory variables f,(Z) play the role of the drift functions of universal kriging,
and the (3, parameters of the drift coefficients.

The model is specified through the marginal distribution of S(Z) and the conditional
distribution of Y (Z) on S(Z). In a bayesian framework, inference on the various param-
eters of the model (u, 0,7, §,) or any parameter of the correlation structure p(Z,, — Z,)
would require the use of the likelihood of the marginal distribution of the observable
Y (#), which is not directly available. Then the authors use extensive computation
methods (namely Markov Chain Monte Carlo, or MCMC methods) to:

1. estimate the posterior distribution of the correlation parameters from the marginal
distribution of S(&), which is known,

2. estimate the joint distribution of S(Z) and Y (Z),

3. estimate the posterior distribution of S(Z) conditional on the data, the estimated
posterior distribution of correlation parameters and the prior distribution of re-
gression parameters,

4. estimate with it the posterior distribution of the regression parameters [3,,

5. estimate with all of them the joint posterior distribution of S(#) and Y (Z) in-
cluding the locations to be predicted.

The objective in each one of these steps is estimated by simulating a large sample of
the known distributions, using standard simulation techniques—Metropolis-Hastings
algorithms —and the estimate is obtained as an average of the simulations, following
the standard Monte Carlo procedure. The final result is a set of posterior distributions
for each one of the parameters of the model, and the predictive distribution at each
one of the desired locations.

These kind of models are highly elastic, since they can handle many different prob-
ability distributions (not only Gaussian-related ones) and several parameters with non-
linear relations (like the link function A(-)) with the data. Clifford [1998] poses never-
theless some criticism to MCMC techniques, regarding the objectivity and reproduc-
tivity of obtained results. Other model-based bayesian estimation techniques can be
found on the literature applied to spatial hazard problems; e.g.[Besag et al., 1991].

3.4.3 Bayesian/maximum entropy geostatistics

The primary interest of bayesian/maximum entropy methods, or BME [Christakos,
1990], is the estimation of the distribution of a RF Z(#) at unsampled locations
given the observed sample z1, 2, . .., x5, where for short z, = z(Z,,), and some generic
objective constraints, e.g.fixed means, covariances, plausible intervals, quantiles, or any
other information on the values of Z or its probability.

Consider the joint distribution f(Zy, Z1, Zs, ..., Zn) of {Z(Zy), Z(Z1),...,Z(ZN)}
to be known. Then, given the observed sample, the RF has a distribution at the
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unsampled location equal to

f(ZO; Z1y %25+« oy ZN)

7z =
f(Zolz1, 20, 2n) fz1, 20, ..., 2N)

X f(ZO,ZbZz?---,ZN)

due to the definition of conditional probability. Note that uppercase characters indi-
cate a free-varying random variable, while lowercase characters are observed samples,
1.e.fixed numbers. In words, if the joint distribution was known, the BME would de-
liver simply the conditional distribution at the unsampled location given the observed
sample.

Now, the BME approach does not a priori assume any model for this joint distri-
bution, as does the model-based technique of the last section and all Gaussian-related
kriging techniques. Instead, it takes as joint distribution for the {Z,} the less infor-
mative existing distribution among those which satisfy a series of previously-known
constraints. From the existing measures of information, Christakos [1990] chooses to
use Shannon [1948] Entropy. Therefore, the joint distribution will be provided by Boltz-
mann’s Theorem , which ensures that the maximum-entropy density is the exponential
of a linear combination of the constraints [see, e.g.Leonard and Hsu, 1999, p. 122, for
a complete account|. As a result, the distribution obtained with BME estimation is
always from an exponential family, which gives the method some good analytical and
numerical properties, e.g.to use MCMC methods, when no closed analytical form is
available.

BME methods are extremely flexible, since they can incorporate any kind of ob-
jective information in the estimation procedure. As particular cases, if the available
information is the mean and the covariance structure of the RF, then the joint dis-
tribution is a multivariate normal one, and the BME predictor coincides with simple
kriging delivering the conditional Gaussian expectation. If the available information is
given by the assumptions explained in the last section, then BME model coincides with
the generalized linear geostatistical model. Finally, an example on the handling of cat-
egorical variables through BME methods is addressed in section [7.1. Other examples
can be found in the monograph on the subject by Christakos [2000].

On the side of the flaws, BME method lacks simplicity. Its implementation usually
is analytically untractable—in fact, the interesting cases of BME are those which do no
evolve into closed analytical forms—, and most usually it relies on extensive computing
techniques.

3.5 Change-of-support problems

Consider in this section only an univariate RF Z(Z) defined on the whole real line R:
Z will represent both the element of R as a vector and its coordinate in the canonical
basis of R, as was defined in section 2.5.1. Recall that this chapter began with the
assumption that the RF Z(Z) € R was defined on a point-support ¥ € D € RP. This is
obviously an unrealistic assumption, since any physical property must be measured in a
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given amount of time-space or matter, what it is called a block-support. Let Z,(Z) € R
be then another RF defined on block-supports of volume v, which centers are located
at © € D. Now geostatistics can offer an answer to the following questions:

e which is the relationship between both RF's, on point and block-support?

e how can we predict the RF on block support by using measurements regarded as
measured on point-support?

e which is the uncertainty linked to such a prediction? how can we compute the
distribution of the RF on the block-support?

Obviously, this difference between point and block-support admits more than one sin-
gle level: it is also possible to work with a series of nested volumes, like ¥ € v C V C
W C D, where even the domain is finally considered as a block. This situation would
arise when several possible risk management policies were linked to different volumes,
e.g.water control in a waste-water-treating plant which needs to monitor that the av-
erage of Ammonia of the effluents in half an hour do never exceed a certain threshold,
and at the same time that when it exceeds another threshold during more than ten
minutes an alarm should be triggered.

3.5.1 Relationship between point and block-support RFs

If the point-support RF is known, then the values of any block-support RF can be
computed.

Definition 3.15 (Sampling function) A sampling function is a function p(¥) €
R, , with positive real images, defined on the whole domain T € D, such that fD p(Z)d¥ =
1.

A sampling function represents an averaging process: it gives a weight to each point
in the domain, so that all weights are positive and sum up to one. For instance, if

S 1 Zew
po(T) = { 6 (3.30)

otherwise,
then Z,(¥) is simply the arithmetic average of the point-support RF inside the block.

Definition 3.16 (Regularized RF) Let Z(%) be a point-support RE. Then the block-
support RE can be computed as the convolution

Z,(%) = / po(R)Z(Z + h)dh, (3.31)

where the sampling function p(ﬁ) represents the averaging process.
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Definition 3.17 (Regularized structural functions) Let Z(Z) be a point-support

RF characterized by a covariance function C(h). Then the block-support RF of defini-
tion|3.16 is characterized by the covariance function

(i) = / Po(F)C(h + 7)d7, (3.32)

where P, 1is the auto-convolution of p, by itself

—

Py() = /R (B +

It is also possible to compute the variogram of the block-support RF by using expression
(3.8) with block covariance (3.32). These covariance and variogram functions linked to
the block-support RF are called regularized.

