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Abstract

Intelligent systems that assist users in fulfilling complex tasks need a concise and process-
able representation of incomplete and uncertain information. In order to be able to choose
among different options, these systems also need a compact and processable representation
of the concept of preference.

Preferences can provide an effective way to choose the best solutions to a given prob-
lem. These solutions can represent the most plausible states of the world when we model
incomplete information, the most satisfactory states of the world when we express user
preferences, or optimal decisions when we make decisions under uncertainty.

Several domains, such as, reasoning under incomplete and uncertain information, user
preference modeling, and qualitative decision making under uncertainty, have benefited
from advances on preference representation. In the literature, several symbolic approaches
of nonclassical reasoning have been proposed. Among them, logic programming under an-
swer set semantics offers a good compromise between symbolic representation and com-
putation of knowledge and several extensions for handling preferences.

Nevertheless, there are still some open issues to be considered in logic programming. In
nonmonotonic reasoning, first, most approaches assume that exceptions to logic program
rules are already specified. However, sometimes, it is possible to consider implicit prefer-
ences based on the specificity of the rules to handle incomplete information. Secondly, the
joint handling of exceptions and uncertainty has received little attention: when information
is uncertain, the selection of default rules can be a matter of explicit preferences and un-
certainty. In user preference modeling, although existing logic programming specifications
allow to express user preferences which depend both on incomplete and contextual infor-
mation, in some applications, some preferences in some context may be more important
than others. Furthermore, more complex preference expressions need to be supported. In
qualitative decision making under uncertainty, existing logic programming-based method-
ologies for making decisions seem to lack a satisfactory handling of preferences and uncer-
tainty.

The aim of this dissertation is twofold: 1) to tackle the role played by preferences in
logic programming from different perspectives, and 2) to contribute to this novel field by
proposing several frameworks and methods able to address the above issues. To this end,
we will first show how preferences can be used to select default rules in logic programs
in an implicit and explicit way. In particular, we propose (i) a method for selecting logic
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program rules based on specificity, and (ii) a framework for selecting uncertain default
rules based on explicit preferences and the certainty of the rules. Then, we will see how
user preferences can be modeled and processed in terms of a logic program (iii) in order to
manage user profiles in a context-aware system and (iv) in order to propose a framework
for the specification of nested (non-flat) preference expressions. Finally, in the attempt to
bridge the gap between logic programming and qualitative decision under uncertainty,
(v) we propose a classical- and a possibilistic-based logic programming methodology to
compute an optimal decision when uncertainty and preferences are matters of degrees.



Resum

Els sistemes intel.ligents que assisteixen a usuaris en la realització de tasques complexes ne-
cessiten una representació concisa i formal de la informació que permeti un raonament no-
monòton en condicions d’incertesa. Per a poder escollir entre les diferents opcions, aquests
sistemes solen necessitar una representació del concepte de preferència.

Les preferències poden proporcionar una manera efectiva de triar entre les millors solu-
cions a un problema. Aquestes solucions poden representar els estats del món més plausi-
bles quan es tracta de modelar informació incompleta, els estats del món més satisfactori
quan expressem preferències de l’usuari, o decisions òptimes quan estem parlant de presa
de decisió incorporant incertesa.

L’ús de les preferències ha beneficiat diferents dominis, com, el raonament en presència
d’informació incompleta i incerta, el modelat de preferències d’usuari, i la presa de decisió
sota incertesa. En la literatura, s’hi troben diferents aproximacions al raonament no clàssic
basades en una representació simbòlica de la informació. Entre elles, l’enfocament de pro-
gramació lògica, utilitzant la semàntica de answer set, ofereix una bona aproximació entre
representació i processament simbòlic del coneixement, i diferents extensions per gestionar
les preferències.

No obstant això, en programació lògica es poden identificar diferents problemes pel
que fa a la gestió de les preferències. Per exemple, en la majoria d’enfocaments de raon-
ament no-monòton s’assumeix que les excepcions a default rules d’un programa lògic ja
estan expressades. Però de vegades es poden considerar preferències implícites basades en
l’especificitat de les regles per gestionar la informació incompleta. A més, quan la informa-
ció és també incerta, la selecció de default rules pot dependre de preferències explícites i de la
incertesa. En el modelatge de preferències del usuari, encara que els formalismes existents
basats en programació lògica permetin expressar preferències que depenen d’informació
contextual i incompleta, en algunes aplicacions, donat un context, algunes preferències
poden ser més importants que unes altres. Per tant, resulta d’interès un llenguatge que
permeti capturar preferències més complexes. En la presa de decisions sota incertesa, les
metodologies basades en programació lògica creades fins ara no ofereixen una solució del
tot satisfactòria pel que fa a la gestió de les preferències i la incertesa.

L’objectiu d’aquesta tesi és doble: 1) estudiar el paper de les preferències en la progra-
mació lògica des de diferents perspectives, i 2) contribuir a aquesta jove àrea d’investigació
proposant diferents marcs teòrics i mètodes per abordar els problemes anteriorment citats.
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Per a aquest propòsit veurem com les preferències es poden utilitzar de manera implícita i
explícita per a la selecció de default rules proposant: (i) un mètode basat en l’especificitat
de les regles, que permeti seleccionar regles en un programa lògic; (ii) un marc teòric per a
la selecció de default rules incertes basat en preferències explícites i la incertesa de les regles.
També veurem com les preferències de l’usuari poden ser modelades i processades usant
un enfocament de programació lògica (iii) que suporti la creació d’un mecanisme de gestió
dels perfils dels usuaris en un sistema amb reconeixement del context; (iv) que permeti
proposar un marc teòric capaç d’expressar preferències amb fòrmules imbricades. Per úl-
tim, amb l’objectiu de disminuir la distància entre programació lògica i la presa de decisió
amb incertesa proposem (v) una metodologia basada en programació lògica clàssica i en
una extensió de la programació lògica que incorpora lògica possibilística per modelar un
problema de presa de decisions i per inferir una decisió òptima.



Resumen

Los sistemas inteligentes que asisten a usuarios en tareas complejas necesitan una rep-
resentación concisa y procesable de la información que permita un razonamiento no-
monótono e incierto. Para poder escoger entre las diferentes opciones, estos sistemas suelen
necesitar una representación del concepto de preferencia.

Las preferencias pueden proporcionar una manera efectiva para elegir entre las mejores
soluciones a un problema. Dichas soluciones pueden representar los estados del mundo
más plausibles cuando hablamos de representación de información incompleta, los estados
del mundo más satisfactorios cuando hablamos de preferencias del usuario, o decisiones
óptimas cuando estamos hablando de toma de decisión con incertidumbre.

El uso de las preferencias ha beneficiado diferentes dominios, como, razonamiento en
presencia de información incompleta e incierta, modelado de preferencias de usuario, y
toma de decisión con incertidumbre. En la literatura, distintos enfoques simbólicos de ra-
zonamiento no clásico han sido creados. Entre ellos, la programación lógica con la semán-
tica de answer set ofrece un buen acercamiento entre representación y procesamiento sim-
bólico del conocimiento, y diferentes extensiones para manejar las preferencias.

Sin embargo, en programación lógica se pueden identificar diferentes problemas con
respecto al manejo de las preferencias. Por ejemplo, en la mayoría de enfoques de razon-
amiento no-monótono se asume que las excepciones a default rules de un programa lógico
ya están expresadas. Pero, a veces se pueden considerar preferencias implícitas basadas en
la especificidad de las reglas para manejar la información incompleta. Además, cuando la
información es también incierta, la selección de default rules pueden depender de prefer-
encias explícitas y de la incertidumbre. En el modelado de preferencias, aunque los for-
malismos existentes basados en programación lógica permitan expresar preferencias que
dependen de información contextual e incompleta, in algunas aplicaciones, algunas pref-
erencias en un contexto puede ser más importantes que otras. Por lo tanto, un lenguaje
que permita capturar preferencias más complejas es deseable. En la toma de decisiones con
incertidumbre, las metodologías basadas en programación lógica creadas hasta ahora no
ofrecen una solución del todo satisfactoria al manejo de las preferencias y la incertidumbre.

El objectivo de esta tesis es doble: 1) estudiar el rol de las preferencias en programación
lógica desde diferentes perspectivas, y 2) contribuir a esta joven área de investigación pro-
poniendo diferentes marcos teóricos y métodos para abordar los problemas anteriormente
citados. Para este propósito veremos como las preferencias pueden ser usadas de man-
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era implícita y explícita para la selección de default rules proponiendo: (i) un método para
seleccionar reglas en un programa basado en la especificad de las reglas; (ii) un marco
teórico para la selección de default rules basado en preferencias explícitas y incertidumbre.
También veremos como las preferencias del usuario pueden ser modeladas y procesadas
usando un enfoque de programación lógica (iii) para crear un mecanismo de manejo de
los perfiles de los usuarios en un sistema con reconocimiento del contexto; (iv) para crear
un marco teórico capaz de expresar preferencias con formulas anidadas. Por último, con
el objetivo de disminuir la distancia entre programación lógica y la toma de decisión con
incertidumbre proponemos (v) una metodología para modelar un problema de toma de
decisiones y para inferir una decisión óptima usando un enfoque de programación lógica
clásica y uno de programación lógica extendida con lógica posibilística.



Sommario

Sistemi intelligenti, destinati a fornire supporto agli utenti in processi decisionali comp-
lessi, richiedono una rappresentazione dell’informazione concisa, formale e che permetta
di ragionare in maniera non monotona e incerta. Per poter scegliere tra le diverse opzioni,
tali sistemi hanno bisogno di disporre di una rappresentazione del concetto di preferenza
altrettanto concisa e formale.

Le preferenze offrono una maniera efficace per scegliere le miglior soluzioni di un prob-
lema. Tali soluzioni possono rappresentare gli stati del mondo più credibili quando si tratta
di ragionamento non monotono, gli stati del mondo più soddisfacenti quando si tratta delle
preferenze degli utenti, o le decisioni migliori quando prendiamo una decisione in con-
dizioni di incertezza.

Diversi domini come ad esempio il ragionamento non monotono e incerto, la strut-
turazione del profilo utente, e i modelli di decisione in condizioni d’incertezza hanno tratto
beneficio dalla rappresentazione delle preferenze. Nella bibliografia disponibile si possono
incontrare diversi approcci simbolici al ragionamento non classico. Tra questi, la program-
mazione logica con answer set semantics offre un buon compromesso tra rappresentazione
simbolica e processamento dell’informazione, e diversi estensioni per la gestione delle pref-
erenze sono state proposti in tal senso.

Nonostante ció, nella programmazione logica esistono ancora delle problematiche aperte.
Prima di tutto, nella maggior parte degli approcci al ragionamento non monotono, si sup-
pone che nel programma le eccezioni alle regole siano già specificate. Tuttavia, a volte per
trattare l’informazione incompleta è possibile prendere in considerazione preferenze im-
plicite basate sulla specificità delle regole. In secondo luogo, la gestione congiunta di ec-
cezioni e incertezza ha avuto scarsa attenzione: quando l’informazione è incerta, la scelta
di default rule può essere una questione di preferenze esplicite e d’incertezza allo stesso
tempo. Nella creazione di preferenze dell’utente, anche se le specifiche di programmazione
logica esistenti permettono di esprimere preferenze che dipendono sia da un’informazione
incompleta che da una contestuale, in alcune applicazioni talune preferenze possono essere
più importanti di altre, o espressioni più complesse devono essere supportate. In un pro-
cesso decisionale con incertezza, le metodologie basate sulla programmazione logica viste
sinora, non offrono una gestione soddisfacente delle preferenze e dell’incertezza.

Lo scopo di questa dissertazione è doppio: 1) chiarire il ruolo che le preferenze gio-
cano nella programmazione logica da diverse prospettive e 2) contribuire proponendo in
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questo nuovo settore di ricerca, diversi framework e metodi in grado di affrontare le citate
problematiche. Per prima cosa, dimostreremo come le preferenze possono essere usate per
selezionare default rule in un programma in maniera implicita ed esplicita. In particolare
proporremo: (i) un metodo per la selezione delle regole di un programma logico basato
sulla specificità dell’informazione; (ii) un framework per la selezione di default rule basato
sulle preferenze esplicite e sull’incertezza associata alle regole del programma. Poi, ve-
dremo come le preferenze degli utenti possono essere modellate attraverso un programma
logico, (iii) per creare il profilo dell’utente in un sistema context-aware, e (iv) per proporre
un framework che supporti la definizione di preferenze complesse. Infine, per colmare le
lacune in programmazione logica applicata a un processo di decisione con incertezza (v)
proporremo una metodologia basata sulla programmazione logica classica e una metodolo-
gia basata su un’estensione della programmazione logica con logica possibilistica.
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1

Introduction

Preferences are a crucial notion guiding our choices and actions. Choosing the color of a car
or choosing among different mortgage loans are examples in which preferences can guide
humans from simple up to very important decisions. Preferences are a multi-disciplinary
topic and they have been extensively been studied in economics, psychology, philosophy,
logics and other human-centered disciplines. Nevertheless, they are a relative new topic in
Artificial Intelligence (AI) [Kaci, 2011; Domshlak et al., 2011] and they have become of great
interest for the development of reasoning mechanisms in intelligent systems [Brafman and
Domshlak, 2009; Chen and Pu, 2004].

Intelligent systems are usually studied and developed to assist users in fulfilling com-
plex tasks. To act autonomously and to intelligently support users, such systems require
a concise and processable representation of incomplete and uncertain information. To under-
stand user choices and to choose among different options in a desirable way, such system
also need a concise and processable representation of preferences.

In fact, preferences can be used to select the most preferred pieces of knowledge or
beliefs under which we build our reasoning in the presence of incomplete and uncertain
information, e.g., normally if it is cloudy, it is almost certain to assume that it will rain rather than
it will not; or they can represent preferred choices between several alternatives, e.g., if I am
hungry I prefer to eat in an Italian rather than a Mexican restaurant; or they can be involved in
the choice of an optimal decision when knowledge is not fully certain, e.g., shall I take a bus
or a taxi knowing that there might be a bus-strike, and that I do not like to pay extra money, but I
prefer to arrive quickly to my destination.

These simple examples suggest how preferences are intrinsically related to several is-
sues which can be typically encountered in domains such as reasoning under incomplete and
uncertain information, user preference modeling, and qualitative decision under uncertainty. In-
deed, preferences provide an effective way to choose among outcomes, whether these are
the most plausible states of the world according to pieces of default knowledge, such as
in nonmonotonic reasoning [Delgrande et al., 2004; Brewka et al., 2008], or the most sat-
isfactory states when expressing user preferences in a given context [Brewka et al., 2004a;
Boutilier et al., 2004; Benferhat et al., 2001], or decisions under uncertainty, such as in qual-
itative decision making [Dubois et al., 2001; Dubois and Prade, 1995; Boutilier, 1994; Braf-
man and Tennenholtz, 1996].
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In nonmonotonic reasoning, preferences can be implicit or explicit and they are used to
select default rules in order to draw the most plausible conclusions. In this respect, one is
interested in the most preferred (logical) models which are in agreement with a set of de-
fault rules. Moreover, when information is not fully certain, a formal way to reason about
uncertain default rules is required and the selection of default rules can be a matter of
certainty degrees as well. In the modeling of user preferences, preferences have to be com-
pactly represented for encoding alternative options which can depend both on contextual
and incomplete information. In decision making scenarios, preferences (and uncertainty)
have to be taken into account to select an optimal choice according to a risk-prone or a
risk-averse attitude.

When these decision problems want to be properly formalized and used in practice, a
formalism able to represent and to reason under incomplete and uncertain knowledge, to
model preferences and qualitative decision making, and that offers efficient computation
must be taken into account. In the literature, several symbolic approaches of non classi-
cal reasoning have been proposed. Among them, logic programming under answer set
semantics or Answer Set Programming (ASP) offers a good compromise between symbolic
representation and computation of knowledge.

ASP is regarded to be the computational incarnation of nonmonotonic reasoning [Baral
and Gelfond, 1994; Gelfond, 1994; Baral, 2003]. Indeed, its expressivity allows to reason
about incomplete information and its syntax is restrictive enough for the implementation
of several efficient answer set solvers [Niemelä and Simons, 1997; Leone et al., 2006; Geb-
ser et al., 2011]. Moreover, several extensions have been proposed to deal with preferences
[Delgrande et al., 2004; Van Nieuwenborgh and Vermeir, 2006], with uncertainty [Nicolas
et al., 2006; Nieves et al., 2011; Baral et al., 2009; Bauters et al., 2010a] and with decision
making [Brewka, 2005; Grabos, 2004]. Therefore, it is not surprising to want to apply a
logic programming approach in the development of reasoning mechanisms needed by in-
telligent systems that support decision tasks.

Although logic programming is usually considered a powerful knowledge representa-
tion and reasoning tool and several proposals for dealing with incomplete and uncertain
information, user preference modeling, and qualitative decision making have been sug-
gested in the literature, there are still some open issues. We will describe them in the fol-
lowing sections.

1.1 Preferences in Nonmonotonic Reasoning and Uncertainty

Reasoning with incomplete information and reasoning with uncertainty are two important
types of reasoning that have been actively investigated in order to design inference mech-
anisms able to draw conclusions from available information.

Reasoning with incomplete information amounts to formalize default reasoning which rep-
resents the implicit capacity of humans to reason when the available information is incom-
plete. Default reasoning is nonmonotonic, since previously drawn inferences might be with-
drawn by the introduction of new information [Benferhat et al., 1997; Sombé, 1990; Brewka
et al., 1993].
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Several formalisms have been proposed in AI to account for default or nonmonotonic
reasoning. Each formalism models default rules, i.e., statements of the form normally p’s are
q’s, in order to capture incomplete knowledge. The representation of default rules depends
on the formalism considered.

In the literature, three main trends can be identified:1

• seminal approaches based on nonmonotonic logics such as default logic [Reiter, 1980],
circumscription [McCarthy, 1980], and autoepistemic logic [Moore, 1985],

• approaches based on nonmonotonic inference relations of System P [Kraus et al., 1990;
Benferhat et al., 1997; Lukasiewicz, 2005], and, more recently,

• approaches based on logic programming with negation as failure [Baral and Gelfond,
1994; Gelfond, 1994; Baral, 2003],

• approaches based on argumentation inference [Rahwan and Simari, 2009].

In practice, reasoning with incomplete information amounts to select default rules. In
such nonmonotonic reasoning formalisms, the notion of preference is closely tied with the
selection of default rules. Indeed, one is interested in selecting the preferred models (in a
logical sense) which are in agreement with a set of defaults. This is usually achieved using
two types of preferences: explicit and implicit.

Explicit preferences among default rules have been proposed in extended versions of
nonmonotonic logics, such as prioritized default logic [Brewka, 1994; Delgrande and Schaub,
1997a, 2000; Rintanen, 1995, 1998], prioritized circumscription [Lifschitz, 1985], and prioritized
autoepistemic logic [Konolige, 1989; Rintanen, 1994]. In these approaches, a partial order is
explicitly assigned to the default rules. On the other hand, implicit preferences can be ob-
tained from the information described by the rules themselves such as in System Z [Pearl,
1990]. This approach lies on specificity according to which more specific rules are always
preferred to less specific ones and they are given a higher priority in the reasoning pro-
cess [Pearl, 1990]. A similar ranking is used in rational closure of System P [Kraus et al.,
1990]. Possibilistic logic [Dubois et al., 1994] also rank-orders default rules by assigning
constraints to the least specific possibilistic distribution associated to the classical models
of a possibilistic knowledge base [Benferhat et al., 1998].

Concerning logic programming, ASP models incomplete information in default rules
by means of negation as failure. In ASP, the preferred answer sets of a logic program are
those in which everything is as normal as possible [Baral and Gelfond, 1994; Baral, 2003].
However, when rules are in conflict, a criterion for the selection of rules is needed. To this
end, several ASP extensions for handling preferences have been developed including [Gel-
fond and Son, 1998; Zhang and Foo, 1997; Brewka and Eiter, 1999; Sakama and Inoue, 2000;
Delgrande et al., 2003; Brewka et al., 2004b; Van Nieuwenborgh and Vermeir, 2006]. Pref-
erences can be literals-oriented such as in [Sakama and Inoue, 2000; Brewka et al., 2004b],
rules-oriented such as in [Zhang and Foo, 1997; Brewka and Eiter, 1999; Delgrande et al.,
2003; Van Nieuwenborgh and Vermeir, 2006], or context-dependent such as in Logic Pro-

1 This is not a comprehensive survey. Further references can be found in [Sombé, 1990; Brewka et al.,
1993; Benferhat et al., 1997; Lukasiewicz, 2005].
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grams with Ordered Disjunction (LPODs) [Brewka et al., 2004b].2 In these approaches, pref-
erences are used to select rules in a explicit way. On the other hand, implicit preferences can
provide an effective mechanism for selecting default rules and for handling incomplete in-
formation in logic programming (this will be one of our thesis objectives, see Section 1.4.1).

Besides the fact that information can be incomplete, information can also be uncertain.
Consequently, the design of intelligent systems also requires a proper representation and
management of uncertain information.

Reasoning with uncertain information requires a theory of uncertainty in order to repre-
sent uncertainty and to draw inferences using uncertain data. To this end, several theories
have been proposed such as probability theory [Reichenbach, 1949; Walley, 1991], fuzzy
set theory [Zadeh, 1975], evidence theory [Shafer, 1976], and possibility theory [Zadeh,
1978; Dubois and Prade, 1988]. Their combination with classical logic has converged in
logical frameworks such as probabilistic logic [Nilsson, 1994; Lukasiewicz, 2005] and pos-
sibilistic logic [Dubois et al., 1994]. Further on, the integration of these formalisms into
logic programming have made it possible to extend logic programming semantics to han-
dle uncertain information. Several types of logic programming frameworks have been
created. They range on frameworks based on annotated logics [Kifer and Subrahmanian,
1992], probabilistic logic [Ng and Subrahmanian, 1992; Lukasiewicz, 1998; Kern-Isberner and
Lukasiewicz, 2004; Saad and Pontelli, 2005; Baral et al., 2009], fuzzy logic [Alsinet and Godo,
2002; Nieuwenborgh et al., 2007; Bauters et al., 2010b], bilattices [Fitting, 1991], evidence the-
ory [Baldwin, 1987; Wan, 2009], to possibilistic logic [Dubois et al., 1991; Nicolas et al., 2006;
Nieves et al., 2011; Bauters et al., 2010a]. However, the joint handling of incomplete and un-
certain information has received little attention both in logical- and in logic programming-
based approaches with the exception of some works including [Saad and Pontelli, 2005;
Nicolas et al., 2006; Nieves et al., 2011; Baral et al., 2009; Bauters et al., 2010a].

Dealing with incomplete and uncertain information together amounts to handle uncer-
tain default rules. Handling uncertain default rules basically involves two tasks, that are,
the selection of default rules and the management of the uncertainty. This can be done in
different ways which depend on the setting considered. For instance, in logical-based set-
tings such as possibilistic and probabilistic logic [Lukasiewicz, 2005; Dupin de Saint-Cyr
and Prade, 2008], the selection of default rules is independent from the uncertainty man-
agement. This is due to the fact that, in these logics, incomplete information is not explicitly
represented. As such, default rules need to be transformed into strict rules before to process
the uncertainty associated to them. Instead, in ASP, such transformation is not required and
the selection of uncertain default rules can be a matter of incomplete and uncertain infor-
mation at the same time. In this respect, an approach able to express explicit preferences
for the selection of exceptions to default rules when information is uncertain has not been
studied yet (this will be one of our thesis objectives, see Section 1.4.1).

2 From a nonmonotonic reasoning point of view, LPODs is a logic programming specification which
supports context-dependent explicit preference statements such as in context c it is more reasonable
to assume a rather than b (encoded as a × b ← c) to select the preferred exceptions to be used in
the inference process. LPODs can also be used to model user preferences, as we will mention in
Section 1.2. Both views will be discussed in more detail in Chapter 3 and Chapter 6 respectively.
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1.2 User Preference Modeling

Preferences are not only a matter of (uncertain) default rule selection. Preferences are
mainly understood as a means for representing user choices. As such, they are an essential
aspect in any intelligent system that supplies personalized content to users and that assists
users with decisions [Chen and Pu, 2004; Brafman and Domshlak, 2009]. A natural question
regarding the former view is how user preferences should be modeled and processed.

One simple approach would be to ask users to explicitly describe their preference mod-
els. This method is clearly ineffective, since it is not adequate for supporting scenarios in
which the set of possible choices is too large to be described in an explicit way.

The above concern has fostered the study of compact preference representation languages
[Brewka et al., 2004a; Boutilier et al., 2004; Benferhat et al., 2001; Brewka et al., 2004b, 2003;
Kärger et al., 2008]. Generally speaking, these specifications define a preference model in
a compact way and a preference relation to rank the outcomes of the model. The way in
which preferences are encoded and the ranking is obtained mainly depends on the specifi-
cation used. Preference representation languages can be categorized into:3

• approaches which extend classical logic such as Qualitative Choice Logic (QCL) [Brewka
et al., 2004a] and Possibilistic Logic [Benferhat et al., 2001];

• approaches based on Conditional Preference Networks (CP-nets) [Boutilier et al., 2004]
and CP-nets extensions such as TCP-nets [Brafman et al., 2006], CP-theories [Wilson,
2004], and Conditional Importance Networks (CI-nets) [Bouveret et al., 2009];

• approaches based on logic programming such as LPODs [Brewka, 2002; Brewka et al.,
2004b], Answer Set Optimization (ASOs) programs [Brewka et al., 2003], Logic Pro-
grams with Ordered and Unordered Disjunction (DLPODs) [Kärger et al., 2008], CR-
Prolog with Ordered Disjunction [Balduccini and Mellarkod, 2003], and Resourced ASP
[Costantini and Formisano, 2009].

In logical-based approaches such as QCL and Possibilistic Logic, preferences are mod-
eled in a logical way by means of non-standard propositional formulas. A preference order
is obtained by ranking valid interpretations according to setting-dependent preferential en-
tailments. For instance, in QCL, preferences are modeled using a non-standard logic con-
nective −→× able to capture ordered disjunctions [Brewka et al., 2004a]. An ordering between
valid interpretations is achieved by means of preferential inference relations which define
the preferred models. In possibilistic logic, preferences are modeled by a set of more or less
imperative goals [Benferhat et al., 2001] and an ordering is defined in terms of preferred
interpretations.

3 These approaches belong to the AI stream of work. However, the studies of the process that sup-
port the construction of preferences have historically deep roots in Philosophy and Logic. In 1957,
the pioneering work of [Halldén, 1957] initiated a line of research that was subsequently system-
atized in [von Wright, 1963] which is usually taken to be the seminal work in preference logics. This
line of research continues nowadays. For instance, the work of [van Benthem et al., 2009] and [Liu,
2010], develop new modal preference logics that improve over [Halldén, 1957] in several direc-
tions. Other studies about preferences can be found in [Hansson, 2001; Lichtenstein and Slovic,
2006; Bienvenu et al., 2010]. In [Bienvenu et al., 2010], a prototypical preference logic is proposed
which makes a first step to bridge the gap between preference logics and AI preference languages.
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A more intuitive way for modeling conditional (context-dependent) preferences and
preference relations is offered by CP-nets [Boutilier et al., 2004]. A CP-net consists of a di-
rected graph in which nodes represent attributes (over a given domain) and edges express
preference links between them. CP-nets model conditional preferences based on the ex-
pression of ceteris paribus preference statements. A partial order among the outcomes of a
CP-net is obtained by means of a conditional preference table associated to each node in
the graph.

Although QCL, Possibilistic Logic, and CP-nets own some nice features w.r.t. prefer-
ence handling, they seem to miss an important aspect which is commonly encountered
in knowledge representation, that is, the modeling of incomplete information. In fact, be-
side the fact that preferences are context-dependent, they may also depend on incomplete
knowledge. To this end, it is interesting to look at logic programming approaches based on
answer set semantics. For instance, LPODs [Brewka, 2002; Brewka et al., 2004b], DLPODs
[Kärger et al., 2008], and ASOs [Brewka et al., 2003] allow to express incomplete knowledge
through the use of negation as failure.

LPODs combines some of the ideas behind QCL with logic programming with negation
as failure. In this way, LPODs can model basic qualitative preference statements such as At
night, I prefer going to a pub over going to a bar by means of ordered disjunction rules of the
form pub× bar ← night. DLPODs basically follows the same idea behind LPODs, but they
have a less restricted syntax able to combine literals connected by ∨ in ordered disjunction
rules. ASO programs decouple the answer set generation from the preference specification
and they allow more complex preference formulas.

On the other hand, new sources of data are changing the way in which people relate
to information. For instance, the appearance of context-aware devices or systems, such as
iPhone or Android, allows users to obtain personalized information anytime from (almost)
everywhere. Now, a user can obtain recommendations about restaurants based on his or
her current location at lunchtime, about a personalized city tour in the afternoon, or about
movies in the evening, etc. To provide personalized content, these systems require an effec-
tive preference model for handling context-dependent user preferences.

The use of logic programming specifications for modeling user preferences in context-
aware systems is appealing. In particular, they can be used for representing user profiles
(this will be one of our thesis objectives, see Section 1.4.2). In this respect, there may exist
more complex preference statements that these specifications are not able to express. This
issue suggests that studying a less restricted syntax can be valuable (this will be one of our
thesis objectives, see Section 1.4.2).

1.3 Preferences in Decision under Uncertainty

Preferences are also important for selecting an optimal decision in decision making under
uncertainty (DMU). In DMU, preferences are used to mark the states of the world that a
user or decision maker prefers to achieve when taking a decision. Making an optimal de-
cision amounts to find a decision (if it exists) that satisfies as many preferences as possible
taking into account that knowledge about the world is not fully certain. Choosing an op-



1.3 Preferences in Decision under Uncertainty 7

timal decision is not an easy task. It requires a theory able to represent preferences and
uncertainty and to rank decisions according to decision rules. The way in which prefer-
ences and uncertainty are represented depend on the framework considered.

Historically, DMU emanates from economics and game theory with the expected util-
ity theory of von Neumann and Morgenstern [von Neumann and Morgenstern, 1944] and
with the subjective expected utility of Savage [Savage, 1972]. According to these classical
decision theories, the ranking of decisions is done according to an expected utility function
which combines probability values associated to states of the world with utility values as-
sociated to the consequences produced by the decisions. These approaches assume that a
probability distribution, encoding the uncertainty, and an utility function, encoding prefer-
ences, are fully specified and available.

However, such functions and distributions are not always accessible or they are diffi-
cult to obtain [Doyle and Thomason, 1999]. For instance, a user may be reluctant to provide
numerical utilities for all possible consequences, or only a partial description of the uncer-
tainty can be retrieved. Since an expected utility approach needs numerical probabilities
for each state and numerical utilities for all possible consequences, the automatization of
a decision making process rises some limitations of classical decision theory approaches.
Moreover, since preferences and knowledge can be human-oriented, a qualitative repre-
sentation of information can be more adequate than a quantitative one. These limitations
fostered the appearance of a new decision paradigm in AI called qualitative decision theory
[Doyle and Thomason, 1999].

The terms qualitative decision theory refers to more than one kind of representation
and several qualitative decision making frameworks have been proposed in the literature
[Boutilier, 1994; Tan and Pearl, 1994a,b; Dubois et al., 2001; Dubois and Prade, 1995; Bonet
and Geffner, 1996]. Among them, possibilistic theory has shown to provide a convenient
setting for modeling qualitative DMU [Dubois et al., 2001; Dubois and Prade, 1995]. Ac-
cording to this approach, the available knowledge is described by formulas which are more
or less certainly true and the preferences are described in a separate prioritized proposi-
tional base. Then, by assuming a commensurateness hypothesis between the level of cer-
tainty and the preference priority, pessimistic and optimistic criteria justified on the basis
of postulates have been proposed for the selection of an optimal decision [Dubois et al.,
2001, 1999].

