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Introduction

Mathematics Is Biology’s Next Microscope, Only Better;

Biology Is Mathematics’ Next Physics, Only Better

(Cohen, 2004)

The aim of this thesis was to provide a better understanding of evolutionary pro-

cesses using tools from algebraic statistics. This thesis is therefore an interdisciplinary

work that merges the areas of algebraic geometry, group theory, statistics, phylogenetics

and genomics.

In phylogenetics, the goal is to reconstruct the ancestral relationships among organ-

isms. Most of the widely used phylogenetic reconstruction methods are based on the

mathematical models describing the molecular evolution of DNA along a phylogenetic

tree T . The leaves of the tree T are labeled by a set of currently living organisms and

the interior nodes represent their common ancestors. Different shapes of the tree, called

tree topologies, correspond to distinct speciation processes.

We will assume (as it is commonly done) that the sites in a DNA sequence are

independent and identically distributed (iid hypothesis) and thus we model evolution

one site at a time. An align collection (based on similarity) of the DNA sequences at the

contemporary taxa is called a multiple sequence alignment. We will view it as an array,

where the DNA sequences are placed in rows and the columns represent represent the

evolution of a single character on T .

The length of an edge in a phylogenetic tree is called a branch length and quanti-

fies the amount of divergence between the species at its vertices. Branch lengths are

measured in the expected number of substitutions per site that have occurred during

the evolutionary process along that edge. A common way of modeling evolution is to

consider a Markov process along T . Namely, the states in the process correspond to

the four different nucleotides, and the substitution matrices (or transition matrices) on

each edge of the tree contain the probabilities of changes between nucleotides as the

evolution proceeded along that edge (its entries correspond to the conditional probabil-

ities, P (x|y, e), that a nucleotide y at the parent node of e is substituted by nucleotide

x at the child node). The parameters of a Markov evolutionary model are therefore

the substitution matrices Ae assigned to each edge of the tree and, if a distinct node

is chosen as a root, a root distribution. Depending on the form of the substitution

matrices, we distinguish different evolutionary models.

Most commonly used molecular evolutionary models in phylogenetics are the so-

called continuous-time models. In these models, the substitution events along an edge e

vii
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of a rooted phylogenetic tree occur following a continuous-time Markov process: there is

a rate matrix Q that operates at intensity λe and for duration te so that the substitution

matrix Ae equals exp(Q·λete). They are restrictive in that they assume the substitution

matrices to be of exponential type and that the instantaneous mutation rate matrix

Q is usually common across the tree (when this assumption holds, one talks about a

homogeneous process). Moreover, the process is usually assumed to be also stationary

and time-reversible, which imposes some other restrictions on the instantaneous rate

matrix. Under the umbrella of these models fall the time-reversible models Jukes-Cantor

JC69 (Jukes and Cantor, 1969a), Kimura two-parameters, K80 (Kimura, 1980), Kimura

three-parameters, K81 (Kimura, 1981), HKY (Hasegawa et al., 1985), and the General

Time Reversible model, GTR (Tavaré, 1986).

We are interested in a broader class of evolutionary models and we model evolution

using thediscrete-time Markov processes on phylogenetic trees, i.e. we do not assume

that substitution matrices are of exponential type. Among them, we find the models

analogous to the continuous-time models introduced above (JC69∗, K80∗, K81∗), and

the more general models: SSM and GMM. In particular, these models do not impose a

common instantaneous rate matrix fixed across the tree and hence different lineages

in the tree are allowed to evolve at different rates (Greuel et al., 2003; Allman and

Rhodes, 2004b; Semple and Steel, 2003). This modification allows to deal with the so-

called nonhomogeneous data. In this thesis we are interested only in the discrete-time

models and solve for them a number of questions that had already been addressed for

the continuous-time models:

Problem 1. Provide efficient tools to select an evolutionary model that best fits

the data.

Problem 2. Given a multiple sequence alignment and an evolutionary model, pro-

vide efficient tools to estimate the evolutionary parameters (both the tree topology and

the substitution matrices).

Towards the goal of solving the above issues, we required a tool for generating

reliable synthetic data sets.

Problem 3. Provide a method to generate data evolving along a phylogenetic tree

(with given branch lengths) under a specific discrete-time evolutionary model.

The above problems have been addressed in a variety of ways for the continuous-

time models (see e.g. Felsenstein (2003), Gascuel and Guindon (2007)).

The assumption that all sites in a DNA sequence are identically distributed is often

too restrictive. One way of relaxing it is by considering phylogenetic mixtures. By a

phylogenetic mixture we understand a collection of trees that altogether model the data,

each being suitable for a fraction of the data set. Mixtures can include trees on different

or the same tree topologies, whilst the branch lengths are allowed to vary freely. Natu-

rally, phylogenetic mixtures best explain the heterogeneous evolutionary processes, i.e.

the data comprising multiple genes or selected codon positions. Among a plethora of ap-

plications, phylogenetic mixtures are used in the orthology prediction, gene annotation,

species tree reconstruction or drug target identification. In the continuous-time setting,

phylogenetic mixtures are usually modeled by varying rate across site (see Semple and
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Steel (2003)).

The following problem lies at the heart of applicability of phylogenetic mixture

models.

Problem 4. When are the tree topologies in a phylogenetic mixture identifiable? In

other words, given an evolutionary model, what conditions must be met for the existence

of only one collection of tree topologies that gives rise to the observed multiple sequence

alignment? Moreover, providing the tree topologies are identifiable, what conditions

guarantee that the substitution parameters are identifiable (i.e. is there a single set of

substitution parameters that leads to a given multiple sequence alignment)?

This problem is crucial for justifying the use of methods such as maximum like-

lihood. Though it has been extensively studied, at this point only a few results are

known (see for instance Allman and Rhodes (2006a), Allman et al. (2010), Stefanovic

and Vigoda (2007), Rhodes and Sullivant (2011),Chai and Housworth (2011)).

Problem 1 can be rephrased in reference to phylogenetic mixtures. Indeed, when

choosing an evolutionary model that best fits the given data, a phylogenetic tree is

unknown. Therefore, the interest lies in the evolutionary model that best fits the data

under the assumption of the data had evolving along any tree or a mixture of trees for

the model considered. The problem of choosing the most suitable model for the given

data is usually a heuristic choice, and currently there exist no methods that do not rely

on a circular argument of an estimated input tree (cf. Posada and Crandall (2001)).

This leads to the following question:

Problem 5. Is there a way to characterize distributions that arise from phylogenetic

mixtures under a given evolutionary model? If so, can we use it as a tool for model

selection?

In this thesis we approach the above problems from the standpoint of algebraic

statistics and in most part they are solved for the JC69∗, K80∗, K81∗, SSM and GMM

models. The solution to the problems 1, 4, and 5 requires a deep mathematical study

of these models. These are instances of the so-called equivariant models, whose symme-

tries in the transition matrices give rise to appealing properties of the distributions of

the DNA sequences in a MSA that evolved under these models. With the purpose of

studying the properties of these models, we use the techniques from algebraic geometry

and group theory.

Indeed, it is well known that the expected probabilities of nucleotides observed

at the leaves of a phylogenetic tree satisfy a given collection of equalities if the tree

evolved under certain models (see for instance (Felsenstein, 2003, p.375)). It was al-

ready pointed out by Fu and Li (1992a), Steel et al. (1992) or Felsenstein (2003), that

these equalities (referred to as linear invariants) could potentially be used to test the

evolutionary model the data came from. How can one guarantee that there are no more

equalities to be used? We employ tools from algebraic geometry to answer these ques-

tions and to address the identifiability issue for phylogenetic mixtures. Furthermore,

we use statistical techniques to provide an efficient model selection algorithm using

algebraic model invariants.

We solve problem 2 by adapting the well-known Expectation-Maximization algo-
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rithm to our setting. Tree inference is beyond the scope of this thesis. In order to solve

problem 3 we use basic algebraic techniques.

To summarize, in this thesis we achieved the following goals:

• Provide algorithms for generating any substitution matrix with a given branch

length under the JC69∗, K80∗, K81∗ and the SSM models (and some matrices for

the GMM model);

• Implement these algorithms in the package GenNon-h, which generates multiple

sequence alignments evolving along a tree under any of these models and any

number of taxa;

• Implement the Expectation-Maximization algorithm to provide the maximum

likelihood estimates of the entries of the substitution matrices and the root dis-

tribution given a multiple sequence alignment on any number of taxa, a tree

topology and an evolutionary models above. We implement it in a package called

Empar, which in addition performs statistical tests for the parameter estimates;

• For the trees on 4 and 6 taxa, perform an in-depth study of the performance of

Empar and its dependence on factors such as model complexity, size of the tree,

positioning of the branches, data and total tree lengths;

• Characterize the distributions arising from phylogenetic mixtures under the JC69∗,

K80∗, K81∗ and SSM models (see Theorems 6.7 and 6.11);

• Use the above characterization (in a maximum likelihood framework) and the

Akaike’s information criterion in model selection, and implement it as SPIn for

any trees and any number of taxa;

• Test the successfully performance of SPIn on simulated and real data and compare

it to other existing methods;

• Provide an upper bound on the number of tree topologies that are identifiable

for phylogenetic mixtures under the models considered here;

• Use the above methods to characterize the evolutionary patterns of the regions

annotated in the GENCODE project.

The algorithms mentioned above have been implemented in C++ under the names:

GenNon-h, Empar, and SPIn. They are freely available on the following pages:

http://genome.crg.es/cgi-bin/phylo_mod_sel/AlgGenNonH.pl

http://genome.crg.es/cgi-bin/phylo_mod_sel/AlgEmpar.pl

http://genome.crg.es/cgi-bin/phylo_mod_sel/AlgModelSelection.pl.

Some of the results of this thesis have been published in the paper Kedzierska et al.

(2012) and in the preprint Casanellas et al. (2011). One additional article is under

revision and two in preparation.

The thesis is structured as follows:

http://genome.crg.es/cgi-bin/phylo_mod_sel/AlgGenNonH.pl
http://genome.crg.es/cgi-bin/phylo_mod_sel/AlgEmpar.pl
http://genome.crg.es/cgi-bin/phylo_mod_sel/AlgModelSelection.pl
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Part I provides the required biological background, both from the genomic and phy-

logenetic perspective. In this part the reader will find information on the evolutionary

models employed in this work. We then present and shortly discuss a motivating study

undertook at the conception of the project. This is a case study across-species conser-

vation of motifs involved in the regulation of splicing. We developed an approach that

estimates a conservation of sequence motifs with a sitewise precision by incorporating

phylogenetic information, and is able to detect even weak selective constrains. As ex-

pected, we found that distinct varying levels of positive selection can be found even

within short sequences.

These observations give a hint that phylogenetic mixtures are possibly an underes-

timated tool in phylogenetics.

Part II presents all our theoretical results. To start, in chapter 3 we derive algo-

rithms for generating substitution matrices with a given branch length under a se-

lected equivariant model considered in this work. Next, chapter 4 contains the details

of the Expectation-Maximization algorithm for parameter estimation. In section 5.1

the reader can find the background required for understanding this thesis. We follow

by an introduction to the concepts of algebraic evolutionary models and invariants in

sections 5.2 and 5.3, while background on group theory is contained in section 5.4. Ex-

amples and a detailed study of certain equivariant models from the perspective of group

theory is given in section 5.5. In section 6.3 we prove that the space of distributions

arising from phylogenetic mixtures evolving under an evolutionary model is determined

by a linear space. By exhaustively studying the group of symmetries of these models,

we give an easy and combinatorial way of determining the equations of this linear space

for the equivariant models considered in this work. These linear equations are at the

foundation of the method we developed for model selection. As a last theoretical com-

ponent of the thesis, chapter 6 is dedicated to the study of phylogenetic mixtures and

their identifiability.

Part III contains the details on the implementations and tests of the methods de-

veloped in the course of this work. Section 7 is dedicated to GenNon-h, section 8 to

Empar and section 9 to SPIn. We then present results on the applications of the two

latter methods to the data from the ENCODE project in chapter 10. Lastly, chapter 11

contains the possibilities for future work.
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Biological motivation
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Chapter 1

Biological preliminaries

1.1 Central dogma of molecular biology

It is currently accepted that life on Earth is approximately 3.5 billion years old, dividing

all living organisms into 3 domains (Eukaryota, Bacteria, Archarea) and 5 kingdoms:

Monera (bacteria), Protista, Fungi, Plantae, and Animalia. Darwin’s theory of evolution

by natural selection (Darwin, 1929) describes the process of evolution of organisms and

speciation. Darwinian evolution states that at all points in time living creature went

through a process of variation. The individuals most successful to survive in a given

environment are those who reproduce most successfully and pass on greater number of

their traits to their offspring. This theory gave rise to the hypothesis that the diversity

of life forms on Earth comes from the divergence of one common ancestral unicellular

organism.

Evolution can be extended to the levels of DNA (deoxyribonucleic acid) and proteins

as all living organisms can replicate by means of DNA and are able to convert the

information stored in DNA into cell-building products.

DNA structure was deciphered by James D. Watson and Francis Crick in 1953 Crick

and Watson (1953). Watson and Crick discovered the DNA as the molecular basis of

Figure 1.1: DNA

heredity. DNA molecule is composed of two anti-parallel strands of nucleotides, which

form a double helix. The nitrogenous base is directed towards the axis of the struc-

ture, while the two backbones are composed of sugar and phosphate alternating units.

Accordingly to the four bases, the nucleotides are: adenine (A), thymine (T), guanine

(G) and cytosine (C). We will refer to A, C, G, T as bases or nucleotides interchangeably.

3
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The complementary bases, A − T and C − G, joined by hydrogen bonds are referred to

as base pairs, bp. The hydrogen bonded base pairs form the core of the molecule. The

base pairs stack on top of one another and parallel to other pairs each in a spacing of

3.4 angstroms. The convention is to impose a direction on the chain: from the 5’ end

with an exposed phosphate group (positioned as the left end), to the 3’ end with an

exposed ribose group (the right end).

The size of the human genome is around 3 billion bp. The sizes of genomes and

numbers of genes they contain vary between the species. Positive correlation between

the number of genes and the complexity of an organism has many exceptions. For

example, the genome of the brown mountain grasshopper (Podisma pedestris) is seven

times larger and the genome of onion is six times larger then the genome of humans

(Bensasson et al., 2001; Jakse et al., 2008). An average length of human genes is around

3.000bp (see Fig. 1.2). Diversity of the human genome and other complex organisms

lies in the use of alternative splicing (see below; Xing and Lee (2006)).

The discovery of the DNA allows the evolution to be explained in a new way.

The central dogma of molecular biology describes the process of protein syn-

thesis. Based on the finding that DNA and RNA are build of a similar and the specific

chemical pairing of nucleotides occurs, Crick suggested that DNA can be used as a

template for RNA synthesis. The two major steps include the processes of transcrip-

Figure 1.2: Central dogma of molecular biology (adapted from http://www.scq.ubc.ca/)

tion and translation. In brief, DNA makes RNA via what is called transcription and via

translation RNA makes protein. The process is illustrated in Figure 1.2. DNA is repli-

cated and transcribed to RNA, which codes for one or more genes (transcription unit).

In this step, RNA polymerase catalyzes the formation of the primary gene transcript,

the precursor mRNA (pre-mRNA) molecule. Pre-mRNA is additionally modified by

splicing machinery : stretches of sequences that code for a protein, exons, are kept and

introns, which are the non-coding parts, are removed (see Fig. 1.1). If this RNA is a

blueprint for protein, the RNA becomes the messenger RNA (mRNA). In eukaryotic

cells the mRNA is spliced and migrates from the nucleus to the cytoplasm. Final step

is translation– mRNA encodes the information, which is “read off” by ribosomes and

used for protein synthesis. Genetic information in DNA and RNA is coded in triplets

of nucleotides (codons). Except for the start and stop codons occurring at the two ends

http://www.scq.ubc.ca/
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of the transcript and denoting the beginning and termination for the protein synthesis,

each codon contains a specific amino acid information. The translation machinery is

located within a ribosome– a specialized organelle containing ribosomal RNA (rRNA)

and transfer RNA (tRNA). In eukaryotes ribosomes are located in cytoplasm and is

composed of two units, the small and large one, which travel separately, but enclose

around the mRNA to start the translation process. Based on the complementary base-

pairing, on one side the tRNA molecules read the triplet code in the mRNA and attach

to a specific amino acid on the other. rRNA catalyzes the process of attaching of newly

created amino acid to the growing protein chain.

Proteins are involved in all biological structural and enzymatic activities. The whole

process of “manufacturing” protein from a given gene is called gene expression.

Splicing is a process that takes place at the level of preRNA. It is known that a

about ∼ 94% of human genes code for more than one protein (Pan et al., 2008). The

two ends of the coding parts of the transcript are marked by the so-called splice sites,

which are consensus sequences of nucleotide bases denoting the start and end of a gene

(see Fig. 1.1). The process of splicing can be constitutive or alternative.
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Figure 1.3: Top: illustration of splicing; bottom: consensus sequence of the 3’ and 5’
splice site of the transcript.

Constitutive splicing removes all introns in the pre-mRNA and re-connects all ex-

ons into the final transcript. Alternative splicing connects the exons in a variety of

ways, which in turn creates distinct transcripts and leads to different protein isoforms.

Exonic and intronic Splicing Enhancers (ESEs, ISEs) and Silencers (ESSs, ISSs) are
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factors playing a crucial role in this differentiation process. These short sequences (∼
8 nucleotide long) either enhance or silence the neighbouring splice sites and their

recognition by the splicing machinery.

1.2 Assembly and annotation of the human genome

Celera Corporation (Venter et al., 2001) and the International Human Genome Se-

quence Consortium (Lander et al., 2001) independently completed sequencing of the

first draft of the human genome. These initial drafts were further refined to create a

consensus and a high quality standard version of the human genome sequence. This

is the task of the Genome Reference Consortium (GRC ) (http://www.ncbi.nlm.nih.

gov/projects/genome/assembly/grc/). GRCh37 (Human Reference, hg19, Fujita et al.

(2010)) is the last release of the human genome assembly from February 2009. Genome

resources for human and other species are hosted at the NCBI website. The GRCh37

build assembly can be found on the NCBI Build 37.1 Statistics page: http://www.ncbi.

nlm.nih.gov/mapview/stats/BuildStats.cgi?taxid=9606&build=37n&ver=1.

A pilot phase of the project called The Encyclopedia Of DNA Elements, ENCODE,

was launched in 2003 (TheENCODEProjectConsortium (2007), http://genome.ucsc.

edu/ENCODE/, (http://encodeproject.org). During its duration of 4 years, its goal was

to identify functional elements in 1% of the human genome sequence. Focus was also

placed on developing methodologies for analyzing, storing and sharing data. In 2007

the study was extended to the entire genome (TheENCODEProjectConsortium, 2011).

The GENCODE Project– The Encyclopedia of genes and genes variants– is a sub-

project of ENCODE that started with the objective of identification of all splice variants

of protein-coding genes within the 1% ENCODE regions in the human genome (Harrow

et al., 2006). During the extended phase of ENCODE, GENCODE is also annotating

splicing variants of long non coding RNAs, and small RNAs.

1.3 Multiple sequence alignments

DNA sequence refers to the sequence of nucleotides in a single strand of a DNA

molecule. Its length is measured in nucleotides (nt) or, equivalently, in base pairs (bp).

Sequence alignment is a way of arranging biological sequences (DNA, RNA, or pro-

tein) to identify homologous regions (similarity of aligned sequences poses a hypothe-

sis about their inheritance from a common ancestor). Aligned sequences are typically

presented as rows in an array whose columns are formed by characters that have (pre-

sumably) evolved from the same character on the common ancestral sequence. These

so so-called multiple sequence alignment (MSA) allow for simultaneous comparison of

several sequences. MSA serves the purpose of identifying regions that may be a conse-

quence of functional, structural, or evolutionary relationships between the sequences.

MSA are used in many contexts, including phylogenetic analysis, sequence-pattern

recognition or identification of functional elements.

http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/ 
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/ 
http://www.ncbi.nlm.nih.gov/mapview/stats/BuildStats.cgi?taxid=9606&build=37n&ver=1
http://www.ncbi.nlm.nih.gov/mapview/stats/BuildStats.cgi?taxid=9606&build=37n&ver=1
http://genome.ucsc.edu/ENCODE/
http://genome.ucsc.edu/ENCODE/
(http://encodeproject.org
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Fasta format became a standard for representing information contained in the MSA.

Every record starts with a symbol > followed by sequence identifier (protein or gene

name and source organism) and by a nucleotide or protein sequence split in blocks, e.g.

>hg19

CCCTTTGTACCAGTTGTAGCCATAAAGATTCTGGGACTCATTATGGACTACTAGAAGGACCTCCTT

CCCTTCTGCGACATTGAACGGCACGACATCAATATTGGTCTGGGCACTGTT

>mm9

TCCCTTGTACCAGGCAAAGGCTCCAAGCGCCAGGGGCAGATTGTGAACAAGTAGAAGAACATTGTT

GTCTTCAGCAACCTGGGGCGGCACAGCCTCAATGGTGACTTCAGCAGTGGT

>rn4

TCCCTTGTACCAGTAAAAGACTTGGAACTCCTGCGGCAGATTGTGAGCGAGTAAAAGAACGCTCTT

CTCCTCAACAACGTTGGGTGGCACAGCGTCTACGGTGACTTGGGCAGTGGT

is a fragment of a MSA of the DNA of human, mouse and rat.

Aligning sequences can be performed for both DNA and protein sequences. Pair-

wise alignment is global, when it is performed on the full-length sequences. Greedy

algorithms or variants of the dynamic Needleman-Wunsch algorithm (Needleman and

Christian, 1970) lie at the base of development of the software created for perform-

ing pairwise sequence alignments e.g. BLAST Altschul et al. (1990), FASTA Pearson

and Lipman (1988), Align at EMBOSS, http://www.ebi.ac.uk/Tools/psa/). Some of

the most popular DNA alignment programs include ClustalW(2) (Thompson et al.,

1994), T-coffee (Notredame et al., 2000), MUSCLE (Edgar, 2004), MAVID (Bray and

Pachter, 2003).

Alignment programs introduce gaps (denoted by ’-’) in sequences relative to others

in order to provide better quality alignments. In this work, we will consider gap-free

alignments.

1.4 Phylogenetics: Markov models of evolution

Systematics is the field of biology which examines the natural variation and relation-

ships of organisms. Taxonomy is one of its branches and deals with the nomenclature,

identification and classification of organisms. Often the terms taxonomy and system-

atics are used interchangeably. The so-called operational taxonomic units (OTU s) rep-

resent the organisms alive today (plants, animals, microorganisms). The relationships

between OTUs, which are a result of this classification are represented on graphical

structure of trees. In this section we get acquainted with the notion of phylogenetic

trees and evolutionary models.

1.4.1 Phylogenetic trees

Definition 1.1. A tree T is a connected acyclic graph, which consists of a set of

vertices and edges that connect them.

We distinguish two types of vertices: leaves, which are the terminal nodes, and the

interior nodes, Int(T ). We denote by L(T ) the set of leaves, by E(T ) the set of edges

http://www.ebi.ac.uk/Tools/psa/
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and by N(T ) the set of all nodes of T . The elements of L(T ) correspond to OTUs. Most

often, the information contained in the leaves comes from either the DNA or protein

sequences within one or more organisms.

Figure 1.4: Tree of life and one of its fragments (Adapted from evolution.berkeley.edu)

We will also write e = (e0, e1) for an edge e ∈ E(T ), where e0 and e1 are two ends

of e.

Definition 1.2. A phylogenetic tree is a triplet (T , ρ, {v1, . . . , vn}) where T is a tree

with n leaves, {v1, . . . , vn} is a set of different sequences, and ρ : {v1, . . . , vn} −→ L(T )

is a bijection.

Definition 1.3. A rooted phylogenetic tree is a tree where a distinguished interior

vertex is selected to be the root r (see Fig. 1.6(b)). The root is usually imposed and

represents the last common ancestor of the set of observed sequences. It induces an

orientation on the edges of T . The leaves represent information about current sequences

(present) and the interior nodes represent ancestral sequences (past), thus a tree records

the ancestral relationships among the current species. The vertex adjacent to an edge

e that lies closer to the root is called an ancestor, while the other end is a descendant.

The degree of a vertex is the number of its outgoing edges. A rooted tree is binary if r

has degree two and the remaining nodes are of degree three. An unrooted tree is called

trivalent if all its interior nodes have a degree three. A star tree, also referred to as a
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claw tree, is a tree with only one interior node. In the n-taxon star tree the root has

degree n.

Therefore, there are two kinds of information encoded in a phylogenetic tree:

1. the structure of the labeled graph, called the tree topology (see Def. 1.5), which

represents evolutionary relationships among a set of sequences that are believed

to have a common ancestor,

2. the length of the edges, so called branch lengths measuring evolutionary time, i.e.

the amount of nucleotide changes accumulated between the e0 and e1 ends of e.

An estimated number of species inhabiting Earth is 5 to 100 millions out of which

only 1-2 million are classified and named. The tree of life is a graphical representation

of the relationships between the forms of life (see Fig. 1.4.1) and their evolution from

a common ancestor. The Tree of Life organizes the knowledge about the history of

lineages on the axes of time and is based on the assumption that species arise from the

previous ones by descent and that all organisms are connected via passage of genes.

Internal nodes correspond to division or speciation events (when new biological species

arise) leading to independently evolving lineages. Under the framework of the Tree of

Life Project (National Science Foundation, http://www.phylo.org/atol/), it undergoes

continuous updated as the new information and discoveries become available. Any

phylogenetic tree is therefore a subtree of the Tree of Life.

Remark 1.4. Nucleotide changes alter the genetic information carried by a given gene.

Substitutions, deletions, insertions and mutations are changes to the genetic sequence,

thus shape the composition of the genomes. Substitution is a change of one nucleotide to

another that become fixed within population (“tolerated” by evolution in at least their

last common ancestor). Mutations happen due to mistakes in DNA replication or repair.

They refer to the alterations at both large and small levels, both gross chromosome

or small point mutations. The latter can involve a change at a single position in a

nucleotide sequence. The changes can be caused by a variety of external and internal

mutagenic agents (i.e. chemical mutagens, radiation, sunlight, spotaneous changes of

isomers) and it can be deletarious, advantageous or neutral. Sometimes mutations and

substitutions are used interchangeably. In this work we will focus on substitutions.

Synonymous substitutions in the protein coding exons are substitutons that do not

modify the resulting amino acid. Otherwise, they are called non-synonymous.

Definition 1.5. Let (T1, ρ1, {u1, . . . , un}) and (T2, ρ2, {u1, . . . , un}) be two phylogenetic

trees with the same set of leaves. We say that they have the same tree topology if there

exists an homeomorphism f : T1 −→ T2 such that

f(ρ1(ui)) = ρ2(ui) ∀i = 1, . . . , n.

If T1 and T2 are rooted and r1, r2 are their respective roots, we will also impose that

f(r1) = r2.

http://www.phylo.org/atol/
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Another commonly used term in phylogenetics is a clade and an outgroup. A phy-

logenetic tree is composed of clades that can be thought of different evolutionary lines.

A clade is a grouping that incudes an ancestor and all its descendants. Clades can

consist of a few or a large number of species. They form a nested hierarchy: smaller

clades are included in the bigger ones and cladistics is a method that deals with such

classification. An outgroup, on the other hand, is a taxon separated from the rest of

taxa by a larger evolutionary distance and stems from last (hypothesized) common

ancestor of the organisms under study. Based on the assumption that species evolve by

descent with modification, it is often used to determine the shared derived character-

istics of sequences under study and is very useful for phylogenetic tree reconstrucion.

For instance, in the fragment of the phylogenetic tree classifying the Drosophila genus

depicted in Figure 1.5, the representant of the Hawaiian Drosophila can be taken as

an outgroup to the subgenus Sophophora.

0.30

0.5

0.31

0.29

0.43

0.058 Drosophila melanogaster
0.062

Sophophora

Drosophila simulans
0.048

Sophophora
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Sophophora
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Sophophora
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Sophophora
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Sophophora

0.3

0.13 Drosophila mojavensis
0.48

Drosophila

Drosophila virilis
0.29

Drosophila

Drosophila grimshawi
0.45

Hawaiian Drosophila

Figure 1.5: Phylogenetic tree of 9-taxon drosophila (Pollard et al., 2006a; Clark et al.,
2007)

The number of edges of trivalent trees on n leaves is 2n−3. The number of distinct

tree topologies of trivalent unrooted trees on n leaves is (2n − 5)!!, while the number

of rooted tree topologies is (2n− 3)!!. These numbers show that the task of finding the

correct underlying tree or deciding on the most suitable model is nontrivial– more than

an exponential increase in the number of leaves presents a challenge, both conceptual

and computational.

1.4.2 Hidden Markov processes on trees

We adopt a probabilistic view on modeling evolution. Evolution is assumed to be a

stochastic process, in which nucleotides evolve over time according to certain probabil-

ities.

Changes that can be observed between two DNA sequences are described as sub-

stitutions, insertions or deletions. In the two latter cases, a nucleotide is inserted or

deleted from a given position as compared with the other sequence. In most commonly

used evolutionary models insertions and deletions are not considered and incorporat-

ing them would highly increase the complexity of the model. Throughout this work we

focus solely on the substitutions occuring along the evolutionary process (no insertions

nor deletions).
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Let T be a rooted phylogenetic tree on n taxa labeled as {1, . . . , n}. We adopt the

orientation from the root to the leaves of T . We assume that the sites in the alignment

are independent and identically distributed. That is, the states at each position in the

sequence evolve independently of the other nucleotides and according to the same evo-

lutionary process. It is disputable whether this assumption is realistic, however, models

are mere simplification of the evolutionary process, and certain assumptions allow for

more convenient inferential frameworks. We associate a discrete random variable to

each node of T with k possible states and we assume a fixed order on the k states.

Usually, k is taken to be 4, representing the four main bases in DNA, in which case the

states are Adenine, Cytosine, Guanine, Thymine denoted in this order as {A, C, G, T}.
The random variables at the leaves are observed, while the random variables at the

interior nodes are hidden.

Let π = (π1, . . . , πk) be the distribution of the k states at the root of T . It has

(k − 1) degrees of freedom due to the constraint
∑k
i=1 πi = 1. It is easy to see that the

maximum likelihood estimates, π̂, of π are the relative frequencies of each nucleotide in

the ancestral sequence assigned to r. For example, if the sequence is TCAACTGATC with

the states {A, C, G, T}, then we have that π̂A = 3
10 = π̂C = π̂T, π̂G = 1

10 .

Now, to each edge e of T we associate a k × k transition matrix Ae whose entries

are indeterminates representing the probabilities of transition between the two ends of

e. Markov assumption means that the current state of the process is dependent only

on the most immediate ancestral state. That is to say, the evolutionary process at

two bifurcating branches are independent given the common node. Let us recall that

two random variables A and B are independent given a third random variable C if

P (A,B | C) = P (A | C)P (B | C).

More formally, a transition (substitution) matrix for a Markov model on k = 4

states, {A, C, G, T}, is defined as

Ae =


PA|A PC|A PG|A PT|A

PA|C PC|C PG|C PT|C

PA|G PC|G PG|G PT|G

PA|T PC|T PG|T PT|T

 ,

where the conditional probability Pi|j denotes a change (substitution) of the nucleotide

i at the node e0 to the nucleotide j at e1.

Definition 1.6. A square matrix Ae is called a stochastic matrix if it has row sums

equal to 1 and nonnegative real entries. It is called strictly stochastic if moreover all its

entries are strictly positive.

We will denote the Pj|i entry of Ae by Aeij . An evolutionary Markov process is

therefore characterized by the set of parameters of the root and substitution matrices

(see Fig. 1.6(b)). If no other restrictions on model parameters are present, the number

of degrees of freedom is 3+12|E(T )|. According to the shape of the transition matrices

and the root distribution we have different evolutionary models as we will see in the

examples later in this section. The tree topology and the entries of the transition
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matrices are the parameters of a model and the goal of phylogenetic inference is to

estimate them from the observed data of of DNA sequences.

Let us recall a few facts about the Markov matrices. Markov assumption means

that given two evolutionary processes: (πe, Ae) from e0 to e1 and (πe
′
, Ae

′
), from e

′
0 to

e
′
1 such that e

′
0 = e1, we have that πe

′
= πeA1 = πeAeAe

′
. If Ae and Ae

′
are Markov

matrices of the same size, then AeAe
′

is also a Markov matrix. The condition of row

sums equal to one is equivalent to stating that A1 = 1, where 1 = [1, . . . , 1]t. Therefore,

1 is an eigenvalue of any substitution matrix.

Theorem 1.7 (Perron–Frobenius, Chang et al. (2008)). Let A be a Markov matrix.

Then every eigenvalue λ of A satisfies |λ| ¬ 1. Moreover, if A has positive entries, then

1 is a simple eigenvalue (has multiplicity 1) and |λ| < 1 for any other eigenvalue λ; in

addition, dim Ker (A− id) = 1.

The above theorem ensures that the limit limm→∞A
m exists.

Given a vector π, we denote by Dπ the k× k diagonal matrix with the vector π on

its diagonal.

Definition 1.8. A Markov process on a rooted phylogenetic tree T is stationary with

an equilibrium vector π if π = πAe for all e ∈ E(T ). If the equilibrium distribution

exists, it is unique and limm→∞(Ae)m = π. A stationary process is said to be time-

reversible if DπA
e = (Ae)TDπ for all e ∈ E(T ).

If a model is stationary with an equilibrium vector π, then the distribution at the

root of T is usually taken to be equal to π as well.

A way of specifying the evolutionary model is to assume a continuous-time homoge-

neous Markov process along each edge. Usually, the instantaneous rate of substitutions

is common in the entire tree and is recorded in a rate matrix Q. every edge of the

T . The rate matrix is set to have negative diagonal elements and the diagonal entries

chosen such that the rows sum to 0: Q1 = 0. If the root distribution is taken to be

the eigenvector corresponding to the eigenvalue of 0, then the process is stationary.

Following on Felsenstein (2003) Q is often assumed to be time-reversible (see Def. 1.8).

If te is the length of the branch in T , then the substitution matrix on the edge e is

given by the set of differential equations Ae(t)′ = QAe(t) with Ae(0) = id. The solution

to these equations is given by the matrix exponential Ae = exp(teQ).

In contrast to these continuous-time Markov processes, the Markov models intro-

duced at the beginning of this section can be thought of as discrete-time Markov pro-

cesses. Discrete-time formulation of the models allows for more flexible framework of

distinct rate matrices for different lineages. Indeed, even if the substitution matrices

Ae are of exponential type, their logarithms do not need to be proportional. Moreover,

not all substitution matrices can be represented as an exponential of a real matrix (see

Remark 3.10).

In phylogenetic inference, the tree topology T is a discrete parameter. Given a model

M and a tree T , the continuous parameters are the root distribution π and a set of sub-

stitution matrices (Ae)e∈E(T ) that satisfy model requirements. Let pMT (π, (Ae)e∈E(T ))
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be the vector of joint probability distribution of the states observed at the leaves of T
under the Markov process. Its entries are the 4n probabilities pMT ,x1...xn(π, (Ae)e∈E(T )) of

observing each nucleotide pattern (x1 . . . xn) at the leaves of T as given by the param-

eters {π, (Ae)e∈E(T )}. For simplicty of exposition, we will denote it as px1...xn whenever

M and T are clear from the context. According the Markov process on the tree T we

(a)

root

Y2

taxon4

Ae6

.

taxon3Ae
5

A e 2

Y1

taxon2

Ae4

taxon1Ae
3

Ae
1

(b)

Figure 1.6: Examples of phylogenetic trees: a) A circular (unrooted) tree with vertices of
degree 3 and 4;b) A bifurcated 4-taxon tree with vertices {root, Y1, Y2}. The transition
matrices, Ae

i
, of the 6 labeled branches, ei together with a root distribution define an

evolutionary model.

have
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px1...xn =
∑

xv∈{A,C,G,T},v∈Int(T )

πxr
∏

v∈N(T )\{r}
A
ean(v),ev
xan(v),xv (1.1)

xu denotes the state at the vertex u and an(v) is the parent node of v. If v = i is a leaf

node, then xv = xi.

Example 1.9. Consider a claw tree T with 3 labeled leaves {X1, X2, X3} and a general

model on the four states {A, C, G, T}. Following a hidden Markov process on T we can

write explicit formulas for the joint probability:

px1x2x3 =
∑

b∈{A,C,G,T}
πbA

r,v1
b,x1

Ar,v2
b,x2

Ar,v3
b,x3

,

where Ar,v1
b,x1

corresponds to the entry in the row labeled by b and the column by x1 of

the branch first branch. We can write the 4n joint probabilities:

pAAA =
∑

b∈{A,C,G,T}
πbA

r,v1
b,A A

r,v2
b,A A

r,v3
b,A

pAAC =
∑

b∈{A,C,G,T}
πbA

r,v1
b,A A

r,v2
b,A A

r,v3
b,C

...

pTTG =
∑

b∈{A,C,G,T}
πbA

r,v1
b,T A

r,v2
b,T A

r,v3
b,G .

pTTT =
∑

b∈{A,C,G,T}
πbA

r,v1
b,T A

r,v2
b,T A

r,v3
b,T .

Some of the most established discrete-time evolutionary models were first intro-

duced by Allman and Rhodes (2007) .

Definition 1.10. The General Markov model (GMM, Allman and Rhodes (2003); Steel

et al. (1994)), the most general of the discrete-time models, has the Markov transition

matrices of the form:
a b c d

e f g h

i j k l

m n o p

 , with

a+ b+ c+ d = 1,

e+ f + g + h = 1,

i+ j + k + l = 1,

m+ n+ o+ p = 1.

The only restrictions in the paramaters are the stochastic conditions of the matrices

(12 free parameters) and the root distribution (3 free parameters).

Consequently, one can define its submodels by imposing additional restrictions on

the model parameters.

Definition 1.11. Continuous-time Jukes-Cantor model was introduced by Jukes and

Cantor (1969b) and is the simplest of the possible models. It has only one free parameter
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representing a substitution to a distinct nucleotide base. The transition matrices for

the discrete-time Jukes-Cantor model, JC69∗, are of type:
a b b b

b a b b

b b a b

b b b a

 , with a+ 3b = 1.

Definition 1.12. The model introduced in Kimura (1980) has equal base frequencies

and 2 free parameters corresponding to different rates of transition (interchanges of

purines, A↔ G, or pyrimidines C↔ T) and transversions (purines-pyrimidine changes).

The transition matrix for the discrete-time version of this model, K80∗, is:
a b c b

b a b c

c b a b

b c b a

 , with a+ 2b+ c = 1.

Definition 1.13. The Kimura 3-parameter model was introduced in Kimura (1981)

as an extension to the previously described model with an additional parameter corre-

sponding to different rates of transversions. The transition matrices for its discrete-time

version are of type: 
a b c d

b a d c

c d a b

d c b a

 , with a+ b+ c+ d = 1.

The JC69∗, K80∗, K81∗ models have a stationary uniform distribution (1
4 ,

1
4 ,

1
4 ,

1
4).

This is taken to be the root distribution as well.

Notation 1.14. As seen on the above definitions, we use the symbol (∗) to empha-

size the nonhomogeneous nature of these models and to distinguish them from their

respective continuous-time correspondents. Therefore, we write JC69∗ for the discrete-

time Jukes-Cantor model, K80∗ and K81∗ for the Kimura 2-parameters and Kimura

3-parameters models, and use no (∗) symbol for their original continuous-time ver-

sions.

Definition 1.15. The strand symmetric model, SSM, was first introduced in Chapter

16 of Pachter and Sturmfels (2005b). It reflects the double strandedness of the DNA

sequences. In the light of the findings of Yap and Pachter (2004), this model is proposed

as its transition probabilities support complementary base pairing– in the double helix

of DNA hydrogen bonds are created between A and T, and C and G. Thus, the model

assumes that the entries of a substitution matrix A satisfy: AAA = ATT, AAC = ATG,

AAG = ATC, AAT = ATA, ACA = AGT, ACC = AGG, AAG = ATC and ACT = AGA. The

root distribution probability is also strand symmetric: πA = πT and πC = πG, and the
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substitution matrices are given by
a b c d

e f g h

h g f e

d c b a

 , with
a+ b+ c+ d = 1,

e+ f + g + h = 1.

It is the model that is best suited to describe large data sets– provided that we

dispose sufficient amount of data, base composition will reflect the rules of base-pairing.

The Strand Symmetric model (SSM, Casanellas and Sullivant (2005)) can be considered

a discrete-time version of the HKY model (Hasegawa et al., 1985) with equal distribution

of the pairs of bases (A, T) and (C, G) at each node of the tree.

We refer to Greuel et al. (2003), Allman and Rhodes (2004b), and (Semple and Steel,

2003, chapter 8) for further background and references on the discrete-time models.

Definition 1.16. If a DNA sequence has evolved from another according to a substi-

tution matrix Ae, then the number of substitutions per site that have occurred can be

approximated by

l(e) = −1
4

log det(Ae) (1.2)

(see Barry and Hartigan (1987)). This is usually known as the branch length of edge e.

The unit of measure for branch length in the work contained in this thesis will

be the expected number of substitutions per site. That is, if e is a directed edge of

a branch length equal to 0.5, then 50% of the sites have undergone a substitution

along the evolutionary process on edge e. In the case of stationary continuous-time

models, the expected numer of substitutions per site coincides with −tr(DπQλete)

if Ae = exp(Q · λete) and Dπ is a diagonal matrix with entries corresponding to the

stationary distribution π. If the stationary distribution is uniform (as is for JC69∗, K80∗

and K81∗ models), this can be rewritten as −1
4 log det(Ae). Note that in all continuous-

time models the branch length can be computed from the matrix exp(DπQ
e), which

has the same shape as the transition matrix Ae.

On the contrary to the previous models, the distribution of the bases of the SSM

and GMM models varies among the nodes of T , thus it is not stationary. Stationary

distribution is oftentimes referred to as the stable base distribution as it imposes the

assumption of compositional homogeneity between the nucleotide bases. Assumption of

this form was shown to be restrictive and mislead the phylogenetic reconstruction (see

Jermiin et al. (2004) and the references within). Allman and Rhodes (2006b) trans-

lated these concepts into the algebraic language and introduced the Algebraic Time

Reversible (ATR) and Stable Base Distribution (SBD) models (see below). Reversibility

implies that the probability of a substitution between ancestor and descendant nodes

along T is independent of the direction of time. This in turn implies that the frequency

of the bases is constant at all points in the divergence time. The definitions of these

models are given by Allman and Rhodes (2006b) are:
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Definition 1.17. The π−Stable Base Distribution (SBD) model is the most general

stationary model with equilibrium vector π. That is, if π is a vector whose elements

sum to 1, π = (πA, πC, πG, πT), we require that Ae1 = 1 and π = πAe ∀ e ∈ E(T ).

Definition 1.18. Given a distribution π, the π−Algebraic Time Reversible (ATR) model

is defined by the following conditions

(1) Ae1 = 1 ∀e ∈ E(T ),

(2) the set of matrices (Ae)e∈E(T ) commute with each other, and

(3) the matrices (DπA
e)e∈E(T ) are symmetric.

The JC69∗, K80∗, K81∗ models are examples of the ATR model and thus of SBD.

Among the models described above, we can write down the following chain of inclusions:

JC69∗ ⊂ K80∗ ⊂ K81∗ ⊂ SSM ⊂ GMM,

JC69∗ ⊂ K80∗ ⊂ K81∗ ⊂ ATR ⊂ SBD ⊂ GMM. (1.3)

The lemma below states that the K81∗ matrices (as well as JC69∗, K80∗) are diago-

nalizable.

Lemma 1.19. Let A =


a b c d

b a d c

c d a b

d c b a

 be a K81∗ matrix (a + b + c + d = 1) and

consider the matrix

S =


1 1 1 1

1 −1 −1 1

1 −1 1 −1

1 1 −1 −1

 .

Then S−1 = 1
4S and S−1AS is a diagonal matrix with diagonal entries {1, a− b− c+

d, a− b+ c− d, a+ b− c− d} (in this order).

Remark 1.20. The change of variables considered in the Proposition above corre-

sponds to the discrete Fourier transform in the setting of Sturmfels and Sullivant (2005).

The transition matrices of the JC69∗, K80∗, K81∗ and the SSM models show certain

symmetries in their structures. This property allows to redefine them as equivariant

models (see Section 5.5). The two latter models, SBD and ATR, give explicit conditions

to test the important conditions of the evolutionary process, the reversibility and sta-

tionarity.

