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Sec. 5.1. Obtención automática de relaciones espaciales en el análisis del territorio 

Figura 5.1.7. Diagrama de flujo con el procedimiento utilizado para el cálculo del 
índice de adyacencia a partir de las tablas de atributos del mapa vectorial de 
unidades cartográficas. 
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Sec. 5. J. Obtención automàtica de relaciones espaciales en el análisis del territorio 

Tabla 5.1.5. Consultas SQL para la obtención del índice de adyacencia entre unidades del 
mapa vectorial de Paisaje/Relieve. 

FASE1 
Consulta Arco y Polígono a la Derecha 

SELECT DISTINCTROW AAT.GEOMORFO^ 
AAT.LENGTH, PAT.GEOMORFOL 
FROM PAT INNER JOIN AAT ON PAT.GEOMORFO 
= AAT.RPOLY_; 

Consulta Arco y Polígono a la Izquierda 

SELECT DISTINCTROW AAT.GEOMORFO_, 
AAT.LENGTH, PAT.GEOMORFOL 
FROM PAT INNER JOIN AAT ON PAT.GEOMORFO 
= AAT.LPOLY-

FASE 2 
Consulta de unión de tablas de adyacencia derecha-izquierda e izquierda-derecha 

SELECT DISTINCTROW [Arco y polígono a la derecha]. GEOMORFOL, [Arco y polígono a la 
izquierda].GEOMORFOL, Sum([Arco y polígono a la izquierda] LENGTH) AS SumaDeLENGTHl 
FROM [Arco y polígono a la derecha] INNER JOIN [Arco y polígono a la izquierda] ON [Arco y polígono a la 
derecha].GEOMORFO_ = [Arco y polígono a la izquierda].GEOMORFO_ 
GROUP BY [Arco y polígono a la derecha].GEOMORFOL, [Arco y polígono a la izquierda].GEOMORFOL; 

UNION SELECT DISTINCTROW [Arco y polígono a la izquierda].GEOMORFOL, [Arco y polígono a la 
derecha].GEOMORFOL, Sum([Arco y polígono a la izquierda].LENGTH) AS SumaDeLENGTH 
FROM [Arco y polígono a la izquierda] INNER JOIN [Arco y polígono a la derecha] ON [Arco y polígono a la 
izquierda].GEOMORFO_ = [Arco y polígono a la derecha].GEOMORFO_ 
GROUP BY [Arco y polígono a la izquierda].GEOMORFOL, [Arco y polígono a la derecha].GEOMORFOL; 

FASE 3 
Consulta de obtención de las Relaciones Adyacencia 
PolXPoIY 

SELECT DISTINCTROW Unión.[Arco y polígono a la 
derecha].GEOMORFOL, Unión.[Arco y polígono a la 
izquierda].GEOMORFOL, 
Sum(Unión.SumaDeLENGTHl) AS 
SumaDeSumaDeLENGTH 1 
FROM Unión 
GROUP BY Unión. [Arco y polígono a la 
derecha].GEOMORFOL, Unión.[Arco y polígono a la 
izquierda].GEOMORFOL; 

Cálculo del perímetro 

SELECT DISTINCTROW PAT.GEOMORFOL, 
Sum(PAT.PERIMETER) AS SumaDePERIMETER 
FROM PAT 
GROUP BY PAT.GEOMORFOL; 

FASE 4 
Consulta del cálculo del índice de adyacencia final 

SELECT DISTINCTROW [Relaciones Adyacencia Pol X Pol Y].[Arco y polígono a la derecha].GEOMORFOL, 
[Relaciones Adyacencia Pol X Pol Y].[Arco y polígono a la izquierda].GEOMORF0L, [Relaciones Adyacencia Pol 
X Pol Y].SumaDeSumaDeLENGTHl, perimetro.GEOMORFOL, perímetro.SumaDePERIMETER, [Relaciones 
Adyacencia Pol X Pol Y]![SumaDeSumaDeLENGTHl]*100/[perimetro]![SumaDePERIMETER] AS Exprl 
FROM [Relaciones Adyacencia Pol X Pol Y] INNER JOIN perímetro ON [Relaciones Adyacencia Pol X Pol 
Y].[Arco y polígono a la derecha].GEOMORFOL = perimetro.GEOMORFOL; 

Consulta del cálculo del índice de adyacencia a barrancos o badlands 

SELECT DISTINCTROW [índice de adyacencia Final].[Arco y polígono a la derecha].GEOMORFOL, [índice de 
adyacencia Final].[Arco y polígono a la izquierda].GEOMORFOL, [índice de adyacencia FinalJ.Exprl 
FROM [índice de adyacencia Final] 
WHERE ((([índice de adyacencia FinalUArco y polígono a la izquierda1.GEOMORFOL)="M2")); 
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11 IA de la Tabla 5.1.6. considerado como un atnbuto de la entidad LJC, se analiza 
cartográficamente en la Figura 3 1.9. Hay que remarcar que la relación puesta de 
manifiesto to este mapa es una relación global a nivel de UC. 

Estos resultados muestran la utilidad del empleo y automatización del cálculo del IA en 
estudios de erosión En este caso, cl IA muestra las áreas con mayor perímetro de contacto 
con zonas que sufren particulares procesos de erosión (desprendimiento de paredes por 
movimientos en masa o deslizamientos, erosión de paredes por los cauces de los barrenees, 
etc ). lo cual repercute en las áreas adyacentes y en sus usos 
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No obstante, el calculo del IA en el nivel topologia» superior de UC. y no en el intermedio 
de la delincación, puede enmascarar altos valores de 1A en delincaciones con pequeña 
superfície que pertenecen s UCs con un bajo IA global En este sentido, el calculo de la 
adyacencia a nivel de delincación scguina las mismas pautas que d proceso indicado en la 
Figura 5 1 7 hasta la fase 2 (inclusivo l ste calculo ha de considerar como P(x) en la 
Ecuación 5 I 1 el perímetro de la delincación en la tabla PA I 

i I IA a barrancos y badlands no debe tomarse como único indicador del riesgo de erosión 
en las unidades con un alto valor Hay que considerar también otros factores como el grado 
de estabilización de las paredes de los barrancos (MartinwCasasnovas y Cervera 19%) 

Figura 5.1.8. I nidades de paita je< relieve (grofornuu) del All Penedès-Anoia (Barcelona). 
(Ver descripción de la leyenda en la Tabla 5.1.11. 