Although the formulation of qualitative DMU has proved to be compatible with the
symbolic representation of uncertainty and preferences in the possibilistic logic setting, the
computation of the pessimistic and optimistic criteria has remained in the background.
On the other hand, despite the nice computational features of logic programming, there is
not too much work in the logic programming literature that addresses qualitative DMU.
This opens the possibility to investigate whether it is possible to cast the possibilistic logic
formulation of DMU into a logic programming setting and to provide the computation of
an optimal decision according to pessimistic and optimistic criteria (this will be one of our
thesis objectives, see Section 1.4.3).
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1.4 Thesis Objectives

The main aim of this dissertation is to tackle the role of preferences in logic programming
from different perspectives. So far, we have seen how the concept of preference is related
to (uncertain) nonmonotonic reasoning, user preference modeling, and qualitative DMU.
With this research work, we aim at showing that, also in logic programming, preferences
can offer an effective way to select (possibly uncertain) default rules, to express user pref-
erences, and to choose among different decisions under uncertainty.

The objectives of this thesis are presented according to these three perspectives. For
each of them, we discuss the main motivations of our work and we describe in detail the
objectives pursued.

1.4.1 Preferences in Nonmonotonic Reasoning and Uncertainty

Preferences are an important aspect in logic programming for selecting default rules and
several extensions for handling preferences have been proposed in the literature. Most ex-
tensions assume that preferences are used in an explicit way to select default rules in which
exceptions are captured by means of negation as failure. Selecting default rules explicitly is
not always possible. For instance, when different pieces of knowledge encoded by default
rules are integrated, possible exceptions must be made explicit before to be able to select
default rules. When such rules contain different levels of specificity, an implicit preference
order among the rules can be drawn in order to identify exceptions to default rules and to
deal with incomplete information. Only few approaches able to consider implicit prefer-
ences in logic programming have been proposed [You et al., 1999; Garcia et al., 2000, 2009].
Most approaches advocate for the use of negation as failure. However, nonmonotonic rea-
soning can be sometimes handled with preferences rather than negation as failure and it is
interesting to look for modeling exceptions by means of strong negation. Moreover, in the
methodology for qualitative decision making that we will propose later in the document,
we require that knowledge about the world is encoded by means of extended definite logic
programs, i.e., negation as failure free. It may be the case that such knowledge contains a
set of rules which involve an implicit specificity and which can have exceptions that must
be properly handled. Therefore, the first objectives we will pursue are:

Obj1: to identify and to generate exceptions to default rules
Obj2: to manage incomplete information without negation as failure

To fulfill the above objectives, we propose an approach to nonmonotonic reasoning using im-
plicit preferences in logic programming. The approach consists in a rewriting procedure which
considers the specificity of the rules in order to identify conflicting rules and to generate
exceptions. Specificity is obtained by adapting the Z-ordering for ranking the default rules
in a logic program. The ranking allows to identify those default rules which are in an ex-
ceptional situation w.r.t. other more specific rules. Once such rules are identified, they are
rewritten into strict rules in which exceptions are explicitly captured by strong negated
atoms. At the same time, a set of completion rules4 are created. The approach turns to have

4 As we will see in Chapter 4, completion rules are rules that complete contextual and incomplete
information.
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some nice features. First, it provides a methodology to restore the consistency of inconsis-
tent logic programs that implicitly involve specificity between the rules. This is particularly
useful in knowledge integration and decision making scenarios.5 Secondly, it can provide
an operational counter-part to negation as failure based approaches for handling excep-
tions in logic programming,

While in the first contribution we propose to handle nonmonotonic reasoning using im-
plicit preferences rather than negation as failure, in the second one, we handle incomplete
information using negation as failure and we focus on a different problem: the selection of
default rules when information is uncertain. In particular, most of the approaches in logic pro-
gramming able to deal with uncertainty do not consider nonmonotonic reasoning or, if they
do, no notion of explicit preferences for selecting uncertain default rules is considered. In
the case of LPODs, explicit preferences allow to select exceptions to default rules to be used
in the reasoning process. But, what happens when such rules are uncertain? Is it possible
to consider the certainty of the rules for selecting the most preferred and plausible beliefs
to be used in the reasoning? Therefore, the next objectives we will pursue are:

Obj3: to represent and reason about preferences with incomplete and uncertain informa-
tion

Obj4: to select preferred sets of beliefs in an explicit way when information is uncertain

The second contribution in the first part of this thesis tackles the objectives above by
introducing a logic programming framework able to deal with explicit context-dependent prefer-
ences and uncertainty. Such framework is called Logic Programs with Possibilistic Ordered Dis-
junction (LPPODs). The LPPODs framework extends two existing frameworks: LPODs and
possibilistic normal programs [Nicolas et al., 2006]. On one hand, from LPODs, the frame-
work inherits the distinctive feature of expressing explicit context-dependent preferences
among different exceptions to default rules (modeled as atoms of a logic program) and, in
general, of modeling context-dependent preferences. On the other hand, possibilistic nor-
mal logic programs allow to capture qualitative certainty measures about the certainty of
rules (modeled as necessity values according to possibilistic logic [Dubois et al., 1994]). In
this way, the LPPODs framework supports a reasoning which is nonmonotonic, preference-
and uncertainty-aware. The possibilistic management of uncertain information can be mo-
tivated in several ways. First, as stated by several authors [Dubois and Prade, 2004; Mc-
Carthy and Hayes, 1969] probabilistic-based approaches do not fit very well with logical
entailment, while fuzzy set-based logic programming approaches are essentially a gener-
alization of logic programming to continuous domains, rather than a form of approximate
reasoning [Bauters et al., 2010b]. Secondly, by using possibilistic logic, we have been able
to reuse an existing implementation of the possibilistic solver posSmodels6 for possibilistic
normal programs and the LPODs solver psmodels7 in order to provide a straightforward
computation of the LPPODs framework.

5 Indeed, in qualitative decision making, a consistency between knowledge and a decision is as-
sumed.

6 http://www.info.univ-angers.fr/pub/pn/Softwares/posSmodels.html
7 http://www.tcs.hut.fi/Software/smodels/priority/

http://www.info.univ-angers.fr/pub/pn/Softwares/posSmodels.html
http://www.tcs.hut.fi/Software/smodels/priority/
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The LPPODs framework is not only a matter of uncertain nonmonotonic reasoning. In-
deed, its capability to express explicit preferences and to model necessity values makes it
possible to adopt the framework a) for modeling and computing user profiles in a context-
aware system (as we will discuss in Section 1.4.2); b) for modeling qualitative DMU ac-
cording to its possibilistic logic reading and for computing an optimal decision according
to pessimistic and optimistic criteria (as we will discuss in Section 1.4.3).

1.4.2 User Preference Modeling

Logic programming can be an effective tool for building a preference model. Indeed, sev-
eral logic programming proposals, such as LPODs, DLPODs, or ASO programs, support
the specification of preferences which can depend both on contextual and incomplete in-
formation. Moreover, they can draw an order between the model outcomes. On the other
hand, context-aware systems have a limited sensibility towards user specific desires when
preference models or user profiles are not taken into account. As such, user profile handling
is a nice feature to add to context-aware systems.

A possible way to represent user profiles is in terms of a logic programming-based pref-
erence model. The use of a logic programming-based approach can be motivated in several
ways. First, preferences can depend on contextual information. For instance, asking for a
restaurant suggestion is clearly different from asking for a cinema suggestion. Secondly,
preferences can depend on incomplete information: normally one can have some prefer-
ences unless some exceptional conditions are met. Thirdly, the compact symbolic logic pro-
gramming representation and its appealing computational features advocate for the use of
logic programming in a system that has to process user preference models in a quick way.
Finally, in context-aware systems, users can have many preferences and an approach that
considers all preferences as equally important at the moment of selecting the content to
suggest can be too rigid. Preferences in some contexts can be more important than others
or some preferences can become obsolete over the time. As such, a way to measure pref-
erence importance should be considered. While incomplete and contextual information is
already contemplated by existing logic programming specifications, importance weights
are not. Therefore, our next objectives are:

Obj5: to build a preference model which can depend on importance weights, contextual,
and incomplete information

Obj6: to integrate such preference model in an existing context-aware system
Obj7: to compute the preference model in a practical way

To tackle the objectives above, we propose to handle user preferences in context-aware sys-
tems by means of LPPODs. In describing our proposal, we take into account a specific in-
stance of context-aware systems, Interactive Community Displays (ICDs).8 Although we
have introduced LPPODs in the context of uncertain nonmonotonic reasoning, its features
seem to fit particularly well in the representation of the required preference model. Indeed,

8 An Interactive Community Displays (ICD) is a multimedia information point which offers inter-
active services on the public thoroughfare and provides information to people living in or visiting
a city [Ceccaroni et al., 2009].
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contextual and incomplete preferences can be easily captured by ordered disjunction rules
and necessity values associated to the rules can be used to handle preference weights. In
this way, LPPODs can be used to describe user profiles in the system and solutions of an
LPPOD, i.e., its possibilistic answer sets, can provide an ordered list of preference items.
Such ordered list can be used to enhance the personalization capabilities of such systems
(e.g., in the content filtering). As far as integration is concerned, it is unlikely that end-
users will specify their preferences at symbolic level, i.e., according to the LPPODs syntax.
Therefore, a more abstract way for specifying user preferences is required. To this end, a
preference ontology is proposed to bridge the gap between the ontological management of
information, on which new information systems typically rely, and the symbolic level rep-
resentation of information used in the LPPODs inference process. The computation of the
preference model is straightforwardly obtained by implementing the LPPODs semantics in
an ASP-based solver that we called posPsmodels.

Another important aspect in the modeling of user preferences in context-aware systems
is to have enough flexibility for capturing preference statements. For instance, in the above
approach, since LPPODs is based on LPODs, only singleton preference literals can be spec-
ified in each preference rule. However, there are cases in which more complex expressions
need to be specified. Preferences statements which can express equalities (e.g., I prefer cin-
ema to pub or tv) such as in DLPODs, or combinations of more generic formulas, such as in
ASO programs, may allow to capture richer preferences rules. But, is it possible to allow a
less restricted syntax for expressing nested preferences in logic program rules by means of
boolean connectives {not,¬,∧,∨,×}? In this respect, the next objectives are:

Obj8: to provide a specification for nested (or non-flat) preference expressions in logic
programs

Obj9: to define and compute the semantics of this new specification

To fulfill the above objectives, we propose an extension of LPODs, called Nested Logic
Programs with Ordered Disjunction (LPODs+), which allows the writing of nested preference
formulas built by means of connectives {not,¬,∧,∨,×}. To capture the LPODs+ syntax
and semantics, we extend Lifschitz’s proposal of nested logic programs [Lifschitz et al.,
1999] to account for the ordered disjunction connective ×. Consequently, the LPODs+ se-
mantics can be defined in terms of a program reduction and the semantics of nested logic
programs in an easy way. Since the syntax of LPODs+ is too complex to be handled by
existent answer set solvers, we design a translation procedure to map any LPOD+ to an
equivalent disjunctive logic program.

1.4.3 Preferences in Decision under Uncertainty

Despite the nice computational features offered by logic programming, the use of a logic
programming approach for modeling qualitative DMU and for computing an optimal de-
cision has remained almost unexplored. Existing proposals [Brewka, 2005; Grabos, 2004]
suggest a general methodology for modeling qualitative decision problems by means of
LPODs. The common idea is to encode a decision problem by means of an LPOD and to
select an optimal decision by means of comparison criteria based on the LPODs semantics.
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However, these approaches are not satisfactory w.r.t. the handling of preferences and uncer-
tainty for several reasons. First, preferences are always considered to be part of the world
description, whereas, in qualitative DMU, preferences and knowledge about the world are
modeled in two separate knowledge bases. Secondly, these approaches do not deal with
uncertainty, or, if they do, they do not treat uncertain information in a formal way. For in-
stance, in [Brewka, 2005], no explicit notion of uncertainty is contemplated. The plausibility
of a state (of the decision problem at hand) is considered in terms of answer set semantics,
that is, a state is plausible whenever it is not excluded. However, a further discrimina-
tion between the plausibility of states is not possible. In [Grabos, 2004], the plausibility of
states is represented through ordered disjunction rules, called belief rules, which capture
a plausibility order between states. Although this approach specifies more advanced deci-
sion rules, it still seems to miss a satisfactory handling of qualitative DMU. In particular,
it lacks a formal justification of the proposed decision rules. Therefore, it is interesting to
look for a methodology able to capture qualitative DMU in logic programming (in a way
closer to its possibilistic logic formulation) and to compute the pessimistic and optimistic
criteria. In the attempt to bridge the gap between logic programming and qualitative DMU,
the following objectives are considered:

Obj10: to model qualitative decision making in logic programming
Obj11: to model qualitative decision making under uncertainty in logic programming
Obj12: to compute an optimal decision according to pessimistic and optimistic criteria in

logic programming

The computation of an optimal decision according to possibilistic pessimistic and op-
timistic criteria requires a suitable encoding of qualitative DMU in logic programming.
This means that knowledge about the world and preferences need to be represented in
two separate knowledge bases. To this end, we can observe that the similarity between a
decision and an abduction problem is striking (as already stressed in [Sabbadin, 1998]). In
this respect, logic programs have already been used to model abduction problems [Eiter
et al., 1999; Brewka, 2006]. In particular, in [Brewka, 2006], Brewka shows how LPODs can
model abduction in a concise and elegant way. Therefore, the use of LPODs looks reason-
able in order to model qualitative decision making (in terms of abduction) and to compute an
optimal decision when knowledge is fully certain and preferences are all-or-nothing.9 In-
stead, when decisions are a matter of certainty and preference degrees, the representation
of knowledge and preferences must be extended to capture certainty levels and preference
priorities. For this purpose, the possibilistic extension of LPODs, LPPODs, allows to as-
sociate certainty and preference degrees to the rules of a logic program. In this way, the
LPPODs framework can be used to model decision making problem under uncertainty. Then,
the logic programming counterpart of the computation of the possibilistic decision criteria
can be obtained in two ways by applying both a classical (based on LPODs) and a possi-
bilistic (based on LPPODs) logic programming procedure.

9 To avoid misunderstandings, it is worthy to clarify that the LPODs-based modeling we are refer-
ring to here is not the one used in the approaches to decision making discussed above.
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1.5 Thesis Structure

This thesis consists of 11 chapters (including the introduction and a background) and an
appendix. The main chapters are organized into three parts which correspond to the differ-
ent perspectives to which preferences are related as described in the previous sections.

Chapter 2 provides the technical background related to the thesis. Basic notions about
Answer Set Programming, Possibilistic Logic, and Possibilistic Answer Set Programming
are provided. For a better readability of the document, the classes of logic programs consid-
ered are briefly outlined. The content in this chapter is properly referenced from different
parts of the document when needed.

Part I is dedicated to the multifaceted relation preferences have in nonmonotonic rea-
soning and in nonmonotonic reasoning under uncertainty. This part is organized into three
chapters.

Chapter 3 surveys different formalizations of the concept of default rule and preference
extensions that have been proposed in the AI literature. In particular, we overview several
approaches based on nonmonotonic logics, nonmonotonic inference relations of System P,
and logic programming, as well as some proposals for handling preferences in an implicit
and explicit way. Then, we present some of the research focused on nonmonotonic reason-
ing under uncertainty from a logic programming point of view. This chapter is concluded
by a discussion motivating and introducing the following two chapters.

Chapter 4 describes a procedure able to consider implicit preferences in extended logic
programs to handle nonmonotonic reasoning without negation as failure. Some significant
results are achieved. This procedure can be used to restore the consistency of inconsistent
programs which involve a specificity ordering between the rules. Nonmonotonicity can be
obtained in extended definite logic programs by means of a set of completion rules that
add pieces of knowledge in a proper way. The relations between this non-standard non-
monotonic reasoning and the standard one based on negation as failure are also depicted.
We conclude this chapter by discussing the representation capabilities of this approach in
terms of preference representation.

Chapter 5 deals with Logic Programs with Possibilistic Ordered Disjunction (LPPODs),
a possibilistic extension of LPODs. LPPODs provides a logic programming framework
which embeds in a unified way several aspects of common-sense reasoning, such as explicit
preferences, nonmonotonicity and uncertainty. Indeed, the LPPODs framework captures
uncertain information by means of necessity values according to possibilistic logic and it
supports the specification of explicit preferences among exceptions to program rules. In
this way, apart of representing and reasoning about uncertain and incomplete information,
LPPODs can be used for the selection of preferred beliefs sets when program rules are un-
certain. The chapter is concluded by a discussion of related work from the nonmonotonic
reasoning and uncertainty handling points of view. We also discuss the representation ca-
pabilities of this approach in terms of preference representation.

Part II is dedicated to user preference modeling. This part is organized into three chap-
ters.

Chapter 6 first reviews several preference handling methods. Then, some notions about
user profiles and context-awareness are presented in order to provide a basic understand-
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ing of context-aware systems. This chapter is ended by a discussion motivating and intro-
ducing the following two chapters.

Chapter 7 describes how preferences have been integrated into a context-aware system
for enhancing the personalization capability. Starting from a simple use case description,
we show how user profiles and preferences can be modeled at knowledge level by means of
ontologies. This abstract representation is then converted at symbolic level to logic program
rules according to the LPPODs syntax. LPPODs can be used to model user preferences
which can depend both on importance weights and on contextual information (possibly
incomplete). This symbolic representation can be processed in a practical way by means of
a solver implementing the LPPODs semantics. The chapter is concluded by a discussion
about related work about preference queries to classical and possibilistic databases.

Chapter 8 presents Nested Logic Programs with Ordered Disjunction (LPODs+), a pro-
posal for representing nested preference expressions in logic programming. Nested expres-
sions are expressed as boolean combinations of formulas built by means of {not,¬,∨,∧,×}
connectives. We show how the LPODs+ syntax and semantics can be easily captured ex-
tending some results of nested logic programs. Then, we design a translation procedure for
mapping LPODs+ into disjunctive logic programs. We conclude the chapter by depicting
the relationship between LPODs+ and other existing logic programming specification for
preference modeling.

Part III is dedicated to preferences in decision making under uncertainty. This part con-
sists of two chapters.

Chapter 9 first overviews classical decision theory and introduces qualitative decision
theory especially from the possibilistic logic point of view. In particular, a pessimistic and
optimistic decision criterion are presented. It also shows how the computation of these cri-
teria can be reformulated in terms of a prioritized propositional base. Some of existing ASP
methodologies are presented, and discussing their unsatisfactory treatment of uncertainty,
we introduce the next chapter.

Chapter 10 presents the modeling of a basic decision making problem, i.e., when knowl-
edge is certain and preferences are all-or-nothing, in terms of LPODs. Then, this result is
extended to the case in which certainty and preferences are matters of degrees. We show
how it can be captured by means of LPPODs. The computation of the possibilistic decision
criteria is provided by two procedures. In the first procedure, we reduce the computation of
an optimal decision to a standard ASP computation (based on LPODs). In the second one,
we provide an alternative procedure, closer to possibilistic logic, based on the LPPODs
semantics. The chapter is concluded by a discussion about related work of qualitative de-
cision making in logic programming.

Part IV consists of a single chapter (Chapter 11) which provides a summary of the thesis
and points out some lines of future research.
Appendix A contains the technical proofs for all the results obtained in the thesis.

The following figure depicts the reading dependency of the chapters. An arrow from a
chapter to another one suggests that the understanding of the latter depends on the reading
of the former.
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2

Background, Notation and Classes of Logic Programs

Considered

In this chapter we provide the basics of Answer Set Programming (ASP), some concepts
about Rewriting Systems, Possibilistic Logic, and Possibilistic Answer Set Programming
(PASP). The sections in this part are properly referenced from several parts of the document
when needed. This is intended to be a basic introduction on the concepts used in this thesis.
More specific knowledge, will be presented at the beginning of each chapter when needed.

The chapter is organized as follows. In Section 2.1, several concepts of logic program-
ming under answer set semantics are presented. Section 2.2 introduces several classes of
logic programs such as Disjunctive Logic Programs, Generalized Disjunctive Logic Pro-
grams, Nested Logic Programs, and LPODs. In Section 2.3, rewriting systems and program
transformations for logic programs are briefly described. These notions are particularly
useful for the understanding of some sections in Chapter 5. Possibilistic Logic and PASP
(Section 2.4 and 2.5) are important concepts which are extensively used in several part of
the document. Finally, Section 2.6 overviews the classes of logic programs which are con-
sidered and defined in this document.

2.1 Answer Set Programming

In this section, we provide the formal definition of the syntax and semantics of answer sets
for logic programs. We assume that the reader is familiar with logic programming which
has been extensively studied in [Lloyd, 1987; Lifschitz, 1996; Baral, 2003].

2.1.1 Syntax

The language for a logic program consists of

• an enumerable set A of elements called atoms (denoted a, b, c, . . .)
• connectives ∧, ∨,←, ¬, not, ⊥
• auxiliary symbols ”(”, ”)”, ”, ”, ”.”

in which {∧, ∨,←}, {not, ¬}, {⊥,>} are 2-place, 1-place and 0-place connectives respectively.
Atoms negated by ¬ are known as extended atoms. A literal is an atom a or an extended atom
¬a.
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Remark 2.1. In this document, we use the concept of atom without paying attention whether
it is an extended atom or not. As a consequence, the concept of atom and literal are used as
interchangeable concepts.

We consider two types of negation in our logic programs: strong negation ¬ and nega-
tion as failure not.1 Intuitively, not a is true whenever there is no reason to believe a,
whereas ¬a requires a proof of the negated atom.

Given a finite set of atoms A, a extended normal rule r is an expression of the form

a← b1, . . . , bm, not bm+1, . . . , not bm+n (2.1)

in which a and each bi (1 ≤ i ≤ m + n) are atoms. Given an extended normal rule r,
the left part of r is known as the head (head(r) = a) and the right part is known as the
body (body(r)= {b1, . . . , bn, not bm+1, . . . , not bm+n}). Rules with empty body (m + n = 0),
that is, a ← >, are referred to as facts. Rules with empty head, that is, ⊥ ← b1, . . . , bm,
not bm+1, . . . , not bm+n, are referred to as constraints. The managing of constraints in ASP is
done by replacing each rule of the form← b1, . . . , bm, not bm+1, . . . , not bm+n by a new rule
of the from f ← b1, . . . , bm, not bm+1, . . . , not bm+n, not f in which f is a new atom symbol
not belonging to the signature of the program. When n = 0, i.e., there are not negated-
by-failure atoms, the rule is an extended definite rule. To distinguish between the positive
and the negative part of the body, we define B+ = {b1, . . . , bm} for the positive body and
B− = {bm+1, . . . , bm+n} for the negative body. The intuitive reading of a rule r is as follows:
if all atoms in B+ are derived and no atom in B− is derivable, then head(r) can be derived.

An extended normal logic program P is a finite set of extended normal rules. If all the
rules in P are definite rules, then P is called a definite logic program. By LP, we denote the
signature of P, i.e., set of atoms that appear in the rules of P.

In our programs, we will manage strong negation ¬, as it is done in ASP [Baral, 2003].
Basically, each extended atom ¬a is replaced by a new atom symbol a′ which does not
appear in the language of the program LP.

Example 2.1. Let P be the following logic program:

P =


a← b, not d
¬b← c, not ¬d

b← >
c← >


Then, by replacing each extended atom by a new atom symbol, we obtain:

Example 2.2. Let P′ be the following logic program:

P′ =


a← b, not d

b′ ← c, not d′

b← >
c← >


1 In this document, we sometimes consider only strong negation in our logic programs. In such

cases, we explicitly state it.
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In order to disallow models with complementary atoms, such as b and ¬b for instance,
a constraint of the form ⊥ ← b, b′ is added to the logic program. We will omit this con-
straint in order to allow models with complementary atoms. However, this constraint can
be added without loss of generality.

2.1.2 Interpretations and Models

The declarative semantics of a logic program is given by the usual (model-theoretic) se-
mantics of formulas in classical logic. In the following, we will introduce the basic concepts
to define the minimal model of a logic program.

In order to be able to define a model of a logic program, we need to define an interpreta-
tion. Let us first remind that a logic program can be treated as a theory. In such a case, each
negated-by-failure atom not a is replaced by ∼ a such that ∼ is regarded as the classical
negation in classical logic. Formulas are constructed as usual in classical logic by the con-
nectives ∨,∧,←,∼,⊥. A theory T is a finite set of formulas. By LT , we denote the signature
of T, namely the set of atoms that occur in T. Generally, given a set of proposition symbols
S and a theory T in a logic X, T `X S if and only if ∀s ∈ S, T `X s.

Formally, an interpretation of a formula F is a truth value assignment such that:

Definition 2.1. Let T be a theory, an interpretation I is a mapping from LT to {0, 1} meeting the
following conditions:

• I(a ∧ b) = min{I(a), I(b)}
• I(a ∨ b) = max{I(a), I(b)}
• I(a← b) = 0 iff I(b) = 1 and I(a) = 0
• I(∼ a) = 1− I(a)
• I(⊥) = 0

The above mapping is unique [van Dalen, 1994]. It is standard to use sets of atoms to
represent interpretations. The set corresponds exactly to those atoms that evaluate to 1.

An interpretation I is called a (2-value) model of a logic program P if and only if, for
each rule r ∈ P, I(c) = 1, in which c is the clause obtained by r. A theory is consistent if it
admits a model, otherwise it is inconsistent. Given a theory T and a formula α, α is a logical
consequence of T, denoted by T � α, if, for every model I of T, it holds that I(α) = 1. A
model I of a theory T is a minimal model, if it does not exist a model I′ of T, such that I′ 6= I
and I′ ⊂ I.

The concept of minimal model is used in the answer set semantics definition.

2.1.3 Answer Set Semantics

One of the semantics which characterizes an extended normal logic program (normal logic
program from now on) is the so-called answer set semantics. The answer set semantics was
originally defined in [Gelfond and Lifschitz, 1988, 1991]. Answer sets as such are defined
via a reduction to definite logic programs. Let us remember that a logic program is called
definite if B− = ∅ for all its rules.
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Let us introduce some terminology first. Given a set of atoms M ⊆ LP, a rule r is
applicable in M if B+ ⊆ M. The set of applicable rules in a program P w.r.t. M is denoted
by App(P, M). A rule r is satisfied by M, denoted by M � r, if when r is applicable in M,
then head(r) ∈ M. Therefore, the satisfaction of a rule r is based on its applicability w.r.t.
M. As a consequence, a rule r is not satisfied by M (M 2 r) if and only if B+ ⊆ M and
head(r) /∈ M. Finally, a set of atoms M is closed under a logic program P, if ∀r ∈ P, M � r
(or in another words if for any r ∈ P, head(r) ∈ M whenever B+ ∈ M.).

With these formalities at hand, the smallest set of atoms which is closed under a definite
logic program is called the minimal model of P and it is denoted by Cn(P).

On the other hand, in the case of a normal logic program P, the semantics is defined
in terms of the Gelfond-Lifschitz reduction [Gelfond and Lifschitz, 1991]. The Gelfond-
Lifschitz reduct of a normal logic program w.r.t. a set of atoms M is defined as:

PM = {head(r)← B+ | r ∈ P, B− ∩M = ∅} (2.2)

Observe that all rules in PM do not contain not, i.e., P it is a definite logic program. The
reduction is the core of the answer set semantics definition.

Definition 2.2. A set M of atoms is an answer set of a normal logic program P if Cn(PM) = M.

An alternative characterization of Cn can be obtained through an immediate consequence
operator [Lloyd, 1987]. Let P be a definite logic program and M a set of atoms. The operator
TP is defined as:

TP(M) = {head(r) | r ∈ P, body(r) ⊆ M} (2.3)

Thus, TP computes the set of atoms deducible from M by means of P. It allows to define
the sequence T0

P = TP(∅), Tk+1
P = TP(Tk

P), ∀k ≥ 0. For any definite logic program P, Cn(P)
is the least fix-point of TP and Cn(P) =

⋃
k≥0 Tk

P(∅) contains all the consequences of the
program P. More generally, for any answer set M of a normal logic program P it holds that
M =

⋃
k≥0 Tk

PM (∅).

Example 2.3. For illustration, let us consider the following programs

P1 =

{
a← not b
b← not a

}
P2 =

{
a← not a

}
Regarding P1, among the four candidate sets, we find two answer sets, i.e., {a} and {b},

as it can be checked by means of the following table.

M PS
1 Cn(PM

1 )

∅ a ← > {a, b}
b ← >

{a} a ← {a}
{b} b ← {b}
{a, b} ∅
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Unlike the previous example, the program P2 does not admit any answer set.2

M PS
2 Cn(PM

2 )

∅ a ← > {a}
{a} ∅

The credulous inference relation under answer set semantics, denoted as |=c, is defined
as:

Definition 2.3. Given a logic program P and a set of atoms S, P |=c S holds, if and only if there
exists an answer set M of P such that S ⊆ M.

Concerning the consistency of a logic program P, we will omit the restriction that if M
has a pair of complementary atoms then M = LP . This means that we allow that an answer
set could have a pair of complementary atoms. For instance, let us consider the program P:

P =


a← >
¬a← >
b← >


the only answer set of P is {a,¬a, b}. It is worth mentioning that in the ASP literature
there are several forms for handling an inconsistent program. For instance, by applying the
original definition [Gelfond and Lifschitz, 1991], the only answer set of P is {a, b}.

Regarding complexity, we have the following: given a normal logic program P and an
atom p, deciding whether p is true in some answer sets of P is NP-complete. Given a normal
logic program P and an atom p, deciding whether p is true in all answer sets of P is co-NP-
complete. Given a normal logic program P and a set of atoms M, deciding whether M is an
answer set of P is P.

Answer sets of normal logic programs can be computed using the DLV3, SMODELS4,
or GRINGO5 answer set solvers.

2.2 Extensions

In this section, several classes of logic programs which extend normal logic programs are
presented.

2.2.1 Disjunctive Logic Programs

Disjunctive logic programs extend logic programs to account for disjunctive information in
the head of a rule [Gelfond and Lifschitz, 1991].

2 A semantics which is able to handle such situation is the pstable semantics [Osorio et al., 2006].
3 http://www.dbai.tuwien.ac.at/proj/dlv/
4 http://www.tcs.hut.fi/Software/smodels/
5 http://sourceforge.net/projects/potassco/files/gringo/

http://www.dbai.tuwien.ac.at/proj/dlv/
http://www.tcs.hut.fi/Software/smodels/
http://sourceforge.net/projects/potassco/files/gringo/
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More precisely, a Disjunctive Logic Program (DLP) is a collection of disjunctive rules of
the form

a0 ∨ . . . ∨ ak ← B+, not B− (2.4)

in which the head of a disjunctive rule is a disjunction a0 ∨ . . . ∨ ak of atoms ai (where
0 ≤ i ≤ k). p ∨ q expresses that p is true or q is true. Letting head(r) = {a0, . . . , ak}, a set
of atoms M is closed under a definite logic program P if for any r ∈ P, head(r) ∩M 6= ∅
whenever B+ ⊆ m.

The definition of PM carries over from normal programs. An answer set M of a disjunc-
tive logic program is a minimal model being closed under PM. For instance, the disjunctive
logic program P = {a ∨ b} has two answer sets, {a} and {b}. The set {a, b} is closed under
P{a,b} but it is not an answer set since it is not minimal.