The regularized and point-support versions of these structural functions keep the
following relationships

1. the shape of the functions (either the variogram or the covariance) is more or less
the same,

2. however, around the origin, the regularized function is more likely to exhibit a
parabolic behavior, which implies that the regularized RF is more regular than
its point version,

3. and for second-order stationary RFs, the sill
C(0) = Var [Z,] = / / p()C (B — Fo)plia)dindis < C0)  (3.33)

of the regularized version is smaller or equal to the original sill C'(0) = Var [Z(Z)].
The difference between the point-support and the regularized sills coincides with
the dispersion variance of T in v.

Definition 3.18 (Dispersion variance) The dispersion variance of a small block v
partitioning a bigger one V' in an intrinsic RF is defined as

o*(v|V) = //pV(ﬁl)’Y(El - 52)191/(52)0”:10%2 - //pu(fll)W(le - EQ)pv(EZ)dﬁldﬁ%

where y(+) represents the point-support variogram. The dispersion variance is inter-
preted as the error variance affecting the value of Zy in the bigger support when esti-
mated using the value Z, in the smaller support, or equivalently as the variance of Z,

V.
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Using the weighting function of equation (3.30), the dispersion variance becomes
2 1 - - g - ]_ bd g - —
o (v|V) = 72 vy(h1 — he)dhidhy — ") ~v(h1 — hy)dhydhy =
Vv v v? Sy Ju

1 _’ 'l = 1 - - - -
— F/U/vc(hl — hg)dhldhg — W/V/‘/C(hl — hg)dhldhg,

where the second equality only holds for second-order RFs.

Property 3.3 (Krige’s relationship) Dispersion variances satisfy the following ad-
ditivity property for nested blocks,

o*(v|W) = o (v|V) + o2 (V|W).

Note that, taking v = @ and W = D, we find: a) o*(Z|D) is the variance of the
point-support RF in the whole domain, its total variance, or the sill of its variogram;
b) o%(V|D) is equivalently the sill of the regularized variogram; and, c) the difference
is the dispersion variance of the point-support Z in the volume V.

3.5.2 Universal block kriging

A classical change-of-support problem is the estimation of an average (3.31) of a block
v at ¥y through a linear combination of point-support observations (, = ((Z,),Z, €
D,n = 1,...,N. In general, this block v does not coincide with the regularization
block explained in the last section, but will be bigger. Following step-by-step the case
of point kriging (section|3.3) but for a single variable, the following elements are needed:

e the average value of the drift functions f,(#y € v) inside the block
fulo) = £ € 0) = [ fu(do -+ B ),
e the covariance between each sample 7,, and the block
Cln0) = Canda € 0) = [ Cando-+ B (),

e and the variance of the block (3.33), here denoted by C(v,v).

Definition 3.19 (Universal block kriging predictor) With these expressions, the
univariate universal block kriging predictor is

N
n=1
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where the weights are obtained by minimizing the system

N A
> AC(En Tn) + Y vafa(Fn) = C(@nv) , n={1,2,...,N},
m=1 a=0

N
> Anfal@m) = falv) , a={0,1,... A},

Note that this system is exactly equivalent to (3.19) but with all the expressions involving
ZTo replaced by their block counterparts defined above. Regarding the kriging variance,
it corresponds to

N N
0k = Y AdnC(Fn, T) = 2D MC(@n,v) + C (v, v).
n,m=1 n—=1

Equivalently, a block simple kriging predictor can be defined by adapting expression
(3.24). Finally, it is worth summarizing the main properties of these simple and uni-
versal block kriging predictors.

Property 3.4 (Optimality of block kriging predictors) The simple kriging (SK)
and universal kriging (UK) predictors satisfy for block RFs the following properties:

1. the SK predictor is unbiased and of minimal variance among the predictors ex-
pressed as linear combinations;

2. in a Gaussian RF, the true block average value is also normally distributed, with
the SK estimator and its kriging variance as the parameters of the conditional
distribution, like in expression (3.26);

3. the UK predictor is also a best linear unbiased predictor, which takes into account
the shape of the drift; however, it provides no longer the conditional distribution
of the true block average value, neither in the Gaussian function case;

4. again, the departure of the block UK predictor from the distribution of the true
block average will depend on the relation (3.28), like in point-support RFs.

Block kriging is particularly well-suited for Gaussian RFs, because if a point-support
RF is a Gaussian one, then any of the regularized block-support RFs one could define
on it is also a Gaussian one. This justifies the fact that block simple kriging estimates
the conditional distribution.

3.5.3 Global change-of-support

In this section, we look for a way to describe the variability of the mean value of the
RF Z(Z) on blocks of size v partitioning the whole domain D. This is achieved by
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giving the probability distribution function for the value of the mean in a block taken
at random from all the blocks in D. However, some assumptions must be done on the
properties of the RFs. These assumptions are called a global change-of-support.

In the last section, we introduced a known way to compute the mean of a RF for a
block-support conditional to the data around and inside it: the kriging predictor. In
the case of a Gaussian RF, this predictor and its variance yield also the distribution of
the mean of the RF inside the block. Thus, block kriging with all the available data
constitutes a global change-of-support model. As we will see, this coincides with the
so-called multi-Gaussian model [Verly, 1983] for a very specific case.

Other change-of-support models (either conditional to the data set, or without
conditioning) have been developed for cases where a Gaussian assumption was not
allowed. These models relate the distribution of a point-support (#) RFs with that
of a block-support (V') RF, or the distributions associated with two different block-
supports (v C V). The main condition expected for a change-of-support model is that
the distribution of bigger blocks should be less selective than that of smaller blocks.

To understand the concept of selectivity, it is useful to recall its origin. When
mining a mineral deposit, the rock is cut in blocks, which are sent either to the mill
(as ore) or considered as waste using an estimated average of its content in metal (the
so-called grade). This implies that a certain amount of metal is not processed, because
it was in a block considered as waste. To avoid that, we should exploit the deposit in
blocks of the smallest volume possible. In other words, the small blocks are considered
more selective than the bigger ones, because if we could use them we would better
select ore from waste blocks.

Chiles and Delfiner [1999] present some of the classical change-of-support models,
as well as its commonly recognized limitations:

Definition 3.20 (Affine correction) Let Z(%), Z,(Z) be a pair of point- and block-
support Gaussian RFs; then they satisfy

2@ =n L@ 21 ), (3.34)

o Oy

The affine correction assumes this identity of the distributions even in the case of a
non-Gaussian RF.

In practical cases, the distribution of the block-support is derived from the experimental
cumulative histogram of point-supports, whereas means and variances are obtained
from a classical variography analysis.

Definition 3.21 (Discrete Gaussian model) Let ¢(-) be a transformation, such
that the transformed point and block-support RFs form a bi-normally distributed pair,
with a regression coefficient r; the distribution ¢,(z,) of the block value z, is computed

by using
bu(z) =B (rez+u-vVI=r7)], (3.35)

where u is an auxiliary standard normal variable.
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In applications, one must estimate the correlation coefficient. This is selected so that
the variance of the block-support satisfies condition (3.33).

