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Abstract

This thesis focuses on the problem of 3D acquisition using coded structured
light (CSL). CSL aims to retrieve the 3D information of an object shape by
means of a camera or set of cameras and a coded active device that projects
a pattern onto the scene. This pattern imposes the illusion of texture onto
an object, increasing the number of correspondences even in presence of
textureless surfaces. Afterwards, the camera(s) images the scene, and 3D
acquisition is pursued using the same triangulation principle used in stereo-
vision. The vast amount of literature on 3D acquisition using structured
light gives an idea of the relevance of the topic. Nowadays, an active re-
search is being done in CSL techniques that are able to work in moving
scenarios. This implies the use of few or just one projected pattern, from
which 3D information must be extracted. In this thesis, a review of the
main CSL approaches is presented. The main features of the proposed CSL
algorithms present in the literature are studied. We propose a first approach
for one-shot dense acquisition using Wavelet Transform (WT) analysis and
color multiplexing of different fringe patterns. This algorithm performs
well for smooth surfaces, but fails under presence of discontinuities as the
slopes are not detected optimally by the WT algorithm. Therefore, a deep
study of the two most used frequency-based techniques is performed, and a
new proposal for automatic selection of the window width using Windowed
Fourier Transform (WFT) is made. Using this analysis, we implemented
a new technique for one-shot dense acquisition. The technique is based on
adaptive WFT and DeBruijn coding. The experimental results show that
the proposed method obtains accuracy levels comparable to DeBruijn al-
gorithm, but providing absolute dense acquisition. Finally, the last part of
the thesis focuses on the problem of registration, as many applications need
to register more than one single scan into a big 3D acquisition of a large
shape. With this we finish the work of this thesis. The thesis concludes with
an analysis of the pros and cons of the technique. The proposed algorithm
sets a new trend in CSL as it merges the density of WFT frequency coding
with the accuracy of DeBruijn spatial coding, which had been separated
approaches until now.

Keywords: Pattern Projection, Structured light, Windowed Fourier Trans-

form, 3D Measuring Devices, Active Stereo, Computer Vision



Resumen

La presente tesis doctoral estudia el problema de la reconstrucción 3D uti-
lizando luz estructurada codificada (CSL). El objetivo de CSL es extraer la
información 3D de la superficie de un objeto por medio de una cámara (o
cámaras) y de un dispositivo emisor de luz (usualmente un proyector digi-
tal) que projecta un patrón sobre la superficie. De este modo, se imprime
textura artificial sobre el objeto, incrementando el número de corresponden-
cias incluso para superficies carentes de textura. Tras capturar la imagen
se realiza la resconstrucción 3D, utilizando los mismos principios que en
stereovision pasiva. Actualmente se esta trabajando intensamente en las
técnicas de CSL apicables a entornos dinámicos. Ésto implica el uso de
muy pocos o incluso un único patrón proyectado. Esta tesis realiza primero
una revisión de las principales técnicas de CSL presentes en la literatura,
indicando y comparando las caracteŕısticas comunes de los diferentes al-
goritmos de CSL. Posteriormente se propone un nuevo y único patrón de
proyección CSL. Dicho patrón utiliza el análisis mediante la Transformada
Wavelet (WT), as como la multiplexión en color para unir diferentes com-
ponentes sinusoidales en una única proyección. El algoritmo obtiene buenos
resultados para superficies suaves. Sin embargo, se detectan errores en la
reconstrucción de discontinuidades, debido principalmente a tipo de análisis
frecuencial utilizado. Esto nos lleva a realizar un estudio detallado de los
diferentes algoritmos de análisis presentes en el dominio frecuencial. Resul-
tado de este trabajo es la propuesta de un nuevo algoritmo de Windowed
Fourier Transform (WFT) donde la selección del ancho de la ventana de
análisis se calcula óptimamente de manera automática. Utilizando este
algoritmo para la fase de análisis, se desarrolla un nuevo y único patrón
basado en sinusoidales coloreadas siguiendo una secuencia DeBruijn. Los
resultados experimentales muestran unos niveles de precisión comparables
con otras técnicas DeBruijn, con la ventaja de que se obtiene una recon-
strucción densa usando un único patrón. La tesis concluye realizando un
análisis de las ventajas y desventajas de patrón diseñado. Dicho patrón
establece un nuevo hilo en CSL al unir dos campos separados hasta hoy,
como son la densidad de reconstrucción para entornos moviles (propio de las
técnicas frecuenciales), y la precisión que proporcionan las técnicas basadas
en secuencias DeBruijn.
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Introduction

This chapter provides an introduction to the problem of three dimensional acquisition

in Computer Vision. The importance of 3D acquisition and principal approaches are

outlined in section 1.1, while section 1.2 presents the motivations behind this work. The

context in which this work has been carried out is presented in section 1.3. Finally,

section 1.4 outlines the structure of this thesis.

1.1 The importance of 3D acquisition in Computer Vision

This thesis is focused on the problem of 3D acquisition (i.e. 3D reconstruction) using

Structured Light (SL). 3D reconstruction constitutes a valuable ability for any machine

that needs to understand the environment where is being involved or where any action

is required from its part. There are different ways to perform a 3D reconstruction of the

environment. Doing an analogy with the human body (the most developed and complex

machine) two different senses are associated to 3D reconstruction: the sense of touch

and the sense of vision. Using the sense of touch, 3D shape of an object can be recovered

by ’touching’; i.e., by passing a haptic sensor through the surface to scan. Analogously,

a group of techniques use the same principle in 3D scene reconstruction. They are

the so called contact techniques. Nowadays, one can obtain accurate reconstruction

using any available contact technique. However, there are many applications where

the direct contact with the object to scan is not feasible or recommended. Vision is

the other sense used by humans for reconstruction. Vision is the most important and

developed human sense, which allows us to perceive color, texture, shape and depth.

Analogously, computer vision is a subfield of artificial intelligence that investigates how

to make computer algorithms which are able to perceive and understand the world
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1. INTRODUCTION

through images. Roughly, computer vision tries to emulate the visual perception of the

human being from the first stage of light detection till the complex task of understanding

what is being perceived. In this case, light is detected by cameras, while the high level

tasks of image understanding are processed by using computer algorithms. Following

with the analogy with humans, the ability of perceiving depth is based on the binocular

stereopsis formed by the eyes (see Fig. 1.1). The slightly different position of the eyes

on the head provokes that an object appears in different horizontal positions in each

image provided by each eye. This difference on relative positions, known as disparity,

gives a cue about the object depth. Computer vision tries to copy human stereopsis by

using two cameras as if they were two eyes in what is called passive stereovision [15]. An

alternative consists in using a single camera and moving it to different known positions

for perceiving the scene from multiple points of view. This approach is known as

structure from motion [16], [17]. Furthermore, disparity variations on a sequence of

stereo images can be used for rigid motion estimation [18], [19].

Figure 1.1: Comparison between human stereo-vision and a classical passive stereo-vision
device.

Stereovision is one of the most important topics in computer vision since it allows

the three dimensional position of an object point to be obtained from its projective

points on the image planes [20]. The setup is usually formed by electromagnetic sensor

devices, usually working in the visual range (normal cameras). The ambient light or

the projected signal gets reflected by the scene, typically the surface of an object. This

reflection is imaged by the camera or set of cameras. Afterwards, a complete pipeline

for filtering, detection and matching of points is pursued to provide a 3D model of the

object shape. The most difficult problem in stereovision is the determination of homol-

ogous points in two images, i.e. determining which pair of projective points represent

the same three dimensional object point. This problem is known as the correspondence

problem, which is the main limitation of stereovision since once it is solved the rest has

been already formalized [20]. Even if a set of geometrical constraints, known as the

epipolar geometry [21], is able to simplify the correspondence problem, it is not a defini-
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tive solution, mainly because density is directly related to the texture of the object. For

example, the correspondence problem cannot be solved when observing non-textured

objects, when points only appear in one of the images due to a surface occlusion, when

points are multiply matched between the images or under adverse lighting conditions.

Any of these situations complicates the process of finding correspondences in presence

of textureless surfaces [22]. Therefore, stereovision is rather limited to reconstruct

dense 3D surfaces, due to the problem of finding correspondences [23]. Methods based

on structured light came to cope with this issue, creating correspondences and giving

specific codewords to every unitary position on the image. In this approach one of the

cameras is substituted by an active device (nowadays a Digital Light Projector), which

projects a structured light pattern onto the scene. The projected pattern imposes the

illusion of texture onto an object, increasing the number of correspondences [24]. There-

fore, surface reconstruction is possible when looking for differences between projected

and recorded patterns. The former structured light techniques were based on projecting

simple primitives like a single dot or a single line of light, usually provided by lasers.

The advantage of projecting such structured light primitives is that the correspondence

problem of the illuminated points on the images is directly solved. Nevertheless, the

number of correspondences per image is very small. In order to increase the number of

correspondences, structured light patterns like arrays of dots, stripes, grids or concen-

tric circles were introduced. However, with this solution the identification of different

pattern regions on the images becomes ambiguous so that the correspondence problem

is not directly solved. This fact provoked the emergence of coded structured light [23].

In this case, the projected patterns are coded so that each element of the pattern can

be unambiguously identified on the images. This thesis contributes in the field of coded

structured light for the dense and accurate retrieval of moving surfaces.

1.2 Motivation and objectives

There are many applications where stereo-vision plays an important role, not only in the

fields strictly related to computer vision but also in many other industrial environments.

Some of them are (see Fig. 1.2):

• Range sensoring: as a way to measure distances in an environment where a specific

machine needs to move through.

• Industrial inspection of manufactured parts: this constitutes a key factor in qual-

ity check of any industrial component. A 3D reconstruction of the piece reveals
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necessary for many products where the accuracy of the 3D shape represents a

crucial factor.

• Reverse engineering: digitization of complex, free-form surfaces in order to repro-

duce exactly a previous created object.

• Object recognition: as a first step for recognition, it is necessary to have a reliable

3D model of the object. In this case the accuracy of the reconstruction can

determine the success on a posterior recognition step.

• 3D map building: with the new trends in augmented reality, many applications

require a 3D map of a set scenario. This is the case of 3D reconstruction of large

surfaces (i.e. applications in terrestrial or submarine mapping). This is possible

only if a previous 3D retrieval has been pursued.

• Biometrics: the specific shape and volume of a person can be an interesting

for a variety of applications where a 3D database would facilitate a posterior

recognition of a person among others.

• 3D surgery: in the last years, 3D surgery has revealed as a perfect aid tool for

doctors. Having a 3D reconstruction of some internal parts of the object, while a

operation is being pursued, facilitates the recognition of the regions where a work

must be done. Roughly speaking, it is like looking at the body from inside.

• Clothing design: as a contribution to fashion, there is also a lot of interest in the

design of clothes adapted, or better fitted, to the human body.

As mentioned before, in passive stereo-vision systems the density of the 3D recon-

struction is directly related to the texture of the object. This complicates the process

of finding correspondences in presence of textureless surfaces [22], and reduces its range

of applications only to rich textured surfaces where a good number of matches between

the captured images can be done. The aim of coded structured light is to robustly

obtain a large set of correspondences per image independently of the appearance of

the object being illuminated and the ambient lighting conditions. The different SL

techniques available in the literature differ in three main aspects. First, in the way in

which every point in the pattern is identified, i.e. what kind of codeword is used and

whether it encodes a single axis or the two axes of an image, and how many projected

patterns are required. In reality, it is only necessary to encode a single axis, since a 3D

point can be obtained by intersecting two lines (i.e. when both pattern axis are coded)
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Figure 1.2: Example of some applications of coded structured light.

or intersecting one line (the one which contains a pixel of the camera image) with a

plane (i.e. when a single pattern axis is coded). Second, the analysis algorithm and the

domain in which the feature extraction and the matching step is pursued. Both spatial

and frequency analysis can be carried out, separately or combined at some point of the

processing step. Finally, the more important aspect to consider in a SL pattern is the

output that it provides, and the sparsity or density of the obtained 3D reconstruction.

Regarding the number of projected patterns required to identify a point, SL ap-

proaches can be categorized depending on whether they are intended to work in static

or in dynamic scenarios. The first SL approaches that can be found in the literature

consist in the projection of a set of patterns that are successively projected onto the

surface to measure. The codeword for a given pixel is usually formed by the sequence

of illumination values for that pixel across the projected patterns. Therefore, the cod-

ification is called temporal because the bits of the codewords are multiplexed in time.

This kind of patterns can achieve high accuracy in the measurements. However, as

a main drawback, they are not able to work in moving scenarios. This represents a

problem in many applications where the object to scan does not remain still for much

time, or even is moving across the scanning scenario. The ability to measure mov-

ing surfaces (up to the acquisition time required by the camera) is only achieved by
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one-shot patterns. Plenty of proposals for one-shot projection has been done during

decades. For instance, classical spatial multiplexing techniques like DeBruijn and M-

arrays-based patterns perform one-shot 3D reconstruction with good accuracy results

([6], [25], [6], [26], [3], [27], [28]). However, they produce sparse (feature wise) recon-

structions, due to their digital profile that imposes the same codeword for a set of points

in the recovered image. Another group of techniques is grouped in the fringe profilom-

etry approaches. These techniques make use of some frequency analysis to extract the

phase deviation of a fringe recovered pattern, with respect to the one that was previ-

ously projected. With a unique projection, it is possible to extract the phase deviation

and from that the depth of the object. However, inaccuracies can occur at surface

discontinuities due to the non-absolute (periodic) coding intrinsic to the method [29].

There exist some techniques that obtain density and absolute coding by using one-shot

spatial grading [11] [30], but both achieve a rather low accuracy [29]. Therefore, the

problem that must be addressed is to design a SL pattern able to:

• Image the scene using only one-shot projection: this enables its use for moving

scenarios, and could be potentially used for real-time applications.

• Dense 3D reconstruction: this is considered an asset in many of the previously

mentioned applications. The more 3D points are available in the reconstruction,

the better the detection of crucial points (being this good or bad) can be achieved.

• Absolute coding and accuracy: the designed algorithm must be able to recon-

struct uniquely any point in the imaged scenarios. That is, uncertainties in the

reconstruction must not appear. Moreover, the accuracy must be at least similar

to the best accuracy results obtained nowadays in active reconstruction.

These are the challenges overcome in the SL algorithm proposed in this thesis.

1.3 Context

This thesis was carried out in the VICOROB laboratory at the University of Girona.

The research areas of the group are underwater robotics and vision, mobile robotics,

3D perception and medical imaging. The research activities are currently supported by

several national projects and an European projects. The work developed is this thesis

has been partially funded by the following Spanish projects:
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• CICYT Project AQUAVISION Vision Systems for computer cartography and un-

derwater aquaculture (Ref DPI2007-66796-C03-02), funded by the Spanish Min-

istry of Education and Science.

• FP7-ICT-2011-7: PANDORA Persistent Autonomy through Learning, Adapta-

tion, Observation and Re-planning (Ref 288273) funded by the European Com-

mission and the project

• CICYT Project RAIMON Autonomous Underwater Robot for Marine Fish

Farms Inspection and Monitoring (Ref CTM2011-29691-C02-02), funded by the

Spanish Ministry of Science and Innovation.

Within the 3D perception group, 3D reconstruction using coded structured light has

produced many contributions to VICOROB. Always under the supervision of prof.

Joaquim Salvi, several researchers and PhD students have done previous contributions.

This is the case of the works of David Fofi (Navigation d’un Vhicule Intelligent l’aide

d’un Capteur de Vision en Lumire Structure et Code) Jordi Pages (Assisted visual

servoing by means of structured light) and Radu Orghidan (Catadioptric Stereo based

on Structured Light Projection). Nevertheless, 3D reconstruction is a generic step that

can find applications in a variety of contexts. For example, among the interests of the

VICOROB group it is possible to find also projects related to the construction of multi-

modal maps (MuMAP) and to the development of autonomous underwater vehicles

(robots) for multi-purpose intervention missions (TRIDENT and 7PMSTREP). Both

tasks require a system able to create 3D images of the explored area in order to increase

the knowledge of the environment where the robot is moving across.

Moreover, this thesis has been developed in two other places as part of research

stages. One is the General Engineering Research Institute (GERI) of the John Moores

University (Liverpool, U.K.). This group is specialized in fringe pattern projection

and decoding, among other disciplines. Therefore, part of my research was done in this

center in order to learn about the 3D reconstruction using this kind of coded structured

light patterns. The second place I visited was the department of informatics of the Uni-

versity of Verona (Italy). They work in stereo-vision applications, and have a spin-off,

3Dflow, working on 3D reconstruction of large scenarios using stereo-vision. Therefore,

my stage at this center was addressed to learn the existing techniques for registration

of 3D range data, and merging single views into a complete 3D reconstruction.
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1.4 Structure of the thesis

The material presented in this thesis is structured as follows.

• Chapter 2 presents the state of the art of structured light. First, a new clas-

sification of the different techniques is proposed. Afterwards, the study of the

different groups regarding the proposed classification is pursued, focusing on the

advancements presented in the last years. Afterwards, the results of implement-

ing some of the most relevant techniques are showed, comparing their pros and

cons. Finally, the advantages and disadvantages of the most relevant techniques

are discussed, pointing out the new potential fields of research.

• Chapter 3 presents a first approach of one-shot dense reconstruction algorithm.

First, the theory behind the proposed technique is explained, focusing on the

frequency analysis and the color multiplexing use to create the pattern. After-

wards, details on the implementation and results are shown. The pros and cons

are discussed, revealing some problems in the reconstruction of surfaces having

discontinuities. An explanation of this problem is found in the way the frequency

analysis is pursued. Therefore, a more deep study of the different solutions exist-

ing for frequency analysis is pointed out as the next research step.

• Chapter 4 performs a comparative study of the two frequency-based analysis most

used in SL, the Wavelet Transform (WT) and the Windowed Fourier Transform

(WFT). Afterwards, a new proposal for frequency analysis based on a modifica-

tion of the traditional WFT algorithm is presented. Some test are done showing

the better performance of this phase retrieval algorithm against the classical WT

and WFT.

• Chapter 5 presents a one-shot algorithm for dense absolute reconstruction of 3D

shape. The algorithm is based on the combination of DeBruijn and WFT tech-

niques, using the procedure explained in chapter 4. Details of the implementation

are explained, and both simulated and experimental results of reconstructions are

presented. The performance in terms of accuracy is comparable to that obtained

for DeBruijn patterns, while dense reconstruction is achieved. A discussion com-

paring the proposed method with the ones existing in the literature is pursued.

• Finally, chapter 6 faces the problem of registration of single views. The aim

is to perform a 3D acquisition of coarse objects by registering more than one

single views. This can be used for retrieval of big manufactured products, large
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regions of the human body, or similar. Registration of several views provides 3D

information of the object. This can be used as the final outcome of the method, or

as a previous 3D localization for further reconstruction of more small and detailed

regions.

• To complete the thesis, chapter 6 gives a summary of the presented work. Con-

clusions are drawn and future directions are discussed. The list of publications is

presented at the end of this chapter.

In order to clarify some steps of the proposed SL approaches, a total of four appen-

dices are presented at the end of the thesis. Appendix A explains the camera-projector

calibration technique, required to know the intrinsic parameters of the camera and the

projector, as well as the relative position between them. This is used to perform the

triangulation between the projected and the recovered patterns. Afterwards, appendix

B explains the color calibration and RGB channel alignment, required steps when pro-

jecting a color pattern. Appendix C explains the principles of the Remainder theorem

used in the first approach of SL pattern. Finally, appendix D shows the principles of

dynamic programming applied to DeBruijn pattern analysis.
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2

State of the art on Coded

Structured Light

Projecting structured light patterns onto the scene in order to extract the 3D shape is

a common solution used in computer vision, and it is considered one of the most reli-

able approaches among all 3D reconstruction techniques. Having a calibrated projector-

camera pair, a light pattern is projected onto the scene and imaged by the camera.

Correspondences between projected and recovered patterns are found and used to ex-

tract 3D surface information. The main advantage among other approaches is that the

projected visual features are easily distinguished by the camera. This chapter presents

an up-to-date review and a new classification of the existing techniques. Some of these

techniques have been implemented and compared, obtaining both qualitative and quan-

titative results. The advantages and drawbacks of the different techniques and their

potentials are discussed.

2.1 Overview of structured light techniques

The term Structured Light (SL) is used to refer to a vision system taking profit of

an active light source which projects a light pattern onto the environment. In com-

puter vision, SL is used as an active stereovision system to obtain 3D reconstruction

by triangulation, in the same way as is done for stereo-vision. In this approach an

active device (typically a projector) is used to project a SL pattern onto the scene. The

projected pattern imposes the illusion of texture onto an object, increasing the number

of correspondences [24]. This solves the main problem experimented in passive stereo-

vision, which is a sparse reconstruction since density is directly related to the texture
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of the object, thus complicating the process of finding correspondences in presence of

textureless surfaces [22], [23]. The first shape acquisition systems based on structured

light were laser scanners [31]. These devices are typically based on scanning the object

with a laser plane and detecting the projected line in the camera image for triangulat-

ing all the illuminated points. The advantage of these scanners is the large resolution

and accuracy obtained leading to high quality 3D surface reconstruction. The main

drawback is that they are limited to static objects and that a large number of images

must be acquired. Furthermore, in order to scan the object either the laser plane must

be rotated, or both the laser and the camera or the object must be moved at each iter-

ation. In the latter case, the displacement must be known so that free-moving objects

cannot be reconstructed. All these problems appear because in each acquired image

only few points can be triangulated, i.e the points belonging to the laser stripe. This

limitation can be minimized by projecting more complex patterns like a laser grid [32].

However, a new problem arises: since the grid has a unique color the identification of

every grid region on the image becomes ambiguous. Coded structured light is aimed

to solve these limitations [1]. In Coded SL the active device is typically a Digital Light

Projector (DLP), and is modeled as the inverse of a camera (see Fig. 2.1). Therefore

the calibration step is a similar procedure to the one used in stereo vision [33]. Using

this techniques, surface reconstruction is possible when looking for differences between

projected and recorded images, which are called patterns since they present a globally

structured appearance. The simplest pattern is a black image with an illuminated pixel.

In this case, only one point can be reconstructed by triangulation by using the pixel

coordinates of the illuminated point in the pattern and the corresponding coordinates

in the camera image. Note that this case is equivalent to use a camera and a laser

pointer. In general, all the patterns available with laser technology can be reproduced

with a DLP device.

In this chapter, an exhaustive analysis of the different coding strategies used in ac-

tive structured light is done, focusing on the advancements presented in the last years.

A new classification regarding the strategy used to create the pattern is proposed,

comparing some common characteristics between them. Feasibility and accuracy are

analyzed, giving both qualitative and quantitative results for the implemented tech-

niques. This chapter is structured as follows: section 2.2 presents a classification of

the different techniques. Discrete pattern based codification is studied in section 2.3,

while section 2.4 deals with the continuous ones. The results of implementing some of

the most relevant techniques are showed in section 2.5, comparing their pros and cons.

Finally, section 2.6 concludes with a discussion of the surveyed methods, pointing out
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2.2 Classification of coding strategies for SL

Figure 2.1: General idea of a coded structured light system [1].

advantages and disadvantages of the most relevant ones. In addition, general guidelines

for choosing the most suitable technique, given the specifications of an application, are

proposed.

2.2 Classification of coding strategies for SL

Coded structured light (CSL) is based on the projection of one pattern or a sequence of

patterns that uniquely determine the codeword of a projecting pixel (or feature) within

a non periodic region. CSL has produced many works during the last decades and

some recopilatory works can be found in the literature. This is the case of the surveys

presented by Batlle et al. [23] and Salvi et al. [1], that analyzed the different coded

structured light techniques existing in temporal and spatial multiplexing domains from

1998 until 2004, respectively. Regarding frequency multiplexing, Su [34] reviewed the

Fourier Transform (FT) techniques proposed until 2001. However, there is not any

13
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previous work comparing the three approaches together. Therefore, a classification

extracting and analyzing attributes common in all the approaches is missing. This is

overcome in the present survey, which also incorporates the most recent contributions

done in CSL in the last years.

Table 2.1 shows a new classification of the existing pattern projection techniques.

The main distinction has been done regarding the sparse or dense 3D reconstruction

achieved. Patterns providing sparse reconstruction present a digital profile having the

same value for the region represented by the same codeword. The size of this region

largely determines the density of the reconstructed object. On the other hand, dense

reconstruction is achieved by projecting either a sequence of digital patterns superposed

over time to obtain full pixel coverage, or with a smooth profile pattern where every

pixel has a unique codeword within the non-periodicity region. Both approaches achieve

dense reconstruction. A posterior sub-classification is done regarding spatial, time and

frequency multiplexing. Columns on the right indicate the value of some intrinsic

attributes common to all the patterns. These attributes are:

• Number of projected patterns: determines whether the method is valid or not for

measuring moving objects.

• Number of cameras: the method uses stereovision (2 or more cameras) coupled

to a non calibrated pattern used only to get texture on the surface pattern, or a

unique camera coupled to a calibrated projector.

• Axis codification: the pattern is coded along one or two axes.