The usage of disjunction raises the complexity of the underlying decision problems.
Deciding whether there exists an answer set M for a given atom a such that a ∈ M is
ΣP

2 -complete [Eiter and Gottlob, 1995]. Answer sets of disjunctive logic programs can be
computed using the DLV system. DLPs are considered in Chapter 8.

2.2.2 Generalized Disjunctive Logic Programs

Generalized Disjunctive logic programs extend disjunctive logic programs by allowing nega-
tion as failure in the head of rules.

A Generalized Disjunctive Logic Program (GDLP) is a collection of rules of the form

a0 ∨ . . . ∨ ak ∨ not ak+1 ∨ . . . ∨ not ak+l ← B+, not B− (2.5)

in which ai’s (0 ≤ i ≤ k + l) are atoms. Generalized disjunctive logic programs were
first considered by Lifschitz and Woo in [Lifschitz and Woo, 1992] and coined generalized
disjunctive logic programs by Inoue and Sakama [Inoue and Sakama, 1998].

The computation of the semantics of a GDLP P is reduced to the computation of the
semantics of an equivalent disjunctive logic program P′, obtained by P by means of a trans-
lation procedure defined in [Janhunen, 2001]. The procedure basically eliminates negated
by failure literals from the heads of the rules. GDLPs are considered in Chapter 8.

2.2.3 Nested Logic Programs

Nested Logic Programs (NLPs) under the stable model semantics was introduced by Lif-
schitz et al. in [Lifschitz et al., 1999]. NLPs are characterized by bodies and heads of rules
which are comprised of arbitrary expressions, i.e., formulas composed of ∧, ∨, and not.

It is worth observing that NLPs properly generalize, normal logic programs, DLPs, and
GLPs. A nested logic program can be always transformed into an equivalent disjunctive
logic program by means of several transformation rules [Lifschitz et al., 1999]. NLPs are
considered in Chapter 8.
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2.2.4 Logic Programs with Ordered Disjunction

Concerning preferences in ASP, Logic Programs with Ordered Disjunction (LPODs) are ex-
tended logic programs augmented by an ordered disjunction connector × which allows to
capture qualitative preferences in the head of rules [Brewka et al., 2004b]. An LPOD is a
finite collection of rules of the form

c1 × . . .× ck ← B+, not B− (2.6)

in which ci (for 1 ≤ i ≤ k) are atoms. The rule r states that if the body is satisfied
then some ci must be in an answer set, if possible c1, if c1 is not possible then c2, and so
on. Each of the ci represents alternative, ranked options for problem solutions the user
specifies according to a desired order. If k = 1 then the rule is an extended normal rule.
The semantics of LPODs is based on the semantics of split programs which represent every
option of the ordered disjunction. An alternative characterization of the LPODs semantics
is given in terms of the following reduction.

Definition 2.4 (×-reduction). [Brewka et al., 2004b] Let r = c1 × . . .× ck ← B+, not B− be
an ordered disjunction rule and M be a set of atoms. The ×-reduct rM

× is defined as

rM
× = {ci ← B+|ci ∈ M ∧M ∩ ({c1, . . . , ci−1} ∪ B−) = ∅} (2.7)

Let P be an LPOD and M be a set of atoms. The ×-reduct PM
× is defined as

PM
× =

⋃
r∈P

rM
× (2.8)

Then, the LPODs semantics is captured by the following definition.

Definition 2.5 (SEMLPOD). [Brewka et al., 2004b] Let P be an LPOD and M be a set of atoms.
Then, M is an answer set of P if and only if M is closed under all the rules in P and M is the
minimal model of PM

× .

Example 2.4. Let P be the following LPOD:

P =

{
r1 : a× b ← not c.
r2 : b× c ← not d.

}

Then, if we consider the set of atoms M1 = {a, b}, M2 = {c}, and M3 = {b}, it can be
checked that:

PM1
× =

{
r1 : a ← >.
r2 : b ← >.

}
PM2
× =

{
r2 : c ← >.

}
PM3
× =

{
r1 : b ← >.
r2 : b ← >.

}

Since M1, M2, and M3 are closed under the rules in P and are minimal models of PM1
× , PM2

× ,
and PM3

× respectively, they are valid answer sets of P. Moreover, the answer set {a, b} gives
us the best option for both rules in P, whereas {c} gives us only the second best option
for rule r2 and {b} the second best option for rule r1. Thus, intuitively, {a, b} should be
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the preferred answer set, since it gives the best option for every rule containing ordered
disjunction.

Following the intuition behind Example 2.4, degrees of satisfaction of a rule are defined
in [Brewka et al., 2004b] and they are used to determine preferred answer sets. Formally:

Definition 2.6 (Rule Satisfaction Degree). [Brewka et al., 2004b] Let M be an answer set
of an LPOD P. Then the satisfaction degree M w.r.t. a rule r = c1 × . . . × ck ← b1, . . . , bm,
not bm+1 . . . , not bm+n, denoted by degM(r), is

• 1 if bj 6∈ M for some j (1 ≤ j ≤ m), or bi ∈ M for some i (m + 1 ≤ i ≤ m + n),
• j (1 ≤ j ≤ k) if all bl ∈ M (1 ≤ l ≤ m), bi 6∈ M (m + 1 ≤ i ≤ m + n), and j = min{r | cr ∈

M, 1 ≤ r ≤ k}.

The degrees can be viewed as penalties. In fact, a higher degree expresses a lesser sat-
isfaction. Therefore, if the body of a rule is not satisfied, then there is no reason to be dis-
satisfied and the best possible degree 1 is obtained [Brewka et al., 2004b]. Based on the
satisfaction degree of single rules, a global preference ordering on answer sets can be spec-
ified through different combination strategies.

Given a set of atoms M and Mi(P) = {r ∈ P | degM(r) = i}, the following conditions
for defining that an answer set M1 is strictly preferred to an answer set M2 have been
specified [Brewka et al., 2004b]:

• cardinality-based: at the smallest degree j where |Mi
1(P)| 6= |Mi

2(P)|, |Mi
1(P)| > |Mi

2(P)|
• inclusion-based: at the smallest degree j where Mi

1(P) 6= Mi
2(P), Mi

1(P) ⊃ Mi
2(P)

• pareto-based: there is a rule r ∈ P such that degM1(r) < degM2(r) and for no r′ ∈ P
degM2(r) < degM1(r)

Pareto entails inclusion, and inclusion entails cardinality. Cardinality and inclusion-
based criteria have been proved not to be general enough [Brewka et al., 2004b] and we
will not consider them any further.

Example 2.5. Reconsidering the LPOD in Example 2.4, it can be checked that {a, b} is the sin-
gle preferred answer set w.r.t. Pareto, inclusion and cardinality. On the other hand, answer
sets {b} and {c} are not comparable.

The LPODs semantics is implemented in an efficient ASP-based solver psmodels6 [Brewka
et al., 2002].

Concerning LPODs complexity, we have the following [Brewka et al., 2004b]: deciding
whether an LPOD P has a preferred answer set is NP-complete. Given an answer set M of
P, deciding whether M is preferred is co-NP-complete. Given an atom a appearing in P,
deciding whether there exists a preferred answer set M such that a ∈ M is ΣP

2 -complete.
The LPODs specification is considered in several parts of this thesis. In Chapter 5,

LPODs is one of the building blocks of LPPODs. In Chapter 6, LPODs is exemplified as
a logic programming specification for user preference modeling. In Chapter 8, LPODs is
extended for supporting non-flat preference expressions. Finally, in Chapter 10, LPODs is
used to compute an optimal decision in qualitative decision making.

6 http://www.tcs.hut.fi/Software/smodels/priority/

http://www.tcs.hut.fi/Software/smodels/priority/
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2.3 Rewriting Systems

In the context of logic programming, rewriting systems, consisting in a set of program trans-
formations, have been defined to express precise logic programming semantics and to pro-
vide a procedural method for computing logic programming semantics [Brass et al., 2001;
Dix et al., 2001; Brass and Dix, 1995, 1999]. They can also be considered an effective way to
reduce the size (in terms of atoms and rules) of a logic program preserving its semantics.

As we will see in Chapter 5, program transformation will help to define a conflu-
ent rewriting system for Logic Programs with Possibilistic Ordered Disjunction (LPPODs)
whose transformations can be used to reduce the size of an LPPOD and to propagate the
necessity values between rules without affecting the LPPODs semantics.

An abstract rewriting system is a pair 〈S,→〉 where→ is a binary relation on a given set
S. Let→∗ be the reflexive and transitive closure of→. By x →∗ y we say that x reduces to y.
An irreducible element is said to be in normal form. A rewriting system is:

noetherian: if @x1 → x2 → . . .→ xi → xi+1 → . . ., where ∀i xi 6= xi+1,
confluent: if ∀u ∈ S such that u →∗ x and u →∗ y then ∃z ∈ S such that x →∗ z and

y→∗ z,
locally confluent: if ∀u ∈ S such that u → x and u → y then ∃z ∈ S such that x →∗ z and

y→∗ z.

In a noetherian and confluent rewriting system, every element x reduces to a unique
normal form that we denote by norm(x).

In literature, several transformation rules have been defined for logic programs [Brass
et al., 2001; Dix et al., 2001; Osorio et al., 2001b]. Here we only present some basic trans-
formation rules (in particular the transformation we will extend in Chapter 5). Let ProgL
be the set of all normal logic programs with atoms from the signature L. Given a normal
program P, HEAD(P) = {head(r) | r ∈ P} denotes the set of all head-atoms of P.

Definition 2.7. A transformation rule is a binary relation on ProgL. The following transformation
rules are called basic. Given a program P ∈ 2ProgL :

Elimination of Contradictions: P′ results from P by elimination of contradictions (P →EC P′) if P
contains a rule r = a ← B+, not B− which has an atom b such that b ∈ B+ and b ∈ B−,
and P′ = P\{r}

Positive Reduction: P′ results from P by positive reduction RED+ (P→RED+ P′), if there is a rule
r = a← B+, not (B− ∪{b}) in P and such that b /∈ HEAD(P), and P′ = (P\{r})∪{a←
B+, not B−}

Negative Reduction: P′ results from P by negative reduction RED− (P →RED− P′), if P contains
the rules r = a← >, and r′ = a← B+, not (B− ∪ {a}), and P′ = (P\{r′})

Success: P′ results from P by success (P →S P′), if P contains a fact a ← > and a rule r = a ←
B+, not B− such that a ∈ B+, and P′ = (P\{r}) ∪ {a← (B+\{a}), not B−}

Failure: P′ results from P by failure (P →F P′), if P contains a rule r = a ← B+, not B− such
that head(r) ∈ B+ and head(r) /∈ HEAD(P), and P′ = (P\{r}).

Loop: P′ results from P by loop (P→Loop P′), if there is a set of atoms A such that:
1. ∀r ∈ P, if head(r) ∈ A, then body(r) ∩ A 6= ∅
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2. P′ = {r ∈ P | body(r) ∩ A = ∅}
3. P 6= P′

Based on these transformation rules, we define the following rewriting system CS =
{EC, RED+, RED−, Success, Failure, Loop}.

We denote the uniquely determined normal form of a program P with respect to the
system CS by normCS (P). In order to illustrate these transformation rules, let us consider
the following example.

Example 2.6. Let P1 be the following normal logic program:

P1 =


b ← not a.
c ← not b.
c ← a.
b ← >.


Since a /∈ HEAP(P1), we can apply RED+ to P1. Thus we obtain P1 →RED+ P2:

P1 =


b ← not a.
c ← not b.
c ← a.
b ← >.

 P2 =


c ← not b.
c ← a.
b ← >.


Please observe that we can apply RED− to the new program P2, thus we get P2 →RED− P3:

P2 =


c ← not b.
c ← a.
b ← >.

 P3 =

{
c ← a.
b ← >.

}

Finally, we can apply Failure to P3. In this way we obtain P3 →RED− P4

P3 =

{
c ← a.
b ← >.

}
P4 =

{
b ← >.

}
P4 is the normal form of P1 w.r.t. CS , because none of the transformation rules from CS can
be applied. Please observe that the set of atom {b} is a stable model both of P4 and of P1.
The rewriting system CS is in fact confluent and noetherian.

2.4 Possibilistic Logic

Possibilistic logic emanates from possibility theory [Zadeh, 1978] and it was developed as
a sound and complete logic system which extends classical logic for handling uncertainty
in a qualitative way in a logical setting [Dubois et al., 1994]. Each classical logic formula is
associated with a certainty level. Later on, possibilistic logic has shown that it can also be
used for preference representation [Benferhat et al., 2001]. Under this latter view, each logic
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formula represents a goal to be reached with its priority level rather than a statement that
is believed to be true with some certainty level.

Standard possibilistic logic [Dubois et al., 1994] handles necessity-valued formulas of the
form (ϕ, α) where ϕ is a classical logic formula and α ∈ (0, 1] is interpreted as a lower
bound of a necessity measure N expressing that the formula ϕ is certain at least to the level
α, i.e., N(ϕ) ≥ α.

Necessity measures N are monotonic functions w.r.t. entailment and they are charac-
terized by the decomposability property N(ϕ ∧ ψ) = min(N(ϕ), N(ψ)). They are dual of
possibility measures Π, namely N(ϕ) = 1−Π(¬ϕ). Thanks to the decomposability property
of necessity measures N w.r.t. conjunction, a possibilistic logic base can always be put in a
clausal equivalent form.

Dual possibility and necessity measures Π and N are based on the same possibility
distribution that essentially encodes a preorder that rank-orders interpretations. Generally
speaking, a possibility distribution π on the universe of interpretations represents the com-
patibility of an interpretation ω with the available information (or beliefs) about the real
world (encoded by a possibilistic logic base). By convention π(ω) = 0 means that ω is
impossible and π(ω) = 1 means that nothing prevents ω for being true in the real world.

A possibility distribution π induces two dual measures grading respectively the possi-
bility and certainty of a formula ϕ. The possibility measure Π, defined from a possibility
distribution ω as Π(ϕ) = max{π(ω)|ω � ϕ}, is the possibility degree which evaluates the
extent to which ϕ is consistent with the available beliefs. The necessity measure N, defined
as N(ϕ) = 1 − Π(¬ϕ), is the certainty degree which evaluates the extent to which ϕ is
entailed by the available beliefs.

Given a propositional possibilistic logic base Σ = {(ϕi, αi)|1 ≤ i ≤ n}, Σ is semantically
associated with several possibility distributions which can be compatible with the set of
constraints represented in Σ by N(ϕi) ≥ αi. However, in practice, one is interested in the
least specific distribution only. Formally, a possibility distribution π is said to be the least
specific one between all compatible distributions if there is no possibility distribution π′

with π 6= π′ compatible with Σ such that ∀ω, π′(ω) ≥ π(ω). The least specific distribution
always exists and is characterized by

πΣ(ω) = min
1≤i≤n

π(ϕi ,αi)
(ω)

with π(ϕi ,αi)
(ω) = 1 if ω � ϕi, and π(ϕi ,αi)

(ω) = 1− αi if ω 2 ϕi.
Dubois et al. [Dubois et al., 1994] introduced a formal system for necessity-valued logic

which is based in the following axiom schemata (propositional case):

(A1) (ϕ→ (ψ→ ϕ) 1)
(A2) ((ϕ→ (ψ→ ξ))→ ((ϕ→ ψ)→ (ϕ→ ξ)) 1)
(A3) ((¬ϕ→ ¬ψ)→ ((¬ϕ→ ψ)→ ϕ) 1)

where the inference rules for the axioms above are:

(GMP) (ϕ α), (ϕ→ ψ β) `PL (ψ min{α, β})
(S) (ϕ α) `PL (ϕ β) if β ≤ α
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Using this resolution rule repeatedly, a refutation-based proof procedure that is sound
and complete w.r.t. the semantics exists for propositional possibilistic logic [Dubois et al.,
1994]. The resolution rule allows to compute the maximal certainty level that can be at-
tached to a formula according to the constraints expressed by the base Σ. This can be done
by adding to K the clauses obtained by refuting the proposition to evaluate with a necessity
level equal to 1. Then it can be shown that any lower bound obtained on ⊥, by resolution,
is a lower bound of the necessity of the proposition to evaluate. The treatment of the base
in terms of formulas and necessity values (syntactical way) leads to the same results of the
treatment done in terms of interpretations and possibility distribution (semantical way)
[Dubois et al., 1994].

An important feature of possibilistic logic is its ability to deal with inconsistency. The
level of inconsistency Inc(Σ) of a possibilistic logic base Σ is defined as Inc(Σ) = max{α |
Kα ` ⊥}, with Kα = {ϕ | (ϕ, β) ∈ Σ ∧ α ≥ β}, with the convention max(∅) = 0. In
case of partial inconsistency of Σ, i.e., Inc(Σ) > 0, a refutation carried out in a situation
where Inc(Σ∪ {(¬ϕ, 1)}) = α > Inc(Σ) yields the non-trivial conclusion (ϕ, α), only using
formulas whose certainty levels are strictly greater than the inconsistency level of the base.
This is the syntactic possibilistic entailment, usually denoted by `π .

2.5 Possibilistic Answer Set Programming

Possibilistic Answer Set Programming (PASP) combines ASP and possibility logic by asso-
ciating a necessity value with atoms and rules to provide a framework for reasoning about
incomplete information and uncertainty [Nicolas et al., 2006]. A possibilistic normal (resp.
definite) program is a finite set of pairs 〈r, α〉 with r a normal (resp. definite) rule and α a
certainty value associated with r. A possibilistic rule is indeed written as

α : a← b1, . . . , bm, not bm+1, . . . , not bm+n (2.9)

where alpha belongs to an ordered linearly scale S = (0, 1] and a, bi (1 ≤ i ≤ m + n) are
atoms. As in the case of normal logic program we represent by head(r) the head of a rule
r, B+ the positive and by B− the negative part of the body of a rule respectively. Nec(r) is
the necessity value associate to a possibilistic rule r. In this way, in the PASP framework it
is possible to represent logic programs associated with a certainty value.

Example 2.7. By using the following certainty scale: 1 is absolutely certain, 0.9 is quasi certain,
0.7 is almost certain and 0.3 is little certain, a possibilistic normal logic program P can be
defined in the following way:

P =



r1 = 1 : a ← c, not b.
r2 = 1 : b ← d, not a.
r3 = 0.7 : e ← a, c.
r4 = 0.3 : f ← b, d.
r5 = 0.9 : c ← >.
r6 = 0.7 : d ← >.


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Nicolas et al. [Nicolas et al., 2006] captured the possibilistic semantics for ASP, first,
by defining the semantics of possibilistic definite logic programs and, then, by general-
izing this result by means of a program reduction. The semantics of possibilistic definite
logic programs is defined by first computing the stable model of the corresponding defi-
nite logic program (by using a projection ∗ which returns necessity-value free atoms and
program rules) and, then, by inferring the necessity values of the atoms belonging to the
stable model.

It has also been proved how the semantical management of a program that is defined
in term of a possibility distribution over all atom sets and a syntactical deduction process
based on a fix-point operator defined on rules can lead to the same results. We reuse such
results in Chapter 5.

An interesting feature of PASP is, similar to what happens in possibilistic logic, its abil-
ity to manage inconsistent possibilistic logic programs. Let us remember that, in such a
case, a possibilistic normal logic program is inconsistent when it does not have any possi-
bilistic answer set.

Definition 2.8. Let P be a possibilistic normal logic program

• the strict α-cut of P is the subprogram P>α = {r ∈ P | Nec(r) > α}
• the consistency cut degree of P is defined as

ConsCutDeg(x) =

0 : if P∗ is consistent

minα∈S{α | P>α is consistent} : otherwise

The concept of consistency cut is of interest in Chapter 10 where we use it to find a
subset of consistent rules in a possibilistic logic program.

2.6 Classes of Logic Programs Considered in this Document

Figure 2.1 shows several classes of logic programs and the chapter(s) in which they are in-
volved or defined. Definite logic programs are used in Chapter 4 as a specification to propose
an approach to nonmonotonic reasoning based on implicit preferences rather than negation
as failure. Logic Programs with Ordered Disjunction and Possibilistic Normal Logic Programs are
considered in Chapter 5 to define the possibilistic framework of Logic Programs with Possi-
bilistic Ordered Disjunction. This latter specification will serve different purposes. It is first
introduced as an approach to deal with explicit preferences and uncertainty (Chapter 5).
Then, in Chapter 7, it is used to manage user preferences in a context-aware system. Finally,
in Chapter 10, it is used to compute an optimal decision in qualitative DMU. Logic Programs
with Ordered Disjunction is also involved in several parts of the document. In Chapter 10,
it is used as a specification to compute an optimal decision in qualitative decision mak-
ing when knowledge is fully certain and preferences are all-or-nothing. In Chapter 8, it
is extended into the framework of Nested Logic Programs with Ordered Disjunction for han-
dling nested preferences. Finally, Disjunctive Logic Programs, Generalized Disjunction Logic
Programs, Nested Logic Programs are particular cases of Nested Logic Programs with Ordered
Disjunction and they are used in chapter 8.
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3

Handling Incomplete and Uncertain Information

The aim of this chapter is twofold. On one hand, we give a picture of the different at-
tempts to formalize nonmonotonic reasoning which have been proposed in the vast lit-
erature available. In presenting some noticeable approaches and their ideas behind the
handling of default rules, i.e., statements such as normally p’s are q’s, we will exhibit the
following (classical) example:

Example 3.1. If we know that (i) birds normally fly, that (ii) penguins normally do not fly, and
that (iii) penguins are birds, then we should be able to conclude, in a plausible way, that a
bird can fly, but that a penguin can not.

We will see how the birds-can-fly example can be encoded in different approaches such as
default logic, circumscription, autoepistemic logic, possibilistic logic and logic programming. In
particular, we will discuss the role played by preferences in the selection of default rules
and how preferences are understood in nonmonotonic reasoning.

On the other hand, we will describe some approaches able to represent and to reason
about uncertain information. We will see that the joint handling of incomplete and uncer-
tain information is addressed by only few approaches, despite the fact that reasoning under
uncertainty is an extensively research area.

The chapter is organized as follows. After overviewing three seminal approaches for
nonmonotonic reasoning (Section 3.1), in Section 3.2, we present the possibilistic logic ap-
proach for handling default rules. We dedicate Section 3.3 to present how default rules
are handled in ASP. Section 3.4 overviews the main trends for handling nonmonotonicity
and uncertainty. Finally, Section 3.5 concludes the chapter by discussing the overviewed
approaches and by pointing out the directions followed in the next two chapters.

3.1 Seminal Approaches to Nonmonotonic Reasoning

Nonmonotonic reasoning is an attempt to formalize common-sense human reasoning.
Since in classical logic there is no means to distinguish between classical models and it
is not possible to retract or revise previous conclusions on the basis of the new information,
a different type of logics, nonmonotonic logics, have been proposed to formalize nonmono-
tonic reasoning.
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In this section, we overview three nonmonotonic logics, default logic [Reiter, 1980], cir-
cumscription [McCarthy, 1980], and the modal nonmonotonic autoepistemic logic [Moore,
1985] and we point out some extensions that were introduced to deal with preferences
about default rules.

3.1.1 Default Logic

Default logic is a nonmonotonic logic introduced by Reiter [Reiter, 1980] in order to formal-
ize default reasoning. A default theory ∆ = 〈D, W〉 consists of a set of first order logic or
propositional formulas W and a set of defaults rules D of the form

α : β1, . . . , βn

γ
(3.1)

in which α, β1, . . . , βn, γ are first order logic or propositional formulas. In addition, α is
called the prerequisite, β1, . . . , βn the consistency conditions or justifications, and γ the conclu-
sion of the default. The intuitive reading of a default rule normally p’s are q’s in default logic
is an α is a γ if β1, . . . , βn are consistent (there is no information that ¬β1, . . . ,¬βn hold).

Default rules can induce one or more extensions w.r.t. a set W to represent which de-
fault rules ought to be believed more appropriate. Generally, a default theory may have
many extensions or none. The most direct use of default logic is in the encoding of default
information. Let us consider the knowledge representation problem in Example 3.1.

Example 3.2. Let us consider the default theory ∆ = 〈W, D〉, where symbols b, p, f stand for
bird, penguin, and fly respectively:1

W =

{
p→ b

p

}
D =

{ b: f
f

p:¬ f
¬ f

}

We obtain two extensions: one in which {p, b, f } are true and another in which {p, b,¬ f }
are true.

Intuitively, in the above example, we only want the last extension since the more specific
default p:¬ f

¬ f should take precedence over the less specific one b: f
f . In other words, it is

desirable to be able to express preferences among default rules.
The usual solution, originally proposed in [Reiter and Criscuolo, 1981], is to establish

a precedence among these two interacting defaults by adding the negation of the exception,
p, to the justification of the less specific default rule. This amounts to replace b: f

f by b: f∧¬p
f

which yields to the desired results, i.e., a single extension containing {p, b,¬ f }. This ap-
proach is based on the idea of resolving conflict by appealing to specificity following the
inheritance principle property [Horty, 1994].

From a more general point of view, it is desirable to have a notion of preference w.r.t.
default rules to be able to select the most appropriate rules to reason with. Indeed, several
approaches have been proposed to extend default logic with an ordering on the set of de-
fault rules [Brewka, 1994; Delgrande and Schaub, 1997a, 2000; Rintanen, 1995, 1998]. Then,

1 → denotes the classical implication.
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an ordered default theory 〈D, W,<〉 is a finite set D of default rules, a finite set W of formulas,
and a strict partial order < on the default rules. Since there are a lot approaches, we refer
to [Delgrande et al., 2004] for an overview and comparison. A noticeable approach, able
to isolate interacting defaults with different specificity and to define exceptions to default,
was proposed in [Delgrande and Schaub, 1997b].

3.1.2 Circumscription

Circumscription [McCarthy, 1980] is one of the best known formalisms of nonmonotonic rea-
soning. The idea behind circumscription is that of logical minimization. A formula α follows
from a theory T by circumscription if α is true in all models of T that are minimal.

In applications to default reasoning, circumscription is used to minimize abnormalities
of default rules. The intuitive reading of a default rule normally p’s are q’s in circumscription
is every p that is not abnormal is q. For this purpose, the language is enriched by abnormality
propositions designated ab1, ab2, . . ., etc. These propositions address exceptional cases to a
default rule at hand. In this way, a default statement like normally p’s are q’s is represented
as a classical implication of the form

p ∧ ¬ab→ q (3.2)

Then, following this general principle, a set of default rules is transformed into a set of
implications. Given a generic world description (D, W), in which D and W represent the
set of default and strict rule2 respectively, the corresponding sets of classical implication
rules are defined as Dab = {p ∧ ¬ab→ q | p q ∈ D}3 and W∗ = {p→ q | p→ q ∈W}.

Example 3.3. Let us consider the world description (D, W) = 〈{b f , p ¬ f }, {p→ b}〉.
Then:

Dab =

{
b ∧ ¬ab1 → f

p ∧ ¬ab2 → ¬ f

}
W∗ =

{
p→ b

}
The set of rules in Dab ∪W∗ can be seen as a description of our birds scenario in Example
3.1.

In circumscription, we also have to express that things are considered as normal as
possible provided that there is no evidence to the contrary. This assumption is formally
accomplished by circumscribing a world description [McCarthy, 1980; Lifschitz, 1985]. The
semantical underpinnings for circumscription are given by minimal models.

Example 3.4. Keeping with the birds example, let us consider the fact {p}. Then, the models
of {p}, Dab, and W∗, in which we just list the positive literals, are:

{p, b, f , ab1, ab2}{p, b, ab1, ab2}{p, b, f , ab2}{p, b, ab1}
2 Strict rules are rules that do not have exceptions.
3 denotes the no classical implication.
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Circumscribing propositions ab1 and ab2 while varying b, f , p amounts to reasoning
w.r.t. models that have the fewest abnormality propositions. There are two minimal models:
{p, b, ab1} and {p, b, f , ab2}.

As a consequence, it is not possible to derive ab1, ab2, or f , nor their negation. This
shows that circumscription does not respect the principle of specificity [McCarthy, 1986].

For fixing this problem, McCarthy introduced a prioritized version of circumscription,
prioritized circumscription by assuming that abnormality propositions are a priori assigned
with different priorities. The idea is to partition the circumscribed propositions into prior-
ity layers. To this end, a set of propositions is partitioned into disjoint subsets, in which the
propositions in a partition at the lower level should take priority over those in the above
levels. Lifschitz shows in [Lifschitz, 1985] that a prioritized circumscription becomes a se-
quence of ordinary circumscriptions in which propositions in a higher layer are minimized
while propositions in a lower layer are varied.

In the birds example, giving the abnormality proposition of the more specific default
rule ab2 priority over the one of the less specific rule ab1, yields to conclude {p, b,¬ f }.

3.1.3 Autoepistemic Logic

Autoepistemic logic [Moore, 1985] belongs to the family of modal nonmonotonic logics.
In modal logics, statements may be classified into three different categories, i.e., provable,
refutable, and conceivable. In this respect, Moore adapts the approach of McDermott and
Doyle [McDermott and Doyle, 1980] by referring to the dual notion of conceivable which is,
according to him, the same as believe. Then, the intuitive reading of a default rule normally
p’s are q’s in autoepistemic logic is if a given p was not q, we would know it.

Autoepistemic logic aims at formalizing an agent’s reasoning about her own beliefs. To
this end, the logical language is augmented by a modal operator � in which a formula �a
is read as a is believed. A modal default is written as

p ∧ ¬�¬q→ q (3.3)

In a given theory T of such formulas, an autoepistemic extension or expansion E is defined
as E = Th(T ∪ {¬�p | p /∈ E} ∪ {�p | p ∈ E}.

Example 3.5. The autoepistemic theory T for the default rules in Example 3.1 consists of the
following three modal defaults:

T =


b ∧ ¬�¬ f → f
p ∧ ¬� f → ¬ f
p ∧ ¬�¬b→ b


Then, given p along with the three modal defaults, we obtain two autoepistemic extensions
containing {¬ f } and { f }.

For resolving conflicts among default modal rules, prioritized versions of autoepistemic
logic have been defined in hierarchic autoepistemic logic [Konolige, 1989] and prioritized au-
toepistemic logic [Rintanen, 1994]. In the former approach, after defining a layered sets of
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formulas, all stable expansions are generated layer by layer. Then, expansions are ordered
according to the layer ordering. Instead, in the latter approach, a preference order assigned
to the modal default induces an ordering on stable expansions.

3.2 Dealing with Incomplete Information in Possibility Theory

In [Benferhat et al., 1997], a complementary survey of the approaches to nonmonotonic rea-
soning outlined above and in [Sombé, 1990; Brewka et al., 1993] is presented. In particular,
it is shown how possibilistic logic [Benferhat et al., 1992, 1998], conditional objects [Dubois and
Prade, 1994], and infinitesimal probabilities [Pearl, 1988; Adams, 1975] can achieve a satisfac-
tory treatment of default reasoning in the presence of incomplete information. Indeed, they
can capture all the properties which a nonmonotonic consequence relation should satisfy
according to Kraus, Lehmann and Magidor’s System P [Kraus et al., 1990]. Since System
P defines a set of postulates which provide a very cautious inference system which suf-
fers from irrelevance4, Lehmann [Lehmann and Magidor, 1992] and Pearl [Pearl, 1990] have
proposed to add an inference rule, called rational monotonicity, and a particular entailment
called rational closure. Then, one way of adding the rational monotony to System P is to use
the System Z [Pearl, 1990]. Possibilistic logic, infinitesimal probabilities and conditional
objects have shown to be able to satisfy this rational closure entailment.