5.1.4. ( onclusii.ins 

Del presente trabajo se desprende que la adecuada manipulación de las relaciones 
topological, que en una estructura vectorial quedan registradas en el nivel interior de la 
estructura formal de datos, puede servir para la obtención de relaciones espaciales 
significativas en el nivel superior, que es en el cual se conciben las relaciones espaciales a 
nivel del usuario 

Este es el caso de la relación de adyacencia entre unidades cartográficas de mapas 
vectoriales de áreas De este tipo es el ejemplo mostrado, relativo a las relaciones de 
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Sec. 5.1. Obtención automática de relaciones espaciales en el análisis del territorio 

adyacencia entre unidades de un mapa de unidades de paisaje/relieve. En este caso la 
relación de adyacencia se ha cuantifícado y analizado cartográficamente por medio del 
denominado índice de adyacencia. 

Figura 5.1.9. índice de Adyacencia entre las unidades cartográficas de paisaje/relieve 
(geoformas) a las áreas de barrancos o badlands (Alt Penedès-Anoia, Barcelona). 

La obtención automática de este índice se ha hecho mediante la manipulación de las tablas 
de atributos del mapa vectorial (PAT y AAT en Arclnfo) con un gestor de base de datos 
relacional, utilizando lenguaje de consulta estructurado (SQL). 

Este índice no solo puede ser obtenido al nivel de clase de objetos área sino también a 
nivel de individuos de clase o delincaciones, dependiendo de las necesidades del usuario. 
El índice de adyacencia a nivel de clase puede ser utilizado como descriptor global de las 
relaciones entre unidades cartográficas, si bien su representación cartográfica puede 
enmascarar relaciones parciales con diferencias significativas en el valor del índice. 

Los resultados obtenidos del cálculo del índice de adyacencia en el área de estudio han 
mostrado las unidades con mayor perímetro de contacto con las zonas de barrancos y 
badlands. Sin embargo, este índice no debe tomarse como único indicador del riesgo de 
erosión en las unidades geomorfológicas con un alto valor del índice de adyacencia. Esta 
información puede ser útil en la descripción de las unidades de paisaje/relieve. 
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5.2. A cartographic and database approach for land 
cover/use mapping and generalisation from 
remotely sensed data. 
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Sec. 5.2. A cartographic unit approach for land cover/use mapping from remotely sensed data 

A cartographic and database approach for land cover/use mapping and generalisation 
from remotely sensed data. 

Abstract 
Classification of remotely sensed data involves a set of generalisation processes. Reality is 
simplified to a set of few classes that are relevant for the application being considered. 
This article introduces an approach for image classification that uses a class hierarchy 
structure for mapping unit definition at different generalisation levels. This structure is 
implemented as an operational relational database and allows querying of more detailed 
land cover/use information from a higher abstraction level, which is the one viewed by the 
map user. Elementary mapping units are defined on the basis of an unsupervised 
classification process, in order to uncover the land cover/use classes registered in the 
remotely sensed data. Mapping unit composition at different generalisation levels is 
defined on the basis of membership values of sampled pixels to land cover/use classes. 
Unlike fuzzy classifications, membership values are presented to the user at a mapping 
unit level. 

5.2.1. Introduction 

Classification of remotely sensed data, either by visual interpretation or by digital image 
processing techniques (supervised or unsupervised), involves a set of generalisation 
processes. In essence, reality is simplified or reduced to a set of few classes, relevant for 
the application being considered, and having a spatial representation in a map or in a 
digital spatial data structure. 

The four different processes in information abstraction from reality to a data model are 
classification, class generalisation, aggregation and association (Egenhofer and Frank 
1989, Molenaar 1993, Molenaar and Richardson 1994, Martinez-Casasnovas 1994), of 
which the first two are undertaken during supervised or unsupervised classification of 
remote sensing images. 

Supervised classifications provide a statistical description of land cover based on a class 
structure and training data provided by the analyst. The classification process starts with 
the definition of informational classes, followed by the assignment of these classes to 
pixels. The most commonly used classification method evaluates the likelihood that each 
pixel belongs to each class based on their spectral and statistical characteristics. 
Unsupervised classifications attempt to uncover the land cover classes that exist in the 
image. The multispectral image is classified into a number of spectral classes, without 
prior knowledge of what they might be. The analyst provides the number of the output 
spectral classes and indicates the clustering algorithm. After the clustering process, the 
analyst also needs to assign information labels to the spectral clusters by means of ground 
sampling procedures, and to determine which clusters need to be merged or to be further 
defined to achieve a legend according to the purposes of the user. 

