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Abstract

In this work the data-driven control technique “Virtual Reference Feedback Tuning” is treated
in different ways. In one hand, the capabilities of the method are extended with several pro-
posed variations that allow a wider use of the method. An alternative two degrees of freedom
control topology is considered, as well as its application to proportional-integral control. The
multiple-inputs multiple-outputs case is also tackled, adding an automatic pairing selection
between outputs and manipulated variables. The method is applied to the Internal Model
Control topology in order to proposed a robust stability test based entirely on data.

All these extensions were applied to three important cases. In first place, the control of
wastewater treatment plants is considered. The control objective in this case is to maintain
the effluent of the plant with a low concentration of pollutants while trying to consume as less
energy as possible. Both the multiple-inputs multiple-outputs and the decentralized case are
used, yielding good results for this complex system. Second, the pairing selection is applied
to a solid-oxide fuel cell plant. The output voltage and the oxygen excess is controlled by
manipulating the fuel and the air flow rates. Finally the two degrees of freedom controllers
are applied to a pH neutralization plant by controlling the acid flow rate.
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1. Introduction

1.1. Motivation

The motto of the IEEE Control System Society cannot be clearer: “Control Systems are
ubiquitous”. Industrial processes, transportation, medical application, even our own body is
full of robust control loops that keep life going on. Maybe, control theory is one of the fields
with more possible areas of application.

In the last century, technology and human development have grown in a pace not seen be-
fore. Certainly, control theory has helped to it and at the same time, has been adapting to
the changes. Now, we humans, are reaching a point of no return, since our development is
provoking catastrophic changes in the world. It is our turn to reverse the situation to a more
sustainable state. And is just here where control theory can help. In this thesis, special atten-
tion is given to the control of wastewater treatment plants. This kind of process is complex
and hard to control. Its performance is highly dependent on the correct control algorithm
applied. One of the motivation for this work is to use an easy method to find this control.

That is the main reason why data-driven control was chosen as the control paradigm. Data
driven control is a new trend in control theory where, using only data from the same plant,
it is possible to directly find the right parameters of the controller in order to achieve certain
desired behavior. Data-driven control methods allows the user to directly use data to trans-
form the information of the plant into controllers. No modeling step is needed, only a set of
data from the plant is enough to compute the controllers’ parameters.

There are several data-driven methods in the literature. The basic characteristic that they share
in common is that the parameters are found by solving an optimization problem. Depending
on the performance index chosen, the problem can be solved using standard quadratic pro-
gramming or using Newton-like techniques. Therefore, finding controllers for dynamical
system reduce to solve an optimization with widely-available tools.

Another aspect of these new techniques is that a deep-knowledge of the plant is not necessary.
The engineer can jump from pure data to controllers in a faster way. It does not mean that
the engineer can blindly find the required controllers because any good control engineer will
always have to understand the plant he or she is trying to control. This is something that
cannot be skipped, but can be performed swiftly using data-driven techniques.

Along with waste management, energy sources are other important issue that has to be solved.
In this sense, in this thesis the same algorithm is applied to the control of a solid oxide fuel
cell, which produces electric energy from fuel without a combustion process, with just a
reduced amount of CO2 emissions to the atmosphere. Also, the method was further applied

1



2 1. Introduction

in a pH neutralization process. It is known that this pH process is nonlinear and that its
dynamics highly depends on the point in the titration curve of the process. But good results
where obtained using data-driven control, showing the applicability of this new method on
real-life problems.

Therefore the objective of this thesis is to extend the capabilities of data-driven control in
order to apply them in these important problems. Today is the day, when humankind starts to
fully realize the need to find real solution to pollution and energy production problems, and
control theory is one of the tools that can help to solve them.

One of the anonymous reviewers of the papers derived from this thesis said: “Be able of
design a controller without the need of a controlled process model, with only open or closed-
loop field test data, has been part of the wishes list of all control engineers”. The contribution
of this thesis is to take those control engineers one step closer to fulfill this wish.

1.2. Contributions

The contribution of this thesis is twofold. In first place, several extensions to the Virtual
Reference Feedback Tuning, a popular data-driven method, are proposed in order to use the
virtual reference idea with different control topologies. Therefore, extending its possibili-
ties of application. In the other hand, three different applications are presented where the
suitability of the method is tested with good results.

This thesis has derived to the following papers:

• Conference Papers

– J.D. Rojas and R. Vilanova. Model Driven Conceived / Data Driven Tuned Con-
trol Systems. MATHMOD Vienna 09. Vienna University of Technology. Febru-
ary 11-13, 2009.

– J.D. Rojas and R. Vilanova. FeedForward based Two Degrees of Freedom for-
mulation of the Virtual Reference Feedback Tuning approach. European Control
Conference 2009. Budapest, Hungary. 23-26 August, 2009.

– J.D. Rojas, and R. Vilanova, Guidelines for controller structure in the Two De-
grees of Freedom VRFT framework based on a Correlation Test, Emerging Tech-
nologies and Factory Automation, 2009. ETFA 2009. IEEE Conference on pp.1-
8, 22-25 Sept. 2009. Palma de Mallorca, Spain.

– J.D. Rojas, F. Tadeo and R. Vilanova, Control of a pH neutralization plant using
the VRFT framework. Control Applications (CCA), 2010 IEEE International
Conference on , pp.926-931, 8-10 Sept. 2010. Yokohama, Japan.

– J.D. Rojas, R. Vilanova and V.M. Alfaro, Application of the virtual reference
feedback tuning on wastewater treatment plants: A simulation study, Emerging
Technologies and Factory Automation (ETFA), 2010 IEEE Conference on, pp.1-8,
13-16 Sept. 2010. Bilbao, Spain.
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1.3. Outline 3

– J.D. Rojas, V.M. Alfaro and R. Vilanova, Control of an Activated Sludge Process
using the Virtual Reference Approach. International MultiConference of Engi-
neers and Computer Scientists (IMECS) 2011, pp. 902-907, 16-18 March 2011.
Hong Kong.

– J.D. Rojas, J.A. Baeza and R. Vilanova, Effect of the controller tuning on the
performance of the BSM1 using a data driven approach, Watermatex 2011, June
20-22, San Sebastián, Spain.

– J.D. Rojas, J.A. Baeza and R. Vilanova, Three degrees of freedom Virtual Refe-
rence Feedback Tuning design and its application to wastewater treatment plant
control, 18th World Congress of the International Federation of Automatic Con-
trol, August 28 - September 2, 2011. Milano, Italy.

– J.D. Rojas and R. Vilanova, Internal Model Controller tuning using the Virtual
Reference Approach with Robust Stability, 18th World Congress of the Interna-
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1.3. Outline

The manuscript is divided in two parts. The first one is related with the extensions proposed to
the VRFT. In chapter 2, an introduction to several data-driven control techniques is presented.
In chapter 3 the contribution to the two degrees of freedom controllers are proposed: first an
alternative structure which allows to completely separate the design and the response of the
reference tracking and the disturbance rejection is adapted to the VRFT and compared with
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4 1. Introduction

traditional two degrees of freedom structures. Second, it was also found that, when using a
PI controller with a two degrees of freedom structure, it was necessary to add a constraint
in the optimization to guarantee a free steady-state error. The derivation of this constraint is
presented in section 3.2. Finally, in section 3.3, an extra degree of freedom is added to the
design by a feedforward controller, computed in conjunction with the two degrees of freedom
case.

Chapter 4 contains the contribution to other advanced control structures. In section 4.1, some
remarks about the parameterization and a reformulation of the performance criterion to take
into account a weighting in the control effort is presented. The case of the multiple-input
multiple-output strategy is presented in section 4.2. In this case, not only the controllers are
tuned with a decoupling strategy, but also, in the decentralized case, the pairing selection of
the input-output loops is chosen automatically within the optimization. An interesting ap-
proach to the tuning of model-free Internal Model Control (IMC) is presented in section 4.3.
Taking advantage of the well-known robustness characteristics of IMC, a test is proposed to
check the viability of the controllers once they have been computed.

The second part of the thesis presents three interesting cases where these extensions have
been successfully applied. The first one is the application to a wastewater treatment plant.
Using the world-wide known Benchmark Simulation Model 1, the VRFT is used in different
scenarios and control configurations in chapter 5. A special preprocessing step is proposed
and the performance of the controlled plant is issued.

In chapter 6 the MIMO approach is employed in a Solid Oxide Fuel Cell. In chapter 7, the
VRFT is used in a pH neutralization process and tested in a bench plant, using real data and
on-line control.
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2. Data-driven control: a new trend in
control theory

In this introductory chapter, several Data-Based Control Approaches will be surveyed. Gen-
erally speaking, the control methodologies could be divided in two:

• Model-Based Control

• Data-Driven Control (or Data Based)

Model-Based Control refers to the methodologies which use information from the plant in
the form of a model. For example, the classical tuning rules, may need a specific model of
the plant in order to solve some optimization problem (Like minimizing an integral criteria
or so). Also,the model could be used directly in the control law (many of them converges to
the inversion of the minimum phase part of the model). The classical example of this kind of
methodology is the Internal Model Control (IMC) (Morari and Zafirou, 1989)

On the other hand, Data-Driven Control never attempts to find the model of the plant: it uses
the data of the plant directly to find a controller, which, generally, is meant to minimize some
control performance criterion. In this work, the last methodology is the one that will be used.
Firstly, an overview of some important examples of this approach are given.

Some of the most remarkable Data-Driven Methods are presented in this chapter, for in-
stance, the Iterative Feedback Tuning (Hjalmarsson et al., 1998), the Correlation based Tun-
ing (Karimi et al., 2007) the Virtual Reference Feedback Tuning (Campi et al., 2002) and the
Fictitious Reference Feedback Tuning (Kaneko et al., 2005).

2.1. Iterative Feedback Tuning

Iterative Feedback Tuning (IFT) was born in the nineties as the result of joining the identi-
fication and the control problem for restricted complexity controllers. As its name suggests,
the tuning of the parameters of the controllers is carried out by a series of iterations. In this
case, each iteration attempts to minimize a certain control criterion, but each new iteration
depends on the result of the last iteration, in order to improve the performance of the system.
This overview is based on Hjalmarsson et al. (1998), Gevers (2002) and Lequin et al. (2003).

The method directly uses closed-loop data in order to improve the performance of the system.
According to Gevers (2002), if the system is given as in fig. 2.1, where

• Cr(z; ρ) and Cy(z; ρ) are the parametrized reference and feedback controllers respec-
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8 2. Data-driven control: a new trend in control theory

Figure 2.1: System structure for IFT.

tively, with parameters ρ.

• P (z) is the unknown Linear Time Invariant (LTI) plant.

Then, the error between the desired and the achieved closed-loop response is given by

e(t) =

(
Cr(z; ρ)P (z)

1 + Cy(z; ρ)P (z)
− Td(z)

)
r(t) +

1

1 + Cy(z; ρ)P (z)
v(t) (2.1)

Where Td(z) is the desired input-to-output Transfer Function.

Based on this expression, the performance criterion can be set as

J(ρ) =
1

2N
E

[
N∑
t=1

(e(t; ρ))2 + λ

N∑
t=1

(u(t; ρ))2

]
(2.2)

If T0(z; ρ) = Cr(z;ρ)P (z)
1+Cy(z;ρ)P (z) and S0(z; ρ) = 1

1+Cy(z;ρ)P (z) are the achieved closed-loop
response and sensitivity function with controller {Cr(z; ρ), Cy(z; ρ)} and given the indepen-
dence between r(t) and v(t) the performance criterion can be written as

J(ρ) =
1

2N

N∑
t=1

{(
yd(t)− T0(z; ρ)r(t)

)}2
+

1

2
E
[
{S0(z; ρ)v(t)}2

]
+ λ

1

2N
E

[
N∑
t=1

(u(t; ρ))2

] (2.3)

where

• v(t) is a quasi stationary noise.

• r(t) is a external reference signal independent of v(t)

• yd(t) represents the desire response to the external signal r(t) for the closed-loop sys-
tem

To solve this optimization problem, an iterative algorithm is required. Three different exper-
iments are performed on the closed loop system in order to find an unbiased estimated of the
gradient of (2.3). The parameters of the controller are computed as:

ρi+1 = ρi − γiR−1
i

∂J

∂ρ
(ρi) (2.4)
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Where Ri is some positive definite matrix and the sequence γi obey some constraints so the
algorithm can converge (Gevers, 2002) and

∂J(ρ)

∂ρ
=

1

N
E

[
N∑
t=1

e(t; ρ)
∂e(t; ρ)

∂ρ
+ λ

N∑
t=1

u(t; ρ)
∂u(t; ρ)

∂ρ

]
(2.5)

The three experiments are also presented by Gevers (2002). The first and the third are just
normal operation collected data, while the second one requires to use the output of the
first experiment as part of the input data. If the signals

{
rji (t)

}
are N -length reference

signals for experiment j = 1, 2, 3 on iteration i (that is, while the controller C(z; ρi) ,
{Cr(z; ρi), Cy(z; ρi)} is in the loop), the corresponding output signals are

{
yj(t; ρi)

}
, for

j = 1, 2, 3 and r(t) is an arbitrary signal used to excite the closed-loop process, then:

r1
i (t) = r(t) with output y1(t; ρi) = T0(z; ρi)r(t) + S0(z; ρi)v

1
i (t)

r2
i (t) = r(t)−y1(t; ρi) with output y2(t; ρi) = T0(z; ρi)(r(t)−y1(t; ρi))+S0(z; ρi)v

2
i (t)

r3
i (t) = r(t) with output y3(t; ρi) = T0(z; ρi)r(t) + S0(z; ρi)v

3
i (t)

and corresponding control signals given by

u1(t; ρi) = S0(z; ρi)
[
Cr(z; ρi)r(t)− Cy(z; ρi)v

1
i (t)

]
u2(t; ρi) = S0(z; ρi)

[
Cr(z; ρi)(r(t)− y1(t; ρi))− Cy(z; ρi)v

2
i (t)

]
u3(t; ρi) = S0(z; ρi)

[
Cr(z; ρi)r(t)− Cy(z; ρi)v

3
i (t)

]
Using these signals, in Hjalmarsson et al. (1998) is demonstrated that an unbiased estimation
of the gradient can be found by

∂̂J(ρi)

∂ρ
=

1

N

N∑
t=1

(
e(t; ρi)

̂∂y(t; ρi)

∂ρ
+ λu(t; ρi)

̂∂u(t; ρi)

∂ρ

)
(2.6)

with

e(t; ρi) = y1(t; ρi)− yd(t)
u(t; ρi) = u1(t; ρi)

̂∂y(t; ρi)

∂ρ
,

1

Cr(z; ρi)

[(
∂Cr(z; ρi)

∂ρ
− ∂Cy(t; ρi)

∂ρ

)
y3(t; ρi) +

∂Cy(z; ρi)

∂ρ
y2(t; ρi)

]
̂∂u(t; ρi)

∂ρ
,

1

Cr(z; ρi)

[(
∂Cr(z; ρi)

∂ρ
− ∂Cy(z; ρi)

∂ρ

)
u3(t; ρi) +

∂Cy(t; ρi)

∂ρ
u2(t; ρi)

]

The next controller is then computed by

ρi+1 = ρi − γiR−1
i

∂̂J

∂ρ
(ρi) (2.7)
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Figure 2.2: Correlations Based Tuning control problem.

2.2. Correlation based Tuning

In Karimi et al. (2007) the Correlation Based Tuning (CbT) is used to tune the parameters
of a linear controller. The model reference control problem is given as in Fig. 2.2. The
main idea is to find the controller’s parameters in such a way that the signals r(t) and εcl are
uncorrelated. According to Karimi et al. (2007), one can say that

εcl(ρ, t) = M(z)r(t)− (1−M(z))C(z; ρ)y(t)

= [M(z)− P (z)(1−M(z))C(z; ρ)]r(t)− (1−M(z))C(z; ρ)v(t)
(2.8)

if one is able to find the ideal controller C(ρ∗) then the signal εcl(t; ρ∗) will be independent
of r(t) since v(t) and r(t) are independent.

The optimization problem then, can be given by

Jc(ρ) = fT (ρ)f(ρ) =

l∑
τ=−l

R2
εrw(τ) (2.9)

where
f(ρ) = E {ζw(t)ε(ρ, t)}

ζw(t) = [rw(t+ l), rw(t+ l − 1), . . . , rw(t), rw(t− l), . . . , rw(t− l)]T

Rεrw(τ) = E {ε(ρ, t)rw(t− τ)}
= E {[M(z)− P (z)(1−M(z))C(z; ρ)] r(t)W (z)r(t− τ)}

with rw(t) = W (z)r(t) and l a sufficiently large integer. W (z) is a weighting filter. ζw(t)
is an instrumental variable correlated with r and Rεrw(τ) is the cross-correlation function
between rw(t) and ε(ρ, t).

If the controller is linear in the parameters, that is C(ρ) = βT (z)ρ. The error then can be
written as

ε(ρ, t) = yd(t)− φT (t)ρ (2.10)

with
yd(t) = M(z)r(t)

φ(t) = β(z)(1−M(z))y(t)
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2.3. Virtual Reference Feedback Tuning 11

Figure 2.3: The VRFT set up. The dashed lines represent the “virtual” part of the method.

Then, for a finite number of data N , the criterion 2.9 can be estimated as Ĵc(ρ) = f̂T (ρ)f̂(ρ)
with

f̂(ρ) =
1

N

N∑
t=1

ζw(t)ε(t, ρ) =
1

N

N∑
t=1

ζw(t)
[
yd(t)− φT (t)ρ

]

2.3. Virtual Reference Feedback Tuning

The Virtual Reference Feedback Tuning (VRFT) is a one-shot data-based method for the
design of feedback controllers. The original idea was presented in Guardabassi and Savaresi
(2000), and then formalized by Lecchini, Campi, Savaresi and Guardabassi (Campi et al.,
2002; Lecchini et al., 2002). In this section, both the one degree of freedom (1DoF) and the
two degrees of freedom (2DoF) cases are presented.

In Campi et al. (2002), the method is presented for the tuning of a feedback controller.
Suppose that the controller belongs to the controller class {C (z; θ)} given by C(z; θ) =

βT (z)θ, where β (z) = [β1 (z) · · ·βn (z)]
T is a known vector of transfer functions, and

θ = [θ1 θ2 · · · θn]
T is the vector of parameters. The control objective is to minimize the

model-reference criterion given by:

JMR (θ) =

∥∥∥∥( P (z)C(z; θ)

1 + P (z)C(z; θ)
−M(z)

)
W (z)

∥∥∥∥2

2

(2.11)

The main idea of the method is that, given a set of input-output data from the plant in open-
loop (i.e. u(t) and y(t) respectively), the designer should be able to minimize equation (2.11),
without a model of the plant. This can be achieved by creating a “virtual” signal constructed
from the open-loop data. If the real open-loop output (y(t)) had been taken in closed-loop
and the closed-loop transfer function were M(z), one can find a “virtual reference” r̄(t) that,
if applied to the closed loop system, would yield y(t) as the output. If the output of the plant
is y(t), then the output of the controller should be equal to u(t). This controller can be found
by identifying the transfer function which yields the output u(t) when the input r̄(t)− y(t) is
applied to the input as depicted in Fig. 2.3.

The original 1DoF VRFT algorithm, as presented by the authors in Campi et al. (2002), is
given as follows: Given a set of measured I/O data {u(t), y(t)}t=1,...,N :
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12 2. Data-driven control: a new trend in control theory

1. Compute:

• a virtual reference r̄(t) such that y(t) = M(z)r̄(t), and

• the corresponding tracking error e(t) = r̄(t)− y(t)

2. Filter the signals e(t) and u(t) with a suitable filter L(z):

eL(t) = L(z)e(t)

uL(t) = L(z)u(t)

3. Select the controller parameter vector, say, θ̂N , that minimizes the following criterion:

JNVR (θ) =
1

N

N∑
t=1

(uL(t)− C(z; θ)eL(t))
2 (2.12)

If C(z; θ) = βT (z)θ, the criterion (2.12) can be given by

JNVR (θ) =
1

N

N∑
t=1

(
uL(t)− ϕTL(t)θ

)2
(2.13)

with ϕL(t) = β(z)eL(t) and the parameter vector θ̂N is given by

θ̂N =

[
N∑
t=1

ϕL(t)ϕL(t)T

]−1 N∑
t=1

ϕL(t)uL(t) (2.14)

The authors, also showed that, the filter L(z) should be the one that approximates the crite-
rion (2.12) to (2.11). This filter should holds:

|L(eω)|2 = |1−M(eω)|2 |M(eω)| |W (eω)|2 1

Φu(eω)
(2.15)

where Φu is the spectral density of u(t).

In the case of the 2DoF, the design methodology is presented in Lecchini et al. (2002) and
an outline is also presented in this section. The steps are quite similar to the ones presented
above for the 1DoF case. The control structure is presented in Fig. 2.4. The objective of this
method is to minimize the criterion in (2.16).