Definition 3.22 (Multi-Gaussian model) Assume that ¢(-) transforms the point-
support RF Z () into a Gaussian RF ((Z) = ¢ (Z(Z)). Then the transformation of
the RF at any set of locations will follow a multi-Gaussian distribution. Thus, block
kriging will yield the distribution of the block-support RF. This distribution can be back-
transformed through ¢=1(+) to obtain the distribution of the block-support Z(Z) [Verly,
1983].

These methods rely on different hypothesis, but when assuming joint Gaussianity of
the RF they coincide: in this case, the transformations involved in the last definitions
are the identity ¢(z) = z, and the discrete Gaussian model coincides with the multi-
Gaussian and with the affine correction.

Note that if they are not Gaussian, all this models are approximations, which
should be carefully used to avoid inconsistent results. The nowadays usefulness of
these change-of-support models is decreasing, as computers are more powerful and
large simulations are possible. These models were defined to compensate the limi-
tations of computers with approximate analytical expressions drawn from theoretical
assumptions. Their current interest may be instead focused in understanding the pro-
cesses underlying the RF.

One of the usual ways to express the final estimated distributions is through the
selectivity curves, which are almost always applied to strictly positive variables. Thus,
they are further discussed in section 5.4.

3.6 Case study: conductivity

This section illustrates the methods of this chapter using the example already presented
in section 2.5.1. This data set is a series of measurements of water conductivity ob-
tained automatically by an online control station at different time moments. Figure(3.4/
shows its time evolution during the years 2002-2003, as well as the evolution of water
temperature. Figure|3.5 shows two details of this evolution, during July 2002 and July
2003. The presence of a drift in both series, specially in temperature, is self-evident,
as is its connection with daily and yearly periods. To confirm this, the frequency spec-
trum of water temperature was studied: it is displayed in figure 3.6. Computation was
done using function fft from the statistical software R [R Development Core Team,
2004].

This suggest the presence of two main contributions, the 24-hour period and the
1-year period drifts, as well as other complementary wave drifts of approximate periods
of 2.5 days, 10 days, 25 days (a month), 42 days, 100 days (a season) and a year. The
degree to which this simplification captures the variability of water temperature may
be visually assessed by the scatter-plot of figure 3.7/ Given the dynamic link assumed
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to exist between solar radiation, water temperature and conductivity (section [1.4.1)),
the drift functions used in the kriging techniques are

7

27t ) 27t
fo(t) = ]_, fgi_l(t) = COS < - ) s fgz(t) = Sin ( - ) ) (336)
with the periods included in table3.1. Note that not all periods from figure[3.6| were
used, due to reasons explained below.

Table 3.1: Periods 7 (in days) of the trigonometric drift functions considered in equation
(3.36), extracted from figure 3.6.

i1 2 3 4

|1 25 10 25

Here, the spatial dependence vector Z has been replaced by a scalar time dependence
t, which simplifies the notation. As an example, a separate study of the two months of
July 2002 and July 2003 is conducted. This is the reason why periods higher than the
month have not been considered in this analysis. Classical regression of conductivity
data set during each one of these two months against the drift functions, for instance
using expression (3.20) with uncorrelated residuals, gives a set of coefficients summa-
rized in table 3.2, However, the assumption of uncorrelated residuals is verified to be
false after looking at their estimated auto-covariance function (3.4), displayed in figure
3.8, This shows also the covariance function of the original conductivity data sets.
Comparing them, one can visually assess the degree to which the drift has been suc-
cessfully removed by this regression fitting: specially visible in July 2002, the 24-hour
drift period has been mostly removed from the covariance, once the drift accounts for
it.

Note that self-correlation of residuals makes regression an invalid technique. In
particular, residuals have no longer zero mean in all the sampled period, nor are they
homoscedastic. However, the regression functions are trigonometric functions of time,
and the sampled time is relatively long, with a high and quite regular sampling density.
These reasons allow us to assume the regression residuals to be practically homoscedas-
tic and have zero mean. Thus, one has ground to interpret them as a second-order
stationary RF, denoted as Z(t). Its covariance is displayed in figure 3.8.

We apply afterwards universal kriging to the original data set, using the covariance
function of the residuals as a structural tool. The final drift estimates are listed in table
3.2, while figure 3.9 shows also the final kriging auto-covariance of the residuals. Its
experimental auto-covariance is represented in figure|3.9. The fitted covariance model
is

C(h) = (8- Sph(hla = 0.25) + 6 - Exp(h|a = 2.5) + 3 - Hole(h|a; = 4,a4 = 8)) - 10°,
(3.37)
with all ranges (a) and time (¢) expressed in days. Recall that these models are defined
in equations (3.943.11).
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Figure 3.4: Time evolution of conductivity in pS/cm (top), and water temperature in
°C' (bottom), during the years 2002-2003 at the Gualba station.

0 2 4 6 810 13 16 19 22 25 28 31 0 2 4 6 810 13 16 19 22 25 28 31
8 N A A I | 1 A o |
3 8
= N

N
07 (=3
o o

> 9 - < 4

s

B — 8

= N

c > -

o

o o =1
8 8
8
R 8

S |
o —
S
© <
3
° ,
™
| o
o

¢ o -

2 YA 8

© ©

o ©

g—N’ &

(OIS

= Y &

g

g {4 s
g* g7
@

A O O O 8 rTTrTrTrrT T T T T T T T T T T T T T T T T T T T T T T T T
0 2 4 6 8 10 13 16 19 22 25 28 31 0 2 4 6 810 13 16 19 22 25 28 31
July 2002 July 2003

Figure 3.5: Time evolution of conductivity in uS/em (top), and water temperature
in °C' (bottom), during the months of July 2002 (left) and July 2003 (right) at the
Gualba station. Note the different vertical scales.
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Figure 3.6: Frequency spectrum of water temperature, at Gualba station. Some clusters
of high energy in high periods are detected, from which some representative periods
were selected: those of 1, 2.5, 10, 25, 42, 100 and 365 days.

15 20 25 30

filtered water termperature (°C)

10

T T T T T T T
5 10 15 20 25 30 35

observed water termperature (°C)

Figure 3.7: Scatter plot of observed water temperature against its regression prediction
using the functions of equation (3.36).
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Figure 3.8: Covariance function of conductivity original data set (black, squares), and
residuals of regression (violet, dots), for July 2002 (left) and July 2003 (right), at the
Gualba station. The means for these covariances has been fixed as the constant value
of the drift ag and zero respectively. Although the variability of both original series
was strongly different, their de-trended series present a more similar behavior. Note
that regression has removed an important part of the 24h-period.
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Figure 3.9: Covariance function of conductivity residuals.
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residual conductivity

Figure 3.10: Time evolution of residual conductivity: residual data set (dots) and
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Figure 3.11: Time evolution of conductivity: data set (dots) and final estimates (con-
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Table 3.2: Fitted drift coefficients for classical regression (left) and kriging of the
drift (right), expressed both as coefficients for sine and cosine wave functions, and as

amplitude (mg; = \/a3;_; + a3;) and phase (ay = 3- arctan “=1_in days) of a cosine.

a;

The upper table contains the coefficients fitted to July 2002 serzies, and the lower table
those for July 2003.

