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Summary 

i 

Summary 

 

A rapid, accurate and reliable diagnosis is crucial for the identification of a disease, 

in particular in cancer patients, where an early detection can improve patient survival 

outcomes. Cancer continues to be one of the primary causes of death worldwide, with 

cervical cancer being the third most commonly diagnosed and the fourth leading cause 

of cancer death in women. It is well known that persistent infections with high-risk 

human papillomaviruses (HPV) are the primary cause of cervical cancer, as well as 

other types such as anal cancer.  

Electrochemical DNA biosensors have received important attention owing to their 

simplicity, low cost, portability, multiplexing capability and high sensitivity. Moreover, 

their compatibility with microfabrication technologies makes them attractive for DNA 

diagnostics.  

The first objective of the work described in this thesis is the development of an 

electrochemical DNA sensor array for the multiplex detection of high-risk HPV 

sequences (HPV16, 18 and 45) and its application to human clinical samples. A second 

objective is the demonstration of a proof-of-concept of the development of isothermal 

(helicase-dependent amplification) solid-phase amplification methods with 

electrochemical real-time monitoring. 

This thesis is divided in seven chapters. A general introduction covering the 

different topics of the thesis is presented in Chapter 1. Chapters 2 to 4 are related with 

the development of electrochemical DNA sensors for the multiplex detection of HPV 

related exons, while Chapters 5, 6 and 7 comprise the studies carried out for the 

development of methods for the electrochemical monitoring of solid-phase 

amplification. 

In Chapter 2, the proof-of-concept of the electrochemical genosensor array for the 

individual and simultaneous detection of two high-risk human papillomavirus DNA 

sequences, HPV16E7p and HPV45E6 is presented. In this case, optimum conditions 
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ii 

for surface chemistry preparation and detection of hybridised target were evaluated 

using synthetic DNA targets.  

Chapter 3 is focused on a comparative study involving different methods for the 

preparation of single-stranded DNA (ssDNA). In DNA biosensors, thermal 

denaturation (heat and cool) of the dsDNA target is the most widespread technique, 

despite the significant disadvantages it presents. Thus, a comparison in terms of 

ssDNA recovery and reproducibility of the technique with alternative techniques 

including magnetic bead separation and exonuclease digestion was performed. These 

alternative methodologies showed far superior ssDNA recoveries (between 50 - 70% 

of the theoretical maximum ssDNA) as compared to the thermal denaturation 

methodology. In particular, for the preparation of ssDNA from clinical samples of 

HPV previously amplified by PCR, streptavidin-coated magnetic beads was selected to 

be optimal. 

Then, in Chapter 4, an extended work based on Chapter 2 and 3, where a new high-

risk HPV target (HPV 45) was included and the analysis of real patient samples was 

performed using real PCR products. An exhaustive study of the cross-reactivity 

between the three target sequences and reporter probes, multiplexed detection of the 

three targets and the reusability and stability of the genosensor array was carried out. 

To evaluate the genosensor performance in a real clinical scenario, samples obtained 

from cervical scrapes were amplified and detected and an excellent correlation was 

obtained with HPV genotyping of the same clinical samples carried out in a hospital 

laboratory. 

Even though electrochemical biosensors provide quantitative detection, the need 

for DNA amplification of clinical samples, and the subsequent generation of ssDNA, 

not only increases the total assay time, but different yields of ssDNA are obtained 

dependent on, for example, GC content, amplicon length, which can extensively 

complicate true quantitation for medium-high multiplexing. Electrochemical 

monitoring of solid-phase immobilised real time amplification would obviate the need 

for the generation of ssDNA, and asides from facilitating a more reliable and accurate 
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iii 

quantitation. Multiplex detection could be easily achieved using an electrochemical 

array. 

For the development of electrode immobilised real-time amplification, the choice 

of a stable surface chemistry is essential as repeated thermal cycles will be 

implemented. Chapter 5 details an evaluation of the thermal stability of gold surfaces 

modified with mono- and dithiol molecules, and diazonium salts with one and two 

diazo- groups. Electrochemical techniques were explored to assess the influence of 

temperature on the formed layers, indicating that diazonium salt derived layers are 

thermally more stable at significantly higher temperatures than alkanethiol SAMs, 

which start to desorb from the surface at temperatures above 65ºC. Furthermore, in 

order to test the applicability of these thermally exposed surfaces, a complete sandwich 

assay was built for the detection of human papillomavirus DNA sequences on 

electrodes modified with the dithiol and diazonium salt with two diazo-groups. 

Based on the superior thermal stability of the diazonium with two diazo-groups 

grafted on gold surfaces, Chapter 6 focuses on the synthesis and characterisation of the 

electrografting of 3,5-(4-diazophenoxy)benzoic acid. Characterisation of the diazonium 

salt was performed using nuclear magnetic resonance (NMR) and infrared 

spectroscopy (IR), whereas atomic force microscopy (AFM) and X-ray photoelectron 

spectroscopy (XPS) were employed for the characterisation of its deposition on gold 

surfaces. 

Finally, in Chapter 7 the proof-of-concept of an electrochemical monitoring of 

solid-phase helicase-dependent amplification (HDA) is described. Using HPV45 (79 

bp) as a model sequence to perform this work, forward primer was immobilised on the 

surface of gold electrodes. For electrochemical detection, the electrostatic interaction 

of a ruthenium salt with DNA was used to monitor the progress of HDA. A 

preliminary implementation of this specific DNA amplification and detection 

methodology in a microfluidic system was explored. 

Overall, this work constitutes a complete overview of the development of 

quantitative electrochemical detection of DNA with potential applications in real 

clinical scenarios, from the very fundamental aspects such as the choice of a robust 
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iv 

and reliable surface chemistry, ssDNA generation or DNA amplification methodology 

to the implementation of these key parameters into a microfluidic platform and the 

development of electrochemical real-time solid-phase amplification of DNA.  
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Introduction 

1.1 Biosensors 

According to the International Union of Pure and Applied Chemistry (IUPAC), a 

biosensor “is an integrated receptor-transducer device, which is capable of providing 

selective quantitative or semi-quantitative analytical information using a biological 

recognition element” (Figure 1.1).1  

 
S

en
so

r

 
Figure 1.1. Schematic representation of a biosensor. 

 

The biological sensing material may be a protein such as an enzyme or antibody, a 

nucleic acid, antibody fragment, a whole microbial cell, or even a plant or animal tissue, 
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and biosensors can be divided into catalytic (enzyme) and affinity (antibodies, lectine, 

DNA) sensors. 

 

1.2 DNA biosensors 

Nucleic acid analysis has played an important role in the detection of pathogens 

and genetic diseases. In recent years, its usefulness has been seen in many decentralised 

applications such as point-of-care diagnostics, environmental and food monitoring, 

and the detection of biological warfare agents. 

Conventional DNA hybridisation detecting methods, such as gel electrophoresis or 

Southern blotting, are usually time-consuming and laborious.2 The majority of DNA 

biosensors take advantage of the preferential binding of complementary single-

stranded nucleic-acid sequences, commonly relying on the immobilisation of a single-

stranded nucleic acid probe on a surface to recognise its complementary nucleic acid 

target sequence by hybridisation (Figure 1.2).3 

 

 
Figure 1.2. Schematic representation of the detection of a DNA sequence. 

 

Sensitivity and selectivity are the two crucial aspects in the development of 

hybridisation biosensors. The first one is important to detect concentrations of DNA 

as low as possible and the latter one is necessary for the detection of mutations.4 For 
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the development of a DNA biosensor, there are two key components; the recognition 

layer and transduction of the recognition event. 

Integration of numerous DNA biosensors on the same detection platform results 

in DNA microarrays, commonly referred as DNA chips, gene chips or biochips.5 The 

advantage of DNA microarrays is their capability to simultaneously detect different 

sequences providing an advanced level of information in a shorter time.6 High-density 

arrays consisting of hundreds of thousands of sensors are well established as genetic 

screening tools and typically require long hybridisation times (from 16 – 18 h).7 

Although this technique is extremely valuable in areas such as the identification of 

disease associated genes and whole genome expression analysis, the huge amount of 

time and effort required to carry out the test makes it prohibitively expensive for 

point-of-care diagnostics (POC). Low-density microarrays are focused on the detection 

of narrower sets of genetic sequences, and offer rapid and low-cost tests. Herein, this 

technology can find applications such as the fast screening of a particular disease 

pharmacogenomics, or the control of cancer progression looking at multiplexed 

mRNA patterns.8-9 

 

1.2.1 Hybridisation detection  

The hybridisation of the immobilised probe and its complementary target strand is 

translated into a signal which is proportional to the level of hybridisation, and thus, to 

the amount of target present in the sample. Transduction of the surface hybridisation 

event can be optically measured for example using fluorescence,10-11 Surface Plasmon 

Resonance (SPR),12 colorimetry,13-14 chemiluminescence15 or surface-enhanced Raman 

Scattering spectroscopy (SERS).16 Using mass-sensitive detection quartz crystal 

microbalance sensors17-18 and microcantilever sensors have been reported.19-20 

Electrochemical transducers have received important attention owing to their 

simplicity, compatibility with microfabrication technologies, low cost, portability, 

independence from sample turbidity, multiplexing and high sensitivity.2, 21-23 In 

particular, their features make them attractive for DNA diagnostics.22, 24-27 

Electrochemical transduction of DNA hybridisation can be broadly divided into label-
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free (direct)28-31 and label-based (indirect)32-41 systems. Labelled systems use redox 

indicators to transduce the hybridisation event. This redox compounds can be attached 

to the electrode, to a reporter probe or in the solution. On the other hand, label-free 

systems detect changes in the physical properties of the recognition layer that results in 

a change in the obtained signal.21, 23 

 

1.2.1.1 Labelled methods 

Electroactive hybridisation indicators have been widely exploited for the detection 

of hybridisation. These species bind to ssDNA and to dsDNA with different affinities, 

resulting in a change in electrochemical signal. These indicators can be based on 

cationic metal complexes, such as Co(phen)33+,42-43 Co(bpy)33+ 44 and Ru(bpy)33+,45 and 

non-metal containing compounds, such as Hoechst33258,46 methylene blue (MB),32, 47 

ethidium bromide48 and daunomycine,49 among others. These indicators have specific 

characteristics to assure high sensitivity and selectivity, such as a well-defined, low 

potential voltammetric response.2  

The advantages of this approach include (i) no requirement for modification of 

target DNA; (ii) no additional hybridisation with further labelled DNA reporter probes 

and (iii) relatively rapid detection. However, these electrochemical hybridisation 

indicators are not very sensitive and for the detection of ultralow concentrations of 

nucleic acids, signal amplification is required.50 The use of a labelled reporter probe 

leads to a sandwich type assay, where two hybridisation events took place. The first 

step involves the hybridisation of the ssDNA target with the immobilised probe, 

followed by the hybridisation of a reporter probe, which is a short ssDNA sequence 

bound to the enzyme or nanoparticle.  

One solution is the use of a gold nanoparticle linked seconday reporter probe, 

which effectively “sandwiches” the target DNA. Subsequently, the hybridisation event 

is detected by measuring the electrochemical signal of the gold nanoparticles following 

acidic dissolution,51 direct detection of the gold nanoparticles on the electrode surface 

(based on stripping voltammetry),52-53 using silver deposition on the gold nanoparticle 

in order to enhance the electrochemical signal54-55 or the use of gold nanoparticles as 
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carriers for other electroactive labels.56-57 An alternative approach uses ferrocene as the 

label.58 

Another common method is the use of redox-active enzyme labels, which enhances 

the hybridisation signal. Horse-radish peroxidase (HRP), alkaline phosphatase (AP) 

and glucose oxidase (GOD) are typical enzyme labels. These enzymes are relatively 

stable, cheap and they possess high turnover rates.5 Enzymes are also commercialised 

as avidin or streptavidin conjugates, and can be attached via biotin/streptavidin link to 

the target or reporter probe,59 or enzymes can be directly conjugated to the reporter 

probe.8 

 

1.2.1.2 Label-free methods 

Label-free method detects the hybridisation event through changes in the physical 

properties of the recognition layer that results in a change in the electrical signal.23 One 

approach is based on the natural electroactivity of the nucleotide residues present in 

DNA, first reported by the Palecek group,60 who monitored the electroactivity of 

DNA and RNA by studying the signals of adenine, cytosine and guanine by 

oscillopolarograms of ssDNA, while signals were absent for dsDNA. Among the three 

bases studied, guanine was described as the most redox-active base in DNA. Other 

reports detail the guanine oxidation signal for the detection of hybridisation.61-62 

A second approach is based on changes in properties of the double helix such as 

conductivity, capacitance or impedance, which can be used to monitor hybridisation. 

Impedance has been used for the direct in situ detection of hybridisation between 

immobilised oligomer probes with its complementary target DNA, observing a 

significant shift of the impedance curves along the potential axis.63 Since then, 

impedance has been extensively used for label-free electrochemical detection, including 

femtomolar detection of viral DNA,64 and reagentless picomolar detection of human 

immunodeficiency virus (HIV) associated sequences.65 
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1.2.2 Surface chemistry of electrochemical DNA biosensors 

Probe immobilisation plays an important role in the performance of 

electrochemical (EC) DNA biosensors. The most common probes are single-stranded 

DNA sequences or linear oligonucleotides (18 - 25-mer) although there are other 

literature examples based on alternative probes such as hairpin oligonucleotide 

probes,66 peptide nucleic acids (PNAs)67 or locked nucleic acids (LNAs)68. Short 

probes show high levels of specificity to the hybridisation step, although longer probes 

exhibit poor hybridisation specificity and yields.5  

The electrode surface functionalisation needs an accurate control of the 

immobilisation process to have optimal and reproducible DNA probe density, spacing 

and orientation at the electrode surface. Moreover, it should provide an efficient 

hybridisation of the target DNA sequence, achieving high sensitivity, minimum non-

specific adsorption, and consequently high selectivity of the electrode performance. 

Another important requirement is that the attached layer should not behave as a total 

insulator, thus allowing electron transfer at the electrode surface.5 

Typical DNA probe surface coverage is in the order of 1011-1013 molecules/cm2. It 

is crucial to avoid highly dense surfaces, which can cause charge repulsion between the 

probes and hence repulsion of target DNA.21 It has been demonstrated that the probe 

density can influence the thermodynamics of hybridisation, which, in turn affects the 

selectivity of the biosensor.69  

The most commonly used methods for probe immobilisation include adsorption of 

the oligonucleotides on the surface,70 retention in a polymeric matrix,71 covalent 

attachment on derivatised surfaces72 and self-assembling of thiolated 

oligonucleotides.73 This latter method is currently the most widely used and reported.  

The formation of self-assembled monolayers (SAMs) of thiol, sulphide or 

disulphide containing molecules is one of the most widely used methods for the 

modification of metal surfaces.74-75 The attractiveness of SAMs relies on the facility to 

form a well-defined monolayer.76 In this case, there is no ambiguity in the nature of the 

layer formed (i.e. mono- or multilayer) as the driving force is the interaction of the 

thiol with the gold surface.77  
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Clear advantages can be found for the use of SAMs in DNA sensor formats. SAMs 

are relatively ordered, with a reasonably strong bond and a simple and cost-effective 

method for anchoring DNA probes.27 

The gold-thiol (Au-S) bond energy is 170 kJ/mol, and is thus considered a pseudo-

covalent bond and stabilisation of the monolayer is due to van der Waals forces 

between the neighbouring molecules.78 However, SAM systems have limitations, 

particularly with regards to their stability. The potential window is narrow, typically 

between +1.0 to -1.0 V versus silver/silver chloride, although, this depends on the 

chain length, the functional group and the quality of the gold surface.79 The gold-

thiolate bond is also prone to oxidisation in air media to sulfinates or sulfonates, 

limiting its stability to one to two weeks in air.80 Furthermore, a low thermal stability of 

SAMs on gold, below 100ºC,81-82 have limited their usefulness for certain applications. 

Attempts to increase the stability of SAMs on gold have been made by using multi-

thiol anchored molecules83-84 or via the incorporation of cross-linking groups within 

the alkyl chains.85-88 

The first reports of the use of SAMs for the development of DNA biosensors were 

focused on the formation of a reactive thiol SAM followed by the attachment of 

phosphate, amino or carboxyl-terminated oligonucleotides via carbodiimide coupling.49, 

89-90 In order to decrease the number of steps for probe immobilisation, the majority of 

recent publications have focused on direct immobilisation via the use of thiol modified 

probes.73, 91 The first report describing a two-step approach for DNA immobilisation 

was published in 1997 by Herne and Tarlov,92 where a second thiolated molecule 

known as “diluent” or backfiller (e.g. mercaptohexanol (MCH)) was immobilised on 

the surface following exposure to the thiolated probe (Figure 1.3). As a result, they 

observed that non-specifically adsorbed DNA was largely removed from the surface, 

with the probes adopting an optimal orientation, thus improving the overall 

organisation of the DNA monolayer. This two-step approach is currently still the most 

reported method for the preparation of DNA biosensors. 
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Figure 1.3. DNA immobilisation by two-step approach. First immobilisation of thiol-derivatised probe on the 

surface of the gold electrode and second exposure to backfiller 

 

A more recently reported approach consists of the simultaneous co-immobilisation 

of the thiolated probe with the backfiller. This is an attractive methodology which 

reduces the surface modification to one single step, with a higher control over the final 

probe density.93-95 In a recent report, the performance of surfaces prepared by co-

immobilisation of thiolated ssDNA probe in the presence of mercaptohexanol at 

different ratios was studied via electrochemical impedance spectroscopy.93 It was found 

that the best hybridisation efficiency was achieved at a DNA/MCH ratio of 1:100. 

Higher ratios of thiolated DNA gave lower hybridisation efficiencies, probably due to 

steric hindrance at the electrode surface, whilst lower amounts of probe DNA did not 

improve sensitivity. Furthermore, better results were also obtained by using co-

immobilisation in comparison with the two-step “backfilling” approach. 

An alternative to the classical immobilisation techniques mentioned above is the 

electrochemical reduction of aryl diazonium salts.96 Aromatic diazonium salts, ArN2+X-, 

are well known organic compounds that have been extensively used for years, as for 

example as a basis for the production of dyes, with the preparation of such 

compounds normally involving the treatment of aromatic amines with a source of 

nitrite.  

The first report describing the electrochemistry of diazonium salts in mercury 

electrodes was published in 1958 by Elofson.97 Later, in 1980, Parker and co-workers 

reported the formation of a blocking layer on the surface of metallic electrodes such as 

platinum, gold and mercury, although the nature of this layer was not studied.98 In 
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1992, Pinson and co-workers demonstrated that the electrochemical reduction of 

diazonium salts on carbon surfaces leads to strong chemisorption rather than mere 

physisorption.99 Since then, the grafting of diazonium salts has attracted huge interest 

and grafting and electrografting of diazonium salts have been performed in a large 

number of materials. Although modification of different forms of carbon surfaces 

were initially the most studied,100-107 there are a plethora of reports focused on other 

substrates such as metals,108-116 semi-conductors,117-119 oxides120-121 and polymers.122 

The high degree of functionalisation of these diazonium based systems allow their 

application to a wide variety of areas such as biosensors,77, 123-124 catalysis,125 and 

molecular materials (e.g. nanotubes,126-127 and anti-corrosive agents115, 128) among other 

applications. Their easy preparation, fast reduction and the strong aryl-surface covalent 

bonding observed has garnered much interest in diazonium based systems.116, 129 

The classical synthesis of diazonium salts involves the reaction between an aromatic 

amine and a source of nitrite in an ice-cold aqueous acidic solution, and subsequent 

filtration and washing of the corresponding precipitate. It can also be performed in 

aprotic medium (e.g. acetonitrile (ACN)) in the presence of tert-butyl nitrile.96 An easier 

way is to directly prepare and graft the diazonium salts in situ,104, 109, 130 but this has the 

drawback that the diazonium compound cannot be characterised. However, studies 

demonstrate that the electrografting of either isolated or in-situ prepared diazonium salt 

afford similar results.131 

The modification of substrates with diazonium salts has been carried out in 

aqueous128 or organic130 media and by electrochemical104, 109, 132 or spontaneous 

grafting.128, 133-134  

Reduction of the diazonium cation close to the electrode surface causes elimination 

of N2, yielding an aryl radical which attacks the substrate to form a covalent bond 

(Figure 1.4).116 However, radicals can either attack already grafted aryl groups resulting 

in a multilayer film structure.107, 110 The existence of azo groups within the layers has 

also been observed96 and sonication is required to remove organic compounds 

physisorbed on the surface. 
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Figure 1.4. Schematic representation of the different reactive possibilities during the surface 

modifications by reduction of diazonium salts. (C, carbon; M, metal; P, polymer; SC, semi-conductor 

and O, oxide).  

