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“You take the blue pill — the story ends,
you wake up in your bed and believe

whatever you want to believe.
You take the red pill — you stay in Wonderland
and I show you how deep the rabbit-hole goes”.

— Morpheus to Neo, in "The Matrix".
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— Antonio Machado





P R E FA C E

Over the last two decades we have been given the privilege of witnessing
one of the most relevant breakthroughs in the history of biomedicine:
the development and completion of the Human Genome Project. Along
with it, large-scale laboratory techniques, every day more powerful and
reliable, are now routinely applied in biomedical research. Although
there is still a long way to go, this fact has undoubtedly set the seed
for a new paradigm in cancer research and the future treatment of pa-
tients. We are progressively shifting from a scenario where diagnoses and
treatments are mainly based on pathological criteria to a completely per-
sonalized one, where every single patient will be diagnosed and treated
in a specialized manner according to molecular criteria. Nonetheless, to
achieve a fully efficient and personalized cancer medicine, it is essential
to obtain an accurate picture of all the molecular processes involved in
the development of such a complex pathology as cancer. This picture can
only be obtained if we can have a detailed view of a tumor cell’s status at
a whole genome, epigenome, transcriptome and proteome levels. Once
all the information is available, suitable analytical integrative techniques
must be applied to detect the molecular alterations that play a driver role
in the tumorigenic process. The studies presented in this thesis aim to be
examples of such integrative analyses.

This thesis is based on a collection of three articles, which are the result
of the work done at the Unit of Biomarkers and Susceptibility at the
Catalan Institute of Oncology.
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P R E FA C I

Al llarg de les dues darreres dècades hem tingut el privilegi d’assistir a
un dels esdeveniments més importants en la història de la biomedicina:
el desenvolupament del Projecte Genoma Humà. Conjuntament amb
aquest fet, les tècniques de laboratori a gran escala, cada dia més potents
i fiables, s’utilitzen actualment de manera rutinària en el camp de la
recerca biomèdica. Tot i que encara queda un gran camí per recórrer,
aquests fets indubtablement han sembrat la llavor per desenvolupar un
nou paradigma de recerca en càncer, així com per millorar els futurs
tractaments dels pacients. Ens estem movent progressivament d’un es-
cenari on els diagnòstics i els tractaments es basen principalment en
criteris patològics a un altre completament personalitzat, on cada pa-
cient serà diagnosticat i tractat d’una manera especialitzada en funció
de criteris moleculars. Tot i així, per assolir una medicina del càncer
totalment eficient i personalitzada és essencial obtenir una imatge acu-
rada de tots els processos moleculars involucrats en el desenvolupament
d’aquesta malaltia complexa. Per obtenir aquesta imatge necessitarem,
doncs, obtenir informació a gran escala de la cèl·lula tumoral a nivell de
genoma, epigenoma, transcriptoma i proteoma. Un cop tota la informació
està disponible, s’hauran d’aplicar les tècniques analítiques integratives
per detectar les alteracions moleculars que tenen un paper primordial el
procés tumoral. Els estudis presentats en aquesta tesi pretenen ser una
mostra d’aquests tipus d’anàlisis integratives.

Aquesta tesi es basa en una col·lecció de tres articles que són el resultat
de la feina duta a terme a la Unitat de Biomarcadors i Susceptibilitat de
l’Institut Català d’Oncologia.
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R E S U M

En aquest apartat es pot trobar un resum en català del treball presentat.
Tot i la reducció en el contingut, s’ha intentat que el resum mantingui
una coherència global. Els punts més rellevants de la tesi, com són les
hipòtesis, els resums dels articles i les conclusions, s’han mantingut
íntegres.

introducció

El càncer com a malaltia complexa

El càncer es pot definir com una malaltia caracteritzada per una prolif-
eració cel·lular incontrolada i il·limitada, invasió de teixits adjacents i
capacitat de disseminació a òrgans distants [81]. Aquest darrer event és
la principal causa de mort en la majoria dels casos [40, 192]. El càncer
es pot considerar com un paradigma de les malalties complexes, ja que
és el resultat d’una intricada xarxa d’interaccions entre factors genètics i
ambientals [25, 103]. Tot i que s’han fet grans avenços en aquest camp,
molts dels agents específics que influeixen sobre el risc de desenvolupar
la patologia, ja siguin ambientals o particulars d’un individu, encara
s’han de determinar [153].

Actualment el càncer és considerat com un problema de salut de
primera magnitud a tot el món. Segons dades recents, és una de les prin-
cipals causes de mortalitat a nivell mundial, responsable de 7.6 milions
de defuncions l’any 2008 [65]. Aquest xifra es preveu que arribi als 11

milions l’any 2030
1.

La transformació d’una cèl·lula d’un estat normal a un estat tumoral és
un procés complex que comprèn diverses etapes. Habitualment, una lesió
precursora és la responsable de desencadenar el desenvolupament del
tumor [219]. Un cop el procés s’ha iniciat, aquest serà guiat per una com-
plexa combinació d’interaccions entre factors genètics i ambientals [25].
Així, per tal d’obtenir una visió més precisa de l’etiologia de la patologia,
l’epidemiologia del càncer ha de ser analitzada des d’una perspectiva tan
ambiental com genètica.

1 WHO Fact Sheet Nº 297, February 2009. http://www.who.int/mediacentre/

factsheets/fs297/en/index.html. Consultat Setembre 2011.
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L’arribada de l’era genòmica en la darrera dècada ha contribuït de
manera rellevant a una millor comprensió del paper essencial de les
alteracions genètiques en el càncer. Avui dia és ben conegut que el càncer
es deu, en gran part, a una acumulació d’alteracions en una cèl·lula, que
seran transmeses a la seva progènie [120]. Tot i que actualment moltes
d’aquestes alteracions ja estan caracteritzades [66], estudis recents han
demostrat que les mutacions en l’àcid desoxirribonucleic (deoxyribonucleic
acid, DNA) de les cèl·lules tumorals són molt més freqüents del que ini-
cialment s’havia proposat [188]. Aquestes alteracions poden ser heretades
dels nostres avantpassats, anomenades germinals, o poden aparèixer
en un moment puntual de la vida d’una cèl·lula, anomenades somà-
tiques [43]. En les cèl·lules dels tumors s’ha observat que les alteracions
somàtiques són molt més freqüents que les germinals [72], i l’efecte de
les alteracions també és divers, ja sigui activant processos de proliferació
com inhibint funcions d’apoptosi o control del creixement [219]. D’altra
banda, les alteracions germinals poden ser classificades en alteracions
d’alt, moderat o baix risc, en funció de la seva penetrància, és a dir, del
risc que confereixen de desenvolupar la malaltia.

Els elements de l’arquitectura del càncer

Durant el procés de la carcinogènesi, les cèl·lules acumulen un elevat
nombre d’alteracions genètiques. Aquests canvis en la seqüència de DNA
de les cèl·lules tumorals tenen efectes immediats a nivell de RNA i pro-
teïnes. A més, les alteracions epigenètiques de les cèl·lules també han
demostrat tenir un paper essencial en el desenvolupament del càncer.
Ambdós tipus d’alteracions interaccionen per modificar els programes
transcripcionals i promoure un funcionament anormal de la cèl·lula, que
és el responsable final de la carcinogènesi.

Les alteracions que es donen en el DNA al llarg del procés tumoral
es poden classificar en funció de la mida de la regió que comprenen.
Així, podrem tenir alteracions a gran escala, o aberracions, i alteracions a
petita escala, o focals. Els efectes d’aquestes alteracions en el fenotip de
la cèl·lula són variables.

Les aberracions cromosòmiques es donen de forma habitual a les
cèl·lules tumorals. Aquestes alteracions, que comprenen des de milers
fins a fins a milions de parells de bases, van ser les primeres a ser detec-
tades, ja que podien ser vistes amb un simple microscopi. De fet, entre
finals del segle XIX i principis del XX ja es van postular les primeres
hipòtesis sobre el paper de les alteracions somàtiques en el desenvolu-
pament del càncer [144]. La caracterització de totes aquestes aberracions
moleculars és útil per obtenir un millor coneixement dels mecanismes
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de desenvolupament del tumor, i alhora per ajudar a dissenyar teràpies
més efectives i específiques [53]. Les aberracions cromosòmiques poden
ser dividides en reordenaments i desequilibris. Els reordenaments con-
sisteixen en recol·locacions de material genètic, i no provoquen un canvi
en la quantitat de DNA de la cèl·lula. D’altra banda, els desequilibris
impliquen un guany o pèrdua de material genètic. Tant els desequilib-
ris [15, 32, 56, 74, 75, 92, 125, 145, 146, 175, 180, 191, 193, 230] com els
reordenaments [130, 135, 144, 163, 184, 208] sovint s’han trobat associats
a múltiples tipus de càncer.

Els canvis en el DNA a petita escala comprenen totes aquelles al-
teracions a la seva seqüència, i poden afectar des d’un fins a uns pocs
milers de nucleòtids. Entre totes aquestes alteracions, els canvis en una
sola base, anomenats mutacions, són els més freqüents. Degut a defi-
ciències en els seu sistema de control i reparació de dany genòmic, les
cèl·lules tumorals acumulen un gran nombre de mutacions puntuals.
Moltes d’aquestes mutacions, anomenades passatgeres, tenen un efecte
neutre. Altres, en canvi, poden tenir un gran impacte i contribuir en el
procés de desenvolupament tumoral [188]. A causa de la grandària del
genoma, aquest tipus de canvis no han pogut ser estudiats en profunditat
fins que les tècniques d’anàlisi a gran escala no han estat disponibles per
a la comunitat científica.

Les variants en nombre de còpies (copy number variants, CNVs) són
regions genòmiques per les quals s’observen diferències en nombre de
còpies en loci específics entre individus [165]. Les CNVs són la forma més
freqüent i complexa de diversitat genètica, que altera el paradigma del
’genoma diploide’ que s’havia acceptat històricament. Pel que fa a la seva
llargada, habitualment es defineixen com regions més llargues de 1000

parells de bases, i en general cobreixen el rang dels segments de DNA
d’escala submicroscòpica. Les cèl·lules tumorals solen mostrar alteracions
somàtiques de nombre de còpies [8]. De fet, aquest tipus d’alteracions són
considerades actualment com un dels mecanismes destacats de desregu-
lació gènica que contribueixen al desenvolupament dels tumors [99].

L’epigenètica estudia els mecanismes heretables durant la mitosi o la
meiosi que estan relacionats amb la regulació de l’expressió gènica, i que
no impliquen cap modificació a la seqüència genètica de la cèl·lula [18].
L’epigenètica duu a terme un paper rellevant en processos essencials,
com el desenvolupament embrionari [115] o el control dels processos
cel·lulars mitjançant la generació de patrons d’expressió gènica específics
de cada teixit [231].
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Les alteracions epigenètiques en els tumors es poden donar al llarg de
tot el genoma. Aquestes comprenen la metilació d’illes CpG, hipometi-
lació global, modificació d’histones o desregulació de l’expressió de
RNAs petits, entre d’altres. La combinació d’aquests esdeveniments amb
altres aberracions genòmiques confereixen a les cèl·lules tumorals un
avantatge selectiu, basat en la inhibició de l’apoptosi, una proliferació
incontrolada i un potencial de migració. En els darrers anys múltiples
estudis han relacionat abastament tant els canvis en la metilació del
DNA [30, 49, 51, 58, 83, 86, 95, 97, 100, 106, 139, 206, 212] com la desreg-
ulació de RNAs petits [19, 33, 34, 32, 89, 167, 173, 216] amb el procés de
desenvolupament dels tumors.

Integració de dades en càncer

Gràcies a l’aplicació en càncer de les eines d’anàlisi a gran escala, en els
darrers anys s’han obtingut ingents quantitats d’informació pel que fa
a les alteracions en el DNA (p.ex. mutacions, alteracions en nombre de
còpies, aberracions estructurals), RNA (p.ex. canvis en l’expressió gènica,
alteracions en el mecanisme de la regulació de la transcripció) i alteracions
epigenètiques (p.ex. canvis en metilació, modificacions d’histones, can-
vis en l’expressió de RNAs petits) involucrades en càncer. Donada la
complexitat del procés tumoral, les anàlisis integratives de tots aquests
diferents tipus de dades a gran escala s’han postulat com una metodolo-
gia essencial per obtenir un millor coneixement de les bases moleculars
del càncer. A més, aquestes dades faciliten el desenvolupament de millors
mecanismes de classificació de la malaltia, basats en criteris moleculars
en comptes de patològics.

Al llarg de la darrera dècada han aparegut rellevants exemples d’anàlisis
integratives aplicades a la recerca en càncer. El 2003, Lamb i col·laboradors
van combinar dades d’expressió gènica de centenars de tumors hu-
mans amb anàlisis de promotors per obtenir els mecanismes d’acció
de l’oncogen CCND1 en un ampli espectre de tumors [107]. Altres es-
tudis també han integrat dades d’expressió gènica a gran escala per
múltiples tipus de tumors per detectar mòduls de càncer, és a dir, con-
junts de gens que actuen de manera conjunta per dur a terme funcions
específiques dins del desenvolupament tumoral [181]. Altres anàlisis
recents que integren dades d’expressió de múltiples tipus de tumors han
permès detectar noves fusions gèniques relacionades amb el càncer de
pròstata [200, 202].

La integració de dades de DNA i RNA ha proporcionat resultats
prometedors pel que fa a la detecció de nous gens involucrats en el
desenvolupament dels tumors. El 2005, Garraway i col·laboradors van
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integrar dades d’expressió gènica, pèrdua d’heterozigositat i variants
en el nombre de còpies de múltiples melanomes. Aquesta metodologia
els va permetre descobrir que el gen MITF és la diana d’una amplifi-
cació genòmica prèviament desconeguda en aquesta patologia [73]. Més
recentment, un altre estudi que integra dades de nombe de còpies de
DNA i expressió gènica ha permès caracteritzar la implicació dels gens
TBC1D16 i RAB27A en el desenvolupament del melanoma [5]. Estudis
integratius de xarxes també han aconseguit identificar gens amb un pa-
per primordial en el desenvolupament dels tumors [38, 112, 118]. Les
anàlisis integratives també han demostrat la seva utilitat en el camp de la
farmacogenòmica. Un clar exemple és el projecte Connectivity Map, que
pretén desenmascarar connexions entre patologies, perturbacions genè-
tiques i els mecanismes d’actuació de les drogues mitjançant la integració
analítica de grans conjunts de dades d’expressió gènica [108].

Els primers intents d’aplicar metodologies analítiques integratives a
la recerca en càncer van aparèixer després que les primeres plataformes
d’anàlisi massiu d’expressió gènica i de nombre de còpies de DNA
apareguessin a principis d’aquest segle [185]. Alhora van sorgir les
primeres iniciatives per integrar conjunts de dades massives de càncer,
com el Cancer Molecular Analysis Project del National Cancer Institute [28].
Tot i que aquells projectes eren altament ambiciosos i innovadors en
aquell moment, les seves conclusions van estar limitades pels tamanys
de mostra disponibles als estudis i per la tecnologia emprada, que encara
estava en una fase primerenca. Així doncs, no va ser fins el 2005 que
aquest tipus de metodologia es va començar a aplicar de forma rutinària
en l’estudi del càncer.

El paper destacat dels estudis integratius de dades a gran escala en
l’anàlisi molecular del càncer ha estat indubtablement reforçat per la
creació de grans consorcis internacionals de recerca. Aquests esforços
col·lectius són essencials per superar un dels principals obstacles dels
estudis integratius, que és la dificultat d’assolir tamanys de mostra su-
ficients per poder detectar amb una elevada fiabilitat alteracions po-
tencialment relacionades amb el càncer. En aquest sentit, els consorcis
The Cancer Genome Atlas i l’International Genome Consortium són els més
rellevants dins del camp de la integració de dades en càncer.

hipòtesi de treball i objectius

Com a paradigma de les malalties complexes, el càncer es basa en múlti-
ples interaccions entre un gran nombre de factors moleculars i ambientals.
Aquesta complexitat inherent dificulta la comprensió dels mecanismes
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de susceptibilitat, aparició i desenvolupament de la malaltia.

Les alteracions cel·lulars que contribueixen al desenvolupament del
càncer són diverses, i es poden donar a qualsevol nivell molecular, des
del DNA fins a les proteïnes. En el passat, la majoria dels estudis en
càncer normalment es centraven en un sol d’aquests nivells. Tot i la seva
utilitat, aquest tipus d’enfoc acostumava a proporcionar una visió parcial
de la cèl·lula tumoral. Així, en els darrers anys s’ha fet palesa la necessitat
de dur a terme anàlisis més completes per obtenir una visió acurada
dels processos que confereixen a una cèl·lula fenotípicament normal el
potencial de proliferar i envair els teixits que l’envolten. L’aparició i el
desenvolupament de tècniques d’anàlisi a gran escala, com els microarrays
de DNA, han contribuït de manera important a aquesta nova manera
d’investigar la malaltia.

La hipòtesi de treball d’aquesta tesi és que la integració d’informació
heterogènia a gran escala és essencial per descobrir els mecanismes
subjacents en malalties complexes, com el càncer.

Objectius generals

El principal objectiu d’aquesta tesi és aprofundir en el coneixement dels
mecanismes moleculars implicats en el càncer mitjançant la integració
analítica de dades a gran escala a diferents nivells moleculars (DNA,
RNA, proteïnes).

Objectius específics

Cadascun dels tres articles presentat en aquesta tesi conté els seus propis
objectius específics, que són esmentats a continuació:

Anàlisi integratiu dels gens mutats en càncer de mama

Un estudi pioner publicat el 2006 [188] va determinar la seqüència
de 13203 gens que codifiquen per proteïnes en 11 tumors de mama.
L’estudi va obtenir una llista d’uns 700 gens que presentaven mutacions
somàtiques. Tot i que algunes d’aquestes mutacions ja havien estat de-
scrites amb anterioritat, la majoria d’elles no havien estat prèviament
relacionades amb la patologia. Aquest nou conjunt de gens requeria,
doncs, una caracterització i un estudi en més profunditat.

Objectius:

1. Caracteritzar els gens que presenten mutacions somàtiques en
càncer de mama, a nivell de DNA, RNA i interactoma, per de-
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tectar aquells gens amb més potencial d’estar associats al procés
tumoral.

Modelització de l’expressió germinal de MYC i susceptibilitat a càncer

Diversos estudis d’associació han trobat repetidament diferents posicions
a la regió 8q24 que confereixen una major susceptibilitat a desenvolupar
diversos tumors epitelials, essent el colorectal, el de pròstata i el de mama
els més rellevants. Sorprenentment, la regió ha estat caracteritzada com a
’desert gènic’, pel que el mecanisme d’acció pel qual aquestes variants de
risc actuen és encara desconegut.

Objectius:

1. Aclarir el potencial mecanisme d’acció de les variants de risc loca-
litzades a la regió 8q24 mitjançant la integració de dades genètiques
i d’expressió obtingudes de teixit prostàtic.

Convergència biològica dels perfils gènics en càncer

En els darrers anys molts estudis han desenvolupat perfils gènics amb
capacitat de predir correctament diferents aspectes clínics (pronòstic,
resposta al tractament, probabilitat de desenvolupar metàstasi, etc.). Sor-
prenentment, el solapament dels gens entre els diferents perfils és molt
baix, fins i tot per aquells que estan intentant predir el mateix efecte.
Això planteja alguns dubtes sobre les implicacions clíniques i biològiques
d’aquests perfils.

Objectius:

1. Descobrir quins són els patrons biològics subjacents en diferents
perfils de càncer mitjançant la integració de dades de genòmica,
transcriptòmica i interaccions de proteïnes.

resultats

Anàlisi integratiu dels gens mutats en càncer de mama

Resum

El 2006, Sjöblom i col·laboradors varen publicar un estudi pioner, en el
qual la major part de la regió codificant del genoma humà (consensus
coding sequences, CCDS) va ser seqüenciada en 11 tumors de mama i
11 colorectals [188]. Els CCDS representen el conjunt de gens més ben
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caracteritzat actualment2. Tot i el reduït nombre d’individus seqüenciats,
aquest projecte va mostrar per primera vegada la visió més completa
del conjunt de mutacions que es produeixen en els tumors de mama i
colorectal. Tot i que alguns gens ja havien estat descrits prèviament, la
majoria no havien estat mai relacionats amb el procés tumoral. Com a
conseqüència d’aquesta acumulació d’alteracions, les interaccions molec-
ulars es reprogramen dins el context de les xarxes cel.lulars altament
regulades i interconnectades.

L’objectiu del nostre estudi va ser descriure de manera extensa, i a
diferents nivell moleculars (del DNA a les proteïnes), l’estat de potencials
candidats a oncogens i gens supressors de tumors en càncer de mama.
També es volien predir relacions funcionals no descrites prèviament en-
tre ells i plantejar noves hipòtesis en relació a la seva funció molecular
coordinada en el procés neoplàsic.

Per investigar el paper dels gens mutats somàticament en càncer de
mama com a potencials supressors de tumors o oncogens, vam estudiar
la presència de pèrdua d’heterozigositat (loss of heterozygosity, LOH) util-
itzant dades de polimorfismes a escala del genoma complet. Els gens
mutats van mostrar valors de LOH del 4% fins a un màxim del 76% en el
cas de TP53. Com era d’esperar, altres gens que van mostrar percentatges
alts de LOH van ser BRCA1 (52%) i MRE11A (50%).

Per a una millor comprensió dels resultats de l’anàlisi de LOH, es va
dur a terme una anàlisi integrativa d’aquestes dades conjuntament amb
dades d’expressió gènica. Aproximadament un 50% dels gens mutats
van mostrar expressió diferencial entre el teixit normal i el teixit tumoral.
Una avaluació detallada dels resultats va assenyalar 12 gens situats en
regions crítiques, és a dir, detectades freqüentment alterades en càncer.
Les anàlisis d’expressió diferencial varen reforçar la suposició que 10

d’aquests gens podrien actuar com a supressors tumorals, ja que mostren
infraexpressió en els tumors de mama.

Les anàlisis de dosi gènica, aplicades sobre el mateix conjunt de dades
que les de LOH, van mostrar valors de nombre de còpies compresos entre
1.60 i 3.37 per tumors de mama de tipus basal i no basal, respectivament.
Una avaluació detallada de l’expressió gènica a les zones crítiques amb
un nombre de còpies superior a dos va permetre identificar 9 potencial
oncogens. Cal destacar que, un d’aquests gens, GAB1, havia estat prèvia-
ment postulat com un oncogèn involucrat en processos de transformació

2 http://www.ncbi.nlm.nih.gov/projects/CCDS/CcdsBrowse.cgi
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cel·lular.

La correlació dels resultats de LOH, nombre de còpies i les anàlisis
d’expressió diferencial van permetre identificar quatre grups de gens:
amplificació i sobreexpressió d’ABCB10 i NUP133 en el cromosoma 1

en tumors basals i luminals A i B; pèrdua i infraexpressió de COL7A1,
DNASE1L3, FLNB i RRP9 en el cromosoma 3, particularment per tumors
basals i luminals B; pèrdua i infraexpressió de MAMDC4, GSN, NUP214,
SPTAN1 en el cromosoma 9, per tumors luminals A i B; i, finalment, pèr-
dua i infraexpressió de SORL1 i TECTA en el cromosoma 11 en tumors
basals.

Per avaluar més profundament el nivell d’associació funcional entre
els gens somàticament mutats en càncer de mama, es van determinar
els patrons de coexpressió gènica en unes dades públiques de 98 tumors
primaris de mama. Es van detectar nivells de coexpressió més elevats que
els esperats per atzar, fet que apunta a una possible associació funcional
entre els gens mutats. Globalment, es van obtenir quatre conjunts de
gens altament correlacionats, dos representats pels gens ETV6-NTRK3,
un altre pel gen TP53 i el darrer pel gen RB1.

Mitjançant un conjunt de dades de 113 pacients de càncer de mama que
inclou informació de supervivència es va predir el valor pronòstic dels
nivells d’expressió gènica d’aquests gens. Aquestes anàlisis van permetre
identificar 4 gens els nivells d’expressió dels quals s’associen amb el
temps de supervivència: ABCA3, DBN1, SP110, SPTAN1.

Per avaluar potencials associacions funcionals entre les proteïnes deriva-
des d’aquests gens, es va procedir a analitzar la xarxa d’interaccions
proteïna-proteïna. Els resultats de les anàlisis van mostrar un alt nivell
d’interconnexió entre els gens, fet que apunta cap a una potencial asso-
ciació a nivell de funcions o rutes moleculars.

Per poder generar un model de xarxa amb informació rellevant a nivell
biològic pel procès de desenvolupament del càncer de mama, es van
integrar diferents tipus de relacions funcionals identificades mitjançant
les anàlisis prèviament mencionades. D’aquesta manera, a la xarxa ge-
nerada, dos gens estaven connectats quan mostraven valors similars de
LOH, nombre de còpies o expressió en els tumors de mama, o bé quan
les seves corresponents proteïnes estaven directament connectades a la
xarxa d’interacció proteïna-proteïna. L’anàlisi de subregions de la xarxa
altament interconnectades va permetre identificar mòduls funcionals
enriquits en apoptosi, divisió cel·lular, diferenciació cel·lular, senyalització
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dels receptors de proteïnes G, senyalització intracel·lular, regulació de la
transcripció, regulació de la traducció i transducció de senyal.

Principals resultats

El gen DBN1 és un candidat a oncogèn que, quan assoleix elevats nivells
d’expressió en tumors de mama, prediu baixos nivells de supervivència
en les pacients.

Nivells baixos d’expressió d’ABCA3 i nivells intermedis o baixos d’ex-
pressió de SPTAN1 podrien estar associats també a una pitjor supervivèn-
cia en pacients amb tumors de mama. ABCA3 havia estat prèviament
identificat com a un gen regulat pel receptor d’estrògens, fet que reforça
la seva potencial implicació en el càncer de mama. SPTAN1 ha estat rela-
cionat amb el desenvolupament de mecanismes de resistència en càncer
d’ovari, fent d’aquest gen una potencial diana terapèutica.

Les anàlisis de rutes moleculars en l’interactoma aporten noves hipòte-
sis per la identificació de gens potencialment associats amb la supervivèn-
cia de les pacients. SPTAN1 interacciona amb GRIN2D i SLC9A2, ambdós
dels quals interaccionen amb el producte proteic del proto-oncogèn ABL1.
Alhora, l’activació de la kinasa ABL1 promou la capacitat invasora de
les cèl·lules tumorals de mama. Com que nivells baixos d’expressió de
SPTAN1 s’associen a una baixa supervivència, SPTAN1 podria actuar
com un regulador negatiu de l’activitat d’ABL1.

Modelització de l’expressió germinal de MYC i susceptibilitat a càncer

Resum

La variació genètica germinal en multiples punts de la regió cromosòmica
8q24 ha estat associada a un risc incrementat de desenvolupar determi-
nats tumors, principalment de mama, pròstata i colorectal. Tot i així, cap
de les variants actualment descrites es troba a prop de gens coneguts.
Només MYC es troba a unes quantes kilobases d’aquesta regió. Com
que la variació genètica germinal s’ha associat a l’expressió diferencial
de molts gens humans, els efectes fenotípics d’aquest tipus de variants
podrien tenir un paper rellevant en els processos de susceptibilitat a
malalties amb base genètica.

L’objectiu d’aquest estudi va ser integrar dades genètiques i genòmiques
per avaluar l’impacte de les variants germinals de la regió 8q24 i el seu
paper en la tumorogènesi.
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L’associació entre els genotips i els nivells d’expressió de MYC es va
avaluar utilitzant dades públiques de polimorfismes i expressió d’indivi-
dus de HapMap. Els resultats obtinguts van ser validats en un altre conjunt
de dades de mostres de pròstata d’individus sans.

Les anàlisis de nombre de còpies en la regió de MYC van ser dutes a
terme en els mateixos individus de HapMap descrits prèviament, i també
en individus no relacionats de la població espanyola. Aquestes anàlisis
van mostrar que la variació en nombre de còpies a la regió de MYC no
sembla contribuir de manera rellevant al risc de càncer de pròstata ni a
la sobreexpressió de MYC associada a les variants de la regió 8q24.

Utilitzant dades públiques d’expressió gènica que contenien diferents
tipus de cèl·lules prostàtiques, es va dur a terme una anàlisi d’expressió
diferencial dels gens de la regió 8q24. Els resultats van confirmar un
augment de l’expressió de MYC a mesura que l’estat patològic del tumor
progressa des de la pròstata sana fins a la metàstasi. L’expressió de MYC
també va correlacionar positivament amb estadis de Gleason elevats.
Aquests resultats suggereixen una relació causal entre la sobreexpressió
somàtica de MYC i les formes més agressives de càncer de pròstata.

Mitjançant l’ús d’un conjunt de dades de 50 teixits sans i 52 tumors
de pròstata, es van estudiar les dianes transcripcionals de MYC que con-
fereixen un major risc de patir càncer de pròstata per avaluar la seva
potencial associació funcional amb el gen. Aquestes anàlisis van revelar
una forta correlació entre els nivells d’expressió de MYC i el gen supres-
sor tumoral KLF6.

Es van inferir xarxes de regulació transcripcional directa en teixit de
pròstata mitjançant l’algorisme ARACNe. Es van identificar 88 i 11 dianes
putatives de MYC i KLF6, respectivament. La intersecció d’aquests dos
conjunts de gens contenia 25 gens en comú, que era un nombre major de
l’esperat per atzar. MYC i KLF6 també estaven directament connectats, i
en el promotor de KLF6 es van predir tres llocs d’unió de MYC, el que
reforça la seva associacíó funcional i el seu paper en el desenvolupament
de tumors de pròstata.

Per tal de validar els resultats obtinguts es van analitzar dades d’expres-
sió d’un model de transformació activat per MYC en cèl·lules epitelials
mamàries humanes quiescents, així com d’un model murí de tumors
de mama activats pel complex MMTV-Myc. La majoria dels 25 gens
compartits per MYC i KLF6 es van mostrar diferencialment expressats
en ambdós models de ratolí, mentre que KLF6 va mostrar una forta
infraexpressió, així com la seva diana transcripcional CDH1.
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Principals resultats

Es van identificar reguladors en cis dels nivells d’expressió de MYC en
limfòcits immortalitzats d’individus de HapMap. Anàlisis quantitatives
de l’expressió de MYC en teixit de pròstata sana indica una associació
entre la sobreexpressió de MYC i variants germinals de risc de càncer de
pròstata a la regió 8q24.

La sobreexpressió somàtica de MYC correlaciona amb la progressió del
càncer de pròstata i amb les formes més agressives del tumor.

Anàlisis d’expressió gènica i la modelització de les xarxes de regulació
transcripcional prediuen una associació funcional entre MYC i el gen
supressor tumoral KLF6.

Les anàlisis de la transformació cel·lular i la tumorogènesi guiades per
MYC-Myc suggereixen un model en el que la sobreexpressió de MYC
promou la transformació mitjançant la infraexpressió de KLF6. En aquest
model, un bucle a través de la infraexpressió d’E-cadherina podria causar
la reactivació de MYC.

Convergència biològica dels perfils gènics en càncer

Resum

Les anàlisis de perfils d’expressió gènica han permès identificar sig-
natures amb capacitat predictiva en càncer que ofereixen una millora
respecte els paràmetres histopatològics o clínics històricament aplicats.
D’aquesta manera, els perfils d’expressió s’estan incorporant progressi-
vament a la pràctica clínica i aviat prendran una gran rellevància en la
presa de decisions del tractament oncològic. No obstant, l’elevada he-
terogeneitat entre els perfils d’un determinat tipus de càncer ha plantejat
alguns dubtes respecte les seves implicacions clíniques i biològiques. Per
tal de clarificar aquestes qüestions es requereix un millor coneixement
de les propietats moleculars dels gens que formen els diferents perfils,
així com la detecció de les possibles interaccions comunes subjacents en
aquests.

L’objectiu d’aquest treball va ser integrar dades de genòmica, transcrip-
tòmica i proteòmica per poder posar de manifest les propietats comunes
de 24 signatures generades per estudis independents.

Es van estudiar les propietats comunes a nivell genòmic mitjançant
l’anàlisi d’enriquiment de motius d’unió de factors de transcripció a les re-
gions promotores dels gens que conformen les signatures. Com a resultat,
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a la majoria de signatures es va detectar una sobrerepresentació de motius
dels gens de la família E2F, reguladors clau de processos de proliferació
i mort cel·lular. L’anàlisi de dades d’immunoprecipitació de cromatina
va corroborar el paper rellevant dels programes transcripcionals d’E2F.
A més d’aquests resultats, també es va detectar una sobrerepresentació
de llocs d’unió d’ESR1 en una major part de les signatures, independent-
ment del seu tipus o condició.

Utilitzant conjunts de dades representatius, es van comparar les cor-
relacions entre els nivells d’expressió dels factors de transcripció so-
brerrepresentats i els gens associats amb pronòstic o resposta al trac-
tament amb docetaxel en càncer de mama amb les correlacions entre
l’expressió dels mateixos factors de transcripció i gens no diferencialment
expressats en aquestes condicions. Com a resultat, es van obtenir correla-
cions significativament més elevades entre els factors de transcripció i els
gens associats amb pronòstic o resposta al tractament.

Utilitzant un conjunt de dades de càncer de mama, es va calcular la
correlació promig entre tots els gens de cada possible parell de signatures.
Comparant-ho amb un conjunt de 10,000 perfils gènics generats a l’atzar,
es va observar un augment significatiu de la coexpressió en aproximada-
ment la meitat de les parelles de signatures analitzades. Aquests resultats
suggereixen una associació molecular i funcional entre perfils aparent-
ment dissimilars. També es va detectar una forta correlació amb gens
involucrats en els processos de mitosi i mort cel·lular per a la majoria
dels perfils.

En base a l’evidència de les relacions entre els diferents perfils a nivell
de genoma i transcriptoma, es va hipotetitzar que les proteïnes codifi-
cades pels gens de les diferents signatures podien trobar-se més a prop
a la xarxa d’interaccions proteïna-proteïna que el que s’esperaria per
atzar. Emprant dades d’interaccions proteïna-proteïna experimentalment
validades, es va detectar que la majoria de les signatures es trobaven més
properes entre elles del que s’esperaria per atzar, així com més properes
als gens de mitosi i mort cel·lular.

Tots els resultats prèviament obtinguts van ser validats en dos conjunts
de dades independents: un perfil de metàstasi de càncer de mama i
un altre de resposta a tractament amb cetuximab en càncer colorectal
metastàsic.
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Principals resultats

Totes les signatures examinades, excepte dues, van mostrar una sobrerre-
presentació significativa d’una o més evidències moleculars associades
amb la regulació dels processos de mort i proliferació cel·lular.

Es van observar associacions significatives a nivell de genoma, trans-
criptoma i proteoma, fet que suggereix l’existència d’un fenotip comú
de la cèl·lula cancerosa. La convergència en els processos de mort i proli-
feració cel·lular dóna suport al paper essencial d’aquests processos en el
pronòstic, desenvolupament de metàstasi i resposta al tractament.

Es van identificar associacions funcionals i moleculars amb la resposta
immune per diferents tipus i condicions de càncer, fet que complementa
la contribució dels processos de proliferació i mort cel·lular.

La comprovació d’aquests resultats en conjunts de dades addicionals
corrobora els resultats prèviament descrits.

discussió

Anàlisi integratiu dels gens mutats en càncer de mama

Les anàlisis genòmiques, trancriptòmiques i proteòmiques derivades dels
gens mutats en càncer de mama van permetre identificar aquells mar-
cadors potencialment implicats en el desenvolupament d’aquest tipus de
tumor. Així, el gen DBN1, un gen involucrat en processos de desenvolu-
pament i diferenciació cel·lular que no s’havia associat mai prèviament
a càncer, va ser identificat com un potencial oncogèn. Tot i que fins al
moment no s’han descrit més associacions entre aquest gen i el càncer
de mama, DBN1 ha estat recentment associat a limfomes de cèl·lules del
mantell [220] i ha mostrat la seva possible utilitat clínica en la predicció
de pronòstic en càncer de pulmó [136].