223 



Sec. 5.2. A cartographic unit approach for land cover/use mapping from remotely sensed data 

Neither supervised nor unsupervised methods provide an immediate solution to the 
problems that a digital classification implies (Chuvieco 1996). The supervised method is 
more subjective since the analyst may force the discrimination of classes without a clear 
spectral meaning (Chuvieco 1996). Also, the supervised method is considered as 
restrictive, since some existing land cover classes may be unknown by the user prior to the 
classification process and, therefore, they are not considered in the training data set 
(Palacio and Luna 1996). Sometimes, the existence of those non-sampled land cover 
classes may be known and it is a decision of the analyst either to consider them in the 
classification process or not. In other situations, those classes are known during accuracy 
assessment, provided that ground truth areas are different from training areas. This 
represents a loss of spectral information during the image classification process, that some 
authors have tried to face through fuzzy supervised classification (Wang 1990a, b, Foody 
1996) or by In-Process Classification Assessment methods (Eastman 1997). 

Unsupervised classifications are sometimes difficult to interpret or to produce results that 
are related to the user needs. The unsupervised process, however, overcomes some 
problems related to the knowledge of the spectral response variability of terrain objects. In 
this respect, the combination of both classification procedures is often advised by using 
unsupervised classification as an alternative method for spectral signature definition 
(Garcia and Alvarez 1994, Chuvieco 1996). 

From the generalisation process viewpoint, supervised and unsupervised classification 
procedures involve land cover class and mapping unit definition and generalisation. In 
supervised classification, the selection of the generalisation level (level of detail) of the 
informational classes to be sampled is very important and determines the classification 
results. Several authors have concluded that classification results are often influenced 
more by previous definition of informational classes than by the criterion and/or the 
classification algorithm used to discriminate them during the classification process (Story 
and Campbell 1986, Gong and Howarth 1990, Chuvieco 1996, Palacio and Luna 1996). 
The statistical and compositional variability of informational classes should be taken into 
account by sampling elementary field training classes, and then merging or generalising 
them at a higher level (or superclass level) in the class hierarchy (class generalisation). A 
very good knowledge of the area and of terrain object spectral response is required for an 
accurate supervised classification. 

Unsupervised classification usually produces a wider range of spectral classes. An 
appropriate sampling strategy is required for cluster definition. A particular land cover 
class may be represented in more than one spectral class, and conversely, one spectral 
class may represent more than one land cover class. Thus, the analyst may merge clusters 
according to their composition in terms of informational classes and class similarity, or 
may try to further split clusters when they include more than one land cover class, always 
depending on the target legend. 

A fact being noticed in image classification maps is the lack of references to the user 
regarding the class generalisation process and aggregation or disaggregation of spectral 
classes that has taken place. Informational classes are defined at the level of detail that can 
be recognised at pixel or sub-pixel level (elementary informational classes), e.g. bare 
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agricultural soil or bare industrial soil. Those classes may compose a super class (class at a 
higher hierarchical level in the classification system), e.g. bare soil, that may be presented 
in the final map legend because either the convenience of the user or the impossibility to 
produce distinct spectral signatures for each elementary class. Also, the lack of references 
in maps to mapping unit composition in terms of membership values to land cover classes 
(super classes as well as elementary informational classes) is observed. Information about 
the composition of super classes and their distribution in the mapping units should be 
reported so that users will be aware of the purity of the map units (Janssen and van der 
Wei 1994). 

Present methods to assess classification accuracy such as error or confusion matrices can 
be used to calculate measures such as the proportion of pixels correctly classified, errors of 
omission and commission, user's and producer's accuracy, coefficients of agreement and 
hypothesis testing. These indices report on the accuracy of final informational classes but 
not on the presence of elementary classes and their spatial distribution in the case that final 
informational classes are super classes. These measures of accuracy, however, have been 
recognised as valuable tools in judging the fitness of the resulting map for a particular 
application (Aronoff 1982, Aronoff 1989, Story and Congalton 1986, Janssen and van der 
Wei 1994, Lark 1995). 

In view of these issues, the objective of the present paper is to introduce a conceptual 
framework for spectral signature class definition and map generalisation. It is based upon 
definition of elementary informational classes by stratified random sampling of clusters 
produced by unsupervised classifications. Once defined, clusters and informational classes 
are generalised according to a hierarchical structure. Clusters are viewed as 'cartographic 
or mapping units' and may be composed of one or more informational classes. A database 
model is designed and implemented in a Relational Database Management System 
(RDBMS) to support the generalisation in a hierarchical structure. This framework allows 
users to know class and mapping unit composition in terms of elementary informational 
classes at any level of the generalisation hierarchy. Also, queries about the most probable 
location of elementary informational classes not represented in the legend at a higher 
generalisation level can be answered. 

5.2.2. Test site and data 

An area located in the Alt Penedès-Anoia region (Catalonia, NE Spain) was selected to test 
the proposed methodology (Figure 5.2.1). This region is mainly dedicated to the cropping 
of vineyards for wine and sparkling wine ('cava') production. In this area, modern 
practices have replaced traditional management practices. Old small size parcels are being 
transformed into bigger parcels, an operation that involves huge soil movements. 
Residential and industrial areas have grown during the last three decades, due to the 
nearness to the Barcelona metropolitan area. This region suffers serious problems of 
erosion, which have been reported by Ramos et al. (1991), Porta et al. (1994) and 
Martinez-Casasnovas and Cervera (1996). In addition to sheet erosion, a dense and deep 
gully network has developed in the area. To locate more stable and higher erosion risk 
areas, the mapping of vegetation cover on gully walls from remotely sensed data has been 
explored by Martinez-Casasnovas and Cervera (1996). 
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Figure 5.2.1. Landsat TM image of the Alt Penedès-Anoia region (Catalonia, NE Spain). 
False colour composite red-green-blue 543. March 1993. 

A Landsat TM subscene (March 1993), covering an area of 62.9 km2 in the study area, was 
used to test the application of the general procedure. The atmospheric scattering effect was 
corrected by applying the improved dark-object subtraction technique (Chavez 1988). A 
quadratic mapping function based on 14 control points and a nearest neighbour resampling 
were applied for geometric correction. Pixel size was slightly decreased to 25x25 m, in 
order to match the resolution of a digital elevation model. An overall root-mean-square 
error less than one pixel was achieved. The image classification results and the digital 
elevation model were later combined to map vegetation cover on gully walls. 