We will explore the properties of these models and the applications of new ap-

proaches to their analysis in modern phylogenetics throughout the rest of this work.
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1.4.3 Invariants

The term phylogenetic invariants was coined Cavender and Felsenstein (1987) and Lake

(1987) to name polynomial equations that could be used for phylogenetic reconstruc-

tion of tree topology. The definition evolved and now we distinguish different types of

invariants.

For every tree T , given a model and assigned transition probabilties to the edges,

we can write the formula for the joint probabilities (see (1.1)). Given a tree T and a

modelM, an invariant is a polynomial that vanishes on the expected joint distribution

at the leaves of T , pTM,x1...xn(π, (Ae)e∈E(T )), irrespective of the choice of the continuous

parameters (the substitution matrices and the root distribution).

Phylogenetic invariants are the invariants that can distinguish between different

tree topologies: they vanish on all the joint probabilities for a given tree topology, but

not on all for another tree. The work on phylogenetic invariants has been pursued by

Allman and Rhodes (2006a), Allman and Rhodes (2008b), Draisma and Kuttler (2009),

Casanellas and Sullivant (2005), Casanellas and Fernández-Sánchez (2011), to name a

few.

It was already noted by e.g. Eriksson (2005), Sturmfels and Sullivant (2005) that

some invariants depend only on the model chosen (and not on the topology). For exam-

ple, in the case of the JC69∗ on a 3-star tree these include
∑
px1x2x3 = 1, pAAA−pCCC = 0,

pCCC − pGGG = 0,pGGG − pTTT = 0 (see Chap. 6.3 for the complete list). The polynomials

that vanish on all pTM,x1...xn for a given model M irrespective of the underlying tree

topology are called model invariants.

The joint pattern frequencies can be estimated from the observed alignment. Given a

multiple sequence alignment of n species, we can estimate the probability of occurrence

of pattern x1x2 . . . xn by the relative frequency of column x1x2 . . . xn in the alignment.

Thus, the relative frequencies of the columns of the multiple sequence alignments be-

come a plug-in estimate for the polynomial equations that characterize a model and

a tree topology, i.e. if the data evolved under a model M, the model invariants for

M are close to zero on these observed frequencies. We write “close to zero”, as the

data is limited and the theoretical “vanishing” of the invariants will not be attained in

practical applications.

First we note that an undisputable advantage of the approach based on invariants is

that it is parameter-free, i.e. the topology or the model are chosen without the need to

estimate the superfluous parameters– invariants contain no obsolete information. Also,

they are applicable to the nonhomogeneous models. That said, this new approach is

far from perfect and its applicability is limited by a series of problems. Firstly, one

needs an efficient way of listing the invariants. In some instances, for the models of

low dimension and small trees, these invariants can be obtained of such computer

algebra systems include: Singular (Greuel et al., 2001), CoCoa (Abbott et al., 2007;

Abbott and Bigatti, 2010), Macaulay 2 (Grayson and Stillman, 2009) are examples

of these. For large problems (e.g. large trees) the cardinality of the “sufficient” set of

invariants will grow exponentially in n. Therefore a generating set of the “most relevant”
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(topologically or model informative) invariants should be obtained. The invariants were

shown to outperform some alternative methods in tree reconstruction for 4−taxon trees

(Casanellas and Fernández-Sánchez, 2007; Casanellas and Fernández-Sánchez, 2011),

but for larger problems the are too computationally expensive. However, as shown

in section 9, they offer an appealing framework for model selection in phylogenetic

mixtures.
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Chapter 2

Case-study on the conservation of
splicing regulators

Illustrated in the context of splicing, this section describes the main motivations which

led to the development of great part of the work presented in the thesis.

The content of the section is self-contained and not necessary for understanding

concepts and results presented in the remaining chapters. However, we believe it pro-

vides valuable insights into usefulness and possible applications of the methodologies

introduced in the following chapters.

It is being increasingly appreciated that the genomic sequence is intrinsically pol-

ysemic: the same DNA sequence often carries multiple meanings, i.e. it is involved in

different functions. The nucleotide sequence of the genome, therefore, is shaped by mul-

tiple contrasting evolutionary forces acting at different levels ( see e.g. Hurst (2006),

Warnecke and Hurst (2007); Warnecke et al. (2008a,b, 2009),Washietl et al. (2008),

Tilgner et al. (2009), Tilgner and Guigó (2010), Fairbrother et al. (2004), Carlini and

Genut (2006)).

We show that diferent parts of coding sequences are subject to different selective

constraints. This justifies the use of mixtures of trees in phylogenetic inference (see

Def. 6.1). Within protein coding regions, sequences may play a role in control of trans-

lation, translational efficiency, transcript stability, etc. (see Chamary et al. (2006) for

a review) and may therefore be subjected to additional selective forces not directly re-

lated to protein coding function. Sequences involved in the definition of splice sites, and

in the regulation of alternative splicing (the ESEs, ESSs, ISEs and ISSs; see section 1.1)

are examples of such. There is a stronger evidence that splicing regulatory sequences

are under additional selective pressure in coding regions (Parmley et al. (2006), Orban

and Olah (2001)). Neutrally evolving sequences are widely used to estimate divergence

times between species. Oftentimes, the four fold degenerate positions within coding

exons are used for this purpose. However, the assumption of evolutionary neutrality

on these positions has been challenged upon realizing that many exonic sequences play

functional roles not directly related to protein coding function. By analyzing human

mouse orthologous gene pairs Parmley et al. (2006) show the rate of synonymous sub-

stitutions is lower in putative ESE sequences than in non-ESE sequences (see Remark

1.4).

We investigated whether extending this analysis by considering simultaneously or-

thologous constitutive exons across six different vertebrates would confirm the results

21
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and possibly contribute to gaining additional information. Consistent with the results

of Parmley et al. (2006) we show in the synonymous positions overlapping a core set of

ESE sequences are more constrained that synonymous positions not overlapping them.

We used multiple nucleotide sequence alignments of coding exon sequences across six

vertebrate species to infer the rate of evolutionary change at base pair resolution. We

specifically compared the rate of evolution at synonymous positions covered by known

splice regulators and at synonymous positions not covered by them.

2.1 Data

All data sets used in this section are available at http://genome.imim.es/datasets/

ESEselection2008/.

Putative splicing regulators (ESE, ESS) Up to date the number of identified

splicing-related regulatory subsequences comprises 78% of the total set of possible hex-

amers (6-tuples on the set {A, C, G, T}). Thus, given their ubiquitousness defining a

pertinent set of motifs acting in splicing is a nontrivial task. We used the list of 666

experimentally and computationally validated ESEs of Fairbrother et al. (2002) as a

starting set. Next, we pruned them to derive a smaller set of 32 “trusted” regulatory

pentamers (ese) by removing the first or last redundant base whenever a given hexamer

had a wobble nucleotide in its first or last position, i.e. AAAAA was considered if either

∀x ∈ {A, C, G, T} xAAAAA or AAAAAx belonged to the original set of 666 hexamer ESEs

(Tilgner and Guigó, 2007). As a“neutral” set we used a set of 886 hexamers that to

our knowledge have not yet been implicated in splicing regulation. 60% of them was

used in neutral model definition. The remaining 355 hexamers were used as a control

test set (nonESE).

Multiple sequence alignments We chose five mammalian species: two primate

species (human and macaque), two rodent species (mouse and rat), and an artyodactil

(cow); and chicken as a relative outgroup. Figure 2.1 displays the placement of these

species in a generally accepted species tree in the ENCODE project (see Section 1.2,

Nikolaev et al. (2007)).

In order to obtain multiple alignments of orthologous exon sequences, we projected

all ENSEMBL human transcripts (Hubbard et al. (2009)) onto the human genomic

sequence and selected only coding internal exons longer than 146bp surrounded by

fully intronic regions (non-terminal exons with consensus splice sites).

For these, we extracted the 70bp downstream of the acceptor 3′ splice site, and the

70bp upstream of the 5′ splice site skipping the 3 most proximal nucleotides to the

splice sites.

We next identified the orthologous exons in the other species investigated. We used

the LiftOver tool from the USCS Genome Browser (Fujita et al., 2010) to get the

genomic positions corresponding to the human exons in Rhesus macaque (RheMac2),

Mus musculus (Mm8), Rattus norvegicus (Rn4), Bos Taurus (BosTau3) and Gallus

http://genome.imim.es/datasets/ESEselection2008/
http://genome.imim.es/datasets/ESEselection2008/
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Figure 2.1: Left : Vertebrate tree derived from the four fold degnerate sites in genes from the
ENCODE regions (Thomas et al. (2007)) using MAVID (Nikolaev et al. (2007)); right : placing
regulatory and neutral motifs in the vicinity of the splice sites.

gallus (GalGal3). Only those exons with canonical splice sites (GT/AG) in all species

were considered. In the end, we had a set of 8, 775 human constitutive exons conserved

in all the species investigated.

For each of the 8, 775 sets of orthologous exons (orthologous exon groups), we per-

formed an amino acid based nucleotide alignment. First, using human as reference, we

inferred the phase of each of the orthologous exons in the other species. We translated

each of the exons into all possible frames and kept the phase that gave the best score

in a pairwise alignment with the human one using T-coffee (Notredame et al. (2000)).

Then, we performed a multiple amino acid alignment of the exons, also using T-coffee,

and translated it back to nucleotides. In this step, we removed all the orthologous exon

groups containing ”N’s” or in frame stop codons. Finally, for each remaining ortholo-

gous exon group, we built exon-specific phylogenetic trees, and we retained for further

analysis only those exon groups reproducing the established species phylogeny (as in

Figure 2.1). We ended up with a set of 8, 583 alignments of “trusted” constitutive or-

thologous exons consisting in total of 1, 510, 077 alignment columns (orthologous coding

nucleotide positions): 503, 370 corresponding to the first codon positions, 503, 350 to

the second codon position and 503, 357 to the 3rd codon position. We extracted the

subset of the 3rd codon positions that were synonymous across the entire alignment

(227, 676 synonymous 3rd codon positions). The synonymous positions considered here

were the four-fold degenerate sites, that is the third codon positions whose variations
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Table 2.1: Number of alignment sites in the data sets used in the study.
defi
defidata sets/ number of positions
defi positions number of exons all 4−fold degenerate (train)nonESE (test)nonESE ESE
defi full set 8,583 1,510,077 227,676 100,729 69,371 28,041
defiweak 3’ exons 1,489 103,749 15,330 6,804 4,776 2,173
defistrong 3’ exons 1,481 103,220 15,078 6,260 4,137 1,867
defiweak 5’ exons 1,587 110,522 16,376 7,275 4,041 2,097
defistrong 5’ exons 1,498 104,346 15,576 6,807 4,601 1,787

in the nucleotide does not affect the encoded amino acid.

In the end, we constructed a set with the four-fold degenerate sites from the 70

position next to the 3′ (3’ exons) and next to the 5′ (5’ exons). These sets are those in

which all the analyses described in this paper was carried out. These includes the set of

human constitutive exons, the orthologous exon groups, alignments and phylogenetic

trees.

Exons We based our analysis on a set of constitutive coding human exons from the

protein coding genes based on the evidence from the EST data. EST alignments were

downloaded from UCSC (November 2007). We defined an exon as constitutive if it had

at least a 90% inclusion level, i.e. at least 90% of the ESTs mapping to the exon region

verify the exon. More formally, we define the inclusion level of an exon as 100 Ni
(Ni+Ne)

,

where Ni is the number of ESTs confirming the exon (EST verifies the exon boundaries

+/− 6nt), and Ne is the number of ESTs overlapping the region, but not including the

exon. Only those exons exons with Ni +Ne ­ 10 were considered.

Splice site partitions of the orthologous exon alignments

We further divided the set of orthologous exon alignments according to the strength of

their splice sites. We used standard Position Specific Scoring Matrices (PSSM) to score

the splice sites. PSSMs for the acceptor (3′ ) and donor (5′) splice sites were derived from

human splice sites. We pooled the scores of the splice sites from all species but chicken

and identified the quartiles of the distribution. A splice site is defined to be “weak” if

the score of the human splice site falls in the first quartile of the distribution whilst the

corresponding scores in the remaining species do not exceed the second quartile. In a

similar manner, a splice site is defined as “strong” if the score of the human splice site

belongs to the fourth quartile (top 25% of the SS scores) and the scores for the remaining

species lie in the second quartile (top 50%). The partition of exons was performed

independently for 3′ and 5′ splice sites. This resulted in four subsets of the set of

orthologous exon alignments: 1, 489 weak 3’ exons (103, 749 nt), 1, 418 strong 3’ exons

(103, 220 nt), 1, 587 weak 5’ exons (110, 522 nt) and 1, 498 strong 5’ exons (104, 346 nt)

(see Table 2.1 for a summary). Even though a given exon may belong to two different

data sets (having a weak and a strong splice site), the nucleotide sequences extracted

do not overlap.
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Synonymous sites covered by regulatory pentamers and by neutral hexam-

ers. We mapped the sets of ESEs , and neutral hexamers (the training and test sets)

onto the human exon sequence (see Fig. 2.1). Only exact matches were considered.

Next, we extracted the synonymous 3rd codon positions uniquely covered by any of the

three sets: ESEs (28, 041 columns), by “training neutral” hexamers (100, 729 columns),

and by the nonESE (693, 71 columns) (see Tab. 2.1).

Assessing sequence conservation. We measured conservation at each individual

position based on a multiple nucleotide sequence alignment. Let D = (D1, . . . , DN ) be a

multiple sequence alignment, where Dj denotes the jth column. We used a probabilistic

measures of the conservation of Dj defined as:

p(Dj) = −rj log (rj) , (2.1)

where rj = P (Dj | M, τ). Calculation of this score requires specification of an eov-

lutionary model M and a phylogenetic tree, T . We made a heuristic choice as to the

model and selected HKY model due to its flexibility. The parameters of the model M
were estimated using PAML (Yang, 2007). Exemplary scores are given in Table 2.2.

The score p takes 46 possible different real values. We then discretized the distribution

(2.1) into m equally-spaced categories, such that m is the greatest integer smaller than

N
1
3 (He and Meeden, 1997). Lastly, we use Kullback-Leibler divergence (KL) to quan-

Table 2.2: Values of the phylogenetic conservation score with the parameters estimated
for the set of positions in the vicinity of the 3′ splice site.

human A A A A A A C
macaque A A A A A C A
rat A A A A C A A
mouse A A A C A A A
cow A A C A A A A
chicken A C A A A A A
Phylogenetic Conservation, weak exons 1 0.2561 0.0551 0.0179 0.01 0.009 0.005 0.0037
Phylogenetic Conservation, strong exons 0.2866 0.0563 0.0175 0.0105 0.0098 0.0042 0.0035

tify the distance between the distributions. Let Θ = (q1, . . . , qm) be the parameters

associated to the positions evolving neutrally (nonESE) and Θese = (p1, . . . , pm) of

the positions covered by splicing regulators (ese). Both Θ and Θese can be estimated

as the relative frequencies of the score values falling within the m bins as observed in

the data. The distance between the two distributions was measured by:

−KL(Θese,Θ) = −
m∑
i=1

pi log
pi
qi
. (2.2)

From the properties of KL it follows that the score takes values in (−∞, 0) and 0

indicating the equality of the two distributions. The exponent of this divergence belongs

to (0, 1) and can be interpreted as the probability that the set of alignment positions

under consideration was generated under the “splicing-neutral” evolutionary model.



26CHAPTER 2. CASE-STUDYON THE CONSERVATIONOF SPLICING REGULATORS

Henceforth, under this interpretation a value close to 1 indicates absence of negative

selection (high divergence) and the lower the values the stronger the departure from

neutrality.

2.2 Results and Discussion

Synonymous positions covered by Splicing Regulatory Sequences are more

conserved than other synonymous position. As a reference set to both ese and

nonESE sets we extracted the set of second codon positions from the multiple sequence

alignments of exons under study.

As expected, second codon positions are more conserved than synonymous posi-

tions and the synonymous positions covered by ESE positions are more conserved than

nonESE positions in both acceptor and donor data sets (see Fig. 2.2).
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Figure 2.2: Exponent of the Kullback-Leibler divergence between the splicing-neutral training
set of synonymous positions with nonESEs and the synonymos positions covered by ese, test
set of nonESE and the second codon positions; see (2.2).

The average value of the score (2.2) taken across both splice sites was 0.2479 for

the second codon position, 0.7659 for the synonymous ESE positions, ese, and 0.9956

for the synonymous nonESE positions.

In addition, as seen in Figure 2.2 there appears to be an small effect of the strength

of donor splice sites, with ESE positions proximal to weak splice sites departing more

from neutrality, unobserved in the vicinity of the acceptor sites.

The usage of synonymous positions covered by splicing regulatory sequences

may confound estimates of evolutionary distance. Synonymous positions in
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coding regions are often used in tree inference. However, as shown in the results pre-

sented here are strongly indicative that (at least) a subset of synonymous positions in

coding regions are not evolving neutrally. In particular, 4-fold positions within coding

exons under selective constraints due to their role in the recognition of splice sites. It can

be expected that using these constrained positions to estimate evolutionary distances

will lead to an underestimation of divergence times.

We investigated the effect of ignoring the synonymous positions covered by the

set ese in branch length estimation on the given ENCODE tree (see Fig.9.3). For this

purpose we used PAML (Yang (2007)). First, we used all 229, 796 synonymous positions

in the set of 8, 583 orthologoues coding exons to estimate the lengths of the branches.

Chicken0.457777

Cow0.20993

Human

 Macaque

0.111539

Rat0.104194

 Mouse0.09242

0.285356

0.735036

Chicken0.538575

Cow0.206717

Human

 Macaque

0.101878

Rat0.102621

 Mouse0.091284

0.27284

0.578689

Figure 2.3: Branch length estimated from all 4-fold degenerate sites and from the positions
with the synonymous sites covered by putative splicing regulators, ese, removed.

We then performed the same analysis by excluding the 35, 783 positions covered by

ese (194, 013nt) (see Fig. 9.3). As it is possible to see, with the exception of the branch

leading to the chicken outgroup, all branches are slightly larger when the ESE positions

are ignored -even though these constitute only a very small fraction of all synonymous

positions. The total branch length of the tree computed as the sum of the branches

of the phylogenetic tree is 1.98122 when using all synonymous positions and 2.09201

when excluding ESE positions.

In order to assess the statistical significance of the differences, we repeated the

analysis 500 times. Each time we excluded the sets of synonymous positions covered

random sets of 32 pentamers and calculated the tree length. As seen in Figure 2.4, the

tree length obtained by excluding the positions covered by our set of confident ESEs

(δese) get noticeably longer than the trees obtained by excluding the positions covered

by random sets of pentamers. The hypothesis is that the set of confident ESEs is indeed

involved in regulation of splicing. In addition, there is additional selective pressures,

not directly related too protein coding capacity, acting on the synonymous sites.

As other recent analysis (Ke et al. (2008), Goren et al. (2006)), our analysis shows

that additional selective constraints are acting on protein coding regions not directly

related to protein coding functionality. We have detected that selection is acting more

strongly in synonymous third codon positions occurring in sequences that have been

implicated in promoting exon inclusion (ESEs) than in those positions not occurring in

such sequences (nonESE). We have been able to detect that selection may be slightly

stronger in third codon positions proximal to weak donor sites than proximal to strong

donor sites. In agreement with the findings of Xiao et al. (2007), no differences were

observed between weak and strong acceptor sites, implying that the strength of the

donor site is more important than that of the acceptor site to define splicing.
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Figure 2.4: Length distribution of Phylogenetic trees relating the species investigated here
(human, macaque, rat, mouse, cow and chicken) inferred from third codon synonymous positions
after removing positions covered by random sets of 32 pentamers. The randomization was
carried out 500 times. The lengths of the tree obtained from all four fold degenerate positions
(∆4fold) and after removing the positions covered by the 32 ESE pentamers (ese: ∆ESE) are
depicted as vertical bar.

Enhancement in the detection of weak selective constraints can be attained by us-

ing the phylogenetic information relating the species−− when composite regions are

analysed, mixture models are the most optimal choice. In addition, non-heuristic model

selection motivated by the data at hand is an important pre-inference step in phylo-

genetics. Method for parameter estimate for complex (nonhomogeneous) data is also

a question not fully addressed in the field. Motivated by the results presented in this

section, in subsequent chapters we propose a framework for dealing with nonhomoge-

nous models and their mixtures. Firstly, the model selected should not depend on the

underlying tree. In fact, the data comprising concatenated set of divergent regions

can be viewed as phylogenetic mixtures. In addition, an important step is surpassing

the assumption of model homogeneity, i.e. allowing different rate matrices at different

branches of the tree. One of the unanswered questions in phylogenomics is the number

of divergent regions that could be concatenated for viable estimation. This question is

related to statistical identifiability in maximum likelihood inference. Lastly, methods

for branch length estimation in nonhomogeneous models are not yet established. This

and other challenges posed here will be addressed in the progression of the work.
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Algebraic tools in phylogenetics
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Chapter 3

Markov evolutionary matrices for
given branch lengths

Generating the DNA sequences evolving under a stationary continuous-time evolution-

ary model on an edge e with preassigned branch length l and given rate matrix Q, is

not difficult: according to equation (1.2) one just needs to take λete = −l/tr(DΠQ)

and follow the usual process to generate a Poisson distribution according to these pa-

rameters. There are several programs available for generating data under most-used

continuous-time evolutionary models, for example seq-gen (Rambaut and Grassly,

1997) and evolver in PAML (Yang, 2007). An extra effort is needed if the amount of

“substitution events” , branch length, is fixed. We found that the problem of generating

data under the more general discrete-time models is equivalent to generating substi-

tution matrices Ae (belonging to the evolutionary model) with a given determinant.

For the JC69∗, K81∗, K80∗ and SSM models (Propositions 3.1, 3.4, 3.6 and 3.17) the re-

sults are bidirectional and we provide algorithms for generating any strictly stochastic

matrix M with determinant equal to a given number K ∈ (0, 1), when M is either a

JC69∗, K81∗, K80∗ or SSM matrix. For the most general model GMM we provide a way

of generating strictly stochastic matrices with determinant equal to K, but we are not

able to claim whether we produce all of them. We observe that we are able to produce

matrices that are not the exponential of a real rate matrix (cf. Remark 3.10).

Here we address the problem of providing stochastic matrices of the above shapes

with given determinant K ∈ (0, 1). From the formula (1.2) we see that this is equivalent

to generating substitution matrices for a branch of a given length. For the continuous-

time stationary reversible models this is an easy task because the expected number of

substitutions per site can be written down in terms of the trace of the rate matrix.

The algorithms proposed in this paper have been implemented in C++ in order

to generate multiple sequence alignments of DNA data evolving on any phylogenetic

tree (see section 7). Earlier version of the algorithms ws used for testing, SPIn, model

selection method for phylogenetic mixturs (see Chap. 9 and Kedzierska et al. (2012)).

An example of an algorithm to generate data on quartet trees under nonhomogeneous

continuous-time models was given by Jermiin et al. (2003). Here and in the subsequent

sections, we solve the problem in general setting, any tree and discrete-time model.
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3.1 Generating discrete-time matrices with a given deter-

minant

Generating JC69∗ matrices with a given determinant

Proposition 3.1. Let K ∈ (0, 1) and let

A =


a b b b

b a b b

b b a b

b b b a

 , a+ 3b = 1,

be a JC69∗ matrix. Then A is a strictly stochastic matrix with determinant equal to K

if and only if a = 1
4(1 + 3K1/3), b = 1−a

3 .

Proof. Using Lemma 1.19 we have detA = (4a−1
3 )3. Therefore, A has determinant equal

to K if and only if a = 1
4(1 + 3K1/3). Moreover, as K ∈ (0, 1), we obtain 1 > a > 0

(and so 0 < b = 1−a
3 < 1), and we are done.

Therefore we have:

Algorithm 3.2. (Generation of JC69∗ matrices with given determinant.)

Input: K in (0, 1).

Output: A strictly stochastic JC69∗ matrix A with determinant K.

Step 1: Set a = 1
4(1 + 3K1/3), b = 1−a

3 .

Final: Return

A =


a b b b

b a b b

b b a b

b b b a

 .

Generating K80∗ matrices with a given determinant

Remark 3.3. As a technical step previous to the generation of K80∗ matrices with

given determinant, we consider the polynomial

pK(x) = −2x3 + x2 +K, K ∈ (0, 1),

and we observe that it has exactly one real root s which lies in (
√
K, 1). Indeed, the

coefficients of pK(x) have one variation in sign and those of pK(−x) have no variation in

sign. Therefore, applying Descartes’ rule we obtain that pK(x) has exactly one positive

root s and no negative roots. Moreover, as K is a constant in (0, 1), we have that

pK(
√
K) = 2K(1 −

√
K) is positive and pK(1) = K − 1 is negative, implying that s

lies in (
√
K, 1).
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Using the formula for the roots of a cubic polynomial we obtain

s =
1
6

+
1
6

3
√

1 + 54K + 6
√

3K + 81K2 +
1
6

3
√

1 + 54K − 6
√

3K + 81K2.

As a byproduct, the polynomial pK(−x) has exactly one real root which coincides

with −s.

Proposition 3.4. Let K ∈ (0, 1) and let s be the unique real root of pK(x) = −2x3 +

x2 +K (see Remark 3.3). Let

A =


a b c b

b a b c

c b a b

b c b a

 ,

be a K80∗ matrix (a+2b+c = 1), and consider the change of variables α = 1−2(b+c),

β = 1− 4b. Then A is a strictly stochastic matrix with determinant equal to K if and

only if
√
K < |α| < s and β = K/α2.

Proof. First we note that the inverse change of variables is b = 1−β
4 , c = 1+β−2α

4 .

Moreover, α = a − c and β = a − 2b + c are the diagonal entries in S−1AS (different

than 1) in Lemma 1.19 and therefore det(A) = α2β.

⇒) Assume that A is strictly stochastic with determinant K. Then b is strictly

positive, so that β < 1. As K = det(A) = α2β and β < 1, we obtain |α| >
√
K. In

particular, α 6= 0 and we can write β = K/α2.

Using the inverse change of variables above and β = K/α2 we have

a > 0⇔ 2b+ c < 1⇔ 3−K/α2 − 2α
4

< 1⇔ pK(−α) > 0.

As noted in Remark 3.3, pK(−x) has exactly one negative root which equals −s and

lies in (−1,−
√
K). As pK(−x) has positive leading term, pK(−α) > 0 only holds if

α > −s.
Similarly, c is strictly positive if and only if pK(α) > 0. Following an analogous

argument, we obtain that pK(α) > 0 if and only if α < s. Putting all together we

obtain
√
K < |α| < s, as desired.

⇐) Assume that
√
K < |α| < s and β = K/α2. In particular, we have < β < K

K = 1

and we obtaing that b = 1−β
4 is strictly positive.

Now, as in the proof of ⇒) we have that c > 0 if and only if pK(α) > 0. And also

as above, this happens if and only if α < s. As we assumed |α| < s, we obtain c > 0.

Lastly, a > 0 if and only of pK(−α) > 0, and this holds if and only if α > −s (see

proof of ⇒). As we assumed |α| < s, we get that A is a strictly stochastic matrix.

Moreover, det(A) = α2β = K as wanted.

Using the previous result, we provide the following algorithm for generating strictly

stochastic K80∗ matrices with given determinant K. It is worth pointing out that with
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this algorithm we are generating all K80∗ strictly stochastic matrices with determinant

K.

Algorithm 3.5. (Generation of K80∗ matrices with given determinant.)

Input: K in (0, 1).

Output: A strictly stochastic K80∗ matrix A with determinant K.

Step 1: Compute the unique real root s of pK(x) using Remark 3.3.

Step 2: Choose α randomly such that
√
K < |α| < s.

Step 3: Let β := K/α2, b := 1−β
4 , c := 1+β−2α

4 , and a := 1− 2b− c.

Final: Return

A :=


a b c b

b a b c

c b a b

b c b a

 .

Generating K81∗ matrices with a given determinant

Previously to dealing with the case of K81∗ matrices, for each real number K in (0, 1),

we let s be the unique positive root of the polynomial

qK(z) := z(z + 1)2 − 4K.

Indeed, according to Descartes’ rules of signs, this polynomial has at most one positive

root. Moreover, as qK(K) < 0 and qK(1) > 0, there is exactly one positive root s and

it lies in (K, 1). Using the formula for the roots of a cubic polynomial we obtain

s = −2
3
− 1

3
3
√
−1− 54K + 6

√
3K + 81K2 − 1

3
3
√
−1− 54K − 6

√
3K + 81K2. (3.1)

Proposition 3.6. Let K ∈ (0, 1) and let s be the unique real root of qK(z) := z(z +

1)2 − 4K. Let

A =


a b c d

b a d c

c d a b

d c b a

 ,

be a K81∗ matrix (a+2b+c = 1), and consider the change of variables α = 1−2(b+c),

β = 1−2(b+d), γ = 1−2(c+d). Then A is a strictly stochastic matrix with determinant

equal to K if and only if |α| ∈ (s, 1), |β| ∈
(
I|α|, J|α|

)
where

I|α| = max

−1 + |α|+
√

(1− |α|)2 + 4K
|α|

2
,
1 + |α| −

√
(1 + |α|)2 − 4K

|α|

2

 ,
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J|α| = min

1 + |α|+
√

(1 + |α|)2 − 4K
|α|

2
,
1− |α|+

√
(1− |α|)2 + 4K

|α|

2

 ,
and γ = K

αβ .

Remark 3.7. As the change of variables above is symmetric in b, c, d, the roles of these

three variables can be exchanged in the previous Proposition.

Before proving this Proposition we need the following technical lemma.

Lemma 3.8. Let K be a real number in (0, 1), let s be the unique positive solution to

z(z + 1)2 − 4K = 0, and consider the function

f(x, y) = 1− x− y +
K

xy

defined over R2 r {0}.Given y > 0, we consider the set

Ωy = {x ∈ R |x > 0, f(x, y) > 0, f(x,−y) > 0, f(−x, y) > 0, f(−x,−y) > 0} .

Then Ωy is not empty if and only if y > s. Moreover, if x ∈ Ωy and y < 1, then x

belongs to (Iy, Jy) where

Iy = max

−1 + y +
√

(1− y)2 + 4K
y

2
,
1 + y −

√
(1− y)2 − 4K

y

2

 and

Jy = min

1 + y +
√

(1− y)2 − 4K
y

2
,
1− y +

√
(1− y)2 + 4K

y

2

 .
Proof. We fix y > 0, and we view f and g as functions on x. For x > 0 we can

multiply f , g by x and define quadratic functions f̃y(x) := −x2 + (1− y)x+K/y and

g̃y(x) := x2 + (1 + y)x + K/y so that x belongs to Ωy if and only if x > 0, f̃y(x) > 0,

f̃−y(x) > 0, g̃y(x) > 0 and g̃−y(x) > 0.

Note that f̃y has discriminant ∆1(y) = (1 − y)2 + 4K
y and g̃y has discriminant

∆2(y) = (1 + y)2 − 4K
y .

We observe that ∆1(y) > 0 for y > 0. Therefore f̃y(x) = 0 has two real solutions

x1,L(y) = 1−y−
√

∆1(y)
2 , x1,R(y) = 1−y+

√
∆1(y)

2 , and f̃y(x) is positive for x in (x1,L, x1,R).

Note that
√

∆1(y) > |1 − y| for y > 0, so x1,L(y) is negative and x1,R(y) is positive.

Therefore, for x > 0 and y > 0, f̃y(x) is positive if and only if x ∈ (0, x1,R(y)).

On the other hand, as f̃−y has negative leading coefficient, there exists x with

f̃−y(x) > 0 if and only if ∆1(−y) > 0. Note that ∆1(−y) is positive for y > 0 if and

only if y > s (indeed, ∆1(−y) coincides with qK(y)/y).

Thus f̃−y(x) > 0 has a solution for x > 0, if and only if y > s. Now for x > 0, y > s,

the roots of f̃−y(x) = 0 are x1,L(−y) and x1,R(−y). Clearly x1,R(−y) and x1,L(−y) are

both positive for y > s. Therefore, for x > 0 and y > 0, we have f̃−y(x) > 0 if and only

if y > s and x ∈ (x1,L(−y), x1,R(−y)).
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Now we study the positivity of g̃y(x) for x > 0. Note that g̃y has discriminant

∆1(−y). As the leading coefficient of g̃y is positive, we have that g̃y(x) > 0 for all y < s

and x ∈ R (because in this case the discriminant is negative). Moreover, if y > s, the

real roots of g̃y(x) = 0 are x2,L(y) = −(1+y)−
√

∆1(−y)
2 and x2,R(y) = −(1+y)+

√
∆1(−y)

2 .

They are both negative so that g̃y(−x) is positive for all y > s and x > 0.

We study the positivity of g̃−y(x) for x > 0 and y > 0. The discriminant of g̃−y is

∆1(y), and it is positive for y > 0. Then the roots of g̃−y are x2,L(−y) and x2,R(−y).

For y > 0 we have x2,L(−y) < 0 and x2,R(−y) > 0, and therefore g̃−y(x) > 0 if and

only if x belongs to (x2,R(−y),+∞).

Summing up, we have proven that the set Ωy is non-empty if and only if y > s.

Moreover, in that case, if x belongs to Ωy, then x lies in

(0, x1,R(y)) ∩ (x1,L(−y), x1,R(−y)) ∩ (0,+∞) ∩ (x2,R(−y),+∞) .

It is easy to see that x1,R(y) is bigger than x2,R(−y) for y > 0. Therefore the

intersection of intervals above is equal to

(x1,L(−y), x1,R(−y)) ∩ (x2,R(−y), x1,R(y)) .

The statement of the lemma follows from the following claim.

Claim: If y < 1, then x2,R(−y) < x1,R(−y).

Proof of Claim: This is equivalent to proving√
∆1(y)−

√
∆1(−y) < 2. (3.2)

First of all we note that ∆1(y) ¬ ∆1(−y) if and only if y ­ 2K
y . As y > 0, this holds

if and only if y ­
√

2K. Therefore, for y ­
√

2K,
√

∆1(y)−
√

∆1(−y) is negative (and

hence < 2.)

If y <
√

2K, we have just seen that
√

∆1(y) >
√

∆1(−y). In this case, both sides

in (3.2) are positive and hence it is equivalent when raising it to the second power:

∆1(y) + ∆1(−y)− 2
√

∆1(y)∆1(−y) < 4.

As we are assuming y < 1, we have ∆1(y) + ∆1(−y) − 4 = 2y2 − 2 < 0 <

2
√

∆1(y)∆1(−y), as we wanted to prove.

Proof of Proposition 3.6. Taking into account that a = 1−b−c−d, we note that inverse

change of variables is a = 1
4(1 +α+ β+ γ), b = 1

4(1−α− β+ γ), c = 1
4(1−α+ β− γ),

d = 1
4(1 + α − β − γ). Observing that α, β, γ are the diagonal entries in S−1AS in

Lemma 1.19, we see that det(A) = αβγ.

⇒) Assume that A is stochastic with determinant K ∈ (0, 1). Then α, β, and γ are

non-zero, and γ = K
αβ . From the positivity of a, b, c, d we get that 1 + α+ β + K

αβ > 0,

1− α− β + K
αβ > 0, 1− α+ β − K

αβ > 0, and 1 + α− β − K
αβ > 0. In terms of Lemma
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3.8, these inequalities can be rewritten as

f(−β,−α) > 0, f(β, α) > 0, f(β,−α) > 0, f(−β, α) > 0.

Therefore |β| is an element of Ω|α|, which implies that |α| > s (see Lemma 3.8). More-

over, as α = 1 − 2(b + d), and b, d > 0, we see that |α| < 1. The result then follows

from Lemma 3.8.

⇐) Using Lemma 3.8 we see that under these assumptions, Ω|α| 6= ∅ and |β| belongs

to Ω|α|. Therefore f(−β,−α) > 0, f(β, α) > 0, f(β,−α) > 0, f(−β, α) > 0. As γ = K
αβ ,

these inequalities coincide with a > 0, b > 0, c > 0 and d > 0, and we are done. 2

The previous results give us a way of generating any K81∗ matrix.

Algorithm 3.9. (Generation of K81∗ matrices with given determinant.)

Input: K in (0, 1).

Output: A strictly stochastic K81∗ matrix A with determinant K.

Step 1: Compute the unique real root s of z(z + 1)2 − 4Kusing (3.1).

Step 2: Choose α randomly such that 1 > |α| > s.

Step 3: Take β randomly such that |β| belongs to (I|α|, J|α|).

Step 4: Set γ = K
αβ .

Step 5: Set a = 1
4(1+α+β+γ), b = 1

4(1−α−β+γ), c = 1
4(1−α+β−γ), d = 1

4(1+α−β−γ).

Final: Return

A =


a b c d

b a d c

c d a b

d c b a

 .

Remark 3.10. The change of variables in Proposition 3.6 diagonalizes the matrix to

Diag(1, α, β, γ) (see Lemma 1.19). As we have seen in that proposition, α and β can be

both negative. Therefore, using Culver (1966), we observe that the matrices produced

by the algorithm above are not all of them of type exp(Q) for a real matrix Q.

Generating SSM matrices with a given determinant

Definition 3.11. Let A be a 4×4 real matrix. We call F (A) the matrix obtained from

A after performing the basis change F (A) = S−1AS where

S =


1 0 0 −1

0 1 1 0

0 1 −1 0

1 0 0 1

 .
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When A is a SSM matrix, A can be viewed as an element in HomG(C4,C4) where

G =< (AT)(CG) > (see Casanellas and Fernández-Sánchez (2007)). The change of basis

above decomposes C4 into its isotypic components via the natural linear representation

G −→ GL(C4). This change of basis is also known as the generalized Fourier transform

(see Casanellas and Sullivant (2005)). We have the following fact:

Lemma 3.12. A 4× 4 matrix A = (ai,j) is a SSM matrix if and only if F (A) has the

following shape:

F (A) =


λ 1− λ 0 0

1− µ µ 0 0

0 0 α α′

0 0 β′ β

 .

In this case, λ, µ, α, α′, β, β′ can be written in terms of the entries of A as λ = a1,1+a1,4,

µ = a2,2 + a2,3, α = a2,2 − a2,3, α
′ = a2,4 − a2,1, β = a1,1 − a1,4, and β′ = a1,3 − a1,2.

The inverse change of variables is a1,1 = (λ + β)/2, a1,2 = (1 − λ − β′)/2, a1,3 =

(1−λ+β′)/2 a1,4 = (λ−β)/2, a2,1 = (1−µ−α′)/2, a2,2 = (µ+α)/2, a2,3 = (µ−α)/2,

a2,4 = (1− µ+ α′)/2.

Proof. The matrix F (A) for a generic matrix A = (ai,j) is

1
2

 a1,1 + a1,4 + a4,1 + a4,4 a1,2 + a1,3 + a4,2 + a4,3 a1,2 − a1,3 + a4,2 − a4,3 a1,4 − a1,1 − a4,1 + a4,4

a2,1 + a2,4 + a3,1 + a3,4 a2,2 + a2,3 + a3,2 + a3,3 a2,2 − a2,3 + a3,2 − a3,3 a2,4 − a2,1 − a3,1 + a3,4

a2,1 + a2,4 − a3,1 − a3,4 a2,2 + a2,3 − a3,2 − a3,3 a2,2 − a2,3 − a3,2 + a3,3 a2,4 − a2,1 + a3,1 − a3,4

a4,1 + a4,4 − a1,1 − a1,4 a4,2 + a4,3 − a1,2 − a1,3 a1,3 − a1,2 + a4,2 − a4,3 a1,1 − a1,4 − a4,1 + a4,4

 .
If A is a SSM matrix, then a3,1 = a2,4, a3,2 = a2,3, a3,3 = a2,2, a3,4 = a2,1, a4,1 = a1,4,

a4,2 = a1,3, a4,3 = a1,2, and a4,4 = a1,1. Therefore the non-diagonal blocks are 0.

Moreover, as sums of rows are equal to 1, we have that the entries of each row in the

upper left block sum to 1:

1
2

(a1,1 + a1,4 + a4,1 + a4,4 + a1,2 + a1,3 + a4,2 + a4,3) = 1,

1
2

(a2,1 + a2,4 + a3,1 + a3,4 + a2,2 + a2,3 + a3,2 + a3,3) = 1.

Conversely, imposing that the entries of non-diagonal blocks in F (A) are equal to

0 is equivalent to imposing a3,1 = a2,4, a3,2 = a2,3, a3,3 = a2,2, a3,4 = a2,1, a4,1 =

a1,4, a4,2 = a1,3, a4,3 = a1,2, and a4,4 = a1,1 (adding and subtracting certain pairs of

equations). Moreover, F (A)1,1 +F (A)1,2 = 1 implies that sum of rows 1 and 4 is equal

to 2 (and similar for rows 2 and 3). But we have just seen that the set of entries in the

first (resp. second) row is equal to the set of entries in the forth (resp. third) row, thus

the sum of entries in each row is equal to 1.

In the following lemma we characterize the stochasticity of A via F (A).
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Lemma 3.13. A is a strictly stochastic SSM matrix if and only if

F (A) =


λ 1− λ 0 0

1− µ µ 0 0

0 0 α α′

0 0 β′ β


with λ, µ ∈ (0, 1), |β| < λ, |β′| < 1− λ, |α| < µ, and |α′| < 1− µ.

Proof. If A is a SSM matrix, then

A =


a b c d

e f g h

h g f e

d c b a


with a + b + c + d = 1, e + f + g + h = 1, and by Lemma 3.12, F (A) has the shape

above with λ = a+ d, µ = g + f , β = a− d, β′ = c− b, α = f − g, and α′ = h− e.
If a, b, . . . , h are strictly positive, then we clearly have λ, µ ∈ (0, 1), |α| < µ,|α′| <

1− µ, |β| < λ, and |β′| < 1− λ.

Conversely, if F (A) is block-diagonal as in the statement of the lemma, we know

by Lemma 3.12 that A is a SSM matrix with entries as above. As the inverse change

of variables is a = (λ + β)/2, b = (1 − λ − β′)/2, c = (1 − λ + β′)/2 d = (λ − β)/2,

e = (1 − µ − α′)/2, f = (µ + α)/2, g = (µ − α)/2, h = (1 − µ + α′)/2, then if λ, µ lie

(0, 1), |α| < µ, |α′| < 1 − µ, |β| < λ, and |β′| < 1 − λ, we obtain that a, b, . . . , h are

strictly positive.

Before stating the main result of this section we introduce some notation and we

prove a technical result.

Remark 3.14. Given K ∈ (0, 1), we consider the polynomial rK(z) = z3 + z − 2K.

It has a unique positive real root. Indeed, by Descartes’ rule of signs we see that rK
has at most one positive real root. Moreover, as rK(K) is strictly negative and rK(1) is

strictly positive, there exists exactly one positive root ν0 of rK(z) and it lies in (K, 1).

Using the formula for the roots of a cubic polynomial we actually get

ν0 = −1
3

3
√
−27K + 3

√
81K2 + 3− 1

3
3
√
−27K − 3

√
81K2 + 3.

Definition 3.15. Given K ∈ (0, 1), we consider the polynomial rK(z) = z3 + z − 2K

and we call ν0 its unique positive root (Remark 3.14). We define Θ as the set of points

(λ, µ) ∈ (0, 1)2 satisfying

ν0 + 1 ¬ λ+ µ < 2, and |λ− µ| < min

{
2− λ− µ,

√
rK(λ+ µ− 1)
λ+ µ− 1

}
.
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Lemma 3.16. Let λ, µ be real numbers in (0, 1) with λ + µ > 1. Then (λ, µ) belongs

to Θ if and only if
K

λ+ µ− 1
− (1− λ)(1− µ) < λµ. (3.3)

Proof. As λ + µ > 1, we exchange the inequality (3.3) by the following equivalent

inequality:

(λ+ µ− 1)(2λµ+ 1− λ− µ)−K > 0. (3.4)

We consider the change of variables s := λ+µ, t := λ−µ (so that λ = s+t
2 , µ = s−t

2 ).

We observe that λ and µ lie in (0, 1) if and only if |t| < s and |t| < 2 − s. As we are

assuming λ+ µ > 1, we have s > 2− s. Therefore, λ, µ are real numbers in (0, 1) with

λ+ µ > 1 if and only if |t| < 2− s.