En el nostre estudi, els gens ABCA3 i SPTAN1, prèviament poc ca-
racteritzats, van ser identificats com nous gens associats al pronòstic en
càncer de mama. Concretament, nivells baixos d’expressió de SPTAN1
es van associar amb una menor supervivència. Aquesta hipòtesi ha estat
posteriorment postulada en un altre estudi [178], on es mostra que la
pèrdua d’ABCA3 s’associa significativament amb l’afectació ganglionar i
la infraexpressió del receptor de la progesterona. Aquest estudi també
suggereix que la infraexpressió d’ABCA3 contribueix a un major risc
de recurrència, fet que té un impacte directe en la supervivència de les
pacients. Més enllà del nostre treball, SPTAN1 no s’ha tornat a associar
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amb càncer de mama, però prèviament s’havia trobat associat a càncer
d’ovari, que també és un tumor hormonal altament relacionat amb el
càncer de mama [113].

Modelització de l’expressió germinal de MYC i susceptibilitat a càncer

Per avaluar l’associació entre els diferents genotips i els nivells d’expressió
de MYC es van utilitzar dades d’expressió i de polimorfismes d’individus
de HapMap, així com de pacients amb càncer de pròstata. Després de
realitzar les anàlisis d’associació, es va observar que l’expressió de MYC
correlacionava amb variants del polimorfisme rs1447295. Tot i que estudis
posteriors han trobat resultats negatius respecte a aquesta associació,
aquestes diferències podrien ser motivades per temes de poder estadístic,
puresa del teixit o per diferències en la quantificació de l’expressió de
MYC. Altres estudis han trobat que la variant de risc del polimorfisme
rs6983267 es relaciona amb un potenciador de l’expressió de MYC durant
el desenvolupament primerenc de la pròstata [222], suggerint que les
variants de risc podrien estar exercint la seva influència significativament
abans de la formació del tumor. Aquests resultats reforcen la utilitat dels
estudis combinats genoma-transcriptoma en l’estudi de la susceptibilitat
en càncer. En un futur proper s’espera que aquests estudis, que combinen
variants de risc amb els gens que regulen, puguin tenir una influència en
el diagnòstic i tractament de la malaltia.

Convergència biològica dels perfils gènics en càncer

Tot i que els perfils gènics seran una eina essencial en el futur proper
en els procediments de diagnòstic i pronòstic del càncer, encara hi ha
algunes questions que s’han de clarificar abans que siguin incorpo-
rades a la pràctica clínica de manera rutinària. Una d’aquestes qües-
tions és l’evident variabilitat de les diferents signatures disenyades
per predir un mateix fet, com és el cas del pronòstic en el càncer de
mama [22, 41, 46, 134, 147, 211, 221]. Una segona qüestió és l’aparent
falta de reproductibilitat dels perfils, és a dir, la seva baixa taxa d’encert
quan s’utilitzen per classificar altres individus.

A causa d’aquesta gran controvèrsia en els perfils de càncer, l’objectiu
del nostre estudi va ser determinar l’existència d’un possible fenotip de
la cèl·lula tumoral associat amb múltiples tipus i condicions de càncer.
Per dur a terme aquesta tasca es van comparar múltiples perfils a nivell
de genoma, transcriptoma i interactoma. El nostre estudi va identificar
propietats moleculars comunes no només en signatures de pronòstic, sinó
també en signatures de metàstasi i de resposta a tractament. Aquestes
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propietats comunes identificades són les de mort i proliferació cel·lular,
així com associacions amb la resposta immune. Alguns estudis previs
havien trobat aquest tipus de convergències, però només per perfils de
pronòstic en càncer de mama [168, 186, 229], mentre que el nostre estudi
inclou un conjunt de signatures més complet i divers.

conclusions

En aquesta tesi s’han aplicat anàlisis integratives de dades heterogènies
de càncer a gran escala en tres escenaris diferents. En el primer estudi es
va caracteritzar un conjunt de gens mutats en càncer de mama per iden-
tificar quins d’ells podrien estar més potencialment relacionats amb el
procés oncogènic. En el segon treball, es van modelitzar dades genètiques
i genòmiques per detectar els processos mecanístics que controlen la
modulació del risc en una regió específica del genoma associada a càncer
de pròstata i altres tipus de tumors. Finalment, en el darrer article es ca-
racteritzen múltiples perfils de càncer a nivell de genoma, transcriptoma
i interactoma per avaluar les seves propietats biològiques i determinar
l’existència d’un fenotip putatiu comú en les cèl·lules tumorals.

Les conclusions s’exposen per cadascun dels objectius específics ex-
posats a la part inicial d’aquesta tesi. Finalment, s’exposa una conclusió
general a mode de resum.

- Anàlisi integratiu dels gens mutats en càncer de mama

• L’anàlisi integratiu de dades de nombre de còpies de DNA i d’expres-
sió gènica senyala el gen DBN1 com a candidat a oncogèn. Nivells
elevats d’expressió de DBN1 en tumors respecte a teixit sa prediuen
baixos nivells de supervivència en pacients de càncer de mama.

• Valors baixos d’expressió dels gens ABCA3 i valors mitjans o baixos
d’expressió del gen SPTAN1 podrien predir una pitjor supervivència
en pacients de càncer de mama.

• L’anàlisi de les interaccions dels gens que formen les diverses rutes
moleculars proveeix noves hipòtesis per a la identificació de gens
potencialment associats amb la supervivència en càncer. SPTAN1 in-
teracciona amb GRIN2D i SLC9A2, i alhora aquestes dues proteïnes
interaccionen amb el producte del proto-oncogèn ABL1. L’activació
de la kinasa ABL1 promou la invasió en cèl·lules tumorals de mama.
Com que nivells baixos d’expressió de SPTAN1 s’associen a baixa
supervivència, SPTAN1 podria estar actuant com un regulador
negatiu de l’activitat d’ABL1.
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- Modelització de l’expressió germinal de MYC i susceptibilitat a càncer

• Les anàlisis quantitatives de l’expressió gènica en teixit prostàtic no
tumoral suggereixen una relació entre la sobreexpressió de MYC
amb la regió 8q24-regió 1 i el risc de càncer de pròstata.

• La sobreexpressió germinal de MYC podria promoure la transfor-
mació cel·lular de l’epiteli normal i, per extensió, el risc de desen-
volupar càncer de pròstata mitjançant la repressió del gen supressor
tumoral KLF6.

- Convergència biològica dels perfils gènics en càncer

• S’han observat associacions entre múltiples perfils de càncer a
nivell de genoma, transcriptoma i interactoma, fet que suggereix
l’existència d’un fenotip comú a la cèl·lula tumoral que influeix de
manera decisiva en aspectes crítics de la neoplàsia.

• La convergència en els processos de mort i proliferació cel·lular
destaca el paper essencial d’aquests en el pronòstic, desenvolupa-
ment de metàstasi i resposta a tractament.

• Addicionalment, es van detectar associacions moleculars i fun-
cionals amb la resposta immune en diferents tipus i condicions de
càncer, fet que complementa la contribució dels processos de mort i
proliferació cel·lular.

- Conclusió general

• L’aplicació de mètodes analítics integratius a dades genòmiques,
transcriptòmiques i d’interacció de proteïnes a gran escala és essen-
cial per assolir un millor aprenentatge del càncer. Mitjançant aquests
enfocs basats en la biologia de sistemes, no només comprendrem
millor les bases moleculars de la malaltia, sinó que també serem
capaços d’identificar nous marcadors de diagnòstic, pronòstic, res-
posta a tractament i noves dianes terapèutiques, fet que pot tenir un
impacte decisiu en la presa de decisions a la clínica en els propers
anys.
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Part I

I N T R O D U C T I O N





1
C A N C E R A S A C O M P L E X D I S E A S E

Cancer can be defined as a group of diseases characterized by an un-
controlled and limitless cellular proliferation, invasion of surrounding
tissues and capability of dissemination to distant organs [81]. This latter
event is the ultimate cause of death in most cases [40, 192]. Cancer can
be considered a paradigmatic complex disease, since it arises from an in-
tricate interaction network of genetic and environmental factors [25, 103].
Although much progress has been done in this field, many of the specific
agents that influence the risk of developing the pathology, either environ-
mental or host-specific, have yet to be determined [153]. In this chapter,
some facts and figures about cancer are introduced, as well as some key
points of its genetic and environmental epidemiology. Finally, a general
overview of the neoplastic process can be found in section 1.3.

1.1 cancer facts and figures

Cancer is a worldwide health problem of first magnitude. According
to recently collected data, it is one of the leading causes of mortality
across the globe, accounting for 7.6 million deaths in 2008 [65]. Moreover,
projected mortality rates estimate this figure will rise up to 11 million
deaths in 2030

1.

Accurate statistics on cancer occurrence and outcome are primordial,
both for the improvement of research and for a better planning and
evaluation of cancer control programmes [148]. Mortality and incidence
are, therefore, the two mainly used indexes for this purpose. In 2008, the
main types of neoplasias leading to overall cancer mortality in Europe [64]
were:

• lung (342,100 deaths - 19.9% of all cancer deaths)

• colon and rectum (212,100 deaths - 12.3% of all cancer deaths)

• breast (129,300 deaths - 7.5% of all cancer deaths)

• stomach (116,600 deaths - 6.8% of all cancer deaths)

1 WHO Fact Sheet Nº 297, February 2009. http://www.who.int/mediacentre/

factsheets/fs297/en/index.html. Accessed September 2011.
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4 cancer as a complex disease

Regarding incidence, a few sites account for most of the newly diag-
nosed cases. As stated by Ferlay et al. [64], the most incident localizations
in Europe in 2008 were:

• colon and rectum (435,600 cases - 13.6% of new cancer cases per
year)

• breast (420,800 cases - 13.1% of new cancer cases per year)

• lung (390,900 cases - 12.2% of new cancer cases per year)

• prostate (382,300 cases - 11.9% of new cancer cases per year)

Figure 1: Estimated cancer incidence and mortality for 40 European countries,
year 2008. (Adapted from [64].)



1.1 cancer facts and figures 5

From the previous listings, it can be observed that cancer incidence
and mortality are not always related. Breast cancer, for instance, accounts
for a 13% of the incident cases, but only for a 7.5% of the deaths. This
fact is undoubtedly related to well-established screening procedures [27],
as well as to improved clinical diagnosis and better targeted therapies
recently developed [6]. Contrarily, lung cancer displays a higher mortality
than its corresponding incidence, probably due to less effective therapies
and a predominantly advanced stage of the disease at the time of diagno-
sis [150]. This fact can be more clearly seen in Figure 1, where European
2008 estimates of incidence and mortality for different localizations are
shown.

Figure 2: Worldwide distribution of breast cancer incidence. (Source: GLOBO-
CAN 2008.)

About 63% of all cancer deaths occur in poorly-developed coun-
tries [65]. This uneven distribution aggravates even more the burden
caused by the disease. Cancer incidence also varies throughout geo-
graphic regions. An example of this is displayed in Figure 2, where
higher incidence rates of breast cancer can be observed for most Western
countries. This variation, which holds true for other tumor sites as well,
may be attributed to different genetic background between populations,
but more importantly to differential environmental conditions in each ge-
ographic region (e. g. carcinogenic agents exposure, cultural and dietary
habits) [55].
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1.2 cancer epidemiology

The transformation of a cell from normal into tumoral status is a progres-
sive, multistage process. This tumorigenic progression usually derives
from a precursor lesion, which is responsible for triggering the tumor
development [219]. Once the process has been activated, it will be guided
by a complex combination of interactions between genetic and envi-
ronmental factors [25], as depicted in Figure 3. Thus, to obtain a more
precise view of the etiology of the disease, cancer epidemiology must be
approached both from an environmental and a genetic perspective.

Figure 3: Genetic and environmental factors contribute to the development and
progression of complex diseases, such as cancer. This factors not only
act alone, but also interact with each other in an entangled manner.
(Adapted from [127].)

1.2.1 Genetic factors

Cancer has been clearly characterized as an essentially genetic dis-
ease [219]. Doubtlessly, the advent of the genomic era at the end of
the 20th century has remarkably contributed to better comprehend the
predominant role that genetic alterations play in cancer. Nowadays it is
well known that cancer, for the most part, is caused by an accumulation
of mutations in a single cell and its progeny [120]. In fact, many of these
alterations have already been uncovered and characterized [66]. Further-
more, recent landmark studies have demonstrated that deoxyribonucleic
acid (DNA) mutations are far more frequent events in neoplasms than
it was previously thought [188]. These alterations can be inherited from
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our parents (i. e. germline) or can emerge at a specific moment of a cell’s
life (i. e. somatic) [43]. However, frequency of somatic and inherited mu-
tations in cancer-related genes has been found to be notably different.
According to Futreal et al., about 90% of cancer causal genes have so-
matic mutations, while 20% display germline mutations. Furthermore,
only 10% of the genes show both type of alterations [72]. The effect of
these mutations on the cell is heterogeneous: while many can be neutral,
others may promote abnormal cell growth and proliferation, and others
can affect processes such as cell aging, DNA repair or apoptosis [219].
Alterations that affect the proper functioning of the cell are called driver
mutations. Genes that when mutated give the cell a functional gain are
called oncogenes. Contrarily, genes that produce cellular loss of function-
ality if they are altered are called tumor-suppressor genes. Oncogenes and
tumor-suppressor genes are main contributors to the strong proliferation
and dissemination capacity of tumoral cells [14].

One of the main focus of interest of cancer genetic epidemiology is
the study of genetic variants that contribute to the risk of developing
the pathology. Depending on how much this risk is increased, these
variants can be divided into high, moderate or low penetrance. Although
landmark twin studies have argued that about a third of the variation
in cancer risk has a genetic basis [117], cancer Mendelian disorders
(i. e. caused by high-penetrance mutations) account only for a rough 5%
of the cases [39]. Given the high effect of these mutations, which makes
them easier to be detected, it is not unrealistic to believe that probably
only a few more recessive rare familial cancer syndromes remain to
be uncovered [39]. The unexplained large proportion of genetic factors
that may have an impact on the predisposition to cancer are currently
attributed to lower penetrance variants, which may in conjunction have a
huge influence on cancer susceptibility at the population level [39].

1.2.1.1 High-risk mutations: cancer inheritance

It has been clearly observed that relatives of patients with cancer are at a
higher risk of developing a tumor at the same site [154]. This clustering of
a relatively large number of cancer cases within families may indicate that
an inherited mutation in one gene is sufficient to substantially increase
risk. During the 1980s and 1990s, linkage and positional cloning analyses
led to the identification of high-penetrance cancer susceptibility genes.
Indeed, specific germline mutations in different genes have been identi-
fied through sequencing of affected family members. Examples include
the TP53 gene and Li-Fraumeni cancer syndrome, which predisposes to
childhood sarcoma, brain tumors, as well as early-onset breast and/or
ovarian cancer [60, 214]; the ATM gene and ataxia telangiectasia, which in-
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creases susceptibility to lymphoma, T-cell leukemia or breast cancer [111];
APC mutations are linked to the development of colorectal cancer (CRC)
in nearly a 100% of the cases [124]; mutations in the mismatch repair
machinery genes, which MLH1, MSH2, MSH6 and PMS2 are involved
in Lynch Syndrome [157]; CDKN2A mutations, which are involved in
pancreatic cancer [123]; mutations in the RB1 gene, which predispose to
retinoblastoma, bladder cancer or osteosarcoma [29]. Germline mutations
in BRCA1 and BRCA2 genes, both of which are involved in DNA repair,
have also been identified as increasing susceptibility to breast and ovar-
ian cancers [215]. Although these high-penetrance germline mutations
substantially increase the risk of developing a specific cancer, the vast
majority of people who develop the disease do not carry these muta-
tions. Overall, the proportion of cancer classified as being attributable to
dominantly inherited high-risk genes is estimated to be as much as a 5%
of all cancers that occur in the general population, as it was previously
stated [39].

1.2.1.2 Low-risk mutations: cancer susceptibility

Cancer occurrences that are not apparently caused by any known high-
penetrance variant are usually called sporadic. However, there is still an
unexplained excess of familial risk observed for this type of tumors. This
excess has been attributed to the accumulation of an undefined number
of low-to-moderate effect alleles. Much laboratory and epidemiological
research over the last decade has focused on the identification of these
genetic variants, which may have important effect at the population level
because of their large number [91, 155]. Although the exact number of
low-penetrance alleles contributing to the disease is not clear yet, some
approximations can be done, depending on the allele frequencies of the
potentially involved variants and their expected relative risk (Fig. 4). Re-
cent advances in the optimization of large-scale technology has allowed
to genotype hundreds of thousands of single nucleotide polymorphisms
(SNP) for sets of thousands of samples with almost perfect accuracy [62].
This fact has yielded the discovery of many common genetic variants
(i. e. allele frequency > 5%) with low contribution to the genetic risk of
developing cancer (i.e. 6 1.5-fold). Actually, by the 1st quarter of 2011

more than 1300 loci have been found to be significantly related to differ-
ent diseases, with cancer among them2.

The theory that many common genetic variants with low penetrance are
responsible for the inherited susceptibility of developing cancer, known
as the common disease-common variant (CDCV) hypothesis [48], has

2 NHGRI Catalog of Genome-Wide Association Studies. http://www.genome.gov/

gwastudies/. Accessed September 2011.

http://www.genome.gov/gwastudies/
http://www.genome.gov/gwastudies/
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Figure 4: Number of alleles required to explain excess of familial risk, based
on a codominant model. The excess risk could be explained by a
modest number of common variants or a large number of rare variants.
(Adapted from [155].)

been accepted for several years. Nonetheless, there is still a big deal of
genetic contribution to cancer that cannot be explained by all the variants
currently known. Sample sizes used in the latest genome-wide association
studies (GWAS) are mostly unable to detect effects smaller than 1.1-fold,
and it is believed that about 50,000 cases and 50,000 controls would be re-
quired to detect the expected ∼800 very-low-penetrance variants that may
contribute to a single cancer type [151]. Although the underlying mecha-
nisms of action of these variants in cancer are unknown, slight differences
in the expression of one of the two alleles have been recently detected
to be associated with a genetic predisposition to the disease [52]. Well-
described examples of these low-to-mid-penetrance rare cancer variants
include breast cancer susceptibility genes ATM, CHEK2, BRIP1, PALB2
and NBN [90].

1.2.2 Environmental factors

In epidemiology, environmental factors can be defined as those which
have an influence on the probability of developing a disease but are not
inherited from our ancestors. This factors can be related both to exposures
to external agents and lifestyle. In general, the list of carcinogenic agents
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provided by the International Agency for Research on Cancer (IARC)3

can be classified into three main groups:

• Physical carcinogens, such as solar or ionizing radiation.

• Chemical carcinogens, such as asbestos, tobacco smoke, aflatoxin or
arsenic-contaminated water.

• Biological carcinogens, such as infections from certain viruses
(e. g. human immunodeficiency virus (HIV), hepatitis B virus (HBV),
human papilloma virus (HPV)), bacteria (e. g. Helicobacter pylori) or
parasites (e. g. Schistosoma).

Ageing is another fundamental factor for the development of most
adult human cancers, since the incidence of the disease rises dramatically
with age (Fig. 5). Indeed, age might be seen as the most important
risk factor for carcinogenesis. This fact reinforces the idea that cancer
is, in most of the cases, a slow-evolving process that requires years of
interactions between genetic and environmental factors. The events that
enable the development of the malignant process along with aging can
be divided into molecular, cellular and physiological [11]. Examples for
each one of these categories are:

• Molecular: accumulation of DNA adducts, DNA methylation changes.

• Cellular: senescence of fibroblasts associated with production of
tumor growth factors and metalloproteinases that favor metastatic
spread; premature senescence associated with loss of apoptosis and
development of immortal cells.

• Physiological: decline of the immune system might favor the growth
of highly immunogenic tumors; premature senescence of stromal
cells associated with increased production of growth factors and
metalloproteinases; increased concentration of catabolic cytokines
in the circulation, which might lead to muscle loss and oppose the
growth of highly proliferative tissues and neoplasias; decline in
DNA repair capacity.

According to the World Cancer Research Fund (WCRF) report, major
risk factors related to lifestyle comprise food intake, nutrition, physical
activity, alcohol consumption and smoking habits.4.

3 IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. http://

monographs.iarc.fr/ENG/Classification/index.php. Accessed September 2011.
4 http://www.dietandcancerreport.org. Accessed September 2011.

http://monographs.iarc.fr/ENG/Classification/index.php
http://monographs.iarc.fr/ENG/Classification/index.php
http://www.dietandcancerreport.org
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Figure 5: Average number of new cases per year and age-specific inci-
dence rates, UK, 2006-2008. (Source: Cancer Research UK —
http://info.cancerresearchuk.org/cancerstats/incidence/age/.
Accessed September 2011.)

1.2.3 Gene-environment interactions

Genetic and environmental modifiers of the risk of developing complex
diseases do not work independently [94]. That is, the effect of environ-
mental exposures on each person may vary depending on their genetic
background. This fact, commonly known as gene-environment inter-
actions, was first described at the beginning of the 20th century [25].
However, the influence of genes and environment is not the same for all
tumors, with some examples displayed in Figure 6.

Figure 6: Some types of tumors may be primarily influenced by genes or envi-
ronment alone, while others can be strongly affected by the interaction
of both factors. (Adapted from [122].)

Estimating only the separate contributions of genes and environment
to a disease, ignoring their interactions, may lead to an incorrect assess-
ment of the proportion of the disease that is explained by genes, the
environment and their joint effect. Despite the big sample sizes required

http://info.cancerresearchuk.org/cancerstats/incidence/age/
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for this type of approaches, well-known gene-environment interactions
for different types of cancer can be found in the literature [42, 88, 226].

1.3 the neoplastic process

As it was stated in section 1.2, carcinogenesis is a complex and multi-stage
process, which can usually span over decades from the first pre-malignant
lesion until an invasive tumor appears (Fig. 7a). Furthermore, instead of
being particular of a few tumor sites, this slow progression occurs for
many different types of cancer, as exemplified in Figure 7b. This evolving
process is driven by a series of sequentially acquired random mutations,
as well as epigenetic alterations, that affect genes controlling essential
cellular processes such as cell death and proliferation [219].

(a) Graphical representation of the tumor development process,
from normal to invasive tumor, via accumulation of heritable
changes. (Adapted from Introduction to the Cellular and Molecular
Biology of Cancer, OUP, 2005.)

(b) Diagram of cancer progression for different types of cancer
and their timeline. (Adapted from The Biology of Cancer, Garland
Science, 2007.)

Figure 7: Schemas of cancer progression.
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1.3.1 Cancer initiation: the two hit paradigm

In 1971, Knudson discovered that for the oncogenesis of childhood
retinoblastoma only two mutations were needed [104]. These driver muta-
tions promote the inactivation of a well-characterized tumor suppressor
gene, RB1. When the two mutational events, known as the "two hits",
affect both alleles of the gene (Fig. 8) the tumor starts developing. Further-
more, if an individual inherits one mutation from their parents, then only
one more hit will be required to develop the disease. Besides retinoblas-
toma, it has also been observed that this paradigm not only applies to
childhood tumors but also to adults as well in the case of high penetrance
mutations. Although other variants of cancer initiation have been lately
described (e. g. haploinsufficiency [176] or the three-hit model [182]),
what Knudson postulated has been thoroughly accepted as one of the
main theories of tumor formation, describing the role of recessive tu-
mour suppressor genes in dominantly inherited cancer susceptibility
syndromes [16]. Allelic loss (i. e. loss of heterozygosity, LOH), small-scale
transcription-truncating mutations or even gene promoter methylation
are some of these major genetic and epigenetic events currently known
to contribute to deregulate protein function and trigger the carcinogenic
process [203].

A major connotation of the two-hit model is that a disease that fol-
lows a recessive inheritance pattern could be transmitted under a high
penetrance dominant model if the probability of somatic mutations in
the wild type allele was high. In familial cancer, the affected person
has only one wild-type copy of the gene in their cells, since they have
inherited a mutated allele from one of their parents. A second somatic
mutation occurring hereafter in the target tissue inactivates the remaining
functional allele inherited from the other parent. Thus, cancer will be
more probable in those individuals who carry a heterozygous germline
mutation (i. e. those with a predisposition to cancer). The need for two
hits explains why not all people belonging to high cancer-risk families
develop a malignant pathology: inheritance of just one genetic defect
predisposes a person to cancer but does not cause it, since this second
event is required. Major examples of tumor suppressors that can trigger
cancer after two genetic hits are APC, BRCA1, BRCA2, MLH1, MSH2,
MSH6, TP53 or PTEN [203].

1.3.2 Multi-stage clonal expansion of tumors

It is now generally accepted that most sporadic solid tumors result from
a series of clonal expansions and a multistep process of accumulation
of cellular genetic alterations. This model of tumor progression was
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Figure 8: Graphical representation of Knudson’s two-hit paradigm of cancer
development. If the first hit is already inherited, only one more will be
needed during a person’s lifetime to trigger cancer initiation. (Extracted
from [169].)

proposed by Nowell in 1976 [143]. This author was the first to present
genomic instability as a genetic-variation generation mechanism, onto
which afterwards the selective pressure would act (Fig. 9). Both oncogene
and tumor-suppressor mutations are involved and accumulated in one
cell and its direct descendants by a process known as clonal evolution.
These inappropriately dividing cells copy their DNA and give identical
sets to their offspring. One of these cells or its descendants undergoes
a mutation that further enhances its ability to escape normal regulation.
Repetition of the process enables one cell to accumulate the mutations it
needs to metastasize and colonize other organs. Each tumor cell clone
follows its own genetic path as it evolves towards malignancy. The pro-
liferative model proposed for colorectal cancer has become a paradigm
of this clonal expansion process [63]. These type of neoplasms progress
through different stages ranging from benign adenomas to malignant
and invasive carcinomas.
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Figure 9: Cancer clonal expansion model. (Extracted from Holland-Frei Cancer
Medicine, 6th edition, BC Decker, 2003.)

1.4 the complexity of cancer cell physiology

As it has been stated, cancer is a paradigmatic example of what are
known as complex diseases. It involves a large number of alterations in
the cell physiology, which ultimately lead to malignant tumors. Moreover,
these alterations not only are inherited from our parents, but also are
strongly influenced by environmental exposures and lifestyle habits. The
ability to invade surrounding tissues and distant organs is the primary
cause of death for most cancer patients.

The biological processes that guide the transformation of normal cells
into tumoral cells have been a matter of study during many decades.
Most of the increase in patient survival rates along the last decades is
due to improved intervention protocols. Contrarily, clinical treatment of
metastatic tumors still remains a challenge today [47]. Besides, cancer
origin still remains quite uncertain, with different models of carcino-
genesis still being proposed [218]. Although the molecular processes
involved in the tumorigenesis are very specific, there is a vast number of
non-specific factors that can trigger the tumor formation (e. g. ionizing
radiation, viruses, chronical inflammation, among others). This apparent
heterogeneity of tumor triggering events hinders the development of
effective methodologies for an effective management of the disease.
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The list of physiological alterations of the cell that have been found
to be inherently related to the carcinogenic process was described by
Hanahan and Weinberg in [81] and [82] (Figure 10). These alterations,
common to most of the tumors, comprise:

• Sustaining proliferative signaling.

• Evading growth suppressors.

• Resisting cell death.

• Enabling replicative immortality.

• Inducing angiogenesis.

• Activating invasion and metastasis.

• Deregulating cellular energetics.

• Avoiding immune destruction.

Figure 10: Representation of the eight proposed hallmarks of cancer and two
of the potential cellular alterations that enable tumor cells to acquire
them. (Adapted from [81, 82]

One of the two possibly enabling characteristics of these hallmarks of
cancer are genome instability, which promotes random mutations and
alterations in the tumors. The second factor fostering these alterations is
the inflammation of pre-malignant and malignant tissues triggered by
the immune cells, which may be promoting cancer pathogenesis. The
complexity of this system is even higher when a new variable is included:
the tumor microenvironment of normal cells that help cancer cells to
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acquire the required hallmarks.

Given the inherent complexity of the oncogenic process, more com-
prehensive analytical approaches are required for unveiling the specific
alterations related to the disease. Fortunately, profiling techniques have
significantly improved over the last decade and studies of gene expres-
sion or mutation analysis for small sets of genes have been replaced with
projects that provide large-scale genome, epigenome and transcriptome
information for multiple individuals. Successful applications of such
integrative analyses have been able to identify new cancer-related genes
such as PIK3R1 in glioblastoma [2] or NCOA2 in prostate cancer [198].
Only when these key cancer-driving events are identified it is feasible to
understand how they interact to achieve the above mentioned hallmarks
of cancer.





2
E L E M E N T S O F C A N C E R A R C H I T E C T U R E

In chapter 1, cancer has been introduced as a complex disease. It has
been shown that during the carcinogenic process, cells accumulate a large
number of genetic alterations. These changes in the DNA sequence of
tumor cells rapidly spread to the RNA and protein levels. Furthermore,
alterations in cellular epigenetic mechanisms have also been shown to
play an essential role in cancer development. Both type of alterations
interact to alter cellular transcriptional programs and promote abnormal
cell functionality, which is the ultimate responsible for tumorigenesis.
In this chapter, some of the most relevant types of alterations are de-
tailed, both at the genetic and epigenetic levels. Jointly, these cellular
changes comprise what could be seen as the basic elements of the cancer
architecture.

2.1 genetic alterations

DNA can be considered as the molecule of life. It can be found in almost
every living organism known up to date, excluding some viruses and
prions [152]. Its role is to encode all the required information to create
essential molecules for the correct functioning of the cells, such as ribonu-
cleic acids (RNA) and proteins. Human DNA contains about 3 billion
base pairs, structured in 22 somatic chromosomes and one sexual chro-
mosome, with almost every cell having two copies of each set (i. e. diploid
cells). During decades it was widely believed that most part of our DNA
did not have any relevant purpose, what was colloquially named as junk
DNA [114]. Nonetheless, with the completion of the Human Genome
Project (HGP) and the development of large-scale laboratory techniques
(e. g. microarrays, ultra-high throughput sequencing (UHTS)), scientific
efforts such as the Encyclopedia of DNA Elements (ENCODE) consor-
tium have been able to demonstrate that most part of the human genome
is full of potentially functional elements that are eventually transcribed.
However, the role of many of these newly identified entities, which may
be involved in cancer development, still remains to be elucidated [23].

Evolution has provided human cells with efficient and sophisticated
mechanisms to prevent DNA damage. The cellular DNA repair ma-
chinery detects lesions, triggers signals that warn about their presence
and promotes the activation of mechanisms that attempt to repair the
alterations [84]. Furthermore, if repair mechanisms fail (e. g. because

19
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damage is too high to be fixed), cells are still in possession of the ability
to arrest their proliferative cycle or even to activate signalling pathways
that will drive themselves to a controlled death. Failure of these con-
trol mechanisms could induce a higher number of DNA alterations and
could therefore have a deep influence in most molecular mechanisms that
regulate essential cellular processes. This commonly occurs in many neo-
plasms [121]. DNA alterations occurring along the tumorigenic process
can be classified into large or small-scale, depending on the size of the
affected DNA region, and their effect on the cell phenotype is variable.

2.1.1 Large-scale DNA variation

Large cytogenetic aberrations are usually found in cancer cells. These
alterations, which may affect regions as large as a complete chromosome,
were the first ones to be detected, since they could be seen using standard
karyotypic cytogenetic techniques. In fact, between late 19th and early
20th centuries, the first hypotheses about the role of somatic genetic
alterations in the development of cancer were postulated [144]. Currently,
all these alterations are classified and stored in a publicly available
repository1. Their characterization is useful for a better understanding
of the mechanisms of tumor development, which in turn may ultimately
help to design better and more specific therapies [53]. Large chromosomal
aberrations can be divided into imbalances and rearrangements. The
former imply a change (i. e. gain or loss) in the amount of genetic material,
while the latter consist on reallocations of genomic segments.

2.1.1.1 Chromosome imbalances

Chromosome imbalances (Fig. 11) can affect regions ranging from mil-
lions (e. g. complete chromosomes) to thousands of bases long (e. g. intra-
genic alterations). Imbalances typically affect a large number of genes,
and tumors usually have many of these abnormalities, making it harder
to detect which regions are more likely to be involved in the disease.
Therefore, many of these alterations still have unknown functional impli-
cations [12]. However, as it will be exposed in chapter 3, this complexity
can be overcome with the integration of genome-wide analysis of DNA
dosage, gene expression levels, and functional genomic techniques.

Genomic gains usually contribute to cancer development by the acti-
vation of genes located in the amplified segments [125]. Some of these
genes encode proteins that can be specifically targeted by new anticancer
agents. In breast cancer, about a third of the cases carry an amplification

1 National Cancer Institute’s Cancer Genome Anatomy Project. http://cgap.nci.nih.
gov/Chromosomes. Accessed September 2011.

http://cgap.nci.nih.gov/Chromosomes
http://cgap.nci.nih.gov/Chromosomes
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Figure 11: Schematic representation of chromosome imbalances: amplifications
(A) and deletions (B).

of the 17q21.1 locus, containing the gene ERBB2. Subjects who overex-
press ERBB2 are likely to show a good response to treatment with the
monoclonal antibody trastuzumab, in combination with chemotherapy,
which displays higher survival rates both in the adjuvant and metastatic
settings [92].

The contribution of genomic losses to cancer development is usually
through the reduction of the function of specific genes found in the
affected chromosomal regions. Important tumor-suppressor genes are
affected by chromosomal deletions, such as RB1 [193], TP53 [180, 191],
APC [75] or PTEN [56]. Nonetheless, for other loci the critical genes have
not been so clearly delimited, such as the chromosome region 1p related
to neuroblastoma [145] and region 3p in lung cancer [230]. Deletions not
only may affect standard tumor-suppressors, but also haploinsufficient
genes [15, 56] and other important regulatory elements, such as non-
coding RNAs [74]. Regarding their potential as direct treatment targets,
up to date scientists have not been able to develop efficient drugs to
compensate the loss of genomic material. However, a deeper knowledge
of the functional implications of these abnormalities may help to detect
indirect targets that could be clinically relevant [146]. This is the case for
genes AKT1 and MTOR when PTEN is lost [175].
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2.1.1.2 Loss of heterozygosity (LOH)

Mutations in tumor suppressor genes are generally recessive. That is,
a mutation in one allele is not sufficient to alter the cell functionality,
as long as the other allele is still working properly. Consequently, the
loss of the second allele is one of the essential events in cancer de-
velopment. Suppression of this second wild-type allele often involves
loss-of-heterozygosity events, which can be considered a specific case
chromosome imbalance. Recurrently observed LOH in a certain chro-
mosomal region for a specific type of tumor can serve as an indication
of the presence of a tumor suppressor gene in that segment. Although
a large number of regions display recurrent LOH for different tumors,
only a few have been found to contain tumor suppressor genes. This fact
may indicate that there are still a huge number of this type of genes to
discover, or may be related to intratumor heterogeneity, contamination
by normal cells or other artifacts [204].

2.1.1.3 Chromosome rearrangements

Chromosome rearrangements occur when one or more fragments of
DNA move to another genomic position, with no overall variation in the
amount of genetic material contained in the cell. Rearrangements com-
monly found in cancer cells are inversions, insertions and translocations
(Fig. 12). It has been argued that some of these alterations are triggers of
the tumor initiation [163]. These aberrations are usually caused by double
strand breaks of the DNA molecules [208]. Although rearrangements
have been usually associated with hematological tumors, they have also
been recently linked to epithelial cancers as well [130, 184]. Notably, chro-
mosomal rearrangements are not always found to be specific of a single
tumor type [135].