A 1:25 000 scale true colour orthophoto of July 1993, produced by the Cartographic 
Institute of Catalonia, was used to support fieldwork for ground truth data collection. 
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5.2.3. Methodology 

5.2.3.1. General procedure 

A first step in building a hierarchy to support generalisation of image classification results 
was the definition of basic or elementary terrain object classes. In this article, elementary 
classes should be interpreted as land cover/use types that can be recognised at the pixel or 
sub-pixel resolution level. For example, if medium resolution remote sensing data is used 
(e.g. 20 m resolution SPOT data or 30 m resolution Landsat TM data), a pixel may be 
described by a unique class (e.g. bare agricultural soil) or may be mixed (e.g. bare 
agricultural soil and shrubland, in the border area of these classes). 

For the definition of the basic information level of the hierarchy an unsupervised 
classification process was applied. This revealed the existing land cover/use information. 
The unsupervised process was seeded from a colour composite image, selected from the 
three-band combinations with the largest Optimum Index Factor (Chavez et al. 1982). This 
index is based on the variance and the correlation among the different bands. The three-
band combination having the largest index value is usually selected for colour composition 
because it should display the most spectral information of the whole set of bands (six 
spectral bands for the Landsat TM sensor) with the least amount of duplication. 

A random sampling procedure, stratified per cluster class, was performed. Each cluster 
was pixel-sampled, as proposed by Janssen and van der Wei (1994). These authors support 
that individual pixels are the most appropriate sampling units if a per-pixel classification is 
performed. They also consider that stratified sampling based on distinguished classes is 
preferable above other sampling strategies (e.g. random or systematic distribution). A 
minimum sample of 50 pixels per cluster was used to achieve an accurate estimation of 
cluster composition (Hay 1979, Congalton 1991, Chuvieco 1996). 

The result of this process was the basic mapping generalisation level at the image 
resolution. This was a many-to-many relationship between clusters and informational 
classes (land cover/use classes). Clusters should be understood as elementary level 
cartographic or mapping units. One or more land cover/use classes are represented in a 
mapping unit and a specific land cover/use class can be included in different mapping 
units. Mapping units and land cover/use classes are different concepts but both can be 
organised in a hierarchical way as it is proposed in Figure 5.2.2. 

The class generalisation hierarchy structure of Figure 5.2.2 was translated to a database 
model (figure 3). This model focuses on structuring of data and determination of 
relationships among data elements according to a relational database approach (Chen 
1976). The Relational Database Management Systems Access (Microsoft™) was used to 
implement the database structure of Figure 5.2.3 in an internal operating model. Finally, 
Structured Query Language (SQL) was used to analyse elementary terrain information for 
mapping unit definition and to move up and down through the information generalisation 
hierarchy. 
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Figure 5.2.2. Generalisation hierarchy structure for land cover/use mapping from remotely 
sensed data. Level 1 represente the basic level of spatial information (more detailed), that is 
defined by membership of pixels of spectral classes to elementary land cover/use classes. 
Level 2 represents a higher level in the generalisation hierarchy (less detailed), that is created 
by class generalisation and aggregation of mapping units of level 1. 

5.2.3.2. Image processing 

An unsupervised classification was performed using the ISOCLUST algorithm, 
implemented in the Idrisi for Windows package (Clark University). This algorithm is an 
iterative self-organising unsupervised classifier based on a concept similar to the 
ISODATA routine (Ball and Hall 1965 quoted by Eastman 1997) and cluster routines such 
as the H-means and K-means procedures (Eastman 1997). 

A red-green-blue 543 colour composite was used to seed the clusters for the unsupervised 
classification. This band combination was preferred to TM bands 4, 5 and 7, which had the 
highest Optimum Index Factor (26.8) because it also produced a high Optimum Index 
Factor (25.3), it was more sensitive to vegetation cover variability (Gilabert 1990) and it 
covered the basic image dimensions of greenness, brightness and moisture content 
(Eastman 1997). 
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Num_Pixels: Number of sampled pixels per mapping unit 
Main_LC/U1_Class : Main first level land cover/use label 
Unit2_id: Identifier of second level units 

Sampling_pixels 
Pixeljd: Identifier of sampled pixels 
X-UTM: Coordinate of the center of sampled pixels 
Y-UTM: Coordinate of the center of sampled pixels 
Cluster: Identifier of first level units (equal to Unit1_id) 

Sampling_Pixels-LandC/U_1 
Pixeljd: Identifier of sampled pixels 
Lcuclass: Identifier of first level land cover/use classes 
Membership : Membership value of sampled pixels to 
land cover/use classes 

Land_C/U_Types_1 
Lcuclass: Identifier of first level land cover/use classes 
Leúdese: Description of first level land cover/use classes 
Nm_Pixels: Number of samples per land cover/use class 
Lcuclass2 '• Identifier of second level land cover/use classes 

Land_C/U_Types_2 
Lcuciass2: Identifier of second level land cover/use classes 
Lcu2desc: Description of second level land cover/use classes 

Figure 5.2.3. Relational database model for definition of mapping units at different 
generalisation levels according to the proposed hierarchy structure of Figure 5.2.2. 