3.2.1 Handling Default Rules in Possibilistic Logic

Possibilistic logic [Dubois et al., 1994] handles pairs of the form (ϕ, α) made of a classical
logic formula ϕ and of a certainty weight α belonging to a totally ordered set S (see Chapter
2, Section 2.4). A pair (ϕ, α) expresses that ϕ is more certain than ¬ϕ, the latter being all the
more impossible as α becomes higher. In the handling of default rules, the possibilistic logic
inference mechanism turns out to express a preferential entailment [Benferhat et al., 1992,
1998]. Indeed, the semantics of possibilistic logic can be expressed in terms of a complete
ordering over the interpretations.

Then, a conditional knowledge base or default base ∆ = {pi  qi | 1 ≤ i ≤ n} made of
default rules of the form normally, if pi then qi can be viewed as a set of constraints stating
that Π(pi ∧ qi) > Π(pi ∧ ¬qi), i.e., pi ∧ qi is strictly more possible than pi ∧ ¬qi. Strict rules
are special cases of the above constraint in the sense that all the states where pi and ¬qi

are true result to be impossible. This is captured by assigning Π(pi ∧ ¬qi) = 0 to the above
constraint. Default rules can then be turned into possibilistic logic formulas (¬pi ∨ qi, α) in
which the weight α reflects a rule priority, computed from the least informed possibility
measure compatible with the set of constraints.

In [Benferhat et al., 1992], it is shown that each default rule of a default base ∆, can
be associated with a possibilistic formula (¬pi ∨ qi, α), in which α represents its specificity
level α = Z(r)+1

n+2 , n being the index of the last stratum of the Z-ordering of ∆, and Z(r)

4 If a formula δ is a plausible consequence of α, and if a formula β is a formula composed of propo-
sitional symbols which do not appear in the default base, then δ cannot be deduced from α ∧ β.
For instance, from the rule normally birds fly, it is not possible to deduce that red birds fly too, when
no assertion in the knowledge base deals with red.
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corresponding to the rank of the stratum to which the rule r belongs.5 Under this rule
ranking, possibilistic logic entailment is equivalent to rational closure entailment [Kraus
et al., 1990; Gärdenfors and Makinson, 1994].

Example 3.6. Let us consider the default rules in Example 3.1. The Z-ordering of ∆ is:

∆0 =
{

b f
}

∆1 =

{
p → b
p  ¬ f

}

Then, the set of possibilistic formulas associated to ∆ is

Σπ =


(¬b ∨ f , 1

3 )

(¬p ∨ ¬ f , 2
3 )

(¬p ∨ b, 1)


in which the number is only a way to represent an order and it can be substituted by any
other linearly ordered scale. Let C = {(p, 1)} meaning that we are considering a penguin
p. Then, applying the resolution rule of possibilistic logic, where `π denotes the possibilis-
tic entailment (see Chapter 2, Section 2.4), Inc(Σπ ∪ C) = 1

3 since Σπ ∪ C `π ( f , 1
3 ) and

Inc(Σπ ∪ C) = 2
3 since Σπ ∪ C `π (¬ f , 2

3 ). Hence, Σπ ∪ C `π (⊥, 1
3 ). So, the final base only

contains the formulas {(¬p ∨ ¬ f , 2
3 ), (¬p ∨ b, 1)}. So Σπ ∪ C `π (¬ f , 2

3 ). One concludes
that a penguin is unable to fly.

It can be observed how, in possibilistic logic, conflicts between default rules are solved
by assigning a priority between default rules based on their specificity. However, this
method suffers from the blocking inheritance problem.6 For instance, if we had the rules birds
generally have legs and penguins generally do not fly, then it would not be possible to conclude
that penguins have legs. This problem has been addressed in [Dupin de Saint-Cyr and Prade,
2008] by a rewriting method which rewrites default rules into strict rules and adds special
rules for handling incomplete information. This kind of rewriting is what we will mimic in
the setting of extended definite logic program as we will see in Chapter 4.

3.2.2 Other Approaches

In the infinitesimal probabilities approach [Adams, 1975; Pearl, 1988], a default rule p q
is modeled by the constraint P(q | p) ≥ 1− ε, in which ε denotes an arbitrary small posi-
tive real number and P denotes a probability measure. Roughly speaking, given a default
base ∆, the consequence relation is then defined as: q is a consequence of p w.r.t. ∆ if the

5 Pearl [Pearl, 1990] provides an algorithm which gives a stratification of a set of default rules in a
way that reflects the specificity of the rules. Roughly speaking, the first stratum contains the most
specific rules, i.e., which do not admit exceptions (at least, expressed in the considered default
base), the second stratum has exceptions only in the first stratum and so on. The algorithm allows
to stratify ∆ into (∆0, ∆1, . . . , ∆n).

6 Blocking inheritance is a weakness of System Z [Pearl, 1990]. Refinements of the Z-ordering have
been proposed such as the maximum-entropy approach of Goldzsmidt in [Goldzsmidt et al., 1993]
which also takes into account the number of rules tolerating a formula and not only their rank
orders.
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conditional probability P(q | p) is very high whenever the conditional probability attached
to each default rule in ∆ is also very high.

Dubois and Prade discussed how Adams’ infinitesimal probabilities can be expressed
in terms of conditional objects in [Dubois and Prade, 1994]. A conditional object q | p can
be seen as a purely symbolic counterpart to the conditional probability P(q | p). Thus, it
shows that numerical probabilities do not play a crucial role in the modeling of preferential
entailment, since no probability degrees, whether infinitesimal or not, are necessary when
conditional objects are used.

More recently, in [Lukasiewicz, 2005],it is shown how probabilistic logic can also satisfy
the rationality postulates of System P and the property of rational monotonicity.

3.3 Dealing with Incomplete Information in Logic Programming

Logic programming can serve both as a logical paradigm for declarative programming and
as a framework for knowledge representation [Baral and Gelfond, 1994; Gelfond, 1994].
In extended normal logic programs under answer set semantics (see Chapter 2, Section 2.1),
incomplete information is handled by default negation or negation as failure, i.e., not, which
is allowed to appear in the body of the rules of a logic program. Then, a default rule, i.e.,
normally p’s are q’s, is usually modeled by a normal rule

q← p, not ab (3.4)

or by an extended normal rule

q← p, not ab, not¬q (3.5)

when weak exceptions, i.e., not¬q, need to be modeled. Informally, the piece of knowl-
edge not ab, captures the knowledge about an abnormal condition ab w.r.t. the default rule.
From a semantics point of view, modeling exceptions by means of negated-by-failure atoms
amounts to check whether a strong exception, i.e., ab, or a weak exception, i.e., ¬q can be
proved. If it is the case, more specific information is preferred to that which is more general,
in accordance to the inheritance reasoning principle [Touretzky, 1986].

Therefore, in a logic program the concept of preference is already present at semantics
level in an intrinsic way. The concept of preferred models is intrinsically defined in the
answer set semantics definition of an answer set of a logic program. In fact, answer sets
correspond to the preferred models of a logic program and tend to identify those models
in which everything is as normal as possible.

However, this basic approach of assuming normality still faces a difficulty [Brewka
et al., 2008]. There are cases in which extended rules can support conflicting conclusions,
as shown in the following example.

Example 3.7. Let us consider the knowledge representation problem in Example 3.1. One
possible encoding of this problem is by means of the following logic program P:
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P =


r1 : b ← p.
r2 : f ← b, not (¬ f ).
r3 : ¬ f ← p, not f .


It can be checked that in context {p} (penguin), P has two answer sets, {p, b,¬ f } {p, b, f }
which are in conflict (¬ f and f can be concluded).

In such situations, preferences can be used to solve conflicts. Two options are available
so far [Brewka et al., 2008]: to use preferences that are implicit in the available information,
or to use explicit preference information that needs to be manually specified.

3.3.1 Implicit Preferences in Logic Programs

Implicit preferences are based on the notion of specificity [Horty, 1994] of a rule as a way
to assign a priority between rules that are in conflict. For instance, System Z [Pearl, 1990]
provides a good example of a system that implicitly prefers more specific information. In
the logic programming literature, there are some approaches that deal with specificity [You
et al., 1999; Garcia et al., 2000, 2009].

In [You et al., 1999] an inheritance network is compiled to a general logic program and
a query on the network is answered by a logic programming proof procedure w.r.t. the
compiled logic program. This graphical model based on path computing does not allow to
take into account rules with multiple atoms in the body.

The approach in [Garcia et al., 2000] translates a default theory, expressed through a
set of conditional defaults, into an extended logic program whose semantics is defined
in terms of the well-founded semantics [Van Gelder et al., 1991]. However, it suffers from
cautiousness. In fact, it does not allow to infer floating conclusions [Horty, 2002] (e.g., Nixon
diamond example).7 On the other hand, it faces blocking inheritance (e.g., penguins do not
have legs because of being abnormal birds).

Garcia et al. [Garcia et al., 2009] proposed to deal with the problem of representing de-
fault rules with exceptions by generating the suitable normal logic program from a compact
representation of the information. Their approach is based on a previous work of Delgrande
and Schaub [Delgrande and Schaub, 1997b] which proposed a way to compile specificity
into nonmonotonic theories such as default logic, circumscription and autoepistemic logic.
Since extended normal logic programs are closely related to default logic [Gelfond and
Lifschitz, 1991], they have been able to adapt this method to extended programs both in
theoretical and practical points of view. In particular, they capture exceptions to defaults
by means of negated-by-failure atoms, as shown in the next example.

Example 3.8. Given the default specification in Example 3.1, the following extended normal
logic program is compiled.

7 The Nixon Diamond is a scenario in which default rules can lead to mutually inconsistent conclu-
sions. Such scenario consists of the following set of defaults: normally, Quakers are pacifist; normally,
Republicans are not pacifist; Richard Nixon is both a quaker and a republican. Hence, it is not possible
to say whether Nixon is a pacifist or not [Reiter and Criscuolo, 1981]. The name diamond comes
from the fact that such a scenario, when expressed in inheritance networks, has a diamond shape.
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P =


f ← b, not ¬ f , not p.
b ← p.
¬ f ← p, not f .


It can be checked that, given a penguin p, the only answer set is {p, b,¬ f }.

This approach is less cautious than the one in [Garcia et al., 2000] (it can handle the
Nixon Diamond example) and it also faces the blocking inheritance problem. In Chapter
4, we propose a novel approach based on an alternative rewriting procedure, not based on
negation as failure, which introduces exceptions and incomplete knowledge by means of
strong negation. Then, it will be interesting to see how our approach relates to the approach
in [Garcia et al., 2009].

When specificity is hard to be handled [Touretzky et al., 1987] or preferences need to
be decided independently of specificity (such as in the law domain for instance), it is more
convenient to express preferences on defaults in an explicit way.

3.3.2 Explicit Preferences in Logic Programs

Explicit preferences can be handled in different ways in ASP and numerous proposals have
been made including [Gelfond and Son, 1998; Zhang and Foo, 1997; Brewka and Eiter,
1999; Sakama and Inoue, 2000; Delgrande et al., 2003; Brewka et al., 2004b; Van Nieuwen-
borgh and Vermeir, 2006]. A detailed comparison between these approaches can be found
in [Schaub and Wang, 2001; Delgrande et al., 2004]. In [Delgrande et al., 2004], several cat-
egories have been identified to compare such approaches: whether they employ a meta-
formalism for characterizing preferred answer sets [Brewka and Eiter, 1999] versus they trans-
late an ordered logic program into an ordinary logic program such that the preferred an-
swer sets of the former correspond to the answer sets of latter [Gelfond and Son, 1998; Del-
grande et al., 2003]; or whether they specify preference among rules [Zhang and Foo, 1997;
Brewka and Eiter, 1999; Delgrande et al., 2003; Van Nieuwenborgh and Vermeir, 2006] ver-
sus preference among atoms/literals [Sakama and Inoue, 2000; Brewka et al., 2004b], are some
of the categories considered.

In [Brewka et al., 2008], it is pointed out how approaches based on preferences among
rules still face some shortcomings. In fact, preferences can depend on context, i.e., what is
preferred under certain circumstances may not be preferred in others, and explicit pref-
erence orderings among rules are not sufficiently flexible to take different contexts into
account. Sometimes, it is more convenient or necessary to express preferences directly in
terms of the literals contained in the answer sets. In particular, when we aim to represent
conditional preferences differentiating between literals to be accepted based on other liter-
als already accepted or rejected [Brewka et al., 2004b].

One way to deal with these limitations was proposed by Brewka et al. [Brewka et al.,
2004b] in the logic programming framework of Logic Programs with Ordered Disjunction
(LPODs). To express preferences among alternative literals, ordered disjunction × (first
proposed in Qualitative Choice Logic [Brewka et al., 2004a]) is used in the heads of rules.
Since several parts of this document make explicit reference to this approach, a technical
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overview about LPODs was given in Chapter 2, Section 2.2.4, while its main characteristics
from a nonmonotonic reasoning point of view are described in the next section.

3.3.3 LPODs: An Approach for Context-dependent Preferences Among Literals

Essentially, the LPODs specification is designed to do two things at once. First, it deter-
mines the space of answer sets. Secondly, LPODs uses preferences encoded by ordered
disjunctions in the heads of rules and aggregates them into a global preference relation on
answer sets. Preferences encoded by LPODs can be used to specify explicit preferences about
exceptions (as we will consider in this section and in Chapter 5) or user preferences (as we
will see later in Chapter 6).

From a nonmonotonic point of view, ordered disjunction can be used to select the best
literals to reason with. In particular, ordered disjunction rules can express preferences such
as being c, a is preferred to b, i.e., they can be used to specify an explicit preference order
among exceptions to default rules which depend on contextual knowledge. This idea is
illustrated in the next examples.

Example 3.9. Let us consider the logic program in Example 3.7 in which we consider some
extra knowledge stating that assuming that (i) penguins do not fly is more reasonable than
assuming that (ii) penguins do fly.

P =



r1 : b ← p.
r2 : f ← b, not (¬ f ).
r3 : ¬ f ← p, not f .
r4 : ¬ f × f ← p.
r5 : p ← >.


The preference order among the exceptions to default rules r2 and r3 is captured by the

ordered disjunction rule r4. Therefore, according to the LPOD semantics (see Chapter 2,
Section 2.2.4), P has two answer sets, M1 = {p, b,¬ f , }, and M2 = {p, b, f }. By taking the
satisfaction degree of each answer sets w.r.t. rule r4 into account, M1 is preferred to M2.

Thanks to negation as failure, LPODs can also capture preferences about exceptions
w.r.t. default rules which can depend on some incomplete knowledge.

Example 3.10. Let us consider the following program in which, (i) if we consider super-
penguins, then it is more reasonable to assume that super-penguins fly, since super-penguins
are a special type of penguin. Otherwise, (ii) it is more reasonable to assume that super-
penguins do not fly. This preference order among exceptions is captured by rules r4 and r5

in the following program:

P′ =



r1 : b ← p.
r2 : f ← b, not (¬ f ).
r3 : ¬ f ← p, not f .
r4 : ¬ f × f ← p, not sp.
r5 : f ×¬ f ← p, sp.
r6 : sp ← >.


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According to the LPOD semantics, P′ has two answer sets, M′1 = {sp, b,¬ f , }, and
M′2 = {sp, b, f }. In this case, the most preferred answer set is M′2.

Until now we have assumed that knowledge was completely certain. However, in many
applications, knowledge can be pervaded with uncertainty. Dealing with incomplete infor-
mation and uncertainty is part of most intelligent behavior, and, consequently, the produc-
tion of intelligent behavior in machines often requires a proper representation and man-
agement of uncertainty as well. In the next section, we will overview different formalisms
able to handle uncertainty.

3.4 Dealing with Incomplete Information and Uncertainty

Among logic-based approaches, the most noticeable works are presented in [Dupin de
Saint-Cyr and Prade, 2008; Lukasiewicz, 2005] in the probabilistic and possibilistic logic set-
tings. In [Lukasiewicz, 2005], a weak nonmonotonic probabilistic logic is proposed to han-
dle statements such as normally p’s are q’s with probability of at least α in a uniform framework.
Such framework can handle strict logical knowledge and purely probabilistic knowledge
from probabilistic logic, as well as default logical knowledge from conditional knowledge
bases. In the possibilistic setting [Dupin de Saint-Cyr and Prade, 2008], uncertain default
rules such as normally p’s are q’s with certainty at least α are handled by a two stepped process.
First, default rules are rewritten into possibilistic logic formulas and preferential entailment
is used to draw plausible conclusions (see Section 3.2.1). Then, possibility logic resolution
is used to handle the certainty associated to the information described in the possibilistic
knowledge base (see Chapter 2, Section 2.4).

On the other hand, logic programming with uncertainty is an extensively research area
and it has proceeded along various research lines of logic programming (for an interesting
historical recollection in this topic, we refer to [Subrahmanian, 2007]).

Research on logic programming with uncertainty has dealt with various approaches of
logic programming semantics, as well as different applications. Most of the approaches in
the literature employ different formalisms to handle uncertain information such as anno-
tated logics [Kifer and Subrahmanian, 1992], probabilistic logic [Ng and Subrahmanian, 1992;
Lukasiewicz, 1998; Kern-Isberner and Lukasiewicz, 2004; Saad and Pontelli, 2005; Baral
et al., 2009], fuzzy logic [Alsinet and Godo, 2002; Nieuwenborgh et al., 2007; Bauters et al.,
2010b], bilattices [Fitting, 1991], evidence theory [Baldwin, 1987; Wan, 2009], and possibilistic
logic [Dubois et al., 1991; Nicolas et al., 2006; Nieves et al., 2011; Bauters et al., 2010a]. Basi-
cally, such approaches differ in the underlying notion of uncertainty and how uncertainty
values, associated to clauses and facts, are managed. However, this long list of approaches
can be radically shortened when one focuses only on works which can handle incomplete
and uncertain information together. Such approaches are those which extend answer set
semantics.

3.4.1 Fuzzy Answer Set Programming

Fuzzy answer set programming (FASP) is a generalization of ASP based on fuzzy logic
[Nieuwenborgh et al., 2007]. Essentially, literals are associated with a truth degree from
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the unit interval [0, 1] which refers to the intensity of a property as a matter of degree
(e.g., a person is sick if she suffers from intensive shivering and has a high temperature).
These degrees are captured by means of functional relationships using connectives from
particular fuzzy logics. As fuzzy logic gives the user great flexibility regarding the choice
for the interpretation of the notions of negation, conjunction, disjunction and implication,
the FASP framework is highly configurable.

As also stated in [Bauters et al., 2010b] by the same authors of FASP, FASP is basically a
generalization of ASP to continuous domains and not a form of approximate reasoning. As
such, FASP is not well-equipped to deal with vagueness and with uncertainty in general.
A preliminary work on the combination of FASP with possibility theory is proposed in
[Bauters et al., 2010b].

3.4.2 Probabilistic Answer Set Programming

The work in [Baral et al., 2009] presents a nonmonotonic probabilistic logic programming
language (P-log) which is based on, and generalizes, logic programming under answer set
semantics and Causal Bayesian networks. The P-log semantics is defined in terms of prob-
abilistic models representing possible worlds of the domain being represented. Nonmono-
tonicity is achieved by means of an updating mechanism which changes the collection of
possible worlds when new probabilistic information is added to the program.

Another example of probabilistic nonmonotonic formalism can be found in [Saad and
Pontelli, 2005]. In this work, it is possible to represent rules in which every atom is anno-
tated with a probability interval. Then, the associated semantics is defined in terms of a
probabilistic well-founded semantics and a probabilistic stable model semantics.

On the other hand, the criticism to the probabilistic handling of uncertainty [McCarthy
and Hayes, 1969; Dubois and Prade, 2004] has fostered other approaches based on possi-
bilistic logic [Dubois et al., 1991] in which a certainty degree is attached to default rules
statements. [Dubois et al., 1991] can be considered the first approach towards the un-
certainty handling in logic programs from a possibility theory point of view. Since such
approach was not dealing with nonmonotonicity, it has been superseded by more recent
works in Possibilistic Answer Set Programming (PASP).

3.4.3 Possibilistic Answer Set Programming

Possibilistic Answer Set Programming (PASP) approaches [Nicolas et al., 2006; Nieves et al.,
2011; Bauters et al., 2010a] extend answer set semantics with possibility theory in order
to deal with a reasoning which is uncertain and nonmonotonic. PASP combines the non-
monotonic features of ASP with the uncertainty handling of possibilistic logic, according to
which, necessity measures are associated to rules and atoms. The pioneer work of PASP of
Nicolas et al. [Nicolas et al., 2006] captured a possibilistic semantics for ASP by first defin-
ing the semantics of possibilistic definite logic programs and then generalizing this result
to possibilistic normal programs (see Chapter 2, Section 2.5). The work in [Nieves et al.,
2011] basically extend the results of [Nicolas et al., 2006] to disjunctive logic programs.



3.5 Discussion 45

More recently, [Bauters et al., 2010a] has proposed a revisited semantics for PASP. The
core idea of this approach is to translate a normal program to a set of constraints on possibil-
ity distributions. Then, the least specific possibility distribution, which is compatible with
these constraints, corresponds to the answer sets of the program. Such idea is extended to
cover possibilistic (normal) logic programs. This revisited possibilistic semantics has also
been applied to possibilistic disjunctive logic programs [Bauters et al., 2011].

3.5 Discussion

Nonmonotonic reasoning is an essential feature for systems that aim at formalizing human
common-sense reasoning. In this chapter, we have seen several formalisms able to deal with
incomplete knowledge. Such approaches differ on the way default rules and exceptions are
represented and handled.

In the literature, two major trends can be identified which have been developed in an
independent way: nonmonotonic logics approaches, and approaches which are based on
preferential and rational closure entailments of System P [Kraus et al., 1990], and System
Z [Pearl, 1990]. On the other hand, ASP is considered one of the most successful imple-
mentation of nonmonotonic logics. This is not surprising if we think that extended logic
programs are a simple fragment of Reiter’s default logic [Reiter, 1980].8

The notion of preference is strongly connected with nonmonotonic reasoning as prefer-
ences represent an effective way to choose between default rules (which can be in conflict).
The way in which preferences are specified depends on the formalism chosen. Implicit pref-
erences can emerge by considering specificity according to the information described by the
defaults. For instance, in System Z and possibility theory, default rules are rank-ordered in
such a way that the most specific rules, whose conclusions may contradict the conclusions
of more general defaults, receive a higher level of priority. Instead, in logic programming,
preferences are mainly understood in an explicit way and they are used to specify prefer-
ence among rules or literals. While there are a lot of approaches for handling preferences
in an explicit way in logic programming, only a few approaches have been proposed to
handle preferences in an implicit way.

As such, in Chapter 4 we propose to use a novel approach, based on the notion of
specificity, for handling incomplete information in logic programs. Our approach consists
in an algorithm which makes it possible to handle incomplete knowledge without negation
as failure. In fact, incomplete information is handled by making exceptions explicit in rules
by means of strong negation and by adding completion rules.

On the other hand, reasoning with incomplete information and reasoning with uncer-
tainty are important research trends that have been developed quite independently from
each other. Indeed, not so many works in the literature deal with both problems at the same
time. However, conclusions that we want to privilege in a given context may themselves be
pervaded with uncertainty. In particular, in the case of LPODs, explicit context-dependent

8 In particular, ASP is a special case of default logic by rewriting a rule of the form a ←
b1, . . . , bm, not bm+1, . . . , not bm+n into the default b1 ∧ . . . ∧ bm : ¬bm+1, . . . ,¬bn/a. A direct map-
ping between extensions and answer sets have also been shown in [Gelfond and Lifschitz, 1991].
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preferences can be specified to select default rules to be used in the reasoning. These rules
may be pervaded with uncertainty. Indeed, when a rule of the form normally p’s are q’s and
a rule of the form normally if c then a is more reasonable than b are stated, no estimate of the
certainty of having q in context p and a preferred to b in context c is respectively provided.

This issue fosters the investigation of a logic programming framework able to reason
about incomplete knowledge and explicit preferences about default rules at the same time.
Such a framework is presented in Chapter 5.



4

An Approach to Nonmonotonic Reasoning using Implicit

Preferences

According to the classical handling of nonmonotonic reasoning in ASP (see Chapter 3, Sec-
tion 3.3), exceptions have to be made explicit by means of negation as failure. Indeed, nega-
tion as failure captures abnormal situations and blocks the applicability of default rules in
the reasoning process. In this way, nonmonotonic conclusions can be derived from incom-
plete information.

Dealing with incomplete information by means of negation as failure is not the only so-
lution. When several default rules contain different levels of specificity, the notion of speci-
ficity can be used to identify exceptions to default rules and to deal with incomplete infor-
mation. Indeed, specificity can provide a basic mechanism to define a method for rewriting
default rules into strict ones in which exceptions are made explicit.

Specificity is a well-known notion in nonmonotonic reasoning [Pearl, 1990; Goldzs-
midt et al., 1993]. It can be understood as an implicit preference order over default rules.
For instance, System Z [Pearl, 1990] provides a good example of a system that implic-
itly prefers more specific information. Approaches such as [Brewka, 1994; Delgrande and
Schaub, 1997b] have shown that generating exceptions based on the notion of specificity
is appealing in nonmonotonic logics such as default logic, autoepistemic logic and circum-
scription.

More recently, some approaches to exception rewriting based on specificity have been
proposed in the context of ASP [Garcia et al., 2000, 2009]. For instance, Garcia et al. [Garcia
et al., 2009] has recently adapted the work in [Delgrande and Schaub, 1997b] to propose
a methodology for representing default rules with exceptions by automatically generat-
ing negated-by-failure exceptions from a compact representation of the information. Non-
monotonic reasoning can also be handled with preferences rather than negation as failure
(as also shown in [Dimopoulos and Kakas, 1995]). Moreover, it can be sometimes interest-
ing to model exceptions by means of strong negation. For instance, in our methodology
for modeling qualitative decision making in ASP (see Chapter 10), knowledge about the
world is encoded by means of extended definite logic programs, i.e., negation as failure
free. When such knowledge contains default rules, exceptions must be properly handled.

In this chapter, we propose a novel approach which offers an operational counterpart to
negation as failure. Our approach amounts to an explicit rewriting of exceptions by means
of strong negation ¬ rather than negation as failure, together with the addition of comple-
tion rules for coping with incomplete information. Therefore, it may be viewed as a dual
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attitude w.r.t. classical methods that rely on negation as failure. In fact, in ASP, rules with
negation as failure remain intrinsically default rules, while in our approach default rules
become strict rules after a proper rewriting, as suggested in the following example.

Example 4.1. Let us consider the following set of default rules ∆ representing the typical
birds and penguins knowledge representation problem: (i) birds normally fly, (ii) birds nor-
mally have legs, (iii) penguins normally are birds, and (iv) penguins normally do not fly. There-
fore, from the extended definite logic program:1

∆ =


r1 : f ← b.
r2 : l ← b.
r3 : b ← p.
r4 : ¬ f ← p.


we want to obtain a set of strict rules S and a set of completion rules CR

S =


r1 : f ← b,¬p.
r2 : l ← b.
r3 : b ← p.
r4 : ¬ f ← p.

 CR =
{

cr1 : ¬p ← b.
}

The proposed method, described here, turns to be simple to process and to have several
noticeable features: it defines a rewriting of default rules into strict ones and it is able to
restore the consistency of inconsistent programs that implicitly involve specificity ordering
between the rules. It allows to face the blocking inheritance problem and to infer floating
information (as in the Nixon diamond example). It takes its inspiration from a proposal
made in the setting of possibilistic logic [Dupin de Saint-Cyr and Prade, 2008].

The chapter is organized as follows. After clarifying some extra notation used in this
chapter (Section 4.1), in Section 4.2, we describe the algorithm which allows to handle de-
fault knowledge by making exceptions explicit in rules while adding completion rules for
coping with incomplete information. Section 4.3 relates our approach to the classical han-
dling of default rules in ASP and to the method proposed in [Garcia et al., 2009]. Finally, in
Section 4.4, we point out some concluding remarks about the proposed approach and the
representational capabilities in terms of preference representation.

4.1 Preliminaries

In this chapter, we will assume that a program P consists of different sets of definite rules.
In particular, we define:

Definition 4.1. A definite logic program P〈∆,S,FC,CR〉 is a tuple 〈∆, S, FC, CR〉, in which

• ∆ is a finite set of definite rules that we call default rules,
• S is a finite set of definite rules that we call strict rules,

1 Extended definite logic programs are logic programs which do not contain negated-by-failure
atoms (see Chapter 2, Section 2.1).
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• FC is a finite set of facts that we call factual context,
• CR is a finite set of definite rules that we call completion rules.

Intuitively, ∆ is the set of rules which can admit exceptions, S is the set of rewritten rules
from ∆ in which exceptions have been made explicit, FC is the set of contextual knowledge,
and CR is the set of additional knowledge needed to cope with incomplete information.

By convention, we omit the subindex in the writing of P〈∆,S,FC,CR〉 whenever the cor-
responding set of rules is empty, e.g., P〈S,FC,CR〉 when ∆ = ∅, P〈S,FC〉 when ∆ = ∅ and
CR = ∅. For representation issues throughout the chapter we denote rules belonging to ∆
by r∆ = l∆ ← B∆ and rules belonging to S by rs = ls ← Bs.

Example 4.2. Let us consider the set of default rules ∆ in Example 4.1. It can be checked
that the program P〈∆,FC〉, in which FC = {p} is the factual context about a penguin p, is
inconsistent, since Cn(P) = {p, b, l, f ,¬ f } is inconsistent.

Since we rewrite default rules into other rules in which atoms need to be negated (e.g.,
a into ¬a) or to be made positive (i.e., ¬a into a), we define the following function:

Definition 4.2. Let ϕ be a mapping function such that

ϕ(x) =

¬x : if x ∈ LP

x : if x ∈ L′P \ LP

in which L′P is the language of the program P after the replacement of the extended atoms.

4.2 Handling Default Reasoning

In [Dupin de Saint-Cyr and Prade, 2008], Dupin de Saint-Cyr and Prade have made a pro-
posal for handling uncertain default rules in the possibilistic logic setting. Indeed, possibil-
ity theory provides a framework both for modeling qualitative uncertainty and for model-
ing default rules of the form if p then generally q by means of constraints stating that having
p ∧ q true is strictly more possible than having p ∧ ¬q true (see Chapter 3, Section 3.2.1).
The exploitation of such constraints induces a priority ordering between defaults according
to their specificity [Benferhat et al., 1998]. This ordering has been proved to be the same as
the one given by System Z [Pearl, 1990]. Since uncertain default rules are thus associated
with both an uncertainty level and a priority level, there was a need for rewriting defaults
as ordinary possibilistic logic formulas associated only with an uncertainty level. It is this
kind of rewriting idea that we are now introducing in the ASP setting.

The algorithm we will propose allows to mirror nonmonotonic reasoning in logic pro-
gramming without negation as failure by making exceptions explicit in rules while adding
completion rules for coping with incomplete information. The method consists of four gen-
eral steps (Algorithm 1) we briefly summarize before discussing them in details in the next
subsections.

First, program rules which have not the same specificity have to be identified; this is
done by using the notion of tolerance of a rule of System Z [Pearl, 1990] adapted to ASP
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Algorithm 1 General Algorithm

Input:

{
∆ : a set of default rules
FC : factual context

Output:
{

M : the minimal model of P〈S,FC,CR〉
1: S = ∅; // the set of strict rules
2: CR = ∅; // the set of completion rules
3: 〈∆0, . . . , ∆n〉 ← Z− ordering(∆)
4: 〈S, CR〉 ← writeExceptions(〈∆0, . . . , ∆n〉)
5: P〈S,FC,CR〉 ← testConsistency(S, FC, CR)
6: M← Cn(P〈S,FC,CR〉)
7: return 〈M〉

programs (line 3). Secondly, default rules which are exceptional w.r.t. other more specific
rules are rewritten in order to make their condition parts more complete. At the same time,
completion rules aiming at completing the encountered exceptional situations are added;
this is done by the rewriting algorithm (line 4). Then, when factual context is added to the
rewritten program, a consistency check is made between the context, the completion rules,
and the relevant rewritten rules (line 5), i.e., rules in which exceptions are made explicit by
the rewriting algorithm. Finally, factual context and consistent completion rules are added
to the rewritten program and the minimal model is computed (line 6).