In terms of functional consequences, these aberrations typically result
in the formation of a new fusion gene product with new or altered
activity. A classic example is the Philadelphia chromosome, in which part
of the BCR gene on chromosome 22 is fused with gene ABL1, located in
locus 9q34.1. This translocation is present in all cases of chronic myeloid
leukemia, among other hematological pathologies [144]. Chromosomal
rearrangements have also been linked to deregulation of non-coding
RNAs [32].

2.1.2 Small-scale DNA variation

Small-scale DNA variation comprises all those alterations in the DNA
sequence that affect from one to a few thousand nucleotides. Among
them, changes in just one base pair, usually called mutations, are one of
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Figure 12: Schematic representation of chromosome rearrangements: inversions
(A), insertions (B) and translocations (C).

the most commonly found (Fig. 13). Due to the large size of our genome,
these type of variation has not been thoroughly studied until large-scale
genotyping techniques have been made available to the scientific commu-
nity. Variable number tandem repeats (VNTR), which are repetitions of
short DNA sequences that differ in number among individuals, are also
a source DNA variation at a small scale.

2.1.2.1 Single-nucleotide mutations

A mutation is defined as any variation in a DNA sequence, compared to
a standard consensus. This implies the existence of a normal allele that
is highly prevalent in the population, and the mutation turns it into a
rare variant. Evolution is a process along which point mutations are ac-
cumulated in our genomes. Thus, after millions of years, DNA mutations
have become one of the most common forms of genetic variation across
human beings, only exceeded by copy number variants (CNV) [165]. Mu-
tations in protein-coding regions that promote a change in the aminoacid
sequence are called missense mutations, while changes that do no alter
the aminoacid sequence of the protein are called nonsense mutations.
Regarding their effect on individuals, only those changes in the DNA
sequence that might have a pathological effect are usually called muta-
tions, while changes with a neutral or unknown effect are usually called
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Figure 13: Graphical representation of a single-nucleotide mutation.

variants.

Along their evolving process, due to their defective DNA control and
reparation mechanisms, DNA of tumor cells can accumulate a large num-
ber of somatic point mutations. While most of them can be categorized
as passenger (i. e. not related to the carcinogenic process), others may have
a deep influence and contribute to the tumor development [188]. The
latter ones are usually called cancer-driving mutations. Consequently, these
mutations must be unveiled and studied to get a better insight into the
molecular basis of the neoplasms. This is the basis of the work presented
in chapter 5.

2.1.2.2 Copy number variants

CNVs are genomic regions for which differences in number of copies of
specific DNA small segments are observed across individuals [165]. As it
was stated in 2.1.2.1, CNVs are the most frequent and complex form of
genetic diversity. This type of variation alters the paradigm of ’diploid
genomes’ that had been historically accepted. Regarding their size, they
are typically defined to be larger than 1,000 bases, and usually involve
DNA segments at a submicroscopic scale. These regions may be gained
(i. e. more than two copies) or lost (i. e. less than two copies). In much
the same way as SNPs, large-scale technology has enabled many groups
to determine the association of CNVs with various diseases, including
cancer among them.
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CNVs have an indirect influence in cancer susceptibility, by varying
the gene dosage of cancer-related genes. Some associations in this di-
rection have been found so far (Fig. 14). Interestingly, cancer cells are
usually found to display somatically-acquired copy number alterations [8].
Genomic DNA copy number alterations are currently considered a promi-
nent mechanism of gene disruption that contributes to tumor develop-
ment [99]. Segmental amplification may lead to an increase in gene and
protein expression of oncogenes, while deletions may lead to haploinsuf-
ficiency or the loss of expression of tumor suppressor genes.

Figure 14: Map of cancer CNVs. Green regions are CNVs that contain a cancer re-
lated gene, while centromeric regions are displayed in red. (Extracted
from [187].)

2.2 epigenetic alterations

Epigenetics deals with mitotically or meiotically inheritable mechanisms
related to gene expression regulation, without involving any modification
at the genetic sequence level [18]. These mechanisms play a relevant role
in essential processes, such as early embryogenesis [115] or regulation
of cell fate by promoting tissue-specific gene expression patterns [231].
Moreover, epigenetics is also significantly responsible for biological diver-
sity among individuals, and it explains phenotypically differences among
genetically identical subjects [69]. Main epigenetic events occurring in hu-
man cells are DNA cytosine methylation at cytosine-phosphate-guanine
(CpG) dinucleotide sites, histone modifications and expression of small
RNAs, which do not code for any protein product.

Tumors can have genome-wide epigenetic alterations. These comprise
promoter CpG island methylation, generalized hypomethylation, loss of
imprinting, histone modifications, chromatin looping or deregulation of
small RNAs expression, among others. The combination of these events
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with other genomic aberrations gives tumor cells a selective advantage,
based on inhibition of apoptosis, uncontrolled proliferation and potential
of migration (Fig. 15). Therefore, in the following subsections the role
of these different types of epigenetic alterations in cancer will be briefly
described. Focus will be given to methylation events and transcription of
microRNAs (miRNA), since they have been the more comprehensively
analyzed at a large scale level in the last years, due to the increased
complexity of histone modification analyses in clinical samples [138].

Figure 15: Genetic (left) and epigenetic (right) alterations in cancer interact in
multiple combinations and equivalently alter important signalling
pathways. Black arrows indicate causative interactions. Red lines
correspond to events that can collaborate to regulate gene expression
of a specific locus. Dashed lines indicate associations that have been
hypothesized/observed but for which a causal relationship has not
yet been established. (Adapted from [212].)

2.2.1 DNA methylation

Tumor initiation is produced by a generalized deregulation of essential
cellular mechanisms, such as proliferation, apoptosis or migration. This
deregulation was initially thought to be mainly motivated by genetic
alterations, such as mutations, large chromosome aberrations, translo-
cations or genomic rearrangements, among others [219]. However, over
the last decade DNA methylation has been identified as an alternative
mechanism of transcriptional regulation of cancer genes, in much the
same way as DNA alterations do [86]. Global DNA hypomethylation
was the first epigenetic alteration detected in tumors [106]. It has been
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demonstrated that ubiquitous hypomethylation of DNA promotes ge-
nomic instability and confers an increased risk of developing diverse
genomic alterations [206]. Thus, generalized hypomethylation has been
associated with larger number of genetic alterations in colorectal can-
cer [97] or glioblastoma [30], among other types of neoplasia. Loss of
usually-methylated CpG sites can also lead to enhanced expression levels
of specific genes, or even gene-embedded miRNAs, that may trigger the
activation of oncogenic processes [51, 58].

The effect of methylation alterations in cancer is not only mediated by
the inhibition of tumor-suppressor genes, but also by downregulating
oncogene inhibitors. MLH1 and MGMT genes are well-described exam-
ples of directly methylated genes involved in CRC development [49, 100].
Besides their direct impact in the tumorigenic process, epigenetic alter-
ations in cancer do not work independently. As it is depicted in Figure 15,
strong interactions between genetic and epigenetic events have been
found in CRC and other type of tumors [212], which pinpoints the com-
plexity of the neoplastic process and reinforces the need of comprehensive
molecular profiling studies to fully characterize the mechanistic processes
underlying tumor cells.

Aberrant methylation of CpG sites has been reported to be an early
event in cancer development that promotes the accumulation of further
genetic and epigenetic alterations [139]. In much the same manner as ge-
netic aberrations, epigenetic patterns greatly differ among different types
of tumors, and even among the same tumor type in different subjects [83].
A paradigmatic, although controversial as well due to lack of agreement
among researchers, example of a methylation-based tumor is the CpG
island methylator phenotype (CIMP) variant of CRC. This type of CRC
tumor displays pervasive gene promoter methylation, and is strongly
associated to microsatellite instability or defects in DNA mismatch repair
genes, as MLH1. Interestingly, these methylation-based tumors may have
distinctive clinical characteristics, which could be beneficial for future for
personalized cancer therapies [95].

2.2.2 Small RNAs

MiRNAs are small RNA molecules ranging in size from 19 to 24 nu-
cleotides that do not code for any protein product. They are classified as
a subfamily within the category small RNA molecules. Discovered only a
decade ago [105], miRNAs have been found to play a determinant role in
cell biology, since they potentially target up to one-third of human coding
genes [71]. These molecules post-transcriptionally downregulate gene
expression by binding to complementary RNA sequences located at the
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3’ untranslated region (UTR) of specific messenger RNAs (mRNA) [156].
Therefore, since miRNAs regulate the expression of their targets, high or
low levels of these molecules are expected to result in underexpression or
overexpression, respectively, of the protein product of the target mRNA.

Figure 16: List of miRNAs currently known be involved in cancer. Blue lines
correspond to oncogenic associations and orange lines correspond to
antitumorigenic associations (Adapted from [129].)

MiRNAs were initially found to be involved in cancer using animal
models such as Caenorhabditis elegans and Drosophila melanogaster. Knock-
out organisms of miRNAs lin-4 or let-7 in C. elegans produced altered
differentiation behavior [167], while overexpression of Bantam miRNA
in flies promoted abnormal cell growth and inhibition of apoptosis [89].
Subsequent studies in mammals confirmed the relationship between miR-
NAs and tumor development, since it was observed that Dicer knockout
murine models caused alterations in the miRNA transcriptional ma-
chinery that led to aberrant development and cell differentiation [19].
Regarding humans, recent studies have reported the involvement of both
genetic and epigenetic mechanisms in miRNA deregulation that can po-
tentially lead to cancer development [216]. Chromosomal aberrations can
lead to the deletion, amplification, or translocation of miRNAs [33, 32].
Moreover, about half of all currently-annotated human miRNA genes
have been postulated to be located at cancer-related hot-spots of breakage
and rearrangement of the genome [34]. In this sense, tumor-supressor
miRNAs miR-15 and miR-16 display extremely low expression levels in
about 70% of patients with chronic lymphocytic leukemia (CLL) because
of deletions or mutations at the 13q13.4 loci where they are situated [33].
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These miRNAs are known to promote apoptosis by targeting pivotal
tumor-suppressor gene BCL2 [173]. Up to date, other miRNAs have been
found to be transcriptionally altered in different types of tumors, as
depicted in Figure 16.





3
I N T E G R AT I O N O F C A N C E R D ATA

In chapter 2 many types of alterations at different molecular levels oc-
curring along the carcinogenic process have been described. In the past,
researchers could only have a limited view of all these changes, since it
was not technically feasible to obtain a complete overview of a cell’s sta-
tus. These circumstances began to change when DNA microarrays came
to the fore in the mid-90s [177]. Since then, large-scale experiments have
become a routine in biomedical research. Consequently, the generation of
multiple vast datasets, combined with the complete sequence of the hu-
man genome [1, 110], has provided researchers with the unquestionably
largest amount of biomedical data ever [109].

Human cells are complex biological systems, based on networks of
highly-interacting molecular elements. Therefore, the integration of data
coming from multiple molecular sources is essential to understand the
mechanisms that drive the transformation of a phenotypically normal cell
into a highly proliferative, disseminating tumor. However, it must be kept
in mind that large-scale data analysis and integration has raised serious
challenges in the fields of bioinformatics and biostatistics, which must be
carefully addressed to ensure the reliability of the obtained results [207].

This chapter initially focuses on how microarrays and next-generation
sequencing technologies have shifted the paradigm of biomedical research
from single-gene experiments to genome-wide approaches. Secondly,
the need for integrative approaches in cancer studies will be discussed.
Finally, some of the most well-known international efforts for cancer data
integration will also be exposed, along with the most relevant findings of
cancer integrative analysis up to date.

3.1 a new step in biomedical research : the microarray era

Historically, molecular biology assays used to be extremely expensive
and time consuming. Performing experiments at a scale of thousands or
even hundreds of measurements was extremely unfeasible, since every-
thing had to be done ’one gene at a time’ [164]. Thus, it was not possible
to obtain a complete snapshot of the molecular state of cancer cells at
a given moment. Fortunately, this situation reverted when first DNA
microarrays appeared. Based on the property of DNA complementary
strands hybridization, these arrays were able to perform measures for
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thousands or even millions of loci in just a single experiment (Fig. 17).

Figure 17: Schematic view of a DNA microarray. DNA microarrays are usually
encapsulated in a cartridge to prevent contamination and standardize
experimental conditions. Once they are scanned, an image similar
to the one at the center of the figure is typically obtained. Bright
spots are those where there has been specific hybridization. For gene
expression arrays, the intensity of light returned by the fluorescent
molecules is used as a proxy for the amount of RNA present in the
cell for that gene.

First microarray projects related to cancer were used to compare the ex-
pression level of thousands of genes between tumor and healthy control
cells [54, 101, 227]. The technique was still evolving, but results seemed
promising. In 1999, Golub et al. published the first major study of cancer
using microarrays. They were able to obtain a reduced set of genes whose
expression levels could classify acute myeloid leukemia (AML) and acute
lymphoblastic leukemia (ALL) samples [78]. This work meant a great im-
provement for the diagnosis of both diseases, since they are often hard to
differentiate by standard pathological parameters. Initially, expression ar-
rays were designed to detect gene transcripts without taking into account
splice variants, since all the probes in the array were located at the 3’ end
of the transcripts. More advanced and complex array platforms are now
able to detect differential expression at the exon level and successfully
determinate alternate splicing events related to cancer [9, 196].

Although DNA microarrays were first designed for gene expression
experiments, this large-scale technology was soon adapted for other
types of measurements. For DNA alteration analyses, conventional com-
parative genomic hybridization (CGH) started being replaced by CGH
arrays (aCGH). While original CGH gave a resolution from 1 to 10 Mbp,
first aCGH platforms reduced that figure about two orders of magni-
tude [158, 159]. These arrays allowed a more precise detection of LOH
and copy number regions, although they still suffered from high levels
of noise that precluded the detection of small-magnitude changes [31].
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CGH-arrays later evolved into higher-quality currently used SNP arrays,
which are able to genotype up to millions of SNPs for a given individual.
Some of them even also contain large sets of non-polymorphic probes to
better assess copy number alterations. SNP arrays have been the basis of
most cancer GWAS published up to date [96]. For LOH and copy number
analysis, the resolution of these arrays can be as much as a few hundred
base pairs, allowing the detection of micro-scale alterations [10].

Many transcription factors (TF) act as oncogenes or tumor suppressor
genes, binding to DNA to repress or activate the expression of other
transcripts. With DNA arrays, it is also possible to obtain a detailed
knowledge of a genome’s transcriptional regulatory program at a large-
scale. Using chromatin immunoprecipitation, DNA sequences bound to
a specific protein can be isolated. This set of DNA-protein interacting se-
quences are then labeled and hybridized into tiling arrays, which consist
of overlapping probes designed to densely represent a genomic region of
interest, or even the whole genome. Thus, it is possible to obtain a com-
plete map of all the specific binding sites of a oncogenic transcription fac-
tor. This technique is known as chromatin immunoprecipitation-on-chip
(ChIP-on-chip), and has been successfully applied to study the transcrip-
tional regulatory programs involved in cancer development [85, 116, 126].

Cancer epigenomics, the study of cancer not induced by alterations
in the DNA sequence, can also be analyzed at the whole-genome level.
Analysis of genome-wide patterns of methylation of cytosines at CpG
dinucleotides [44, 223] and large-scale profiling of miRNA expression
using arrays [183] have been successfully applied to cancer research with
promising results.

3.2 next step in large-scale technology : next generation

sequencing

In the very recent years, UHTS has represented a remarkable break-
through in large-scale technologies. Compared to microarrays, they con-
fer the advantage that they are not any more restricted to analyze a
previously-selected set of markers. Moreover, they can provide not only
quantitative information (i. e. number of copies of a transcript), but also
information about the sequence of the transcript itself.

With next-generation sequencing machines, it is now possible to se-
quence a complete human genome in a few hours at a reasonable cost.
Remarkably, the price of sequencing per base has dramatically decreased
during the past years, and now it is possible to sequence a complete with
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a reasonable coverage for less than 10,000 USD (Fig. 18).

Figure 18: Cost of sequencing a complete genome has dramatically decreased
in only 10 years. Even computers Moore’s Law, which points to an
outstanding level of improvement, falls short behind the trend of
the reduction of the cost per genome. The price of sequencing a
genome reached the goal of the 10,000 USD last July. (Source: NHGRI
— http://www.genome.gov/sequencingcosts/. Accessed September
2011.)

Systematic sequencing of the cancer genome will provide invaluable in-
formation about mutations and other types of DNA alterations involved
in tumor development [13, 35, 131]. Furthermore, large-scale sequencing
studies could also reveal information about variability in mutational
frequencies and patterns between tumor types and between cancer pa-
tients with apparently similar disease [67]. Therefore, genome-wide DNA
sequence analysis not only leads to the discovery of cancer-related genes,
but also demonstrates structural differences in mutagenic processes be-
tween tumor types and individuals. Successful application of these type
of studies have been performed by the Cancer Genome Project (CGP),
which is an international consortium aimed to identify somatically ac-
quired sequence variants and mutations to uncover central genes involved
in the development of human cancers using high throughput sequencing
techniques [80].

Large-scale sequencing technology in cancer not only has been success-
fully applied to DNA sequencing projects, but also to whole-transcriptome
analysis (RNA-Seq) [162], small RNA sequencing (small RNA-seq) [210],
chromatin immunoprecipitation sequencing (ChIP-Seq) [87], or whole-

http://www.genome.gov/sequencingcosts/
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genome methylation analysis (MeDIP-seq) [172]. Although some these
sequencing applications are still evolving and need further refinement,
this wide range of sequencing techniques will unquestionably foster the
development of large cancer integrative projects in the very near future.

3.3 the need for integrative analytical approaches in can-
cer research

As it was stated at the beginning of this chapter, large-scale cancer
molecular profiling has already provided an enormous amount of infor-
mation about DNA (e. g. mutations, copy number alterations, structural
aberrations), RNA (e. g. gene expression changes, transcription regula-
tion alteration), protein-protein interactions and epigenetic alterations
(e. g. methylation changes, histone modifications, miRNA expression
changes) related to the pathology. Therefore, integrative analyses are
remarkably contributing to obtain a better comprehension of cancer
molecular basis. Moreover, they are helping us to design more accurate
disease classification mechanisms, based on molecular assessments rather
than pathological criteria.

Efforts of large consortiums, such as the CGP, could lead to the ob-
tention of an almost-complete set of occurring mutations for different
types of tumors in the short term [80]. Potential limitations in the sample
size of the studies, as well as the non-random distribution of passenger
events [21], could hinder the distinction of true driver alterations from
those which are not really involved in the tumorigenic process. However,
the combination of mutational events with the analysis of copy number
alterations could help to detect significantly cancer-related events [195].

Once a large proportion of the alterations significantly involved in
a specific tumor are detected, if will be possible to uncover how these
alterations interact with each other to promote cell proliferation and
migration. This is essential for the study of cancer, because it is widely ac-
cepted that specific alterations are not usually likely to be the only culprit
for tumor initiation and development. Contrarily, interactions between
critical genes and their associated signalling pathways are known play a
key role in the progression of the disease [24].

As it was emphasized in the introduction of this chapter, these type
of integrating analyses, which aim to merge different sources of data
such as gene or miRNA expression, copy number alterations, mutational
changes, structural chromosomal aberrations or protein-protein interac-
tions, raise some statistical concerns that must be properly addressed to
obtain trustworthy results. One issue of special relevance is the need for
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a proper correction for multiple testing. As an example, given the large
number of mutations observed in a small set of breast and colorectal
tumors [188], it could be expected that the number of potential functional
interactions involved in cancer development could be almost unfeasible
to be explored [128]. A potential workaround for this problem could be
to increase the sample size of the studies to achieve enough statistical
power to detect significant interactions. However, since the number of
required individuals could be so large, it may be necessary to merge data
from different tumor types. In this way, the efforts of the International
Cancer Genome Consortium (ICGC) which aims to completely character-
ize 25,000 tumors at a large-scale level, will be essential [93].

The ultimate identification of cancer driver alterations will make it
possible to unveil how they collaborate with each other in the context
of the tumor cell to finally attain the central hallmarks of cancer [81, 82].
However, even with such vast amounts of data, this will not be a straight-
forward task. It should always be kept in mind that tumors are dynamic
entities evolving over time due to stressing and changing conditions in
their surrounding environment. Therefore, only by placing alterations
in signalling pathways, understanding how these pathways functionally
support each other, uncovering significantly correlated events across a
very large number of samples, and conceptualizing these changes in
terms of the hallmarks of cancer we may be able to make sense of the
complexity and individual diversity of the altered cancer genome.

Over the last decade there have been remarkable examples of inte-
grative data analysis applied to cancer research. In 2003, Lamb et al.
combined gene expression data from hundreds of human tumors with
gene promoter analysis to reveal a mechanism of action for the CCND1
oncogene in a wide range of tumors [107]. Other studies have also inte-
grated large-scale gene expression datasets of multiple tumor types to
detect cancer modules, that is, sets of genes that act in concert to carry
out a specific tumorigenic function [181]. Moreover, recently developed
methods of integration of gene expression data from multiple tumor
types have enabled to detect novel gene fusions related to prostate cancer
development [200, 202].

The integration of DNA and RNA data have also yielded promising
results detecting new genes involved in tumor development. In 2005, Gar-
raway et al. integrated gene expression, LOH and CNV data to uncover
MITF as the target of a novel melanoma amplification [73]. More recently,
another integrative computational framework that integrates chromo-
somal copy number and gene expression data has been able to detect
aberrations that promote cancer progression (Fig. 19). More specifically, it



3.4 large cancer data integration projects 37

Figure 19: Integrative framework that combines large-scale CNV and gene ex-
pression data to uncover new cancer drivers. (Extracted from [5].)

has identified TBC1D16 and RAB27A as two new candidate driver genes
in melanoma [5]. Network integrative approaches have also been applied
in this context, where there are remarkable examples of integration of
gene expression, ChIP-on-chip and protein interaction data to identify
master regulator genes involved in the process of the tumor develop-
ment [38, 112, 118].

Integrative analyses have also proven its usefulness in the field of drug
discovery and pharmacogenomics. A remarkable example is The Con-
nectivity Map (CMAP) project, aimed to discover functional connections
among diseases, genetic perturbations, and drug action by the analytical
integration of large gene expression datasets [108].

3.4 large cancer data integration projects

The field of cancer integrative profiling has experienced a growing inter-
est among the research community over the last 15 years (Fig. 20). First
successful attempts of applying this integrating methodology to cancer
research came up after initial large-scale gene expression and aCGH plat-
forms became routinely used after year 2000 [185]. Concurrently, pioneer
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large efforts to massively integrate cancer data started being developed,
such as the National Cancer Institute’s (NCI) Cancer Molecular Analysis
Project (CMAP) [28]. Although those projects were remarkably ambitious
and innovative at that time, their conclusions were limited by the sample
size of their studies and the technology used for large-scale profiling,
which was under intense development. It was not until 2005 that these
type of methodology became widely applied in cancer research. As an
example, different integrative analyses applied to prostate cancer progres-
sion data were able to identify 8p21.2, 11q13.1 and 10q23 regions to be
involved in prostate cancer development, and also were able to classify
prostate tumors according to their LOH pattern (reviewed in [201]). In
2010, a more comprehensive integrative analysis of prostate cancer, based
on the integration of copy number, mRNA expression and focused exon
sequencing data, was able to identify NCOA2 as a new potential onco-
gene altered in 11% of the tumors, and they also detected a small and
previously unknown region in 3p14 that implicated FOXP1, RYBP and
SHQ1 as potential cooperative tumor suppressors [198]. Other type of
tumors were also studied by primarily integrating mRNA expression and
copy number data: oesophageal adenocarcinoma [77], melanoma [5, 17],
CRC [36, 140, 166], breast [137] and neurofibromatosis [133]. Although all
these previously mentioned projects have been successful in identifying
new mechanisms involved in tumorigenesis, in the very following years
the accuracy and specificity of these type of analyses is expected to im-
prove remarkably, specially due to better large-scale profiling techniques
and to the routine integration of more data sources, such as miRNA
expression or methylation profiles.

The prominent role of large-scale data integration in cancer molecular
analysis has undoubtedly been reinforced by the recent creation of large
research consortiums. As it was previously pointed, these joint efforts are
essential to overcome potential pitfalls of integrative studies, specially
the difficulty in achieving reasonably good sample sizes to gain statisti-
cal power and reliably detect cancer-related alterations. Among others,
the most currently relevant established consortiums are the NCI’s The
Cancer Genome Atlas (TCGA)1 and the ICGC2, which is an international
cooperative organization with participant countries across the globe.

TCGA was initiated in 2006, after the NCI proposed the investment of
$1.5 billion to catalog the genomic changes involved in cancer. Although
the initial main goal of the project was to comprehensively characterize
brain, ovarian and lung tumors to improve the ability to diagnose, treat
and prevent these pathologies, it was later expanded to characterize up

1 http://cancergenome.nih.gov/. Accessed September 2011.
2 http://www.icgc.org/. Accessed September 2011.

http://cancergenome.nih.gov/
http://www.icgc.org/


3.4 large cancer data integration projects 39

Figure 20: Number of studies citing the terms "Cancer AND (Integrative OR
Integrating) AND (profiling OR analysis)" between 1995 and 2010.
(Source: US National Library of Medicine, National Institutes of
Health.)

to 20 different types of cancer. For each type of tumor it was planned to
obtain mRNA expression data, copy number alterations, methylation pro-
filing and miRNA expression levels. Results of the pilot project, based on
the study of glioblastoma multiforme, were published two years later [2].
Promising outcomes were presented, including alterations which had
never been previously related to the disease. Interestingly, one of the
detected mutations in a mismatch-repair gene was found to be related
to temozolomide resistance, which may help for further improvement in
the clinical management of the disease.

Once TCGA data has passed internal quality control checking it is
immediately made available through their data portal. The project has
currently finished obtaining data for ovarian carcinoma, while the col-
lection of the remaining type of tumors is expected to be finished soon.
Although data repository is still incomplete, the project has already been
able to obtain remarkable results for glioblastoma [142, 217] and ovarian
cancer [3, 45].

The ICGC is even a bigger effort than the TCGA project. The goal
of the project is to coordinate large-scale cancer studies for 50 different
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tumors that are clinically relevant all over the world. This will lead to a
systematic analysis of more than 25,000 tumor samples at the genomic,
epigenomic and transcriptomic levels [93]. As for TCGA, datasets will
also be made available as soon as they are obtained, with minimum
restrictions. Although due to legal issues regarding sample information
sharing policies TCGA and ICGC projects are not legally related, they
can be currently considered as a joint collaboratively international effort.
However, the ICGC project is still in its initial steps, and preliminary
results are yet to arrive. These type of projects will be essential in the
following years to reveal the repertoire of oncogenic mutations, uncover
traces of the mutagenic influences, define clinically relevant subtypes for
prognosis and therapeutic management, and enable the development of
new cancer therapies.
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W O R K I N G H Y P O T H E S I S A N D O B J E C T I V E S

As a paradigmatic complex disease, cancer is based on strong interactions
between a vast number of molecular and environmental factors. This
inherent complexity, therefore, precludes an easy understanding of the
susceptibility, emergence and development of the pathology.

Cellular alterations that contribute to the development of cancer are
varied, and can be found at any molecular level, from DNA to proteins.
In the past, most cancer studies focused on just one of these entities.
Although useful, this kind of approaches usually only leads to a partial
view of the tumor cell. Thus, in the last few years it has been clearly
understood that more comprehensive analyses are required to obtain an
accurate view of the cellular processes that confer to a phenotypically
normal cell the ability to proliferate and invade its surrounding tissues.
The advent and consolidation of large-scale technologies, such as DNA
microarrays, have also been a main contributor to this new manner of
tackling the biology of the disease.

The working hypothesis of this thesis is that the integration of diverse,
large-scale molecular data is essential to unveil the molecular mechanisms
underlying complex diseases, such as cancer.

4.1 general objectives

The main aim of this thesis is to achieve a more complete understanding
of the molecular mechanisms of cancer by means of the analytical inte-
gration of large-scale data at different molecular levels (i. e. DNA, RNA,
proteins).

4.2 specific objectives

Each one of the three projects presented in this thesis has its own specific
objectives, which are stated below.

Integrative analysis of a cancer somatic mutome

A landmark study published by Sjoblom et al. [188] determined the se-
quence of 13,023 protein-coding genes for 11 breast tumors. For breast
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cancer, this work obtained a list of ∼700 genes harboring somatic muta-
tions. Although some of these genes were previously known, many of
them had never been linked before to this pathology. This new set of
genes required further study and characterization.
Aim:

1. To characterize genes harboring somatic mutations in breast cancer
at the DNA, RNA and protein interactome levels to detect those
genes more likely to be associated with the development of the
pathology.

MYC germline expression modeling and cancer susceptibility

Many association studies have recurrently found loci in the 8q24 region
that confer susceptibility to different epithelial tumors, being colorectal,
prostate and breast among the most relevant. Interestingly, the region
is known to be a gene desert, with only MYC located a few hundred
kilobases away.
Aim:

1. To elucidate the potential mechanism of action of the 8q24 region
risk variants and their putative role as MYC regulators by the
integration of genetic and expression data of prostate samples.

Biological convergence of cancer signatures

Many studies have developed gene signatures that can correctly predict
different clinical features (e. g. prognosis, response to treatment, proba-
bility of developing metastasis, etc.). Surprisingly enough, gene overlap
across signatures is poor, even for the same type of tumor. This raises
concerns about their biological and clinical implications.
Aim:

1. To unveil common underlying biological properties across different
cancer signatures by integrating large-scale genome, transcriptome
and protein interaction data.
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5
A RT I C L E 1 : I N T E G R AT I V E A N A LY S I S O F A C A N C E R
S O M AT I C M U T O M E

5.1 summary

In 2006, Sjöblom and colleagues published a pioneer study, in which most
part of the human consensus coding sequences (CCDS) were sequenced
for 11 breast [188]. These CCDS represent the most highly curated gene
set currently available1. Despite the small number of sequenced samples,
this project unveiled for the first time the most complete view of the
breast and colorectal cancer mutations (what could be called as the mu-
tome). Although some of the altered genes had already been described,
most of them had not been previously related to the carcinogenic pro-
cess. As a consequence of this accumulation of alterations, molecular
interactions are re-programmed in the context of highly connected and
regulated cellular networks.

The aim of our study was to comprehensively describe the status of
candidate breast cancer tumor suppressors and oncogenes at different
molecular levels (from gene to proteins), as well as to predict new func-
tional relationships between them and provide new hypotheses regarding
their coordinated molecular function in the neoplastic process.

To investigate the potential role in cancer of somatically mutated
breast cancer genes, genomic LOH was examined using a whole-genome
SNP genotyping dataset. Mutated genes showed LOH ranging from
7% (CNNM4) to a maximum of 76% (TP53). As it was expected, other
genes showing relatively high percentages of LOH in breast tumors were
BRCA1 (52%) and MRE11A (50%).

For a comprehensive understanding of LOH results, an integrative
analysis of gene expression and SNP data was performed. About a 50%
of mutome genes showed differential expression between healthy and
tumor tissue samples. Careful examination of LOH identified 20 genes
mapping to 12 critical regions. Expression analysis supported the suppo-
sition that 10 of these genes may act as tumor suppressors, as they show
down-regulation in breast tumors.

1 http://www.ncbi.nlm.nih.gov/projects/CCDS/CcdsBrowse.cgi. Accessed September
2011.
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CNV analysis was done on the same set of samples as the LOH analysis.
Mutated genes showed copy numbers (CN) ranging from 1.60 to 3.37

across basal-like and non basal-like breast tumors. Examination of gene
expression and critical regions with CN > 2 identified nine candidate
oncogenes. Notably, one of these genes, GAB1, had been previously pos-
tulated to act as an oncogene in cellular transformation.

Correlation of LOH, CNV and expression data identified four con-
cordant gene clusters (i. e. close located loci): amplification and over-
expression of ABCB10 and NUP133 genes at chromosome 1 in basal-like
and luminal A and B tumors; loss and down-regulation of COL7A1,
DNASE1L3, FLNB and RRP9 at chromosome 3, particularly in basal-like
and luminal B tumors; loss and down-regulation of MAMDC4, GSN,
NUP214 and SPTAN1 at chromosome 9, particularly in luminal A and B
tumors; loss and down-regulation of SORL1 and TECTA at chromosome
11, particularly in basal-like tumors.

To further determine the level of functional association among so-
matically mutated breast cancer genes, their co-expression pattern was
assessed using a large breast tumor dataset containing 98 primary tu-
mors. A higher level of co-expression than expected by chance was found
. Overall, four clusters of strongly correlated genes were observed, which
could be classified as ETV6-NTRK3 (two), TP53 or RB1-related.

Using a dataset containing survival information from 113 patients, the
prognostic value of gene expression levels was evaluated. This analysis
identified four validated genes whose expression levels predicted disease-
free survival: ABCA3, DBN1, SP110 and SPTAN1.

To evaluate functional associations between proteins, mutome gene
products were mapped on the human interactome network. Analysis of
the network showed that mutated genes were highly connected, support-
ing the theory that they may be involved in related molecular pathways
or functions.

To generate a network model containing relevant biological information
for the breast cancer neoplastic process, different types of functional rela-
tionships identified through previously-mentioned genomics (i.e. LOH,
CN and expression) and proteomics (i.e. interactome) analyses were in-
tegrated. Thus, in the network model two nodes were connected when
their corresponding genes showed similar LOH, CN or expression pro-
files across breast tumors, or when their corresponding encoded gene
products were directly connected in the protein interactome network.
Analysis of densely connected sub-graphs and their gene ontology (GO)
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terms2 identified functional modules enriched for apoptosis, cell division,
cell differentiation, G-protein coupled receptor protein signaling pathway,
intracellular signaling cascade, regulation of transcription, regulation of
translation and signaling transduction.

5.2 main results

DBN1 is a candidate oncogene that, when highly expressed in tumors
with respect to healthy tissues, predicts poor survival in breast cancer
patients.

Low expression ratios of ABCA3 and low or medium expression ra-
tios of SPTAN1 may also predict poor survival in breast cancer. ABCA3
was previously identified as an ESR1-regulated gene, which supports
its involvement in breast tumorigenesis, and SPTAN1 was involved in
chemotherapy resistance in ovarian cancer, which makes this gene a
potential target for cancer treatment.

The interactome analysis of molecular pathways provides new hypothe-
ses for the identification of genes potentially associated with survival
outcome. SPTAN1 interacts with GRIN2D and SLC9A2, both of which
interact with the product of the ABL1 proto-oncogene. Activated ABL1
kinase promotes invasion of breast cancer cells. Since low expression
ratios of SPTAN1 predict poor survival, SPTAN1 could therefore act as a
negative regulator of ABL1 activity.

2 http://www.geneontology.org/. Accessed September 2011.
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Abstract
Background: The consecutive acquisition of genetic alterations characterizes neoplastic
processes. As a consequence of these alterations, molecular interactions are reprogrammed in the
context of highly connected and regulated cellular networks. The recent identification of the
collection of somatically mutated genes in breast tumors (breast cancer somatic "mutome") allows
the comprehensive study of its function and organization in complex networks.

Results: We analyzed functional genomic data (loss of heterozygosity, copy number variation and
gene expression in breast tumors) and protein binary interactions from public repositories to
identify potential novel components of neoplastic processes, the functional relationships between
them, and to examine their coordinated function in breast cancer pathogenesis. This analysis
identified candidate tumor suppressors and oncogenes, and new genes whose expression level
predicts survival rate in breast cancer patients. Mutome network modeling using different types of
pathological and healthy functional relationships unveils functional modules significantly enriched in
genes or proteins (genes/proteins) with related biological process Gene Ontology terms and
containing known breast cancer-related genes/proteins.