• Pixel depth: refers to the color and luminance level of the projected pattern (B,

G and C stands for Binary, Grayscale and Color respectively).

• Coding strategy : refers to the periodicity of the set of patterns projected on the

surface (A stands for Absolute and P stands for Periodic).

• Sub-pixel accuracy : determines whether the features are found considering sub-

pixel precision, thus providing better reconstruction results (Yes or No).

• Color : determines whether the technique can cope with colored objects (Yes or

No).
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2.2 Classification of coding strategies for SL

Table 2.1: Proposed classification embracing every group of CSL.
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2.3 Sparse reconstruction methods

In sparse reconstruction methods the pattern presents a digital profile; that is, a region

of the pattern constituted by more than one pixel is represented by the same code-

word. Two techniques, named spatial multiplexing and temporal multiplexing, can be

employed to image the scene. Spatial multiplexing techniques code the pattern using

the surrounding of a given feature, while temporal multiplexing creates the codeword

by the successive projection of patterns onto the object. In addition, some methods

combine spatial and temporal information to take advantage of both techniques.

2.3.1 Spatial multiplexing

Spatial multiplexing groups all techniques where the codeword of a specific position

is extracted from surrounding points. Intensity or color variations are used to create

the codeword. Three different coding strategies can be distinguished within this group:

DeBruijn patterns, non-formal coding and M-arrays.

2.3.1.1 DeBruijn based techniques

DeBruijn sequences are a set of pseudo random values having specific properties be-

tween them. A k-ary DeBruijn sequence of order n is a circular sequence d0, d1,, dnk−1

(length nk) containing each substring of length k exactly once (window property of k).

DeBruijn sequences can be constructed by taking a Hamiltonian or Eulerian path of a

n-dimensional DeBruijn graph (see [35] for more details). This algorithm allows us to

create univocal stripe sequences in the pattern, being able to extract the position by

looking at the color of the stripes placed in the same window. Several proposals can

be found using DeBruijn sequences, with both striped and multi-slit patterns. First

proposals of DeBruijn-based striped patterns are found in the method developed by

Boyer and Kak [36]. In this approach, RGB space was used to code the sequence of

stripes. Being cki the color of the stripe i of the sub-pattern k, the distance between

two sub-patterns k and l is given by eq. (2.1):

d = ΣN
i=1δi (2.1)

where

δi =

0 if cki = cli

1 otherwise
(2.2)
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2.3 Sparse reconstruction methods

The pattern proposed by Boyer and Kak [36] contains more than 300 stripes colored

by three different colors. Color detection was done with a stripe indexing algorithm

preceded by a Hamming filtering. However, no color calibration was pursued to suppress

the effect of different albedo (that is, the diffuse reflectivity or reflecting power of the

surface), leading to some errors due to leackage from blue to green channel.

A different approach was followed by Monks et al. [6], where a multi-slit-based

DeBruijn sequence was projected. A total of 6 colors were used to color the slits,

separated by black gaps. The slit colors were chosen so that every subsequence of

three colors appeared only once. Colors were chosen in the Hue channel (HSI space),

despite the projection was performed in RGB and transformed back to HSI once the

image was captured by the camera. Full saturation and full intensity were chosen

in the SI channels. A previous color calibration step was performed by the authors

in order to determine the transfer function of the optical system. Once the system

was calibrated, captured colors were corrected before applying fringe detection. A

minimum cost matching algorithm was used in the decoding step in order to find the

most probable matching between projected and recovered patterns, considering that

some slits might be imaged partly occluded or bad segmented [1].

To simplify the peak detection process, Salvi et al. [24] created a grid of horizontal

and vertical colored slits. Every crossings of the two slits were extracted by simple peak

intensity detection. Hue channel was again used (in HSI space) to encode the colors.

Three colors were assigned for the horizontal lines and other three for the vertical lines,

using a DeBruijn sequence of order 3. The decoding step is done back in HSI space,

showing negligible errors scanning planar surfaces under scene light control. However,

some problems were encountered due to the sensitivity of the Hue channel under differ-

ent albedo of the illuminated object. Some years later, Pages et al. [2] [25] proposed an

alternative approach to traditional striped or multi-slit-based pattern. They combined

a striped pattern in the Hue channel with a multi-slit pattern in the Intensity chan-

nel (see Fig. 2.2), which defined dark and bright areas within the same color stripe.

Therefore, the high resolution of classical striped patterns and the accuracy of multi-

slit patterns were combined. The half illuminated stripes were colored according to a

DeBruijn sequence for a sub-pattern of n stripes, while bright slits were colored equally

within the same sub-pattern. In the experiments, a 128 striped pattern having 4 colors

and a window property of 3 encoded stripes was applied. Using this codification, their

approach doubled the resolution of traditional DeBruijn stripe-based techniques.
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Figure 2.2: Pattern proposed by Pages et al. [2] (RGB pattern and luminance channel).

2.3.1.2 Non-formal coding

Non-formal coding is constituted by all the techniques having non-orthodox codifica-

tion, in the sense that the pattern is designed to fulfill some particular requirements.

Both one-axis and two-axes encoding are suitable for these methods. One-axis coding

methods are based on stripped or multi-slit patterns. This is the case of Forster [37] and

Fechteler and Eisert [38] proposals, which created color-based patterns in which two ad-

jacent colors must differ in at least two color channels in the receptor device (red, green

and blue). This condition is not usually accomplished in DeBruijn sequences. Forster

used a striped pattern, while Fechteler and Eisert employed a multi-slit pattern. In

Fechteler and Eisert a parabola was fitted in every RGB channel (or combination of

channels for non-pure RGB colors, option selected by Forster). Optionally, surface color

was acquired by projecting an extra white pattern. Tehrani [39] applied the idea of

color slits to reconstruct images taken from two camera views, using 10 hue values to

create the slit pattern (the difference between colors was maximal for adjacent slits).

There are also some proposals based on two-axes encoding. For instance, Maruyama

and Abe [40] proposed a pattern of randomly cut black slits on a white background. In

this approach, coding information was held in the length of the slits and their position

within the pattern. Every recorded segment had its own length, which can be similar

for several segments. The codeword corresponding to a segment was determined by

its own length and the lengths of its 6 adjacent segments. The main drawback of this

method is that the length of segments is affected by the projector-object and object-

camera distances, as well as by the camera optics, therefore reducing the reliability of

the system. Another solution based on stripe lengths has been recently developed by

Kawasaki et al. [22], who established a pattern of horizontal and vertical lines. In this

work, the uniqueness of a specific location has been coded in the spacing between hori-

zontal lines (in blue), whereas vertical lines (in red) have been equally spaced. A peak

detection algorithm was applied to locate the crossing points (dots) in the recovered

image, and a posterior comparison with distances to neighboring dots determined their

positions in the projected pattern. Ito and Ishii [41] did not use stripes or slits for
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2.3 Sparse reconstruction methods

coding, but a set of square cells (like a checkerboard), having one out of three possible

intensity values. Every node (intersection between four cells of the checkerboard) was

associated with the intensity values of the forming cells. In order to differentiate nodes

having the same subcode, epipolar constraints between the camera and the projector

were employed. The idea of using epipolar constraints was also applied in the work

presented by Koninckx and Van Gool [42]. They proposed an adaptive system where

green diagonal lines (named coding lines) were superimposed to a grid of vertical black

lines (named base pattern). If a coding line was not coincident with an epipolar line,

intersections created with the base pattern would all have laid on different epipolar

lines on the camera image. This determines a unique point in the projected pattern,

being able to perform the matching and the triangulation. A greater inclination of

diagonal lines gave a higher density of the reconstruction, but a lower noise resistance.

Therefore, the density of reconstruction could be chosen depending of how noisy the

environment was, giving an adaptive robustness versus accuracy.

2.3.1.3 M-arrays

First presented by Etzion [43], M-arrays (perfect maps) are random arrays of dimensions

r×v in which a sub-matrix of dimensions n×m appears only once in the whole pattern.

Perfect maps are constructed theoretically having dimensions rv = 2nm, but for real

applications the zero submatrix is not considered. Thus, giving a total of rv = 2nm− 1

unique submatrices in the pattern and a window property of n×m. M-arrays represent

in a two-dimensional space what DeBruijn patterns are in a one-dimensional space

(see [43] and [44] for more details). Choosing an appropiate window property will

determine the robustness of the pattern against pattern occlusions and object shadows

for a given application. Morita et al. [45] proposed a two projection-based technique

where an encoded matrix of black dots on a white background was projected, while

in the second projection some black dots were removed according to a binary-encoded

M-array. There are different approaches to represent non binary M-arrays, which are

classified regarding the approach used to code the M-array: colored dots (color-based)

or geometric features like circles and stripes (feature-based). For instance, Griffin et

al. [46] generated an array of 18× 66 features using an alphabet of four words 1, 2, 3, 4

comparing color and feature-based approaches. As the second approach is not color

dependent, better results were obtained in presence of colored objects. Morano et al. [3]

used a brute force (non-DeBruijn-based) algorithm to generate the pattern. An iterative

algorithm adding one new code word and checking it against all the previous ones was
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performed. If all the distances between values were at least equal to the specified

minimum Hamming distance, the new word was accepted and the next iteration was

followed, until the pattern was created. The directions in which the pattern was created

are indicated in Fig. 2.3.

Figure 2.3: Code generation direction followed by Morano et al. [3].

This algorithm was posteriorly used by Pages et al. [27] to design a 20 × 20 M-

array-based pattern with an alphabet of three symbols and a window property 3 × 3.

A color approach was used for the dots codification, using Red, Green and Blue in or-

der to separate them in the camera sensor. The decoding algorithm analyzed the four

neighbors of every dot. Once this was done, a comparison between all possible com-

binations of 8 neighbors was performed, in order to unequivocally locate the recorded

dot in the projected pattern and perform the triangulation. A different approach has

been followed by Albitar et al. [47], who used a 3 × 3 window property and three dif-

ferent symbols (black circle, circumference and stripe) to represent the codeword. As

no color codification was employed, this solution presented robustness against colored

objects. In the detection step, orientation of the projected pattern was extracted from

the direction of the projected stripes. Once this is done, location of the symbols in the

projected pattern was accomplished. Albitar et al. employed this method to create a

3D scan for medical imaging purposes (scanning of parts of the body), stating that this

one-shot technique was robust against occlusions (up to a certain limit) and suitable

for moving scenarios.

2.3.2 Time multiplexing

Time multiplexing methods are based on the codeword created by the successive pro-

jection of patterns onto the object surface. Therefore, the codeword associated to a

position on the image is not completely formed until all patterns have been projected.
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Therefore, they are used only for static scenarios. Usually the first projected pattern

corresponds to the most significant bit, following a coarse-to-fine paradigm. Accuracy

directly depends on the number of projections, as every pattern introduces finer res-

olution on the image. In addition, codeword basis tend to be small, providing higher

resistance against noise. There are several approaches in sparse time multiplexing,

which are exposed herebelow.

2.3.2.1 Temporal binary codes

These codes were first proposed by Posdamer and Altschuler [7] in 1982. A sequence of

patterns having black and white stripes was projected onto the object. The number of

stripes increased by two in every pattern, following a coarse-to-fine strategy. Therefore,

the length of the codeword was given by 2m bits, where m was the total number of

projected patterns. An edge detection algorithm was employed to localize the transi-

tion between two consecutive stripes (black/white or viceversa). Moreover, Hamming

distance between the codeword of two adjacent points could be maximized to reduce

errors in the detection step, as was proposed by Minou et al. [48].

2.3.2.2 Temporal n-ary codes

Based on the use of n-ary codes, Caspi et al. [14] proposed a color based pattern where

nm stripes were coded in RGB space. The parameters to set were the number of colors

to be used (N), the number of patterns to be projected (M) and the noise immunity

factor alpha (α). For the calibration step, Caspi et al. proposed a reflectivity model

given by eq. (2.3):

 R

G

B


︸ ︷︷ ︸

~C

=

 arr arg arb

agr agg agb

abr abg abb


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A

 kr 0 0

0 kg 0
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
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K
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
r
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b

︸ ︷︷ ︸
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+

 R0

G0

B0


︸ ︷︷ ︸

~C0

(2.3)

where ~c is the projected instruction for a given color, ~P is the non-linear transformation

from projected instruction to the projected intensities for every RGB channel, A is the

projector-camera coupling matrix, K the reflectance matrix (constant reflectance in

every RGB channel is assumed) and C0 is the reading of the camera under ambient

light.
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2.3.2.3 Temporal hybrid codes

In order to reduce the number of projections, Ishii et al. [4] proposed a system where

temporal and spatial coding were combined. The level of spatial or temporal depen-

dence was given by the speed and accuracy requirements. For a given pixel p(x, y) at

time t of the projected pattern, the value was determined by using eq. (2.4):

I(x, y, t) = G(b x
m

+ tc (mod n), y) (2.4)

where

G(k, y) = G(b2
ky

Iy
+

1

2
c (mod 2)) (2.5)

being G a binary image obtained from a camera at time t, n the space code size,

m the light pattern width in the x direction, and Iy the image size in the y direction.

There were n selectable code values for a pixel at time t, depending on the importance

of temporal encoding or spatial encoding. As shown in Figure 2.4, combination of tem-

poral and spatial information can be done from total temporal encoding (represented

by p = 1) to total spatial encoding (given by p = 8). The parameter p is called the

space coding weighter, as it provides an idea of how temporal or spatial the codification

is.

Figure 2.4: Spatial temporal algorithm proposed by Ishii et al. [4].

22



2.4 Dense reconstruction methods

2.4 Dense reconstruction methods

This group of techniques provide 3D reconstruction of all the pixels captured by the im-

age device. It is constituted by discrete or continuous shifting patterns, frequency pat-

terns and spatial grading, showing continuous variations on intensity or color through-

out one or two axes. Among these methods, the use of periodic and absolute patterns

can be found. Periodic patterns are used in time multiplexing shifting methods and in

frequency multiplexing. Besides, absolute patterns are based on spatial grading.

2.4.1 Time multiplexing

The same concept of time multiplexing in sparse reconstruction techniques is applied

also for dense reconstruction approaches. Dense time multiplexing is represented by

shifting techniques, both with discrete and continuous patterns.

2.4.1.1 Discrete shifting methods

There are some discrete implementations that use the shifting of patterns to obtain

dense reconstructions. This is the case of Sansoni et al. [49], Guhring [8] and Zhang et

al. [26]. The proposals of Sansoni et al. and Guhring projected a set of black and white

striped patterns (like in binary codes). Afterwards, the work of Sansoni et al. projected

4 shifted versions of the last pattern, while Guhring proposal projected shifted versions

of a slit-based pattern covering every pixel on the image. Binary patterns provided an

absolute location of the information given by shifted patterns, avoiding ambiguities in

the decoding step. Using a different strategy Zhang employed color to project DeBruijn

sequences, being smoothed and shifted versions of the same pattern. The smoothing

process provided subpixel accuracy to this method. In order to avoid errors due to

occlusions and discontinuities, multi-pass dynamic programming (a variance of the

dynamic programming proposed by Chen et al. [50]) was employed to match observed

to projected patterns. An explanation of multi-pass dynamic programming can be

found in Appendix D.

2.4.1.2 Continuous phase shifting methods

When projecting a sinusoidal grating onto a surface, every point along a line parallel to

the coding axis can be characterized by a unique phase value. Any non-flat 3D shape

will cause a deformation in the recorded pattern with respect to the projected one, which

is recorded as a phase deviation. This phase deviation provides information about the
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illuminated shape. Matching the recovered image with the projected pattern, the object

shape is recovered. The pattern must be shifted and projected several times in order to

extract the phase deviation (this is not the case of frequency multiplexing approaches).

Due to the grayscale nature of the projected patterns, they present advantages like

resistance to ambient light and resistance to reflection variation. Depending on the

number of frequencies used to create the pattern, we can distinguish between single

and multiple Phase Shifting (PS) methods.

Single phase shifting

These techniques use only one frequency to create the sequence of patterns. In order to

recover phase deviation, the pattern is projected several times, every projection shifted

from the previous projection by a factor of 2π
N , being N the total number of projections,

as shown in eq. (2.6) (super-index P indicates the projected pattern):

Ipn(y
p) = Ap +Bpcos(2πfφy

p − 2πn/N) (2.6)

where Ap and Bp are the projection constants and (xp, yp) are the projection coordi-

nates, n = 0, 1, ...N . The received intensity values from the object surface, once the set

of patterns is projected is:

In(x, y) = α(x, y) [A+Bcos(2πfφy
p + φ(x, y)− 2πn/N)] (2.7)

As can be observed from eq. (2.7), it suffers of intensity and phase deviation, being

necessary to cancel the effect of different albedo (α(x, y)) to correctly extract the phase.

This is shown in eq. (2.8):

φ(x, y) = arctan

[∑N
n=1 In(x, y)sin(2πn/N)∑N
n=1 In(x, y)cos(2πn/N)

]
(2.8)

From a minimum of three projected shifted patterns is possible to create a relative

phase map and to reconstruct the phase deviation caused by the object shape. However,

the arctan function returns values between the range (−π, π] and therefore a phase

unwrapping procedure is necessary to work with a non-ambiguous phase value out

of the wrapped phase. This is the reason why these patterns provide effective dense

reconstruction only under the restriction of smoothed surfaces.

Phase shifting methods has been used in a variety of applications during the last

years. For instance, Ono et al. [51] created the so-called correlation image sensor
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(CIS), a device which generates temporal correlations between light intensity and three

external reference signals on each pixel using phase shifting and a space-temporal un-

wrapping. Some approaches using phase shifting have also been developed from the

work proposed by Srinivasan et al. [52].

One of the drawbacks of phase shifting methods is the necessity to project several

patterns in time, which is more than the theoretic minimum of three patterns considered

for real conditions. A solution to reduce the total time required in the projection step

is to multiplex the patterns either in color space or in frequency. Following this idea,

Wust and Capson [53] proposed a method which projected three overlapping sinusoidal

patterns shifted 90 degrees and coded in red, green and blue. Therefore, in this way

the camera recorded phase deviation of every pattern in a different color channel and

a normal phase extraction algorithm like the one shown in eq. (2.9) could be used:

Φ(x, y) = arctan(
Ir − Ig
Ig − Ib

) (2.9)

where Φ(x, y) is the phase of a given pixel, and Ir, Ig and Ib are the red, green and

blue intensities, respectively.

A different approach was proposed by Guan et al. [5], where the patterns were

combined in frequency using the orthogonal dimension, as shown in Fig. 2.5. Basically,

a traditional band pass filtering was performed to the recorded pattern, as it is the-

oretically done in communications for frequency multiplexing. This step filters noise

without suppressing the information hold in the surroundings of the carriers. In partic-

ular, [5] used a maximally-flat magnitude Butterworth filter. Once this step was done,

a normal phase extraction was performed over the obtained patterns. This method

provided higher signal to noise ratio than color multiplexing approaches and it was not

dependent on the surface color. However, some errors arose in presence of different

albedo and abrupt shape variations.

Multiple phase shifting (MPS)

The use of more than one frequency in phase shifting comes to cope with the uncertainty

created in the extracted wrapped phase. As stated in the remainder theorem [54], an

absolute phase map can be computed from two different relative phase maps having

frequencies that are relative prime numbers. This principle was used by Gushov and

Solodkin [55] for interferometry, where an interferometer able to deal with vibrations

or relief parameters was constructed. More recently, Pribanic et al. [9] presented a

multiple-phase shifting-based technique where only two patterns were used to create
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Figure 2.5: Composite pattern formed by the multiplexation of modulated phase shifting
profilometry (PMP) patterns using the algorithm of Guan et al. [5].

the relative phase maps. Two sinusoidal patterns were shifted and projected in time, in

order to recover phase deviation (see Fig. 2.6). From these sets of images was possible

to obtain two relative phase maps, using normal phase shifting decoding algorithms (as

shown in eq. (2.8)). Having this, the absolute phase map was recovered (an explanation

about the use of the Remainder Theorem in Multiple Phase Shifting pattern projection

can be found in Appendix C).This map can be directly compared to the ideal phase-

shifting map, providing correspondences for the triangulation step. The algorithm was

tested for different pairs of frequencies over a flat surface. Finally the reconstruction

of a footprint and a face were pursued, providing small 3D reconstruction errors.

2.4.2 Frequency multiplexing

Frequency multiplexing methods group all the techniques where phase decoding is per-

formed in the frequency domain rather than in the spatial domain. There are different

approaches depending on the frequency analysis performed to the image. Fourier Trans-

form has been traditionally used to extract the depth information from the information

provided by the recovered phase. However, other techniques like Spatial Phase Detec-

tion, Windowed Fourier Transform, Wavelet Transform are also employed.

2.4.2.1 Fourier Transform

Fourier Transform (FT) was introduced to solve the necessity of having a phase-shifting-

based method for moving scenarios. FT was first proposed by Takeda and Mutoh

[56], who extracted depth from one single projected pattern. A sinusoidal grating

was projected onto the object, and the reflected deformed pattern was recorded. The
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Figure 2.6: Pair of projected sinusoidal patterns, having two different frequencies (k is
the number of periods).

projected signal for a sinusoidal grating was represented in eq. (2.10):

Ipn(y
p) = Ap +Bpcos(2πfφy

p) (2.10)

Once reflected onto the object, phase component was modified by the shape of the

object, thus giving an intensity value expressed in eq. (2.11):

I(x, y) = α(x, y)[A+Bcos(2πfφy
p + φ(x, y))] (2.11)

Phase component must be isolated to extract shape information. This was achieved

performing a frequency filtering in the Fourier domain. The background component

was suppressed and a translation in frequency was done to bring the carrier component

(which holds the phase information) to zero frequency axes. Applying the sequence of

equations showed below, the phase can be extracted from the signal. First, the input

signal was rewritten as shown in eq. (2.12):

I(x, y) = a(x, y) + c(x, y)e2πifφy
p
+ c ∗ (x, y)e−2πifφy

p
(2.12)
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where

c(x, y) =
1

2
b(x, y)eiφ(x,y) (2.13)

and c∗ (x, y) is the complex value of constant c(x, y). Finally, the phase component

was extracted from the imaginary part of eq. (2.14):

log[c(x, y)] = log[(
1

2
)b(x, y)] + iφ (2.14)

The obtained phase component ranges from (−π, π], being necessary to apply an

unwrapping algorithm in order to obtain a continuous phase related to the object.

Once the phase was unwrapped, the relative depth information was extracted using eq.

(2.15):

h(x, y) = L · ∆φ(x, y)

(∆φ(x, y)− 2πf0d)
(2.15)

where L is the distance to the reference plane and d is the distance between the camera

and the projector devices. FT has been widely used in industrial applications. For

instance, Cobelli et al. [57] used FT for global measurement of water waves. In their

work, two sources of noise were considered in the filtering step. The first one was

related with illumination inhomogeneities of background variations over the field of

view, which remains present as an additive variation. The second one was due to

the local surface reflectivity. As this reflection varies much slower than the sinusoidal

modulation impinged on the surface, it can also be treated as background noise. Thus,

both sources of noise can be suppressed using the background component filtering

procedure proposed by Takeda et al. [56]. Due to the periodic nature of the projected

pattern, this method was constrained by the maximum reconstructible slope given by

eq. (2.16):

|∂h(x, y)
∂x

|MAX <
L

3d
(2.16)

In order to increase this slope limitation, Su et al. [10] proposed the so-called π-

phase shifting FT. Two sinusoidal patterns were projected using this method, being

the second one a half-period shifted version of the first one. This solution multiplies by

three the detectable range in depth slope. This principle was used by Hu and He [58]

to scan moving objects having uniform velocity (like in an assembly line). In their work

two scan line cameras were used, and one single pattern was projected. The distance

between the two cameras corresponded to half the period of the grating. As the velocity

of the object was known, matching two scanning of the same point at different instants
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of time could be done. This procedure avoids the projecting of two patterns, and takes

advantage of the uniform motion present in assembly lines.

There are some proposals that combine both π-phase shifting FT patterns in one

single projected pattern using color or frequency multiplexing. For instance, Chen et

al. [59] used color space to project a bi-color sinusoidal fringe pattern consisting in the

sum of π-phase shifting FT patterns, represented by blue and green patterns. Another

approach was considered by Yue et al. [60]. In this work the same principle used by

Guan for phase shifting was developed for FT. Appropriate carrier frequencies were

chosen regarding the characteristics of the projector and camera used, assuming that

the Nyquist sampling theorem was satisfied. These frequencies were kept away from

zero frequency as much as possible. When analyzing the results, standard deviation

error is slight lower than for normal FT, while accuracy remains unaltered.

In the case of scanning coarse objects where discontinuities and speckle-like struc-

tures can appear, two dimensional FT filtering must be used [34], as it permits better

separation of the desired information from noise. This is due to the fact that noise is

normally 2D distributed in a fringe pattern, having a spectra scattered in a 2D fre-

quency domain. For instance, Hung and more recently Lin and Su [61] proposed a

method for 2D FT scanning where the filtering step, aimed to prevent from frequency

spreading, was performed using a 2D Hanning window. However, some other filters

having similar characteristics can also be used. This is the case of Chen et al. [62],

who applied a Gaussian filter. 2D FT filtering has been used by Berryman et al. [63]

to create a low cost automated system to measure the three dimensional shape of the

human back, obtaining an accuracy of ±1mm.