 

As mentioned above, the resulting organic layers deposited on the surface can have 

variable thicknesses formed, from monolayers to multilayers.96 The thickness/number 

of layers prepared by electrografting not only depends on the exposure time and the 

potential applied but also on the nature of the starting material.110,135 Control of the 

charge consumed during the electrografting step is a convenient way to control the 

thickness of the layer.96 Anariba et al. reported on the layer thickness of four different 

diazonium salts deposited under the same electrografting conditions, obtaining 

different film thicknesses from 1.11 to 2.6 nm and, in all cases, multilayers were 

formed for more extensive electrolysis or at higher diazonium ion concentrations.102 

Addressing the difficulty in the control of deposition parameters, efforts have been 

made to prevent multilayer formation by hindering different positions, meta or para, of 

the diazonium ion, resulting in a markedly slower growth of multilayers when 

substituted in the para position in comparison with a non-hindered analogous 

molecule.136 More thoroughly, a second report studies the position of the different 

bulky substituents and its influence on the reaction of aryl radicals with surfaces, 

demonstrating that grafting efficiency depends on the nature of the amine, the chain 

length of the alkyl substituent and the substitution position on the aromatic ring 

showing that the blockage of the grafting and the formation of either mono- and 

multilayers can be controlled by tuning the diazonium position in the aryl moiety.137 
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Many techniques have been used for the characterisation of the nature of the 

electrografted layers on different surfaces, for example, X-ray photoelectron 

spectroscopy (XPS) is used to study the covalent bond formed between the substrate 

and the organic layer116, 138-139 and Infrared spectroscopy and ToF-SIMS are also used 

for its characterisation.110, 140 On the other hand, film thickness is principally 

investigated by atomic force microscopy (AFM), ellipsometry, infrared spectroscopic 

ellipsometry, X-ray reflectivity and X-ray standing waves.101-102, 141-142 

Aryl diazonium salt derived layers on gold surfaces offer more stable layers than the 

alkanethiol self-assembly method, although there is less control over the molecular 

organisation of the layers.143 Recent computational work indicates comparable aryl-Au 

and thiol-Au bond energies, of a maximum of 133 and 119 kJ/mol respectively,144 and 

experimental work evidences an enhanced stability of diazonium-derived films 

compared with thiol SAMs analogues.113 

In recent years, electrodes functionalised with aryl diazonium salts have been 

reported for a wide range of biosensing applications such as the detection of co-factors, 

proteins, enzymes and DNA among other relevant biomolecules.145-151  

 

1.3 Electrochemical biosensors for DNA diagnostics 

Early detection and accurate diagnosis are crucial for patient survival and successful 

prognosis of disease, particularly for cancer, with electrochemical biosensors offering 

several advantages over other detection methods,152-153 such as high sensitivity and 

specificity. Detection of DNA requires sample manipulation, DNA hybridisation and 

signal readout, and using EC biosensors, DNA recognition step can take place in 

minutes, decreasing the total assay time in comparison to other methodologies. In 

addition, all the steps could be integrated onto portable platforms. An ever increasing 

important aspect in diagnostics is the capability for multiplexed detection. In the post-

genome era, the measurement of a single biomarker particularly for cancer diagnostics 

and theranostics, is no longer sufficient. Due to the fact that most cancers have many 

associated markers, multiplex assays are essential for the monitoring of cancer post-
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therapy and surgery. Thus, EC arrays, that contain multiple electrodes that are 

individually targeted to different specific probes, are of great interest for this purpose.24  

In recent years, many research articles and patents based on biosensors for clinical 

diagnosis have been published, but the commercialisation of biosensors is still far 

behind research.25 Ensafi et al. reported a highly sensitive impedimetric DNA sensor 

based on porphobilinogen deaminase (PBGD) probe to detect specific sequence of 

porphobilinogen deaminase gene, which is highly associated with Chronic lymphocytic 

leukemia (CLL) cancer obtaining a detection limit in the range of picomolar.154  

Bouchet et al. presented a multidetection biosensor developed using the 

electrochemical properties of cylinder-shaped conducting polypyrrole grown on 

miniaturized graphite electrodes for the discrimination between Human 

Immunodeficiency Virus (HIV) and Hepatitis B Virus (HBV),155 reaching a DNA 

detection limit of 100 pM.  

In recent years my research group has been working on the development of sensor 

arrays for the detection of several diseases, such as several types of cancer, cystic 

fibrosis and coeliac disease, and its final application at the POC.8-9, 32, 47, 156-157 

 

1.4 Single-stranded DNA generation 

For analytical applications, including DNA chips, microarrays158-159 and 

genosensors, amongst other applications of molecular biology and biotechnology 

applications, the efficient generation of single-stranded DNA is fundamental. 

In the field of genosensors, the most used methodology for ssDNA generation is 

thermal denaturation commonly termed as heat and cool. This consists in heating the 

dsDNA sample (normally PCR products) to high temperatures (90-95oC) followed by 

instantaneous cooling on ice prior to hybridisation.160-161 The advantages of this 

methodology are its low cost and simplicity, but the method suffers from very low 

efficiency and is highly irreproducible. Several alternative methods have been reported 

for the generation of single stranded DNA, including asymmetric polymerase chain 
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reaction (PCR), urea-polyacrylamide gel electrophoresis (Urea-PAGE), exonuclease 

digestion and the use of magnetic beads.  

An alternative approach is selective strand digestion using exonuclease digestion. 

Lambda and T7 Gene 6 exonucleases are the two most commonly used. Lambda 

exonuclease selectively digests a 5'-phosphorylated strand of dsDNA with a high 

processivity. In this case, one of the primer pairs used in PCR is 5'-phosphorylated 

resulting in a dsDNA duplex, where one of the strands has a phosphate group 

introduced in the 5’ position. Following incubation with the lambda exonuclease this 

strand is selectively digested and the exonuclease activity is then stopped by heating at 

85ºC.162 On the other hand, T7 Gene 6 exonuclease acts non-processively in the 5´- 3´ 

direction from both 5´-phosphoryl or 5´-hydroxyl nucleotides.163 To protect from T7 

Gene 6 exonuclease, one of the primers is capped with phosphorothioates, so the 

strand containing this modification will not be digested.164 After incubation, the 

enzyme is inactivated by heating. Both these approaches have been effectively used for 

the generation of ssDNA, but do involve extra costs in terms of the modified primers 

and the enzymes themselves. 

Apart from the heat and cool method, one of the most widely used techniques for the 

generation of ssDNA is the use of a biotinylated dsDNA.165 The biotinylated dsDNA 

PCR product is immobilised on streptavidin coated magnetic beads and the non-

biotinylated ssDNA is isolated by alkaline/heat denaturation. 

 

1.5 DNA amplification 

DNA amplification is a key concept in molecular genetics, clinical analysis, 

environmental microbiology, forensics, etc.  

In the development of DNA biosensors, a limiting factor is the required sensitivity 

when working with real samples, e.g. in a viral infection the amount of DNA that has 

to be detected can be in the attomolar range.6 
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The polymerase chain reaction (PCR) is the most popular method used for DNA 

amplification, although alternative methods based on isothermal methods are also of 

interest.  

 

1.5.1 Non-isothermal methods 

The polymerase chain reaction (PCR) is the most well known and widely used 

technique for the amplification of DNA. It was developed in the mid-80s by Kary 

Mullis and co-workers,166 for which Mullis won the Nobel prize in Chemistry in 1993.  

Thermal PCR is based on thermal cycling and polymerase activity for primer-

directed target amplification (Figure 1.5). This is made possible by using Taq DNA 

Polymerase, a highly thermostable DNA polymerase of the thermophilic bacterium 

Thermus aquaticus, which maintains its activity at elevated temperatures. 

 

Step 1: denaturation
95 ºC

Step 2: annealing
54-65 ºC

Step 3: extension
72 ºC
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Figure 1.5. Schematic representation of the polymerase chain reaction. 
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During PCR, the amount of DNA template (either ssDNA or dsDNA) is 

exponentially amplified by repetitive cycles. Its principle is based on the mechanism of 

DNA replication in vivo, denaturation of the dsDNA template to ssDNA and 

duplication. High temperature, normally around 95ºC, is used in order to separate the 

two strands and then, the temperature is decreased to allow the primers to anneal to 

the template. The annealing temperature depends on the primers. Normally it should 

be around 5ºC below the melting temperature of the primers in order to anneal with 

the targeted sequences. Finally the temperature is increased to 72ºC, which is the 

normal optimal temperature for the polymerase that extends the primers by 

incorporating the corresponding dNTPs.  

Traditional PCR as an analytical technique has some limitations. The most 

important is that the exponential amplification of the target, independent of the initial 

concentration, reaches saturation after a certain number of cycles, and thus the initial 

concentration of DNA target cannot be quantified, but real-time PCR addresses this 

limitation.167 In this case, the amplification is monitored during the course of the 

reaction due to the monitoring of the change in the fluorescence of a reporter probe. 

This change is proportional to the amount of product amplified. Reporter probes 

include DNA binding dyes, e.g. SYBR Green, which gave non-specific detection, or 

for better specificity, detection can be carried out with target specific probes (e.g. 

molecular beacons). Multiplexing with target binding dyes is facilitated by melting 

curve analysis but is not straightforward, whilst the grade of multiplexing for target 

specific probes is currently limited by the overlapping spectra of fluorophore labels 

available and the resolution of the optical detectors.  

 

1.5.2 Isothermal methods 

Whilst the use of PCR-based amplification is extensive, the need for temperature 

cycling to separate the two strands is a drawback, limiting its use in point-of-care 

applications, particularly in low resource settings. To overcome this, different 

isothermal amplification methods that do not require extreme heating or thermal 

cycling of the dsDNA for the separation of the two strands have been developed.  
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The most common isothermal methods include nucleic acid sequence-based 

amplification (NASBA),168-169 loop-mediated isothermal amplification (LAMP),170 

rolling circle amplification (RCA),171 strand displacement amplification (SDA)172-173 and 

helicase-dependent amplification (HDA).174 

 

1.5.2.1 Helicase-dependent amplification (HDA) 

Isothermal helicase-dependent amplification methodology was introduced by 

Vincent et al. in 2004 and is based on the natural mechanism of the DNA replication 

fork.174 The advantage of HDA is its PCR like reaction scheme (denaturation, primer 

annealing and primer extension steps).175 The key difference relies on the use of 

helicase to unwind the dsDNA and allow annealing of the two specific primers. DNA 

polymerase extends the primers to produce two dsDNA target copies which can be 

copied again, thus allowing exponential amplification (Figure 1.6).   
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Figure 1.6. Schematic representation of the helicase-dependent DNA amplification. 

 

Vincent et al. reported a mesophilic form of HDA (mHDA), using the Escherichia 

coli UvrD helicase (active at 37ºC), with DNA polymerase and two accessory proteins 

(methyl-directed mismatch repair protein MutL and single-stranded binding protein 

SSB). With this amplification system they were able to detect 500 copies of Brugia 

malayi genomic DNA directly from blood samples. Nevertheless, this mHDA system 

cannot amplify long target sequences efficiently, due to its longer reaction times and 

processivity.176 An et al. reported an improved HDA (tHDA) using a thermostable 

UvrD helicase (taken from Thermoanaerobacter tengcongensis), that allows the reaction to 

occur at higher temperature (60-65ºC). Sensitivity and specificity were improved due to 

more stringent primer annealing conditions, reporting a sensitivity of as few as 10 

copies of bacterial genomic DNA.177 
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The major drawback of HDA methodology is the lack of processivity and the fact 

that only short DNA sequences of between 70-120 bp can be amplified with the 

current HDA systems175 (IsoAmpIII Universal tHDA Kit from BioHelix), due to the 

deficient coordination between the helicase and the polymerase during the process. To 

overcome these restrictions, Motre et al. reported the ‘helimerase’, a hybrid protein 

halfway between the helicase and the DNA polymerase which permits DNA 

amplification up to 2.3 kb.178 

HDA has the potential to be integrated in miniaturised, automated point-of-care 

devices and in microarray technology due to its simplicity, multiplexing capability and 

isothermal characteristic, thus avoiding thermocycling and Peltier integration.175 

Andersen et al. reported the adaptation of HDA on a microarray for the detection of 

two pathogens. One primer was immobilised on the microarray surface (glass slide) 

and the second labelled primer was added to the reaction solution. Amplified products 

remained attached and were detected by laser scanning or total internal reflection 

fluorescence (TIRF) technologies.179 

The development of HDA microfluidic chips has garnered an enormous interest in 

the recent years. Ramalingam et al. developed a real-time HDA PDMS microfluidic 

device consisting of four parallel microchambers with pre-loaded pairs of primers.180 

On the other hand, a fully integrated microfluidic device combining sample 

preparation and real-time HDA starting from whole cells was developed by 

Mahalanabis et al. The device was proved to detect as few as ten colony forming units 

(CFU) of E. coli in growth medium.181 

More recently, Kivlehan et al. reported the first electrochemical detection method 

for real-time monitoring of isothermal HDA, using a DNA intercalating redox probe 

that becomes less electrochemically detectable upon binding with the amplified 

dsDNA, in comparison with the signal obtained when it is free in solution.182 

 

1.5.3 Miniaturised nucleic acid amplification 

In recent years, there has been an increased interest in the generation of POC 

molecular diagnostic devices. Miniaturisation of nucleic acid amplification methods 
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offers several advantages such as the possibility to decrease required time, the use of 

lower sample volumes, reduction of instrumentation costs and the ability to perform 

the complete analysis on a single chip. On the other hand, as previously commented, 

electrochemical DNA methods are extensively used in POC applications due to their 

features, and in the last decade, several examples of detection of real-time nucleic acid 

amplification have been reported.  

For PCR, different electrochemical detection techniques have been described. 

Marchal et al.183 indirectly monitored the amplified DNA product generated in the PCR 

reaction solution after each PCR cycle, by electrochemically monitoring the catalytic 

oxidation of free dGTP or 7-deaza-dGTP in the presence of Ru(bpy)33+ or Os(bpy)33+ 

respectively and Limoges et al.184 used a redox intercalating probe which became 

electrochemically less active upon dsDNA intercalation. 

Another electrochemical RT-PCR system based on the intercalative binding of 

methylene blue with dsDNA was reported by Park et al,185 whilst Hsing and co-workers 

described for the first time a solid-phase electrochemical real-time PCR.186 In this case, 

a ferrocene-tagged dUTP was used to monitor the change in current signal associated 

to the base extension of the immobilised primers on a silicon-glass microchip surface. 

The first report describing the electrochemical real-time monitoring of isothermal 

HDA was published by Marchal et al,187 with a similar detection strategy. 

 

1.6 Human Papillomavirus and cervical cancer 

Papillomaviruses, including human papillomavirus (HPV), are nonenveloped, 

double-stranded DNA viruses. The HPV genome (Figure 1.7) is relatively small (6.9 to 

8 kb) and encodes 8 genes, 6 of them coding for nonstructural early proteins (E1, E2, 

E4, E5, E6 and E7) and 2 for structural or late proteins (L1 and L2).188  
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Figure 1.7. Schematic representation of the HPV16 genome, where E1-E7 are the early genes, L1 and L2 the 

late genes and the long control region (LCR). 

 

HPV is one of the most common sexually transmitted infections, affecting the skin 

and mucous membranes.189 More than 200 HPV types have been identified with 

greater than 40 HPV types infecting the genital areas of men and women that can 

induce a wide range of clinical manifestations, including cervical, vaginal, and vulvar 

intraepithelial neoplasias, genital warts and cancer of cervix, vagina, and vulva.188, 190 It 

is predicted that around 30-50% of the women will be infected during their lifetime. 

Genital HPV types have been subdivided into low-risk, forming genital warts 

(HPV6, 11, 40, 42, 43, 44, 53, 54, 61, 72, 73 and 81) and the high-risk types (HPV16, 

18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59 and 68), which are detected in virtually all 

invasive cervical cancers and have been confirmed as the major cause of this cancer.190 

The classic high-risk HPV types are 16 and 18191 although types 31 and 45 are also 

found in approximately 80% of cervical cancer cases together with types 16 and 18.192 

A key step in the development of cervical cancers is the dysregulated expression of the 

viral oncogenes E6 and E7. Expression of the corresponding oncoproteins interferes 
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with the protective function of the cellular proteins p53 and retinoblastoma protein 

(pRb) respectively, and thereby induce uncontrolled cell growth and genetic 

instability.193-194 

Cervical cancer ranks as the 11th most frequent cancer in Spain and the 2nd among 

women between 15-44 years old. In Spain, there are 18.83 million women older than 

15 years that have a risk of developing cervical cancer. Every year, 1948 women are 

diagnosed with cervical cancer and 712 die from the disease.195 

 

1.6.1 Human papillomavirus diagnostics 

The recognition that persistent infection of the high-risk HPV types is essential for 

the development of cervical cancer has been extremely important196 and highlights the 

importance of the early and cost-effective detection of these DNA strains.197  

HPV diagnostics are commonly based on molecular recognition for the detection 

of HPV DNA related sequences in cervical scrape samples. These molecular tools can 

be divided into two major groups: those based on nucleic acid assays, where hybrid 

capture technology (developed by Digene Corporation) is the most widely used 

technique, and the other major group based on amplification techniques such as the 

polymerase chain reaction (PCR).198 

Another, less explored possibility for the detection of HPV is the use of DNA 

biosensors. Different types of genosensors with piezoelectric,160 leaky surface acoustic 

wave199 or giant magnetoresistive detection200 have been reported for the detection of 

HPV. The electrochemical detection of HPV related sequences has been also reported 

in the past few years, using for instance, methylene-blue as a hybridisation indicator 201 

or exploiting reporter probes labelled with ferrocene.202 In the first case, a 20-mer 

probe related to the HPV major capsid protein L1 was immobilised on a graphite 

electrode and the methylene-blue response was recorded before and after target 

recognition and hybridisation, achieving a limit of detection of 1.2 ng/L (200 nM). 

The second example involved the use of a hybridisation-based bioelectronic DNA 

detection platform (eSensorTM), for the detection of HPV sequences based on 14 
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thiolated probes immobilised on the chip surface and hybridisation with a ferrocene-

labelled reporter sequence. Hybridisation required up to 8 h at 40ºC, detecting 86 % of 

the HPV targets in clinical samples giving a positive/negative type response.  
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1.7 Thesis objectives 

Current efforts in the development of biosensors focus on new platforms for 

accurate and sensitive analysis for disease diagnostics. With the increasing number of 

cancer cases being diagnosed worldwide and the high number of deaths due to a late 

diagnosis, biosensors can play an important role in the early diagnosis of cancer.  

In this work, we focused our attention on the development of an electrochemical 

DNA biosensor and solid-phase amplification method for the detection of human 

papillomavirus genes.  

Human papillomavirus is one of the most common sexually transmitted infections, 

and it has been proved that persistent infection of the high-risk HPV types probably 

leads to the development of cervical cancer. At this moment, many of the commercial 

tests available are slow, expensive, require large amounts of sample materials, and can 

lead to false positive or negative results. 

For this reason, an electrochemical biosensor array has been postulated as a 

promising alternative to analyse multiple high-risk HPV sequences (HPV16, HPV18 

and HPV45), capable of overcoming most of the issues of traditional healthcare 

sensors. To accomplish this, specific objectives have been set: 

 

- Determine the optimal surface functionalisation approach in order to achieve 

high sensitivity, stability and occurrence of non-specific interactions. 

- Determine optimum hybridisation conditions and detection strategy. 

- Study cross-reactivity between selected HPV sequences and multiplex 

measurements. 

- Study other parameters such as reusability and stability of the platform. 

- Evaluate the use of the electrochemical biosensor for the detection of clinical 

samples.  

- Determine the best strategy to generate ssDNA in order to detect the clinical 

samples. 

 

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF ELECTROCHEMICAL BIOSENSORS AND SOLID-PHASE AMPLIFICATION METHODS FOR THE DETECTION OF HUMAN PAPILLOMAVIRUS GENES 
Laia Civit Pitarch 
Dipòsit Legal: T. 1050-2012 
 



Chapter 1 

24 

Even though electrochemical biosensors provide quantitative detection, additional 

DNA amplification step of clinical samples, and the subsequent generation of ssDNA 

is commonly required. This, not only increases the total assay time, but different yields 

of ssDNA could be obtained dependent on, for example, GC content or amplicon 

length, which can extensively complicate true quantitation for medium-high 

multiplexing. A solution would consist of the real-time monitoring of solid-phase 

amplification, which would permit the rapid and facile measurement of specific nucleic 

acid sequences, providing a more reliable and accurate quantitation.  

In order to develop and further investigate this approach, an electrochemical 

monitoring of the helicase-dependent amplification in solid phase assay has been 

proposed. For this, several sub-objectives have been established: 

  

- Choice of a suitable surface chemistry able to satisfy important requirements 

such as robustness, thermal stability and reproducibility. 

- Design of a robust electrochemical real-time solid-phase amplification setup 

capable of allowing in-time monitorisation of the reaction fulfilling 

temperature requisites for an optimal amplification. 

- Optimisation of the assay conditions which is based on the selection of a 

primer immobilisation strategy, the amplification method protocol and the 

electrochemical technique to monitor the reaction. 

- Study the biocompatibility with the microfluidic device. Overcome possible 

solvent evaporation issues, non-specific adsorption on the walls of the 

channels and surface side-effects. 

 

Overall, this work will contribute in different areas involved in the development of 

electrochemical quantitative sensing platforms and solid-phase amplification methods, 

from fundamental aspects such as the choice of a robust and reliable surface chemistry 

to ssDNA generation.  
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2.1 Abstract 

A proof-of-concept of an electrochemical genosensor array for the individual and 

simultaneous detection of two high-risk human papillomavirus DNA sequences, 

HPV16E7p and HPV45E6 that exhibits high sensitivity and selectivity is reported. The 

optimum conditions for surface chemistry preparation and detection of hybridised 

target were investigated. The LOD obtained are in the pM range, which are sufficient 

for most real RNA/DNA samples obtained from PCR amplification, usually in the 

nanomolar range. In a multiplexed detection format, high selectivity was observed over 

the non-specific sequence, opening the way for the development of an electrochemical 

high throughput screening assay for multiple high risk DNA sequences.  

 

2.2 Introduction 

The human papillomavirus (HPV) is one of the most common sexually transmitted 

infections, affecting the skin and mucous membranes. There are more than 40 HPV 

types that can infect the genital areas of men and women.1 HPV has been detected in 

virtually all invasive cervical cancers and has been confirmed as the major cause of this 

cancer. It is believed that most cervical cancers develop when various aggressive 

genetic HPV strains activate certain oncogenes. Oncogenes E6 and E7 are particularly 

important because they interfere with protective proteins p53 and pRb, respectively. 

These proteins limit cell growth under normal conditions, but once they are blocked, 

cell growth is not controlled, resulting in tumor development and cancer.2-3 

Owing to the difficulties to perform serological assays and HPV cultures efficiently, 

some tools based on molecular recognition have been developed for the diagnosis of 

HPV infections. At the basis of molecular recognition, the detection of HPV DNA are 

in use, based on the extraction of genomic DNA from clinical samples with posterior 

PCR amplification and detection.4-5 However due to the high mutation rates of viruses, 

detection by PCR is complicated. 

Another, less explored, possibility for HPV detection is the use of electrochemical 

biosensors with amperometric (labeled) and/or impedimetric (label-free) detection. 
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Electrochemical biosensors have received considerable attention regarding the 

detection of DNA hybridisation due to the advantages of low cost, simplicity, high 

sensitivity, compatibility with mass manufacturing, possibility of microfabrication 

technologies and portability, making them excellent candidates for point-of-care DNA 

diagnostics. Electrochemical detection of HPV related sequences has been reported in 

the past by using methylene-blue as hybridisation indicator6 or secondary probes 

labelled with ferrocene.7 In the first case, a 20-mer probe sequence was adsorbed on 

the surface of a graphite electrode and used for the detection of a 20-mer target related 

to L1 gene of identical length by recording the variations in methylene-blue response 

before and after target recognition, achieving a limit of detection of 1.2 ng/µL (0.5 

nM). The other example involved the use of a bioelectronic DNA detection platform 

formerly commercialised as eSensorTM, for the detection of HPV sequences based on 

thiolated probes immobilised on the chip surface. After target immobilisation, a 

ferrocene-labelled probe was hybridised and the current response was measured. These 

chips were able to detect 86% of the HPV targets contained in clinical samples using a 

positive/negative type response. In a more recent report, detection of HPV was 

carried out by treating a captured dsDNA duplex with acid and directly measuring the 

released purine bases by square wave voltammetry.8 In the present work, we report an 

electrochemical sensor microarray based on DNA detection for the individual and 

simultaneous detection of specific high-risk HPV sequences, more specifically HPV16 

and 45 and analytical parameters such as sensitivity, specificity and reproducibility have 

been studied.  