4.2.1 Ordering Rules by Specificity

Pearl [Pearl, 1990] provides an algorithm which gives a stratification of a set of default rules
in a way that reflects the specificity of the rules. Roughly speaking, the first stratum contains
the most specific rules, i.e., rules which do not admit exceptions (at least, expressed in the
considered default base); the second stratum has exceptions only in the first stratum, and
so on. Therefore, in System Z, a set of rules ∆ is stratified into subsets ∆0, . . . , ∆n in which
the resulting partitioning is called Z-ordering. Although there can be several orderings
compatible with a set of default rules, the minimal specificity ordering is unique [Pearl, 1990].
In the following, we refer to this unique ordering.

As we are dealing with set of atoms, we have to adapt the notion of tolerance of a rule
to ASP. For this reason, we have reused the definition of rule tolerance introduced in [Garcia
et al., 2009].2

Definition 4.3. For a rule r∆ = l∆ ← B∆, a set of atoms A verifies r∆ if B∆ ⊆ A ∧ l∆ ∈ A.

Definition 4.4. A rule r∆ is said to be tolerated by a set of default rules ∆ if and only if there is a
set of atoms A, closed under ∆ and consistent, which verifies r∆.

The tolerance of the rule characterizes the fact that its application does not generate
any contradiction. From this notion of tolerance, it is possible to obtain a stratification of
the program which allows to stratify ∆ into (∆0, ∆1, . . . , ∆n) such that: ∆0 contains the set of
rules of ∆ tolerated by ∆; ∆1 contains the set of rules of ∆\∆0 tolerated by ∆\∆0; ∆2 contains
the set of rules of ∆ \ (∆0 ∪ ∆1) tolerated by ∆\(∆0 ∪ ∆1), etc.

2 The notions of consistent and closed are defined in Chapter 2, Section 2.1.
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Example 4.3. Let us consider the set of rules in Example 4.1 in which symbols b, f , l, p denote
birds, fly, legs, and penguins respectively:

∆ =


r1 : f ← b.
r2 : l ← b.
r3 : b ← p.
r4 : ¬ f ← p.


A = {b, f , l} verifies r1, it is closed under ∆, and it is consistent. Thus, r1 is tolerated in

∆ and r1 ∈ ∆0. Similarly, r2 belongs to ∆0. The only set which verifies r3 and is closed w.r.t.
r1, r2, and r4 is A′ = {b, p, l, f ,¬ f }, but it is inconsistent. Thus, r3 ∈ ∆1. In the same way,
we obtain r4 ∈ ∆1. Finally, the Z-ordering associated to ∆ is:

∆0 =

{
r1 : f ← b.
r2 : l ← b.

}
∆1 =

{
r3 : b ← p.
r4 : ¬ f ← p.

}

4.2.2 Rules Rewriting

The general idea of the rewriting is to generate automatically from ∆ a set of rules in which
the condition parts explicitly state that we are not in an exceptional context to which other
default rules refer. In practice, this amounts to transform the set of default rules ∆ into a set
of strict rules S with explicit exceptions and a set of completion rules CR.

In order to make exceptions explicit, the proposed rewriting considers rules specificity.
At the beginning, rules in the last stratum of the Z-ordering are accepted as strict rules,
since they are the most specific ones. Then, lower strata are processed in order to identify
the set of exceptions of less specific default rules (if any) w.r.t. the strict rules. Default rules
are rewritten into strict ones in which exceptions are made explicit. In case of exceptions,
completion rules are added in order to complete contextual and incomplete information.
The procedure keeps on fixing the next strata based on the computed strict rules until all
strata have been considered. In order to define the algorithm in a more precise way, we
need several definitions.

Definition 4.5 (Exceptional Set). Let S = {rsi = lsi ← Bsi | 1 ≤ i ≤ n} be a set of strict rules.
For any given default rule r∆ = l∆ ← B∆, we define the exceptional set in rsi to the rule r∆ as3

Ei(r∆, rsi ) = Bsi s.t. lsi ← Bsi ∈ S ∧ cons(B∆ ∪ Bsi ) ∧ incons({l∆} ∪ {lsi})

Then, the set of exceptional sets in S to a rule r∆ is defined as

E(r∆, S) = {Ei(r∆, rsi ) | rsi ∈ S}

The above definition collects all the exceptional sets in all strict rules to a given default
rule r∆. This distinction is used for handling the case when the body of a strict rule is not a
singleton.

3 By cons(A) (resp., incons(A)), we denote two Boolean functions which return true (resp., false) if
the set of atoms A is consistent (resp., inconsistent).
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Example 4.4. Let us consider the set of default rules ∆′:

∆′ =


r1 : f ← b.
r2 : b ← p.
r3 : ¬ f ← a, c.
r4 : ¬ f ← p.


Then, the Z-ordering associated to ∆′ is

∆′0 =

{
r1 : f ← b.
r2 : b ← a.

}
∆′1 =

{
r3 : b ← a, c.
r4 : ¬ f ← p.

}

Please observe that the set ∆′1 contains rules which do not have any exceptions, i.e., it is
a set of strict rules S. Then E(r1, S) = {{a, c}, {p}}.

Once all the exceptions of a default rule w.r.t. a set of strict rules have been generated,
the default rule can be rewritten in the following way.

Definition 4.6 (Default Rule Rewriting). Let r∆ = l∆ ← B∆ be a default rule, S = {rsi =

lsi ← Bsi | 1 ≤ i ≤ n} be a set of strict rules, and E(r∆, S) be the set of exceptional sets in S to the
rule r∆. Then, for each Ei(r∆, rsi ), r∆ is rewritten into a new strict rule rs by setting:

rs = l∆ ← B∆ ∪ {ϕ(x)|x ∈ Ei(r∆, rsi )}

The idea is to generate automatically from ∆ a set of rules in which the condition parts
explicitly state that we are not in an exceptional context to which other default rules refer.
The rewritten rule is added to the set S.

Please observe that when the exception set is not a singleton, a default rule is rewritten
into more than one strict rule.

Example 4.5. For instance, following with Example 4.4, the set of default rules ∆′ is rewritten
into the following set of strict rules S′:

S′ =



r1 : f ← b,¬a.
r2 : f ← b,¬c.
r3 : f ← b,¬p.
r4 : b ← p.
r5 : ¬ f ← a, c.
r6 : ¬ f ← p.


If we has defined only one exception set for all the exceptions of a default rule w.r.t. a

strict one, we would have obtained a different (less intuitive) rewriting (e.g., rule r1 would
have been rewritten into one rule only f ← b,¬a,¬c,¬p) which would have prevented
the derivation of some intuitive conclusions (e.g., in context {a,¬c} it would have not been
possible to conclude f ).
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Algorithm 2 writeExceptions(〈∆0, . . . , ∆n〉): 〈S, CR〉

Input:
{
〈∆0, . . . , ∆n〉 : the stratification given by the Z-ordering

Output:

{
S : the set of strict rules obtained by rewriting default rules
CR : the set of completion rules

k← n− 1; CR← ∅; S = {rsi = lsi ← Bsi | r∆ni ∈ ∆n} //initialization
while k > 0 do

Sk ← ∅
for all r∆k = l∆k ← B∆k s.t. r∆k ∈ ∆k do
E(r∆, S)← ∅ //Set of exceptional sets of a default rule r∆ w.r.t. S
for all rsi ∈ S s.t. cons(B∆k ∪ Bs) ∧ incons({l∆k} ∪ {ls}) do

CR← CR ∪ {ϕ(x)← B∆k |x ∈ Bsi}
Ei(r∆k , rsi )← Bsi //Exceptional set of a default rule r∆k w.r.t. rsi
E(r∆, S)← E(r∆, S) ∪ Ei(r∆k , rsi )

end for
if E(r∆, S) 6= ∅ then

for all Ei(r∆k , rsi ) ∈ E(r∆, S) do
Sk ← Sk ∪ {l∆k ← B∆k ∪ {ϕ(x) | x ∈ Ei(r∆, rsi )}}

end for
else

Sk ← Sk ∪ {l∆k ← B∆k}
end if

end for
S← S ∪ Sk
k← k− 1

end while
return 〈S, CR〉

Special (strict) rules called completion rules stating that we are not in an exceptional situ-
ation are added to a new set denoted by CR. The use of these completion rules is motivated
by the need of reasoning in presence of incomplete information. In fact, completion rules
allow to apply strict rules which now have a more precise condition part.

Definition 4.7 (Completion Rule). Let r∆ = l∆ ← B∆ be a default rule, and rs = ls ← Bs

be a strict rule such that E(r∆, rs) = Bs. Then, a completion rule related with r∆ is defined as
ϕ(x)← B∆ in which x ∈ E(r∆, rs).

Based on the above definitions we can proceed with the description of Algorithm 2.
Note that the rules of the last stratum ∆n do not admit exceptions w.r.t. ∆ since they are
the most specific ones and they are directly copied into S. Thus, the algorithm begins with
the rules of the stratum n− 1. The stratum n− 1 contains rules that admit exceptions only
because of rules in the last stratum. More generally, a stratum k contains rules that admit
exceptions only because of rules in strata with rank greater or equal to k + 1. More pre-
cisely, for each rule in a given stratum, all its exceptions (coming from strata with a greater
rank) are computed in order to rewrite this rule by explicitly stating that the exceptional
situations are excluded in its condition part. Moreover, completion rules are added for each
exceptional case found. A completion rule is used only if it is consistent with the current
context and the relevant rewritten rules.
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Algorithm 3 testConsistency(S,FC,CR): P〈S,FC,CR〉

Input:


S : the set of strict rules
FC : factual context
CR : the set of completion rules

Output:
{

P〈S,FC,CR〉 : the definite program
AppCR = Apl(CR, FC, S)
RelCR = Rel(AppCR, S)
if incons(Cn(FC ∪ AppCR ∪ RelCR)) then

AppCR ← ∅
end if
P〈S,FC,CR〉 ← S ∪ FC ∪ AppCR
return P〈S,FC,CR〉

Example 4.6. Let us apply the algorithm to rewrite the rules in Example 4.3 by describing
explicitly their exceptions starting from the last stratum of the Z-ordering. It can be checked
that the algorithm rewrites the set of default rules ∆ into:

S =


r1 : f ← b,¬p.
r2 : l ← b.
r3 : b ← p.
r4 : ¬ f ← p.

 CR =
{

cr1 : ¬p ← b.
}

As we will see later, the completion rule will only be used if it is consistent with the current
context and the set of rewritten rules.

4.2.3 Consistency Test

As said before, completion rules are useful to state in which cases the current context is
not exceptional and they are used to apply the rewritten rules which now have a more
precise condition part. However, completion rules can only be used if they are consistent
with the context described by FC and the set of rewritten rules S. Hence, a consistency test
is required (Algorithm 3).

To retrieve all the applicable completion rules w.r.t. the factual context and the set of
strict rules, we provide the following definitions.

Definition 4.8. Let S be a set of strict rules obtained by ∆. Let CR be the set of completion rules
and FC the factual context to be added to S. Then, we define:

• Apl(CR, FC, S) = {cr ∈ CR | body(cr) ⊆ Cn(S ∪ FC)}
• Rel(Apl(CR, FC, S), S) = {rs ∈ S | rs is associated with Apl(CR, FC, S)}4

The consistency test amounts to check whether the set of atoms produced by the set
of rules obtained by merging the factual context FC, the set of the completion rules which
are applicable w.r.t. the current context (AppCR), and the set of strict rules associated to

4 Informally, associated is a mapping between a rewritten rule rs and its completion rules produced
in the rewriting.
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the completion rules (RelCR), is consistent. Depending on this consistency check, a new
program P〈S,FC,CR〉 is returned which contains the applicable completion rules (if any). It is
worthy to point out that, once the default rules have been rewritten, this consistency test is
performed only when the context FC is changed.

Example 4.7. Let us consider the set of strict rules S, the set of completion rules CR in Ex-
ample 4.6, and the contexts FC1 = {b}, FC2 = {p}, and FC3 = {b,¬ f }. The completion
rule {cr1 = ¬p ← b} is consistent w.r.t. the context FC1 = {b} and the strict rule r1. Thus,
the program P〈S,FC1,CR〉 is built. In FC2 = {p}, CR is not consistent w.r.t. the factual knowl-
edge. Therefore, it cannot be taken into account. Finally, FC3 = {b,¬ f } illustrates the case
in which CR is consistent w.r.t. the context, but it is not consistent with the rewritten rule
r1. Also in this case, the completion rule cannot be considered.

4.2.4 Minimal Model Computation

Since the program obtained by the consistency test is a definite logic program, we can
apply the fix-point operator in order to compute the minimal model Cn(P) of a definite
logic program P.5

Example 4.8. Let us consider the set of strict rules S in Example 4.6 and the consistency tests
in Example 4.7 w.r.t. the factual contexts FC1 = {b}, FC2 = {p}, and FC3 = {b,¬ f }.
Different programs are obtained after the consistency tests. Let P〈S,FC1,CR〉 = P1, P〈S,FC2〉 =

P2, P〈S,FC3〉 = P3, then:

P1 =



r1 : f ← b,¬p.
r2 : l ← b.
r3 : b ← p.
r4 : ¬ f ← p.
cr1 : ¬p ← b.
f c1 : b ← >.


P2 =



r1 : f ← b,¬p.
r2 : l ← b.
r3 : b ← p.
r4 : ¬ f ← p.
f c2 : p ← >.


P3 =



r1 : f ← b,¬p.
r2 : l ← b.
r3 : b ← p.
r4 : ¬ f ← p.

f c31 : b ← >.
f c32 : ¬ f ← >.


Different minimal models are retrieved for each of the above programs.

TP1(∅) = {b}
TP1({b}) = {b,¬p}
TP1({b,¬p}) = {b,¬p, f , l}
TP1({b,¬p, f , l}) = {b,¬p, f , l}
Cn(P1) = {b,¬p, f , l} = M1

TP2(∅) = {p}
TP2({p}) = {p, b,¬ f }
TP2({p, b,¬ f }) = {p, b,¬ f , l}
TP2({p, b,¬ f , l}) = {p, b,¬ f , l}
Cn(P2) = {p, b,¬ f , l} = M2

5 Cn(P) is defined as Cn(P) =
⋃

k≥0 Tk
P(∅) (see Chapter 2, Section 2.1.3).
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TP3(∅) = {b,¬ f }
TP3({b,¬ f }) = {b,¬ f , l}
TP3({b,¬ f , l}) = {b,¬ f , l}
Cn(P3) = {b,¬ f , l} = M3

M1 = {b,¬p, f , l} is the minimal model of P〈S,FC1,CR〉. M2 = {b, p, l,¬ f } is the minimal
model of P〈S,FC2〉. Finally, M3 = {b,¬ f , l} is the minimal model of P〈S,FC3〉.

All these results agree with the intuition behind the bird and penguin knowledge rep-
resentation problem. In particular, the proposed method refines the Z-ordering, since it can
deal with the blocking inheritance problem. Our method also handles floating information,
as shown in the following example.

Example 4.9. Let ∆′′ be a set of default rules representing the Nixon Diamond example:
Quakers normally are pacifists, Quakers normally are Americans, Americans normally like base-
ball, Quakers generally do not like base-ball and Republicans are generally not pacifists. Then:

∆′′ =



r1 : p ← q.
r2 : a ← q.
r3 : b ← a.
r4 : ¬b ← q.
r5 : ¬p ← r.


The rewriting produces:

S′′ =



r1 : p ← q.
r2 : a ← q.
r3 : b ← a,¬q.
r4 : ¬b ← q.
r5 : ¬p ← r,¬q.


CR =

{
cr1 : ¬q ← a.
cr2 : ¬q ← r.

}

In context FC = {q, r}, CR is inconsistent w.r.t. FC. Therefore, M = {p, a,¬b} is the
minimal model of P〈S,FC〉. An intuitive interpretation of the fact that pacifist is obtained is
that the Quaker is more specific than Republican in ∆, since Republican is compatible with all
the rules which is not the case for Quaker.

We can observe that there are some interesting properties of our algorithm.

Proposition 4.1. Algorithm 1 terminates.

Moreover, our approach offers a straightforward methodology to restore the consis-
tency of inconsistent definite programs which implicitly involve some specificity order be-
tween the rules.

Proposition 4.2. The program P〈S,FC,CR〉 returned by Algorithm 1 is consistent.

It is natural now to wonder how our method behaves w.r.t. the classical handling of
nonmonotonic reasoning in ASP.
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4.3 Related Work

In the literature, several proposals have been made for handling exceptions and specificity
in logic programming [Kowalski and Sadri, 1991; Dimopoulos and Kakas, 1995; Garcia
et al., 2000; García and Simari, 2004]. More recently, Garcia et al. [Garcia et al., 2009] has
proposed a rewriting procedure for making exceptions explicit.

Although the automatic generation of exceptions in [Garcia et al., 2009] may look simi-
lar to ours at first glance, it is intrinsically different in spirit since exceptions are captured by
means of negation as failure. Therefore, it is interesting to compare our approach to non-
monotonicity, based on rules rewriting and completion rules, to the standard nonmono-
tonic reasoning characterized in terms of not. For doing this, let us consider the following
example taken from [Garcia et al., 2009].

Example 4.10. From the set of default rules ∆′:

∆′ =


r1 : f ← b.
r2 : l ← b.
r3 : b ← p.
r4 : ¬ f ← p.


using the algorithm in [Garcia et al., 2009], the following extended normal logic program is
obtained:

P′s =


r1 : f ← b, not ¬ f , not p.
r2 : l ← b.
r3 : b ← p.
r4 : ¬ f ← p, not f .


Let us consider the contexts FC1 = {b}, FC2 = {p}, and FC3 = {p, f }. For illustrative

purposes, by answer set semantics definition and by considering the set of atoms M
′
1 =

{l, b, f }, we can see that

M
′
1 (P′s ∪ {b})M

′
1 Cn((P′s ∪ {b})M

′
1)

{l, b, f } f ← b {l, b, f }
l ← b
b ← p
b ← >

M
′
1 is answer set of P′s ∪ {b}. In a similar way, it can be checked that M′2 = {p, b, l,¬ f }

and M′3 = {p, f , b, l} are answer sets of (P′s ∪ {p}) and (P′s ∪ {p, f }) respectively.

Comparing our generated program (Example 4.8) with (P′s ∪ {b}) above, it can be ob-
served that a model in our approach generally contains more atoms than the corresponding
model of P′s ∪ {b}. Indeed, Cn(P〈S,FC1,CR〉) = {l, b, f ,¬p} is also telling that a bird that flies
is not a penguin. These extra atoms can be justified by the corresponding dual attitude w.r.t.
negation as failure played by the completion rules. In fact, the intuitive meaning of a rule
with default negation like f ← b, not p is that if it can be proved that we are in the bird context b
and nothing proves that we are in a penguin context p, then we can conclude f . In order to use the



58 4 An Approach to Nonmonotonic Reasoning using Implicit Preferences

default rule about birds, we should not derive p. Alternatively, in our approach, the role
of the completion rule (¬p ← b) is to complete the factual knowledge and to trigger the
applicability of the rule f ← b,¬p whose condition part now is more specific. In this way,
the completion rule is playing the dual part of strong exception rules used in the classical
handling of exceptional situations in ASP. On a closer inspection, when the completion rule
is inconsistent w.r.t. the rewritten rule and it is not added to the program (see Example 4.7),
it also serves as weak exception rule and it prevents the rewritten rule to be used.

Since our approach only rewrites exceptions which are implicit inherited by the speci-
ficity order among the set of default rules, any (weak) exception related to the rules in the
last stratum of the Z-ordering is ignored (e.g., the exception captured in ¬ f ← p, not f in
P′s). In this case, the two approaches can lead to different solutions (e.g., in context {p, f }).
To recover the same results we add a pair of additional rules to define an abstract specificity
level in order to introduce an exceptional situation w.r.t. the class of the last stratum.

Definition 4.9 (Abstract Specificity Level). Let {c1, . . . , ck} be a set of atoms representing
classes with a hierarchy relation (c1 ⊃ c2 ⊃ . . . ⊃ ck), encoded by rules ci ← ci+1 (with
1 ≤ i ≤ k− 1). Let {p1, . . . , pk′} be a set of atoms representing class properties, encoded by rules
pj ← ci (with 1 ≤ j ≤ k′ and 1 ≤ i ≤ k). Then, an abstract specificity level ck+1 with property
pk′+1 is captured by two additional rules ck ← ck+1 and pk′+1 ← ck+1 s.t. pk′+1 = ϕ(pk′).

Thanks to the additional rules, our approach agrees with the results obtained in [Garcia
et al., 2009]. Moreover, it leads to larger models due to effect of completion rules which can
contribute to add more factual knowledge. We illustrate this idea by means of the following
example.

Example 4.11. Let us consider ∆ in Example 4.1 with an abstract specificity level introduced
by by adding the rules super-penguins are penguins (r5) and super-penguins normally fly (r6).
Then ∆ ∪ {r5, r6} is:

∆′ =



r1 : f ← b.
r2 : l ← b.
r3 : b ← p.
r4 : ¬ f ← p.
r5 : p ← sp.
r6 : f ← sp.


The Z-ordering associated to ∆′ induced by the specificity of the rules is:

∆′0 =

{
r1 : f ← b.
r2 : l ← b.

}
∆′1 =

{
r3 : b ← p.
r4 : ¬ f ← p.

}
∆′2 =

{
r3 : b ← sp.
r4 : f ← sp.

}

Intuitively, r6 belongs to a higher stratum w.r.t. r4, since it encodes more specific infor-
mation. Applying Algorithm 1, ∆′ is rewritten into:
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S′ =



r1 : f ← b,¬p.
r2 : f ← b,¬sp.
r3 : l ← b.
r4 : b ← p.
r5 : ¬ f ← p,¬sp.
r6 : p ← sp.
r7 : f ← sp.


CR =


cr1 : ¬p ← b.
cr2 : ¬sp ← b.
cr3 : ¬sp ← p.



In context FC = {p, f }, only completion rule cr3 can be considered. Then, it can be
checked that the set {p, f , b, sp, l} is a minimal model of the program P〈S,FC,CR\{cr1,cr3}〉.

Please observe that since the initial set of default rules contains an implicit inheritance
relation, the generated normal program in [Garcia et al., 2009] is a stratified logic program.
The class of stratified logic program has an important property: they have a unique answer
set [Baral, 2003]. Based on this observation, we can establish the following relation between
our approach and the approach in [Garcia et al., 2009].

Proposition 4.3. Let ∆ be a set of extended definite rules with an implicit inheritance relation, FC
be a factual context, and AR be a pair of additional rules according to Definition 4.9. Let P′ be the
extended normal logic program obtained by the algorithm in [Garcia et al., 2009]. Let ∆′ = ∆∪ AR,
and P〈S,FC,CR〉 be the definite program obtained from ∆′ by Algorithm 1. If M is answer set of
P′ ∪ FC and M′ = Cn(P〈S,FC,CR〉) then M ⊆ M′.

Therefore, our approach can offer an operational counterpart to negation as failure in
knowledge representation problems which consist of default rules with an implicit speci-
ficity order between them.

4.4 Discussion and Concluding Remarks

In this chapter, we have proposed an algorithm for handling exceptions in default rules in
extended definite logic programs. This method applies to a set of default rules that have an
inheritance hierarchy relation. It amounts to automatically rewrite default rules into strict
rules in which exceptions are made explicit and completion rules are added for coping with
incomplete information.

The rewriting of default rules proposed is based on the Z-ordering, a well-known strat-
ification of System Z [Pearl, 1990] (introduced also in System P [Kraus et al., 1990] to define
the rational closure of a set of conditionals). In System Z, defaults are partitioned and or-
dered according to their specificity level (based on the concept of rules tolerance). By adapt-
ing the Z-ordering into the logic programming setting (following the work in [Garcia et al.,
2009]), we have been able to provide a rewriting method for the generation of exceptions
which amounts to generate exceptions in less specific rules which are in conflict with rules
with higher specificity.

However, the main weakness of System Z is known to be its inability to deal with prop-
erty inheritance from classes to exceptional sub-classes, also known as the blocking inher-
itance problem, in a proper way. This is a drawback that cannot be remedied by a method
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based solely on the Z-ordering of defaults. Indeed, refinements of the Z-ordering have
been proposed such as the maximum-entropy approach of Goldzsmidt in [Goldzsmidt
et al., 1993] (which also takes into account the number of rules tolerating a formula and
not only their rank orders). Other approaches equip nonmonotonic specifications with (ex-
plicit) preference ordering to default rules such as in [Brewka, 1994; Brewka and Eiter, 1999;
Lifschitz, 1985; Rintanen, 1994]. In such approaches, the notion of preference ordering is
merged with the notion of inheritance properties. Then, depending on how the notion of
preference is interpreted and how preferences over rules are assigned, different conclusions
can be drawn.

We have also sanctioned property inheritance, but in an indirect way. While the block-
ing inheritance problem is due to a ranking over the interpretations obtained by the Z-
ordering, here we have used specificity only to identify exceptional rules and to rewrite
them. Then, we have applied the standard inference of logic programming based on the
fix-point computation. The notion of preference exists in our approach as well, but it is im-
plicit, since it is related to specificity. As such, implicit preferences are interpreted in only
one way and this can guarantee that, in a given context, the same conclusions are always
drawn.

We have established that, under certain conditions, we can recover the results obtained
by the method proposed in [Garcia et al., 2009] which is based on the rewriting of excep-
tions by means of negation as failure (Proposition 4.3). This result is significant, since it
suggests how negation as failure can be captured by an operational approach in the class
of stratified logic programs. As such, the proposed approach can provide a dual view to
nonmonotonic reasoning in logic programs.

We have claimed that the method can be used to restore the consistency of logic pro-
grams encoding knowledge representation problems with inheritance hierarchies (Propo-
sition 4.2). So far, we have identified two scenarios which can benefit from the the proposed
method. In decision making problems (see Chapter 10), the knowledge base may consist of
a set of default rules. Then, the rewriting algorithm can be used to rewrite default rules
into strict ones before proceeding to the computation of an optimal decision. In knowledge
scenarios, when pieces of knowledge (encoded by logic programs) coming from different
sources are integrated, the resulting program can be inconsistent and the rewriting can be
applied to solve inconsistencies. We illustrate this idea in the next example.

Example 4.12. Let us consider two pieces of knowledge (P1,P2) encoding some default
knowledge about going to the beach in a day of may. On one hand, both knowledge bases
contain some common default knowledge such as spring is the end of winter and may is
spring. On the other hand, different information is stored about the weather condition and
whether going to the beach is a valid alternative or not. In particular, in P1, it is known
that in spring it normally rains and normally if it rains I do not go to the beach, while in P2, it is
known that in may it normally does not rain and normally in may I go to the beach. Moreover, we
observe that we are in a day of may. We can model this scenario by means of the following
two extended definite logic programs:
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P1 =



r2 : ¬beach ← rain.
r4 : rain ← spring.
r5 : spring ← may.
r6 : ¬winter ← spring.
r7 : may ← >.


P2 =



r1 : beach ← may.
r3 : ¬rain ← may.
r5 : spring ← may.
r6 : ¬winter ← spring.
r7 : may ← >.


It is easy to see that, since P1 and P2 are already consistent, the rewriting of default rules

does not produce any exceptions and different minimal models are retrieved as expected
(e.g., {may, spring,¬winter, rain,¬beach} and {may, spring,¬winter,¬rain, beach} respec-
tively). However, when P1 and P2 are integrated some inconsistencies arise.

P1 ∪ P2 =



r1 : beach ← may.
r2 : ¬beach ← rain.
r3 : ¬rain ← may.
r4 : rain ← spring.
r5 : spring ← may.
r6 : ¬winter ← spring.
r7 : may ← >.


The program above contains several default statements which must be properly han-

dled before being able to use them. Indeed, default rules r1,r2, and r3, r4 are in conflict, since
in context may they lead to conflicting conclusions (e.g., beach/¬beach and rain/¬rain). It
is importance to observe that some rules are more specific than others. For instance, r1 is
more specific than r2 and r3 than r4 (they belong to different specificity levels due to rule
r5). In this kind of representation, we can apply the rewriting algorithm proposed in this
chapter.

By Z-ordering, we obtain the following ranking of defaults: ∆0 = {r2, r4, r6}, ∆1 =

{r1, r3, r5}. By a proper rewriting, we obtain a new program, in which exceptions are made
explicit, and a set of completion rules:

P′ =



r1 : beach ← may.
r2 : ¬beach ← rain,¬may.
r3 : ¬rain ← may.
r4 : rain ← spring,¬may.
r5 : spring ← may.
r6 : ¬winter ← spring.


CR =

{
cr1 : ¬may ← rain.
cr2 : ¬may ← spring.

}

From the preference representation point of view, the approach described in this chap-
ter allows to handle some basic default preference (such as the ones above). However, the
representation of simple default statements is of quite limited applicability for representing
user knowledge in an intelligent system that supports user decisions. In particular, having
only one option in each context does not give so much flexibility in the preference specifi-
cation.
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On the other hand, LPODs [Brewka et al., 2004b] allows to specify more than one
options in each context and it supports preference statements built by means of the or-
dered disjunction operator × (see Chapter 2, Section 2.2.4). In LPODs, preferences state-
ments can de considered default statements as well. For instance, default rules such as
generally if it does not rain I prefer going to the beach over going to the cinema (encoded as
beach × cinema ← not rain), and generally if it rains I prefer going to the cinema over going
to the beach (encoded as cinema × beach ← rain) can be handled in LPODs by means of
negation as failure. In this way, context-dependent preference expressions with incomplete
information can be properly handled. For instance, the scenario in Example 4.12 can be
enriched by the LPODs specification in the following way:

P′′ =



r1 : beach× cinema ← may, not rain.
r2 : cinema× beach ← rain, not may.
r3 : ¬rain ← may.
r4 : rain ← spring, not may.
r5 : spring ← may.
r6 : ¬winter ← spring.
r7 : may ← >.


r1 and r2 are default rules which express defeasible preferences which depend on incom-
plete knowledge captured by negated-by-failure atoms. Although LPODs offers a richer
syntax for expressing context-dependent preferences, it does not allow to associate weights
to preference rules (as we will discuss in Chapter 5) and to capture more complex prefer-
ences expressions (as we will discuss in Chapter 6-7-8).



5

LPPODs: a Framework for Dealing with Explicit Preferences

and Uncertainty

Handling incomplete information amounts to use implicit or explicit preferences for the
selection of default rules. As far as explicit preferences are concerned, LPODs is a logic pro-
gramming specification that allows to specify context-dependent explicit preference state-
ments of the form normally, in context c it is more reasonable to assume a rather than b (encoded
as a× b ← c). From a nonmonotonic reasoning point of view, these preference statements
can be used to specify a preference order among exceptions w.r.t. the default rules in a logic
program, and, consequently, to select the preferred default rules to be used in the reasoning
(see Chapter 3, Section 3.3.3).

However, preferences about exceptions to default rules that we want to privilege may
be pervaded with uncertainty. When the preference statement above normally, in context c
it is more reasonable to assume a rather than b is stated, no estimate of the certainty of having
a preferred to b in context c is provided.