Spatial Phase Detection (SPD) constitutes an alternative to FT. This method

was initially proposed by Toyooka and Iwaasa [64]. The analysis of the received signal

(eq.(2.17)) is done using the sine and cosine functions, as can be observed in eq.(2.18),

eq.(2.21):

I(x, y) = α(x, y) [A+Bcos(2πfyp + φ(x, y))] (2.17)

Ic(x, y) = α(x, y) [A+Bcos(2πfyp + φ(x, y))] · cos(2πfyp) (2.18)

= α(x, y) ·Acos(2πfyp) + 1

2
α(x, y) ·Bcos(4πfyp + 1

2
α(x, y) ·Bcos(φ(x, y))

(2.19)

(2.20)

29



2. STATE OF THE ART ON CODED STRUCTURED LIGHT

Is(x, y) = α(x, y) [A+Bcos(2πfyp + φ(x, y))] · sin(2πfyp) (2.21)

= α(x, y) ·Asin(2πfyp) + 1

2
α(x, y) ·Bsin(4πfyp − 1

2
α(x, y) ·Bsin(φ(x, y))

(2.22)

(2.23)

Now φ(x, y) varies slower than any term containing f and so only the last term

in each new function is a low-frequency term. This part of the function can then be

extracted by low-pass filtering. Regarding the Euler’s formula for the sine and cosine

functions and the principles of Fourier Transform applied on sinusoidal functions [65],

this step provides similar results than obtaining the real and the imaginary components

of the Fourier Transform applied to the incoming signal. Therefore, the last step is to

extract the phase component from these components, which is obtained by applying

the arctangent function (eq.(2.24)):

φ(x, y) = arctan

[
r(x, y) ∗ Is(x, y)
r(x, y) ∗ Ic(x, y)

]
(2.24)

where r(x, y) represents a low-pass filter, and ∗ denotes convolution. It is important to

note that Toyooka and Iwaasa use integration to extract the phase terms, whereas other

authors using related spatial domain methods apply different low-pass filters [66]. As

in FT, this method suffers from leackage distortion when working with fringe patterns,

as no local analysis is performed to avoid spreading errors due to discontinuities and

different albedo.

2.4.2.2 Window Fourier Transform

The task of suppressing the zero component and avoiding the frequency overlapping

between background and data (the leakage distortion problem) has also been studied

using other frequency-based approaches.

This is the case of the Windowed Fourier Transform (WFT), which splits the

signal into segments before the analysis in frequency domain is performed. The received

signal is filtered applying the WFT analysis transform shown in eq.(2.25, 2.27)

Sf(u, v, ξ, η) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y) · g(x− u, y − v) · exp(−jξx− jηy)dx dy (2.25)
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being (x, y), (ξ, η) the translation and frequency coordinates respectively, and g(x, y)

the windowing function. When g(x, y) is a Gaussian window, the WFT is called a Ga-

bor transform; that is:

g(x, y) =
1

√
πσxσy

· exp(− x2

2σ2x
− y2

2σ2y
) (2.26)

where σx and σy are the standard deviations of the Gaussian function in x and y,

respectively. Eq.( 2.25) provides the 4-D coefficients Sf(u, v, ξ, η) corresponding to the

2D input image. The windowing permits the WFT to provide frequency information

of a limited region around each pixel. The Gaussian window is often chosen as it

provides the smallest Heisenberg box [67]. Once the 4D coefficients are computed, the

phase can be extracted. There are two main techniques for phase extraction in WFT:

Windowed Fourier Filtering (WFF) and Windowed Fourier Ridge (WFR). In WFF

the 4D coefficients are first filtered, suppressing the small coefficients (in terms of its

amplitude) that correspond to noise effects. The inverse WFT is then applied to obtain

a smooth image:

¯f(x, y) =

∫ ∞

−∞

∫ ∞

−∞

∫ ηh

−η1

∫ ξh

−ξ1

¯Sf(u, v, ξ, η) · gu,v,ξ,η(x, y)dξ dη dudv (2.27)

where:

¯Sf(u, v, ξ, η) =

Sf(u, v, ξ, η) if |Sf(u, v, ξ, η)| > threshold

0 if |Sf(u, v, ξ, η)| < threshold
(2.28)

The estimated frequencies ωx(x, y) and ωy(x, y) and corresponding phase distribu-

tion is obtained from the angle given by the filtered WFF, as explained in [67]. In WFR,

however, the estimated frequencies are extracted from the maximum of the spectrum

amplitude, as shown in eq.(2.29).

[ωx(u, v), ωy(u, v)] = argmaxξ,η|Sf(u, v, ξ, η)| (2.29)

The phase can be directly obtained from the angle of the spectrum for those fre-

quency values selected by the WFR (phase from ridges), or integrating the frequencies

(phase by integration). An optional cost function can be applied to find the optimal

angle values of a pixel taking into account the angle values of the neighboring pixels.

Phase from ridges represents a better solution than phase from integration (despite
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some phase correction may need to be applied [67]), as in phase from integration er-

rors are accumulated and lead to large phase deviations. Using WFT, Chen et al. [59]

proposed the use of Windowed Fourier transform (Gabor transform) to eliminate the

zero spectrum. However, as was demonstrated by Gdeisat et al. [68], Chen’s technique

was not able to eliminate the zero spectrum neither in fringe patterns that have large

bandwidths, nor in cases where the existence of large levels of speckle noise corrupts

the fringe patterns. This is mainly caused by an erroneous selection of the width and

shape of the window for the Fourier analysis. The window size must be small enough to

reduce the errors introduced by boundaries, holes and background illumination, at the

same time it must be big enough to hold some periods and hence allow the detection

of the main frequency to perform an optimal filtering. However, in applications where

the frequency varies considerably during the analysis (in space or in time) this trade-off

is difficult to achieve and noise arises due to a wrong frequency detection.

2.4.2.3 Wavelet Transform

Wavelet Transform (WT) was proposed to solve the aforementioned trade-off. In WT

the window size increases when the frequency to analyze decreases, and vice-versa.

This allows to remove the background illumination and prevent the propagation of

errors produced during the analysis, which remain confined in the corrupted regions

alone [68]. Additionally the leakage effects are reduced, avoiding having large errors

at the edges of the extracted phase maps. The Continuous Wavelet Transform (CWT)

is a sub-family of WT that perform the transformation in the continuous domain.

Moreover, it is common to use CWT with complex wavelets for the analysis of the

fringe patterns [69]. The 1D-CWT algorithm analyses the fringe pattern on a row

by row basis, whereas the 2D-CWT algorithm is an extension of the analysis to the

two dimensional space. In 2D analysis a 4D transform is obtained from WT (the

daughter wavelets are obtained by translation, dilation and rotation of the previously

selected mother wavelet). Once this is performed, phase extraction is pursued using the

phase from ridges or the phase by integration algorithms, also named phase estimation

and frequency estimation (similarly to WFT). As in WFT, it has been proven that

the phase from ridges provides better results than the phase from integration, due to

the accumulative effect in the phase from integration algorithm [69]. The work done

by Gdeisat et al. [68] applied a two dimensional wavelet function to the recovered

image, based on phase from ridges extraction. Rotation and scale were considered

jointly with x and y coordinates resulting in a four dimensional wavelet transform. To
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apply the transformation, the mother wavelet ψ(x, y) must satisfy the admissibility

condition. Under this condition Gdeisat used a Differential of Gaussian as the mother

wavelet, while Zhang [70] employed a 2D complex Morlet wavelet. Four sub-images

were created at one iteration of the wavelet decomposition algorithm, corresponding

to the low and high frequencies in both axes. Phase component was extracted from

the ridge information present in the corresponding high frequency sub-image. The

task of choosing appropriate values for rotation and scale parameters determined the

results of filtering and phase extraction. Related to this, a novel method for choosing

the adaptive level of discrete wavelet decomposition has been proposed by Zhang et

al. [70]. They have achieved higher accuracy in the principal frequency estimation and

low frequency energy suppression against traditional zero suppression algorithms used

in FT. However, some problems arise related to the relationship between the window

size and the frequency of the fringes. In WT the window size increases when the

horizontal or vertical fringe frequencies decrease. This can be a troublesome for the

analysis of some fringe patterns where the carrier frequency is extremely low or high,

as was pointed out by Kemao et al. [71]. Moreover, in computational applications

a dyadic net is used to generate the set of wavelet functions. That is, the size of the

wavelet is modified by the factor 2j . This can lead to some problems in applications like

fringe pattern analysis, where the change in the spatial fringe frequencies throughout

the image is not high enough to produce a relative variance of 2j in the size of the

optimal wavelet.

2.4.2.4 The problem of phase unwrapping

Phase unwrapping represents a crucial step in frequency multiplexing techniques. In

absence of noise, if all phase variation between neighboring pixels is less than π, the

phase unwrapping procedure can be reduced to add the corresponding multiple of 2π

when a discontinuity appears. Unfortunately, noise, local shadows, under-sampling,

fringe discontinuities and irregular surface brightness make the unwrapping procedure

much more difficult to solve. Plenty of approaches have been presented ([72],[73],[68]).

For instance, phase unwrapping based on modulation follows an iterative algorithm,

starting from the pixel with higher intensity value and comparing it to the pixels inside

a 3×3 surrounding square region. The comparison step is done one by one, queuing the

affected pixels from maximum to minimum intensity. This method can also be applied

when dealing with moving objects, substituting the searching area to a 3× 3× 3 voxel.

Besides, Wu and Peng [72] presented a phase unwrapping algorithm based on region
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growing. The phase was unwrapped from the smoothest area to the surroundings,

according to a linear estimation. In order to decrease the error, a quality map was

used to guide the unwrapping. The map can be defined in different ways as far as it

provides quality information. For instance, second-order partial derivative can be used

to determine the pixels to unwrap; that is, those pixels having this value lower than a

specified threshold. Statistical methods can also be used considering the variance within

a mask, for every pixel. Finally, Gorthi and Lolla [74] projected an extra color-coded

pattern, which can be unequivocally identified once the image was captured, thus giving

a rough information about the required phase to add or subtract in the unwrapping

step. A further explanation of different unwrapping methods used in profilometry can

be found in [75].

2.4.2.5 Alternatives to sinusoidal grating

Not all frequency transform methods use sinusoidal fringes for the projected pattern. As

Huang et al. [76] stated, structured light techniques based on sinusoidal phase-shifting

methods have the advantage of pixel level resolution, large dynamic range and few

errors due to defocussing. However, the arctangent computation make them relatively

slow. As an alternative, they used three 120 degrees phase-shifted trapezoidal fringe

patterns. The phase deviation was extracted from the so-called intensity-ratio image,

shown in eq. (2.30).

r(x, y) =
Imed(x, y)− Imin(x, y)

Imax(x, y)− Imin(x, y)
(2.30)

where Imin(x, y), Imed(x, y) and Imax(x, y) are the minimum, median, and maximum

intensities of the three patterns for the image point (x,y). Image defocus does not cause

major errors when using sinusoidal pattern, as it is still sinusoidal when the image is

defocused. However, errors caused by blurring have to be taken into account when

dealing with trapezoidal patterns. Modeling these errors as a Gaussian filtering, Huang

et al. experiments yielded defocussing errors not bigger than 0.6%. More recently,

another approach using triangular patterns has been proposed by Jia et al. [77]. This

approach used only two triangular patterns shifted half the period, making it more

feasible to be implemented in real time applications. Ronchi grating has also been used

in pattern projection as an alternative to sinusoidal grating. This is the case of Lin

and Su [61], who proposed an algorithm where only one pattern was needed. Phase

34



2.5 Experimental results

information was obtained taking the imaginary part of eq. (2.31):

∆Φ(x, y) = log[Î (x, y)Î∗0 (x, y)] (2.31)

where Î (x, y) and Î0 (x, y) are the recorded illumination from the setup and the

reference plane, respectively. A Ronchi grating was also used by Spagnolo et al. [78] in

real applications, in order to recover 3D reconstructions of artwork surfaces.

2.4.3 Spatial multiplexing (grading methods)

Grading methods refer to all techniques containing the entire codeword for a given

position only in its pixel value. Therefore, the resolution can be as high as the pixel

resolution of the projector device is. However, these methods suffer from high sensitivity

to noise and low sensitivity to surface changes, due to the short distances between the

codeword of adjacent pixels. This is the reason why some authors use these methods

introducing temporal redundancy, projecting the same pattern several times. As a

drawback, note that restriction to static scenarios is imposed when projecting more than

one pattern. There are two main techniques based on grading methods: grayscale-based

patterns and color-based patterns. Regarding grayscale based methods, Carrihill and

Hummel [11] proposed a linear grasycale wedge spread going from white to black, along

the vertical axis. The authors achieved a mean error of 1cm, due to the high sensitivity

to noise and non-linearity of the projector device. In color-based patterns, the pixel

is coded using color instead of grayscale values. As a drawback, color calibration is

required. Tajima and Iwakawa [30] presented a rainbow pattern codified in the vertical

axis. In order to project this spectrum, a nematic liquid crystal was used to diffract

white light. Two images were projected to suppress the effect of colored surfaces.

2.5 Experimental results

In order to test the effectiveness of the different strategies proposed in the literature a

set of 6 representative techniques of table 2.1 have been implemented and compared.

These methods are presented in table 2.2:
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Table 2.2: Selected methods, with their main attributes.

Group Method Characteristics

Sparse coding Spatial m. Monks et al. [6] De Bruijn slits pattern. 6 Hue colors (1 pattern)
Sparse coding Time m. Posdamer et al. [7] Stripes patterns. 7 bits Gray code (24 patterns)
Dense coding Time m. (PS) Guhring [8] Time multiplexing + shifting (16 patterns)
Dense coding Time m. (PS) Pribanic et al. [9] Multiple Phase Shifting (18 patterns)
Dense coding Frequency m. Su et al. [10] Sinusoidal pattern, π-shifting (2 patterns)
Dense coding Spatial m. Carr. Hummel [11] Grading grayscale pattern (1 pattern)

Two sparse coding and four dense coding techniques have been chosen and imple-

mented. It is important to mention that all the methods presented here have been

implemented directly from the corresponding papers (original code was not available),

and the parameters have been set in order to obtain optimal reconstruction results.

Among sparse coding spatial multiplexing, one axis coding was chosen as it presents

an easier decoding algorithm than two axes coding. Among them, Monks et al. [6]

technique presents a color slits pattern based technique that provides bigger vocabu-

lary than grayscale approaches as well as easier detection and matching than stripes

patterns techniques. Among sparse coding time multiplexing, Posdamer algorithm [7]

was selected for being a well known effective technique in time multiplexing. Among

dense coding time multiplexing, shifting codes are proposed by Sansoni et al. [49] and

Guhring [8]. Between them, Guhring method was selected because it uses slits shifting,

easier to segment than the fringes shifting used by Sansoni et al. Moreover, the tech-

nique presented by Pribanic et al. [9] was selected for being the latest time multiplexing

technique using multiple phase shifting. In continuous frequency multiplexing, π-phase

shifting FTP method proposed by Su et al. [10] provides higher resistance to slopes

than the traditional FTP of Takeda and Mutoh [56], without the necessity to perform

Wavelet filtering or having to deal with blurring associated to non-sinusoidal patterns.

Chen et al. [59] and Yue et al. [60] use the same π-phase shifting FTP multiplexing

the patterns into one single projection. However, the main idea remains unaltered,

and therefore the simpler solution proposed by Su et al. is still a good representative

to evaluate the performance of these techniques. Finally, the greyscale spatial grad-

ing proposed by Carrihill and Hummel [11] was chosen against the rainbow pattern

implemented by Tajima and Iwakawa [30] which employs a nematic liquid crystal.

The setup used for the tests was composed of an LCD video projector (Epson

EMP-400W) with a resolution of 1024 × 768 pixels, a camera (Sony 3CCD) and a

frame grabber (Matrox Meteor-II) digitizing images at 768× 576 pixels with 3× 8 bits
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per pixel (RGB). Both camera and video projector were calibrated using the projector

camera calibration method explained in appendix A. The baseline between camera

and projector was about 1m. The results and time estimates were computed using a

standard Intel Core2 Duo CPU at 3.00GHz and 4GB RAM memory. The algorithms

were programmed and ran in Matlab 7.3.

2.5.1 Qualitative results

The reconstruction of a real object permits to analyze the performance of the pro-

grammed techniques in terms of accuracy and noise sensitivity. The reconstructed

object used to perform the qualitative analysis of the results is a ceramic figure placed

at a distance of about 80cm to the camera. In order to show the results, both 3D

cloud of points and surfaces are used. The surface has been generated performing a

2D Delaunay triangulation over (x,y) coordinates. It is important to mention that no

smoothing step has been applied to the 3D points or surfaces. Therefore the results

are compared without a post-processing step.

As can be observed in Fig. 2.7, and Fig. 2.8, the best results are obtained with

time multiplexing shifting approaches (the case of Guhring [8] and Pribanic et al. [9]).

These techniques obtain the best accuracy results providing also dense reconstruction.

Furthermore, both algorithms perform well in presence of surface slopes, as can be

observed in some details of the reconstructed object (see for instance the ears of the

horse). However, the number of projections necessary to reconstruct the object is more

than one, which make them unable to cope with moving scenarios. This is also the case

of the original time multiplexing algorithm proposed by Posdamer et al. [7], which has

also been implemented in order to compare it to the other techniques. Despite the fact

that the resolution obtained is higher than the other sparse coding techniques, it suffers

some noise in the recovered cloud of points. This is mainly caused by nonlinearities

of the camera, which produces some leakage from white to black fringes that can lead

to some errors in the position of the recovered edges. Among one-shot techniques,

DeBruijn based coding present the best results in terms of accuracy. This is the case of

Monks algorithm [6], which employs DeBruijn color coding to obtain a dynamic sparse

reconstruction. It is important to mention that its resolution is doubled in the approach

of Pages et al. [2], which employed a more complex codification algorithm. In spite of

using 6 color values in the Hue channel, previous color calibration is required. This

can be simply done by comparing projected and recovered colors and working under

light controlled conditions (i.e. dark scenario), or performing a full color calibration step
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using a colorimeter, in order to obtain a model like the one shown in eq. (2.3). Another

approach was proposed by Su et al. [10], which employs frequency multiplexing (the

π-phase shifting). This provides also one-shot dense reconstruction. Recent proposals

combined the two patterns into one single projection ([60], [59]), following the same

initial ideas proposed by Su et al. However, high frequencies are lost in the filtering

step, causing the loss of some information in the surface details. Moreover, traditional

frequency multiplexing approaches can work only on smooth surfaces having slopes not

exceeding three times the value given in eq. (2.16). It is important to mention that

the method chosen for phase unwrapping employs a qualitative map to determine the

region where the unwrapping should start. Finally, the grading technique proposed

by Carrihill and Hummel [11] resulted highly sensitive to noise and low sensitive to

changes in depth, caused by the low range existing between adjacent pixels.

2.5.2 Quantitative results

Quantitative results have been analyzed reconstructing a white plane at a distance of

about 80cm to the camera. Principle Component Analysis (PCA) was applied to obtain

the equation of the 3D plane for every technique and for every reconstruction. This

technique is used to span the 3D cloud of points onto a 2D plane defined by the two

eigenvectors corresponding to the two largest eigenvalues. The results of the experiment

are shown in table A.1. Observe that the algorithm of Su et al. [10] is conceived to

measure deviation of smooth surfaces with respect to the reference plane, therefore a

plane is not conceived to be reconstructed by depth deviation.

Table 2.3: Quantitative results. The headings are: author’s name of the technique;
average deviation of the reconstructing error; standard deviation of the reconstructing
error; number of 3D points reconstructed; number of projected patterns.

Technique Average (mm) Stdev (mm) 3D Points Patterns Time (s)

Monks et al. 1.31 1.19 13899 1 45.29
Posdamer et al. 1.56 1.40 25387 14 32.18

Guhring 1.52 1.33 315273 24 158.22
Pribanic et al. 1.12 0.78 255572 18 165.65

Su et al. — — — 1 —
Carr.and Hummel 11.9 5.02 202714 1 150.57

As can be observed, among the techniques obtaining sparse reconstruction, De-

Bruijn one-shot projection algorithm developed by Monks et al. [6] presents the best

results in terms of average error and standard deviation, against traditional time mul-

tiplexing represented by Posdamer et al. [7]. Dense reconstruction techniques can be
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divided into one-shot and multiple pattern projection techniques. Among one shot

techniques, the technique proposed by Carrihill and Hummel [11] obtains the poorest

results due to the low variance existing between adjacent pixels in the projected pat-

tern. In contrast, Fourier analysis represented by the proposed technique presents lower

error rate thanks to the frequency filtering process that is performed in the analysis.

Among multiple pattern projection techniques the method developed by Pribanic et

al. [9] gives the best results in terms of sensitivity to noise, as can be extracted from

the values of average error and standard deviation. Regarding the computing time it

can be observed that methods obtaining dense reconstructions (the case of Guhring,

Pribanic et al., Su et al., and Carrihill and Hummel) need to compute more 3D points,

requiring higher computational time. Among methods providing sparse reconstruction

the color calibration step makes Monks et al. algorithm slower than Posdamer et al.,

despite it preserves the same order of magnitude. Finally, the computational cost of

the algorithm proposed by Su et al. was tested using the dataset of previous section

(qualitative results). The computational time was 108.52s, the same order of magnitude

achieved in the other algorithms providing dense reconstructions.
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Figure 2.7: Results of Monks et al. [6], Posdamer et al. [7] and Guhring [8], respectively.
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Figure 2.8: Results of Pribanic et al. [9], Su et al. [10], and Carrihill and Hummel [11],
respectively.
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2.6 Conclusions

In this chapter a state of the art of the methods existing in coded structured light has

been pursued. A new classification of the different CSL techniques has been proposed

embracing and updating the spatial, temporal and frequency multiplexing strategies

existing in the literature. Common attributes to all the techniques have been analyzed

and compared. Moreover, an update of the contributions done during the last years has

been performed. Two main groups have been distinguished depending on the sparse or

dense nature of the reconstruction.

Sparse reconstruction coding is created using stripes or slits in a unique axis codifica-

tion, or geometric features (circles, checkerboard) or multi-slit for two axes codification.

The final resolution depends on the number of encoded features present in the pattern.

Among sparse coding techniques, spatial multiplexing and temporal multiplexing are

distinguished. In the former, the codeword is determined by the pixel value in the

pattern and the values of its surrounding pixels. In the later, the codeword is created

by the sequence of patterns projected onto the surface. Spatial multiplexing needs only

one or few patterns to create the codeword, being usually suitable for moving scenarios.

However, they present lower spatial resolution than time multiplexing techniques, as

all the information must be condensed in less projections. Among them, techniques

based on De Bruijn codes, M-arrays and non-formal codification can be distinguished.

De Bruijn codes create a striped or multi-slit based color pattern where the position

on the image is determined by the color of a stripe (or slit) and the color of surround-

ing fringes. They present a trade-off between the resolution of the system and the

window property (related with the separation between similar colors). The matching

process must take the repeatability of the sequence into account, in order to avoid

errors caused by occlusions. Multi-slit patterns present higher accuracy than striped

patterns, at expense of lower resolution. Algorithms using slit-based patterns were pro-

posed by Monks et al. [6] and Salvi et al. [24] in one and two axes coding, respectively.

Besides, Pages et al. [2] proposed a combination of striped pattern in Hue channel with

a multi-slit pattern in Intensity channel (in the HSI space), obtaining the advantages of

both approaches. Other techniques create the color pattern having different values in

at least two channels for adjacent stripes, in order to increase the resistance to errors

([37] and [38]). Regarding M-arrays (perfect maps), some efficient techniques have been

proposed [3], [27], [47]. In spite of being difficult to generate, M-arrays take advantage

of coding both axes to include higher degree of redundancy. There are two ways to

represent M-arrays in a pattern: using color dots or using an alphabet of symbols. As
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stated in [46] and [2], features based implementations are more robust against colored

objects and can be segmented more easily. The coded points can be easily found in

grid techniques using tracking algorithms, as they are placed in the intersections of

edges. Besides, time multiplexing was the first paradigm of coded structured light used

to obtain 3D data from an unknown surface. Having an easy implementation, time

multiplexing methods achieve higher spatial resolution and accuracy than spatial mul-

tiplexing (in general terms), with the constraint of having to project several patterns,

not being able for moving scenarios. Binary codes and n-ary codes have been proposed

within this group. N-ary codes have a greater alphabet, so the number of patterns to

project is reduced compared to binary codes. Moreover, the distance between pixels

having different codewords decreases. However, this does not imply a higher sensitivity

to noise for the alphabet size used in practice, as can be observed in the work of Caspi

et al. [14]. Hybrid techniques combining spatial and temporal information have also

been proposed [4]. Shifting approaches are grouped within time multiplexing, as more

than one pattern are necessary to create the codeword. In sparse coding, a discrete

pattern is projected and shifted over time, until all the object is covered. These are

the cases of Zhang et al. [26] Sansoni et al. [49] and Guhring [8], who projected and

shifted a De Bruijn smoothed pattern, a stripe-based pattern, and a slit-based pattern

respectively, obtaining good accuracy results and dense reconstructions.