Conclusion: This study presents a comprehensive analysis of the breast somatic mutome,
highlighting those genes with a higher probability of playing a determinant role in tumorigenesis and
better defining molecular interactions related to the neoplastic process.

Background
Recent landmark work has described the genetic land-
scape of the breast and colorectal cancer genomes by iden-
tifying the collection of somatically mutated genes (cancer
somatic mutome) that contributes to the neoplastic proc-
ess in these cancer types [1]. Most of these genes were not
previously identified as linked to human cancer and some
of them encode uncharacterized proteins. A larger set of

"passenger" mutations or mutations present at a fre-
quency that is too low to determine their relationship
with cancer were also identified, prompting further
genetic and molecular characterization.

Most biological processes involve groups of genes and
proteins that behave in a coordinated way to perform a
cellular function [2]. The coordinated task of genes/pro-
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teins can be represented by different types of functional
relationships (e.g. gene co-expression, genetic interac-
tions, protein binary interactions, protein complex mem-
bership) [3]. Network modeling has been used to predict
new gene/protein functions and to define pathway com-
ponents or modulators of particular processes [reviewed
in [4-6]]. The application of similar approaches has also
identified new genes responsible for human diseases
[7,8].

Defining biological processes at the systems-level will
help to understand cancer cellular networks. The applica-
tion of an integrative "omic" approach to the breast cancer
somatic mutome is encouraged by the identification of
uncharacterized genes/proteins and because the complete
wiring diagram of functional associations has yet to be
determined. The aim of this study is therefore to compre-
hensively describe the status of candidate breast cancer
tumor suppressors and oncogenes at different molecular
levels (from gene to protein), to predict new functional
relationships between them and to provide new hypothe-
ses regarding their coordinated molecular function in the
neoplastic process. This study is focused on the somatic
mutome described by Sjoblom et al. [1], which contains
validated (contributing to the neoplastic process) and
non-validated (i.e. harboring putative "passenger" muta-
tions or mutations present at a frequency that is too low
to determine their relationship with the neoplastic proc-
ess) gene sets (total 672), combined with previously
known somatically mutated breast cancer genes compiled
in the COSMIC database [9].

Results
Loss of heterozigosity analysis
To investigate the role of somatically mutated breast can-
cer genes as classical tumor suppressors or oncogenes, we
first examined genomic loss of heterozigosity (LOH)
using a whole-genome SNP genotyping data set [10]. This
data set has a resolution of one SNP every ~210 genomic
kilo-bases and contains information from 42 breast
tumors (20 non basal-like, 18 basal-like and 4 BRCA1
tumors) and matched healthy breast tissue samples.

When all breast tumors were considered, mutated genes in
the validated set showed LOH ranging from 4% to a max-
imum of 76% (TP53)(Additional file 1). As was expected,
other genes showing relatively high percentages of LOH in
breast tumors were BRCA1 (52%) and MRE11A (50%).
Remarkably, of the validated genes only CDH5 was previ-
ously described in detail as showing LOH [11], which
might be explained by the unbiased approach used to
identify the breast cancer somatic mutome, or by the inex-
istence of LOH as a second-hit genetic mechanism com-
mon to this set of genes. The detection of ~33% of LOH at
the TMPRSS6 locus supports its role as a tumor suppressor

suggested by a previous observation that TMPRSS6 nucle-
otide variants conferred a risk of breast cancer [12]. How-
ever, LOH should be interpreted with caution as it shows
a high correlation with chromosome location (e.g. com-
plete LOH of chromosome 17). LOH results do not signif-
icantly vary between basal-like and non basal-like tumor
subtypes except for the isodisomy of chromosomes 14, 17
and X [10].

For a comprehensive understanding of LOH results, we
integrated gene expression data available for the same
healthy and tumor samples used for SNP genotyping, and
combined it with a larger expression data set containing
basal-like and other tumor subtypes [13] (Fig. 1). Approx-
imately 50% of mutome genes showed differential expres-
sion between healthy and tumor tissue samples. Careful
examination of LOH identified 20 genes in the validated
set mapping to 12 critical regions (relatively close
genomic boundaries of LOH). Expression analysis sup-
ports the supposition that 10 of these genes may act as
tumor suppressors, as they show down-regulation in
breast tumors (Fig. 1C, LOH column and down-regulated
genes in tumors). In addition to these genes, a few others
showed concordant results between LOH and expression
analyses but cannot be mapped to critical regions
(CENTG1, MAGEE1, PRPS1, SYNE2 and TP53). Although
not completely clear from LOH, the integration of expres-
sion data also supports the role of ICAM5 as a tumor sup-
pressor proposed by the identification of nucleotide
variants that confer a risk of breast cancer [14]. The
present LOH analysis suggests the loss of the ICAM5 locus
in non basal-like tumors (15%) but not in BRCA1 or
basal-like (< 5%) tumors, and its expression appears sig-
nificantly down-regulated in three distinct types of tumors
when compared to healthy tissues [luminal A, luminal B
and tumors showing human epidermal growth factor
receptor 2 positivity (HER-2+) and estrogen receptor neg-
ativity (ER-)]. Collectively, the integration of LOH and
expression analyses suggests the hypothesis of the exist-
ence of at least ~10 tumor suppressor genes in the breast
cancer somatic mutome.

Copy number analysis
Using the same data set described above, genes in the val-
idated set showed copy numbers (CNs) ranging from 1.60
to 3.37 across basal-like and non basal-like tumors (Addi-
tional file 2). As expected for tumors with relatively higher
levels of genomic instability, broader margins of CN vari-
ation were observed in BRCA1 tumors, ranging from 0.57
to 3.82. Examination of gene expression and critical
regions with CN > 2 identified nine candidate oncogenes
(Fig. 1C, CN > 2 column and up-regulated genes in
tumors). Notably, one of these genes, GAB1, was previ-
ously suggested to act as an oncogene in cellular transfor-
mation [15]. CN analysis also identified critical regions of
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Integration of LOH, CN and expression data to better define candidate tumor suppressors and oncogenes for the breast can-cer neoplastic processFigure 1
Integration of LOH, CN and expression data to better define candidate tumor suppressors and oncogenes for the breast can-
cer neoplastic process. Examples of LOH and CN analyses: (A) LOH analysis for HSA1 shows three critical regions (defined by 
close boundaries of LOH) indicated by pink lines across tumor samples; (B) CN analyses indicate GAB1 locus genomic amplifi-
cation in HSA4, and SORL1 and TECTA loci genomic loss in HSA11; and (C) Integration of LOH and CN, and differential expres-
sion in tumors relative to healthy tissues indicate candidate tumor suppressors (down-regulated in tumors, green) and 
oncogenes (up-regulated in tumors, red) in four different types of breast tumors as indicated by numbers in brackets.
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genomic loss that were not evident in the LOH analysis,
such as the SORL1 and TECTA loci that showed loss and
expression down-regulation particularly in basal-like
tumors (Fig. 1B and 1C). Thus, eight additional genes
showed CN < 2 in a critical region and concordant down-
regulation in tumors, which suggests their role as tumor
suppressors (Fig. 1C, CN < 2 column and down-regulated
genes in tumors).

In addition to the particular genes mentioned above, the
correlation of LOH, CN and expression data identified
four concordant gene clusters (i.e. close located loci).
First, the amplification and over-expression of ABCB10
and NUP133 genes at chromosome 1 in basal-like and
luminal A and B tumors. Remarkably, the amplification of
ATP-binding cassette (ABC) transporter genes is commonly
found in cancer cell lines as a probable mechanism of
drug resistance [16] and nuclear pore (NUP) subunits
have been found over-expressed in breast tumors [17].
Second, the loss and down-regulation of COL7A1,
DNASE1L3, FLNB and RNU3IP2 at chromosome 3, partic-
ularly in basal-like and luminal B tumors. Third, the loss
and down-regulation of AEGP, GSN, NUP214 and
SPTAN1 at chromosome 9, particularly in luminal A and
B tumors. Finally, the loss and down-regulation of SORL1
and TECTA at chromosome 11, particularly in basal-like
tumors. These genomic mutome clusters suggest that, in
addition to point mutations, large-scale alterations of
these regions might constitute a mechanism contributing
to the neoplastic process.

Expression analysis
To further determine the level of functional association
among somatically mutated breast cancer genes, we inves-
tigated their co-expression in a large breast tumor data set
containing 98 primary tumors [18]. A total of 878 probes
corresponding to 680 (mutome plus benchmark) genes
gave rise to 385,003 pair-wise comparisons. A higher
number of these pairs than expected by chance show sig-
nificant co-expression measured by the Pearson's correla-
tion coefficient (PCC) (15,994 significant pairs applying a
false discovery rate (FDR) of 0.01). Considering absolute
PCC values, four clusters of high expression correlation
were observed (Fig. 2). According to the presence of
benchmark genes, co-expression clusters could be classi-
fied as ETV6-NTKR3, TP53 or RB1-related. Since gene
pairs that encode functionally related proteins tend to
show higher expression correlation than pairs of unre-
lated genes, functional associations can be predicted
based on profiling comparison. Thus, two genes in the
RB1-related cluster encode known physical interactors of
pRb (ATF2 and CUTL1, included in the non-validated set)
[19,20]. Similarly, the presence of ABCB10 and NUP133,
and candidate tumor suppressors LRRFIP1 and RNU3IP2

in the RB1-related cluster, further support their functional
association in breast cancer.

Next, we examined whether gene expression levels have
prognostic value and how this correlates with genomic
and expression alterations in breast tumors. We used a
data set containing information from 113 patients [13]
and performed Kaplan-Meier analyses using the Cox-
Mantel log-rank test. Cox's regression models were
adjusted and non-adjusted for tumor grade and ER status.
This analysis identified four validated genes whose expres-
sion levels predict survival (non-adjusted P values < 0.001
and adjusted P values < 0.05; genes ABCA3, DBN1, SP110
and SPTAN1 with adjusted hazard ratios (HR) of 0.58,
2.86, 0.59 and 0.20, respectively) (Fig. 3). Two other vali-
dated genes were identified with a lower significance level
(non-adjusted P values < 0.01 and adjusted P values < 0.1;
C22orf19 and RASGRF2 withHR of 2.29 and 0.36, respec-
tively) and 17 genes in the non-validated set show associ-
ation (adjusted P values < 0.05) (Additional file 3).
Analysis of an independent data set containing informa-
tion from 295 patients [21] supports the observation that
high expression ratios of DBN1 predict poor survival
(adjusted P value of 0.03 and HR of 3.81) and indicates
the same tendency as previously noted for low expression
ratios of ABCA3, SP110 and SPTAN1 (non-adjusted HR of
0.31, 0.34 and 0.64, respectively), although this now
appears non-significant when adjusted for tumor grade
and ER status (adjusted HR of 0.61, 0.25 and 1.19). In the
non-validated set, only WFDC1 expression remained
associated with survival in the multivariate analysis of the
independent data (adjusted P values of 0.001 and 0.03,
and HR of 3.99 and 7.63 for two different microarray
probes).

Interactome analysis
To evaluate functional associations between proteins, we
mapped mutome gene products on the human interac-
tome network [22-24]. Since similar Gene Ontology (GO)
annotations are more likely to be present in pairs of inter-
acting proteins than in pairs of unrelated proteins, func-
tional predictions can be formulated based on
annotations of neighbor proteins in the network. In par-
ticular, the examination of GO annotations provides func-
tional assignment of uncharacterized gene products (Fig.
4A), such as the VEPH1 protein that was identified in a
large-scale interactome mapping study of the TGF-beta
signaling pathway [25].

An examination of binary protein interactions also high-
lights the possible need for more detailed mutational
analyses of specific cellular components. Thus, an associ-
ation between the breast and colorectal mutomes identi-
fied by Sjoblom et al. [1] is revealed by examining
interactions between proteins of the extracellular matrix
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and cytoskeleton functional module (Fig. 4B). In this
module, four out of nine proteins included were found to
be mutated in breast tumors and three were found to be
mutated in colorectal tumors by Sjoblom et al. [1].

Next, we investigated the existence of coordinated molec-
ular tasks by examining the level of connectivity between
mutome gene products in the interactome network. We
compared the size (number of nodes and edges) of the
largest component generated by direct interactions
between mutome validated proteins and compared it to
equivalent randomly selected sets of 100 proteins. The
results showed that mutome gene products are highly
connected, more so than expected by chance (interac-
tions/node, empirical P value < 0.05), thus supporting the
theory that they are involved in related molecular path-
ways or functions. However, this observation is partially
dependent on the presence of p53 and BRCA1, which
exhibit extremely high connectivity. Without taking into

account p53 and BRCA1, the level of connectivity of the
validated mutome is still moderately high with respect to
equivalent, randomly selected protein sets (empirical P
value < 0.15). These results suggest greater centrality of the
breast somatic mutome proteins and are consistent with
earlier observations involving previously known human
cancer proteins [26].

When only direct interactions are considered between val-
idated and benchmark gene products, examination of the
largest network component supports a critical role for
three transcription factors or co-activators: MYOD1,
NCOA6 and TCF1. These proteins appear included in a
module with high connectivity that contains five mem-
bers of the benchmark set (Fig. 5A). Notably among these
genes, NCOA6 maps to a critical region of CN > 2 (Fig.
1C). This gene was previously identified as amplified in
breast tumors [27] and in this study appeared particularly
over-expressed in basal-like tumors.

Gene co-expression analysis in breast tumorsFigure 2
Gene co-expression analysis in breast tumors. Clustering of microarray probes (297 × 297) representing mutome (validated 
and non-validated) [1] and benchmark (literature) [9] genes according to absolute PCC values. Clusters are named according 
to the benchmark(s) gene(s) present in each of them (i.e. RB1, ETV6-NTKR3 or TP53-related). Boxes contain validated mutome 
genes present in each cluster. Non-validated gene names are not shown.
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When non-validated gene products are included in the
interactome analysis, a large component with 127 edges
and 94 nodes is revealed (Fig. 5B). Eight non-validated
gene products occupy critical positions in this compo-
nent, connecting validated and/or benchmark proteins:
BCAR1 (breast cancer anti-estrogen resistance 1) links
ADAM12 and GSN, therefore mediating extracellular
matrix and cytoskeleton remodeling; and three gene prod-
ucts show a high degree of connectivity (between 5–10
interactions; PIK3R1, PLCG1 and POU2F1), which sug-
gests a central role in the transmission of molecular infor-
mation within this component. PIK3R1 and PLCG1 are
involved in intracellular signaling cascades and their dif-
ferential regulation is known to be involved in tumorigen-

esis [28,29], while POU2F1 interacts with several known
breast cancer-associated proteins (i.e. BRCA1, BARD1 and
PARP1) [30,31]. Together, these observations suggest a
coordinated function between validated and non-vali-
dated gene products in the breast cancer neoplastic proc-
ess.

Clustering analysis has previously proved useful for the
identification of functionally related genes or proteins
[32]. To further examine the higher-level organization of
the breast cancer mutome, we identified densely intercon-
nected regions of the interactome harboring a higher pro-
portion of mutome gene products than expected by
chance. One such cluster shows enrichment in functional

Gene expression analysis and breast cancer survivalFigure 3
Gene expression analysis and breast cancer survival. Kaplan-Meier survival curves based upon categorized expression in ter-
tiles are shown for three validated genes in the Hu et al. [13] data set.
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Human interactome network analysis, functional prediction and breast and colorectal cancer mutome associationFigure 4
Human interactome network analysis, functional prediction and breast and colorectal cancer mutome association. (A) Pre-
dicted interactions for uncharacterized validated mutome gene products. Functional assignment is based on GO term annota-
tions. Protein interactions and node types are indicated as shown in the insets. (B) Breast and colorectal cancer mutome 
association through extracellular matrix and cytoskeleton constituents.
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Human interactome network analysis, direct interactions between mutome gene productsFigure 5
Human interactome network analysis, direct interactions between mutome gene products. (A) Left panel, direct interactions 
between validated mutome and/or benchmark gene products. Right panel, interactions centered on SPTAN1, whose expres-
sion level predicts survival (Fig. 3). Grey nodes represent non-mutome/benchmark proteins. (B) Network generated by direct 
protein interactions between validated and non-validated mutome and/or benchmark gene products (top left inset). An image 
of the largest component of this network is shown, with critical nodes that connect benchmark or mutome proteins indicated 
by arrows. (C) Clusters or densely connected regions in the interactome network that contain more mutome gene products 
than expected by chance: cluster A shows enrichment in annotations of the TGF-beta and insulin signaling pathways and of 
DNA transcriptional activity; cluster B shows enrichment for centrosome-related tasks and DNA transcriptional activity.
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annotations of the TGF-beta and insulin signaling path-
ways as well as DNA transcriptional activity (Fig. 5C, clus-
ter A). Another cluster shows enrichment for centrosome-
related tasks and DNA transcriptional activity (Fig. 5C,
cluster B). Cluster enrichment therefore points to known
critical functional modules involved in breast tumorigen-
esis.

Mutome network modeling
To generate a network model containing relevant biologi-
cal information for the breast cancer neoplastic process,
we integrated different types of functional relationships
identified through the genomic (i.e. LOH, CN and expres-
sion) and proteomic (i.e. interactome) analyses explained
above. Thus, using network modeling we connected two
nodes when their corresponding genes showed similar
LOH, CN or expression profiles across breast tumors (see
Methods), or when their corresponding encoded gene
products were directly connected in the interactome net-
work. The breast cancer mutome network contains 648
nodes and 8,371 edges, and shows a high degree of con-
nectivity that further supports the existence of biologically
related functions (Fig. 6 and Additional file 4).

Cluster analysis of this network identifies underlying
molecular mechanisms of breast cancer. Analysis of
densely connected sub-graphs and their GO terms identi-
fied functional modules enriched for apoptosis, cell divi-
sion, cell differentiation, G-protein coupled receptor
protein signaling pathway, intracellular signaling cascade,
regulation of transcription, regulation of translation and
signaling transduction (Fig. 6). Some benchmark genes/
proteins can be located in these modules, supporting their
role in the neoplastic process. These observations support
the theory that the network modeled here represents a
framework for a more in-depth experimental study of
genes/proteins related to breast cancer somatic altera-
tions.

Discussion
Although issues of specificity and sensitivity in the detec-
tion of the mutome will probably be addressed in the
future, particularly regarding germline genomic CN varia-
tion [33] and the likelihood of detecting sequence
changes as presented by Sjoblom et al. [1], by examining
functional genomic (LOH, CN and gene expression) data
in breast tumors, this study supports newly identified
tumor suppressors and oncogenes. Through the examina-
tion of protein binary interactions, this study further pro-
vides new hypotheses regarding the functional
associations of these gene products. Finally, the integra-
tion of pathological and healthy functional relationships
generated a mutome network model that provides a
framework for studying the coordinated molecular func-
tion of mutome genes/proteins.

The apparent discrepancy between cancer genomic and
expression changes for some genes, such as genomic CN >
2 and expression down-regulation, is not exceptional and
has been observed previously [34]. Autoregulation of gene
expression, dosage compensation, epistatic modifica-
tions, or merely issues such as the sensitivity and specifi-
city of LOH/CN and expression analyses can explain these
apparent discrepancies. As is to be expected, the propor-
tion of down-regulated genes is higher in CN < 2 than in
CN > 2 regions, while the proportion of up-regulated
genes is higher in CN > 2 than in CN < 2 regions (Fig. 1C).
Nonetheless, experimental investigation of these genes/
proteins is required to demonstrate their role as tumor
suppressors or oncogenes.

The integrative study also serves as an indication of new
prognosis markers. For the mutome genes, the integrative
analysis of genomic copy number and expression data
strongly indicates that DBN1 is a candidate oncogene
that, when highly expressed in tumors with respect to
healthy tissues, predicts poor survival in breast cancer
patients (Fig. 3). Low expression ratios of ABCA3 and low
or medium expression ratios of SPTAN1 may also predict
poor survival. ABCA3 was previously identified as an ER-
regulated gene [35], which supports its involvement in
breast tumorigenesis, and SPTAN1 was involved in chem-
otherapy resistance in ovarian cancer [36], which makes
this gene a potential target for cancer treatment. Finally,
the interactome analysis of molecular pathways provides
new hypotheses for the identification of genes potentially
associated with survival outcome. SPTAN1 interacts with
GRIND2 and SLC9A2, both of which interact with the
product of the ABL1 proto-oncogene. Activated ABL1
kinase promotes invasion of breast cancer cells [37]. Since
low expression ratios of SPTAN1 predict poor survival,
SPTAN1 could therefore act as a negative regulator of
ABL1 activity.

The integration of omic data highlights likely functional
candidates of a particular biological process with
increased confidence [7,38]. The strategy used here is
applicable to other cancer types and would help to iden-
tify new tumor suppressor genes and oncogenes and the
wiring diagram of functional interactions between them.
The analysis of the breast cancer somatic mutome indi-
cates that at least a few of the genes identified by Sjoblom
et al. [1] play a key role in the breast cancer neoplastic
process. These results will help to focus subsequent exper-
imental characterizations on key gene/protein candidates.

Conclusion
We have presented the first comprehensive omic analysis
of a cancer somatic mutome. Our analysis supports the
theory that a few of these genes play a key role in the
breast cancer neoplastic process. This study also provides
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new hypotheses for the coordinated function of these
genes/proteins as tumor suppressors or oncogenes. Net-
work modeling identifies hundreds of new potential path-
ological associations between the cancer genes/proteins
studied. Extensive future research will be carried out by
different groups focusing on each of the candidate genes
highlighted by Sjoblom et al. [1]. Our study provides a
possible framework for the appropriate initial categoriza-
tion of these genes.

Methods
Genomic data analysis
To analyze LOH and CN alterations in breast tumors, we
used the Gene Expression Omnibus (GEO) record

GSE3743 [10]. Data were normalized and modelled using
dChip software [39]. LOH and CN were obtained after
mapping genes in build 35.1 of the NCBI human genome
sequence. For each gene and sample we took the closest
SNPs to infer LOH and CN. If there was a mismatch in
LOH calling for surrounding SNPs, the gene was left as
missing for that particular sample. LOH profile correla-
tion and confidence intervals (CI) were computed using
Cohen's kappa coefficient of agreement, suitable for cate-
gorical data. We then classified genes as showing similar
profiling if the lower limit of the CI was greater than 0.6.
PCC was used to assess CN profile correlations, setting 0.6
as the lower cut-off. To determine the level of correlation
between gene expression and genomic CN variation, we

Breast cancer mutome network modelingFigure 6
Breast cancer mutome network modeling. Left panel, five functional genomic or proteomic, pathological or healthy-related 
associations; each one indicated by one of the colored lines shown in the inset was included to generate a mutome network 
model. Right panel, clusters or densely connected regions in the network that show enrichment in GO terms (functional mod-
ules). Benchmark nodes present in these functional modules are marked by arrows.
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used PCC and FDR adjusted P values. All these analyses
were performed using the R statistical software package
[40].

Gene expression data analysis
Breast cancer gene expression was analyzed using two
large data sets [10,13]. Data from Richardson et al. [10]
was down-loaded from the GEO record GSE3744 and
analyzed using the limma and affy packages in R. Back-
ground correction, normalization and averaging of
expression values were computed using the RMA algo-
rithm [41]. Differentially expressed genes were detected
after computing an empirical Bayes moderated t-statistic
and P values adjusted by a FDR of 5%. Data obtained
from Hu et al. [13] was previously normalized and ana-
lyzed using the t-test. To evaluate co-expression, we used
the data set of van 't Veer et al. [18], calculated PCCs and
significance levels based on the t-distribution. A hierarchi-
cal algorithm was used to cluster genes, taking as distance
the absolute value of 1-PCC. To evaluate prognosis, we
used the Hu et al. data set [13] and fitted a Cox regression
model to each gene using the overall survival information.
An adjusted model taking into account tumor grade and
ER status was also fitted for each gene. Likelihood ratio
tests were used to evaluate the effect of gene expression on
survival. For genes that appeared significant in both mod-
els, expression was categorized into tertiles using Kaplan-
Meier curves. For these genes, the (non-parametric) log-
rank test was calculated. The replica data set used for sur-
vival analysis was that of Chang et al. [21].

Human interactome network and clustering analyses
The human interactome network was built by combining
three previously published data sets, which mainly repre-
sent experimentally-verified interactions [22-24]. The
Gandhi et al. [22] data set contains compiled and filtered
protein binary interactions from all currently available
databases (HPRD, BIND, DIP, MINT, INTACT and MIPS).
High-confidence yeast two-hybrid interactions from Rual
et al. [24] and Stelzl et al. [23] were then included. After
removing common interactions between the three data
sets, the resulting network contained 8,174 nodes and
27,810 edges. The Molecular Complex Detection
(MCODE) algorithm [42] was used to detect densely con-
nected regions in the interactome network. To calculate
the enrichment of mutome proteins in network clusters, a
binomial distribution was used. Enrichment in GO terms
was investigated using OntoExpress tools [43] and GENE-
CODIS [44]. To determine the level of connectivity
between validated mutome gene products, we compared
the number of nodes and interactions in the largest com-
ponent generated by direct interactions between these
proteins (73 of 122 were mapped in the interactome) to
the number of nodes and interactions generated by 100

iterations of 73 randomly chosen proteins in the interac-
tome.
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A RT I C L E 2 : G E N E T I C A N D G E N O M I C A N A LY S I S
M O D E L I N G O F G E R M L I N E M Y C O V E R E X P R E S S I O N
A N D C A N C E R S U S C E P T I B I L I T Y

6.1 summary

Germline genetic variation at multiple loci at 8q24 region has been associ-
ated to an increased risk of developing some tumors, mainly in the breast,
prostate, colon and rectum. Nevertheless, none of the currently known
risk variants map at or relatively close to known genes. Only MYC is
located a few hundred kilobases away from this region. Since germline
genetic variants have been associated with differential expression of many
human genes, the phenotypic effects of this type of variation may be
important when considering susceptibility to common genetic diseases.

The aim of this study was to integrate genetic and genomic data to
assess the impact of 8q24 variants in germline MYC expression and its
role in tumorigenesis.

The association between genotypes and MYC expression levels was
done using SNP and expression data publicly available from HapMap
samples. The obtained results were further validated using other dataset
from healthy prostate samples.

CNV analyses at the MYC locus were performed in Caucasian and
African HapMap individuals, and also in 322 unrelated individuals from
the Spanish general population. These analyses showed that a CNV in-
cluding MYC does not seem to be a major contributor to the risk of
prostate cancer and germline MYC overexpression associated with 8q24

genotypes.

Using a publicly available expression dataset containing different
prostate cellular populations, a differential expression analysis of 8q24

genes was performed. This analysis confirmed the growing expression
of MYC as the pathological stage of the prostate tumor progresses from
normal prostate to metastasis. MYC expression was also found to posi-
tively correlate with higher Gleason scores. These observations pointed
to a causal relationship between somatic MYC overexpression and the
more aggressive forms of prostate tumors.
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Using a dataset containing gene expression data for 50 healthy tissues
and 52 prostate tumors, MYC targets already known to confer risk of
prostate cancer were studied to identify if they could be functionally asso-
ciated to MYC. This was done by examining the similarities between their
expression profiles. The analysis revealed a strong correlation between
MYC and the prostate tumor suppressor KLF6 gene.

Models of direct transcriptional regulatory networks in prostate tis-
sue were inferred using the ARACNe algorithm. 88 and 111 putative
transcriptional targets of MYC and KLF6 in this cell type were identified,
respectively. The intersection of these two sets contained 25 genes, which
was much a larger number of genes than expected by chance. MYC and
KLF6 were also directly connected and the KLF6 promoter was found
to contain three predicted binding sites for MYC, supporting their func-
tional association and their role in prostate tumorigenesis.

Expression data derived from a model of MYC-driven cellular transfor-
mation of quiescent human mammary epithelial cells and from mouse
mammary tumor virus (MMTV)-Myc-driven mammary tumors in mice
were analyzed. Many of the 25 MYC-KLF6 intersection genes were found
to be differentially expressed in both mice models, while KLF6 displayed a
strong down-regulation, as well as its direct transcriptional target CDH1.

6.2 main results

Cis-regulators of germline MYC expression in immortalized lymphocytes
of HapMap individuals were identified. Quantitative analysis of MYC
expression in normal prostate tissues suggested an association between
MYC overexpression and 8q24 variants of prostate cancer risk.

Somatic MYC overexpression correlated with prostate cancer progres-
sion and more aggressive tumor forms.

Expression profiling analysis and modeling of transcriptional regula-
tory networks predicted a functional association between MYC and the
prostate tumor suppressor KLF6.

Analysis of MYC/Myc-driven cell transformation and tumorigenesis
substantiated a model in which MYC overexpression promotes transfor-
mation by down-regulating KLF6. In this model, a feedback loop through
CDH1 down-regulation might cause further transactivation of MYC.
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Abstract
Background: Germline genetic variation is associated with the differential expression of many
human genes. The phenotypic effects of this type of variation may be important when considering
susceptibility to common genetic diseases. Three regions at 8q24 have recently been identified to
independently confer risk of prostate cancer. Variation at 8q24 has also recently been associated
with risk of breast and colorectal cancer. However, none of the risk variants map at or relatively
close to known genes, with c-MYC mapping a few hundred kilobases distally.

Results: This study identifies cis-regulators of germline c-MYC expression in immortalized
lymphocytes of HapMap individuals. Quantitative analysis of c-MYC expression in normal prostate
tissues suggests an association between overexpression and variants in Region 1 of prostate cancer
risk. Somatic c-MYC overexpression correlates with prostate cancer progression and more
aggressive tumor forms, which was also a pathological variable associated with Region 1. Expression
profiling analysis and modeling of transcriptional regulatory networks predicts a functional
association between MYC and the prostate tumor suppressor KLF6. Analysis of MYC/Myc-driven
cell transformation and tumorigenesis substantiates a model in which MYC overexpression
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promotes transformation by down-regulating KLF6. In this model, a feedback loop through E-
cadherin down-regulation causes further transactivation of c-MYC.

Conclusion: This study proposes that variation at putative 8q24 cis-regulator(s) of transcription
can significantly alter germline c-MYC expression levels and, thus, contribute to prostate cancer
susceptibility by down-regulating the prostate tumor suppressor KLF6 gene.

Background
Risk of human cancer associated with genetic variation at
chromosome 8q24 was first described for prostate cancer
in individuals with European ancestry and in African
Americans (Risk Region 1) [1,2]. This association was
stronger for more aggressive tumor forms [2-4] and for
earlier age at diagnosis in African Americans [1,5]. Differ-
ences in allele prevalences could account for the higher
incidence of prostate cancer in particular populations
such as African-Americans [1,2,5]. Subsequently, 8q24
has been associated with risk of prostate cancer by two
extra independent regions [6-8] and in risk of breast and
colorectal cancer by variation partially overlapping with
prostate cancer risk [9-13]. In particular, Haiman et al.[12]
first noted the existence of common risk variants for
breast and colorectal cancer at 8q24. These observations
suggest that multiple cancer genes may exist at 8q24 or,
alternatively, that risk variants converge on a common
biological mechanism [7].

In these studies risk variants did not map to known genes,
with few ESTs identified in relatively close proximity. A
proposed mechanism includes differences in genomic
structure that would make the 8q24 region more prone to
subsequent somatic amplification [14]. The c-MYC gene is
of particular interest in this region because its ectopic
expression has been shown to induce prostatic neoplasia
[15-17]. Here, we analyze genetic and genomic data to
provide evidence of 8q24 cis-regulator(s) of germline c-
MYC transcription. In addition, genomic data modeling
predicts a molecular mechanism linking germline c-MYC
overexpression and prostate tumorigenesis.

Results
Genetic association scan for germline expression 
differences
Scanning associations between genetic variation at 8q24
and c-MYC gene expression levels in immortalized lym-
phocytes of HapMap CEU (Utah residents with ancestry
from Northern and WesternEurope) and YRI (Yoruba in
Ibadan Nigeria) individuals showed the existence of clus-
ters of SNPs with nominal P values < 0.05 (Fig. 1). To
assess clustering significance, we examined the proportion
of significant SNPs in genomic windows 2- or 4-fold the
average size of linkage disequilibrium blocks in CEUs or
YRIs, respectively (~42 kb corresponding to ~66 SNPs in
CEUs and ~36 kb corresponding to ~61 SNPs in YRIs).

Twenty thousand permutations were performed to evalu-
ate the significance of the observed clustering. One
genomic region in CEUs and three regions in YRIs were
identified with high density of significant SNPs (Fig. 1).

Variation at the c-MYC locus was observed with a trend in
CEUs, which might suggest the existence of cis-regulators
in the gene structural elements (blue bar in Fig. 1A). Two
variants in this region (rs4645943 C and rs16902364 A)
are associated with germline differential expression of c-
MYC. The allele frequencies of these SNPs were reported
to differ between prostate cancer cases and controls in dif-
ferent populations (i.e. 87.7% (cases) and 77.7% (con-
trols) in Hawaiians; 96.3% (cases) and 95.1% (controls)
in CEUs for rs4645943 C) [7]. This observation warrants
further genetic analysis of the region with regard to pros-
tate cancer risk.

The scan revealed a possible association between variants
in Region 1 of prostate cancer risk and differential germ-
line expression of c-MYC (Fig. 1B). Several significant
SNPs within this region were identified: the most signifi-
cant were rs7387447, rs10808558 and rs16902176 (P val-
ues < 0.01). The rs10808558 A allele showed an
association with c-MYC overexpression in YRIs (expres-
sion difference of 0.23 log2 units, 95% confidence interval
(CI) 0.06 – 0.41; P = 0.007) and this SNP is in low linkage
disequilibrium (LD) with the prostate cancer risk variant
rs1447295 (r2 = 0.19). Overall, the scan analysis suggests
the existence of 8q24 cis-regulators of germline c-MYC
transcription in lymphocytes, partially overlapping with
Region 1 of prostate cancer risk.

Expression differences in normal prostate tissues
Given the possible association of Region 1 variants with
germline c-MYC overexpression in immortalized lym-
phocytes of HapMap individuals, we next examined
expression differences in normal prostate tissues. For this
analysis we used 54 previously characterized normal pros-
tate tissue samples [18,19] and a real-time qRT-PCR pro-
tocol developed for prostate samples [20-22]. Genotyping
the prostate cancer-associated rs1447295 variant in these
samples identified six heterozygotes harboring the risk
allele A (CA genotypes). No significant age differences
were found between donors harboring the two different
genotypes (CA versus CC; no AA homozygotes were iden-
tified). Quantitative RT-PCR study using three gene refer-
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Genetic association scan for germline c-MYC differential expression in CEUs and YRIsFigure 1
Genetic association scan for germline c-MYC differential expression in CEUs and YRIs. (A) Top panel shows results for individ-
ual SNPs and bottom panel shows results for significant SNP density in genomic windows of ~42 kb/~66 SNPs in CEUs. The 
red horizontal dashed line marks the nominal P value of 0.05. Variants associated with risk of breast [9], colorectal [10-13] or 
prostate [1-8, 24] cancer are marked with dashed lines as indicated in the inset. (B) Top panel shows results for individual SNPs 
and bottom panel shows results for significant SNP density in genomic windows of ~36 kb/~61 SNPs in YRIs. Linkage disequi-
librium (D'/LOD) plots are shown at the bottom for YRIs. Region 1 of prostate cancer risk is shown.
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ences (18S, ALAS1 and TBP) identified significant c-MYC
overexpression in samples harboring the risk allele rela-
tive to CC homozygotes (n = 26) (Wilcoxon rank sum test
P = 0.004) (Fig. 2A). In addition, no evidence of allele-
specific amplification in tumors arising in CA individuals
was observed (not shown). These results suggest the
involvement of germline c-MYC overexpression in pros-
tate cancer susceptibility.