Standard regression Kriging of the drift
Aa2i—1 ag; Mg Q24 a2i—1 a2; M2 Qg4
0 994.24 | 994.24 0 0 982.73 | 982.73 0

52.14  -20.33 55.97 -0.19 || 50.96  -17.59 53.91 -0.20
20.01  -11.66 23.16 -0.42 | 1590 -20.84 26.21 -0.26
48.50 14.70 50.68  2.03 || 31.37 26.77 4124 1.38
97.07 77.04 | 12393 3.58 || 67.02 55.24 86.85  3.51
0 1688.01 | 1688.01 0 0 1656.97 | 1656.97 0
-11.41 7.43 13.62 -0.16 || -19.74 22.75 30.12 -0.11
19.63 32.13 37.65  0.22 || 18.38 20.31 27.39  0.29
-149.18 62.59 | 161.78 -1.87 | -95.67 45.28 | 105.85 -1.80
120.03  117.89 | 168.24 3.16 || 94.26 131.02 | 161.41 2.48

B W~ O W - O

Simple kriging, as explained in section [3.3.3, is the best option to interpolate a
RF with known mean. To ensure that residuals and drifts coefficients have been sat-
isfactorily estimated, simple kriging is conducted on the regression residuals using the
experimental covariance (3.37). Figure[3.10 shows the results of this simple kriging,
jointly with the observed residual values, obtained with both GSLIB programs [Deutsch
and Journel, 1992], and predict.gstat from package gstat [Pebesma and Wesseling,
1998] for R.

Therefore, the parameters of this global model have been estimated satisfactorily,
and both the trigonometric drift and the auto-correlation of the residuals are taken into
account. Figurel3.11 represents this interpolation, jointly with the original conductivity
data set.

By assuming expression (3.26) for these last kriging predictions, one can compute
the hazard probability of exceeding the thresholds of 1000uS/em and 2500uS/cm at
each moment (see table 1.1). These probabilities may be taken as indicators of the water
quality, the lower the probability the higher the quality. Figure|3.12 clearly shows the
strong influence of the drift on the water quality, specially of the 60hour period. In
spite of these fluctuations, conductivity measures were almost surely between 1000 and
25005 /em during July 2003, whereas in 2002 they were approximately half of the time
above 10005 /cm, and the other half below this threshold.
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Figure 3.12: Time evolution of the hazard of exceeding 1000.S/cm of conductivity in
the year 2002, and of 2500u.S/cm in the year 2003. Red line marks the level of 0.10,
yellow the 0.05 and green the 0.01 of probability.

3.7 Remarks

In this chapter some techniques for dependent data were summarized. Most of them
were developed primarily by Matheron [1965], or they were based on this seminal work
on geostatistics of RFs. All these prediction techniques yield particularly well-suited
results when they work on real Gaussian RFs. Actually, the simple kriging predictor
and its kriging variance were the estimates of the mean and the variance of the Gaussian
distribution at unsampled locations, conditional to the observed data set. When the
RF was not a Gaussian one, some techniques are useful, which essentially tried to
transform the function to another one which was assumed to be Gaussian. This issue
will be further developed in chapter [5.

The Gaussian assumption allows the computation of hazard probabilities of exceed-
ing certain thresholds. Here, a case study on a time-dependent conductivity data set
yielded a series of hazard estimates, which showed a strong oscillation. This hazard
probability could be taken as a water quality index, based only on conductivity. How-
ever, in both studied cases these variations were not able to change the state of the river:
during July 2002 conductivity was always below the quality threshold of 2500uS/cm,
but occasionally it was above the 1000u.S/em threshold. Contrarily, during July 2003
(a very dry year) conductivity measurements were always above 1000S/cm, but sel-
dom above 2500u.S/cm too. In management terms, water in this river during July
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2002 might enter categories 1 (quality-demanding uses) to 3 (restricted uses), whereas
in July 2003 it was clearly inside category 4 (minimal uses). Another issue is the clear
2.5 day-period oscillation detected in both series. This oscillation might be connected
to the solar energy supply on the river, but this will be further discussed in chapter 8.
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3.8 Addendum: validity of change-of-support mod-
els

Here we present the conditions that render a valid change-of-support model, according
to Chiles and Delfiner [1999]. This material complements the exposition of section[3.5.3]
and is again used in section devoted to discuss the case of lognormal variables.

Property 3.5 (Conditions on a valid change-of-support model) A valid change-
of-support model linking a point-support RF with a block-support RF must satisfy the
following conditions:

1. they have the same mean,

E[Z(7)] = E[Z,(%)] = E[Zy(8)] = m

2. the variance of the block RF is linked through (3.33) to the covariance function
of the point random-function,

3. the distribution of the bigger blocks is less selective than that of the smaller
ones, which is in turn less selective that the distribution of the point-support
RF (Cartier’s relation).

According to Chiles and Delfiner [1999], the concept of selectivity can be mathe-
matically formulated in the following form.

Definition 3.23 (Selectivity) A cumulative distribution Fi(z) is more selective than
another Fy(z) if there exists a bivariate distribution Fy, z,(21, z2) with marginals Fy and
Fs5 such that

B(%|%) = 2, (3.38)

which is equivalent to say that the regression line of Z1 on Zsy is the identity line.
Following [Emery, 2004], Cartier’s relation (property [3.5.3) is by far the most re-

strictive condition on the change-of-support models, and it actually entails per se all
the three conditions of property 3.5.



Chapter 4

Geostatistics in an arbitrary
Euclidean space

This chapter is the central part of this work. In the last one, we summarized the
general geostatistical tools and techniques, essentially developed for Gaussian, thus
real random functions (RF). In this chapter we generalize them by interpreting these
classical definitions as if they were applied to the coordinates of a vectorial RF, what
is called principle of working on coordinates|Pawlowsky-Glahn, 2003]. Then, we re-
define all geostatistical concepts, estimators and its properties in terms of vectors and
operators in an Euclidean space. Finally, we confirm that they are consistent with the
principle of working on coordinates. In this way, we ensure that choosing a coordinate
system does not affect our results.

4.1 Notation

Recall of Definition 2.6/ (Euclidean space) A set E is a D-dimensional Fuclidean
space if it is a D-dimensional real vector space equipped with a suitable scalar product.
It is usually denoted by {E,®,®, (-, )g}-

The following notation will be used. The vectors of the space a € E will be denoted
by lowercase boldface Latin characters, and the scalars by lowercase Greek characters;
the Abelian group operation, or sum, will be &, and the external product ®; the neutral
element with respect to this sum is denoted with n, and the inverse element of a by ©a,
where © is the inverse operation to sum, thus satisfying a©a = n; the scalar product
will be (-, -)g, and its associated norm and distance || - ||g and d(-,-), respectively. A
basis of this space will be denoted by E = {e,es,---ep}, and the coordinates of any
vector a with respect to it by using the equivalent lowercase Greek character o, where
the underline indicates that it is a vector of R”. Slightly forcing the notation, we use
also an expression like a = a®E to say that we apply the coordinates to the basis and
recover the original vector. Note also that throughout the next chapters, the neutral
element of this Euclidean structure (replacing the zero vector 0) is denoted by n.