In these new variables inequality (3.4) reads as (s−1)( s
2−t2

2 +1−s)−K > 0, which

is equivalent to

t2 <
(s− 1)((s− 1)2 + 1)− 2K

s− 1
=
rK(s− 1)
s− 1

. (3.5)

⇐) Let λ, µ be real numbers in (0, 1) satisfying λ+µ > 1 and (3.4). Then s := λ+µ

lies in (1, 2), |t := λ−µ| < 2−s, and s, t satisfy (3.5). In particular, rK(s−1)
s−1 ­ 0. As we

have s > 1, this inequality is positive if and only if its numerator is positive, which holds

if and only if s− 1 ­ ν0. Therefore s is in [ν0 + 1, 2) and |t| < min
{

2− s,
√

rK(s−1)
s−1

}
;

in other words, (λ, µ) belongs to Θ.

⇒) Conversely, let (λ, µ) ∈ Θ. Then, using the change of variables above, we have

that (s, t) satisfies |t| <
√

rK(s−1)
s−1 . In particular, (3.5) is satisfied and hence (3.3) is

satisfied as well.

Proposition 3.17. Given K a real number in (0, 1), we consider the polynomial

rK(z) = z3 + z − 2K and let ν0 be its positive real root in (K, 1) (see Remark 3.14).

We fix two real numbers λ, µ in (0, 1) such that λ+ µ > 1. Then the set

Ωλ,µ =
{

(α, β) ∈ R2
∣∣∣∣0 < α < µ, |β| < λ, |αβ − K

λ+ µ− 1
| < (1− λ)(1− µ)

}
is non-empty if and only if (λ, µ) belongs to Θ. Moreover in this case, (α, β) belongs to

Ωλ,µ if and only if α belongs to
(

K
λ+µ−1−(1−λ)(1−µ)

λ , µ

)
, α > 0, and

max

{
−λ,

K
λ+µ−1 − (1− λ)(1− µ)

α

}
< β < min

{
λ,

K
λ+µ−1 + (1− λ)(1− µ)

α

}
.

Proof. ⇒) If (α, β) is a point in Ωλ,µ, then |αβ − K
λ+µ−1 | < (1 − λ)(1 − µ). This is

equivalent to

K

λ+ µ− 1
− (1− λ)(1− µ) < αβ <

K

λ+ µ− 1
+ (1− λ)(1− µ). (3.6)
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In particular, as αβ < λµ, we have

K

λ+ µ− 1
− (1− λ)(1− µ) < λµ.

Hence, using Lemma 3.16 we obtain (λ, µ) ∈ Θ.

Moreover, as |β| < λ, inequality K
λ+µ−1 − (1− λ)(1− µ) < αβ implies K

λ+µ−1 − (1−
λ)(1− µ) < λα, and therefore α belongs to the interval

( K
λ+µ−1 − (1− λ)(1− µ)

λ
, µ

)
.

The inequalities on β follow directly from (3.6) and from |β| < λ. Conversely, if α

belongs to the above interval, and β satisfies

max

{
−λ,

K
λ+µ−1 − (1− λ)(1− µ)

α

}
< β < min

{
λ,

K
λ+µ−1 + (1− λ)(1− µ)

α

}
,

then inequalities (3.6) hold and hence (α, β) lies in Ωλ,µ.

⇐) Let (λ, µ) be a point in Θ. In this case (λ, µ) satisfies (3.3), and in particular,

the interval ( K
λ+µ−1 − (1− λ)(1− µ)

λ
, µ

)
(3.7)

is non-empty. We choose α > 0 in this interval.

Then, the interval( K
λ+µ−1 − (1− λ)(1− µ)

α
,

K
λ+µ−1 + (1− λ)(1− µ)

α

)

is non-empty (the left-hand side numerator is smaller than the right-hand side numer-

ator, and the denominator is positive) and its intersection with (−λ, λ) is not empty.

Indeed, as α > 0 and α belongs to the interval (3.7), we have

K
λ+µ−1 − (1− λ)(1− µ)

α
< λ;

moreover −λ is less than
K

λ+µ−1 +(1−λ)(1−µ)
α because this expression is positive.

Finally, we choose β in this intersection of intervals and we obtain a point (α, β) in

Ωλ,µ.

Theorem 3.18. Let K be a real number in (0, 1).

(a) Let (λ, µ) be a point in Θ, let (α, β) be a point in Ωλ,µ, and consider real numbers

α′ and β′ such that

(i)
|αβ− K

λ+µ−1 |
1−µ < |β′| < 1− λ, and

(ii) α′ =
αβ− K

λ+µ−1
β′ .
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Then, if we consider the change of variables a = (λ+β)/2,b = (1−λ−β′)/2,c =

(1− λ+ β′)/2 d = (λ− β)/2, e = (1− µ− α′)/2, f = (µ+ α)/2, g = (µ− α)/2,

h = (1− µ+ α′)/2, the matrix

A =


a b c d

e f g h

h g f e

d c b a


is a strictly stochastic SSM matrix with determinant K, a+ d+ f + g > 1, b 6= c,

and f < g.

(b) Conversely, let

A =


a b c d

e f g h

h g f e

d c b a


be a strictly stochastic SSM matrix with determinant K and with a+d+g+f > 1,

b 6= c and f > g. Then F (A) is equal to
λ 1− λ 0 0

1− µ µ 0 0

0 0 α α′

0 0 β′ β

 ,

where (λ, µ) ∈ Θ, (α, β) ∈ Ωλ,µ, and α′, β′ satisfy conditions (i) and (ii) stated

in (a).

Remark 3.19. (1) By Proposition 3.17, if (λ, µ) is a point in Θ, there exists (α, β) ∈
Ωλ,µ. This implies that |αβ− K

λ+µ−1 | is smaller than (1−λ)(1−µ), and thus the interval

(
|αβ − K

λ+µ−1 |
1− µ

, 1− λ
)

is non-empty. In particular, there exists β′ in this interval. Therefore conditions (i) and

(ii) in Theorem 3.18(a) are not empty.

(2) Assumptions a + d + g + f > 1, f > g, b 6= c are biologically meaningful: the

elements in the diagonal of an evolutionary Markov matrix stand for the conditional

probabilities of no mutation, which are supposed to be much higher than the off-

diagonal probabilities. It is even reasonable to assume that these diagonal entries are

greater than 0.5, giving in particular a+ d+ g + f > 1. In any case, the result proved

above can be easily adapted to the case a+ d+ g + f < 1 or f > g (we have not done

it here in order to make the paper more readable). Note also that any SSM matrix with

determinant K and f > g gives rise to a SSM matrix with f < g and determinant K by

permuting its 1st and 4th rows and its 2nd and 3rd rows (or columns, if preferred).
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The hypothesis b 6= c was added to simplify the statement of the Theorem and can

be easily removed. Indeed, a matrix A as in (b) has b = c and determinant equal to

K if and only if F (A) has β′ = 0 and K is equal to (λ + µ − 1)αβ. Therefore A is

strictly stochastic with determinant K and b = c if and only if K
λ(λ+µ−1) < |α| < µ,

β = K
α(λ+µ−1) , β

′ = and α′ is any number satisfying |α′| < 1− µ.

Proof. (a) Let A be defined from λ, µ, β, . . . , α as above. Then F (A) is equal to

B =


λ 1− λ 0 0

1− µ µ 0 0

0 0 α α′

0 0 β′ β

 .

We prove that A is a stochastic matrix using Lemma 3.13.

By hypothesis, (λ, µ) ∈ Θ and hence λ and µ lie in (0, 1). Moreover, as (α, β) ∈ Ωλ,µ,

we have 0 < α < µ, |β| < λ. By assumption (i), |β′| < 1−λ is also satisfied. It remains

to prove that |α′| < 1− µ. But this follows from conditions (i) and (ii):

|α′| =
|αβ − K

λ+µ−1 |
|β′|

< 1− µ.

Row sums in A are equal to 1 by definition of a, b, . . . , h. Moreover, as B = F (A) is

obtained from A by a basis change, we have that detA = detB and it coincides with

(λ+ µ− 1)(αβ − α′β′). Thus, by assumption (ii) we have detA = K.

(b) Lemma 3.12 tells us that F (A) has the shape in the statement of the Proposition,

and that λ = a + d, µ = g + f , α = f − g, α′ = h − e, β = a − d, and β′ = c − b. By

Lemma 3.13 we have that λ, µ lie in (0, 1), [α| < λ, |β| < λ, |α′| < 1− µ, |β′| < 1− λ.

Moreover, as we are assuming a+ d+ g + f > 1, b 6= c, and f > g, we have λ+ µ > 1,

β′ 6= 0, and 0 < α < µ.

On the other hand, detA = K implies K = (λ + µ − 1)(αβ − α′β) and therefore

condition (ii) holds.

The remaining inequality in (i),

|αβ − K
λ+µ−1 |

1− µ
< |β′|,

holds because |α′| satisfies (ii) and |α′| < 1− µ.

We prove now that (α, β) belongs to Ωλµ, that is,

|αβ − K

λ+ µ− 1
| < (1− λ)(1− µ). (3.8)

We have just seen that |β′| satisfies condition (i), so

|αβ − K

λ+ µ− 1
| < |β′|(1− µ)

and this last term is < (1− λ)(1− µ). Therefore (3.8) is satisfied.
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Finally, as (α, β) is a point in Ωλ,µ, this set is not empty and (λ, µ) belongs to Θ

by Proposition 3.17.

The previous results and their proofs provide the following algorithm for generating

any SSM matrix

A =


a b c d

e f g h

h g f e

d c b a

 .

with a+ d+ g + f > 1, f > g, and b 6= c.

Algorithm 3.20. (Generation of SSM matrices with given determinant.)

Input: K in (0, 1).

Output: A strictly stochastic SSM matrix A with determinant K.

Step 1: Compute the unique positive root ν0 of rK(z) following Remark 3.14.

Step 2: Take s randomly in [ν0 + 1, 2) .

Step 3: Take t randomly such that |t| < min
{

2− s,
√

rK(s−1)
s−1

}
.

Step 4: Set λ = s+t
2 and µ = s−t

2 .

Step 5: Take α > 0 randomly in
(

K
λ+µ−1−(1−λ)(1−µ)

λ , µ

)
.

Step 6: Choose β randomly such that

max

{
−λ,

K
λ+µ−1 − (1− λ)(1− µ)

α

}
< β < min

{
λ,

K
λ+µ−1 + (1− λ)(1− µ)

α

}
.

Step 7: Choose β′ randomly such that
|αβ− K

λ+µ−1 |
1−µ < |β′| < 1− λ.

Step 8: Set α′ :=
αβ− K

λ+µ−1
β′ , a := (λ + β)/2,b := (1 − λ − β′)/2,c := (1 − λ + β′)/2

d := (λ − β)/2, e := (1 − µ − α′)/2, f := (µ + α)/2, g := (µ − α)/2, and

h := (1− µ+ α′)/2.

Final: Return

A =


a b c d

e f g h

h g f e

d c b a

 .

Remark 3.21. As SSM matrices include K81∗ matrices, using Remark 3.10 we see that

there exist matrices produced by the algorithm above that are not of type exp(Q).
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Generating GMM matrices with a given determinant

For GMM matrices we do not have such a general result as in the previous sections. We

do not know how to generate any strictly stochastic GMM matrix, but here we explain a

way for generating some of them.

We could obtain a strictly stochastic matrix GMM matrix with determinant equal to

K by exponentiating a rate matrix (i.e. a matrix with row sums equal to 0 and off-

diagonal positive entries) with trace equal to logK (cf. (Pachter and Sturmfels, 2005a,

Theorem 4.19)). However, not all GMM matrices are of this type (see Culver (1966) and

Remark 3.10). We use that the product of two strictly stochastic matrices is again a

strictly stochastic matrix in order to obtain a broader class of GMM matrices. In fact,

we multiply a GMM matrix of type exp(Q) with determinant δ > K by a SSM matrix of

determinant K/δ. We must admit that we do not know how much larger is this class

of matrices. The set V of GMM matrices with determinant K corresponds to an affine

variety of dimension 11. There are 11 free parameters for a rate matrix Q with given

trace, so the matrices of type exp(Q) lie on a subset of V of dimension 11. Therefore the

set of matrices produced by the algorithm below form a subset of maximum dimension

of V, and this subset is larger than the set {exp(Q)|Q rate matrix, trQ = K}.

Algorithm 3.22. (Generation of GMM matrices with given determinant.)

Input: K in (0, 1).

Output: A strictly stochastic GMM matrix A with determinant K.

Step 1: Take a random number t in (logK, 0).

Step 2: Generate a random rate matrix Q with nonzero entries and trQ = t.

Step 3: Compute A0 = exp(Q).

Step 4: Following algorithm 3.20, generate a strictly stochastic SSM matrix B with deter-

minant equal to K/et.

Final: Return A = BA0.

The algorithms derived in this section have been implemented in C++ for practical

use (see Chap. 7).
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Chapter 4

Expectation-maxmization
algorithm for parameter inference
in equivariant models

Phylogenetic reconstruction focuses on inferring the phylogeny relating a set of taxa

and estimating the evolutionary divergences between taxa. This is often done using

a probabilistic evolutionary model and estimating the parameters that maximize the

likelihood for the given data. There exist several effective methods for maximizing

the likelihood under a continuous-time Markov process, and they are usually imple-

mented when the rate matrix is fixed throughout the tree (homogeneous data). Here

we consider the more general (discrete-time) Markov processes and we adapt the known

Expectation-Maximization method to estimate the parameters of the transition matri-

ces. We present the method for JC69∗, K80∗, K81∗, SSM, and GMM evolutionary models

and test it on simulated data. The results show a high performance in both transition

matrices recovery and branch length estimation.

The inference of the parameters of the Markov process is often done by maximum-

likelihood estimation (MLE): estimating the parameters that maximize the likelihood

of observing given DNA sequences at the leaves of the tree.

The most widely used MLE methods, such as PAML Yang (2007), PHYLIP Felsen-

stein (1993), PAUP* Swofford (2003) are restricted to homogeneous continuous-time

models such as Jukes-Cantor, Kimura two or three parameters, HKY or GTR.

There are two different approaches to estimate the parameters that maximize the

likelihood for given data: one is to iteratively optimize the parameters for a given

edge when the other parameters are fixed (Barry and Hartigan (1987), Jayaswal et al.

(2011)), and the other is to globally optimize all parameters by estimating the hidden

data. This later approach is known as Expectation Maximization(EM) and it was formally

introduced by Dempster et al. (1977). EM has become a popular tool to deal with

incomplete data problems or in problems which can be posed as such. That is to say,

EM algorithm is used to compute the maximum likelihood estimate in the scenarios

when the analytic solution to the likelihood equations cannot be obtained explicitly

(e.g. missing data problems, models with latent variables, mixture or cluster learning)

but the solution for the complete problem can be easily obtained. An exhaustive list

of references and applications can be found in Tanner (1996), and more recently in

McLachlan and Krishnan (2008). Here we present Empar, an MLE method based on

47
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the EM algorithm to estimate parameters of the (discrete-time) Markov evolutionary

models.

Parameter estimates have strong impact on the branch length estimation (see e.g.

Zou et al. (2011) and the references within). We test the proposed method on simulated

data and we analyze the accuracy of the parameter and branch length estimate. We

chose analog settings to Schwartz and Mueller (2010) for testing Empar. We evaluated

it on four and six-taxon trees with several sets of branch lengths for different models

and different alignment lengths. For the simulated data sets on these trees, we present

an in-depth study of the performance of Empar and its dependence on factors such

as model complexity, size of the tree, positioning of the branches, data and total tree

lengths.

The algorithm works for any discrete-time models, for which the explicit form of

the MLE can be given. We fix a set of n taxa. Let us recall that in accordance with the

notation in the previous parts of the thesis, the set of nodes in T is denoted as N(T ), the

set of leaves as L(T ), the set of interior nodes as Int(T ), and the set of edges as E(T ).

We are given a set of DNA sequences associated to leaves of T and model of evolution

along T as a discrete-time Markov process. We call π = (πA, πC, πG, πT) the distribution

of nucleotides at the root r of T and θ = {π, (Ae)e∈E(T )} the set of parameters for

T . Let X be a the set of 4n possible patterns at the leaves of T and Y the set of

4|Int(T )| possible patterns at the interior nodes of T . Then the probability of observing

nucleotides x = (xl)l∈L(T ) ∈ X at the leaves of T and nucleotides y = (yv)v∈Int(T ) ∈ Y
at the interior nodes is

px,y(θ) = πyr
∏

v∈Int(T )\{r}
A
ean(v),v
yan(v),yv

where an(v) denotes the parent node of node v, ean(v),v is the edge for an(v) to v, and

yv = xv if v is a leaf (cf. with the formula 1.1.

When the states at the interior nodes can be observed, this is called the complete

model. However, in the usual situations the variables at the interior nodes are latent

and then the probability of observing nucleotides x = (xl)l∈L(T ) at the leaves of T
under the observed model is

px(θ) =
∑

y=(yv)v∈N(T )∈Y
px,y(θ).

4.1 Expectation-Maximization algorithm

The data D we are given is a multiple sequence alignment and can be recorded into a

vector of 4n components uD = (ux)x∈X , where each ux stands for the number of times

pattern x appears as a column of the alignment. The likelihood function one wants to

maximize is

Lobs(θ;uD) =
∏
x∈X

px(θ)ux .
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Expectation maximization (EM) (Hartley (1958), Dempster et al. (1977)) was pro-

posed as an attractive solution to obtaining maximum likelihood estimates (MLE’s)

when the formulas for the estimators are easy to obtain for a complete data model, but

are rendered analytically intractable due to the incomplete data problem. If we have

complete data cD observed at the interior nodes and leaves, we record it in an array

UcD = (ux,y)x∈X,y∈Y where ux,y is the number of times x was observed at the leaves

and y at the interior nodes. The function to maximize for the complete data is

Lc(θ;UcD) =
∏

x∈X,y∈Y
px,y(θ)ux,y =

∏
x∈X,y∈Y

(πyr
∏

v∈N(T )\{r}
A
ean(v),v
yan(v),yv)

ux,y . (4.1)

As the complete model is a multinomial model, this likelihood function is guaranteed

to have a global maximum which can be computed by an explicit formula. This formula

must be given for each evolutionary model separately though. In the supplementary

material we provide it for the SSM model (for the other models it can be obtained

analogously).

EM algorithm is an iterative procedure alternating between the expectation (E-step)

and maximization step (M-step). E-step uses the tree topology, the current estimates

of model parameters and the observed data uD = (ux) to assign a posterior probability

to each of the possible 4|L(T )| patterns in X and give the most likely complete data

ucD. This step can be efficiently performed using the peeling algorithm of Felsenstein

(2003). In the M-step the maximum likelihood estimates of the parameters are obtained

by maximizing the likelihood of the complete model. Then one updates the parameters

with these new estimates and iterates the process (see Fig. 4.1). The likelihood is

guaranteed to increase at each iteration of this process (e.g. Wu (1983), Husmeier et al.

(2005)) and, for a compact set of parameters, the algorithm converges to a critical point

of the likelihood function. Although the output of the algorithm is not guaranteed to

be a global maximum, multiple starting points are used to obtain optimality of the

solution. An algebraic approach to the EM algorithm was introduced in Pachter and

Sturmfels (2005b)[Chapter 12] and this encouraged us to apply it to the context of

phylogenetic trees.

Require: M- model, T - phylogenetic tree, uD = (ux)x∈X data vector.
Initialize the values of the parameters θ such that px,y(θ) > 0 and choose a
threshold ε > 0.
E-step: Define the expected complete data array U = (ux,y)x∈X,y∈Y :

ux,y :=
ux
px(θ)

px,y(θ).

M-step: Compute the parameters θ∗ that maximize the function (4.1) (including
the root distribution).
if Lobs;uD(θ∗)− Lobs(θ;uD) > ε then

set θ := θ∗ and return to the E-step
else
θ̂ := θ∗

end if
return MLE θ̂ and likelihood of the observed model Lobs(θ̂;uD).

Figure 4.1: Expectation-Maximization algorithm for deriving the MLE estimates
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4.2 Branch lengths

We recall the formula for the branch length of edge e (or of matrix Ae) given in (1.2):

l(Ae) = −1
4

log det(Ae),

and denote the length of T by LT =
∑
e∈|E(T )| l(e).

Now we check that small errors in the estimates of the parameters ensure good

recovery of the branch lengths. Let A and A′ be two invertible 4×4 matrices such that

A−A′ has small enough entries. Based on (1.2), we have

|l(A)− l(A′)| =
1
4
| log

det(A)
det(A′)

| = 1
4
| log det((A′)−1A)|

=
1
4
| log det(Id + (A′)−1(A−A′))|

≈ 1
4
| log(1 + Tr((A′)−1(A−A′)))|

≈ 1
4
|Tr((A′)−1(A−A′))| ¬ 1

4
4||(A′)−1(A′ −A))||1

¬ ||(A′)−1||1||A−A′||1, (4.2)

where ||.||1 is the induced L1 norm, defined as the maximum absolute column sum

of a matrix (the approximations in the expression above hold if (A′)−1(A − A′) has

small enough entries). Therefore if A′ is a good approximation of A, the branch length

computed from A′ is also a good approximation of the branch length of A.

4.3 Maximum likelihood estimates

The M-step of the algorithm maximizes the likelihood of the complete model conditional

on the current parameter estimates. Below we derive the MLE for the SSM model on a

single branch e.

Let us index the letters {A, C, G, T} by {1, 2, 3, 4}. Following on the notation intro-

duced before, uD = (uij)i,j∈{1,2,3,4} be the observed bases at the two end nodes of e.

Let θ = {π,Ae} be the set of all parameters, where π = (π1, π2, π3, π4) is the root

distribution. Recall that π1 = π4, π2 = π3. We deote by Ae1,4 is the entry in the 1st row

and the 4th column of Ae.

g1(θ) = Ae1,1 −Ae4,4, g2(θ) = Ae1,2 −Ae4,3, g3(θ) = Ae1,3 −Ae31,

g4(θ) = Ae1,4 −Ae4,1, g5(θ) = Ae2,1 −Ae3,4, g6(θ) = Ae2,2 −Ae3,3,

g7(θ) = Ae2,3 −Ae3,2, g8(θ) = Ae2,4 −Ae3,1, g8(θ) = Ae2,4 −Ae3,1,

g9(θ) = 1−Ae1,1 −Ae1,2 −Ae1,3 −Ae1,4, g10(θ) = 1−Ae2,1 −Ae2,2 −Ae2,3 −Ae2,4,

g11(θ) = 1−Ae3,1 −Ae3,2 −Ae3,3 −Ae3,4, g12(θ) = 1−Ae4,1 −Ae4,2 −Ae4,3 −Ae4,4,

g13(θ) = π1 − π4, g14(θ) = π2 − π3, g15(θ) = 1− π1 − π2 − π3 − π4.

(4.3)
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Taking the derivatives holds:

∂Lobs(θ, uD)
∂Ae1,1

=
u1,1

Ae1,1
+ λ1 − λ9,

∂Lobs(θ, uD)
∂Ae1,2

=
u1,2

Ae1,2
+ λ2 − λ9,

∂Lobs(θ, uD)
∂Ae1,3

=
u1,3

Ae1,3
+ λ3 − λ9,

∂Lobs(θ, uD)
∂Ae1,4

=
u1,4

Ae1,4
+ λ4 − λ9,

∂Lobs(θ, uD)
∂Ae2,1

=
u2,1

Ae2,1
+ λ5 − λ10,

∂Lobs(θ, uD)
∂Ae2,2

=
u2,2

Ae2,2
+ λ6 − λ10,

∂Lobs(θ, uD)
∂Ae2,3

=
u2,3

Ae2,3
+ λ7 − λ10,

∂Lobs(θ, uD)
∂Ae2,4

=
u2,4

Ae2,4
+ λ8 − λ10,

∂Lobs(θ, uD)
∂Ae3,1

=
u3,1

Ae3,1
− λ8 + λ11,

∂Lobs(θ, uD)
∂Ae3,2

=
u3,2

Ae3,2
− λ7 + λ11,

∂Lobs(θ, uD)
∂Ae3,3

=
u3,3

Ae3,3
− λ6 + λ11,

∂Lobs(θ, uD)
∂Ae3,4

=
u3,4

Ae3,4
− λ5 + λ11,

∂Lobs(θ, uD)
∂Ae4,1

=
u4,1

Ae4,1
− λ4 + λ12,

∂Lobs(θ, uD)
∂Ae4,2

=
u4,2

Ae4,2
− λ3 + λ12,

∂Lobs(θ, uD)
∂Ae4,3

=
u4,3

Ae4,3
− λ2 + λ12,

∂Lobs(θ, uD)
∂Ae4,4

=
u4,4

Ae4,4
− λ1 + λ12,

∂Lobs(θ, uD)
∂π0

=
u0+

π0
+ λ13 − λ15,

∂Lobs(θ, uD)
∂π1

=
u1+

π1
+ λ14 − λ15,

∂Lobs(θ, uD)
∂π2

=
u2+

π2
− λ14 − λ15,

∂Lobs(θ, uD)
∂π3

=
u3+

π3
− λ2,4 − λ15.

(4.4)

Denote x1 = u1,1+u4,4, x2 = u1,2+u4,3, x3 = u1,3+u4,2, x4 = u1,4+u4,1, x5 = u2,1+u3,4,

x6 = u2,2 + u3,3, x7 = u2,3 + u3,2, x8 = u2,4 + u3,1.

Summing the sides of (4.4) gives

1
Ae00

x1 = (λ1 − λ9) + (−λ1 + λ12) = λ12 − λ9,

1
Ae10

x5 = (λ5 − λ10) + (−λ5 + λ11) = λ11 − λ10,

1
π1

(u1+ + u4+) = λ13 − λ15 − λ13 − λ15 = −2λ15,

1
π1

(u2+ + u3+) = λ14 − λ15 − λ14 − λ15 = −2λ15

and similarly

1
Ae1,2

x2 =
1
Ae1,3

x3 =
1
Ae1,4

x4 = λ12 − λ9,

1
Ae2,2

x6 =
1
Ae2,3

x7 =
1
Ae2,4

x8 = λ11 − λ20.
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Using the conditions of stochasticity:

1 =
4∑
i=1

Ae1,i =
∑4
i=1 xi

λ12 − λ9
=
u1+ + u4+

λ12 − λ9
,

1 =
4∑
i=1

Ae2,i =
∑8
i=5 xi

λ11 − λ10
=
u2+ + u3+

λ11 − λ10
,

1 =
4∑
i=1

πi =
2(u1+ + u2+ + u3+ + u4+)

−2λ15
= − u+

λ15
.

As a result:

Âe1,1 = Âe4,4 =
x1

u1+ + u4+
=

u11 + u44

u1+ + u4+
,

Âe1,2 = Âe4,3 =
x1

u1+ + u4+
=

u12 + u43

u1+ + u4+
,

Âe1,3 = Âe4,2 =
x1

u1+ + u4+
=

u13 + u42

u1+ + u4+
,

Âe1,4 = Âe4,1 =
x1

u1+ + u4+
=

u14 + u41

u1+ + u4+
,

Âe2,1 = Âe3,4 =
x1

u2+ + u3+
=

u21 + u34

u2+ + u3+
,

Âe2,2 = Âe3,3 =
x1

u2+ + u3+
=

u22 + u33

u2+ + u3+
,

Âe2,3 = Âe3,2 =
x1

u2+ + u3+
=

u23 + u32

u2+ + u3+
,

Âe2,4 = Âe3,1 =
x1

u2+ + u3+
=

u24 + u31

u2+ + u3+
,

π̂1 = π̂4 =
u1+ + u4+

u+
,

π̂3 = π̂3 =
u2+ + u3+

u+
.

(4.5)

The MLE for the JC69∗, K80∗ and the K81∗ models can be obtained analogously.

The algorithm was implemented for the JC69∗, K80∗, K81∗ and the SSM models.

Chapter 8 is dedicated to testing its performance from a variety of angles. The algorithm

was implemented in C++ and under the name Empar is available at http://genome.

crg.es/cgi-bin/phylo_mod_sel/AlgEmpar.pl. Lastly, in chapter 10 we will apply the

method to estimate branches of the species tree within different domains annotated in

the framework of the GENCODE project.

http://genome.crg.es/cgi-bin/phylo_mod_sel/AlgEmpar.pl
http://genome.crg.es/cgi-bin/phylo_mod_sel/AlgEmpar.pl


Chapter 5

Background on phylogenetic vari-
eties and equivariant models

Polynomials have always been present in statistical analyses as many models derived

from the conditional independence models (e.g. polynomial regression).

Algebraic geometry studies the zero sets of polynomials. Methods taken from this

or its sister fields of commutative algebra and combinatorics seem a natural support

to study statistical models and aid their inference whenever a polynomial descriptions

occur. The name Algebraic Statistics was coined by Pistone et al. (2000) in 2000. Up to

that point, the application of algebra to statistics had been limited to a few specialized

domains, e.g. experimental design, categorical data analysis and fixed and random effect

linear models. Since then it has been a maturing discipline focused on the applications

of algebraic geometry and its computational tools in the study of statistical models.

Riccomagno (2008) gives a historical overview of the progress in the field since its

conception. An extensive list of contributions to the field are given by Gibilisco et al.

(2009).

Linear polynomials equations for models of contingency tables were used by Fien-

berg (1980). However, it was the seminal paper of Diaconis and Sturmfels (1998) that

introduced the applicability of computational algebraic geometry in the context of exact

test in the analyses of the contingency tables.

The field draws its tools not only from computational algebraic geometry but also

from tropical, convex, and information geometry. More in-depth use of algebraic tools

in experimental design was introduced in Pistone (1996). Kendall (1993) gives a brief

survey of how computer algebra can be used in the implementation of the structures

inherent to probability in statistics in order to aid the investigations in those fields.

As the field attracted scientists from a range of backgrounds, the spectrum of ap-

plications is broad. Graphical models are are an example of the field of study. From the

algebraic perspective they can be described through the polynomials arising from the

conditions on the variance-covariance matrix (Drton et al., 2007; Drton, 2008; Drton

and Richardson, 2008). The dominant part of current research focuses on the Gaussian

variables, however, the application of algebraic statistics to the field is not limited to

discrete random variables. Other applications include model selection (Garcia-Puente,

2004) and the study of the properties of the maximum likelihood estimators– asymp-

totic properties of statistical models. e.g. shape of the likelihood function, the study

of the regularity conditions or singularities, (Drton, 2009). Bayesian method are by no

53
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means an exception to the list of applications: e.g. in Bayesian networks (Garcia-Puente

et al., 2005; Sullivant, 2008) and Bayesian model criterion (Drton and Foygel, 2008).

The volume Drton et al. (2008) is an excellent collection of the recent advances.

The key observation is that the parameter spaces of certain statistical evolutionary

models are semi-algebraic sets leads to the correspondence between the models and

algebraic varieties. Algebraic versions of the evolutionary models have been introduced

by Allman and Rhodes (2004b) and Pachter and Sturmfels (2005b). Drton and Sullivant

(2007) give a following definition of a model in an algebraic setting.

Definition 5.1. An algebraic statistical model is a parametric statistical model, where

the probability distribution is a polynomial function in the parameters.

Applications to the computational biology belongs the a young and fast-growing

fields of interest. In particular, phylogenetics studies of evolutionary models and phy-

logenetics have been taken up by Allman and Rhodes (2003, 2004a, 2006a); Casanel-

las and Fernández-Sánchez (2007); Casanellas and Fernández-Sánchez (2008, 2011), to

name a few. This includes novel tools of tree reconstruction– describing the genetic

relationship between the species, and most recently model selection and their identifia-

bility. This work, in particular chapter 6, is a contribution to the latter, extending the

scope of the applications of algebraic statistics to phylogenetic mixtures models.

5.1 Background on algebraic geometry

Here we present basic concepts from algebraic geometry that we will use throughout the

thesis. Recommended references for further reading are Cox et al. (2007), Hartshorne

(1977), Harris (1992).

Affine varieties

Let k be a commutative field with unit and An
k be the affine n-space over k.

We will only consider k equal to the real numbers or the complex numbers C, how-

ever, the results belowe hold in more generality. We will denote by k[x], the polynomial

ring with variables x = {x1, . . . , xn}.

Definition 5.2. An affine algebraic variety V ⊂ Ak
n is the set of common zeroes of a

collection of polynomials S ⊂ k[x]:

V = V (S) = {x ∈ kn | f(x) = 0 ∀f ∈ S}

The empty set, the whole space An
k , a finite union and an intersection of affine

algebraic varieties are affine varieties. Consequently, affine algebraic varieties are the

closed sets in what is called the Zariski topology in An
k . Zariski closure of any set

Z ⊆ An
k , Z, is defined as the smallest affine algebraic variety that contains it. Every

non-empty Zariski open set in the affine space An
k is dense. In the remainder of this

thesis we will naturally identify An
k with kn.
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Example 5.3. Linear subspaces of kn are algebraic varieties. A single point in kn is

an algebraic variety: (a1, . . . , an) = V (x1 − a1, . . . , xn − an), ai ∈ k. As we will see

inTheorem 5.7, the ideals of the form < x1 − a1, . . . , xn − an >, ai ∈ k are exactly the

maximal ideals of k[x] if k is algebraically closed.

Definition 5.4. An ideal I ∈ k[x] is a subset of k[x] satisfying:

1. 0 ∈ I,

2. if f, g ∈ I, then f + g ∈ I, and

3. if f ∈ I and h ∈ k[x], then hf ∈ I.

We say that an ideal I is generated by f1, . . . , fr if:

I = {
r∑
i=1

aifi | ai ∈ k[x]}

In this case we will denote I by (f1, . . . , fr).

Definition 5.5. Let X be a subset kn. The ideal of X is defined as

I(X) = {f ∈ k[x] : f(x) = 0 ∀x ∈ X}.

Hilbert’s basis theorem (Chap. 2 Cox et al., 2007) states that every ideal in k[x] is

finitely generated, i.e. for every ideal I, there exists a finite set of polynomials fi ∈ k[x],

s.t. I = (f1, . . . , fs). In particular, any algebraic set V (S) is an algebraic set for a finite

collection of polynomials V (S) = V (< S >) = V (f1, . . . , fs).

Definition 5.6. The radical of an ideal I is defined as

√
I = {f ∈ k[x] : fn ∈ I for some n ­ 1}.

The correspondence betwneen algebraic varieties and ideals is given by the following

key theorem in algebraic geometry.

Theorem 5.7 (Hilbert’s Nullstellensatz). Let k be an algebraically closed field. There

is a 1 − 1 correspondence between algebraic varieties in kn and radical ideals in k[x],

given by I(V (J)) =
√
J .

Definition 5.8. A map Ψ : km → kn is a regular map if

Ψ = (Ψ1, . . . ,Ψn), with Ψi ∈ k[x1, . . . , xm].

Definition 5.9. An algebraic variety V ⊆ kn is a cone if for every x ∈ V , λx ∈ V,∀λ ∈
k.
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Projective varieties

Definition 5.10. The projective space of dimension n over k, Pnk , is defined as the set

of equivalence classes in kn+1 \ {0} such that (x0, . . . , xn) ∼ (y0, . . . , yn) if there exists

λ ∈ k \ 0 for which (x0, . . . , xn) = λ(y0, . . . , yn).

In geometric terms Pnk is often thought of as a set of lines through the origin in

kn+1. Once a projective system has been chosen, homogeneous coordinates of a point

in x ∈ Pnk are denoted by [x0 : . . . : xn].

For convenience of the work of this thesis we will identify the affine space kn with

the subset U = {x = [x1, . . . , xn] ∈ Pnk |
∑
xi 6= 1} of Pnk ,

Definition 5.11. A polynomial, f ∈ k[x0, . . . , xn], is homogeneous if all its defining

monomials have the same degree. In particular the degree of f is d if f(λx) = λdf(x),

∀λ ∈ k. An ideal I in k[x0, . . . , xn] is homogeneous if for all f ∈ I its homogeneous

components are in I. Alternatively, I is homogeneous if it is generated by homogeneous

polynomials.

Definition 5.12. A projective variety is the zero set of a collection of homogeneous

polynomials S:

{x ∈ Pnk : f(x) = 0 for all f ∈ S}.

Analogously to the affine case, we call V (S) the projective variety defined by S.

As shown in Cox et al. (2007, Prop. 4, Chap. 8) V (S) is well-defined: if f(p) = 0

for any set of homogeneous coordinates of p ∈ Pnk , then f(p) = 0 for all homogeneous

coordinates of p. As in the affine case we can also define a reverse process:

Definition 5.13. Let X be a subset of Pn. The ideal of X is the set

I(X) = {f ∈ k[x1, . . . , xn] | f(p) = 0,∀p ∈ X}.

This is indeed an ideal and we see that it is homogeneous. The definition of a

radical ideal translates into the projective setting. Moreover, as shown in Cox et al.

(2007, Prop. 7, Chap. 3), the radical of a homogeneous ideal is itself a homogeneous

ideal.

Theorem 5.14 (Thm 9, Chap. 8, p. 375, Cox et al. (2007), Projective strong Null-

stellensatz). Let k be an algebraically closed field, J a homogeneous ideal in k[x] such

that ∅ 6= V (J) ⊆ Pnk . We have that:

I(V (J)) =
√
J.

As a result of the above theorem, in analogy to the affine case, there is a 1 − 1

correspondence between proper radical homogeneous ideals and nonempty projective

varieties (Cox et al., 2007, thm 10, Chap. 8, p. 375).
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5.2 Algebraic evolutionary models

In section 1.4 we introduced basic notation in phylogenetics, including phylogenetic

trees and evolutionary models (see Def. 1.3). Here we review these notions from the

algebraic standpoint– we describe how to view hidden Markov processes on trees as

algebraic varieties. We present a definition of a phylogenetic tree on a vector space, an

algebraic presentation, parametrization and its associated algebraic variety, stochastic

and projective algebraic varieties. These objects enable to use the lanugage of algebraic

geometry in talking about phylogenetic objects and related problems and challenges in

phylogenetics.

Let n a number and denote by [n] the set {1, 2, . . . , n}. For biological purposes, we

think of [n] as a set of sequences associated to certain taxa and we consider trees as

connected acyclic graphs whose n leaves are bijectively labelled by the set [n]. Let Tn
be the set of tree topologies (up to isomorphism) whose leaves are labelled by [n]. Trees

in Tn are allowed to have any degree in its internal vertices. We recall that when the

internal vertices of a tree T ∈ Tn have degree 3, we say that the tree is trivalent.

We start by some definitions and notations required for subsequent chapters. We

fix an ordered set B = {b1, b2, . . . , bk} and we think of it as a basis of a C−vector space

W := 〈B〉C. As mentioned in the previous section, in the applications to biology we

take B = {A, C, G, T} and think of its elements as nucleotides in a DNA sequence.

Below, we redefine a basic object in phylogenetics introduced in Defintion 1.3.

Definition 5.15. A phylogenetic tree on W is a tree T that has the vector space

Wv := W associated to each vertex v of T . Usually the same notation T is used to

represent both the graph and the phylogenetic tree. Elements of B at the vertices of T
are thought as states of discrete random variables at the vertices.

Definition 5.16. Let T be a phylogenetic tree on W and assume that a distinguished

vertex r of T (usually referred to as the root) is given, inducing therefore an orientation

on all its edges. An evolutionary presentation of T is a vector π = (πb1 , πb2 , . . . , πbk) ∈
Wr, together with a collection of maps A = (Ae0,e1)e∈E(T ),e=(e0,e1) where each Ae0,e1

belongs to Hom(We0 ,We1).

From now on, we will identify vectors in W with its coordinates in the basis B

written as a column vector. Similarly, we will identify the set Hom(W,W) with the set

of matrices with k rows and k columns and entries in the complex field by mapping any

linear map to its matrix in the basis B. We take the convention that ta matrixA = Ae0,e1

in an evolutionary presentation act on W from the right (i.e. the action is ωt ∈ We0 7→
ωtA ∈ We1). Recall that the vector (1, 1, . . . , 1) ∈ W was denoted by 1.

Definition 5.17. An algebraic evolutionary model M is specified by giving a vector

subspace W0 ⊂ W such that 1tπ 6= 0 for every π 6= 0 in W0, together with a multi-

plicatively closed subspace Mod of Hom(W,W). A model is thus denoted by a pair:

M = (W0,Mod). If T is a rooted phylogenetic tree on W, then T evolves under the

algebraic evolutionary model M if its evolutionary presentations lie in Mod and the
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vector π at the root belongs to W0. The set of evolutionary presentations of T that lie

in M will be denoted by ParM(T ) =W0 ×
(∏

e∈E(T )Mod
)
.

Remark 5.18. A subset of a ring is multiplcatively closed if for two elements that

belong to it, so does their product: x, y ∈Mod implies that xy ∈Mod. The reason for

requiring this property in the subspace of the transition matrices is to ensure that if

we multiply the matrices along an edge, the resulting matrix will remain in the model.

Remark 5.19. The condition 1tπ 6= 0 for every π ∈ W0 in the definition above means

that, for a non-zero vector, the sum of the coordinates of the vectors in W0 is different

from zero. The vectors in W0 represent the possible distributions for the root in the

tree T . The above condition is thus a plausible assumption for the models considered

here and can be assumed without loss of generality and

Definition 5.20. Given a phylogenetic tree T on W, T ∈ Tn, an [n]-tensor is any

element of

L := ⊗v∈[n]Wv = ⊗[n]W.

Notation 5.21. We will denote by B = Bn the set of n-words in B,

B = {X = (x1, . . . , xn) : xi ∈ B}.

For the sake of simplicity in our notation, sometimes it will be convenient to identify

every word X = (x1, . . . , xn) with the tensor x1 ⊗ . . . ⊗ xn ∈ L and consequently,

we will identify B with the natural basis of L. We will view a distribution p =

(pb1...b1 , . . . ,pbk...bk) on the set of elements in B at the leaves of a tree as the tensor in

L having these coordinates in the basis B, that is

p =
∑

x1,...,xn∈B
px1...xnx1 ⊗ . . .⊗ xn =

∑
X∈B

pX X.

When an element in X = (x1, . . . , xn) ∈ B is used to refer to the coordinates correspond-

ing to x1 ⊗ . . .⊗ xn we will denote it by x1 . . . xn. Therefore, p ∈ L can be represented

as
∑
X∈B pXX.

Definition 5.22. Given an algebraic evolutionary modelM, the parametrization of a

rooted phylogenetic tree T on W evolving under the model M is the map

ΨMT : ParM(T ) −→ L = ⊗[n]W

that corresponds to a hidden Markov process on the tree T when we restrict to stochas-

tic matrices and distributions in W0. We recall that the leaves correspond to observed

random variables and the interior nodes to hidden variables in the Markov process

(see Section 1.4). That is, if the tree is rooted and directed from the root r, then the

parameterization of T is the map

ΨMT (π,A) =
∑

x1...xn∈B
px1...xnx1 ⊗ · · · ⊗ xn
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where px1...xn is as established in 1.1:

px1...xn =
∑

xv∈B,v∈Int(T )

πxr
∏

u∈N(T )\{r}
A
ean(u),eu
xan(u),xu (5.1)

Here π = (πx)x∈B are the coordinates in the basis B of the vector associated to the

root.

From now on we will denote the coordinates of a point p ∈ L in this basis as

{px1...xn}xi∈B.

There are a few important properties of these parameterizations. Firstly, let us note

that the position of the root plays a role in the above parameterization. However, under

some assumptions its image is independent of it. The following lemma formalizes this

idea. Let (u, v) be two adjacent vertices of an edge e, and Tu, Tv be the rooted versions

of T on the two vertices, u and v, respectively (in these two trees the orientation of e

is opposite).

Lemma 5.23 (Lemma 2.11, Casanellas et al. (2011)). Let Tu be a rooted tree as above

and consider an algebraic evolutionary model M = (W0,Mod). Let (π,A) be an evo-

lutionary presentation on Tu such that π has all its entries different from 0 and let

π̃t = πtAe. Assume also that all the entries of π̃ ∈ W0 are different from 0 and

D−1
π̃

(Ae)tDπ belongs to Mod. Then, ΨMTu (π,A) = ΨMTv (π̃, Ã) if Ã = (Ãe)e∈E(Tv), with

Ãe :=

{
D−1
π̃

(Ae)tDπ, if e = e,

Ae, otherwise
.

The models satisfying the conditions of the above lemma are called root independent

(cf. Casanellas et al. (2011)).