The ISOCLUST classifier produced first a histogram that expressed the frequency with 
which the clusters occurred in the seed image. After examining the histogram, a number of 
29 clusters (of a total of 41) was specified as the output of the unsupervised classification. 
The selected clusters accounted for 99.9 % of the total number of pixels in the seed image. 
These clusters were used in an iterative maximum likelihood procedure using bands 4, 5, 
7, NDVI and principal component analysis (PCA) 1, 2 and 3 as a colour composite. Three 
iterations were performed before no significant change in output was produced. Bands 4, 5 
and 7 were selected because it was the three-band composition with the highest Optimum 
Index Factor among the 20 possible combinations (band 6 excluded). NDVI was 
introduced to distinguish vegetated from non-vegetated areas and the PCA colour 
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composite was used because of its effect on enhancing differences among similar spectral 
signature classes such as bare soils, residential/industrial areas and vineyards. 

5.2.3.3. Definition of mapping units 

A total of 1146 pixels (1.14% of the area covered by the image) were sampled for ground 
truth data collection by means of field work and with the help of 1:25 000 scale orthophoto 
for geo-referencing. Those pixels were distributed among the 29 clusters. Random samples 
per cluster were taken depending on the frequency of the clusters in the image. The 
number of pixels sampled were: 50 pixels for clusters with more than 1000 mapped pixels, 
25 pixels for clusters between 100 and 1000 mapped pixels and 20 pixels for clusters with 
less than 100 mapped pixels. 

Sampled pixels were given a membership value to land cover/use classes depending on the 
area each class occupies in the portion of land assumed as the instantaneous fteld-of-view 
of to the pixel. This created a many-to-many relationship between pixels and land 
cover/use classes. It was split in two one-to-many relationships to be handled by the 
Relational Database Management System used (Access, Microsoft™). Accordingly, the 
creation of a new entity, called Sampling Pixels-LandC/VrJ, was needed (Figure 5.2.3). 

The composition of map units for the different generalisation levels was computed 
according to Equation 1. This equation was implemented by means of a set of connected 
SQL statements, that operate in the internal database model implemented in the Relational 
Database Management System at the levels indicated in Figure 5.2.3. 

Equation 5.2.1 M IllU ¡^ = (SMp j ^ ) / SP ¡ 

Where, 

Mmu i)X = Membership value of mapping unit i to land cover/use class X. 

Mp j ? x = Membership value of pixel j , sampled in mapping unit i, to land cover/use class 
X. 

SP i = Number of sampled pixels in mapping unit i. 

The definition of both the land cover/use class and the mapping unit hierarchies was 
needed prior to definition of mapping units at higher generalisation levels. The decision 
about land cover/use classes making up land cover/use super classes was based on class 
similarity according to the map purpose: assessment of erosion risk. The decision to define 
the mapping unit hierarchy was based on the target map legend and composition of basic 
mapping units. 

The legend of the final land cover/use map was presented from a user's point of view, with 
an indication of membership of mapping units to land cover/use super classes. A 
classification accuracy assessment was also performed using a confusion matrix. The 
accuracy assessment not only considered one land cover/use super class per mapping unit 
in the cases of associations but the land cover/use super classes forming the association. 
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That means, values in the confusion matrix were sums of membership values of mapping 
units to land cover/use super classes or vice versa. Single membership values linearly vary 
between 0 and 1, (1 in the case of a pure pixel and a value between 0 and 1 in the case of 
mixed pixels). 

5.2.4. Results 

5.2.4.1. Definition of the basic generalisation level 

The unsupervised classification approach produced 29 clusters or mapping units. Two 
types of pixels were identified during ground data collection for mapping unit definition: 
a) pure pixels, 81.5% of the sampled pixels, where the cover/use classes within the 
instantaneous field-of-view of the pixel were all of one class, and that class was 
homogeneous at the spatial resolution of the sensor; and b) mixed pixels, 18.5% of the 
sampled pixels, where the boundaries between two or more different cover/use classes 
occurred within a single pixel. 

The basic land cover/use classes identified in both pure or mixed pixels are described in 
Table 5.2.1. The most frequent classes were vineyards, grassland and shrubland and winter 
cereals, which together represent 58% of the sampled pure pixels. Other important classes 
were built-up areas, bare soil parcels and forested shrubland. 

The most frequent combinations in mixed pixels were grassland and shrubland and bare 
soil parcels, built-up areas and vineyards, forested shrubland and bare soil parcels, 
vineyards and cereals or bare soil parcels. Those accounted for 70.7% of the total mixed 
pixels that were sampled. 

The application of Equation 1 at level 1 produced the components of basic mapping units. 
This information can be either linked with the raster land cover/use map to assess 
membership of individual pixels to land cover/use classes, or it can be presented to the 
user in the form of a map legend that considers different types of mapping units, 
depending on their purity. In this respect, the proposed mapping unit types are: a) units 
with 70% or more membership to a unique land cover/use class, that will be referred to as 
'consociations', like the most pure mapping units in soil maps (van Wambeke and Forbes 
1985); b) units with two main land cover/use classes covering 70% or more of the unit, 
that will be referred to as 'associations'; and c) units with more than two representative 
land cover/use classes, that will be referred to as 'complexes'. 

According to this adopted criterion, Table 5.2.2 shows the legend of the land cover/use 
map of the Alt Penedès-Anoia region for the basic generalisation level. Percentages in 
Table 5.2.2 indicate membership of mapping units to land cover/use classes, which was 
different from membership of individual pixels to land cover/use classes. This way of 
mapping unit definition allows the map producer to know purity of units and to determine 
the ones to be merged in order to make a higher level unit. 
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Table 5.2.1. Land cover/use classes identified at pixel or sub-pixel resolution in the Alt 
Penedès-Anoia region. 