 

2.3 Experimental 

2.3.1 Electrochemical instrumentation 

All electrochemical measurements were performed with a PGSTAT 12 potentiostat 

(Autolab, The Netherlands) controlled with the General Purpose Electrochemical 
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System (GPES) software and equipped with a MUX module (Eco Chemie B.V., The 

Netherlands).  

The electrode array consisted of a 16 gold working electrodes arranged in a four by 

four distribution on a borosilicate glass chip measuring 21 mm × 23 mm. Each 

working electrode (1 mm × 1 mm) was placed between a silver pseudo reference (0.2 

mm × 1 mm) and a gold counter electrode of the same size in order to create 16 planar 

electrochemical cells. The electrode array was integrated within a microfluidic cell. The 

microfluidic channels were realised by mounting an electrode array onto a 

polycarbonate fluidic chip using double-sided medical grade adhesive foil of 50 µm 

thickness, which was previously laser machined to generate microchannel structures of 

1 mm width. Connection of the assembled chip was realised via pogo-pin connectors 

to each of the 18 electrodes (16 working electrodes and 1 plus 1 reference and counter 

electrodes).  

 

2.3.2 Materials  

Dithiol 1 (DT1, 16-(3,5-bis((6-mercaptohexyl)oxy)phenyl)-3,6,9,12,15-

pentaoxahexadecane) was purchased from SensoPath Technologies (Bozeman, NT). 

Phosphate buffered saline with Tween 20 (pH 7.4) and 3,3’,5,5’-Tetramethylbenzidine 

(TMB) liquid substrate system were from Sigma-Aldrich (Barcelona, Spain). Potassium 

dihydrogen phosphate and sodium hydroxide were purchased by Scharlau (Barcelona, 

Spain). All solutions were prepared with MilliQ water (18 MΩ) produced with a Milli-

Q RG system (Millipore Ibérica, Madrid, Spain). 

Synthetic oligonucleotides were purchased from Biomers.net (Ulm, Germany). 

Sequences for HPV16E7p are listed below.  

HPV16E7p thiolated capture probe (24-mer sequence): 5’-Thiol C6-GAG GAG GAG 

GAT GAA ATA GAT GGT-3’. 

HPV16E7p HRP-labelled reporter probe (21-mer sequence): 5’-TTG GAA GAC CTG 

TTA ATG GGC-HRP-3’. 
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HPV16E7p target (159-mer sequence): 5’-GCC CAT TAA CAG GTC TTC CAA AGT 

ACG AAT GTC TAC GTG TGT GCT TTG TAC GCA CAA CCG AAG CGT 

AGA GTC ACA CTT GCA ACA AAA GGT TAC AAT ATT GTA ATG GGC TCT 

GTC CGG TTC TGC TTG TCC AGC TGG ACC ATC TAT TTC ATC CTC CTC 

CTC-3’. 

 

2.3.3 Probe immobilisation on electrode array 

Prior to modification, electrode arrays were cleaned following a two steps protocol. 

First, in order to remove the protective resist used during storage, the arrays were 

sequentially sonicated for 5 min in acetone and isopropanol and rinsed with water. In a 

second step, each electrode array was electrochemically cleaned in 0.5 M H2SO4 by 

application of a constant potential of 1.6 V for 10 sec followed by 40 voltammetric 

cycles in the potential range -0.2 to 1.6 V at a scan rate of 0.5 V·s-1. Finally, electrodes 

were rinsed with milliQ water and dried with nitrogen. The cleaned electrode arrays 

were modified via co-immobilisation of the thiolated probe (1 μM) and the backfiller 

DT1 (100 μM) in 1 M KH2PO4 aqueous solution (pH 3.5) for 3 h at room temperature 

under humid environment (minimum 90%). The electrode arrays were then washed in 

a stirring solution of PBS-Tween for 15 min, rinsed with water and dried with 

nitrogen. 

 

2.3.4 DNA detection 

DNA detection of both synthetic oligonucleotides (HPV16E7p and HPV45E6) 

was performed using a so-called sandwich type format (Figure 2.1). First, 0.5 μL of 

HPV target of various concentrations ranged of 0.1-50 nM in PBS-Tween were cast on 

each of the oligonucleotide modified gold electrodes and were incubated for 1 h at 

room temperature. The sensors were then washed for 15 min in a stirring solution of 

PBS-Tween and dried with nitrogen. The second hybridisation was subsequently 

performed by spotting 0.5 μL of 10 nM reporter probe in PBS-Tween and incubating 

for 1 h at room temperature. The hybridised microarray was washed with PBS-Tween 
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for 15 min and dried in nitrogen. The hybridisations of the target and detection probe 

were performed under a humid environment (minimum 90%). 

 

 
Figure 2.1. Schematic description of the developed assay based on co-immobilisation of thiolated probe with 

backfiller, hybridisation process and electrochemical detection 

 

2.3.5 Electrochemical detection 

Modified electrode arrays were assembled on the microfluidic cell to perform the 

electrochemical detection. The detection process was carried out in the created 

microfluidic channels in the presence of TMB substrate. The reduction of TMB was 

detected using a steps and sweeps technique by applying two consecutive steps at 0 V 

for 1 msec and -0.2 V for 0.5 sec. 

 

2.4 Results and discussion 

The hybridisation behaviour was detected by incorporating a HRP-labelled reporter 

probe that pairs with the target to form a “sandwich” structure at the electrode surface 

(Figure 2.1). In this work, TMB was used as a chromogenic substrate for HRP. TMB is 

commonly used in ELISA assays and is oxidised to form a blue coloured product, 

which is known to be a single oxidised TMB complexed with a neutral TMB 

molecule.9 The oxidised TMB can be detected through its reduction at the electrode 

surface.10  
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2.4.1 Proof-of-concept of electrochemical detection of individual HPV sequences 

The classic high-risk HPV types are 16 and 1811 although types 31 and 45 have also 

been found to be present in approximately the 80% of cases of cervical cancer together 

with types 16 and 1812. For this reason HPV types 16 and 45 were chosen for this 

work.  

To evaluate the analytical performance of the genosensor, two calibration curves 

were obtained using synthetic oligonucleotides of both specific high-risk HPV 

sequences. Figure 2.2 shows the amperometric response of the reduction of oxidised 

TMB for a series of target concentrations ranging from 0.1 to 50 nM. First, a blank 

steps and sweep (SAS) measurement was carried out with PBS-tween, followed by 

TMB measurement. The final amperometric response used for construction of the 

calibration curve resulted from the subtraction of the blank value from the TMB 

response. As can be seen, the signal tends to saturation for concentration above 50 nM 

of target, as expected for the interaction of a solution analyte with an immobilised 

catching probe. Analysis of the data in terms of the Langmuir isotherm13 afforded 

association constants of 2.3 and 0.17 nM-1 for HPV16E7p and HPV45E6,respectively. 

Assuming a linear behavior at low target concentrations the electrochemical assays 

showed a sensitivity of (0.15 ± 0.02) µA nM-1 (r2 = 0.997) in the range of 0.1 – 10 nM 

for HPV16E7p and (1.02 ± 0.09) µA nM-1 (r2 = 0.999) in the range of 0.1 – 1 nM in 

the case of HPV45E6, with LOD of 490 and 110 pM, respectively. These differences 

in sensor parameters may be due to the fact that HPV16e7p amplicon is considerably 

longer (159-mer) than the HPV45E6 (78-mer) amplicon. 
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Figure 2.2. Calibration curves obtained with: A) HPV16E7p and B) HPV45E6. Target concentration 

range: 0.1-50 nM. 

 

2.4.2 Multiplexed detection of HPV sequences 

Quantitative identification of biomarkers in a mixture without separation and at 

clinically relevant concentrations is a crucial requirement for the development of more 

effective and simpler diagnostic devices particularly when monitoring expression levels 

of disease associated RNA. Arrayed tests enable the use of pattern recognition 

approaches to assess disease changes, which is important in both diagnostics and 

monitoring. In the new and evolving paradigm of clinical diagnostics, the measurement 

of a single tumour marker does not give sufficient information for a complete clinical 

picture, and there is a growing requirement for low-density multiplex assays. The 16 

gold working electrodes sensor array used in this work permits parallel detection of 

multiple targets.  
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For the simultaneous detection of several high-risk HPV sequences, a chip was 

modified with thiolated HPV16E7p and HPV45E6 probes in alternating electrode 

spots as depicted in Figure 2.3.  
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Figure 2.3. A. Modification map used for multiplexed electrochemical detection of HPV16E7p and 

HPV45E6. B. Relative responses to the specific signal obtained for the simultaneous detection of HPV16E7p 

and HPV45E6: 1) with addition of 10 nM specific target; 2) with addition of a mixture of 10 nM specific + 

100 nM non-specific targets, respectively; 3) with addition of 10 nM non-specific target. 

 

Specific and non-specific targets (i.e. for a spot modified with thiolated 

HPV16E7p, specific target refers to HPV16E7p sequence and HPV45E6 refers to 

non-specific target) were then applied at a 10 nM concentration as well as a mixture of 

10 nM specific and 100 nM non-specific target, respectively. The responses obtained (n 

= 4) are presented in Figure 2.3 corresponding to different chips in order to test inter-

array reproducibility. From the data obtained a high specificity of the sensor array was 

observed with negligible hybridisation signal with the non-specific target. The signal 

recovery upon addition of a high concentration of non-specific target (10 times) was 

104 ± 8% for HPV45E6 and 96 ± 5% for HPV16E7p. These results demonstrate the 

applicability of the electrochemical genosensor array described here for multiplexed 

detection of DNA sequences. The application of this strategy for the detection of a 

panel of 18 HPV associated sequences is currently under evaluation. 
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2.5 Conclusions 

This report demonstrates the proof-of-concept of an electrochemical genosensor 

array for the individual and simultaneous detection of two high-risk HPV types, 

HPV16E7p and HPV45E6 sequences that exhibits high sensitivity and selectivity. The 

optimum conditions for surface chemistry preparation and detection of hybridised 

target were investigated. The LOD obtained in the pM range are sufficient for most 

real RNA/DNA samples obtained from PCR amplification, usually in the nanomolar 

range. In a multiplexed detection format, high selectivity was observed over the non-

specific sequence. Following this initial work, our attention is now focused on the 

introduction of additional high-risk HPV sequences in the multiplexed assay for the 

development of an electrochemical high throughput screening assay for multiple HPV 

markers. 

 

2.6 Acknowledgements 

HPV16E7p and HPV45E6 sequences were identified by TATAA Biocenter 

(Gothenburg, Sweden). This research has been carried out with financial support from 

the Commission of the European Communities, RTD programme “Smart Integrated 

Biodiagnostic Systems for Healthcare, SmartHEALTH, FP6-2004-IST-NMP-2-

016817”. A. F. thanks Ministerio de Ciencia y Tecnología, Spain, for a “Ramón y 

Cajal” Research Professorship. L. C. acknowledges Universitat Rovira i Virgili for a 

predoctoral scholarship. 

 

2.7 References 

1. N. Munoz, F. X. Bosch, S. de Sanjose, R. Herrero, X. Castellsague, K. V. Shah, P. J. F. 

Snijders, C. Meijer and C. Int Agcy Res Canc Multicenter, New England Journal of 

Medicine, 2003, 348, 518-527. 

2. Y. Nomine, M. Masson, S. Charbonnier, K. Zanier, T. Ristriani, F. Deryckere, A. P. 

Sibler, D. Desplancq, R. A. Atkinson, E. Weiss, G. Orfanoudakis, B. Kieffer and G. 

Trave, Molecular Cell, 2006, 21, 665-678. 

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF ELECTROCHEMICAL BIOSENSORS AND SOLID-PHASE AMPLIFICATION METHODS FOR THE DETECTION OF HUMAN PAPILLOMAVIRUS GENES 
Laia Civit Pitarch 
Dipòsit Legal: T. 1050-2012 
 



Electrochemical biosensor for the multiplexed detection of human papillomavirus genes 

47 

3. X. Liu, A. Clements, K. H. Zhao and R. Marmorstein, Journal of Biological Chemistry, 

2006, 281, 578-586. 

4. R. Klaes, S. M. Woerner, R. Ridder, N. Wentzensen, M. Duerst, A. Schneider, B. Lotz, 

P. Melsheimer and M. V. Doeberitz, Cancer Research, 1999, 59, 6132-6136. 

5. S. Nagao, M. Yoshinouchi, Y. Miyagi, A. Hongo, J. Kodama, S. Itoh and T. Kudo, 

Journal of Clinical Microbiology, 2002, 40, 863-867. 

6. R. E. Sabzi, B. Sehatnia, M. H. Pournaghi-Azar and M. S. Hejazi, Journal of the Iranian 

Chemical Society, 2008, 5, 476-483. 

7. S. D. Vernon, D. H. Farkas, E. R. Unger, V. Chan, D. L. Miller, Y. P. Chen, G. F. 

Blackburn and W. C. Reeves, Bmc Infectious Diseases, 2003, 3, 12. 

8. N. Zari, A. Amine and M. M. Ennaji, Analytical Letters, 2009, 42, 519-535. 

9. J.-I. Kim, A. Bordeanu and J.-C. Pyun, Biosensors and Bioelectronics, 2009, 24, 1394-1398. 

10. P. Fanjul-Bolado, M. B. Gonzalez-Garia and A. Costa-Garcia, Analytical and 

Bioanalytical Chemistry, 2005, 382, 297-302. 

11. J. Thomison Iii, L. K. Thomas and K. R. Shroyer, Human Pathology, 2008, 39, 154-166. 

12. M. H. Stoler, International Journal of Gynecological Pathology, 2000, 19, 16-28. 

13. A. Fragoso, N. Laboria, D. Latta and C. K. O'Sullivan, Analytical Chemistry, 2008, 80, 

2556-2563. 

 

 

 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF ELECTROCHEMICAL BIOSENSORS AND SOLID-PHASE AMPLIFICATION METHODS FOR THE DETECTION OF HUMAN PAPILLOMAVIRUS GENES 
Laia Civit Pitarch 
Dipòsit Legal: T. 1050-2012 
 



 

48 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF ELECTROCHEMICAL BIOSENSORS AND SOLID-PHASE AMPLIFICATION METHODS FOR THE DETECTION OF HUMAN PAPILLOMAVIRUS GENES 
Laia Civit Pitarch 
Dipòsit Legal: T. 1050-2012 
 



 

Chapter 3

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF ELECTROCHEMICAL BIOSENSORS AND SOLID-PHASE AMPLIFICATION METHODS FOR THE DETECTION OF HUMAN PAPILLOMAVIRUS GENES 
Laia Civit Pitarch 
Dipòsit Legal: T. 1050-2012 
 



 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF ELECTROCHEMICAL BIOSENSORS AND SOLID-PHASE AMPLIFICATION METHODS FOR THE DETECTION OF HUMAN PAPILLOMAVIRUS GENES 
Laia Civit Pitarch 
Dipòsit Legal: T. 1050-2012 
 



Evaluation of techniques for generation of ssDNA for quantitative detection 

49 

 

 

 

Evaluation of techniques for generation of single-stranded 

DNA for quantitative detection 

 

Manuscript submitted 

 

L. Civita, A. Fragosoa*, C.K. O’ Sullivana,b * 

 

a Nanobiotechnology and Bioanalysis Group, Departament d’Enginyeria Química, 

Universitat Rovira i Virgili, Tarragona, Spain. 

b Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010 

Barcelona, Spain 

 

Keywords: Single-stranded DNA, streptavidin-coated magnetic beads, exonuclease 

digestion, thermal denaturation, alkaline denaturation, sensing applications. 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF ELECTROCHEMICAL BIOSENSORS AND SOLID-PHASE AMPLIFICATION METHODS FOR THE DETECTION OF HUMAN PAPILLOMAVIRUS GENES 
Laia Civit Pitarch 
Dipòsit Legal: T. 1050-2012 
 



Chapter 3 

50 

3.1 Abstract 

A simple and efficient method for the generation of clean single-stranded DNA 

with a high recovery and purity from a double-stranded PCR product is required for 

nucleic acid sensing and microarray applications. Currently, the most widely used 

technique is thermal denaturation (heat and cool) due to its simplicity and low cost, but 

this technique has drawbacks in terms of recovery and reproducibility. The work 

presented here compares this technique with alternative approaches for single-stranded 

DNA generation exploiting affinity magnetic separation and exonuclease digestion. 

The quality and quantity of the single-stranded DNA recovered was evaluated using gel 

electrophoresis and enzyme linked-oligonucleotide assay. Recoveries of between 50-

70% of the theoretical maximum of generatable single-stranded DNA were obtained 

for the studied techniques with an excellent reproducibility, demonstrating a marked 

improvement in performance as compared to the heat and cool method. 

 

3.2 Introduction 

The efficient generation of single-stranded DNA is required for many molecular 

biology and biotechnology applications, including pyrosequencing technology,1 single-

stranded conformation polymorphism analysis,2 solid phase DNA sequencing,3 single 

nucleotide polymorphism analysis4 as well as analytical applications, including DNA 

chips, microarrays5-6 and genosensors, amongst other applications. 

The quantitative identification of biomarkers in a mixture without separation and at 

clinically relevant concentrations is a crucial requirement for the development of more 

effective and simpler diagnostic/monitoring devices, e.g. monitoring of expression 

levels of disease associated RNA. The most commonly used method for analysis and 

quantitation of mRNA levels is real time RT-PCR, which is currently limited by the 

number of fluorophore labels available and the resolution of the optical detectors. 

Alternatively RNA can be reverse transcribed and amplified using conventional PCR 

exploiting multiplex amplification (e.g. MLPA, MAPH), resulting in 50-100 double-

stranded amplicons, which can subsequently be quantitatively detected using 
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genosensors/microarrays. These arrays are based on immobilised probes of 20-25 

bases in length that specifically bind to single-stranded DNA (ssDNA), which is 

generated from the double-stranded PCR amplicons. These oligonucleotide and cDNA 

arrayed tests enable the use of pattern recognition approaches to assess disease 

changes, which is of increasing importance in both diagnostics, monitoring and the 

future paradigm of individualised theranostics. In order to be able to truly quantify the 

levels of RNA, it is thus of crucial importance to be able to generate high quality 

ssDNA. 

The most exploited methodology for ssDNA generation is thermal denaturation, 

named heat and cool, which consists of heating the dsDNA sample (normally PCR 

products) to high temperatures (90-95oC) and immediate cooling on ice prior to 

hybridisation.7-8 This is used mainly due to its low cost and simplicity, but has very low 

efficiency and is highly irreproducible. Several alternative methods have been reported 

for the generation of single-stranded DNA, including asymmetric polymerase chain 

reaction (PCR), urea-polyacrylamide gel electrophoresis (Urea-PAGE), exonuclease 

digestion and the use of magnetic beads. Asymmetric PCR, first reported in 1988 by 

Gyllensten and Ehrlich,9 exploits the use of an unequal molar ratio of forward and 

reverse primer, where the primer of lower concentration is consumed in the generation 

of double-stranded DNA (dsDNA) whilst the primer of higher concentration then 

produces single-stranded DNA (ssDNA). Initial reports gave rise to inconsistent 

results and the technique was evolved to first produce dsDNA, which then acts as a 

template for the generation of ssDNA.10-13 The drawbacks associated with the method 

include difficulties associated with multiplex asymmetric PCR,4 as well as the 

requirement to separate ssDNA from dsDNA using PAGE, from which the ssDNA is 

eluted for subsequent analysis. In an another approach, Urea-PAGE involves the use 

of a primer pair, one of which contains a polyadenine (polyA) spacer and/or a 

terminator or stopper molecule, such as hexaethylene glycol.14 As with asymmetric 

PCR, the technique requires a post-PCR PAGE separation of the unequal strands and 

subsequent elution of the ssDNA. Whilst resulting in a pure sample of ssDNA, the 

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF ELECTROCHEMICAL BIOSENSORS AND SOLID-PHASE AMPLIFICATION METHODS FOR THE DETECTION OF HUMAN PAPILLOMAVIRUS GENES 
Laia Civit Pitarch 
Dipòsit Legal: T. 1050-2012 
 



Chapter 3 

52 

methods requiring electrophoretic separation lose a large and irreproducible amount of 

DNA in the process. 