Definition 5.24. We say that an algebraic evolutionary model M = (W0,Mod) is

root-independent if it satisfies

1. π̃t := πtA belongs to W0 for all π ∈ W0 and all A ∈Mod, and

2. D−1
π̃

(Ae)tDπ ∈Mod whenever D−1
π̃

does exist.

The above lemma states that for root independent models the image of the parametriza-

tion map is independent of the position of the root. This leads to the non-identifiability

issue for the placement of the root of a phylogenetic tree. Irrespective of the position

of the root distribution, the joint probability p does not change, therefore we consider

unrooted trees. We will prove lemma 5.23 in section 5.5 for a special subset of models,

the so-called equivariant models, which include JC69∗, K80∗, K81∗, SSM and GMM.

Definition 5.25. A stochastic evolutionary model sM is specified by a subset sW0

of vectors in W whose entries sum to one, together with a multiplicatively closed set

sMod of complex matrices whose rows sum to one.

We want to point out that sW0 contains distributions (i.e. vectors with real and non-

negative entries summing to 1) and sMod contains stochastic matrices (i.e. matrices
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with real and positive entries and row sums equal to one). For a stochastic evolutionary

model sM, the space of matrices sMod is not a vector substace anymore.

Example 5.26. If M = (W0,Mod) is an algebraic evolutionary model, define sM =

(sW0, sMod) by taking sW0 = {π ∈ W0 : 1tπ = 1} and sMod = {A ∈Mod : A1 = 1}.
Then, sM is a stochastic evolutionary model.

Definition 5.27. The stochastic parametrization. ΨMT of a rooted tree T evolving

under a model M restricts to a polynomial map φMT from

ParsM(T ) = sW0 ×

 ∏
e∈E(T )

sMod


to the hyperplane H ⊂ L defined by

H =

p ∈ L :
∑

x1,...,xn∈B
px1...xn = 1

 .
To see why the image of the stochastic parameterization φMT lies in H, we not that

the map ΨMT restricted to distributions in sW0 and stochastic matrices in sMod assigns

to each set of parameters the corresponding distribution of patterns in B at the leaves

of the tree. As a result, its image lies on the standard simplex in L = ⊗[n]W and, in

particular, in the hyperplane H.

We proceed to define algebraic varieties associated to the parameterization maps.

Definition 5.28. The affince phylogenetic variety CVMT associated to a phylogenetic

tree T on W is

CVMT :=
{
ΨMT (πr,A) : (πr,A) ∈ ParM(T )

}
where the closure is taken in the Zariski topology. Equivalently, CVMT is the smallest

algebraic set containing the image of ΨM
T .

The affine stochastic phylogenetic variety VMT associated to a phylogenetic tree T
on W is

VMT :=
{
φMT (πr,A) : (πr,A) ∈ ParsM(T )

}
⊂ H

where the closure is taken in the Zariski topology.

There is a natural isomorphism between the points lying in the hyperplane H =

{p = (pb1...b1 , . . . ,pbk...bk) ∈ L :
∑

px1...xn = 1} and the open affine subset {p =

[pb1...b1 : · · · : pbk...bk ] :
∑

px1...xn 6= 0} of Pkn−1 = P(L) (we use projective coordinates

[pb1...b1 : · · · : pbk...bk ] to distinguish them from affine coordinates, see Section 5.1). The

projective phylogenetic variety PVMT associated to a phylogenetic tree T on W is the

closure in Pkn−1 = P(L) of the image of the stochastic parameterization φMT defined

above.

There is a close relation between the above varieties. As it is usually easier to deal

with a homogeneous parameterization and homogeneous polynomials, it will be useful



5.2. ALGEBRAIC EVOLUTIONARY MODELS 61

.

H

VMT

CVMT

L

Figure 5.1: Affine VMT and projective CVMT phylogenetic varieties associated to a phy-
logenetic tree T on W (see Def. 5.28).

to prove that CVMT is the cone over PVMT . This is known for some particular models

(for instance, see Allman and Rhodes (2008a) for a proof on the general Markov model)

but as our definition of algebraic evolutionary model is quite general, we need to state

it in its maximum generality.

Given a set Z ⊂ L, we denote by I(Z) the ideal of polynomials in C[L] := C[px1...xn ]

that vanish over Z. Let us state a few facts relating the different phylogenetic varieties

defined above for use in subsequent sections of this work.

Proposition 5.29. LetM = (W0,Mod) be a root-independent evolutionary model and

let T be a trivalent n-leaf tree on W evolving under M Then,

(a) CVMT equals the affine cone over the projective phylogenetic variety PVMT ;

(b) I(Im ΨMT ) + (h) = I(ImφMT ), where h =
∑
px1,...,xn − 1;

(c) VMT = CVMT ∩H.

In particular, the polynomial equations defining VT are formed by the homogeneous

equations defining CVT and with the extra stochastic equation
∑

px1...,xn − 1 = 0. In

other words, the Corollary 5.29 states that dimCVMT = dim PVMT + 1 and then if p =

(pb1...b1 , . . . ,pbk...bk) belongs to CVMT , then q := [pb1...b1 : · · · : pbk...bk ] belongs to PVMT .

Moreover, if s :=
∑

px1...xn 6= 0, then q = [
pb1...b1

s : · · · :
pbk...bk

s ] and (
pb1...b1

s , . . . ,
pbk...bk

s )

is a point in the affine stochastic phylogenetic variety VMT .

Consequence (a) was proved by Allman and Rhodes for the general Markov model

(see (Allman and Rhodes, 2008a, Proposition 1)). As mentioned, the general proof can

be found in Casanellas et al. (2011).
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5.3 Use of algebraic geometry in phylogenetics

The use of algebraic geometry and its sister fields of computational algebra, commuta-

tive algebra and combinatorics, in phylogenetics is a failry new topic. Current trends are

centered around describing phylogenetic objects through polynomial equations. Using

the algebraic techniques in phylogenetic inference falls under the umbrella of alge-

braic statistics. Inference in phylogenetics include finding the discrete (underlying tree

topology) and estimating the continuous parameters (parameters of the evolutionary

models).

Invariants were introduced in Section 1.4.3– these are algebraic relations that are

satisfied by the joint probability distribution under a given evolutionary model. More

formally, we have the following definitions.

Definition 5.30. Let T be an n−taxon tree,M a model and VMT its associated affine

stochastic phylogenetic variety in A4n . An invariant is a polynomial in the ideal I(VMT ).

A phylogenetic invariant is an element in I(VMT ) for T , but not in I(VMT ′ ) for some

other T ′ i.e. not in
⋂
T ′ I(VMT ′ ). A model invariant is an element in the intersection of

I(VMT ) for all the tree topologies T on n-taxa.

Phylogenetic invariants are beyond the scope of this thesis. We are interested in

model invariants, i.e, generators of the ideal of the model that vanish on all tree topolo-

gies. Here we give a few examples of the computation of invariants.

Example 5.31. Consider the claw tree T on n = 3 labeled leaves {X1, X2, X3} and

a M = GMM model on two sates {0, 1} (cf. Example 1.9). We write a parameterization

map:

φMT : ParGMMs (T ) −→ L = {pAAA, ..., pTTT}

that corresponds to a hidden Markov process on T . It takes the stochastic parameters

to the joint probabilties.

Here we show a code in Singular (Greuel et al., 2001) that can be used to compute

the ideal of VMT .

int b=2;

ring r1 = 0,(p(1..b)(1..b)(1..b)),dp;

ring r2 = 0,(m1(1..b)(1..b),m2(1..b)(1..b),m3(1..b)(1..b),r(1..b)),dp;

int i,j,k,l,s;

poly p, p1,p2,p3;

list L,Ls;

s = 1;

for (i=1; i<=b; i=i+1)

{

for(j=1; j<=b; j=j+1)

{

for(k=1; k<=b; k=k+1)
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{

p=0;

for(l=1; l<=b; l=l+1)

{

p = p + r(l)*m1(l)(i)*m2(l)(j)*m3(l)(k);

}

L[s] = p;

s = s+1;

}

}

}

p=0;

for(j=1; j<=b; j=j+1)

{

p = p + r(j);

}

Ls[1] = p - 1;

s=2;

for(i=1; i<=b; i=i+1)

{

p1=0; p2=0; p3=0;

for(j=1; j<=b; j=j+1)

{

p1 = p1 + m1(i)(j);

p2 = p2 + m2(i)(j);

p3 = p3 + m3(i)(j);

}

Ls[s] = p1 - 1;

Ls[s+1] = p2 - 1;

Ls[s+2] = p3 - 1;

s = s+3;

}

map f=r1,L[1..b^3];

ideal I0=0;

setring r1;

ideal J=preimage(r2,f,I0);

print(J);

dim(std(J));
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The output is of the code is:

p(1)(1)(1)+p(1)(1)(2)+p(1)(2)(1)+p(1)(2)(2)

+p(2)(1)(1)+p(2)(1)(2)+p(2)(2)(1)+p(2)(2)(2)-1

7

We see that the only polynomial vanishing in the image of the parametrization cor-

responds to the stochastic condition and thus the image fills the whole space. This is

also given by the dimension of VMT , which is 7. If we replace the ideal of stochastic

conditions coded in line “ideal I0 = Ls[1..3 ∗ b + 1]” by an empty ideal, I0 = 0, we

obtain the ideal of CVMT . We were not able to compute the above example for b = 4

(e.g. B = {A, C, G, T})– the computations did not finish within days.

We might be interested in computing the linear part of a generating ideal of CVMT .

As we will see in chapter 9 it is precisely the linear part this ideal that is of interest in

phylogenetic model selection.

We give two examples of this computation performed in Singular. There are two

functions that make this computation possible: degBound works only for homogeneous

ideals and limits the degree in the computations of Grobner basis, i.e. degBound =

5 produces a basis up to degree 5; and nselect, take an ideal as an input and

keeps the polynomials which do not contain variables in the prespecified range, i.e.

nselect(I, 1..84) keeps the polynomials of the ideal I that are not expressed the first

84 indeterminates.

Example 5.32. [GMM] Let us consider unrooted trees on the set of {1, 2, 3, 4} leaves

and denote them by 12 − 34, 14 − 23, 13 − 24, τ4, where τ4 is a star tree (eg. 12 − 34

has pairs (12) and (34) in separate clades joined by an internal edge). Consider the GMM

model on these trees and the corresponding parameterizations and calculate the linear

part of the ideal CV GMMT . In fact, it is known that the only linear invariant of V GMMT is

the stochastic condition, so CV GMMT will have no linear invariants. The Singular code for

this example is given in the appendix A.

It is known that phylogenetic invariants for 12|34 are the 5 × 5 minors of the

flattening of the joint vector (pAAAA, . . . , pTTTT) along the bipartition 12|34 vanish on the

phylogenetic variety (and respectively for other tree topologies and their partitions).

Example 5.33. Let us take τ3 to be a 3-leaf star tree. Using the same apprach as in

the example above, we can calculate the linear part of I(V ATRτ3 ). The code is provided

in the appendix A.

Needless to say, the above procedure cannot be performed in a reasonable time for

larger trees. Alternative approaches are needed. In subsequent sections we will see an

example of such– we propse a novel approach to computing all model invariants via an

algorithm based on group theory. It gives a faster and method to obtaining the sets

of invariants for fairly large trees. Most importantly, it sheds light on the behaviour

of these invariants and proves the intution that the model invariants are valid for

phylogenetic mixture models.
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5.4 Groups and actions

Tools from representation theory lie at the basis of the methods developed in chap-

ter 6, where we describe the linear structure of the phylogenetic mixtures and their

dimension. In particular, we will connect subgroups of a general symmetric group on

B to phylogenetic evolutionary models. More on group theory can be found in Rotman

(1995) and for background on linear represnetation of groups we refer to Serre (1977).

Elementaries. We restrict to finite groups and we use multiplicative notation for

the group operation. Let |G| denote the order (cardinality) of a group G. A mapping

ψ : G → H between two groups preserving the group structure, that is ψ(g1)ψ(g2) =

ψ(g1g2) for any g1g2 ∈ G is called a homomorphism. A one-to-one (bijective) homo-

morphism is an isomorphism.

Example 5.34. The symmetric group on a set of cardinality k, Sk, is the set of

all permutations of k elements. We have that |Sk| = k!. By definition, Sk contains

the identity element and the inverses of all its elements. The dihedral group on k, Dk,

elements is a group of symmetries of a k-sided regular polygon. We have that |Dk| = 2k.

If a subset H of G is a group under the group operation of G, then H is called

a subgroup of G denoted by H ¬ G. Any group is its own subgroup, and {id} is a

subgroup of any group. If H 6= G, then H is a proper subgroup H < G .

Definition 5.35. If H < G and g ∈ G, then Hg = {hg : h ∈ H} is a right coset of H

in G. Any element of Hg (including g) is called a representative of Hg. Any two right

cosets are either disjoint or equal and we write H \ G for the quotient space of right

cosets

H \G = {Hg : g ∈ G}.

Remark 5.36. There is a corresponding definition of a left coset, however, in thi thesis

we will only require the right cosets.

Definition 5.37. The index of H in G, [G : H], id the number of right cosets of H in

G.

Theorem 5.38 (Lagrange’s theorem). The order of any subgroup H of a finite group

G divides the order of the group. Moreover, the following equality holds:

[G : H] =
| G |
| H |

. (5.2)

Remark 5.39. Therefore, the quotient in the equation (5.2) is an integer.

Definition 5.40. A subset S of G is called a transversal for H \G if for any distinct

elements g1, g2 ∈ S, Hg1 6= Hg2 and G can be partition in the following way:

G =
⋃
i∈S

Hgi. (5.3)
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In other words, the transversal is the set of coset representatives.

The cardinality of a transversal for H \G if therefore [G : H].

Definition 5.41. An action of a group G on a set Y is a map G× Y → Y denoted by

(g, y) 7→ gy, g ∈ G, y ∈ Y , such that g1(g2y) = (g1g2)y, idy = y. We also say that G

acts on Y . If G acts on Y then for any y ∈ Y the stabilizer (isotropy subgroup) of y is

defined as:

Gy = {g ∈ G : gy = y}.

The orbit of y is

{y}G = {gy : g ∈ G}.

Remark 5.42. Similarly, if X ∈ B, we denote by GX the stabilizer of X: GX =⋂n
i=1Gxi , and we write XG = {gX : g ∈ G} for the orbit of X. Note that if X ∈ B,

then gX ∈ B for every g ∈ G.

Lemma 5.43. Let H ¬ G and G act on a set Y and {g1, . . . , gm} be a transversal for

H \G. For every y ∈ Y , we have

{y}G =
⋃

i=1,...,m

{giy}H .

Proof. We apply the decomposition (6.4) to an element y:

{y}G = {gy : g ∈ G} = {hgiy : h ∈ H, gi ∈ S} =
⋃
gi∈S
{h(giy) : h ∈ H} =

⋃
gi∈S
{giy}H

Theorem 5.44 (orbit-stabilizing theorem). Let G be a group acting on a set Y and

let y ∈ Y , Gy be the stabilizer and {y}G the orbit of y. There exists a bijection

{y}G ∼= G/Gy.

In particular, by Lagrange’s theorem it follows that:

| {y}G |=
| G |
| Gy |

Representation theory Let G be a finite group and let V be a C−vector space of

finite dimension. Let GL(V ) be the group of isomorphisms of V onto itself- the general

linear group of V . By choosing a basis of V an isomorphism a ∈ GL(V ), a : V −→ V

can be identified with an invertible square matrix.

Definition 5.45. A (linear) representation of G in V is a group homomorphism ρ :

G→ GL(V ).

V is called the representation space and its dimension is the dimension of the

representation. We will refer to the representation as ρ or V depending on the context.
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For notational convenience we will use ρg and ρ(g) interchangeably. The representation

defines an action on V as (g, v) 7→ Pg(v) so that Pg(v) will be also denoted by gẋ (in

the sense of the Definition 5.41) and V will be understood as a G−module.

Definition 5.46. A vector space V ′ ⊂ V is stable (invariant) under the action of G if

ρg(v′) ∈ V ′ for all g ∈ G, v′ ∈ V ′.

Definition 5.47. A function f ∈ CG is a class function if for all g1g2 ∈ G f(g1) =

f(g2g1g
−1
2 ).

It is possible to summarize the information about the representation in a compact

form through the notion of character.

Definition 5.48. The character of a representation ρ of G is the function χρ : G→ C
defined by:

χρ(g) = Tr(Pg).

Two representations with the same character are isomorphic (see Serre (1977, Chap.

2.3, Cor.2)). The character of an irreducible representation is called an irreducible

character.

Definition 5.49. We say that a representation ρ : G → GL(V ) is irreducible if it is

not 0 and no W ⊂ V , except for 0 and V , is stable under G.

Definition 5.50. Given an element g ∈ G, the conjugacy class of g is defined as

C(g) = {h−1gh : h ∈ G}.

Being in the same conjugacy class is an equivalence relation that partitions G into

non-overlapping sets: if g1, g2 ∈ G, we have that either C(g1) = C(g2) or C(g1)∩C(g2) =

∅. If C1, . . . , Cs are the conjugacy classes for G, write C(G)=(| C1 |, . . . , | Cs |) for the

s-tuple of their cardinalities, so that
∑s
i=1 | Ci |= |G|.

From the definition (5.47) it is clear that a character is a class function on G:

χ(g1) = χ(g2) whenever C(g1) = C(g2). We can write: χ(G) = (χ(C1), . . . , χ(Cs)).

Definition 5.51. A character table is a 2-way table, where the columns are labeled by

a set of representatives of conjugacy classes and the rows are labelled by the irreducible

characters. The entries are the irreducible characters evaluated on a given conjugacy

class.

Definition 5.52. Let V, V ′ be a two representation of G. The direct sum V ⊕ V ′ of

V and V ′ is also a representation with the action of the group given by ρV⊕V ′(v, v′) =

(ρV (v), ρV ′(v′)). The tensor product of V and V ′, V ⊗ V ′, is again a representation

with the action of the group given by ρV⊗V ′(v ⊗ v′) = ρV (v)⊗ ρV ′(v′).

Remark 5.53. The above constructions can be generalized to finite sums and products.

The character of a direct sum of representations is the sum: χV⊕V ′(g) = χV (g) +

χV ′(g). The character of a tensor product of representations is the product of characters:

χV⊗V ′(g) = χV (g)χV ′(g).
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Theorem 5.54 (Serre (1977), Chap. 2.5, Thm 6). The set Ω = {ωi}i=1,...,t of irreducible

characters of a group G forms an orthonormal basis of the class functions relative to

the inner product defined by

〈f, h〉 =
1
|G|

∑
g∈G

f(g)h(g). (5.4)

Theorem 5.55 (Maschke’s Theorem). Let Ω = {ωi}i=1,...,t be the set of irreducible

characters of G. For every linear representation V there exists a decomposition of V

into its isotypical components:

V = ⊕si=1V [ωi], (5.5)

where each V [ωi] is isomorphic to a number of copies of a irreducible representation Ni

associated to ωi, V [ωi] ∼= Ni ⊗Cmi for some positive integer mi, called the multiplicity

of V relative to ωi. Moreover, if ρ is the character of V , then mi = 〈ρ, wi〉

As a consequence of the above, the number of irreducible characters equals the

number of conjugacy classes of G.

Since χ⊗nV = χnW , if wi isthe irreducible character of a group G

m1(n) =
1
|G|

s∑
i=1

χn(Ci) | Ci |, (5.6)

Definition 5.56. Let G be a subgroup of the symmetric group Sk of a set B of k

elements. The symmetric group Sk acts naturally on B and if W is the C−vector

space 〈B〉C it gives rise to a linear representation:

ρ : Sk → GL(W ),

σ 7→ Pσ,

where Pσ is linear map defined by permuting elements in B according to σ. This is

called the defining representation of Sk.

Any subgroup G < Sk acts also on B and the defining representation ρ restricts

to a representation of G. This restriction of ρ to G will be also called the defining

representation of G.

The following definition and lemma will be used in Section 6.1, here they are given

in a general form.

G acts in B in the following way, if X = (x1 . . . xn)

g(X) = g(x1) . . . g(xn)

and gives a representation in ⊗nW as specified in (5.52).

Definition 5.57. Given a set of taxa n, a G-tensor on n is an n-tensor invariant by

the action defined in (5.52). The set of G-tensors will be denoted by LG.
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We have that χ =
∑s
i=1 < χ, ωi > ωi and the dimension of the space of invariants

equals the number of trivial representations in the decomposition:

m1 =< χ,ω1 >=
1
|G|

∑
g∈G

χ(g)ω1 =
1
|G|

s∑
i=1

χ(Ci)ω1(Ci) | Ci | . (5.7)

The following lemma states that the set of stable elements by the action of a group

G (in the sense of the definition 5.46) can be obtained from systems of linear equations

associated with a system of generators of G.

Lemma 5.58. Let V be the set of elements of a vector space invariant by the action

of G = 〈g1, . . . , gt〉. We have that

V G =
t⋂
i=1

V 〈gi〉.

Proof. The (→) inclusion is straightforward. To prove the second inclusion, let p ∈⋂s
i=1 V

〈gi〉, so we have gip = p for any i. Let g ∈ G be any element of the group and

write g = gm1
i1

. . . gmtir with mi > 0. Adopting the convention of the right to the left

action of the group elements, the recursive application of the gi to p completes the

proof: gp = gm1
i1

(gm2
i2

. . . gmrir p) = p.

5.5 Equivariant models of evolution

In this section we study in a mathematical setting a Markov models of evolution intro-

duced in Section 1.4.

Let B be a set of k elements and W = 〈B〉C.

Definition 5.59. Let G be a permutation group of B (that is, a group whose elements

are permutations of the set B,G ¬ Sk). Given g ∈ G, write Pg for the k×k-permutation

matrix corresponding to g: (Pg)i,j = 1 if g(j) = i and 0 otherwise. The G-equivariant

evolutionary model, MG, is defined by taking Mod equal to HomG(W,W), that is,

HomG(W,W) = {A ∈Mk,k(C) | APg = PgA,∀g ∈ G}

and W0 = {π ∈ W | Pgπ = π ∀g ∈ G}. It is clear that the above subsets define vector

subspaces of Hom(W,W) and W. On the other hand, if A1, A2 ∈ HomG(W,W), then

PgA1A2P
−1
g = (PgA1P

−1
g )(PgA2P

−1
g ) = A1A2

so that A1A2 ∈ HomG(W,W). Therefore, equivariant models are examples of algebraic

evolutionary models in the sense of Definition 5.17.

Below we view some of the models introduced in Section 1.4 as equivariant models

via its associated subgroup of symmetries and give their characteristics using notions

from Section 5.4.



70 CHAPTER 5. PHYLOGENETIC VARIETIES AND EQUIVARIANT MODELS

Notation 5.60. For an equivariant model M we denote by GM its corresponding

group. We call ρ the defining representation of GM (see Def. 5.56) and we denote by

χM its character. From now on B will be the set B = {A, C, G, T} and χn will denote

the character of the defining presentation.

Jukes-Cantor (JC69∗). A transition matrix of the JC69∗ model has the form given

by 1.11. In order to view it as an equivariant model we observe that its substitution

matrices are invariant under any permutation of rows and columns.

The associated group is the symmetric group GJC69∗=S4. Its cardinality is 24 and

its the elements correspond to all permutations of 4 letters (see Defintition 5.34):

GJC69∗ = {id, (AG), (AC), (AT), (CG), (CT), (GT),

(CGT), (ATG), (ACT), (AGC), (AGT), (ATC), (ACG), (CTG),

(AC)(GT), (AG)(CT), (AT)(CG), (CT)(AG),

(ACGT), (ATGC), (AGCT), (ATCG), (ACTG), (AGTC)}. (5.8)

GJC69∗ can be generated by 2 elements consiting of a transposition and a cycle, e.g.

GJC69∗ =< (AC), (ACGT) >.

Example 5.61. The defining representation of GJC69∗ applied to its generators is:

(AC) 7→ P 1
g =


0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

 , (ACGT) 7→ P 2
g =


0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

 .

It is clear that P 1
g , P

2
g ∈ HomJC69∗(W,W).

A set of representatives of the conjugacy classes can be given by

{id, (AC)(GT), (ACGT), (AG), (ACG)}.

Indexing the conjugacy classes in the order of these representants we have:

C1 = {id}, C2 = {(AC)(GT), (AG)(CT), (AT)(CG)},

C3 = {(ACGT), (ATGC), (AGCT), (ATCG), (ACTG), (AGTC)},

C4 = {(ATG), (ACT), (AGC), (AGT), (ATC), (ACG), (CGT), (CTG)},

C5 = {(AG), (AC), (AT), (CG), (CT), (GT)}.

Therefore the transversal set can be given by

{id, (AC)(GT), (ACGT), (ACG), (AC)}.

Therefore we have that C(GJC69∗) = (1, 3, 6, 8, 6) and χn(GJC69∗) = (4n, 0, 1, 0, 2n). The
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character table for GJC69∗ and χn are given by:

ΩS4 id (AC)(GT) (ACGT) (ACG) (AC)

ω1 1 1 1 1 1

ω2 1 1 1 -1 -1

ω3 2 2 -1 0 0

ω4 3 -1 0 -1 1

ω5 3 1 0 1 -1

χn 4n 0 1 0 2n

.

Kimura 2-parameter model (K80∗). The transition matrix for this model was

defined in 1.12. The corresponding subgroup is the dihedral group defined in (5.34).

Dihedral group has order 8 corresponding to 8 movements that leave a square invariant.

Labeling the corners of this square as {A, C, G, T}, the 8 movements correspond to the

following permutations of the corners: rotations and reflections along the horizontal,

vertical and diagonal symmetry axes. The group has the following elements:

GK80∗ = {id, (ACGT), (AG)(CT), (ATGC), (AC)(GT), (AT)(CG), (AG), (CT)}

and is generated by GK80∗ = 〈(ACGT), (AG)〉. A set of representatives of the conjugacy

classes is: {id, (AC)(GT), (AG)(CT), (ACGT), (AG)}. Denoting the conjugacy classes in the

above order, their elements are given by:

C1 = {id}, C2 = {(AC)(GT), (AT)(GC)}, C3 = {(AG)(CT)},

C4 = {(ACGT), (ATGC)}, C5 = {(AG), (CT)}.

Therefore, we have that C(GK80∗) = (1, 2, 1, 2, 2) and χn(GK80∗) = (4n, 0, 0, 0, 2n). The

character table and the character of the defining representation are given below.

ΩGK80∗ id (AC)(GT) (AG)(CT) (ACGT) (AG)

ω1 1 1 1 1 1

ω2 1 -1 1 1 -1

ω3 1 -1 1 -1 1

ω4 1 1 1 -1 -1

ω 2 0 -2 0 0

χn 4n 0 0 0 2n

Kimura 3-parameter model (K81∗). The detailed properties of the model were de-

scribed in Casanellas and Fernández-Sánchez (2008). The group has 4 elements with 2

generators: GK81∗ = {id, (AT)(GC), (AC)(GT), (AG)(CT)} = 〈(AC)(GT), (AG)(CT)〉. The gen-

erators are given by any pair of distinct and nontrivial group elements. The conjugacy

classes are {id, (AT)(CG), (AC)(GT), (AG)(CT)} and we have that C(GK81∗) = (1, 1, 1, 1).
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Moreover, χn(GK81∗) = (4n, 0, 0, 0) and

ΩGK81∗ id (AT)(CG) (AC)(GT) (AG)(CT)

ω1 1 1 1 1

ω2 1 -1 -1 1

ω3 1 -1 1 -1

ω4 1 1 -1 -1

χn 4n 0 0 0

.

Strand Symmetric Model (SSM). The transition matrix for the strand symmetric

model has the form given in 1.15. The associated group has cardinality two and has

one generator

GSSM = {id, (AT)(CG)} = 〈(AT)(CG)〉.

The conjugacy classes for this model are {id, (AT)(CG)}, each being a single element, so

C(GSSM) = (1, 1). Lastly, χn(GSSM) = (4n, 0) and the character table is given by

ΩGSSM id (AT)(CG)

ω1 1 1

ω2 1 -1

χn 4n 0

General Markov Model The substitution matrices of the GMM model defined in

(1.10) do not have any symmetries. Therefore, we associate it with the trivial GGMM =

〈id〉. There is a single irreducible representation ω1 : GGMM → C corresponding to the

trivial character. The defining representation of GGMM (see Def. 5.56) maps id to the

identity linear map in GL(W ) so that χidGMM = 4.

Below we summarize the information for all the models:

• G = S4, for the algebraic Jukes-Cantor model JC69∗,

• G = 〈(ACGT), (AG)〉, for the algebraic Kimura 2-parameter model K80∗,

• G = 〈(AC)(GT), (AG)(CT)〉, for the algebraic Kimura 3-parameter model K81∗,

• G = 〈(AT)(CG)〉, for the strand symmetric model SSM, and

• G = 〈id〉, for the general Markov model GMM.

Here we prove Lemma 5.23 for the equivariant models. Namely, we will show that

the equivariant models are root-independent as dictated by the defintition 5.24. For

the SBD this was shown Allman and Rhodes (2006b). This fact for the GMM model can

be found e.g. in Allman and Rhodes (2003). We mention already that a choice of the

root induces te orientation of the edges. As before, we adopt the convention of the row

labels corresponding to the ancestral node of e (more proximal to the root) and the

columns to the decendant.

Proof of Lemma 5.23. We present a sketch of the proof for trivalent trees, which can be
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easily generalized to any phylogenetic tree. We start by assuming a 2-taxon tree, which

corresponds to an edge with terminal vertices e = (u, v). If Ae is a Markov matrix and

π is stochastic vector, then D−1
π̃

(Ae)tDπ are also Markov matrices and π̃ is stochastic.

First we check that (π̃, Ãe) is in the model. To see that that π̃ ∈ W0 we write

Pgπ̃ = Pg(Ae)tπ = (Ae)tPgπ = (Ae)tπ = π̃.

Now, Ae ∈Mod, so

D−1
π̃
AeDπPg = D−1

π̃
AePgDπ = D−1

π̃
PgA

eDπ = PgD
−1
π̃
AeDπ.

The equalitites hold because π ∈ W0, A
e ∈Mod and lastly because π̃ ∈ W0. Therefore

D−1
π̃

(Ae)tDπ ∈Mod.

Let the root be in u, then px1x2 = πx1A
e
x1,x2 . Upon changing the root to v and

defining π̃x2 =
∑
x πxA

e
x,x2 and Ãex2,x1 = π̃−1

x2 A
e
x1,x2πx1 . Now, we have that px1x2 =

π̃x2Ã
e
x2,x1 =

∑
x πxA

e
x,x2 π̃

−1
x2 A

e
x1,x2πx1

In order to see that the result holds for larger trees, we recall the general formula

for the parametrization given in (1.1). Now, if we move the root between two adjacent

nodes, u and v, the only edge that will change its direction is (u, v), We have shown

above that it will not affect the joint probability puv and thus, by the formula above,

of px1...xn . On the other hand, if u and v are not adjacent, there will exist a unique

path that joins them. The matrices assigned to the components of this path will be

transformed as indicated above. Again, this will not transform the formula for the joint

probability. �
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Chapter 6

Mixtures and their identifiability

This chapter is a collaboration with Marta Casanellas and Jesús Fernández-Sánchez.

In phylogenetics, it is often assumed that the sites of an alignment are independent

and identically distributed. This assumption is not very realistic, however, significantly

lowers the number of parameters and makes the inference tractable.

A phylogenetic mixture is a model for which the sites in the alignment belong to

a given family or families of distributions. In this section we introduce phylogenetic

mixtures from the algebraic point of view. We assume that all sites in the alignment

evolve under the same evolutionary model. We prove that the space where distributions

from phylogenetic mxitures lie is a linear space. Moreover, we are able to characterize

this space for equivariant models via group actions. Lastly, we describe new results on

the identifiability of the mixed models in phylogenetics.

6.1 Space of phylogenetic mixtures

Definition 6.1. Fix a set of taxa [n] and an algebraic evolutionary model M. A

phylogenetic mixture (on m-classes) or m-mixture is any vector p ∈ L = ⊗[n]W of the

form

p =
m∑
i=1

αip
i

where pi ∈ Im(ΨMTi ), Ti ∈ Tn and αi ∈ C. As ΨMTi is a homogeneous map, phylogenetic

mixtures are actually vectors of the form
∑m
i=1 p̌

i, where p̌i ∈ Im(ΨMTi ).

Note that on a phylogenetic mixture we allow some (or all) tree topologies Ti to

be the same. In the continuous-time setting we mentioned in Section 1.4, allowing

for distinct model parameters on the same topology at different sites is handled by

modeling different “classes” of sites by means of the Gamma-rates. In the practical

setting, this continuous parameter is discretized and a finite number of classes allowed

in the process. Therefore, the discrete Gamma-rates (Γ) with or without the invariable

sites are instances of phylogenetic mixtures (we refer to the book Semple and Steel

(2003) for an introduction to these concepts).

We denote by DM ⊂ L the set of all phylogenetic mixtures (on any number of

classes) under the algebraic evolutionary model M and by DmM the set of all phyloge-

netic mixtures on m-classes.

When we restrict to matrices whose rows sum to one so that we consider the pa-

75
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rameterization φMT , one has to restrict the phylogenetic mixtures to points of the form

q =
m∑
i=1

αiq
i where qi ∈ Im(φMTi ) and

∑
i

αi = 1.

We call DsM the space of these stochastic phylogenetic mixtures.

The following result was proven by Matsen, Mossel and Steel in Matsen et al. (2008)

for the two state random cluster model.

Lemma 6.2. Given a set of taxa [n] and an algebraic evolutionary model M, the set

of all phylogenetic mixtures DM is a vector subspace of L. Similarly, the space DsM is

a linear variety of the affine space L contained in the hyperplane H.

Proof. DM is a C-vector space by definition.

In order to prove that DsM is a linear variety, let q0 be any point in DsM, so that

q0 =
∑m
i=1 αiq

i with qi ∈ Im(φMTi ), i = 1, . . . ,m, and
∑
i αi = 1. Then we can write

DsM = q0 + F, where F = {−→q0q | q ∈ DsM}.

We only have to show that F is a C-vector space:

1) Let v = −→q0q be a vector in F , then λv =
−−→
q0q
′ where q′ = q0+λ−→q0q. This last point is

inDsM: if q =
∑l
j=1 βj q̂

j with
∑
j βj = 1, then q′ = (1−λ)

∑m
i=1 αiq

i+λ
∑l
j=1 βj q̂

j

and the scalar coefficients sum to one (1− λ)
∑
i αi + λ

∑
j βj = (1− λ) + λ = 1.

Therefore λv is in F.

2) Let v1 =
−−→
q0q1 and v2 =

−−→
q0q2 be two vectors in F ,

q1 =
∑
j

βj q̂j with
∑

βj = 1,

q2 =
∑
k

γkq̌k with
∑

γk = 1,

then v1 + v2 =
−−→
q0q′ with q′ =

∑
j βj q̂j +

∑
k γkq̌k −

∑
i αiqi, and all coefficients

together sum to one:
∑
j βj +

∑
k γk −

∑
i αi = 1.

Remark 6.3. By virtue of the previous lemma, DM is an algebraic variety that con-

tains ImΨMT for any tree T and therefore, it also contains CVMT . It follows that DM
equals the set of points of the form p =

∑
pi where pi ∈ CVMTi . Similarly, DsM equals

the set of points of the form q =
∑
αiqi, where qi ∈ VMTi and

∑
i αi = 1.

For technical reasons needed in the next result, we introduce the following spaces:

Definition 6.4. Define DmM as the set of points p of the form p =
∑m
i=1 p

i where

pi ∈ CVMTi , and DmsM as the set of points q of the form q =
∑m
i=1 αiq

i where qi ∈ VMTi
and

∑m
i=1 αi = 1.
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Lemma 6.5. The following equalities hold:

(a) DmsM = DmM ∩H

(b) DsM = DM ∩H.

Proof. (a) For any p ∈ L, define λ(p) =
∑
xi∈B px1,...,xn . Let q ∈ DmsM. Then, we can

write q =
∑m
i=1 αiq

i for some qi ∈ VMTi and
∑
αi = 1. Clearly, q ∈ DmM. Moreover,

λ(q) =
∑
i αiλ(qi) =

∑
i αi = 1. Thus, q ∈ H.

Conversely, let p =
∑m
i=1 p

i with pi ∈ CVMTi for certain tree topologies Ti, and

assume that λ(p) = 1. Apply Proposition 2.19 of Casanellas et al. (2011) to each pi to

get pi = λ(pi)qi for some qi ∈ VMTi . Then, we have

p =
∑
i

pi =
∑
i

λ(pi)qi

and 1 = λ(p) =
∑
i λ(pi)λ(qi) =

∑
i λ(pi) since each qi lies on H. This proves that

p ∈ DmsM.

(b) can be proven using (a) and Remark 6.3.

6.2 The space of phylogenetic mixtures for the equivari-

ant models

This section will be devoted to give a precise description of the space DM for the

equivariant modelsM listed in 5.59. This is precisely the characterization of the space

DM that will be used in chapter 9 for designing a model selection algorithm. Thus, we

will assume that B = {A, C, G, T}, k = 4 and W = 〈B〉C. From now on L = ⊗nW .

Let G ¬ S4 be a permutation group. We consider the restriction to G of the defining

representation

ρ : S4 → GL(W ) (6.1)

given by the permutation of the elements of B. This representation induces a G-module

structure on W by setting

g · x := ρ(g)(x) ∈ W.

In fact, ρ induces a G-module structure on L = ⊗nW by setting

g · (x1 ⊗ . . .⊗ xn) := g · x1 ⊗ . . .⊗ g · xn. (6.2)

and extends by linearity. According to Notation 5.21, if X ∈ B and g ∈ G, gX will

stand for the action of g on X as introduced above. From now on, the space L will be

implicitly considered as a G-module with this action.
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Definition 6.6. Given a set of taxa [n], a G-tensor on [n] is an [n]-tensor invariant

by the action defined in (6.2). The set of G-tensors will be denoted by LG. If M is an

equivariant evolutionary model, LGM will be also denoted by LM.

The following Theorem describes the set of phylogenetic mixtures for equivariant

models.

Theorem 6.7. IfM is one of the equivariant evolutionary models JC69, K80, K81, SSM

or GMM, then the space of phylogenetic mixtures DM coincides with LGM and DsM =

LGM ∩H.

This theorem allows one to identify the set of all phylogenetic mixtures DM with

LGM , which is a vector subspace of L whose linear equations are easy to describe, as we

will see afterwards in this section. In other words, LGM is the space where data coming

from any mixture of trees evolving under modelM lies. One can therefore use LGM to

select the most suitable model for given data. This is the subject of the next chapter 9,

where the implementation of the algorithm proposed here is discussed, together with

an extensive performance study on simulated and real-life data.

Proof of Theorem 6.7. In Lemma 6.2 we proved that DM is a vector subspace of L.

Moreover, as we are considering equivariant models, we have Im(ΨMT ) ⊂ LGM for any

tree T (see Lemma 4.3 of Draisma and Kuttler (2009)) and hence DM is contained in

the vector subspace LGM .

In order to show that LGM = DM it remains to prove that there does not exist any

hyperplane Π containing DM and not containing LGM . If such a hyperplane existed,

then it would contain, in particular, all points in Im ΨMT for any tree topology T . As

Π is an algebraic variety, this implies that Π contains CVMT for any tree topology T .

It is enough to prove that, for the equivariant models considered here, there are

no homogeneous linear polynomials vanishing on all tree topologies, except the linear

equations vanishing on LGM . This result is already known in the literature: for G

corresponding to the GMM this result was shown in Allman and Rhodes (2008a); for

the SSM in Casanellas and Sullivant (2005) and for JC69∗, K81∗, K80∗ in Sturmfels and

Sullivant (2005). In fact, in the case of the JC69∗ and K80∗ models there exist other

linear relations, however, they correspond to phylogenetic invariants– these are the

equations that vanish on ΨMT for a particular tree topology T but not for all topologies).

The main result in Draisma and Kuttler (2009) comprises all these results.

The equality DsM = LGM ∩H follows immediately from Lemma 6.5 and the first

assertion in this theorem. �

6.3 Equations for the space LGM

The goal of this section is to compute the dimension of LGM where M is one of

the equivariant models listed in Definition 5.59. In addition, we show how a set of

independent linear equations defining this space can be obtained. The definitions and
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facts from group and group representation theory required fo this task can be found in

Section 5.4.

Notation 6.8. We recall that S4 is a symmetric group on 4 letters (see Definition

(5.34)). Denote by id the trivial permutation of S4. Let G ¬ S4 be a permutation

group and g ∈ G. We recall that the conjugacy class of g is C(g) = {h−1gh : h ∈ G}.
If g1, g2 ∈ G (see Def. 5.50). The conjugacy classes (Ci)si=1 are disjoint and we write

C(G) = (|C1|, . . . , |Cs|) for the s-tuple of the cardinalities (
∑s
i=1 |Ci| = |G|). We write

χn for the character of G associated to the defining representation G→ GL(⊗nW) (see

Def. 5.48) and represent χn by a s-tuple (t1, . . . , ts) where ti = χn(g) for any g ∈ Ci.

Table 6.1 summarizes information about subgroups associated to the equivariant

models listed in definition 5.59.

Let ΩG = {ω}i=1,...,t be a set of the irreducible characters of G, where ω1 stands for

the trivial character. By Maschke’s Theorem 5.55 applied to the action of G we write

the decomposition of ⊗nW into its isotypic components:

⊗nW = ⊕ti=1(⊗nW )[ωi] (6.3)

We recall that each (⊗nW)[ωi] is isomorphic to a number of copies of the irreducible

representation Ni associated to ωi, (⊗nW)[ωi] ∼= Ni ⊗Cmi(n) for some positive integer

mi(n), called the multiplicity of ⊗nW relative to ωi. Moreover, by Theorem 5.54, it is

known that the set ΩG forms an orthonormal basis of the space of characters relative

to the inner product defined by (5.4).

Using the facts listed above, we can calculate the dimension of the spaces dimLG

for the equivariant models. This is summarized in the following Proposition.

Proposition 6.9. We have

(i) dimLSSM = 22n−1.

(ii) dimLK81∗ = 4n−1

(iii) dimLK80∗ = 22n−3 + 2n−2

(iv) dimLJC69∗ = 22n−3+1
3 + 2n−2.

Proof. Let M be either SSM, K81∗, K80∗ or JC69∗. First of all, notice that the space of

GM-tensors is just the isotypic component of ⊗nW associated to the trivial represen-

tation, or equivalently, to the trivial character ω1:

LM = (⊗nW)[ω1].
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Table 6.1: Group theoretic description of the equivariant evolutionary models (JC69∗, K80∗, K81∗, SSM) (see Section 5.5).

G ¬ S4 M representants of conj. classes C(G) (t1, . . . , ts)
〈(AT)(CG)〉 SSM {id, (AT)(CG)} (1, 1) (4n, 0)
〈(AC)(GT), (AG)(CT)〉 K81∗ {id, (AT)(CG), (AC)(GT), (AG)(CT)} (1, 1, 1, 1) (4n, 0, 0, 0)
〈(ACGT), (AG)〉 K80∗ {id, (AC)(GT), (AG)(CT), (ACGT), (AG)} (1, 2, 1, 2, 2) (4n, 0, 0, 0, 2n)
S4 JC69∗ {id, (AC)(GT), (ACGT), (AG), (ACG)} (1, 3, 6, 8, 6) (4n, 0, 1, 0, 2n)

Table 6.2: Orbit composition and their cardinalities given by Lemma 6.14; here . . . denotes the set on the left and ” repeats the elements
of the cell above.

{X}GMM {X}SSM {X}K81∗ {X}K80∗ {X}JC69∗
B0 {X} · · · ∪ {(AT)(CG)X} · · · ∪ {(AC)(GT)X}SSM . . . . . .
BAG|CT ” ” ” . . . · · · ∪ {(AC)X}K80∗
BAC|GT ” ” ” · · · ∪ {(AG)X}K81∗ · · · ∪ {(AT)X}K80∗
BAT|CG ” ” ” · · · ∪ {(AG)X}K81∗ · · · ∪ {(AC)X}K80∗
B \ B2 ” ” ” · · · ∪ {(AG)X}K81∗ · · · ∪ {(AC)X}K80∗ ∪ {(AT)X}K80∗
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Since the dimension of the trivial representation is one, it follows that the dimension

of LM is precisely the multiplicity m1(n), that is, the number of times the trivial

representation appears in the decomposition of ⊗nW into isotypic components. As

seen in equation (5.6) and thus in (5.7), this multiplicity equals

m1(n) = 〈χn, ω1〉 =
1
|G|

∑
g∈G

χn(g)ω1(g) =
1
|G|

s∑
i=0

|Ci|ti.