Dense reconstruction coding strategies achieve density by creating a pattern that changes

the value between adjacent pixels. The depth of a given point on the image is deter-

mined by the deviation of its gray or color value with respect to the projected pattern.

Among them, phase shifting techniques use the same principle mentioned above, but

considering the information hold in the phase. Using Ronchi or sinusoidal patterns,

phase deviation provides information of the surface shape when compared with the

ideal phase map. These methods show good resistance to ambient light and to re-

flection variation, due to the greyscale nature of the projected patterns. For time

multiplexing techniques is necessary to project at least three shifted patterns in order

to suppress the effect of the albedo and to recover the phase deviation, in the so-called

phase shifting approaches [52], [51]. Combinations of shifted patterns into one single

composite pattern have been proposed to achieve real time ([53], [5]). However, peri-

odicity of the pattern imposes the assumption of smooth surfaces, as the presence of

slopes would yield to some reconstruction errors. This problem is overcome in Multiple

Phase Shifting approaches, which create an absolute phase map from two relative phase

maps, according to the ideas proposed by [54]. Pribanic et al. [9] used this principle

to create dense reconstruction of surfaces having slopes. For frequency multiplexing
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techniques, phase decoding is performed in the frequency domain rather than spatial

domain. Fourier methods have been traditionally used. From the first proposal of

Takeda and Mutoh [56], an evolution using two projected patterns instead of one was

proposed by Su et al. [10] in order to suppress the effect of background illumination in

the phase extraction. This principle was preserved in Yue [60] and Chen et al. [59] ap-

proaches, who combined the two patterns in one single projection multiplexing them in

the orthogonal axis or in different color channels, respectively. Other approaches used

trapezoidal grating instead of sinusoidal grating [76], stating that the post processing

becomes faster as there is no need to compute the arctangent function. However, er-

rors arise due to defocussing, which does not affect the sinusoidal patterns. Finally

grading methods, which belong to spatial coding methods, project one single pattern

where the codeword is hold only in every projected point for that pixel. They achieve

high spatial resolution with few projected patterns [11], [30]. However, sensitivity to

errors is extremely high in these methods, as the received pattern can be affected by

the resolution of the projector and the sensor device, or the reflectivity of the surface.

The experimental results show that the best results are obtained by the time phase

shifting techniques([9]). They obtain dense reconstruction and good accuracy results.

However, they are only able to work in static scenarios. Among one-shot techniques,

DeBruijn based algorithms ([6], [2]) achieve the lowest deviation error in quantitative

results. However, only sparse reconstruction is achieved. Dense reconstruction in one-

shot techniques is achieved by the frequency-based analysis methods ([56], [60], [59]).

They obtain good results if smooth surfaces are scanned, but fail under presence of big

slopes and discontinuities.

Summarizing the main contributions done in structured light in the last years, it is

important to mention that most of the works have been concerned into dense recon-

struction by means of frequency multiplexing approaches, trying to increase the robust-

ness in the decoding step and the resistance to slopes under the constraint of moving

scenarios ([60], [59], [68], [70]). Time multiplexing in phase shifting has arise also to

overcome the problem of slopes in the objects [9]. However, they are no longer able to

work under moving scenarios. Furthermore, hybrid approaches have also experienced

a big growth ([37], [38], [22], [27], [4]), due to their ability to merge different character-

istics of previous method into one pattern or set of patterns. It would be interesting

to develop a SL technique that provides dense reconstruction for one-shot projection.

Using the principles of frequency multiplexing, an hybrid approach would eventually

avoid the complexity and errors caused by the classical phase unwrapping algorithms

required to recover the phase deviation.
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3

First approach to one-shot dense

reconstruction

In this chapter we present a first approach to one-shot dense reconstruction based on

frequency fringe analysis. To achieve this, most of the works present in the literature

are based on the projection of a single one-shot fringe pattern. Depth is computed using

frequency analysis, extracting the phase deviation of the imaged pattern with respect

to the projected pattern. However, the algorithms employed to unwrap the recovered

phase are computationally slow and can fail in the presence of depth discontinuities

and occlusions. The proposed approach employs color multiplexing and wavelet analysis

to create the pattern, combined with a novel phase unwrapping algorithm. This enables

the acquisition of dense 3D cloud of points and absolute coding. The advantages and

disadvantages associated to the use of WT for frequency analysis are discussed at the

end of the chapter.

3.1 Introduction

As discussed in chapter 2, most of the works presented ultimately concern the achieve-

ment of dense reconstruction for moving scenarios. However, the ability to work in

real time conditions regardless object motion (up to the acquisition time required by

the camera) is only achieved by one-shot projection techniques. Moreover, absolute

coding represents a must for most of the applications mentioned above. Two main

fields of research are opened, regarding the use of frequency analysis approaches or

the combination of well known spatial multiplexing techniques. Different techniques

using De Bruijn codes and M-arrays have been developed [24], [37], [3], [25], obtaining
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3. FIRST APPROACH TO ONE-SHOT DENSE RECONSTRUCTION

Figure 3.1: Surface slope producing a decoding error in traditional fringe pattern methods

a sparse acquisition with absolute coding and good accuracy results. Regarding the

techniques using one-shot projections to obtain dense acquisition and absolute coding,

grading techniques like the ones proposed by Carrihill and Hummel [11] and Tajima

and Iwakawa [30] were proposed time ago. However, as stated by Salvi et al. [29], both

techniques suffer of small signal to noise ratio and low accuracy. The other big group

is constituted by the techniques based on frequency analysis (the so-called fringe pro-

filometry methods). Although they achieve one-shot dense reconstructions, most of the

algorithms require an unwrapping step to correctly unwrap the phase and extract the

object depth. Noise, local shadows, under-sampling, fringe discontinuities and irregu-

lar surface brightness make the unwrapping procedure much more difficult than simply

adding the corresponding multiple of 2π when a discontinuity appears [29]. Moreover,

the phase unwrapping algorithm that can be found in the literature usually require

a high computational cost and can fail into errors when the surface present a slope

like the one shown in Fig. 3.1. In this case, the periodicity of the projected pattern

make this overlapping impossible to detect regarding the recovered image. Therefore,

absolute coding is not feasible using a unique frequency fringe pattern.

In order to obtain better performance, more information must be embedded in the

one-shot pattern leading to a multiplexing of patterns in frequency or color space. The

algorithm proposed in this chapter utilizes the ideas of dense acquisition combined

with a novel method for color multiplexing and phase unwrapping in order to obtain a
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one-shot dense acquisition having absolute coding.

The chapter is structured as follows. Section 3.2 presents the idea of absolute coding

unwrapping. Also, the design of the technique is described. The experimental results

with both simulated and real data are presented in section 3.3. Finally, section 3.4

concludes with a discussion of the proposed method, where the main advantages and

disadvantages of the proposal are pointed out.

3.2 System proposal

The novel method we propose to overcome this problem is based on the remainder

theorem [54] (an explanation about the use of the Remainder Theorem in Multiple

Phase Shifting pattern projection can be found in Appendix C). A diagram of showing

the different steps of the proposed algorithm can be seen in Fig. 3.2.

Using the formulas provided by the remainder theorem, an absolute phase map can be

computed from two different relative phase maps having frequencies that are relative

prime numbers between them. Having two relative phase maps with different frequen-

cies and their corresponding phase values φ1, φ2, the absolute phase value is given by

eq. (3.1):

ΦABS1,INT = ΣN
i=1φRi,INT eimod(λ1λ2) (3.1)

being λi the period wavelengths and ei a number which divided by λi yields a remainder

1, and 0 otherwise. A solution to ΦABS1,INT can be obtained from eq. 3.1, providing

an absolute phase map from a minimum of two relative phases. Another advantage of

this technique relies on its simplicity and non dependence on the neighboring pixels,

as the phase value is computed directly from a linear combination of the two relative

phase map values for the given pixel. The proposed model employs one-shot color mul-

tiplexing, wavelet analysis and absolute coding. As mentioned in chapter 2, there are

different frequency analysis techniques. Wavelet analysis was chosen among FT, SPD

and WFT because it provides frequency localization adaptive to the carrier frequency

used. Therefore the patch size is set inversely proportional to the frequency to analyze,

minimizing the frequency overlapping. Color multiplexing is used to combine different

fringe patterns in a unique one-shot color projection.
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Figure 3.2: Diagram of the proposed SL algorithm using WT and the remainder theorem.

48



3.2 System proposal

Figure 3.3: Combination of Red, Green and Blue channels to create the color multiplexed
pattern.

3.2.1 Pattern coding

The idea of the proposed algorithm is to multiplex three different fringe patterns in

the color space (Fig. 3.3), taking advantage of the Red, Green and Blue separated

channels of the projector and camera devices. Compared to the frequency multiplexing

approach, this technique permits the use of all the frequency bandwidth in every chan-

nel, avoiding errors caused by interferences of the harmonic frequencies. The fringe

patterns are created having frequencies that are relative prime numbers between them.

The sinusoidal patterns use one axis coding, as in other WT approaches. The projected

pattern is represented by eq. (3.2), where Ap
i , B

p
i and fpi represent the low-frequency

(DC) and high-frequency (AC) modulus and the frequency values for every channel of

the projected pattern (r, g and b):

Ip(yp) = Ap
r +Bp

r cos(2πfry
p) +

Ap
g +Bp

gcos(2πfgy
p) +

Ap
b +Bp

b cos(2πfby
p) (3.2)
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3.2.2 Pattern decoding

Once projected onto the object surface and imaged by the camera, the received pattern

(Fig.3.4) can be represented as:

In(x, y) =

δ(x, y) · (α(x, y) · (Ap
r +Bp

r cos(2πfry
p + φ(x, y))) +

β(x, y) · (Ap
g +Bp

gcos(2πfgy
p + φ(x, y))) +

γ(x, y) · (Ap
b +Bp

b cos(2πfby
p + φ(x, y)))) (3.3)

where δ(x, y) represent the different albedo and α(x, y), β(x, y) and γ(x, y) the

effect of crosstalk between the different color channels. The first task is to split the

three color channels obtained from the camera and perform a color enhancement to

reduce the effect of albedo and crosstalk in every color channel. To cope with this, the

color calibration explained in appendix B is applied to the input image. The matrix

of eq.(B.1) represents the whole system (projector-camera) and aims to subtract the

effect of crosstalk between color channels. This matrix is applied to every color channel

(R, G and B) of the recovered image, obtaining the corresponding fringe pattern.

3.2.3 Extraction of the wrapped phase

The applied color calibration provides the color filtered red, green and blue channels.

However, as it approximates the system as a linear transformation between projected

and received images, some errors will persist due to non-linearities. This error, jointly

with the different albedo and noise, must be filtered by the wavelet analysis algorithm.

The wavelet analysis employs a 2D Continuous Wavelet Transformation (2D-CWT)

using a Morlet mother wavelet (eq.(3.2.3)).

WT1(a, θ, b1, b2) =
1
a

∫∫
{A(x, y) + B(x,y)

2
[e−iφ(x,y) + eiφ(x,y)]}·

exp(2πifc
(x−b1)(cos(θ)+sin(θ))+(y−b2)(cos(θ)−sin(θ))

a
) · exp(− (x−b1)

2+(y−b2)
2

a2fb
)dxdy

where a, θ, b1, b2 are the scale, rotation and translation parameters, respectively. As

stated in [69], Morlet wavelet is optimal in case we deal with signal having a low

Signal-To-Noise ratio, which is the case when working in real conditions. Furthermore,

2D wavelet analysis performs better than 1D wavelet analysis. The output of the 2D

wavelet analysis is a 5D matrix of dimensions height · width · scales · translations ·
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Figure 3.4: Pattern decoding (image processing).
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orientations.

After the computation of the 2D-CWT, a phase from ridges (WFR) algorithm

combined with cost function is employed to extract the optimal value of a, θ, b1, b2 for

every position at every color channel. As mentioned in chapter 2, the WFR computes

the maximum value of the modulus for every pixel. For a particular value of translation

across both x and y axes, the transform will reach its maximum value when the dilated

and rotated 2D wavelet and the fringe pattern are locally most similar. That is, the

modulus of the transform has a maximum value when the 2D wavelet frequency is

very close to the fringe frequency and the rotation of the 2D wavelet is very close to

the direction of the fringes. This produces a ridge in the transform. The phase value

corresponding to the position of the ridge is selected.

3.2.4 The cost function

After applying the WT without the cost function, the WFR algorithm would select

for every pixel the daughter wavelet having the maximum of the modulus (within all

scales, translations and orientations available) and its corresponding angle for that

position. This would produce errors caused by local inaccuracies of the estimated pixel

phase. The cost function is introduced to ensure continuity and avoid errors due to

local errors that can be identified and corrected regarding its neighbors. The cost

function works along the y axis of the camera (though any other direction could be

selected according to the direction of fringes in the projected pattern), selecting the

combination of daughter wavelet that best performs in terms of modulus maxims and

continuity. The cost function is presented in eq.(3.4):

Cost =

W∑
b=2

{−|S(φ(b), b)|2 + |φ(b)− φ(b− 1)|2} (3.4)

where φ(b) represents any value of the scaling parameter, b is the shifting parameter in

the coding axis (y axis in our case), |S(φ(b), b)| is the modulus value of S(.) at both φ(b)

and b, and W is the total width of the fringe pattern, in pixels. For every column, the

algorithm works at follows: Eq.(3.4) calculates the cost of the step variation. As this

algorithm searches through many local maxims, thus many different potential paths

will occur. However, an optimal path should be selected and considered to be the true

ridge of the transform. If we assume that the optimal path goes through the point

(p, j), i.e., (j) = p, then the cost can be reformatted as in eq.(3.5):
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Cost =

j−1∑
b=2

{−|S[φ(b), b]|2 + |φ(b)− φ(b− 1)|2}+

(−|S[p, j]|2 + |p− φ(j − 1)|2) +
W∑

b=j+1

{−|S[φ(b), b]|2 + |φ(b)− φ(b− 1)|2} (3.5)

From eq.(3.5), we can conclude that at a given point (p, j), the optimization of the

complete path can be divided into two parts: the optimization for the path (b = 1) to

(b = j) and the optimization for the path (b = j) to (b = W ). Some simulated results

of the use of the cost function are shown in Fig. 3.5. As can be seen, errors in the

WFR due to local inaccuracies in the WT result are suppressed by the cost function

algorithm.

for orientation = 1 to N do

compute 2D daughter wavelet map (height · width · scales · translations)
end for

for column = 1 to width do

for orientation = 1 to N do

Compute best path in terms of:

Maxima of the modulus, contributes decreasing the cost.

change in scale, contributes increasing the cost.

end for

Select path with minimum cost

end for

Select orientation with minimum cost

This algorithm reduces the errors in presence of local holes in the received fringe

pattern. Once the appropriate daughter wavelets have been selected, their correspond-

ing angle values are computed and the wrapped phase map is extracted.

3.2.5 Combination of the wrapped phased

The next step is to unwrap the phase in order to extract the phase deviation. This is

done applying the unwrapping algorithm of absolute coding. A minimum of two pat-

terns are required to this end, but the proposed method utilizes the three color channels
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Figure 3.5: On the top, simulated noised fringe pattern. On the left column, example
of the WT and ridge (in blue) for a specific position in the input image (top), and the
corresponding extracted phase (bottom). On the right column, similar results using the
cost function.
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(red, green and blue) to create the absolute phase map. This allows us to increase the

redundancy and hence reduce the errors that may propagate to the absolute phase

map. The algorithm combines every two of the color channels to create an absolute

phase map. That is, a total of
(
n
2

)
combinations are created, being n = 3 the number

of channels. An absolute phase map is computed for every one of the combinations

following the idea of relative phase numbers. Posteriorly, an optimization algorithm is

pursued to extract the optimal phase map that minimizes the error. This process is

done in order to reduce the noise created by the non linearities of the projector-camera

pair in color or intensity representation, which propagates from the wrapped phases to

the absolute phase map. The optimization algorithm computed the best absolute map

in terms of minimization of the laplacian map, and works as follows:

Compute the laplacian matrix of every absolute phase matrix

InitialLaplacianMatrix = min(sum(laplacian matrices))

FinalAbsoluteMatrix = Abs. matrix corresponding to InitialLaplacianMatrix

Average = mean(InitialLaplacianMatrix)

for row = 1 to height do

for column = 1 to width do

if Initial-laplacian-matrix(row,column) > Average then

FinalAbsoluteMatrix(row,column) = argmin(InitialLaplacianMatrix), within

all absolute phase matrices pixels

Recompute InitialLaplacianMatrix

Recompute Average

end if

end for

end for

This algorithm suppresses the error provided by isolated pixels.

3.2.6 3D or depth extraction

There are two ways to extract the 3D cloud of points from the information provided by

the deviated phase map. The first way is to create a correspondences map between the

projected and the recovered phases. This gives us, for every pixel in the recovered phase

map, its corresponding interpolated position in the projected pattern. Every pair of

correspondences is then triangulated using the information provided by the geometric

calibration matrix, giving us the 3D points in the world coordinates system. Another
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approach, profusely used in fringe profilometry, uses an approximated reconstruction

of the depth (depth reconstruction). The formula was first proposed by Takeda and

Mutoh [56]:

h(x, y) = L · ∆φ(x, y)

(∆φ(x, y)− 2πf0d)
(3.6)

where L is the distance to the reference plane and d is the distance between the camera

and the projector devices. This was the approach used in this chapter, as it is enough

to show us the performance of the method in a fast way under presence of noise and

discontinuities.

3.3 Implementation and results

The proposed algorithm has been implemented and tested in both simulated and real

environments and compared to other one-shot techniques. The setup used for the tests

was composed of an LCD video projector (Epson EMP-400W) with a resolution of

1024 × 768 pixels, a camera (Sony 3CCD) and a frame grabber (Matrox Meteor-II)

digitizing images at 768 × 576 pixels with 3 × 8 bits per pixel (RGB). The baseline

between camera and projector was about 0.5m. The algorithm run on an Intel Core2

Duo CPU at 3.00GHz. The selected frequencies for the three fringe pattern were

p1 = 15, p2 = 19 and p3 = 23 periods, providing a good resolution in details, while

preserving the sinusoidal shape once captured by the camera.

3.3.1 Simulated results

The proposed algorithm was tested using simulated data. The peaks function available

in Matlab (shown in Fig. 3.6) has become a benchmark for fringe pattern analysis, as

stated in [29]. Moreover, the simulated object shape was obtained for different values

of noise. The error introduced is a Gaussian zero mean random noise in the range 5%,

10% and 20% of the total dynamic range of the input image. The resulting patterns

used as input images are shown in Fig. 3.7.

The reconstructed object shape obtained using the input image of noise 5% of the

dynamic range is shown in Fig. 3.8. As can be observed, the algorithm reconstructs the

simulated object at the same time the noise existing in the input image is reduced. A

scaled map of the error is also presented in Fig. 3.8, where the error has been re-scaled
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Figure 3.6: Simulated surface

Figure 3.7: Imaged patterns of Fig. 3.6 with added noise values of 5%, 10% and 20% of
the maximum dynamic range, respectively.

57



3. FIRST APPROACH TO ONE-SHOT DENSE RECONSTRUCTION

Figure 3.8: Reconstructed surface of Fig. 3.6 with a noise of 5%, and corresponding error
map re-scaled from [0%, 3.48%] to [0, 255].

from [0%, 3.48%] to [0, 255]. The error is uniformly distributed, with some peaks in

the regions of major inclinations of the peaks function. This is due to the fact that

a faster change in the phase frequency is more likely to suffer detection errors when

noise appears. The algorithm was also tested with the other noised input images, and

the results of average error are presented in table 3.1. The error is highly reduced for

values lower than a noise of 5% of the dynamic range. Besides, noise values higher

than 20% of dynamic range makes the decoding impossible. It is important to note

that noise introduced depends on the object depth. For the object depths analyzed in

real applications the noise remains under 5% of the data dynamic range, and hence the

method is able to filter the noise in the reconstructed shape, as will be observed in the

experimental results.

Table 3.1: Error rates for the given input noise going from noises of 5% to 20% of the
data dynamic range.

Noise percentage (%) Error rate (%)

5 0.57
10 19,8
20 —

Finally, the algorithm was tested in the acquisition of the stair step of Fig.3.1. The

performance of the absolute coding used in the proposed algorithm is shown in Fig.3.9.

The slope has been detected despite it was not visually perceptible. However, some

error arose in the vicinity of the discontinuity, due to the erroneous phase estimation

in the surroundings of the slope. This problem is posteriorly analyzed.
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Figure 3.9: Projected pattern on the object of Fig.3.1 and reconstructed surface.

3.3.2 Experimental results

The proposed technique was tested under real conditions. First, a flat plane was re-

constructed to perform a quantitative comparison with other one-shot absolute coding

techniques existing in the literature. The results of reconstructing a 576 × 478 pixels

region are shown in table A.2. The first method tested was the algorithm proposed

by Carrihill and Hummel [11], which provides also dense acquisition by projecting a

greyscale grading pattern. The second technique is the DeBruijn-based pattern pro-

posed by Pages et al. [2], which employs a DeBruijn pattern and it is considered one

of the most accurate techniques in sparse one-shot absolute coding patterns. The

proposed method filters possible effects of noise on the image, and the flat plane is

reconstructed with absolutely no error. This is due to the Morlet mother wavelet used

to extract the phase (which is optimal in case of having low signal to noise ratio) and

to the cost function, which corrects any erroneous estimated phase. It is important to

mention, however, that the major problems of the proposed method arise in presence

of discontinuities.

Table 3.2: Quantitative results reconstructing a flat plane. The headings are: author’s
name of the technique; average deviation of the reconstructing error; standard deviation
of the reconstructing error; number of 3D points reconstructed.

Technique Average (mm) Stdev (mm) 3D Points

Carr.and Hummel 11.9 5.02 202714
Pages et al. 1.31 1.19 13899

Proposed method 0.22 0.12 275328 (full)

In order to test the algorithm with real non-flat objects, a smooth volume done with

sheets of paper having different orientations (Fig. 3.10), and a ceramic face (Fig.3.12)

were reconstructed. These two objects attempt to cover the usual requirements of the
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Figure 3.10: Original and reconstructed sheets of paper.

methods regarding its applicability to 3D dense acquisition. It is important to note

that these objects have been chosen having lambertian white surface, in order fit into

a linear color calibration. The decoding steps are presented in Fig. 3.11 and Fig.3.3.2.

The sheets of paper are reconstructed without error, not depending on the ori-

entation and shape of the object. For the ceramic face, the main volume has been

detected and details like the nose and eyes (identified as shadows) are represented in

the final surface. The acquisition presents, however, some errors in the discontinuities

(see Fig.3.12), the same kind of error that revealed in the simulated results. This is

caused by the wavelet-based phase extraction algorithm and was reported in the work

of Abid [69] as the major drawback of the wavelet technique employed in this algorithm,

which is up to some point common in all frequency based analysis. An erroneous phase

estimation at the vicinity of the discontinuity propagates to the absolute phase map,

yielding to big errors and holes in the reconstruction.

3.4 Conclusions

Continuous coding strategies achieve dense acquisition by creating a pattern that

changes the value between adjacent pixels. The depth of a given point on the image

is determined by the deviation of its grey value with respect to the projected pat-

tern. Among them, combinations of shifted patterns into one single composite pattern

have been proposed to achieve dense reconstruction with a unique projection ([53],[5]).

However, periodicity of the pattern imposes the assumption of smooth surfaces, as

the presence of slopes would yield to some acquisition errors. This problem is over-

come in Multiple Phase Shifting approaches, which create an absolute phase map from

two relative phase maps, according to the ideas proposed by [54]. In this chapter, we

have presented a one-shot dense acquisition technique using an absolute coding phase

unwrapping algorithm. In order to combine three patterns in one single shot, the algo-
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Figure 3.11: Sheets of paper of Fig. 3.10: captured image (top-left), enhanced image
(top-right), one color channel (bottom-left) and its wrapped phase (bottom-right).