The selection of the default rules to be used in the reasoning can be a matter of uncer-
tainty as well. Indeed, I might be interested in selecting the most certain pieces of infor-
mation for building my reasoning. For instance, one may consider that a preference rule
stating that it is more reasonable to assume an exception ab1 rather than an exception ab2 is less
certain than another preference rule stating that it is more reasonable to assume ab2 rather than
ab1. In such a case, a mechanism which allows one to select the most certain preference
rules can be useful. There may also exist more complex cases in which preference rules are
equally certain but there exist other uncertain rules (or facts) in the program on which such
preference rules depend. Then, an effective mechanism for propagating uncertainty values
between program rules is needed in order to select the most certain pieces of knowledge.
To illustrate these ideas, let us consider the following example.

Example 5.1. Continuing with the classical bird-fly example, let us consider a more com-
plicated version of Example 3.10. Let us suppose to have the following default rules (i)
antarctic birds are birds, (ii) birds normally fly and (iii) antarctic birds normally do not fly. Fur-
thermore, we have two preference rules expressing our preferences among exceptions to
the previous rules. In particular, let us suppose that one preference rule states that (iv) in
case of a penguin, it is more reasonable to assume that birds cannot fly rather than antarctic birds
can fly, and another rule states that (v) in case of a super-penguin, it is more reasonable to assume
that antarctic birds can fly rather than birds cannot fly. Finally, we have two further rules ex-
pressing that (vi) antarctic birds are penguins and (vii) antarctic birds are super-penguins. The
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latter rules are uncertain, since we can imagine that in Antarctica there are many penguins
that do not fly together with only few super-penguins that can fly. Let us suppose, for now
in an informal way, to associate to each rule a label indicating its certainty. The resulting
program looks like (we also observe an antarctic bird):

P =



r1 = 1 : b ← ant.
r2 = 1 : f ← b, not ab1.
r3 = 1 : ¬ f ← ant, not ab2.
r4 = 1 : ab1 × ab2 ← p.
r5 = 1 : ab2 × ab1 ← sp.
r6 = 1 : ⊥ ← ab1, ab2.
r7 = 0.6 : p ← ant.
r8 = 0.4 : sp ← ant.
r9 = 1 : ant ← >.


It can be observed that the above program without any certainty label is a classical

LPOD. In such a case, no preference order can be achieved between the two alternative
answer sets {ant, p, sp, b, ab1,¬ f } and {ant, p, sp, b, ab2, f }. In other words, the conflict be-
tween the defaults r2 and r3 cannot be solved. However, intuitively, since the rule r7 is more
certain then the rule r8, the selection on which exception to privilege, in order to sanction
the conflict between the rules r2 and r3, should also take into account the certainty about
the information encoded in the program. This can be done in principle by considering that
the preference rule r4 is more important than r5, since it depends on more certain informa-
tion. Then, the following question arises: how is it possible to consider the certainty of other
rules on which a preference rule may depend? A possible way is by means of a program
transformation able to propagate certainty values between program rules.

The above example suggests that we need to extend LPODs with a proper management
of uncertainty in order to select the most preferred and certain beliefs to be used in the
reasoning. To this end, we extend LPODs by a possibilistic semantics [Nicolas et al., 2006]
which associates necessity values to program rules for measuring to what extent a statement
is certain (according to possibilistic logic [Dubois et al., 1994]). Moreover, we need to study
a suitable mechanism for transforming program rules in order to propagate uncertainty
values between the rules themselves. This can be achieved by reusing the theory of rewrit-
ing system [Dershowitz and Plaisted, 2001] and by defining a set of transformation rules
which preserve the possibilistic semantics.

In this chapter, we present a logic programming framework which can represent explicit
preferences and necessity values together. The framework properly generalizes LPODs to
support the expression of explicit context-dependent preference statements to select the
default rules to be used in the reasoning in the presence of uncertain information. We will
assume that the necessity values associated to program rules are discovered by a knowl-
edge discovery process. We will show how LPODs rule satisfaction degrees and necessity
values can be considered to order possibilistic answer sets. To achieve this, we merge the
formalism of Logic Programs with Ordered Disjunction (LPODs) [Brewka et al., 2004b] and
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possibilistic normal logic programs [Nicolas et al., 2006] into the single framework of Logic
Programs with Possibilistic Ordered Disjunction (LPPODs).1

The LPPODs framework embeds in a unified way several aspects of common-sense rea-
soning such as nonmonotonicity, preferences, and uncertainty. Each part is underpinned
by a well established formalism. On one hand, from LPODs, it inherits the distinctive fea-
ture of expressing qualitative context-dependent preferences among different alternatives
(modeled as the atoms of a logic program). On the other hand, possibilistic normal logic
programs allow to capture qualitative certainty labels about the rules themselves (modeled
as necessity values according to possibilistic logic). In this way, the LPPODs framework
supports a reasoning which is nonmonotonic, preference- and uncertainty-aware.

We define a syntax which extends LPODs to be able to associate necessity values to
program rules. In this way, each rule in an LPPOD is provided with a value which can be
used as complementary scale to the rule satisfaction degree of LPODs to compare LPPODs
solutions (in particular it can be seen as a priority). We define a possibilistic semantics for
capturing LPPODs which is a generalization of the LPODs semantics according to two dif-
ferent characterizations. Similar to what happens in possibilistic logic and in possibilistic
normal logic programs, an LPPOD can be seen as a compact representation of the possi-
bility distribution defined on the interpretations representing the information. Indeed, two
equivalent characterizations of the LPPODs semantics can be given.

Preferences and necessity values can be used to specify an order among possibilistic
answer sets of an LPPOD. For this purpose, we define a set of transformation rules for pro-
viding en effective mechanism to propagate necessity values between the rules of an LP-
POD. Based on these results, we define a possibilistic preference relation which compares
the possibilistic answer sets of an LPPOD using two scales: rule satisfaction degrees and rule
necessity values. This approach can provide a flexible solution for comparing possibilistic
answer sets, since the order between them can also depend on the certainty associated to
program rules.

The chapter is organized as follows. After defining the LPPODs syntax which extends
LPODs to be able to consider necessity values associated to program rules (Section 5.1),
in Section 5.2, we define a possibilistic semantics for capturing LPPODs according to two
different characterizations: a syntactical characterization based on a fix-point operator (Sec-
tion 5.2.1), and a semantical characterization defined in terms of the least possibility dis-
tribution (Section 5.2.2). In Section 5.3, we present a set of program transformations for
propagating necessity values between program rules. Based on these transformations, in
Section 5.4, we show how preferences and necessity values can be used to specify an order
among possibilistic answer sets of an LPPOD. In Section 5.5, we describe a simple algo-
rithm to compute the LPPODs semantics. Section 5.6 is devoted to compare our framework
with other works dealing with uncertainty and preferences. Finally, Section 5.7 concludes

1 In this chapter, we present the LPPODs framework in terms of selection of the most certain beliefs
to be used in the reasoning taking into account certainty values. However, the framework can
be also understood in terms of weighted user preferences in which necessity values associated to
preference rules are interpreted as priority labels. This interpretation is first discussed in Section
5.7 and then, in Chapter 7, we present a real use-case scenario in which the LPPODs framework is
employed to model user profiles.
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the chapter by discussing the representational capabilities of the LPPODs framework in
terms of user preference modeling.

5.1 LPPODs Syntax

The syntax of an LPPOD is based on the syntax of ordered disjunction rules (Chapter 2,
Section 2.2.4) and of possibilistic logic (Chapter 2, Section 2.4). A possibilistic atom is a pair
p = (a, α) ∈ A× S in which A is a set of atoms and S ⊆ (0, 1] is a finite totally ordered set
of necessity values. The projection ∗ for any possibilistic atom p is defined as p∗ = a. Given
a set of possibilistic atoms M, the projection of ∗ over M is defined as M∗ = {p∗ | p ∈ M}.
A possibilistic ordered disjunction rule r is of the form

α : c1 × . . .× ck ← B+, not B− (5.1)

in which α ∈ S and c1 × . . .× ck ← B+, not B− is an ordered disjunction rule.
The projection ∗ for a possibilistic ordered disjunction rule r is r∗ = c1 × . . . × ck ←

B+, not B−. Nec(r) = α is a necessity degree representing the certainty level of the in-
formation described by r. A possibilistic constraint c is of the form 1 : ⊥ ← B+, not B−.
Observe that the necessity value of a possibilistic constraint is 1, since, like constraints in
standard ASP, the purpose of the possibilistic constraint is to eliminate possibilistic answer
sets. As such, we assume that there is no uncertainty about the information captured by a
possibilistic constraint. As in possibilistic ordered disjunction rules, the projection ∗ for a
possibilistic constraint c is c∗ = ⊥ ← B+, not B−. To manage possibilistic constraints, we
will replace each possibilistic rule of the form 1 :← B+, not B− by a new rule of the from
1 : f ← B+, not B−, not f such that f is a new atom symbol which does not appear in the
signature of the possibilistic program.

A Logic Program with Possibilistic Ordered Disjunction (LPPOD) is a finite set of possibilis-
tic ordered disjunction rules and/or possibilistic constraints. If an LPPOD does not contain
possibilistic ordered disjunction rules, then it is known as a possibilistic normal logic program.
If a possibilistic normal logic program does not contain negation as failure, then it is a pos-
sibilistic definite logic program. The projection of ∗ over P is defined as P∗ = {r∗ | r ∈ P}.
Please observe that P∗ is an LPOD.

Example 5.2. We are now able to represent our introductory program described before. By
using the following certainty scale: 1 is absolutely certain, 0.9 is quasi certain, 0.6 is almost
certain, and 0.4 is little certain, we can associate a certainty degree to each rule:
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P =



r1 = 1 : b ← ant.
r2 = 0.9 : f ← b, not ab1.
r3 = 0.6 : ¬ f ← ant, not ab2.
r4 = 1 : ab1 × ab2 ← p.
r5 = 1 : ab2 × ab1 ← sp.
r6 = 1 : ⊥ ← ab1, ab2.
r7 = 0.6 : p ← ant.
r8 = 0.4 : sp ← ant.
r9 = 1 : ant ← >.


The first rule states that we are absolutely certain that an antarctic bird is a bird (r1). Then,
we are quasi certain that birds normally fly (r2), while we are almost certain that antarctic
birds normally do not fly (r3). We also consider that rule r4, i.e., being a penguin it is more
reasonable to assume that antarctic birds cannot fly rather than they can fly, and rule r5, i.e.,
being a super-penguin it is more reasonable to assume that antarctic birds can fly rather
than they cannot fly, are absolutely certain. However, r7 and r8 express that we are almost
certain that an antarctic bird is a penguin and that we are little certain that an antarctic bird
is a super-penguin. The last rule (r9) indicates that the we are absolutely certain to observe
an antarctic bird.

In the following, we suppose that necessity values associated to program rules are de-
termined by a knowledge discovery process. These values induce a certainty scale which
has to be taken into account when inferring the possibilistic answer sets of an LPPOD. In
the sequel, we show how it is possible to characterize the LPPODs semantics in two differ-
ent ways which lead to the same possibilistic answer sets.

5.2 LPPODs Semantics

Similar to what happens in possibilistic logic and in possibilistic normal logic programs, an
LPPOD can be seen as a compact representation of the possibility distribution defined on
the interpretations representing the information. Indeed, two equivalent characterizations
of the LPPODs semantics can be given, a syntactical characterization based on a fix-point
operator (Section 5.2.1), and a semantical characterization defined in terms of the least possi-
bility distribution (Section 5.2.2).

5.2.1 Possibilistic Answer Sets of LPPODs by Fix-Point

The first characterization of the LPPODs semantics is in terms of the possibilistic least model
presented in [Nicolas et al., 2006] for possibilistic normal logic programs. Before presenting
this characterization, we introduce some relevant concepts.

Given a finite set of atoms A and S ⊆ (0, 1], the finite set of all the possibilistic atom
sets induced by A and S is denoted by PS = 2A×S . Each A ∈ PS is a set of possibilistic
atoms such that ∀a ∈ A, |{(a, α})| ≤ 1, i.e., every atom a occurs at most one time in A.

The LPPODs semantics is based on a fix-point operator ΠCn which was introduced
in [Nicolas et al., 2006] by considering possibilistic definite logic programs. To be able to
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reuse such result, we first define a syntactic reduction for LPPODs which represents the
possibilistic extension of the LPODs reduction (see Chapter 2, Section 2.2.4).

Definition 5.1 (Possibilistic Reduction rM
× ). Let r = α : c1 × . . . × ck ← B+, not B− be a

possibilistic ordered disjunction rule and M be a set of atoms. The ×-possibilistic reduction rM
× is

defined as follows:

rM
× = {α : ci ← B+|ci ∈ M ∧M ∩ ({c1, . . . , ci−1} ∪ B−) = ∅} (5.2)

Definition 5.2 (Possibilistic Reduction PM
× ). Let P be an LPPOD and M be a set of atoms. The

×-possibilistic reduction PM
× is defined as follows:

PM
× =

⋃
r∈P

rM
× (5.3)

Example 5.3. Let P be the LPPOD in Example 5.2 and let us consider the following sets of
atoms M∗1={ant, p, sp, ab1, b,¬ f } and M∗2 = {ant, p, sp, ab2, b, f }. We can see that:2

PM∗1
× =



r1 = 1 : b ← ant.
r2 = 0.9 : f ← b.
r4 = 1 : ab1 ← p.
r5 = 1 : ab1 ← sp.
r7 = 0.6 : p ← ant.
r8 = 0.4 : sp ← ant.
r9 = 1 : ant ← >.


PM∗2
× =



r1 = 1 : b ← ant.
r3 = 0.9 : ¬ f ← ant.
r4 = 1 : ab2 ← p.
r5 = 1 : ab2 ← sp.
r7 = 0.6 : p ← ant.
r8 = 0.4 : sp ← ant.
r9 = 1 : ant ← >.


Please observe that the programs PM∗1

× and PM∗2
× are possibilistic definite logic programs.

In general, once an LPPOD P has been reduced by a set of atoms M∗, it is possible to
test whether M is a possibilistic answer set of the program P by considering the possibilistic
least model ΠCn of P. ΠCn is defined in terms of the β-applicability of a rule w.r.t. a set of
possibilistic atoms and in terms of the possibilistic consequence operator ΠT.

Definition 5.3. [Nicolas et al., 2006] Let P be a possibilistic definite logic program such that r is
of the form α : a← b1, . . . , bm and M be a set of possibilistic atoms,

• r is β-applicable in M with β = min{α, α1, . . . , αn} if {(b1, α1), . . . , (bm, αn)} ⊆ M.
• r is 0-applicable otherwise.

And then, for all atom ϕ ∈ LP∗ we define:

App(P, M, ϕ) = {r ∈ head(P, ϕ)|r is β-applicable in M and β > 0}

inn which ϕ ∈ LP∗ , head(P, ϕ) = {r ∈ P|head(r∗) = ϕ}, and head(P∗) = {head(r∗)|r∗ ∈ P∗}.

Given a set of possibilistic atoms M, the applicability degree β of a rule β-applicable in
M captures the certainty of the conclusion that the rule can produce w.r.t. M. If the body is

2 r6 is deleted by our possibilistic reduction by the way in which we manage possibilistic constraints
in our LPPODs (see Section 5.1).
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empty, then the rule is applicable with its own certainty degree. If the body is not satisfied
by M, then the rule is not applicable at all. Otherwise, the applicability level of the rule
depends on the certainty level of the propositions.

Based on the β-applicability of a rule w.r.t. a set of possibilistic atoms, the consequence
operator ΠTP for logic programs has been extended in the following way:

Definition 5.4. [Nicolas et al., 2006] Let P be a possibilistic definite logic program and M be
a set of possibilistic atoms. The immediate possibilistic consequence operator ΠTP maps a set of
possibilistic atoms to another one by this way:
ΠTP(M) = {(ϕ, δ)|ϕ ∈ head(P∗), App(P, M, ϕ) 6= ∅,

δ = maxr∈App(P,M,ϕ){β|r is β-applicable in M}}
Then, the iterated operator ΠTk

P is defined by

ΠT0
P = ∅ and ΠTn+1

P = ΠTP(ΠTn
P), ∀n ≥ 0

Example 5.4. Let P1 be the possibilistic definite logic program in Example 5.3 obtained by
the possibilistic reduction PM∗1

× . We can see that if we consider M = ∅ and the atom ant,
then r9 is 1-applicable in M. In fact, we can see that App(P, {∅}, ant) = {r5}. Also, we
can see that if M = {(ant, 1)} and the atoms p and sp are considered, then r7 and r8 are
0.6-applicable and 0.4-applicable in M respectively.

The consequence operator is monotonic and it always reaches a fix-point. The possibilistic
model of a possibilistic definite logic program is characterized in the following way.

Proposition 5.1. [Nicolas et al., 2006] Let P be a possibilistic definite logic program, then ΠTP has
a least fix-point

⊔
n≥0 ΠTn

P that is called the set of possibilistic consequences of P and it is denoted
by ΠCn(P).

By considering the fix-point operator ΠCn(P) and the possibilistic reduction PM
× , the

LPPODs semantics can be related to the LPODs semantics and the possibilistic answer set
semantics. This directly leads to the following definition.

Definition 5.5 (Possibilistic Answer Set for LPPODs). Let P be an LPPOD, M be a set of
possibilistic atoms such that M∗ is an answer set of P∗. M is a possibilistic answer set of P if and
only if M = ΠCn(PM∗

× ). We denote by SEMLPPOD(P) the set of all possibilistic answer sets of P
and by SEMLPPOD the LPPOD semantics.

Example 5.5. Let P be the LPPOD introduced in Example 5.2 and let us consider the sets
of atoms M∗1={ant, p, sp, ab1, b,¬ f } and M∗2 = {ant, p, sp, ab2, b, f }. In order to infer the
possibilistic answer sets of P, we have to infer the answer set of the LPOD P∗. It can be
proved that both M∗1 and M∗2 are valid answer sets of P∗. As seen in Example 5.3, PM∗1

× and

PM∗2
× are possibilistic definite logic programs. Therefore, the possibilistic answer sets of P

are:
ΠCn(PM∗1

× ) = {(ant, 1), (p, 0.6), (sp, 0.4), (b, 1), (¬ f , 0.9), (ab1, 0.6)}

since
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ΠT0

P
M∗1
×

= ∅

ΠT1

P
M∗1
×

= ΠT
P

M∗1
×

(∅) = {(ant, 1)}

ΠT2

P
M∗1
×

= ΠT
P

M∗1
×

({(ant, 1)}) = {(ant, 1), (p, 0.6), (sp, 0.4), (b, 1)}

ΠT3

P
M∗1
×

= ΠT
P

M∗1
×

({(ant, 1), (p, 0.6), (sp, 0.4), (b, 1)}) =

{(ant, 1), (p, 0.6), (sp, 0.4), (b, 1), (¬ f , 0.9), (ab1, 0.6)}
ΠT4

P
M∗1
×

= ΠT
P

M∗1
×

({(ant, 1), (p, 0.6), (sp, 0.4), (b, 1), (¬ f , 0.9), (ab1, 0.6)}) =

{(ant, 1), (p, 0.6), (sp, 0.4), (b, 1), (¬ f , 0.9), (ab1, 0.6)}
ΠTk+1

P
M∗1
×

= ΠTk

P
M∗1
×

, ∀k > 3

and
ΠCn(PM∗2

× ) = {(ant, 1), (p, 0.6), (sp, 0.4), (b, 1), ( f , 0.6), (ab2, 0.6)}

since

ΠT0

P
M∗2
×

= ∅

ΠT1

P
M∗2
×

= ΠT
P

M∗2
×

(∅) = {(ant, 1)}

ΠT2

P
M∗2
×

= ΠT
P

M∗2
×

({(ant, 1)}) = {(ant, 1), (p, 0.6), (sp, 0.4), (b, 1)}

ΠT3

P
M∗2
×

= ΠT
P

M∗2
×

({(ant, 1), (p, 0.6), (sp, 0.4), (b, 1)}) =

{(ant, 1), (p, 0.6), (sp, 0.4), (b, 1), ( f , 0.6), (ab2, 0.6)}
ΠT4

P
M∗2
×

= ΠT
P

M∗2
×

({(ant, 1), (p, 0.6), (sp, 0.4), (b, 1), ( f , 0.6), (ab2, 0.6)}) =

{(ant, 1), (p, 0.6), (sp, 0.4), (b, 1), ( f , 0.6), (ab2, 0.6)}
ΠTk+1

P
M∗2
×

= ΠTk

P
M∗2
×

, ∀k > 3

From Definition 5.5, we can observe that there is an important condition w.r.t. the defi-
nition of a possibilistic answer set of an LPPOD: a possibilistic set M cannot be a possibilistic
answer set of an LPPOD P, if M∗ is not an answer set of an LPOD P∗.

When all the possibilistic rules of an LPPOD P have the necessity value of 1, each answer
set of P∗ can be directly generalized to be a possibilistic answer set of P.

Proposition 5.2 (Generalization). Let P be an LPPOD, and M∗ be an answer set of P∗. If ∀r ∈
P, Nec(r) = 1, then M = {(ϕ, 1) | ϕ ∈ M∗} is a possibilistic answer set of P.

An alternative characterization of the LPPODs semantics can be given by the least possi-
bilistic distribution associated to a possibilistic definite logic program as it will be discussed
in the next section.

5.2.2 Possibilistic Answer Sets of LPPODs by Possibility Distribution

Definition 5.5 proposes a syntactical way to compute the possibilistic answer sets of an LP-
POD by means of the possibilistic ×-reduction (Definition 5.2) and the fix-point operator
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ΠCn. Similar to what has been done in [Nicolas et al., 2006] for possibilistic normal pro-
grams, we characterize the LPPODs semantics in terms of the least specific distribution for
possibilistic definite logic programs.

Definition 5.6. [Nicolas et al., 2006] Let P be a possibilistic definite logic program, M be a set of
atoms, and πP : 2LP 7−→ [0, 1] be a possibility distribution. πP is compatible with P and it is the
least specific distribution for P if:3

∀M ∈ 2LP



πP(M) = 0, M * head(App(P∗, M))

πP(M) = 0, App(P∗, M) is not grounded

πP(M) = 1, M is an answer of P∗

πP(M) = 1−maxr∈P{Nec(r) | M 2 r∗}, otherwise

As it happens in the possibilistic logic settings, the possibility distribution πP induces
two dual measures which can be used to infer, in the ASP setting, the necessity degrees of
each atom of a possibilistic definite logic program.

Definition 5.7. [Nicolas et al., 2006] Let P be a possibilistic definite logic program and πP its
associated possibility distribution. The possibility and necessity measures are defined as:

• ΠP(ϕ) = maxM∈2LP {πP(M) | ϕ ∈ M}
• NP(ϕ) = 1−maxM∈2LP {πP(M) | ϕ /∈ M}

Given the above definitions and the ×-possibilistic reduction PM
× , it is possible to give

a characterization of a possibilistic answer set of an LPPOD in terms of the possibility dis-
tribution for possibilistic definite logic programs.

Proposition 5.3. Let P be an LPPOD and M be a set of possibilistic atoms such that M∗ is an
answer set of P∗, then

ΠM(PM∗
× ) = {(ϕ, NPM∗

×
(ϕ))|ϕ ∈ LPM∗

×
, NPM∗

×
(ϕ) > 0}

is a possibilistic answer set of P.

Example 5.6. Let P be the LPPOD in Example 5.2, M∗1={ant, p, sp, ab1, b,¬ f }, M∗2 = {ant, p,

sp, ab2, b, f } be the answer sets of P∗, and PM∗1
× , PM∗2

× be the reductions of P w.r.t. M∗1 and
M∗2 respectively (Example 5.3).

Let us consider the possibility distribution π for a possibilistic definite logic program in
Definition 5.6 and let L

P
M∗1
×

= {ant, p, sp, ab1, b,¬ f }. The least specific possibility distribu-

tion on 2
L

P
M∗1
× induced by PM∗1

× is:

• π
P

M∗1
×

({ant, b}) = 1−max{0.9, 0.6, 0.4} = 0.1

• π
P

M∗1
×

({ant, b,¬ f }) = 1−max{0.6, 0.4} = 0.4

3 A definite logic program P∗ is said to be grounded if it can be ordered as a sequence 〈r1, . . . , rn〉
such that ∀i, 1 ≤ i ≤ n, ri ∈ App(P, head({r1, . . . , ri−1})).
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• π
P

M∗1
×

({ab1, ant, b, p}) = 1−max{0.4, 0.9} = 0.1

• π
P

M∗1
×

({ab1, ant, b, sp}) = 1−max{0.6, 0.9} = 0.1

• π
P

M∗1
×

({ab1, ant, b,¬ f , p}) = 1−max{0.6} = 0.4

• π
P

M∗1
×

({ab1, ant, b,¬ f , p}) = 1−max{0.4} = 0.6

• π
P

M∗1
×

({ab1, ant, b,¬ f , p, b}) = 1 (the answer set)

• for all the other sets S ∈ 2
L

P
M∗1
× , π

P
M∗1
×

(S) = 0

As all the atoms in the signature of PM∗1
× belong to the answer set of P∗, their level of consis-

tency with respect to PM∗1
× is the most possible value. As expected. the possibility measures

associated to each of the atoms are:

• Π
P

M∗1
×

(ant) = Π
P

M∗1
×

(p) = Π
P

M∗1
×

(sp) = Π
P

M∗1
×

(ab1) = Π
P

M∗1
×

(b) = Π
P

M∗1
×

(¬ f ) = 1

Necessity measures instead evaluate the certainty level at which each atom is inferred from
PM∗1
× . As expected, necessity values inferred by the possibility distribution π

P
M∗1
×

are con-

sistent with the necessity values associated to each possibilistic atom in the possibilistic
answer set of M1 of P which was inferred by the fix-point in Example 5.5.

• N
P

M∗1
×

(ant) = 1

• N
P

M∗1
×

(p) = 0.6

• N
P

M∗1
×

(sp) = 0.4

• N
P

M∗1
×

(ab1) = 0.6

• N
P

M∗1
×

(b) = 1

• N
P

M∗1
×

(¬ f ) = 0.9

The inference of the necessity values related to M∗2 = {ant, p, sp, ab2, b, f } in the possibilistic
definite logic program PM∗2

× can be done in a similar way.

Therefore, the LPPODs semantics can be defined by two different but equivalent char-
acterizations: the syntactical characterization based on a fix-point operator and the seman-
tical characterization based on the possibility distribution for possibilistic definite logic
programs. For the sake of computation, in Section 5.5, we will see how the syntactical char-
acterization provides a straightforward methodology for the LPPODs semantics computa-
tion.

In the next section, we present a set of transformation rules which allow one to propa-
gate necessity values between rules while preserving the LPPODs semantics. These results
are especially important for the definition of a comparison criterion. In fact, based on these
transformations, in Section 5.4, we will see how to define a comparison criterion for select-
ing possibilistic answer sets which can consider both necessity values and satisfaction degrees
of possibilistic ordered disjunction rules.
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5.3 Transformation Rules for LPPODs

Generally speaking, a transformation rule is a syntactic rule which specifies the conditions
under which a logic program P can be transformed to another program P′. In the logic pro-
gramming semantics literature, transformation rules have been studied for normal logic
programs and disjunctive logic programs in order to reduce the complexity of comput-
ing the answer sets of a logic program [Brass et al., 2001; Dix et al., 2001; Osorio et al.,
2001b; Brass and Dix, 1995, 1999]. A common requirement is that the transformations can
be used to reduce the size of a logic program provided that they do not affect its semantics.
In this context, several notions of equivalence between logic programs have been defined
[Lifschitz et al., 2001]. We generalize some basic transformations of normal programs (EC,
RED+, RED−, Success, Failure, Loop) (see Chapter 2, Section 2.3) to LPPODs and we show
how these transformations can reduce the structure of an LPPOD to a normal form with-
out affecting the LPPODs semantics. To this end, we first prove that the transformations
preserve weak equivalence and we reuse the theory of rewriting system [Dershowitz and
Plaisted, 2001] to guarantee that the normal form is always unique. We denote a possibilistic
ordered disjunction rule r (of the form expressed by 5.1) by α : C× ← B+, not B−. We write
HEAD(P) for the set of all atoms occurring in rule heads of an LPPOD P. We generalize Lif-
schitz’s notion of weak equivalence [Lifschitz et al., 2001] and we say that two LPPODs P and
P′ are equivalent w.r.t. the LPPODs semantics (denoted SEMLPPOD(P) ≡ SEMLPPOD(P′)) if
they possess the same possibilistic answer sets.

In the following, we refer to a rewriting rule as a program transformation as defined in
[Osorio et al., 2001a]. A program transformation→ is a binary relation on ProgA−S where
ProgA−S is the set of all LPPODs with atoms from the signature A and necessity values
from S ⊆ (0, 1].→maps an LPPOD P to another LPPOD P′. We use P→T P′ for denoting
that we get P′ from P by applying a transformation rule T to P.

We illustrate the transformations by means of the following running example:

Example 5.7.

P0 =



r1 = 1 : a× b ← not c, not d.
r2 = 1 : c× d ← e, not e.
r3 = 1 : b× a ← c.
r4 = 1 : a× b ← d.
r5 = 1 : ⊥ ← a, b.
r6 = 0.6 : c ← not e.
r7 = 0.4 : d ← not e.


Definition 5.8 (Possibilistic Elimination of Contradictions). Given two LPPODs P and P′,
P′ results from P by possibilistic elimination of contradictions (P →PeC P′) if P contains a rule
r = α : C× ← B+, not B− which has an atom b such that b ∈ B+ and b ∈ B−, and P′ = P\{r}.

By applying this first transformation to the program in Example 5.7, we get rid of rule r2

and we obtain P1:

Example 5.8 (P0 →PeC P1).
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P1 =



r1 = 1 : a× b ← not c, not d.
r3 = 1 : b× a ← c.
r4 = 1 : a× b ← d.
r5 = 1 : ⊥ ← a, b.
r6 = 0.6 : c ← not e.
r7 = 0.4 : d ← not e.


We would like also to delete not e from all rule bodies whenever e does not appear in
the head of an LPPOD. This can be guaranteed by the Possibilistic Positive Reduction. Con-
trariwise, if an LPPOD contains α : a ← >, then the atoms in the head must be true, so
rules containing in their bodies not a are surely false and should be deleted. This can be
guaranteed by the Possibilistic Negative Reduction.

Definition 5.9 (Possibilistic Positive Reduction). Given two LPPODs P and P′, P′ results
from P by possibilistic positive reduction PRED+ (P→PRED+ P′), if there is a rule r = α : C× ←
B+, not (B− ∪ {b}) in P and such that b /∈ HEAD(P), and P′ = (P\{r}) ∪ {α : C× ←
B+, not B−}.

Definition 5.10 (Possibilistic Negative Reduction). Given two LPPODs P and P′, P′ results
from P by possibilistic negative reduction PRED− (P→PRED− P′), if P contains the rules r = α :
a← >, and r′ = β : C× ← B+, not (B− ∪ {a}), and P′ = (P\{r′}).

An application of these reductions reduces the size of an LPPOD. In our example, we can
apply→PRED+ (two times) to obtain P2 and then→PRED− to obtain P3.

Example 5.9 (P1 →PRED+ P2 →PRED+ P3, P3 →PRED− P4).

P3 =



r1 = 1 : a× b ← not c, not d.
r3 = 1 : b× a ← c.
r4 = 1 : a× b ← d.
r5 = 1 : ⊥ ← a, b.
r6 = 0.6 : c ← >.
r7 = 0.4 : d ← >.


P4 =



r3 = 1 : b× a ← c.
r4 = 1 : a× b ← d.
r5 = 1 : ⊥ ← a, b.
r6 = 0.6 : c ← >.
r7 = 0.4 : d ← >.


The following two transformations are usually used to replace the Generalize Principle of
Partial evaluation (GPPE) [Brass and Dix, 1995, 1999].