Class Land cover/use class Description 
Bare gully walls and badlands 
Semivegetated gully walls and 
badlands 

Grassland and shrubland 

Shrubland 

Riparian shrubland 

Forested shrubland 

7 

8 

9 

10 

11 
12 
13 
14 
15 
16 

17 

18 
19 
20 

Forested areas 

Vineyards 

Vineyards (parcels with weeds) 

Vineyards (new plantations in level 
parcels) 
Almond tree plantations 
Peach tree plantations 

Winter cereals 

Winter cereals (under-developed) 
Bare soil parcels 

Bare soil parcels with scarce weed 
cover 
Residential or industrial built-up areas 

Industrial or urban areas (bare soil) 
Roads 

Road banks 

Gully walls and badlands without vegetation cover 
Gully walls and badlands, less than 30% vegetation cover 
(shrubland): Brachipodium rhamosum, Ulexparviflorus. 
Genista sp., Juniperus oxicedrus, Rosmarinus officinalis, 
Thymus vulgaris, Quercus cocci/era, Pinus halepensis 
Grassland and shrubland, 30-60% vegetation cover, typically 
southern oriented areas: Brachypodium rhamosum, Ulex 
parviflorus, Genista sp., Rosmarinus officinalis, Thymus 
vulgaris, Spartium junceum, Lepidium 
graminifolium,Quercus coccifera 
Shrubland, 50-75% vegetation cover, typically north and 
eastern oriented areas: Brachipodium phoenicooides, Vicia 
sp., Spartium junceum, Diplotaxis erucoides, Shorgum 
halepense, Genista sp., Rosmarinus officinalis, Quercus 
coccifera, Quercus ilex 
Riparian shrubland, 65-80% vegetation cover, typically 
bottom gully valleys: Rubus ulmifolius, coriaria myrtifolia, 
Arundo donax, Populus sp. 
Forested shrubland, 65-80% vegetation cover, typically north 
and northwestern oriented areas: Brachipodium phoenicoides, 
Coriaria myrthifolia, Vicia sp., Spartium junceum. Genista 
sp., Pistacia lentiscus, Rosmarinus officinalis, Quercus ilex, 
Pinus halepensis, Pinus pinea 
Forested areas, 65-80% vegetation cover, typically northern 
oriented areas: Pinus halepensis, Pinus pinea, Quercus ilex, 
Quercus coccifera 
Old traditional or modern vineyard plantations, without 
vegetation cover at the date of the image 
Old traditional or modern vineyard plantations, with weeds 
cover between vine rows 
Recent modern vineyard plantations in level parcels 

Almond tree plantations 
Peach tree plantations 

Well-developed winter cereals: wheat or barley 
Under-developed winter cereals: wheat or barley 
Bare soil parcels and recent level parcels 

Bare soil parcels and recent level parcels with scarce weed 
cover 
Residential (urban and recreational) or industrial built-up 
areas 
Bare industrial or urban parcels 
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Table 5.2.2. Legend of the Land cover/use map of the Alt Penedès-Anoia region 
(generalisation level 1). 

Mapping % Area 
unit («) 

Land cover/use class description (**) Main inclusions (**) 

1 

14 

15 

21 

22 

23 
24 

25 

9.5 Grassland and shrubland (70%) 

12.0 Association of Forested shrubland (60%) and Forested 
areas (40%) 

13.1 Vineyards (98%) 
4.5 Grassland and shrubland (77.8%) 

7.2 

6 

7 

8 
9 

10 

11 

12 
13 

2.8 

7.6 

6.7 
3.8 

5.0 

5.8 

3.4 
2.3 

0.8 

1.2 

16 
17 
18 
19 
20 

2.0 
1.7 
0.6 
0.6 
1.8 

0.9 

1.3 

0.4 
0.5 

1.0 

26 

27 

28 

29 

0.4 

1.4 

0.7 

0.7 

Complex of Residential and industrial built-up areas 
(32%), Bare soil parcels (29.6%) and Grassland and 
shrubland (15.6%) 
Vineyards (70%) 

Grassland and shrubland (80.4%) 

Vineyards (98%) 
Complex of Residential or industrial built-up areas 
(59%), Bare soil parcels (11.8%) and Grassland and 
shrubland (10%) 
Association of Forested shrubland (54.8%) and 
Shrubland (22%) 
Vineyards (81%) 

Vineyards (70%) 
Grassland and shrubland (74%) 

Association of Winter cereals (61.2%) and Grassland 
and shrubland (16.4%) 
Association of Winter cereals (57.5%) and Grassland 
and shrubland (18.7%) 
Grassland and shrubland (81%) 
Winter cereals (100%) 
Winter cereals (100%) 
Winter cereals (100%) 
Association of Residential and industrial built-up areas 
(66%) and Bare soil parcels (12%) 
Bare soil parcels (72%) 

Association of Bare soil parcels (44%) and Vineyards 
(44%) 
Winter cereals (100%) 
Association of Winter cereals (37.5%) and Vineyards 
(27.5%) 
Complex of Residential and industrial built-up areas 
(42%), Grassland and shrubland (22.5%), Bare soil 
paroles (16.7%) and Forested shrubland (14.6%) 
Association of Residential and industrial built-up areas 
(60%) and Bare sou parcels (14.6%) 
Complex of Bare soil parcels (31.8%), Grassland and 
shrubland (30.6%) and Vineyards (21.5%) 
Complex of Bare soil parcels (30%), Grassland and 
shrubland (26.5%) and Vineyards (12.5%) 
Bare soil parcels (72%) 

Bare-semivegetated gully walls and 
badlands (9.2%), Residential and industrial 
built-up areas (8%) 

Vineyards (6%) and Residential and 
industrial built-up areas (4%) 
Vineyards (9%) and Almond tree 
plantations (5.8%) 

Bare soil parcels (17%) and Grassland and 
shrubland (4%) 
Forested shrubland (8%) and Bare gully 
walls and badlands (6%) 

Roads (6%) 