JMR(θr, θy) = ‖(ΨM (z; [θr, θy])−M(z))WM (z)‖22
+ ‖(ΨS(z; θy)− S(z))Ws(z)‖22

(2.16)

with

ΨM (z; [θr, θy]) =
P (z)Cr(z; θr)

1 + P (z)Cy(z; θy)

ΨS(z; θy) =
1

1 + P (z)Cy(z; θy)
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Figure 2.4: Two degrees of freedom structure.

and M(z) being the target input-to-output transfer function and S(z) the target sensitivity
function. In order to find the parameters of the controllers (θr and θy) the signals r̄(t), d̄(t)
and ȳ(t) are defined. These are the “virtual” signal for the 2DoF case and are computed as:

r̄(t) is the virtual reference, so that y(t) = M(z)r̄(t)

d̄(t) is the virtual disturbance, so that y(t) + d̄(t) = S(z)d̄(t)

ȳ(t) is the virtual-disturbed output of the plant, so that ȳ(t) = y(t) + d̄(t)

On the basis of these “virtual” signals the controller’s parameters are found by minimizing
the following alternative identification cost function:

JNVR(θr, θy) =
1

N

N∑
t=1

[ΓM (t; [θr, θy])]
2

+
1

N

N∑
t=1

[ΓS(t; [θr, θy])]
2

(2.17)

where,

ΓM (t; [θr, θy]) = LM (z) (u(t)− Cr(z; θr)r̄(t) + Cy(z; θy)y(t))

ΓS(t; [θr, θy]) = LS(z) (u(t) + Cy(z; θy)ȳ(t))

and LM (z) and LS(z) are appropriate filters to be chosen so (2.17) becomes an approxi-
mation to (2.16). If the controllers are linear in the parameter (Cr(z; θr) = βr(z)

T θr and
Cy(z; θy) = βy(z)T θy) the cost criterion (2.17) becomes a standard quadratic optimization
problem, and the solution is obtained by

[
θ̂Nr
θ̂Ny

]
= A−1

N FN (2.18)

With
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14 2. Data-driven control: a new trend in control theory

AN =
1

N

N∑
t=1

([
ϕr̄LM

(t)
−ϕyLM

(t)

] [
ϕr̄LM

(t)
−ϕyLM

(t)

]T)

+
1

N

N∑
t=1

([
0

ϕȳLS
(t)

] [
0

ϕȳLS
(t)

]T)

FN =
1

N

N∑
t=1

([
ϕr̄LM

(t)
−ϕyLM

(t)

]
uLM

(t)−
[

0

ϕ
ȳ(t)
LS

]
uLS

(t)

)

where

ϕr̄LM
(t) = βr(z)LM (z)r̄(t) ϕyLM

(t) = βy(z)LM (z)y(t)

ϕȳLS
(t) = βy(z)LS(z)ȳ(t) uLM

(t) = LM (z)u(t)
uLS

(t) = LS(z)u(t)

In Lecchini et al. (2002) the authors use the concept of “ideal controller” to derive the struc-
ture of this filter. The ideal controller Cr0 and Cy0 are the ones that, if used in the control
loop, would solve (2.16) exactly, that is

Cy0 =
1− S
SP

(2.19)

Cr0 =
M

SP
(2.20)

When comparing (2.16) and (2.17) using the Parseval Theorem the expression of the filters
LM (z) and LS(z) that must make the identification problem (2.17) match the control prob-
lem (2.16) are found to be:

|LM (eω)|2 = |M(eω)|2|S(eω)|2|WM (eω)|2 1

Φu(eω)
(2.21)

|LS(eω)|2 = |S(eω)− 1|2|S(eω)|2|WS(eω)|2 1

Φu(eω)
(2.22)

One can see that if Cr0(z) and Cy0(z) are the ideal controllers, (2.16) can be written (drop-
ping the frequency weights for simplicity) as follows

JMR(θr, θy) =

∥∥∥∥P (z)(Cr(z)− Cr0(z)) + P 2(z)(Cr(z)Cyo(z)− Cro(z)Cy(z))

(1 + P (z)Cy(z))(1 + P (z)Cy0(z))

∥∥∥∥2

2

+

∥∥∥∥ P (z)(Cyo(z)− Cy(z))

(1 + P (z)Cy(z))(1 + P (z)Cy0(z))

∥∥∥∥2

2

(2.23)

In the “tracking” part of the objective function (the first section), the reference tracking con-
troller and the disturbance rejection controller, are both involved, so a compromise between
both controllers will appear. Also, in (2.18) since the optimization involves both sets of pa-
rameters, the minimization of JNVR implies a compromise between both problems.
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Figure 2.5: Feedback system using FRIT

2.4. Fictitious Reference Iterative Tuning

Other data-driven approach method is the Fictitious Reference Iterative Tuning (FRIT). As
the name suggest, this method is similar to the VRFT and the IFT. At the beginning (Miyachi
et al., 2006), in fact this was the case. Later a change in the definition of the problem yield to
a more VRFT like method (Kaneko et al., 2006). In this section, both cases are shown.

Following Miyachi et al. (2006), if the controller C(z; ρi) of Fig. 2.5 is given by

C(z; ρi) =
ρi1s

l + · · ·+ ρils+ ρil+1

sk + ρil+2s
k−1 + · · · ρin

(2.24)

where ρi are the parameter vector of the controller at iteration i, u(t; ρi) and y(t; ρi) are the
input and output data collected in closed-loop with the controller C(z; ρi) and P (z) is the
unknown plant. It is assumed that the original parameters of the controller ρ0 stabilizes the
plant, and that the desired closed-loop response is given by Td(z). The performance criterion
that is intended to be minimized is given by

J(ρi) =
1

2N

N∑
t=1

(
ē(t; ρi)

)2
ē(t; ρi) =

(
y(t; ρ0)− Td(z)r̄(t; ρi)

) (2.25)

The signal r̄(t; rhoi) is the fictitious reference at iteration i and given by

r̄(t; ρi) = C−1(z; ρi)u(t; ρ0) + y(t; ρ0) (2.26)

where C(z; ρi) is assumed to be invertible. The optimization problem:

ρ∗ = arg max
ρ

J(ρ) (2.27)

can be solved by

ρi+1 = ρi − γR−1
i

∂J(ρ)

∂ρ

∣∣∣∣
ρi

(2.28)

where Ri is the Hessian matrix approximated by

Ri =

N∑
t=1

(
∂e(t; ρ)

∂ρ

∣∣∣∣
ρi

)T (
∂e(t; ρ)

∂ρ

∣∣∣∣
ρi

)
(2.29)
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16 2. Data-driven control: a new trend in control theory

The alternative definition of the problem starts with the same cost index as in (2.25). From
this point, according to Kaneko et al. (2006), the fictitious error can be defined as:

e (ρ) = y(t; ρ0)− Td(q)
(
C(t; ρ, q)−1u(t; ρ0) + y(t; ρ0)

)
(2.30)

If the controller is given by

C(z; ρ) =
N(z;α)

D(z; θ)
=

∑m
i=1 αiz

i + 1∑n
i=0 θiz

i

ρ = [α1 · · ·αm θ0 · · · θn]

(2.31)

Then, in Kaneko et al. (2006), the following transformation is proposed

e′(t; ρ) = N(z;α)e(t; ρ)

= N(z;α)y(t; ρ0)−D(z; θ)Td(z)u(t; ρ0)−N(z;α)Td(z)y(t; ρ0)

= N(z;α)Ys(t)−D(z; θ)UT (t) (2.32)

with

Sd(z) := 1− Td(z)
Ys(t) := Sd(z)y(t; ρ0)

UT (t) := Td(z)u(t; ρ0)

Then, the new minimization problem becomes:

Ĵ(ρ) =

N∑
t=1

(e′(t; ρ))
2 (2.33)

which, can be solved using least squares method. Therefore, the global optimum of the
function can be guaranteed. In Kaneko et al. (2006) they show that the original J(ρ) from
(2.25) is equal to zero if and only if Ĵ(ρ) is equal to zero. This last problem statement makes
the FRIT closer to the VRFT, with the difference that an initial controller is needed in order
to compute the fictitious reference while for the VRFT no initial controller is needed.

2.5. Comparison of the methodologies

In this section, the different methods presented above are compared. In order to choose a
methodology, it is important to take into account different factors as:

• Applicability of the method.

• Number of necessary experiments with the plant.

• Flexibility with different configurations.

• Applications
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2.5. Comparison of the methodologies 17

As seen above, all the presented methodologies have one characteristic in common: all of
them can be seen as a way to define an optimization problem. In case of IFT, CbT and FRIT,
the optimization problem that is solved tries to minimize the error between the output of the
system and the expected output in closed-loop.

The differences are subtle but the resolution of the problem greatly varies. In both, the IFT
and the FRIT, an iterative scheme is needed to solve the optimization problem. But the
difference lies in the fact that, while in the IFT a series of experiments for each iteration are
proposed, in the FRIT is the fictitious reference that is computed to find the needed data.

For the CbT, the error that is intended to minimize is the same as with the IFT and FRIT, but
the difference is that what is minimized is the correlation between the error signal and the
reference. When the controller is linear in the parameters, a least square method can be used.

In the other hand, the signal minimized with the VRFT is the difference between the expected
input of the plant and the real input. Because of this, the VRFT method is said to transform a
control problem into an identification problem.

Certainly, the IFT is the method that requires more computational effort. If for example,
to solve the optimization problem, it requires 5 iterations, it means that 15 experiments are
needed to be performed in the plant, since each iteration requires 3 different experiments.

Most of the methods are flexible in the sense that it is possible to use them in different control
structures. For example, IFT has been used in a MIMO plant (Miskovic et al., 2007) and
also extended to an IMC structure and an Smith predictor configuration (Bruyne, 2003). In
a different direction, in Preitl and Precup (2006) the IFT is used to tune a two degrees of
freedom controller that then is converted into a fuzzy controller. CbT has been also used to
find a feedforward controller and a prefilter (Karimi et al., 2005), and multiple inputs multiple
outputs strategies (Miskovic et al., 2007). However VRFT is the one that has attracted more
attention in recent years.

Several different extension for the VRFT verifies the flexibility of the method. In Lecchini
et al. (2001), the VRFT was used in a sensitivity shaping problem while in Lecchini et al.
(2002) a two degrees of freedom controller was tuned using the methodology. The first mul-
tivariable approach was presented in Nakamoto (2004), where a matrix approach was taken.
The control structure was a feedback compensator to decouple the loops along with a diago-
nal feedforward controller. In Sala and Esparza (2005a), a complete parameterization of the
controller and the use of VRFT for feedforward control is first proposed. For non-minimum
phase controllers, Sala and Esparza (2005b) propose to find an approximated model of the
plant to identify the non-minimum phase zeros, while in Campestrini et al. (2011), a dou-
ble optimization is proposed to firstly approximate the non-minimum phase zeros and then,
use the result to include them in the desired closed-loop transfer function. Formentin et al.
(2010) uses the VRFT to the tuning of IMC controllers for plants with important delays. The
optimization problem they propose is a nonlinear optimization, which finds a model of the
plant at the same time. An heuristic is needed to find the initial values of the parameters of
the controller. The resulting controller is used for traction control in a two-wheeled vehi-
cle. In Esparza et al. (2011), the VRFT is use to train neural networks in order to control a
plant. An approximation of the plant using also neural networks is employed to compute the
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18 2. Data-driven control: a new trend in control theory

backpropagation gradients to train the neural network controller.

All these methodologies have been used in a variety of processes. For example, the IFT was
successfully applied in a chemical process where the parameters of PID controllers where up-
dated with an important improvement in the performance (Gevers, 2002; Hjalmarsson et al.,
1998), in Gunnarsson et al. (2003), a 2×2 IFT approach is applied to a two-link robotic arm,
in Hamamoto et al. (2003) the IFT is applied to the control of a two-mass-spring system us-
ing a two-degrees of freedom controller, in a two-step procedure, while in Tay et al. (2006) is
applied to the control of photoresist film thickness for the production of semiconductors as a
supervisory algorithm to re-tune the controllers for each batch of production. The speed and
position of a servo drive has been also an application of the IFT (Kissling et al., 2009). A
three-tanks laboratory system was considered in Precup et al. (2010).

In the other hand, CbT has been applied to a magnetic suspension system (Karimi et al.,
2003). In this case an iterative algorithm is used, because, originally, the CbT was seen as
an extension to IFT that was later re-formulated to be used in a one-shot scheme. In van
Heusden et al. (2010), the method is applied to a direct-drive pick-and-place robot. One of
the interesting aspects of this last applications is that, a nonlinear constraint is applied in the
optimization in order to guarantee closed-loop stability (see van Heusden et al. (2011) for a
complete presentation in the subject).

Several applications have been presented for the VRFT. In Nakano et al. (2009), the VRFT is
used to tune a decoupling MIMO controller in a two dimensional thermal process. It has also
been used in the control of neuroprotheses (Previdi et al., 2004, 2005), for the velocity control
of self-balancing industrial manipulators (Previdi et al., 2005), in a polymerization reaction
(Kansha et al., 2008). In Formentin et al. (2010), the VRFT is used in an IMC structure to
the traction control of a two-wheeled vehicle.

For this thesis, the VRFT was chosen as the work framework given its simplicity and flexi-
bility. It was found that this method is suitable to control several non-linear processes with
different control structures.
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3. Virtual reference feedback tuning
extensions for two degrees of
freedom controllers

The Virtual Reference Feedback Tuning is very intuitive and it is easy to extend its capabili-
ties to other controller structures. In this chapter, the extensions proposed for this methodo-
logy are discussed for the two degrees of freedom case. In the second part of this thesis, the
extensions proposed are applied to several interesting cases as wastewater treatment plants,
solid oxide fuel cells and pH neutralization process.

An alternative 2DoF tuning is proposed in section 3.1 which is useful to separate the reference
tracking tuning from the disturbance rejection. If a 2DoF PI controller is used, it was found
that a constraint in the optimization have to be included in order to obtain zero stationary
error. This constraint is commented in section 3.2. The feedforward extension to the two
degrees of freedom controller is studied in section 3.3.

3.1. Alternative 2DoF VRFT problem formulation

The 2DoF alternative structure under consideration is presented in Fig. 3.1. Originally, this
structure was intended to be use in a model-based control, because the plant model should be
factorized as P (z) = N(z)D−1(z) withN(z) andD(z) stable and proper transfer functions.
It can be found that if C1(z) = D(z)Q(z) and C2(z) = N(z)Q(z), being Q(z) a free stable
transfer function parameter, the input-output transfer function becomes

y(t) = N(z)Q(z)r(t) (3.1)

Of curse, the relation in (3.1) should be equal to M , the desired reference to output transfer

Figure 3.1: Alternative 2DoF controller with feedforward action.
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20 3. Virtual reference feedback tuning extensions for two degrees of freedom controllers

Figure 3.2: 2DoF structure, feedforward tracking controller for VRFT.

function, this leads to

Q(z) = N−1(z)M(z) (3.2)

The feedback controller Cs(z) only acts if relation (3.2) ca not be fulfilled completely or in
case of disturbance at the output of the plant. In other words, Cs(z) is responsible of the
stability of the closed-loop system and the disturbance rejection performance, which can be
treated as a separate sensitivity shaping problem.

The separation between the sensitivity shaping problem and the complementary sensitivity
shaping problem, leads to the idea of using this structure with alternative methods for con-
troller design. The VRFT was found to be suitable for this. In fact, the separation property
of this structure is an advantage since two different independent optimizations can be per-
formed to achieve both shaping problems without the drawback of having a compromise
between them. However, a reformulation will be needed as the design of C1(z) and C2(z) is
model based, whereas within VRFT the plant model is not available.

In order to apply the VRFT’s ideas on the above presented structure, let’s redefine the blocks
in Fig. 3.1. The prefilter block (C2(z)) should represent the target complementary sensitivity
transfer function. Thus, one can just define C2(z) = M(z). Then the feedforward controller
(C1(z)) has to provide the correct control input to the plant to achieve the tracking objec-
tive. Since this controller has to be determined, let’s re-name it as Cff (z). The feedback
controller Cs(z) continues to be the responsible of the closed-loop as in the original model-
based method. In Fig. 3.2 the structure for VRFT is shown. The goal then is to find the
feedback, Cs(z), and feedforward, Cff (z) controllers using only the available data. In what
follows, the VRFT problem will be formulated first, followed by considerations on how to
find Cff (z), Cs(z) and some considerations with respect to the filters choice (as it is done
on the original VRFT).

3.1.1. Formulation of the VRFT problem

Using this 2DoF structure, the VRFT cost function would be, as shown in (3.3)

JMR(θff , θs) = ‖(ΨM ([θff , θs])−M(z))WM (z)‖22
+ ‖(ΨS([θff , θs])− S(z))WS(z)‖22

(3.3)
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3.1. Alternative 2DoF VRFT problem formulation 21

with

ΨM ([θff , θs]) =
P (z)Cs(z; θs)

1 + P (z)Cs(z; θs)

(
Cff (z; θff )

Cs(z; θs)
+M(z)

)
ΨS([θff , θs]) =

1

1 + P (z)C(z; θs)

Being ΨM ([θff , θs]) and ΨS([θff , θs]) the achieved reference-to-output transfer function
and the achieved sensitivity function, respectively 1. As before, the idea of ideal controllers
is introduced into (3.3). The ideal controllers Cff0(z) and Cs0(z) for this alternate structure,
are given by

Cff0(z) = P−1(z)M(z)

Cs0(z) =
1− S(z)

S(z)P (z)

(3.4)

With these ideal controllers, the signal e0(t) becomes the reference shaping error, since it
reduces to e0(t) = S(z)d(t), and if there is no disturbance, e0(t) = 0 for any value of r(t).
By introducing (3.4) into (3.3), it can be shown that (3.3) reduces to:

JMR(θff , θs) =

∥∥∥∥P (z) (Cff (z; θff )− Cff0(z))

1 + P (z)Cs(z; θs)
WM (z)

∥∥∥∥2

2

+

∥∥∥∥ P (z) (Cs0(z)− Cs(z; θs))
(1 + P (z)Cs(z))(1 + PCs0(z))

WS(z)

∥∥∥∥2

2

(3.5)

In Campi et al. (2002), to find the filter LM (z), the term 1
1+P (z)Cs(z) is approximated by

1
1+P (z)Cs(z) ≈ S(z), which is a good approximation, since the solution of the right part of
equation (3.3) looks for this condition. Since equation (3.5) is used only for the determination
of the filters, as will be shown later, using this approximation, the equation can be written as:

JMR(θff , θs) = ‖(Cff (z; θff )− Cff0(z))P (z)S(z)WM (z)‖22

+

∥∥∥∥ P (z) (Cs0(z)− Cs(z))
(1 + P (z)Cs(z))(1 + P (z)Cs0(z))

WS(z)

∥∥∥∥2

2

(3.6)

The first term of 3.6 is used to find the controller Cff (z), while the second term is used to
find Cs(z). This control problem has to be translated into an identification problem to find
the parameters of the controllers without the knowledge of any model for the plant. If the
ideal controllers were found, the input to the feedback controller should always be zero if
no disturbance is affecting the system. Therefore, using the ideas of the virtual signals of
the VRFT, one is able to formulate an identification problem with the controllers Cff (z)
and Cs(z) also totally decoupled, and therefore it is possible to optimize each controller for
the specific task it is intended to deal with (Cff (z) for tracking and Cs(z) for disturbance
rejection).

The design algorithm is analogous to that in Lecchini et al. (2002). Given the reference
models M(z) and S(z), and the batch of data {u(t), y(t)}t=1,...,N :

1Now ΨM ([θff , θs]) will not be the complementary sensitivity function as it will not be necessarily true that
ΨM + ΨS = 1
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22 3. Virtual reference feedback tuning extensions for two degrees of freedom controllers

• Construct the set of “virtual” data (r̄(t), d̄(t) and ȳ(t)), as in (2.17)

• Find the controller parameter vector (θ̂Nff , θ̂NS ) that minimizes

JNVR =
1

N

N∑
t=1

[LM (z)(u(t)− Cff (z; θff )r̄(t))]
2

+
1

N

N∑
t=1

[LS(z) (u(t) + Cs(z, θs)ȳ(t))]
2

(3.7)

Since each part of (3.7) depends only on the parameters of one of the controllers, it can be
solved separately. To check this, let us assume a general function f(θ1, θ2) which is meant to
be minimized. Supposing that f(θ1, θ2) ≥ 0 and that it can be written as:

f(θ1, θ2) = f1(θ1) + f2(θ2) (3.8)

with f1(θ1) ≥ 0 and f2(θ2) ≥ 0. Minimizing (3.8) implies

∂f(θ1, θ2)

∂θ1
= 0

∂f(θ1, θ2)

∂θ2
= 0

(3.9)

but given (3.8), it is evident that

∂f(θ1, θ2)

∂θ1
=
df1(θ1)

dθ1

∂f(θ1, θ2)

∂θ2
=
df2(θ2)

dθ2

(3.10)

therefore, minimizing f(θ1, θ2) is the same as minimizing each single part individually, given
this independence in the variables. For this reason, it is clear that (3.7) is totally decoupled. It
is important to note that the original control criterion is not totally separated, as can be seen in
(3.6). But using the adequate filters LM and LS , the decoupled identification criterion (3.7)
can be used to find the controller parameters that approximate the desired control criterion,
which is the standard procedure for the VRFT approach. The main advantage of applying
this alternative two-degrees of freedom controller is that the controllers and the optimization
to find each set of parameters are both independent. This independence allows the designer to
use different optimization methods, data, or even only find one of the controllers if necessary.
Below, the structure of suitable filters LM (z) and LS(z) is given.

3.1.2. Feedforward Controller Tuning

It is possible to identify the Cff (z) controller from the input/output data. It is desirable to
find the best approximation of Q(z) as given by (3.2), in that case, the ideal controller in
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3.1. Alternative 2DoF VRFT problem formulation 23

the feedforward path, should be given by Cff (z) as in (3.4) and, as in Fig. 3.2, the prefilter
should be equal to M(z).

So, if we introduce the signal r̄(t) = M−1(z)y(t), the output of the feedforward controller
should be u(t). The direct consequence of this fact is that, one can use an identification
method to determine Cff (z), using r̄(t) (the filtered version of y(t) through M−1(z)) as the
input, and u(t) as the output values.