Germline copy number variants
As a possible mechanism explaining germline overexpres-
sion, we next examined copy number variants (CNVs) at
the c-MYC locus in CEUs and YRIs, and in 322 unrelated
individuals from the Spanish general population using a
multiplex ligation-dependent probe amplification
(MLPA) assay. This assay identified genomic gains at the
c-MYC locus at a relatively low frequency in the Spanish
general population (< 1%; 2/322) (Additional file 1).
However, analysis of rs1447295 genotypes in these indi-
viduals did not reveal association with the risk allele and,
importantly, none of the CEUs or YRIs showed CNVs with
this assay. Therefore, a CNV including c-MYC does not
seem to be a major contributor to the risk of prostate can-
cer and germline c-MYC overexpression associated with
Region 1. Wong et al.[23] previously described a CNV
including c-MYC but only with genomic losses. This
observation corroborates the structural complexity of
8q24 and opens the possibility that different genomic
configurations are associated with risk alleles in Region 1
or other 8q24 regions.

Gene expression analysis in prostate tumors
Since Region 1 variants were associated with earlier age at
diagnosis and high Gleason scores or aggressive tumor
forms [1-8,24], we examined the expression level of 8q24
genes in primary prostate tumors and their association
with clinical and pathological variables. For these analy-
ses, we used a publicly available expression data set con-
taining different prostate cellular populations isolated
using laser-capture microdissection [25].

Comparison of normal versus neoplastic samples showed
differential expression of c-MYC (Fig. 2B). Specifically,
overexpression appears in the more advanced stages of
tumorigenesis such as carcinomas and hormone-refrac-
tory metastases (t-test P < 10-3). Tomlins et al.[25] previ-
ously noted the identification of c-MYC in an
"overexpressed in progression" signature. The FAM84B
gene at 8q24 also shows overexpression but mainly at ear-
lier stages (P = 0.043 and P = 0.002 for intraepithelial neo-
plasia and carcinomas, respectively), which suggests that
FAM84B could also be a target of 8q24 somatic amplifica-
tion. Analysis of Gleason scores showed a trend for c-MYC
overexpression (ANOVA test P = 0.056) (Fig. 2C). Associ-
ation between c-MYC overexpression and high-grade

prostate tumors was previously noted by Buttyan et al.[26]
and Fleming et al.[27]. These observations point to a
causal relationship between somatic c-MYC overexpres-
sion and the more aggressive forms of prostate tumors.

Expression profiles and modeling of transcriptional 
regulatory networks
Transcriptional targets of MYC include many genes that
were identified as conferring risk of prostate cancer and/or
being somatically mutated in prostate tumors [28,29]. We
sought to identify which of these genes, particularly those
conferring risk of prostate cancer, could be functionally
associated with c-MYC by examining the similarity
between expression profiles using a data set containing 50
normal tissues and 52 prostate tumors [30]. This analysis
revealed strong correlations between c-MYC and the pros-
tate tumor suppressor Kruppel-like factor 6 (KLF6) gene
(Fig. 3A). Correlations were positive for c-MYC microarray
probes 1973_s_at and 37724_at (Pearson's correlation
coefficient (PCC) = 0.65; P < 10-13) and negative for
1827_s_at (PCC = -0.71; P < 10-15). Extensive alternative
splicing of the c-MYC mRNA could account for this differ-
ence [31].

To determine the molecular consequence of the predicted
MYC-KLF6 functional association, we generated models
of transcriptional regulatory networks in prostate tissues.
Using the ARACNe algorithm [32] and the 102 hybridiza-
tions of Singh et al.[30], we identified 88 and 111 putative
transcriptional targets of MYC and KLF6 in this cell type,
respectively (Fig. 3B). The intersection of these two sets
contains 25 genes, which is a much larger number of
genes than randomly expected using simulations of equiv-
alent gene sets (empirical P < 0.001). Importantly, 16 of
these genes contain MYC binding sites at their promoters
based on TRANSFAC (eukaryotes transcription factors
database) matrices [33]. In addition, many known MYC
targets [29] were also identified: 22 out of 88 (25%) and
23 out of 111 (20%) of the MYC and KLF6 predicted tran-
scriptional targets, respectively (Fig. 3B). Notably, c-MYC
and KLF6 were also directly connected and the KLF6 pro-
moter contains three predicted binding sites for MYC (not
shown). A 5-gene recurrence predictor of prostate cancer
[34] contains KLF6, three common ARACNe-based pre-
dictions between MYC and KLF6 (FOS, JUNB and ZFP36),
and PPFIA3, which is functionally related to another pre-
dicted target of KLF6 (PPFIBP2) (Fig. 3B). These observa-
tions further support the role of KLF6, c-MYC and the
ARACNe-based predictions in prostate tumorigenesis.

Comparison of ARACNe-based predictions with the Tom-
lins et al. data set [25] identified 13 of the 88 predicted
MYC transcriptional targets differentially expressed
between normal prostate tissues and androgen-independ-
ent metastases (FDR-adjusted P values < 0.05). In addi-
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Analysis of c-MYC expression in normal and prostate cancer tissuesFigure 2
Analysis of c-MYC expression in normal and prostate cancer tissues. (A) Relative expression differences of c-MYC calculated 
using three gene references with the following formula: R = Fc-MYC - (FTBP - FALAS1) where Fgene i= Ctgene i - Ct18 S. (B) c-MYC expres-
sion in prostate cancer progression. Mean expression values are marked by a red solid rhombus. (C) c-MYC expression associ-
ation study with Gleason scores.
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Expression profiling and modeling of transcriptional regulatory networksFigure 3
Expression profiling and modeling of transcriptional regulatory networks. (A) Transcriptional profiles of c-MYC and KLF6 in 
prostate tissues [30] using U95A Affymetrix probes shown in the inset. (B) Integrated transcriptional regulatory networks of 
MYC and KLF6. Gene function assignment based on GO term annotations and known MYC transcription targets are shown as 
indicated in the inset.
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tion, 20 of the predicted targets were found to be
differentially expressed between normal prostate tissues
and adenocarcinomas. Notably, ~46–40% of these genes
(6/13 and 8/20) were also predicted to be direct transcrip-
tional targets of KLF6 by the ARACNe algorithm, which
endorses the putative functional association between
MYC and KLF6.

Analysis of MYC/Myc-driven cellular transformation and 
tumorigenesis
To evaluate the functional significance of the predicted
shared MYC/KLF6 transcriptional targets, we examined
expression data derived from a model of MYC-driven cel-
lular transformation of quiescent human mammary epi-
thelial cells and from MMTV-Myc-driven mammary
tumors in mice [35,36]. Of the 25 predicted common tar-
gets, 16 (64%) were found to be differentially expressed in
cell transformation of quiescent human mammary epi-
thelial cells (Fig. 4A). This proportion is ~2-fold higher
than expected by chance taking into account all genes
examined in the microarray platform (χ2-test P = 0.004),
which substantiates the identification of true MYC targets.
Moreover, 11 of the 16 genes contain MYC binding sites
at their promoters. Importantly, KLF6 was also identified
and showed strong down-regulation in this model (t-test
P values < 10-3) (Fig. 4A).

Analysis of MMTV-Myc-driven mammary tumors in mice
showed consistent results with the analysis of quiescent
human mammary epithelial cells. Twelve differentially
expressed genes were detected, eight of which coincided
with the human genes mentioned above (Fig. 4B). Genes
that did not overlap between the two studies showed sim-
ilar trends, for example the human TGIF showed a trend
for down-regulation (P = 0.067) while it was identified as
significant in the study of mice tumors (P = 0.007).
Importantly, this analysis also revealed Klf6 down-regula-
tion (P = 0.003) (Fig. 4B). Overall, the discovery of KLF6/
Klf6 down-regulation in two different models of MYC/
Myc-driven cell transformation supports the hypothesis
that c-MYC germline overexpression could act as a risk fac-
tor for prostate cancer by converging on a molecular
mechanism such as the functional inactivation of the
KLF6 gene or gene product.

Using the MYC/Myc-driven cell transformation models,
we next examined the differential expression of known
KLF6 transcriptional targets of relevance to epithelial can-
cers, E-cadherin (CDH1 gene) [37] and p21 (CDKN1A)
[38]. This analysis revealed strong down-regulation of
CDH1 in the transformation of quiescent human mam-
mary epithelial cells (P values < 10-5) and a trend in the
model of Myc-driven mice tumorigenesis (P = 0.088). No
significant differences were appreciable for CDKN1A or
Cdkn1a. These observations suggest that KLF6 down-regu-

lation mediated by germline MYC overexpression could
promote epithelial neoplasia by down-regulating E-cad-
herin.

Discussion
Combined analysis of genetic and expression data facili-
tates the identification of transcriptional regulators acting
in any part of the genome [39,40]. Examination of differ-
ent ethnic groups reinforces the identification of these reg-
ulators but also reveals differences between populations
[41,42]. Due to their functional and structural complexity,
transcriptional regulators are largely undercharacterized.
However, it is thought that their genetic variability may be
relevant when considering susceptibility to common dis-
eases. Specifically, their causal relationship to cancer is
almost unknown since most genetic analyses have been
focused on coding regions. Insights into differential germ-
line gene expression and tumorigenesis have been gained
mainly from mice models, such as the overexpression of
the RAS family of genes [43], Mad2 [44] or c-MYC [45,46].

This study analyzed the hypothesis that variation at 8q24
cis-regulator(s) of transcription could significantly alter
germline c-MYC expression levels and, thus, contribute to
cancer susceptibility. Although the genetic scanning anal-
ysis performed is susceptible to false positives, the exist-
ence of true cis-regulator(s) is suggested by the
identification of clusters of significant SNPs. Although
larger sample series are required to draw definitive conclu-
sions, the quantitative analysis of geneexpression in nor-
mal prostate tissues supports the model of c-MYC
overexpression associated with Region 1 of prostate can-
cer risk. Tissue-specific cis-regulator(s) that correlate with
additional cancer risk regions at 8q24 may also exist. In a
recent study it was noted that tissue specificity is a critical
factor in the transcriptional responsiveness of MYC targets
[47].

The 8q24 region appears amplified in up to 50% of pros-
tate tumors and c-MYC is thought to be the primary target
of these amplifications since it is overexpressed in prostate
hyperplasia and neoplasia [25]. Ectopic overexpression of
c-MYC/c-Myc is sufficient to immortalize human prostate
epithelial cells [17] and has been shown to generate
human-like prostate tumors in mice [16]. In addition, c-
MYC overexpression in prostate cancer cells enables
androgen-independent growth [48]. These observations
lead to suggestions of a dual role for c-MYC in prostate
cancer. At early stages it would promote proliferation
while at later stages it would facilitate androgen-inde-
pendent growth [17]. Our study further proposes that
germline c-MYC overexpression may promote cellular
transformation of the normal epithelium and, by exten-
sion, risk of prostate cancer by down-regulating the pros-
tate tumor suppressor KLF6 gene. This model is
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Expression analysis of predicted MYC/KLF6 transcriptional targets in MYC/Myc-driven cell transformation and tumorigenesisFigure 4
Expression analysis of predicted MYC/KLF6 transcriptional targets in MYC/Myc-driven cell transformation and tumorigenesis. 
(A) Results of the analysis of quiescent human mammary epithelial cells [36]. (B) Results of the analysis of MMTV-Myc-driven 
tumors in mice [35]. Genes (red, up-regulated; green, down-regulated), corresponding microarray probes and two-tailed t-test 
P values are shown.
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hypothetical and mainly based on the application of the
ARACNe algorithm, which achieves a reasonable tradeoff
between true- and false-positive rates by eliminating the
majority of indirect interactions inferred from gene co-
expression [49,50]. Experimental corroboration of the
predictions generated in this study is therefore needed,
particularly in prostate tissues or cell lines.

The KLF6 gene is inactivated in prostate cancer by loss of
heterozygosity and/or by somatic mutations identified in
tumors, cell lines and xenografts [51]. Recent evidence has
extended the role of KLF6 inactivation to several other
neoplastic processes as esophageal carcinomas [52],
glioblastomas [53], head and neck squamous cell carcino-
mas [54], hepatocellular carcinomas [55], non-small cell
lung cancer [56], ovarian carcinomas [57] and particu-
larly, with regard to 8q24 risk variants, to colorectal cancer
[58]. A key KLF6 transcriptional target for epithelial neo-
plasia is E-cadherin (CDH1 gene), which is a suppressor
of cellular invasion [37]. KLF6 directly transactivates the
CDH1 promoter resulting in increased levels of its gene
product [37]. CDH1 is genetically inactivated in many
human cancers and shows reduced or absent expression
in approximately 50% of prostate tumors [59], playing a
critical role in the transition from a noninvasive to an
invasive phenotype [60]. Notably, it has recently been
proposed that EphB receptors act as tumor suppressors of
colorectal cancer, and possibly breast and prostate cancer,
through an E-cadherin-mediated mechanism that com-
partmentalizes tumor cells in the initial stages of tumori-
genesis [61]. Loss of E-cadherin can result in β-catenin
nuclear localization and, as a result, the up-regulation of
LEF/TCF-mediated transcriptional targets such as c-
MYC[62]. Overall, our study suggests the existence of a
transcriptional regulatory circuit that is perturbed in
human cancer and which begins with the germline over-
expression of c-MYC, causing down-regulation of KLF6
which then reduces the transactivation of CDH1, which in
turns feeds c-MYC expression through β-catenin and LEF/
TCF transcriptional complex activation.

Variants at 8q24 have been associated with risk of pros-
tate, breast and colorectal cancer [1-13,24,63]. Although
there are different blocks of linkage disequilibrium that
harbor risk variants, cancer clustering might suggests the
existence of a common molecular mechanism of suscepti-
bility. Expression analyses in normal prostate, breast and
colorectal tissues and examination of association with
genotypes are needed to determine the convergence on a
common mechanism. Nonetheless, tumor tissue specifi-
city may show dependences on specific, although not
fully understood, mechanisms of neoplasia. The ectopic
overexpression of MYC/Myc in specific cell types of mice
promotes breast or prostate tumorigenesis [16,45,64],
while widespread expression produces different types of

tumors but with preferential appearance of specific epi-
thelial and non-epithelial origins [46]. Overexpression of
c-MYC also constitutes an early event after loss of the APC
tumor suppressor gene that initiates colorectal cancer
[62,65]. In addition, recent evidence shows that loss of
heterozygosity at the KLF6 locus contributes to the transi-
tion from the compartmentalized carcinoma to the inva-
sive carcinoma, specifically in sporadic colorectal cancer
[66,67], which might suggest a link with the mechanism
of tumor-cells compartmentalization in the initial stages
of tumorigenesis mediated by E-cadherin [61]. Although
the predictions generated in this study should be treated
with a degree of caution, these observations would agree
with the hypothesis of a cancer susceptibility mechanism
mediated by c-MYC germlineoverexpression.

Conclusion
This study proposes that variation at putative 8q24 cis-reg-
ulator(s) of transcription can significantly alter germline
c-MYC expression levels and, thus, contribute to prostate
cancer susceptibility by down-regulating the prostate
tumor suppressor KLF6 gene. We propose a transcrip-
tional regulatory model perturbed in human cancer with
a feedback loop for c-MYC.

Methods
Genetic association analysis
We analyzed HapMap genotypes and paired expression
data recently made available for immortalized lym-
phocytes from four ethnic groups and including 210 inde-
pendent individuals in total (60 Utah residents with
ancestry from northern and western Europe; 45 Han Chi-
nese in Beijing; 45 Japanese in Tokyo; and 60 Yoruba in
Ibadan Nigeria; Gene Expression Omnibus (GEO) record
GSE6536) [42]. Transcriptional differences were scanned
between the 128 and 129 Mb of chromosome 8, corre-
sponding to ~1,530 SNPs (NCBI build 35). Scans were
performed in R with the SNPassoc package [68]. The log-
additive effects of alleles were examined. Association of
genotypes with the variable response (gene expression
level) was calculated by fitting linear equations and P val-
ues obtained by assessing the change in deviance against
the null model. Association analysis between genotypes,
downloaded from the HapMap data release 21a, and gene
expression levels were performed using the web-software
SNPStats [69]. The D'/LOD plots were generated using the
Haploview software [70].

Microarray gene expression analysis
Using the HapMap lymphocyte expression data [42] and
the prostate cancer data of Tomlins et al.[25], matrix series
were downloaded from GEO references GSE6536 and
GSE6099, respectively. Using the Singh et al.[30] raw data,
background correction, normalization and averaging of
expression values were performed with the robust multi-
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array average (RMA) algorithm. ARACNe Java [49,50] was
used to model the gene expression regulatory networks of
c-MYC and KLF6. In this analysis, data processing inequal-
ity (DPI) tolerance was set to 0.20 and the mutual infor-
mation (MI) threshold was 0.05. Normalized data sets of
MYC/Myc-driven cellular transformation and tumorigen-
esis were downloaded from the GEO records GSE3151
and GSE3158 [35,36]. Gene probes were matched using
the NetAffx (Affymetrix) tool and differentially expressed
probes were identified by calculating two-tailed t-test P
values.

Genotyping and quantitative RT-PCR analyses
Prostate tissue specimens were collected through the
Tumor Bank of the Bellvitge University Hospital and the
Catalan Institute of Oncology. Genotyping of rs1447295
was performed by direct sequencing of PCR products of
genomic DNA using the following forward and reverse
primers, respectively: 5'-GAGTTGCACGCCAGACACTA-3'
and 5'-TTTCCCATACCCCATTCTGA-3'. Quantitative RT-
PCR analysis of c-MYC was performed using a protocol
previously developed with the LightCycler™ DNA Master
SYBR Green I Kit (Roche Applied Sciences) [20-22] and c-
MYC primers 5'-CAGCTGCTTAGACGCTGGATT-3' and
5'-GTAGAAATACGGCTGCACCGA-3', and TBP primers
5'-GAACCACGGCACTGATTTTC-3' and 5'-CACAGCTC-
CCCACCATATTC-3'. Relative expression differences were
calculated using three gene references (18S, ALAS1 and
TBP) with the following formula: R = Fc-MYC - (FTBP - FALAS1)
where Fgene i = Ctgene i - Ct18 S.

Copy number variant analysis
MLPA assays were performed following the conventional
protocol with 150 ng of DNA, overnight ligation and 32
cycles of PCR. Probes for c-MYC were 5'-
GGGTTCCCTAAGGGTTGGAGGAGGAAC-
GAGCTAAAACGGAGCT-3' and 5'P-
TTTTTGCCCTGCGTGACCAGATCCTCTAGATT-
GGATCTTGCTGGCAC-3'.
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7.1 summary

Gene expression profiling has identified cancer prognostic and predictive
signatures with higher performance than conventional histopathological
or clinical parameters. Consequently, signatures are being incorporated
into clinical practice and will soon influence everyday decisions in oncol-
ogy. However, the slight overlap in the gene identity between signatures
for the same cancer type or condition raises questions about their biologi-
cal and clinical implications. To clarify these issues, better understanding
of the molecular properties and the detection of possible interactions
underlying apparently dissimilar signatures is needed.

The aim of this study was to integrate genomics, transcriptomics and
proteomics data to unveil potential relationships among cancer signatures
of 24 independent studies.

Common properties at the genome level were evaluated by probing
the relative enrichment in predicted transcription factor binding sites
(TFBS) motifs at the promoters of signature genes. In these analyses the
top-ranked motifs across several signatures were from the E2F family,
which is a key regulator of cell proliferation and death processes. When
analyzing experimental data from chromatin immunoprecipitation assays
of TFs, the major role of E2F transcriptional programs was corroborated.
Furthermore, significant over-representation of ESR1 gene binding sites
and ESR1-mediated transcriptional regulation was identified for most of
the signatures, irrespective of their type or condition.

Using cancer representative datasets, Pearson correlation coefficients
(PCC) between over-represented TFs in cancer signatures and genes as-
sociated with breast cancer prognosis or with the response to docetaxel
treatment in breast cancer patients were computed. The correlations were
compared to PCCs between the same TFs and genes non-differentially
expressed in these conditions. As a result, higher absolute PCCs between
TFs and genes associated with prognosis or treatment response were
identified in all cases for genes and/or microarray probes.
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Using a breast cancer dataset and the average PCC across all microar-
ray probe pairs between any two signatures, significant co-expression
was identified in approximately half of the analyses when compared to
10,000 equivalent, randomly selected gene sets. These results support
the existence of functional and molecular associations between many ap-
parently dissimilar signatures, despite the fact that the dataset used had
evident technical and biological specificities. A strong correlation with
genes involved in mitosis or cell death GO categories was also observed
for most signatures.

Given the evidence of signatures relationship at the genome and tran-
scriptome levels, it was hypothesized that proteins encoded by apparently
dissimilar signatures could be significantly closer in the interactome net-
work. Using a dataset consisting mainly of experimentally identified
protein-protein interactions, it was seen that most cancer signatures were
more closely located than expected by chance, and also close to cell death
and mitosis genes.

All the previously described results were validated in two independent
datasets: one of a lung metastasis signature of breast cancer and the other
of a signature of response to cetuximab in metastatic CRC patients.

7.2 main results

22 out of 24 signatures examined showed significant over-representation
of one or more of the molecular evidences associated with the regulation
of cell proliferation and death.

Significant associations were consistently observed across genomics,
transcriptomics and proteomics layers, suggesting the existence of a com-
mon cancer cell phenotype. Convergence on cell proliferation and death
supports the pivotal involvement of these processes in prognosis, metas-
tasis and treatment response.

Functional and molecular associations were identified with the immune
response in different cancer types and conditions that complement the
contribution of cell proliferation and death.

Examination of additional, independent, cancer datasets corroborated
the previously found observations.
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Xavier Solé1, Núria Bonifaci1,2, Núria López-Bigas3, Antoni Berenguer1, Pilar Hernández2, Oscar Reina4,

Christopher A. Maxwell2, Helena Aguilar2, Ander Urruticoechea2, Silvia de Sanjosé4, Francesc Comellas5,
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Abstract

Gene expression profiling has identified cancer prognostic and predictive signatures with superior performance to
conventional histopathological or clinical parameters. Consequently, signatures are being incorporated into clinical practice
and will soon influence everyday decisions in oncology. However, the slight overlap in the gene identity between signatures
for the same cancer type or condition raises questions about their biological and clinical implications. To clarify these issues,
better understanding of the molecular properties and possible interactions underlying apparently dissimilar signatures is
needed. Here, we evaluated whether the signatures of 24 independent studies are related at the genome, transcriptome or
proteome levels. Significant associations were consistently observed across these molecular layers, which suggest the
existence of a common cancer cell phenotype. Convergence on cell proliferation and death supports the pivotal
involvement of these processes in prognosis, metastasis and treatment response. In addition, functional and molecular
associations were identified with the immune response in different cancer types and conditions that complement the
contribution of cell proliferation and death. Examination of additional, independent, cancer datasets corroborated our
observations. This study proposes a comprehensive strategy for interpreting cancer signatures that reveals common design
principles and systems-level properties.
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Introduction

Recent years have seen the description of a large number of

gene expression profiles or signatures with clinical value for the

accurate prognostic or predictive characterization of cancer

patients or tumors. Breast cancer is probably the paradigm of

such studies, with at least three different signatures currently

being tested in clinical trials and commercially available for

routine clinical practice in oncology [1,2]. However, the lack of

overlap in the selected genes has raised fundamental questions

about their biological and clinical implications [3,4]. This

situation is not unique to breast cancer prognosis, and the

description of new expression profiles suggests that it is common

to other cancer types or conditions_i.e. metastases and

treatments [5]. Reasons to this paradox may be methodological

disparities [6] and statistical constraints created by the large

number of genes examined with respect to the relatively small

number of samples profiled [7–9]. Importantly, a recent study

by Perou and colleagues [10] established the common

prognostic value of some breast cancer signatures, despite the

lack of overlap in gene identities. This observation confirmed

the clinical relevance of the signatures and suggested that they

may efficiently capture a common tumor cell phenotype(s) [11].

This putative common phenotype for breast cancer and for

other neoplasias must be defined if we are to better understand

the significance of signatures.

Some of the early descriptions of signatures noted the presence

of specific biological processes over-represented in the correspond-

ing gene lists. Among these processes, individual genes involved in

the cell cycle and apoptosis were highlighted (e.g. [12,13]). More

recent evidence points to specific genes that are globally associated

with breast cancer prognosis and related to cell proliferation

among other processes or pathways [14–21]. However, it is still

unclear how this evidence characterizes different molecular levels

and how the levels integrate into a systems-level model containing

gene and/or protein interactions for breast cancer and for human

cancer in general. Here, we used an integrative approach to

determine the existence of a putative common tumor cell

phenotype(s) associated with different cancer types and conditions.

The study identified common molecular properties and network

interactions associated with cell proliferation and death, and

revealed associations with the immune response. Our results

highlight the importance of studying signatures from a systems-

level perpective.
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Results

Genomic properties: E2Fs and the estrogen receptor (ER)
To identify common properties among cancer signatures we

compiled the literature gene lists from 24 studies (Table S1). These

represent 19 prognostic signatures, two signatures focused mainly

on metastasis, and seven predictive treatment response signatures.

All signatures used corresponded to validated sets of genes at the

same level. We first examined the molecular properties or network

topology characteristics of genes and/or proteins in these

signatures at the genome, transcriptome and proteome levels.

Next, the identified properties and network associations were

corroborated in independent expression datasets of different

cancer types and conditions (Fig. 1).

Properties at the genome level were evaluated by probing the

relative enrichment in predicted transcription factor binding site

motifs at the promoters of signature genes (see Methods). In

these analyses the top-ranked motifs across several signatures

were from the E2F family. Significant over-representation of

E2F motifs was identified in ,45% (13/28) of the signatures

tested, including prognostic (bladder, breast and central nervous

system (CNS) cancers, and three multi-cancer signatures) and

predictive signatures (docetaxel in breast tumors, EGFR

tyrosine kinase inhibitors (TKIs) in lung tumors and pemetrexed

in advanced solid tumors) (false discovery rate (FDR)-adjusted P

values,0.05) (Fig. 2A). In contrast, only one signature (the

immune response prognostic signature in estrogen receptor

(ER)-negative breast cancer [22]) showed under-representation

of E2F motifs. This observation will be discussed in the

following sections.

To evaluate motif predictions in the promoter sequences of

signature genes, we examined experimental data from chromatin

immunoprecipitation assays of transcription factors [23,24]. This

analysis corroborated the major role of E2F transcriptional

programs. Approximately 65% of signatures showed significant

over-representation of E2F1-AP2 and/or E2F4 binding sites

(Fig. 2B). The strongest over-representations were detected in

prognostic_particularly breast cancer_and predictive treatment

response signatures for E2F1-AP2 sites. Nevertheless, specificities

were also suggested for the immune response, which showed

under-representation of E2F1-AP2, and for predictive signatures

that did not show differential representation of E2F4 in any case.

The E2Fs are key regulators of cell proliferation and death

[25,26], and common deregulation of E2F-mediated transcrip-

tional programs is a hallmark of cancer transcriptomes [27]. The

link with the potential for cell proliferation was further evaluated

by examining transcripts with periodic expression through the cell

cycle [28], which indicates a direct or indirect role in phase(s) of

cell division, and by analyzing ER functional genomic data [29].

Significant over-representation of periodically expressed genes was

observed in ,45% of the signatures, most of which were

prognostic signatures for different cancer types (Fig. 2C). Detailed

examination of cell cycle phases showed specific over-representa-

tion of genes with an expression peak at G2 and G2/M, which is

in agreement with their role in cell division (data not shown). In

addition, consistent with the link between cell proliferation and the

ER signaling pathway [30], significant over-representation of ER

binding sites and/or ER-mediated transcriptional regulation was

identified in most of the signatures (,90%), irrespective of their

type or condition (Fig. 2D). This high overlap with ER regulation

probably reflects an strong association with cell proliferation

beyond cancer hormone-dependencies.

Overall, all except two of the signatures examined here showed

significant over-representation of one or more of the molecular

evidences associated with the regulation of cell proliferation and

death. The exceptions were the immune response signature, which

may reflect the involvement of different biological processes, and

the B-cell lymphoma prognosis signature, which may be explained

by the statistical power needed to detect differences in the smallest

gene set examined (n = 19). Similarities for these signatures at

additional molecular levels will be presented in the following

sections.

Figure 1. Integrative analysis of cancer signatures. Strategy for defining the common properties and interactions between signatures at the
genome, transcriptome and proteome levels, and validation in independent datasets.
doi:10.1371/journal.pone.0004544.g001
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Additional programs of cell proliferation, death and
metastasis

In an examination for additional mechanisms of transcriptional

regulation of signatures, motifs of AHR, EGR1, MYB and MYC

were found to be over-represented in a second term. These over-

representations were not as widespread as for E2Fs or ER, which

suggests that they play only a minor role, but different cancer types

and conditions were included: an EGR1 motif was found to be

over-represented in CNS and colorectal cancers and the b-catenin

multi-cancer prognostic signatures, the breast cancer lung

metastasis signature and the predictive signatures of cisplatin

and dasatinib (FDR-adjusted P values,0.05) (Fig. 2E). In

agreement with these observations, we found the lung metastasis

signature to contain 22% (12/54) of the genes predicted elsewhere

to be EGR1 transcriptional targets [31–34] and the wound

response was previously shown to be coordinated with MYC

amplification [35]. In addition, over-representation of an AHR

motif is consistent with its association with ER to regulate cell

proliferation [36].

Next, the significance of motif representations was evaluated

by analyzing gene expression correlations in representative

cancer datasets. Thus, we computed correlations using the

Pearson correlation coefficient (PCC) between the seven

transcription factors presented above and genes associated

with breast cancer prognosis [12] or with the response to

docetaxel treatment in breast cancer [37], and compared them

with genes non-differentially expressed in these conditions.

Higher absolute PCCs between transcription factors and genes

associated with prognosis or treatment response were identified

in all cases for genes and/or microarray probes (Mann-

Whitney (MW) test P values,0.001) (Fig. 3). The prognosis

dataset contained a single representative microarray probe for

each transcription factor, therefore all of them showed

significant differences (Fig. 3A). The treatment response dataset

contained several probes for some factors, which were

evaluated individually to identify technical or biological

differences. In this dataset, AHR, EGR1 and HIF1A were each

represented by a single probe and all of them showed

significantly higher correlations with response (Fig. 3B). E2F1,

E2F4, MYC and MYB had more than one probe each, with

discordant results in some cases but with average PCCs

significantly associated with response in three of them

Figure 2. Genomic and transcriptomic properties of cancer signatures associated with the potential for cell proliferation and
repressed cell death. A, representation of E2F motifs based on JASPAR and TRANSFAC matrices and the Poisson distribution, with P values
adjusted using the FDR approach for analyses-columns. Values are shown as detailed in the inset: red/orange indicates significant over-
representation and blue indicates significant under-representation. The E2F1_Q6 motif represents the putative action of E2F1 and MYC. B,
representation of E2F1-AP2 and E2F4 binding sites from chromatin immunoprecipitation (chip) assays using the same statistical methodology as
described above. The E2F4 data correspond to the joint analysis of cell cycle phases [23]. C, representation of genes with periodic expression through
the cell cycle. D, representation of ER transcriptional regulation from chromatin immunoprecipitation assays or transcriptional changes in MCF7 cells.
E, representation of additional promoter motifs using TRANSFAC matrices. The wound response signature without cell cycle-associated genes is
indicated by the suffix ‘‘(-cc)’’, and the ‘‘total set’’ signature of ER-negative breast cancer contains the immune response plus other biological
processes such as the cell cycle. The dasatinib predictive signature is divided into two sets for the effect in prostate and breast cancer respectively.
The colorectal prognostic signatures are as defined in Table S1.
doi:10.1371/journal.pone.0004544.g002
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(Fig. 3B), whereas E2F4 remained unclassifiable as two probes

were significantly correlated and two were not (data not

shown).

To further evaluate these observations, we computed

correlations between the seven transcription factors and 5,000

randomly selected sets equivalent to the size of the differentially

expressed gene sets above. Higher PCCs were observed for most

transcription factors in both cancer conditions, with the

exception of E2F4 in prognosis and treatment response (P

values obtained using the empirical distribution of random

PCCs (empirical P values) were of 0.16 and 0.11, respectively).

Overall, the identification of significant correlations with at least

six of the seven factors tested supports the motif predictions and

suggests the existence of common transcriptional programs that

converge on cell proliferation and death, as well as metastasis as

revealed by EGR1 [33].

Analysis of motifs and expression correlations also revealed an

association between the apparently dissimilar immune response set

and different prognosis signatures. Although it under-represented

E2F1 motifs, the immune response shared over-representation of a

MYB motif with the 21-gene, wound response breast cancer, and

bladder cancer prognostic signatures (Fig. 2E). Over-representa-

tion of this factor in the immune response is consistent with its role

in hematopoiesis [38], and its over-representation in other

signatures is consistent with the emerging involvement of the

immune response in the prognosis of different cancer types [39].

The high correlations observed in Fig. 3A between MYB and genes

globally associated with breast cancer prognosis (i.e. not limited by

the ER status) support this hypothesis. Associations of this

signature at other molecular levels will be presented in the

following sections.

Transcriptomic correlations between signatures
Given the identification of common transcriptional programs,

global expression correlations between signatures should be higher

than expected by chance. Using a breast cancer dataset [40] and

the average PCC across all microarray probe pairs between any

two signatures, significant co-expression was identified in approx-

imately half of the analyses when compared to 10,000 equivalent,

randomly selected gene sets (empirical P values,0.05) (Fig. 4A).

These results support the existence of functional and molecular

associations between many apparently dissimilar signatures,

despite the fact that the dataset used had evident technical and

biological specificities. Furthermore, the immune response signa-

ture showed significant co-expression with 15 of the signatures

studied (data not shown), which also supports convergence on this

process.

To further test the link to cell proliferation and death at the

transcriptomic level, and excluding a priori information on

expression levels or profiles that could bias the analysis, we

examined correlations with gene sets selected using only the

criteria for the Gene Ontology (GO) terms Cell Death and Mitosis.

These sets were exclusively defined by selecting Entrez genes

annotated with those terms, and then used in comparisons in the

same way as any other signature. Using 10,000 equivalent random

sets, absolute correlations between these GO sets and the

signatures were found to be significantly higher in $12

comparisons (Fig. 4B, left). The Cell Death set was significantly

correlated with five signatures and the Mitosis set was significantly

correlated with 11 signatures of different cancer types or

conditions. Importantly, differences in the GO sets relative to

random were of the same magnitude as comparisons between

signatures (Fig. 4C).

This analysis suggested that measuring the expression levels of

genes known to participate in specific biological processes is likely

to be of prognostic or predictive value in different situations.

However, the analysis was constrained by the possible presence of

non-informative expression or sub-sets of genes with different

behavior within the GO sets. Thus, reducing the dimensionality of

Cell Death and Mitosis sets using a principal component analysis

that captured ,80% of the variance raised the number of

significant correlations to 12 and 14 sets, respectively (Fig. 4B,

right); these numbers corresponded to a total of ,60% of the

signatures examined, irrespective of their type or condition.

Interactome network associations
Functional relationships between proteins can be identified as

direct interactions, complex memberships or relatively close

connections in the network of protein-protein interactions or

interactome network. Given the evidence at the genomic and

transcriptomic levels presented above, we hypothesized that

proteins encoded by apparently dissimilar signatures will be more

closely located in the interactome network than expected by

chance. For this analysis we used a dataset consisting mainly of

experimentally identified protein-protein interactions, excluding

homodimers and orthology-based predictions, and calculated the

shortest path between any two nodes or proteins in the giant

network component (i.e., the component containing the largest

number of connected proteins) [41].