Selective strand digestion using exonuclease digestion presents an approach that 

obviates the requirement for post-PCR electrophoretic separation and the associated 

loss of DNA. The two most commonly used exonucleases are the lambda exonuclease 

and the T7 Gene 6 exonuclease. Lambda exonuclease selectively digests a 5'-

phosphorylated strand of dsDNA with a high processivity. In this case, one of the 

primer pairs used in PCR is 5'-phosphorylated resulting in a dsDNA duplex, where one 

of the strands has a phosphate group introduced in the 5’ position. Following 

incubation with the lambda exonuclease this strand is selectively digested and the 

exonuclease activity is then disrupted by heating at 85ºC, with release of ssDNA.15 T7 

Gene 6 exonuclease, on the other hand, acts non-processively in the 5´- 3´ direction 

from both 5´-phosphoryl or 5´-hydroxyl nucleotides by releasing mononucleotides 

until about 50% of the DNA is acid soluble.16 To protect from the T7 Gene 6 

exonuclease, one of the primers is capped with phosphorothioates, so the strand 

containing this modification is not digested17 whilst the other strand is efficiently 

hydrolysed and again, the enzyme is then inactivated by heating. Both these 

approaches are very elegant and have been effectively used for the generation of 

ssDNA, particularly for use in SELEX, but do involve extra costs in terms of the 

modified primers and the enzymes themselves, and, furthermore, the presence of the 

inactivated enzyme could interfere with the further analysis of the generated ssDNA, 

e.g. in pyrosequencing. Apart from the heat and cool method, one of the most widely 

used techniques for the generation of ssDNA uses a primer pair where one of the 

primers is biotinylated.18 Post-PCR, the biotinylated dsDNA PCR product is captured 

on streptavidin-coated magnetic beads and the non-biotinylated ssDNA is liberated by 

alkaline/heat denaturation of the surface immobilised duplex. There are reports that 

alkaline denaturation also results in the dissociation of streptavidin from the beads, 

resulting in a liberation of the streptavidin/streptavidin-biotin-ssDNA/ streptavidin-

biotin-dsDNA from the bead surface.19 This has been observed to interfere in SELEX 
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studies, where aptamers have undesirably been generated against streptavidin rather 

than the target.20 

In this work, the human papillomavirus (HPV) associated high-risk types 16 and 45 

exons were used as targets, as a model system for the comparison of different 

techniques for the generation of ssDNA. HPV is one of the most common sexually 

transmitted infections, affecting the skin and mucous membranes, and is a double-

stranded DNA virus21 of which more than 200 HPV types have been identified with 

greater than 40 HPV types infecting the genital areas of men and women.22 Genital 

HPV types have been subdivided into low-risk, forming genital warts and the high-risk 

types which are detected in virtually all invasive cervical cancers and have been 

confirmed as the major cause of this cancer. The classic high-risk HPV types are 16 

and 1823 although types 31 and 45 have also been found to be present in approximately 

80% of cervical cancer cases together with types 16 and 18.24  

Amplified products from HPV16 and HPV45, representing two different length 

amplicons, of 79 bp and 159 bp, respectively, were used as a model for the generation 

of ssDNA using different methodologies including heat and cool, streptavidin-coated 

magnetic beads, T7 Gene 6 Exonuclease digestion and Lambda Exonuclease digestion 

(Figure 3.1). The single-stranded DNA amplicons generated were characterised using 

gel electrophoresis and Enzyme Linked OligoNucleotide assay (ELONA).  

 

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF ELECTROCHEMICAL BIOSENSORS AND SOLID-PHASE AMPLIFICATION METHODS FOR THE DETECTION OF HUMAN PAPILLOMAVIRUS GENES 
Laia Civit Pitarch 
Dipòsit Legal: T. 1050-2012 
 



Chapter 3 

54 

 
Figure 3.1. Scheme of the different methodologies studied for the ssDNA generation A) heat and cool, B) 

streptavidin-coated magnetic beads, C) Lambda exonuclease digestion and D) T7Gene 6 exonuclease digestion. 

 

3.3 Experimental 

3.3.1 Chemicals 

Phosphate buffered saline (pH 7.4) and 3,3’,5,5’-Tetramethylbenzidine (TMB) liquid 

substrate system were purchased from Sigma-Aldrich (Barcelona, Spain). Potassium 

dihydrogen phosphate and sodium hydroxide were provided by Scharlau (Barcelona, 

Spain). All solutions were prepared with MilliQ water (18 MΩ) produced with a Milli-

Q RG system (Millipore Ibérica, Madrid, Spain). Streptavidin-coated magnetic beads 

(Dynabeads MyOne Streptavidin C1) were obtained from Invitrogen (Barcelona, 

Spain). T7 Gene 6 Exonuclease and Lambda Exonuclease were purchased from 

Affymetrix (Wycombe Lane, UK). 

Synthetic target sequences (HPV16E7p of 159-mer and HPV45E6 of 78-mer), 

modified and non-modified forward (HPV16E7p of 24-mer and HPV45E6 of 23-

mer), and reverse primers (HPV16E7p of 21-mer and HPV45E6 of 18-mer) were 
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purchased from Biomers.net (Ulm, Germany). TATAA Biocentre (www.tataa.com) 

can be contacted for further details on the specific sequences of the probes, primers 

and target amplicons.  

 

3.3.2 Instrumentation 

3.3.2.1 Enzyme linked oligonucleotide assay (ELONA) measurements 

 Absorbance was read with a Spectra max 340PC, 348, Microplate 

Spectrophotometer (Molecular Devices, Bionova Cientifica, s.l, Madrid). All the 

immobilisation and hybridisation steps were performed at 37ºC in a Titramax 1000 

incubator (Heidolph, Barcelona). 

 

3.3.3 PCR protocol 

The 159-bp region of HPV16E7p was amplified using modified and non-modified 

primers depending on the ssDNA generation technique utilised. The 100 μL reaction 

mixture contained 1 U of Taq polymerase (Invitrogen), 1X PCR reaction buffer, 3 mM 

MgCl2, 200 μM dNTP and 400 nM of each primer. Thermal conditions were optimised 

to be 2 min at 95°C followed by 30 cycles of 20 s at 95°C, 20 s at 60°C, and 20 s at 

72°C.  

The 79-bp region of HPV45E6 synthetic DNA was amplified using the following 

protocol. The 100 μL reaction mixture contained 1U of Taq polymerase, 1X PCR 

reaction buffer, 2 mM MgCl2, 200 μM dNTP and 200 nM of each primer. Thermal 

protocol was optimised to be 2 min at 95°C followed by 25 cycles of 20 s at 95°C, 20 s 

at 60°C, and 20 s at 72°C. 

A final extension step of 72°C for 7 min was included in all protocols. Thermal 

cycling was performed in an ICycler Thermal Cycler (Bio-Rad Laboratories, S.A, 

Barcelona). 

Sample analysis was performed by electrophoresis on a 4% agarose gel (Certified 

Low Range Ultra Agarose, Bio-rad, Barcelona). For a direct comparison of the 
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different techniques, in the first instance dsDNA was purified from the PCR product 

and the concentration was determined via UV spectroscopy. One hundred microlitres 

of the PCR product was purified with PureLinkTM Quick Gel Extraction and PCR 

Purification Combo Kit (Invitrogen, Barcelona) in order to obtain dsDNA purified 

from primers, dNTPs, enzymes and salts by the selective binding of dsDNA to a silica 

membrane-based spin column in the presence of chaotropic salts. Extraction was 

performed following the manufacturer’s manual procedure. Finally, the purified PCR 

product was eluted with elution buffer (10 mM Tris-HCl buffer, pH 8.5) and measured 

by UV spectroscopy at 260 nm, determining the concentration to be 49.5 ± 6.0 nM 

and 55.4 ± 8.8 nM for HPV16 and 45, respectively. 

 

3.3.4 Methodologies for single-stranded DNA preparation 

3.3.4.1 Heat and cool  

Non-modified primers were used for amplification. From purified PCR product, 

aliquots were diluted by a factor of 4 in PBS (pH 7.4). Some of these aliquots were 

heated at 95ºC for 5 min and then rapidly cooled down on ice. These samples were 

used directly for ELONA analysis to quantify the ssDNA recovered. 

 

3.3.4.2 Streptavidin-coated magnetic beads  

Capture of the biotinylated PCR product (biotinylated forward primer) using the 

streptavidin-coated beads was carried out according to the manufacturer’s instructions. 

Firstly, the optimised concentration of beads required for the dsDNA used in the 

present study (Results and discussion section), was washed to remove any preservatives 

by 3 consecutive washings with 1X B&W buffer (5 mM Tris-HCl pH 7.5, 0.5 mM 

EDTA and 2 M NaCl). Between each washing step, Eppendorf tubes containing the 

solution with the magnetic beads were placed in contact with a magnet for 2 min and 

the supernatant was removed by aspiration with a micro-pipette. The isolated magnetic 

beads were subsequently re-suspended with 100 µl of PCR product (purified and non-
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purified) and the same volume of 2X B&W buffer and incubated for an optimised time 

at room temperature with gentle rotation. Following immobilisation of the biotinylated 

PCR product on the streptavidin magnetic beads, the Eppendorf tubes were again 

placed in contact with a magnet for 3 mins in order to discard the supernatant and the 

isolated beads were washed three times with 1X B&W buffer. Separation of ssDNA 

was performed either by temperature or alkaline denaturation. 

 

3.3.4.3 T7 Gene E6 and Lambda Exonucleases digestion 

A reverse primer containing 5 consecutive phosphorothioate groups at its 5’ end 

was used, as the enzyme activity of the T7 Gene E6 Exonuclease is completely 

inhibited by the presence of more than one phosphorothioate residue. A forward 

primer with no modification was used and this generated strand will be hydrolysed, 

whilst the other will be protected. Purified dsDNA from PCR product and direct PCR 

product were then diluted to 100 µL with 5X T7 reaction buffer to a final 

concentration of 1X. Two microliters of T7 enzyme (40 U) were added to the solution 

and incubated at 37ºC for 10, 30 (as recommended by the manufacturer) and 60 min.  

In the case of the Lambda exonuclease, PCR amplification was performed with a 

phosphorylated forward primer and a non-modified reverse primer. Again, the purified 

and non-purified PCR product was diluted to 100 µL with 10X Lambda exonuclease 

reaction buffer to a final concentration of 1X. Two microliters of enzyme (10 U) were 

then added and samples were incubated at 37ºC for 10, 30 and 60 min.  

Reaction tubes were placed at 85ºC for 10 min in order to inactivate the enzymes 

and stop the reaction. 

 

3.3.5 ELISA for streptavidin detection  

Anti-streptavidin polyclonal antibody (1/1000 dilution in carbonate buffer, pH 9.5) 

was added to each well of a Nunc Immunosorp microtiter plate and incubated for 1 h 

at 37ºC. A washing step with PBS-Tween (pH 7.4 10 mM 0.05% v/v Tween) was then 

performed. Blocking of the plate was carried out by the addition of PBS-Tween and 
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incubation for another hour at 37ºC and a second washing step was performed. For 

the immunorecognition step, a calibration curve was constructed using streptavidin 

from 0 to 0.1 µg/mL in 1 in 2 dilution factors in PBS (pH 7.4). Samples from 

treatment of streptavidin-coated magnetic beads by heating at 95ºC for 5 min and 

samples from treatment with 150 mM of NaOH for 3 min (previously neutralised with 

300 mM of HCl and PBS buffer), were added to each well. This step was incubated for 

1 h at 37ºC and a washing step was carried out. Finally, a 1/640 dilution of a 

commercial biotinylated-HRP in PBS-Tween was added to each well and left to 

incubate for 1 h at 37ºC. A final washing step was performed and 50 µL of HRP 

substrate (TMB) was added to each well and product formation was allowed to 

proceed for 15 min at RT. Reaction was then stopped with 1 M H2SO4, and 

absorbance was read at 450 nm.  

 

3.3.6 ssDNA quantification techniques 

3.3.6.1 Gel electrophoresis analysis 

Ten microliters of each ssDNA sample was loaded with 4 µL of 6X loading buffer 

(40% sucrose and bromophenol blue) and 2 µL of 150 mM NaOH in a 4% agarose 

gel, stained with GelRed nucleic acid stain (Bioutium). Synthetic ssDNA of known 

concentrations were prepared in the same manner as the samples, and loaded together. 

Gels were analysed with ImageJ software. 

 

3.3.6.2 Enzyme-linked oligonucleotide assay (ELONA) 

Fifty microliters of biotinylated HPV forward primer (20 nM in 0.1 M PBS, pH 7.4) 

was added to each well of a Microtiter* Streptavidin-Coated Strip Plate and incubated 

for 1 h. Three consecutive washing steps with 200 µL 0.1 M PBS-Tween, pH 7.4 were 

performed. To construct calibration curves, synthetic HPV ssDNA, from 40 – 0 nM 

for HPV16 and 60 – 0 nM in the case of HPV45, using in both cases a 1 in 2 dilution 

factor in 0.1M PBS, was added to the Fw primer coated wells and incubated for 
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another 1 h. Any non-hybridised DNA was removed in 3 washing steps as described 

before. In the same manner, 50 µL of the prepared samples were added to the wells, 

using 3 different dilutions of each sample. The ssDNA samples prepared with 

streptavidin-coated magnetic beads and exonuclease digestion, were previously purified 

with the Qiaex II Gel Extraction Kit (Qiagen, Barcelona) in order to avoid the 

presence of streptavidin or exonucleases that could interfere in the hybridisation step. 

Horseradish peroxidase labeled secondary reporter probe (HPV reverse 

complementary primer) was added to each well (50 µl of 0.4 nM in 0.1 M PBS, pH 7.4) 

and left to incubate for 1 h before a final washing step was performed. All steps were 

carried out at a constant temperature of 37ºC. For the detection step, 50 µl of TMB 

substrate was added to each well and allowed to react for 15 min, prior to addition of 

50 µl of 1 M H2SO4 to stop the reaction, turning the blue coloured solution to yellow, 

and the absorbance was read at 450 nm. 

The ssDNA percentage recovery of each sample was calculated by dividing the 

ssDNA concentration obtained using ELONA by the initial dsDNA concentration 

determined. 

 

3.4 Results and discussion 

The purpose of the work reported here was to carry out a quantitative evaluation of 

the use of different well known ssDNA preparation methods, including heat and cool, 

streptavidin-coated magnetic beads and the use of exonucleases (T7 Gene 6 and 

Lambda exonuclease) for use in genosensing applications. As outlined previously, 

genosensors, similar to DNA chips and microarrays, exploit a short surface 

immobilised probe for hybridisation to its complementary target sequence. To this 

end, a technique exploiting surface immobilised probes, ELONA, was used to quantify 

the amount of ssDNA generated and compared to the theoretical maximum amount 

of ssDNA obtainable (Figure 3.2). 
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Figure 3.2. Schematic representation of Enzyme-Linked Oligonucleotide Assay (ELONA) methodology. 

 

3.4.1 Evaluation of effect of immobilisation time and concentration of MB 

In order to determine the optimum conditions for the generation of ssDNA with 

streptavidin-coated magnetic beads, the concentration of magnetic beads as well as the 

duration of incubation step was studied.  

From 100 µL of PCR product, 50 nM dsDNA was mixed with different 

concentrations of pre-washed streptavidin-coated magnetic beads, ranging from 0.5 to 

2.0 mg/mL (equivalent to approximately 4.3·108 – 2.1·109 Dynabeads per mL) and 

incubated at RT using gentle rotation. The effect of incubation time was evaluated by 

sampling the incubation mixture every 10 minutes over a period of 1 hour. For sample 

recovery, tubes were placed in contact with a magnet for 3 min. Ten µL of the 

supernatant was used for gel electrophoresis analysis in order to evaluate the level of 

immobilisation of the biotinylated PCR product on the magnetic beads. For the 159bp 

PCR product (HPV16) used in this study, a concentration of 1.5 mg/mL of magnetic 

beads with an incubation time of 20 minutes was observed to be optimal. Using lower 
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concentrations of beads, a high percentage of dsDNA remained in the recovered 

supernatant, even after 60 min of incubation. On the other hand, increasing the 

amount of magnetic beads (2 mg/ml) did not improve capture of dsDNA (Figure 3.3).  

 

 

Figure 3.3. Agarose gel image for the optimisation of magnetic bead concentration. 1) 0.5 mg/mL, 2) 1 

mg/mL, 3) 1.5 mg/mL and 4) 2 mg/mL. Wells: M) Marker 10bp, a-f) dsDNA in solution after 

incubation times from 10 to 60 min (in intervals of 10 min) and T) PCR product. 

 

3.4.2 Single-stranded DNA separation and quantification of the streptavidin free in 

solution after alkaline or heat treatment. 

Denaturation of the double-stranded DNA duplex captured on the magnetic beads 

was performed either by the addition of 20 µL of 150 mM NaOH solution for 3 min 

or heating at 95ºC for 5 min under shaking conditions in 10 mM PBS pH 7.4. The 

Eppendorf tubes were then placed in contact with a magnet for 3 minutes and the 

liberated ssDNA was recovered. For alkaline denaturation, neutralisation with 300 mM 

HCl and driven to the initial volume with 10 mM PBS was carried out. 
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An enzyme-linked immunosorbent assay was performed to quantify the possible 

loss of streptavidin from the magnetic beads due to the harsh thermal or alkaline 

treatment carried out in order to denature dsDNA to obtain the desired ssDNA. From 

the results observed in Figure 3.4, it can be determined that with heat treatment, 10 

times more streptavidin/streptavidin-biotin-ssDNA/streptavidin-biotin-dsDNA had 

leached from the magnetic bead surface as compared with alkaline treatment, thus 

resulting in a loss of efficiency and thus alkaline treatment was used for further 

recovery experiments.  
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Figure 3.4. Concentration of free streptavidin in solution after alkaline and thermal denaturation. 

 

3.4.3 Analysis of the generated single-stranded DNA 

3.4.3.1 Gel electrophoresis  

Qualitative determination of the single-stranded DNA generated by streptavidin-

coated magnetic beads and exonuclease digestion was performed using gel 

electrophoresis. Samples prepared using heat and cool denaturation indicated a minor 
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degree of ssDNA generation, presumably attributable to the fact that in the cooling 

and electrophoretic process, annealing of the two complementary strands takes place, 

resulting in no differentiation between dsDNA and ssDNA bands on the gel. For the 

other three procedures studied, clear ssDNA bands appear in the agarose gel for both 

studied sequences (Figure 3.5). An advantage of ssDNA obtained using streptavidin-

coated magnetic beads is the purity of the sample obtained, where no dsDNA band is 

observed in the gel, whereas with exonuclease digestion, dsDNA that was not digested 

remains. 

 

dsDNA

ssDNA

1     2    3        4                   5         6        7         8                   9

dsDNA
ssDNA

1     2    3        4                   5         6        7         8                   9

A

B

 

Figure 3.5. Agarose gel (4%) image of A) HPV16E7p and B) HPV45E6, where 1-4) Synthetic ssDNA 

at 60, 40, 20 and 10 nM; 5-6) T7 Gene 6 exonuclease; 7-8) Lambda exonuclease and 9) Streptavidin-coated 

magnetic beads. 

 

In order to perform a semi-quantitative study of the ssDNA obtained, a range of 

concentrations (60, 40, 20 and 10 nM) of a synthetic ssDNA analogue of the studied 

sequences at different concentrations were run with the samples, based on the 

comparison of the intensity of the ssDNA bands using ImageJ software. 
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3.4.3.2 Enzyme-linked oligonucleotide assay (ELONA) 

Single-stranded DNA from HPV16E7p and HPV45E6 prepared by the three 

different methodologies was characterised using ELONA and calibration plots for 

both sequences were constructed using synthetic ssDNA, obtaining sigmoidal 

relationships (LOD of 128 pM and R2=0.9963 for HPV16 and a LOD of 142 pM and 

R2= 0.9985 for HPV45), and the calibration plots are shown in Figure 3.6. Recoveries 

obtained for all methodologies are depicted in Table 3.1. 
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Figure 3.6. ELONA calibration plots for HPV16 and HPV45. 

 

Table 3.1. Summary of the ssDNA recovery obtained for the three different techniques (n=5) 

Methodology 
ssDNA recovery (%) 

HPV16 (159 bp) HPV45 (78 bp) 

Heat and cool 40 ± 37 22 ± 21 

Streptavidin-coated magnetic beads 62 ± 7 62 ± 8 

Lambda exonuclease 65 ± 8 70 ± 7 

T7 Gene 6 exonuclease 54 ± 7 47 ± 8 
 

 

3.4.3.2.1 Streptavidin-coated magnetic beads.  

For ssDNA generated with streptavidin-coated magnetic beads from purified PCR 

product, biotinylated primer was used in the PCR reaction, for subsequent capture on 
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the streptavidin-coated magnetic beads. The beads were then incubated with an 

alkaline solution (150 mM NaOH) in order to denature the duplex to generate the 

desired ssDNA. The generated ssDNA was quantified using ELONA, revealing a 62 ± 

7% recovery for HPV16 and 62 ± 8% of recovery for HPV45E6. The results obtained 

are considerably higher in terms of ssDNA yield than that presented by Wendel, H.P. 

et al.25 where only 21% of the maximum possible amount of ssDNA was recovered by 

using M-280 Dynabeads from Invitrogen by using purified dsDNA from PCR 

product. The binding capacity of this magnetic beads is two times lower in comparison 

to the beads used in the present study (of approx. 10 µg of dsDNA versus 20 µg for 

Dynabeads MyOne Streptavidin C1), which may explain the lower efficiency. 

 

3.4.3.2.2 Exonuclease digestion 

For T7 Gene 6 and Lambda exonuclease digestion, a 5'-phosphorothioate modified 

reverse primer and 5’-phosphate modified forward primer, respectively, were used for 

PCR amplification. In both cases three different digestion times were studied, 10, 30 

min and 1 h. After digestion, enzymes were inactivated by increasing the temperature 

to 85ºC and incubating for 10 min. Gel electrophoresis of the different samples was 

performed in order to follow the evolution of both dsDNA and ssDNA with digestion 

time. As can be observed in Figure 3.7, the band of dsDNA becomes lighter with 

increasing incubation time. After 30 min, no significant decrease in the dsDNA band 

was observed.  
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Figure 3.7. Evolution of the generation of ssDNA with digestion time for HPV16 and HPV45. Lane 1) 

Synthetic ssDNA; Lanes 2-4) Lambda exonuclease digestion for 10, 30 and 60 min respectively and Lanes 5-

7) T7 Gene 6 exonuclease digestion for 10, 30 and 60 min respectively 

 

In ELONA determination, Lambda exonuclease produces ssDNA in a 65 ± 7% 

(HPV16) and 70 ± 7% (FPV45) recovery from the initial amount of dsDNA. These 

results are higher than that reported by Gopinath et al.,26 where an optimisation of the 

preparation of ssDNA from purified PCR product by lambda exonuclease digestion 

followed by phenol:chloroform extraction resulted in 39 ± 3% recovery. However, the 

results obtained are comparable with the data reported by Wendel  et al.25 where a 62 ± 

8% of ssDNA was recovered after 2 h of digestion at 37ºC. Lower ssDNA recoveries 

were found with T7 Gene 6 exonuclease, being 54 ± 7% for HPV16 and 47 ± 8% for 

HPV45. This lower percentage recovery achieved with the T7 Gene 6 in comparison 

to the Lambda exonuclease can be attributed to the difference in the processivity of 

the two exonucleases, where one unit of the Lambda Exonuclease releases 10 nmol of 

acid-soluble deoxyribonucleotides from dsDNA template in 30 min, whilst one unit of 

T7 Gene 6 exonucleases produces 2 nmol in the same time period. 

 

3.4.3.2.3 Heat and cool 

Aliquots (in PBS, pH 7.4) of HPV16E7p and HPV45E6 purified PCR products 

were incubated at 95ºC for 5 minutes in order to separate the two strands. Rapid 

cooling down on ice was carried out in order to retard the re-annealing of the DNA 

strands. Samples were then analysed by ELONA. Results obtained show an evident 
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dependence of the single-stranded DNA recovery on the initial dsDNA concentration. 