81
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Any linear application T'(-) : E — F acting on a vector a will be written as Ta =
T'(a). Note that this application may have different image and origin spaces. Given
basis E of E and F of I, these applications are fully characterized by a matrix 7', where
the j-th column contains the coordinates of the image of T'(e;) in the basis F.

Finally, if E and F are two basis of E, there exists a matrix ¢ containing in each

column the coordinates of an element of F with respect to the basis E. The inverse

¢~ ! contains by columns the coordinates of an element of E with respect to the basis

F. It these two basis are orthonormal ones, then the matrix satisfies 2’1 = £t and it

contains in the columns the coordinates of each element of E with respect to the basis
F, and in the rows the coordinates of the elements of the basis E with respect to the
basis F'.

4.2 Random function

Let ¥ € D C RP be a point (or the center of a block v) in a domain D of the space-time
real space, with p € {1,2,3,4}. Let Z(Z) € E be a vector-valued RF, and Z(Z) € R” be
the coordinates of Z with respect to a given basis E. Let z(7),z(75),. ..,z(Zy) be an
observed sample of this vector-valued RF, and (), {(Z2),...,((Zn) the coordinates
of this sample. The goal of this chapter will be the prediction of the RF Z(&,) at an
unsampled location Zy, and of its error variance-covariance matrix.

Definition 4.1 (Stationarity in E) Let Z(Z) be a RF with domain D C RP and
image E. Then it is called

1. strongly stationary, when for any set of B, C E and for all set of locations
{Z,} € D, the following probability is invariant by translation h:

Pr|[(Zy(Z+h) € B)) N (Zo(Z+h) € By)N...N (Zy(Z + h) € By)| =
=Pr{(Z\(Z) € By) N (Zx(Z) € Ba) N...N (Zn(Z) € Bn)];

2. second-order stationary, when for any pair of locations ,,¥,, € D, the mean
vector and the covariance operator are translation-invariant, or

Be[2(F)] = p and  Cov[Z(&,), Z(Fn)] = Ol T — )
3. intrinsic, when for any pair Z,, T, D, the increments (Z(Z,,)©Z(Z,,)) have neutral
vector mean and stationary variance operator:
Eg [Z(%,)0Z(Z,)] =n and Varg [Z(Z,)0Z(Z,)] = v(; Zm — Tn);
The covariance and variance operators are shown in this case with an argument and a

parameter, e.g.C(+; &, — Z,,). Any possible vector on E is the argument instead of the
dot, whereas the lag distance plays the role of a parameter.
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Property 4.1 A vector-valued RF Z(Z) € E is stationary (strong, second-order, or
intrinsic sense) on B if its coordinates Z(Z) € RP form a stationary RF (strong,
second-order, or intrinsic sense).

Proof immediately follows from the identification between probability laws for vectors
and its coordinates (for strong stationarity), and the identification of mean vector and
variance/covariance operators with their coordinate counterparts (for second-order or
intrinsic stationarity). Furthermore, this identification is the conceptual proof of the
following proposition.

Proposition 4.1 A second-order stationary RE on E with respect to a basis is also
second-order stationary with respect to any other basis of E. An intrinsic RF E with

respect to a basis satisfies also the intrinsic hypothesis with respect to any other basis
of E.

Definition 4.2 (Gaussian RF on E) A vector-valued RF Z(Z) € E is said to be a
Gaussian RF on E, if for any testing vector zy € E, the projection (zy, Z(Z))g form a
real Gaussian RF.

4.3 Structural analysis

This section focuses on the characterization of the structural functions according to
definition the operators of covariance C(+; &, — &) and variogram y(-; Z,, — Zy).
From now on, the dot in these expressions is dropped, so that,e.g. C(Z,, — Z,) =
C(-;Zp — @,). Here we show that for any given basis, the basic properties of the
covariance and variogram expressed in coordinates are kept. In particular, the validity
of a system (i.e., its positive-definite character), the symmetry of a system and the
global range of a system are treated.

Property 4.1 states that given the stationarity of the RF with respect to a basis,
it is stationary with respect to any other basis of the space. Not only so, but also
there is a linear relationship between the expectations or the covariance functions or
variograms in the two basis,

ElZel = ¢ ElZl,
Coh) = ¢ Cp(h)- ¢,
1,0 = g1, (0)-¢ (4.1)

It is worth noting that these properties are not restricted to orthonormal bases, and
the following results will be valid for them.
Note that in expressions (4.1) and (4.1), the matrices C' and 7 contain respectively

auto-covariance functions (definition 3.5) and direct variograms (definition in the
diagonal, whereas the off-diagonal terms are cross-covariance functions (definition|3.13)
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and cross-variograms (definition 3.14), all of them defined on the coordinates with
respect to a basis. In this context the matrix of coefficients of codispersion (3.15) at
a lag distance h might be interpreted as the correlation matrix of the increments of a
RF like Z(Z + h) © Z(%).

—

Proposition 4.2 If C(h) forms a valid covariance system (i.e.with positive definite

spectral densities, according to proposition|3.2) then g(/_i) = [gg(ﬁ) - '] is also walid.

Proof: Consider an integral applied to a matrix of functions as the matrix of the
integrals of each component of the matrix, fg(fz)dﬁ = (C’Mﬁ)) dh = (f C’Mﬁ)dﬁ)
Given the linearity of the integral operator, the Fourier Transform operator—denoted
by F (-)—is also a linear one. Thus, F (K) = F <£ -C- £t> =¢-F(C)-¢". Then

F (g ) is a positive definite matrix since, for any complex vector A € CP,

)og)a=(2e) FO-(¢3) -

A F(K)-A = )\~<£-}"( ¢
>0

= pF(Q)

9!

=

complex matrices. O

Proposition 4.3 If g(l_i) 18 symmetric for a given basis, then it is symmetric for any
other basis of E.

This is straightforward to show, attending to the fact that (é -B- g)t = gt -ét -ét.

Proposition 4.4 If g(ﬁ) 1s zero for a given basis at a given lag E, then it is zero
for any other basis of E at that lag. Consequently, beyond the global range of all the
covariances in a given basis, the covariance is zero for any basis.

It is interesting to note that beyond that global range, the covariance endomorphism
is the null one: C(z;h) =n for all z € E.