All signature comparisons showed shortest path distributions

skewed toward smaller values than expected from the giant

component (Fig. 5). Statistical evaluation using the non-parametric

MW test identified significant differences with respect to the giant

component distribution in 90% of comparisons. The smallest

shortest paths were identified for the 21-gene prognostic, and

dasatinib and EGFR TKI predictive signatures, although the

results may be subject to bias because these sets contain several

proteins that are widely studied in the literature and therefore have

high network centrality.

To further evaluate these differences, we randomly selected

1,000 sets of 50 proteins with similar average degree centrality to

the signatures and obtained their shortest path distributions. Most

of the cancer signatures were more closely located than expected

by chance and also close to the Cell Death and Mitosis complete

sets (empirical P values,0.05 marked with dots in Fig. 5A and B).

According to these observations, examination of GO annotations

in the direct and one-hop neighborhoods of signatures identified

significant over-representation of Cell Cycle or Cell Death terms

or their children in all cases (FDR-adjusted P values,0.05) (GO

term details not shown), which reinforces the hypothesis that the

signature gene products are molecularly and functionally associ-

ated with these processes.

Figure 3. Expression correlations with defined transcription factors. A, expression correlations between seven transcription factors_gene
names shown at the top of each graph_and genes differentially expressed for breast cancer prognosis measured by metastasis events up to 5 years
(pink curves) relative to non-differentially expressed genes in this condition (brown curves). The graphs show absolute PCC values. B, same analysis
for differentially expressed genes after docetaxel treatment of breast cancer patients relative to non-differentially expressed genes in this condition.
Results for E2F1, E2F4, MYB and MYC are for average values of all microarray probes representing each factor, whereas the insets show the results for
individual probes with significant differences.
doi:10.1371/journal.pone.0004544.g003
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Next, signatures were depicted as nodes in a network in which

the length of the edges is proportional to the average shortest path

to the Cell Death and Mitosis sets (Figure 5C, left). In this network,

most signatures were found close to these central processes when

compared to 100 random sets with equivalent degree centrality

(Figure 5C, right). Distant signatures represented modest associa-

tions at the different molecular levels examined above, such as the

prognostic signatures for B-cell lymphoma, colorectal cancer and

hypoxia response. These observations suggested correlation across

different molecular levels. Thus, negative correlations for all

signatures were observed between PCC co-expression values and

interactome shortest path distances (average r = 20.31 and

s = 0.16; Mantel test P value = 0.059), which is consistent with

functional relationships [42–45]. Consequently, higher co-expres-

sion between signatures partially correlated with smaller shortest

paths between them in the interactome network. These observa-

tions highlight the importance of the integrative study, which

revealed previously unidentified relationships in gene lists.

The immune response signature was also located close to the

Cell Death and Mitosis sets (MW test P values,0.001) (Figure

Figure 4. Transcriptomic correlations between signatures and with defined biological processes. A, heat map of average PCCs between
cancer signatures in a breast cancer gene expression dataset [40]. Significant co-expression (empirical P values,0.05) is indicated by dots. Note that
the matrix is not symmetrical because the results were dependent on the size of each gene set; therefore, the larger gene sets (e.g. wound response
or invasiveness) showed significant co-expression with many other signatures, perhaps partly due to the fact that they had greater statistical power
with which to detect them. Each dot corresponds to the comparison between a signature on the left (simulated set) and a signature at the bottom.
The Cell Death and Mitosis sets are highlighted in pink. B, left panel, list of signatures that showed significant correlation with the Cell Death or
Mitosis complete GO sets. Right panel, list of signatures that showed significant correlation with the Cell Death or Mitosis sets, but only using their
principal components. C, observed (discontinuous red line) versus expected (black curve for 10,000 randomly selected sets) average PCCs between
the Mitosis set and the 70-gene set, the Cell Death set, or genes with periodic expression through the cell cycle.
doi:10.1371/journal.pone.0004544.g004
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S1A). Consequently, examination of the proportion of GO

annotations in the one-hop neighborhood of this signature

identified over-representations of terms related to cell proliferation

and death, while the direct interactors only showed over-

representation of terms associated with the immune system (Figure

S1B). Thus, although the gene products with prognostic value for

ER-negative breast cancer are not directly connected to the

common processes identified above, they are significantly

associated in a second term, as well as transcriptionally co-

expressed and co-regulated with many signatures.

Evaluation of properties and interactions in independent
datasets

The observations described above were evaluated in two

independently generated signatures of cancer conditions. A recent

study described a lung metastasis signature of breast cancer using a

different methodological approach [46]. We found ,70% (15/21)

of the genes in this signature to contain E2F TRANSFAC motifs

and ,60% (13/21) to be targets of E2F1-AP2 and/or ER. In

addition, significant correlations with eight prognostic signatures

were identified, seven of them of breast cancer (empirical P

values,0.001) (results of the analyses of this signature are detailed

in Table S2). The correlation with Mitosis was higher than

expected (empirical P,0.001), while the correlation with Cell

Death was non-significant (empirical P = 0.18). Finally, gene

products in this signature showed smaller average shortest paths

than expected with 21 of the 28 signatures, including Cell Death,

Mitosis and the lung metastasis signature presented previously [31]

(empirical P values,0.05).

To further corroborate our observations, we selected a

different neoplastic condition from the recent literature:

metastatic colorectal cancer treated with the EGFR inhibitor

cetuximab (ErbituxH) [47]. Previous studies suggest that EGFR

mutations are associated with the response to TKIs but not to

cetuximab [48,49]. We evaluated our observations by examining

the distribution of gene annotations in the rank of hazard ratios

(HRs) that measures the response to cetuximab treatment by

progression-free survival. In this analysis, cell proliferation and

the immune response were identified as the processes with the

greatest effect on the response (Fig. 6). Importantly, the set of

genes whose high expression most strongly associate to response

was for a wound-like phenotype that was previously shown to

provide prognosis value for breast, lung and gastric cancer [50].

The next associated high-expression sets were for doxorubicin

treatment in gastric cancer, breast cancer prognosis (70-gene)

and prognosis of different cancer types not examined in this

study (hepatocellular carcinoma and multiple myeloma progno-

sis). Moreover, high-expression of E2F1, hypoxia and MYC

targets was also associated with the response with similar

strength (Fig. 6A). Collectively, these observations endorse the

biological convergence of signatures.

The analysis of the cetuximab dataset also revealed a

complementary behavior of cell proliferation and the immune

response consistent with the representation of E2F1 motifs shown

above. Patients with high expression of cell proliferation-related

genes and low expression of immune response-related genes

responded to treatment (Fig. 6B), whilst there were no patients

with high expression values of both processes. Hence, a strong

anti-correlation was observed between genes annotated with the

GO term Immune Response and genes annotated with Mitosis

(r = 20.79) (Fig. 6C). This observation leads to speculate that these

processes play balancing roles in prognosis and treatment

response. Good responders to cetuximab may show strong

dependence on a ‘‘cell proliferation-on’’ molecular program, while

non-responders could be sensitive to immune system-based

therapy.

Discussion

Despite the low degree of overlap in terms of gene identity,

apparently dissimilar cancer signatures converge on specific

biological processes. Convergence is defined by significant

molecular and functional associations between genes and/or

proteins: i/ predicted promoter motifs; ii/ experimentally

identified DNA binding sites; iii/ cell cycle-periodic profiles;

iv/ ER-mediated transcriptional regulation; v/ co-expression

with defined transcription factors; vi/ co-expression between

signatures and with specific GO gene sets; and, vii/ close

proximity in the interactome network and neighborhood over-

representation in these same GO terms. Consequently, this study

suggests the existence of common design principles in a system-

level cellular model—illustrated by transcriptome-interactome

correlations—not only of prognostic signatures but also of

metastasis and treatment response signatures. Overall, the

integrative study highlights the importance of analyzing

signatures beyond gene names, which provides a better global

understanding by revealing previously unidentified properties

and associations.

Biological convergence has important implications for the

interpretation of signatures. Given a single gene whose transcript

levels are associated with differences in patient outcome, this

observation should be interpreted a priori in the context of cell

proliferation, death or the immune response processes. For

example, BRCA1 and BRCA2 have different cellular functions,

with a degree of overlap, but each of them is present in several

prognostic and predictive signatures, probably because their

transcript levels reproduce precisely the potential for cell

proliferation. This potential is defined by the presence of genes

with periodic expression through the cell cycle, and other analyses

at the genome, transcriptome and proteome levels shown here

provide strong evidence of common properties and interactions.

Therefore, further conclusions concerning gene functions such as

DNA repair and its role in prognosis should be considered,

controlling for the possible confounding effect of biological

convergence.

From a mechanistic point of view, this study indicates the

existence of a cancer cell phenotype that decisively influences

critical aspects of neoplasia. This observation follows on from the

long-known global importance of the potential for cell prolifera-

Figure 5. Proximity between gene products of signatures in the interactome network. A, heat map of average shortest paths between
proteins encoded by signatures. This analysis was performed using only the giant network component. An example of shortest path differences with
respect to the giant component is shown in the right panel for the comparison between the complete Cell Death and Mitosis GO sets. B, heat map of
comparisons of 1,000 randomly selected 50-protein sets in the giant component. Right panel, density plot of average shortest path in randomly
selected sets: the 5% lower values are highlighted, which correspond to an average shortest path ,4.09. Comparisons between signatures below this
empirical cut-off are shown by dots in A. C, left panel, network representation of average shortest paths between Cell Death and Mitosis and cancer
signatures as shown in the inset. Edges lengths are proportional to the average shortest path values. Right panel, network representation of average
shortest paths between Cell Death and Mitosis and cancer signatures or randomly selected protein sets with equivalent degree centrality.
doi:10.1371/journal.pone.0004544.g005
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tion and repressed cell death in tumorigenesis [51], while

reinforcing the emerging role of the immune response in prognosis

and prediction [39]. However, while this study provides the first

evidence of convergence of prognostic, metastasis and predictive

signatures in these processes, other processes or signaling pathways

are probably represented and specificities may exist. For instance,

the potential for metastasis also depends on the activity of

processes such as extracellular matrix remodeling. Similar systems-

level analyses of a larger number of metastasis signatures may

reveal properties masked here by the restriction of the study to

mainly prognostic and predictive sets. Nonetheless, some prog-

nostic or predictive sets are not independent of the potential for

developing metastasis [10]. Future research may reveal a more

complex molecular wiring diagram of the processes participating

in cancer signatures.

Materials and Methods

Cancer signatures
We compiled 28 signatures from 24 studies, comprising 19

prognostic signatures, two signatures focused mainly on metastasis,

and seven predictive treatment response signatures, as detailed in

Table S1. Note that the 21-gene breast cancer prognosis signature

was originally described as a predictive set for tamoxifen treatment

[52] and the intrinsic subtype signature [53] corresponds to a

validated set taken from the original report [13]. We also

examined the wound response prognosis signature without

including the initially identified cell cycle-associated genes [40]

and the predictive signature for dasatinib treatment response

subdivided for prostate and breast cancer [54]. Gene names or

microarray probes were taken from the original publications and

Figure 6. Asymmetric distribution of gene annotations in the response to cetuximab treatment. A, left panel, GSEA results for the
strongest associated phenotype with high-expression genes predicting treatment response (log2 HR.0). Central panel, expression analysis plot of
the extreme gene expression (EREG), which was also noted in the original publication [47]. Right panel, additional phenotypic and GO term sets with
high-expression genes associated to treatment response at FDR Q values,1%. B, left panel, GSEA results for the strongest associated phenotype with
low-expression genes predicting treatment response (log2 HR,0). Central panel, expression analysis plot of the extreme gene expression (IL15). Right
panel, additional phenotypic and GO term sets with low-expression genes associated to treatment response at FDR Q values,1%. C, Histogram plot
of average expression values of genes annotated with the Immune Response or Mitosis across samples in the cetuximab dataset. Average GO set
expression values show a negative correlation with ordered metastatic samples.
doi:10.1371/journal.pone.0004544.g006
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mapped to Entrez GeneIDs using the BioMart and Bioconductor

[55] tools and by manual curation of each signature.

Genomic analyses
Transcription factor (TF) motifs in promoter sequences

1 kilobase (kb) upstream of the transcription start site were

predicted using MatScan [56] and position weight matrices from

JASPAR [57] and TRANSFAC [58] (111 and 625 motifs,

respectively). Probabilities were calculated using the Poisson

distribution as an approximation to the binomial as follows

f k,lð Þ~ lk :e{l

k!

n o
(where l~n:p, p~proportion of genes with a

defined motif that are part of the signature and n = total number of

genes with this motif in the genome). Promoter sequences (21 kb)

of Ensembl protein-encoding gene entries (n<18,800) were used as

a common reference for the motif analyses. Corrections for

multiple comparisons were computed using the false discovery rate

(FDR) approach [59]. Chromatin immunoprecipitation data and

periodically expressed genes were taken from the respective

references [23,24,28] or from the relevant repositories [29] and

examined using the same methodology. The ER binding sites

identified by chromatin immunoprecipitation assays were assigned

to a single GeneID based on the closest known gene locus (59-end)

in the May 2004 version of the human genome in the UCSC

Genome Browser.

Transcriptomic analyses
Transcriptional targets of the ER signaling pathway were

examined using preprocessed and normalized data [29]. Correla-

tions of transcription factors were performed by defining differen-

tially expressed genes at FDR,1% in breast cancer prognosis

measured with metastasis events within 5 years [12], which

correspond to 179 microarray probes, or by defining differentially

expressed genes at FDR,5% in docetaxel treatment response [37],

which correspond to 1,525 probes. Differences in PCC distributions

were assessed using the Mann-Whitney (MW) and Kolmogorov

Smirnov non-parametric tests, with similar results. Average

correlations in pairwise signature comparisons were calculated

using all probes in the signature gene lists and compared to

equivalent probe sets randomly selected from the same breast

cancer dataset [40]. Dimensionality was reduced by applying a

principal component analysis (PCA) until ,80% of the variance in

gene expression was captured, which represented ,25 genes in the

Cell Death or Mitosis Gene Ontology (GO) sets (originally

containing 58 and 117 genes, respectively). For the analysis of

cetuximab treatment response, we computed a Cox proportional

hazards model for each microarray probe, using the progression-

free survival as the time variable, and dividing the sample set into

two equally-sized groups according to the expression level of the

corresponding probe (low versus high). Ranks according to the log-

hazard ratio were used as input lists for the Gene Set Enrichment

Analysis (GSEA) [60]. The GSEA was run for all curated and GO

datasets found in MSigDB database. We used default values for all

the parameters except for the median probe instead of the max

probe as the collapse method when multiple probe sets map to the

same gene. The evaluation of correlation between the Immune

Response (n = 311) and Mitosis GO sets in the dataset of cetuximab

treatment response was performed averaging expression values of

both gene sets in each metastasis sample. The R programming

language was used for analyses and graphics.

Interactome analyses
The human interactome network was built by combining

three previously published datasets consisting mainly of

experimentally verified interactions [41]. The dataset based on

the Human Protein Reference Database (HPRD) contains

compiled and filtered binary protein interactions from available

databases. High-confidence yeast two-hybrid interactions were

then incorporated and orthology-based predictions and homo-

dimers were excluded to avoid specific bias. Proteins with no

assigned GeneID were also excluded from our analyses. The

numbers of proteins or nodes and interactions or edges in the

complete dataset were 8,519 and 35,492, respectively. The

percentage of signature gene products mapped in this dataset

ranged between 40 and 85. Shortest paths were calculated using

only the giant network component and the geodesic formulation

given by Freeman in the R programming language [41].

Differences in the distributions of shortest paths were assessed

using the MW test. Empirical simulations using 50-protein sets

were selected as the average size of cancer signatures, using only

nodes from the giant component with average degree centrality

equivalent to the signatures. The average degree of signatures,

excluding three outliers that contain widely studied genes (21-

gene, dasatinib prostate and breast, and EGFR TKIs), was 7.48,

while the average degree of 1,000 random sets was 7.53. To

evaluate the relationship between gene co-expression and

interactome distances, a correlation coefficient was calculated

between average PCCs in each signature-pair and the

corresponding average short path in the giant network

component, which was then evaluated to the null hypothesis

of no-correlation between the two measures using the Mantel

test. The representation of GO terms in neighborhoods was

assessed using the shortest path measure and the hypergeometric

distribution and FDR P value adjustment, taking as a reference

all proteins in the giant component and excluding signature

proteins in each case. The Onto-Express tool was used for this

analysis [61].

Supporting Information

Figure S1 Topological associations of the immune response

signature in the interactome network. A, left panel, shortest path

distributions between the immune response and the Cell Death

and Mitosis sets (yellow and green curves, respectively) relative to

the giant component (black curve). Right panel, strategy for

evaluating differences in proportions of GO annotations in the

direct and one-hop interactome network neighborhoods. B, over-

represented GO terms in the direct and one-hop neighborhoods of

the immune response signature.
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Part IV

C L O S I N G





8
D I S C U S S I O N

Each one of the core articles of this thesis includes its own section of
discussion, where the main findings of each study are described, as well
as their consistency with previously published results or the underlying
biological mechanisms that may explain them. Therefore, in this chapter
we will briefly expand some issues not explained in detail in the articles.
We also present a brief summary of the findings in relationship to the
working hypothesis of each study, and we contrast our results with other
studies subsequently published.

8.1 integrative analysis of breast cancer somatic mutome

In 2006, the landmark paper of Sjöblom et al. represented a milestone
in the field of cancer genomic profiling [188]. This work aimed to de-
tect the complete set of mutated genes in two series of breast and col-
orectal tumors. Most impressively, it was all done before the advent of
UHTS technology. Although the contribution of their work vas invalu-
able, both sets of mutated genes were obtained using relatively small
sample sizes (11 breast and 11 colorectal tumors), and some concerns
were raised about the statistical power of the study to detect the true
mutated genes [68, 76, 171]. Indeed, some of the detected mutations
could be false positives and larger sample sizes would be required to
detect genes mutated at low rates, but the fact that all previously known
cancer-mutated genes were already detected in their study, as well as
the proper two-stage experimental design, point to accept the results as
reliable and worth for further examination [149].

Sjöblom et al. obtained quite large lists of mutated genes that they
considered as validated (137 for breast cancer, 105 for colorectal cancer).
Furthermore, when they combined the results of the two stages of their
analysis obtained even larger lists (673 for breast cancer, 519 for colorectal
cancer). However these expanded lists cannot be considered as com-
pletely validated, since they may contain a higher proportion of genes
carrying passenger mutations. Therefore, the aim of our work was to
use an integrative analytical approach to characterize the set of mutated
genes and detect those that are more prone to be indeed related to cancer.
To simplify the analysis, we focused only on breast cancer genes.
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The genomic, transcriptomic and proteomic analysis of breast cancer
mutated genes helped to identify those markers potentially involved in
breast cancer carcinogenesis or prognosis. Thus, DBN1, a gene involved in
cell differentiation and development which had not been related to cancer
at that time, was identified as a potential oncogene. Although no further
links with DBN1 to breast cancer have been described, this gene has been
recently found to be involved in mantel cell lymphomas [220] and has
clinical utility in predicting prognosis in lung cancer patients [136].

In our paper, poorly-characterized genes ABCA3 and SPTAN1 were
postulated as new genes potentially associated with breast cancer prog-
nosis. More specifically, low levels of ABCA3 and mid-to-low levels of
SPTAN1 were found to predict poor survival. Interestingly, this fact has
recently been also postulated in another work [178], where they find
that loss of ABCA3 is significantly associated with positive nodal status
and negative progesterone receptor expression. Moreover, they postulate
that underexpression of ABCA3 contributed to a higher risk for tumor
recurrence, which has a direct impact on survival rates. Besides our work,
SPTAN1 has not been directly linked to breast cancer, but it had also
been previously found to be involved in ovarian cancer, which is another
hormonal-induced tumor tightly related with breast cancer [113].

This work demonstrates how the integration of omic data can unveil
potential functional candidates of a particular biological process with
increased confidence. The strategy used here is applicable to other cancer
types and would help to identify new tumor suppressor genes and onco-
genes and the wiring diagram of functional interactions between them.
This type of analysis not only can be applied to genes displaying point
mutations in tumor cells, but also with genes harboring copy number
alterations, which can also have an essential role in the tumor develop-
ment [199].

Besides our own approach, different studies have followed other kind
of integrating methodologies, based on network analysis [50] or func-
tional associations [20]. Although it may be argued that our analysis
lacks specificity regarding the role of the different mutations in the car-
cinogenic process, our results will undoubtedly help to focus subsequent
experimental characterizations on key gene/protein candidates.

8.2 genetic and genomic analysis modeling of germline myc

overexpression and cancer susceptibility

In the last years, genetic loci on chromosome region 8q24 have been re-
currently found to be conferring an increased risk of developing prostate
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cancer, regardless the ethnic origin of the individuals [7, 70]. Subse-
quent studies involving larger cohorts confirmed these findings [179].
Moreover, these region has been also found to be involved in the suscep-
tibility of developing tumors at other localizations, such as colon and
rectum [232, 205], bladder [102] or breast [26]. All these loci cluster in
three linkage disequilibrium (LD)-independent genomic regions span-
ning ∼500kb. However, the 8q24 region does not contain any currently
known protein-coding elements, and only MYC is located a few hundred
kilobases away. Therefore, the biological mechanisms underlying these
associations remain unclear.

During the last years it has already been argued that gene expression
is under genetic control [170] and, more importantly, that transcripts that
are associated with risk variants are potential candidates for mediating
the effect of the deleterious alleles on the disease [59]. Therefore our
study tried to determine if any of the previously reported germline vari-
ants could be modulating MYC transcript abundance. This approach was
based on the possibility of the presence of MYC enhancers or regulators
in the region, which has been recently confirmed for the region of the
rs6983267 SNP [4, 160, 190, 228]. This enhancer has also been demon-
strated to confer an increased risk of developing colorectal cancer by
activating the Wnt signaling pathway [209].

To assess this association between genotypes and MYC RNA expression
levels we used gene expression and SNP data from HapMap individuals,
as well as public SNP and expression data from prostate samples. After
performing the expression quantitative trait loci (eQTL) analysis, we
observed that MYC expression was correlated with variants of the SNP
rs1447295. Although later studies have found negative results [161] on
this association, these differences may be attributed to issues of statistical
power, tissue purity or differences in MYC RNA quantification. Thus,
supporting these conclusions may require further insight in the following
future. Interestingly, a recent study has demonstrated the risk variant of
the rs6983267 SNP is related to an enhancer of MYC expression during
early prostate organogenesis [222], suggesting that risk variants might
even influence prostate cancer risk significantly before tumor formation.
Overall, these results reinforce the usefulness of the eQTL approaches in
the field of cancer susceptibility analysis.

There are different possibilities that could explain why 8q24 risk vari-
ants do not show a consistent association with MYC transcript abundance.
In most studies, MYC transcript levels are usually measured using expres-
sion microarrays, which is a technique that has difficulties in measuring
small expression differences and is affected by multiple sources of vari-
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ability [194]. Thus, changes in MYC expression may be too slight to be
detected by this technique. This could be overcome by using more sensi-
ble gene expression measuring techniques, such as real-time quantitative
polymerase chain reaction (RT-qPCR). Moreover, the association may
also be cell-specific, or be present only a at certain time point of the cell
development. The association could even be dependent on the activation
of a specific pathway. Therefore, further studies are required to elucidate
this issue. Understanding the functionality of these SNPs and their po-
tential role in MYC regulation could have a relevant impact both at the
biological and the clinical level, since it would enable us to advance in
our knowledge of the molecular basis of carcinogenesis. Hopefully, all
the knowledge obtained from eQTL studies, which combine risk variants
with the target genes they regulate, may have an influence on the future
treatment of the disease.

Using gene regulatory network inference, our study also unveiled a
previously unknown transcriptional interaction between MYC and tumor-
suppressor KLF6 in prostate tissue. Moreover, MYC and KLF6 were found
to share a large number of transcriptional neighbors, pointing to a strong
functional relationship between these two genes, that should be further
characterized. An interaction between MYC and KLF6 has also been
lately characterized in gastric cancer, reinforcing our previously found
relationship between these two genes. [174].

8.3 biological convergence of cancer signatures

Oncologists have traditionally used pathological information to character-
ize tumors and predict their metastatic potential or their likely response
to a specific treatment. However, it seems certain that the clinicopatho-
logical attributes of a tumor are not informative enough, since many
tumors that are apparently similar at the pathological level do display
divergent evolution once they are diagnosed. Indeed, this is evident
for CRC, where a 20-30% of non-disseminated stage-II tumors relapse
and develop metastasis [98]. If we could correctly detect these high-risk
patients they could benefit from more intensive surveillance, while the
remaining 70-80% could be mainly treated with surgery and avoid side
effects of chemotherapy or radiotherapy. Thus, these pathologically-alike
tumors must have differences at the molecular level, making it absolutely
necessary to include new tools of diagnosis and prognosis in current
clinical routine.

Molecular classification of tumors has recently began to be applied
in clinical diagnosis and prognosis procedures. However, these type of
molecular characterizations are usually based on just a single or a very
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limited number of biomarkers, without incorporating information at the
whole genome or transcriptome level. A well-known example of this
type of tumor classification occurs for breast cancer, a heterogeneous
pathology whose tumors are classified and treated according to the ex-
pression levels of ESR1, PGR and ERBB2 genes. Nonetheless, it has been
argued that these variables are not sufficient for achieving a completely
individualized therapy, since some patients still remain unclassified and
others who fall within the same molecular group are found to differ in
their prognosis [225]. Recently, more in-depth studies have been able
to define more specific classifiers using genome-scale gene expression
datasets. More interestingly, these new classifications of breast tumors
could have potential clinical implications [141, 189]. Therefore, better and
more accurate profiling is still required to correctly classify each tumor
and prescript a more efficient and less harmful treatment to the patient.

A cancer signature, or profile, could be defined as a set of markers with
the potential ability to discern or predict a specific phenotypic aspect of
a patient, such as presence or absence of a disease, prognosis or response
to a specific treatment, among others. Taking profit of large-scale tech-
niques such as microarrays, in the last few years a large number of cancer
signatures have been proposed. Although most of them are based on
gene expression data, examples of copy number [233], miRNA [183] and
methylation [37] signatures have also appeared recently and promising re-
sults in this fields are expected in the mid-term [79, 119]. In this section of
the discussion, however, we will specifically focus on gene expression pro-
files, which are the most abundant and have been a matter of study for a
longer time than their copy number, methylation or miRNA counterparts.

Although genetic profiling will definitely be an essential tool for cancer
diagnosis and prognosis assessment procedures in the very near future,
there are still some concerns that must be addressed before incorporating
it into the clinical practice. The first one is related to the little or null
overlap in the genes of different profiles that have been designed to
predict the same (or very similar) outcome. As a paradigmatic example,
this is evident for most of the breast cancer prognosis signatures already
published [22, 41, 46, 134, 147, 211, 221]. Although there is not a gener-
alized consensus for this fact, there could be several reasons that may
explain this heterogeneity among cancer profiles:

• Technical differences: technology of gene expression monitoring
used (RT-qPCR, microarrays, serial analysis of gene expression
(SAGE)); genes included in the platform; type of gene-expression
measuring (3’ arrays vs. whole-transcript arrays).
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• Statistical differences: feature selection and classification algorithms;
validation strategies; statistical overfitting.

• Biological differences: type of experimental design; number and
characteristics of samples used; presence of sample replicates; con-
trol of potential batch effects.

A second potential pitfall for the future applicability of gene signatures
into the clinic is the controversy about their lack of reproducibility. That is,
their poor performance when they are used to classify different individu-
als than the ones that were used to build the profile [132]. Although this
issue may be directly influenced by the technical sources of bias formerly
explained, we must be aware that applying a signature over a totally
independent set of samples is not a straightforward task. Both datasets
may be subject to strong sources of bias, and inaccurate comparisons
could lead to misleading results. Moreover, this lower performance has
not been observed by some studies comparing that compare different
profiles [61]. Therefore, we can state that cancer profiling seems a promis-
ing field that can remarkably improve currently used diagnostic and
prognostic procedures, provided an accurate experimental design both in
the development and the testing stage is used [197](Figure 21).

Figure 21: In the experimental design of cancer profiling studies, after identify-
ing the differentially expressed genes between two a-priori predefined
sample classes a profile is defined to predict the class membership of
a new sample accurately. (Adapted from [224].)

Other approaches, based on systems biology and regulatory networks
inference [118], argue that the reason for such unstable and study-
dependent cancer profiles are due to the passenger role of the genes
that comprise them. That is, they are not real drivers of the studied out-
come (e. g. prognosis). These authors state that the most differentially
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expressed genes are usually downstream in the cascade of transcriptional
interactions, and due to co-factors and other potential interactors of the
transcriptional cascade these downstream genes become unstable. Thus,
rather than looking for differentially expressed genes between two pheno-
types of interest, they suggest looking for the regulators (they call them
master regulators (MR)) that are causally responsible for the implementa-
tion of the observed differential expression patterns. After applying this
methodology for the comparison of two well-known cancer signatures,
the authors observed that a common set of MRs for both signatures
existed, which also displayed a good classification performance.

Given this great deal of controversy about cancer signatures, the aim
of our work was to determine the existence of a putative common tumor
cell phenotype associated with different cancer types and conditions, by
the study and comparison of the signatures at the genome, transcriptome
and interactome levels. Interestingly, our study suggested the existence
of common design principles in a system level cellular model, illustrated
by transcriptome-interactome correlations, not only of prognostic sig-
natures but also of metastasis and treatment response signatures. More
specifically, our work identified common molecular properties and net-
work interactions associated with cell proliferation and death, as well
as associations with the immune response. Some previously published
studies had also found profile convergence, but only for breast cancer
prognosis signatures [168, 186, 229], while our study included a more
comprehensive and diverse set of gene expression profiles.

Some concerns about the statistical methodology or the experimen-
tal design applied in profiling studies have been recently raised [57].
Regarding our work, Drier et al. [57] have also argued that there is no
such biological convergence in cancer signatures, but their conclusions
are partial, since they only focus on two signatures of breast cancer
prognosis [213, 221]. Furthermore, they are unable to technically criticize
our study, and just state that our results may not be reflecting a real
convergence of the signatures but only their prognosis potential. How-
ever, all their analysis only focuses on the two above mentioned breast
cancer signatures, and they do not take into account that our analysis not
only included prognosis signatures, but also metastasis and treatment
response, which are obviously linked to prognosis but are not strictly the
same.

We must also notice that, while our study provided the first evidence
of convergence of prognostic, metastasis and predictive signatures in
these processes, other processes or signaling pathways are probably
represented and diverse specificities may exist. Nonetheless, our work
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confirms the usefulness of systems biology approaches for the biological
untangling of the complex molecular wiring diagram of the processes
participating in cancer signatures.

8.4 strong and weak points of the studies

The three studies presented in this thesis are based on the analytical
integration of different types of large-scale data to unveil diverse aspects
about the underlying molecular basis of cancer: a functional characteriza-
tion of cancer mutated genes; searching for MYC cis-regulatory elements
related to prostate cancer in 8q24 gene-desert region; and the characteri-
zation of a large set of cancer profiles to uncover their potential biological
convergence. These type of integrative analyses have been proven to be
essential to reach a deeper understanding of the initiation and evolution
of the tumorigenic process.

A strong point of this thesis is the multiple and diverse types of data
that have been analyzed. This includes DNA data used for assessing
SNP association, LOH, copy number or TFBS enrichment analysis. RNA
expression data have been used to assess differential gene expression,
gene-gene correlations, unsupervised clusterings, survival analysis, func-
tional enrichments (gene set enrichment analysis (GSEA)) and transcrip-
tional regulatory networks inference (algorithm for the reconstruction of
accurate cellular networks (ARACNe)). Protein-protein interaction (PPI)
data have been used to perform network analysis. Furthermore, DNA
(SNP, LOH and copy number) and RNA (gene expression) data have been
linked to evaluate the impact of DNA alterations in the transcriptional
activity of affected genes. Besides the comprehensive analytical approach,
statistical and bioinformatics analysis have been carefully performed.
Therefore, we have always taken into account the large number of statis-
tical tests performed and thus have adjusted p-values for multiple testing.

Another interesting point about our proposed work is that our data
sources are mainly based on public repositories, such as Gene Expression
Omnibus (GEO)1 or ArrayExpress2. This fact demonstrates the great util-
ity of these public databases, which were designed to allow researchers to
access and further exploit data previously used for other studies. Public
sharing of all generated data is essential to obtain the most out of it, and
therefore currently it has become indispensable for publishing results on
international peer-reviewed journals.

1 http://www.ncbi.nlm.nih.gov/geo/.
2 http://www.ebi.ac.uk/arrayexpress/.

http://www.ncbi.nlm.nih.gov/geo/
http://www.ebi.ac.uk/arrayexpress/
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The use of public data, however, also brings some drawbacks that
must not be neglected. In public repositories the quality of the uploaded
data is generally not assessed, so we might encounter datasets of low
quality which can add a great amount of statistical noise to our analysis.
Furthermore, sometimes there is also a lack of information about the
experimental design used, or even the information about the hybridized
samples is very reduced or missing. If not taken into account, all these
facts could preclude us to obtain reliable results from our analysis. Thus,
we have always carefully checked the quality of our data, and have used
only datasets that have provided the required information to perform
our analyses. We are also aware that some of the datasets we have used
for data analysis are relatively small, and that has a direct impact in our
statistical power to detect biologically relevant differences.

Another limitation of the studies presented in this thesis is the lack
of epigenetic data. It is notorious the role of epigenetics in cancer, and
the integration of methylation and miRNA expression data with mRNA
expression and copy number variation data would unquestionably have
yielded more complete results. However, at the time we were conducting
the analyses, large-scale miRNA or methylation platforms were still not
widely spread, and publicly accessible datasets were very limited and
reduced in sample size.

Finally, we would also like to comment on the heterogeneity in the type
of cancer studied in each of the three articles. The first work is focused
in breast cancer, while the second is focused on prostate cancer and the
third can be seen as a multi-cancer analysis, since it includes a diverse
set of cancer profiles. The main reason for this lack of specificity is due
to the eventual availability of public data on the matter of study. We are
aware that the study of a single type of cancer would have offered a more
detailed view of one of these pathologies. However, our main aim for this
thesis was to demonstrate the usefulness of integrative approaches for
the study of complex diseases, such as cancer, more than dealing with a
specific tumor localization.

8.5 future directions: the colonomics project

The limitations stated in the previous section about using public data, as
well as our awareness about the importance of the integration of multiple
types of data for the study of cancer, led our group to embark in an
ambitious project that could overcome most if not even all of them. This
project was born about a year and a half ago, and it is called COLO-
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NOMICS3.

The COLONOMICS project main objective is to find biomarkers of diag-
nosis and prognosis for early stage colon cancer. Moreover, its secondary
objective is to reach a better understanding of the complex molecular
basis underlying this highly-incident tumor. To achieve these goals, we
have collected a curated set of homogeneous samples, consisting of paired
normal-tumor frozen tissue from 100 stage-II colon cancer from previ-
ously untreated patients, who underwent radical surgery. Besides, fresh
normal colonic mucosa was also obtained from 50 individuals who ap-
peared to be completely healthy after undergoing a routine colonoscopy.
We have also collected blood samples from all the subjects participating
in the study for further experiments. Among all the cancer cases, we have
21 patients who relapsed and developed metastasis, with a minimum
follow-up of 3 years was required to be included in the study. Overall, the
number of samples included in the study is 250 (Fig. 22). We have also
collected complete epidemiological information (i. e. anthropometrical
measures, dietary habits, tobacco and alcohol consumption, physical
activity, former medical prescriptions, family history of cancer). From
healthy controls a reduced set of epidemiological information was also
obtained. This information can be useful to complement our findings and
control for any potential confounding variables.