Recoveries of 8 ± 7% (n=5) were found for more concentrated samples (around 10.0 

nM), while for more diluted samples (around 0.5 - 1 nM), the recoveries achieved are 

higher, of 25 ± 16 % (n = 5) for HPV45 and 41 ± 38% (n = 5) in the case of HPV16, 

which can be explained by the higher probability of the two DNA strands colliding 

and re-hybridising when present at higher concentrations. Whilst the recoveries are 

improved for more diluted dsDNA, the deviation in obtainable ssDNA was huge using 

the same initial dsDNA sample. 

 

3.4.3.2.4 Preparation of single-stranded DNA from purified or non-purified PCR product 

Additional steps in the preparation of ssDNA such as the purification of the PCR 

product, can lead to losses in the initial concentration of dsDNA. Therefore, a 

comparison of the final ssDNA concentration obtained from purified and non-purified 

PCR product was performed with HPV45 sequence and for streptavidin-coated 

magnetic beads and exonuclease digestion techniques. In this case, concentration of 

purified PCR product was evaluated as explained above, via UV spectroscopy, while in 

the case of PCR product it is not possible due to the interfering of non-consumed 

primers, dNTPs and enzymes on the final absorbance. Then, concentration was 

determined by electrophoretic gel analysis based on the comparison of the intensity of 

known concentrations of dsDNA standards bands using ImageJ software. Calibration 

curve was built for five different samples of concentration ranging from 100 – 0 nM in 

½ dilution factor (R2 = 0.9985). Concentration of non-purified PCR products were 51 

± 3, 87 ± 4 and 68 ± 1 nM for phosphorothioated, phosphorylated and biotynilated 

PCR products respectively. Determination of the concentration after the purification 

of the three PCR products lead to looses of 11, 32 and 11% from the initial dsDNA 

concentration respectively. Samples were analysed by Bioanalyzer (Agilent) using a 

DNA 1000 chip, obtaining an excellent correlation. 

Starting from the same PCR product, ssDNA was generated by using the different 

techniques from purified dsDNA or directly from the PCR product. Samples were 
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then quantified by ELONA (Table 3.2). It can be observed that slightly higher 

concentration of ssDNA was obtained from non-purified PCR product in the case of 

streptavidin-coated beads and T7 Gene 6 exonuclease, whilst in the case of Lambda 

exonuclease, the concentration is lower. However it is important to remark that in the 

purification step, between 10 and 30% of the initial dsDNA was lost. In terms of 

ssDNA recovery, it can be observed that comparable values were obtained for 

streptavidin-coated beads (62 ± 8% and 59 ± 4% for purified and non-purified PCR). 

Also, slightly improved recovery was obtained for ssDNA generation with T7 Gene 6 

starting from non-purified product (50 ± 2%), against the one obtained for the 

purified sample (47 ± 8%). These comparable results could be explained by the 

similarity of the PCR buffer with the proper buffer of the techniques. Contrary, bigger 

differences in the composition of Lambda exonuclease buffer could explain the big 

decrease in recovery observed for Lambda exonuclease digestion from non-purified 

PCR product, obtaining 43 ± 9% while for purified sample, a recovery of 70 ± 7% was 

obtained. 

 

Table 3.2. ssDNA concentration obtained from the same HPV45 PCR product (purified and 

non-purified). 

Methodology 
ssDNA concentration (nM) 

Purified PCR Non-purified PCR 

Streptavidin-coated magnetic beads 37 ± 1 41 ± 2 

Lambda exonuclease 42 ± 2 37 ± 6 

T7 Gene 6 exonuclease 21 ± 1 25 ± 2 
 

 

3.5 Conclusions  

Different methods for the generation of single-stranded DNA from a double-

stranded PCR product were evaluated using gel electrophoresies to qualitatvely 

evaluate the purity of the ssDNA generated, and enzyme-linked oligonucleotide assay 

for the quantitative determination of the amount of ssDNA produced. The widely 
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used heat and cool methodology was found to be the least reliable, showing very low 

efficiency and very high irreproducibility, and also showing a dependency on the 

concentration of the dsDNA template. The alternative methods studied, using 

streptavidin-coated magnetic beads or exonuclease digestion were demonstrated to be 

rapid methods for ssDNA generation with a high efficiency obtaining recoveries 

between 50-70% from the theoretical maximum with a good reproducibility, RSD% < 

8 (n=5).  

Using streptavidin-coated magnetic beads and biotinylated PCR products alkaline 

and heat denaturation of the dsDNA duplex were compared. Alkaline denaturation 

was found to perform better, which can be attributed to the less harsh environment on 

the denaturation process that gave rise to significantly less desorption of streptavidin 

(and obviously streptavidin-biotin-dsDNA), providing a percentage recovery of around 

62%. For exonuclease digestion, T7 Gene 6 and Lambda exonuclease were studied. In 

both cases, a high recovery was obtained with the two HPV sequences studied, of 

around 50 and 70 % respectively.  

Lambda exonuclease is the methodology which gives a higher recovery starting 

from purified PCR product with a lower cost in comparison to the other techniques 

reported in this study, to obtain the same final concentration of ssDNA. T7 Gene 6 

exonuclease and streptavidin-coated magnetic beads used in this study are 

approximately 2 and 7 times more expensive. Another advantage is that the digestion 

approaches required 45 minutes, whilst the streptavidin magnetic isolation method 

required between 60-90 minutes. Additional time will be required if purification of the 

PCR product is performed. 

In order to evaluate the need of the purification step of PCR product, a comparison 

of the final amount of ssDNA obtained and its recovery starting from the same PCR 

product (by purifying the sample or not) was carried out. We observed that around 10 

– 30% of the initial amount of dsDNA was lost during the purification process. 

Slightly higher concentration of ssDNA was obtained from non-purified PCR product 

in the case of streptavidin-coated beads and T7 Gene 6 exonuclease, whilst in the case 

of Lambda exonuclease, the concentration was lower. In terms of ssDNA recovery, 
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comparable values were obtained for streptavidin-coated beads and T7 Gene 6 starting 

in both cases, but a big decrease in recovery was observed for Lambda exonuclease 

digestion from non-purified PCR product of 28%. 

In conclusion, lambda exonuclease is the best methodology in terms of ssDNA 

recovery, cost and time consuming when starting from purified PCR product. 

Nevertheless, the purification step leads to losses of the initial dsDNA product and 

increases the time of the assay, being a disadvantage for its application in DNA 

biosensing quantification. Both streptavidin-coated magnetic beads with alkaline 

denaturation and the T7 Gene 6 Exonuclease resulted in good recoveries when starting 

from non-purified PCR product in comparison with Lambda exonuclease, that its 

recovery decreases.  

Whilst none of the techniques provide 100% generation of ssDNA, they are very 

reproducible and thus a correlation factor can be used to provide an accurate 

quantitative determination of nucleic acid levels. Further work involves the application 

of the three techniques to genosensors and microarrays with a range of PCR products.  
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4.1 Abstract  

An electrochemical genosensor array for the simultaneous detection of three high-

risk human papillomavirus (HPV) DNA sequences, HPV16, 18 and 45, exhibiting high 

sensitivity and selectivity is presented. The electrodes of a 4 x 4 array were modified via 

co-immobilisation of a 1:100 (mol/mol) mixture of a thiolated probe and an 

oligoethyleneglycol-terminated bipodal thiol. Detection of synthetic and PCR products 

was carried out in a sandwich type format, with the target hybridised between a surface 

immobilised probe and a horseradish peroxidase-labelled secondary reporter probe. 

The detection limits obtained in the detection of each individual target were in the pM 

range, allowing the application of this sensor for the detection of samples obtained 

from PCR amplification of cervical scrape samples. The results obtained exhibited an 

excellent correlation with the HPV genotyping carried out within a hospital laboratory. 

Multiplexing and cross-reactivity studies demonstrated high selectivity over potential 

interfering sequences, facilitating application of the developed platform for the high-

throughput screening of multiple high-risk DNA sequences. 

 

4.2 Introduction 

Human papillomavirus (HPV) is one of the most common sexually transmitted 

infections, affecting the skin and mucous membranes, and is a double-stranded DNA 

virus1 of which more than 200 HPV types have been identified with greater than 40 

HPV types infecting the genital areas of men and women.2 Genital HPV types have 

been subdivided into low-risk, forming genital warts (HPV6, 11, 40, 42, 43, 44, 53, 54, 

61, 72, 73 and 81) and the high-risk types (HPV16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 

59 and 68), which are detected in virtually all invasive cervical cancers and have been 

confirmed as the major cause of this cancer. The classic high-risk HPV types are 16 

and 183 although types 31 and 45 have also been found to be present in approximately 

80% of cervical cancer cases together with types 16 and 18.4 A key step in the 

development of cervical cancers is the dysregulated expression of the viral oncogenes 

E6 and E7. These oncoproteins interfere with the protective function of the cellular 
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proteins p53 and pRb, respectively and thereby induce uncontrolled cell growth and 

genetic instability.5-6 

The existence of a strong relationship between persistent infection of the high-risk 

HPV types and development of cervical cancer highlights the importance of the early 

and cost-effective detection of these DNA strains.7 HPV diagnostics are most 

commonly based on molecular recognition to detect HPV DNA related sequences in 

cervical scrape samples. These molecular tools can be divided into two major groups: 

those based on nucleic acid assays, where hybrid capture technology (developed by 

Digene Corporation) is the most widely used technique, and the other major group 

being based on amplification techniques such as the polymerase chain reaction (PCR).8 

Another, less explored, possibility for the detection of HPV is the use of DNA 

biosensors, also known as genosensors. Different types of genosensors with 

piezoelectric,9 leaky surface acoustic wave10 or giant magnetoresistive detection11 have 

been reported for the detection of HPV. The electrochemical detection of HPV related 

sequences has been reported in the past few years, using, for example, methylene-blue 

as a hybridisation indicator12 or exploiting reporter probes labelled with ferrocene.13 In 

the first case, a 20-mer probe related to the HPV major capsid protein L1 was 

immobilised on the surface of a graphite electrode and the methylene-blue response 

was recorded before and after target recognition and hybridisation, achieving a limit of 

detection of 1.2 ng L-1 (200 nM). The second example involved the use of a 

hybridisation-based bioelectronic DNA detection platform (eSensorTM), for the 

detection of HPV sequences based on 14 thiolated probes immobilised on the chip 

surface and hybridisation with a ferrocene-labelled reporter sequence. Hybridisation 

required up to 8 h at 40ºC, detecting 86 % of the HPV targets contained in clinical 

samples giving a positive/negative type response. In a more recent report, the 

detection of HPV was carried out by treating a captured double-stranded DNA duplex 

with acid and directly measuring the released purine bases using square wave 

voltammetry, obtaining a limit of detection of 2 pg mL-1 (330 fM).14 

Multiplexed assays can screen multiple analytes in a single assay which is 

significantly simpler, more rapid and requires less sample and reagent consumption in 
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comparison to multiple single-target assays.15 This is particularly important in the 

multiplexed detection of nucleic acids due to its key role in current and evolving 

clinical diagnostics and theranostics, where expression patterns of multiple RNA 

markers will be used to prescribe appropriate therapy. 

In a recent preliminary study,16 we demonstrated the ability of the proposed 

electrochemical sensor array for the individual and multiplex detection of HPV specific 

high-risk HPV sequences (HPV18 and 45) with high specificity and selectivity and in 

the work reported here, we extend and exploit the reported proof-of-concept by the 

introduction of a new high-risk HPV sequence, developing an electrochemical 

genosensor array for the simultaneous detection of three specific high-risk HPV 

sequences, HPV16, 18 and 45, typically found in invasive cervical cancer. Analytical 

parameters such as sensitivity and specificity were investigated and reusability was 

explored for developmental work. The 16 gold working electrodes sensor array used in 

this work permits parallel detection of multiple targets and multiplex studies were thus 

carried out by immobilising the three thiolated HPV probes on alternating electrodes. 

Detection was carried out via the hybridisation of a mixture of the three targets and 

specific HRP-labeled probe, demonstrating a high specificity of the sensor array and 

no significant cross-hybridisation was found between the three high-risk sequences 

studied. Finally, samples obtained from cervical scrapes were amplified and used in 

order to evaluate the genosensor performance in a real clinical scenario, comparing the 

response with HPV genotyping carried out in a hospital laboratory, and an excellent 

correlation was obtained. 

 

4.3 Experimental 

4.3.1 Instrumentation 

All electrochemical measurements were performed with a PGSTAT 12 potentiostat 

(Autolab, The Netherlands) controlled with the General Purpose Electrochemical 

System (GPES) software and equipped with a MUX module (Eco Chemie B.V., The 

Netherlands).  
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The electrode array consists of 16 gold working electrodes arranged in a four by 

four distribution on a glass chip measuring 21 mm × 23 mm, fabricated at the Institut 

für Mikrotechnik Mainz (www.imm-mainz.de). Each working electrode (1mm × 1 

mm) was placed between a silver pseudo reference (0.2 mm × 1 mm) and a gold 

counter electrode of the same size in order to create 16 planar electrochemical cells. 

The electrode array was integrated within a microfluidic cell, where the microfluidic 

channels were realised by mounting the array onto a polycarbonate fluidic chip using 

double-sided medical grade adhesive foil of 50 µm thickness, which had been 

previously laser machined to generate microchannel structures of 1 mm width. 

Connection of the assembled chip was realised via pogopin connectors to each of the 

18 electrodes (16 working electrodes and 1 plus 1 reference and counter electrodes).17  

 

4.3.2 Chemcials 

Dithiol 16-(3,5-bis((6-mercaptohexyl)oxy)phenyl)-3,6,9,12,15-pentaoxahexa-decane) 

(DT1) was purchased from SensoPath Technologies (Bozeman, NT). Phosphate 

buffered saline with Tween 20 (pH 7.4) and 3,3’,5,5’-Tetramethylbenzidine (TMB) 

Liquid Substrate System for ELISA were from Sigma-Aldrich (Barcelona, Spain). 

Potassium dihydrogen phosphate and sodium hydroxide were purchased by Scharlau 

(Barcelona, Spain). All solutions were prepared with MilliQ water (18 MΩ.cm) 

produced with a Milli-Q RG system (Millipore Ibérica, Madrid, Spain). Microtiter 

Streptavidin-Coated Strip Plates were from ThermoScientific (Barcelona, Spain). 

Thiolated and biotinylated capture probes (HPV16E7p of 24-mer, HPV18E6 of 

22-mer and HPV45E6 of 23-mer), target sequences (HPV16E7p of 159-mer, 

HPV18E6 of 139-mer and HPV45E6 of 78-mer) and HRP-labelled secondary reporter 

probe and reverse primers (HPV16E7p of 21-mer, HPV18E6 of 22-mer and 

HPV45E6 of 18-mer) were purchased from Biomers.net (Ulm, Germany). TATAA 

Biocentre (www.tataa.com) can be contacted for further details on the specific 

sequences of the probes, primers and target amplicons. High-risk HPV positive and 
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negative cervical scrapes of anonymous female patients were provided by the Jena 

University Hospital.  

 

4.3.3 Probe immobilisation on electrode array 

Prior to modification of the electrode arrays, a two-step cleaning protocol was 

applied. Initially in order to remove the protective resist used during storage, the arrays 

were sonicated for 5 min in acetone, 5 min in iso-propanol (3 times) and rinsed with 

water. In a second step, electrochemical cleaning was performed in 0.5 M H2SO4 by 

application of a constant potential of 1.6 V for 10 sec followed by 40 voltammetric 

cycles in the potential range -0.2 to 1.6 V at a scan rate of 0.5 V·s-1. Finally, the 

electrodes were rinsed with Milli-Q water and dried with nitrogen. Modification of the 

cleaned electrode arrays was carried out via co-immobilisation of the specific thiolated 

probe (1 μM) and DT1 (100 μM) in 1 M KH2PO4 aqueous solution (pH 3.5) by 

deposition of 1 μL of the mixture over the working electrodes for 3 h at room 

temperature in a humid (>90%) environment. Dithiol DT1 was co-immobilised with 

the thiolated probe in order to eliminate non-specific binding of the labeled reporter 

probe, whilst also spacing out and orientating the probe to facilitate efficient 

hybridisation of the target. In order to remove the non-attached molecules, the 

electrode arrays were washed in a stirring solution of 0.1 M PBS-Tween for 20 min, 

rinsed with water and dried with nitrogen. 

 

4.3.4 Electrochemical DNA detection 

DNA detection of both synthetic oligonucleotides and PCR product from clinical 

samples (see section 4.3.6) was performed in a sandwich hybridisation format (Figure 

4.1).  
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16            NS 16           NS

45 18 45            18

18 45 18            45

NS            16 NS            16

 
Figure 4.1. Schematic view of the sensor array used and the developed assay based on co-immobilisation of 

thiolated probe with bipodal alkanethiol, hybridisation process and electrochemical detection. 

 

To construct the calibration curves of HPV16, 18 and 45, 0.5 μL of each HPV 

target of various concentrations ranging from 0 to 50 nM (in triplicate) in 0.1 M PBS-

Tween were deposited on each of the oligonucleotide modified gold electrodes and 

incubated for 20 minutes at room temperature. The sensors were subsequently washed 

for 15 min, under stirring conditions, in 0.1 M PBS-Tween and then dried with 

nitrogen. A second hybridisation was performed by spotting 0.5 μL of 10 nM labelled 

reporter in 0.1 M PBS-Tween and incubating for another 20 minutes at room 

temperature with both hybridisations carried out in a humid environment. The 

hybridised microarray was subsequently washed with 0.1 M PBS-Tween for 15 min 

and dried in nitrogen. For real sample analysis, 0.5 μL of an unknown concentration of 

the ssDNA generated from PCR product, in 0.1 M PBS-Tween, was applied to the 
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array and incubated for 20 minutes. The rest of the steps were performed as explained 

above. The modified electrode arrays were assembled on a microfluidic cell similar to 

that described previously17 to perform the electrochemical detection. The detection 

process was carried out in the created microfluidic channels in the presence of TMB 

substrate where the HRP-catalysed reduction of TMB18-19 was detected by steps and 

sweeps technique by applying two consecutive potential steps of 0 V for 1 ms and -0.2 

V for 0.5 s.  

 

4.3.5 Multiplexed detection 

Clean electrode arrays were modified by spotting 1 µL of a mixture of 1 µM 

thiolated probes (HPV16E7p, HPV18E6, HPV45E6 and a non-specific probe, 

HPV45E7) and 100 µM DT1 on alternating working electrodes for 3 h at room 

temperature. A mixture of the three targets at a concentration of 5 nM for HPV16E7p 

and HPV18E6 and 0.5 nM for HPV45E6 in 0.1 M PBS-Tween, pH 7.4 was then 

added and incubated for 20 min. The sandwich complex was formed by subsequent 

hybridisation with a 10 nM mixture of the three HRP-labelled probes, in 0.1 M PBS-

Tween pH 7.4, for 20 min. Washing steps and electrochemical detection were carried 

out as explained in Section 4.3.4. 

 

4.3.6 Hospital laboratory analysis of cervical scrapes 

In order to test the performance of the developed electrochemical genosensor array 

for the detection of high-risk HPV DNA in clinical samples, a number of cervical 

scrapes obtained from patients attending the Dysplasia Unit of the Department for 

Gynecology at the Jena University Hospital were evaluated. These samples had been 

HPV-genotyped at the Jena University Hospital using the GP5+/GP6+ protocol of 

Jacobs et al.20 and were provided for this study as anonymous samples thus not 

requiring ethical permission for use. The PCR assay routinely conducted at the Jena 

University Hospital comprises 10 µl DNA (up to 50 ng), 1X reaction buffer, 3.5 mM 

MgCl2, 200 µM of each dNTP, 1U of thermostable DNA polymerase (AmpliTaq, 
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Roche) and 50 pmol each of the GP5+/GP6+ primers (which allow the amplification 

of all genital HPV types) to a final volume of 50 µl. DNA was extracted from cervical 

scrapes using the QIAmp DNA Mini Kit from Qiagen according to the manufacturer’s 

recommendations. The DNA was dissolved in 80 µl of H2O, with typical DNA 

concentrations ranging from 0.5 to 5 ng µL-1.  

The PCR products were detected by an enzyme immunoassay (EIA) which can 

differentiate high risk from low risk HPV groups, using a cocktail of digoxygenin 

labelled probes. For HPV genotyping, individual digoxygenin labelled probes were 

used. The GP5+/GP6+ assay has a semi-qualitative read-out and a sensitivity of about 

100 HPV genome copies per reaction. Based on this assay the genomic DNA from 3 

HPV16- , 3 HPV18- , 3 HPV45- positive patients and 3 HPV-negative patients were 

provided for evaluation of the developed sensors. A biotinylated forward primer was 

used for generation of single stranded DNA (ssDNA) and 5 µL of the provided 

aliquots were used.  

HPV16E7p PCR protocol. The 100 μL reaction mixture contained 1 U of Taq 

polymerase (Invitrogen), 1X PCR reaction buffer, 3 mM MgCl2, 200 μM dNTP and 

400 nM of each primer. Thermal conditions were optimised to be 2 min at 95°C 

followed by 30 cycles of 20 s at 95°C, 20 s at 60°C, and 20 s at 72°C.  

HPV18E6 and HPV45E8 PCR protocols. The 100 μL reaction mixture contained 1U 

of Taq polymerase, 1X PCR reaction buffer, 2 mM MgCl2, 200 μM dNTP and 200 nM 

of each primer. Thermal conditions for HPV18E6 were optimised to 2 min at 95°C 

followed by 30 cycles of 20 s at 95°C, 20 s at 55°C, and 20 s at 72°C. Thermal protocol 

for HPV45E6 is: 2 min at 95°C followed by 25 cycles of 20 s at 95°C, 20 s at 60°C, 

and 20 s at 72°C. 

A final extension step of 72°C for 7 min was included in all protocols. Thermal 

cycling was performed in an ICycler Thermal Cycler (Bio-Rad Laboratories, S.A, 

Barcelona). 
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4.3.7 Generation of ssDNA from amplified products 

Following amplification, strand separation was performed with streptavidin-coated 

magnetic beads (Dynabeads MyOne Streptavidin C1, Invitrogen, Barcelona), which 

were prepared according to the manufacturer’s recommendations. Briefly, 200 µL of 

PCR product was mixed with the same volume of 2X B&W buffer (10 mM Tris-HCl 

pH 7.5, 1 mM EDTA and 2 M NaCl) and 0.1 mg of pre-washed beads and incubated 

for 30 min at RT under gentle shaking conditions. The tubes were then placed in 

proximity to a magnet for 2-3 min, and the beads were held in place, the supernatant 

was discarded and the isolated beads were washed twice with 1X B&W buffer. 