This identification problem can also be derived using a VRFT approach: If the output data
measured from the experiment performed on the plant (in open-loop) were taken in closed-
loop with the ideal Cff (z) controller, then the error e(t) should be always zero. In that case
we should find a virtual signal r̄ such that y(t) = M(z)r̄(t). Then the controller that one
should identify is the one that, with an input signal r̄(t), should have an output u(t) (since the
error is always zero) So, the objective is to find Cff (z) as close as possible to P−1(z)M(z).
The controller Cs(z) is not involved in the Cff (z) optimization.

In the case of Cff (z), it is very important to have more freedom in the structure, since the
advantage of the structure are strongly dependent on how good the controller is close of the
ideal controller. For this reason it was decided to use an identification method (in this case,
the Output Error Method (OE) see Ljung (1999)) to find the feedforward controller. The
idea of using a different identification method to find the parameters of the controller and the
idea of using the VRFT in a feedforward controller was first proposed in Sala and Esparza
(2005a).

However, there is no inconvenience in trying to identify a linear-in-the-parameter controller
for Cff (z). If Cff (z) is defined as Cff (z, θff ) = βT (z)θff , (in the same way as in sec-
tion 2.3) the performance criterion specifically for the tracking problem becomes:

JNVR(θff ) =
1

N

N∑
t=1

(uL(t)− Cff (z; θff )r̄L(t))
2 (3.11)

The signals uL(t) and r̄L(t) are the filtered versions of u(t) and r̄(t) respectively filtered by
LM (z). The parameters can be analytically obtained by

θ̂ff = a−1
N fN

aN =
1

N

N∑
t=1

ϕL(t)ϕL(t)T

fN = − 1

N

N∑
t=1

ϕL(t)uL(t)

(3.12)

with

ϕL(t) = β(z)r̄L(t) (3.13)
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24 3. Virtual reference feedback tuning extensions for two degrees of freedom controllers

Figure 3.3: Structure to find the virtual signals, for the sensitivity shaping problem.

3.1.3. Feedback Controller Tuning

The Cs(z) controller should be optimized to reject the disturbance, since Cff (z) was opti-
mized to solve the tracking problem. In Lecchini et al. (2001) a method is presented in order
to solve a Sensitivity Shaping problem based also in the VRFT formulation. Even though
the authors use the controller in the feedback path, one can use the same method with the
controller in the direct path, since the problem requires r = 0 and the result is independent
from Cff (z). According to Lecchini et al. (2001), the structure to find the virtual signals is
given as in Fig. 3.3. Once the virtual signals are calculated, the cost function is given by:

JNVR(θ) =
1

N

N∑
t=1

(uL(t) + Cs(z; θs)ȳL(t))
2 (3.14)

The signals uL(t) and ȳL(t) are the filtered versions of u(t) and ȳ(t) respectively. According
to the authors, the filter has to be given by LS(z) as shown below

If the controller is lineal in the parameters, the solution can be obtained analytical

θ̂N = a−1
N fN

aN =
1

N

N∑
t=1

ϕL(t)ϕL(t)T

fN = − 1

N

N∑
t=1

ϕL(t)uL(t)

(3.15)

with

ϕL(t) = β(z)ȳL(t) (3.16)

3.1.4. Filters Choice

The idea of filters LM (z) and LS(z) is to approximate the performance index (3.7) to the
desired model reference criterion in (3.3). Applying the Parseval Theorem and (3.4), it is
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3.2. The VRFT applied to the 2DoF PI controller 25

found that (omitting the ejω term for simplicity)

JMR =
1

2π

∫ π

−π

|P |2

|1 + PCs(θs)
|Cff (θff )− Cff0|2 |WM |2 dω

+
1

2π

∫ π

−π

|P |2|S|2

|1 + PCs(θs)
|Cs0 − Cs(θS)|2 |WS |2 dω

(3.17)

Now using the results in Campi et al. (2002), and considering JV R(θ) as the asymptotic
counterpart of JNVR(θ) as N →∞:

JV R(θ) = E[(uL(t)− C(z; θ)rL(t))2] (3.18)

Again, applying the Parseval Theorem to JV R (see (3.7)) it is found that

JV R(θff , θS) =
1

2π

∫ π

−π
|Cff0 − Cff (θff )|2ψMdω

+
1

2π

∫ π

−π
| − Cs0 + Cs(θs)|2ψSdω

(3.19)

with

ψM =
|P |2

|M |2
|LM |2|Φu|2

ψS =
|S|2

|S − 1|2
|P |2|LS |2|Φu|2

To find the filters, one can compare (3.17) and (3.19). Since a plant model is not available,
we can approximate the term |1 + P (z)Cs(z; θs)|−1 by |S(z)| (that is, changing Cs(z; θs)
by Cs0(z)). If done, the filters can be found to be:

|LM |2 = |M |2|S|2|WM |
1

|Φu|2
(3.20)

|LS |2 = |S − 1|2|S|2|WS |
1

|Φu|2
(3.21)

Which turn out to be the same filters found in Lecchini et al. (2002).

3.2. The VRFT applied to the 2DoF PI controller

Data-Driven control has been used for the tuning of PID from the beginning. For example, in
Gevers (2002) the IFT method is applied to a PID controller for a chemical industry process.
VRFT has been also been applied to PID controllers as in Kansha et al. (2008). For the case
of 2DoF PI controllers, it was found that some constraints has to be set, in order to have the
same properties in the discrete time controller as in the continuous time version. Suppose a
standard two degrees of freedom controller as in Fig. 3.4. The equations of this structure are
given by:
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26 3. Virtual reference feedback tuning extensions for two degrees of freedom controllers

Figure 3.4: Two degrees of freedom PID controller.

u(s) = Cr(s)r(s)− Cy(s)y(s)

Cr(s) = Kc

(
β +

1

Tis

)
Cy(s) = Kc

(
1 +

1

Tis

) (3.22)

After applying the bilinear transformation given by

s =
2

Ts

z − 1

z + 1

Where Ts is the sampling time, s is the Laplace variable and z−1 is the discrete unit delay.
The discrete time version of the controllers are given by:

Cr(z) =
Kc

(
β + Ts

2Ti

)
+Kc

(
Ts

2Ti
− β

)
z−1

1− z−1

Cy(z) =
Kc

(
1 + Ts

2Ti

)
+Kc

(
Ts

2Ti
− 1
)
z−1

1− z−1

(3.23)

This controller clearly is linear in the parameters, which is useful for the VRFT, since the
optimization can be seen as a linear square problem and therefore, be solved by standard
tools. If

Cr(z) =
α1 + α2z

−1

1− z−1

Cy(z) =
α3 + α4z

−1

1− z−1

(3.24)

The output of the controller u is found to be

u = α1r − α3y

+
z−1

1− z−1
((α1 + α2) r − (α3 + α4) y)

(3.25)

From (3.23) and (3.24) it is clear that

α1 + α2 = α3 + α4 = Kc
Ts
Ti

(3.26)
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3.3. VRFT approach to Feedforward control 27

Then, in order to have a Two-degrees of freedom PI controller, tuned with the VRFT, it is
necessary to add the constraint α1 +α2−α3−α4 = 0 to the optimization problem. Another
interpretation of this constraint is that, in case that y and r have the same value, the integral
factor (given by the term z−1/(1 − z−1)) has to stop increasing since the error is zero. If
this constraint is not accomplished, it may be possible to have an stationary error, even if the
controller has integral action.

With this constraint, it may be possible to find the parameters of the PI in continuous time
from the parameters obtained with the optimization:

Kc = α3 −
1

2
(α1 + α2)

Ti = Ts

(
α3

α1 + α2
− 1

2

)
β =

α1 − 1
2 (α1 + α2)

α3 − 1
2 (α1 + α2)

(3.27)

With this condition, it is guaranteed that only one integrator is needed for the implementation,
a desirable condition as pointed out in Aström and Hägglund (2001).

3.3. VRFT approach to Feedforward control

A feedforward controller can be set using the VRFT. In Guardabassi and Savaresi (1997), the
idea of using the VRFT controller was presented to be used in conjunction with a one-degree
of freedom controller. The main difference is that it is assume that the disturbance is available
for measurement and is used in the optimization problem.

This idea is extended here to a two degrees of freedom controller, in order to be used in
the BSM1 problem. Suppose that the control system can be represented by the diagram in
Fig. 3.5, where P1 and P2 represent the dynamic of the plant from the input u and the dis-
turbance d to the output y. These three signals are measured from an open-loop experiment.
Cr(z), Cy(z) and Cf (z) are the controllers to be found. The “virtual” components and sig-
nals are:

• M(z), which is the target closed-loop dynamics from the reference signal to the output
of the controlled system.

• S(z), is the target closed-loop dynamics from the unmeasured disturbance at the output
to the output of the controlled system.

• F (z), is the target closed-loop dynamics from the measured disturbance to the output.

• r̄v(t), is the virtual reference computed from the data obtained from an open loop
experiment and the closed-loop target functions.

• p̄(t), is an fictitious arbitrary signal that is added to the output of the experiment, and
is considered as the unmeasured disturbance.
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28 3. Virtual reference feedback tuning extensions for two degrees of freedom controllers

Plant

Figure 3.5: Virtual reference setup for feedforward plus 2doF controller. Solid lines are for “real” compo-
nents and signals while dashed lines are for “virtual” components and signals.

• d(t), is the measurable disturbances that is suppose to be available in open-loop expe-
riment.

• ȳd(t), is the result of the sum of the output of plant y(t) and the fictitious disturbance
p̄(t), that is ȳd(t) = y(t) + p̄(t)

The virtual reference signal r̄v(t) has to be computed according to the ideal relationships and
the measured and virtual signals:

ȳd(t) = M(z)r̄v(t) + F (z)d(t) + S(z)p̄(t) (3.28)

Then the virtual signal is computed from (3.28):

ȳd(t) = y(t) + p̄(t)

r̄v(t) = M−1(z) (ȳd(t)− F (z)d(t)− S(z)p̄(t)) (3.29)

The output of the controlled system is

yd(t) =
P1(z)Cr(z)

1 + P1(z)Cy(z)
r(t) +

P1(z)Cf (z) + P2(z)

1 + P1(z)Cy(z)
d(t) +

1

1 + P1(z)Cy(z)
p(t) (3.30)

Note in (3.30), that the input signals do not have a bar, denoting that these signals are not
virtual, but actually are entering to the system. When comparing (3.29) and (3.30), one is
able to find the ideal controllers that would, theoretically, drive the system with the desired
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3.3. VRFT approach to Feedforward control 29

dynamics (if the transfer functions of the plant were known):

Cro(z) =
1

P1(z)

(
M(z)

S(z)

)
Cyo(z) =

1

P1(z)

(
1

S(z)
− 1

)
Cfo(z) =

1

P1(z)

(
F (z)

S(z)
− P2(z)

) (3.31)

Then, following the paths in the diagram of Fig. 3.5 that lead from the measured and virtual
inputs to the u(t) signal, it is easy to find that the cost function to optimize is given by:

J(θ) =
1

N

N−1∑
t=0

[u(t)− (Cr (z; θ) r̄v(t)

−Cy (z; θ) yd(t) + Cf (z; θ) d(t))]
2

(3.32)

Even more, if the controllers are linear in the parameters, that is Cr(z) = βTr (z)θr, Cy =
βTy (z)θy and Cf (z) = βTf (z)θf , J(θ) can be rewritten as a standard least squares problem:

θ̂ = arg min
θ

1

N
|U − Φ · θ|2 (3.33)

with

U = [u(0), u(1), . . . , u(N)]
T

θ =
[
θTr , θ

T
y , θ

T
f

]T
Φ = [λr̄v , λyd , λd]

λr̄v =
[
βTr (z−1)r̄v(0), . . . , βTr (z−1)r̄v(N − 1)

]T
λyd = −

[
βTy (z−1)yd(0) , . . . , βTy (z−1)yd(N − 1)

]T
λd =

[
βTf (z−1)d(0), . . . , βTf (z−1)d(N − 1)

]T
Solving this optimization problem, one is able to find directly the three controllers using only
a batch of input-output data without any iterative scheme (one-shot).

Numerical Illustrative Example Suppose a discrete time plant as in Guardabassi and
Savaresi (1997) given by P1(z) = 1+0.4z−1

1−0.8z−1 and P2(z) = 1−0.3z−1

1−0.8z−1 . Suppose the target
closed-loop response is given by

ȳd(t) =
0.5

1− 0.5z−1
r(z) +

0.4− 0.4z−1

1− 0.4z−1
p(z) +

0.3− 0.3z−1

1− 0.3z−1
d(z) (3.34)

If the controllers are parameterized in such a way that the optimal controller belongs to the
set of controllers and the input data of the open-loop experiment is rich enough, one is able
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Figure 3.6: Response using the feedforward controller and the 2DoF controller. An measurable distur-
bance is applied at t= 15 s and a unmeasurable disturbance is applied at t= 30 s.

to find the ideal controllers using (3.33). The achieved controllers using a random uniform
set of 1000 samples for u(t), d(t) and p(t) are given by:

Cr(z) =
1.25− 1.5z−1 + 0.4z−2

1− 1.1z−1 − 0.1z−2 + 0.2z−3

Cy(z) =
1.5− 1.2z−1

1− 0.6z−1 − 0.4z−2

Cf (z) =
−0.25− 0.3z−1 + 0.15z−2

1 + 0.1z−1 − 0.12z−2

Using the VRFT with two degrees of freedom, but adding the unmeasured disturbance signal
instead of calculating it as in (2.17), the result is as presented in Fig. 3.6. As expected, the
response is seriously degraded because of the measurable disturbance, even if the controllers
in the loop are equal to the ideal ones. The controller with the extra feedforward path per-
fectly achieves the desired closed-loop dynamics for a change in reference, the measurable
disturbance and the unmeasurable disturbance. Also, finding the three degrees of freedom
controllers does not add much more computational effort (in fact, one could say that it is
almost the same).

How to choose the parametrization of the controllers and the target transfer functions are is-
sues that still depend on the decisions of the designer and deserve more attention. For exam-
ple, if the parametrization of the controller Cr(z) has one parameter less than it is needed to
achieve the perfect controller, the response degrades as shown in Fig. 3.7.
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Figure 3.7: Response to a change in the reference, an unmeasurable disturbance (at t= 15 s) and a mea-
surable disturbance (at t= 30 s), when the perfect controllers are not in the set of achievable
controllers.
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4. Virtual reference feedback tuning
extensions for other advanced
control structures

The versatility of the VRFT is once more tested under other control structures. First, some
consideration are presented in section 4.1, regarding the parameterization of the controllers
and the effect of including a weight to the input in the optimization. The application of
the VRFT to the Multiple-Input Multiple-Output (MIMO) case is studied in section 4.2. in
section 4.3 the VRFT is applied in an Internal Model Control (IMC) control structure which
permits to obtain a robustness test to check if the control requirements can be safely achieved.

4.1. Parameterization of the controller and weighting
of the input

In this section, some remarks are given about the parameterization of the controller and the
weighting of the input signal during the optimization. The correct parameterization of the
controller is fundamental while applying the VRFT. If the parameterization is not like the
one of the ideal controller, it is impossible for the method to achieve the target function. In
addition, if the plant is non-linear and continuous, this target function will likely to be not
achievable with any parameterization. Therefore, to consider the control effort is important
for robustness in those cases where the ideal controller is not achievable. The original VRFT
control problem does not take into account the control effort, and therefore, the controllers
tend to be aggressive, trying to achieve the target closed-loop transfer function.

4.1.1. Parameterization

As an example, lets considerer a second order plant P given by:

P (z) =
a0z
−1 + a1z

−2

1− a2z−1 + a3z−2
(4.1)

And lets suppose that the target closed-loop transfer function is given by:

M(z) =
b0z
−1

1− (1− b0)z−1
(4.2)

33



34 4. Virtual reference feedback tuning extensions for other advanced control structures

With these conditions, the ideal controller is given by

Cideal(z) =
b0
a0

(
1 + a2z

−1 + a3z
−2
)(

1 + a1
a0
z−1
)

(1− z−1)
(4.3)

From (4.3), it is clear that a simple PI controller is not able to solve the problem. In fact, if
the controller is parameterized as:

C(z, θ) =
F (z, θ)

1− z−1
(4.4)

To achieve the ideal controller with a polynomial F (z, θ), an infinite number of parameters
are needed. Therefore, even for a discrete time, noise free, linear invariant plant, achieving
the desired response with a PI-like controller is not possible.

Two possible ways have been proposed to overcome this problem. The first one is having
knowledge of the position of the zero of the plant and introduce it in the parameterization
of the controller. In Campestrini et al. (2011), a two step optimization is proposed to first
obtain an approximation of the plant zeros. This approach is very useful, despite the fact
that some of the “model-free” aspect of the method is lost. The other one is to employ a full
parameterized controller as pointed out in Sala and Esparza (2005a). However, this approach
is very sensitive to under-parameterization, and the risk of obtaining an unstable closed-loop
plant is higher.

Since in real case scenarios, the plants are not discrete and have other characteristics that can
prevent the method to find the desired controller, some robustness consideration can be added
in the optimization. The most basic consideration is to consider a weight in the control effort.

4.1.2. Control effort weight

It is possible to consider the control effort within the optimization problem. If a batch of N
input-output data is available {u(t), y(t)}|N , the performance criterion to be minimized can
be extended to:

J(θ) =
1

2

N∑
t=1

(
(u(t)− C(z, θ)ev(t))

2
+ λ (C(z, θ)ev(t))

2
)

(4.5)

λ is the constant that is used to give more or less importance to the control effort weighting.
If, as usual, the controller is linear in the parameters C(z, θ) = βT (z)θ, (4.5) can be written
in matrix form as:

J(θ) =
1

2

(
‖U −Ψθ‖22 + λ ‖Ψθ‖22

)
(4.6)

with U = [u(1), u(2), . . . , u(N)]
T , Ψ = βT (z)ev and ev is the virtual error. This equation

can be written as a standard quadratic programming problem:

J(θ) =
1

2
(1 + λ) θTΨTΨθ +

(
−UTΨ

)
θ +

1

2
UTU (4.7)
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Figure 4.1: Step response of the plant and the target closed-loop

As it can be seen, the change in the original performance index is not drastic in the sense that
λ only appears as a constant factor multiplying ΨTΨ. The computation effort is the same as
for the unweighted case. It also has to be noticed that these two objectives (the minimization
of the error and the minimization of the control effort) are opposite one to the other. It is
not possible to minimize the error without a more aggressive control signal. But, since it
is unlikely to achieve the desired closed-loop, it is useful to limit in some sense the control
effort and with it, give some robustness to the solution (robustness in the sense of caution).

Giving numeric values to the plant and the target transfer function of equations (4.1) and
(4.2):

P (z) =
0.04176z−1 + 0.03531z−2

1− 1.414z−1 + 0.6065z−2

M(z) =
0.7z−1

1− 0.3z−1

The step response of the plant and the desired closed-loop are presented in Fig. 4.1 for refe-
rence. Considering the controller structure as:

C(z, θ) =
θ0 + θ1z

−1 + θ2z
−2 + θ3z

−3 + θ4z
−4

1− z−1

The step response test for different values of λ are presented in Fig. 4.2. In Fig. 4.2a, the
control effort is shown, while in Fig. 4.2b the corresponding output is presented. It has to be
noticed that with this controller structure and only five parameters it is not possible to achieve
the desired closed-loop transfer function. With the increment in the value of λ, the response is
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Figure 4.2: Test using the weighting factor for the input during the optimization step.
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4.2. MIMO VRFT with pairing selection 37

Figure 4.3: MIMO VRFT with pairing selection.

slower. The change in the control signal has the same form in all cases but different amplitude.
This means that the optimization is finding the optimal compromise between the achievable
closed-loop behavior and the minimization of the control effort.

Using this extra degree of freedom, the designer is able to use faster closed-loop transfer
functions, but at the same time, try to keep the control effort somehow bounded. The great
contribution of the original authors of the VRFT is the idea of the virtual reference signal.
Once this signal has been computed, it is possible to apply it to several control strategies and
take into account several things as the weighting that has been discussed here.

Since the control problem can be cast as quadratic optimization, it is also possible to include
constraints, as for example, the 2DoF PI in section 3.2, or even to limit the range where the
zeros or the poles of the controller can be.

4.2. MIMO VRFT with pairing selection

The VRFT methodology can be applied to the MIMO case. In Nakamoto (2004), a matrix
approach was taken with the constraint of having the same desired closed-loop transfer func-
tions for all the loops. In this work a less restrictive method is used and the problem of
choosing the pairings of the input-outputs of the plant is accounted.

In Fig. 4.3 the control structure for the Two Inputs Two Outputs (TITO) case is presented with
a decentralized approach. In this case, the pairing is decided with the variable v: if v = 1 the
output y1 is controlled using u1 as the manipulated variable and then y2 is controlled with the
u2 input. If v = 0 the manipulated variables are shifted.

The VRFT approach can be applied in such a way that the 2 controllers’ parameters and
the decision variable v can be determined using only a set of input-output data, without a
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38 4. Virtual reference feedback tuning extensions for other advanced control structures

modeling step.