Figure 3.12: Original and reconstructed surface of a ceramic face (the 3D shape is inverted
to appreciate the details of nose and eyes).
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Figure 3.13: Ceramic face of Fig. 3.12: captured image (top-left), enhanced image (top-
right), one color channel (bottom-left) and its wrapped phase (bottom-right).

rithm performs a multiplexing in color space of the three different fringe patterns. The

phase of these patterns is extracted using wavelet decomposition combined with a cost

function algorithm. An absolute coding based algorithm merges the individual relative

phase maps to create the absolute phase map and extract the depth deviation. Finally,

a consistence mapping is pursued in order to avoid errors created by a bad detection

of slopes and error propagation between pixels during the unwrapping step. The algo-

rithm has been tested in both simulated and real data, and a quantitative comparison

with other one-shot absolute coding acquisition techniques had been pursued, show-

ing the effectiveness of the proposed technique in terms of noise reduction. Moreover,

the simulations performed optimally using the standard benchmark without and with

added noise. Finally, a set of real experiments was pursued: a smooth volume done

with sheets of paper having different orientations, and a ceramic face. The 3D depth

maps present good reconstruction results, showing that the method works optimally

under real conditions. However, some problems were encountered with surfaces having

discontinuities. This is partially due to the effect of the dyadic net intrinsic to the

wavelet implementation, which does not consider little frequency variations when set-

ting the window size. Therefore, could be beneficial to implement an algorithm for the
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adaptive selection of the best analysis mother signal, in terms of frequency and shape,

depending on the frequency components present in a given patch of the image. Having

this, a proper frequency analysis can be pursued, minimizing the problems presented

in the discontinuities.
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4

Automatic window selection in

Frequency Transform techniques

As shown in previous chapter, a proper selection of the frequency analysis used for

fringe decoding reveals crucial for an optimal extraction of the phase deviation. Many

errors can arise due an incorrect detection of the carrier frequency in a fringe pattern

region, causing noised phase map extraction which originates 3D reconstruction errors.

This problem is more accused under presence of slopes, as was observed in Fig.3.12 of

previous proposal. The aim of this chapter is first to perform a comparative study of

the most suitable frequency based techniques for fringe pattern analysis. Afterwards,

a new frequency analysis proposal is done to accurately recover the phase deviation

even under presence of slopes. This proposal is based on the automatic selection of the

window width in WFT.

4.1 Introduction

As expose in chapter 2, there are five different techniques used traditionally for phase

extraction: Phase Measurement Profilometry (PMP), Spatial Phase Detection (SPD),

Fourier Transform (FT), Windowed Fourier Transform (WFT) and Wavelet Transform

(WT). Among them, only those based on frequency analysis (FT, WFT and WT)

project one single shot and thus are able to work with moving objects. Regarding these

frequency-based techniques, the main differences among them are related to the section

of the imaged pattern that is considered in the frequency analysis. FT performs a

global analysis, which is appropriate for stationary signals with poor spatial localization.

However, this is not the case in CSL, which is by nature limited in space and thus non-
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stationary. This fact led to the use of the other two frequency based transforms (WFT

and WT), which analyze local information in the imaged pattern. WFT and WT are

constituted by two main steps: windowing the imaged pattern in local patches and

computing the transform at every local patch. The crucial point in these techniques

relies on the necessity of selecting an optimal window size, which constitutes a trade-

off between resolution in space and resolution in frequency. Whereas WFT uses a

fixed window size for all frequency components, WT changes the window size inversely

proportional to the carrier frequency by a factor of 2j (dyadic net). This chapter

proposes a new algorithm for the automatic selection of the window size, based on

a modification of the traditional WFT. Moreover, as it is not possible to find in the

literature a study of windowing signals assuring good results for fringe pattern analysis

using WFT, the adaption of four well known mother wavelet (Morlet, Paul, Shannon

and Spline) is applied to WFT in order to compare the proposed algorithm for WFT

with the WT.

The chapter is structured as follows: Section 4.2 performs an analytical comparison

of WFT versus WT techniques. Section 4.3 proposes a novel algorithm for the auto-

matic selection of the window. Section 4.4 shows quantitative and qualitative results

obtained with both simulated and real data for the four different mother wavelets. Fi-

nally, Section 4.5 states the conclusions, pointing out the suitability of the four mother

wavelets employed in the tests and their performance in comparison to the traditional

WT.

4.2 Comparative study between WT and WFT

In order to analyze the pros and cons of WFT and WT techniques applied to fringe

pattern analysis, a theoretical and a practical comparison is required. The main differ-

ence between both techniques is the way the window size is set, depending on whether

they have a fixed or a variable value. Regarding WFT, its definition is given by eq.(4.1):

Sf(u, v, ξ, η) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y) · g(x− u, y − v) · exp(−jξx− jηy)dxdy (4.1)

being (x, y), (ξ, η) the translation and frequency coordinates respectively, and g(x, y)

the windowing function. When g(x, y) is a Gaussian window, the WFT is called a
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Gabor transform; that is:

g(x, y) =
1

√
πσxσy

· exp(− x2

2σ2x
− y2

2σ2y
) (4.2)

where σx and σy are the standard deviations of the Gaussian function in x and y, re-

spectively. Regarding WT, there are two main steps in the process. First part finds

the optimal values for dilation and rotation to use in the wavelet function. Expressing

the wavelet function by means of sinus and cosines, the Continuous Wavelet Transfor-

mation (CWT) of the received signal is given by eq. (4.3) (sine are represented by s

and cosine by c):

WTf (a, θ, b1, b2) =
1

a

∫∫
I(x, y) · ψ[ (x− b1c(θ)− (y − b2s(θ)

a
,
(x− b1s(θ) + (y − b2c(θ)

a
]dxdy (4.3)

For instance for the 2D complex Morlet wavelet of eq. (4.4):

ψ(x, y) =
1√
πfb

· e2iπfc(x,y) · e−
x2+y2

fb (4.4)

the Wavelet Transform results:

WT1(a, θ, b1, b2) =
1
a

∫∫
{A(x, y) + B(x,y)

2
[e−iφ(x,y) + eiφ(x,y)]}·

exp(2πifc
(x−b1)(cos(θ)+sin(θ))+(y−b2)(cos(θ)−sin(θ))

a
) · exp(− (x−b1)

2+(y−b2)
2

a2fb
)dxdy =

W1(a, θ, b1, b2) +W2(a, θ, b1, b2) +W3(a, θ, b1, b2)

If we express the phase in terms of its Taylor series, considering negligible any term

higher than first derivative, the dilation factor and the rotation factor can be both

computed through |WT1|2
a2

, that is:

a = 2πfc

√
2

φ′2x + φ′2y
(4.5)

sin(2θ) =
φ′2x − φ′2y
φ′2x + φ′2y

(4.6)

From this, a discretization of a in order to work in discrete domain has to be done,

choosing k so that a = 2k (dyadic net). K value is obtained from 4.7, being y the
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codification axis.

k(y) = 0.5 + log2(fc/f0)− log2(
φ′x
2πf0

) (4.7)

Once k has been calculated, 2D DWT is applied to the input image, obtaining the

low-pass and high-pass decomposition for the corresponding frequency level. This is

done sequentially for all the frequency levels until a frequency decomposition among

the dyadic net is obtained.

As stated in [79], WT performs better with signals having a wide range of frequencies

with shorter correlation times for the higher frequencies than for the lower frequencies.

This is the case in natural scenes, where low-frequency components usually last for

longer durations than high-frequency components. However, in fringe patterns their

periodicity and spatial extension does not depend on the selected frequency. Neverthe-

less, they mostly present spatial-harmonic components around the selected frequency.

This is the reason why, despite many authors claim the goodness of WT [69], [68], there

are some recent works that state the best suitability of WFT [80], [67]. Another point

to consider is the resistance to noise. It has been demonstrated [80] that for noiseless

fringe patterns the frequency components can be accurately recovered in either small

or large windows, regardless the frequency value. However, under presence of higher

noise on the imaged fringe pattern, an optimal selection of the window size reveals

crucial for filtering the noise while preserving the main frequency components. Under

these circumstances, the fixed window size of WFT performs better than the variable

window size of WT. This is mainly due to the dyadic net used in practical applications

of WT. This net changes geometrically (by two) the window size for adjacent levels of

dilation, being excessive for some applications where the main frequency stands close

to a fixed value (like in fringe pattern analysis).

Another point to consider is the importance of selecting a window having good

localization in both frequency and space, in order to perform an optimal analysis of

the fringe pattern. In WT, the mother wavelet signals usually used in fringe pattern

analysis are, among others, the Morlet wavelet, the Paul wavelet, the Shannon wavelet

and Spline wavelet [81], [82], [83], [84]. All of them use a low-pass envelope signal

modulating a frequency sinusoidal signal, thus presenting good localization in time and

frequency. In WFT, the Gabor transform has been traditionally used in fringe pattern

analysis, as it provides the smallest Heisenberg box [85], [86]. However, is not possible

to find in the literature a study of windowing signals assuring good results for fringe

pattern analysis using WFT. As this work has been already done in WT [69], it is
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Figure 4.1: Diagram of Morlet (a)), Paul (b)) Shannon (c)) and Spline (d)) wavelets,
traditionally used in fringe pattern analysis.

recommended to adapt those optimal mother wavelets to WFT. This would permit a

fair comparison between both techniques.

4.2.1 Adaption of the wavelet signals to the use in WFT

The suitability of some mother wavelets for fringe pattern analysis in WT has been

outlined in [68], [69], [71]. The best situation is given when the signal presents good

localization in both space and frequency; that is, presenting some zeros at infinite (low

pass shape). This is achieved by some mother wavelets like the Morlet, the Paul, the

Shannon and the Spline wavelet (Fig. 4.1 and eqs. 4.8, 4.9, 4.10, and 4.11). Among

them, the Paul wavelet has the best time localization capability, but at the same time

it has the worst frequency localization [81]. This makes the Paul mother wavelet the

more suitable for demodulating fringe patterns that exhibit high signal to noise ratio

and rapid phase variations. Besides, the Morlet wavelet presents a Gaussian shape and

thus has better localization in the frequency domain than the Paul wavelet. Therefore,

it is more suitable for demodulating fringe patterns with slow phase variations and low

signal to noise ratios.

69



4. AUTOMATIC WINDOW SELECTION IN FREQUENCY
TRANSFORM TECHNIQUES

ΨMorlet(x) =
1

(f2b π)
1/4

exp(2πifcx) · exp(
−x2

2f2b
) (4.8)

ΨPaul(x) =
2nn!(1− ix)(n+1)

2π

√
(2n)!
2

(4.9)

ΨShannon(x) =
√
fbexp(2πifcx)(sinc(fbx)) (4.10)

Ψb−spline(x) =
√
fbexp(2πifcx)[sinc(

fbx

m
)]m (4.11)

where n is the order of the Paul mother wavelet, fc is the mother wavelet central fre-

quency, fb is the variance of the window and m is an integer value that determines

the Spline wavelet. The selected mother wavelets have been adapted to the use in the

multirresolution WFT algorithm proposed in these lines. It must be mentioned that

all of them contain a modulated sinusoidal frequency in its definition. Making a com-

parison with WFT (Eq.(2.25)), this would correspond to the exponential modulating

frequency employed. Therefore, the window of WFT is equivalent to the shape of the

selected mother wavelet. The introduction of a sinusoidal frequency becomes necessary

when it is not implicitly contained in the wavelet definition. Another point to take into

account is the normalization of the adapted wavelet signals, as a change in the window

size must be compensated by an increment of the modulus of the signal, to preserve the

value of energy provided in WFT. Finally, it must be considered the ability to adapt

the size of the wave envelope relative to the wave period for many mother wavelets

(Morlet, Shannon, Spline). In wavelet analysis, this parameter is used to create a set

of complex mother wavelets within the same wavelet family. In WFT this is equivalent

to just changing the size of the window, as the preset frequency does not change with

this size.

4.3 A new proposal for the automatic selection of the win-

dow size

Given the signal in the form f(x) = a(x, y) + b(x, y) · cos[φ(x, y)], the accuracy of the

retrieved phase is directly linked to the size of the window, the signal envelope and its

behavior in frequency domain. Hence, an algorithm to set the optimal window for any

WFT signal and for any fringe pattern reveals to be necessary. Regarding this point,
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recently Li and Yang [87] proposed a two-step algorithm to determine locally, among a

set of patches, the most likely window size for WFT. First, the instantaneous frequencies

on x and y direction of the modulated fringe pattern are determined by two-dimensional

Gabor wavelet transform (2D-GWT) [88] and, then the local stationary lengths are

obtained. Furthermore the so-called Two-dimensional Multiscale Windowed Fourier

Transform (2D-MWFT) was applied. This algorithm applied local two-dimensional

Gaussian windows, and is performed for each section of the modulated fringe pattern

to achieve multiresolution analysis and phase demodulation. Despite the computational

cost associated to the two frequency transformations required in this technique, quite

good results are obtained as can be observed in [87]. In our work a new proposal for

the automatic setting of the window size is done. The proposed algorithm is executed

in only one WFT step, taking into account the uncertainty of the received image.

The proposed algorithm is depicted in Fig. 4.2, and described in the following

section, emphasizing the steps that permit the automatic detection of the window size.

4.3.1 Preprocessing the image

The preprocessing step consists in a salt and pepper filtering and a histogram equal-

ization. This reduces the noise present in the captured image and enhances the image

contrast for a latter frequency component extraction. Finally, a DC filter is applied to

extract de DC component of the image. This step delivers an enhanced image where

the fringes are perceived more clearly.

4.3.2 Setting the average period and the standard deviation

This step represents the main idea of the automatic selection of the window. The

algorithm extracts an approximated value of the number of periods existing in every

line along the coding axis, of the image. To do so, a local maximum extraction is

performed for the both maximum and the minimum values in every line along the

coding axis. The algorithm avoids false positive by suppressing those local maximum

that are not followed by a local minimum. Once the number of periods is extracted for

every image column, an average of the global period, the corresponding frequency and

its variance are computed. This variance represents the uncertainty in the estimated

frequency, and is crucial to perform a global analysis of the image. Regarding this point

a discussion about whether the selection of global or local variance for patches on the

image is required. In principle, a local selection seems to be more appropriate as it

can distinguish frequencies of different patches. However, it requires more computation
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Figure 4.2: Diagram of the proposed algorithm showing the required steps.
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as the algorithm must be applied in every patch. Moreover, a global WFT gives a

better idea of the carrier frequency, and the global variance is computed accordingly.

Therefore it is easier to detect those frequencies corresponding to outliers.

4.3.3 Setting the range of frequencies and the window

The selection of the appropriate range of frequencies is done according to the variance

and the average values of the period. For instance, considering the range [fm − 3 ·
std(f), fm + 3 · std(f)] in both x and y axes, the 95% of detected frequencies are

analyzed, according to the Central Limit Theorem [89]. The frequencies outbounding

this range are considered outliers. In practice, this range can be reduced to [fm − 2 ·
std(f), fm + 2 · std(f)] (90% of the frequencies are represented) without a significant

lose in accuracy. Another variable to consider is the window size related to the number

of periods of the sinusoidal signal. In contrast to the mother wavelets in WT, WFT

does not require the number of periods to be linked to the sinusoidal oscillation of the

signal. In WT the number of periods determines a mother wavelet within the same

wavelet family, and usually goes from one up to three or four periods, allowing to hold

information about the frequency without losing local information. In WFT though, the

number of periods can be directly set from the definition of the signal. In our algorithm

it has been tested from one up to three periods, determining the optimal value by the

ridge extraction algorithm (WFR).

4.3.4 Computing WFT

Once all the parameters are defined, the set of signals having different sinusoidal fre-

quencies and windows are convolved with the enhanced image. As result, a 4D matrix

is obtained (having dimensions of x and y axes, window size and frequency). The WFR

algorithm is then applied to compute the most likely values of window (wx,wy), and

the corresponding phase value, delivering the wrapped phase in the interval [−π, π].
Finally, the cost function algorithm presented in section 3.2.4 is applied here in order

to ensure continuity and avoid errors due to local errors that can be identified and

corrected regarding its neighbors.

4.3.5 Phase unwrapping

In order to obtain the unwrapped phase and compute the phase difference with the

projected pattern, a phase unwrapping algorithm must be applied. To this end, we use

the algorithm of Herraez et al. [12]. A flow chart of the unwrapping steps is shown in
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Fig. 4.3. The algorithm performs a phase unwrapping based on sorting by reliability

following a non-continuous path. As stated in [12], the algorithm is suitable for fringe

analysis as it minimizes the effects of the noise present in the wrapped phase and

provides robust results under presence of slopes (although errors can still arise in some

specific discontinuities due to the periodicity of the pattern).

4.4 Testing the algorithm

In order to test the performance of the proposed analysis, it is necessary to observe the

output; that is, the wrapped phase, obtained from a set of different fringe patterns. To

this end, two kind of test have been done, under simulated and under real conditions.

The setup used for the real tests was the same used in chapter 3. All the algorithms

were programmed on MATLAB and executed on a standard Intel Core2 Duo CPU at

3.00GHz.

4.4.1 Simulated results

The proposed algorithm was tested using simulated data. The peak function available

in Matlab has been considered in the test, since it has become a benchmark for fringe

pattern analysis, as stated in [69] (Fig. 4.4). The peak function presents different

levels of deformations, therefore it is optimal for analyzing the performance of the

adapted signals under different 3D shapes. Some blurring was performed to the image

to simulate the noise introduced by the projector-camera pair (Fig. 4.4). In addition,

the peak function was also analyzed using WT (specifically the 2D-CWT) in order to

compare the performance of both techniques. The results of the wrapped recovered

phase are shown in Fig. 4.5.

As can be observed in Fig. 4.5, the best performance of WFT was obtained using the

adapted Morlet wavelet and the adapted Paul wavelet. Both wavelets present a clear

free of artifacts wrapped phase image. Moreover, the boundaries have been recovered

optimally. Worse results are obtained with the adapted spline wavelet (with m = 2),

as the change in its envelope signal does not suit optimally with the fringe pattern

sinusoidal shape. Phase errors are also present across all the image for the analysis

using the adapted shannon wavelet, which actually is the spline wavelet with m = 1.

Looking at the wrapped phase obtained using the wavelet transform, we observe how

the errors presented in WFT also appear in WT. This enforces the idea that Morlet and

Paul wavelets are more suitable for fringe pattern analysis than Shannon and Spline

wavelets. Moreover, we can appreciate some errors on the image corner for the case of
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Figure 4.3: Flow chart of the unwrapping algorithm proposed by Herraez et al. [12].
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Figure 4.4: Peak function used as the input image, containing phase variation at different
speeds, and added noise

the Shannon and the Spline wavelet analysis, not present with WFT phase extraction

algorithm proposed in this work. Table 4.1 provides some quantitative results of the

previous recovered phases compared to the input phase, where the relative mean error

represents the mean of the sum of the absolute error between the computed wrapped

phase map and the input phase map. Finally, as example of the reconstruction results,

the unwrapped phase map of the Morlet WFT is shown in Fig. 4.6.

Table 4.1: Relative mean error of the recovered phase

Error (%) Morlet Paul Shannon Spline

WFT 0.073 0.058 0.156 0.169
WT 0.115 0.067 0.162 0.174

4.4.2 Experimental results

This section analyses the performance of the proposed algorithm reconstructing two

different objects. The first is a plastic lambertian sheet having a smooth surface with

an irregular deformation in the middle of the object. The second object is a rubberised

elastic polymer, representing the face of a radiotherapy RANDO phantom. The pro-

posed technique is applied and the corresponding wrapped phase maps are compared.

The unwrapping algorithm developed by Herraez et al. [90] is employed to extract the

unwrapped phase map of the objects. The input images and their corresponding un-
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Figure 4.5: Simulation results of the wrapped phase (from −π to π): on the left column
the four adapted mother wavelets (Morlet, Paul, Shannon, Spline). On the right column,
their corresponding results in WT.
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Figure 4.6: Recovered unwrapped phase, in radians, for the simulated input fringe pattern
of Fig. 4.4. Morlet WFT has been used.

wrapped phase maps are shown in Fig. 4.7 and Fig. 4.9, respectively. The wrapped

phase maps corresponding to either the output of WFT or WT (specifically the 2D-

CWT) are analyzed in detail hereafter.

Plastic sheet

The Morlet and the Paul wavelets suffer from larger error than the respective signals

in WFT, as can be observed in Fig. 4.8. The errors are located in the region having

larger variation in depth. The wavelet analysis introduces some doubled frequency

components due to the effect of the dyadic net in the phase estimation. This does

not happen in WFT, where the discrepancy to the correct phase is lower. The same

errors are present in the Shannon WT mode. The Shannon WFT, however, performs

optimally for this image. Increasing the value of m up to m = 2, though (in fact

the Spline function with m = 2) errors arise in some region of the captured image.

Therefore, Morlet, Paul and Shannon WFT techniques perform optimally in this case.

Radiotherapy RANDO phantom

Phase estimation has been pursued for the four wavelet signals in both WT and WFT.

The results are shown in Fig. 4.10. Best results are obtained for the Morlet signal, as

in the previous images. Among them, WFT performs better than WT in presence of

slopes, as can be noise near the nose and the eyes.
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Figure 4.7: Input image and reconstructed unwrapped phase map in radians (using Paul
wavelet for WFT).

4.5 Conclusions

In this chapter, we faced the problem of fringe pattern analysis in the frequency

domain. Both WFT and WT are currently used in fringe profilometry, and pros and

cons are found in both cases [69]. First, we performed a comparative study of both

techniques. The results show how WFT with automatic window size detection performs

better compared to the traditional WT technique. This is mainly due to the nature

of the dyadic net used in WT, which scales the window by a factor of 2j between

adjacent size values. Afterwards we proposed an automatic window width selection

algorithm for WFT, which performs a fine tune of the window size between a set of

values around the optimal size corresponding to the global frequency average. Some

simulated and real results have been obtained, proving that the Morlet and the Paul

wavelets show better performance than the Shannon and the Spline wavelets, thanks to

the greater similarity of its signal shape to the sinusoidal nature of the fringe pattern.

Summarizing, the fine tunning provided by the automatic window selection algorithm

assures an optimal selection of the local frequency. This method can be used in any

fringe-based pattern analysis, minimizing the error in the recovered phase deviation

map. Therefore, an optimal approach would be to use this frequency analysis in an

hybrid pattern that avoids any phase unwrapping step by means of color or frequency

multiplexing.
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Figure 4.8: Plastic bended sheet: on the left column, experimental results for the four
adapted mother wavelets (Morlet, Paul, Shannon, Spline). On the right column, their
corresponding results in WT.
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Figure 4.9: Input image and reconstructed unwrapped phase map in radians (using Paul
wavelet for WFT).
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Figure 4.10: Radiotherapy RANDO phantom: on the left column, experimental re-
sults for the wrapped phase (from −π to π) of the four adapted mother wavelets (Mor-
let,Paul,Shannon,Spline). On the right column, their corresponding results in WT.
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A proposal on one-shot absolute

pattern for dense reconstruction

In this chapter we propose a new algorithm for absolute phase unwrapping based on the

use of DeBruijn coding. Combining this approach with the modified WFT algorithm

proposed in chapter 4, the new proposal obtains a dense, absolute, accurate and compu-

tationally fast 3D reconstruction using a one-shot pattern. This is achieved thanks to

the good accuracy results provided by DeBruijn coding, and the density of reconstruction

provided by WFT. The algorithm is presented and compared with other existing tech-

niques. The results presented at the end of the chapter show that the pattern obtains

levels of accuracy comparable to classical DeBruijn patterns, but with dense reconstruc-

tion results. Finally, the advantages and disadvantages of the proposed technique are

pointed out.

5.1 Introduction

As was pointed out in previous chapters, an important effort has been done in order to

generate patterns able to obtain correspondences with a unique projection. Moreover,

the need to obtain dense reconstructions and absolute coding is an asset in any solution

proposed. In chapter 4 we proposed a new WFT-based analysis to recover the wrapped

phase map of an input fringe pattern. The main advantage of the proposed analysis

is that the behavior under discontinuities is optimal, in the sense that errors caused

by a wrong selection of the carrier frequency are minimized, even under regions with

big changes in frequency like discontinuities. The next step would be to unwrap the

phase in order to obtain the depth and hence the 3D reconstruction of the scene. Many
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different phase unwrapping algorithms can be found in the literature ([72],[73],[68]).

However, despite being complex and computationally slow they can fail in the presence

of depth discontinuities and occlusions, performing only periodic coding (non-absolute).

Furthermore, the problem of absolute coding still remains unsolved. In this chapter we

propose a new algorithm for absolute phase unwrapping based on the use of DeBruijn

color coding. It is seen from chapter 2 that DeBruijn coding provides the best per-

formance in terms of accuracy among sparse reconstruction techniques. The idea is to

combine these benefits with dense fringe-based patterns using the Windowed Fourier

Transform (WFT) analysis proposed, with the goal of obtaining from a unique image

an absolute, accurate and computationally fast 3D reconstruction.

The chapter is structured as follows: section 5.2 presents the design of the new

technique especially focused on the absolute coding unwrapping. Experimental results

with both simulated and real data are presented in section 5.3, including a comparison

with other existing SL techniques. Finally, section 5.4 concludes with a discussion of the

proposed method, analyzing its advantages and disadvantages compared to literature.

5.2 A new proposal for one-shot dense reconstruction

The proposed technique combines the benefits of DeBruijn coding in dense fringe-based

patterns using Windowed Fourier Transform (WFT) analysis. Therefore, it is possible

to obtain the accuracy provided by classical DeBruijn stripe-based patterns and the

density of fringe-based patterns. A general scheme of the algorithm is shown in Fig 5.1

and explained in the following lines.