Grassland and shrubland (8%) and Forested 
areas (4%) 
Residential and industrial built-up areas 
(12%) 
Bare soil parcels (29%) 
Winter cereals (under-developed) (12%) 
and Riparian shrubland (8%) 
Bare soil parcels (6%), Residential and 
industrial built-up areas (6%) (6%) 
Forested shrubland (8.3%), Vineyards 
(6.25%) and Bare soil parcels (6.25%) 
Vineyards (5.1%) 

Vineyards (12%) 

Residential-industrial built-up areas and 
roads (16%), Vineyards (6%) 
Almond tree plantations (4%) 

Grassland and shrubland (17%) 

Semivegetated gully walls and badlands 
(6.7%) 
Forested shubland (10.2%) 

Roads (5%) 

Industrial-urban (bare soil parcels) (24%) 
(*) % of the area of the mapping unit over the total study area. 
(*•) Percentages are referred to the total area of the mapping unit. 
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5.2.4.2. Definition of the second generalisation level and classification accuracy 
assessment 

A more simplified legend than the one of Table 5.2.2 is usually presented to the user. This 
requires previous determination of basic mapping units that have to be merged, and it is 
guided by the target map legend to achieve. In the present case study, nine land cover/use 
super classes were identified as relevant for the application and used to define the class 
hierarchy to support mapping unit generalisation (Table 5.2.3). 

Table 5.2.3. Land cover/use class hierarchy considered for the Alt Penedès-Anoia case study. 

Land Land cover/use super class description Land cover/use class 
cover/use (level 1) 

super class 
(level 2) 

Bare or semivegetated gully sidewall and badlands 
Grassland and shrubland 
Forested shrubland and shrubland 
Forested shrubland and forested areas 
Vineyards 
Almond and peach plantations 
Winter cereals 
Bare soil parcels (agricultural or industrial/urban) 
Industrial and residential built-up areas 

1,2 
3 

4,5 
6,7 

8, 9, 10 
11,12 
13,14 

15, 16, 18 
17, 19, 20 

According to the target map legend of Table 5.2.3 and looking at the basic mapping units 
composition of Table 5.2.2, eight mapping units were considered for the second level of 
generalisation. The decision on what basic mapping units had to compose a higher level 
mapping unit was not automated at this stage. The analyst was the one driving the process 
by looking at both the target map legend and the composition of the basic mapping units. 
Consociations were preferred above associations or complexes, since the former represent 
the most pure mapping units from the map user's point of view. Figure 5.2.4 shows the 
final land cover/use map and the associated legend. Information on basic mapping units 
making up second level units has been included. 

The legend of figure 4 shows the composition of the mapping units of the land cover/use 
map and user's accuracy in a more comprehensible way for the map user than a confusion 
matrix. Information on commission errors or map producer's accuracy is not given in the 
map user's legend. Land cover/use super classes that appeared only as minor components 
in mapping units had the highest omission errors (Figure 5.2.4), and were explicitly 
detailed in Table 5.2.4. 
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Legend 
Mapping % Area 

unit (level 2) (*) 
Land cover/use class description 

ÍÜÍ 
Main inclusions (**) Mapping units 

(level 1) 
1 

3 

4 

5 

6 

25.8 Grassland and shrubland (76.6%) 

17.0 Forested shrubland and forested areas 
(79.4%) 

31.8 Vineyards (83.2%) 

6.0 Winter cereals (83.3%) 

1.6 Bare soil parcels (agricultural and 
industrial/urban) (84%) 

6.1 Association of Indutrial and 
residential built-up areas (64.8%) and 
Bare soil parcels (agricultural and 
industrial/urban) (15.6%) 

7.7 Complex of Industrial and residential 
built-up areas (35.3%), Bare soil 
parcels (agricultural and 
industrial/urban) (25.4%) and 
Grassland and shrubland (17.8%) 

3.4 Complex of Bare soil parcels 
(agricultural and industrial/urban) 
(37.7%),. Vineyards (31.6%) and 
Grassland and shrubland (16.5%) 

Bare or semivegetated gully sidewalls 
and badlands (4.9%) and Vineyards 
(4.2%) 
Forested shrubland and shrubland 
(16%) and Grassland and shrubland 
(4%) 
Bare soil parcels (agricultural and 
industrial/urban) (11.4%) 
Grassland and shrubland (5.1%) and 
Vineyards (4.4%) 
Industrial and residential built-up areas 
(8%) and Vineyards (5%) 
Vineyards (6.9%) and Grassland and 
shrubland (5.2%) 

Vineyards (7.4%) and Forested 
shrubland and forested areas (6.1%) 

Forested shrubland and forested areas 
(6.1%) 

1,4,7,13, 16 

2,10 

3,6,8,11,12 

14,15, 17,18, 
19, 23, 24 

21,29 

9,20,26 

5,25 

22,27, 28 

(*) % of the area of the mapping unit over the total study area. 
(**) Percentages are referred to the total area of the mapping unit. 

Figure 5.2.4. Land cover/use mapping units of the Alt Penedès-Anoia region, (second 
generalisation level). 
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The confusion matrix shows an overall accuracy of 81.4%, according to the adopted map 
legend. Omission errors were higher than commission errors, since some representative 
land cover/use super classes were considered as mapping unit inclusions (minor 
components). 

5.2.5. Discussion 

The proposed method for a mapping hierarchy using remote sensing imagery as input 
improves the user's knowledge on main and minor unit components, and may be used to 
produce new maps at different aggregation levels. 

An unsupervised classification method was used. The bands and the unsupervised 
algorithm used to obtain the basic mapping units (units of level 1) could be arguable. The 
quality of the classification would not probably be very different by simply using the 
original non-thermal bands. From the mapping unit definition viewpoint, what is more 
important is the use of the unsupervised method above the supervised one since it attempts 
to uncover the land cover classes that are registered in the spectral data. 