4.2.1. Application of the VRFT framework to the TITO case

Consider the TITO case. Assume that a batch of N open-loop samples taken from the
plant P (z) is available: {u1(t),u2(t),y1(t),y2(t)}. Using the ideas presented in Campi et al.
(2002), it is possible to find a virtual reference signal for each loop. These signals will then
be used to find the parameters of the controllers C11 and C22. The desired target closed-
loop transfer functions are M1(z) for y1(t) and M2(z) for the y2(t) loop. These signals are
defined as:

r̄1(t) = M−1
1 (z)

r̄2(t) = M−1
2 (z)

(4.8)

If the controllers are linear in the parameters:

C11(z, θ11) = βT11(z)θ11

C22(z, θ22) = βT22(z)θ22

(4.9)

where θ11 and θ22 are vectors containing the parameters for each controller and β11(z) and
β22(z) are the transfer functions vector defining the controllers. If the variable v is used to
define the pairing of the input-output signals, (as presented in Fig. 4.3), then the following
mixed-integer optimization can be set to find the optimal controller’s parameters in a least
square sense:

minimize
θ11,θ22,v

J(θ11, θ22, v)

subject to v(1− v) = 0
(4.10)

where

J(θ11, θ22, v) = v ·
∣∣∣∣[ u1

u2

]
−Ψ1

[
θ11

θ22

]∣∣∣∣2
+ (1− v) ·

∣∣∣∣[ u1

u2

]
−Ψ2

[
θ11

θ22

]∣∣∣∣2
(4.11a)

Ψ1 =

[
Φ11 0

0 Φ22

]
(4.11b)

Ψ2 =

[
Φ12 0

0 Φ21

]
(4.11c)
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Φ11 =

 βT11(z)e1(1)
...

βT11(z)e1(N)

 (4.11d)

Φ22 =

 βT22(z)e2(1)
...

βT22(z)e2(N)

 (4.11e)

Φ12 =

 βT11(z)e2(1)
...

βT11(z)e2(N)

 (4.11f)

Φ22 =

 βT22(z)e1(1)
...

βT22(z)e1(N)

 (4.11g)

The matrices Ψ1 and Ψ2 can be seen as the direct and transverse control effects, given the
computed virtual errors ē1 and ē2. The constraint v(1 − v) = 0 is just a way to satisfy that
v can only be 0 or 1. If v = 1 the direct matrix is used and the first pairing propose by the
designer is used, while if v = 0, the other pairing is used. This optimization can be programed
either using a for loop to check all the possibilities or by writing the corresponding problem
using optimization tools like Yalmip (Löfberg (2004)) and Sedumi (Sturm (1999)).

4.2.2. MIMO control for the n× n case

Now, the complete MIMO case for n inputs and n outputs is presented. The optimization
for the TITO case, can also contain 2 more “decoupling” controllers that theoretically can
separate the effect of one of the loops over the other. For the case of section 4.2.1, the method
will automatically chose the best pairing and parameters, but the interaction between loops is
not directly considered. Fig. 4.4 represents the “complete” control structure with these two
extra controllers. If all the decoupling controllers are used, the pairing selection can still be
used, but if the structure of the controllers is the same for all the loops (which is generally the
case) the only difference between one pairing and the other is a permutation of some of the
controllers.

Even with this fact, for the n × n MIMO case the complete optimization problem is pre-
sented for the sake of completeness. Each controller is linearly parameterized. For example
controller C12(z, θ12) in Fig. 4.4, is defined as C12(z, θ12) = βT12 · θ12.

Supposing that all the input output signals are available and that all the virtual signals has been
computed according to their respective desired closed-loop transfer function, the optimization
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Figure 4.4: Control structure for the MIMO plant. Two inputs, two outputs case.

problem is defined as:

minimize
Θ1,Θ2, . . . ,Θn

v1, v2, . . . , vn!

J(Θ1,Θ2, . . . ,Θn, v1, v2, . . . , vn!)

subject to


vi(1− vi) = 0, ∀i = 1, . . . , n!
n!∑
i=1

(vi) = 1

(4.12)

with

J(Θ1,Θ2, . . . ,Θn, v1, v2, . . . , vn!) =

n!∑
i=1

vi ·
∣∣∣∣∣∣∣∣∣∣∣


u1

u2

u3

...
un

−Ψi ·


Θ1

Θ2

Θ3

...
Θn



∣∣∣∣∣∣∣∣∣∣∣

2 (4.13a)

Θ1 =
[
θT11, . . . , θ

T
1n

]T
(4.13b)

Θ2 =
[
θT21, . . . , θ

T
2n

]T
(4.13c)

... =
...

Θn =
[
θTn1, . . . , θ

T
nn

]T
(4.13d)

Ψi =


Φ1i 0 · · · · · · · · · 0
0 Φ2i 0 · · · · · · 0
0 0 Φ3i 0 · · · 0
...

...
...

...
... 0

0 0 0 0 0 Φni

 (4.13e)
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Φ11 =
[
βT11(z)e1 · · ·βT1n(z)en

]
(4.13f)

... =
...

Φ1n! =
[
βT11(z)en · · ·βT1n(z)e1

]
(4.13g)

Φ21 =
[
βT21(z)e1 · · ·βT2n(z)en

]
(4.13h)

... =
...

Φ2n! =
[
βT21(z)en · · ·βT2n(z)e1

]
(4.13i)

... =
...

Φn1 =
[
βTn1(z)e1 · · ·βTnn(z)en

]
(4.13j)

... =
...

Φnn! =
[
βTn1(z)en · · ·βTnn(z)e1

]
(4.13k)

For a n× n system, the number of controllers is n× n and the options for the pairing are n!.
Φ11 to Φ1n! represents all the permutations of the virtual error signals ē1 to ēn filtered by the
parameterized base functions βT11 to βT1n. This means that, for all the possible pairings and
all the input variables, it is needed to compute n · n! different matrices. The constraints of
the optimization problem allow just one of all the possible pairings by letting the variables vi
either to be 1 or 0, but just one of the variables can be active.

It has to be noticed that for the TITO case, it is possible to use only one decision variable v,
because one of the constraints can be easily written in terms of the other decision variable
and introduced directly in the criterion.

4.2.3. Comparison of the VRFT with others methods

A practical example is presented to compare the MIMO VRFT with other data driven ap-
proaches. The methodology is applied to the LV100 gas turbine engine model used in Hjal-
marsson (1999); Miskovic et al. (2005). In those papers, the IFT and the CbT are applied
respectively using 4 different controllers (including the off-diagonal controllers). For the
sake of comparison, the TITO case with pairing selection of Fig. 4.4 is applied.

The model in its continuous time form has five states (Hjalmarsson, 1999):

• Gas generator spool speed Ng .

• Power output Np.

• Temperature T

• Fuel flow actuator level xWf
.

• Variable area turbine nozzle actuator level xVATN
.

The inputs are the fuel flow Wf and the variable area turbine nozzle VATN . The output
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signals are the gas generator spool speed and temperature. The model in state space form is
given by

Ṅg
Ṅp
Ṫ
ẋWf

ẋVATN

 =


-1.4122 -0.0552 0 42.9536 6.3087
0.0927 -0.1133 0 4.2204 -0.7581
-7.8467 -0.2555 -3.3333 300.4167 -4.4894

0 0 0 -25.0000 0
0 0 0 0 -33.3333




Ng
Np
T
xWf

xVATN



+


0 0
0 0
0 0
1 0
0 1


[

Wf

VATN

]

[
Ng
T

]
=

[
1 0 0 0 0
0 0 1 0 0

]
Ng
Np
T
xWf

xVATN


(4.14)

The data used to find the VRFT controllers is depicted in Fig. 4.5. The controllers are PI-like
discrete time controllers with sampling time Ts = 0.1s. The desired closed-loop transfer
function for both loops is given by:

M(z) =
0.4z−1

1− 0.6z−1
(4.15)

The resulting controllers are presented in Table 4.1. For the VRFT case, the controllers are
shifted. The difference in the value of J between both pairings is just 2.3674x10−9, for this
reason, this shift in the pairing has not to be considered as an important design change, but
product of the sensibility of the numerical computation. But since all the four controllers
are being used, there is no real difference in the pairing. If, for example, the controller
parameterization is different, the selection of the pairing would become important and the
final value of J will be considerably different between both cases.

In Fig. 4.6 and Fig. 4.7, the response of the controllers to a step changes in the references are
presented with the value of the Integral of the Absolute Error (IAE), which is also presented
in Table 4.1.

The VRFT is able to control the plant with a lower IAE than the other methods, using only
one set of data and just one iteration. With respect to the IFT, the IAE is 62.19% and it has a
very similar response to the CbT but with only one single experiment. Only for the interaction
rejection in loop 2, the CbT has a better performance than the VRTFT, in all other cases, the
VRFT gives better results.
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Figure 4.5: Data used to obtain the VRFT controllers.

IFT CbT VRFT

C11
0.248−0.03z−1

1−z−1
0.3636−0.9866z−1

1−z−1
0.355−0.2507z−1

1−z−1

C12
0.38−0.199z−1

1−z−1
0.3653−0.2691z−1

1−z−1
0.3393−0.06546z−1

1−z−1

C21
16.47−15.91z−1

1−z−1
18.69−18.16z−1

1−z−1
−3.222+2.293z−1

1−z−1

C22
0.063−0.054z−1

1−z−1
−3.453+2.652z−1

1−z−1
19.64−19.06z−1

1−z−1

IAE 2.10399 0.8424 (-59.96%) 0.7954 (-62.19%)
IAE Reference
change loop 1 0.3120 0.2591(-16.98%) 0.2486 (-20.32%)

IAE interaction
effect loop 1 0.8647 0.2659(-69.24%) 0.2516 (-70.90%)

IAE interaction
effect loop 2 0.1160 0.0348(-70%) 0.0478 (-58.79%)

IAE Reference
change loop 2 0.8113 0.2826(-65.17%) 0.2486 (-69.36%)

Iterations 6 8 1
Experiments 30 8 1

Table 4.1: Controller for the LV100 plant.
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Figure 4.6: Response of the y1 output of the three data driven methods.
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Figure 4.7: Response of the y2 output of the three data driven methods.
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4.3. Using Data for the Internal Model Control
methodology

4.3.1. Overview of the Internal Model Control

Internal Model Control (IMC) is a popular and well known control method that incorporates
the model of the process directly into the controller Morari and Zafirou (1989). The standard
structure is depicted in Fig. 4.8. P (z) represents the Plant, while P̄ (z) is its model. Q(z)
is the IMC controller. In the absence of uncertainty, the control acts as if it was in open-
loop control for the reference tracking but when a disturbance enters into the system, the
same controller acts as closed-loop for the disturbance rejection. If Q(z) is designed as
Q(z) = P (z)−1f(z) and P̄ (z) = P (z), the output ideally becomes

y = f(z)r + (1− f(z))d (4.16)

It is clear that, to have perfect model matching control (in closed-loop, the desired dynamics
are given by f(z)), Q(z) must try to cancel the dynamics of the plant. This characteristic
leads to the well know property that an IMC system would be nominally internally stable
if Q(z) is stable, in case the model is equal to the plant. Finding a perfect model is rarely
achievable and if it were, Q(z) may not be possible to contain the inverse of this model due
to physical limitations or because the inverse of the plant may lead to an unstable controller.
In Morari and Zafirou (1989) a two-step design is proposed for this kind of controller:

1. Solve the nominal performance criterion given, for example, by

min
Q̄(z)

∥∥(1− P̄ (z)Q̄(z)
)
W (z)

∥∥
p

(4.17)

Where W (z) is a filter chosen to give more importance in certain frequencies and
‖·‖p is a given norm that defines the performance criterion. The optimal solution of
this problem yields to a sensitivity function given by S∗(z) = 1 − P̄ (z)Q̄(z) and the
complementary sensitivity function given byM∗(z) = P̄ (z)Q̄(z), that is, the response
to a change in the reference is as if it were in open loop, while the response to a
disturbance is in closed-loop.

2. To introduce robustness considerations, the complementary sensitivity has to be rolled
off at high frequencies, therefore, it is necessary to add a low pass filter f(z) to the
controller Q̄(z), to obtain the final controller Q(z) = Q̄(z)f(z). Suppose that the
multiplicative uncertainty is bounded by a frequency dependent function l̄m(ω),∣∣∣∣P (eω)− P̄ (eω)

P̄ (eω)

∣∣∣∣ ≤ l̄m(ω)

The closed-loop system is robustly stable if and only if

|f(eω)| < 1∣∣P̄ (eω)Q̄(eω)l̄m(ω)
∣∣ ∀ω (4.18)
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Figure 4.8: Standard Structure of the IMC. ¯P (z) represents the plant model and Q(z) is the IMC con-
troller. The dashed line represents the virtual signal for the VRFT procedure.

IMC control has become very popular because, finding the controller and the conditions for
robust stability can be cast in a very simple form. As seen in (4.16), the Q(z) controller just
need to be set as the best approximation of the inverse of the model multiplied by a filter
that defines the desired behavior in closed-loop. In addition to this, under certain conditions
on the model of the plant, the final controller (the combination of Q(z) and P̄ (z)) can be
rewritten as a PID controller, allowing to use the IMC method directly to tune this kind of
controllers, which are widely used in industry (Aström and Hägglund, 2001).

Having a good model and an approximation of the uncertainty is vital for IMC. Since the
model is an integral part of the controller, the use of data-driven control is proposed to jump
from the data to the controller directly and to used the same information to find an approxi-
mation of the plant. The VRFT is the selected framework for this task, given its flexibility to
apply the “virtual signal” concept into different structures.

4.3.2. The IMC-VRFT

For the case of IMC, in Fig. 4.8, the experimental setup for VRFT is depicted. If the tar-
get complementary sensitivity function is given by M(z), then the virtual reference r̄(t) is
computed as

r̄(t) = M−1(z)y(t) (4.19)

From Fig 4.8, it can be found that the ideal controller would be given by

Q0(z) = M(z)P (z)−1

P̄0(z) = M(z)Q0(z)−1
(4.20)

where P0(z) is the ideal plant model that is derived from the ideal controller. Note here the
model is purely instrumental and defined from the controller. This is opposite as in IMC
where the controller is directly derived from the model. This basic idea leads to the following
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optimization problem which gives the set of optimal parameters θ∗ (in a least squares sense):

min
θ
J(θ) = min

θ

N∑
i=1

(u(i)−Q(z; θ)r̄(i))
2 (4.21)

Once Q(z; θ∗) has been determined, it is easy to compute the approximation of the process
model of the plant from (4.20):

P̄ (z; θ∗) = M(z)Q(z; θ∗)−1 (4.22)

It is important to note that P̄ (z, θ) is seen just as an “instrumental model”, that results from
the determination of the optimal controller. This instrumental model is used as part of the
control loop and, as presented in the next section, as the manner to describe a “nominal
plant”. In Data-Driven control, there is no nominal model of the plant, therefore, to define a
test to check if the controller is robustly stable, it is necessary to approximate the plant by this
“instrumental model”. The filter for robust operation presented in (4.18), is already included
in Q(z, θ∗) since the closed-loop behavior is expected to be M(z), but it is not possible to
know if condition (4.18) is fulfilled just by solving this optimization problem. It is therefore,
desirable to count with a data-based test to check if this condition holds.

4.3.3. Robust Stability for the IMC-VRFT

When the closed-loop system is stable for all perturbed plants around the nominal model up to
the worst-case model uncertainty, it is said to be robustly stable (Skogestad and Postlethwaite,
2007). In Data Driven Control it is difficult to find a controller that assures robust stability of
the plant since not even a nominal model is available (in van Heusden et al. (2011) the stability
problem is addressed by adding some constraints in the frequency domain directly into the
optimization problem). However, it is possible to use (4.18) and the batch of input-output
data, to test if the controller is robustly stabilizing the plant, before the actual controller is
implemented, by approximating the uncertainty function l̄m(ω) from the instrumental model
P̄ (z; θ∗).

Using the results on Empirical Transfer Function Estimate (ETFE) from Ljung (1999), given
an input-output set of N points of data {u(t), y(t)}N from a plant G(z) which transfer func-
tion is assumed to be unknown, the estimate of the frequency response is given by

ĜN (eω) =
YN (ω)

UN (ω
(4.23)

where UN (ω) and YN (ω) are given by

UN (ω) =
1√
N

N∑
t=1

(
u(t)e−ωt

)
YN (ω) =

1√
N

N∑
t=1

(
y(t)e−ωt

) (4.24)
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Figure 4.9: Approximation of the transfer function using open-loop data.

The essential frequency points are given in ω = 2πk/N, k = 0, 1, . . . , N − 1. Other points
are obtained by interpolation. For example, in Fig. 4.9 the comparison between the real
frequency response and the empirical approximation is presented using a set of 1024 point of
a PRBS signal on the plant given in Campi et al. (2002),

P (z) =
A(z)

B(z)

A(z) =0.2826z−3 + 0.5067z−4

B(z) =1− 1.418z−1 + 1.589z−2

− 1.316z−3 + 0.8864z−4

(4.25)

with sampling time ts = 0.05s. As it can be seen the approximation is fairly good even for
the resonant peaks.

According to Ljung (1999), the ETFE is an asymptotically unbiased estimate of the transfer
function at increasingly (with N ) many frequencies, but the variance of the ETFE do not
decrease as N increases. That is why, in Fig. 4.9, the ETFE seems to be “noisy”. To tackled
this problem, the use of filtering windows is recommended to smooth the ETFE.

Approximation of l̄m(ω) and the robust stability test

If the uncertainty bound l̄m(ω) can be approximated using the ETFE, it will be possible to
perform a data-based test to check Robust Stability using (4.18). In the case of the IMC-
VRFT, the assumption on the instrumental model P̄ (z) is that it is close enough to the real
plant transfer function, in order to left the “nominal” stability depending on Q(z): if Q(z)
is stable, the “nominal” closed-loop system is stable given that the plant is stable. If the
controller has been found using the proposed approach, the filter f(z), is assumed to be
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Figure 4.10: Graphical interpretation of the robust stability test.

already included in Q(z) and (4.18) can be rewritten as∣∣∣ ˆ̄P (eω, θ∗) Q̂ (eω, θ∗) l̄m(ω)
∣∣∣ ≤ 1 (4.26)

or, if a “security” constant α ≥ 0 is added to cope with possible errors when approximating
l̄m ∣∣∣ ˆ̄P (eω, θ∗) Q̂ (eω, θ∗) l̄m(ω)

∣∣∣ ≤ 1− α (4.27)

A graphical interpretation of (4.27) can be seen in Fig. 4.10: if at some point the dashed
line falls below the solid line (which represents the complementary sensitivity function if the
instrumental model is close enough to the transfer function of the plant) it means one is trying
to extend the system beyond the limits uncertainty allows. At this point (4.27) fails, and it is
not possible to assure robust stability with controller Q(z, θ∗) and given value of α.

To approximate (4.27), the frequency response of Q(z, θ∗) and P̄ (z, θ∗) can be calculated
using the results of the optimization. l̄m(ω) is approximated using the definition of the multi-
plicative uncertainty and the ETFE approximation. The test can be stated as in Algorithm 1.
If the test fails, the designer has two options: it is possible to increase the number of parame-
ters of the controller or to relax the closed-loop specification M(z). Once the new controller
is found, the test can be performed again to check if the robust condition holds for the new
setting.

4.3.4. Application example: continuous polymerization reaction

The plant for this example is a polymerization reaction that takes place in a jacketed CSTR.
This plant is a 4 states non-linear plant used in Kansha et al. (2008) for a PID-like Adaptive
VRFT control. The model for simulation is given by
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Algorithm 1: Robust Stability Test

Find N points of input-output open-loop data from the plant: {u(t), y(t)}N ;
Define a value for α such as α ≥ 0;
Find Q(z, θ∗) and P̄ (z, θ∗), Q(z, θ∗) and P̄ (z, θ∗) have to be stable;
Define a set of frequencies ω;
Compute ydiff (t) as ydiff (t) = y(t)− P̄ u(t);
Compute ymodel(t) as ymodel(t) = P̄ u(t);
Compute ĜdiffN (eω) using ydiff (t) as the output and u(t) as the input with (4.23);

Compute ˆ̄PN (eω) using ymodel(t) as the output and u(t) as the input with (4.23);

Compute l̄m(ω) =
abs(ĜdiffN (eω))

abs( ˆ̄PN (eω))
;

for each ω do
if
∣∣∣ ˆ̄P (eω, θ∗) Q̂ (eω, θ∗) l̄m(ω)

∣∣∣ ≤ 1− α then
failRobust(ω) = 0 (The system has Robust Stability for the given ω);

else
failRobust(ω) = 1 (It is not possible to assure robust stability);

end
end

Steady State operating condition

Cm=5.506774 kmol/m3

CI=0.132906 kmol/m3

D0=0.0019752 kmol/m3

D1=49.38182 kmol/m3

u=0.016783 m3/h
y=25000.5 kg/kmol

Table 4.2: Steady state condition of the polymerization reactor.

dCm
dt

= −(kP + kfm)CmP0 +
F (Cmin

− Cm)

V
dCI
dt

= −kICI +
FICIin − FCI

V
dD0

dt
= (0.5kTC

+ kTd
)P 2

0 + kfmCmP0 − FD0

dD1

dt
= Mm(kP + kfm)CmP0 −

FD1

V

(4.28)

where P0 =
(

2fkICI

kTd
+kTc

)0.5

and y = D1

D0
. The parameters for the plant model are presented

in Table 4.2 and Table 4.3 for completeness. The control objective is to regulate the product
number average molecular weight(y) by manipulating the flow rate of the initiator(FI).