84



5.2 A new proposal for one-shot dense reconstruction

Figure 5.1: Diagram of the proposed algorithm
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5.2.1 Pattern creation

The proposed pattern consists in a colored sinusoidal fringe pattern, where the color of

the different fringes follows a DeBruijn sequence. DeBruijn sequences are a set of pseudo

random values having specific properties between them. A k-ary DeBruijn sequence

of order n is a circular sequence d0, d1,, dnk−1 (length nk) containing each substring of

length k exactly once (window property of k). DeBruijn sequences can be constructed

directly from the Hamiltonian or Eulerian path of a n-dimensional DeBruijn graph

(see [35] for more details). In our approach we set n = 3 as we work only with red,

green and blue colors. The number of fringes contained in the pattern is determined

by two constraining parameters: the pixel resolution of the camera and that of the

projector device. In any case, it is selected to be a factor number of the total height of

the pattern, in order to have an entire number of periods. Regarding the devices used in

our experiments, we set the pattern to have 64 fringes which is the maximum resolution

that the camera can capture without a significant loss in the shape of the sinusoidal

signal. Therefore, nk >= 64, so we set the window property to k = 4. An algorithm

performing the sequence generation provides us an arbitrary DeBruijn circular sequence

d0, d1, .., d80. The pattern, of size mxn, is generated in the HSV space. This is done to

minimize the effect of crosstalk in the fringe pattern (where every pixel has a different

value), as it would happen using RGB and one color channel instead. For every column

j = 1..m of the V channel, the sinusoidal signal is represented as in eq. 5.1:

I(i, j) = 0.5 + 0.5 · cos(2πfi) (5.1)

where i = 1..n and the discrete frequency f = 64/n.

The H channel maps a value of the previously computed DeBruijn sequence to

every period of the V channel. The S channel is set to 1 for all the pixels to obtain the

maxims of the saturation value. Finally, the created HSV matrix is transformed into

RGB values. The resulting pattern is shown in Fig. 5.2.

5.2.2 Geometric and color calibration

Using the calibration steps proposed in appendix A, the intrinsic and extrinsic trans-

formation matrices of the projector-camera system are determined. This gives us the

relative position between both devices, as well as their optical parameters. Moreover,

color calibration matrix proposed in appendix B is applied to the incoming images in

order to reduce the effects of crosstalk and attenuation of some color channels among

others. Finally, RGB color channel alignment must be applied to the incoming image

86



5.2 A new proposal for one-shot dense reconstruction

Figure 5.2: Proposed pattern: HSV representation of the DeBruijn sequence (top-left),
fringe pattern (top-right) and the resulting RGB pattern for m = 64 (bottom).

in order to subtract the small misalignment present between the three color channels

of the DLP and the camera.

5.2.3 Pattern projection and recovery

The designed pattern is projected by the active device. Once reflected onto the object

the pattern is recovered by the camera. The camera calibration matrix is applied to

the RGB image, obtaining the corrected color values. The corrected RGB image is

transformed to the HSV space. Afterwards, a Region Of Interest (ROI) is selected

regarding the information held in the V plane. To this end, a closure morphological

operation followed by a binarization is computed. In the binarization step, the pixels

exceeding the value given by the Otsu thresholding algorithm are set as white, and

the rest as zero. The positions corresponding to the white pixels constitute the ROI,

whereas the other positions will not be consider for the pattern analysis. The ROI is

applied to both the corrected RGB image and the V matrix. The masked RGB image
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is the input of the DeBruijn detection algorithm, whereas the masked V matrix is used

in the Windowed Fourier Transform Analysis.

5.2.4 DeBruijn analysis

The aim of this step is to extract the color associated to every projected colored fringe.

We followed the same approach used in slit-based pattern, as the recovered fringes

present a Gaussian-like shape similar to that present in slit-based patterns ([23], [29]).

Therefore a maxims localization algorithm is applied, searching local maxims of every

color channel on the current scan-column. Then, it calculates the sub-pixel center

of mass of the region taking into account only those pixels for which its normalized

intensity is higher than a certain threshold (set to 0.7 during the experiments). This

is done using the first and second derivative of every column, whose zero-crossing and

maxims provides us with an accurate subpixel position (see Fig 5.3).

Figure 5.3: Behaviour of the 1st and 2nd derivative on a synthetic sinusoidal signal.

The implemented algorithm takes into account the total of n = 64 periods present

in the pattern, and the consecutive maxims-minims distribution. Furthermore, a global

threshold suppressing peaks lower than the 70% of maximum peak is applied. These

steps prevent from false peaks detection.
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5.2.5 Dynamic programming

Ideally, the matching of correspondences between the projected sequence and the per-

ceived one is straightforward. However, usually the whole sequence of projected stripes

is not visible on the image scan-line or some of them are incorrectly labeled or dis-

orders may occur. Therefore, the use of dynamic programming becomes compulsory.

Dynamic programming works as a scoring function, measuring the similarity between

a certain element of the projected sequence and an element of the perceived one, and

scoring to the maximum correspondence (an explanation of dynamic programming and

the employed multi-pass dynamic programming can be found in appendix D). In our

case the dynamic programming algorithm set the correspondence between the recovered

sequence of color stripes and the corresponding section of color stripes in the projected

DeBruijn sequence. This procedure is done minimizing the errors due to noise and

occlusions.

5.2.6 Windowed Fourier Transform analysis

WFT has been chosen for frequency fringe analysis, as it avoids leackage distortion and

a more precise window width selection than in WT. First, a salt and pepper filtering and

a histogram equalization is applied to the V channel. Afterwards, an adapted Morlet

wavelet is chosen for WFT analysis. Regarding the work of Fernandez et al. [91],

this provides good frequency and spatial localization at the same time. Morlet signal

definition is shown in eq. 5.2:

ΨMorlet(x) =
1

(f2c π)
1/4

exp(2πifcx) · exp(
−x2

2f2b
) (5.2)

where fc is the mother wavelet central frequency and fb is the window size.

The average and standard deviation of the fringe period is estimated counting the

number of periods existing in every column along the coding axis (using the same

algorithm employed to find the local maxims of the DeBruijn sequence). Average period

(pm)and standard deviation (std) are extracted from the single periods corresponding

to each column. The std represents the uncertainty in the estimated frequency, and

is crucial to perform a global analysis of the image. The average frequency for the

nxm pattern is computed as fm = n/pm. The frequencies analyzed are in the range

[fm − 3 · std, fm + 3 · std] in both x and y axes, where fm is the average frequency.

Using this range the 99% of detected frequencies are analyzed. In practice, this range

can be reduced to [fm − 2 · std, fm + 2 · std] (95% of the frequencies are represented)
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without a significant loss in accuracy. Another variable to consider is the window size

related to the number of periods of the sinusoidal mother signal. In contrast to the

mother wavelets in WT, WFT does not require the number of periods to be linked to

the sinusoidal oscillation of the signal. In our algorithm it has been used from one up

to three periods. The optimal value is selected applying the ridge extraction algorithm

(WFR), followed by the cost function algorithm. This step compute the most likely

values of window (wx, wy) and the corresponding phase value. Afterwards, the wrapped

phase in the interval [−π, π] is obtained.

Figure 5.4: Visual representation of a Morlet signal with n = 3 periods.

5.2.7 Combination of DeBruijn and wrapped phase patterns

The next step is to merge the information obtained from WFT and DeBruijn. The

wrapped phase is merged with the extracted colored lines. Due to the 2D nature of WFT

(which may include some frequencies of adjacent positions in the Fourier Transform),

the phase value of an specific position may have some deviation. This effect is corrected

shrinking or expanding the wrapped phase accordingly to the DeBruijn correspondences

for the maxims. A non-linear 4th order regression line is used to this end, matching the

maxims of the wrapped phase map with the position of the colored lines in the DeBruijn

map. This process is done for every column on the image, obtaining corrected wrapped

phase map. This is shown in Fig. 5.5. Finally, the correspondence map provided by the

DeBruijn lines is expanded using the wrapped phase map. The phase values between

two adjacent lines go in the range (-π, π). Therefore a direct correlation is set between

these values and the position of the projected and the recovered color intensities. A
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full (dense) correspondence map is obtained.

Figure 5.5: On the left, detail of the wrapped phase and a crest maxims (in red), and its
corresponding slits line position (in green). On the right, the wrapped section before and
after correction, and the correction interpolation error.

5.2.8 Triangulation

Every pair of (x, y) projector-camera coordinates given by the matching step are inputs

in the triangulation module, which also makes use of the extrinsic and intrinsic param-

eters provided by the calibration module. The output is a cloud of points in (x, y, z)

representing the shape of the reconstructed object. It is important to mention that the

triangulation is done following a ray-to-plane intersection approach (Fig. 5.6), as one

of the coordinates of the projected pattern remains unknown.

5.2.9 Filtering

A posterior filtering step reveals necessary due to some erroneous matchings that orig-

inate outliers in the 3D cloud of points. Two different filtering steps are applied.

3D statistical filtering: in the 3D space, the outliers are characterized by their

extremely different 3D coordinates regarding the surrounding points. Therefore, pixels

having 3D coordinates different than the 95% of the coordinates of all the points are

considered for suppression. This is done in two steps for all the points in the 3D

cloud. First the distance to the centroid of the cloud is computed, for every pixel.

Afterwards, those pixel having a distance to the centroid greater than two times the

standard deviation of the cloud of points are considered as outliers.
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Figure 5.6: Ray plane intersection diagram

Bilateral filtering: Still, there can be some misaligned points after applying the

statistical filtering. In this case it would be profitous to apply some anisotropic filtering

that filters the data while preserving the slopes. To this end, an extension to 3D data

of the 2D bilateral filter proposed by Tomati and Manduchi [92] was implemented. The

bilateral filter is a non-recursive anisotropic filter whose aim is to smooth the cloud of

points (up to a given value) while preserving the discontinuities, by means of a nonlinear

combination of nearby point values. The proposed 3D bilateral filtering is described in

eq. 5.3 and eq. 5.4.

G(x, y) = exp(−((x− xc)
2 + (y − yc)

2)/(2 ∗ σ21)) (5.3)

H(z) = exp(−(z − zc)
2/(2 ∗ σ22)) (5.4)

where x, y, z are the 3D coordinates of a given point, G(x, y) is the distance mask, H(z)

is the height mask, and both σ1 and σ2 are values to set empirically. The algorithm

works as follows: given a set of points X,Y, Z around the selected 3D point, the cor-
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responding masks G(x, y) and H(z) are computed, providing the filtered results. This

modified the height of those isolated pixels having a 3D coordinates much different than

their vicinity, while preserving the slopes.

5.2.10 Meshing

Finally, an optional meshing step can be applied to obtain a surface from the 3D cloud

of points. To do so, the 2D bidimensional Delaunay meshing should be applied on the

3D coordinates with respect to the camera, in order to avoid duplicities in the depth

value as this can not occur from the camera point of view.

5.3 Results

The proposed algorithm was implemented and tested in both simulated and real data.

Moreover, a comparison with other representative SL algorithms was pursued. To this

end we used the techniques presented in chapter 2, as they correspond to the main

groups existing in SL, not only in dense but also sparse reconstruction. The new setup

used for the experiments is composed by a compact handy projector-camera system.

The DLP is a video pico-projector 3M MPro 150 with a resolution of 1024×768 pixels.

The camera is a Canon EOS 50D set to a resolution of 1568 × 2352 pixels with 3 × 8

bits per pixel (RGB). The lens used is a Canon EF of 24mm. The baseline between

camera and projector was about 40cm. The setup is shown in Fig. 5.7.

Experiments were computed in a desktop computer, Intel Core2 Duo CPU at

3.00GHz and 4GB RAM memory. The algorithms were programmed and ran in Matlab

7.3. It is important to mention the methods used for comparison were re-programmed

from the corresponding papers, since at the best of our knowledge source codes were

not available.

5.3.1 Simulation results

The peaks function available in Matlab (shown in Fig. 5.8) was chosen for 3D recon-

struction. Moreover, an analysis against noise was pursued. The error introduced in

the recovered (incoming) image was a Gaussian zero mean random noise with standard

deviation of 0.05%, 0.1%, 0.15% and 0.2%. The results are shown in Fig. 5.9, where a

comparison with other one-shot techniques selected in [29] was done.

As can be observed, the worst results are obtained by the algorithm of Carrihill and

Hummel. The algorithm of Su et al. performs optimally for low noise values thanks
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to the nature of the 2D frequency analysis, which smooths the incoming data. This

occurs also for the proposed pattern. However, for noisy images having std > 0.1 the

1D unwrapping step introduces discontinuities in the recovered phase, leading to errors

in the pixel position. Besides, Monks algorithm suffers the low amount of reconstructed

points, which penalizes the errors produced in the slits position. Finally, the proposed

algorithm provides a much denser reconstruction with 2D fourier analysis and no need

to perform any phase unwrapping. This gets reflected in the results, performing the

best among the three tested techniques.

5.3.2 Empirical results

Quantitative results were analyzed reconstructing a white plane at a distance of

about 80cm in front of the camera. Principal Component Analysis (PCA) was applied

to obtain the equation of the 3D plane for every technique and for every reconstruction.

PCA is used to span the 3D cloud of points onto a 2D plane defined by the two

eigenvectors corresponding to the two largest eigenvalues. The results of the experiment

are shown in table 5.1.

Table 5.1: Quantitative results. The headings are: author’s name of the technique;
average deviation of the reconstructing error; standard deviation of the reconstructing
error; number of 3D points reconstructed; number of projected patterns.

Technique Average (mm) Stdev (mm) 3D Points Patterns Time (s)

Monks et al. 1.31 1.19 13899 1 45.29
Posdamer et al. 1.56 1.40 25387 14 32.18

Guhring 1.52 1.33 315273 24 158.22
Pribanic et al. 1.12 0.78 255572 18 165.65

Carr.and Hummel 11.9 5.02 202714 1 150.57
Proposed technique 1.18 1.44 357200 1 160.75

Note that the algorithm of Su et al. [10] is conceived to measure deviation of smooth

surfaces with respect to the reference plane, therefore a plane is not conceived to be

reconstructed by depth deviation. As can be observed, the proposed technique obtains

one of the best accuracy results in terms of average and standard deviation of the error,

only overcome by the method of Pribanic et al. [9], which requires a total of 18 projected

patterns. Among the one-shot projection techniques, the proposed technique obtains

the best accuracy results jointly with another DeBruijn based technique, the sparse

reconstruction algorithm proposed by Monks et al. [6]. Regarding the computing time

it can be observed that methods obtaining dense reconstructions (the case of Guhring,

Pribanic et al., Su et al., and Carrihill and Hummel and the proposed algorithm)

94



5.3 Results

need to compute more 3D points, requiring higher computational time. However, our

proposal does not need to compute many images, nor any unwrapping algorithm is

required. This makes our technique faster in terms of computational time. Among

methods providing sparse reconstruction the color calibration step makes Monks et al.

algorithm slower than Posdamer et al. (also affects the proposed technique) despite it

preserves the same order of magnitude. Still, real time response is achievable working

with the appropriate programming language and firmware.

Finally, Qualitative results were pursued reconstructing several 3D objects. The

lambertian objects were placed at a distance of about 80cm to the camera.

Results of 3D reconstruction of several objects are shown in Fig. 5.10, Fig. 5.11,

Fig. 5.12, Fig. 5.13, Fig. 5.14, Fig. 5.15, Fig. 5.16, and Fig. 5.17. The first reconstruction

corresponds to a bended piece of paper sheet. The second reconstruction is a piece of

manufactured white cork, used to protect an electronic device inside a box. Third

and fourth reconstructions are a ceramic figure of a ’hello kitty’ and the sculpture of

a horse, respectively. For every object, the first row corresponds to the input and the

color calibrated images. The second rows are the extracted color channels, after color

rectification. The third row corresponds to the results of DeBruijn analysis (the slits

image) and WFT computation after merging with the DeBruijn images; that is, the

tuned wrapped phase image. On the bottom, the corresponding triangulated 3D cloud

of points is shown. As can be observed the objects are reconstructed optimally. Only

the ’hello kitty’ present some points missing, as the filtering suppressed 3D outliers

associated to the low illuminated and blurred regions present in the recovered image.

5.3.3 Reconstructing color surfaces

Color surfaces represent a challenge for DeBruijn based SL patterns. In the proposed

approach the information related to spatial decoding is held in the sequences of colors of

the fringes. When projecting onto a color surface, the color of the fringes get distorted

by the original color of the object. Therefore, the identification of the color sequence

by the DeBruijn decoding algorithm may present some errors. This phenomena has

been tested for a real colored object. The aim was to reconstruct a planar surface

having different colors, in different positions not related with the orientation of the

fringes. A Macbeth colorchecker was employed for this. This is a color calibration

target consisting in a cardboard-framed arrangement of 24 squares of painted samples.

Originally proposed by McCamy et al. [93], the charts color patches have spectral

reflectance intended to mimic those of natural objects such as human skin, foliage,
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and flowers, to have consistent color appearance under a variety of lighting conditions,

especially as detected by typical color photographic film, and to be stable over time.

The Macbeth checker was scanned using the proposed SL pattern. The results of

scanning and 3D reconstruction are shown in Fig. 5.18 and Fig. 5.19:

As can be observed, the Hue and the Illumination channels gets corrupted and color

of the fringes is not well retrieved. Therefore, the reconstruction present big errors all

around the plane, as the dynamic programming algorithm failed when minimizing the

distance between the projected and the recovered color fringes (see slits plane and

fringe plane). This effect occurs mainly in dark regions, as the reflected illumination

is not high enough to detect the fringe colors in the DeBruijn algorithm. Fortunately,

these errors are filtering by the statistical and the bilateral filtering. As result, the 3D

reconstruction present big holes in the regions having low illumination rate, but the

structure of the flat plane is preserved.

5.4 Conclusions

Continuous coding strategies achieve dense acquisition by creating a pattern that

changes the value between adjacent pixels. The depth of a given point on the im-

age is determined by the deviation of its grey value with respect to the projected

pattern. Moreover, one-shot projection reveals necessary in order to work in moving

scenarios. The combination of dense reconstruction and one-shot projection has been

overcome by the fringe pattern approaches. However, they fail under presence of big

slopes and occlusions, due to the periodicity of the fringe pattern. Therefore, the diffi-

culty falls on the achievement of absolute coding for one-shot dense projection patterns.

This chapter proposes a new technique for one-shot dense 3D surface reconstruction,

which combines the accuracy of DeBruijn spatial multiplexing with the density of fre-

quency multiplexing in fringe projection. The proposal was implemented and compared

both quantitatively and qualitatively with some representative techniques of Structured

Light. Simulation results and empirical quantitative results showed the good perfor-

mance of the proposed technique in terms of resistance to noise and accuracy of a

reconstructed plane. Among one-shot techniques, our proposed method achieves the

best results in terms of accuracy, comparable with other DeBruijn-based spatial coding.

Moreover, dense reconstruction and absolute coding is assured with the proposed tech-

nique. Besides, other frequency multiplexing methods provide dense reconstruction for

moving scenarios, but present high sensitivity to non-linearities of the camera reducing

the accuracy and sensitivity to details in the surface, and can fail under presence of big
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slopes. Among all the compared approaches, our method was only overcome by the

time multiplexing shifting approach proposed by Pribanic et al. [9], which is only valid

for static scenarios. Finally, 3D retrieval of some real objects was pursed to show the

effectiveness of the algorithm in terms of density and perceived quality of the one-shot

reconstruction.
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Figure 5.7: Proposed setup: a portable frame with the camera and the pico-projector
attached on it.
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Figure 5.8: Peaks signal and recovered pattern for the proposed algorithm and noise of
std = 0.1.

Figure 5.9: Normalized error on reconstructed depth positions, for different values of
noise.

99



5. A PROPOSAL ON ONE-SHOT ABSOLUTE PATTERN FOR DENSE
RECONSTRUCTION

Figure 5.10: 3D retrieval of a bended piece of paper sheet. On the top, original and color
rectified image. On the middle, RGB color channels before DeBruijn and WFT analysis.
On the bottom, extracted DeBruijn color slits and WFT wrapped phase.
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Figure 5.11: 3D cloud of points corresponding to the bended piece of paper sheet. 802768
points were reconstructed.
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Figure 5.12: 3D retrieval of a manufactured piece of white cork. On the top, original
and color rectified image. On the middle, RGB color channels before DeBruijn and WFT
analysis. On the bottom, extracted DeBruijn color slits and WFT wrapped phase.
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Figure 5.13: 3D cloud of points corresponding to the manufactured white cork. 620496
points were reconstructed.
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Figure 5.14: 3D retrieval of a ceramic figure of ’hello kitty’. On the top, original and color
rectified image. On the middle, RGB color channels before DeBruijn and WFT analysis.
On the bottom, extracted DeBruijn color slits and WFT wrapped phase.

104



5.4 Conclusions

Figure 5.15: 3D cloud of points corresponding to the figure of ’hello kitty’. 666900 points
were reconstructed.
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Figure 5.16: 3D retrieval of a ceramic sculpture of a horse. On the top, original and color
rectified image. On the middle, RGB color channels before DeBruijn and WFT analysis.
On the bottom, extracted DeBruijn color slits and WFT wrapped phase.
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Figure 5.17: 3D cloud of points corresponding to the ceramic sculpture of a horse. 722127
points were reconstructed.

107



5. A PROPOSAL ON ONE-SHOT ABSOLUTE PATTERN FOR DENSE
RECONSTRUCTION

Figure 5.18: 3D retrieval of a Macbeth checker plane. On the top, original and color rec-
tified image. On the middle, RGB and HSV channels before DeBruijn and WFT analysis.
On the bottom, extracted DeBruijn color slits and WFT wrapped phase..
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Figure 5.19: 3D cloud of points corresponding to the Macbeth checker plane.
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6

Registration of single-views from

Structured Light

In this chapter we the face problem of registering; that is, the alignment of several

3D reconstructions in a common framework delivering a more complete 3D cloud of

points of a given object. After studying the state of the art in 3D registration, we

have implemented an optimal solution for structured light. Both global and local 3D

registering are considered in the algorithm, in order to obtain the best results in terms

of accuracy. Finally, tests are performed using real data and combining 3D views from

single image captures.

6.1 Introduction

Registration of 3D images acquired by passive stereo-vision or structured light is an

active field of research [94], [95], [96], [97], [98]). In particular, when two or more

than two vies are involved and initial pose estimations are unknown, three main inter-

related sub-problems need to be solved: the overlapping regions between each view,

their relative positions, and the absolute pose of the views. Regarding the pairwise

registration (which in fact is a simplification of the multi-view case), the different

approaches proposed in the literature can be broadly classified into two categories,

depending on whether an initial information is required (fine or local registration) or

not (coarse or global registration). Typically, the fine registration process consists in

iterating the following two stages: firstly, the correspondence between every point from

the two cloud of points should be found. These correspondences are used to define the

residual error of the registration. Secondly, the best set of parameters that minimizes

111



6. REGISTRATION OF SINGLE-VIEWS FROM STRUCTURED
LIGHT

the sum of these residuals should be found. These two stages are iteratively applied

until convergence is reached. The Iterative Closest Point (ICP) [94] is one of the most

widely used registration techniques using this two-stage scheme. Since then, several

variations and improvements have been proposed in order to increase the efficiency and

robustness of the method ([99], [100], [101], [102]). The main problem of ICP and other

fine registration algorithms is that they can fail in a local minima in the relative pose

estimation. To avoid this, a good approximation of the relative position must be given

at the beginning of the iterative minimization algorithm. This is achieved using global

registration, which attempts to find the rigid transform that optimally positions one set

of data to another, until all partial shapes are registered. This problem is particularly

hard when no information is available about the initial position of the model and data

shapes, the inputs contain noise, and the shapes overlap only over parts of their extent

(and the overlaps may not be known in advance). The solution adopted consist in

extracting some feature keypoints of every 3D cloud of points, and perform the global

registration using a matching algorithm based on minimization of the total Euclidean

distance. This distance is computed as the accumulative distances from every pair of

matched keypoints descriptors. Global registration provides a more robust result than

fine registration, at expense of having more error in the estimation of the relative posi-

tion of each view. Some of the global registration approaches existing in the literature

were analyzed in this work. However, the nature of the 3D data provided by SL need of

a specific registration pipeline. We propose an algorithm for global registration that is

being developed by Umberto Castellani, Roberto Toldo, Maurizio Galassi and the aid

of Sergio Fernandez during the stay at the University of Verona. This algorithm aims

to be optimal for registration of noisy partial views like the ones acquired using SL.

The reason is that a main focus is put on the selection and description of reliable 3D

points, in order to avoid the effect of outliers, common in SL 3D results. The chapter is

structured as follows: first, section 6.2 provides an overview of the global registration

algorithms. Afterwards, the proposed registration pipeline is explained in section 6.3.

Registration results of this technique are presented in section 6.4, and compared with

those obtained with the 4PCS. Finally, section 6.5 discusses the implemented algorithm,

pointing out the most important steps regarding its use in SL.