Denaturation of the immobilised double stranded (dsDNA) was performed by the 

addition of 60 µL of 100 mM NaOH for 3 min. The supernatant containing ssDNA 

was recovered, precipitated and rehydrated in PBS-Tween (0.1 M, pH 7.4) and stored 

at -20ºC. 

 

4.4 Results and discussion 

4.4.1 Individual detection of HPV16, HPV18 and HPV45 

Calibration curves were constructed for each sequence studied to evaluate the 

analytical performance of the genosensor using synthetic oligonucleotides (Figure 4.2). 

The current responses showed a linear relationship with target concentration in the 

range of 0.1-10 nM with a sensitivity of 0.15 µA·nM-1 (r2 = 0.997) and LOD of 220 

pM for HPV16E7p, from 0.1 to 12 nM with a sensitivity of 0.119 µA·nM-1 (r2 = 0.987) 

and LOD of 170 pM for HPV18E6 and in the range of 0.1-1 nM with a sensitivity of 

1.02 µA·nM-1 (r2 = 0.999) for HPV45E6 with LOD of 110 pM. These differences in 

sensor parameters may be due to the fact that HPV16E7p and HPV18E6 targets are 

considerably longer (159-mer and 139-mer) than the HPV45E6 (78-mer) target. The 

low background signal obtained in the absence of target, as evidenced with the 

intercept in the calibration curve, demonstrates that there is no-specific adsorption of 

the reporter probe on the electrode surface. 
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Figure 4.2. Dynamic linear ranges in the calibration curves obtained for HPV16E7p, HPV18E6 and 

HPV45E6. 

 

4.4.2 Cross-hybridisation studies  

Selectivity and specificity are fundamental in the performance of multiplexed 

detection using an electrode array. Hence, discrimination between the three high-risk 

sequences studied is essential for a reliable response. Furthermore, co-storage of a 

mixture of HRP-labeled reporter probes would simplify the assay for the end-user. To 

evaluate possible cross-reactions between the selected HPV types, a series of 

experiments were performed using mixtures of targets and reporter HRP-labeled 

probes and the responses were compared with measurements using the single specific 

target and probe (Figure 4.3).  
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Figure 4.3. Schematic representation of the cross-hybridisation studies based on the comparison of (a) detection of 

a given sequence with its specific reporter probe, (b) detection of a given probe with a mixture of reporter probes 

and (c) detection of a mixture of the three sequences with a mixture of reporter probes. 

 

The electrode array was modified with thiolated HPV16E7p, HPV18E6 and 

HPV45E6 capture probes on different working electrodes and target hybridisation was 

performed using aliquots of the single specific target or a mixture of the three targets 

at concentrations of 1 or 10 nM on the electrode surface. Similarly, hybridisation of 

single specific or a mixture of 10 nM HRP-labelled reporter probes was carried out. 

Responses were plotted by comparing the signal of the specific hybridisations with the 

responses obtained when the hybridisations were carried out in the presence of the 

mixture of targets and/or HRP labeled probes (Figure 4.4), and no significant 

interference was observed (RSD < 7%, n = 3), and it can thus be concluded that there 

is negligible cross-hybridisation for HPV16E7, HPV18E6 and HPV45E6. 
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Figure 4.4. Cross-hybridisation studies results for (A) 1 nM target and (B) 10 nM target. grey column: specific 

target and specific HRP-labelled probe; white column: specific target and mixture of HRP-labelled probes; black 

column: mixture of targets and mixture of HRP-labelled probes. 

 

4.4.3 Multiplex measurements 

For the simultaneous detection of three high-risk HPV sequences, the electrode 

array was modified with HPV16E7p, HPV18E6 and HPV45E6 probes on alternating 

electrodes as well as with HPV45E7 as a non-specific probe (Figure 4.5).  
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Figure 4.5. (A) Map of positions of the immobilised probes on the electrode array for multiplexed studies (NS: 

non-specific). (B) Signal obtained for the simultaneous detection of HPV16E7p, HPV18E6 and 

HPV45E6.  

 

The average current values were (0.73  0.04) A for HPV16E7p, (0.68  0.03) A 

for HPV18E6, (0.43 0.03) A for HPV45E6 and (0.007 0.005) A for the non-

specific probe. As can be seen, the signal obtained for the detection of HPV16E7, 

HPV18E6 and HPV45E6 as well as for the non-specific is very reproducible and the 

ability to differentiate the four signals and detect the three HPV targets simultaneously 

is clearly demonstrated. 

 

4.4.4 Reusability and stability 

Whilst it would never be envisaged that gensosensors applied to clinical analysis 

would be recycled, for developmental work, it is useful to be able to re-use the 
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genosensors. Reusability of the genosensor was thus tested in the HPV18E6 platform. 

The sensor array was modified as described above, and a complete sandwich was built 

for the detection of 10 nM synthetic target. Electrochemical signal was recorded and 

used as total signal to compare for subsequent runs. Regeneration of the surface was 

performed by de-hybridising the HRP-labelled probe and target from thiolated probe 

using 100 µL of 50 mM of NaOH. Detection was then performed another four times 

following the same procedure, in the next four consecutive days, storing the sensor 

array in the fridge. After five cycles of regeneration, the hybridisation capacity of the 

genosensor was maintained, with a relative standard deviation of 1.77%, n = 3. 

To study the stability of the genosensor platform, chips were modified with 

thiolated probes as described above, stored in dry conditions at 4ºC and the response 

in the detection of 10 nM of target was measured weekly. No significant decrease in 

amperometric response (<5%) was observed after one month of storage, indicating 

that the immobilised probes do not lose their recognition ability upon storage in these 

conditions. 

 

4.4.5 Analysis of clinical samples 

The genosensor array was evaluated with clinical samples obtained from Jena 

University Hospital. DNA extracted from cervical scrapes that were positive for 

HPV16, HPV18 and HPV45 (three cases for each HPV type) and 3 HPV negative 

cases were provided. These samples had been HPV-genotyped using the GP5+/GP6+ 

assay at the Jena University Hospital. Five µL of these DNA samples were amplified 

and ssDNA was generated using streptavidin-coated magnetic beads. Following 

precipitation of the ssDNA, it was rehydrated in 20 µL of 0.1 M PBS-Tween pH 7.4. 

To check the quality of the generated ssDNA, an agarose gel (4 %, certified low range 

ultra agarose, Bio-rad) was performed comparing the sample obtained with an aliquot 

of a synthetic DNA sequence equivalent in length and sequence to the amplicon. In all 

cases, a band of expected size was obtained, indicating that the correct sequence had 

been amplified. One µL of each of the samples was added to HPV genosensor array, in 
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order to identify which strain of HPV was present and to further highlight the 

flexibility of the developed platform to also quantify the amount of DNA present in 

the samples. Samples were previously diluted in a 1/10 factor in the case of HPV16 

and HPV18 and in a 1/30 dilution factor for HPV45 (due to its lower linear range). 

Analytical responses obtained in three measurements were quantified, and as 

summarised in Table 4.1, the HPV electrochemical genosensor had an excellent 

correlation with the HPV genotyping carried out within a hospital laboratory. The 

reported genosensor multiplexed approach could thus be extended and applied to the 

detection of other high-risk, and low-risk HPV sequences for HPV genotyping. 

 

Table 4.1. Results obtained for electrochemical detection of ssDNA generated from amplified DNA extracted 

from clinical samples of cervical scrapes. 

Sample 
HPV 

genotyping 

Genosensor array (nM) 

HPV16 HPV18 HPV45 

1A 
HPV16 

 

3.60 0.19 0.12 

1B 4.28 0.17 0.15 

1C 4.06 0.21 0.14 

2A 

HPV18 

0.23 3.90 0.11 

2B 0.25 2.74 0.12 

2C 0.29 2.55 0.13 

3A 

HPV45 

0.29 0.17 0.67 

3B 0.27 0.18 0.78 

3C 0.24 0.23 0.73 

10 

Negative 

0.27 0.29 0.12 

11 0.37 0.21 0.13 

12 0.41 0.20 0.12 
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4.5 Conclusions 

An electrochemical genosensor array for the multiplexed detection of three of the 

most representative high-risk HPV types (16, 18 and 45) was performed and applied to 

the analysis of real clinical samples. A co-immobilisation strategy of a thiolated probe 

and a bipodal alkanethiol was used for the modification of the gold working electrodes 

and a sandwich assay was carried with a HRP-labelled probe out for the detection of 

the three HPV types. The surface chemistry facilitated a highly sensitive genosensor, 

with limits of detection of 220 pM, 170 pM and 110 pM, for HPV16E7p, 18E6 and 

45E6 respectively with negligible non-specific binding. Cross-reactivity between targets 

and HRP-labelled probes was tested, and insignificant cross-hybridisation was 

obtained. Multiplexed studies further demonstrated the specificity of the genosensor. 

Finally, the genosensor was applied to the quantitative detection of DNA in clinical 

samples from cervical scrapes positive for the three HPV types studied, showing an 

excellent degree of correlation with HPV genotyping carried out in a hospital 

laboratory. The developed platform, capable of multiplexed, quantitative detection of 

nucleic acids could find widespread application, particularly in the detection of RNA 

expression profiles for use in theranostics. 
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5.1 Abstract 

DNA analysis using variable temperature technologies such as melting curve 

analysis, high temperature mutant discrimination or immobilised PCR relies upon the 

use of immobilised probes that need to be stable over a wide temperature range. In 

this work a comparison of the thermal stability of gold surfaces modified with 

alkanethiol and diazonium salt derived layers is presented. Electrochemical impedance 

spectroscopy and cyclic voltammetry were used to characterise the electrode arrays. 

The applicability of the surfaces for DNA sensing was demonstrated following the 

thermal treatment, with the diazonium-modified surface being markedly more stable. 

 

5.2 Introduction 

The formation of self-assembled monolayers (SAMs) of thiol, sulphide or 

disulphide containing molecules is one of the most widely used methods for the 

modification of metal surfaces.1-2 It is well known that gold-thiol chemistry produces 

well ordered monolayers with a reasonably strong bond.3-4 However, the tendency of 

gold to oxidise in air media,5 the narrow potential window6 and low thermal stability of 

SAMs on gold7-8 have limited their usefulness for certain applications. Attempts to 

increase the stability of SAMs on gold have been made using multi-thiol anchored 

molecules9-10 or via the incorporation of cross-linking groups within the alkyl chains.11-

14 

An attractive alternative is the grafting of aryl group via the reduction of diazonium 

salts, as the carbon-gold bond is more stable than the thiol-gold bond due to a lower 

bond strength and higher bond order, which translates into a higher stability of the 

modified surfaces.15 Gooding and McDermott have compared the stability in terms of 

resistance to sonication, exposure to refluxing solvents, displacement using thiolated 

molecules16 and under laboratory atmosphere conditions17 reporting that the aryl 

diazonium derived films are, under certain conditions, more strongly bound to gold as 

compared to alkanethiol layers. Applications of diazonium chemistry for the 
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immobilisation of a variety of biomolecules, including DNA and proteins, have been 

reported.18-19 

In the present work we studied the thermal stability of a series of modified gold 

surfaces with mono- and di-thiol molecules compared with diazonium salts with one 

and two diazo- groups for the grafting on the gold electrode (Figure 5.1). 

Electrochemical techniques were used to control the influence of the thermal 

treatment on the formed layers. The functionality of the grafted surfaces was tested by 

application to genosensing using human papillomavirus oncogene sequences. 

 

5.3 Experimental 

5.3.1 Chemicals 

6-mercaptohexanoic acid (1) and 4-aminophenylacetic acid (3) were obtained by 

Sigma-Aldrich; 3,5-bis(4-aminophenoxy)benzoic acid (4), from TCI Europe and (22-

(3,5-bis((6-mercaptohexyl)oxy)phenyl)-3,6,9,12,15,18,21-heptaoxadocosanoic acid) (2), 

from Sensopath Technologies. 3,3’,5,5’-Tetramethylbenzidine (TMB) liquid substrate 

was purchased from Sigma. 

Amino terminated HPV16E7p probe:  

(5’-NH2-C6-GAGGAGGAGGATGAAATAGATGGT-3’),  

HPV16E7p target: 

 (5’-GCCCATTAACAGGTCTTCCAAAGTACGAATGTCTACGTG 

TGTGCTTTGTACGCACAACCGAAGCGTAGAGTCACACTTGCAACAAAAG

GTTACAATATTGTAATGGGCTCTGTCCGGTTCTGCTTGTCCAGCTGGACC

ATCTATTTCATCCTCCTCCTC-3’) and  

HRP labelled HPV16E7p secondary probe  

(5’-TTGGAAGACCTGTTAATGGGC-HRP-3’) were purchased from Biomers. 
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Figure 5.1. Structures of thiols and diazonium salts used 

 

5.3.2 Electrode preparation and procedures 

Arrays consisting of 5 rectangular sputtered gold electrodes (area 5 mm2) were 

used. The arrays were sequentially sonicated with acetone, 2-propanol, acetone for 5 

minutes and rinsed with Milli-Q water. The electrodes were placed in warm Piranha’s 

solution (1:3 v/v 30% H2O2 in concentrated H2SO4) for 5 min. Finally electrochemical 

cleaning of the arrays was performed in 0.5M H2SO4 solution by cycling the potential 

between –0.2V and 1.6V at 100 mVs-1 for 25 cycles. Bare electrodes were characterised 

by CV and EIS using a PGSTAT12 potentiostat. All potentials were measured with 

respect to Ag/AgCl (sat) reference electrode and a platinum wire used as counter 

electrode. 
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5.3.2.1 Diazonium salt derived layers preparation 

Diazonium salts were prepared in situ by adding 1 mL sodium nitrite solution (2 M) 

to an ice-cold stirred solution of 3 mL of the amine (0.1 M) and 1mL of HCl (1 M) and 

the mixture was stirred for 25 min at 4ºC. For surface modification, electrode arrays 

were immersed in the diazonium salt solution and potential cycling was carried out 

between 0.2 V and -0.6 V at 100mVs-1 for 2 cycles. After modification, the arrays were 

rinsed with Milli-Q water and dried with nitrogen gas.  

 

5.3.2.2. Thiol-derived layers preparation 

Clean gold arrays were immersed in 1 mM of the corresponding thiol in ethanol 

overnight to facilitate the formation of the self-assembled monolayers. Following 

modification, the arrays were rinsed with ethanol in order to remove physically 

adsorbed molecules. 

 

5.3.3. Thermal stability studies 

Modified electrode arrays were immersed in approximately 15 mL of phosphate 

buffer solution (0.1 M pH7.4) containing 500 mM NaCl that was maintained at a 

constant temperature ranging from 25 to 95ºC. Electrode arrays were removed at 

specific times, rinsed with water and left to reach room temperature. CVs and EIS 

were measured and the electrode arrays were re-immersed in the heated bath. A single 

electrode array (n=5) was used for the exploration of the entire temperature range 

from 25 to 95ºC. 

 

5.3.3 DNA detection 

Electrodes were modified with compounds 2 and 4 as described above. The 

carboxyl groups of the layers were activated by stirring the electrode with 0.2 M EDC 

and 50 mM NHS for 30 min followed by 5 µM of amino terminated probe HPV16E7p 

(24-bp) in 10 mM HEPES pH6 overnight. A washing step consisting of 15 min stirring 
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in 10 mM PBS-Tween (0.05% Tween 20) and 10 min stirring in MilliQ water was 

performed. Any remaining carboxylic groups were blocked with 0.1 M ethanolamine 

hydrochloride (pH8.5) for 30 min. HPV target (159-bp, 100 nM) in PBS-Tween was 

applied to each of the electrodes and incubated for 1 h at room temperature. 

Subsequently, the arrays were washed for 15 min with PBS-Tween and dried with 

nitrogen. The reporter probe (21-bp, 10 nM) in PBS-Tween was then incubated for 1 h 

at RT. The hybridisations of the target and detection probe were performed under a 

humid environment to avoid drying. After final washing, the detection step was carried 

in the presence of TMB substrate. The reduction of TMB was detected by steps and 

sweeps technique by applying two consecutive pulses of 0 V for 1 ms and -0.2 V for 

0.5 s. 

 

5.4 Results and discussion 

5.4.1 Thermal stability studies 

The modification of gold electrode arrays by electrodeposition of in situ prepared 

diazonium salts or via the formation of alkanethiol SAMs was confirmed by CV (Figure 

5.2). Following modification of the electrodes the redox peaks of ferricyanide observed 

at bare electrodes were almost completely suppressed due to the formed layer.  

 

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF ELECTROCHEMICAL BIOSENSORS AND SOLID-PHASE AMPLIFICATION METHODS FOR THE DETECTION OF HUMAN PAPILLOMAVIRUS GENES 
Laia Civit Pitarch 
Dipòsit Legal: T. 1050-2012 
 



Thermal stability of diazonium derived and thiol derived layers on gold 

99 

 
Figure 5.2. Cyclic voltammograms of 1 mM ferricyanide (in 0.1 M phosphate buffer, pH 7.4) at a scan rate of 

100 mVs-1 before (), after the modification of gold electrode arrays with compounds 1-4 (----) and after 

thermal treatment (········) 

 

The thermal stability of diazonium films on gold was compared by subjecting the 

modified electrodes to a treatment consisting of the immersion of the electrodes in 

phosphate buffer solution (0.1 M pH7.4) containing 500 mM NaCl (typically used for 

optimal DNA hybridisation), and increasing the temperature in the range 25 - 95ºC at 

intervals of 10ºC with changes in the array surface being monitored by CV and EIS. 

Figure 5.3 A shows the variation of the charge transfer resistance (Rct) at each stage of 

the thermal treatment. In the 25 - 50ºC temperature range no significant changes can 

be appreciated in the Rct, indicating the stability of the films within this temperature 

range. At about 65ºC the Rct started to decrease for thiol SAMs films (10% for 1 and 

38% for 2), due to the temperature induced loss in density of such films, allowing 

more accessibility for the redox species. The desorption of 2 at a lower temperature 
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can be explained by the lower packing density of those films as compared to MHA, as 

well as its structure as its distribution generates some intermolecular empty space, 

facilitating access of the redox species to the electrode surface, in contrast to the 

insulating behaviour of the aliphatic monothiol.20 Therefore, desorption of at least one 

of the thiol-gold bonds of the dithiol molecule results in an easier diffusion of the 

redox species to the gold surface decreasing the Rct. At temperatures above 80ºC the 

Rct dramatically drops for 1 (92%) indicating the desorption of a significant part of the 

film, being practically removed after exposure at 95ºC, while for the film of 2 26% of 

the initial Rct value can be observed. This indicates that monothiols generate more 

stable SAMs that dithiols at low temperature, while the stability trend is reversed at 

high temperature (>70ºC) where the dithiols have a higher stability. 
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Figure 5.3. Temperature dependence of Rct (A) and peak current (B) for surfaces modified with 1 (-------), 2 (-·-

·-·-·), 3 () and 4 (········). 

 

In contrast, there was a small decrease in the Rct of around 20% for both 

diazonium salt derived films during the whole thermal treatment. This can be 

attributed to desorption of some possible unbound species that could be produced by 

recombination of two phenyl radicals and a diazonium and a phenyl radical. This 

decrease in response could also be due to the breakage of Au-N bonds from Au-N N-

C, which has been proposed as an alternative mechanism to the rupture of Au-C 

bonds.21 

CVs were also performed at each stage of the thermal treatment (Figure 5.3 B). At 

temperatures below 50ºC no ferricyanide redox peaks were observed, as expected for 

completely blocked surfaces. The electrochemical response of ferricyanide then started 

to be significant for the alkanethiol films, reaching nearly the same intensity as 

observed on the bare gold electrodes above 80ºC in the case of 1. In the case of the 
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dithiol films a sufficient amount of 2 is maintained on the electrode even at high 

temperature with a moderate degree of blocking of electron transfer. In contrast the 

diazonium films demonstrate resistance to the thermal treatment, with blocking of 

electron transfer for ferricyanide even at very high temperatures again highlighting the 

thermal stability of these films (Figure 5.2).  

 

5.4.2 Functionality of modified surfaces 

DNA analysis using variable temperature technologies such as melting curve 

analysis, high temperature mutant discrimination or immobilised PCR relies upon the 

use of immobilised probes that need to be stable over a wide temperature range.  

In order to test the functionality of the prepared surfaces, a complete sandwich 

assay with the corresponding DNA probes was built as described in the experimental 

part and used for the detection of human papillomavirus sequences on electrodes 

modified with 2 and 4. A control consisting of no target hybridisation showed a non-

significant signal, indicating no non-specific adsorption of the HRP-labelled secondary 

probe. 

The modified electrodes were then subjected to the thermal treatment described 

above, ramping the temperature to 95ºC, followed by a re-immersion of the dithiol 

modified electrode in a 1 mM solution of 2 in ethanol to cover the free gold after 

desorption in order to avoid non-specific adsorption of the target or reporter probe on 

golf free surface during the hybridisation processes. This is not possible for the 

diazonium salt derived layer as the diazo group could interact with the aromatic rings 

of certain DNA bases (adenine, cytosine or guanine) resulting in loss of specificity for 

the target.22 The last step was to re-construct the complete “sandwich” following the 

same procedure as above and proceed to detection. As expected, a significant decrease 

in the signal due to TMB reduction of about 45% after thermal treatment was 

observed due to the desorption of the dithiol SAM (2), while only a 7% of the initial 

signal decreases in the diazonium derived layer (4) (Figure 5.4). This demonstrates that 
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an electrode prepared with diazonium salts derived layers is highly suitable for 

temperature-modulated electrochemical DNA sensing applications mentioned above. 

 

 
Figure 5.4. (A) Schematic of DNA detection. (B) Variations in amperometric signal (TMB reduction) for the 

detection of 100 nM of HPV16E7p target before and after exposure of the electrodes to thermal treatment for 

surfaces modified with 2 and 4. 