The procedure followed is the same as in the previous example. However, here an addi-
tional filter (Frip(z)) was added to Q(z) in order to eliminate the intersample rippling,
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Model Parameters

kTc=1.3281x1010 m3/(kmol h)
kTd=1.0930x1011 m3/(kmol h)
kI=1.0225x10−1 L/h
kp=2.4952x106 m3/(kmol h)

kfm=2.4522x103 m3/(kmol h)
f∗=0.58

F=1.00 m3/h
V =0.1 m3

CIin=8.0 kmol/m3

Mm=100.12 kg/kmol
Cmin

=6.0 kmol/m3

Table 4.3: Model parameters of the polymerization reactor.
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Figure 4.11: Response of the polymerization reaction using the IMC-VRFT. The negative real part of the
poles were eliminated from controller Q.

i.e. eliminating the poles with negative real part of the controller (see Morari and Zafirou
(1989)). The result of the application of the IMC-VRFT control in the operation point
u = 0.016783m3/h, y = 25000.5kg/kmol is presented in Fig. 4.11. The batch of open
loop data was collected using a random Gaussian signal as the input to the plant. The result-
ing controller and instrumental model became

Q(z) =
−1.238x10−5 + 9.593x10−6z−1

1 + 0.7578z−1

P̄ (z) =
−0.28z−1 − 0.2122z−2(

1.238x10−5 − 1.851x10−5z−1

+6.907x10−6z−2

)
Frip(z) = 0.5689 + 0.4311z−1

(4.29)

with a sampling time Ts = 0.03. In the neighborhood of y = 25000.5kg/kmol the response
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Figure 4.12: Robust stability test done over the polymerization plant.
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Figure 4.13: Robust stability test done over the polymerization plant with a slower desired response.

of the closed-loop system is almost equal to the specified desired response which is given by

M(z) =
0.28z−1

1− 0.72z−1
(4.30)

The stability test is presented in Fig. 4.12 for α = 0. As it can be seen, only a point is over 1,
representing that one may not be able to guarantee the robust stability. If the desired response
is made slower M(z) = 0.15z−1

1−0.85z−1 , the test results as presented in Fig. 4.13, meaning that
robustness is achieved. But it is important to note that since this test is dependent on the input-
output data, a single point may be misleading to say that the result is not robustly stabilizing
since it could be higher than one because certain approximation error.

Universitat Autònoma de Barcelona José David Rojas Fernández



Part II.

Applications of the Virtual
Reference Feedback Tuning

53





5. Application to wastewater
treatment plants

The Benchmark Simulation Model 1 (BSM1) is an effort made under COST Action 682
(Integrated Wastewater Management) and 624 1. According to Copp (2002) This action “is
dedicated to the optimization of performance and cost-effectiveness of water management
systems. (...) The “simulation benchmark” is a fully defined protocol and was developed as a
tool for evaluating activated sludge wastewater treatment control strategies.”

In this chapter, the basics on Wastewater Treatment Plant (WWTP) are covered by a literature
review. Firstly on a general overview on WWTP is presented as an introduction to the topic
and to the BSM1. In section 5.1.1 the Activated Sludge Model 1 (ASM1) is presented as the
principal component of a the BSM1. The ASM1 is a dynamical model that attempts to model
the processes in the bioreactors of a WWTP, focusing on carbon and nitrogen removal. The
other main component of the BSM1 is the settler model, that was chosen to be the double-
exponential model from Takács et al. (1991) and is treated in section 5.1.2. On section 5.2,
the different applications of the VRFT to the WWTP’s are presented and discussed.

5.1. Introduction to wastewater treatment plants

Today, environmental awareness is an important issue in politics, economy and daily life. It
is not strange to find news about how the human activities have affected nature (for exam-
ple global warming, energy resources, extinction of animal and plant species, and a long
etcetera). This rise in concern about the effects of urban life in the ecological cycle has in
turn, activated several research areas that has attempted to tackle part of this problem in one or
another way. Today, much of the civil research concentrates on new sources of clean energy,
transportation and of course, wastewater treatment.

Wastewater is defined as the residual water after it has been used in residential zones, in-
dustrial or rain water, that is collected through sewers and is intended to be deposited in a
receiving waters (for example rivers or the sea), after it has been adequately threated. Ac-
cording to Olsson and Newell (1999) “while the primary goal of a treatment plant is to achieve
an average reduction in nutrient levels, the secondary goal is disturbance rejection, to achieve
good effluent quality in spite of the many disturbances”. These disturbance mainly refers to
the large variability of the influent, with respect to its components’ concentrations, the flow
volume, etc. For example in Henze et al. (1997), it is shown an example were the influent

1COST stands for the European Cooperation in the field of Scientific and Technical Research
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flow at midday can reach up to 244% of the average flow in one day, while minimun could
reach 32% of the average flow. Temperature is also a source of disturbances, but as it will be
seen in the section about modeling, this is a factor that is not taken into account in current
models.

Biological processes are normally used in WWTP, being the Activated Sludge Process (ASP)
one of the most important methods (Henze et al., 1997). Bacteria, is the most important
component of the sludge since, they help to the removal of carbon components as well as
nitrogenous components from the influent. The basic idea of the ASP, is clearly presented
in Jeppsson (1996):

The basic idea of the activated sludge process is to maintain “active sludge” sus-
pended in wastewater by means of stirring or aeration. The suspended material
contains not only living biomass, that is, bacteria and other microorganisms, but
also organic and inorganic particles. Some of the organic particles may be broken
down into simpler components by a process known as hydrolysis, while other or-
ganic particles are not affected (inert material). The biomass in the process will
use the organic material as its energy source (usually in combination with oxy-
gen or another oxidation agent), that is, the organic material will be removed
from the wastewater while more biomass is produced. The amount of suspended
material in the process is normally controlled by means of adding a sedimen-
tation tank at the end of the process, where the biomass is transported towards
the bottom by gravity settling and is either recirculated back to the biological
process or removed from the system as excess sludge, whereas the now purified
wastewater is withdrawn from the top of the sedimentation tank and released
either for further treatment or directly into a receiving water.

But, as point out by Olsson and Newell (1999), not only the ASP plays a part in the WWTP’s,
but a primary physical treatment takes place before the bioreactors where the large particles
are screened and floating greases and oils are skims off. An also, a final settling is performed
after the biological process. The objective of this settling is to separate the effluent (“clean”
water) to the recirculating flow, that is used to keep certain degree of control of the bacteria
population. In sections 5.1.1 and 5.1.2 a more detailed overview on the ASP and the settler
modeling are presented.

5.1.1. Activated sludge model

The Activated Sludge Treatment plant is one of the most used process in Wasted Water Treat-
ment Plants. As stated by Henze et al. (1997):

The principle in activated sludge plants is that a mass of activated sludge is kept
moving in water by stirring or aeration. Apart from the living biomass, the sus-
pended solids contain inorganic as well as organic particles. Some of the organic
particles can be degraded by subjecting them to hydrolysis whereas other are
non-degradable (inert).

The amount of suspended solids in the treatment plant is regulated through recy-
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Figure 5.1: Simple layout of an activated sludge process.

cle of the suspended solids and by removing the so-called excess sludge.

At least, “Activated Sludge” Plants, must have an aeration thank and a settling thank where
the treated wastewater is deposited in the receiving water while a concentrated sludge is
withdrawn from the bottom (Henze et al., 1997). This concentrated sludge can be recycled
in order to maintain a high density of biomass in the thanks. If the plant is also used for
nitrogen removal, anoxic thanks (without aeration and ideally, without oxygen) are also set
in the plant. A very basic layout is presented in fig. 5.1. In the Activated Sludge Process
(ASP), the carbon and nitrogen removal are the most important subprocess that are modeled.
This two subprocess are considered in the Activated Sludge Model No 1 (ASM1) which is
one of the most used and important models in the WWT research field (Gernaey et al., 2004).
It is promoted by the IAWPRC Task group on mathematical modeling for design and oper-
ation of biological wastewater treatment. Some other models have appear after the ASM1,
the ASM2 and ASM2d includes the modeling of phosphorus removal while the ASM3 is
aimed to improve ASM1 while taking into account the importance of storage polymers in the
heterotrophic activated sludge conversions (Gernaey et al., 2004).

In the following, the carbon and the nitrogen removal are studied and at the end of the section,
the ASM1 is detailed.

Carbon Removal in the Activated Sludge Process

In fig. 5.2 the interactions between several components are presented. As it can be seen,
the growth of heterotrophs is the principal process that promotes the removal of carbon. In
fig. 5.2 the aerobic grown is the important factor while also anoxic growth of heterotrophs
also helps in the removal of carbon. The difference is that, the bacteria in the first case, take
the oxygen from the air in the aerated tank while in the second case the oxygen is taken from
nitrites and nitrate compound.

If only the carbon removal is taken into account, in an aerated tank, three different mass
balance have to be wrote, for the heterotrophic biomass concentration (XB,H , mg/l), the
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Figure 5.2: Carbon removal in the ASP.

soluble carbon nutrient concentration (SS , mg/l), and the oxygen concentration (SO, mg/l):

d

dt
(V XB,H) = qinXB,H,in − qoutXB,H,out + rHV (5.1)

d

dt
(V SS) = qinSS,in − qoutSS,out + rSV (5.2)

d

dt
(V SO) = qinSO,in − qoutSO,out + rOV +KLa (SO,sat − SO)V (5.3)

V is the volume of the tank (is considered to be constant), qin is the input flow, qout is
the output flow, rH is the reaction rate for biomass growth (mg/l/day), rS is the nutrient
reaction rate (mg/l/day), rO is the oxygen consumption rate (mg/l/day) and the KLa is the
mass transfer from the aeration. Moreover if the tank is supposed to be well-mixed XB,H =
XB,H,out, SS = SS,out and SO = SO,out. The values of the reaction rates depends on
the stoichiometry (the relationship between components in a reaction) and the kinetics of the
reaction. This values often are based on empirical experiments. For example, the kinetics
usually are modeled with a Monod rate expression (Monod, 1949). In general, the biological
growth can be expressed as (Henze et al., 1997):

rV,XB,H
= µmax · f(S) ·XB,H (5.4)

where rV,XH,B
is the volumetric biological growth (dimension M ·L-3 ·T-1), µmax is the

maximum specific growth rate (dimension T-1), f(S) describes the growth kinetics depending
on the substrate concentration, and XH,B is the concentration of biomass (dimension MX
·L-3). In the other hand, the substrate consumption can be written as:

rV,S =

(
rV,XB,H

)
Ymax

(5.5)

Ymax is the maximum yield constant (dimension MXB ·MS
-1). In the case of decay of

biomass, it is supposed that the rate of date is proportional to the concentration of biomass,
that is rV,XB,H

= b · XB . The common way to express this rates is in table manner. For
example in Olsson and Newell (1999) and for this simple process, the rates are express as: In
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Process Components Kinetics
Nutrient Oxygen Biomass

Aerobic heterotro-
phic growth − 1

YH

YH−1
YH

1 µ̂H

(
SS

KS+SS

)(
SO

KOH+SO

)
XB,H

Decay of heterotroph 1− fp -1 bHXB,H

Table 5.1: Reaction rates for the carbon removal process.

each row, the stoichiometry of each process is presented with the respective kinetics. In each
column, the state variables are presented. With this format, each reaction rate can be found
by summing the product of each stoichiometry component with the kinetic of the process for
each row. For example, for the nutrient reaction rate we found that:

rS = − 1

YH
· µ̂H

(
SS

KS + SS

)(
SO

KOH + SO

)
XB,H + (1− fp) · bHXB,H

Then this rate is introduced in (5.2). As it can be seen, the model becomes highly non-linear
even due the mass balance is simple.

d

dt
(V SS) = qinSS,in − qoutSS,out

+

(
− 1

YH
· µ̂H

(
SS

KS + SS

)(
SO

KOH + SO

)
XB,H

+ (1− fp) · bHXB,H

)
V

In the ASM1, 13 state variables are considered (with corresponding conversion rates), with
8 different biological processes. This represents 5 stoichiometric parameters and 14 kinetic
parameters. As it can be seen, even for this simple and structured modeling procedure, the
final model becomes very complex and difficult to calibrate.

Nitrogen Removal in the ASP

It is considered that the nitrogen enters the plant as ammonium compounds and is removed
from the system by a two step mechanism: nitrification and denitrification (Olsson and
Newell, 1999). In the nitrification step, the autotroph bacteria in the aerated tank use the
ammonium compounds, the carbon compounds and the dissolved oxygen to synthesize ni-
trites and nitrates. Then in the anoxic tank, the growth of heterotroph biomass is carried out
using the nitrites and nitrates as the oxygen source and liberate the nitrogen as gas, removing
it from the wastewater. This process is depicted in fig. 5.3.

The modeling of this process kinetics is made in a similar way that carbon removal process.
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Ammonium
Compounds

Autotrophs

Waste
Water

Air

Nitrogen Removal

Aerobic
Growth

Dissolved
Oxygen

Biomass

Nitrites
Nitrates

Waste
Water

Heterotrophs

Soluble
Carbon

Nitrogen
Gas

Biomass

Anoxic
Growth

Nitrification Denitrification

Figure 5.3: Nitrogen Removal in the ASP.

Variable Definition

SI Soluble inert organic matter
SS Readily biodegradable substrate
XI Particulate inert organic matter
XS Slowly biodegradable substrate
XB,H Active heterotrophic biomass
XB,A Active autotrophic biomass
XP Particulate products arising from biomass decay
SO Oxygen
SNO Nitrate and nitrite nitrogen
SNH NH4

+ + NH3 nitrogen
SND Soluble biodegradable organic nitrogen
XND Particulate biodegradable organic nitrogen
SALK Alkalinity

Table 5.2: State variables in the ASM1.

As it can bee seen, basically, the important factor are the organic matter (in its form of
biodegradable, inert, soluble and particulate), nitrogen matter and oxygen.

The Activated Sludge Model 1

The ASM1 is promoted by the Task Group on Mathematical Modeling for Design and Op-
eration of Activated Sludge Processes of the International Association on Water Pollution
Research and Control (IAWPRC). It was first published in 1987 and was aimed to be use as
a common platform for researchers in the field and to include the nitrogen removal in the
model. A detailed presentation of the model can be found in Henze et al. (2002) while the
basics are covered in Henze et al. (1997) and Olsson and Newell (1999).

In table 5.3 the kinetics and the stoichiometric parameters are reproduced as presented in
Henze et al. (2002) where all the organic constituents are expressed as equivalent chemical
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oxygen demand (COD). According to Olsson and Newell (1999), COD is a “test (that) mea-
sures the amount of oxygen required for chemical oxidation of organic matter in the sample
to carbon dioxide and water. The laboratory test procedure is to add a known quantity of
standard potassium dichromate solution, sulfuric acid reagent containing silver sulfate, and
a measured volume of sample to a flask. This mixture is vaporised and condensed for 2
hours. After the mixture is cooled and diluted with distilled water and the condenser has
been washed down the dicromated remaining, in the specimen, it is titrated with standard
ferrous ammonium sulfate using ferroin indicator” Using the volumes of titrate and sample,
it is possible to compute the COD.

The processes involved in the model are the ggrowth of biomass, decay of biomass, ammoni-
fication of organic nitrogen, and hydrolysis of particulate organics which are entrapped in
the biofloc. The model comprises the state variables presented in table 5.2.

5.1.2. Settler modeling

For the BSM1, a secondary settler for the clarification and settling of the wastewater after
the biological treatment is included. The modeling of the settling of the sludge is based on
the one presented in Takács et al. (1991). It is supposed that there is no biological process
in the settler, that the incoming solids are distributed instantaneously and uniformly across
the entire cross-sectional area and only vertical flow is considered. It is considered that the
settler can be divided in several layers and based on empirical observation, the solid flux due
to gravity in each layer (Js) is considered to be dependent on the sludge concentration of
each layer as:

Js = vs(X)X (5.6)

where vs is the velocity function, which is a modified version of the Vesilind velocity (Takács
et al., 1991) aimed to take into account the clarifying function in the upper layers where the
concentration of the sludge is lower:

vs = v0

(
e−rh(X−Xmin) − e−rp(X−Xmin)

)
0 < vs < vmax

Xmin = fnsXf

(5.7)

where rh is the hindered zone settling parameter, rp is the flocculant zone settling parameter,
v0 is the Vesilind settling velocity, vmax is the maximum settling velocity, fns is the fraction
of the flow that will not settle and Xf is the input concentration of the sludge.

When the differential equation of the model has to be written down, the figure found in Takács
et al. (1991) (and reproduced in Fig. 5.4) becomes useful.

The concentration in each layers are considered as the state variables. Two velocities are
taken into account: the velocity produced by the bulk movement of the water and other due
to gravity. For each layer, the bulk velocity is dependent of the output flows (the effluent flow
rateQi determines the upward velocity of each layer Jup,i, while the recycle and wastage flow
rate Qr determines the downward velocity of each layer Jdn,i). The velocity due to gravity
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Figure 5.4: Mass balance for the solids in the settler.

is computed using 5.7 depending on the concentration between each layer and a threshold
concentration. For example, the solid balance for the feed layer in fig 5.4 would be:

dXn

dt
· h =

(Qi +Qr)Xin

Ac
− QiXn

Ac
− QrXn

Ac
+ Js,n−1 − Js,n (5.8)

where h is the height of the layers and Ac is the surface area of the layers, Xn is the concen-
tration on layer n, Qi is the effluent flowrate, Qr is the wastage and recycle flowrate and Js,n
is the settling velocity leaving layer n. For other soluble components, it is supposed that they
are completely mixed and the change in its concentration only depends on the bulk velocity
and the concentration in each layer.

5.1.3. The BSM1

The BSM1 is a benchmark model to test different control strategies on WWTP’s. It is detailed
in Copp (2002) and in Alex et al. (2008). The layout of the plant is presented in Fig. 5.5. The
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m=10

m=6

m=1

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5

Biological Reactor

Anoxic Section Aerated Section

Clarifier
Wastewater

to River

Wastage

External recirculation

Internal recycle

Figure 5.5: Layout of the BSM1. The first 2 bioreactor are anoxic (have nitrogen compounds but not are
not aerated) and the last 3 are aerated.

WWTP has five bioreactors: the first two are anoxic (theoretically, they do not have oxygen)
and the last two are aerated. A portion of the flow is recycled to the first bioreactor while the
rest is introduced in the clarifier, where the biomass is separated from the effluent. The rest
is separated in two: a portion is recycled and the rest is disposed (wastage).

Each one of the reactor are modeled as with the Activated Sludge Model 1 (Henze et al., 2002)
that is detailed in section 5.1.1. In the aerated section, carbon removal is achieved by aerobic
grown of heterotroph. For ammonia removal, a two steps process takes place: in the aerated
section the ammonia is nitrificated by the growth of autotroph that use oxygen to convert
ammonia into nitrite and nitrate. In the anoxic section, the nitrite and nitrate oxygen is used
by the growth of heterotroph. The Clarifier is modeled according to the double exponential
model from Takács et al. (1991).

The basic control strategy for this plant is a two-loops approach. The first loop would be
to control the Dissolved Oxygen (DO) in the 5th thank by actuating on the oxygen transfer
coefficient (KLa) and the second would be to control the nitrate level in the last anoxic
bioreactor by manipulating the internal recycle flowQa. The DO loop has very fast dynamics
while the second is slower, so a perturbation or an action on the nitrate loop, would no affect
the DO loop as much as a change in the DO loop over the nitrate control loop.

Quoting from Alex et al. (2008)

The plant is designed for an average influent dry-weather flow rate of 18446 m3.d-1

and an average biodegradable COD in the influent of 300 g.m-3. Its hydraulic re-
tention time (based on average dry weather flow rate and total tank volume - i.e.
biological reactor + settler- of 12000 m3) is 14.4hours. The biological reactor
volume and the settler volume are both equal to 6000 m3. The wastage flow rate
equals 385 m3.d-1.

The aim of the benchmark is to provide a standard model to compare different control strate-
gies. For this reason, along with the definition of the plant, the mathematical model and
some tips for the implementation, three different influent data are provided. This data repre-
sents the influent to the plant over two weeks, taking into account daily variations and storm
events. The “Dry Influent” is presented in fig. 5.6 for the flow and the soluble components.
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Figure 5.6: “Dry Influent” flow and soluble components. Also the particulate components, alkalinity and
the computation of the total suspended solids is part of the data.
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Figure 5.7: Flow and soluble components for the rain influent data.

The other two influent data are based on the Dry Influent but the “Rain Influent” contains two
storm event in the second week while the “Storm Influent” has a long rain event in the second
week; these two influents are presented in fig. 5.7 and 5.8.

Performance Assessment

The benchmark also presents a series of performance index to measure the effectiveness of
the control strategy. The average values of Nitrogen, Chemical Oxygen Demand (COD),
Nitrate, Total suspended Solids and the Biochemical Oxygen Demand has to be under certain
value, as presented in table 5.4.

The authors of the benchmark proposed two levels of performance:

• Control Level: in this case, the controller are tested using the Integral of the Absolute
Error (IAE), the Integral of the Squared Error (ISE), the maximal deviation from the
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Figure 5.8: Flow and soluble components for the storm influent data.

Variable Value

Ntot <18 gN.m-3

CODt <100 gCOD.m-3

SNH <4 gN.m-3

TSS <30 gSS.m-3

BOD5 <10 gBOD.m-3

Table 5.4: Maximum effluent limits in the BSM1.

setpoint and by error variance.

• Quality Indexes: In this level of assessment, the performance of the plant is considered
by direct measuring from its state. Four measures are made:

– Effluent Quality Index (EQI): Which measures the quantity of pollution of the
effluent that is discharged in the receiving waters. It is calculated as:

EQI =
1

1000T

∫ t=14days

t=7days

(EQIcomp)Qe(t)dt (5.9)

where

EQIcomp = BSS · SSe(t) +BCOD · CODe(t)

+BNkj · SNkj,e(t) +BNO · SNO,e(t)
+BBOD5 ·BODe(t)

SNkj,e = SNH,e + SND,e +XND,e + iXB (XB,H,e +XX,A,e)

+ iXP (XP,e +Xi,e)

SSe = 0.75 (Xs,e +Xl,e +XB,H,e +Xp,e)
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Factor BSS BCOD BNKj BNO BBOD5

Value (g pollution
units.g-1 2 1 30 10 2

Table 5.5: Conversion factor for effluent quality measures.