6.2 Brief overview of global registration algorithms

Global registration aims to align optimally two partial views of the same 3D shape,

placed at arbitrary initial positions. Therefore, some rigid transformation must be

112



6.2 Brief overview of global registration algorithms

applied between the two views. This process is part of most 3D shape acquisition

pipelines, where self occlusions and scanner limitations usually require the acquisition

of multiple partial scans that overlap. To build a complete model, the partial scans

need to be brought into a common coordinate system. This is usually done by pairwise

registration, as the multiview registration can be obtained iteratively from pairwise

registrations. The registration is particularly hard when the inputs contain noise and

outliers, and the shapes overlap only over parts of their extent (and the overlaps may

not be known in advance). As mentioned before, fine registration algorithms work

iteratively computing a one-to-one rigid transformation for every pair of keypoints

until a local minima (hopefully the absolute minima) is obtained. Contrary to this,

global registration algorithms use the so-called voting methods, searching for the small

number of parameters needed to specify the optimal motion. In order to compute

this motion, distances between correspondences in different views are minimized. The

most common correspondences are points, curves and surfaces. Global registration

techniques can be classified on shape features or matching methods, which can be

used jointly or separately. The first group searches for characteristics of points, using

usually neighborhood information, in order to search for correspondences. Examples of

this group are Point Signature [103] or Spin Image [104]. Matching methods are based

on the process of matching points from both surfaces, using Ransac [105] or Genetic

Algorithm [106]. A complete classification of techniques can be found in the work of

Salvi et al. [107]. Regarding the process of matching, some proposals are described.

The most common is based on the calculation of the residual. For each triplet of 3D

locations or features in each view, the joint rigid transformation between the triplets is

computed using an optimization algorithm. Afterwards, a residual is recorded, which

tell us about the ’goodness’ of the proposed transformation. This process is done

for every combination of triplets in the two views. Finally, the entry with the best

residual gives the optimal aligning transform. Several proposals can be found using

this idea ([108],[109],[110]). Another variant of this scheme, the alignment method

proposed by Huttenlocher and Ullman [111], counts for each transform proposed by

two triplets of points how many points of the data are brought by the transform close

to a point in the model. The transform which brings the most data points within a

threshold of a point in the model is chosen as the optimal aligning transform. Voting

methods provide the optimal alignment between the data and model shapes, and are

independent of the initial pose of the input shapes. More recently, a method based

of residual was proposed by Aiger et al. [112]. The so-called 4-Points Congruent Sets

uses a total of four points, instead of three to compute the rigid transformation. The
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method extracts all coplanar 4-points sets from a 3D point set that are approximately

congruent, under rigid transformation, to a given set of coplanar 4-points. In order

to align two point sets P and Q in arbitrary initial positions, a pair of triplets, one

from P and one from Q, is enough to uniquely define a rigid transformation. For a

base from P, the algorithm randomly selects a 3-points base from Q. Naively, there are

O(n3) such candidate triplets from Q, where n is the number of points in Q. However,

they use a set of 4 coplanar points from P as base B to find all subsets of 4-points

from Q that are approximately congruent to B, in the sense that the two 4-points sets

can be aligned, up to some allowed tolerance, using rigid transformation. This makes

the problem easier than when working with only 3 points. This extraction procedure

runs in roughly O(n2 + k) time, where n is the number of candidate points and k is

the number of reported 4-points sets. Furthermore, the method reduces the number

of trials required to establish a reliable registration between the underlying surfaces in

the presence of noise, without any assumptions about starting alignment.

However, none of the global registering algorithms presented in these lines has been

specifically designed for a SL set of data. A classical 3D cloud of points from SL present

a high level of outliers and holes (an usual problem when dealing with discontinuities

or occluded regions). Therefore, a robust pipeline able to select only the interest points

and to describe its local region optimally reveals necessary. This would increase the

robustness of the registration against errors in the recovered 3D points. Following this

idea, a novel pipeline for global registration in SL is proposed hereafter. The algorithm

is split in three main steps: detection of relevant keypoint, optimal description of these

3D points, and matching.

6.3 A novel pipeline for global registration

This section presents a novel method for feature-based global registration that com-

bines a multi-scale based 3D saliency points detector, a mesh histogram of Gaussian

(meshHOG) based feature descriptor, and a three to three keypoint based matching

algorithm. The multi-scale saliency points detection algorithm, jointly with the polar

representation used for the mesh HOG, provide robustness to the global registering,

avoiding errors due to false similar regions in the object shape. This is an important

issue when dealing with 3D points acquired using SL, as borders or discontinuities usu-

ally present a high level of noise. A diagram of the proposed pipeline including the

three main steps (detection, description and matching) is shown in Fig. 6.1.
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Figure 6.1: Diagram of the proposed registration algorithm.
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6.3.1 Keypoint detection

The objective of keypoint detection is to extract some distinctive feature points from

the 3D shape. These feature points are named saliency points, and will be used for the

description of the surface. To this end, multi-scale representation, 3D saliency measure

definition and keypoints selection is pursued in this step. The first step consist on

computing the multi-scale representation of the surface. Given the definition of the

Difference-of-Gaussian (eq.(6.1)):

F d
i = g(v, σi)− g(v, 2σi) (6.1)

where v is the analyzed vertex and σi is the value of the standard deviation as-

sociated to scale i, the multi-scale representation is obtained by applying a N mul-

tidimensional Gaussian filters F d
i , i = 1, ..., N, up to a distance equal to 2.5σ. Six

scales of filtering have been fixed, corresponding to standard deviation of values σi ε

1γ, 2γ, 3γ, 4γ, 5γ, 6γ where γ amounts to 0.1% of the main diagonal of the surface. F d
i

can be taken as a saliency feature after reducing it to the scalar quantity projected to

the normal n(v) of the vertex v. This value, named the scale map Md
i , is obtained as

in eq.(6.2). Finally, the saliency map is computed by simply adding the contribution

of each scale map to vertex v. A saliency map is computed for every vertex in the

surface. The last step is to determine which vertex are relevant enough; that is, to

extract the saliency points. The saliency points are obtained as maxims of the saliency

map, considering those values higher than the 30% of the global maximum.

Md
i (v) = ||(n(v) · (g(v, σi)− g(v, kσi))|| (6.2)

6.3.2 Keypoint description

The next step is focused on building an appropriate keypoint descriptor. The first,

classical approach implemented was the spin-image. Firstly proposed by Johnson and

Hebert [104], this feature descriptor is rotation invariant, therefore can be used for

global registering. Given an oriented point (v, n(v)), a spin map S0 is defined as the

function that projects 3D points x to the local coordinate system defined by (v, n)

(eq. 6.3):

Sv(x)− > (α, β) = (
√

(||x− v||2 − (n · (x− v))2), n · (x− v)) (6.3)
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A spin-image for point v is generated by applying the spin-map to all the points x of

a region around the surface and then accumulating the results in a discretized (α, β)

space. If surfaces are uniformly sampled, the spin-images of two corresponding points

on different instances of the same object will be similar. Therefore, the corresponding

Euclidean distance will be small, being this pair of points good candidates for matching.

However, spin images present ambiguity in the position of the evaluated point x with

respect to v (α takes only positive values). Moreover, geometrical or texture weighting is

not able when using this technique. These are the reasons why a proposal for a keypoint

descriptor based on the mesh Histogram of Gaussian (meshHOG) was implemented

afterwards. Originally proposed by Zaharescu et al. [13] in 2009, the mesh Histogram

of Gaussian is based on an histogram gradient which is computed for a specific region

around the considered 3D point. The first step is to define the neighborhood region for

computing the meshHOG. To this end, we consider the n− ring around the considered

pixel vi, defined as the group of vertex placed at a distance of N points to vi. Then, we

accumulate the N − ring points until we reach the 1% of the total surface. Afterwards,

we compute the Discrete Gradient for the selected points. The discrete gradient ∆Sf(vi)

of f at viεS is defined from eq. and eq.:

∆Sf(vi) =
∑

vjεrg(vi,1)

(ωij ·D ~eijf(vi)) ~uij (6.4)

where D ~eijf(vi)) is the directional derivative of vi ∀i 6= i. ωij weights the con-

tribution of D ~eij and ~uij is the normalized projected direction of ~vivj in the tangent

plane at vi. The weights ωij are chosen in order to balance the contributions of the

local directional derivatives with respect to their associated directions in the tangent

plane. The next step is to compute the local coordinate system. The first direction

of the local coordinates is given by the normal nvi of the point. The second direction,

defined as avi , is provided by the direction associated to the dominant bin in a polar

histogram of b = 36 bins. This polar histogram is computed from the projection of

the considered 3D points magnitudes |∆Sf(vi)| onto the plane defined by nvi . Finally,

the third direction is given by nvi × avi . Once the local coordinate system has been

defined, the HOG descriptor is created from the concatenation of the three different

2D histogram values, where each 2D histogram is computed from the projection of 3D

points magnitudes |∆Sf(vi)| onto one of the corresponding planes defined by the local

coordinates system. For every plane, a 2D histogram with a total of bs × bo bins is

provided, being bs = 4 a previous sub-region division made on the plane (see Fig. 6.2).

A modification of the standard approach has been done considering the weights ωij as
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Figure 6.2: Creation of the 2D histograms from the local planes, bs × bo and bins (from
[13]).

the saliency values provided by the saliency map, for every 3D point under considera-

tion. This gives us a weighting strictly based on the geometrical properties of the mesh.

Other approaches consider features linked to color or texture, but is out of the scope of

3D registering for SL. Moreover, the contribution of the 3D points magnitudes to the

total count is weighted by their distance to the point nvi . The contribution is accumu-

lated in the 2D histogram following a bilinear interpolation between neighboring bins,

in order to to reduce the aliasing and boundary effects.

6.3.3 Matching

Having the descriptors corresponding to two different views of a single image, the

objective is to find matching keypoints with some overlap. We follow the approach of

Brown and Lowe [113] for 2D image mosaicking.

6.3.3.1 Selection of the keypoint candidates for matching

First, we compute the correlation matrix between the set of keypoint descriptors from

the two views. Direct Euclidean distance between each pair of descriptor is computed

(zero-shifting in the correlation). A keypoint similarity matrix is obtained as result.

Afterwards, we binarize this matrix selecting only the six greatest matches for every

row; that is, each descriptor of the first image is candidate to its L = 6 nearest neighbors

of the second image, in the feature space. For multiview matching, every view would be

matched with the m views that have the greatest values in the 2D histogram, therefore

a m-dimensional similarity matrix would be used. Afterwards, we select for every

combination of three keypoints (triplet) from the first image every possible combination

of three keypoints (triplet) from the second image. This is done regarding the binarized

similarity matrix, and taking into account that every keypoint can be matched only
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Figure 6.3: 2D representation of triplets in view 1 and view 2. As can be seen, the
relative distances within the keypoints of both images are not related for the triplet on the
top of second image, but will allow a match for the triplet on the bottom.

once. This triplet to triplet set is called sextet.

6.3.3.2 Geometrical constraints

There are two geometrical constraints that must be applied to the sextets. The first one

refers to the relative distances within the two triplets. That is, the distances between

the three keypoint positions of the first image must be similar to those for the second

image. Otherwise the triplets do not have similar spatial distribution, so they do not

correspond to the same region. The second constraint relevance of a given triplet. It

has been proven that a triplet gives relevant information if at least one of its vertex

is farther from the other two vertex in more than the average vertex distance of the

mesh. Therefore, this constraint is also applied when selecting the triplets. A graphical

representation of the constraints can be observed in Fig. 6.3.

6.3.3.3 Compute the rigid motion

Once the sextet is determined and the constraints have been applied, the rigid motion

between the two views is computed. We are trying to find the rotation matrix R and
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the translation vector t that minimizes the eq.(6.5).

Σ3
i=1ωi · ||R · vai + t− vbi || (6.5)

where ωi is a weighting vector (ones in our case), and vai and vbj , i, j = 1, 2, 3

correspond to the triplet of the first and the second view, respectively. The first step

is to compute the weighted centroids of the triplet (eq.(6.6) and eq.(6.7)).

vac =
Σ3
i=1ωi · vai
Σ3
i=1ωi

(6.6)

vbc =
Σ3
i=1ωi · vbi
Σ3
i=1ωi

(6.7)

From this, the centered vectors are computed as xi := vai − vac , yi := vbi − vbc. We

create the d×d covariance matrix S = X ·W ·Y T , where X and Y are the d×n matrices

that have xi and yi as their columns, respectively, and W = diag(ω1, ω2, ..., ωn).

The final step is to apply Singular Value Decomposition (SVD) to S, such that

S := U · Σ · V T . The rotation matrix R and translation vector t are obtained from

eq.(6.8) and eq.(6.9), respectively.

R = V ·
[ . . . .det(V UT )

]
· UT (6.8)

t = vbc −R · vac (6.9)

The details about the mathematical background can be found in the work of

Sorkine [114]. Finally, the 3D cloud of points corresponding to the first view are

transformed by R and t

6.3.3.4 Calculate the residual

It is necessary to compute a measure of the goodness of the proposed rigid transforma-

tion, in order to choose the sextet providing the best transformation between the two

views. This is computed regarding the Euclidean distance between the transformed

cloud of points, and minimizing this parameter. To this end, the computation of the

residual reveals necessary. Technically speaking, the residual computes partial distances

between pair of 3D points from the two views. For any 3D point in the transformed

first view, we look for the closest point in the second view, and compute its Euclidean
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distance. This is done for every pair of 3D points not farther than a pre-set thresh-

old. The residual is taken as the sum of the partial distances. Therefore, the best

rigid transformation is selected as the one minimizing the residual and maximizing the

percentage of point matchings between the two views. It is important to note that,

due to the big amount of 3D points of the surfaces, usually some data reduction is

applied. In this approach only the 10% of the total number of points in the first view

are considered to compute the residual. These points are selected randomly, therefore

they are expected to represent the whole surface, thus providing similar residual at the

same time the computational cost is decreased. Finally, a variation of the ICP fine

registration called Levenberg-Marquartdt-ICP (Fitzgibbon [115]) is applied in order to

refine the registration provided by the proposed global registration.

6.4 Results

The proposed registration algorithm has been tested for a set of images corresponding

to a given database of closed 3D objects, as well as for reconstructed 3D views from

SL.

6.4.1 Results using a closed-form synthetic object

First, the proposed detector and descriptor have been tested on a closed 3D object, the

Stanford Bunny model (available at http://graphics.stanford.edu/data/3Dscanrep/ ),

for which 24 partial views are provided. The results are shown in Fig. 6.4. On the top

are represented all the keypoints of views 1 and 2. On the middle, the corresponding

n×m similarity matrix A and its binarized version with only 6 candidates for every row.

On the bottom, the considered 3D keypoint (on the left) and their corresponding L = 6

nearest neighbors in the feature space of view 2 (on the right). As can be observed, the

selected keypoint in image 1 is considered as a potential matching in image 2, provided

the preliminary adjacency matrix. Afterwards, the matching algorithm is applied to

compute the optimal rigid transform that aligns the views. The results of registration

are shown in Fig. 6.5.

As can be observed, the global registration provides optimal alignment of the two

views, without visual matching errors. Regarding the quantitative results, the residual

obtained in the previous registration is res = 45.6434. This values corresponds to the

sum of distances between matches pair of points, after applying the rigid transforma-

tion. The percentage of matched points from the first view is perc = 0.9589, for a total
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Figure 6.4: Results of the proposed detection + description. Top: input image view. Mid-
dle: similarity and binarized similarity matrices. Bottom: potential keypoint candidates
for matching.
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Figure 6.5: Registration results for the object bunny.
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of nv = 2920 points in the first view. Therefore, the average distance between two

matched points after registration is (eq.(6.10)):

distav =
res

perc · nv
(6.10)

This gives a value of distav = 0.0163. Considering that the average Euclidean distance

between neighboring points in the mesh is d = 1.7464, we can say that the rigid

registration is optimal, being the error lower than the 1% of the distances in the mesh.

6.4.2 Results of registration of SL partial views

Finally, the complete registration pipeline was applied to a set of partial views ex-

tracted from the previous SL acquisition technique. A ceramic sculpture of a horse

was reconstructed from two non-centered views taken at a distance of around 80cm

from the camera. Registration results can be observed in Fig. 6.6. We can see that the

registration did not work properly. This is mainly caused by the effect of borders of

the reconstructed shape, rather than the outliers present within the 3D cloud of points.

Therefore, the next step will be to include some constraint in the detection step that

avoid the selection of these positions as keypoints. This would allow the description

of only inner positions, permitting a comparable representation of the two views for

matching.

6.5 Conclusions

In this chapter we face the problem of 3D registration of partial views from SL. For

the use in SL, where the initial relative position of the different views is unknown, a

global registering prior to perform any fine registration algorithm reveals necessary.

Regarding the global registration techniques, we first studied the state of the art, fo-

cusing on the so-called 4PCS algorithm developed by Aiger et al. [112]. However, in

order to increase the robustness of the registration against errors in the recovered 3D

points (an usual problem in SL when dealing with discontinuities or occluded regions),

we proposed a new pipeline for global registration. Three main steps are pursued:

detection, description and matching. Regarding the detection step, a multi-scale DoG

was applied to the surface, in order to obtain a saliency measure for every 3D point.

Afterwards, we choose the points having a greater value of saliency as the keypoints

for that surface. Afterwards, a descriptor is computed to every keypoint. We imple-

mented a mesh HOG descriptor with adapted weighting. This weight is adapted to
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Figure 6.6: Registration results for the two partial views of a ceramic sculpture of a horse.
On the top, partial views and selected keypoints (red points). On the bottom, results of
registration. The green circle marks the first view, while the red circle marks the second
view.
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the saliency of the single points corresponding to the selected sub-region around ev-

ery point. The weighted meshHOG provides information about the structure of the

mesh, and is a good descriptor of the keypoint. Finally, a matching procedure based

on Euclidean distance was applied. This algorithm calculates the optimal rigid motion

between every pair of triplets from the two views. The best transformation is chosen

regarding the residual value, given as the sum of Euclidean distances between every pair

of matched 3D points. The proposed algorithm was first tested on a closed object (a

bunny figure), showing the potential keypoints for matching, the optimal performance

of the proposed descriptor and the final global registration. The complete pipeline was

tested also under real 3D reconstruction. A ceramic sculpture of a horse was used for

registering. However, due to the selection of keypoints at the corner of the partial

views, the registration failed. This is an issue to amend as future work.
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Conclusions

In this final chapter a summary of the thesis and its main contributions are presented.

Future directions connected to this work are also pointed out. The chapter ends with a

summary of publications and remarks related to this thesis.

7.1 Discussion

In this thesis the problem of dense 3D reconstruction using one-shot structured light

has been discussed. First, chapter 1 introduces the concepts of stereo-vision and

structured light, and its importance in computer vision. Moreover, a statement with

the objectives of the thesis is presented, as well as the context where it has been de-

veloped. In chapter 2, an up-to-date review and a new classification of the different

techniques existing in structured light have been proposed. The classification was done

regarding the sparse or dense 3D reconstruction of the imaged scene. Among them,

a sub-classification regarding the spatial, frequency or time multiplexing strategy was

done. A selection and implementation of representative techniques of every group has

been done, and qualitative and quantitative comparisons have been performed extract-

ing advantages and drawbacks of each technique. The results show the good perfor-

mance of shifting approaches, which obtain dense reconstruction and excellent accuracy.

However, they are only valid for static scenarios. Among one-shot techniques able to

work in moving scenarios, frequency multiplexing methods achieve dense reconstruc-

tion. However, they present high sensitivity to non linearities of the camera reducing

the accuracy and sensitivity to details in the surface and can fail under presence of

big slopes. Spatial multiplexing can also work in moving scenarios. Among them, De

Bruijn codes provides the best results in terms of accuracy, at the expense of having
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sparse reconstruction.

Chapter 3 proposes a first approach of 3D dense reconstruction using one-shot

projection. The principle is based on frequency analysis and color multiplexing of

three different frequency channels. As was extracted from Chapter 2, in frequency

based techniques the periodicity of the pattern imposes the assumption of smooth

surfaces, as the presence of slopes would yield to some acquisition errors. This problem

is overcome in Multiple Phase Shifting approaches, which create an absolute phase map

from two relative phase maps, according to the ideas proposed by [54]. The proposed

algorithm performs a multiplexing in color space of the three different fringe patterns.

The phase of these patterns is extracted using wavelet decomposition combined with

a cost function algorithm. An absolute coding based algorithm merges the individual

relative phase maps to create the absolute phase map and extract the depth deviation.

Finally, a consistence mapping is pursued in order to avoid errors created by a bad

detection of slopes and error propagation between pixels during the unwrapping step.

The simulations performed optimally using the standard benchmark without and with

added noise. However, some problems were found in the experimental results. The

algorithm fails under presence of slopes, due to the effect of the dyadic net intrinsic to

the wavelet implementation, which does not consider little frequency variations when

setting the window size. To solve this problem, an algorithm for the adaptive selection of

the best analysis mother signal, in terms of frequency and shape, is proposed in chapter

4. First, a comparative study of WT and WFT was done. The results show how WFT

with automatic window size detection performs better compared to the traditional WT

technique. This is mainly due to the nature of the dyadic net used in WT, which scales

the window by a factor of 2j between adjacent size values. Afterwards, an automatic

window width selection algorithm for WFT was proposed, which performs a fine tune

of the window size between a set of values around the optimal size corresponding to the

global frequency average. Some simulated and real results have been obtained, proving

that the Morlet and the Paul wavelets show better performance than the Shannon and

the Spline wavelets, thanks to the greater similarity of its signal shape to the sinusoidal

nature of the fringe pattern. A proposal of a novel one-shot dense reconstruction

algorithm is presented in chapter 5. The idea is to combine the accuracy of DeBruijn

spatial multiplexing with the density of frequency multiplexing in fringe projection. The

proposal was implemented and compared both quantitatively and qualitatively with

some representative techniques of Structured Light. Simulation results and empirical

quantitative results showed the good performance of the proposed technique in terms

of resistance to noise and accuracy of a reconstructed plane. The proposed method
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was only overcome by the time multiplexing shifting approach proposed by Pribanic

et al. [9], which is only valid for static scenarios. Among one-shot techniques, our

proposed method achieves the best results in terms of accuracy, comparable with other

DeBruijn-based spatial coding. Moreover, dense reconstruction and absolute coding is

assured with the proposed technique. Besides, other frequency multiplexing methods

provide dense reconstruction for moving scenarios, but present high sensitivity to non-

linearities of the camera reducing the accuracy and sensitivity to details in the surface,

and can fail under presence of big slopes. Finally, 3D reconstruction of some real objects

was pursed to show the effectiveness of the algorithm in terms of density and perceived

quality of the one-shot reconstruction.

Most of the works presented in SL during last years have been concerned into

frequency multiplexing approaches, trying to increase the robustness in the decoding

step and the resistance to slopes under the constraint of moving scenarios ([59], [68]).

Under this scenario, the proposal made in this work of merging DeBruijn and frequency-

based one-shot patterns achieves a dense reconstruction with the robustness in the

decoding step provided by frequency analysis, jointly with the accuracy given by spatial

DeBruijn-based patterns. This combination gives us a one-shot absolute dense pattern

with the highest accuracy achievable for moving scenarios.

The last chapter was about registration of 3D reconstruction obtained from sin-

gle captures. This is a complementary step in SL, which becomes necessary when

reconstructing large surfaces where the required level of detail imposes a careful re-

construction of every region. First, the differences between global registering and fine

registering is explained, and the pros and cons are pointed out. Afterwards, an avail-

able software for registration called 4PCS has been tested, showing that registration is

possible with the output provided by the proposed algorithm. Moreover, the chapter

explains a new registration algorithm that is being developed currently. This is a global

registration pipeline, were the matching is done using some saliency map and matching

some feature descriptors. Some work has been done in the development and compar-

ison of different feature descriptor algorithm, in order to select the most suitable for

registration in SL.

Finally, some appendix are provide to clarify specific parts of the proposed algo-

rithms. Appendix A presents a new algorithm for geometric calibration of the projector-

camera system, based on a plane-based calibration structured light projector model.

The proposed method makes use of the Bouguet’s camera calibration toolbox which

implements Zhang’s calibration [116]. This technique has been also used to implement

the projector calibration, as in the plane structured light model the projector is re-
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garded as the inverse of a camera. Linear and non-linear distortion is considered for

the calibration of both devices. Although we used the planar target and the nonlinear

projector model, the idea is also suitable for 3-D reference objects and other projector

models. Some simulations and real calibration experiments were pursued, proving that

the proposed technique has similar precision for the projector calibration to the one

obtained for camera calibration using DeBouguet algorithm. Afterwards, appendix B

presents a method for color calibration and another for RGB channel misalignment

calibration. Both techniques are required for the colored pattern projection that are

presented afterwards as proposed 3D reconstruction algorithm. Appendix C explains

the principle of the Remainder theorem used for the unwrapping algorithm employed in

the first SL pattern proposal. Finally, appendix D gives some mathematical explanation

of the dynamic programming algorithm employed in DeBruijn pattern decoding.
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7.2 Contributions

The main contributions of this thesis are:

• A new state of the art and a new classification of the SL approaches present in the

literature. A main classification is done regarding the sparse or dense 3D retrieval

obtained. Afterwards, a low level classification is done regarding the spatial, time

or frequency multiplexing of the technique.

• A one-shot dense reconstruction algorithm based on fringe pattern and the princi-

ple of the remainder theorem. This method obtains optimal results for 3D smooth

surfaces.