The last equality follows from grouping the elements of G in their respective conjugacy

classes. Applying the above formula to the subgoups describing the models we obtain

the result. For instance

dimLSSM =
1
2

4n = 22n−1.

Next we provide a set of independent linear equations for LGM . We will denote a

set of patterns of n letters as introduced in 5.21. For notational convenience we further

write:

Notation 6.10. We will consider the following subsets of B = Bn:

B0 = {(A, . . . , A), (C, . . . , C), (G, . . . , G), (T, . . . , T)}

BAC|GT = {A, C}n ∪ {G, T}n

BAG|CT = {A, G}n ∪ {C, T}n

BAT|CG = {A, T}n ∪ {C, G}n

B2 = BAC|GT ∪ BAG|CT ∪ BAT|CG.

The set B0 is composed of all n-words with only one letter and it is contained in BAC|GT,
BAG|CT and BAT|CG. Similarly, B2 is composed of all n-words with two letters at most. It is

straightforward to check that |BAC|GT| = |BAG|CT| = |BAT|CG| = 2n+1 and |B2| = 3·2n+1−8.

We will adopt multiplicative notation for the n-words in the alphabet B. For in-

stance, we will write Cl to mean the word and C . . . C︸ ︷︷ ︸
l

and (Al)(Gm)xl+m+1 . . . xn to mean

A . . . A︸ ︷︷ ︸
l

G . . . G︸ ︷︷ ︸
m

xl+m+1 . . . xn, where xl+m+1, . . . , xn represent any possible choice of letters.

The main result of this section is the following:

Theorem 6.11. A set of linearly independent equations EM for LGM is given by

ESSM : pX = p(AT)(CG)X where X has x1 ∈ {A, C};

EK81∗ : the equations in ESSM, together with pX = p(AC)(GT)X, where X has x1 = A;

EK80∗ : the equations in EK81∗, together with pX = p(AG)X,where X ∈ B\BAC|GT has x1 = A,

and if T appears in X, there is some C in a preceding position;

EJC69∗ : the equations in EK80∗, together with pX = p(AT)X, where X ∈ BAC|GT \ B0 has the

form
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(Al)(Cm)xl+m+1 . . . xn; and equations pX = p(AC)X and pX = p(AT)X where

X ∈ B \ B2 has the form (Al)(Cm)xl+m+1 . . . xn and, if T appears in X, there is

some G in a preceding position.

The number of equations added in each case is:

SSM : 22n−1; K81∗ : 22n−2; K80∗ : 22n−3− 2n−2; JC69∗ : 2n−1− 1 + 2

(
22n−3 + 1

3
− 2n−2

)

.

In order to prove this theorem we refer to a few technical results shown in 5.4.

Firstly, by Lemma 5.58 we have that if G = 〈g1, . . . , gt〉, then LG =
⋂t
i=1 L〈gi〉. As a

consequence of the above, the system of linear equations for LG is obtained from a

system of generators of G. That is to say, given a point p ∈ L, we have that

p ∈ LG ⇔ pgX = pX, ∀g ∈ G, ∀ X ∈ B.

Let H be a subgroup of G and H \ G the set of right cosets of H in G (see

Def. 5.35) We recall that by Lagrange’s theorem (5.38): |H \ G| = |G|/|H|. More-

over, as seen in , the following holds: if [G : H] is the index of H in G (Definition 5.37)

and {g1, . . . , g[G:H]} is a transversal of H \G (see Def. 5.40), we have a partition of G

G =
[G:H]⋃
i=1

Hgi. (6.4)

The right cosetcan be understood as a single G-orbit with the natural action of G on

it.

Example 6.12. We list the transveral sets for the equivariant models considered here:

1. [GSSM : 〈id〉] = 2; a transversal of 〈id〉 \GSSM is {id, (AT)(CG)}.

2. [GK81∗ : GSSM] = 2; a transversal of GSSM \GK81∗ is {id, (AC)(GT)}.

3. [GK80∗ : GK81∗ ] = 2; a transversal of GK81∗ \GK80∗ is {id, (AG)}.

4. [GJC69∗ : GK80∗ ] = 3; a transversal of GK80∗ \GJC69∗ is {id, (AC), (AT)}.

Notation 6.13. The orbit of X ∈ B under the action of G: {X}G = {gX : g ∈ G}
is denoted in the literature by {X}G. For clarity of exposition, we will write {X}M,

whenever the subgroup G defines the model M.

By Lemma 5.43 we have that if g1, . . . , gm is a transversal of H \G, then for every

X ∈ B
{X}G =

⋃
i=1,...,m

{giX}H .

The following Lemma gives a detailed description of the cardinality of the orbits for

the equivariant models.
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Lemma 6.14. Let X ∈ B. Then,

SSM: {X}SSM = {X, (AT)(CG)X} and there are 22n−1 different orbits.

K81∗: {X}K81∗ = {X}SSM ∪ {(AC)(GT)X}SSM has cardinality 4 and there are 22n−2 different

orbits.

K80∗: – If X ∈ BAG|CT then {X}K80∗ = {X}K81∗ has cardinality 4 and there are 2n−1

different orbits;

– if X ∈ B \ BAG|CT, then {X}K80∗ = {X}K81∗ ∪ {(AG)X}K81∗ has cardinality 8 and

there are 22n−3 − 2n−2 different orbits.

JC69∗: – If X ∈ B0 then {X}JC69∗ = {X}K80∗ has cardinality 4 and there is only one

orbit;

– if X ∈ BAC|GT \ B0 then {X}JC69∗ = {X}K80∗ ∪ {(AT)X}K80∗ has cardinality 12

and there are 2n−1 − 1 different orbits; moreover, the union of such orbits

cover the whole B2 \ B0.

– if X ∈ B \ B2 then {X}JC69∗ = {X}K80∗ ∪ {(AC)X}K80∗ ∪ {(AT)X}K80∗ has cardi-

nality 24 and there are 1
3(22n−3 + 1)− 2n−2 different orbits.

The summary of this result is given in the table ??.

Proof. We will describe the orbits of the elements X ∈ B under the action of their

corresponding groups. For the SSM and K81∗ models this can be done from the definition

of the orbits.

SSM: By the defintition of an orbit we obtain that {X}SSM = {X}∪{(AT)(CG)X}. Since we

have that X is a distinct element to (AT)(CG)X for every X, we have that |{X}SSM| =
2.

K81∗: Applying Lemma 5.43, we obtain that {X}K81∗ = {X}SSM ∪ {(AC)(GT)X}SSM.

In the above reasoning we in fact used the fact that for the subgroups GSSM and

GK81∗ the stabilizers are trivial (see Definition 5.41 and Theorem 5.44). The idea

of the proof for the remaining models is to systematically apply Lemma 5.43.

K80∗: Applying Lemma 5.43, we obtain that

{X}K80∗ = {X}K81∗ ∪ {(AG)X}K81∗ .

If X ∈ bAG|CT, then {(AG)X}K81∗ = {X}K81∗ and {X}K80∗ has cardinality 4. The

number of such orbits is
|BAG|CT|

4
= 2n−1.

If X /∈ BAG|CT, then {(AG)X}K81∗neq{X}K81∗ , so {X}K80∗ has cardinality 8. The num-

ber of such orbits is
|B \ BAG|CT|

8
= 22n−3 − 2n−2.
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JC69∗: Lemma 5.43 applies to give

{X}JC69∗ = {X}K80∗ ∪ {(AC)X}K80∗ ∪ {(AT)X}K80∗ .

(a) If X ∈ B0, then {(AC)X}K80∗ = {(AT)X}K80∗ = {X}K80∗ , so {X}JC69∗ has 4

elements. The number of such orbits is

|B0|/4 = 1.

(b) If X ∈ BAC|GT\B0, then (AT)X ∈ BAG|CT and {(AC)X}K80∗ = {X}K80∗ has cardinal-

ity 8. Therefore, {X}JC69∗ = {(AT)X}K80∗ ∪{X}K80∗ has cardinality 4 + 8 = 12.

The number of such orbits is

|BAC|GT \ B0|/4 = 2n−1 − 1.

Moreover, the number of words involved in such orbits is

12(2n−1 − 1) = 3 · 2n+1 − 12

which is the cardinality of B2 \ B0.

(c) Finally, if X /∈ B2, then the three orbits {(AC)X}K80∗ , {(AT)X}K80∗ and {X}K80∗
have 8 elements each and are disjoint. Thus, we obtain that

{X}JC69∗ = {X}K80∗ ∪ {(AC)X}K80∗ ∪ {(AT)X}K80∗

has 24 elements. The number of such orbits is

|B \ B2|
24

=
4n − 3 · 2n+1 + 8

24
=

22n−3 + 1
3

− 2n−2.

This proves the claim.

Remark 6.15. Notice that given a subgroup G of S4, every orbit o = {X1, . . . , Xm}
described above provides a G-tensor (a tensor invariant under the action of G) defined

by

Σ(o) =
m∑
i=1

Xi.

All these tensors are linearly independent, since each orbit involves different vectors of

B. It follows that all together they provide a basis for LG.

Now, we proceed to prove Theorem 6.11.

Proof of Theorem 6.11. In all these cases, the equations are obtained by taking the

corresponding transversals given by example 6.12. Assume we have computed a system

of equations for the equivariant model associated with some subgroup H ¬ G.

We note that in order to generate G we can restrict to the permutations added

to H. The result of Lemma 5.43 states that every new G-orbits result from gluing of
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certain H-orbits by the action of these added permutations. In practical terms, this

means that given the equations for a modelMH , the additional equations required by

MG are obtained by taking a transversal {g1 = e, . . . , g[G:H]} of H \G:

pX = pg2X

pX = pg3X

. . .

pX = pg[G:H]X
.


for all X ∈ B.

To avoid repetitions of equations, we have to choose a single element for every G-orbit.

Notice that it may happen that for some X ∈ B, {giX}H = {gjX}H for i 6= j. In that

case, the equality pgjX = pgjX already holds in the space LH and does not provide any

restriction. We have to keep into account this possibility in order to obtain a minimal

set of equations. That they form a minimal system of equations will follow from their

cardinality and the dimension computation of Proposition 6.9.

SSM: As GSSM is generated by (AT)(CG), a set of equations defining LSSM is

{pX = p(AT)(CG)X : X ∈ B}.

Each SSM-orbit provides a single equation. In order to avoid repetitions of equa-

tions, we take X with x1 ∈ {A, C}. All together, we obtain 22n−1 equations.

K81∗: As {id, (AC)(GT)} is a transversal of GK81∗ \GSSM,

{pX = p(AC)(GT)X : X ∈ B}.

As above, each K81∗-orbit gives rise to a single equation. To avoid repetitions, we

restrict to X with X1 = A. Therefore, we are adding 22n−2 equations.

K80∗: we obtain the equations

{pX = p(AG)X : X ∈ B}.

If X ∈ BAG|CT, we know that {X}K80∗ = {X}K81∗ . These orbits do not give rise to new

equations. On the other hand, every orbit {X}K80∗ where X /∈ BAG|CT, provides a

single equation. To avoid repetitions, we take X with X1 = A and if T appears in X,

there is some C in a preceding position. Since X /∈ BAG|CT, the existence and unicity

of such an element in every GK80∗-orbit is guaranteed. We are adding 22n−3−2n−2

newequations.

JC69∗: we add the equations

{pX = p(AC)X : X ∈ B} ∪ {pX = p(AT)X : X ∈ B}

If X ∈ B0, then {X}K80∗ = {(AC)X}K80∗ = {(AT)X}K80∗ , so we obtain nothing new

in this case.
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If X ∈ BAG|CT \ B0, we add the equations

pX = p(AC)X.

To avoid repetitions, we take X of the form (Al) (Cm) xl+m+1 . . . xn, where l,m ­ 1:

we are adding 2n−1 − 1 new equations.

By Lemma 6.14, if X ∈ BAC|GT ∪ BAT|CG \ B0, then the corresponding JC69∗-orbit

contains elements of BAG|CT: these orbits do not provide new equations.

Finally, if X /∈ B2, we add the equations

pX = p(AC)X pX = p(AT)X.

Each orbit provides a couple of equations. To avoid repetitions, we choose X of the

form (Al) (Cm) xl+m+1 . . . xn (where l,m ­ 1) and such that if T appears in X, there

is some G in a preceding position. The number of such equations is 22n−2+2
3 −2n−1.

�

Example 6.16. As an example, we compute a minimal system of equations for SSM,

K81∗, K80∗ and JC69∗ in the case of n = 3 leaves.

Equations for LSSM: ESSM is composed of the following equations:

pAAA = pTTT pAAC = pTTG pAAG = pTTC pAAT = pTTA

pACA = pTGT pACC = pTGG pACG = pTGC pACT = pTGA

pAGA = pTCT pAGC = pTCG pAGG = pTCC pAGT = pTCA

pATA = pTAT pATC = pTAG pATG = pTAC pATT = pTAA

pCAA = pGTT pCAC = pGTG pCAG = pGTC pCAT = pGTA

pCCA = pGGT pCCC = pGGG pCCG = pGGC pCCT = pGGA

pCGA = pGCT pCGC = pGCG pCGG = pGCC pCGT = pGCA

pCTA = pGAT pCTC = pGAG pCTG = pGAC pCTT = pGAA

Equations for LK81∗: EK81∗ is composed of ESSM together with

pAAA = pCCC pAAC = pCCA pAAG = pCCT pAAT = pCCG

pACA = pCAC pACC = pCAA pACG = pCAT pACT = pCAG

pAGA = pCTC pAGC = pCTA pAGG = pCTT pAGT = pCTG

pATA = pCGC pATC = pCGA pATG = pCGT pATT = pCGG

Equations for LK80∗: EK80∗ is composed of EK81∗ together with

pAAG = pGAA pACG = pGCA pACT = pGCT

pAGA = pGAG pAGC = pGAC pAGG = pGAA
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Equations for LJC69∗: EJC69∗ is composed of EK80∗ together with

pAAC = pTTC pACA = pTCT pACC = pTCC pACG = pCAG pACG = pTCG.

To summarize, the results of this section show that the set of probability distribu-

tions for the bases at the leaves that come from a mixture of trees under a discrete-time

evolutionary model coincides with the set of distributions satisfying a certain collec-

tion of linear invariants. Adopting the definition that the mixtures on the same tree

topology contain distributions coming from models employing discrete gamma rates

(Γ) from Yang (1994) and/or invariable sites (I) (Steel et al., 2000) this is a powerful

results with possible applications in model selection. We described an effective algo-

rithm to obtain the linear invariants characterizing phylogenetic mixtures. Chapter 9

presents the implementation of the method and the results on its performance.

6.4 Identifiability of phylogenetic mixtures

Identifiability lies at the core of applicability of any model in virtually any setting

involving data analysis or inference. Some of the most comprehensive references for

the identifiability problems in phylogenetic models and their mixtures include Chang

(1994), Stefankovic and Vigoda (2007) and Allman et al. (2010).

Definition 6.17. Given two projective varieties X,Y ⊂ Pm, the join of X and Y ,

X ∨ Y , is the smallest variety in Pm containing all lines xy with x ∈ X, y ∈ Y and

x 6= y (see (Harris, 1992, 8.1) for the details of this definition). Similarly, we can define

the join of projective varieties X1, . . . , Xh ⊂ Pm, ∨hi=1Xi, as the smallest subvariety in

Pm containing all the linear varieties spanned by x1, . . . , xh with xi ∈ Xi and xi 6= xj .

It is known that

dim (∨hi=1Xi) ¬ min {
h∑
i=1

dim (Xi) + h− 1,m}.

The right hand side of this inequality is usually known as the expected dimension

of ∨hi=1Xi.

For example, if we consider the join ∨hi=1PVMTi for certain tree topologies Ti on the

leaf set [n] and a given evolutionary model M, then there is a dominant rational map

PVMT1 × PVMT2 × . . .× PVMTh × Ph−1 99K ∨hi=1PVMTi ⊂ P(L).

corresponding to the projective closure of the parameterization φT1 ∨ . . . ∨ φTh defined

by
ParsM(T1)× . . .× ParsM(Th)× Ω −→ L

((ξ1, . . . , ξh),a) 7→
∑
j aiφ

M
Ti (ξi)

where Ω = {a = (a1, . . . , ah) |
∑
i ai = 1} is isomorphic to an affine open subset of

Ph−1.

In this setting, an h-mixture on {T1, . . . , Th} corresponds to a point in the variety
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∨hi=1PVMTi . We will use this algebraic variety to study the identifiability of phylogenetic

mixtures.

We recall the definition of generic identifiability of the tree topologies on h-mixtures

(see for example Allman et al. (2010)).

Definition 6.18. The tree topologies on h-mixtures overM are generically identifiable

if for any set of trivalent tree topologies T1 . . . , Th and generic choice of (ξ1, . . . ξh,a) ∈
ParsM(T1)× . . .× ParsM(Th)× Ω, the equality

φT1 ∨ . . . ∨ φTh(ξ1, . . . ξh,a) = φT ′1 ∨ . . . ∨ φT ′h(ξ′1, . . . ξ
′
h,a
′),

for tree topologies {T ′1 , . . . , T ′h} and stochastic parameters (ξ′1, . . . ξ
′
h,a
′), implies

{T1 . . . , Th} = {T ′1 . . . , T ′h}.

In terms of algebraic varieties this is equivalent to saying that the variety ∨hi=1PVMTi is

not contained in ∨hi=1PVMT ′i and vice versa.

The tree topologies are the discrete parameters of h-mixtures. When we come to

the continuous parameters we have the following definition.

Definition 6.19. The continuous parameters on h-mixtures on T1, . . . , Th under an

evolutionary model M are generically identifiable if for generic choices of stochastic

parameters (ξ1, . . . , ξh,a), the equality

φT1 ∨ . . . ∨ φTh(ξ1, . . . ξh,a) = φT1 ∨ . . . ∨ φTh(ξ′1, . . . ξ
′
h,a
′)

for stochastic parameters (ξ′1, . . . , ξ
′
h,a
′) implies (ξ1, . . . ξh,a) = (ξ′1, . . . ξ

′
h,a
′) or an

allowed permutation of the parameters (Allman et al., 2010, Definition 2).

In terms of algebraic varieties, generic identifiability of continuous parameters im-

plies that the generic fibers of the map φT1 ∨ . . .∨φTh are finite. In particular, the fiber

dimension theorem applies (cf. (Harris, 1992, Thm 11.12)) to obtain

dim (∨hi=1PVTi) =
h∑
i=1

dim (PVTi) + h− 1

The converse of this result (that is, finite generic fibers of φT1 ∨ · · · ∨φTh imply generic

identifiability) is not necessarily true because a finite fiber can be formed by more than

one point stochastically meaningful.

Example 6.20. The tree topologies and the continuous parameters are generically

identifiable for the unmixed equivariant models JC69∗, K80∗, K81∗, SSM, GMM (see Corol-

lary 3.9 Casanellas and Fernández-Sánchez, 2011).

If the continuous parameters are generically identifiable under an evolutionary

model M, then the dimension of the variety PVMT is the same for all trivalent tree
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topologies on n taxa and corresponds to the number of free parameters of the stochas-

tic model (fiber dimension theorem cf. (Harris, 1992, Theorem 11.12)). Let dM be this

dimension, then we have the following result.

Theorem 6.21. Let M be an evolutionary model for which continuous parameters are

generically identifiable on trivalent trees and let h0 := dimDM
dM+1 where dM is the dimen-

sion of PVMT as above. Then either the continuous parameters or the tree parameters

are not generically identifiable for h-mixtures under the model M if h ­ h0.

Remark 6.22. This theorem proves that it makes no sense to do phylogenetic inference

for h-mixtures when h ­ h0.

Corollary 6.23. Let [n] be a set of taxa and M be one of the equivariant models

JC69∗, K80∗, K81∗, SSM and GMM. Then phylogenetic h-mixtures under these models are

not identifiable for h ­ h0 where

• h0 = 4n
12(2n−3)+4 if M = GMM,

• h0 = 22n−1

6(2n−3)+2 if M = SSM,

• h0 = 4n−1

3(2n−3)+1 if M = K81∗,

• h0 = 22n−3+2n−2

2(2n−3)+1 if M = K80∗,

• h0 = 22n−3+3·2n−2+1
3(2n−2) if M = JC69∗.

Proof. Theorem 6.7 shows that LM = DM and Proposition 6.9 gives the dimension

of this space in each case. Then, we apply Theorem 6.21 taking into account that

dGMM = 12(2n − 3) + 3, dSSM = 6(2n − 3) + 1, dK81∗ = 3(2n − 3), dK80∗ = 2(2n − 3) and

dJC69∗ = 2n− 3.

Example 6.24. Consider the Kimura 3-parameter model K81∗ and consider trees on

n = 4 taxa. Then for any h ­ 4, phylogenetic h-mixtures are not identifiable (Corollary

6.23). We are not aware of any result proving that mixtures of 2 or 3 different tree

topologies under this model are identifiable (either for tree parameters or for continuous

parameters).

Example 6.25. If we consider the Jukes-Cantor model JC69∗ on n = 4 taxa, then

Corollary 6.23 tells us that for h ­ 3, h-mixtures are not identifiable. Therefore for

this particular model on four taxa the identifiability is solved: the tree and continuous

parameters are generically identifiable for the unmixed model; the tree parameters are

generically identifiable for 2-mixtures (Allman et al., 2010, Theorem 10); the continuous

parameters are generically identifiable for 2-mixtures on different tree topologies and

not identifiable for the same tree topology (Allman et al., 2010, Theorem 23); either the

continuous parameters or the tree topologies are not generically identifiable for more

than two mixtures (Corollary 6.23).
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Proof of Theorem 6.21. Let edim(h) := hdM + h − 1. Then the variety ∨hi=1PVTi
has dimension ¬ edim(h). Indeed, as ∨iφTi is a parameterization of an open subset

of ∨hi=1PVTi , then the dimension of ∨hi=1PVTi is less or equal than
∑

dim PVTi + h− 1.

Moreover, the dimension of PVTi is equal to dM if Ti is trivalent (because the continuous

parameters for the unmixed models we are considering are generically identifiable) and

is less than dM for non-trivalent trees. Therefore dim(∨hi=1PVTi) ¬ edim(h).

If we consider only trivalent trees Ti, then
∑

dim PVTi + h − 1 = edim(h) and

therefore dim(∨hi=1PVTi) < edim(h) if and only if dim(∨hi=1PVTi) <
∑

dim PVTi +h−1.

Moreover, by fiber dimension theorem applied to ∨φTi , equality holds if and only if the

generic fiber of ∨φTi has dimension 0. In particular, if dim(∨hi=1PVTi) < edim(h) then

the continuous parameters of this phylogenetic mixture are not identifiable.

If h0 = dimDM
dM+1 then, edim(h0) = h0(dM + 1) − 1 = dimDM − 1. Now we fix an

h ∈ N with h ­ h0, so that one has edim(h) ­ dim(DM)− 1.

Two things could happen:

(a) For all tree topologies {T1, . . . , Th} one has dim(∨hi=1PVTi) < dim(DM)− 1.

(b) There exists a set of tree topologies {T1, . . . , Th} for which dim(∨hi=1PVTi) =

dim(DM)− 1.

Case (a) implies that for any set of trivalent tree topologies {T1, . . . , Th} one has

dim(∨hi=1PVTi) < edim(h). And we have seen above that this implies that the continu-

ous parameters are not generically identifiable.

In case (b) one has that ∨hi=1PVTi = P(DM). Indeed, ∨hi=1PVTi ⊂ P(DM) and

dim(∨hi=1PVTi) = dim(DM) − 1 = dim(P(DM)) which implies that both varieties co-

incide (the proper subvarieties of an affine space have dimension strictly smaller than

it). In particular any other h-mixture (which is a point in P(DM)) would be contained

in ∨hi=1PVTi and therefore the topologies are not generically identifiable. �

Remark 6.26. The negative result of Theorem 6.21 should be complemented with the

following positive result of Rhodes and Sullivant (2011): if M = GMM and one restricts

to h-mixtures on the same trivalent tree topology T , then the tree topology and the

continuous parameters are generically identifiable if h < 4d
n
4 e−1.
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Chapter 7

GenNon-h

In chapter 3 (Casanellas and Kedzierska, 2011) we give algorithms to generate stochastic

transition matrices under the equivariant models considered in the thesis,M∈ {JC69∗,
K81∗, K80∗, SSM, GMM} and given branch lengths of the underlying tree, T . In all models

but the GMM, these algorithms provide the full set of stochastic matrices of a given form

and branch length (1.2). As shown in Allman and Rhodes (2003), the substitution

parameters for the GMM model (and thus for all its submodels), are identifiable up to

permutation. This is a source of possible problems in parameter recovery and branch

length calculations when the determinant of the substitution matrix can be negative

(see e.g. Zou et al. (2011)). We therefore implemented an extended version of the

algorithms given in chapter 3, in that we fabricate matrices of the Diagonal Largest in

Column (DLC) type (Chang, 1996). DLC matrices have the property that the largest

entry in every column is placed on the diagonal. These substitution matrices are close

to the so-called “biologically meaningful” substitution matrices in which the diagonal

entries are larger than the off-diagonal ones. In addition, they also share an important

feature of being identifiable– there exists a unique set of substitution matrices satisfying

theDLC condition and a unique root distribution that leads to a given joint distribution

at the leaves. In other words, data generated under the DLC matrices and sufficient

alignment sizes have high chances of being identifiable and therefore can be safely used

to test hypotheses about the tree or the data.

Thus, the algorithm proceeds as follows: Firstly, given a model M and a tree T
with assigned branch lengths, for each edge e in T we generate a matrix of the type

M corresponding to the length of edge e. If the resulting matrix is not DLC, we

apply a permutation of rows to convert it into a DLC matrix. Every model has a

set of permutations allowable such that the structure of the matrix is mainatined.

If neither of the permutations creates a DLC matrix, we generate a new matrix and

repeat the procedure. Next, given the length of the multiple sequence alignment, we use

the matrices fabricated in the previous step to generate a multiple sequence alignment

evolving according to the Markov process on T .

The algorithm was implemented as a C++ package called GenNon-h available at

http://genome.crg.es/cgi-bin/phylo_mod_sel/AlgGenNonH.pl. GenNon-h takes as an

input a tree in a Newick format (rooted or unrooted, nodes can have any order) with

annotated branch lengths measured as the expected number of substitutions per site.

Other arguments include base name for the output files, length of the alignment and a
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model. An input line is therefore as follows:

GenNon-h 〈treefile〉〈outputfile〉〈length〉〈model〉

The output files include a fasta file with the simulated multiple sequence alignment

on T saved under the name specified with an extension “.dat”. The file lists the pa-

rameters used for the simulations. The order of the matrices corresponds to the order

of reading the branches of the Newick format– terminal branches are followed by the

edges starting at the root, proceeding from left to right top down (package contains a

README file with the detailed information).

Table 7.1: GenNon-h :time to generate 100 alignments of length 1,000bp on a 5-taxon
tree on a Macintosh 2.4 GHz Intel Core 2 Duo with 4GB

Model

JC69∗ K80∗ K81∗ SSM GMM

Time 2.6s 0m2.6s 0m2.5s 2.6s 3.0s

In order to test the speed of GenNon-h, we checked the times it took to generate

100 alignments of 1, 000nt on a tree ((seq1 : 0.01, seq2 : 0.2, seq3 : 0.3) : 0.5, seq4 :

0.4, seq5 : 0.7). The results are given in Table 8.2.
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Multiple Sequence Alignments under nonhomogeneous Markov models.

Abstract

GenNon-h is a software designed to generate multiple sequence alignments of DNA evolving on any
phylogenetic tree. The details of the method and its implementation can be found in: 

``GenNon-h: simulating multiple sequence alignments under nonhomogeneous DNA models''
Marta Casanellas and Anna M. Kedzierska (submmitted, available at arxiv ). An earlier implementation was
used in testing the new approach to model selection in phylogenetic mixtures: SPIn 

Summary

Continuous-time evolutionary models given by an instantaneous rate matrix (usually common across the
entire tree), admit a given formula that relates this rate matrix to the substitution matrices. In a more
general case of the discrete-time models (JC69*, K81*, K80*, SSM and GMM) it is not a trivial task to
generate a substitution matrix corresponding to a given branch length. The task boils down to obtaining a
stochastic matrix with a given determinant. This was solved for the most well-known discrete-time models
in 
"Generating Markov evolutionary matrices for a given branch length", Marta Casanellas and Anna M.
Kedzierska ( submitted, available at arxiv .)!
We based the algorithm on the findings presented in the above work and extended it to generating
''biologically relevant'' and identifiable the substitution matrices.
The C++ implementation of the method can be found here . Please cite the GenNon-h paper when using
results obtained with this package.

Universitat Politecnica de Catalunya
Center for Genomic regulation
Support and feedback: contact Ania
This is a free software and it can be redistributed, modified or else as given by the terms of the GNU General Public License. Thank you and enjoy!
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Chapter 8

Empar

In this section we present the details of the implementation and the performance of

Empar. Empar is an implementation of the Expectation-Maximization algorithm for pa-

rameter inference in discrete-time models introduced in chapter 4. The general version

of the algorithm is applicable whenever an explicit formula for the MLE can be de-

rived. In the first version of Empar we included the equivariant models considered in

this thesis (i.e. JC69∗, K80∗, K81∗, SSM, see sections 1.4 and 5.2).

8.1 Statistical testing

As the substitution matrices are stochastic with row sums equal to 1, not all of its

entries are free to vary. The number d of free parameters for transition matrices in

JC69∗, K80∗, K81∗, SSM and GMM models is 1, 2, 3, 6, and 12 respectively. There are

two free parameters for the root distribution on the SSM models and three on the GMM,

whereas the root distribution is uniform for the other models. For clarity in exposition,

we omit any reference to root distribution from now on as it can be easily added to the

formulae below.

For convenience we adopt the notation of taking off-diagonal entries as free param-

eters of the model and collecting them into a vector ξ. That is, given a substitution

matrix Ae in one of the models above we call ξ1 = A1,2, ξ2 the next (from left to right

and top to bottom) off-diagonal entry that is different from ξ1 and we keep going until

ξd. In what follows, ξek will mean the kth free parameter in matrix Ae associated to

edge e.

Let ξ = (ξei )i=1,...,d,e∈E(T ) denote a vector of free parameters for an evolutionary

modelM as above and let ξ̂ be its maximum likelihood estimators (MLEs). The whole

set of parameters θ = {π, (Ae)e∈E(T )} can be written as a function of the free pa-

rameters ξ and we write Lobs(ξ;uD) =
∏
px(θ(ξ))ux for Lobs(θ(ξ);uD), see notation in

chapter 4.

Under certain regularity conditions (Zacks (1971)[Chap. 5] ) the MLE ξ̂ exists, is

consistent, efficient and asymptotically normal with mean ξ and the covariance matrix

given by the inverse of the Fisher information matrix (the negative of the Hessian

matrix) Rao (1973); Efron and Hinkley (1978)[Chap. 6, p. 127]. The entries of the

d|E(T )| × d|E(T )| Fisher information matrix over free parameters are given by:

I(ξek, ξ
e′
k′) = −E

(
∂2 logLobs(ξ;uD)

∂ξek∂ξ
e′
k′

)
. (8.1)

97
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The derivation of the formulae for the Fisher information matrix under the discrete-

time models with linear restrictions on the parameters is given in the appendix B.

The Wald statistics for testing the null hypothesis ξei = ξ̂ei , e ∈ E(T ), i = 1, . . . , d,

is

(ξ̂e − ξe)T Ie(ξ̂e − ξe) ∼ χ2
d, (8.2)

where Ie denotes the d × d slice of I corresponding to the parameters of e ∈ E(T ).

The p−value can thus be easily calculated by looking at the tails of the corresponding

χ2 distribution. Figure 8.1 depicts example of the fitness of the data to the theoretical
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Figure 8.1: Fit of the asymptotic theoretical distribution of the maximum likelihood
estimator: examples on the free parameters ξ1 and ξ2 of the inner branch in the T 4

balanced
with l = 0.5.

distribution (8.2).

In the above, we used the inverse of the Fisher information as an estimate of the

covariance matrix for the initial parameters in the test runs. Equivalent derivations

hold if we use the observed Fisher information to estimate the covariance for the input

data. Variances of the free parameters of the model are provided in the output of Empar

and the full (observed) covariance matrix is written to an output file. As above, these

can be used as plug-in estimators in (8.2) for the calculation of p − values or normal

confidence intervals for the parameters.

Theoretical parameter variance

We denote by V e
i,i the ith diagonal entry of the matrix (Ie)−1 corresponding to the

variance of the free parameter ξei , i = 1, . . . , d. For the models with d > 1 (i.e. all
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but JC69∗), for each edge e we summarized the variances of the free parameters in a

combined form cV e:

cV e(ξe) =

∑d
j=1

V e
j,j +

(
ξej −

∑d

j=1 ξ
e
j

d

)2


d
. (8.3)

8.2 Synthetic data

In order to assess the accuracy of the method proposed in this paper, we tested it

on simulated data on four and six-taxon trees. Following the work of Schwartz and

Mueller (2010), for four taxon trees we considered three sets of unrooted phylogenetic

trees and fixed one inner node as the root: the set T 4
balanced corresponds to “balanced”

trees with all five branches equal; the set T1:2 has the inner branch half of the length

of the exterior branches; and the set T2:1 denotes a phylogenetic tree with the inner

branch being the double size of the external ones (see Fig. 8.2). In T 4
balanced and T1:2

we let the length l0 of the inner branch vary from 0.01 to 1.4, where starting from 0.05

it increases in steps of 0.05; in T2:1 we let l0 vary in (0, 0.7). For 6 taxon trees we used

balanced trees T 6
balanced (see Fig. 8.2) and let the value l vary as l0 above.

Figure 8.2: An example of T 4
balanced, T1:2, T2:1 and T 6

balanced (from left to right).

We simulated multiple sequence alignments on trees with 4 and 6 leaves under

JC69∗ and K80∗ models. We used the GenNon-h package from chapter 7 (Casanellas

and Kedzierska, 2011). In brief, the program takes as an input a phylogenetic tree

with given branch lengths, samples the substitution matrices corresponding to these

lengths for all edges and uses them to generate the DNA multiple sequences alignment

following a Markov process on the tree. The output of this software is the alignment, the

substitution matrices, root distribution (whenever non-stationary) and the variances of

the continuous free parameters.

Here we used alignments of length L in {300, 500, 1.000, 10.000} for four taxa and

length 1.000nt or 10.000nt for six taxa. Given an evolutionary model (JC69∗ or K80∗),

a phylogenetic tree T (with branch lengths), and an alignment length, we run each

analysis B = 1.000 times. I.e., for each integer b in 1 : 1, 000, we generated substitu-

tion parameters bξ = (bξei )i,e for the tree T and a multiple sequence alignment of the

corresponding length. Then we estimated the parameters using Empar.



100 CHAPTER 8. EMPAR

8.3 Identifiability

An important aspect to bear in mind when conducting statistical analysis is the iden-

tifiability of the assumed model. As shown in Allman and Rhodes (2003), the GMM

model, and thus all its submodels, are identifiable up to a permutation. Namely, there

is a set of parameters closed under permutation of rows, which will lead to the same

estimated joint probability. In practical applications this means that the matrices re-

covered are permuted with respect to the underlying ones. Zou et al. (2011) refer to

this problem as non-indentifiability. As noted also in Zou et al. (2011), incorrect order

of rows in the matrices can lead to a negative determinant of the substitution matrix

in which case the branch lengths cannot be calculated.

This is in fact, the term “identifiable by rows” was coined by Allman and Rhodes

(2003) and properly reflects its nature. Non-identifiability is a condition much more

difficult to resolve (if at all). In the first case, we are able to recover the parameters

by applying the correct permutation to the rows of the matrices, while in the latter it

may not be possible. In the algorithm underlying Empar we focus on the biologically

relevant parameters and assume the diagonal entries to be larger then the off-diagonal

ones. As shown by Chang (1996), the matrices of this type form a subset of the matrices

diagonalizable by rows for which the identifiability holds. However, due to the error

introduced by limited data (short alignments), the labeling of the parameters may not

be recovered.

We expected this problem to arise in short data sets and large branch length,

as those correspond to the substitution matrices with smaller diagonal value. For all

the data sets used for tests, we calculated the percentage of cases among the 1000

simulations for which the parameters estimated by the EM algorithm were permuted.

This was only observed in the data sets of 300nt and 1000nt. In the first case the

estimated matrices were permuted when the initial branch length was 0.55 or longer

and corresponded to 0.005-0.023% of the cases. In the latter for the branches of 0.6

or longer with at most 0.001% permuted matrices. Shorter branch length and longer

alignments did not suffer from the above problem and recovered the underlying order

in all of the cases.

In order to ensure the reliability of the algorithm we designed a procedure that scans

the tree in the search of the permutations that maximize the number of substitution

matrices with larger diagonal entries. As it is not possible to maximize it for all edges,

the goal is to find the permutations giving more weights to the lower parts of the

tree, starting with the nodes corresponding to the outer branches. We explain this

procedure in what follows. Given a tree T and substitution parameters Ae, for each

interior node x we let S(x) be the permutation of {A, C, G, T} that maximizes the sum

of diagonal entries on the matrices assigned to its outgoing edges after performing

the corresponding permutation on their rows. Having estimated the parameters using

Empar, we apply recursively S(x) to the subtrees of T starting from its outer nodes

towards the root.
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8.4 Results and discussion

We present the results on the simulated data sets and discuss their dependence on the

length of the alignments, the length of the branches and the positioning of the branches

in the tree: the so-called depth of the branch (1 for external branches and 2 for internal

branches in our case; Schwartz and Mueller (2010)). When there is more than one

branch with the same depth, we chose one of the branches randomly (the results were

the same for all branches of the same depth). We present first the results on 4-taxa as a

test on the accuracy of the method and then on 6-taxa. Note that for the JC69∗ model,

there is a 1− 1 correspondence between the branch length and the free parameters of

the substitution matrix. However, for the K81∗ model the target distribution differs in

each sample as, given branch lengths l on the edges of the tree, GenNon-h generates

substitution matrices with the assigned branch lengths for the corresponding edges.

As a main measure of the performance of Empar we present the proportion of sig-

nificant p− values for the estimated parameters. This is based on the χ2
d test in (8.2):

for each edge we calculated the p− value of the free parameters using the asymptotic

results of (8.2). The p− values are a measure of strength of evidence against the null

hypothesis– the smaller the values, the stronger the evidence against the null hypothe-

sis. A similar thing holds for exceptionally large p−values: they imply small difference

between parameters and their estimates that is not to be expected by chance.Therefore,

to test whether the algorithm successfully recovers the true evolutionary parameters,

we presented the proportion of samples for which the p − value lied in the interval

(0.05, 0.95). The results are shown table 8.1 for the JC69∗ model on the T1:2 tree (see

remaining tables in the appendix C: Tab. C.1, and C.2 also for the JC69∗ model and

Tab. C.3, C.4 and C.5 for the K81∗). We observe that, even for short alignments of

300nt, the null hypothesis cannot be rejected in approximately 95% of the samples.

We employed a few measure that quantify the error in the estimates of the param-

eters and the branch lengths.

8.4.1 Estimation error

For a depth 1 and 2 branch, e, we quantified the overall divergence between the original

and estimated parameters using the induced L1 norm of the difference between the

substitution matrices: ||Ae − Âe||1. This norm was defined earlier in section 4.2 and

used in the expression for the upper bound on the error in branch lengths estimation

in the formula (4.2). Since for the JC69∗ and the K81∗ models all column are the same,

the formula becomes:

D(ξe, ξ̂e) =
4∑
i=1

| Aei,1 − Âei,1 | . (8.4)

Figure 8.3 depicts the results for JC69∗ and K80∗ on the three phylogenies on four taxa

for different alignment lengths. The shapes of the distribution of D for the two models

in the corresponding plots are very similar. As expected, the method performs worse

for large branch lengths and short alignments. There is a significant improvement with
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Table 8.1: The relative frequency of the χ2 tests based on the asymptotic normality of the
maximum likelihood estimator with p-value ∈ (0.05, 0.95), calculated from 1.000 simulations
under the JC69∗ model. Each data set was a multiple sequence alignment of length L generated
on the T1:2 tree with branch lengths set to the values indicated by the first column. Left : results
for the depth 1 branches; right : results for the depth 2 branch.

depth 1 depth 2
l \ L 300nt 500nt 1.000nt 10.000nt 300nt 500nt 1.000nt 10.000nt
0.01 0.971 0.972 0.968 0.946 0.972 0.949 0.868 0.958
0.05 0.947 0.951 0.947 0.948 0.974 0.943 0.953 0.952
0.10 0.949 0.953 0.964 0.952 0.952 0.948 0.948 0.955
0.15 0.952 0.954 0.958 0.938 0.946 0.953 0.940 0.947
0.20 0.957 0.944 0.944 0.954 0.949 0.965 0.944 0.954
0.25 0.957 0.955 0.955 0.956 0.945 0.939 0.955 0.936
0.30 0.957 0.943 0.945 0.955 0.943 0.946 0.941 0.948
0.35 0.952 0.943 0.958 0.958 0.948 0.943 0.950 0.960
0.40 0.955 0.946 0.947 0.957 0.951 0.951 0.936 0.944
0.45 0.949 0.944 0.944 0.947 0.948 0.955 0.958 0.958
0.50 0.948 0.935 0.942 0.941 0.929 0.949 0.954 0.946
0.55 0.954 0.949 0.946 0.957 0.936 0.944 0.944 0.952
0.60 0.940 0.942 0.937 0.953 0.944 0.934 0.948 0.955
0.65 0.940 0.934 0.955 0.952 0.938 0.938 0.945 0.948
0.70 0.944 0.936 0.942 0.946 0.917 0.940 0.944 0.948
0.75 0.922 0.932 0.947 0.934 0.922 0.932 0.943 0.950
0.80 0.909 0.932 0.926 0.957 0.957 0.928 0.943 0.941
0.85 0.912 0.912 0.932 0.948 0.968 0.930 0.936 0.947
0.90 0.870 0.885 0.919 0.951 0.980 0.918 0.929 0.953
0.95 0.852 0.888 0.939 0.951 0.981 0.965 0.908 0.944
1.00 0.824 0.866 0.893 0.935 0.982 0.981 0.896 0.933
1.05 0.816 0.853 0.889 0.930 0.980 0.981 0.898 0.937
1.10 0.806 0.852 0.891 0.921 0.990 0.995 0.925 0.945
1.15 0.784 0.812 0.867 0.938 0.980 0.987 0.982 0.951
1.20 0.797 0.785 0.823 0.923 0.986 0.986 0.984 0.942
1.25 0.786 0.803 0.824 0.938 0.983 0.981 0.984 0.941
1.30 0.789 0.793 0.800 0.894 0.981 0.976 0.992 0.925
1.35 0.755 0.787 0.786 0.893 0.973 0.991 0.989 0.912
1.40 0.761 0.789 0.785 0.864 0.970 0.974 0.994 0.879

the increase in the alignment length. For 10.000nt the estimates of the parameters were

very accurate. The performance under the JC69∗ model (Fig. 8.3(a)) is better than that

of K80∗ (Fig. 8.3(b)) for shorter branch lengths.

8.4.2 Parameter dispersion

Figure 8.4 shows the variances of the estimated parameters for depth 1 and 2 branches

on the Tbalanced, T1:2, T2:1 trees under the JC69∗ model. The variances show an expo-

nential increase, most significant for the T 4
balanced tree, both depths of the branches and

the depth 2 branch of T1:2. The results for the depth 1 branch in Tbalanced and T1:2 are

very similar. The smallest variance was observed for the depth 2 of T2:1. We observe

that for alignments of length 10.000nt we can say that the method is quite accurate.

The reader can find these results in the appendix C (see Tab. C.6, C.7 and C.8).

For the K81∗ model we summarized the results on variances for each edge as the

mean of combined variances of all samples (see Fig. 8.5). The results are analogous to

those of the JC69∗ model. As expected, the variances are less dispersed and lower for

shorter branches and longer alignments (see Tab. C.9, C.10, C.11 in the appendix C).