4.4 Linear prediction

In this section we closely follow the exposition of kriging predictor and its properties
given by Pawlowsky-Glahn and Olea [2004, p. 69-76], who in turn use a matrix notation
due to Myers [1982]. Here we generalize these expressions to deal with a RF valued
on any Euclidean space. In this section we present some results which hold for vectors
or endomorphisms of the space, thus are basis-independent, and some which rely upon
the orthogonality of a basis. A special attention should be paid to this detail. We
use the regression concepts introduced in section given the connection between
kriging and regression stated in section 3.3.4.
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4.4.1 The general case of kriging

At an unsampled location 7y, the unknown Z(%) is estimated from the available sample
by means of a sum of affine linear functions of the observed data,

) =caod Ma(@.), (4.2)

where ¢ € E is a vector of constants and, for each n = 1,2,..., N, )\, is an endo-
morphism. Given a basis of E, we may express A\, as a matrix /\ Element A of /\
measures the influence of the j-th coordinate of observation z(Z,,) on 1 the i-th Coordlnate
of z*(Zy).

Let z = (z(Z),z(%), . .., z(Zy)) be the vector containing all the available observa-
tions of the RF Z(Z). Tt is clear that its sample space is F = EV, and that z has D - N
components We can define on F an Euclidean structure inherited from that of E, and
we can also use a N-tuple replication of a basis of E as a basis for F. Equation
can be written as

z" (%)) = cdAz, (4.3)
where A : F — E is a linear transformation. Given a basis of E and its associated basis
in IF, this linear transformation is expressed as a D x (D-N) matrix A = (A, A, -+ A ),

where each /\ is the matrix of each endomorphism \,. Equation expresses the
kriging predlctor as a single affine linear function.

Property 4.2 For the true but unknown Z(Zy) and its predictor z(Zy) defined in equa-
tion (4.2), the following properties hold:

1. the vector of expected values of 2*(Zy) is By [2°(Z0)] = c®@_ \.m, where m =
Eg [2(7)];

2. the variance operator of 2" (Zy) is

VarE ®n 1®m 1)\ C fn))\ﬁm

where \' represents the adjoint operator of X (definition|2.11);
3. the vector of expected prediction errors is Eg [2*(70)2 Z(7y)] = comd@L_ \,m;

4. the variance operator of prediction errors is

Sk = Varg [2°(Z0)© Z(, @n 1@m (T — )\ aC(0)®
@@nzl MC (T — Z)BCH (T — To)N,) 5

5. the predictor z*(%y) is unbiased if and only if ¢ = m@@gzl)\nm.
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Sketch of a proof: The proof of item 1 follows from the linearity of the expectation
Eg [/] and of the predictor (4.2) with respect to the operations of the space, & and
the application of endomorphisms, as well as from the second order stationarity of
the vector RF. Proof of item 2 is derived using expression (4.3) and the fact that
Varg [a®AZ] = AVarg [Z] A* for any constant vector a, any linear operator A and any
random vector Z [Eaton, 1983, p. 76]. This item also needs to take into account
the relationship between the variance of the observed data vector and the covariance
function: Varg [z] may be understood as an array of endomorphisms, where cell (n, m)
contains the operator Covg [z(Z,,), z(Z,,)], which by definition is equal to C(Z,, — Z,).
Proof of item 3 directly follows from the first property. The proof of item 4 is derived
using equation (4.3), writing

Varg [z (Z0)©Z(%y)] =

— Varg [Az] ®Varg [Z(Z,)] ©Covg [Az, Z(i,)] © (Covg [Az, Z()])"

and considering the fact that Covg [Az, Z(Zo)] = @Y _ \C(Z — T,,), again due to the
definition C(Zy — &) = Covg [2(Z,), Z(Zy)]. Item 5 is the direct application of the
definition of unbiasedness and item 3. Note that all covariances in these proofs are

defined as operators, and consequently any representation in any coordinate system
will be valid. O

As can be seen from item 4 of property|4.2, a covariance operator of prediction errors
exists. The classical geostatistical optimization criterion is to minimize a scalar measure
of dispersion, but not an operator-valued one. However, if we switch to the coordinate
context, we may use Myers [1982] approach: he defined the prediction variance for
Z(Zy), i.e.the value to minimize in the kriging procedure, as the trace of the variance
matrix,

0% 5 = Tr [Varg [2°(70) OZ ()] (4.4)

Note that this definition is also well-suited for operators, because the trace of the matrix
of an operator does not change with changes of basis. Therefore, Jf(JE is a property of
the variance operator, and is basis-independent.

From equation (4.4), item 4 in property [4.2] and the fact that the adjoint operator
has the same associated trace as the original one, the following equation results

0%n = > Tt MC(Fn — TN, ] + Tt [0(6)] —2) Tr MC(F — 7).

n=1m=1 n=1
Note that traces are real numbers, and they are operated with classical sum and prod-

uct.

Property 4.3 The kriging predictor minimizes the expectation of the squared distance
in E between the true value Z(Zy) and its prediction z*(Zy).
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Proof: Given the identification of the distance in E between two vectors and the
distance in R” between its coordinates in an orthonormal basis, it holds that

E [d*(z*(%)), Z(%,))] = E Z(C*(fo)i_zi(fo))z =ZE[(C§(fo)—Zi(fo))2ﬂ4%)
= Y Var ¢ (#0); — Zi(#0)] = Tr [Varg [27(£)SZ(%,)]], (4.6)

Thus, the trace of the covariance matrix of equation (4.4) computed with orthonormal
coefficients is equal to the expected squared distance between the prediction and its
true value. Minimizing the first, we minimize the second. This proof is only valid for
kriging systems built using orthonormal bases. However, since we know that both the
distance and the trace of the variance operator are not-coordinate dependent, we may
be sure that this is valid for any basis. Note the coincidence of this criterion with the
minimal-norm criterion of regression (section [2.3.4). Furthermore, this property will
be generalized using coordinate arguments in the next sections.

U

4.4.2 Simple kriging

Definition 4.3 (Simple kriging) The simple kriging predictor of Z(Zy) is the affine
lineal transformation of kriging (eq. |4.2) subject to unbiasedness, which is achieved by

c= (Ie@;\;)\”) m= m@@:zl)\nm. (4.7)

Therefore, simple kriging needs a known mean vector m of the RF.

Some particular comments on simple kriging (usually abbreviated as SK) follow.

e Note that this definition ensures the unbiasedness of the predictor z*(7y) for any
set of endomorphisms {\,,n =1,2,..., N}.

e SK is also useful when the mean is not constant but known. In this case, a
residual RF is computed as Y(Z) = Z(7)em(Z), and simple kriging is applied
to it, taking ¢ = n. Final predictions are then recovered by adding the mean to
the simple kriging predictor z*(Zy) = m(7y)Sy}

To derive the endomorphisms {\,}, take the compact notation of the kriging pre-
dictor (4.3) and its minimization criterion expressed as minimal distance of error in
equation (4.5). It is clear that the SK predictor and its error are exactly equivalent to
regression predictor (2.10) and its error (2.11). Therefore, solution of SK is the same
as obtained for regression (equations[2.12 and 2.13). In particular, the joint operator
A is found to be

A = (Covg [Z(1), z]) (Varg [z]) ", (4.8)
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and the constant value is equal to (4.7). Recall that z is the concatenated vector of all
observed vectors.