BOD5,e = 0.25 (SS,e +XS,e + (1− fp) (XB,H,e +XB,A,e))

CODe = SS,e + Sl,e +XS,e +XI,e

+XB,H,e +XB,A,e +XP,e

and the weighting factorsBi convert the different types of pollution into pollution
units. This factors were deduced from Vanrolleghem et al. (1996) and presented
in Alex et al. (2008) as well. They are shown in table 5.5 for reference.

– Cost Factors for Operation: This measure indicates the cost of the controlled op-
eration of the plant. It includes the sludge to be disposed, the aeration energy, the
pumping energy, the consumption of external carbon sources and the mixing en-
ergy. For the sludge production to be disposed, the total solids flow from wastage
and the solids accumulated in the system are considered. Since only the last 7
days of operation are considered for the computation of the indexes, the equa-
tions take into account only the values from day 7 to day 14: The Total Solids at
time t is given by TSS(t):

TSS(t) = TSSa(t) + TSSs(t)

where

TSSa(t) = 0.75

n∑
i=1

[(Xs,i +XI,i +XB,A,i +XP,i)Vi]

TSSs(t) = 0.75

m∑
j=1

[(Xs,j +XI,j +XB,A,j +XP,j) zjA]

with n = 5 the number of bioreactor and m = 10 the numbers of layers of the
settler. The Sludge Production (SP , kg.d -1) is then given by

SP =
1

T

(
TSS(14day)− TSS(7day)

+0.75

∫ 14day

7day

(Xs,w +XI,w +XB,H,w +XB,A,w)Qw(t) dt

)
(5.10)

In the BSM1, the Pumping Energy (PE, kWh.d-1) is calculated as:

PE =
1

T

∫ 14day

7day

0.004 ·Qa(t) + 0.008 ·Qr(t) + 0.05 ·Qw(t) dt (5.11)
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And the Aeration Energy (AE, kWh.d-1) is calculated as:

AE =
SsatO

T · 1.8 · 1000

∫ 14day

7day

5∑
i=1

ViKLai(t) dt (5.12)

The Mixing Energy (ME, kWh.d-1) used in the anoxic compartments is given
by:

ME =
24

T

∫ 14day

7day

5∑
i=1

[
0.005 · Vi if KLai(t) < 20 d-1

0 otherwise

]
dt (5.13)

And the Overall Cost Index (OCI) is given by

OCI = AE + PE + 5 · SP + 3 · EC +ME (5.14)

where EC is the external carbon consumption.

5.2. Different applications to WWTPs

In this section, the different application of the VRFT to WWTP are presented. First in sec-
tion 5.2.1, an exploratory application is done using the BSM1 and the basic two degrees
of freedom controllers. Then, in section 5.2.2 one step further is taken when feedforward
control is added to try to cope with the disturbances produce by the variation in the influent
characteristics. Finally in section 5.2.3

5.2.1. First Application of the VRFT to the BSM1

In order to test the VRFT approach on the BSM1, two basic loops were implemented:

• Dissolved Oxygen Loop: The DO is controlled in the output of the fifth tank by ma-
nipulating the oxygen transfer coefficient (KLa). In the benchmark, the DO setpoint is
2mg/l. The output of the controller is limited between 0 and 360d-1.

• Nitrate Nitrogen Loop: In this case, the Nitrate Nitrogen (SNO) in the second anoxic
tank is controlled by manipulating the internal recycle flow (Qa). The setpoint is 1mg/l
and the output of the controller has to be between 0 and 92230 m3d-1.

The data was obtained by performing a test on the plant in steady state (constant distur-
bances). As stated in chapter 2, the Data-Driven methods do not need a model to compute the
controller. The model presented in section 5.1.3 is very complex to be readily used to directly
find the necessary controllers. The advantage of this data-driven approach is that, one is able
to use the already well tuned model to directly compute a restricted order controller using
the data from simulation. The idea is that, if one is able to have a model that is close to the
real process, once the controller has been found using simulated data from this model, the
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Control SNH TSS Ntot COD BOD5

< 4mgN/l < 30mgN/l < 18mgN/l < 100mgCOD/l < 10mgBOD/l

Default Controllers 2.5392 13.0038 16.9245 48.2201 2.7568
VRFT Controllers 2.548 12.9912 17.2755 48.2095 2.7567
Difference 0.346% -0.096% 2.07% -0.021% 0.003%

Table 5.6: Important mean factor for dry weather Influent.

same controller could be use in the plant. A decentralized control of these two control loops
is tackled in this case (Vilanova et al., 2009). The data used to find the Oxygen Controller is
presented in Fig. 5.9. While the system is in steady state, the coefficient of oxygen transfer is
changed and the effect on the dissolved oxygen is recorded. The target transfer functions for
this loop are given by:

M(z) =
0.3408z−1

1− 0.6592z−1
(5.15)

S(z) =
1− z−1

1− 0.4346z−1
(5.16)

This transfer functions were selected based in the settling time which are approximately
15min and 7min respectively. The sampling period is 1min. When the controller computed
using VRFT is introduced in the loop, the response to a step change in the reference and
a step disturbance on the oxygen concentration at the fifth tank is given in Fig. 5.10. As
it can bee seen, in this case, the closed-loop response is close to the target one, but for the
disturbance change it takes more time to settle than the desired time, but the output of the
process is very close to the setpoint. Since the dynamics of the nitrate-nitrogen loop are
slower, the changes in the oxygen loop take approximately one day to disappear, as shown
in Fig. 5.11, but for this case, the overshoot of the nitrate-nitrogen remains under the 35% of
the setpoint. A similar experiment was carried out for the nitrate-nitrogen closed loop, but
in this case, the settling of the closed-loop transfer functions were chosen to be of 12 hours
for the step change in reference and 6 hours for a disturbance in the nitrate-nitrogen at the
output of the second anoxic tank. In this case the sampling period is 10 minutes. Using the
topology in equation (3.24) and Fig. 2.4, the parameters for the oxygen loop are given by:
[α1, α2, α3, α4]T = [97.99,−75.76, 131.2,−108.9]T ; and for the nitrate-nitrogen loop by:
[α1, α2, α3, α4]T = [2821,−1769, 7134,−6082]T .

The controllers were tested for a dry weather influent that covers 14 days. To compute the
performance indexes, the initial states has to be found with a preliminary simulation of 100
day with constant influent, followed by a dry weather influent simulation. The concentration
of ammonia for this influent is presented in Fig. 5.12 to show the range of variability of
the disturbance and the repetitive behavior across the week. The values presented here are
computed from the last seven days of simulation, taken the data every 15 minutes.

In table 5.6, the mean values of the important components are presented for both the VRFT
controllers and the Default controllers of the BSM1. For all values, the mean is under the
maximum mean value. When compared with the default controllers, it can be seen that the
performance is as good as for the default controllers, except for the total nitrogen component,
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Figure 5.9: Data for the computation of the oxygen controller.

Control
Effluent Quality
kgpoll.units/d

Operational
Cost Index

Violation of
SNO

(% of total time)

Violation of
SNH

(% of total time)

Default Controllers 6123.0182 16382.4027 18.3036% 17.1131%
VRFT Controllers 6186.1812 16380.0646 21.4286% 17.7083%
Difference 1.031% -0.001% 3.125% 0.5952%

Table 5.7: Performance Indexes for dry influent data.

which is 2.07% higher. But this results were found without any simplification of the model,
using only data from the simulation and implementing the controller directly. The same con-
clusion is taken when observing the table 5.7: the performance index are very similar, except
for the total nitrogen, for which the limit was violated 3.125% more of the total time. The
results may be similar, but the VRFT provides an easy and methodological way of imple-
menting simple controllers in a fast way, using the resources available at hand (in this case,
the BSM1 model).

In Fig. 5.13 and Fig. 5.14, the plot of the violation in the limits are presented for the Total
Nitrogen and the Ammonia in the effluent. It may be possible to keep all the peeks of the
ammonia under the limit, if other layout is used, as in Vrecko et al. (2003), were only one
of the tanks is anoxic and an oxygen controller is used in all the aerated tanks. It has to
be remark that the controlled variables are not the ones that are taken into account in the
performance of the plant. In Fig. 5.15, the closed-loop behavior of the controlled variables
are plotted. As it can be seen, the oxygen loop has a good response to the disturbances, with
a maximum deviation from the setpoint of approximately 5% of the setpoint.

In the other hand, the effect of the disturbances and the effect of the oxygen closed-loop
make the nitrate loop to perform badly. It is possible to improve the performance using the
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Figure 5.10: Response of the oxygen loop to a step change in (a) the reference (b) a disturbance of the
oxygen concentration at the output of the fifth tank.
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Figure 5.12: Influent ammonia for dry weather data.
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Figure 5.13: Effluent total nitrogen using the VRFT controllers.
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Figure 5.14: Effluent total ammonia using the VRFT controllers.
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Figure 5.15: Response of the controllers for the (a) oxygen and (b) nitrate-nitrogen loops.

same controllers only by changing the setpoint of the nitrate-nitrogen. If the reference is
changed to 2mgSNO/l, the mean value of the Total Nitrogen is reduced to 16.5315mgN/l (for
this reference, the difference between the VRFT controller and the Default controller reduce
from 2.07% to 0.84%). The price to pay is an increment on the value of the ammonia which
is rised 2.98% for the VRFT controller and 2.33% for the default controller. The percentage
of the time in which the value of Total Nitrogen is above the limit is reduced 7.8869%. The
total Nitrogen is ploted for this change in the reference of the nitrate-nitrogen in Fig. 5.16. It
is interesting to note that, this change in the reference produces a big change in the nitrate-
nitrogen, while the ammonia in the effluent, remains with the same percentage of time over
the maximun value and just a little raise in the mean value.
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Figure 5.16: Violation of the total nitrogen, after changing the reference value of the SNO2.

5.2.2. Application of feedforward control to the BSM1

The control strategy employing a feedforward control is depicted in Fig. 5.17. It has two
control loops, the first one is the nitrate (SNO) loop, that tries to keep nitrate concentration at a
low setpoint value by actuating on the internal recycle flow rate to keep total effluent nitrogen
below its limit. The second control loop is a cascade-feedforward controller: it manipulates
the oxygen transfer rate (KLa) to maintain the Dissolved Oxygen set point. This Dissolved
Oxygen setpoint is manipulated by a controller that measures the ammonia concentration at
the fifth tank and at the influent. This strategy has also been tested in Ingildsen et al. (2002);
Vrecko et al. (2003); Yong et al. (2005).

Figure 5.17: Layout of the BSM1.
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All the controllers were set as two degrees of freedom discrete-time PI controllers (except for
the Feedforward controller), with parameters found using the VRFT approach. The data used
to obtain the PI controller is presented in Fig. 5.18. This data was recorded with a sampling
time of 1 min for the Dissolved Oxygen loop and 10 min for the SNH and SNO loops.

Using this data, and a first order closed-loop dynamic as the target closed-loop with a settling
time of approximately half day for the SNO and SNH loops and 15 min for the DO loop.
These values were decided based on prior knowledge of the dynamics of the system. The
controllers were found to be:

• For the SNO loop

CrSNO(z) =
2821− 1769z−1

1− z−1

CySNO(z) =
7134− 6082z−1

1− z−1

• For the DO loop

CrDO(z) =
97.99− 75.76z−1

1− z−1

CyDO(z) =
131.2− 108.9z−1

1− z−1

• For the SNH loop

CrSNH(z) =
−0.3612 + 0.2511z−1

1− z−1

CySNH(z) =
−0.6713 + 0.5612z−1

1− z−1

CfSNH(z) =

 −0.01265− 0.03796z−1

+0.05244z−2 + 0.1473z−3

−0.146z−4


1− 0.5409z−1 − 0.4315z−2

The controlled system was first simulated for 14 days of dry weather data and then simulated
for each one of influent data (dry, rainy and storm weather) that the benchmark provides. For
the CfSNH controller, a low order approximation of the dynamic of the plant was obtained
with an ARX structure. The selected setpoints were 1 mgN/l for the SNO loop and 2 mgN/l
for SNH. Then the performance was evaluated for the last 7 days and the mean values of the
most important variables are presented in Table 5.8.

VRFT successfully maintains the mean values under the maximum limits. In Fig. 5.19, the
data for the last 7 days for the Dry Weather is plotted for the Ammonia Nitrogen SNH and
Total Nitrogen TN (which are the variables that most likely could have a higher value than
the limit). In Yong et al. (2005), a feedforward-feedback control is implemented, but with
control over all the aerated tanks and assuming knowledge of kinetic parameters that are
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Figure 5.18: Open loop simulated experiments for the VRFT method. The data for the SNH control was
obtained with the other two controllers in the loop.

Weather SNH TSS TN COD BOD
< 4 mgN/l < 30 mgN/l < 18 mgN/l < 100 mgCOD/l < 10 mgBOD/l

Dry 2.74 12.99 16.25 48.24 2.76
Rain 3.25 16.16 14.55 45.43 3.45
Storm 3.15 15.25 15.53 47.66 3.20

Table 5.8: Important mean values of the BSM1 after simulated 14 days. Results computed based on the
last 7 days.
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Figure 5.19: Instantaneous values for the dry weather. The mean value is below the maximum values but
still, some peaks cannot be maintained under the limit.
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Figure 5.20: Instantaneous values for the rain weather.

difficult to obtain in practice. In this case, the mean value of ammonia at the effluent for the
dry weather was 2.11 mg/l (23% less than the result with the VRFT) and the mean value of
the Total Nitrogen was 17.26 mg/l (5.82% more than VRFT) with the advantage that with the
VRFT approach one does not need to know any parameter that cannot be measured online. A
similar approach was followed by Zhang and Hoo (2007), in this case for the SNH parameter,
the VRFT approach gave 12.91% less for the dry weather, 0.63% less for the rain weather
and 2.88% more for the storm weather.

One of the disadvantages of this methodology is that it produces a very aggressive controller,
which in turn affects the energy consumption, as shown in Fig. 5.22 . This behavior was
expected since the controller is delivered from an optimization that does not take into account
the control effort.
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Figure 5.21: Instantaneous values for the storm weather.
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Figure 5.22: Aeration energy for the dry weather influent, using the VRFT. The controller are found to be
very aggressive which in turn could lead to a high energy usage. The aeration energy was
calculated as pointed out in the benchmark Alex et al. (2008)

.

5.2.3. MIMO approach to the BSM1

Four different control strategies were considered to test the viability of the MIMO version of
the method for this particular WWTP. The cases are as follow:

• Default Case (A0): This is the default control strategy of the benchmark and consists
of two control loops. The first loop controls the dissolved oxygen level in the fifth tank
(SO5) manipulating the oxygen transfer coefficient of the same tank (KLa5). The sec-
ond loop controls the nitrogen nitrate concentration in the second anoxic tank (SNO2)
by manipulating the internal recycle flow rate (Qa).
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Figure 5.23: Different control strategies tested with the BSM1.

• Direct Control of Ammonia (A1): The second strategy involves controlling the ammo-
nia concentration in the fifth tank (SNH5) by manipulating the oxygen transfer coeffi-
cient of all the aerated tanks (KLa3 − 5). The nitrogen nitrate concentration of the
second tank is controlled as above.

• Parallel control of Ammonia and Oxygen (A2): This is a 3 × 3 control strategy. The
first loop controls the SNH5 by manipulatingKLa5. The dissolved oxygen in the fourth
tank (SO4) is controlled by manipulating the oxygen transfer coefficient of the third and
fourth tank (KLa3 − 4). Finally, the nitrogen nitrate concentration in the second tank
is controlled as in A1.

• Control of nitrogen concentration by adding carbon (A3): This is a 3× 3 strategy. The
nitrogen nitrate concentration in the fifth tank (SNO5) is controlled by adding carbon
into the last anoxic tank (Carb2). The SNH5 is controlled as in A1, while SNO2 as in
A0.

In Figure 5.23, the four strategies are depicted. In the diagrams, the small boxes represent the
controllers. Nevertheless, only the direct controllers (i = j) are included in the picture for the
sake of clarity of the control method (see section 4.2). The controllers in the off-diagonals
are seen as compensator for the effect of the error in the other loops. The correspondence
amongst the actual BSM1 variables and the control variables related with the MIMO-VRFT
method is presented in Table 5.9.

In all cases, the sampling time was chosen as Ts =1 min. The chosen structure for the con-
trollers was a discrete PI. However, it was necessary to incorporate an antiwindup system,
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Figure 5.24: Implementation of the PI controllers for a 2 × 2 case with anti-windup protection.

Var A0 A1 A2 A3

u1 KLa5 KLa3− 5 KLa5 KLa3− 5
u2 Qa Qa KLa3− 4 Qa
u3 - - Qa Carb2
y1 SO5 SNH5 SNH5 SNH5

y2 SNO2 SNO2 SO4 SNO2

y3 - - SNO2 SNO5

Table 5.9: Relationship between the control variables and the actual variables of the BSM1.

especially when the ammonia controllers were used. This was mainly because the varia-
tions produced by the influent are too aggressive and could saturate the integral part of the
controllers.

In Fig. 5.24, the implementation of the two controllers related to input 1 is represented for
a 2 × 2 case. Thus, e1 and e2 represent the error signals related to output 1 and output 2,
respectively. With this configuration the “integral” part of the controller given by the term
z−1/

(
1− z−1

)
is not allowed to go beyond the saturation limits. The controller C11(z, θ11)

can be regarded as the “direct” controller that measures the error of output 1 while the con-
troller C12(z, θ12) is the decoupling controller that takes into account the error in loop 2. The
sum of the outputs of these two controllers is the actual control signal for the manipulated
variable u1. Only one integrator is necessary for each manipulated variable. The 3×3 case is
an extension of the structure in Fig. 5.24, where groups of three controllers are implemented
using a single integrator.

The desired closed-loop transfer function was selected as a first-order transfer function:

M(z) =
(1− α)z−1

1− αz−1
(5.17)

The value of α represents the time constant of M(z) and in this work is determined based on
the desired settling time for each controlled variable. The settling time represents the time
that the system needs to reach a new steady state, when a step change in its manipulated
variable is applied.
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Figure 5.25: Preprocessing of data.

Training data and preprocessing step

The preprocessing strategy is depicted in Fig. 5.25. Two input data sets of 14 days are used for
each control strategy. The first data set (udyn) contains the dynamic values of the manipulated
variables. It should be emphasized that if two or more manipulated variables are considered,
their variation must be split in different time intervals. The second (or auxiliary) data set
(ucnt) only contains constant values of the manipulated variables at the selected operating
point. The rate of change of the input data as well as the operation points were chosen based
on existing knowledge of the plant dynamics. Even if no explicit model of the plant is used,
it is always necessary to have a reasonable idea of how the plant is responding to external
excitation, the limit values of the variables, the time constants, etc.

Once the simulations are run, two output data sets are generated. The idea is to obtain two
types of information. In the first batch (ydyn), the BSM1 overall process performance is
stored including dynamic influent, noise data and includes the effect of the manipulated vari-
ables. The second data set (ycnt) only contains the effect on BSM1 of the dynamic influent
and noise files when the manipulated variables are left at their default values. Both simula-
tions are run under open-loop conditions.

The preprocessing step consists of calculating the difference of the inputs (u = udyn − ucnt)
and outputs files (y = ydyn − ycnt). As a result, dynamic periodicity and noisy data are
subtracted, leaving only the variation due to the manipulated variables. Thus, the resulting
data set will be the input (u) and the output files (y) that will be used by the VRFT algorithm.
The reader should be aware that this assumptions hold as long as we consider that the effects
of the different perturbations i.e. influent, noise, manipulated variable, are additive and there
is no interactions amongst them.

For exemplary purposes, further details about the preprocessing step for the second control
strategy (A1) are given in Fig. 5.26. The data in Fig. 5.26a shows the variation of manipulated
variables KLa3 − 5 and Qa (i.e. udyn) and their effect (together with the influent dynamic
variability and sensor noise) on the BSM1 predictions (ydyn). To obtain better results in
the optimization, the manipulated variables changes were separated in time, see Fig. 5.26a.
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Figure 5.26: Example of the preprocessing of the data for a TITO plant.

The same variations of the BSM1 predictions (ycnt) are summarized in 5.26b, but the default
values of the manipulated variables are used and only the effects of influent and noise are
considered. Fig. 5.26c shows the difference between Fig. 5.26a and Fig. 5.26b, where it
is possible to see how the influent periodicity (and noise) is subtracted from the effect of
the manipulated variables (KLa3 − 5 and Qa). Finally, in Fig. 5.26d the simulations only
modifying the manipulated variables (the ideal condition without dynamics and noise) can
be compared with the processed data. The trends are certainly similar although the effects of
some disturbances are not completely removed.

Once the data has been preprocessed, the optimization problem is solved. All the coefficients
of the controllers (4 controllers for the 2 × 2 cases and 9 controllers for the 3 × 3 cases) are
computed. The selected settling times are summarized in Table 5.10.

With the computed controllers, the plant is simulated in closed-loop using the dry weather
influent profile. The simulation follows an initial steady state simulation; this ensures a con-
sistent initial point and eliminates the bias due to the selection of the initial conditions for the
states of the plant (Copp, 2002). Even though the period for the dynamic simulations is 28
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Figure 5.28: Variation of the effluent quality concentrations, normalized by their limits.

days, only the data generated during the last seven days are used to quantify the criteria. The
results of the different evaluation criteria for all the strategies are summarized in Table 5.10.