8.4.3 Error in the branch lengths

Using the formula (1.2) we calculated the actual difference between the branch length

l0 computed from the original parameters ξ and the branch length l̂ computed using

their MLEs ξ̂e. Negative values of this score imply overestimation of the branch length,

while positive values indicate underestimation. The results are shown in Figures 8.6

and 8.7.
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Figure 8.3: Divergence D(ξ, ξ̂) between the parameters, ξ, and their estimates, ξ̂, calculated by Empar. Horizontal axis: original length of the inner branch.
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In the case of JC69∗ we observe that the method presented here does not tend to

underestimate or overestimate the lengths for the depth 1 branches in all the 4-taxon

trees (l0− l̂ is centered at 0, see Fig. 8.6). The depth 2 branches have a tendency towards

overestimation of the length for branches longer than ≈ 0.45 for T1:2, ≈ 0.9 for T2:1 and

≈ 0.8 for the T 4
balanced trees. In the latter case, lengths longer then 1.2 for alignments

up to 1.000nt show opposite trend of underestimating the true lengths. The values were

accurate when the alignment lengths were increased in the case of T1:2 and T2:1. On the

other hand, for T 4
balanced the alignments of 10.000nt resulted in overestimation.

In the K81∗ models the results are significantly more accurate (see Fig. 8.7). There is

a trend of underestimation for branches longer than ≈ 0.9 for shorter alignments. That

is especially noticable for T 4
balanced and depth 1 branches of T1:2. This trend diminishes

with an increase in the alignment length.

Overall, in the case of both models, the variance of the estimate is small for shorter

lengths and both depth 1 and 2 branches of the T2:1 tree.

We also calculated the tree length (i.e. the sum of its branch lengths) from the

estimated parameters and compared it to the theoretical result on the original branch

length l0: 4.5l0 for T1:2 (l0 depth 1 branch), 3l0 for T2:1 (l0 for depth 2 branch) and 5l0
for T 4

balanced. The rightmost columns of Figures 8.6 and 8.7 show the results for 4-taxon

trees for the JC69∗ and K81∗ models. The length of the tree is estimated accurately for

all trees, the estimates being best for T2:1. The variance is small and decreasing with

an increase in the data length. As the sequences get longer, the distribution is centered

around the true value. This is especially visible for the K81∗ model (see Fig. 8.7).

8.4.4 Results for larger trees

We increased the number of species and run the analysis on the 6-taxon balanced tree,

T 6
balanced, under the K81∗ model, l ∈ {0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.4} and the

alignment lengths of 1.000nt and 10.000nt. The p − values of the corresponding tests

confirm that the performance of the algorithm is very satisfactory (see Tab. C.12 in

the appendix C). We have seen in the 4-taxon study that the tree with equal branch

lengths gave the worst results than the unbalanced trees. Thus, we expect the results

of the depth 2 branch to be similarly challenged.

Figure 8.8 depicts the estimated tree lengths. It can be seen that the estimates

are accurate and the results improved for the alignments of 10.000nt. As expected,

the variance of the estimates increases with the increase in the length of the branch.

By formula 1.2, long branches correspond to small values of the determinant of the

transition matrix. Thus, statistical fluctuations in the parameter estimates have greater

impact on the resulting length of the tree.

Next, we calculated the difference between the oryginal and estimated branch

lengths. In Figure 8.9(a), we see that the depth 1 branches show some degree of under-

estimation of the length for lengths 1.1− 1.4 and alignments of 1.000nt. In the case of

10.000nt, the results improve and can be expected to show little bias for even longer

data sets. Branches of depth 2 show higher degree of underestimation with improve-
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Figure 8.4: Distribution of variances of the estimated parameters for different alignment lengths
and different lengths of the depth 1 (left) and depth 2 (right) branches under the JC69∗ model:
T1:2 (top), T2:1 (middle), T 4balanced (bottom).

ment for longer data set. The estimation error of the parameters given in the formula

8.4 is shown in Figure 8.9(b). For branches of depth 1 and the data of length 10.000

the distance is ≈ 0.2. In the case of branches of depth 2, it is almost doubled for both

alignment lengths. In both cases, branch lengths up to 0.5 give satisfactory results. The

error of the estimates for longer branches seems to be approaching a plateau.

Combined variance of the estimated parameteres is much decreased for the 10.000nt

data sets in comparison with the 1.000nt, and is smaller for the depth 1 branch (see

Fig.8.9(c)). Again, the exponential shape of the plot can be attributed to the logarithm

appearing in the formula 1.2
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Figure 8.5: Distribution of combined variances of the estimated parameters for different align-
ment lengths and different lengths of the depth 1 (left) and depth 2 (right) branches under the
K81∗ model: T1:2 (top), T2:1 (middle), T 4balanced (bottom).

To summarize, we evaluated the performance of the EM algorithm for phylogenetic

parameter estimation under various circumstances on simulated data sets. As expected,

Empar performs best for long alignments and short branch lengths. Also, the results

are better for less complex models due to the smaller number of parameters to be

estimated.

It is worth noticing that even for short alignments of 300nt or 500nt on 4 taxa, the

null hypothesis “estimated parameters are equal to the original parameters” couldn’t

be rejected in approximately 95% of the cases. Moreover, the estimation of branch

lengths is very accurate even for such short alignments.
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Figure 8.6: Error in the branch length estimation measured as the difference between
the initial and the estimated branch lengths, l0 − l̂, in the 1.000 simulated data sets
along the T 4

balanced, T1:2, T2:1 trees under the JC69∗ model (left and middle columns).
Rightmost column displays the distribution of the estimated length of the tree, where
l0 labelling the horizontal axis corresponds to the length of the internal branch in T .

Table 8.2: Time it took for Empar to estimate parameters of alignments of 1 and 10
thousands of nucleotides, generated on star trees with varying number of nodes, n, and
equal branch length of 0.5.

length (nt)\ n 3 4 5 6 7 8
1.000 0.004 0.02 0.033 0.222 1.049 7.14
10.000 0 0.011 0.043 0.171 1.044 6.95

There are two drawbacks to the method. Firstly, there is an exponential increase in

the computational time with the increase in the number of taxa. This is computational

limitation due to the fact that the algorithm computes large matrices of dimension

exponential in the total number of nodes of a tree. Running time of Empar on star

trees with 3-8 nodes and equal branches of 0.5 on Ubuntu 11.10, Intel Core i7 920 at

2.67 GHz with 6 Gb is given in Table 8.2. Secondly, the memory usage of Empar is

approx. 8 ∗ 4|nodes|, which corresponds to the memory footprint of the matrix in the

EM algorithm. For exaple, for this matrix to fit in the memory of a 6Gb machine, we

get the bound on the number of nodes: |nodes| ¬ 14.
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Figure 8.7: Error in the branch length estimation under the K81∗ model (see Fig. 8.6
for details).
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Figure 8.8: Estimated tree length as a function of the initial length of a branch of T 6balanced
(LT = 9l0) in 1.000 data sets generated under the K81∗ model.

To sum up, we suggest Empar as a highly reliable method for estimating branch

lengths for a small number of taxa on trees of short branch lengths, even for short

alignment.
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(a) Error in the branch length estimation for distinct depths of the branches.
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(b) The average L2 error between the original (ξ) and estimated (ξ̂) parameters.
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(c) Distribution of the combined variance for distinct depths of the branches.

Figure 8.9: Results for the 1.000 data sets generated on the T 6balanced tree for the K81∗ model.
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EM for parameter estimation of Markov models on trees

Abstract

Empar is a software that estimates the substitution parameters for Markov processes on phylogenetic trees
using the Expectation-Maximization algorithm. The input to Empar is a multiple DNA sequences alignment
in a fasta format and a Newick tree. 

Summary

Although most phylogenetic software deal with continuous-time Markov processes on trees, it is necessary
to consider more complex evolutionary processses. For example (discrete-time) Markov processes on trees
do not have the assumption of homogeneity underlying them whereas this is usually assumed in
continuous-time models. In Empar we implemented the Expectation-Maximization algorithm for
phylogenetic trees evolving under the (discrete-time) evolutionary models JC69* K80*, K81*, SSM and
GMM. A more extensive explanation on the method and results on simulated data can be found here . 
The C++ implementation of the algorithm is available at [code] .
Please cite ``E-M for parameter estimation of Markov models on trees'', Anna M.Kedzierska and Marta
Casanellas (submitted) when publishing results obtained using this software.

Universitat Politecnica de Catalunya
Center for Genomic regulation
Support and feedback: contact Ania
This is a free software and it can be redistributed, modified or else as given by the terms of the GNU General Public License. Thank you and enjoy!



Chapter 9

SPIn:
Model Selection in Phylogenetics
based on linear INvariants

This chapter is a collaboration with Marta Casanellas, Mathias Drton and Roderic

Guigó.

Model selection in phylogenetics is a challenging problem. Even more so, if one

considers phylogenetic mixtures.

Specification of an evolutionary model of suitable complexity for the nucleotide

substitution process at hand is often viewed as a ‘pre-inference’ step in phylogenetic

analysis. However, as has been emphasized in the literature (Posada and Crandall,

2001; Ripplinger and Sullivan, 2008), this step should be addressed with care as it can

strongly impact the accuracy of the reconstructed topology and the estimates of the

branch length. Inference of an appropriate evolutionary model is further challenged

when the data evolved under a nonhomogeneous model (rate matrices vary across

the edges) or along multiple trees (phylogenetic mixture) (Hillis et al., 1994; Ho and

Jermiin, 2004; Lockhart et al., 1996; Sullivan and Swofford, 2001; Swofford et al., 2001;

Bruno and Halpern, 1999; Kolaczkowski and Thornton, 2004).

Ripplinger and Sullivan (2010) show that the performance of established model

selection methods depends highly on the underlying tree topology. A common prac-

tice, however, adopts a circular argument: the tree and the parameters of interests are

estimated by choosing a model supported by a pre-computed tree (e.g., the neighbor-

joining tree based on Jukes-Cantor distances). Moreover, as outlined above, available

methods for selecting a model of evolution typically assume constant rate parameters

at each point in time as well as a single tree topology underlying the data-generating

process (e.g. Foster, 2004; Huelsenbeck et al., 2004; Posada, 2008). Mossel and Vigoda

(2005) and Ronquist et al. (2006) discuss poor mixing of the phylogenetic Markov chain

Monte Carlo (MCMC) in the presence of mixed phylogenetic signals. We propose an

approach designed to deal with both nonhomogeneous and mixed data with no a priori

requirement of a tree topology.

As pointed out by Fu and Li (1992b), Steel et al. (1992) and Felsenstein (2003),

model invariants could potentially be used to discriminate between different models of

base change. Following on the results introduced in the prior sections, we introduce a

method for model Selection in Phylogenetics based on linear INvariants (SPIn), which

111
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uses recent insights on linear invariants to characterize a model of nucleotide evolution

for phylogenetic mixtures on any number of components.

In addition, for a given model and a number of sequences, SPIn calculates the

maximum number of trees to be considered in a mixture. As proved in Section 6.4,

mixture models with more components than a particular bound cease to be identifiable.

The outcomes of presented in this Section were published in Kedzierska et al. (2012).

Remark 9.1. The sets of equations provided in Theorem 6.11 describe the linear spaces

of dimensions that are exponential in n. However, for its biological application one does

not need to consider all the equations but only those containing the patterns observed

in the data (in real applications the number of different columns in an alignment is

really small compared to the dimension of these spaces).

Selecting a model based on biological data requires a statistical assessment of the

vanishing of the linear invariants for each model. Let LM be the linear space formed by

all distributions satisfying the linear invariants for the modelM (see Def. 6.6). For the

models considered here, LM is defined by equalities among pairs of entries of pMT (θ)

(see Thm. 6.7), where θ denotes the set of model parameters. Hence, the maximum

likelihood estimate is unique, that is, given data D there exists a unique point θ̂ ∈ LM

for which the likelihood function L(θ,M) = Prob(D | θ,M) attains its maximum for

θ ∈ LM. To score the models, we use a variant of the AIC which includes a small

sample correction along with the penalty for model complexity:

AIC c = −2 log(L(θ̂,M)) + 2d+
2d(d+ 1)
L− d− 1

,

where L is the sample size (alignment length) and d is the dimension of the linear

space LM. In Proposition 6.9 we explicitly the dimension of the LM for the equivariant

models. The number of invariants for each model is 4n minus its dimension.

The model selected by SPIn is the one that minimizes AIC c. For ranking purposes,

the output of the algorithm includes the ratios of normalized Akaike weights

wi =
e−

1
2 ∆i∑

i e
− 1

2 ∆i
, ∆i = AIC c,i −min

j
(AIC c,j)

and AIC c,i is the AIC c score of a model Mi.

SPIn is a C++ package available at

http://genome.crg.es/cgi-bin/phylo_mod_sel/AlgModelSelection.pl.

We tested SPIn on synthetic data on trees of 4 OTUs following the guidelines of

Posada and Crandall (2001). The simulations were done for a wide range of parameters

in the continuous-time homogeneous and discrete-time nonhomogeneous settings, for

a single tree topology and along a mixture of two distributions both on the same and

different tree topologies. Though at this point the existing software packages such as

jModelTest (Posada, 2008), PAML (Yang, 2007), Phylip (Felsenstein, 1993) or PhyML

(Guindon and Gascuel, 2003) offer a larger selection of models than those included in

http://genome.crg.es/cgi-bin/phylo_mod_sel/AlgModelSelection.pl
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SPIn, these methods are not consistent for phylogenetic tree mixtures. For instance, the

models considered by these methods do not allow mixtures of distinct tree topologies.

We demonstrate this in the Results section, where we evaluate the performance of

jModelTest. Recently, Nguyen et al. (2011) used the joint patterns at the leaves to

assess the fit of an inferred model and a tree to the data. In order to show that SPIn

is not biased towards over-complex models, we have analyzed one of the data sets used

in Nguyen et al. (2011) (see Discussion section below).

9.1 Data

In order to assess the performance of SPIn in recovering the underlying model from

{JC69∗, K80∗, K81∗, SSM∗}, we simulated multiple sequence alignments on an unrooted

quartet tree following the design of Posada and Crandall (2001). Specifically, we used

the quartet tree space proposed by Huelsenbeck (1995), which is defined by a pair of

branch-length parameters (a, b), where a determines the length of the internal branch

and two peripheral branches taken from different clades, and b gives the length of the

two remaining branches. Parameters a and b, representing the expected number of

substitutions per site, were varied from 0.01 to 0.75 in increments of 0.02 (see Fig. 9.1).

Figure 9.1: Quartet tree parameter space used for simulations (see Huelsenbeck (1995)).

We simulated 100 gap-free multiple sequence alignments of 300, 1, 000 and 3, 000

sites for every point (a, b) on the grid. The alignments were generated either under a

single tree topology or mixtures of two trees (see below). We then computed the fraction

of alignments for which the true model with a minimal sets of parameters was selected

from the pool of candidate models. In graphical displays a point (a, b) is colored black

if there was a 100% successful recovery. White points on the grid correspond to a 0%

recovery and the values in between the two extrema are represented in a grey scale.

We used the evolver program from the package PAML (Yang, 2007) to generate

the data under the continuous-time homogeneous JC69 and K80 models. We assumed a

transition transversion ratio of 2 for K80 (κ = 4). In order to generate the data under

the discrete hidden Markov process, we used the package introduced in Section4. As

defined in (1.2), the length of a given edge is directly related to its assigned substitution

matrix and is given by l = −1
4 log det(Ae). We simulated data using an earlier Matlab

version of the GenNon-h package created for this purpose as introduced in Section ??.

We performed a number of tests on the data simulated under different parameter
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and model choices. Here we present the outcome of the tests and comparison of the

performance of SPIn to that of the jModelTest.

9.2 Results

9.2.1 Single tree

We generated data on a single 4-taxon tree topology and the tree space as defined

above. The resulting set of data-generating distributions is denoted by ST . The results

of running SPIn under the JC69 and K80 models are shown in Figure 9.2(a). It can

be seen that already for alignments as short as 300nt, the recovery is close to perfect

across the entire the tree space.

The average recovery for 300nt alignments was 99.9% and 97.7% and improved to

99.7% and 99.8% for length 1, 000; see Table 9.1(a). Figure 9.2(c) shows the recovery of

the discrete-time JC69∗, K80∗ and K81∗ models also to be high even for short alignments.

The average recovery taken over the tree space and alignments of length 1, 000 was

99.7%, 96.5% and 96.8% for JC69∗, K80∗ and K81∗, respectively (see Table 9.1(b)).

9.2.2 Two tree mixtures

For the purpose of testing model recovery using SPIn on phylogenetic mixtures, we

considered 2-tree mixtures on both the same and different quartet tree topologies.

First, we generated continuous-time mixture data on the same tree topology by

allowing 2 gamma classes in the evolver package from PAML. The pattern of model

recovery under the JC69 and K80 along these 2-tree mixtures is almost identical to that

for a single tree; see Table 9.1(a).

Next, we tested the performance on 2-tree mixture data under the discrete-time

hidden Markov models JC69∗, K80∗ and K81∗. Multiple sequence alignments were sim-

ulated by choosing a pair of tree topologies on 4 sequences, τ1 and τ2, with branch

lengths fixed for τ1 and the branch lengths of τ2 varying over the tree space described

above. We denote by MST (mixture on the same topology) the data-generating distri-

butions obtained by assuming the same tree topology τ1 = τ2 and by MDT (mixture

on distinct topologies) the distributions given by two different topologies τ1 6= τ2. We

considered two sets of branch lengths for τ1 in the MST and MDT data sets:

(1) 0.11 for the inner branch length and two opposite peripheral branches, 0.61 for

the remaining branches with a fraction of λ = 0.3 sites evolving on τ1 (0.7 evolved

on τ2). This selection comprises the MST1 and MDT1 data sets.

(2) 0.31 for the inner branch length and two opposite peripheral branches, 0.41 for

the remaining branches with a fraction of λ = 0.5 randomly selected sites coming

from the alignment evolved on τ1. The corresponding data sets are denoted by

MST2 and MDT2.

In concordance with the single tree case, the recovery of the JC69∗ model for the

MST data exceeds 99% for alignments as short as 300nt, irrespective of the choice of
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Table 9.1: Average recovery rate of the continuous-time (JC69, K80) and discrete-time
models (JC69∗, K80∗ and K81∗) across the quartet tree space (a, b). ST : single tree under
continuous and discrete-time models; Γ: single tree under continuous-time model with
2 gamma rates; MST1,MST2: 2-tree mixture on the same topology under discrete-
time models; MDT1,MDT2: 2-tree mixture on different topologies under discrete-time
models (see Results).

(a) SPIn

Model JC69 JC69 K80 K80

Length 300 1,000 300 1,000

ST 0.999 0.997 0.977 0.998

Γ 0.999 0.998 0.940 0.998

(b) SPIn

Model JC69∗ JC69∗ K80∗ K80∗ K81∗ K81∗

Length 300 1,000 300 1,000 300 1,000

ST 0.999 0.997 0.684 0.965 0.561 0.968

(c) SPIn

Length JC69∗ K80∗ K81∗

MST1 300 0.999 0.538 0.470

MST2 300 0.998 0.478 0.370

MST1 1000 0.997 0.935 0.590

MST2 1000 0.997 0.929 0.965

MST1 3000 0.997 0.994 0.999

MST2 3000 0.994 0.993 0.998

MDT1 300 0.999 0.575 0.492

MDT2 300 0.999 0.502 0.379

MDT1 1000 0.997 0.957 0.984

MDT2 1000 0.998 0.952 0.977

MDT1 3000 0.996 0.997 0.999

MDT2 3000 0.998 0.997 0.999

(d) jModelTest

Model JC69∗ K80 JC69∗ K80∗ K81∗

Length 300 1000 300 1,000 1,000 1,000 1,000

ST 0.666 0.653 0.629 0.624 0.564 0.375 0.493

Model JC69∗

MST2

K81∗

MST2

JC69∗

MDT1

JC69∗

MDT2

Length 300 1,000 300 1,000 3,000 300 3,000

0.672 0.556 0.411 0.386 0.448 0.649 0.451

the parameters. See Figure 9.5(a) and Table 9.1(c) for the results on 300nt and 1, 000nt.

As expected, it remained true for the MDT data (Figure 9.3(c), Table 9.1(c)), where

the model was correctly identified at the 99% level in all data sets: 300nt simulated for

MDT2 and 3, 000nt for both MDT1 and MDT2. At length 300nt the K80∗ model was

recovered on average in 54% of the cases for the MST1 (see Fig. 9.6(c)) and 48% of the

cases for the MST2 data set. Similarly lowered is the performance for the K81∗ at the

alignment length of 300: 47% for the MST1 and 37% for the MST2 (see Fig. 9.6(c)).

The reason for this relatively low performance is the high number of parameters

allowed in the (∗) models due to the non-homogeneity assumption. Thus longer sequence

alignments are required when using the AIC c criterion.

For all models and their parameter choices, the recovery exceeded 99% when the

alignment length was 3, 000nt (see Fig. 9.5 and 9.6).
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Figure 9.2: Plots of the fraction of correctly identified models for multiple sequence
alignments of length 300 or 1, 000 generated on a single quartet tree (ST ) under JC69,
K80, K81, JC69∗, K80∗ and K81∗; SPIn: (a), (c); jModelTest: (b), (d). The parameters
vary in the quartet tree space: (a, b) of Huelsenbeck (1995). Fractions are displayed in
grey-scale ranging from 0% in white to 100% in black. Corresponding average recovery
rates are given in Table 9.1(a) and (b).
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Figure 9.3: Plots of the fraction of correctly identified models for multiple sequence
alignments of lengths 300 and 1,000 along 2-tree mixtures on quartet trees on the same
tree topology (MST ) under JC69∗ and K80∗; SPIn: (a); jModelTest: (b); and on different
tree topologies (MDT ) under JC69∗ for 300nt and 3000nt; SPIn: (c); jModelTest: (d).
The parameters vary in the quartet tree space: (a, b) of Huelsenbeck (1995). Fractions
are displayed in grey-scale ranging from 0% in white to 100% in black. Corresponding
average recovery rates are given in Table 9.1(c) and (d).
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Figure 9.4: Performance assessement of SPIn.
Plots of the fraction of correctly identified models for multiple sequence alignments of varying lengths under discrete-time models on a single tree
(a); and under continuous-time models with 2 Γ-rate classes (b). The parameters vary in the quartet tree space: (a, b) of Huelsenbeck. Fractions
are displayed in grey-scale ranging from 0% in white to 100% in black.
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Figure 9.5: Performance assessement of SPIn. Plots of the fraction of correctly identified models for multiple sequence alignments of varying
lengths under discrete-time models on quartet trees with the same tree topology (MST ). The parameters vary in the quartet tree space: (a, b) of
Huelsenbeck. Fractions are displayed in grey-scale ranging from 0% in white to 100% in black.
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Figure 9.6: Performance assessement of SPIn.
Plots of the fraction of correctly identified models for multiple sequence alignments of varying lengths under discrete-time models on quartet trees
with different tree topologies (MDT ). The parameters vary in the quartet tree space: (a, b) of Huelsenbeck. Fractions are displayed in grey-scale
ranging from 0% in white to 100% in black.
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Larger trees on real-life topologies. In order to investigate the performance of

SPIn when the number of OTUs is larger, we ran the tests on multiple sequence align-

ments simulated on two topologies inferred for real-life sets of species. As before, evolver

package (PAML) was used to generate 100 multiple sequence alignments in the follow-

ing settings: continuous-time JC69 model with three discrete Γ-rate classes and length

5, 000 on the 9-taxon drosophila tree (Pollard et al., 2006a; Clark et al., 2007) and HKY

(Hasegawa et al., 1985) model with four Γ-rate classes, transition/transversion ratio of

κ = 2, nucleotide frequencies of πA = πC = 0.1, πG = πT = 0.4 and length 1, 000 along

the 12-taxon T12b yeast tree (Marcet-Houben and Gabaldón, 2009); see Figures 1.5

and 9.3. In both cases the parameter α of the Γ distribution was set to 0.5.
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Figure 9.7: Phylogenetic tree used for simulations: 12-taxon fungal tree T12b (Marcet-
Houben and Gabaldón, 2009).

Though the tree of drosophila has fewer sequences than the fungal tree, its branches

are shorter, which in practice will lead to fewer different observed nucleotide patterns

at the leaves. Therefore, in this case we simulated longer alignments of 5, 000nt. In

both data sets SPIn recovered the model that the data was sampled from in 100% of

the cases.

In addition, we tested the performance on the 10-taxon primate tree model ob-

tained from Fujita et al. (2010) under continuous-time JC69 and K80 3- and 4- tree

mixture models. Since primate species are closely related, the resulting tree will have

short length and presents challenges for model inference. We found that for 100% model

recovery the required alignments lengths were on average 30, 000. Although this num-

ber might appear large, it is not unrealistic with the growing availability of complete

genomes.

The method presented here is based on the nucleotide patterns recorded at the

leaves of the tree, therefore it is better suited for more diverged trees. In practice,

including distinct clades or an outgroup (as seen in the trees used here for simulations)

will significantly improve the accuracy of model recovery.
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Comparison to existing methods. Existing phylogenetic packages, as mentioned

in the Introduction, rely on a similar model testing principle: an initially inferred phy-

logeny is used to select a model for subsequent tree inference. We decided to compare

the performance of SPIn to that of jModelTest, which is a popular package designed

specifically for model selection.

We are aware that jModelTest was not created to deal with the discrete-time mixture

data. In order to allow maximum comparability between the two methods, we chose

the following settings for the command line version of jModelTest: AIC c criterion with

the option of 5 models, enabled invariant sites and two gamma classes (−AIC c -s 5

-i -g 2). This ensured a fair comparison as the pool of models activated in jModelTest

was contained within the models we considered. Although jModelTest supports neither

discrete-time Markov models nor mixtures on a single or different tree topologies, we

found it interesting to evaluate its performance on this type of data.

The results for the continuous-time JC69 and K80 models on a single tree are shown

in Figure 9.2(b) and Table 9.1 (d). The average model recovery was 60% and did not

depend on the length of the alignments. In comparison to the continuous-time models,

the average recovery for the ST data under the discrete-time models dropped to 56%

for the JC69∗ model, 37% for the K80∗ and 49% for the K81∗ models. Interestingly, the

recovery rate was found to be worse with an increase of the alignment length from 300

to 1, 000, see Figure 9.2(d) and Table 9.1(d).

The same trend, though with a slightly lower impact, was found for 2-mixture data

on the same topology, MST1, under the K80∗ model: the mean recovery decreased from

41% in the 300nt data set to 37% for 1, 000nt (Fig. 9.5(b)). The average detection

for both MST2 and MDT2 data sets under JC69∗ dropped with an increase of the

alignment length from 67% and 65% (300nt) to 56% and 45% (1, 000nt), respectively

(Tab. 9.1(d) and Fig. 9.5(b), 9.3(d)). The average model recovery on the MDT1 data

set was found to be the lowest (45%) among all the test for JC69∗ model.

Since SPIn was designed specifically to deal with phylogenetic mixtures and non-

homogeneous data, the method outperforms jModelTest for the alignments generated

under discrete-time models on single and mixture of trees. This result is due to the

fact that, as proved in section 6.3, the linear invariants are strictly model specific and

derived from the properties of the nucleotide substitution matrices as opposed to the

exponential rate matrices.

In species tree reconstruction an assumption of a single tree topology is reason-

able and the data is usually composed of the alignments of single copy homologous

genes. However, though the tree topology remains the same, the branches might differ

in lengths along the alignment, thus it becomes a mixture model. Unless the infer-

ence is performed on each block separately allowing for non-homogeneity of the rates

at different lineages, this fact is not accounted for by the existing methods. In such

instances, as shown in the above comparison, an incorrect model is very likely to be

selected and this in turn may confound the tree inference. Though it was found that in

some instances an approximated model might allow for recovering the species topology,

the parameter estimates will not be correct. It can be seen in the results presented here
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that the methods accounting for mixtures increase the reliability of the results.

9.3 Discussion

SPIn uses linear invariants defining the spaces of all phylogenetic mixtures under a

given model. The structure of a phylogenetic mixture model, for instance the number

of components and tree topologies, is allowed to vary freely. While more statistical

work is required to better address scenarios where a large number of sequences must

be handled simultaneously, tests on simulated data coming from a single tree as well as

mixtures of trees suggest that SPIn correctly identifies the underlying model in cases

that proved difficult for existing methods.

Another issue regarding some of the existing methods is the tendency to select

complex models. For instance, as found by Nguyen et al. (2011), in the analysis of

6,171 protein coding regions, the GTR class of models was selected in more than 70%

of the cases (see Tab. 3 of Nguyen et al. (2011)). This was also the case for the protein-

coding DNA alignment (PF02724) from the PANDIT database (Whelan et al. (2006))

analyzed by these authors. As shown in the quoted paper, the tree topology inferred

under the GTR+ I + Γ (invariable sites and Gamma rates) model is incongruent with

the accepted phylogeny However, using JC69 + I + Γ, the tree topology is correctly

recovered. We have analyzed this data set and the model selected by SPIn is in fact

JC69∗. This provides evidence that SPIn does not always choose most complex models

for real data sets.

We propose using SPIn as a first inference step to discriminate between mixtures

on the discrete-time models introduced in section 1.4: JC69∗, K80∗, K81∗, SSM. If, for

instance, the data supported JC69∗, further analysis could address the question of

whether an unmixed JC69, JC69+Γ, or JC69+Γ+I fits the data better. One could also

investigate the number of different tree topologies that should be taken into account.

In the current version of the program gaps and ubiquitous characters are removed

from the alignment. Note that the number of invariants for each model is 4n minus

its dimension. Although this number is exponential in n the implementation of SPIn

uses only the invariants containing the patterns observed in the data. As the length of

the alignment is not exponential in n, the algorithm in fact uses a subset of invariants.

This approach significantly speeds up the algorithm. Current implementation limits

the maximum number of input species in SPIn to 21. However, an ongoing work is to

extend this number to increase applicability to the modern real-life analyses.

Here we demonstrated good performance for up to 10 species with up to 100,000 sites

when using AIC c. Another option is Bayesian Information Criterion (Schwarz, 1978;

Burnham, 2004), however, our experience showed that the large sample properties of the

BIC are reasonable for short alignments and sparse data. Ongoing work on sampling

based statistical inference aims at extending the applicability of SPIn to larger number

of species. This said, the patterns and rates of evolution which characterize functional

elements depend on their location within the genome, the G+C content of the region,

synonymous codon site selection (features addressed by accounting for mixture models)
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and tend to be clade-specific (Pollard et al., 2010). In large studies, we recommend

grouping the sequences and performing the selection on such subsets. Also, in order to

deal with incomplete or new genomes, future release of SPIn will include methods to

deal with highly sparse data and short alignments.

An attractive feature of SPIn is its speed. Irrespective of the model considered,

the time to run SPIn on a 2-core Intel machine (2.40GHz) with 48 GB of RAM on a

multiple sequence alignment of 4 OTUs of length 300 was on average 0.014s, 0.020s for

length 3000 and 0.177s for 10-taxon multiple sequence alignments of length 30000nt.

As a comparison, in the latter case jModelTest took 6m28s.

There is a number of improvements to the method. We believe that more infor-

mation can be extracted using linear invariants, e.g. composition of topologies in the

mixture, expanding the spectrum of available models. We discuss this ongoing and

future goals in section 11.
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SPIn: model Selection in Phylogenetics based on algebraic INvariants

Summary

Misspecification of the evolutionary model, which describes the substitution processes along each edge of a phylogenetic
tree, has important implications for the analysis of phylogenetic data. Conventionally, however, the selection of a suitable
evolutionary model is based on heuristics or relies on the choice of an approximate input tree. Moreover, there are no
established methods that accommodate phylogenetic mixture models, which are appropriate in settings where data
consists of regions with different patterns of evolution (e.g., concatenated genes or codon specific position inference). We
propose an approach that circumvents these issues by using recent insights on linear invariants that characterize a model
of evolution in phylogenetic mixture models with any number of mixture components. 

These invariants are linear constraints among the joint probabilities for the bases in the contemporary species that hold
irrespective of the tree topologies appearing in the mixtures. 

References: 
A. M. Kedzierska, M. Drton, R. Guigo and M. Casanellas, "SPIn: model selection for phylogenetic mixtures via linear
invariants." (Mol. Biol. Evol., 29(3): 929-937, 2012). 
Currently supported evolutionary models are non-homogeneous the Kimura 2-paramater (K80*), Kimura 3-parameter
(K81*), Jukes-Cantor (JC69*) and the Strand Symmetric Model (SMM). 

M. Casanellas, J. Fernandez-Sanchez and A. M. Kedzierska, "The space of phylogenetic mixtures of equivariant models",

submitted to the special issue of Algorithms for Molecular Biology in Phylogenetics

Users are encouraged to refer to the accompanying paper for the discussion on the advantages as well as current
limitations of the method.

Using SPIn

Input format to SPIn is a fasta file. Current maximum number of operational taxonomic units is 21 and sequence length of
1 million bases. This release of the software uses the Akaike Information Criterion (AICc) to score among the candidate
non-homogeneous classes of models. The best-fit model minimizes the AICc score. In addition, the output reports the
weights of support for each of the model and an upper bound on the number of mixtures, above which the non-
identifiability of the parameters (both continuous and discrete) holds.

Multiple sequence alignment to upload:
no file selectedChoose File

Submit File

genNon-h
Matlab code. 

The algorithms implemented for the use of this work were further elaborated and implemented as an
efficient and user-friendly C++ package:

GenNon-H

.

MSA used for performance tests

Universitat Politecnica de Catalunya
Center for Genomic regulation
Support and feedback:
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Chapter 10

Conservation patterns in biotypes
of the GENCODE annotation.

In this chapter we present the results on the study of evolutionary patterns in different

genetic biotypes using methodologies developed in the previous chapters. The analysis

was performed on the version 3c of the GENCODE human gene and transcript anno-

tation (UCSC Genome Browser, Fujita et al. (2010); Harrow et al. (2006)) on the hg19

version of the human genome (gencode.v3c.annotation.GRCh37, see section 1.2).

The human genome was partitioned in segments according to the GENCODE bio-

type of the annotated transcripts and subsequently to type of the genetic elements

within. Transcripts in GENCODE are assigned a biotype, which reflects their bio-

logical functions. In this study, we used the following: BIOTYPE={protein, lncRNA,

pseudogene, protein/lncRNA, protein/pseudogene, lncRNA/pseudogene}
and ELEMENT={exon, intron, UTR, CDS, mix}. Here, “protein” refers to the protein

coding transcripts, “lncRNA” to the long non-coding RNAs, “mix” is intron and exon,

and “UTR” includes both 3’ and 5’ untranslated regions. In this analysis we merged the

annotation of the processed and nonprocessed pseudogenes into one single pseudogene

biotype or functional class (see Aheng et al. (2007) and the references within).

We have, therefore, obtained a partition of the human genome sequence into non

overlapping segments (a segmentation) in which the segments correspond to one of

18 functional classes (see below) defined as BIOTYPE.ELEMENT (note: that not all

combinations of biotype and element are valid).

Having built this partition, we investigated the following questions:

• Do different partitions show distinct patterns of conservation? Is there a clear

support for a particular model?

• Are the patterns for pure (e.g. exonic lncRNA), mixed (e.g. mixed lncRNA) or

multi-label (exonic lncRNA/pseudogenes) classes different?

• Are these evolutionary patterns reflected in the estimates of the branches in the

species tree?

• Is there a specific model that best characterizes conserved regions? On the other

hand, is there a best-fit model for neutrally evolving regions?

• Does model information allow for more accurate estimation of the branch lengths

in the phylogenetic tree?

127
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The last question is an interesting and disputable one. While ad-hoc model choice is an

advantage, it is a common practice to perform phylogenetic analyses choosing a model

heuristically (see Chap.9) . It is believed that more complex models are a better choice.

However, as discussed in section 9.3 for the real-life protein-coding data set, it is in

fact the JC69∗ model (as opposed to the GTR + I+ Γ model) that supports the correct

topology (Whelan et al., 2006).

The above annotation-induced partition of the genome, we obtained genome seg-

ments showing different levels of inter-species conservation that allowed us to investigate

the above questions in detail.

10.1 Conservation vs functionality

At present, the proportion of the human genome that encodes functional elements is

unknown. Both coding and non-coding regions are affected by negative selection (Sha-

balina and Kondrashov, 1999; Makalowski and Boguski, 1998). Comparative genomic

of human, dog, mouse and rat by Kamal et al. (2006) revealed that about 5 − 6%

of the human genome is thought to be under purifying selection, of which strinkingly

only 1 − 2% lies within the protein-coding sequences. The remaining parts are con-

served non-coding elements. As reported in (Siepel et al., 2005), over 32% of the highly

conserved sequences lie within the unannotated regions. Recently, TheENCODEPro-

jectConsortium (2011) (cf. references within) estimated the percentage of base pairs of

the human genome under purifying (or negative) selection to be between 3%–8%. The

authors suggest this number to be underestimated due to the faults of current phyloge-

netic methodology. It was suggested by Pheasant and Mattick (2007) that the bound of

only 5% of the genome coding for functional information should be increased. Failure

to detect functional elements that are short or fragmented is a serious drawback to the

methods. At the same time, it argues in favour of using phylogenetic mixtures. This

was confirmed in the case study of splicing regulators in section 2.2, where synonymous

positions were shown to be under negative selection not directly related to the protein

coding potential.

Let us first look at the biological types that we have chosen to investigate here, and

their characterization in terms of conservation.

Protein-coding genes are the regions of the genome for which the RNA transcript

is subsequently translated into protein. The transcribed part of a gene is composed

of introns and exons (see Chap. 1). Introns are the non-coding sequences, which are

removed from the primary transcripts. The number and size of introns varies between

the organisms. In vertebrates introns constitute the major part of the protein-coding

genes, some being thousands of nucleotide in length. Human introns can reach even

greater lengths. In general, introns are not expected to be conserved across the species,

however, they may contain stretches of conserved regions (Sugnet et al., 2006). Others
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factors playing key role in intron conservation can be, among others, the presence of

the stem-loop structures and overlapping transcripts (Barrette et al., 2001).

Due to their importance in protein synthesis, exons are expected to be the most

conserved among the functional classes considered here. The level of conservation varies

and depends on a variety of factors, e.g. the number of splice variants a given exon be-

longs to and its functionality, the type and conservation of the splice sites and adjacent

intron lengths (see e.g. Irimia et al. (2008)).

Untranslated regions (UTRs) of the protein-coding genes are in general less con-

served than the protein-coding regions, however, both 3′ and 5′ UTRs contain regu-

latory sequences (Churbanov et al., 2005; Wegrzyn et al., 2008; Chen and Rajewsky,

2006). Thus, sequence conservation of the UTRs can be significant and, in some cases,

even higher than the neighbouring CDSs (i.e. Spicher et al. (1998)). For instance, in

mammals the conservation of the UTRs was found to be positively correlated to their

base composition (Shabalina et al., 2003).

Long non-coding RNAs (lncRNA) are defined as non-protein coding transcripts

“longer than 200nt”. Although they show a general low across-species conservation,

which by some authors is interpreted as potential lack of functionality (Struhl, 2007;

Marques and Ponting, 2009), selection may act on small regions in the long lncRNA

transcript. Many lncRNAs contain elements that are under purifying selection or lie

within the regions conserved due to their function (i.e. lie in the promoter regions or

are functional in splicing; Ponjavic et al. (2007); Pollard et al. (2006b)).

Pseudogenes usually originate from duplication of functional genes (Zhang and Ger-

stein, 2004), but have subsequently loss functionality. Regions annotated as pseudogenes

are oftentimes used to model neutral evolution. The extent of conservation of pseudo-

genes seems to be disputable. In opposition to the expectation, pseudogenes are not

free of negative selection and were found to be conserved across species and functionally

active. In Balakirev and Ayala (2004, 2003), the authors support the hypothesis that

pseudogenes are to be considered as protogenes, which are the DNA sequences with the

potential of becoming new genes. On the other hand, characterization of pseudogenes

within ENCODE Aheng et al. (2007) showed that most pseudogenes evolve neutrally.

Ancient repeats. As a control set of the background rate of neutral evolution we

chose ancient repeats (ARs) from Ensembl (obtained via Repeat Masker). With some

exceptions to the rule, ARs are largely nonfunctional.

The 18 resulting functional classes (17 biotype.element + AR) are shown in the

first column of Table 10.1. For example, lncRNA/pseudogene.mix corresponds to the

genomic regions annotated as exon and intron (i.e. of different isoforms) of a lncRNA

and a pseudogene, while regions under the label protein.intron were annotated as pro-

tein coding introns only.
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Table 10.1: Partitions of the annotation into different biological domains.

partition length (bp) model
lncRNA.exon 810.531 SSM

lncRNA.intron 20.857.941 SSM
lncRNA.mix 318.361 SSM

lncRNA/pseudogene/exon 52.610 K80∗

lncRNA/pseudogene.mix 52.466 K80∗

lncRNA/pseudgene/intron 288.186 SSM
pseudogene.exon 328.210 SSM

pseudogene.intron 993.364 SSM
pseudogene.mix 7.819 K80∗

protein.intron 61.966.684 SSM
protein.CDS 7.467.354 SSM
protein.mix 652,091 SSM

protein.UTR 9.725.790 SSM
protein/lncRNA.intron 1.5804.897 SSM

protein/lncRNA.mix 1.794.411 SSM
protein/pseudogene.intron 361.187 SSM

protein/pseudogene.mix 85.971 K80∗

ancient repeats 169.449 SSM

10.2 Pipeline

The analysis proceeded in the following 5 steps:

Step 1: Data extraction. From the ENCODE whole genome multiple sequence

alignments (MSAs) of 46 species we selected the MSAs of 6 taxa: human, macaque,

mouse, rat, cow and dog (hg19, canFam2, bosTau4, mm9, rn4, rheMac2, cf. Sec-

tion 2.1).From the genome partition on functional classes, we extracted the MSAs

corresponding to each segments. Columns containing gaps or ambiguous characters

were removed from the set. Table 10.1 shows the total sizes of these data sets.

Step 2: Choosing the best-fit model using SPIn. Assuming nonhomogeneity

(and no tree topology) we used SPIn to choose the best fit model for the data sets

extracted in Step 1. We ran the analysis “globally” by running SPIn on the merged

alignments from segments for each functional class, and “locally” by looking at each

extracted segment separately (see next).

Step 3: Global comparison. We inferred the model for the merged alignments of

all segments within each functional class (biotype.element).

Step 4: Local comparison. We compared the distribution of the supported models

within each partition (biotype.element) separately. We performed model selection on

each of the extracted segments provided they were longer than 100nt.
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Step 5: Use Empar to infer branch lengths of the species tree. Under the

discrete-time model inferred for the concatenated sequences (in Step 3) and on the

species tree, we estimated the continuous parameters of the model and calculated the

branch lengths for each partitions.

In Step 2 we consider the equivariant models (see Sec.5.5): JC69∗, K80∗, K81∗ and

SSM as currently implemented in SPIn. Though the pool of models is limited, these

models are nonhomogeneous models and allow different rates in distinct lineages, e.g.

SSM is a nonhomogeneous version of the HKY model Hasegawa et al. (1985)). In addition,

a model chosen by running SPIn is valid for any phylogenetic mixture under this model.

Therefore, the models are in fact a much broader class. For example, the model given

by Jin and Nei (1990) is a continuous-time Kimura80 (Kimura, 1980) model with the

discrete Gamma rates under the assumption that the data evolved on a single tree

topology. On the other hand, the K80∗ model allows both the Gamma rates and mixtures

on different trees. Model choice must be an optimal trade-off between the complexity

and the amount of data– more data allows to include more parameters. For example,

K80∗ has 2 parameters, while the SSM model has 8 free parameters, 6 per edge in

the substitution matrices and 2 in the root distribution. Overparameterization of the

models may lead to non-identifiability, which means that the parameters cannot be

recovered from the observed data.

10.3 Results and discussion

Only two models were supported in the global analysis. From Table 10.1 we note that

SSM is preferable in larger data sets, while the K80∗ was selected in 4 cases for shorter

data. This is in agreement with the intuition that long strands of DNA will support

a more flexible model reflecting double-strandedness of the DNA. Sufficiently large

amount of data (large alignments) allows for viable estimation of the parameters, jus-

tifying the use of the more complex models.

Models selected for individual elements in each partition (i.e. local analysis) were

plotted as normalized histograms, i.e. relative frequencies of the models for all MSAs

of a given partition (see Figs.10.1, 10.2 and 10.3).