This operator-valued solution ensures us the independence of results with respect
to the chosen basis. However, it is difficult to work with it. Therefore, we switch here
to the coordinate approach, and derive some interesting properties of the SK predictor
and error variance structure. The following results assume a fixed basis of E, not
necessarily an orthonormal one.

Property 4.4 If the vector of expected values m is known, then the prediction variance
U%{’]E reaches a minimum when the set of matrices {én,n = 1,2,..., N} satisfies the
system of equations

This system can be written in a compact form as C-A" = Cys where C' contains NDx N D
covariances among all the coordinates in all the sampled locations, and ¢, contains the
ND x D covariances between all the coordinates in the sampled locations and those in

the predicted location xy. With this notation, ét = gfl "Gy

II>/
IIQ
2
Il
I
=
3 1
|
3
Il
\.H
vl\D
=

Note the coincidence of this last expression for A and equation (4.8) for an orthonormal
basis.

Property 4.5 The prediction covariance between the i-th and the j-th coordinate of
the SK predictor is

N D
055 = 2] 6 Z Z )\kj,ani(fo — fn) (49)

n=1 k=1

The resulting matriz g = (0y;) is the symmetric covariance matriz of kriging errors
[Chiles and Delfiner, 1999, p. 511]. Recall that for an orthonormal basis, g is equal to
the matriz of the endomorphism X g obtained in property 4.2.4.

Property 4.6 The prediction variance of the SK predictor is

i = i o = Tr |C(0)] ~ i Te |, - Clao — @)

n=1

Proofs of these properties are omitted, since they involve only covariance functions,
which are defined in the real coordinates. Equivalent proofs for real vector RF's can be
found in Myers [1982], Chiles and Delfiner [1999, p. 311] or Pawlowsky-Glahn and Olea
[2004, p. 72-75]. However, the next property is proven, without using operator-driven
arguments, to show that the coordinate approach is also self-consistent.
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Property 4.7 The SK prediction does not depend on the basis chosen to represent the
vectors of E. The kriging error variance matriz, being always expressed in coordinates,
depends on the basis, but satisfies the standard conditions of change of basis (4.1).

Proof: In this proof we drop the double underlining of matrices, because all the elements
involved are of this kind. Also, without loss of generality, we consider the mean m to
be the neutral element of E, so its coordinates are 0. Let ¢ be the D x D matrix of
change of coordinates from basis F to E, and denote the coordinates with respect to
these basis of the spatial distribution {z(Z,),n =1,2,..., N} with the matrices ¢ and
&, both with (N D x1) elements. Then { = py-&, where ¢y represents a N D x N D block
diagonal matrix, with N diagonal blocks equal to ¢, and all the elements outside the
diagonal equal to zero. Let C (71) represent the variance structure of the representation
¢, and K (h) the variance structure of ¢&. Then equation (4.1) shows us that it holds
C (h) =¢p-K (h) ©'. Following property [4.4, let C' and K represent respectively the
variance matrices of the ( and £ coordinate vectors of the spatial distribution, thus
C = pn - K- ¢4. The independent terms of the SK equation (in property 4.4) are
denoted respectively by ¢y and ko and they satisfy the same expression ¢y = @y - ko - ©'.
Finally, let the predictions obtained be respectively (o = A. - and & = Ay - £&. These
weights can be computed according to property 4.4 as AL = C~!-¢q and AL = K1 k.
Then

_ -1 _ _ _
Ap = Chec _(SON K- wﬁv) (sON ko @) =¢on Koy con koot =
o KT koot = o) - A
Replacing these weights in the predictor
_ t _
CozAc'CZ(SONt'AZ'@t) 'SON'fZSO'Ak'SONl'SON'f:SO'Akf:SO'fm

which implies that the predictor itself satisfies the same change of coordinates relation-
ship as the spatial distribution, and thus z*(Z) = ((OE = = SOF.

Regarding the kriging variance, we can write X¢ = C'(0) — A, - ¢ and % = K(0) —
Ay, - ko, where ¢ and YF are the variance matrices of kriging errors expressed in the
two coordinate systems. Then

¥ = - K(0)- w—(soN -A - @) con kol =

= 0 K0) ¢ —p- Ny ko ' =p- (K(ﬁ)_/\k'k())' b=y 35F. o

Consequently, the kriging variance matrix obtained using a basis can be linearly trans-
formed to the kriging variance matrix expressed in any other basis, in accordance with
equation (4.1). O
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Proposition 4.5 If the vector RF Z(Z) is a stationary Gaussian one on E according
with definition 4.2, then SK wvector predictor and its operator variance give the pa-
rameters of the normal distribution on E for Z(Zy) conditional on the observed spatial
distribution 2(¥), 2(7s), . .., 2(Zn),

[Z(fo”l(fﬁ, Z(fg), ce Z(J_I)N)} ~ NE (Z*<fo), EK,E) .

Given the identification between the normal distribution of Z(#) on E and that of
its coordinates Z(¥) on R, this property is equivalent to the conditional expectation
satisfied by SK in R. For a proof of the identification between the SK predictor and
variance with the parameters of the multivariate normal distribution in the R” case
see Pawlowsky-Glahn and Olea [2004].

4.4.3 Universal kriging

In the usual situation, the mean is not known, and it might even be considered not a
constant. In this case, simple kriging is not applicable. Therefore, we cannot ensure
unbiasedness of the kriging predictor (4.2]) by satisfying the unbiasedness condition on
the constant (4.7) and leaving the endomorphisms A, free. Instead, we take ¢ = n
to filter the unknown mean from the predictor, and then look for restrictions on the
endomorphisms. The resulting predictor is called Universal Kriging. Let us explain
this step by step.

Definition 4.4 (Drift functions) Assume the mean of a RF to be unknown, but a
linear function of (A + 1) known real-valued functions g,(¥),a =0,1,..., A:

m(@) = @ a(@)ob. (4.10)
These functions are called drift functions.

Property 4.8 Unbiasedness of the kriging linear predictor (4.2) is achieved by forcing

N
9a(T) =D _ 9a(@a)ON, (4.11)
with a =0,1,...,A. These A+ 1 vector equations are called universality conditions.

Proof: Taking the condition for unbiasedness from property 4.2/5, we obtain

N
n=c= <I@@ _1)\n> m = Tm,

with operator T'= 1 6@2]:1)\71. Now replacing the mean by its expression as a combi-
nation of the drift functions, it yields

n=T (P, u@ob.) =@ ueTh,
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by linearity of the operator T'. Since this equality with the neutral element has to be
fulfilled for all possible b, € E, then each of the operators 7! = (g,(Z)®T) must be
the null operator

N = g,(2)0T = gu(7)® (I@@lﬂ) '

Recall that the null operator satisfies Na = n for any a € E, and it is the neutral
element of the vector space of endomorphisms L(E,E). Given the linearity of the
external product, we may rearrange this expression and obtain equation (4.11). 0

Definition 4.5 (Universal kriging) The universal kriging predictor is a linear trans-
formation of the observations (eq. |4.2), with ¢ = n and endomorphisms satisfying the
universality condition (4.11) for each drift function.