For each one of these 250 samples, we have extracted DNA and RNA,
and have obtained multiple biological information at a genome-wide
level. Before performing any experiment we have applied strict qual-
ity control procedures on the samples to avoid possible errors during
sample manipulation and ensure sample quality. Regarding DNA, we
have collected SNP and copy number data (Genome-Wide Human SNP
Array 6.0), as well as genome-wide CpG methylation data (Illumina
450K Infinium Methylation BeadChip). As for RNA, mRNA expression
(Affymetrix Human Genome U219 Array Plate) and quantitative small-
RNA sequencing (Applied Biosystems SOLiD 4) have also been obtained.
For a more detailed information about mutational status of the samples,
paired normal-tumor complete exome sequencing for 41 of the 100 cases
(21 developing metastasis and 20 who did not relapse) is currently under-
going. Furthermore, paired normal-tumor exome sequencing will be soon
obtained for 41 cases (21 developing metastasis and 20 not relapsing).

Up to date, we have been working expression data with promising
results. We are currently testing potential early-diagnosis candidates as
the ones shown in Figure 23. We have also modeled the transcriptional

3 http://www.colonomics.org/.

http://www.colonomics.org/
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Figure 22: Experimental design of the COLONOMICS project.

networks of normal and tumor sample from cases, obtaining striking
differences in both networks (Fig. 24). Regarding prognosis, it seems that
gene expression data is not informative enough to accurate predict the
metastatic potential of an individual, so we are planning to incorporate
copy number, miRNA and methylation information to the predictive
models.

With the COLONOMICS project we will hopefully be able to overcome
all the limitations of the current studies stated in the previous section.
We have a homogeneous, high-quality and curated set of samples, with
complete epidemiological and clinical information. Using an accurate
experimental design that avoids any potential biases, we have obtained
large scale data for all the set of samples, both at the genetic and epige-
netic level. Moreover, the consistency of the study is assured, since it is
completely focused on colon cancer.

8.6 potential impact in oncology : transference of knowl-
edge into the clinical practice

In this thesis it has been demonstrated how the application of integrative
analytical methods can help researchers to obtain a deeper knowledge
of complex diseases, which in our case have been paradigmatically rep-
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Figure 23: Potential diagnosis biomarkers for early stage colon cancer. Messenger
RNA expression levels of two genes, labeled A and B, for healthy
mucosa (M) and paired normal (N) and tumor (T) tissue from colon
cancer cases. The y-axis represents the intensity value obtained from
the microarray hybridizations. Notice that Gene A is only expressed
in tumors, while Gene B is highly expressed in both normal and
tumor tissue of the cases. Both genes display very low expression
levels in healthy individuals. If the proteins resulting from these
genes are secreted to the main bloodstream, these two genes could be
potential suitable candidates for colon cancer early diagnosis.

resented by cancer. Nonetheless, this deeper understanding of cancer
unquestionably needs to be translated into the clinical practice if we want
to improve our current management of the pathology.

Systems biology approaches can be helpful in detecting new genes
likely involved in the carcinogenic process, or new biomarkers potentially
related to cancer diagnosis, prognosis or response to treatment. This is
the case of the study where we have analyzed the set of genes mutated
in breast tumors. Our integrative analysis was able to prioritize the list of
mutated genes and detected DBN1 as a potential new oncogene which,
as well as SPTAN3, seemed to be associated with breast cancer survival.
Further studies would be required to functionally characterize their bi-
ological role in breast cancer tumorigenesis, or to assess their possible
utility for breast cancer profiling.
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Figure 24: Direct transcriptional regulatory networks of normal (left) and tumor
(right) tissue from the same set of individuals. Networks were built
with the ARACNe algorithm. Notice the huge differences in number
of genes and interactions between both networks. This fact points to
a complete deregulation of the transcriptional machinery in colon
tumors, which had not been described before.

Integrative methodologies can also be useful to unveil cellular mecha-
nistic processes of cancer susceptibility. By combining gene expression
and genotype data it is possible to detect new functional susceptibility
variants and study the processes through which they mediate cancer risk.
This is what we have presented in the second study, which uncovers
a long-range cis-regulatory variant of MYC related to prostate cancer
susceptibility. Knowledge of all these variants can have a direct clinical
impact in procedures of cancer risk assessment. Furthermore, by un-
derstanding the mechanistic processes underlying these risk variants it
might be possible to modulate the risk before the tumor appears.

Due to the need of more accurate and personalized tools for clinical
diagnosis and prognosis assessment, cancer profiling has been a widely
studied topic of research in the last years. Once these new molecular-
based tests become available, clinicians will no longer be limited to
current pathological-based classification criteria. However, the apparent
heterogeneity in the signatures designed up to date precludes their im-
minent application into the clinical routine. Therefore, understanding the
relationship between different cancer profiles, which is what we have pre-
sented in the third article, can be helpful to understand how signatures
biologically relate to each other and eventually can lead researchers to
design new reliable and reproducible profiles that could ultimately help
clinicians to apply reliable and personalized treatment procedures.
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As a complex disease, clinical management of cancer entails so many
difficulties that it makes completely necessary to thoroughly comprehend
the basis of the disease from different points of view. Since cancer is
based on multiple alterations at many molecular levels, only by screening
tumor cells at a large scale level and integrating the resulting information
we will be able to design better biomarkers for diagnosis and prognosis,
or find new potentially therapeutic targets. Therefore, these new systems-
paradigm can hopefully help to improve our lives and the lives of those
people who will avoid suffering from disease in the mid-term future.



9
C O N C L U S I O N S

In this thesis we have applied integrative analyses of multiple and het-
erogeneous large-scale cancer datasets in three different scenarios. The
first study aimed to characterize a set of breast cancer mutated genes to
identify which of them could be more likely to be related to the oncogenic
process. In the second work, we modeled genetic and genomic data to
detect and unveil the biological mechanistic processes underlying cancer
risk modulation for a specific genomic region associated to different
prostate cancer and other type of tumors. Finally, in the third study we
characterized multiple cancer signatures at the genome, transcriptome
and interactome levels to assess their biological properties and search for
a putative common cancer cell phenotype.

Conclusions are exposed for each one of the specific objectives raised
at the beginning of this thesis. Finally, a general summarizing conclusion
is also exposed.

- Integrative analysis and characterization of breast cancer mutated genes

• The integrative analysis of genomic copy number and expression
data strongly indicates that DBN1 is a candidate oncogene that,
when highly expressed in tumors with respect to healthy tissues,
predicts poor survival in breast cancer patients.

• Low expression ratios of ABCA3 and low or medium expression
ratios of SPTAN1 may also predict poor survival in breast cancer
patients.

• The interactome analysis of molecular pathways provides new hy-
potheses for the identification of genes potentially associated with
survival outcome. SPTAN1 interacts with GRIN2D and SLC9A2,
both of which interact with the product of the ABL1 proto-oncogene.
Activated ABL1 kinase promotes invasion of breast cancer cells.
Since low expression ratios of SPTAN1 predict poor survival, SP-
TAN1 could therefore act as a negative regulator of ABL1 activity.

- Genetic and genomic analysis modeling of germline MYC overexpression
and cancer susceptibility

111
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• Quantitative analysis of gene expression in normal prostate tissues
supports the model of MYC overexpression associated with 8q24-
region 1 of prostate cancer risk.

• Germline MYC overexpression may promote cellular transformation
of the normal epithelium and, by extension, risk of prostate cancer
by down-regulating the prostate tumor suppressor KLF6 gene.

- Biological convergence of cancer signatures

• Significant associations for multiple cancer signatures have been
consistently observed across genome, transcriptome and interac-
tome layers, pointing to the existence of a common cancer cell
phenotype that decisively influences critical aspects of neoplasia.

• Convergence on cell proliferation and death supports the pivotal in-
volvement of these processes in prognosis, metastasis and treatment
response.

• Functional and molecular associations have been identified with
the immune response in different cancer types and conditions that
complement the contribution of cell proliferation and death.

- General conclusion

• The application of integrative analytical methods to large-scale ge-
nomic, transcriptomic and protein interactome data is essential for a
better understanding of cancer. Through this systems approach, not
only we will better comprehend the molecular basis of the disease,
but also we will be able to identify new biomarkers of diagnosis,
prognosis, response to treatment and new drug targets, which will
could have an ultimate impact in the clinical management of the
disease in the following years.
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Part V

A D D E N D A





A
C U R R I C U L U M V I TA E A N D O T H E R C O N T R I B U T E D
P U B L I C AT I O N S

In the following pages, you will find a brief biosketch that summarizes
my academic and research experience, as well as the first page of all the
scientific articles in which I have collaborated.

During more than ten years of research experience, not only I have ded-
icated to my thesis, but also collaborated with many researchers within
and outside my institution. Undoubtedly, this collaboration has been
doubly fruitful to me. On one hand, it has enabled me to participate in
many different studies which have eventually been published in interna-
tional peer-reviewed journals. On the other hand, and most importantly,
it has allowed me to get in touch with many different aspects of cancer,
medicine, biology, genetics, systems biology, bioinformatics and statistics.
I must say that, by dealing with this, I have perceived the complexity of
the problem we are facing, and I have realized that only through strong
collaboration and integration of multidisciplinary efforts we will be able
to succeed in this overwhelming task that is defeating cancer. Therefore,
I can only be extremely grateful to all the researchers that have allowed
me to learn something from them along this stage of my research career.

I hope all of them enjoyed our collaboration as much as I did.
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was recorded. Candidate SNPs identified will be validated in an independent sample of 800 subjects. 

 
• FP7-HEALTH-2007-B / 223378 2009-12 € 569,400 

Project: HiPerDART - Development of High Performance Diagnostic Array Replication Technology. 
Role: Co-investigator. 
The HiPerDART project aims to develop, using a novel printing technology called Supramolecular 
NanoStamping (SuNS), a higher standard of clinical microarray technology that promises to 
dramatically improve the reliability of medical tests. This technology will be tested in a clinical 
application to provide a prognostic and predictive tool based on a comprehensive set of genomic 
markers selected using state of the art bioinformatics techniques. Patients diagnosed with stage II 
colorectal cancer could benefit from a molecular staging prognostic tool to indicate the need of adjuvant 
chemotherapy. 
 

• FIS PI081635      2009-11 € 241,395 
Fondo de Investigaciones de la Seguridad Social, Instituto de Salud Carlos III, Spanish Ministry of 
Health. 
Project: Identification of novel candidate genes using gene regulatory networks. 
Role: Co-investigator. 
A new methodology is proponed to identify new genetic markers of susceptibility and/or prognosis in 
colorectal cancer. It is based on the analysis of complex data from SNPs, CNV and expression, 
combined with external sources through techniques of systems biology. Paired normal mucosa and 
tumor samples from 100 individuals will be analyzed for expression with microarrays. In the same 
subjects, genetic variability (SNPs and CNV) be analyzed using 500K chips and, in tumors, allelic 
imbalances with aCGH. Gene expression data, variation data, and other external data sources 
available as gene ontology, pathways and literature will be combined using network theory to identify 
relationships between genes. 
 

• FIS PI081359      2009-11 € 99,220 
Fondo de Investigaciones de la Seguridad Social, Instituto de Salud Carlos III, Spanish Ministry of 
Health. 
Project: ENTERICOS - disinfection by-products and other environmental, genetic and molecular  
determinants of colorectal cancer. 
Role: Co-investigator. 
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ENTERICOS is a case-control study to evaluate the risk of colorectal cancer associated to exposure to 
disinfection by-products (DBP) and the interaction with genetic factors measured as polymorphisms in 
genes related to metabolism, DNA repair or inflammatory response. 
 

H. Patents 
• Inventors: Peinado MA, Risques RA, Vendrell E, Capellà G, Grau M, Obrador A, Tarafa G, Moreno V, 

Solé X, Rosell E, Piulats J. 
Title: Genetic analysis of biological samples in arrayed expanded representations of their nucleic acids 
Application #: 02797953.3 
Priority country: Spain 
Year: 2002 
Holder: MEFA - Merck Farma y Química, S.A. 
 
 

I. Oral communications in international meetings 
• October 2011: 6th Annual DREAM on Reverse Engineering Challenges, 7th Annual RECOMB 

Satellite on Systems Biology, 8th Annual RECOMB Satellite on Regulatory Genomics& 1st IDIBELL 
Conference on Cancer Informatics (RICCI). Masters Regulators of Metastasis in Early Stage 
Colon Cancer. 
 

J. Other 
List of most relevant meetings, courses and seminars attended 
• June 2009: 17th Annual International Conference on Intelligent Systems for Molecular Biology 

(ISMB) & 8th European Conference on Computational Biology (ECCB), Stockholm (Sweden). 
• Nov. 2006: 7th Annual Spanish Bioinformatics Conference, Zaragoza (Spain).  
• Dec. 2004: 5th Annual Spanish Bioinformatics Conference, Barcelona (Spain).  
• Oct. 2004: Special AACR conference on Advances in Proteomics in Cancer Research, Miami 

(USA).  
• May 2003: Course on Computational and Statistical Aspects of Microarray Analysis, Università degli 

Studi, Milano (Italy).  
• Apr. 2003: Seminar on Cancer: molecular targets for novel therapies, Lilly Foundation, Madrid 

(Spain).  
• Jun. 2002: Course on Design and Analysis of DNA Microarray Experiments, Pompeu Fabra 

University, Barcelona (Spain).  
• Apr. 2002: Workshop on Bioinformatics and Computational Biology, BBVA Foundation, Madrid 

(Spain).  
• Apr. 2002: DNA microarrays 2002 meeting, Madrid (Spain).  
• Apr. 2001: DNA microarrays 2001 meeting, Madrid (Spain).  
• Apr. 2001: 3rd meeting on Microarray Databases, Standards and Ontologies (MGED3), Stanford 

University, Palo Alto (USA).  
• Nov. 2000: Data Mining workshop, Mathematics and Statistics College (FME), Technical University 
 of Catalonia (UPC), Barcelona (Spain).  
 
Languages 
• Spanish: mother tongue.  
• Catalan: mother tongue.  
• English: Fluent level of reading, writing and speaking. Certificate of Proficiency in English diploma 

by the University of Cambridge.  
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The use of caspase inhibitors in pulsed-field gel
electrophoresis may improve the estimation of
radiation-induced DNA repair and apoptosis
Josep Balart1,5*, Gemma Pueyo1, Lara I de Llobet1, Marta Baro1, Xavi Sole2, Susanna Marin3, Oriol Casanovas1,
Ricard Mesia4, Gabriel Capella1

Abstract

Background: Radiation-induced DNA double-strand break (DSB) repair can be tested by using pulsed-field gel
electrophoresis (PFGE) in agarose-encapsulated cells. However, previous studies have reported that this assay is
impaired by the spontaneous DNA breakage in this medium. We investigated the mechanisms of this
fragmentation with the principal aim of eliminating it in order to improve the estimation of radiation-induced DNA
repair.

Methods: Samples from cancer cell cultures or xenografted tumours were encapsulated in agarose plugs. The cell
plugs were then irradiated, incubated to allow them to repair, and evaluated by PFGE, caspase-3, and histone
H2AX activation (gH2AX). In addition, apoptosis inhibition was evaluated through chemical caspase inhibitors.

Results: We confirmed that spontaneous DNA fragmentation was associated with the process of encapsulation,
regardless of whether cells were irradiated or not. This DNA fragmentation was also correlated to apoptosis
activation in a fraction of the cells encapsulated in agarose, while non-apoptotic cell fraction could rejoin DNA
fragments as was measured by gH2AX decrease and PFGE data. We were able to eliminate interference of
apoptosis by applying specific caspase inhibitors, and improve the estimation of DNA repair, and apoptosis itself.

Conclusions: The estimation of radiation-induced DNA repair by PFGE may be improved by the use of apoptosis
inhibitors. The ability to simultaneously determine DNA repair and apoptosis, which are involved in cell fate,
provides new insights for using the PFGE methodology as functional assay.

Background
The use of pulsed-field gel electrophoresis (PFGE) is
widespread in the evaluation of DNA fragmentation
caused by double-strand breaks (DSBs) following ioniz-
ing radiation [1-4]. The DNA-DSBs may result in the
formation of small (often acentric) chromosomal frag-
ments. Following this initial damage, cells activate DNA
repair mechanisms to prevent catastrophic mitosis and
cell death due to the loss of acentric DNA fragments
[5]. The principle of PFGE methodology is that the
release of DNA from cells correlates adequately with the
intensity of DNA fragmentation [6]. The estimation of

DNA repair by PFGE is based on the diminution of
DNA released from cells as the length of the DNA frag-
ments increases through the process of rejoining. Thus,
a decrease in the ratio of DNA extracted from the cells
over a period of time can be used as an evaluation of
DNA repair [7].
In the PFGE technique, cells are encapsulated in agar-

ose to form cell-plugs, thus preventing physic damage of
the cells while facilitating their manipulation and place-
ment into agarose gels where electrophoresis will take
place. Usually in laboratory routine, cells are encapsu-
lated after a period of repair which is allowed to occur
in physiological conditions such as either cell cultures
or xenografts. Thus, extraction ratios depend exclusively
on induced and repaired DNA damage. While the
desired strategy is to encapsulate cells after the period

* Correspondence: jbalart@iconcologia.net
1Translational Research Laboratory - IDIBELL, Institut Català d’Oncologia,
L’Hospitalet de Llobregat, Spain
Full list of author information is available at the end of the article

Balart et al. Radiation Oncology 2011, 6:6
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T-ALL is an aggressive hematologic tumor resulting from the 
malignant transformation of T cell progenitors. The TLX1 oncogene is 
translocated and aberrantly expressed in 5–10% of pediatric and up to 
30% of adult T-ALL cases1–4. In addition, TLX3, a closely related TLX 
family member, is overexpressed as a result of the t(5;14)(q35;q32) 
translocation in about 25% of pediatric T-ALLs and in 5% of adult  
T-ALL cases5. TLX1 expression defines a distinct molecular group 
of T-ALL characterized by a differentiation block at the early corti-
cal stage of thymocyte development2 and a favorable prognosis1,2,6. 
Moreover, TLX1 and TLX3 leukemias seem to constitute a distinct 
oncogenic group with specific genetic alterations rarely found in  
non–TLX-induced T-ALLs, including the rearrangement of the 
NUP214-ABL1 oncogene7 (a fusion of the gene encoding 214-kDa 
nucleoporin and c-abl oncogene-1, non–receptor tyrosine kinase) 

and mutations in the WT1 (encoding Wilms tumor-1 homolog)8 
and PHF6 (encoding PHD finger protein-6)9 tumor suppressor genes. 
However, little is known about the specific mechanisms that mediate 
T cell transformation downstream of TLX1. To address this question, 
we have used an integrative genomic approach to characterize the 
transcriptional programs and oncogenic pathways active in human 
and mouse TLX1-induced leukemia.

RESULTS
T-ALL development in TLX1-transgenic mice
To investigate the mechanisms of T cell transformation driven by 
TLX1, we generated p56Lck-TLX1 transgenic mice in which the Lck 
proximal promoter drives expression of TLX1 in T cell progenitors10,11. 
TLX1-transgenic mice from three founder lines showed accelerated 

1Institute for Cancer Genetics, Columbia University, New York, New York, USA. 2Department of Molecular and Developmental Genetics, VIB, Leuven, Belgium.  
3Center for Human Genetics, K.U. Leuven, Leuven, Belgium. 4Department of Pathology, Columbia University Medical Center, New York, New York, USA. 5Department 
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IDIBELL, L’Hospitalet, Barcelona, Spain. 8Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York, USA. 9The Genetics Branch, 
Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA. 10Department of Cancer Biology, University of Massachusetts Medical School, 
Worcester, Massachusetts, USA. 11Department of Pathology, University of Chicago, Chicago, Illinois, USA. 12Departments of Medicine and Pathology, Beth Israel 
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USA. 19Rambam Medical Center and Technion, Israel Institute of Technology, Haifa, Israel. 20Assistance publique—Hôpitaux de Paris Hematology Laboratory 
and Institut National de la Santé et de la Recherche Médicale U944, Hôpital Saint-Louis, Paris, France. 21Université Paris 7-Denis Diderot, Institut Universitaire 
d’Hematology, Hôpital Saint-Louis, Paris, France. 22Assistance publique—Hôpitaux de Paris, Hôpital Robert Debré, Département de Génétique, Université Paris 
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Memphis, Tennessee, USA. 25Department of Pediatric Oncology/Hematology, Erasmus MC-Sophia Children’s Hospital, Rotterdam, The Netherlands. 26Joint Centers for 
Systems Biology, Columbia University, New York, New York, USA. 27Current address: Andalusian Stem Cell Bank, Centro de Investigacion Biomedica, Granada, Spain. 
28These authors contributed equally to this work. Correspondence should be addressed to A.A.F. (af2196@columbia.edu).

Received 31 March; accepted 21 September; published online 24 October 2010; doi:10.1038/nm.2246

The TLX1 oncogene drives aneuploidy in T cell transformation
Kim De Keersmaecker1–3,28, Pedro J Real1,27,28, Giusy Della Gatta1,28, Teresa Palomero1,4, Maria Luisa Sulis1,5, 
Valeria Tosello1, Pieter Van Vlierberghe1, Kelly Barnes1, Mireia Castillo4, Xavier Sole6,7, Michael Hadler1,  
Jack Lenz8, Peter D Aplan9, Michelle Kelliher10, Barbara L Kee11, Pier Paolo Pandolfi12, Dietmar Kappes13,  
Fotini Gounari14, Howard Petrie15, Joni Van der Meulen16, Frank Speleman16, Elisabeth Paietta17,18,  
Janis Racevskis17,18, Peter H Wiernik17,18, Jacob M Rowe19, Jean Soulier20,21, David Avran20,21, Hélène Cavé22,  
Nicole Dastugue23, Susana Raimondi24, Jules P P Meijerink25, Carlos Cordon-Cardo4, Andrea Califano1,26 & 
Adolfo A Ferrando1,4,5

The TLX1 oncogene (encoding the transcription factor T cell leukemia homeobox protein-1) has a major role in the pathogenesis 
of T cell acute lymphoblastic leukemia (T-ALL). However, the specific mechanisms of T cell transformation downstream of 
TLX1 remain to be elucidated. Here we show that transgenic expression of human TLX1 in mice induces T-ALL with frequent 
deletions and mutations in Bcl11b (encoding B cell leukemia/lymphoma-11B) and identify the presence of recurrent mutations 
and deletions in BCL11B in 16% of human T-ALLs. Most notably, mouse TLX1 tumors were typically aneuploid and showed 
a marked defect in the activation of the mitotic checkpoint. Mechanistically, TLX1 directly downregulates the expression of 
CHEK1 (encoding CHK1 checkpoint homolog) and additional mitotic control genes and induces loss of the mitotic checkpoint 
in nontransformed preleukemic thymocytes. These results identify a previously unrecognized mechanism contributing to 
chromosomal missegregation and aneuploidy active at the earliest stages of tumor development in the pathogenesis of cancer.
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Biological reprogramming in acquired resistance to endocrine therapy

of breast cancer

H Aguilar1, X Solé2,3, N Bonifaci2,3, J Serra-Musach2,3, A Islam4, N López-Bigas4, M Méndez-
Pertuz5, RL Beijersbergen6, C Lázaro7, A Urruticoechea1 and MA Pujana1,2,3
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Endocrine therapies targeting the proliferative effect of
17b-estradiol through estrogen receptor a (ERa) are the
most effective systemic treatment of ERa-positive breast
cancer. However, most breast tumors initially responsive
to these therapies develop resistance through molecular
mechanisms that are not yet fully understood. The long-
term estrogen-deprived (LTED) MCF7 cell model has
been proposed to recapitulate acquired resistance to
aromatase inhibitors in postmenopausal women. To
elucidate this resistance, genomic, transcriptomic and
molecular data were integrated into the time course of
MCF7–LTED adaptation. Dynamic and widespread
genomic changes were observed, including amplification
of the ESR1 locus consequently linked to an increase in
ERa. Dynamic transcriptomic profiles were also observed
that correlated significantly with genomic changes and
were predicted to be influenced by transcription factors
known to be involved in acquired resistance or cell
proliferation (for example, interferon regulatory tran-
scription factor 1 and E2F1, respectively) but, notably,
not by canonical ERa transcriptional function. Consis-
tently, at the molecular level, activation of growth factor
signaling pathways by EGFR/ERBB/AKT and a switch
from phospho-Ser118 (pS118)- to pS167-ERa were
observed during MCF7–LTED adaptation. Evaluation
of relevant clinical settings identified significant associa-
tions between MCF7–LTED and breast tumor transcrip-
tome profiles that characterize ERa-negative status, early
response to letrozole and tamoxifen, and recurrence after
tamoxifen treatment. In accordance with these profiles,
MCF7–LTED cells showed increased sensitivity to
inhibition of FGFR-mediated signaling with PD173074.
This study provides mechanistic insight into acquired

resistance to endocrine therapies of breast cancer and
highlights a potential therapeutic strategy.
Oncogene advance online publication, 16 August 2010;
doi:10.1038/onc.2010.333

Keywords: aromatase inhibition; breast cancer; estrogen
receptor; fibroblast growth factor receptor; long-term
estrogen-deprived; MCF7

Introduction

Endocrine therapies are the most effective systemic
treatment of estrogen receptor a (ERa)-positive breast
cancer, and over two-thirds of patients are considered to
present with this kind of disease (EBCTCG, 1998;
Chlebowski et al., 2002; Winer et al., 2002). Two major
strategies mediate the efficacy of these therapies. Drugs
directed at ERa, mainly tamoxifen and fulvestrant,
impede its binding to 17b-estradiol (17bE2) and, as a
result, canonical ERa-dependent transcriptional regula-
tion (Dowsett et al., 2005b). In contrast, the activity of
aromatase inhibitor (AIs), which are the most effective
treatment of breast cancer in postmenopausal women
(the largest group of patients), is based on almost
complete deprivation of estrogen production (Geisler
et al., 2002). However, although endocrine therapies are
initially effective, resistance occurs both in the form of
tumor relapse after excision during adjuvant treatment
and as a near-universal event when tumors cannot be
excised. Importantly, acquired resistance is not com-
monly associated with the conversion to ERa-negative
of previous ERa-positive breast tumors. Nevertheless,
changes in ERa expression have been found in some
series (Johnston et al., 1995).

Current literature supports the hypothesis that
acquired resistance is mainly mediated by molecular
events that—particularly in the case of resistance to
AIs—lead to constitutive activation of ERa and growth
factor signaling pathway cross-talk (Clarke et al., 2003;Received 16 February 2010; revised 22 June 2010; accepted 28 June 2010
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Chapter 7
Analysis of Population-Based Genetic
Association Studies Applied to Cancer
Susceptibility and Prognosis

Xavier Solé, Juan Ramón González, and Vı́ctor Moreno

Abstract Along hundreds of thousands of years, genetic variation has been the
keystone for human evolution and adaptation to the surrounding environment. Al-
though this fact has supposed a great progress for the species, mutations in our
DNA sequence may also lead to an increased risk of developing some diseases with
an underlying genetic basis, such as cancer. Among different genetic epidemiology
branches, population-based association studies are one of the tools that can help us
decipher which of these mutations are involved in the appearance or progression
of the disease. This chapter aims to be a didactic but thorough review for those
who are interested in genetic association studies and its analytical methodology. It
will mainly focus on SNP-array analysis techniques, covering issues such as quality
control, assessment of association with disease, gene–gene and gene–environment
interactions, haplotype analysis, and genome-wide association studies. In the last
part, some of the existing bioinformatics tools that perform the exposed analyses
will be reviewed.

7.1 Genetic Variation and Its Implication in Cancer

The implication of genes in cancer has long been suspected because this disease
shows familial aggregation, in some instances remarkably. The study of cancer
cells shows extensive genomic alterations, ranging from mutations in target genes –
known as oncogenes and tumor suppressor genes – to large chromosomal aberra-
tions. These alterations are supposed to be triggered by initial events that accumulate
and confer the cancer cells proliferation advantage and escape to control of DNA
damage. Alterations are acquired during the carcinogenesis process and are called
somatic alterations. However, individuals that carry alterations in germ line are

X. Solé (�)
Biostatistics and Bioinformatics Unit, Catalan Institute of Oncology – IDIBELL, Av. Gran Via s/n
Km 2.7, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
e-mail: x.sole@iconcologia.net

T. Pham (ed.), Computational Biology: Issues and Applications in Oncology,
Applied Bioinformatics and Biostatistics in Cancer Research,
DOI 10.1007/978-1-4419-0811-7 7, c� Springer Science+Business Media, LLC 2009
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Gene expression profiling integrated into network modelling
reveals heterogeneity in the mechanisms of BRCA1 tumorigenesis

R Fernández-Ramires1, X Solé2, L De Cecco3,4, G Llort5, A Cazorla6, N Bonifaci2, MJ Garcia1, T Caldés7,
I Blanco5, M Gariboldi3,4, MA Pierotti3,4, MA Pujana*,2, J Benı́tez1 and A Osorio*,1

1Human Genetics Group Human Cancer Genetics Program, Spanish National Cancer Center (CNIO) and CIBERER, Melchor Fernández Almagro, 3,
Madrid 28029, Spain; 2Biostatistics and Bioinformatics Unit, and Translational Research Laboratory, Catalan Institute of Oncology, IDIBELL, L’Hospitalet,
Av. Gran Via s/n km, 2,7, Barcelona 08907, Spain; 3Fondazione Istituto Nazionale dei Tumori, Milan, Italy; 4Fondazione Istituto FIRC Oncologia
Molecolare, Via Giacomo Venezian 1, Milan, Milano 20133, Italy; 5Genetic Counseling Unit, Catalan Institute of Oncology, IDIBELL, L’Hospitalet, Av. Gran
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BACKGROUND: Gene expression profiling has distinguished sporadic breast tumour classes with genetic and clinical differences. Less is
known about the molecular classification of familial breast tumours, which are generally considered to be less heterogeneous. Here,
we describe molecular signatures that define BRCA1 subclasses depending on the expression of the gene encoding for oestrogen
receptor, ESR1.
METHODS: For this purpose, we have used the Oncochip v2, a cancer-related cDNA microarray to analyze 14 BRCA1-associated
breast tumours.
RESULTS: Signatures were found to be molecularly associated with different biological processes and transcriptional regulatory
programs. The signature of ESR1-positive tumours was mainly linked to cell proliferation and regulated by ER, whereas the signature
of ESR1-negative tumours was mainly linked to the immune response and possibly regulated by transcription factors of the REL/NFkB
family. These signatures were then verified in an independent series of familial and sporadic breast tumours, which revealed a possible
prognostic value for each subclass. Over-expression of immune response genes seems to be a common feature of ER-negative
sporadic and familial breast cancer and may be associated with good prognosis. Interestingly, the ESR1-negative tumours were
substratified into two groups presenting slight differences in the magnitude of the expression of immune response transcripts and
REL/NFkB transcription factors, which could be dependent on the type of BRCA1 germline mutation.
CONCLUSION: This study reveals the molecular complexity of BRCA1 breast tumours, which are found to display similarities to
sporadic tumours, and suggests possible prognostic implications.
British Journal of Cancer (2009) 101, 1469 – 1480. doi:10.1038/sj.bjc.6605275 www.bjcancer.com
& 2009 Cancer Research UK

Keywords: gene expression profiling; BRCA1-associated tumours; prognosis
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Breast cancer is a complex disease, encompassed by different
clinically and molecularly stratified entities. In 2000, Perou
and colleagues demonstrated that tumour phenotypic diversity
correlates with differences in global gene expression patterns,
which in turn reflect aspects of the biological behaviour of the
tumours (Perou et al, 2000). This study and subsequent ones
(Sorlie et al, 2001; van‘t Veer et al, 2002; Bertucci et al, 2006)
provide detailed analysis of correlations with histopathological and
clinical characteristics.

The level of expression of the oestrogen receptor (ER) is a key
feature that divides breast tumours into two main clusters.
ER-positive tumours include the luminal A and luminal B
subclasses showing different prognosis (Perou et al, 2000).

Tumours with very low or no detectable expression of ER can be
classified into HER2/ErbB2-positive, normal breast-like and basal-
like (Perou et al, 2000; Sorlie et al, 2001). The first subclass is
characterised by over-expression of ERBB2 and other genes at the
17q22 amplicon. Normal breast-like tumours show high hetero-
geneity, with expression of genes related to the adipose tissue and
other nonepithelial cells (Sorlie et al, 2001). Finally, the basal-like
subclass is known to be negative for HER2/ErbB2, ER and the
progesterone receptor (PR), and characterised by the expression of
genes from the basal epithelium with high frequency of TP53
mutations (Sorlie et al, 2001; Foulkes et al, 2004; Bertucci et al,
2006; Turner and Reis-Filho, 2006; Yehiely et al, 2006; Adelaide
et al, 2007; Jumppanen et al, 2007). Basal-like tumours account for
up to 15% of all breast cancers and the clinical handling of this
subclass is a major challenge, once they do not respond to
conventional targeted therapies.

Similar features in familial breast cancer are less clearly
understood, partially due to the fact that very few studies
have been published regarding expression profiling of the
corresponding breast tumours. This lack of information probablyReceived 27 February 2009; revised 17 July 2009; accepted 27 July 2009
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Abstract
It is increasingly clear that complex networks of relationships between genes and/or proteins
govern neoplastic processes. Our understanding of these networks is expanded by the use of
functional genomic and proteomic approaches in addition to computational modeling.
Concurrently, whole-genome association scans and mutational screens of cancer genomes identify
novel cancer genes. Together, these analyses have vastly increased our knowledge of cancer, in
terms of both "part lists" and their functional associations. However, genetic interactions have
hitherto only been studied in depth in model organisms and remain largely unknown for human
systems. Here, we discuss the importance and potential benefits of identifying genetic interactions
at the human genome level for creating a better understanding of cancer susceptibility and
progression and developing novel effective anticancer therapies. We examine gene expression
profiles in the presence and absence of co-amplification of the 8q24 and 20q13 chromosomal
regions in breast tumors to illustrate the molecular consequences and complexity of genetic
interactions and their role in tumorigenesis. Finally, we highlight current strategies for targeting
tumor dependencies and outline potential matrix screening designs for uncovering molecular
vulnerabilities in cancer cells.