Biotype: protein, element={intron, CDS, mix}. It can be seen that the intronic

sequences show some support towards K80∗ and are uniform over the remaining models

(see Fig. 10.1(a)). In the CDS regions, which are expected to be most conserved among

the classes, we observed a significant support towards the JC69∗ and lack of it towards

the SSM and the K80∗ models. In the regions overlapping the CDS and introns of different

transcripts, we observe a slightly weaker, but clear support towards the JC69∗ model.

This suggests that the CDS signal is stronger and sequence conservation is comparable

to that of the pure CDSs.
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(a) Biotype: protein, element={intron, CDS, mix}.
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(b) Biotype: pseudogene, element={intron, exon, mix}.

Figure 10.1: Histograms of the models inferred for the GENCODE biotypes of protein
and pseudogenes.

Biotype: pseudogenes, element={exon, intron, mix}. From Figure 10.1(b) we

see that the results for pseudogene biotype are comparable to those of protein-coding.

The exonic and mixed regions show less significant preference towards JC69∗with more

visible support given to the K80∗ and K81∗ model.

Biotype={nRNA and lncRNA/pseudogenes}, element={intron, exon, mix}.

MSAs annotated as intronic lncRNA show different pattern of distribution to the pre-

viosuly analyzed data sets (see Fig. 10.2(a)). They are uniformly distributed giving

slightly more weight to the SSM and the JC69∗ models. Exonic and mixed regions re-

semble their correspondents in pseudogenes, with more support, however, towards the

K81∗ model. This is further stressed in the regions annotated as both these classes:

lncRNA/pseudogene. In fact, as seen in 10.2(b), exonic and mixed data sets of this

biotype show high resemblance to the corresponding types of the protein-coding data

(cf. 10.1(a)).
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(a) Biotype: lncRNA , elements={intron, exon, mix}.
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(b) Biotype: lncRNA/pseudogenes, elements={intron, exon, mix}.

Figure 10.2: Histograms of the models inferred for the GENCODE biotypes of lncRNA
and lncRNA/pseudogene.

Biotype: protein/lncRNA, element={intron, mix}. Figure 10.3(a) shows the

results for the regions annotated both as protein-coding and lncRNA. It can be seen

that the intronic regions follow on the intronic patterns of all but the lncRNA data sets,

showing high resemblance to the protein-coding introns. Similarly, mixed regions show

great similarity to the protein-coding mixed regions (cf. Fig.10.1(a)). Thus, lncRNA

signal seems to be playing a secondary role.

Biotype: {protein/pseudogenes}, element={intron, mix}. Intronic regions of

the protein/pseudogene biotype are “an average” of the corresponding intronic distri-

butions of the pure classes. Most visible support is given to the Kimura class of models:

K80∗ and K81∗ (see Fig. 10.3(b)). This suggests that the sequence information in these

regions might show distinguished differences in the transition/transversion ratio.

Again, in the exonic sequences the most supported evolutionary model is JC69∗, and

the resemblance to the patterns in the corresponding protein types is more prominent

than in the pseudogene biotype alone.
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(b) Biotype: protein/pseudogene, element={intron, mix}.
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(c) Biotype: protein, element: UTR; ancient repeats

Figure 10.3: Histograms of the models inferred for the GENCODE biotypes of
protein/pseudogene and protein/lncRNA.
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Biotype: protein/UTR and Ancient Repeats. These two sets are expected to

have the least degree of conservation among all the data sets considered here. As de-

picted in Figure 10.3(c) we observe that the intronic sequences show similar patterns

to the introns of the protein/lncRNA and protein biotypes with slightly more weight

given to the K80∗ model. ARs differ significantly from the other distributions. His-

tograms plotted for the models selected in the regions covered by the ARs show the

strongest support towards the SSM class among all the classes with some support given

to JC69∗ (see Fig. 10.3(c)). From the results discussed thus far, this might suggest that

a large portion of the ARs lies in the highly conserved regions (the JC69∗ fraction). On

the other hand, we might hypothesize that the truly neutrally evolving sequences of

the ARs fall into the SSM portion of the histogram.

10.3.1 Estimate of the branches in the species tree

We next used the species tree and the package Empar (see Chap. 8) to estimate the

continuous parameters and the branch lengths under the model selected in the previous

section.

In Figure 10.4 we plotted the results for protein and lncRNA/pseudogene biotypes,

Figure 10.5 depicts the results for protein/pseudogenes and lncRNA, and Figure 10.6

for protein/lncRNA, pseudogenes and AR. As observed, the branches of the tree

within all intronic regions are longer than those (even partially) annotated as exonic.

For the CDSs the tree is the smallest with all its branches being the shortest among all

the trees. Similar results were obtained for the exons of the lncRNA/pseudogene and

protein/lncRNA biotypes. The trees of the exons and mixed lncRNA are very similar

in lengths of the branches. Comparable to those are the branches estimated for the

species tree in ARs, suggesting that in this set the corresponding regions of the MSAs

might not evolve neutrally. As already mentioned above, many of these sequences seem

to fall within the regions conserved across the genomes considered here.

By far the largest tree corresponds to the intronic lncRNA. The trees for other

intronic regions are slightly shorter, but to a large extent comparable.

Summary. The key observation based on the results presented in this chapter is that

the type of elments (exon vs intron) dominates the preferred choice of the model over

the biotype. Thus, exons, irrespectively of whether they come from proteins, lncRNAs

or pseudogenes, for the most part follow the JC69∗ model, i.e. the simplest of the evolu-

tionary models. In contrast, introns, again whether from protein coding genes, lncRNAs

or pseudogenes, show preference towards K80∗. This is to some extent surprising, since

one would have expected lncRNA (and most pseudogene) exons to evolve in a similar

manner to that of introns and UTRs. Finally, ancient repeats, show a clearly differen-

tial pattern of evolution, following majoritarily SSM, which is the most complex of the

models.

In addition, we make further observations:

• The set of the models supported within each partition reveals similarities in the
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across-species conservation between the data sets. The distribution of the nonho-

mogeneous evolutionary models and the estimated lengths of the branches gave

consistent results: the more uniform the distribution, the longer the branches es-

timated for the species tree. In general, the data sets with similar shapes of the

distributions were found to have comparable trees, e.g. protein/pseudogene and

protein/lncRNA of mixed type. The distributions with the highest support given

to JC69∗ and K80∗ were found to have the shortest trees. We conclude that by

looking at the models supported in a particular data set we can gauge its degree

of evolutionary conservation.

• As expected, SSM is best suited for long alignments. However, its applicability

is not limited to large data sets. In the analysis performed locally, we observed

that the SSM model was absent in the regions expected to be conserved (i.e.

exonic) with increasing support given to it in the intronic regions and a significant

support in the ARs set. This suggests that SSMmight be preferable in the neutrally

evolving regions.

• The fairly simple JC69∗ model seems to be well suited for the conserved regions.

It was selected in a large portion of the extracted alignments both in the protein-

coding CDS and other exonic regions. In turn, using it to estimate the parameters

gave rise to the trees with short branch lengths.

• The intronic type in the lncRNA and lncRNA/pseudogene biotypes show dif-

ferent pattern of model support. Exons and mixed types of lncRNA/pseudogene

resemble more the respective sets in the data annotated as protein−coding. This

might suggest that the pseudogenes are to some extent under purifying selection.

• Overall, ancient repeats might not be the best choice for a background neutrally

evolving model. In comparison with the trees in the remaining partitions, the

external branches of its estimated tree were short, i.e. the clade (hg19, rheMac2)

was comparable to that of exonic sequences. By and large, this finding suggests

that a large part of the regions annotated as ancient repeats overlaps regions

that are under negative selection. On the other hand, judging by the shape of

the model distribution and the length of the estimated tree, intronic lncRNA set

might be under strong positive selection.
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Figure 10.4: Phylogenetic trees for the GENCODE partitions (labeled from left to right, drawn using Marcet-Houben and Gabaldón (2009)).
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Figure 10.5: Phylogenetic trees for the GENCODE partitions (labeled from left to right, drawn using Marcet-Houben and Gabaldón (2009)).
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Figure 10.6: Phylogenetic trees for the GENCODE partitions (labeled from left to right, drawn using Marcet-Houben and Gabaldón (2009)).
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Chapter 11

Future work

The work presented in this thesis evolved succesfully in a number of directions. Here

we list a list of some of the open questions and extensions to the work presented in this

thesis.

1 Extending the spectrum of the models available in SPIn and Empar. In particular,

the models of most interest are the Algebraic Time reversible and the Stable Base

Distribution models (Allman and Rhodes, 2006b). We have been able to compute

the generators of the ideal for n = 3 taxon star tree for the ATR and the SBD model

(see Ex. 5.33 in section 5.3). For a general n, however, the set of generators is

unknown. The objective is to find the generating set for the spaces of all mixtures

for these models. Another interesting model is the covarion model first introduced

by (Tuffley and Steel, 1998; Galtier, 2001b). This model and its variants have been

studied extensively (Nagaki et al., 2004; Ané et al., 2005; Galtier, 2001a; Penny

et al., 2001; Misof et al., 2002; Gaucher et al., 2001; Huelsenbeck, 2002; Guindon

et al., 2004) and provide a framework for modeling heterotachy.

2 One of the future goals is to provide the user with valuable information on whether

the data evolved along a mixture on different tree topologies, a mixture on the

same topology or from a single tree. We expect that phylogenetic invariants (al-

though in this case they cease to be linear) can be used for this purpose. At

this point, however, only a few invariants are known for these cases (see e.g. All-

man et al., 2010), and further development of mathematical tools is required (see

Rhodes and Sullivant (2011)).

5 In certain analyses (e.g. highly divergent sequences), working with protein align-

ments is preferable. A very interesting direction to pursue is the extension of the

methods propsed here for DNA models to the protein coding models (Goldman

and Yang, 1994). This alternative class of evolutionary models are used for mod-

eling protein evolution and describe the amino acid replacement. Markov process

has 20 states and for the reason and many approximations are being made for

the analysis to be possible, i.e. the relative frequency of amino acid changes are

estimated prior to inference (Dayhoff et al. (1978); Adachi and Hasegawa (1996);

Jones et al. (1992); Whelan and Goldman (2001)). As in the DNA context, cur-

rently model selection approaches are defined in a continuous-time setting and

use the approximated or the MLE tree (Goldman and Yang, 1994; Abascal et al.,

2005).
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Appendix A

Linear part of the ideal for the GMM
and ATR variety

// GMM on b=4 states and n=4 leaves.

// f1, J1 correspond to the tree >--< with labels (12-34)

// f2, J2 correspond to the tree >--< with labels (13-24)

// f3, J3 correspond to the tree >--< with labels (14-23)

// f4, J4 correspond to the star tree.

LIB "elim.lib";

int b=4;

ring r1 = 0,(p(1..b)(1..b)(1..b)(1..b)),dp;

ring r2 = 0,(m1(1..b)(1..b),m2(1..b)(1..b),m3(1..b)(1..b),

m4(1..b)(1..b),mi(1..b)(1..b),r(1..b),q(1..b)(1..b)(1..b)(1..b)),dp;

int i,j,k,l,u,v,s;

poly p1,p2,p3,p4;

list L1,L2,L3,L4,Q1;

s = 1;

// loop on the states at the leaves

for (i=1; i<=b; i=i+1)

{

for(j=1; j<=b; j=j+1)

{

for(k=1; k<=b; k=k+1)

{

for(l=1; l<=b; l=l+1)

{

// loop for the sum in >--< (12)(34)

p1=0;

for(u=1; u<=b; u=u+1)

{
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for(v=1; v<=b; v=v+1)

{

p1 = p1 + r(u)*m1(u)(i)*m2(u)(j)*mi(u)(v)*m3(v)(k)*m4(v)(l);

}

}

L1[s] = p1;

Q1[s] = q(i)(j)(k)(l)^6 - p1;

// loop for the sum in >--< (13)(24)

p2=0;

for(u=1; u<=b; u=u+1)

{

for(v=1; v<=b; v=v+1)

{

p2 = p2 + r(u)*m1(u)(i)*m2(u)(k)*mi(u)(v)*m3(v)(j)*m4(v)(l);

}

}

L2[s] = p2;

// loop for the sum in >--< (14)(23)

p3=0;

for(u=1; u<=b; u=u+1)

{

for(v=1; v<=b; v=v+1)

{

p3 = p3 + r(u)*m1(u)(i)*m2(u)(l)*mi(u)(v)*m3(v)(j)*m4(v)(k);

}

}

L3[s] = p3;

// loop for the sum in the star tree

p4=0;

for(u=1; u<=b; u=u+1)

{

p4 = p4 + r(u)*m1(u)(i)*m2(u)(j)*m3(u)(k)*m4(u)(l);

}

L4[s] = p4;

s = s+1;

}

}

}
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}

map f1=r1,L1[1..b^4];

map f2=r1,L2[1..b^4];

map f3=r1,L3[1..b^4];

map f4=r1,L4[1..b^4];

// The 0 ideal

ideal I0=0;

setring r2;

// Too computationally expensive :

// ideal J1=preimage(r2,f1,I0);

// ideal J2=preimage(r2,f2,I0);

// ideal J3=preimage(r2,f2,I0);

// ideal J4=preimage(r2,f2,I0);

ideal t0=Q1[1..b^4];

degBound=6;

ideal g=std(t0); // standard Grobner basis

nselect(g,1..84);

We fix an order on the branches {0, 1, 2} and use it to indexed the transition matri-

ces. The first equations correspond to the stochastic condition on the transition matri-

ces and of the root ditribution (polynomials p and d). Polynomials indexed by letter e,

correspond to the condition the commutativity condition. For instance, e121 denotes

the (1, 1) entry of the matrix Ae1A
e
2 −Ae2Ae1, e122 is the (1, 2) entry, etc. The bloks are

labeled by pairs (0, 1), (0, 2), (1, 2). Further, the polynomials named by f come from the

condition that DπA
e is symmetric (6 conditions per matrix). In order to compute these

polynomials we must ensure that the root distribution does not include zeros (diagonal

entries of Dπ are positive). Those conditions are encoded in the polynomials root We

used variable z to homogenize the polynomials. Te goal is to express the generators

of the ideal in the model parameters (the q′s) and we choose them using the function

nselect.
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LIB "elim.lib";

ring r=0,(z,w(1..4),t(1..52),q(1..64)),dp;

poly p1=q(1)^5-z*(t(49)*t(1)*t(17)*t(33)+t(50)*t(5)*t(21)*t(37)+t(51)*t(9)*t(25)*t(41)+t(52)*t(13)*t(29)*t(45));

poly p2=q(2)^5-z*(t(49)*t(1)*t(17)*t(34)+t(50)*t(5)*t(21)*t(38)+t(51)*t(9)*t(25)*t(42)+t(52)*t(13)*t(29)*t(46));

poly p3=q(3)^5-z*(t(49)*t(1)*t(17)*t(35)+t(50)*t(5)*t(21)*t(39)+t(51)*t(9)*t(25)*t(43)+t(52)*t(13)*t(29)*t(47));

poly p4=q(4)^5-z*(t(49)*t(1)*t(17)*t(36)+t(50)*t(5)*t(21)*t(40)+t(51)*t(9)*t(25)*t(44)+t(52)*t(13)*t(29)*t(48));

poly p5=q(5)^5-z*(t(49)*t(1)*t(18)*t(33)+t(50)*t(5)*t(22)*t(37)+t(51)*t(9)*t(26)*t(41)+t(52)*t(13)*t(30)*t(45));

poly p6=q(6)^5-z*(t(49)*t(1)*t(18)*t(34)+t(50)*t(5)*t(22)*t(38)+t(51)*t(9)*t(26)*t(42)+t(52)*t(13)*t(30)*t(46));

poly p7=q(7)^5-z*(t(49)*t(1)*t(18)*t(35)+t(50)*t(5)*t(22)*t(39)+t(51)*t(9)*t(26)*t(43)+t(52)*t(13)*t(30)*t(47));

poly p8=q(8)^5-z*(t(49)*t(1)*t(18)*t(36)+t(50)*t(5)*t(22)*t(40)+t(51)*t(9)*t(26)*t(44)+t(52)*t(13)*t(30)*t(48));

poly p9=q(9)^5-z*(t(49)*t(1)*t(19)*t(33)+t(50)*t(5)*t(23)*t(37)+t(51)*t(9)*t(27)*t(41)+t(52)*t(13)*t(31)*t(45));

poly p10=q(10)^5-z*(t(49)*t(1)*t(19)*t(34)+t(50)*t(5)*t(23)*t(38)+t(51)*t(9)*t(27)*t(42)+t(52)*t(13)*t(31)*t(46));

poly p11=q(11)^5-z*(t(49)*t(1)*t(19)*t(35)+t(50)*t(5)*t(23)*t(39)+t(51)*t(9)*t(27)*t(43)+t(52)*t(13)*t(31)*t(47));

poly p12=q(12)^5-z*(t(49)*t(1)*t(19)*t(36)+t(50)*t(5)*t(23)*t(40)+t(51)*t(9)*t(27)*t(44)+t(52)*t(13)*t(31)*t(48));

poly p13=q(13)^5-z*(t(49)*t(1)*t(20)*t(33)+t(50)*t(5)*t(24)*t(37)+t(51)*t(9)*t(28)*t(41)+t(52)*t(13)*t(32)*t(45));

poly p14=q(14)^5-z*(t(49)*t(1)*t(20)*t(34)+t(50)*t(5)*t(24)*t(38)+t(51)*t(9)*t(28)*t(42)+t(52)*t(13)*t(32)*t(46));

poly p15=q(15)^5-z*(t(49)*t(1)*t(20)*t(35)+t(50)*t(5)*t(24)*t(39)+t(51)*t(9)*t(28)*t(43)+t(52)*t(13)*t(32)*t(47));

poly p16=q(16)^5-z*(t(49)*t(1)*t(20)*t(36)+t(50)*t(5)*t(24)*t(40)+t(51)*t(9)*t(28)*t(44)+t(52)*t(13)*t(32)*t(48));

poly p17=q(17)^5-z*(t(49)*t(2)*t(17)*t(33)+t(50)*t(6)*t(21)*t(37)+t(51)*t(10)*t(25)*t(41)+t(52)*t(14)*t(29)*t(45));

poly p18=q(18)^5-z*(t(49)*t(2)*t(17)*t(34)+t(50)*t(6)*t(21)*t(38)+t(51)*t(10)*t(25)*t(42)+t(52)*t(14)*t(29)*t(46));

poly p19=q(19)^5-z*(t(49)*t(2)*t(17)*t(35)+t(50)*t(6)*t(21)*t(39)+t(51)*t(10)*t(25)*t(43)+t(52)*t(14)*t(29)*t(47));

poly p20=q(20)^5-z*(t(49)*t(2)*t(17)*t(36)+t(50)*t(6)*t(21)*t(40)+t(51)*t(10)*t(25)*t(44)+t(52)*t(14)*t(29)*t(48));

poly p21=q(21)^5-z*(t(49)*t(2)*t(18)*t(33)+t(50)*t(6)*t(22)*t(37)+t(51)*t(10)*t(26)*t(41)+t(52)*t(14)*t(30)*t(45));
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poly p22=q(22)^5-z*(t(49)*t(2)*t(18)*t(34)+t(50)*t(6)*t(22)*t(38)+t(51)*t(10)*t(26)*t(42)+t(52)*t(14)*t(30)*t(46));

poly p23=q(23)^5-z*(t(49)*t(2)*t(18)*t(35)+t(50)*t(6)*t(22)*t(39)+t(51)*t(10)*t(26)*t(43)+t(52)*t(14)*t(30)*t(47));

poly p24=q(24)^5-z*(t(49)*t(2)*t(18)*t(36)+t(50)*t(6)*t(22)*t(40)+t(51)*t(10)*t(26)*t(44)+t(52)*t(14)*t(30)*t(48));

poly p25=q(25)^5-z*(t(49)*t(2)*t(19)*t(33)+t(50)*t(6)*t(23)*t(37)+t(51)*t(10)*t(27)*t(41)+t(52)*t(14)*t(31)*t(45));

poly p26=q(26)^5-z*(t(49)*t(2)*t(19)*t(34)+t(50)*t(6)*t(23)*t(38)+t(51)*t(10)*t(27)*t(42)+t(52)*t(14)*t(31)*t(46));

poly p27=q(27)^5-z*(t(49)*t(2)*t(19)*t(35)+t(50)*t(6)*t(23)*t(39)+t(51)*t(10)*t(27)*t(43)+t(52)*t(14)*t(31)*t(47));

poly p28=q(28)^5-z*(t(49)*t(2)*t(19)*t(36)+t(50)*t(6)*t(23)*t(40)+t(51)*t(10)*t(27)*t(44)+t(52)*t(14)*t(31)*t(48));

poly p29=q(29)^5-z*(t(49)*t(2)*t(20)*t(33)+t(50)*t(6)*t(24)*t(37)+t(51)*t(10)*t(28)*t(41)+t(52)*t(14)*t(32)*t(45));

poly p30=q(30)^5-z*(t(49)*t(2)*t(20)*t(34)+t(50)*t(6)*t(24)*t(38)+t(51)*t(10)*t(28)*t(42)+t(52)*t(14)*t(32)*t(46));

poly p31=q(31)^5-z*(t(49)*t(2)*t(20)*t(35)+t(50)*t(6)*t(24)*t(39)+t(51)*t(10)*t(28)*t(43)+t(52)*t(14)*t(32)*t(47));

poly p32=q(32)^5-z*(t(49)*t(2)*t(20)*t(36)+t(50)*t(6)*t(24)*t(40)+t(51)*t(10)*t(28)*t(44)+t(52)*t(14)*t(32)*t(48));

poly p33=q(33)^5-z*(t(49)*t(3)*t(17)*t(33)+t(50)*t(7)*t(21)*t(37)+t(51)*t(11)*t(25)*t(41)+t(52)*t(15)*t(29)*t(45));

poly p34=q(34)^5-z*(t(49)*t(3)*t(17)*t(34)+t(50)*t(7)*t(21)*t(38)+t(51)*t(11)*t(25)*t(42)+t(52)*t(15)*t(29)*t(46));

poly p35=q(35)^5-z*(t(49)*t(3)*t(17)*t(35)+t(50)*t(7)*t(21)*t(39)+t(51)*t(11)*t(25)*t(43)+t(52)*t(15)*t(29)*t(47));

poly p36=q(36)^5-z*(t(49)*t(3)*t(17)*t(36)+t(50)*t(7)*t(21)*t(40)+t(51)*t(11)*t(25)*t(44)+t(52)*t(15)*t(29)*t(48));

poly p37=q(37)^5-z*(t(49)*t(3)*t(18)*t(33)+t(50)*t(7)*t(22)*t(37)+t(51)*t(11)*t(26)*t(41)+t(52)*t(15)*t(30)*t(45));

poly p38=q(38)^5-z*(t(49)*t(3)*t(18)*t(34)+t(50)*t(7)*t(22)*t(38)+t(51)*t(11)*t(26)*t(42)+t(52)*t(15)*t(30)*t(46));

poly p39=q(39)^5-z*(t(49)*t(3)*t(18)*t(35)+t(50)*t(7)*t(22)*t(39)+t(51)*t(11)*t(26)*t(43)+t(52)*t(15)*t(30)*t(47));

poly p40=q(40)^5-z*(t(49)*t(3)*t(18)*t(36)+t(50)*t(7)*t(22)*t(40)+t(51)*t(11)*t(26)*t(44)+t(52)*t(15)*t(30)*t(48));

poly p41=q(41)^5-z*(t(49)*t(3)*t(19)*t(33)+t(50)*t(7)*t(23)*t(37)+t(51)*t(11)*t(27)*t(41)+t(52)*t(15)*t(31)*t(45));

poly p42=q(42)^5-z*(t(49)*t(3)*t(19)*t(34)+t(50)*t(7)*t(23)*t(38)+t(51)*t(11)*t(27)*t(42)+t(52)*t(15)*t(31)*t(46));

poly p43=q(43)^5-z*(t(49)*t(3)*t(19)*t(35)+t(50)*t(7)*t(23)*t(39)+t(51)*t(11)*t(27)*t(43)+t(52)*t(15)*t(31)*t(47));

poly p44=q(44)^5-z*(t(49)*t(3)*t(19)*t(36)+t(50)*t(7)*t(23)*t(40)+t(51)*t(11)*t(27)*t(44)+t(52)*t(15)*t(31)*t(48));

poly p45=q(45)^5-z*(t(49)*t(3)*t(20)*t(33)+t(50)*t(7)*t(24)*t(37)+t(51)*t(11)*t(28)*t(41)+t(52)*t(15)*t(32)*t(45));

poly p46=q(46)^5-z*(t(49)*t(3)*t(20)*t(34)+t(50)*t(7)*t(24)*t(38)+t(51)*t(11)*t(28)*t(42)+t(52)*t(15)*t(32)*t(46));
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poly p47=q(47)^5-z*(t(49)*t(3)*t(20)*t(35)+t(50)*t(7)*t(24)*t(39)+t(51)*t(11)*t(28)*t(43)+t(52)*t(15)*t(32)*t(47));

poly p48=q(48)^5-z*(t(49)*t(3)*t(20)*t(36)+t(50)*t(7)*t(24)*t(40)+t(51)*t(11)*t(28)*t(44)+t(52)*t(15)*t(32)*t(48));

poly p49=q(49)^5-z*(t(49)*t(4)*t(17)*t(33)+t(50)*t(8)*t(21)*t(37)+t(51)*t(12)*t(25)*t(41)+t(52)*t(16)*t(29)*t(45));

poly p50=q(50)^5-z*(t(49)*t(4)*t(17)*t(34)+t(50)*t(8)*t(21)*t(38)+t(51)*t(12)*t(25)*t(42)+t(52)*t(16)*t(29)*t(46));

poly p51=q(51)^5-z*(t(49)*t(4)*t(17)*t(35)+t(50)*t(8)*t(21)*t(39)+t(51)*t(12)*t(25)*t(43)+t(52)*t(16)*t(29)*t(47));

poly p52=q(52)^5-z*(t(49)*t(4)*t(17)*t(36)+t(50)*t(8)*t(21)*t(40)+t(51)*t(12)*t(25)*t(44)+t(52)*t(16)*t(29)*t(48));

poly p53=q(53)^5-z*(t(49)*t(4)*t(18)*t(33)+t(50)*t(8)*t(22)*t(37)+t(51)*t(12)*t(26)*t(41)+t(52)*t(16)*t(30)*t(45));

poly p54=q(54)^5-z*(t(49)*t(4)*t(18)*t(34)+t(50)*t(8)*t(22)*t(38)+t(51)*t(12)*t(26)*t(42)+t(52)*t(16)*t(30)*t(46));

poly p55=q(55)^5-z*(t(49)*t(4)*t(18)*t(35)+t(50)*t(8)*t(22)*t(39)+t(51)*t(12)*t(26)*t(43)+t(52)*t(16)*t(30)*t(47));

poly p56=q(56)^5-z*(t(49)*t(4)*t(18)*t(36)+t(50)*t(8)*t(22)*t(40)+t(51)*t(12)*t(26)*t(44)+t(52)*t(16)*t(30)*t(48));

poly p57=q(57)^5-z*(t(49)*t(4)*t(19)*t(33)+t(50)*t(8)*t(23)*t(37)+t(51)*t(12)*t(27)*t(41)+t(52)*t(16)*t(31)*t(45));

poly p58=q(58)^5-z*(t(49)*t(4)*t(19)*t(34)+t(50)*t(8)*t(23)*t(38)+t(51)*t(12)*t(27)*t(42)+t(52)*t(16)*t(31)*t(46));

poly p59=q(59)^5-z*(t(49)*t(4)*t(19)*t(35)+t(50)*t(8)*t(23)*t(39)+t(51)*t(12)*t(27)*t(43)+t(52)*t(16)*t(31)*t(47));

poly p60=q(60)^5-z*(t(49)*t(4)*t(19)*t(36)+t(50)*t(8)*t(23)*t(40)+t(51)*t(12)*t(27)*t(44)+t(52)*t(16)*t(31)*t(48));

poly p61=q(61)^5-z*(t(49)*t(4)*t(20)*t(33)+t(50)*t(8)*t(24)*t(37)+t(51)*t(12)*t(28)*t(41)+t(52)*t(16)*t(32)*t(45));

poly p62=q(62)^5-z*(t(49)*t(4)*t(20)*t(34)+t(50)*t(8)*t(24)*t(38)+t(51)*t(12)*t(28)*t(42)+t(52)*t(16)*t(32)*t(46));

poly p63=q(63)^5-z*(t(49)*t(4)*t(20)*t(35)+t(50)*t(8)*t(24)*t(39)+t(51)*t(12)*t(28)*t(43)+t(52)*t(16)*t(32)*t(47));

poly p64=q(64)^5-z*(t(49)*t(4)*t(20)*t(36)+t(50)*t(8)*t(24)*t(40)+t(51)*t(12)*t(28)*t(44)+t(52)*t(16)*t(32)*t(48));

poly d1=t(1)+t(2)+t(3)+t(4)-z;

poly d2=t(5)+t(6)+t(7)+t(8)-z;

poly d3=t(9)+t(10)+t(11)+t(12)-z;

poly d4=t(13)+t(14)+t(15)+t(16)-z;

poly d5=t(17)+t(18)+t(19)+t(20)-z;
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poly d6=t(21)+t(22)+t(23)+t(24)-z;

poly d7=t(25)+t(26)+t(27)+t(28)-z;

poly d8=t(29)+t(30)+t(31)+t(32)-z;

poly d9=t(33)+t(34)+t(35)+t(36)-z;

poly d10=t(37)+t(38)+t(39)+t(40)-z;

poly d11=t(41)+t(42)+t(43)+t(44)-z;

poly d12=t(45)+t(46)+t(47)+t(48)-z;

poly e011=t(1)*t(17)+t(2)*t(21)+t(3)*t(25)+t(4)*t(29)-t(17)*t(1)-t(18)*t(5)-t(19)*t(9)-t(20)*t(13);

poly e012=t(1)*t(18)+t(2)*t(22)+t(3)*t(26)+t(4)*t(30)-t(17)*t(2)-t(18)*t(6)-t(19)*t(10)-t(20)*t(14);

poly e013=t(1)*t(19)+t(2)*t(23)+t(3)*t(27)+t(4)*t(31)-t(17)*t(3)-t(18)*t(7)-t(19)*t(11)-t(20)*t(15);

poly e014=t(1)*t(20)+t(2)*t(24)+t(3)*t(28)+t(4)*t(32)-t(17)*t(4)-t(18)*t(8)-t(19)*t(12)-t(20)*t(16);

poly e015=t(5)*t(17)+t(6)*t(21)+t(7)*t(25)+t(8)*t(29)-t(21)*t(1)-t(22)*t(5)-t(23)*t(9)-t(24)*t(13);

poly e016=t(5)*t(18)+t(6)*t(22)+t(7)*t(26)+t(8)*t(30)-t(21)*t(2)-t(22)*t(6)-t(23)*t(10)-t(24)*t(14);

poly e017=t(5)*t(19)+t(6)*t(23)+t(7)*t(27)+t(8)*t(31)-t(21)*t(3)-t(22)*t(7)-t(23)*t(11)-t(24)*t(15);

poly e018=t(5)*t(20)+t(6)*t(24)+t(7)*t(28)+t(8)*t(32)-t(21)*t(4)-t(22)*t(8)-t(23)*t(12)-t(24)*t(16);

poly e019=t(9)*t(17)+t(10)*t(21)+t(11)*t(25)+t(12)*t(29)-t(25)*t(1)-t(26)*t(5)-t(27)*t(9)-t(28)*t(13);

poly e0110=t(9)*t(18)+t(10)*t(22)+t(11)*t(26)+t(12)*t(30)-t(25)*t(2)-t(26)*t(6)-t(27)*t(10)-t(28)*t(14);

poly e0111=t(9)*t(19)+t(10)*t(23)+t(11)*t(27)+t(12)*t(31)-t(25)*t(3)-t(26)*t(7)-t(27)*t(11)-t(28)*t(15);

poly e0112=t(9)*t(20)+t(10)*t(24)+t(11)*t(28)+t(12)*t(32)-t(25)*t(4)-t(26)*t(8)-t(27)*t(12)-t(28)*t(16);

poly e0113=t(13)*t(17)+t(14)*t(21)+t(15)*t(25)+t(16)*t(29)-t(29)*t(1)-t(30)*t(5)-t(31)*t(9)-t(32)*t(13);

poly e0114=t(13)*t(18)+t(14)*t(22)+t(15)*t(26)+t(16)*t(30)-t(29)*t(2)-t(30)*t(6)-t(31)*t(10)-t(32)*t(14);

poly e0115=t(13)*t(19)+t(14)*t(23)+t(15)*t(27)+t(16)*t(31)-t(29)*t(3)-t(30)*t(7)-t(31)*t(11)-t(32)*t(15);

poly e0116=t(13)*t(20)+t(14)*t(24)+t(15)*t(28)+t(16)*t(32)-t(29)*t(4)-t(30)*t(8)-t(31)*t(12)-t(32)*t(16);
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poly e021=t(1)*t(33)+t(2)*t(37)+t(3)*t(41)+t(4)*t(45)-t(33)*t(1)-t(34)*t(5)-t(35)*t(9)-t(36)*t(13);

poly e022=t(1)*t(34)+t(2)*t(38)+t(3)*t(42)+t(4)*t(46)-t(33)*t(2)-t(34)*t(6)-t(35)*t(10)-t(36)*t(14);

poly e023=t(1)*t(35)+t(2)*t(39)+t(3)*t(43)+t(4)*t(47)-t(33)*t(3)-t(34)*t(7)-t(35)*t(11)-t(36)*t(15);

poly e024=t(1)*t(36)+t(2)*t(40)+t(3)*t(44)+t(4)*t(48)-t(33)*t(4)-t(34)*t(8)-t(35)*t(12)-t(36)*t(16);

poly e025=t(5)*t(33)+t(6)*t(37)+t(7)*t(41)+t(8)*t(45)-t(37)*t(1)-t(38)*t(5)-t(39)*t(9)-t(40)*t(13);

poly e026=t(5)*t(34)+t(6)*t(38)+t(7)*t(42)+t(8)*t(46)-t(37)*t(2)-t(38)*t(6)-t(39)*t(10)-t(40)*t(14);

poly e027=t(5)*t(35)+t(6)*t(39)+t(7)*t(43)+t(8)*t(47)-t(37)*t(3)-t(38)*t(7)-t(39)*t(11)-t(40)*t(15);

poly e028=t(5)*t(36)+t(6)*t(40)+t(7)*t(44)+t(8)*t(48)-t(37)*t(4)-t(38)*t(8)-t(39)*t(12)-t(40)*t(16);

poly e029=t(9)*t(33)+t(10)*t(37)+t(11)*t(41)+t(12)*t(45)-t(41)*t(1)-t(42)*t(5)-t(43)*t(9)-t(44)*t(13);

poly e0210=t(9)*t(34)+t(10)*t(38)+t(11)*t(42)+t(12)*t(46)-t(41)*t(2)-t(42)*t(6)-t(43)*t(10)-t(44)*t(14);

poly e0211=t(9)*t(35)+t(10)*t(39)+t(11)*t(43)+t(12)*t(47)-t(41)*t(3)-t(42)*t(7)-t(43)*t(11)-t(44)*t(15);

poly e0212=t(9)*t(36)+t(10)*t(40)+t(11)*t(44)+t(12)*t(48)-t(41)*t(4)-t(42)*t(8)-t(43)*t(12)-t(44)*t(16);

poly e0213=t(13)*t(33)+t(14)*t(37)+t(15)*t(41)+t(16)*t(45)-t(45)*t(1)-t(46)*t(5)-t(47)*t(9)-t(48)*t(13);

poly e0214=t(13)*t(34)+t(14)*t(38)+t(15)*t(42)+t(16)*t(46)-t(45)*t(2)-t(46)*t(6)-t(47)*t(10)-t(48)*t(14);

poly e0215=t(13)*t(35)+t(14)*t(39)+t(15)*t(43)+t(16)*t(47)-t(45)*t(3)-t(46)*t(7)-t(47)*t(11)-t(48)*t(15);

poly e0216=t(13)*t(36)+t(14)*t(40)+t(15)*t(44)+t(16)*t(48)-t(45)*t(4)-t(46)*t(8)-t(47)*t(12)-t(48)*t(16);

poly e121=t(17)*t(33)+t(18)*t(37)+t(19)*t(41)+t(20)*t(45)-t(33)*t(17)-t(34)*t(21)-t(35)*t(25)-t(36)*t(29);

poly e122=t(17)*t(34)+t(18)*t(38)+t(19)*t(42)+t(20)*t(46)-t(33)*t(18)-t(34)*t(22)-t(35)*t(26)-t(36)*t(30);

poly e123=t(17)*t(35)+t(18)*t(39)+t(19)*t(43)+t(20)*t(47)-t(33)*t(19)-t(34)*t(23)-t(35)*t(27)-t(36)*t(31);

poly e124=t(17)*t(36)+t(18)*t(40)+t(19)*t(44)+t(20)*t(48)-t(33)*t(20)-t(34)*t(24)-t(35)*t(28)-t(36)*t(32);

poly e125=t(21)*t(33)+t(22)*t(37)+t(23)*t(41)+t(24)*t(45)-t(37)*t(17)-t(38)*t(21)-t(39)*t(25)-t(40)*t(29);

poly e126=t(21)*t(34)+t(22)*t(38)+t(23)*t(42)+t(24)*t(46)-t(37)*t(18)-t(38)*t(22)-t(39)*t(26)-t(40)*t(30);

poly e127=t(21)*t(35)+t(22)*t(39)+t(23)*t(43)+t(24)*t(47)-t(37)*t(19)-t(38)*t(23)-t(39)*t(27)-t(40)*t(31);
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poly e128=t(21)*t(36)+t(22)*t(40)+t(23)*t(44)+t(24)*t(48)-t(37)*t(20)-t(38)*t(24)-t(39)*t(28)-t(40)*t(32);

poly e129=t(25)*t(33)+t(26)*t(37)+t(27)*t(41)+t(28)*t(45)-t(41)*t(17)-t(42)*t(21)-t(43)*t(25)-t(44)*t(29);

poly e1210=t(25)*t(34)+t(26)*t(38)+t(27)*t(42)+t(28)*t(46)-t(41)*t(18)-t(42)*t(22)-t(43)*t(26)-t(44)*t(30);

poly e1211=t(25)*t(35)+t(26)*t(39)+t(27)*t(43)+t(28)*t(47)-t(41)*t(19)-t(42)*t(23)-t(43)*t(27)-t(44)*t(31);

poly e1212=t(25)*t(36)+t(26)*t(40)+t(27)*t(44)+t(28)*t(48)-t(41)*t(20)-t(42)*t(24)-t(43)*t(28)-t(44)*t(32);

poly e1213=t(29)*t(33)+t(30)*t(37)+t(31)*t(41)+t(32)*t(45)-t(45)*t(17)-t(46)*t(21)-t(47)*t(25)-t(48)*t(29);

poly e1214=t(29)*t(34)+t(30)*t(38)+t(31)*t(42)+t(32)*t(46)-t(45)*t(18)-t(46)*t(22)-t(47)*t(26)-t(48)*t(30);

poly e1215=t(29)*t(35)+t(30)*t(39)+t(31)*t(43)+t(32)*t(47)-t(45)*t(19)-t(46)*t(23)-t(47)*t(27)-t(48)*t(31);

poly e1216=t(29)*t(36)+t(30)*t(40)+t(31)*t(44)+t(32)*t(48)-t(45)*t(20)-t(46)*t(24)-t(47)*t(28)-t(48)*t(32);

poly f01=t(49)*t(2) - t(50)*t(5);

poly f02=t(49)*t(3) - t(51)*t(9);

poly f03=t(49)*t(4) - t(52)*t(13);

poly f04=t(50)*t(7) - t(51)*t(10);

poly f05=t(50)*t(8) - t(52)*t(14);

poly f06=t(51)*t(12) - t(52)*t(15);

poly f11=t(49)*t(18) - t(50)*t(21);

poly f12=t(49)*t(19) - t(51)*t(25);

poly f13=t(49)*t(20) - t(52)*t(29);

poly f14=t(50)*t(23) - t(51)*t(26);

poly f15=t(50)*t(24) - t(52)*t(30);

poly f16=t(51)*t(28) - t(52)*t(31);
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poly f21=t(49)*t(34) - t(50)*t(37);

poly f22=t(49)*t(35) - t(51)*t(41);

poly f23=t(49)*t(36) - t(52)*t(45);

poly f24=t(50)*t(39) - t(51)*t(42);

poly f25=t(50)*t(40) - t(52)*t(46);

poly f26=t(51)*t(44) - t(52)*t(47);

poly root1=w(1)*t(49) - z^2;

poly root2=w(2)*t(50) - z^2;

poly root3=w(3)*t(51) - z^2;

poly root4=w(4)*t(52) - z^2;

ideal t0= d1, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11, d12, e011, e012, e013, e014, e015, e016, e017, e018, e019,

e0110, e0111, e0112, e0113, e0114, e0115, e0116, e021, e022, e023, e024, e025, e026, e027, e028, e029,

e0210, e0211, e0212, e0213, e0214, e0215, e0216, e121, e122, e123, e124, e125, e126, e127, e128, e129,

e1210, e1211, e1212, e1213, e1214, e1215, e1216, f01, f02, f03, f04, f05, f06, f11, f12, f13, f14, f15,

f16, f21, f22, f23, f24, f25, f26, root1,root2, root3, root4, p1, p2, p3, p4, p5, p6, p7, p8, p9, p10,

p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23, p24, p25, p26, p27, p28, p29, p30, p31,

p32, p33, p34, p35, p36, p37, p38, p39, p40, p41, p42, p43, p44, p45, p46, p47, p48, p49, p50, p51,p52,

p53, p54, p55, p56, p57, p58, p59, p60, p61, p62, p63, p64;

degBound=5;

ideal g=std(t0);

nselect(g,1,57);



153

Here we give the output of the above code :

SINGULAR / Development

A Computer Algebra System for Polynomial Computations / version 3-0-4

0<

by: G.-M. Greuel, G. Pfister, H. Schoenemann \ Nov 2007

FB Mathematik der Universitaet, D-67653 Kaiserslautern \

// ** loaded /usr/lib/singular/elim.lib (1.22,2008/04/22)

// ** loaded /usr/lib/singular/poly.lib (1.46,2007/07/25)

// ** loaded /usr/lib/singular/ring.lib (1.32,2008/03/25)

// ** loaded /usr/lib/singular/primdec.lib (1.139,2008/03/19)

// ** loaded /usr/lib/singular/absfact.lib (1.6,2007/07/13)

// ** loaded /usr/lib/singular/triang.lib (1.11,2006/12/06)

// ** loaded /usr/lib/singular/matrix.lib (1.41,2007/12/22)

// ** loaded /usr/lib/singular/random.lib (1.17,2006/07/20)

// ** loaded /usr/lib/singular/general.lib (1.56,2008/03/18)

// ** loaded /usr/lib/singular/inout.lib (1.30,2007/11/29)

_[1]=q(45)^5+q(46)^5+q(47)^5+q(48)^5-q(57)^5-q(58)^5-q(59)^5-q(60)^5

_[2]=q(36)^5+q(40)^5+q(44)^5+q(48)^5-q(51)^5-q(55)^5-q(59)^5-q(63)^5

_[3]=q(29)^5+q(30)^5+q(31)^5+q(32)^5-q(53)^5-q(54)^5-q(55)^5-q(56)^5

_[4]=q(25)^5+q(26)^5+q(27)^5+q(28)^5-q(37)^5-q(38)^5-q(39)^5-q(40)^5

_[5]=q(20)^5+q(24)^5+q(28)^5+q(32)^5-q(50)^5-q(54)^5-q(58)^5-q(62)^5

_[6]=q(19)^5+q(23)^5+q(27)^5+q(31)^5-q(34)^5-q(38)^5-q(42)^5-q(46)^5

_[7]=q(13)^5+q(14)^5+q(15)^5+q(16)^5-q(49)^5-q(50)^5-q(51)^5-q(52)^5

_[8]=q(12)^5-q(15)^5+q(28)^5-q(31)^5+q(44)^5-q(47)^5+q(60)^5-q(63)^5

_[9]=q(9)^5+q(10)^5+q(11)^5+q(15)^5-q(28)^5+q(31)^5-q(33)^5-q(34)^5

-q(35)^5+q(40)^5+q(47)^5+q(48)^5-q(51)^5-q(55)^5-q(59)^5-q(60)^5

_[10]=q(8)^5-q(14)^5+q(24)^5-q(30)^5+q(40)^5-q(46)^5+q(56)^5-q(62)^5

_[11]=q(7)^5-q(10)^5+q(23)^5-q(26)^5+q(39)^5-q(42)^5+q(55)^5-q(58)^5

_[12]=q(5)^5+q(6)^5+q(10)^5+q(14)^5-q(17)^5-q(18)^5+q(26)^5+q(27)^5

+q(28)^5+q(30)^5+q(31)^5+q(32)^5-q(34)^5-q(38)^5-q(39)^5-q(40)^5

-q(50)^5-q(54)^5-q(55)^5-q(56)^5

_[13]=q(4)^5-q(13)^5-q(24)^5-q(28)^5-q(29)^5-q(32)^5-q(40)^5-q(44)^5

-q(45)^5-q(48)^5+q(50)^5+q(51)^5+q(52)^5+q(54)^5+q(55)^5+q(58)^5

+q(59)^5-q(61)^5+q(62)^5+q(63)^5

_[14]=q(3)^5-q(9)^5-q(23)^5-q(25)^5-q(27)^5-q(31)^5+q(34)^5+q(35)^5

+q(38)^5-q(41)^5+q(42)^5+q(46)^5+q(51)^5-q(57)^5

_[15]=q(2)^5-q(5)^5+q(18)^5-q(21)^5+q(34)^5-q(37)^5+q(50)^5-q(53)^5
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Appendix B

Observed Fisher Information Ma-
trix

Consider a discrete-time Markov model M with equal row composition, i.e. up to a

permutation the set of free parameters in each row is the same. Let us denote by d

the degrees of freedom of the model, so that the total number of parameters for any

substitution matrix inM is d+ 1. In addition, let us assume that the root distribution

is uniform.