Mapping unit (level 2) = 1 

Grassland & shrubland (0.76) 
Bare or semivegetated gully sidewall and badlands (0.049) 
Vineyards (0.042) 
Industrial and residential built-up areas (0.031) 
Winter cereals (0.030) 

Mapping unit (level 1) = 13 

Grassland & shrubland (0.74) 
Winter cereals (0.12) 
Riparian shrubland (0,08) 

Mapping unit (level 2) = 1 
Grassland & shrubland (0.76) 
Bare or semivegetated gully sidewall and badlands (0.049) 
Vineyards (0.042) 
Industrial and residential built-up areas (0.031) 
Winter cereals (0.030) 

Mapping unit (level 1) = 7 

Grassland & shrubland (0.80) 
Forested shrubland (0.08) 
Bare gully sidewalls and badland (0,06) 

Figure 5.2.5. Example of querying from the second to the first generalisation level. 
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The use of consociations, associations and complexes as mapping units is not a new 
approach. It relates to other research fields, particularly to soil mapping (Wambeke and 
Forbes 1985). This approach is useful to structure the type of mapping units that result 
from unsupervised classifications. Consociations are the most pure mapping units. 
Associations are usually the result of the aggregation of spectral classes that correspond 
with distinct land cover/use classes, and which are merged because of a decision of the 
analyst or of the map user. Complexes are usually units that group land cover/use classes 
which are difficult to discriminate from the spectral data used. 

The approach proposed in the present paper to define mapping units is different from the 
use of primary and secondary labels (Woodcock et al. 1996, Ludin and Harrison 1997). In 
the scheme proposed by these authors, secondary labels are evaluated from a set of 
polygons defined from a segmentation of a classified image or from a classified image 
segmented by land parcel boundaries. The mapping units are not inherent to the spectral 
data that the image contains and the image is used to attach information to spatial units 
defined by other means. In the proposed approach main components of mapping units are 
similar to primary labels and minor components or inclusions are similar to secondary 
labels, but primary and secondary labels are different from super classes and elementary 
land use classes, which have to do with the class generalisation level being considered. 

The important cover/use classes were clearly distinguished in the present case study 
despite using data when the vines had not yet sprouted (Figure 5.2.4). Confusion existed in 
the classification of built-up areas, bare soil parcels and young vineyard plantations. These 
units, where confusion existed, form complexes. Two complexes were needed to separate 
typical mixtures: bare soil parcels and grassland and shrubland with built-up areas, and 
bare soil parcels and grassland and shrubland with vineyards. These are typically border 
areas between these classes and were difficult to discriminate. 

The method that was used to assess the classification accuracy is slightly different to the 
traditional error or confusion matrix approach (Story and Campbell 1986, Gong and 
Howarth 1990, Chuvieco 1996, Palacio and Luna 1996). Omissions and commission errors 
were measured on a different basis since reference data (land cover/use classes) were 
compared to classified data as they refer to the components of the mapping units, that 
result from the unsupervised classification and aggregation of spectral classes. It may 
produce high errors of omission in land cover/use classes that are not main components in 
mapping units and only appear as minor components. 

An advantage of the proposed mapping unit generalisation hierarchy, above conventional 
methods of presenting image classification results, was the possibility for the user to query 
the basic thematic level, to identify elementary class membership of a given pixel 
belonging to a higher level unit. The ability to undertake queries was the result of the 
relationships between the different information levels in the defined hierarchy (Figure 
5.2.2 and Figure 5.2.3), as illustrated in Figure 5.2.5. 
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Like all labelling methods, the proposed one is not exempt from subjectivity. Map 
production was guided by the map purpose and the analyst or map user must to decide 
about the level of class hierarchy and mapping unit hierarchy to implement. Variations on 
the basic land cover/use classes or mapping units to merge change the output map and 
legend. This can be viewed as an advantage, since the basic information registered in the 
raster map and in the database can be used to produce different purpose maps. The 
assessment of classification accuracy or those different maps is possible because of the 
inheritance of the class membership information available from a lover level to a higher 
level of the generalisation hierarchy structure. 

5.2.6. Conclusions 

An approach for image classification that considers information abstraction structures such 
as class generalisation hierarchies, in order to guide mapping unit definition from data 
collection to information presentation, has been presented. 

Several aspects of the proposed method might be viewed as advantageous. From the user's 
point of view, the map legend reports a more detailed mapping unit composition than usual 
legends, which only present the main land cover/use classes as labels. Although confusion 
matrices also carry information about mapping unit components, only generalised main 
components can be expressed. Information to the user is not also as explicit as in the 
proposed method. Here the user can decide the level of detail to query. The generalisation 
hierarchy allows transparency of information from one level to another. The user can 
obtain knowledge of basic mapping unit components from queries at a higher level. It also 
allows querying for location of land cover/use classes that are not main mapping unit 
labels. The output is accompanied by the corresponding unit membership value. 

Basic mapping units were the product of an unsupervised classification. Each decision that 
is taken during the clustering process will vary the output (e.g. input bands, seeding, 
classifier type), but the date of the image will significantly influence the land cover/use 
classes that can be distinguished. In the case study presented, the use of multitemporal data 
would probably have produced a more accurate land cover/use map. 

Some aspects related to the proposed method remain unexplored. Perhaps, one of the most 
interesting would be the complete automation of the generalisation hierarchy after ground 
truth data collection. On the basis of membership values of basic mapping units to land 
cover/use classes, the system would compute the combinations of related or similar 
mapping units in terms of cover/use class components (according to the classification 
system) that produce a minimum overall classification error. The user would only 
supervise the land cover/use class hierarchy, since this information can vary depending on 
the cover/use classes existing in different areas. 
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