 

5.5 Conclusions 

Diazonium salt derived layers were found to be thermally stable to significantly 

higher temperatures than alkanethiol SAMs on gold surfaces. Of the alkanethiol SAMs 

surfaces tested, monothiol were less stable starting to desorb at temperatures around 

65ºC, and at temperatures higher than 95ºC the layer was completely removed. Dithiol 

SAMs are more resistant to the thermal treatment, remaining around 26% after 
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exposure to 95ºC of the layer on the surface. On the other hand, both the diazonium 

salt derived layers respond equally to the thermal treatment, with minor losses that can 

be attributed to the removal of non-specifically attached molecules. This surface has 

been proved to be an excellent alternative for the application in temperature 

modulated electrochemical DNA sensing. 
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6.1 Abstract 

The synthesis of a bipodal diazonium salt, 3,5-bis(4-diazophenoxy)benzoic acid, 

and the study of its electrochemical deposition on gold surfaces is presented. The 

presence of the organic layer on the gold surface was characterised using atomic force 

microscopy and X-ray photoelectron spectroscopy, demonstrating the presence of 

phenyl groups, indicative of the grafted layer as well as the formation of multilayers, 

dependent on the electrografting conditions. 

 

6.2 Introduction 

In 1992 Pinson and co-workers demonstrated that the electrochemical reduction of 

diazonium salts on carbon surfaces leads to strong chemisorption rather than mere 

physisorption.1 Although modification of carbon surfaces was initially the most 

studied,2-5 interest has also focused on substrates such as metals6-8 and semi-

conductors.9 In addition, the variety of substituents with aryl rings for surface 

functionalisation permits their application to an extensive range of areas such as 

biosensors,10 catalysis,11 nanotubes12 and anti-corrosive agents8 among other 

applications. The modification of substrates with diazonium salts has been carried out 

in aqueous13 or organic14 media and by electrochemical4 or, spontaneous grafting.15 

Reduction of the diazonium cation close to the electrode surface causes elimination of 

N2, yielding an aryl radical which attacks the substrate to form a covalent bond.16 

Multilayer film structures may form as a result of radical attack on surface-grafted aryl 

groups6 and the thickness of the resulting layers prepared by electrografting depends 

on time and applied potential as well as the nature of the starting material.6 Anariba et 

al., reported the layer thickness obtained for four different diazonium salts deposited, 

obtaining different film thicknesses and multilayers were formed for increased 

electrolysis or diazonium ion concentrations.3 The introduction of substituents to the 

diazonium ion may yield a slower growth rate, depending on the position of the 

substitutent.17 Reports have detailed that grafting efficiency depends on the nature of 
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the amine, the chain length of the alkyl substituent and the substitution position on the 

aromatic ring.18 

In this communication we report on the synthesis and characterisation of the 

electrografting of a diazonium salt with two diazo- groups 3,5-(4-

diazophenoxy)benzoic acid (3,5-BDBA). Characterisation of the synthesised 3,5-

BDBA was performed using NMR and IR, and of the electrografted gold surfaces 

using AFM and XPS. 

 

6.3 Experimental 

3,5-bis(4-aminophenoxy)benzoic acid was obtained from TCI Europe and 

octadecanethiol was purchased from Sigma Chemical Company. 1H NMR spectra 

were recorded on a Bruker Avance 400 Ultrashield NMR spectrometer operating at 

400 MHz. FTIR spectra were recorded with a Jasco FT/IR-600 Plus ATR Specac 

Golden Gate. Spectra were collected with a spectral resolution of 4 cm-1 accumulating 

32 scans. All FTIR spectra were recorded in transmission mode. 

 

6.3.1 Synthesis of 3,5-bis(4-diazophenoxy)benzoic acid tetrafluoborate 

A solution of 1 mmol of 3,5-bis(4-aminophenoxy)benzoic acid in MilliQ water was 

added to a flask placed in an ice bath and 8 mmol of fluoroboric acid 50% was added 

dropwise and mixed for 10 min. Subsequently, 2.5 mmol of sodium nitrite in water was 

added to the reaction mixture and the final solution was cooled and the precipitated 

white solid collected, washed with cold water, centrifuged and finally dried under 

vacuum. 

1H-NMR (400 MHz, CD3CN) δ 8.50-8.45 (m, 4H, HAr), 7.87 (d, J = 2.45 Hz, 2H, 

HAr), 7.46-7.41 (m, 5H, HAr). 13C-NMR (100 MHz, CD3CN) δ 167.8 (COOH), 164.5, 

154.4 (CArO), 136.0 (CHArCArN), 135.2 (CArCOOH), 120.6, 119.8, 119.1 (CAr), 105.3 

(CArN).  
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The IR spectrum of the free diazonium salt was characterised by four strong bands 

in the 3500−1000 cm−1 region: νO−H at 3100 cm−1, νN≡N at 2300 cm−1, νC=O at 1700 

cm−1 and νC-O at 1040 cm−1.  
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Scheme 6.1 Synthesis and electrodeposition of 3,5-bis(4-diazophenoxy)benzoic acid tetrafluoborate (BDBA). 

 

6.3.2 Modification of gold surfaces 

1-octadecanethiol (ODT) SAM was prepared by immersing freshly deposited gold-

coated chromium-primed glass substrates (100 Deckglaser 22x64 mm # 1.5, Menzel-

Gläser) in 1 mM solution of the thiol in ethanol for a minimum of 18 h. The thickness 

of the gold film was 150 nm, and the chromium layer was 20 nm thick. 

Photopatterning of the surfaces was performed by the exposure of the SAM 

modified gold surfaces to light from a frequency doubled argon ion laser emitting at 

244 nm (55 mW) for 70 min. The patterned structure was obtained through a 2000 

square Cr mask. Photopatterned surfaces were rinsed with ethanol and 

electrochemically modified using either cyclic voltammetry (CV) or 

chronoamperometry (CA) in 1 mM 3,5-bis(4-diazophenoxy)benzoic acid 

tetrafluoborate prepared in 0.1 M Bu4NBF4 in acetonitrile, deaerated with nitrogen for 

5 min prior to each experiment. 1, 5, 10, 20 or 30 potential cycles were performed 

from 0.2 to -0.6 V at a scan rate of 100 mV·s-1. CA was carried out at a constant 

potential of -0.45 V for 15, 60, 300 and 600 seconds. A silver wire reference and 

platinum wire counter electrode were used. 
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6.3.3 Surface analysis 

AFM measurements were carried out on a Digital Instruments Multimode 

Nanoscope IIIa. Silicon nitride cantilevers (Veeco) with a nominal force constant of 

0.12 Nm-1 were used in contact mode to image the patterned surfaces. All images were 

obtained in ambient conditions. Samples were rinsed in acetone, sonicated for 1 

minute in ethanol, and finally thoroughly rinsed in ethanol and dried by a stream of 

nitrogen gas prior to imaging. Random areas (n = 5) of the samples were imaged and 

averaged to obtain the final result. 

XPS was performed using a Kratos Axis Ultra spectrometer equipped with a 

monochromatised Al K X-ray source (hν = 1486.6 eV) operating with a base 

pressure in the range of 10-8 to 10-10 mbar. Survey scans were acquired at a pass energy 

of 160 eV, and the high-resolution spectra were acquired at a pass energy of 20 eV. 

XPS spectra were analysed by CasaXPS software. The spectra were calibrated against 

the C1s peak at 285 eV. 

 

6.4 Results and discussion 

6.4.1 X-ray Photoelectron Spectroscopy of diazonium layers 

Survey spectra of the gold surface after modification exhibited a high background, 

due to the inelastic scattering of the photoelectrons by the grafted layer.19 B1s (187eV) 

and F1s (687 eV) were not observed, indicating that the BF4- counterion was 

eliminated from the diazonium complexes during the electrochemical modification of 

the gold substrates.20 The N1s signal, attributable to the diazonium moiety (at about 

400 eV), is small in the spectra obtained for all tested surfaces, corroborating the 

hypothesis that the reduction of the diazonium cation close to the surface leads to 

elimination of N2 forming an aryl radical that attacks the substrate16 and suggests that 

the 3,5-BDBA molecule is doubly bonded to the surface conferring the layer a high 

stability.21 The small signal observed can be attributed to nitrogen atoms retained 

during the formation of multilayers, for example by forming –N=N- bridges.19 
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The C1s core level spectrum (Figure 6.1a) exhibited three principal components at 

284.6, 286.2 and 288.9 eV. The component at 284.6 eV was attributed to the aromatic 

carbons, the component at 286.2 eV to ring carbon atoms bound to oxygen (joined by 

ether linkages). The component at 288.9 eV was ascribed to the substituent carboxylic 

acid (288.9 eV). The C-O-C and CH peaks were in a 1:3.05 ratio, consistent with the 

molecular formula of a doubly-linked 3,5-BDBA molecule, which contains 4 C-O-C 

and 11 CH groups. 

 
Figure 6.1 a) C1s spectra for 3,5-BDBA modified gold substrates by cyclic voltammetry, b) Contact mode 

AFM image showing micrometer scale patterns produced by ODT SAMs to UV light through a mask, 

followed by modification with 3,5-BDBA by 20 potential cycles (general friction image of 50 x 50 µm), c) 

detailed height image of 14 x 14 µm. 
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6.4.2 Atomic Force Microscopy 

A photo-patterned template was formed on an ODT SAM, defining regions of bare 

gold to grow films of diazonium salt. Taking advantage of the ability of alkylthiolates 

to be photo-oxidised on exposure to UV light (λ = 244 nm) to yield weakly bound 

sulfonates,22 SAMs of ODT on gold were exposed through a mask to form the desired 

pattern. In exposed regions, thiols were converted to sulfonate species.23 Once the 

optimal exposure time was determined (90 min), patterning was performed by 

electrochemically modifying the exposed free areas with the diazonium salt, yielding a 

surface that consisted of square regions, where the carboxylic terminated organic film 

(3,5-BDBA) was deposited, whilst in the masked regions the original chemistry 

remained (methyl group). 

Samples were imaged by AFM in contact mode. The thickness of the deposited 

layer was determined from line sections through height images corrected for the 

thickness of the intact SAM in the masked regions. The thickness of the intact ODT 

SAM was assumed to be 2.6 nm24 and the height of a monolayer of 3,5-BDBA ca. 0.8 

nm. Representative AFM images of patterned surfaces obtained are shown in Figure 

6.1b-c. The 3,5-BDBA layer deposited in the UV exposed areas formed homogeneous 

structures and show high friction (bright contrast) in contrast to the masked areas that 

exhibit darker contrast, indicative of lower friction. As the outer surface of the silicon 

nitride probes used consists of a thin layer of polar silicon dioxide they strongly 

interact with the COOH terminated regions, leading to a larger friction force and an 

increased deflection of the cantilever. 

The thickness of the resulting diazonium layer for both of the electrochemical 

techniques increased as the grafting time/number of cycles increased, reaching a value 

that was substantially greater than the expected height of a 3,5-BDBA molecule, 

indicating that multilayer formation was occurring (Figure 6.2). The 3,5-BDBA film 

reached thicknesses of 7.3 nm (equal to around 9 molecular layers) for CV treatment 

with 30 potential cycles, and 11.0 nm in the case of CA modification after 600 s (equal 

to 14 molecular layers). In the case of 1 potential cycle (CV), the height measured of 

the 3,5-BDBA layer was 2.8 nm, so it can be assumed that the thickness corresponds 
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to the deposition of between 3 and 4 molecular layers. For 5, 10 and 20 potential 

cycles, measured thickness was 4.1, 5 and 5.8 nm respectively, equivalent to around 5, 

6 and 7 molecular layers.  
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Figure 6.2. Height of the deposited 3,5-BDBA film by the two electrochemical techniques; a) CV and b) CA. 

 

For CA deposition, a layer of 4 nm was obtained after 15 s and after 60 s the layer 

grew to 7.6 nm, around 10 molecular layers. Then the thickness was maintained 

constant with 7.9 nm obtained until 300 s. From these results, it can be concluded that 

CA deposition formed thicker films of 3,5-BDBA than CV deposition. 
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6.5 Conclusions 

A bipodal diazonium salt, 3,5-bis(4-diazophenoxy)benzoic acid, was synthesised 

and characterised using NMR and IR, whilst its electrochemical deposition on gold 

substrates was characterised using two different techniques, XPS and AFM. Cyclic 

voltammetry and chronoamperometry were used for the electrografting of the aryl 

moieties. XPS studies confirmed the deposition of the bipodal diazonium. The small 

peak of nitrogen at about 400 eV can be explained due to its involvement in the 

formation of multilayers. Patterning of the surfaces is a good approach to determine 

the thickness of the organic layers deposited. The photo-oxidation of the thiols by its 

exposure to UV light for the formation of the patterns was exploited, and the 

thickness was calculated by adding the difference in height measured by contact mode 

to the thickness of the SAM. It was observed that one potential cycle forms more than 

a tri-layer, while for the other deposition conditions, multilayers were formed, reaching 

a height of 7.3 nm for CV treatment with 30 potential cycles, and 11 nm in the case of 

CA modification after 600 s. 
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7.1 Abstract 

A proof-of-concept of a real-time electrochemical monitoring of solid-phase 

isothermal helicase-dependent amplification (HDA) of nucleic acids is reported. The 

optimum conditions for surface chemistry preparation were investigated. Electrostatic 

interaction of ruthenium with the negatively charged DNA was used to monitor the 

progress of HDA. 

 

7.2 Introduction 

In recent years, there has been an increased interest in the generation of point-of-

care (POC) molecular diagnostic devices. Miniaturisation of nucleic acid amplification 

methods offers several advantages such as the possibility to decrease required time, the 

use of lower sample volumes, reduction of instrumentation costs and the ability to 

perform the complete analysis on a single chip.  

Whilst the use of polymerase chain reaction (PCR)-based amplification is extensive, 

the need for temperature cycling to separate the two strands is a drawback, limiting its 

use in point-of-care applications, particularly in low resource settings. To overcome 

this, different isothermal amplification methods which do not require extreme heating 

or thermal cycling of the dsDNA for the separation of the two strands have been 

developed.  

The most common isothermal methods include nucleic acid sequence-based 

amplification (NASBA),1-2 loop-mediated isothermal amplification (LAMP),3 rolling 

circle amplification (RCA),4 strand displacement amplification (SDA)5-6 and helicase-

dependent amplification (HDA).7 

Isothermal helicase-dependent amplification was introduced by Vincent et al. in 

2004 and is based on the natural mechanism of the DNA replication fork.7 The 

advantage of HDA is its PCR like reaction scheme (denaturation, primer annealing and 

primer extension steps).8 The key difference relies on the use of helicase to unwind the 

dsDNA subsequently allowing annealing of the two specific primers.  
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HDA has the potential to be integrated in miniaturised, automated point-of-care 

devices and in microarray technology due to its simplicity, multiplexing capability and 

isothermal characteristics, thus avoiding thermocycling and Peltier integration.8 

Andersen et al. reported the adaptation of HDA on a microarray for the detection of 

two pathogens. One primer was immobilised on the microarray surface (glass slide) 

and the second labelled primer was added to the reaction solution. Amplified products 

remained attached and were detected by laser scanning or total internal reflection 

fluorescence (TIRF) technologies.9 

The first electrochemical detection of isothermal HDA was reported by Kivlehan et 

al., who used a DNA intercalating redox probe that becomes less electrochemically 

detectable upon binding with the amplified dsDNA, in comparison with the signal 

obtained when it is free in solution.10 

In the present work, the proof-of-concept of electrochemical detection in real-time 

of immobilised isothermal HDA is presented. Forward primer was immobilised on a 

gold surface, whilst the Rv primer was added to the HDA reaction mixture. Human 

papillomavirus (HPV) associated high-risk type 45 exon was used as a model target 

sequence. Monitoring of the amount of DNA present in the gold surface was 

performed by the electrostatic interaction of Ru (III) complexes that are 3+ positively 

charged, and the DNA phosphate sugar backbone, that is negatively charged. 

Differential pulse voltammetry was used for the detection of Ru. Preliminary studies 

for the application of the developed proof-of-concept in a microfluidic system were 

performed. 

 

7.3 Experimental 

7.3.1 Materials 

Dithiol 2 (DT2, 22-(3,5-bis((6-mercaptohexyl)oxy)phenyl)-3,6,9,12,15,18,21-

heptaoxadocosanoic acid) was purchased from SensoPath Technologies (Bozeman, 

NT). Phosphate buffered saline with Tween 20 (pH 7.4) and 3,3’,5,5’-

Tetramethylbenzidine (TMB) liquid substrate system were from Sigma-Aldrich 
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(Barcelona, Spain). All solutions were prepared with MilliQ water (18 MΩ) produced 

with a Milli-Q RG system (Millipore Ibérica, Madrid, Spain). Maleimide activated plates 

were purchased from Thermo Scientific (Barcelona, Spain. 

IsoAmp II Universal tHDA kit (New England Biolabs Inc.) was obtained from 

Servicios Hospitalarios (Barcelona, Spain). 

Synthetic target sequence (HPV45E6 of 78-mer), modified and non-modified 

forward (HPV45E6 of 23-mer), and reverse primers (HPV45E6 of 18-mer) were 

purchased from Biomers.net (Ulm, Germany). TATAA Biocentre (www.tataa.com) 

can be contacted for further details on the specific sequences of the probes, primers 

and target amplicons.  

 

7.3.2 Electrochemical measurements 

All electrochemical measurements were performed with a PGSTAT 12 potentiostat 

(Autolab, The Netherlands) controlled with the General Purpose Electrochemical 

System (GPES) software and equipped with a MUX module (Eco Chemie B.V., The 

Netherlands). 

A three-configuration system was used for the demonstration of the proof-of-

concept of real-time electrochemical solid-phase HDA, with gold electrode (CHI 101 

gold disk working electrode, from CH Instruments) as working electrode, a platinum 

wire (BAS model MW-1032) as counter electrode and a silver wire as a pseudo 

reference electrode. All potentials were reported with respect to this reference 

electrode.  

 

7.3.2.1 Electrochemical real-time HDA on microfluidics 

A first design was performed by the integration of an electrochemical array within a 

microfluidic cell, where the microfluidic channels were realised by mounting the array 

onto a polycarbonate fluidic chip using double-sided medical grade adhesive foil of 50 

µm thickness, which had been previously laser machined to generate microchannel 

structures of 1 mm width. The electrode array consists of 16 gold working electrodes 
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arranged in a four by four distribution on a glass chip measuring 21 mm × 23 mm, 

fabricated at the Institut für Mikrotechnik Mainz (www.imm-mainz.de). Each working 

electrode (1mm × 1 mm) was placed between a silver pseudo reference (0.2 mm × 1 

mm) and a gold counter electrode of the same size in order to create 16 planar 

electrochemical cells. Connection of the assembled chip was realised via pogopin 

connectors to each of the 18 electrodes (16 working electrodes and 1 plus 1 reference 

and counter electrodes). 

The idea of the design is to carry out the HDA reaction in the meandering channel 

in the upper half of the chip. This chip is then assembled in the platform depicted in 

figure 7.1. The heater is an aluminium block located above the electrode array 

controlled by a PT100 temperature sensor, which is cooled with a cooling fan placed 

on top. The software developed for thermal control is based on LabView and is able to 

set up a variable number temperatures and times controlled via a proportional-integral-

derivative controller (PID gain).  

 

 

Figure 7.1. Electrochemical real-time HDA setup assembly. 
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7.3.3 Primer immobilisation on array surface  

Prior to modification of the electrode arrays, a two-step cleaning protocol was 

applied. Initially in order to remove the protective resist used during storage, the arrays 

were sonicated for 5 min in acetone, 5 min in iso-propanol (3 times) and rinsed with 

water. In a second step, electrochemical cleaning was performed in 0.5 M H2SO4 by 

application of a constant potential of 1.6 V for 10 sec followed by 30 voltammetric 

cycles in the potential range -0.2 to 1.6 V at a scan rate of 0.5 V·s-1. Finally, the 

electrodes were rinsed with Milli-Q water and dried with nitrogen. Modification of the 

cleaned electrode arrays was carried out via immobilisation of DT2 (200 µM) in 1 M 

KH2PO4 for 3 hours at room temperature in a humid environment to prevent 

evaporation. The carboxyl groups of the SAM were activated with an aqueous mixture 

of EDC (0.2 M) and NHS (50 mM) for 30 min followed by spotting of 1 µL of 7 µM 

amino modified HPV45E6 forward primer (with a 10T spacer) in acetate buffer pH 5 

for 1 h. The non-specific control was performed by immobilising amino modified 

HPV16 primer. The remaining carboxyl groups were then blocked with 0.1 M 

ethanolamine hydrochloride (pH 8.5) for 30 min, and the electrode array was then 

washed in a stirring solution of 0.1 M PBS for 20 min, rinsed with water and dried with 

nitrogen. 

 

7.3.4 Helicase-dependent amplification protocol. 

The reaction mix for solid-phase HDA contained 2x Annealing buffer II, 4 mM 

MgSO4, 40 mM NaCl, 2.1 µL of dNTPs, 50 nM of Rv primer and and 2 µL of Enzyme 

mix for a final volume of 30 µL. For control HDA, 50 nM of Fw primer was 

incorporated to the master mix. 

Sample analysis was performed by electrophoresis on a 4% agarose gel (Certified 

Low Range Ultra Agarose, Bio-rad, Barcelona). 
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7.3.5 Electrochemical monitoring of nucleic acid amplification 

To detect the DNA present in the surface after HDA reaction at regular time 

intervals by means of electrostatic interaction of Ru(NH3)6Cl3 with the negatively 

charged DNA backbone, electrodes were first washed with 0.1 M PBS pH 7.4 and 

rinsed with 10 mM Tris buffer pH 7.4 and incubated for 5 min with 660 µM of 

Ru(NH3)6Cl3 in 10 mM Tris pH 7.4. After this, electrodes were rinsed with Tris buffer 

and DPV was performed. Differential pulse voltammograms were collected at 50 

mV/s from -0.6 V to -0.1 V, after a conditioning potential at -0.6 V for 10 s. 

The detection of hybridised HRP-labelled Rv primer carried out in the created 

microfluidic channels was performed in the presence of TMB substrate where the 

HRP-catalysed reduction of TMB11-12 was detected by steps and sweeps technique by 

applying two consecutive potential steps of 0 V for 1 ms and -0.2 V for 0.5 s.  