In Fig. 5.27, the variations of the Effluent Quality Index (EQI) and the Operational Cost
Index (OCI) are presented. The EQI improves (lower value) as the “complexity” of the
control strategy increases. Thus, control strategy A2 improves the EQI by 3.62% compared
to the default closed-loop strategy (A0). However, EQI substantially improves in case A3
(16.8% with respect to the default value), when an external carbon source is added to the
WWTP.

In all cases, the average concentrations of Total Nitrogen (TN) and Ammonia (SNH) in the
effluent were always below the limit values. In Fig. 5.28, the normalized averages of the
effluent quality concentration are shown i.e. the ratio between average values and maximum
allowed. The SNH and the TN are the most sensitive concentrations to a change of control
strategy. Their absolute values are shown in Fig. 5.29 for reference. Chemical Oxygen De-
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Figure 5.29: Average values for the total nitrogen and Ammonia concentrations for all the strategies.

mand (COD), Total Suspended Solids (TSS) and Biochemical Oxygen Demand (BOD) do not
vary much. Only when there is an addition of external carbon source (A3), the values slightly
increase (less than 10%). The strategy including the addition of carbon are able to reduce
almost 30% of the effluent TN levels compared with the default case (see Table 5.10). TN
and SNH have the heaviest weights when calculating the EQI , which explains its reduction
in A3.

As happened in the EQI , for the first three cases, the variation in OCI is not as large as
in case A3. When alternative A2 is compared to the default A0, the additional controllers
produce an increase of 1.22% of OCI . This is mainly due to the higher aeration energy
required to handle the (effluent) ammonium peaks by the controller. On the other hand, when
carbon is added, the OCI increases nearly 40%. Basically, this is because of the periodic
purchase of external carbon source, higher aeration energy and sludge production.

The interaction between loops is shown in the IAE numbers summarized in Table 5.10. The
SNO2 controller is heavily affected in both A1 and A2, when compared to the default A0.
This fact is attributed to the SNH controller. Since it is more difficult to maintain the ammonia
levels around the set point, the controllers tend to aerate more (see higher OCI values). This
extra quantity of oxygen is then recycled to the anoxic zone worsening the overall denitrifica-
tion efficiency, and consequently the performance of the SNO2 controllers. When SNO5 is also
controlled, the IAE of the SNO2 decreases its value thanks to the carbon provided by control
of nitrate nitrogen in the fifth tank. The IAE of the SNH5 controller is kept almost at the same
value as in A1 because of the correct tuning of the controllers. From the values of IAE it is
clear that controlling the oxygen level is easier than controlling the ammonia concentration.
The main reasons are that 1) the dynamics of the dissolved oxygen are faster and simpler than
the ammonia dynamics, 2) the dissolved oxygen is directly related to the aeration of the tanks
while the ammonia concentration is only indirectly related, 3) ammonia concentration is more
strongly affected by the influent variations than oxygen and 4) the BSM1 plant is overloaded
and sometimes there is not enough aerobic volume to reach the desired set-points. The results
obtained in this section open the door to several discussions. Firstly, the quality of the results
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entirely depends on the quality of the data, the dynamics of the plant and the control strategy.
The preprocessing presented in this work was needed to obtain straightforward feasible data
for the optimization given the severe condition in which the plant works. Nevertheless, this
fact gives credibility to the study because these conditions are likely to be found in real plants
(i.e, dynamic influent conditions, noisy sensors, etc.)

Secondly, the closed-loop response for the algorithm was chosen in order to obtain a fast
response of the system. For simplicity a first order dynamics was selected. Higher order
dynamics (for example a second order transfer function where the natural frequency and the
damping can be used as design variables) can be useful if the dynamics of the plant are shown
to be very different from a first order model.

Thirdly, in this work only discrete PI controllers were used, but the method can be used to de-
fine controllers with higher order and different parameterization. If the controllers are linear
in the parameters, the optimization is still a least-squares problem, but it may also be possi-
ble to use non-linear controllers or parameterization that leads to a non-linear optimization
(Campi and Savaresi, 2006). Since the BSM1 is a non-linear plant, it is difficult to totally
decouple the loops.

Finally, the selected sampling times, settling times and controller parameters were based on
experience using the plant. It is difficult to choose these design parameters based purely
on data. This issue affects all data-driven methodologies and not only the VRFT. Most of
the information needed to apply the methodology is available from the persons in charge
of WWTPs (like limits on the manipulators, time constants, information about the influent
dynamics, etc.). For this reason synergy between the control engineer and the personnel of
the plant will always be necessary.

Universitat Autònoma de Barcelona José David Rojas Fernández



6. Application to a solid oxide fuel
cell

In this chapter, the VRFT in its MIMO form, is applied to a Solid Oxide Fuel Cell (SOFC). As
pointed by Ellis et al. (2001) and Nehrir et al. (2006), fuel cells are promissory technology to
substitute the oil-based fuels to generate electricity. The range of use of fuel cell can go from
portable devices to power generation, depending of the type used. Two of the most popular
fuel cells are the Proton Exchange Membrane Fuel Cell (PEMFC) and the SOFC. PEMFC
are low temperature fuel cells that are intended to be use in a wide range of applications,
but much attention has been given to the hydrogen powered vehicle (Pukrushpan, 2003).On
the other hand, SOFC are high temperature fuel cells which can be used as part of a power
distribution system (Sedghisigarchi and Feliachi, 2004b, 2006).

6.1. Introduction to solid oxide fuel cells

Fuel cells (FCs) are electrochemical devices in which the free energy of a chemical reaction
of fuel is converted into electrical energy (Carrette et al., 2001). A combustion process is
not necessary, and therefore the CO2 emissions are almost zero. If the fuel is hydrogen the
conversion is completely emissions free. In general, the overall chemical reaction of FCs is:

H2 + 1
2 O2 → H2O (6.1)

This reaction can be divided in one subreaction for the cathode side and other for the anode
side. Depending of the electrolyte, these subreactions vary. Table 1 in Carrette et al. (2001),
is reproduced in Table 6.1, where different kinds of FCs are characterized.

Solid Oxide Fuel Cells (SOFC) are composed of two porous ceramic electrodes and a solid
state electrolyte, made of solid metal oxides. The typical SOFC is composed of an electrolyte
made of ytria-stabilized zirconia (YSZ), a porous anode made of nickel and ytria stabilized
zirconia (Ni/YSZ) cermet and a porous cathode composed of doped LaMnO3 (LSM) (Bove,
2007).

The anode and cathode reactions are depicted in Fig. 6.1. The oxygen reaction in the cathode
is:

1
2 O2 + 2e− → O2− (6.2)

One of the characteristics of the electrolyte is that at the operating temperature (near 1000◦C),
it presents very high electrical resistivity and ionic conductivity (Bove, 2007). If pure hydro-
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Figure 6.1: Reactions occurring on a SOFC

gen is used as fuel, the reaction that occurs in the anode is:

H2 + O2− → H2O + 2e− (6.3)

However, using hydrogen as fuel is expensive and dangerous. One of the advantages of
SOFC is that, given its high temperatures, alternative fuels other than hydrogen can be use.
For example if carbon monoxide is present, the following reaction occurs:

CO + H2O↔ H2 + CO2 (6.4)

SOFCs can extract hydrogen from a variety of fuels using either an internal or external re-
former Williams (2007). For the internally reformed case:

CxHy + xH2O→ xCO +
(
x+

y

2

)
H2 (6.5)

6.1.1. Voltage of SOFC fuel Cell

The “Gibbs free energy” or “Gibbs free energy of formation” (Gf or ḡf if the energy is per
mole) is defined as “the energy available to do external work, neglecting any work done by
changes in pressure and/or volume” (Larminie and Dicks, 2003). In a fuel cell, the difference
between the Gibbs free energy of the product and the reactants is equal to the energy released
in a fuel cell.

Considering the overall reaction (6.1) in a typical FC, the released energy is computed as:

∆ḡf = ḡf (products)− ḡf (reactants)

∆ḡf = (ḡf )H2O − (ḡf )H2
− 1

2 (ḡf )O2

(6.6)

The values of the Gibbs free energy depends on temperature and state of the reactants and
products, but there are tables where the empirical value can be found (Larminie and Dicks,
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90 6. Application to a solid oxide fuel cell

2003). When pure hydrogen is used as fuel , two electrons pass round the external circuit for
each water molecule produced and each molecule of hydrogen used (see Fig. 6.1). Therefore
for each mole of hydrogen, 2NA electrons go trough the circuit (NA = 6.02214179(30) ×
1023mol−1 is the Avogadro constant). The charge that is flowing is related to the Faraday
constant F (F = 96485.3399(24)Cmol−1) as

Charge = −2NAe = −2F

e is the charge of an electron. The electrical work done is given by the product of charge
and voltage. If there are no losses in the FC, the electrical work then is equal to the released
energy and the voltage can be computed as:

E =
−∆ḡf

2F
(6.7)

This fundamental equation gives the electromotive force (EMF) (E) or reversible open circuit
voltage of the hydrogen fuel cell(Larminie and Dicks, 2003). This equation assumes pure
hydrogen and oxygen at standard pressure (0.1MPa) and no irreversibilites. The real voltage
will always be lower than this value. For instance, it is known that the actual value of the
voltage varies depending on the temperature and the “activity” of the reactants and products,
following the Nernst equation.

Following Larminie and Dicks (2003), if the following general reaction is considered

jJ + kK→ mM (6.8)

it can be shown that the activity (a) modify the Gibbs free energy:

∆ḡf = ∆ḡ0
f −RT ln

(
ajJ · akK
amM

)
(6.9)

and ∆ḡ0
f is the change of Gibbs free energy by molar at standard pressure. Considering

the overall reaction in a hydrogen FC in (6.1), the variation of the Gibbs free energy can be
written as:

∆ḡf = ∆ḡ0
f −RT ln

aH2
· a

1
2
O2

aH2O

 (6.10)

Substituting (6.10) into (6.7):

E = E0 +
RT

2F
ln

aH2
· a

1
2
O2

aH2O


where E0 is the reversible voltage at standard pressure. Activity is difficult to find (Lunelli
and Scagnolari, 2009) but, according to Larminie and Dicks (2003) in the case of “ideal
gases” the activity is proportional to the partial pressure P of the gas:

a =
P

P 0
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P 0 is the standard pressure. Thus:

E = E0 +
RT

2F
ln


PH2

P 0 ·
(
PO2

P 0

) 1
2

PH2O

P 0


And if all the pressures are given in bar, then P 0 = 1 and finally, the Nernst equation for the
output voltage is given by

E = E0 +
RT

2F
ln

PH2
· P

1
2

O2

PH2O

 (6.11)

Other irreversibilities have to be taken into account. For example, ohmic losses due to ma-
terial resistance to electric current, activation losses and concentration losses, specially in
Proton Exchange Membrane FC (PEMFC) (Barbir, 2005).

6.1.2. SOFC design

According to Carrette et al. (2001) different designs has been tested for SOFC:

1. Tubular design: It was design by Siemens-Westinghouse (Hassmann, 2001). This de-
sign have a self-sealing structure which improves thermal stability and eliminates the
need for good thermal-resistant sealants. The air electrode tube is generally made of
doped lanthanum manganite. The other components are thin-layered on this construc-
tion by electrochemical vapor deposition.

2. Planar design: This is the typical design used in most FC. The advantage of this design
is its low current resistance, but the sealing is critical in SOFC, because the material
have to be resistant to its high temperatures (Bove, 2007).

3. Disk shape design: Its a planar design but with circular shape under development by
Sulzer-Hexis. The interesting characteristic of this design is that the interconnection
serves as heat exchanger (Carrette et al., 2001).

6.1.3. Application of SOFC

SOFC is seen as the most promising fuel cell option for the emerging distributed power
market (Hassmann, 2001) given its characteristics: they can use several of fuels (either with
an external o internal reforming process), works well with nickel as catalyst (which is cheaper
than platinum, the catalyst for PEMFC), their efficiency is around 55% and if the produced
heat is used for cogeneration or heating, the efficiency can reach 80% (Williams, 2007).
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92 6. Application to a solid oxide fuel cell

Figure 6.2: Model of the SOFC.

6.2. Application of the VRFT to a solid oxide fuel cell

The modeling and control of SOFC is treated in several papers, as for example Padullés et al.
(2000) where a model for control is proposed, in Sedghisigarchi and Feliachi (2004a) the
thermal aspects and voltages losses are also taken into account, in Zhang et al. (2006), a
lumped non-linear model is proposed and in Murshed et al. (2007) a model for control of the
fuel cell and the balance of plant (BOP) (Fuel Heat Exchanger, Reformer, Burner, Air Heat
Exchanger) are also modeled.

From the control point of view, several different approaches have been tested with SOFC,
for example in Wang et al. (2007) a data-driven Model Predictive Control (MPC) is used, in
Fardadi et al. (2010) H∞ control is used to minimize the disturbances in the variation of the
spatial temperature of the fuel cell. In Murshed et al. (2010), a non-linear MPC is used and
in Sendjaja and Kariwala (2011) decentralized discrete time PI controller are used based on
the linearization of the model.

The aim of this section is to apply the MIMO VRFT methodology to a solid oxide fuel cell
(SOFC). The simulations are made using the model presented in Padullés et al. (2000); Wang
et al. (2007), depicted in Fig. 6.2. In this case, a set of input output data was obtained by
simulation, and then the controllers were computed without the use of the model. The inputs
to the plant are the load current Iin (which is considered a measurable perturbation), the
input fuel flow qinf and the input oxygen flow qinO2

. The outputs are the generated power Pr,
the stack voltage Vr, the fuel utilization Uf , the ratio between inlet H2 and O2 flows RH_O
and the fuel cell pressure difference between the anode and the cathode of the stack pdif . As
it can be seen, the different subsystem’s effects are modeled as first order transfer functions,
while the voltage of the stack is modeled using the Nernst’s equation and taking into account
ohmic losses considering its resistance. The parameters of the system are the same as in
Wang et al. (2007) and are presented in Table 6.2 for completeness.

The operation band of the plant is presented in Table 6.3. In this case, for the test of the
VRFT it will be considered that Vr and Uf are accessible and are considered as the outputs of
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6.2. Application of the VRFT to a solid oxide fuel cell 93

Parameter Value Concept

T0 1273 K Absolute Temperature
F0 96485 C/mol Faraday’s constant
R0 8.314 J/(mol K) Universal gas constant
E0 1.18 V Ideal standard potential
N0 384 Number of cells in series in the stack
Kr 9.96×10−7 kmol/(s A) Constant, Kr = N0/(4F0)
KH2 8.43×10−4 kmol/(atm s) Valve molar constant for H2

KH2O 2.81×10−4 kmol/(atm s) Valve molar constant for H2O
KO2

2.52×10−3 kmol/(atm s) Valve molar constant for O2

τH2
26.1 s Response time of hydrogen flow

τH2O 78.3 s Response time of water flow
τO2 2.91 s Response time of oxygen flow
r 0.126 Ω Ohmic loss
Te 0.8 s Electrical response time
Tf 5 s Fuel Processor response time

Table 6.2: Parameters of the SOFC model.

Variable Band Nominal Value Unit

qinH2
0 ≤ qinH2

≤ 1.7023 0.7023 mol/s
qinO2

0 ≤ qinH2
≤ 1.6134 0.6134 mol/s

Vr 328.8 ≤ qinH2
≤ 338.8 333.8 V

Iin - 300 A
Uf 80% ≤ Uf ≤ 90% 85% -
RH_O 0 ≤ RH_O ≤ 2% 1.145 -
|pdif | 0 ≤ |pdif | ≤ 0.078954 0 atm

Table 6.3: Operation band of the SOFC plant.
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Figure 6.3: Open loop data obtained with the SOFC model.

the resulting TITO system. The input-output data taken in open-loop is depicted in Fig. 6.3.
Since only two inputs are available, at most only two inputs can be effectively controlled,
therefore, the output RH_O is not controlled. As it can be seen in Fig. 6.2, the value of qinO2

does not affect the value of Uf , therefore the VRFT method by itself should not select the
pairing between qinO2

and Uf . In fact, in this case using 4 controllers instead of a decentralized
topology is not clear because of this fact. To check this, both the “complete” version and
the “simple” version of the MIMO VRFT presented in section 4.2 are tested in the plant to
see the difference between them. The results are compared with the ones given by Sendjaja
and Kariwala (2011), in which discrete time PI controller are also used with a decentralized
approach.

The desired closed loop transfer functions was selected as a first order response with a con-
stant time of 0.1s for Uf and Vr. The sampling time is Ts = 1s. The controllers are set as
discrete time PI controllers of the form:

C(z;α) =
α0 + α1z

−1

1− z−1
(6.12)

The VRFT is able to find a controller that gives good reference tracking and disturbance
rejection, but is not able to follow exactly the desired closed-loop function. In this case, this
closed-loop transfer function has to be seen as the “bandwidth” of the closed-loop system and,
given the fact that the desired linear closed-loop behavior is not achievable with this linear
controller over the non-linear plant, the designer is forced to enlarge the desired bandwidth
to achieved good control responses, as it has been done here.

The response of the system towards a disturbance in the load current is presented in Fig. 6.4
and the response to a change in the reference is presented in 6.5. The load changes were
chosen as in Wang et al. (2007), where also, in some point the voltage and the utilization go
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Controller Complete Simple Decentralized

C11
−4.543+3.72z−1

1−z−1
−4.543+3.72z−1

1−z−1
−4.13+3.10z−1

1−z−1

C12
3.292×10−6−1.106×10−5z−1

1−z−1 - -

C21
−0.7879+1.864z−1

1−z−1 - -

C22
0.08186−0.06072z−1

1−z−1
0.0782−0.05885z−1

1−z−1
0.044−0.029z−1

1−z−1

Disturbance Vr IAE 47.7315 35.2098 50.9536
Disturbance Uf IAE 0.37091 0.37058 0.44756
Disturbance qinH2

TV 1.884 1.884 1.6937
Disturbance qinO2

TV 2.1107 1.4131 0.9987

Reference Vr IAE 7.8156 9.3476 13.2976
Reference Uf IAE 0.00836 0.00828 0.0139
Reference qinH2

TV 0.14289 0.14283 0.12725
Reference qinO2

TV 0.59872 0.51194 0.28302

Table 6.4: Control parameters for the SOFC plant.

beyond the operation band, as in the case of this paper and Sendjaja and Kariwala (2011)
for the selected sampling time. The values of the Integral of the Absolute Error (IAE) are
presented in the figures and also summarized in Table 6.4, where the values of the parameters
of the controllers are presented as well. The comparison is made by the use of IAE and the
Total Variation (TV) which are calculated from t = 101s up to t = 500s following Wang
et al. (2007). The TV is considered as a measurement of the control effort. A larger TV
represents more a controller with a wider bandwidth which could yield to a “more expensive
control”. The TV was calculates as:

TV =

N∑
i=1

(u(i)− u(i− 1)) (6.13)

In the case of Vr when the load current decreases to 270A, the over voltage goes up to 340V,
but rapidly returns to the operation band. The response of Uf is faster than the voltage re-
sponse. When comparing the results of the simple controller and the complete controller it
can be seen that the main difference is in the voltage response, where the simple controller
is better than the complete one. But when controlling Uf the simple and the complete con-
troller performs similarly thanks to the lack of effect of the qinO2

over Uf . With respect to the
decentralized controllers from Sendjaja and Kariwala (2011), it can be seen that the simple
VRFT controller performs better while the complete controller has a similar response. But it
also has to be notice that the TV of the VRFT controller is larger than for the decentralized
controllers. Since it has a lower IAE, it is logical that the controller need to use a more ag-
gressive control signal to achieve a better performance. One of the drawbacks of the VRFT
controllers is that the ratio between hydrogen and the oxygen goes out of bounds for a short
time. This is because the oxygen usage is more aggressive, as can be seen in Fig. 6.4d.
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Figure 6.4: Response of the system to a disturbance in the load current.
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Figure 6.5: Response of the system to a change in reference for both loops.
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For the reference tracking, the complete controller is better tracking reference changes for
Vr than the simple controller and the decentralized controller, but thanks to a slightly worse
response for the Uf and again a more aggressive consumption of the oxygen supply. The
simple controller performs also better that the decentralized controller, but at the expense of
increased oxygen consumption. The selected pairing used by both the simple and the com-
plete control is the “obvious”: the Uf controlled by the fuel input flow and the Vr controlled
by the the oxygen flow. It could be that, using the input fuel flow, the control of Vr could
improved since the gain from the fuel flow to the output voltage is larger than the gain from
the oxygen flow. But since the fuel utilization if not affected by the oxygen flow, this choice
is not possible with the control topology used here.

It is important to note that, even if the control of both variables is acceptable, with the PI
controllers is not possible to achieve the desired closed-loop transfer function, given the
non-linearity produced by the relationship between the pressure of the gases and the out-
put voltage (given by the Nernst equation). A different structure of the controller may lead
to a better result, but without any more knowledge of the plant, but the data from the open
loop experiment, it is difficult to select and appropriate structure. This issue still remains an
open question for future research, not only for the VRFT approach, but for any data-driven
approach.