• A study of the best frequency-based analysis for fringe pattern.

• A new algorithm for the automatic selection of the window size in WFT.

• A one-shot pattern projection technique for 3D dense reconstruction. The al-

gorithm uses WFT and DeBruijn analysis to extract the 3D information from

a colored fringe pattern. The obtained accuracy is similar to traditional sparse

DeBruijn approaches.

• A new pipeline for 3D alignment of partial views obtained from SL.
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7.3 Publications

The work developed in this thesis led to the following publications.

7.3.1 Journals

1. J. Salvi, S. Fernandez, T. Pribanic, ”A sate of the art in structured light patterns

for surface profilometry”, Pattern Recognition, 34, pp 2666-2680, 2010.

2. S. Fernandez, M. Gdeisat, J. Salvi, D. Burton, ”Automatic window size selec-

tion in windowed Fourier Transform for 3D reconstruction using adapted mother

wavelets profilometry”, Optics Communication, 284(12), pp 2797-2807, 2011.

3. S. Fernandez and J. Salvi. One-shot absolute pattern for dense reconstruction

using DeBruijn coding and WFT. Submitted to Image and Vision Computing.

4. S. Fernandez, D. Fofi, J. Salvi and J. Batlle. Projector-camera calibration using a

planar-based model. Submitted to International Journal of Pattern Recognition

and Artificial Intelligence.

7.3.2 Conferences

1. S. Fernandez, J. Salvi and T. Pribanic. Absolute Phase Mapping for One-

shot Dense Pattern Projection. PROCAMS’2010, IEEE Workshop on Projector-

Camera Systems, in conjunction with IEEE International Conference on Com-

puter Vision and Pattern Recognition, Article number 5543483, Pages 64-71, San

Francisco (USA) June 18, 2010.

2. S. Fernandez, J. Forest and J. Salvi. Active stereo-matching for one-shot dense

reconstruction. International Conference on Pattern Recognition Applications

and Methods, Faro (Portugal) 6th/8th February 2012.

3. S. Fernandez, J. Salvi. Planar-based Camera-Projector Calibration. IEEE 7th

International Symposium on Image and Signal Processing and Analysis (ISPA

2011), Dubrovnik (Croatia), September 4-6, 2011.

4. S. Fernandez, J. Salvi. A novel structured light method for one-shot dense re-

construction. IEEE International Conference on Image Processing (ICIP 2012).

Coronado Spring, Florida (USA), September 30th - October 3th 2012.
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7.3.3 Book chapters

1. S. Fernandez and J. Salvi, 3D reconstruction strategies in Structured Light, in

Handbook of 3D machine vision: Optical metrology and imaging, compiled by

Song Zhang. In press.

These publications, as well as some code, are available at the website:

http://www.sergiofn.tk
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7.4 Future work

There are three main trends that must be studied as future work steps.

• The first step is to continue working on the registration problem. As was exposed

in this thesis, many problems arise on the determination of the best algorithm for

registration of 3D cloud of points. A first step refers to the selection of the best

saliency points. As was observed in the experimental results, some effort must

be put to avoid the selection of border positions as keypoints, as they do not

represent the shape of the 3D object. Furthermore, the selection is done based on

a DoG which is applied at N multidimensional filtering dimensions. The selection

of the six scales of filtering is fixed, corresponding to standard deviation of values

σi ε 1γ, 2γ, 3γ, 4γ, 5γ, 6γ where γ amounts to 0.1% of the main diagonal. It would

be interesting to perform an adaptive selection of these scales, which may be

tuned to the shape of the surface. Moreover, the matching algorithm is nowadays

working under Euclidean distance. It would be interesting to try other distance

measure algorithm and compare them to see which one represents better the

dissimilarity between surfaces. Furthermore, the optimal number of candidates

for the triplets could be also studied.

• Regarding the 3D reconstruction and its performance under different scenarios,

an important field to work on refers to the reconstruction of colored surfaces.

This represents the main problem for the use of color patterns in structured light.

As was shown in the experimental results of Chapter 5, the color of the surface

get mixed with the colors used in the pattern. The Hue and the Illumination

channels gets corrupted and color of the fringes is not well retrieved. This causes

that the reconstruction present big holes on some regions of the plane, where the

Illumination channel or the Hue channel are corrupted. Therefore, an interesting

trend for research would be to develop a preprocessing algorithm able to minimize

the effects of colored surface in the Hue and the Illumination channels, or retrieve

more information from the damaged pattern.

• Another future step is to optimize the processing time and code the proposed

algorithm into C++ or any other language that could suit on board computers of

any 3D retrieval system. This would accelerate the post-processing step required

until now, thus enabling to employ the proposed algorithm in real-time applica-

tions, which represent an interesting trend within the reconstruction of moving

surfaces.
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Appendix A

Geometric camera-projector

calibration

A.1 Classical calibration systems

Camera projector calibration is constituted by two different steps: the camera calibra-

tion and the projector calibration. Camera calibration has been widely studied in the

literature [116], [117], [118], [119]. Some contributions can also be found for projector

calibration, which are usually grouped regarding three different parameters. The first

one is the calibration object, which can be in 2D or 3D. 2D reference-object-based cal-

ibration includes methods having a planar pattern where a known image is projected

by the projector and imaged by the camera. Instead, 3D reference-object-based cali-

bration includes one or more than one fixed or mobile planes [120], [121], [122], or 3D

calibration targets with known geometry [123]. The second parameter is the estima-

tion technique, which can be Least Squares (LS) in both 2D and 3D space, and bundle

adjustment. 2D LS estimation works with the projector linear method, therefore it is

not possible to model non-linear distortion [124], [125]. A solution to this problem is

constituted by the 3D LS algorithms, which work in the 3D space [123], [126], [127] and

estimates both linear and non-linear parameters. However, 2D LS is easier to imple-

ment and faster than the 3D LS estimation techniques. Finally, bundle adjust apply a

post-processing to a 2D linear estimation technique in order to minimize the cost func-

tion associated to the reprojection error. The last parameter refers to the projector

model, and three models are found. In the line model the projector is described as a

laser spot. Therefore, six parameters are considered (three for the center and three for

the direction). The light-stripe model uses a plane to describe the projector. There-
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fore the center coordinate and the plane direction are described. Finally, in the plane

structured light technique the projector is regarded as the inverse of a camera, having

the same parameters than the camera model. This is the model that is employed more

often, as all the theory used for camera calibration can be adapted conveniently.

A.2 A novel proposal for projector calibration

The proposed projector calibration algorithm is based on the plane structured light

model, where the projector is regarded as the inverse of a pinhole camera. However, an

important constraint must be considered. In contrast with the calibration of a camera,

there is a problem associated with the nature of the projector that complicates the

calibration: the 3D points corresponding to the 2D projected pattern are not imaged

by the projector (as it occurs in the camera calibration). Therefore, finding the corre-

spondences between the 2D projected pattern and the 3D points implies the use of a

calibrated camera to find the 3D position of the projected pattern. Using the geometry

provided by the camera calibration it is possible to perform a projector calibration

based on the plane structured light model. Following this idea, the extrinsic parame-

ters of the projector are calculating placing the world coordinates at the camera center,

therefore the computation of the transformation matrix is straightforward. That is,

being the camera intrinsic parameters defined as in eq.(A.1), eq.(A.2), and being Kc,

Rc, Kp and Rp the corresponding intrinsic and extrinsic parameters of the camera and

the projector, respectively, we have:

Rc =

 1 0 0

0 1 0

0 0 1

 (A.1)

Therefore

Pc = Kc ·Rc = Kc (A.2)

The transformation matrix P from the camera to the projector becomes (eq.(A.3)):

P = Pp · Pc = Kp ·Rp · inv(Kc) (A.3)

The analytical inversion of radial and tangential distortion does not exist, as is not a

linear distortion. However, an approximation can be done using an iterative method. In

every iteration, the undistortion algorithm estimates the undistorted normalized point
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m̃n as in (eq.(A.4)):

m̃n = m̃d − fn(md, δ)

m̃d = m̃n

(A.4)

The previous iteration is run until the update of m̃n becomes lower than a set threshold.

A flow chart showing the different steps required for calibrating the projector can be

seen in Fig. A.1. The key part of the proposed algorithm is the extraction of the 2D

to 3D correspondences of the projector, from which the calibration can be pursued.

Figure A.1: Flow chart of the different steps in the calibration process.
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Figure A.2: Checkerboard images for camera calibration.

A.2.1 Camera calibration

The camera calibration algorithm follows the procedure proposed by Zhang [128] (an

implementation of this method was done by Jean-Yves Bouguet [116] and is available for

Matlab). Using this technique, a flat black and white checkerboard is placed at different

positions on the 3D scene and imaged by the camera (see Fig. A.2). A minimum of two

different images are necessary to extract the extrinsic parameters of the camera with

respect to a chosen plane (the first imaged checkerboard). The intrinsic parameters

need more orientations of the checkerboard to be computed (a total of n = 14 different

poses are imaged in the experiments). The algorithm uses the extracted corner points

of the checkerboard pattern to compute a projective transformation between the image

points for the n different images, up to a scale factor. Afterwards, the camera intrinsic

and extrinsic parameters are recovered using a closed-form solution, while the sixth-

order radial distortion terms are recovered within a linear least-squares solution. A final

nonlinear minimization of the reprojection error, solved using a Levenberg-Marquardt

method, refines all the recovered parameters. At this stage, it is important to say that

only the intrinsic parameters will be used, as we are only interested in the extrinsic

parameters of the projector-camera pair.

A.2.2 Projection of a checkerboard onto a planar surface

The next step is the projection of a checkerboard using a Digital Light Projector. This

pattern is projected onto a planar surface, placed at different positions on the 3D scene
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Figure A.3: Planar surface (left image), and two different positions of the projected
checkerboard (middle and right images).

and imaged by the camera. The border of the planar surface contains some marked

points at relative fixed distances one from another, as can be seen in Fig. A.3.

A total of m = 8 ∼ 16 different positions are imaged, in order to have enough

variability in the 3D space.

A.2.3 Extract 3D coordinates of the marked points

In this step the 3D coordinates of some marked points are extracted for every image,

so as to obtain the 3D coordinates of the planar surface. From the 2D positions of

these points on the image scene, we compute the 3D rays passing through the camera

center and crossing the 3D points (camera calibration is employed to this end). As

we know the real 3D distances between the marked points, it is possible to extract

their 3D coordinates from the 3D rays. It is important to note that the marked points

must be spread all around the planar surface, in order to minimize the effect of radial

and tangential distortion of the camera (which might have some error in the estimated

values). Sub-pixel accuracy is considered for the detection of the 2D positions on the

image. In practice, a total of l = 8 marked points equally distributed all around the

planar surface give enough information to compute the homography.

A.2.4 Compute homography

Having the 2D to 3D correspondences of the marked positions in the planar surface,

for every image (with respect to the camera frame), the next step is to compute the

homography matrix that passes from 2D to 3D coordinates. A proper algorithm con-

sidering both linear and non-linear distortion of the camera is applied. It is important

to mention that the 2D points must be normalized first; that is, must be expressed in

millimeters instead of pixel coordinates.
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Figure A.4: Rays coming from the camera and going to the grid corners of the projected
pattern.

A.2.5 Compute 3D points of the projected pattern

Next step is the extraction of the 2D corner coordinates of the projected checkerboard

(with respect to the camera frame). A grid corner extraction algorithm with subpixel

accuracy is applied. Afterwards, we use the homography to calculate the corresponding

3D coordinates. This is expressed in eq.(A.5) and Figs. A.4 and A.5. sX

sY

sZ

 = H ·

 x

y

1

 (A.5)

This is done for all the corners on the image and for different images so as to obtain a

big number of non-coplanar 3D points for the calibration.

A.2.6 Calibrate the projector

The last step is to apply Zhangs method to the 2D to 3D correspondences for all the
images, obtaining the optimized intrinsic and extrinsic parameters for the projector-
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O
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Figure A.5: Corners detection on the projected grid pattern.

camera pair. It is important to note that, as the projector works inversely to the
camera, its radial and tangencial distortion parameters must be obtained inversely to
those for the camera calibration. Therefore, the undistortion algorithm is applied as in
eq.(A.6):

mn = md + fd(md, δ),

fd(md, δ) = (k1r
2
d + k2r

4
d)md +

∣∣∣∣∣ 2p1udvd + p2(r
2
d + 2u2

d)

p1(r
2
d + 2v2d) + 2p2udvd

∣∣∣∣∣
r2d = u2

d + v2d.

(A.6)

A.3 Testing the proposed calibration

The proposed algorithm was tested under real conditions. The setup used for the

tests was composed of a DLP video projector (Epson EMP-400W) with a resolution of

1024 × 768 pixels, and a digital camera (Sony 3CCD) digitizing images at 768 × 576

pixels. The baseline between camera and projector was about 0.5 m. The setup can be

observed in Fig. A.6. The calibration pattern is composed of a painted checkerboard for

camera calibration (Fig. A.2) placed on a 40×25 cm ceramic planar surface, and a blank

metallic planar surface of dimensions 60×100 cm for the projection of the checkerboard

(Fig. A.3). Both surfaces have a flatness deviation error lower than 0.5 mm. The
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Figure A.6: Projector-camera setup used to test the proposed algorithm.

implemented toolbox can be downloaded at http://eia.udg.edu/˜sergiofn/proj calib.zip.

As example, the algorithm was run with 14 images for camera calibration and 14 images

for projector calibration. The calibration results for the intrinsic and the extrinsic

parameters are shown in table. A.1 and table. A.2, respectively. Furthermore, extrinsic

geometry results can be observed in Fig. A.7.

As can be observed, the focal length presents an uncertainty error three order of magni-

tude lower than the computed value, which is comparable to the accuracy of the camera

calibration. The non-linear distortion parameters present relatively higher error uncer-

tainty than the focal length, but still lower than the provided values. Regarding the

extrinsic parameters, uncertainty is much lower than the computed values for both ro-

tation and translation. Moreover, a visual congruence can be observed between Fig. A.6

and Fig. A.7. Another way to analyze the error is to use the reprojection error func-

tions available in the Matlab code for camera calibration. This tool computes the

reprojection error of the extracted checkerboard points, for every image. Using these

functions with the data of projector-camera calibration, we obtained the following error

map shown in Fig. A.8. The method showed a maximum pixel error of around 2 pixels

over the calibration error of the camera, which lead to a total reprojection error on

the projector-camera setup of around 3 pixels. This is a reasonable value to work with
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Table A.1: Calibration results for the intrinsic parameters.

Parameter Value (pixel) Uncertainty (pixel)

αx 906.75281 4.46296
αy 917.71655 6.53165
u0 524.99369 0.00000
v0 825.16654 0.00000
ω 0.00000 0.00000
k1 0.00671 0.01926
k2 0.00135 0.01354
p1 -0.02263 0.00481
p2 0.00743 0.00101

Table A.2: Calibration results for the extrinsic parameters.

Parameter Value (mm) Uncertainty (mm)

r1,1 1.0000 0.0000
r1,2 -0.0003 0.0007
r1,3 -0.0037 0.0015
r2,1 0.0014 0.0007
r2,2 0.9545 0.0000
r2,3 0.2983 0.0026
r3,1 0.0034 0.0015
r3,2 -0.2983 0.0026
r3,3 0.9545 0.0000
t1,1 46.7205 1.2171
t1,2 -281.1255 2.0332
t1,3 -566.1478 2.1457
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Figure A.7: Projector-camera calibration results for the given setup (extrinsic parame-
ters).
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Figure A.8: Reprojection error of the projector calibration algorithm.

structured light systems.
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Appendix B

Color calibration and RGB

channel alignment

This appendix sets the principles of color calibration and RGB channel alignment,

necessary when working with color patterns.

B.1 Color calibration

Ideally, any discrete RGB instruction c with the same level of intensity i should produce

the projection of light with the same intensity I. Similarly, a perfect camera should

be able to digitize any incident light of wavelength λ and a certain intensity I to a

discrete RGB triplet C with intensity i. In real conditions, however, the mapping from

the RGB projection instruction c to the imaged RGB triplet C is a strongly non-linear

process.

Fig. B.1 shows the actual projected and captured color values for red, green and

blue, respectively, for a given pixel on the image. As can be observed, crosstalk effects

and loss of intensity are present in the recovered pixel intensities. Experimentally it

can be observed that usually the strongest crosstalk appears when projecting green,

since it is not only detected by the green channel of the camera but also by the red

one. In order to minimize the color crosstalk, a color calibration becomes necessary.

Several radiometric models of a structured light system composed of a DLP and a

color camera can be found in the literature ([6], [2], [14]). The most exhaustive color

calibration technique was proposed by Caspi et al. [14], who developed a precise color

calibration algorithm based on linearizing the projector-camera matrix and the surface

reflectance matrix, specific for every scene point projected into a camera pixel. The
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Figure B.1: Received color intensities for projected increasing values of Red, Green and
Blue, respectively.

model presented by Caspi et al. is described in eq. B.2:

Figure B.2: Projector-camera model for color calibration proposed by Caspi et al. [14].

where c is the RGB projection instruction sent to the projector and C the corresponding

RGB triplet digitized by the camera. The consign c is actually modified by the non-

linear behavior of the projector which actually projects a color denoted by P . K is a

3x3 matrix modeling the albedo of the illuminated object, and A is the color crosstalk

matrix, while C0 is the RGB tripled digitized by the camera when there is only ambient

lighting. Therefore, A expresses how the RGB channels of the camera are affected by

the RGB channels of the projector.

A simpler version of this method has been performed in our work, considering that
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only three basic colors (red, green and blue) are projected and recovered by the color

camera. The proposed algorithm uses least squares to linearize the combination matrix

corresponding to the projector-camera pair and the surface reflectance matrices, in

terms of response to color intensity, for each pixel in the received image and each color

channel (red, green and blue). For every pixel and every color channel, the projected

intensity is increased linearly and the corresponding captured color is stored. The

stored color intensities must be compensated by the transformation matrix. A linear

regression is computed that yields a matrix estimation of the projected color values

for every received value. Having the set of three received color values R,G,B the

estimated projected values R,G,B are given by eq.(B.1). It is important to note that

this calibration has been done under the assumption that all objects have a reflectance

similar to the flat white lambertian plane used for calibration. R0

G0

B0

 =

 arr arg arb

agr agg agb

abr abg abb




R

G

B

 (B.1)

B.2 RGB channel alignment

Ideally, color cameras should perceive an intensity peak of white light at the same

image coordinates in the three RGB channels. In practice there is an offset between

the subpixel location of the intensity peaks in every RGB channel. This phenomenon

is known as RGB channel misalignment. It is caused by spatial misalignments in the

different CCD cells perceiving the red, green and blue light respectively. Although the

order of these misalignments is usually below or around one pixel, it can produce higher

order errors in 3D reconstruction. Furthermore, also DLP projectors suffer from this

misalignment. Some authors propose to reduce the camera RGB channel misalignment

by viewing an object providing reference points (like a checkerboard) and locating such

points in the three channels separately. Afterwards, an homography can be calculated

relating the position of the points in the red channel with respect to the ones in the

green channel, and another homography doing the same between the points in the blue

and the green channel. These homographies are then used to reduce the misalignment

on the images [Zhang et al., 2002]. Nevertheless, this method totally ignores the RGB

misalignment in the LCD projector.

We propose to minimize the RGB misalignment observed in the camera images

taking into account both the camera and the projector at the same time, in the same
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way we did for color calibration. Our algorithm projects a checkerboard black and

white pattern, which is imaged by the camera. For every color channel, the corners

are detected with subpixel accuracy using Harris corner detector [129]. Afterwards, the

relative position between every point in the red channel and their two corresponding

points in the blue and in the green channels is extracted. We have observed that the

relative positions of the channels coincide in all the checkerboard positions and that the

relative offsets are very similar. That is why we finally store two unique offsets between

the central channel and the other two. In our experimental setup we have found that

on the images the central channel is the blue while the green and red channels have a

little displacement to the left and to the right, respectively. These offsets have been

named Hb
g and Hb

r , respectively. In order to reduce the global misalignment observed in

an image it is necessary to apply the offset Hb
g to the green channel and the offset Hb

r to

the red one and then combine the transformed channels with the original blue channel

in order to obtained the rectified image. Note that the intensity of every transformed

pixel in the new channels must be interpolated from the neighboring pixels in the

corresponding source channel since the offsets are at sub-pixel precision.
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Appendix C

Application of the Remainder

Theorem to the use in Multiple

Phase Shifting pattern projection

This information is extracted from the work of Pribanic et al. [9].

Two integer numbers ΦABS and φR are in congruence if they give the same remain-

der when they are divided by a given number λ. Hence, ΦABS and φR are said to be

congruent modulo λ, as depicted in eq. C.1, eq. C.2:

ΦABS ≡ φR(modλ) (C.1)

ΦABS ≡ φR1(modλ1)

ΦABS ≡ φR2(modλ2)
...

ΦABS ≡ φRk(modλk)

(C.2)

where ΦABS and φRi are integers and λi are positive integers but also relative primes.

A solution to eq. C.1 is provided by the famous Chinese remainder theorem [54] depicted

in:

ΦABS = Σk
i=1φRi · ei(modλ1 · λ2 · ...λk) (C.3)
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where the coefficients ei can be computed as follows:

ei ≡ 1(modλi)

ei ≡ 0(modλj)i 6= j
(C.4)

Hence, some ei is a number which divided by the corresponding λi yields the re-

mainder 1.

Given two arbitrary fringe pattern where their are relative prime numbers between

the, the following condition holds:

ΦABS = k1 · λ1 + φR1 = k2 · λ2 + φR2 (C.5)

where k1 and k2 are the number of periods typically unknown in practice, but

necessary to reach some corresponding ΦABS unwrapped value given some known φR1

and φR2. Note that both ΦABS and φR1 divided by λ1 give the same remainder, φR1.

Similarly ΦABS and φR2 divided by λ2 give the same remainder, φR2. Hence, we can

set up a system of congruence equations C.2 and find a solution for C.3. Until now

and for simplicity we have assumed integer values for the wrapped phases φR1 and

φR2. Of course, in practice, φR1 and φR2 are real numbers. Usually, the integer part

is considered as an initial guess for computing ΦABS in eq. C.3. Then, ideally, the

fractional parts φFRAC
R1 and φFRAC

R2 of both wrapped phases should be equal. However,

in order to minimize noise influence, in practice, the mean values of both fractional

parts are added to the initially computed ΦABS in order to find the ultimate solution

for the unwrapped phase. The well-known problem in the original G-S method was

that φR1 and φR2 were rounded and then used in eq. C.3.
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Appendix D

Dynamic programming

The information explained in this Annex can be check in the work of Zhang et al. [26].

D.1 Classical dynamic programming

Let Gj;i be the sub-grid defined by [0; j]x[0; i], and φ∗j;i be the optimal path in Gj;i.

Three possible solutions for φ∗j;i can appear. The first one consists of vertex (j; i)

and the optimal path φ∗j−1;i−1 in Gj−1;i−1. The second one is entirely in the sub-grid

Gj−1;i, and the third one is in the subgrid Gj;i−1. In the latter two cases φ∗j;i = φ∗j−1;i

or φ∗j;i = φ∗j;i−1, respectively. Consequently, σ(φ
∗
j;i) may be recursively computed as in

eq. D.1): 

0, if j = 0 or i = 0
σ(φ∗j−1;i−1) + score(qj , ei)

σ(φ∗j−1;i)

σ(φ∗j;i−1)


otherwise

(D.1)

The cost of the optimal solution φ∗ is given by σ(φ∗N ;M ), where φ∗N ;M is computed

by tracking back through the cost matrix computed from eq. D.1.

D.2 Multi-pass dynamic programming

A fundamental limitation of matching algorithms based on dynamic programming (DP)

is the assumption of monotonicity, which is violated in the presence of occlusions. Due

to the occlusion, the order of projected transitions and detected edges is not the same,
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resulting in a non-monotonic path in the grid. The dynamic programming algorithm

therefore fails to find the optimal path; instead, it will identify the optimal monotonic

solution. While this solution could potentially be quite different than the optimal

path, in practice we have seen that it corresponds to a monotonic component of the

optimal solution. In the case of Fig. D.1, DP identifies the sub-path consisting of

(A;B;C;D;E). The rest of the optimal solution, sub-path (F ;G), is itself monotonic

and can be identified by applying dynamic programming on the sub-grid obtained

by removing columns (1; 2; 4; 5; 6; 9), and rows (1; 2; 5; 6; 7; 8) from the original grid.

The same procedure may be repeated until all rows and columns are exhausted. This

procedure, which we call MultiPassDP, is summarized as follows:

MultiPass dynamic programming computes the monotonic components of the op-

timal path in multiple passes, enabling solution of correspondence problems with oc-

clusions that are not possible with traditional dynamic programming. Instead of ex-

hausting the positive monotonic components, path1, in the grid, the number dynamic

programming passes can also be specified by a user, based on prior knowledge of how

many layers of structure the scene contains.
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Figure D.1: On the left, example of the violation of the monotonicity assumption. On
the right, the resulting match grid.
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