Definition 5.11 (Possibilistic Success). Given two LPPODs P and P′, P′ results from P by
possibilistic success (P →PS P′), if P contains a fact α : a ← > and a rule r = β : C× ←
B+, not B− such that a ∈ B+, and P′ = (P\{r}) ∪ {min{α, β} : C× ← (B+\{a}), not B−}.

Definition 5.12 (Possibilistic Failure). Given two LPPODs P and P′, P′ results from P by pos-
sibilistic failure (P →PF P′), if P contains a rule r = α : C× ← B+, not B− such that a ∈ B+

and a /∈ HEAD(P), and P′ = (P\{r}).

The Possibilistic Success is particularly important for LPPODs because it allows to propagate
necessity values between LPPOD rules. Please observe how such transformation reflects
the possibilistic modus ponens (GMP) (see Chapter 2, Section 2.4). By applying→PF to P4

(two times), we obtain:
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Example 5.10 (P4 →PS P5 →PS P6).

P6 =



r3 = 0.6 : b× a ← >.
r4 = 0.4 : a× b ← >.
r5 = 1 : ⊥ ← a, b.
r6 = 0.6 : c ← >.
r7 = 0.4 : d ← >.


The last transformation that we add is the possibilistic loop. For its definition it is useful

to map an LPPOD to a possibilistic normal program. Given a possibilistic ordered disjunc-
tion rule r = α : C× ← B+, not B−, we write ordis− nor(r) to denote the set of possibilistic
normal rules {α : c ← B+, not (B− ∪ (C×\{c}))|c ∈ C×} and we extend this definition to
LPPODs as follows. Let P be an LPPOD, then ordis− nor(P) denotes the possibilistic nor-
mal program

⋃
r∈P ordis− nor(r). Given a possibilistic normal program ordis− nor(P), we

write de f (ordis− nor(P)) to denote the possibilistic definite logic program that is obtained
from ordis− nor(P) by removing every negated-by-failure atom in ordis− nor(P). Given a
definite logic program de f (ordis− nor(P))∗, Cn(de f (ordis− nor(P))∗) denotes the unique
minimal model of de f (ordis− nor(P))∗ (that always exists for definite logic program, see
[Lloyd, 1987]).

Definition 5.13 (Possibilistic Loop). Given two LPPODs P and P′, P′ results from P by pos-
sibilistic loop (P →PLoop P′), if P′ = {α : C× ← B+, not B−|B+ ∩ un f (P) = ∅}, where
un f (P) = LP∗\Cn(de f (ordis− nor(P)∗) and P 6= P′.

Based on these transformations, we define an abstract rewriting system that contains the
possibilistic transformation rules introduced in the previous definitions.

Definition 5.14 (Rewriting System for LPPODs). Let P be an LPPOD and CSLPPOD be the
rewriting system based on the possibilistic transformation rules {→PeC,→PRED+ ,→PRED− ,→PS,
→PF,→PLoop}. We denote the normal form of P w.r.t. CSLPPOD by normCSLPPOD (P).4

As stated before, an essential requirement of program transformations is that they pre-
serve the semantics of the programs to which they are applied. The following Lemma is an
important result, since it allows to reduce an LPPOD without affecting its semantics.

Lemma 5.1 (CSLPPOD preserves SEMLPPOD). Let P and P′ be two LPPODs related by any
transformation in CSLPPOD. Then SEMLPPOD(P) ≡p SEMLPPOD(P′).

Returning to the description of the running example, it can be observed that the pro-
gram P6 has the property that it cannot be further reduced because none of our transfor-
mations is applicable. Therefore, P6 = normCSLPPOD (P0). However, the normal form of P
could have been obtained by applying a different set of transformations. In particular, the
sequence→PRED+ (three times),→PRED− ,→PF, and→PS (two times) reduces the program
P0 to a program equivalent to P6. The following theorem is a strong result as it shows that
a different application of our transformations (in a different ordering) leads to the same
reduced program.

4 Soon, we will show that this normal form is unique.
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Theorem 5.1 (confluence and termination). Let P be an LPPOD. Then CSLPPOD is confluent,
noetherian and normCSLPPOD (P) is unique.

The results we have obtained are important, since they have some theoretical and prac-
tical implications. In the case of the LPPODs semantics implementation, the confluence
guarantees that the order in which the transformations are applied does not matter (i.e., it
allows to apply the less costly transformation) and that an LPPOD can always be reduced
to an unique normal form. Consequently, the semantics of LPPODs can be computed on
the normal form of an LPPOD. Moreover, the Possibilistic Success is particularly important
for LPPODs because it also allows to propagate necessity values between LPPODs rules.
This will be of interest in the next section.

5.4 Possibilistic Answer Sets Selection

The × connective can be used to express a preference order among atoms. Then, an order
among the answer sets of a logic program can be achieved, since each answer set is associ-
ated with a rule satisfaction degree. Such degree can be used to specify comparison criteria
for the answer sets selection (Chapter 2, Section 2.2.4). Similar to what happens in LPODs,
we can define the rule satisfaction degree of a possibilistic answer set of an LPPOD w.r.t. a
possibilistic ordered disjunction rules as:

Definition 5.15. Let P an LPPOD and let M be a possibilistic answer set of P. Then, M satisfies a
possibilistic ordered disjunction rule r = α : c1 × . . .× ck ← b1, . . . , bm, not bm+1 . . . , not bm+n,
denoted by degM∗(r∗):

• to degree 1 if bj 6∈ M∗ for some j (1 ≤ j ≤ m), or bi ∈ M∗ for some i (m + 1 ≤ i ≤ m + n),
• to degree j (1 ≤ j ≤ k) if all bl ∈ M∗ (1 ≤ l ≤ m), bi /∈ M∗ (m + 1 ≤ i ≤ m + n), and

j = min{r | cr ∈ M∗, 1 ≤ r ≤ k}.

The satisfaction degree of a possibilistic answer set M w.r.t. a rule can provide a ranking
of the possibilistic answer sets of an LPPOD. An order among the possibilistic answer sets
can be obtained by means of the following comparison criterion.

Definition 5.16. Let P be an LPPOD, and let M1 and M2 be two possibilistic answer sets of P.
Then, M∗1 is preferred to M∗2 (denoted by M∗1 � M∗2 ) iff ∃ r∗ ∈ P∗ such that degM∗1

(r∗) <

degM∗2
(r∗), and @r′∗ ∈ P∗ such that degM∗2

(r′) < degM∗1
(r′∗).

The condition in the above definition follows the principle of Pareto optimality accord-
ing to which an object is preferred if it is better or equal to another in all attributes and
strictly better in at least one attribute.

As the reader has probably observed, the above definition only considers the no possi-
bilistic part of an LPPOD. To illustrate the above definition, let us consider the following
example.

Example 5.11. Let us return to the LPPOD in Example 5.2.
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P =



r1 = 1 : b ← ant.
r2 = 0.9 : f ← b, not ab1.
r3 = 0.6 : ¬ f ← ant, not ab2.
r4 = 1 : ab1 × ab2 ← p.
r5 = 1 : ab2 × ab1 ← sp.
r6 = 1 : ⊥ ← ab1, ab2.
r7 = 0.6 : p ← ant.
r8 = 0.4 : sp ← ant.
r9 = 1 : ant ← >.


As seen before (Examples 5.5-5.6), P has two possibilistic answer sets: M1 = {(ant, 1),
(p, 0.6), (sp, 0.4), (b, 1), (¬ f , 0.9), (ab1, 0.6)} and M2 = {(ant, 1), (p, 0.6), (sp, 0.4), (b, 1),
( f , 0.6), (ab2, 0.6)}. Let us consider the rule satisfaction degrees of M1 and M2:

Table 5.1. Example of Rule Satisfaction Degrees

Rule degM∗1
degM∗2

r∗4 = ab1 × ab2 ← p 1 2
r∗5 = ab2 × ab1 ← sp 2 1

By Pareto-based comparison, it is easy to see that it is not possible to compare the possi-
bilistic answer sets.

We can observe that rule satisfaction degrees are not enough to compare the possibilistic
answer sets of a program such as P. However, the rules in our LPPODs are associated with
certainty values, i.e., an ordered disjunction rule can be more certain than another one. This
observation motivates the need to explore for a more precise comparison criterion able to
take rules necessity values into account when needed.

By exploiting the set of transformation rules we have defined in the previous section
(which are a mechanism able to propagate necessity values between LPPODs rules), we
can define a preference relation that takes the necessity values of LPPOD rules into account
in order to compare possibilistic answer sets. The following possibilistic preference relation is
able to consider rules satisfaction degrees and rules necessity values at the same time to
specify an order between the possibilistic answer sets of an LPPOD.

Definition 5.17 (Possibilistic Preferred Relation). Let P be an LPPOD, M1 and M2 be pos-
sibilistic answer sets of P, normCSLPPOD (P) be the normal form of P w.r.t. the rewriting system
CSLPPOD. M1 is possibilistic preferred to M2 (M1 �pp M2) iff ∃ r ∈ normCSLPPOD (P) such that
degM∗1

(r∗) < degM∗2
(r∗), and @r′ ∈ normCSLPPOD (P) such that degM∗2

(r′∗) < degM∗1
(r′∗) and

Nec(r) < Nec(r′).5

This definition tells us that, once we have rewritten an LPPOD P by applying the trans-
formations seen before, we are able to compare the possibilistic answer sets using directly
the normal form of the program (as the LPPODs semantics is not affected by the transfor-

5 Nec(r) denotes the necessity value of a rule r as explained in Section 5.1.
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mations and the normal form is unique). To illustrate the above definition, let us consider
the following example.

Example 5.12. Let P be the LPPOD in Example 5.2, and CSLPPOD be the abstract rewriting
system we defined for LPPODs. By applying Possibilistic Success (three times) we can first
rewrite r1, r7, and r8 in P to obtain P3:

P =



r1 = 1 : b ← ant.
r2 = 0.9 : f ← b, not ab1.
r3 = 0.6 : ¬ f ← ant, not ab2.
r4 = 1 : ab1 × ab2 ← p.
r5 = 1 : ab2 × ab1 ← sp.
r6 = 1 : ⊥ ← ab1, ab2.
r7 = 0.6 : p ← ant.
r8 = 0.4 : sp ← ant.
r9 = 1 : ant ← >.



P3 =



r1 = 1 : b ← >.
r2 = 0.9 : f ← b, not ab1.
r3 = 0.6 : ¬ f ← ant, not ab2.
r4 = 1 : ab1 × ab2 ← p.
r5 = 1 : ab2 × ab1 ← sp.
r6 = 1 : ⊥ ← ab1, ab2.
r7 = 0.6 : p ← >.
r8 = 0.4 : sp ← >.
r9 = 1 : ant ← >.


By applying the same transformation other two times, we can rewrite rule r4 and r5 and
obtain P5 which represents the normal form of P

P5 =



r1 = 1 : b ← >.
r2 = 0.9 : f ← b, not ab1.
r3 = 0.6 : ¬ f ← ant, not ab2.
r4 = 0.6 : ab1 × ab2 ← >.
r5 = 0.4 : ab2 × ab1 ← >.
r6 = 1 : ⊥ ← ab1, ab2.
r7 = 0.6 : p ← >.
r8 = 0.4 : sp ← >.
r9 = 1 : ant ← >.


It can be checked that P5 = normCSLPPOD (P) and that it has the same possibilistic answer
sets of P, as expected. Once we have obtained the normal form of P, we can apply the
possibilistic preference relation to compare M1 and M2. By considering rule satisfaction
degrees degM∗1

(r∗4) = 1, degM∗1
(r∗5) = 2 and degM∗2

(r∗4) = 2, degM∗2
(r∗5) = 1, the necessity

values of rules r4 and r5, Nec(r4) = 0.6 and Nec(r5) = 0.4, it is not difficult to see that
M1 �pp M2, since Nec(r4) > Nec(r5) (M2 6�pp M1 follows by Definition 5.17 as well).

From a knowledge representation point of view, we can interpret this result in the fol-
lowing way. In the original LPPOD P, we were assuming that rule r4, i.e., being a penguin
it is more reasonable to assume that birds cannot fly rather than antarctic birds can fly, and
rule r5, i.e., being a super-penguin it is more reasonable to assume that antarctic birds can
fly rather than birds cannot fly, were absolutely certain. However, these rules are supported
by two pieces of knowledge, rules r7 and r8, which are almost certain and little certain respec-
tively. As expected, these certainty values must be considered at the moment of deciding
which one of the exceptions ab1 and ab2 w.r.t. the default rules r2 and r3 is the most plau-
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sible. This has been achieved by means of a mechanism able to propagate necessity values
between the rules of LPPOD P.

The reader may observe that, when necessity values are equal, it is not possible to
achieve a total order between possibilistic answer sets of an LPPOD. However, this is in
someway what it can be expected when both scales prevent such decision.

Nevertheless, we can observe that there is an important property w.r.t. the possibilistic
preference relation for possibilistic answer sets: a possibilistic answer set M is comparable if
M∗ is comparable in the LPOD P∗. In fact, our extension generalizes the preference relation
between answer sets of LPODs w.r.t. the preference relation for LPODs.

Proposition 5.4. Let M1 and M2 be possibilistic answer sets of an LPPOD P, �p be the preference
relation based on rules satisfaction degrees only, and �pp be the possibilistic preference relation. If
M∗1 �p M∗2 then M1 �pp M2.

It is worthy to add that the approach we have defined in this section for comparing
possibilistic answer sets based on the rewriting system CSLPPOD can be replaced by other
strategies. An alternative strategy can be obtained by associating a unique value, which
merges necessity and satisfaction degree together, to each possibilistic answer set and to
use such value to rank-order the possibilistic answer sets.6 Other possible strategies can be
proposed by defining an alternative program reduction which focuses on the propagation
of necessity values only; or by transforming an LPPOD to an equivalent possibilistic normal
logic program where special atoms are introduced for denoting the satisfaction degree of
possibilistic ordered disjunction rules and by defining a comparison criteria based on the
necessity values associated to these atoms.

5.5 Computing the LPPODs Semantics

In Section 5.2, we have seen how the LPPODs semantics can be characterized in two dif-
ferent ways: syntactically, in terms of a syntactic reduction and a fix-point operator, and
semantically, in terms of the least specific possibility distribution compatible with an LP-
POD.

For the sake of computation, the former characterization is of special interest as it de-
fines a straightforward methodology for the LPPODs semantics implementation. In fact,
according to Definition 5.5, the LPPODs semantics is defined in terms of the LPODs se-
mantics and the possibilistic answer set semantics. As both semantics are computable, the
decision problem of existence of a possibilistic answer set of an LPPOD is computable, as
stated by the following theorem.

Theorem 5.2. Let P be an LPPOD, such that P ⊆ ProgA−S , where ProgA−S is the set of all
LPPODs which can be generated by a finite set of atoms A and a finite set of necessity values S .
Then, the LPPODs semantics is computed by the function SEMLPPOD : P→ PS .

6 A possible way to associate a unique value to each possibilistic answer set is by means of the
following function: ∑1≤i≤n

Nec(ri)
degM∗ (ri)nr

, in which nr is the number of rules in an LPPOD P.
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Algorithm 4 SEMLPPOD(P) : PM
Input: An LPPOD P
Output: Ordered Set of Possibilistic Answer Sets
PM← ∅
PLPOD ← P∗

M← SEMLPOD(PLPOD)
whileM 6= ∅ do

M← pop(M)
PM← ΠCn(PM

× )
push(PM, PM)

end while
return PM

In order to prove Theorem 5.2, since the LPPODs semantics maps any LPPOD to its pos-
sibilistic answer sets, it is sufficient to find an algorithm that can compute the possibilistic
answer sets given an LPPOD P. The algorithm exists and it is described below.

Algorithm 4 accepts an LPPOD P, does some processing and returns an ordered set
of possibilistic answer sets of P. To be able to infer the possibilistic answer sets of P, the
algorithm follows the methodology provided by the LPPODs semantics syntactical charac-
terization in a straightforward way. As first step, the projection ∗ is applied to P in order to
obtain its classical part (PLPOD). Since PLPOD is an LPOD, the LPOD semantics (SEMLPOD)
can be used to infer its answer sets (M). If no answer set of PLPOD is found, then the al-
gorithm terminates. Otherwise, each answer set of PLPOD is used to reduce P (PM

× ) into a
possibilistic definite logic program to which the fix-point operator ΠCn can be applied to
infer the necessity values of the atoms corresponding to the possibilistic answer sets of P.
Since the consequence operator is monotonic, PS is finite, and each ps ⊂ PS is also finite,
the operator always reaches a fix-point in a finite number of steps. Therefore, the algorithm
always terminates. In this way, the algorithm provides an effective way to compute the
LPPODs semantics.

Furthermore, the relation of the LPPODs semantics with the LPODs and possibilistic
answer set semantics suggests an important results. In fact, it can be observed how the
problem of deciding whether an LPPOD has a possibilistic answer set stays in the same
complexity of finding an answer set of an LPOD, i.e., ΣP

2 . In fact, finding a possibilistic
answer set of an LPPOD can be done in polynomial time from the moment an answer set
of its classical part is provided. This comes in a straightforward way from the fact that (i) the
×-possibilistic reduction converts an LPPOD to a possibilistic definite logic program and,
(ii) the computation of the possibilistic least model of a possibilistic definite logic program
P can be done in polynomial time w.r.t. k× |P| in which k is the number of different levels
of certainty occurring in P. This is an important result, since it shows how LPPODs can
yield a more expressive framework without increasing the complexity of its classical part.

5.6 Related Work

Since the LPPODs framework combines preferences, nonmonotonicity and uncertainty in a
logic programming framework together, there are several works which relate to ours from
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different perspectives. Most of the existing approaches either deal with uncertainty and
nonmonotonic reasoning [Dubois et al., 1991; Saad and Pontelli, 2005; Nicolas et al., 2006;
Nieves et al., 2011; Baral et al., 2009] or deal with preferences and nonmonotonic reasoning
[Gelfond and Son, 1998; Zhang and Foo, 1997; Brewka and Eiter, 1999; Sakama and Inoue,
2000; Delgrande et al., 2003; Brewka et al., 2004b; Van Nieuwenborgh and Vermeir, 2006].

5.6.1 Uncertainty in Logic Programming

Concerning research on logic programming with uncertainty, existing approaches in the
literature interpret the uncertainty in a qualitative or in a quantitative way.

As far as qualitative treating of uncertainty is concerned, the most popular approaches
in the literature are based on possibility theory. The first approach which combines pos-
sibilistic logic and logic programming is an idea presented in [Dubois et al., 1991]. In this
work, logic programming rules are associated with necessity measures and certainty about
the atoms in valid interpretations of a logic program are inferred using possibilistic reso-
lution [Dubois et al., 1994]. This approach is able to deal with inconsistent programs and
with nonmonotonicity by means of the α-cut [Dubois et al., 1991, 1994], but it is not able
to capture incomplete knowledge as it does not consider negation as failure as it is usually
done in ASP.

In the context of ASP, one of the pioneer works about qualitative uncertainty handling
is the work of Nicolas et al. (see Chapter 2, Section 2.5). It combines possibility theory with
normal logic programs. Our approach clearly relates to this work, since the LPPODs se-
mantics is based on the possibilistic semantics. Moreover, when all possibilistic rules in an
LPPOD P are of the form α : c1 ← B+, not B−, the LPPODs semantics coincides with the
possibilistic semantics of normal programs in which each possibilistic answer set has the
maximum allowed satisfaction degree, i.e., 1.

The approach of Nicolas et al. is extended by possibilistic disjunctive programs [Nieves
et al., 2011]. The main motivation of this approach is to define a description language and a
reasoning process in which the user can consider relative likelihoods for modeling different
levels of uncertainty. Our approach differs in this respect, since we expect necessity values
to be recovered by a knowledge discovery process and we use these values as priority
levels between LPPOD rules for possibilistic answer sets selection. Moreover, uncertainty
labels in [Nieves et al., 2011] belong to a partially ordered set, whereas in our approach
necessity values belong to a totally ordered scale. Despite these slight differences, it is not
difficult to see how the two semantics relate to each other. Since × in LPPODs is a special
disjunction, and since the possibilistic disjunctive semantics [Nieves et al., 2011] is based
on minimal models,7 it is possible to represent an LPPOD by means of a possibilistic dis-
junctive program. The main difference is in the selection of the possibilistic answer sets of
the program. Nevertheless, it seems possible to recover the satisfaction degree of LPPODs
in possibilistic disjunctive programs as well. Intuitively, as in LPPODs a satisfaction degree
is associated to a possibilistic answer set w.r.t. a possibilistic ordered disjunction rule, this

7 According to the minimal model, given the possibilistic disjunctive rule: α : a ∨ b, {(a, α)} and
{(b, α)} are valid possibilistic answer sets, but {(a, α), (b, α)} is not.
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degree can be recovered in a possibilistic disjunctive rule by defining a satisfaction relation
for a possibilistic disjunction rule that takes the position of the satisfied atoms into account.

Another possibilistic extension of the semantics of LPODs, based on pstable semantics
[Osorio et al., 2006], is the approach proposed in [Confalonieri et al., 2009a]. The main mo-
tivation behind this work is the handling of possibilistic rules of the form α : a ← not a,
which under answer set semantics are considered inconsistent. The core idea of the ap-
proach is first to characterize the LPODs semantics in terms of the pstable semantics and
then to generalized such result to possibilistic LPODs [Confalonieri et al., 2009a]. Although
the research line of such a framework is in paraconsistent logic, possibilistic pstable se-
mantics for LPODs relates to LPPODs semantics, since each possibilistic answer set is a
possibilistic pstable model in which the main difference consists in the necessity values of
the inferred atoms (see Proposition 2 in [Confalonieri et al., 2009a]).

A noticeable approach to uncertainty handling in ASP based on possibilistic theory is
reported in [Bauters et al., 2010a]. The authors proposed a revisited semantics for PASP.
The core idea of this approach is to translate a normal program to a set of constraints on
possibility distributions and then to extend this idea to cover possibilistic ASP. Our ap-
proach differs from [Bauters et al., 2010a] in the way in which the possibilistic answer sets
are computed. Indeed, we first compute the answer set of the no possibilistic program and,
then, we use the possibilistic semantics for inferring the necessity values (according to the
approach in [Nicolas et al., 2006]). This revisited possibilistic semantics has been extended
to possibilistic disjunctive logic programs [Bauters et al., 2011].

In the case the uncertainty is treated quantitatively, the most used formalisms is proba-
bility theory [Saad and Pontelli, 2005; Baral et al., 2009]. These approaches basically differ
from ours in the underlying notion of uncertainty and how uncertainty values associated
to clauses and facts are managed.

5.6.2 Preferences in Logic Programming

Concerning works about preference handling, several approaches have been proposed as
extension to classical ASP. As already pointed out in Chapter 3, these approaches differs
in the way in which preferences are expressed. Since our approach is based on LPODs
[Brewka et al., 2004b], we invite the reader to have a look at [Delgrande et al., 2004] for a
comprehensive discussion about LPODs and other approaches. A more recent approach,
which is not discussed in [Delgrande et al., 2004], is the work in [Van Nieuwenborgh and
Vermeir, 2006]. In [Van Nieuwenborgh and Vermeir, 2006], preferences are used in the con-
text of inconsistent programs for defining a partial order among program rules with the
purpose to allow less important rules to be violated in order to satisfy rules with higher
importance. Therefore, while in LPPODs preferences are used to select program solutions,
in [Van Nieuwenborgh and Vermeir, 2006], they are used to select program rules.
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5.7 Discussion and Concluding Remarks

In this chapter, we have proposed a possibilistic logic programming framework which is
able to capture explicit preferences about rules having exceptions and uncertainty values
in terms of necessity measures according to possibilistic logic [Dubois et al., 1994].

As discussed in Section 5.6, the use of possibilistic logic in ASP is not new and sev-
eral proposals under different specifications have been studied [Nicolas et al., 2006; Nieves
et al., 2011; Bauters et al., 2010a]. Nevertheless, LPPODs is the first logic programming
specification able to consider explicit preferences and uncertainty together based on possi-
bilistic answer set semantics.8

For achieving this, we have embedded several aspects of common-sense reasoning, i.e.,
nonmonotonicity, preferences, and uncertainty, in a single framework. Each part is un-
derpinned by two well established formalisms: LPODs and possibilistic normal logic pro-
grams. In joining these two works together, we have obtained a framework which is able
to consider two scales to specify an order between the solutions of an LPPOD: the rule sat-
isfaction degree of a possibilistic answer set w.r.t. a possibilistic ordered disjunction rule and
the necessity values of the possibilistic rules themselves. In working towards this direction,
we have progressively built all the theoretical knowledge needed to define a possibilistic
preference relation which can consider the satisfaction degrees and the necessity values of
program rules for comparing LPPODs solutions.

First, we have extended the LPODs syntax with possibilistic logic and we have defined
the LPPODs semantics in terms of the LPODs and possibilistic answer set semantics (Defi-
nition 5.5). Then, we have introduced a set of transformation rules (Definition 5.14) which
represent an efficient way to reduce the size of an LPPOD and to propagate the necessity
values between LPPOD rules (preserving the semantics, Lemma 5.1 and Theorem 5.1). In
this way, necessity values can be taken into account in the possibilistic answer sets selec-
tion (Definition 5.16). Moreover, since the LPPODs semantics is a generalization of both the
LPODs semantics and the possibilistic answer set semantics (Definition 5.5, Proposition
5.2), the rewriting system we have defined for LPPODs can be applied, in principle, both
to LPODs and to possibilistic normal programs.

We have described a simple algorithm for computing the LPPODs semantics (Algo-
rithm 4) and we have discussed how the complexity of the LPPODs semantics belongs to
the same complexity class of its classical part, i.e., LPODs. This is an important result since:

• LPPODs can yield a more expressive framework without affecting the complexity, and
• the LPPODs framework can be used in a practical way.9

The LPPODs framework is not only a matter of selecting default rules explicitly when
information is uncertain. The LPPODs capability to draw an order among possibilistic an-
swer sets is a nice feature to have in systems that have to assist users in taking decisions.

8 As discussed in Section 5.6, in [Confalonieri et al., 2009a], we proposed a possibilistic extension of
LPODs based on possibilistic pstable semantics [Osorio et al., 2006; Osorio and Nieves, 2007].

9 Indeed, we have implemented the LPPODs semantics in an ASP-based solver, that we called
posPsmodels. We have integrated the solver in a context-aware system in which weighted pref-
erences are considered to handle user profiles in order to enhance the system personalization ca-
pabilities (see Chapter 7).
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The ordering can be an effective way to decide which options to choose considering un-
certain information or to decide which preferences to use for selecting content from some
available information. In such scenarios, the LPPODs specification can be used to represent
context-dependent preferences with uncertain information or with importance weights.
The modeling of degrees associated to LPPODs rules in terms of necessity values allows
one to interpret such values either as certainty or as priority labels about the rules of a logic
program. This is due to the fact that, in possibilistic logic, necessity values can be seen as
a measure to qualitatively model the certainty level of a classical logic formula [Dubois
et al., 1994] or as a measure to model the priority of a classical formula intended as a goal
to be reached [Kaci et al., 2006]. In this way, it is possible to associate to each preference
statement a scale indicating to what extent a statement is certain or to what extent a statement
is important.

In order to illustrate the former interpretation, let us consider a revised version of the
Example 4.12 presented in Chapter 4 in which preferences about going to the beach or to
the cinema now depend on some uncertain weather conditions. In particular:

Example 5.13. A tourist visiting Barcelona has to decide whether to go to the beach or to the
cinema. She has the following preferences: (i) she normally prefers going to the beach over going
to the cinema if she does not have any information about the weather condition (rain and sultriness).
Otherwise, (ii) she prefers to go to the cinema over going to the beach if it rains and (iii) she prefers
to go to the beach over going to the cinema if it is sultry. It is also known that (iv) normally, if it
is cloudy, then it will rain and that (v) normally, if it is humid, then it will make sultriness. These
last rules are uncertain: we are quasi certain (λ) about the former rule and almost certain (γ)
about the latter one respectively (with 0 < γ < λ < 1). Finally, we observe that it is a
cloudy and humid day. A possible encoding of this scenario is:

P =



r1 = 1 : beach× cinema ← not rain, not sultriness.
r2 = 1 : cinema× beach ← rain.
r3 = 1 : beach× cinema ← sultriness.
r4 = 1 : ⊥ ← cinema, beach.
r5 = λ : rain ← cloudy.
r6 = γ : sultriness ← humid.
r7 = 1 : cloudy ← >.
r8 = 1 : humid ← >.


It can be observed that the above program without any certainty value is a classical LPOD.
In such a case, no preference order can be achieved between the two alternatives beach and
cinema (similarly to what happens in the antarctic birds example presented in this chapter).
However, by considering certainty degrees and transformation rules, we can propagate
certainty values, λ and γ, to ordered disjunction rules r2 and r3. Therefore, the preference
about a cinema can be chosen, since it is more certain that it will rain rather than it will make
sultriness.

The presence of preferences and uncertainty may let the reader think that we are deal-
ing with decision making under uncertainty. Although it is tempting, this is not the
case. Indeed, qualitative decision under uncertainty, as understood in approaches such as
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[Boutilier, 1994; Tan and Pearl, 1994a,b; Dubois and Prade, 1995; Bonet and Geffner, 1996;
Brafman and Tennenholtz, 1996], advocates for the use of two separate knowledge bases.
One which represents uncertain knowledge of the world and another one which contains
the preferences (associated with priority labels). Then, an optimal decision is computed
according to pessimistic and optimistic criteria. This formulation, referred to as qualitative
decision making under uncertainty, will be our research topic in Chapter 10.10

Instead, when knowledge and preferences are tied together and necessity values are
interpreted as weights, the representational capabilities of the LPPODs framework can be
used to model user preferences. Such preferences can depend both on contextual incom-
plete information and they can be associated with a weight representing their importance.

Indeed, in context-aware systems, users can have many preferences and an approach
that considers all the specified preferences as equally important at the moment of selecting
the content to suggest based on user preferences can be too rigid. Therefore, necessity val-
ues interpreted as weights can be used to express the importance of preference rules, and,
consequently, of the preferences the rules contain. Such labels can be considered a kind of
meta-preference which can serve to further distinguish between preferences which belong
to the same LPPOD solution. We illustrate this idea by means of the following example.

Example 5.14. Let us consider some preferences that a user has about cinema suggestions:
(i) she prefers to watch an horror over an action movie if time is between 20 and 22, otherwise (ii)
she prefers action over horror movies. Then, (iii) she prefers to pay by Master Card over using her
Visa and (iv) she prefers a cinema accessible by metro line L1 rather than line L3 with the meta-
information that preferences about the metro line are more important than the ones about
the paying method. A possible way to encode her preferences is by means of the following
LPPOD:

P′ =



r1 = 1 : horror× action ← cinema, 20− 22h.
r2 = 1 : action× horror ← cinema, not 20− 22h.
r3 = 0.7 : masterCard× visa ← cinema.
r4 = 0.9 : accessL1× accessL3← cinema.
r5 = 1 : cinema ← >.


The above program leads to several possibilistic answer sets which represent all prefer-
ence combinations (8), in which {(cinema, 1),(accessL1, 0.9),(masterCard, 0.7),(action, 1)} is
the most preferred set and {(cinema, 1),(horror, 1),(visa, 0.7),(accessL3, 0.9)} is the less pre-
ferred one (according to rule satisfaction degrees). When the system proceeds with the con-
tent selection, for each preference set it has to consider all the preferences which are listed.
For instance, for the most preferred set {(cinema, 1), (accessL1, 0.9), (masterCard, 0.7),
(action, 1)} the most satisfactory result would be a cinema which has action movies, is
reachable by metro line L1, and accepts Master Card. Such cinema may not exist. Prefer-
ence weights can be used for considering preferences with higher importance only. Hence,
a bit less satisfactory result would be a cinema which has action movies and is reachable by
metro line L1 (i.e., the Master Card preference is dropped).