 

7.3.6 Enzyme-linked oligonucleotide assay (ELONA)  

Thirty µL of 50 µM of DT2 in binding buffer (0.1 M NaH2PO4, 0.15 M NaCl, 10 

mM EDTA, pH 7.2) were prepared for the modification of maleimide activated wells 

of a microtitre plate and incubated for 2 h and 30 min. Then, 3 consecutive washing 

steps of 200 µL 10 mM PBS-tween (pH 7.4) were performed performed using a 

HydroFlex microplate washer (TECAN, Barcelona). Inactivation of excess maleimide 

groups was carried out by incubating 150 µL of 128 µM of mercaptoethanol for 1 

hour. A second washing step was carried out in an identical way as above. For the 

immobilization of the HPV45 forward primer, activation of carboxyl groups of the 

DT2 SAM were activated with an aqueous mixture of EDC (0.2 M) and NHS (50 mM) 

for 30 min followed by a washing step with milliQ water. Then, 30 µL of 200 nM of 

amino modified HPV45E6 forward primer (with a 10T spacer) in acetate buffer pH 5 

was added and incubated for 1 h. A second washing step with milliQ water was 

performed. Finally, the remaining carboxyl groups were blocked with 30 µL of 0.1 M 

ethanolamine hydrochloride (pH 8.5) for 30 min. A final washing step with PBS-

Tween was carried out. All steps were carried out at room temperature. 
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To perform immobilised HDA, 30 µl of HDA reaction mixture were added to each 

well and incubated at 55ºC for a total of 2 h. Every 10 min, solution from one well was 

recovered, stopping the amplification. After incubation, a denaturation step was 

performed with 100 mM NaOH for 3 min, followed by a washing step with 0.1 M 

PBS-Tween pH 7.4. In order to determine the amplification of the immobilised 

primer, 30 µl of 4 nM HRP labelled Rv primer in 0.1 M PBS (pH 7.4) was incubated 

for 1 h at RT. A final washing step was performed.  

For the detection step, 30 µl of TMB substrate was added to each well and allowed 

to react for a minimum of 15 min. Then, 30 µl of 1 M H2SO4 was added to stop 

reaction, turning to blue colored solution to yellow, and the absorbance was read at 

450 nm.  

 

7.4 Results and discussion 

7.4.1 Proof-of-concept of immobilised HDA on ELONA 

The HDA reaction is able to amplify short DNA sequences, from 70 – 120 bp, at a 

constant temperature, so HPV45 target (79-bp) was chosen for this study. Prior to 

electrochemical detection, ELONA platform was used in order to evaluate the 

amplification of DNA by HDA with one primer immobilised on the surface. The same 

surface chemistry was used in order to mimic the electrochemical immobilised HDA 

assay (Figure 7.2).  
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Figure 7.2. Schematic representation of HDA reaction on microtitre plates. 

 

Figure 7.3 shows the amplification curve generated at a constant temperature of 

55ºC for an initial dsDNA template concentration of 400 pM. An exponential increase 

of the signal as a function of amplification time can be observed, which is proportional 

to the extension of the primer immobilised on the surface of the wells. It can be 

observed that at a reaction time of 100 min a plateau was reached. 
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Figure 7.3. Isothermal amplification curve (T = 55ºC) obtained for immobilised HDA ELONA of HPV45 

sequence (79-bp). 

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF ELECTROCHEMICAL BIOSENSORS AND SOLID-PHASE AMPLIFICATION METHODS FOR THE DETECTION OF HUMAN PAPILLOMAVIRUS GENES 
Laia Civit Pitarch 
Dipòsit Legal: T. 1050-2012 
 



Chapter 7 

128 

In figure 7.4, three different template (0.4, 1 and 5 nM) and Rv primer (50 and 100 

nM) concentrations were tested. As expected, after 90 min of reaction at 55ºC, the 

response obtained was dependent on the starting concentration of DNA template. 
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Figure 7.4. Absorbance obtained after 90 min amplification at 55ºC for different initial concentration of DNA 

template and Rv primer. 

 

7.4.2 Proof-of-concept of the real-time electrochemical-based solid phase HDA 

Six modified gold electrodes were used to demonstrate the proof-of-concept of an 

electrochemical real-time monitoring of an immobilised helicase-dependent 

amplification system. In this case, the electrostatic interaction of ruthenium with the 

negatively charged DNA was used to monitor the progress of HDA with time (Figure 

7.5). Forward primer was immobilised on the surface, whilst reverse primer was added 

to the reaction mixture. 
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Figure 7.5. Schematic representation of HDA reaction on gold electrodes with electrochemical detection. 

 

Thirty microlitres of HDA reaction mixture were added in each gold electrode and 

incubated at 55ºC for 20, 40, 60, 80, 100 and 120 minutes. After incubation, electrodes 

were washed with 0.1 M PBS pH 7.4 and rinsed with 10 mM Tris buffer pH 7.4 and 

incubated for 5 min with 660 µM of Ru(NH3)6Cl3 in 10 mM Tris pH 7.4. After this, 

electrodes were rinsed with Tris buffer and DPV was performed. Differential pulse 

voltammograms were collected at 50 mV/s from -0.6 V to -0.1 V, after a conditioning 

potential at -0.6 V for 10 s. Signal obtained was substracted with the initial measured 

related to the electrostatic interaction of ruthenium with the immobilised primer. 

Electrodes were incubated 10 min more in Ru, to check if the incubation time of 5 min 

was not enough, but no increase in the signal was observed. Results are depicted in 

Figure 7.6. An increase of the signal due to the accumulation of [Ru(NH3)6]3+ on the 

negatively charged ss/dsDNA with time can be observed. This increase is related to 

the extension of the immobilised primer and the formation of the duplex, due to the 
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annealing of the Rv primer to the extended primer, and its posterior amplification. 

After 60 min, slight decrease in the current at 80 min, that could be explained by the 

saturation of the signal, and the possibility that all immobilised primers have been 

extended.  
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Figure 7.6. Peak current signal in differential pulse voltammetric scans vs HDA reaction time. 

 

HDA solution was recovered and gel electrophoresis was performed to check 

amplification of the HPV45 target (Figure 7.7). We can observe that the gel 

electrophoresis analysis is consistent with the electrochemical measurements for 20 – 

80 min of HDA reaction. For 100 and 120 min, we can observe in the gel that 

amplification takes place, whilst a decrease in the electrochemical current was 

observed.  

 

 

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF ELECTROCHEMICAL BIOSENSORS AND SOLID-PHASE AMPLIFICATION METHODS FOR THE DETECTION OF HUMAN PAPILLOMAVIRUS GENES 
Laia Civit Pitarch 
Dipòsit Legal: T. 1050-2012 
 



Real-time electrochemical monitoring of solid-phase isothermal HDA 

131 

20   40  60  80  100 120        C          1            2

 
Figure 7.7. Gel electrophoresis (4%) of the immobilised HDA reaction with time (20 – 120 min). C: is the 

control of HDA reaction on solution, 1: is 100 nM synthetic ssDNA and 2: is 10 nM synthetic dsDNA. 

 

Also, in the gel it can be seen that both dsDNA and ssDNA were generated, which 

could be explained by a competition between the Rv primer (in solution) and the 

immobilised Fw primer for the target amplicon. Moreover, once all immobilised 

primers were amplified, only one of the strands could be generated (Rv primer is in 

excess), potentially explaining the presence of ssDNA. 

 

7.4.3 Amplification in microfluidics 

7.4.3.1 Test of the biocompatibility of the microfluidics 

In the miniaturisation of nucleic acid amplification methods, the study of the 

biocompatibility of the microfabricated material is a key factor. On the other hand, the 

high surface area-to-volume ratio of the microchannels can lead to possible 

interactions between the biomolecules and the surface, causing a decrease in the 

efficiency of the reaction, and totally inhibiting the reaction in some cases, where 

primer and enzyme concentration is crucial.2  

HDA master mixes were prepared, including both primers in solution, and injected 

in the created channels in a treated and untreated microfluidic chip. Treatment of the 

surface was performed by coating it with polyethylene glycol (PEG) under UV light 

(350 W) for 1 hour. A control was performed by carrying out the HDA reaction on a 
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bench thermocycler. As it can be observed in Figure 7.8, no amplification was 

observed in the untreated chip (7.8A), while amplification occurred when the 

microfluidic was treated with PEG (7.8B), highlighting the importance of the proposed 

surface treatment to avoid interaction with the nucleic acids or the enzymes. 

Another important aspect to take into consideration is evaporation. The low 

volumes used (20 µL) could be susceptible to partial evaporation at the reaction 

temperature, and therefore, can lead to changes in the initial HDA component 

concentrations. The performance of HDA is extremely sensitive to changes in 

magnesium and salt concentrations of the reaction, so evaporation should be avoided. 

Mineral oil is usually used as a vapour barrier to prevent evaporation, and it was 

injected in the inlet and outlet of the microfluidics. 

 

A B CA
1      2 1      2 1      2

 
Figure 7.8. On chip (1) and in tube (2) HDA amplification for A) no treated microfluidics double-sided 

medical grade adhesive foil, B) treated microfluidics with double-sided medical grade adhesive foil and C) treated 

microfluidics with UV glue. 

 

In the first design of the set-up, a double-sided medical grade adhesive foil of 50 

µm thickness was used in order to create the microchannel structures of 1 mm width. 

It was observed that during the thermal amplification, the adhesive changed its initial 

conformation, becoming more porous, affecting the reaction mixture and making its 

recovery more difficult. An alternative way to assemble the microarray to the 

microfluidics was the use of an adhesive (PERMABOND UV360) that cures upon 

exposure to UV light, forming excellent bonds between an injected moulded 
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microfluidic chip and the electrode array (Figure 7.9). This bond was tested to be 

stable after exposure at 55ºC for a period time of 2 hours. The HDA reaction inside 

the microfluidics was slightly improved by using this set-up (7.8C), but still there is 

evidence that efficiency of HDA reaction in microfluidics is still not as good as in 

eppendorf tubes.  

 

A B C

 
Figure 7.9. Experimental procedure for channel distributed gluing. A) Dosage needle and the chip with the 

sensor clamped to it, B) Insertion of the dosage needle into the glue port and C) detection chambers being filled 

with red food colour. 

 

7.4.3.2 Solid-phase amplification in microfluidics 

A first attempt to perform the HDA reaction within microfluidic chips was carried 

out employing the same strategy used in ELONA and gold electrodes. Twenty 

microliters of reaction mixture were added to the microfluidic chips to cover all the 

surface of the channels contacting the electrode array. The temperature was then 

increased to 55ºC and the reaction was carried out for a total of 90 min. After the 

HDA amplification reaction, the sensor array was washed with 0.1 M PBS pH 7.4 and 

incubated with 10 nM of HRP-labeled Rv primer in 0.1 M PBS for 30 min. Following 

this, a second washing step was performed and amperometric detection of HRP was 

performed by steps and sweeps (SAS) technique as explained above. The duplex on the 

electrodes were then de-hybridised with 100 mM NaOH for 3 min, in order to 

separate the dsDNA, and hybridisation of HRP-labelled Rv primer was performed 

again. The results are depicted in Figure 7.10. We can clearly see that the signal 

obtained before de-hybridisation is lower than the one performed after. This is due to 
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the presence of dsDNA on the surface generated during the HDA reaction, that did 

not permit the hybridisation of the labelled Rv primer. On the other hand, after de-

hybridisation, only the DNA extended from the Fw primer is present on the surface, 

so the Rv primer can hybridise, obtaining a higher amperometric signal, demonstrating 

successful solid-phase HDA in the electrochemical HDA microfluidics setup. 
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Figure 7.10. Signal obtained for the detection of the amplification of the immobilised Fw primer. 

 

7.5 Conclusions 

The proof-of-concept of an electrochemical monitoring of solid-phase helicase-

dependent amplification was demonstrated. First, the extension of the immobilised Fw 

primer was evaluated using ELONA, an exponential amplification of the immobilised 

primer was observed. For electrochemical detection, the electrostatic interaction of 

ruthenium with the negatively charged DNA was used to monitor the progress of 

HDA, and an increase in the [Ru(NH3)6]3+ signal from 0 – 60 min of HDA reaction at 

55ºC, was observed followed by saturation of the signal. Electrophoresis gel analysis of 

the HDA reaction solution was in agreement with the electrochemical results, and 
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dsDNA and ssDNA were in the final reaction mixture following amplification. First 

studies for the application of the developed proof-of-concept to a microfluidic chip 

system for multiplexed HDA were performed. 
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General conclusions  

 

This thesis overviews the development of electrochemical DNA biosensors for the 

multiple detection of high-risk human papillomavirus sequences, and the proof-of-

concept for the development of solid-phase amplification methods with 

electrochemical monitoring. Fundamental aspects such as the surface chemistry for 

both electrochemical platforms, the preparation of ssDNA target for its quantification 

and the analytical performance of the electrochemical DNA biosensor were evaluated. 

Finally, a proof-of-concept electrochemical detection of solid-phase DNA 

amplification using helicase-dependent amplification (HDA) is described. 

A comparative study of different methods for the preparation of single-stranded 

DNA (ssDNA) is presented in Chapter 2. To truly quantify clinical samples it is crucial 

to generate high quality ssDNA. To date, thermal denaturation (also called heat and cool) 

is the most widely used technique for the generation of ssDNA for DNA biosensors, 

although it has important drawbacks in terms of recovery and reproducibility. Other 

techniques have also been used to generate ssDNA, such as the use of magnetic 

separation and exonuclease digestion. To determine the best technique for the 

preparation of ssDNA from amplified clinical HPV samples, a comparison of various 

techniques was performed, and the generated ssDNA was evaluated in terms of quality 

and quantity by gel electrophoresis and Enzyme Linked OligoNucleotide assay 

(ELONA), respectively. Two different length amplicons, of 79 bp (HPV45) and 159 

bp (HPV16) were used as a model. As expected, the widely used heat and cool 

methodology was found to be the least reliable, showing very low efficiency and 

reproducibility, even though it is still extensively used in the biosensors field.1-3 The 

alternative methods studied were found to be rapid and highly efficient methods for 

ssDNA generation, providing recoveries between 50-70% of the theoretical maximum 

with excellent reproducibility, RSD% < 8 (n=5). For the detection of the HPV 

sequences studied, the use of biotinylated primers with streptavidin coated magnetic 

beads was observed to be optimal and was used in later studies with real samples. 
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To our knowledge, this is the first comparative study of the recovery obtained for 

different methodologies widely used for the preparation of ssDNA for subsequent 

biosensoric detection that has been carried out to date.  

 

The development of an electrochemical DNA genosensor array for the detection of 

two high-risk HPV sequences (HPV16 and HPV45) is described. Primarily, the proof-

of-concept was demonstrated using an electrode array consisting of 16 gold working 

electrodes arranged in a four by four distribution on a borosilicate glass chip. Each 

working electrode has its own silver pseudo reference and a gold counter electrode. 

The electrode array was integrated within a microfluidic cell. Co-immobilisation of the 

HPV target with a dithiolated alkanethiol (DT1) in a ratio of 1/100 was found to be 

optimal in terms of probe density, spacing and orientation. Individual detection of 

HPV sequences exhibited high sensitivity and selectivity, obtaining LOD in the pM 

range (220 pM and 110 pM for HPV16 and HPV45, respectively). In a multiplexed 

detection format, high selectivity was observed for the target sequence over the non-

specific one.  

With these promising results in hand, a more detailed study was then performed 

including a new high-risk HPV sequence (HPV18). Different parameters such as cross-

reactivity, reusability and stability were assessed. First, individual detection of HPV18 

was performed, obtaining a LOD of 170 pM. In order to evaluate possible cross-

reactions between the selected HPV types, a series of experiments were performed 

with mixtures of targets and reporter HRP-labeled probes and the responses were 

compared using the single specific target and probe. Results showed no significant 

interference and multiplexed studies further demonstrated the specificity of the 

genosensor. To assess stability issues, electrodes were prepared and no significant 

decrease in amperometric response (<5%) was observed after a month, indicating that 

the immobilised probes do not lose their recognition ability upon storage in these 

conditions. Finally, the genosensor array was evaluated with clinical samples obtained 

from Jena University Hospital. DNA extracted from cervical scrapes that were positive 

for HPV16, HPV18 and HPV45 and 3 HPV negative cases were provided. These 
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samples were firstly amplified by PCR using biotinylated HPV primers, and ssDNA 

was generated using streptavidin coated magnetic beads. Results showed an excellent 

correlation between the HPV genotyping carried out in a hospital laboratory and the 

quantification performed with our genosensor array. 

Overall, the presented electrochemical genosensor array for the multiple detection 

of high-risk HPV sequences showed a reliable performance and discrimination 

between the three studied sequences.  

In Table C1, the analytical performance of the developed genosensor array is 

compared with those previously reported for the electrochemical detection of HPV 

sequences.  

 

Table C1. Comparison of the analytical parameters of different electrochemical biosensors for HPV 

determination. 

Reference HPV region Linear range LOD 
Electrochemical 

method 
Electrode 

4 L1 12.5 – 350.0 nM 3.8 nM DPV Gold 

5 L1 0 – 1.7 µM 200 nM SW Graphite 

This work 

HPV16

HPV18 

HPV45 

0.1 – 10.0 nM 

0.1 – 12.0 nM 

0.1 – 1.0 nM 

0.22 nM

0.17 nM 

0.11 nM 

Steps and sweeps Gold array 

 

As depicted, the limit of detection of the proposed sensor improved previous 

reports.4-5 One of the advantages of our approach is the facile integration of the 

biosensor in an electrochemical portable instrument which makes it very attractive for 

point-of-care applications.  

 

For the development of solid-phase amplification methods, the choice of surface 

chemistry is essential in order to meet important requirements such as robustness, 

thermal stability and reproducibility.  
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In Chapter 5, the thermal stability of four surface chemistries was studied. Two 

alkanethiols (mono and dithiol) and two diazonium salts (with one and two diazo 

groups) were compared and the thermal stability was evaluated in the temperature 

range of 25-95ºC, monitoring changes in the array surface using CV and EIS. A 

comparison between the different alkanethiol SAMs clearly indicated that the 

monothiol ones were less stable, starting to desorb at temperatures around 65ºC, and 

at temperatures higher than 95ºC the layer was completely removed, whereas dithiol 

SAMs were more resistant to the thermal treatment, with 26% remaining after 

exposure to 95ºC of the layer on the surface. On the other hand, both diazonium salt 

derived layers responded similarly the thermal treatment, with minor desorption that 

could in fact be attributed to the loss of non-specifically attached molecules, indicative 

of the excellent stability of this surface.  

Prior reports on the stability of these surface chemistries in terms of resistance to 

sonication, exposure to refluxing solvents, displacement using thiolated molecules6 and 

under laboratory atmosphere conditions7 concluded that the aryl diazonium derived 

films are more strongly bound to gold as compared to alkanethiol layers. The work 

presented in the thesis was the first study on the thermal stability of diazonium 

modified gold surfaces.  

 

An electrochemically grafted film of 3,5-(4-diazophenoxy)benzoic acid on gold 

surfaces was then characterised. For the deposition of the organic films, the use of 

cyclic voltammetry (CV) and chronoamperometry (CA) was compared, using XPS and 

AFM. Immobilisation of the bipodal diazonium on the gold surface was confirmed 

using XPS and AFM was used for the determination of the film thickness. For this, a 

gold substrate was first modified with an alkanethiol SAM, and then photo-oxidation 

of the thiols with UV light through a mask was performed, resulting in exposed areas 

for the grafting of the organic films and the thickness was calculated. As expected, it 

was observed that even one potential cycle generated a bi- or maximum tri-layer, while 

for the other deposition conditions, multilayers were formed.  
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In this chapter, the grafting of a compound with two diazonium groups to obtain a 

bipodal group attached to the gold surface is described. An approach for measuring 

average film height by AFM was proposed using a surface patterned with an 

alkanethiol SAM film of known height and comparing to the grafted film of interest. 

This methodology offers an easy and direct way of determining film height in 

comparison with other methodologies such as AFM “scratching”,8 ellipsometry,9 or 

FT-IRRAS.10  

 

Finally, in Chapter 7, the proof-of-concept of an electrochemical monitoring of 

solid-phase helicase-dependent amplification (HDA) was demonstrated. First, the 

extension of the immobilised Fw primer was evaluated using ELONA technique and a 

real-time exponential amplification of the immobilised primer was demonstrated. For 

electrochemical detection, the electrostatic interaction of a ruthenium probe with the 

negatively charged DNA was used to monitor the progress of HDA with time. An 

increase in the [Ru(NH3)6]3+ signal over 60 minutes of HDA reaction at 55ºC was 

observed, followed by, saturation of the signal at longer reaction times. Electrophoresis 

gel analysis of the HDA reaction solution was in agreement with the electrochemical 

results. Preliminary studies for the application of the developed proof-of-concept in a 

microfluidic system were performed. 

Using HDA, the reaction could be performed at a single temperature (55ºC) in 

which a Au-SH surface preparation could be implemented as thiolated molecules on 

gold are stable up to 60ºC. 

An electrochemical real-time solid-phase PCR assay has been developed by Hsing 

and co-workers,11-12 and a recent report detailed the electrochemically monitoring of 

HDA,13 but to date, no solid-phase HDA amplification by using gold electrodes has 

been described yet.  
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Outlook 

 

The results and the conclusions derived from this thesis can serve to guide future 

research that would improve the knowledge gained in the field of electrochemical 

detection of DNA.  

 

An electrochemical genosensor array for the multiple detection of high-risk HPV 

sequences has been developed and an excellent performance of this sensor was 

accomplished. Due to the design of this sensor array that comprises 16 independent 

gold working electrodes, the introduction of new high-risk or low-risk HPV sequences 

could definitely improve and expand the usability of these new biosensors. Moreover, 

it could be implemented for the detection and monitoring of other diseases. 

 

The proof-of-concept of an electrochemical monitoring of helicase-dependent 

amplification in solid-phase has been accomplished. However, there are still some 

parameters and issues to improve apart from the obvious technological development 

required to achieve a final prototype of portable device.  

Once it has been demonstrated that immobilised primer could be amplified and this 

extension could be electrochemically detected, a novel strategy for the electrochemical 

real-time monitoring has to be implemented. One possibility would be the use of 

redox-labeled nucleotides with, i.e. methylene blue.  

A second goal to be achieved would be the implementation in a microfluidic system 

with a sensor array. With this technology in hand, multiplex amplification of different 

HPV sequences could be possible, making the system more robust and increasing its 

usability and applications. 

 

 Finally, and taking advantage of the high thermal stability obtained with 

diazonium-derived aryl films on gold substrates, a solid-phase PCR assay can be 
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proposed once the optimum conditions for the preparation of the surface chemistry 

will be assessed.  
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