This results confirm the use of decentralized controller for the SOFC plant, as proposed by
Sendjaja and Kariwala (2011), and also, the use of VRFT in the tuning of the parameters, has
been also shown to be technically sound, if Uf can be measured on line, or at least estimated.
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7. Application to a pH neutralization
process

The pH neutralization is an important process in different industry applications (for example
in pharmaceuticals, as pointed out in Henson and Seborg (1994)) and fundamental in the
prevention of corrosion, in the protection of ecological wild life and human welfare, as for
example in wastewater treatment plants and water recycle (Hadjiski et al., 2002). However, it
is already well known that the strong non-linearity of this neutralization is one of the points
that makes this process a difficult task to control (Ali, 2001) and, at the same time, it is one
of the reasons why this process have been so widely studied.

From the control area, several strategies has been applied to control this process. In Ali
(2001), an auto-tuning PI Control is compared to other PI-like over a large range of set points
in order to have good performance with minimum re-tuning of the controller. In Hadjiski et al.
(2002), Neural Networks are applied in several different tasks as plant emulation, estimation
of disturbances, gain scheduling control, feedforward control, etc. Fuzzy Control has also
been applied for the pH neutralization process, for example in Fuente et al. (2002) an auxiliary
fuzzy variable indicates in which of three defined different gain region is the process, and
with this information a fuzzy control is implemented to control a real experimental plant, in
Kwok and Wang (1993) a fuzzy PD controller is implemented along with an integrator and
a Smith predictor. An example of Adaptive Control applied to the pH neutralization process
can be found in Henson and Seborg (1994) in which a non-linear adaptive controller is used
in conjunction with a parameter observer; and also a non-linear Model Predictive Controller
is used based on non-linear prediction on the form of Wiener-Laguerre model (Mahmoodi
et al., 2009).

The aim of this chapter is to find a restricted order linear controller bypassing the modeling
of this highly non-linear pH plant, based only on data taken from the process itself using a
Two Degrees of Freedom Controller with feedforward action which parameters are found by
applying the VRFT framework. The VRFT is a straightforward, easy to implement metho-
dology that was also found to be very flexible when trying to extend the original controller
topology. Since only a simple batch of data is needed, the number of experiments on the real
plant can be reduced and one set of data can be used to compute different control structures.

The methodology firstly is tested in simulation using a non-linear model of the process. In a
second stage, after the data has been collected from an experiment in the plant, the controller
is implemented and tested in a bench process. It was found that using this data-driven ap-
proach it was obtained good results even in the presence of noise in the measurement. The
controller was implemented using Simulink and the OPC toolbox.
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100 7. Application to a pH neutralization process

7.1. Introduction to pH

The pH is an intensive property that is related with the activity of effective concentration of
hydrogen ions (H+). If this activity is expressed as using molality as am,H+ = mH+γm,H+/m◦,
the expression for pH is (Lunelli and Scagnolari, 2009):

pH = − log
(
am,H+

)
= − log

(mH+γm,H+

m◦

)
(7.1)

mH+ is the molality (mol kg−) of hydrogen ions, m◦ is the unit molality and γm,H+ is the
activity coefficient on the molality basis, a dimensionless unit. Within the extensive literature
on the subject, a representative example on the modeling of the process is given in Gustafsson
et al. (1995); Gustafsson and Waller (1992) where the reaction invariants are used in the
modeling of the acid-base system using the Bronsted’s acid-base concepts:

• An acid can release a proton (H+).

• A base can accept a proton.

• An ampholyte can both release and accept a proton.

In this section, the model presented in Gustafsson et al. (1995) is followed. It is known that
when a reaction is in equilibrium, the degree of completion of the reaction varies greatly, but
there is one expression that is constant for a reaction in equilibrium at a given temperature
(Day and Underwod, 1989). For a general reaction

aA(ac) + bB(ac)
 cC(ac) + dD(ac)

The equilibrium constant K is
acCa

d
D

aaAa
d
D

= K (7.2)

a is the activity, which can be seen as an effective concentration. The activity can be ap-
proximated using the molar concentration (ci) multiply by an activity factor fi for the species
i:

ai = fici (7.3)

In a dissociation reaction (i.e. when a strong acid or a strong base is dissociated in water), the
equilibrium constant is called dissociation constant.

In a solution, a general acid HA release a proton

HA = A− + H+

which in turn reacts with the water

H2O + H+ = H3O+

Thus, the overall reaction is

HA + H2O = H3O+ + A− (7.4)
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And the corresponding thermodynamics dissociation constant is:

kacid =
aH3O+aA−

aHA

=
cH3O+cA−

cHA

fH3O+fA−

fHA

(7.5)

In turn a base B reacts in water as:

B + H2O = HB+ + OH− (7.6)

And the corresponding dissociation constant is given by

kbase =
aHB+aOH−

aB

=
cHB+cOH−

cB

fHB+fOH−

fB

(7.7)

As it can be seen, water can accept and release a proton:

2H2O = H3O+ + OH− (7.8)

And its dissociation constant is kw = aH3O+aOH− .

Using these constants, it is possible to model fast acid-base reactions in water (Gustafsson
et al., 1995). The material balance is ∑

akini = bk (7.9)

where aki is the index of the element number k in the species i, ni expresses the amount of i
and bk is the total amount of elements number k. The electroneutrality condition is:∑

vini = 0 (7.10)

where vi expresses the charge. If only monoprotic acids and bases are taken into account, the
solution of a number of acids and bases give:

0 =
kw

cH3O+

− cH3O+ +
∑
i

ca,i
ka,i

cH3O+ + ka,i
−
∑
j

cb,j
cH3O+

cH3O+ + kb,j
(7.11)

where ka,i and ca,i are the dissociation constant and the concentration of acids i and kb,j
and cb,j are the dissociation constant and concentration of base j. This equation was derived
supposing fi = 1. Then (7.11) is solved for cH3O+ and the value of pH is found using:

pH = − log (cH3O+) (7.12)
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Figure 7.1: Diagram of the pH neutralization plant.

7.2. In simulation and In situ application

The process under study in this section is the neutralization of an aqueous solution with
Hydrochloric Acid (HCl) in a Continuously Stirred Tank Reactor (CSTR). The experimental
setup (Tadeo et al., 2000) is shown in Fig. 7.1. The aim of this experiment is to show how the
VRFT methodology, and in particular the alternative 2doF structure, can be applied in a real
world plant. It consists of a CSTR where a liquid of variable pH is mixed with a solution of
high concentration of HCl. The liquid in the mixing tank overflows (outlet not shown), so the
volume of liquid in the tank can be considered constant. The control variable u is the flow rate
of the titrating stream. The output variable y is the hydrogen ion concentration in the effluent
stream. The control was implemented using the OPC toolbox in MATLAB/Simulink, using
discrete-time filters.

Due to the nonlinear dependence of the pH value on the amount of titrated agent, the process
will be inherently nonlinear. Moreover, variations of the buffering effects could make the
process time-varying. Both effects make the process difficult to control with classical process
control techniques (Henson and Seborg, 1994).

The methodology was firstly tested in simulation using the following model Fuente et al.
(2002), where the acid is hydrochloric acid (HCl) and the inlet is an aqueous solution of
sodium acetate (CH3COONa):

−xA + 10−pH − 10pH−14 + xS
1+10pKS+pH−14 = 0

V
dXA

dt
= FACA − (FA + FS)xA

V
dxS
dt

= FSCS − (FA + FS)xS

τ
dpH∗

dt
= pH − pH∗

(7.13)

where xA =
[
Cl−

]
and xS =

[
Na+

]
are the negative and positive ion concentration within

the tank respectively. FA is the control acid stream flowrate, FS is the inlet stream flowrate,
CS is the concentration of sodium acetate in the inlet stream, CA the acid concentration in
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Parameter Value

FA 1.8×10−4 l/s
CA 0.0708 mol/l
FS 7.73×10−3 l/s
CS 0.0308 mol/l
V 0.63 l
τ 0.0127 s
xA 1.63×10−3 mol/l
xS 30.1×10−3 mol/l

Table 7.1: Steady-state operating point of the nonlinear pH model.
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Figure 7.2: Simulation of the open loop response of the pH non-linear model.

the control acid stream, the measured pH is pH∗ which is supposed to have a constant time
τ , pKS = −10 log10 kS , with dissociation constants kw = 10−14mol2

The purpose of the simulated model is to test the control methodology before implementing
it in the real plant. The nonlinear model was excited with a pseudo random binary signal
in open-loop, and the controller was calculated as pointed out in section 3.1. The target
closed-loop response is set as a first order transfer function with time constant equal to 25s
(which represents a settling time of approximately 150s). This value was chosen based on the
prior knowledge of the settling time of the process, whose open-loop response is presented
in Fig. 7.2 for completeness. The settling time of the sensitivity function was chosen as 40s.
The filters WM and WS were set to 1.

For a linear-in-the-parameter structure for Cs, with 2 parameters in the numerator (θs =[-
0.01237, 0.01012]), denominator 1− z−1; and a fully parameterized Cff with 3 parameters
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104 7. Application to a pH neutralization process

in the numerator (θffnum = [0.0001073, -0.007215, 0.006206]) and 3 in the denominator
(θffden= [1, 0.1178, -0.6]); using a sampling time of Ts = 1.5s and a saturation at the
input of the controller to avoid negative values of the acid stream flowrate, the result of the
controlled system is as shown in Fig. 7.3. The control signal is the sum of both the Cff and
the Cs outputs in Fig. 7.3b. Fig. 7.3c shows the e0 signal.

As can be seen in Fig. 7.3a, the controller achieved a response that is close to the target one
(1), but the reference tracking controller presents a non-minimum phase zero which produces
an undesired oscillatory response. On the other hand, the Cs controller has a good response
to (2) a step disturbance in the inlet concentration, (3) a step disturbance in the acid con-
centration, (4) a step disturbance in the inlet flowrate and (5) a unit step disturbance at the
output of the plant. In cases (1) to (4), the disturbance step is equal to 100% of the value
of the steady-state operating point given in Table 7.1. The data used for this experiment is
presented in Fig. 7.4a.

Taking advantage of the separation between the controllers, new data can be found that is
specifically addressed to finding the reference tracking controller without changing the feed-
back controller. This new data takes into account the fact that the pH cannot rise as as fast as it
decreases, since it is impossible to actively withdraw acid from the tank. For this reason, the
new data was made to change more slowly, and is presented in Fig. 7.4b. With this new data,
the Cff controller’s parameters became (θffnum = [-0.001424, 0.000263, 0.0009215]) and
(θffden= [1, -0.6911, -0.07566]). With this controller, the results are as given in Fig 7.5. As
can be seen, the response is better without altering the disturbance rejection. The reference
tracking was set faster than the open-loop response, since being able to take the system to a
new operating point faster than in open loop (compared with Fig. 7.2) is an important control
task, which can be achieved independently from the disturbance rejection thanks to the extra
degree of freedom of the controller. Another test where only changes in the reference signal
are applied is presented in Fig. 7.6. The error signal depicted in Fig. 7.6b shows that there is
an error in the transient part of the response due to imperfections in the structure of the Cff
controller, but the Cs controller is able to cope with these errors. The saturation of the input
signal is responsible for the overshoot at the end of the test, when a higher pH is required.

For the real plant in Fig. 7.7, instead of sodium acetate, the inlet is just liquid water with
variable pH around the value of 7. In order to have the data with the correct magnitude, a new
batch of data was taken using the OPC server connected to the system. This input to the real
plant cannot be a pseudo random signal as in the simulation example, because the peristaltic
pump cannot act as quickly as the data changes. The data collected from the experiment in
open-loop is shown in Fig. 7.8: a series of step changes were performed in order to excite the
plant at several operation points. It is well known that, from a system identification point of
view, the data has to be persistently exciting (Ljung, 1999), which is why, under the physical
restriction of the plant, this input signal was selected. When performing the optimization, the
data was filtered with a third order Butterworth filter with cut frequency equal to 0.25 times
the sampling frequency. It was decided to have a settling time of 150s in the response between
the reference and the output. The Cs controller is a PI-like controller with two parameters in
the numerator.

The resulting closed-loop, using the same sampling period of the simulation, is shown in
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Figure 7.3: Results from simulation of the nonlinear model, controlled with the VRFT controllers with
several disturbances.
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Figure 7.4: Open-loop data used to find the VRFT controllers for the simulated case.
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Figure 7.5: Change in the Cff controller to avoid oscillation in the value of pH.
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Figure 7.6: Test of the Cff controller for different changes in the reference signal.
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Figure 7.7: Photograph of the real pH neutralization process.
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Figure 7.8: Batch of data used for computing the controllers in the real plant.

Fig. 7.9. In Fig. 7.9 b), uOpPoint is the output of the controller at the operation point, uCff

is the output of the feedforward controller, uCs
is the output of the feedback controller and u

is the sum of all the control signals. It was decided not to go beyond a pH of 6.24 to ensure
good functioning of the peristaltic pump. It was found that for higher values of the pH, the
response is not as desired, but the constant time is very similar. For lower values of pH, the
response is very close to the desired one (neglecting the noise). The controllers and the design
transfer functions are as follows:

M(z) =
0.05824z−1

1− 0.9418z−1

S(z) =
1− z−1

1− 0.9418z−1

Cs(z) =
−0.8235 + 0.8201z−1

1− z−1

Cff (z) =

(
−0.04827 + 0.1322z−1

−0.1203z−2 + 0.03634z−3

)
(

1− 2.871z−1 + 2.748z−2

−0.8762z−3 − 0.0001912z−4

)
(7.14)

It was found that the sampling time for this application was too high: the controller had poles
very near to the unit circle and therefore, having the exact values of the parameters became
critical. Because of this, it was decided to use a larger sampling time (Ts = 4.5s). The same
batch of data was used, but decimated by 3. In this case, the response is as given in Fig. 7.10.
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Figure 7.9: Response of the closed-loop system in the real plant.

As expected, the system degrades its performance, but the controller poles are farther from
the unit circle. With this sampling time, an oscillatory behavior affects the response, and
overshoot is found as the reference changes. A lower sampling frequency made the entire
system oscillate. The response of the system with Ts = 7.5s is shown in Fig. 7.11. It is
interesting to note that both the Cs and the Cff controllers have the same output when a
stationary point is reached. This is because the Cff controller is not equal to the ideal Cff0,
as expected, given the non-linearity of the plant. That is why the Cs controller has to act
when the reference is changed. Otherwise, the output of the feedback controller should only
act when a disturbance is present in the plant. Also, it is interesting to note that the controller
is able to cope with the noise in the measurements and keep the system near the reference
points.
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Figure 7.10: Response of the closed-loop system in the real plant for a sampling time of Ts = 4.5s.
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Figure 7.11: Response of the system with a sampling period of Ts = 7.5. The response became oscilla-
tory.
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Conclusions

In this work new extensions to the Virtual Reference Feedback Tuning method has been pro-
posed for the two-degrees of freedom, feedforward control, multiple-inputs multiple-outputs
and internal model control cases. Even more, these extensions have been applied to several
complex plants.

First, an alternative two degrees of freedom controller was proposed. The main characteristic
of the alternative topology is that, it is possible to separate the design of the reference tracking
controller and the disturbance rejection controller. In fact it was found that the filters needed
to approximate the control problem using the identification problem are exactly the same that
in the original two degrees of freedom structure. That is, no extra computational effort is
needed to find the parameters of this alternative controller.

It was found that for the two degrees of freedom PI controller, a constraint has to be added
to the optimization in order to guarantee zero stationary error. If this constraint is not intro-
duced, different integral action from the feedback signal and from the reference produce an
undesirable offset in the closed-loop response. It is widely known that PI controllers are the
most used controllers in industry. Thus, having a condition that allows the VRFT to re-tune
an existing PI controller is a desirable characteristic.

Sometimes, information from the disturbances of the plant is available. Adding a feedfor-
ward path from the measurable disturbances can improve the performance of a two degrees
of freedom controller. This was also accomplished with the VRFT. In this case the com-
putation of the virtual reference has to taken into account the effect of the disturbance. To
guarantee independence between the signals, it was proposed to use an arbitrary “fictitious”
signal instead of a virtual signal. The approach is valid if all the equations of the optimization
are written accordingly with this condition.

The MIMO case has been also investigated. It is proposed to use a non-linear optimization
to find the pairing of the loops at the same time that the controller tuning. This approach is
useful for the decentralized case where the pairing is not decided a priori. Also a full strategy
(with decoupling controllers) was presented. The difference of this approach is that it is not
necessary to use the same closed-loop specification for each loop. This is very useful for the
case where the constant times of each loop are different and a single specification would not
fit for all loops.

The stability of the system is addressed using an internal model control approach. Using this
structure, a robust test is proposed in order to guarantee stability. When the IMC controller is
computed, an instrumental model of the plant is included in closed-loop. This instrumental
model is the best approximation of the model plant, from the computed controller. It was
found that by having the control divided in two blocks (the IMC controller and the instru-
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mental model), a better performance is accomplished than in the case of a single block for
control. The reason of this is that, more information can be included in the control algorithm
and also, a less restrictive parameterization of the IMC controller can be used. Also, using
the IMC structure, integral action is guarantee even if it is not explicitly defined during the
optimization.

The application of all these extension to complex system is the other contribution of this
thesis. The most studied case is the application to wastewater treatment plants. The dynamics
of this kind of plants are not difficult to control by themselves, but the effect of the disturbance
on the process is very important. It was decided to apply the methodology to the control
of the Benchmark Simulation Model 1. This benchmark is important among the wastewater
community and allows the control researches to have a common platform to compare different
control strategies. The models used within the benchmark have high complexity and are not
directly suitable for model-based control. That is the reason why, the VRFT was considered
as a good option to control the plant.

The first attempts to control the plant were made under rather unrealistic conditions. The
data that was used for the tuning of the control parameters did not contained the effect of the
influent variation and was noise-free. Under this conditions, the two degrees of freedom and
the feedforward approaches were tested and compared with other techniques. The problem
of the influent and noise were considered when a full MIMO approach were implemented for
the BSM1. To remove the effect of the influent from the system two different batch of data
were needed. One of them contains only the effect of the disturbances on the plant while
the other contains also the effect of the manipulated variables in an open-loop experiment.
Several configuration were considered to check the effect on the quality indexes of the plant.
It was confirmed that, an auxiliary carbon source is needed to stimulate the nitrogen removal
from the effluent.

Along with a better water treatment, it is necessary to find more environmental friendly
sources of energy. In this sense, the VRFT was applied to the control of solid oxide fuel
cells. The advantage of SOFC is that they are able to work, not only with hydrogen, but also
with other fuels as methane. Even using fossil fuels, fuel cells pollute less than the coun-
terpart combustion-based generators. The controlled variables were the voltage and the fuel
utilization, manipulating the fuel and the air flow rate. It was found that VRFT was able to
find a better tuning in a decentralized approach than other method that also uses discrete time
PI controllers.

The two degrees of freedom controller was applied to a real laboratory bench plant. The
process is a pH neutralization in a laboratory in Universidad de Valladolid in Valladolid,
Spain. The method was applied with real data taken directly from an open loop experiment.
The sensor noise was first filtered and then used to compute discrete time controllers. These
controllers were implemented in Simulink using the OPC toolbox for the communication with
the pumps. It was only possible to set the pH value of the solution under pH=0.7, since the
“basic” solution was simply water. However, it was found that the VRFT was able to control
correctly the reference tracking. The dynamics are different depending if the pH is increasing
or decreasing. If the setpoint makes the pH to increase from its current operating point, the
only control action that can be taken is to stop the pumps, and wait until the pH reaches
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the desired value to start regulating. In the other case, if the pH have to be decreased, the
dynamics are fast. The same controller needs to coupe with both cases. A test was performed
to check how the sampling time affects the control system for this particular plant. Heavy
oscillations were found where the sampling time was not chosen adequately.

Future Research In the last decade, the number of research publication on data-driven
control has been increasing. In fact, in the 18th IFAC World Congress, a pair of sessions
dedicated to data-driven control has been programmed. However there are still some aspects
that need to be considered.

Guidelines to choose the correct number of parameters for the controllers are still needed.
In the cases where the ideal controller is in the set of possible controllers, the optimization
will converge to the ideal one, even without any filtering. However the performance of the
method is heavily degraded if the controller is not the ideal. One may thing that allowing
enough freedom to the controller (free tuning parameters in both numerator and denominator
with a rather high number of parameters) the performance of the controller would improve
incrementing the number of parameters. However, empirical test made during this work have
shown that, for non-linear, continuous time plants, this is not always the case. An increase
in the complexity of the controller have to be done in the right direction, according to the
characteristics of the plant. But it is necessary to obtain this information only from the data
itself. In one of the works derived from this thesis, a test was proposed for the alternative two
degrees of freedom case. However, it is desirable to have a more general guidelines that can
help to select the controller before any optimization is done.

The problem of stability has been addressed here in the form of a robustness test, while in
other publications has been addressed as a nonlinear constraint during the optimization, by
an approximation of the H∞ norm. However these approaches are just approximation that
either need an infinity number of samples or is just an approximation in the frequency domain
given the available data. A more robust method is desirable to guarantee the best performance
with enough robustness.

Data-driven control is connected with direct adaptive control, in the sense that the tuning of
the parameters is computed directly from data. It may be interesting to check if the virtual
reference concept can be translated to the adaptive world. In, fact, it could be interesting to try
to find a way to apply it to a predictive control scheme, in order to cope with the constraints
in signals values.

It is clear that data-driven control opens the door to a new set of paradigm, where the infor-
mation is considered to be implicit in the data and the final objective is to take the most from
it as directly as possible.

However, it has been learned trough all the extensions and applications that has been done in
this work, that a deep knowledge of the system to control is always fundamental for any con-
trol engineer. The fact that no model is needed to find this controller should not be confused
with a blind test over the plant. Knowledge should never be traded for easiness, whatever
control methodology have been decided to apply.
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