Background
Most of the current knowledge of cancer susceptibility,
progression and treatment has been generated by tradi-
tional approaches, in which small numbers of genes or
proteins are characterized in depth to study the molecular
mechanisms of neoplastic processes. With the advent of
large-scale functional genomic and proteomic ("omic")
methodologies, additional mechanistic insights into neo-
plasia have been uncovered. Whole-genome association

studies for cancer risk variants and somatic mutation
screening projects have completed their initial phases and
will provide the "part lists" of cancer genes, both at the
germline [1] and the somatic levels [2]. Transcript analy-
ses have identified expression profiles that provide accu-
rate prognoses for cancer patients [3]. Systematic mapping
of protein-protein interactions is currently being carried
out in what are referred to as 'interactome' mapping
projects. This research will elucidate the wiring diagram of
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Network modeling links breast cancer susceptibility and
centrosome dysfunction
Miguel Angel Pujana1,2,16,17, Jing-Dong J Han1,2,16,17, Lea M Starita3,16,17, Kristen N Stevens4,17,
Muneesh Tewari1,2,16, Jin Sook Ahn1,2, Gad Rennert5, Vı́ctor Moreno6,7, Tomas Kirchhoff 8, Bert Gold9,
Volker Assmann10, Wael M ElShamy2, Jean-François Rual1,2, Douglas Levine8, Laura S Rozek6,
Rebecca S Gelman11, Kristin C Gunsalus12, Roger A Greenberg2, Bijan Sobhian2, Nicolas Bertin1,2,
Kavitha Venkatesan1,2, Nono Ayivi-Guedehoussou1,2,16, Xavier Solé7, Pilar Hernández13, Conxi Lázaro13,
Katherine L Nathanson14, Barbara L Weber14, Michael E Cusick1,2, David E Hill1,2, Kenneth Offit8,
David M Livingston2, Stephen B Gruber4,6,15, Jeffrey D Parvin3,16 & Marc Vidal1,2

Many cancer-associated genes remain to be identified to clarify the underlying molecular mechanisms of cancer susceptibility
and progression. Better understanding is also required of how mutations in cancer genes affect their products in the context of
complex cellular networks. Here we have used a network modeling strategy to identify genes potentially associated with higher
risk of breast cancer. Starting with four known genes encoding tumor suppressors of breast cancer, we combined gene expression
profiling with functional genomic and proteomic (or ‘omic’) data from various species to generate a network containing 118
genes linked by 866 potential functional associations. This network shows higher connectivity than expected by chance,
suggesting that its components function in biologically related pathways. One of the components of the network is HMMR,
encoding a centrosome subunit, for which we demonstrate previously unknown functional associations with the breast cancer–
associated gene BRCA1. Two case-control studies of incident breast cancer indicate that the HMMR locus is associated with
higher risk of breast cancer in humans. Our network modeling strategy should be useful for the discovery of additional cancer-
associated genes.

Combinations of mutated and/or aberrantly expressed tumor sup-
pressor genes and oncogenes, or ‘cancer genes’, are thought to be
responsible for most steps of cancer progression. Although funda-
mental principles have emerged from the study of known cancer genes
and their products, many questions remain unanswered. Notably,

most cancer genes remain to be identified1. In addition, it is becoming
increasingly clear that most genes and their products interact in
complex cellular networks, the properties of which might be altered
in cancer cells as compared with their unaffected counterparts2.
Achieving a deeper understanding of cancer molecular mechanisms

Received 31 March; accepted 2 August; published online 7 October 2007; doi:10.1038/ng.2007.2

1Center for Cancer Systems Biology (CCSB) and 2Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Genetics, Harvard Medical School,
44 Binney St., Boston, Massachusetts 02115, USA. 3Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, 77 Louis Pasteur Ave.,
Boston, Massachusetts 02115, USA. 4Department of Epidemiology, University of Michigan, 109 Zina Pitcher Pl., Ann Arbor, Michigan 48109, USA. 5CHS National
Cancer Control Center, Department of Community Medicine and Epidemiology, Carmel Medical Center and Bruce Rappaport Faculty of Medicine, Technion, Haifa
34362, Israel. 6Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Pl., Ann Arbor, Michigan 48109, USA. 7Department of Epidemiology and
Cancer Registry, and Translational Research Laboratory, Catalan Institute of Oncology, IDIBELL, Gran Vı́a km 2.7, L’Hospitalet, Barcelona 08907, Spain. 8Clinical
Genetics Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Ave., New York, New York 10021, USA. 9National Cancer Institute,
Human Genetics Section, Laboratory of Genomic Diversity, Frederick, Maryland 21702, USA. 10Center for Experimental Medicine, Institute of Tumor Biology,
University Hospital Hamburg–Eppendorf, Martinistrasse 52, Hamburg 20246, Germany. 11Department of Biostatistics and Computational Biology, Dana-Farber Cancer
Institute and Department of Biostatistics, Harvard School of Public Health, 44 Binney St., Boston, Massachusetts 02115, USA. 12Center for Comparative Functional
Genomics, Department of Biology, New York University, 100 Washington Square East, New York, New York 10003, USA. 13Translational Research Laboratory, Catalan
Institute of Oncology, IDIBELL, Gran Vı́a km 2.7, L’Hospitalet, Barcelona 08907, Spain. 14Abramson Family Cancer Research Institute, University of Pennsylvania
School of Medicine, 421 Curie Blvd., Philadelphia, Pennsylvania 19104, USA. 15Department of Human Genetics, University of Michigan, 109 Zina Pitcher Pl., Ann
Arbor, Michigan 48109, USA. 16Present addresses: Bioinformatics and Biostatistics Unit, Translational Research Laboratory, Catalan Institute of Oncology, IDIBELL,
Gran Vı́a km 2.7, L’Hospitalet, Barcelona 08907, Spain (M.A.P.); Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Rd., Beijing
100101, China (J.-D.J.H.); Department of Genome Sciences, University of Washington, 1705 NE Pacific St., Seattle, Washington 98195, USA (L.M.S.); Human
Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. North, Seattle, Washington 98109, USA (M.T.); Harvard School of Public Health,
Boston, Massachusetts 02115, USA (N.A.-G.); Department of Biomedical Informatics, Ohio State University Medical Center, 460 West 12th Ave., Columbus, Ohio
43210, USA (J.D.P.). 17These authors contributed equally to this work. Correspondence should be addressed to M.V. (marc_vidal@dfci.harvard.edu), J.D.P.
(jeffrey.parvin@osumc.edu) or S.B.G. (sgruber@med.umich.edu).

NATURE GENETICS ADVANCE ONLINE PUBLICATION 1

ART I C LES



PRECLINICAL STUDY

Pre-clinical validation of early molecular markers of sensitivity
to aromatase inhibitors in a mouse model of post-menopausal
hormone-sensitive breast cancer
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Gabriel Capellà Æ Lesley-Ann Martin Æ Mitch Dowsett Æ
Josep Ramon Germà-Lluch
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Abstract Introduction Changes in breast cancer cell

biology following hormonal treatment have been claimed

as promising predictor markers of clinical benefit even

outperforming clinical response. From previous work we

selected 10 genes showing both a well known regulation by

oestrogen and a high level of early transcriptional regula-

tion following therapy with aromatase inhibitors. Here we

use an animal breast cancer model to explore the feasibility

of the determination of their expression in minimally

invasive samples and to further assess the magnitude of

their regulation by letrozole. Animal and methods Aro-

matase inhibitor sensitive breast cancer tumours were

grown in athymic mice under supplement with andro-

stenedione. Following initial tumour growth animals were

assigned to a control group or to receive letrozole at two

different dosages. Fine needle aspirates were obtained at

the moment of treatment assignation and one week later.

Expression of the following genes at both time points was

determined: Ki-67, Cyclin D1, pS2, Trefoil Factor 3, PDZ

domain containing 1, Ubiquitin-conjugating enzyme E2C,

Stanniocalcin 2, Topoisomerase 2 alfa, MAN1A1 and FAS.

Results Fine needles aspirates were found to be a feasible

and reproducible technique for RNA extraction. Trefoil

Factor 3, pS2, Cyclin D1 and Stanniocalcin 2 were sig-

nificantly downregulated by letrozole. Among them pS2

appears to be most sensitive to aromatase inhibitor treat-

ment even differentiating sub-optimal from optimal le-

trozole dosage. Discussion We present pre-clinical

evidence to justify the exploration in clinical trials of pS2,

Trefoil factor 3, Cyclin D1 and Stanniocalcin as dynamic

markers of oestrogen-driven pathway activation.

Keywords Animal model � Aromatase inhibitors �
Biomarkers � Breast cancer � Endocrine treatment �
Oestrogen receptor

Introduction

Breast glandular epithelium grows and differentiates under

the stimulus of oestradiol. Once breast cancer develops

from epithelial progenitors oestradiol deprivation can result

in tumour regression. The nuclear oestrogen receptor a
(ER) is the most important predictor of benefit derived

from hormonal treatments [1] and despite multiple reports

on novel determinants of hormone-sensitivity no other

marker has been introduced into routine practice. Yet 40–

50% of ER positive tumours do not respond to the best

hormonal treatment strategy (i.e. aromatase inhibitors in

the postmenopausal woman) [2].
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CLEAR-test: Combining inference for differential expression
and variability in microarray data analysis
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Abstract

A common goal of microarray experiments is to detect genes that are differentially expressed under distinct experimental conditions.
Several statistical tests have been proposed to determine whether the observed changes in gene expression are significant. The t-test
assigns a score to each gene on the basis of changes in its expression relative to its estimated variability, in such a way that genes with
a higher score (in absolute values) are more likely to be significant. Most variants of the t-test use the complete set of genes to influence
the variance estimate for each single gene. However, no inference is made in terms of the variability itself. Here, we highlight the problem
of low observed variances in the t-test, when genes with relatively small changes are declared differentially expressed. Alternatively, the z-
test could be used although, unlike the t-test, it can declare differentially expressed genes with high observed variances. To overcome this,
we propose to combine the z-test, which focuses on large changes, with a v2 test to evaluate variability. We call this procedure CLEAR-
test and we provide a combined p-value that offers a compromise between both aspects. Analysis of three publicly available microarray
datasets reveals the greater performance of the CLEAR-test relative to the t-test and alternative methods. Finally, empirical and simu-
lated data analyses demonstrate the greater reproducibility and statistical power of the CLEAR-test and z-test with respect to current
alternative methods. In addition, the CLEAR-test improves the z-test by capturing reproducible genes with high variability.
� 2007 Elsevier Inc. All rights reserved.

Keywords: Microarrays; Differential expression; Gene expression

1. Background

In recent years, functional genomic studies based on
microarray gene expression analysis have emerged as a
powerful strategy through which to decipher cellular pro-
cesses, pathways or pathology. The vast number of micro-
array studies published to date provides an opportunity to
develop new systems-level, integrated approaches to the

understanding of biological processes. However, one of
the limitations of microarray-based studies is the validation
of the results, that is the set of genes that are declared dif-
ferentially expressed between distinct experimental condi-
tions. The success of this validation is influenced not only
by the use of standardized protocols [1–3] but also by the
statistical method chosen to determine significance. A vari-
ety of methods are currently available and concepts such as
statistical sophistication and biological interpretation must
be taken into account in order to select one or other [4–6].

Once the raw data have been pre-processed and normal-
ized, a statistical method is needed to assess the evidence
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Abstract. The advent of various ‘omic’ technologies has
increased expectations in the field of biomarkers. In an attempt
to clarify how different strategies may contribute to improving
prognostic classification and to identify new predictors of
patient outcome we analyzed genomic and transcriptomic
profiles in a series of R0 Dukes B and C colorectal carcinomas.
We have compared the predictive capability of each approach
against conventional clinicopathological and molecular para-
meters. At a genomic level, gains at 11q including amplification
at 11q13 were an indicator of poorer outcome. In transcriptomic
analyses we identified 68 genes whose expression levels
correlated with survival (p<0.01) and included overexpression
of WASF1, NFE2L2, and MMP9, and underexpression of
ITGAL, TSC2, and SDF2. Gene expression levels paralleled
chromosomal changes only in 56% of the genes, suggesting
that, as a general trend, the direct effect of chromosomal
copy number changes on gene expression levels is minimal.
Classification of tumors by genomic and transcriptomic sig-
natures resulted in non-overlapping subgroups and was not of
prognostic value. We conclude that genomic and transcriptomic
profiling of colorectal carcinomas may contribute as novel
prognostic markers, but it does not improve outcome prediction
when global profiles or signatures are considered.

Introduction

Colorectal cancer is the third most common type of neoplasia
in both men and women and the second-leading cause of
death by cancer in occidental countries (1). The extent of

tumor bowel wall infiltration and lymph node metastases,
both included in Dukes' stage and TNM classification systems,
are the most important prognostic factors in colorectal cancer
(2). Nevertheless, traditional morphologic criteria based upon
pathologist's evaluation are accurate for predicting recurrence
only in 50-75% of the patients with non-metastatic invasive
colon carcinoma. Therefore there is a need for additional,
less subjective, independent factors to better predict outcome.

Multiple genetic aberrations are required for tumor initiation
and progression of colorectal cancer, which is one of the best
studied systems of multistage human carcinogenesis. Besides
the advances in the understanding of the molecular factors
involved in this process, the heterogeneity and complexity of
the disease make it difficult to apply molecular information
to predict the evolution of an individual patient's disease (3).
A major challenge is to integrate information that can describe
this complexity so as to facilitate an understanding of the
disease mechanisms as well as to guide the development and
application of therapies (4). The advent of various ‘omic’
technologies has increased expectations in the field of
biomarkers, but they have not yet produced widely applicable
approaches in prognostic assessment and patient treatment.
Four levels of analyses can be considered: genomic, tran-
scriptomic, epigenomic, and proteomic, the first two being
the most often applied due to the availability of appropriate
methodologies.

Chromosomal aberrations in the form of aneuploidy and
structural rearrangements are early markers and probably the
most prevalent genetic alteration in colorectal carcinogenesis
(5,6). Recurrent chromosomal abnormalities often clustered
in association patterns are also observed and may be used to
classify colorectal cancers (6,7). Furthermore, a subset of
colorectal tumors with few or no chromosomal alterations are
characterized by ubiquitous somatic mutations at repeated
sequences (6-8). These tumors represent a distinctive pathway
of tumor progression in which defects in the DNA mismatch
repair machinery underlie the genetic instability expressed
as an exacerbated microsatellite instability (MSI).

Conventional G-banding cytogenetics has been instrumental
in the identification of the chromosomal alterations associated
with malignancy and has provided potential prognostic markers
in colorectal cancer (9). The availability of comparative
genomic hybridization (CGH) (10) as an alternative to classic
cytogenetics has facilitated karyotyping and nowadays is the

INTERNATIONAL JOURNAL OF ONCOLOGY  00:  0-00,  0000 1

Genomic and transcriptomic prognostic factors in
R0 Dukes B and C colorectal cancer patients

ELISENDA VENDRELL1,  MARIA RIBAS1,  JOAN VALLS2,  XAVIER SOLÉ2,  MONICA GRAU2,3,

VICTOR MORENO2,  GABRIEL CAPELLÀ2 and MIGUEL A. PEINADO1

1Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 2IDIBELL-Institut Català d'Oncologia,
L'Hospitalet, Barcelona, Catalonia, Spain

_________________________________________

Correspondence to: Dr Miguel A. Peinado, Institut d'Investigació
Biomèdica de Bellvitge (IDIBELL), Av. Granvia km 2.7, 08907
L'Hospitalet, Barcelona, Catalonia, Spain
E-mail: mpeinado@idibell.org

Present address: 3Microarrays Unit, Centre de Regulació Genòmica,
Barcelona, Catalonia, Spain

Key words: colorectal cancer, prognostic factor, chromosomal
alterations, transcriptomic profiles



Vol. 23 no. 5 2007, pages 644–645
BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/btm025

Genetics and population analysis

SNPassoc: an R package to perform whole genome

association studies
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ABSTRACT

Summary: The popularization of large-scale genotyping projects has

led to the widespread adoption of genetic association studies as the

tool of choice in the search for single nucleotide polymorphisms (SNPs)

underlying susceptibility to complex diseases. Although the analysis of

individual SNPs is a relatively trivial task, when the number is large and

multiple genetic models need to be explored it becomes necessary a

tool to automate the analyses. In order to address this issue, we

developed SNPassoc, an R package to carry out most common

analyses in whole genome association studies. These analyses include

descriptive statistics and exploratory analysis of missing values,

calculation of Hardy–Weinberg equilibrium, analysis of association

based on generalized linear models (either for quantitative or binary

traits), and analysis of multiple SNPs (haplotype and epistasis analysis).

Availability: Package SNPassoc is available at CRAN from

http://cran.r-project.org

Contact: juanramon.gonzalez@crg.es or v.moreno@iconcologia.net

Supplementary information: A tutorial is available on Bioinformatics

online and in http://davinci.crg.es/estivill_lab/snpassoc

1 INTRODUCTION

Whole genome association studies, in which a dense set of SNPs across

the genome is genotyped, are a novel approach to assess the role of

genetic variation in disease. To increase the efficiency of this approach,

multistage designs have been proposed (Hirschhorn and Daly, 2005). In

the first step, thousands of SNPs are tested for association with the

disease. In a second and possibly third step, additional detailed studies

are performed, in which only a few hundred SNPs, those with a putative

association found in the first step, are genotyped.

Although analysis of a single or a small number of SNPs is a

relatively simple task to conduct (Solé et al., 2006), the statistical

analysis of large-scale studies is challenging. In this article, we present

SNPassoc, an R package (http://www.r-project.org) designed to analyze

genome-wide association studies. SNPassoc contains tools for data

manipulation, exploratory data analysis with graphics, and assessment

of genetic association for both quantitative and binary traits. For the

analysis of a small selection of SNPs, the package also provides tools to

analyze interactions between SNPs or haplotypes and other SNPs or

environmental variables. This note presents an overview of the package

but a detailed tutorial is provided in the Supplementary Material.

1.1 Data manipulation and descriptive analysis

SNPassoc uses the object-oriented features of R (‘classes and methods’)

to ease data manipulation, analysis and plots. Variables coding for SNP

genotypes are defined with the function snp, which takes care of

formatting and assigns class ‘snp’. The recommended format delimits

each allele with a character (i.e. ‘/’), but two-letter formats or any three

codes are also allowed. Objects of class ‘snp’ can be explored using

the generic R functions print, summary and plot. The summary of

a ‘snp’ object shows genotype and allele frequencies, missing values and

a test for compliance with Hardy–Weinberg equilibrium. By default, the

reference category is the genotype homozygous for the most frequent

allele. This may be changed using the method reorder.

If the user has a large collection of SNPs coded similarly,

the function setupSNP prepares the data automatically. Information

about chromosome and genomic positions, if given, is used later to

classify or sort SNPs in tables and plots. The function setupSNP

returns a packed object that can be explored and analyzed with a series

of functions. For example, the generic function summary provides a

table with a systematic descriptive analysis, including allele frequencies,

percentage of missing values and the test for Hardy–Weinberg

equilibrium. This test may also be obtained using the function

tableHWE, which uses an exact test of Hardy–Weinberg equilibrium

as described in Wigginton et al. (2005). The function plotMissing

provides a visual representation of missing values in samples and

SNPs (Fig. 2 in the Supplementary Material). Objects with class

‘setupSNP’ can be manipulated after their creation: variables can be

added or deleted and subsets of SNPs can be selected for specific

analysis.

1.2 Whole genome association studies

After initial inspection of the data, analysis of association can be

performed using the function WGassociation, which requires an

object of class ‘setupSNP’. To demonstrate how to perform this analysis

using a real dataset, we have downloaded individual genotypes from the

HapMap project (http://www.hapmap.org) and randomly selected close

to 10 000 SNPs distributed across the 22 autosomes. We compare the

genotype frequencies for all SNPs from this dataset between the

European (CEU) and African (YRI) populations. The dataset and the

genomic information are loaded typing data(HapMap). The required

object of class ‘setupSNP’ is created executing:

myDat5-setupSNP(HapMap, colSNPs¼3:9809,

sort¼TRUE, info¼SNPs.pos,

sep¼‘‘’’)*To whom correspondence should be addressed.

� 2007 The Author(s)
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Balanced Chromosome Translocation in Combination
with Integrative Genomics Analysis Identifies C9orf14
as a Candidate Tumor-Suppressor

Miguel Angel Pujana,1* Anna Ruiz,2{ Cèlia Badenas,3 Josep-Anton Puig-Butille,3,4 Marga Nadal,2
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A large number of nevi (LNN) is a high risk phenotypic trait for developing cutaneous malignant melanoma (CMM). In this

study, the breakpoints of a t(9;12)(p21;q13) balanced chromosome translocation were finely mapped in a family with LNN and

CMM. Molecular characterization of the 9p21 breakpoint identified a novel gene C9orf14 expressed in melanocytes disrupted

by the translocation. Integrative analysis of functional genomics data was applied to determine the role of C9orf14 in CMM de-

velopment. An analysis of genome-wide DNA copy number alterations in melanoma tumors revealed the loss of the C9orf14

locus, located proximal to CDKN2A, in approximately one-fourth of tumors. Analysis of gene expression data in cancer cell

lines and melanoma tumors suggests a loss of C9orf14 expression in melanoma tumorigenesis. Taken together, our results indi-

cate that C9orf14 is a candidate tumor-suppressor for nevus development and late stage melanoma at 9p21, a region frequently

deleted in different types of human cancers. This article contains Supplementary Material available at http://www.interscience.

wiley.com/jpages/1045-2257/suppmat. VVC 2006 Wiley-Liss, Inc.

INTRODUCTION

Cutaneous malignant melanoma (CMM) is a

potentially fatal type of skin cancer with increasing

incidence and mortality world wide (Rigel, 1996;

Jemal et al., 2003). A major etiological factor in

the development of CMM is sunlight exposure

(Pho et al., 2006). In addition, epidemiological

studies have revealed that of a number of pheno-

typic traits, the highest risk of developing CMM is

conferred by the presence of a large number of

nevi (LNN) (Swerdlow and Green, 1987; Grob et

al., 1990; Bataille et al., 1996; Briollais et al., 2000).

As with CMM, sunlight exposure is also the

major etiological factor in nevus ontogenesis. How-

ever, the association between sunlight exposure,

CMM, and nevus development is relatively com-

plex. In addition to environmental factors, there

are known and unidentified genetic factors that

contribute to both phenotypes either independ-

ently or in association. Thus, total nevi counts and

nevus density show familial aggregation (Goldgar

et al., 1991; Duffy et al., 1992). Familial aggrega-
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ABSTRACT

Summary:Aweb-based application has been designed from a genetic

epidemiology point of view to analyze association studies. Main cap-

abilities include descriptive analysis, test for Hardy–Weinberg equili-

brium and linkage disequilibrium. Analysis of association is based on

linear or logistic regression according to the response variable (quanti-

tative or binary disease status, respectively). Analysis of single SNPs:

multiple inheritance models (co-dominant, dominant, recessive, over-

dominant and log-additive), and analysis of interactions (gene–gene or

gene–environment). Analysis of multiple SNPs: haplotype frequency

estimation, analysis of association of haplotypes with the response,

including analysis of interactions.

Availability: http://bioinfo.iconcologia.net/SNPstats. Source code for

local installation is available under GNU license.

Contact: v.moreno@iconcologia.net

Supplementary Information: Figures with a sample run are available

onBioinformatics online. A detailed online tutorial is available within the

application.

The analysis of association between genetic polymorphisms and

diseases allows identifying susceptibility genes (Cordell and

Clayton, 2005). The proper analysis of these studies can be per-

formed with general purpose statistical packages, but the researcher

usually needs the assistance of additional software to perform spe-

cific analysis, like haplotype estimation, and results from different

packages are difficult to integrate.

We present a free web-based tool to help researchers in the

analysis of association studies based on SNPs or biallelic markers.

Both the selection of analysis and the output have been designed

from a genetic epidemiology perspective. This application can also

be used for learning purposes. We have written (in Spanish) an

analysis guide with detailed explanations (Iniesta et al., 2005). A
similar extensive help in English can also be found on the website.

The software is used following three steps, with the possibility

of performing multiple analyses in one session. The steps are as

follows.

(1) Data entry. Raw data in tabular form can be pasted in a

window or uploaded from a text file. Variables can be named

and the user can choose the field delimiter and the missing value

code (Supplementary Figure 1). SNPs should be coded as genotypes

with each allele separated by a slash (e.g. ‘T/T’, ‘T/C’, ‘C/C’).

(2) Data processing. A list with the variables read by the appli-

cation is presented with an initial suggestion about the type:

quantitative, categorical or SNP, which can be modified (Supple-

mentary Figure 2). The user is prompted to select those needed for

the analysis and to specify which one is the response, which may be

binary (disease status) or quantitative. For categorical variables,

including SNPs, the user can reorder the categories. The first one

will be treated as reference category in the analysis. The application

assumes that the main interest is the analysis of the SNPs in relation

to the response. Other variables selected with type quantitative or

categorical will be added to the regression models for analysis as

covariates and treated as potential confounders.

(3) Analyses customization. The third step requests the selection

of the desired statistical analyses that will be described later in this

article (Supplementary Figure 3).

Regarding the statistical analysis, the association with disease is

modeled depending on the response variable. If binary, the applica-

tion assumes an unmatched case–control design and unconditional

logistic regression models are used. If the response is quantitative,

then a unique population is assumed and linear regression models

are used to assess the proportion of variation in the response

explained by the SNPs.

The association for each SNP is analyzed in turn and adjusted

for the selected covariates. If more than one SNP are selected, then

the application assumes that haplotype analysis is appropriate.

Haplotype frequencies are estimated using the implementation of

the EM algorithm coded into the haplo.stats package (Sinnwell

and Schaid, 2005, http://mayoresearch.mayo.edu/mayo/research/

biostat/schaid.cfm). Association between haplotypes and disease

appropriately accounts for the uncertainty in the estimation of hap-

lotypes for individuals with multiple heterozygous when phase is

unknown or when missing values are present (Schaid et al., 2002).
Individuals with missing values in the response, in all SNPs or in

any covariate are excluded from analysis.

The software main page can be found online at http://bioinfo.

iconcologia.net/SNPstats. The application uses PHP server pro-

gramming language to build the input forms, upload data, call

the statistical analysis procedures and process the output. The sta-

tistical analyses are performed in a batch call to the R package

(R Development Core Team, 2005, http://www.R-project.org).

The contributed packages genetics (Warnes and Leisch, 2005)

and haplo.stats (Sinnwell and Schaid, 2005, http://mayoresearch.

mayo.edu/mayo/research/biostat/schaid.cfm) are called to perform

some of the analysis. Anonymous use is guaranteed and data are�To whom correspondence should be addressed.
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Validation of RNA Arbitrarily Primed PCR Probes
Hybridized to Glass cDNA Microarrays:

Application to the Analysis of Limited Samples
Mònica Grau,1† Xavier Solé,1† Antònia Obrador,1 Gemma Tarafa,1

Elisenda Vendrell,2 Joan Valls,1 Victor Moreno,1 Miquel A. Peinado,2 and
Gabriel Capellá1*

Background: The applicability of microarray-based
transcriptome massive analysis is often limited by the
need for large amounts of high-quality RNA. RNA
arbitrarily primed PCR (RAP-PCR) is an unbiased fin-
gerprinting PCR technique that reduces both the
amount of initial material needed and the complexity of
the transcriptome. The aim of this study was to evaluate
the feasibility of using hybridization of RAP-PCR prod-
ucts as transcriptome representations to analyze differ-
ential gene expression in a microarray platform.
Methods: RAP-PCR products obtained from samples
with limited availability of biological material, such as
experimental metastases, were hybridized to conven-
tional cDNA microarrays. We performed replicates of
self-self hybridizations of RAP-PCR products and math-
ematical modeling to assess reproducibility and sources
of variation.
Results: Gene/slide interaction (47.3%) and the PCR
reaction (33.8%) accounted for the majority of the vari-
ability. From these observations, we designed a protocol
using two pools of three independent RAP-PCR reac-
tions coming from two independent reverse transcrip-
tion reactions hybridized in duplicate and evaluated
them in the analyses of paired xenograft-metastases
samples. Using this approach, we found that HER2 and

MMP7 may be down-regulated during distal dissemina-
tion of colorectal tumors.
Conclusion: RAP-PCR glass array hybridization can be
used for transcriptome analysis of small samples.
© 2005 American Association for Clinical Chemistry

The advent of techniques for the massive analysis of cell
transcriptomes by use of microarrays has allowed the
description of molecular portraits of biological specimens,
including tumor biopsies. Tumor gene expression profiles
appear to be useful tools for tumor classification and may
reveal individual markers with diagnostic or prognostic
applications. Nevertheless, routine application of gene
expression profiles is often precluded by the demanding
conditions of this type of assay, including the need for
large amounts of RNA and the difficulties in performing
global validation studies.

Several strategies have been developed to allow the
analysis of small samples in which the amount of avail-
able RNA (�1 �g of total RNA) is insufficient for massive
gene expression studies (1–4). Trenkle et al. (1 ) proposed
the use of nonstoichiometric reduced-complexity probes
for hybridization to cDNA arrays and noted the fitness of
the RNA arbitrarily primed PCR (RAP-PCR)3 method.
RAP-PCR is an unbiased fingerprinting PCR that samples
a reproducible subset of message population based on the
best matches with arbitrary primers (5 ). It allows the
construction of a probe with reduced complexity, which
increases the representation of rare messages, and uses
small amounts of total RNA (10–100 ng) or mRNA (0.1–1
ng).

Although different RAP-PCR fingerprints give hybrid-
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Cancer cells are characterized by a generalized disruption of the DNA methylation pattern involving an
overall decrease in the level of 5-methylcytosine together with regional hypermethylation of particular CpG
islands. The extent of both DNA hypomethylation and hypermethylation in the tumor cell is likely to reflect
distinctive biological and clinical features, although no studies have addressed its concurrent analysis
until now. DNA methylation profiles in sporadic colorectal carcinomas, synchronous adenoma–carcinoma
pairs and their matching normal mucosa were analyzed by using the amplification of inter-methylated
sites (AIMS) method. A total of 208 AIMS generated sequences were tagged and evaluated for differential
methylation. Global indices of hypermethylation and hypomethylation were calculated. All tumors displayed
altered patterns of DNA methylation in reference to normal tissue. On average, 24% of the tagged sequences
were differentially methylated in the tumor in regard to the normal pair with an overall prevalence of hypo-
methylations to hypermethylations. Carcinomas exhibited higher levels of hypermethylation than did adeno-
mas but similar levels of hypomethylation. Indices of hypomethylation and hypermethylation showed
independent correlations with patient’s sex, tumor staging and specific gene hypermethylation. Hierarchical
cluster analysis revealed two main patterns of DNA methylation that were associated to particular mutational
spectra in the K-ras and the p53 genes and alternative correlates of hypomethylation and hypermethylation
with survival. We conclude that DNA hypermethylation and hypomethylation are independent processes and
appear to play different roles in colorectal tumor progression. Subgroups of colorectal tumors show specific
genetic and epigenetic signatures and display distinctive correlates with overall survival.

INTRODUCTION

Colorectal cancer is one of the best-studied systems of multi-
stage human carcinogenesis. Epigenetic modification of DNA
in the form of hypomethylation was included in early
Vogelstein’s tumor progression model together with a series
of genetic alterations (1). DNA methylation is a post-
replication modification predominantly found in cytosines of
the dinucleotide CpG that is infrarepresented throughout the
genome except at small regions named CpG islands (2).
The pattern of DNA methylation in a given cell appears to
be associated with the stability of gene expression states (3).

The biological significance of DNA hypomethylation, an
early and common feature in colorectal cancer (4), is poorly
understood (5). A relationship between global hypomethylation

and genetic instability has been postulated (5,6). More recently,
the attention of investigators has shifted to the study of cancer-
associated regional hypermethylation at specific CpG islands
and its association to transcriptional silencing (7,8) and loss
of imprinting (9). Inspite of the large number of studies that
have investigated cancer-associated hypermethylation in
selected CpG islands, the obtention of global estimates of
genome hypermethylation has been seldomly addressed
(3,10,11).

Therefore, the roles of cumulated hypermethylation and
hypomethylation in colorectal cancer progression and
outcome are still unknown. By application of a methylome
fingerprinting technique (amplification of inter-methylated
sites, AIMS) (12), we have obtained information on the
methylation status of more than 200 selected sequences in a
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La tecnología de microarrays de ADN permite realizar análisis genéti-
cos sobre miles de genes simultáneamente. El análisis de estos expe-
rimentos supone un reto desde el punto de vista estadístico, ya que
los métodos clásicos de análisis deben adaptarse a la enorme multi-
plicidad de hipótesis que se prueban. Además, la gran variabilidad
observada en los experimentos y su elevado coste exigen un diseño
cuidadoso. En esta revisión se explicará con detalle qué es un microa-
rray de ADNc, cómo funciona y cuáles son sus principales usos. Se-
guidamente, se abordarán aspectos estadísticos del diseño experi-
mental y de los diferentes apartados del análisis de un microarray,
desde el procesamiento de la imagen y control de calidad de los datos
hasta los tests para identificar genes de interés. Por último se comen-
tarán diferentes técnicas de análisis multivariante que se pueden uti-
lizar para analizar patrones en la expresión de los genes.

Palabras clave: Microarray de ADN. Análisis estadístico. Diseño de
experimentos.

Use of DNA chips (microarrays) in medicine: technical
foundations and basic procedures for statistical analysis 
of results

DNA microarray technology allows the assessment of genetic analyses
on thousands of genes simultaneously. The statistical analyses of the-
se experiments are challenging since a high number of multiple hy-
potheses are tested and classical statistical methods need to adapt to
this situation. Furthermore, the great variability observed in the expe-
riments and their high cost of them needs a careful design. In this re-
view we will explain what is a cDNA microarray, how it works and its
potential uses. Later we will deal with statistical issues of design and
analysis, from the image processing and data quality control, to the
statistical test of hypothesis to detect interesting genes. Finally we
will comment on multivariate methods to detect patterns in gene ex-
pression.

Key words: DNA microarray. Statistical analysis. Experimental design.

Introducción

El genoma de los seres vivos es el conjunto de genes que se
encuentran distribuidos en cromosomas. Los genes, a su
vez, son secuencias de ADN que contienen toda la informa-
ción necesaria para sintetizar las proteínas, moléculas esen-
ciales para la vida que realizan prácticamente todas las fun-
ciones celulares. Cuando un gen se «activa» para dar lugar

a su proteína correspondiente, diremos que ese gen se está
expresando en esa célula. Es conocido que anomalías en la
expresión de los genes pueden llevar a disfunciones celula-
res, provocando graves enfermedades como el cáncer, en-
tre muchas otras. Los genes que tengan su expresión altera-
da en un tejido tumoral respecto a un tejido sano del mismo
órgano, por ejemplo, serán claros candidatos a tener alguna
implicación en el proceso neoplásico. Por lo tanto, la identi-
ficación de los genes desregulados es un paso importante
para conocer las bases moleculares de muchas enfermeda-
des de carácter genético.
Desde mediados de los años noventa existe la técnica de los
microarrays de ADN, que permite monitorizar simultánea-
mente el nivel de expresión de miles de genes en un con-
junto de células.  Sin embargo, la potencia que nos ofrece
esta herramienta implica nuevos retos en lo que se refiere al
análisis estadístico. Los datos que se generan con microa-
rrays, aparte de tener un gran volumen, se caracterizan por
ser altamente variables, por lo que serán básicos tanto el
análisis estadístico como el diseño experimental que se
plantee para solucionar las diferentes cuestiones biológicas
que nos propongamos.
En este trabajo explicaremos primero con más detalle qué
es un microarray y cómo funciona, para después tratar so-
bre cuáles son sus principales usos. Seguidamente hablare-
mos de los diferentes diseños experimentales que se pue-
den utilizar, y pasaremos a tratar las diversas partes que
componen el análisis de un microarray, desde el procesa-
miento de la imagen y control de calidad de los datos hasta
el tratamiento estadístico para identificar genes de interés.
Finalmente, hablaremos sobre las diferentes técnicas de
análisis multivariante que se pueden utilizar para extraer el
máximo conocimiento de nuestros datos. La figura 1 mues-
tra un esquema con los aspectos más relevantes de un pro-
tocolo de experimentos con microarrays.

¿Qué es un microarray de ADN y cómo funciona?

Los microarrays de ADN son una herramienta que permite
realizar análisis genéticos diversos basados en la miniaturi-
zación de procesos biológicos. La primera aplicación de
esta tecnología fue para medir simultáneamente el nivel de
expresión de miles de genes1. Las mejoras tecnológicas han
perfeccionado la calidad y han ampliado el espectro de apli-
caciones, de manera que los microarrays se han consolida-
do como herramientas útiles en investigación genética con
aplicaciones en medicina2,3. El funcionamiento de los micro-
arrays de expresión se basa en la capacidad de las molécu-
las complementarias de ADN de hibridar entre sí. Pequeñas
cantidades de ADN, correspondientes a diversos genes
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