First we derive the formula for the Fisher information matrix omitting the stochastic

condition of matrix rows summing to 1.

Let T be a phylogenetic tree and let ξ = (ξek)k=1,...,d+1,e∈E(T ) be the vector of

parameters of M (i.e the distinct entries of the transition matrices Ae for the edges e

of T .)

Let y denote a set of states assigned jointly to the hidden nodes (including the root)

and x a pattern at the L(T ), e.g. x = (a . . . , a︸ ︷︷ ︸
|L(T )|

). Also, denote by X the set of x. Given the

states in the complete model, (x,y), let α(e,x,y) denote the corresponding index of the

parameter in Ae edge e. It is the index of the entry of Ae given by the states in the parent

and child nodes of e dictated by x and y. For instance, if the states at the two ends of e

are c and g, then α(e,x,y) is the index of the entry (2, 3)th entry of Ae. For notational

convenience, let ne = |E(T )|. Also, we write (ux)x∈X = {ua...a, ua...c, . . . , ut...t} for the

set of occurrence of the observed patterns in the columns of the alignment. We can

write the formula for the joint probability of a pattern x as

px(ξ) =
∑
y

ne∏
e=1

ξeα(e,x,y).

We first list the formulas for the derivatives

∂px(ξ)
∂ξek

=
∑

y:α(e,x,y)=k

∏
f 6=e

ξfα(x,y)

In the second derivatives, deriving twice with respect to the same edges, that is when

e = e′, gives ∂2px(ξ)
∂ξe
k
∂ξe
k′

= 0, since the sum of the monomials in the expression for the joint

probability contains exactly one ξek per branch.
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On the other hand if e 6= e′

∂2px(ξ)
∂ξek∂ξ

e′
k′

=
∑

J such that
α(e,I,J)=k
α(e′,I,J)=k′

∏
f 6=e,e′

ξfα(f,I,J)

We will write uD for the set of counts of patterns at the leaves uD = (ux)x∈X , which is

a vector of length 4|L(T )|. We note that for some of its entries the counts will be 0. Let

L =
∑
x∈X ux.

The Fisher information matrix with the unrestricted parameters is

Iun(e, k; e′, k′) = −E

(
∂2Lobs(ξ;uD)
∂ξek∂ξ

e′
k′

)

=
∑
x∈X
−E(ux)

∂2

∂ξek∂ξ
e′
k′

log px(ξ)

=
∑
x∈X
−Lpx(ξ)

∂

∂ξek

(
1

px(ξ)
∂px(ξ)
∂ξe

′
k′

)

=
∑
x∈X
−Lpx(ξ)

(
−1

px(ξ)2
∂px(ξ)
∂ξek

∂px(ξ)
∂ξe

′
k′

+
1

px(ξ)
∂2px(ξ)
∂ξek∂ξ

e′
k′

)

= L
∑
x∈X

(
1

px(ξ)
∂px(ξ)
∂ξek

∂px(ξ)
∂ξe

′
k′
− ∂2px(ξ)
∂ξek∂ξ

e′
k′

)

We used the fact that the expected value of the sample mean is the population mean:

E(ux) = Lpx(ξ). In the above derivation we used the chain rule.

As a last step we add the stochastic condition and compute the Fisher information

matrix for the free parameters. We will denote this dne × dne matrix by I. Stochastic

condition is the same for each row:

ξe1 = 1− C2ξ
e
2 − · · · − Cd+1ξ

e
d+1,

where Ci the number of times the parameter ξei appears in a row. Note that ξ =

(ξek)k=2,...,d+1 are now the free parameters. For example, for K81∗d = 3 and C2 = C3 =

C4 = 1 and for JC69∗ d = 1, so C2 = 3. The particular structure of the models we

consider (rows contain the same set of free parameters), and modeling the evolutionary

process by the same model at distinct branches, we have that Cek = Ce
′
k .

Now, for k, k′ = 2 . . . , d+ 1, we have

I(ξek, ξ
e′
k′) = −E

(
∂2Lobs(ξ;uD)
∂ξek∂ξ

e′
k′

)
= −E

(
∂

∂ξek

(
∂Lobs(ξ;uD)

∂ξe
′

1

∂ξe
′

1

∂ξe
′
k′

+
∂Lobs(ξ;uD)

∂ξe
′
k′

))

= −E

((
∂2Lobs(ξ;uD)

∂ξe1∂ξ
e′
1

∂ξe1
∂ξek

+
∂2Lobs(ξ;uD)
∂ξek∂ξ

e′
1

)
∂ξe

′
1

∂ξe
′
k′

)

−E

(
∂2Lobs(ξ;uD)
∂ξe1∂ξ

e′
k′

∂ξe1
∂ξek

+
∂2Lobs(ξ;uD)
∂ξek∂ξ

e′
k′

)
= Iun(e, 1; e′, 1)CkCk′

− Iun(e, k; e′, 1)Ck′ − Iun(e, 1; e′, k′)Ck + Iun(e, k; e′, k′).
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The formulae for the SSM and the GMM model can be obtained analogously by adding

extra stochastic conditions for the remaining rows of the matrix Ae (1 for the SSM and

3 for the GMM) and the conditions of the root distribution (stochastic condition for both

models and additional base-pairing property for the SSM).
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Appendix C

Empar performance assessement

Table C.1: The relative frequency of the χ2 tests based on the asymptotic normality of the
maximum likelihood estimator with p-value∈ (0.05, 0.95) calculated from 1.000 simulations
under the JC69∗ model. Each data set was a multiple sequence alignment generated on the
Tbalanced tree with the depth branch length set to the values indicated by the first columns. We
present results for a variety of data lengths L and with the distinction as to the positioning of
the branch in the tree.

depth 1 depth 2
l \ L 300nt 500nt 1.000nt 10.000nt 300nt 500nt 1.000nt 10.000nt
0.01 0.968 0.970 0.973 0.947 0.979 0.978 0.971 0.955
0.05 0.955 0.949 0.952 0.941 0.933 0.959 0.950 0.945
0.10 0.953 0.943 0.947 0.951 0.967 0.953 0.938 0.965
0.15 0.951 0.950 0.957 0.951 0.949 0.945 0.947 0.944
0.20 0.946 0.969 0.947 0.947 0.938 0.936 0.949 0.957
0.25 0.949 0.948 0.935 0.951 0.941 0.945 0.956 0.942
0.30 0.944 0.959 0.946 0.960 0.948 0.945 0.942 0.951
0.35 0.956 0.950 0.946 0.938 0.947 0.954 0.958 0.948
0.40 0.940 0.949 0.948 0.947 0.949 0.934 0.945 0.946
0.45 0.954 0.942 0.944 0.956 0.925 0.943 0.947 0.959
0.50 0.948 0.949 0.950 0.957 0.945 0.945 0.957 0.949
0.55 0.939 0.942 0.953 0.948 0.948 0.939 0.946 0.953
0.60 0.919 0.940 0.938 0.946 0.926 0.944 0.933 0.940
0.65 0.887 0.919 0.928 0.949 0.933 0.918 0.951 0.955
0.70 0.890 0.890 0.928 0.948 0.935 0.926 0.931 0.940
0.75 0.864 0.884 0.920 0.953 0.950 0.939 0.930 0.957
0.80 0.862 0.890 0.898 0.958 0.952 0.937 0.927 0.943
0.85 0.845 0.844 0.890 0.949 0.937 0.958 0.921 0.949
0.90 0.821 0.818 0.874 0.939 0.928 0.943 0.948 0.944
0.95 0.767 0.806 0.848 0.943 0.913 0.955 0.952 0.935
1.00 0.788 0.784 0.820 0.942 0.902 0.930 0.952 0.939
1.05 0.757 0.784 0.800 0.907 0.877 0.933 0.952 0.924
1.10 0.778 0.785 0.805 0.894 0.970 0.894 0.943 0.900
1.15 0.968 0.771 0.776 0.862 0.967 0.861 0.929 0.895
1.20 0.960 0.794 0.760 0.865 0.959 0.875 0.923 0.915
1.25 0.956 0.962 0.754 0.839 0.956 0.967 0.903 0.961
1.30 0.950 0.960 0.777 0.836 0.942 0.960 0.870 0.971
1.35 0.933 0.956 0.800 0.796 0.942 0.954 0.836 0.967
1.40 0.929 0.948 0.963 0.783 0.944 0.959 0.966 0.965
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Table C.2: The relative frequency of the χ2 tests based on the asymptotic normality of the
maximum likelihood estimator with p-value∈ (0.05, 0.95) calculated from 1.000 simulations
under the JC69∗ model. Each data set was a multiple sequence alignment generated on the T2:1
tree with the depth branch length set to the values indicated by the first columns. We present
results for a variety of data lengths L and with the distinction as to the positioning of the
branch in the tree.

depth 1 depth 2
l \ L 300nt 500nt 1.000nt 10.000nt 300nt 500nt 1.000nt 10.000nt
0.01 0.990 0.965 0.979 0.940 0.962 0.968 0.957 0.942
0.05 0.955 0.938 0.959 0.946 0.955 0.944 0.939 0.961
0.10 0.953 0.958 0.963 0.950 0.948 0.950 0.950 0.952
0.15 0.961 0.959 0.939 0.959 0.962 0.945 0.948 0.946
0.20 0.950 0.944 0.953 0.940 0.953 0.945 0.943 0.947
0.25 0.953 0.950 0.952 0.941 0.954 0.966 0.955 0.946
0.30 0.957 0.944 0.955 0.950 0.942 0.939 0.965 0.951
0.35 0.940 0.952 0.949 0.943 0.945 0.953 0.965 0.953
0.40 0.922 0.959 0.951 0.947 0.940 0.950 0.954 0.948
0.45 0.946 0.958 0.949 0.954 0.947 0.949 0.957 0.942
0.50 0.942 0.958 0.946 0.943 0.957 0.941 0.942 0.953
0.55 0.960 0.937 0.954 0.942 0.966 0.944 0.950 0.951
0.60 0.939 0.950 0.947 0.959 0.955 0.958 0.958 0.950
0.65 0.942 0.946 0.949 0.937 0.941 0.956 0.945 0.939
0.70 0.953 0.934 0.944 0.941 0.943 0.941 0.953 0.953
0.75 0.937 0.937 0.946 0.956 0.951 0.958 0.944 0.945
0.80 0.931 0.942 0.929 0.943 0.936 0.951 0.948 0.951
0.85 0.914 0.920 0.939 0.943 0.945 0.948 0.929 0.947
0.90 0.904 0.910 0.947 0.934 0.943 0.937 0.936 0.945
0.95 0.899 0.921 0.929 0.957 0.949 0.933 0.944 0.953
1.00 0.918 0.911 0.941 0.956 0.949 0.925 0.950 0.949
1.05 0.898 0.901 0.924 0.953 0.954 0.943 0.942 0.950
1.10 0.880 0.895 0.918 0.941 0.955 0.957 0.942 0.963
1.15 0.875 0.901 0.908 0.933 0.958 0.957 0.924 0.945
1.20 0.859 0.871 0.895 0.954 0.951 0.959 0.944 0.957
1.25 0.853 0.859 0.905 0.964 0.955 0.950 0.938 0.940
1.30 0.826 0.839 0.883 0.935 0.952 0.961 0.944 0.939
1.35 0.810 0.829 0.878 0.942 0.947 0.957 0.964 0.962
1.40 0.974 0.836 0.875 0.930 0.952 0.962 0.951 0.932

Table C.3: The relative frequency of the χ2 tests based on the asymptotic normality of the
maximum likelihood estimator with p-value∈ (0.05, 0.95) calculated from 1.000 simulations
under the K81∗ model. Each data set was a multiple sequence alignment generated on the
T 4balanced tree with the depth branch length set to the values indicated by the first columns. We
present results for a variety of data lengths L and with the distinction as to the positioning of
the branch in the tree.

depth 1 depth 2
l \ L 300nt 500nt 1.000nt 10.000nt 300nt 500nt 1.000nt 10.000nt
0.01 0.904 0.930 0.931 0.945 0.900 0.919 0.936 0.954
0.05 0.942 0.949 0.941 0.947 0.932 0.948 0.941 0.949
0.10 0.937 0.948 0.949 0.949 0.965 0.933 0.941 0.945
0.15 0.936 0.942 0.947 0.953 0.945 0.953 0.941 0.951
0.20 0.938 0.938 0.944 0.955 0.947 0.938 0.944 0.953
0.25 0.946 0.951 0.956 0.949 0.950 0.950 0.954 0.953
0.30 0.949 0.959 0.954 0.965 0.947 0.942 0.941 0.958
0.35 0.943 0.935 0.935 0.949 0.944 0.964 0.952 0.950
0.40 0.945 0.938 0.950 0.950 0.939 0.947 0.951 0.956
0.45 0.922 0.938 0.953 0.937 0.942 0.954 0.948 0.939
0.50 0.919 0.937 0.941 0.944 0.932 0.925 0.954 0.956
0.55 0.930 0.931 0.937 0.948 0.926 0.927 0.951 0.944
0.60 0.902 0.911 0.937 0.960 0.923 0.936 0.953 0.947
0.65 0.913 0.921 0.928 0.949 0.916 0.937 0.939 0.959
0.70 0.880 0.895 0.926 0.943 0.908 0.909 0.935 0.943
0.75 0.883 0.907 0.903 0.935 0.924 0.906 0.927 0.941
0.80 0.877 0.860 0.884 0.941 0.899 0.903 0.921 0.941
0.85 0.883 0.868 0.871 0.935 0.876 0.887 0.898 0.947
0.90 0.861 0.869 0.876 0.939 0.865 0.888 0.897 0.944
0.95 0.861 0.862 0.885 0.924 0.862 0.883 0.893 0.936
1.00 0.840 0.843 0.863 0.921 0.888 0.883 0.889 0.935
1.05 0.864 0.860 0.860 0.908 0.863 0.854 0.872 0.938
1.10 0.840 0.835 0.858 0.896 0.868 0.873 0.844 0.924
1.15 0.832 0.831 0.842 0.882 0.849 0.865 0.860 0.912
1.20 0.831 0.811 0.836 0.903 0.835 0.855 0.847 0.903
1.25 0.832 0.814 0.816 0.862 0.830 0.832 0.840 0.905
1.30 0.779 0.799 0.828 0.868 0.820 0.800 0.846 0.871
1.35 0.790 0.816 0.820 0.878 0.808 0.849 0.831 0.868
1.40 0.806 0.820 0.806 0.856 0.804 0.830 0.848 0.850
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Table C.4: The relative frequency of the χ2 tests based on the asymptotic normality of the
maximum likelihood estimator with p-value∈ (0.05, 0.95) calculated from 1.000 simulations
under the K81∗ model. Each data set was a multiple sequence alignment generated on the T1:2
tree with the depth branch length set to the values indicated by the first columns. We present
results for a variety of data lengths L and with the distinction as to the positioning of the
branch in the tree.

depth 1 depth 2
l \ L 300nt 500nt 1.000nt 10.000nt 300nt 500nt 1.000nt 10.000nt
0.01 0.903 0.913 0.939 0.953 0.888 0.891 0.938 0.942
0.05 0.937 0.934 0.946 0.947 0.937 0.942 0.943 0.954
0.10 0.934 0.937 0.953 0.951 0.932 0.942 0.947 0.945
0.15 0.941 0.948 0.942 0.945 0.928 0.939 0.941 0.941
0.20 0.948 0.942 0.956 0.953 0.936 0.946 0.949 0.948
0.25 0.941 0.939 0.934 0.956 0.930 0.950 0.939 0.948
0.30 0.955 0.942 0.958 0.954 0.942 0.938 0.927 0.944
0.35 0.943 0.936 0.955 0.941 0.932 0.949 0.936 0.949
0.40 0.940 0.941 0.946 0.939 0.948 0.931 0.949 0.959
0.45 0.929 0.942 0.940 0.951 0.938 0.943 0.958 0.941
0.50 0.930 0.943 0.944 0.952 0.939 0.947 0.957 0.949
0.55 0.936 0.947 0.930 0.942 0.943 0.938 0.943 0.941
0.60 0.925 0.935 0.939 0.937 0.926 0.935 0.952 0.958
0.65 0.914 0.931 0.927 0.941 0.930 0.942 0.950 0.947
0.70 0.911 0.919 0.928 0.949 0.934 0.926 0.929 0.950
0.75 0.884 0.886 0.926 0.942 0.927 0.925 0.934 0.933
0.80 0.883 0.911 0.926 0.944 0.941 0.918 0.928 0.946
0.85 0.883 0.876 0.915 0.964 0.910 0.939 0.928 0.952
0.90 0.880 0.874 0.902 0.941 0.924 0.922 0.936 0.944
0.95 0.864 0.867 0.895 0.940 0.904 0.935 0.922 0.937
1.00 0.871 0.878 0.885 0.938 0.909 0.920 0.921 0.924
1.05 0.817 0.852 0.895 0.919 0.896 0.919 0.912 0.929
1.10 0.854 0.836 0.884 0.935 0.839 0.905 0.901 0.927
1.15 0.847 0.853 0.871 0.924 0.860 0.879 0.920 0.907
1.20 0.864 0.872 0.860 0.919 0.844 0.883 0.902 0.927
1.25 0.832 0.825 0.854 0.922 0.816 0.862 0.879 0.937
1.30 0.830 0.832 0.844 0.901 0.796 0.847 0.884 0.932
1.35 0.847 0.824 0.864 0.904 0.815 0.860 0.870 0.922
1.40 0.838 0.849 0.827 0.901 0.803 0.818 0.866 0.912

Table C.5: The relative frequency of the χ2 tests based on the asymptotic normality of the
maximum likelihood estimator with p-value∈ (0.05, 0.95) calculated from 1.000 simulations
under the K81∗ model. Each data set was a multiple sequence alignment generated on the T2:1
tree with the depth branch length set to the values indicated by the first columns. We present
results for a variety of data lengths L and with the distinction as to the positioning of the
branch in the tree.

depth 1 depth 2
l \ L 300nt 500nt 1.000nt 10.000nt 300nt 500nt 1.000nt 10.000nt
0.01 0.880 0.891 0.921 0.928 0.918 0.912 0.941 0.950
0.05 0.927 0.916 0.941 0.948 0.936 0.950 0.954 0.942
0.10 0.942 0.942 0.938 0.942 0.955 0.944 0.949 0.950
0.15 0.939 0.938 0.949 0.940 0.951 0.939 0.945 0.953
0.20 0.938 0.938 0.948 0.952 0.950 0.930 0.950 0.935
0.25 0.943 0.933 0.936 0.948 0.955 0.948 0.942 0.949
0.30 0.940 0.945 0.952 0.956 0.950 0.935 0.963 0.956
0.35 0.934 0.938 0.945 0.955 0.947 0.936 0.940 0.955
0.40 0.944 0.947 0.938 0.943 0.933 0.953 0.955 0.940
0.45 0.943 0.949 0.948 0.950 0.937 0.947 0.944 0.941
0.50 0.944 0.951 0.947 0.961 0.939 0.954 0.942 0.951
0.55 0.932 0.932 0.949 0.949 0.941 0.944 0.951 0.954
0.60 0.928 0.940 0.949 0.954 0.944 0.958 0.949 0.946
0.65 0.932 0.943 0.931 0.941 0.951 0.948 0.952 0.949
0.70 0.925 0.946 0.942 0.950 0.939 0.933 0.953 0.962
0.75 0.928 0.932 0.936 0.952 0.937 0.941 0.952 0.943
0.80 0.923 0.919 0.944 0.937 0.940 0.946 0.950 0.953
0.85 0.925 0.935 0.932 0.952 0.941 0.937 0.932 0.947
0.90 0.915 0.926 0.936 0.947 0.938 0.938 0.942 0.951
0.95 0.907 0.930 0.945 0.949 0.928 0.939 0.949 0.939
1.00 0.918 0.924 0.924 0.933 0.931 0.936 0.942 0.954
1.05 0.923 0.907 0.902 0.945 0.907 0.931 0.948 0.946
1.10 0.898 0.910 0.916 0.945 0.913 0.942 0.924 0.950
1.15 0.905 0.903 0.913 0.947 0.902 0.923 0.940 0.950
1.20 0.901 0.899 0.908 0.937 0.885 0.930 0.925 0.966
1.25 0.885 0.897 0.916 0.946 0.889 0.913 0.940 0.945
1.30 0.892 0.906 0.901 0.928 0.896 0.891 0.927 0.952
1.35 0.852 0.895 0.892 0.932 0.883 0.889 0.921 0.954
1.40 0.872 0.863 0.881 0.930 0.883 0.897 0.919 0.947
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Table C.6: Variance of ξ̂, (×10−2), under the JC69∗ model for T 4
balanced. Branch length

varied as listed in the first column. The results are presented for the depth 1 and depth
2 branches and varying multiple sequence alignment lengths.

depth 1 depth 2
l \ L 300nt 500nt 1.000nt 10.000nt 300nt 500nt 1.000nt 10.000nt
0.01 0.00037 0.00022 0.00011 0.00001 0.00038 0.00023 0.00011 0.00001
0.05 0.00188 0.00113 0.00056 0.00006 0.00198 0.00119 0.00059 0.00006
0.10 0.00385 0.00231 0.00116 0.00012 0.00427 0.00256 0.00128 0.00013
0.15 0.00602 0.00361 0.00181 0.00018 0.00695 0.00417 0.00209 0.00021
0.20 0.00846 0.00508 0.00254 0.00025 0.01014 0.00608 0.00304 0.00030
0.25 0.01128 0.00677 0.00338 0.00034 0.01395 0.00837 0.00418 0.00042
0.30 0.01461 0.00876 0.00438 0.00044 0.01852 0.01111 0.00556 0.00056
0.35 0.01860 0.01116 0.00558 0.00056 0.02405 0.01443 0.00721 0.00072
0.40 0.02347 0.01408 0.00704 0.00070 0.03075 0.01845 0.00922 0.00092
0.45 0.02946 0.01767 0.00884 0.00088 0.03891 0.02335 0.01167 0.00117
0.50 0.03690 0.02214 0.01107 0.00111 0.04889 0.02934 0.01467 0.00147
0.55 0.04623 0.02774 0.01387 0.00139 0.06116 0.03670 0.01835 0.00183
0.60 0.05800 0.03480 0.01740 0.00174 0.07630 0.04578 0.02289 0.00229
0.65 0.07292 0.04375 0.02188 0.00219 0.09508 0.05705 0.02852 0.00285
0.70 0.09195 0.05517 0.02758 0.00276 0.11847 0.07108 0.03554 0.00355
0.75 0.11630 0.06978 0.03489 0.00349 0.14775 0.08865 0.04432 0.00443
0.80 0.14756 0.08854 0.04427 0.00443 0.18456 0.11073 0.05537 0.00554
0.85 0.18782 0.11269 0.05635 0.00563 0.23103 0.13862 0.06931 0.00693
0.90 0.23978 0.14387 0.07194 0.00719 0.28996 0.17397 0.08699 0.00870
0.95 0.30700 0.18420 0.09210 0.00921 0.36495 0.21897 0.10948 0.01095
1.00 0.39408 0.23645 0.11822 0.01182 0.46071 0.27643 0.13821 0.01382
1.05 0.50707 0.30424 0.15212 0.01521 0.58339 0.35004 0.17502 0.01750
1.10 0.65382 0.39229 0.19615 0.01961 0.74098 0.44459 0.22229 0.02223
1.15 0.84462 0.50677 0.25339 0.02534 0.94389 0.56633 0.28317 0.02832
1.20 1.09288 0.65573 0.32786 0.03279 1.20570 0.72342 0.36171 0.03617
1.25 1.41610 0.84966 0.42483 0.04248 1.54412 0.92647 0.46324 0.04632
1.30 1.83715 1.10229 0.55114 0.05511 1.98223 1.18934 0.59467 0.05947
1.35 2.38585 1.43151 0.71576 0.07158 2.55012 1.53007 0.76504 0.07650
1.40 3.10117 1.86070 0.93035 0.09304 3.28704 1.97222 0.98611 0.09861

Table C.7: Variance of ξ̂, (×10−2), under the JC69∗ model for T1:2; see Tab. C.6 for a more
detailed description

depth 1 depth 2
l \ L 300nt 500nt 1.000nt 10.000nt 300nt 500nt 1.000nt 10.000nt
0.01 0.00037 0.00022 0.00011 0.00001 0.00019 0.00011 0.00006 0.00001
0.05 0.00182 0.00109 0.00055 0.00005 0.00109 0.00065 0.00033 0.00003
0.10 0.00364 0.00218 0.00109 0.00011 0.00256 0.00154 0.00077 0.00008
0.15 0.00549 0.00329 0.00165 0.00016 0.00454 0.00272 0.00136 0.00014
0.20 0.00743 0.00446 0.00223 0.00022 0.00715 0.00429 0.00215 0.00021
0.25 0.00951 0.00571 0.00285 0.00029 0.01057 0.00634 0.00317 0.00032
0.30 0.01179 0.00707 0.00354 0.00035 0.01501 0.00901 0.00450 0.00045
0.35 0.01432 0.00859 0.00430 0.00043 0.02071 0.01243 0.00621 0.00062
0.40 0.01717 0.01030 0.00515 0.00051 0.02801 0.01681 0.00840 0.00084
0.45 0.02041 0.01224 0.00612 0.00061 0.03730 0.02238 0.01119 0.00112
0.50 0.02413 0.01448 0.00724 0.00072 0.04908 0.02945 0.01472 0.00147
0.55 0.02845 0.01707 0.00853 0.00085 0.06401 0.03840 0.01920 0.00192
0.60 0.03349 0.02010 0.01005 0.00100 0.08288 0.04973 0.02486 0.00249
0.65 0.03942 0.02365 0.01183 0.00118 0.10673 0.06404 0.03202 0.00320
0.70 0.04642 0.02785 0.01393 0.00139 0.13686 0.08212 0.04106 0.00411
0.75 0.05473 0.03284 0.01642 0.00164 0.17495 0.10497 0.05248 0.00525
0.80 0.06462 0.03877 0.01939 0.00194 0.22312 0.13387 0.06694 0.00669
0.85 0.07644 0.04586 0.02293 0.00229 0.28411 0.17047 0.08523 0.00852
0.90 0.09060 0.05436 0.02718 0.00272 0.36141 0.21685 0.10842 0.01084
0.95 0.10760 0.06456 0.03228 0.00323 0.45952 0.27571 0.13786 0.01379
1.00 0.12806 0.07684 0.03842 0.00384 0.58421 0.35053 0.17526 0.01753
1.05 0.15272 0.09163 0.04582 0.00458 0.74292 0.44575 0.22288 0.02229
1.10 0.18249 0.10949 0.05475 0.00547 0.94523 0.56714 0.28357 0.02836
1.15 0.21846 0.13108 0.06554 0.00655 1.20349 0.72209 0.36105 0.03610
1.20 0.26198 0.15719 0.07859 0.00786 1.53366 0.92020 0.46010 0.04601
1.25 0.31467 0.18880 0.09440 0.00944 1.95636 1.17381 0.58691 0.05869
1.30 0.37851 0.22711 0.11355 0.01136 2.49821 1.49893 0.74946 0.07495
1.35 0.45591 0.27355 0.13677 0.01368 3.19368 1.91621 0.95810 0.09581
1.40 0.54982 0.32989 0.16495 0.01649 4.08736 2.45242 1.22621 0.12262
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Table C.8: Variance of ξ̂, (×10−3), under the JC69∗ model for T2:1; see Tab. C.6 for a more
detailed description.

depth 1 depth 2
l \ L 300nt 500nt 1.000nt 10.000nt 300nt 500nt 1.000nt 10.000nt
0.01 0.00186 0.00112 0.00056 0.00006 0.00368 0.00221 0.00110 0.00011
0.05 0.00956 0.00573 0.00287 0.00029 0.01805 0.01083 0.00541 0.00054
0.10 0.01985 0.01191 0.00596 0.00060 0.03533 0.02120 0.01060 0.00106
0.15 0.03113 0.01868 0.00934 0.00093 0.05212 0.03127 0.01564 0.00156
0.20 0.04367 0.02620 0.01310 0.00131 0.06862 0.04117 0.02059 0.00206
0.25 0.05779 0.03468 0.01734 0.00173 0.08505 0.05103 0.02551 0.00255
0.30 0.07388 0.04433 0.02216 0.00222 0.10158 0.06095 0.03047 0.00305
0.35 0.09238 0.05543 0.02771 0.00277 0.11841 0.07105 0.03552 0.00355
0.40 0.11385 0.06831 0.03416 0.00342 0.13571 0.08142 0.04071 0.00407
0.45 0.13895 0.08337 0.04168 0.00417 0.15366 0.09219 0.04610 0.00461
0.50 0.16845 0.10107 0.05054 0.00505 0.17245 0.10347 0.05173 0.00517
0.55 0.20333 0.12200 0.06100 0.00610 0.19227 0.11536 0.05768 0.00577
0.60 0.24474 0.14685 0.07342 0.00734 0.21335 0.12801 0.06400 0.00640
0.65 0.29409 0.17646 0.08823 0.00882 0.23590 0.14154 0.07077 0.00708
0.70 0.35309 0.21186 0.10593 0.01059 0.26019 0.15611 0.07806 0.00781
0.75 0.42382 0.25429 0.12715 0.01271 0.28648 0.17189 0.08594 0.00859
0.80 0.50881 0.30529 0.15264 0.01526 0.31510 0.18906 0.09453 0.00945
0.85 0.61114 0.36668 0.18334 0.01833 0.34638 0.20783 0.10391 0.01039
0.90 0.73456 0.44074 0.22037 0.02204 0.38073 0.22844 0.11422 0.01142
0.95 0.88365 0.53019 0.26510 0.02651 0.41859 0.25115 0.12558 0.01256
1.00 1.06398 0.63839 0.31919 0.03192 0.46046 0.27627 0.13814 0.01381
1.05 1.28236 0.76941 0.38471 0.03847 0.50691 0.30415 0.15207 0.01521
1.10 1.54708 0.92825 0.46412 0.04641 0.55860 0.33516 0.16758 0.01676
1.15 1.86827 1.12096 0.56048 0.05605 0.61625 0.36975 0.18488 0.01849
1.20 2.25831 1.35498 0.67749 0.06775 0.68073 0.40844 0.20422 0.02042
1.25 2.73227 1.63936 0.81968 0.08197 0.75299 0.45179 0.22590 0.02259
1.30 3.30860 1.98516 0.99258 0.09926 0.83412 0.50047 0.25024 0.02502
1.35 4.00980 2.40588 1.20294 0.12029 0.92539 0.55523 0.27762 0.02776
1.40 4.86337 2.91802 1.45901 0.14590 1.02821 0.61692 0.30846 0.03085

Table C.9: Mean of the variances of ξ̂b(×10−1) for 1.000 samples generated under K81∗ model
for T 4balanced. Branch length of different sets are given in the first column. Depth 1 branches refer
to the branches leading to the leves of the tree, depth 2 to the interior ones. Having confirmed
that both the sets of inner and external branches give virtually same results, here we depict
the results for a selected branch of each of the sets.

depth 1 depth 2
l \ L 300nt 500nt 1.000nt 10.000nt 300nt 500nt 1.000nt 10.000nt
0.01 0.00018 0.00014 0.00011 0.00008 0.00019 0.00014 0.00011 0.00008
0.05 0.00229 0.00206 0.00194 0.00168 0.00231 0.00199 0.00179 0.00168
0.10 0.00728 0.00690 0.00650 0.00619 0.00750 0.00728 0.00657 0.00627
0.15 0.01476 0.01367 0.01341 0.01280 0.01589 0.01414 0.01330 0.01274
0.20 0.02424 0.02293 0.02155 0.02158 0.02484 0.02291 0.02172 0.02155
0.25 0.03438 0.03237 0.03060 0.02972 0.03589 0.03329 0.03187 0.03152
0.30 0.04358 0.04302 0.04151 0.04021 0.04760 0.04402 0.04185 0.04180
0.35 0.05783 0.05270 0.05124 0.04880 0.06181 0.05457 0.05414 0.04962
0.40 0.06954 0.06781 0.06116 0.06227 0.07457 0.06954 0.06232 0.06212
0.45 0.08237 0.07920 0.07715 0.07277 0.08813 0.08388 0.07388 0.07210
0.50 0.09555 0.08855 0.08448 0.07853 0.10567 0.09428 0.08703 0.08699
0.55 0.10950 0.10187 0.09681 0.08900 0.12294 0.11033 0.10166 0.09291
0.60 0.12841 0.11407 0.10603 0.10280 0.14349 0.13227 0.11281 0.10348
0.65 0.14392 0.12495 0.11865 0.10817 0.17056 0.14612 0.12505 0.10895
0.70 0.16076 0.14408 0.12603 0.11740 0.19245 0.16216 0.13681 0.11853
0.75 0.19569 0.15809 0.14051 0.12159 0.22870 0.18760 0.15746 0.12817
0.80 0.21708 0.18257 0.15992 0.13510 0.26844 0.21832 0.17131 0.13211
0.85 0.25384 0.20428 0.17306 0.14160 0.31971 0.24989 0.18872 0.14631
0.90 0.29724 0.23078 0.19043 0.14824 0.39092 0.29057 0.21395 0.14772
0.95 0.35940 0.27887 0.20979 0.15236 0.48425 0.33459 0.24870 0.16324
1.00 0.45058 0.33457 0.24576 0.16853 0.55092 0.41060 0.27174 0.17126
1.05 0.55825 0.41069 0.25767 0.16448 0.72024 0.47179 0.32817 0.17567
1.10 0.71063 0.49548 0.32344 0.18476 0.88286 0.60233 0.37592 0.19163
1.15 0.90301 0.58253 0.40023 0.19254 1.06889 0.71626 0.45984 0.19183
1.20 1.14271 0.88000 0.43978 0.20121 1.35532 0.88789 0.54025 0.20816
1.25 1.57133 0.97347 0.56155 0.21152 1.72189 1.11298 0.65992 0.22020
1.30 2.17904 1.24180 0.76257 0.23530 2.25637 1.38997 0.74390 0.23707
1.35 3.01652 1.87197 0.94136 0.28747 2.66188 1.76640 0.90896 0.25833
1.40 3.41393 2.13294 1.12709 0.28467 3.46262 2.00757 1.13683 0.28258



164 APPENDIX C. EMPAR PERFORMANCE ASSESSEMENT

Table C.10: Mean of the variances of ξ̂b(×10−1) for 1.000 samples generated under the K81∗

model for T1:2; see Tab. C.9 for a more detailed description.
depth 1 depth 2

l \ L 300nt 500nt 1.000nt 10.000nt 300nt 500nt 1.000nt 10.000nt
0.01 0.00018 0.00014 0.00011 0.00008 0.00008 0.00005 0.00004 0.00002
0.05 0.00232 0.00207 0.00192 0.00164 0.00076 0.00063 0.00055 0.00046
0.10 0.00745 0.00702 0.00651 0.00613 0.00249 0.00225 0.00195 0.00172
0.15 0.01406 0.01410 0.01326 0.01281 0.00513 0.00458 0.00410 0.00362
0.20 0.02347 0.02277 0.02105 0.02114 0.00895 0.00793 0.00681 0.00635
0.25 0.03266 0.03184 0.03117 0.02977 0.01291 0.01168 0.01046 0.00954
0.30 0.04494 0.04263 0.04071 0.03980 0.01903 0.01641 0.01403 0.01286
0.35 0.05436 0.05194 0.05036 0.05002 0.02480 0.02183 0.01961 0.01687
0.40 0.06504 0.06199 0.06241 0.05970 0.03337 0.02765 0.02490 0.02096
0.45 0.07864 0.07736 0.07249 0.07178 0.04215 0.03538 0.03073 0.02576
0.50 0.09083 0.08504 0.08386 0.07958 0.05360 0.04454 0.03703 0.03150
0.55 0.10274 0.09519 0.09418 0.09036 0.06636 0.05363 0.04496 0.03413
0.60 0.11975 0.10880 0.10321 0.10020 0.08375 0.06578 0.05299 0.04195
0.65 0.12681 0.11813 0.11548 0.10676 0.10353 0.08069 0.06109 0.04788
0.70 0.14201 0.12794 0.12355 0.11455 0.12777 0.09733 0.07416 0.05101
0.75 0.15499 0.14253 0.13283 0.12752 0.16369 0.12087 0.08929 0.05698
0.80 0.16729 0.15023 0.14369 0.13359 0.19963 0.14677 0.10226 0.06330
0.85 0.18138 0.15917 0.15065 0.13625 0.25722 0.17464 0.11994 0.07099
0.90 0.19610 0.17898 0.15808 0.14101 0.30956 0.22228 0.14488 0.07918
0.95 0.21081 0.19149 0.17013 0.14662 0.39692 0.26992 0.16843 0.08435
1.00 0.23890 0.20060 0.18327 0.15518 0.49922 0.33282 0.20669 0.09534
1.05 0.26122 0.21839 0.19455 0.16155 0.63976 0.41998 0.25218 0.10356
1.10 0.28720 0.24293 0.19973 0.16865 0.81820 0.52855 0.29843 0.11144
1.15 0.31557 0.26544 0.21485 0.16769 1.04257 0.63603 0.38582 0.12646
1.20 0.38017 0.29657 0.22980 0.17678 1.22670 0.78909 0.45575 0.13134
1.25 0.42516 0.31489 0.24917 0.18657 1.65925 1.04029 0.56345 0.15076
1.30 0.53650 0.37458 0.28482 0.18367 1.98764 1.25034 0.66879 0.16397
1.35 0.54247 0.41055 0.31067 0.19938 2.59005 1.57265 0.85285 0.18268
1.40 0.73088 0.49620 0.33082 0.20203 3.21930 2.13819 1.08728 0.21025

Table C.11: Mean of the variances of ξ̂b(×10−2) for 1.000 samples generated under K81∗ model
for T2:1; see Tab. C.9 for a more detailed description.

depth 1 depth 2
l \ L 300nt 500nt 1.000nt 10.000nt 300nt 500nt 1.000nt 10.000nt
0.01 0.00074 0.00051 0.00036 0.00020 0.00186 0.00141 0.00107 0.00074
0.05 0.00749 0.00626 0.00546 0.00432 0.02185 0.01984 0.01894 0.01748
0.10 0.02360 0.02091 0.01881 0.01660 0.07245 0.07142 0.06719 0.06160
0.15 0.04561 0.04407 0.04049 0.03681 0.14638 0.14216 0.13142 0.12838
0.20 0.07807 0.07232 0.06728 0.06232 0.24006 0.22111 0.21929 0.20567
0.25 0.11301 0.10300 0.10160 0.09427 0.32681 0.30199 0.30862 0.30129
0.30 0.15460 0.14555 0.13833 0.12717 0.43849 0.42439 0.42265 0.39871
0.35 0.19420 0.18506 0.17538 0.17661 0.53409 0.53822 0.53512 0.50094
0.40 0.24245 0.22925 0.21930 0.20893 0.66888 0.63529 0.61988 0.60905
0.45 0.30137 0.29153 0.26680 0.26364 0.76290 0.76709 0.73038 0.70568
0.50 0.35211 0.33463 0.32191 0.30035 0.89706 0.87194 0.85310 0.81615
0.55 0.42586 0.38561 0.37222 0.33929 0.98352 0.94092 0.93898 0.91090
0.60 0.48491 0.46815 0.43570 0.39439 1.06651 1.06439 1.00178 1.00523
0.65 0.57046 0.50243 0.47887 0.46605 1.16397 1.10825 1.08809 1.09697
0.70 0.65148 0.57090 0.55549 0.50230 1.30672 1.23431 1.20744 1.16367
0.75 0.72819 0.64025 0.59429 0.54764 1.35492 1.31490 1.28772 1.22821
0.80 0.81837 0.72212 0.67485 0.61699 1.47545 1.44807 1.34588 1.28428
0.85 0.94583 0.81262 0.74004 0.69612 1.55086 1.49499 1.41472 1.41714
0.90 1.00244 0.91354 0.79548 0.72438 1.65548 1.57179 1.47219 1.46580
0.95 1.12750 0.97410 0.85839 0.73565 1.71613 1.67795 1.58191 1.48356
1.00 1.26722 1.09787 0.96212 0.80407 1.79343 1.71844 1.61721 1.59481
1.05 1.45500 1.24422 1.04389 0.88240 1.88094 1.83908 1.68888 1.56427
1.10 1.60333 1.34616 1.14877 0.94870 2.03696 1.85232 1.76646 1.65058
1.15 1.81467 1.44897 1.19329 0.96765 2.02791 1.89747 1.84157 1.68069
1.20 2.09509 1.65216 1.33334 0.97023 2.22272 2.08779 1.87387 1.77728
1.25 2.43942 1.87843 1.45003 1.07832 2.33224 2.11088 1.91557 1.76277
1.30 2.76513 2.19626 1.58806 1.13166 2.43266 2.18741 1.97962 1.81825
1.35 3.23513 2.34197 1.74883 1.18653 2.51333 2.18871 2.03981 1.82161
1.40 3.83282 2.73735 1.94607 1.30914 2.69707 2.27705 2.04106 1.91677

Table C.12: The relative frequency of the χ2 tests based on the asymptotic normality of the
maximum likelihood estimator with p-value ∈ (0.05, 0.95) (left) and the mean of the variances
of ξb (right) calculated from 1.000 simulations under the K81∗ model. Each data set was a
multiple sequence alignment generated on the T 6balanced tree with branch lengths set to 0.01,
0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3 and 1.4. The data lengths L were taken to be 1.000nt to 10.000nt
and the distnction was made as to the positioning of the branches in the tree. The results refer
to a chosen branch from the sets of internal and external ones.

depth 1 depth 2
l \ L 1.000nt 10.000nt 1.000nt 10.000nt
0.01 0.876 0.937 0.917 0.945
0.10 0.935 0.942 0.937 0.943
0.30 0.961 0.953 0.938 0.956
0.50 0.927 0.951 0.936 0.947
0.70 0.886 0.941 0.889 0.924
0.90 0.849 0.895 0.887 0.902
1.10 0.819 0.854 0.825 0.884
1.30 0.780 0.813 0.733 0.862
1.40 0.753 0.815 0.719 0.833

depth 1 depth 2
1.000nt 10.000nt 1.000nt 10.000nt
0.00001 0.00001 0.00001 0.00001
0.00065 0.00063 0.00067 0.00061
0.00408 0.00406 0.00434 0.00409
0.00894 0.00798 0.00972 0.00845
0.01511 0.01213 0.02067 0.01327
0.03154 0.01601 0.06118 0.01936
0.10086 0.02588 0.25357 0.03779
0.45042 0.06577 1.15435 0.12553
1.16442 0.15901 2.34536 0.26316
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Steel, M. A., Hendy, M. D., Székely, L. A., and Erdös, P. L. Spectral analysis and a

closest tree method for genetic sequences., 1992. ISSN 0893-9659.
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