Some comments regarding particular cases of universal kriging follow.

e If we take a single drift function considered constant, go(Z) = 1, then the tech-
nique is called general or ordinary kriging (abbreviated OK). In this ordinary
case, the variogram functions are enough to apply kriging, because they filter di-
rectly the unknown but constant mean. However, recall that variograms do not
capture asymmetry features of the covariance structure. Also the universality
conditions are in this ordinary case simply

[ EB:;I)\”.

e The term wniversal kriging (abbreviated UK) is usually reserved for the case
when ¢;(Z) are the polynomials of some degree of location #, always including
the constant as the first drift function.

e If we take as drift functions the constant and a known external variable, which
depends also on location ¢1(Z) (e.g.topography trying to predict a yearly tem-
perature RF for instance), then the obtained technique is usually called kriging
with an external drift or trend kriging (abbreviated TK).

Despite these variations, we will refer to all of them in the next developments under
the term universal kriging (UK). Note that this model is connected to regression in an
Euclidean space, as was explained in section|2.3.4.

As happened with simple kriging, UK system expressed in operators is particularly
cumbersome. Therefore, we introduce again an arbitrary basis of the space and derive
matrix formulae, so that the procedure is better understood.

If we express all endomorphisms and vectors with respect to a chosen basis of E,
then the prediction variance J%’E has to be modified to include (through Lagrange
multipliers) the set of universality conditions expressed in coordinates:

o

N
=3 0u(@) A~ gu(@0)L, a=0,1,..., A
n=1
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Note that in total, there are (A + 1)D? universality conditions, which weighted sum
with their Lagrange multipliers can be expressed as:

A D D N
Z Z Z Vaij (Z 9ol Tn) - Mnis — 9a(T0)0i | =

>y, (Z 9a(Tn) - Al = ga(T0) -£D> -

The final quantity to minimize is then

N N A
zzé O X 4G, =20 C D, (ga<fn>-é;—ga<fo>-£[))],
n=1 m=1 n=1 a=0

where ¢~ = C(Z — @,). Note that the matrix inside Tr[] has been simplified
attending to the fact that the trace of a matrix coincides with that of its transpose. By
derivation of () as a function of A, ;; and v, ;;, equating the result to 0, and rearranging
it in matrices, it can be shown that () reaches a minimum when the set of matrices
{én, n=1,2,..., N} satisfy the system of equations

Q="Tr

N
Zé - O (T — +Zga$n v = Cl#n—7%) m=12,... N (412)
Zga(fn) A= gu@)I, a=01,... A  (413)
This system can be written in a compact form as g ét ¢, where

t

G

g - = :t

Gy

G - G, 0

contains the ND x ND covariance matrix C of the simple kriging system, and the

set of N block matrices gi = (go(fn);D, e ,gA(fn);D>, where each block contains D

identical rows and columns; also,

contains the matrix of Dx N D weights A of equation (4.3), and the Lagrange multipliers
V,,ij involved in each one of the (A+ 1) D? universality conditions, arranged in a column
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block matrix

[
Il

with v = (v4;); finally,

c = P )
= go

contains the covariance ¢ between all the coordinates in the sampled locations and
those in the predicted location ), as well as G , the independent terms of the univer-
sality conditions (4.11). With this notation, the solution is obtained with

||>>

=C

—0

Property 4.9 The prediction covariance between the i-th and the j-th coordinate of
the universal kriging predictor is [Chilés and Delfiner, 1999, p. 311]:

N D A
045 = z] O E E /\k:j nckz -'L‘O - xn E Va,ijga(fO)'
a=0

n=1 k=1
Therefore, the prediction variance of the universal kriging predictor is

A

OikE = 20“ =Tr [ ] ZTr [ C(7o — xn)} - Zga(fo)Tr [ga} :

a=0

Property 4.10 The universal kriging prediction does not depend on the basis chosen to
represent the vectors of E. The kriging error covariance matriz, being always expressed
in coordinates, depends on the basis, but satisfies the standard conditions of change of

basis (4.1).

Sketch of a proof: The proof is exactly equivalent to that of property 4.7 by using the
same notation and taking into account that

C = P(N+1) * K- SOfN+1)
Co = P(N+1) ko - ¢t
9a(T)OC, = gu(T)c,OE = g.(T)O(0k,OF) = (9(Z) - p)Ok.

Note that C , K , Co and /Aco are real-valued covariance matrices, while c,, k, € [E are the
vectors of constants which describe the mean of the function m = @g,(Zy)©c, jointly
with the drift functions g,(Z). Finally, ¢,, k, € R? are the coordinates of these vectors
of constants. O
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Recall of Property 4.3 The kriging predictor minimizes the expectation of the
squared distance in E between the true value Z(Zy) and its prediction z*(Zy).

Proof: Given the independence of the simple and universal kriging predictors with
respect to the basis (properties|4.7 and 4.10) and the fact that the distance in E does
not depend on the basis chosen for the space, note that this property 4.3 is now valid
for any basis, not necessarily an orthonormal one. U

4.5 Remarks

Here we presented a generalization of some of the most-frequently used geostatistical
concepts and techniques to deal with dependent observations which sample space can
be meaningfully structured as an Euclidean space. It this chapter, we have shown
many results, which deserve a clear summary.

e Concepts related to real RFs easily translate into vector-valued RF's.

e The structural functions can be defined as endomorphisms depending on a param-
eter (the lag distance). This ensures that their properties (positive-definiteness,
symmetry, ranges) are intrinsic to them, and not artifacts induced by the choice
of a basis. However, we have proven this intrinsic character also by choosing two
arbitrary basis and comparing the properties of the obtained structural functions.

e Kriging predictors can be built as affine linear transformations of the observed
data. The kriging procedure looks for those endomorphisms which produce a
smaller error variance operator. The concept of size of an operator is chosen to
be the trace of any of its matrices in a basis, because the trace of a matrix is
invariant by changes-of-basis. This coincides with Myers [1982] approach.

e The kriging error variance is defined as an endomorphism, which again does not
depend on any basis of representation. However, we have proven again that the
kriging error matrices obtained with two bases are related with the standard
formulae of change-of-basis.

Summarizing, we have built the most usual geostatistical concept, tools and techniques
directly using vectors and endomorphisms in an Euclidean space, without using any
basis. Therefore, the choice of a basis will not affect our results. However, the devel-
opment of all results in terms of vectors and endomorphisms is quite cumbersome, and
difficult to deal with. Fortunately, in practical application we can choose any basis
and work with the coordinates with respect to it, following the principle of working
on coordinates [Pawlowsky-Glahn, 2003]. This chapter ensure that this choice will not
affect the final results, thus it is a confirmation of the applicability of this principle in
the geostatistical field.

This chapter does not contain any example, because other chapters of this thesis
present particular cases, which may serve as illustration. The real space has been
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already trea