10 We will show how LPPODs can be used as a computational machinery to compute an optimal
decision in agreement with the qualitative decision theory formulated in the possibilistic logic
setting [Dubois et al., 2001; Dubois and Prade, 1995].
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To summarize, the LPPODs framework provides a flexible solution for: (i) the selection
of default rules by means of explicit preferences and uncertain information; (ii) providing
an effective reasoning tool for defining a user-oriented preference handling method (Chap-
ter 7), and (iii) for supporting the computation of an optimal decision in qualitative deci-
sion making under uncertainty according to optimistic and pessimistic criteria formulated
in the possibilistic logic setting (Chapter 10).
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User Preference Handling

One of the major issues in the process of preference handling is the modeling of user prefer-
ences. A preference model should be compact and rich enough to capture preferences and
preference ordering relations. In the AI literature, several approaches have been proposed
for modeling preferences. Approaches which extend classical logic express preferences by
means of logical formulas and define preferred models among valid interpretations of the
preference model. Graphically-based approaches offer a more intuitive preference repre-
sentation. Logic programming approaches are able to express preference statements which
can depend both an contextual information and incomplete knowledge. On the other hand,
context is an important aspect in any personalization system which aims at staying closer
to user desires and needs and several notions of context-awareness have been defined.

In this chapter, we will survey some of the most representative approaches of preference
handling in AI. We also present the main characteristics of context-aware systems and we
overview several definitions of context-awareness.

The chapter is organized as follows. After describing two non-classical logic based ap-
proaches (Sections 6.1-6.2), in Section 6.3, we present CP-nets. Section 6.4 overviews logic
programming-based specifications which are able to express preferences and incomplete
information. In Section 6.5, we describe the basic elements of context-aware systems, i.e.,
user profiles and context. Finally, Section 6.6 concludes the chapter by pointing out the
directions followed in the next two chapters.

6.1 User Preferences in Qualitative Choice Logic

Qualitative Choice Logic (QCL) [Brewka et al., 2004a] is a nonmonotonic propositional
logic which extends classical logic in order represent qualitative choices. The non-standard
part of QCL is a new logical connective −→× capable to capture ordered disjunctions. Intu-
itively, if A and B are formulas, then A−→× B says: if possible A, but if A is impossible then
(at least) B.

QCL can be used to represent alternative, ranked options for problem solutions, as
shown in the following example.

Example 6.1. [Brewka et al., 2004a] Let us imagine we want to represent the preferences of a
user concerning a hotel booking. Let us assume there are four hotels available (h1, h2, h3,



90 6 User Preference Handling

h4) out of which she has to pick one. Each hotel has some characteristics, e.g., whether it
can be reached by walk, whether it has an hotel transportation service, or whether it can
be reached by public transport. The user has the following preferences: she prefers to walk,
over using the hotel transportation service over going by public transport. This scenario
can be encoded by means of the following QCL knowledge base:

KBQCL =



h1 → walking
h2 → ¬walking ∧ hoteltransport

h3 → ¬walking ∧ ¬hoteltransport ∧ publictransport
h4 → ¬walking ∧ ¬hoteltransport ∧ ¬publictransport

h1 ∨ h2 ∨ h3 ∨ h4

walking−→× hoteltransport−→× publictransport


Given the above formulas, the conclusion h1 is obtained, since this is the only hotel sat-
isfying the user’s most intended option. However, if we suddenly discover that h1 is un-
available (i.e., we add ¬h1 to KBQCL), the conclusion h2 is obtained, since the user’s most
favored property, i.e., walking, cannot be satisfied.

The above example shows how the inference relation of QCL is nonmonotonic (it actu-
ally satisfies all the postulates of System P [Kraus et al., 1990] as well as rational monotony
[Pearl, 1990]). In fact, the semantics of this logic is defined in terms of preferred models. The
definition of preferred models proceeds in two steps. First, each formula of the logic leads
to a ranking of models, based on how well the models satisfy the formula. This is achieved
by a degree of satisfaction of a formula in a particular (classical) model. For instance, if A
and B are atoms and an interpretation I contains A, then I satisfies the formula A−→× B as
good as possible (1). If I contains no A but B, then it also satisfies A−→× B, but only in a worse
way (2). The satisfaction degree is general enough to cover any qualitative choice formulas
composed by any valid propositional formula (see [Brewka et al., 2004a] for details). Based
on the satisfaction degree of a formula in a model, a satisfaction relation can be defined
[Brewka et al., 2004a]. Secondly, a preference entailment is defined on the basis of the sat-
isfaction relation of the single formulas. Different preference entailments characterize the
QCL inference relation, e.g., lexicographic-based, inclusion-based, ranking function-based
ordering (depending on the cautiousness).

As stated in [Benferhat and Sedki, 2008], one of the limitations of QCL is that it does not
correctly deal with negated and conditional preferences. In fact, using the QCL semantics,
there is no difference between the material implication klm−→× air f rance → hotelpackage
and the propositional formula klm ∨ air f rance → hotelpackage. Moreover, the negation
in QCL misses some desirable properties from propositional calculus. In particular, when
a negation is used in a QCL formula with ordered disjunction, that negated QCL for-
mula is logically equivalent to a propositional formula obtained by replacing the ordered
disjunction by the propositional disjunction [Benferhat and Sedki, 2008]. For instance,
(air f rance−→× klm) → hotelpackage is equivalent to (klm−→× air f rance) → hotelpackage since
¬(air f rance−→× klm) ∨ hotelpackage and ¬(klm−→× air f rance) ∨ hotelpackage are translated
into (¬air f rance ∧ ¬klm) ∨ hotelpackage. For this reason, in [Benferhat and Sedki, 2008],
two other logics are proposed: PQCL (prioritized qualitative choice logic) and QCL+ (pos-
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itive qualitative choice logic). They are both based on the same QCL language, but they use
different inference rules (see [Benferhat and Sedki, 2008] for details).

6.2 User Preferences in Possibilistic Logic

Possibilistic logic was initially introduced as a framework for representing uncertainty
[Dubois et al., 1994]. Later on, it has also shown to be able to represent incomplete in-
formation [Benferhat et al., 1992, 1998]. More recently, it has appeared that it also allows to
represent preferences [Benferhat et al., 2001], bipolarity [Benferhat et al., 2006], preference
queries [Hadjali et al., 2008] and preference queries to possibilistic databases [Bosc et al.,
2010].

In possibilistic logic there are two ways of interpreting possibilistic distributions associ-
ated to a set of possibilistic logic formulas. These two interpretations allow to characterize
preferences according to two different readings: a negative and a positive.

The negative reading reflects what is not (fully) impossible and, consequently, remains
potentially possible. It induces (prioritized) constraints delimiting the potentially satisfac-
tory choices and it amounts to translate preferences into a set of more or less imperative
goals [Benferhat et al., 2001]. Negative preferences can be encoded by necessity-based pos-
sibilistic logic formulas. Indeed, a possibilistic formula (ϕ, α) encodes N(ϕ) ≥ α, which is
equivalent to Π(¬ϕ) ≤ 1− α, and thus reflects the impossibility of ¬ϕ, which is all the
stronger as α is high. Therefore, a preference statement such as I prefer tea to coffee can be
represented by the necessity-based possibilistic base Σ = {(tea ∨ co f f ee, 1), (tea, 1 − α)}
with α < 1. Namely, Σ states that tea is somewhat imperative and that tea ∨ co f f ee is
still more imperative (in fact is compulsory, assuming that the choice is between tea and
co f f ee). Please observe that the preferences are expressed negatively: nothing is possible out-
side co f f ee or tea and nothing is strongly possible outside tea. This reading correspond to the
standard possibilistic logic at representation level.

The positive reading expresses what is really desirable and it is encoded by a new
type of formula based on a set function called guaranteed possibility measure (∆) [Dubois
and Prade, 1992]. Positive preferences can be encoded by guaranteed-based possibilistic
logic formulas. Therefore, the preference statement above is represented by the guaranteed-
based (∆) base Σ′ = {[tea, 1], [¬tea ∧ co f f ee, α]}. Namely, Σ′ states that having tea is fully
satisfactory, and that having co f f ee instead is less satisfactory. This reading corresponds to
the guaranteed possibilistic logic at representation level. Since the guaranteed based repre-
sentation is not based on classical possibilistic logic formulas, it must be translated into a
necessity-based representation before it can be properly handled in possibilistic logic [Ben-
ferhat et al., 2002]. The guaranteed preference representation has shown to be equivalent to
QCL.

When positive and negative preferences are used together, the representation capabili-
ties of possibilistic logic can be enlarged in the bipolar possibilistic setting [Benferhat et al.,
2006]. In this setting, what is rejected or considered unacceptable and what is desired are
matters of degrees handled by two distinct possibilistic logic distributions.
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(a) The CP-net (b) The induced preference graph

Fig. 6.1. Evening Dressing Example [Boutilier et al., 2004]

Possibilistic logic can be also used to encode conditional preference statements such as
in context c, a is preferred to b. This amounts to encode a conditional preference by means of a
pair of possibilistic formulas {(¬c∨ a∨ b, 1), (¬c∨ a, 1− α)} [Dubois and Prade, 2004]. Such
modeling has been used in [Kaci and Prade, 2007, 2008] for representing preferences in the
approximation of CP-nets and in [Hadjali et al., 2008] for representing database preferences
queries using symbolic weights. Recently, the approach to database preferences queries has
been extended to the case in which flexible queries and uncertain databases are considered
[Bosc et al., 2010].

6.3 User Preferences in Conditional Preference Networks

Conditional Preference Networks (CP-nets) [Boutilier et al., 2004] are a graphical represen-
tation format for modeling conditional preferences. CP-nets are based on the expression of
conditional ceteris paribus preference statements, i.e., everything else being equal. With CP-
nets, the user describes how his/her preferences over the values of one variable depend on
the value of other variables. Given a set of attributes V = {X1, . . . , Xn}, for each attribute
Xi, a set of parent attributes Pa(Xi) is identified. For each value of Pa(Xi) the user specifies
a preference order over possible values of Xi, all other things being equal.

Formally, a CP-net N over the set of attributes V = {X1, . . . , Xn} is a directed graph in
which nodes represent attributes and edges express preference links between them. Each
node is associated with a conditional preference table CPT(Xi) that associates a strict par-
tial order (�CP) with each possible instantiation of the parents of Xi. A complete preference
ordering satisfies a CP-net N if and only if it satisfies each conditional preference expressed
in N. In this case, the preference ordering is said to be consistent with N. To illustrate these
concepts, let us consider the following example.

Example 6.2. [Boutilier et al., 2004] A CP-net example is shown in Figure 6.1(a). As it can
be seen, black to white is unconditionally preferred as a color for both the jacket (J) and
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the pants (P), while preference between the red and white shirts (S) is conditioned on the
combination of jacket and pants. Otherwise, if the jacket and the pants are of different
colors, then a red shirt is preferred.

Another graphical representation of a CP-net is the induced preference graph (Figure
6.1(b)). An induced preference graph is a directed graph, in which the set of all nodes is
the set of all outcomes. Then, an arc from outcome o1 to outcome o2 indicates that o2 is
preferred over o1 (which can directly be determined from the preference table). The top
elements of the preference graph are the worst outcomes and the bottom elements are the
best outcomes.

Continuing with the above example, there exist 8 tuples corresponding to the specified
preferences: bbr, bbw, bwr, bww, wbr, wbw, wwr, www. The preferences associated to the
induced CP-net, applying the ceteris paribus principle, are: bPS �CP wPS, ∀P ∈ {b,¬b},
∀S ∈ {r,¬r}; JbS �CP J¬bS, ∀J ∈ {b,¬b}, ∀S ∈ {r,¬r}; bbr �CP bbw, wwr �CP www,
bww �CP bwr, wbw �CP wbr.

Then, the following partial ordering holds under the ceteris paribus assumption: bbr �CP

bbw �CP bww �CP bwr �CP wwr �CP www; bbr �CP bbw �CP wbw �CP wbr �CP

wwr �CP www.
CP-nets have also been proposed for database preference queries in which preference

are represented by a binary relation over a relation schema [Brafman and Domshlak, 2004].
As pointed out in [Brafman and Domshlak, 2004], database preference queries can be in-
terpreted according to two semantics: the totalitarian semantics and the ceteris paribus
semantics.1 Since preference queries generally consist of several preference statements, the
different preference orders have to be composed into a single preference order. Several pro-
posal have been made in the database community [Chomicki, 2003] in which a totalitarian
interpretation with intersection composition appears to be the implicit choice. Since this in-
terpretation is semantically inappropriate and yields unintuitive or empty results even for
very simple queries, in [Brafman and Domshlak, 2004], an approach based on ceteris paribus
semantics and union-based composition was proposed (see [Brafman and Domshlak, 2004]
for details).

Finally, several works improve CP-nets in different directions. TCP-nets [Brafman et al.,
2006], for instance, enrich CP-nets by allowing the expression of relative importance state-
ments between variables. CP-theories [Wilson, 2004] are still more general; they allow con-
ditional preference statements on the values of a variable, together with a set of variables
that are allowed to vary when interpreting the preference statement. Conditional Impor-
tance Networks (CI-nets) [Bouveret et al., 2009] express preferences between sets of goods.

6.4 User Preferences in Logic Programming

Although QCL, Possibilistic Logic, and CP-nets own some nice features w.r.t. preference
handling, they seem to miss an important aspect which is commonly encountered in knowl-

1 The totalitarian semantics does not assume everything else being equal, i.e., it does not fix the
values of the attributes not involved in a preference relation (as it happens under ceteris paribus
semantics).
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edge modeling: the representation of incomplete information. Incomplete information can
be captured in logic programming approaches by means of negation as failure. In this
section, we overview some representative approaches able to represent preferences which
both depend on contextual and incomplete information.

6.4.1 Logic Programs with Ordered Disjunction

LPODs is the logic programming incarnation of QCL. Indeed, the× connective can be used
to capture context-dependent user preferences. For a full overview about LPODs syntax
and semantics, we refer to Chapter 2, Section 2.2.4.

LPODs is a useful specification to encode user preferences as shown in the following
example.

Example 6.3. [Brewka, 2002] Let us consider the user preferences about a menu. The menu
can consists of a soup or a salad as starter, f ish, bee f or lasagne as main course, iceco f f ee
or tiramisu for dessert, and red, white wine or water as beverage. Then, the user has the
following preferences: (i) as a starter she prefers soup over salad; (ii) as main course she
prefers f ish over bee f over lasagne; (iii) for bee f she prefers red to white wine over water,
otherwise, she prefers white over red wine; (iv) if she has tiramisu, then she wants an extra
co f f ee. Finally, (v) for co f f ee she prefers espresso over cappuccino.

User preferences in the menu example can be modeled in LPODs by:

P =



soup× salad ← starter.
f ish× bee f × lasagne ← main.
red× white× water ← beverage, bee f .
white× red× water ← beverage, not bee f .

espresso× cappuccino ← co f f ee.
¬vegetarian ← bee f .
¬vegetarian ← f ish.
¬vegetarian ← soup.

alcohol ← white.
alcohol ← red.
co f f ee ← tiramisu.

iceco f f ee ← dessert, not tiramisu.
tiramisu ← dessert, not iceco f f ee.


Given a description of the case at hand, e.g., whether the user is vegetarian or not, drinks

alcohol or not, likes fish etc, the preferred answer sets will determine a menu which satisfies
user preferences as much as possible. Let us consider the following contextual knowledge
C:

C =



¬vegetarian ← >.
starter ← >.
main ← >.

dessert ← >.
beverage ← >.


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It can be checked that the program P ∪ C has 54 answer sets. Among them {beverage,
dessert, main, starter, ¬vegetarian, f ish, soup, iceco f f ee, alcohol, white} and {beverage,
dessert, main, starter, ¬vegetarian, f ish, soup, tiramisu, alcohol, white, co f f ee, espresso} are
the most preferred options for the user menu.

The LPODs syntax only allows to specify elementary preference expressions. For this
reason an extension able to consider disjunction in the head of rules has been proposed in
[Kärger et al., 2008].

6.4.2 Logic Programs with Ordered and Unordered Disjunction

Logic Programs with Ordered and Unordered Disjunction (DLPODs) is an LPODs exten-
sion proposed by Kärger et al. [Kärger et al., 2008] which is able to deal with ordinary dis-
junction ∨ in the head of rules. DLPODs is able to specify preference equalities statements
such as

pub× (cinema ∨ tv)← not sunny

The intuition behind this expression is that pub is the most preferred option and, in case
pub is not possible, both cinema and tv are equally preferred.

Generally speaking, a DLPOD is a set of rules of the form h← b1, . . . , bm, not bm+1, . . . ,
not bm+n in which h is an ordered disjunctive term defined as any arbitrary combination of
literals and ∨, × connectives, and bj’s (1 ≤ j ≤ m + n) are literals. Then, the DLPOD se-
mantics is defined in terms of disjunctive split programs on the ordered disjunctive normal
form (ODNF) of an DLPOD, i.e., when all h’s are under the form

∨n
i=1×

mi
j=1 = (C1,1 × . . .× C1,m1) ∨ . . . ∨ (Cn,1 × . . .× Cn,mn). (6.1)

(Ci,1 × . . .× Ci,ki
) is the i-th Ordered Disjunct of the ODNF. The ODNF can be obtained by

exhaustive application of the following rewriting rules:

(i): a× (b ∨ c) = (a× b) ∨ (a× c)
(ii): (a ∨ b)× c = (a× c) ∨ (b× c)
(iii): a× (b× c) = a× b× c
(iv): (a× b)× c = a× b× c

Example 6.4. For instance, pub× (cinema ∨ tv)← not sunny yields to the following ODNF

(pub× cinema) ∨ (pub× tv)← not sunny

A split program of a DLPOD P is defined as the result of replacing each rule r of P
by one of its option. Similarly to what happens in LPODs, a set of literals M is an answer
set of a DLPOD P if M is an answer set of some split program P′ of P. Optimal answer
sets of DLPODs are characterized by a satisfaction degree vector defined as the measure of
how much an answer set satisfies a rule. Intuitively, to each Ordered Disjunct a penalty
is associated representing how much the answer set satisfies the disjunct. For each rule,
these penalties build up a vector D = (d1, . . . , dn) of degree values, one dimension for
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each disjunct, where each di is either a natural number or a constant ε. The ε denotes that
a particular disjunct does not tell anything about how much an answer set is preferred.
Similarly to LPODs, the best satisfaction degree is assigned (i.e., D = (1, . . . , 1)) in case the
body of a rule is not satisfied.

Example 6.5. The ODNF rule (pub × cinema) ∨ (pub × tv) ← not sunny has four disjunc-
tive split programs. Valid answer sets are {pub}, {tv}, {cinema}. The satisfaction vectors
associated to each of the answer sets are (1, 1), (ε, 2), and (2, ε) respectively.

The preference relation between answer sets is defined according to a Pareto-based or-
dering. First, for each rule r in the program it is checked whether an answer set M1 Pareto-
dominates an answer set M2 (comparing the satisfaction vectors dM1(r) and dM2(r)). Then,
the comparison is generalized to the whole program.

Example 6.6. Given the ODNF rule (pub× cinema) ∨ (pub× tv)← not sunny and the three
answer sets M1 = {pub}, M2 = {tv}, M3 = {cinema}, M1 Pareto dominates M2 and M3,
while M2 and M3 are incomparable.

In [Kärger et al., 2008], an implementation design is also presented which follows the
ideas behind the LPODs implementation.

6.4.3 Answer Set Optimization Programs

Answer Set Optimization (ASO) [Brewka et al., 2003] is a decoupled approach to prefer-
ence representation. Rather than specifying a preference relation among literals in a sin-
gle logic program like in LPODs, ASO uses two different programs. Formally, ASO is a
pair 〈Pgen, Ppre f 〉, where Pgen is a logic program, called the generator program, and Ppre f is
a collection of preference rules, called the preference program. Each preference rule r in the
preference program is of the form

C1 > . . . > Ck ← b1, . . . , bm, not bm+1, . . . , not bm+n (6.2)

in which the Ci are boolean combinations built from a set of literals L by means of dis-
junction, conjunction, and negation as failure, with the restriction that strong negation is
allowed to appear only in front of atoms and negation as failure only in front of literals.

Given a preference rule r and an outcome M, the satisfaction degree vM(r) of r in M is
defined to be i if the body of r is satisfied by M, some ranking condition Ci is satisfied and
i is the minimum index among the satisfied Ci. Otherwise, the degree is I (irrelevant). The
satisfaction degrees are ordered in a pre-order ≥ where values I and 1 are equally good
but better than all other degrees i for which i ≥ i + 1 hold. For a set of preference rules
{r1, . . . , rn}, an answer set M induces a satisfaction vector (vM(r1), . . . , vM(rn)) in which
vM(ri) is the satisfaction degree of ri in M. Answer sets are ordered as follows: M1 ≥ M2

if vM1(ri) ≥ vM2(ri), for each i, 1 ≤ i ≤ n, and M1 > M2 if M1 ≥ M2, and for some i,
1 ≤ i ≤ n, vM1(ri) > vM2(ri). An answer set M is optimal if there is no answer set M′ such
that M′ > M.
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As pointed out in [Brewka et al., 2003], an advantage of ASO programs w.r.t. LPODs is
that the answer set generation and the answer set comparison are decoupled. This decou-
pling splits knowledge generation from preference specification and facilitates preference
elicitation.

Example 6.7. Let us represent the preference program in Example 6.3 by means of an ASO.
The ASO will consist of two programs.2

Pgen =



1{soup, salad}1 ← starter.
1{ f ish, bee f , lasagne}1 ← main.
1{red, white, water}1 ← beverage.

1{espresso, cappuccino}1← co f f ee.
1{iceco f f ee, tiramisu}1 ← dessert.

¬vegetarian ← f ish.
¬vegetarian ← soup.

alcohol ← white.
alcohol ← red.
co f f ee ← tiramisu.

¬vegeterian ← >.
starter ← >.
main ← >.

dessert ← >.
beverage ← >.



Ppre f =



soup > salad ← starter.
f ish > bee f > lasagne ← main.
red > white > water ← beverage, bee f .
white > red > water ← beverage, not bee f .

espresso > cappuccino ← co f f ee.


It can be checked that the Pgen generates 54 answer sets and Ppre f induces an order over
them which is consistent with the ordering obtained in LPODs.

ASO programs have also been combined with CP-nets [Brewka et al., 2005], in which
techniques from CP-nets are used to compute the most preferred answer sets.

6.5 Context-aware Systems

Context-aware systems [Baldauf et al., 2007] are ubiquitous information systems which are
able to adapt their operations to the current context without explicit user intervention. In
this way, they aim at increasing usability and effectiveness by taking context into account.

2 1{soup, salad}1 is a cardinality constraint. A cardinality constraint is an atom of the form
n{l1, . . . , lk}m with the semantics that at least n and at most m of the literals li’s are true. Cardinality
constraint can be used to generate answer sets. Although rules built from cardinality constraints
can, in principle, be replaced by sets of rules with negation as failure, they make problem spec-
ifications much more concise and readable. For the precise definitions we refer to [Simons et al.,
2002].
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In information systems, personalization focuses on collecting, modeling, and adapting
user profiles [Adomavicius and Tuzhilin, 2005]. In context-aware systems, the personaliza-
tion must also take contextual information into account. In fact, an effective personalization
can be achieved only if the system is aware of user preferences and context. If this is not
the case, the system will not be able to distinguish users as individuals and, usually, it will
provide the same results to users with different characteristics and in different contexts.
In general, personalized systems represent features of the user as an individual. On the
other hand, mobile and ubiquitous systems, in which the context is essential, need to be
context-aware.

6.5.1 User Profile

The user profile (also called user model) is the distinctive feature of personalized information
systems as it is essential for the system to behave differently for different users. The typical
user features modeled, which mainly depends on the application domain, are [Codina,
2009; Palau, 2010]:

• user knowledge: it represents the expertise level of the user in a specific subject or domain.
This user feature tends to be the used one in educational and hypermedia systems;

• user interests:3 they constitute the most important part of the user profile in information
retrieval and filtering systems that deal with large volumes of information;

• user goals or needs: they represent the immediate purpose for a user task. Depending
on the type of the system, they can be an immediate information need (in information
access systems) or a learning goal (in educational systems);

• user background: it represents user experience. Background information is usually used
for content adaptation, although there are examples of its use within search and navi-
gation support;

• user individual trait: it defines the user as an individual. Examples are personality traits
(e.g., introvert/extravert, etc), cognitive styles, cognitive factors (e.g., working memory
capacity, etc) and learning styles. Similar to user background, individual traits are stable
features of a user that either cannot be changed at all or can be changed only over a long
period of time.

These features may be collected from user interactions in an explicit or implicit way.
On one hand, explicit user information collection relies on inputs from the users. Two typi-

cal methods to capture explicit feedback are: via Web forms, in which the users can provide
personal and demographic information such as birthday, current job, preferences or per-
sonal data; and via ratings, which allow users to express their opinions by selecting a value
from a range. Processing explicit feedback costs time and relies on user willing to provide
personal information. Therefore, the tendency is to simplify them by inheriting user pro-
files from social-networks or by using simple like/dislike buttons. In addition, stereotypes
based on generalizations about communities of users are used to model new users.

3 Due to the characteristics of the type of context-aware system we will target, user interests are the
only feature modeled, as we will see in Chapter 7.
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On the other hand, implicit user information collection is based on usage data of the users.
From this data, the system tries to predict user interests by taking implicit indicators as-
sociated to specific patterns of user behavior into account. The typical heuristic indicators
used by implicit user modeling methods are the time spent viewing a specific item, the
frequency of item selection, and if the item is consumed or acquired. The advantage of im-
plicit feedback is that it does not require any additional intervention by the user during
the user modeling process. However, one drawback of implicit feedback techniques is that
they can typically only capture positive feedback. When a user clicks on an item, it seems
reasonable to assume that this indicates some degree of preference in the item; however,
it is not as clear, when a user fails to examine some data item, that this is an indication of
disinterest.

The adaptation of such profiles is an essential requirement for personalized systems
that need to adjust to changes quickly in order to keep user preferences up-to-date. Profile
updating can be done automatically or manually. Although automatic methods are less
intrusive for the end user, in most personalized systems, adaptation is achieved through
user feedback. The main disadvantage of this adaptation method is that old preferences
are not forgotten. This can cause not only an exponential growth of the user profile, but
also a decrease in precision by considering old preferences.

6.5.2 Context

The context can be defined as the information that characterizes the environment in which
an application or service runs. While user profiles contain information about user char-
acteristics, which generally are assumed to vary slowly over time, the context of a user,
in contrast, assesses the status of the person at a particular situation (i.e., a profile can be
applied in different contexts). There are many classifications of context (as many as defini-
tions). One possible categorization, depending on who applies, is [Greenfield, 2006; Park
et al., 2009]:

• individual context: contextual information that relates to or describes the environment of
a particular person or entity;

• group context: information extracted from a group of people (a family, passengers on a
train, a group of friends, people attending a conference, etc). It is not the mere aggrega-
tion of individual contexts, as it is necessary to consider what context properties spread
to the entire group, and whether the existence of the group causes the appearance of
new properties which do not apply individually;

• collective context: the context differs from group to large-scale aggregation. Application
contexts are large populations, and in them the important thing is to determine what
features (with the margin of error considered) are generalizable to the populations ana-
lyzed.

Another possible classification is by the source of context:

• spatial context: it consists of the physical location of the user;
• temporal context: it consists of the date and current time the user is interacting with the

system;
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• environmental context: it includes weather conditions, e.g., temperature, if it is sunny, if it
rains, etc;

• personal context: it refers to the activity the user is performing while he/she is interacting
with the system, e.g., working, reading, etc.

In the next chapter, we will see how some of these sources of context, in particular,
current time, date, weather and location, can be used in combination with user preferences to
build user profiles in terms of logic programming rules.

6.6 Discussion

In this chapter, we have overviewed different approaches that support the specification of
a compact preference model and the achievement of an order among the outcomes of the
model. We have seen that the way in which preferences are expressed and the preference
order is achieved depend on the formalism chosen.

Although QCL, possibilistic logic and CP-nets own some nice features w.r.t. preference
handling, they seem to miss an important aspect which is commonly encountered when
modeling knowledge: the representation of incomplete information. In this respect, logic
programming approaches based on answer set semantics such as LPODs [Brewka, 2002;
Brewka et al., 2004b], DLPODs [Kärger et al., 2008], and ASOs [Brewka et al., 2003] allow to
express context-dependent preferences and incomplete knowledge by means of negation
as failure.

On the other hand, context-aware systems start to play an important role nowadays.
They offer users an easy access to big amount of information. However, these systems usu-
ally do not distinguish users as individuals and similar activities are suggested to users
with different characteristics. As such, it results impossible for the system to satisfy users
who are typically looking for the most appropriate suggestions according to their prefer-
ences in a specific context.

One concrete way to achieve an effective personalization is by means of user profiles.
A user profile consists of a set of user preferences and contextual information. Indeed, in
a context-aware system, user preferences depend on contextual information, i.e., the po-
sition where the user is located, the time the user is making the petition to the system,
weather conditions, etc. Therefore, contextual information is important because a different
set of preferences may apply in different contexts. More generally, in the modeling of user
preferences in such systems, several issues related to knowledge representation arise:

• preferences can depend both on contextual and incomplete information,
• preferences in a given context can be more important than others, and
• the specification of the preference model should be compact enough and fast to process.

As discussed at the end of Chapter 5, LPPODs is a suitable logic programming specifi-
cation for representing context-dependent preferences, incomplete knowledge and to asso-
ciate preferences with importance weights. In Chapter 7, we describe a use case related to
a context-aware system in which we employ LPPODs for modeling user profiles.
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Another important aspect in the modeling of user preferences is to have flexibility in
capturing preference statements. For instance, in LPPODs, only singleton preference literals
can be specified in each preference rule. However, there are cases in which more complex
expressions need to be specified. Preferences statements, expressing equalities (e.g., I prefer
cinema to pub or tv) such as in DLPODs, or more generic boolean combinations, such as in
ASO programs, may allow to capture richer preferences rules, but they still impose some
syntactical restrictions on the way in which preference rules can be formulated. As such,
in Chapter 8, we propose an extension of LPODs which supports the writing of nested
preferences expressions built by means of connectives {∨,∧,¬, not,×}.





7

Handling User Preferences in a Context-Aware System

The appearance of ubiquitous systems has made it possible to convey information from
different sources and to make it accessible to everyone. One field in the wide range of
ubiquitous systems are the so-called context-aware systems (see Section 6.5). A new trend
on context-aware systems are Interactive Community Displays (ICDs).

ICDs are multimedia information points that offer interactive services on the public
thoroughfare in order to provide information to people living in or visiting a city [Cecca-
roni et al., 2009]. Some examples of ICDs are the i-kiosks1 and i+2 (respectively located in
Aberdeen and Bristol). More recently, many other initiatives have been deployed in com-
mercial malls and other public spaces such as Punts BCN3, a Barcelona city council initiative
to offer information public services.

However, these services are often isolated or designed with predefined static sources
and they do not actually exploit the benefits offered by the Internet of Things [Tselentis et al.,
2009]. Furthermore, they suffer from some limitations [Gómez-Sebastià et al., 2009; Palau
et al., 2010].

On one hand, these services are supported by a manually-controlled infrastructure in
order to manage and convey information provided by (internal and external) Web services
that may fail or change at any time. To address this limitation, the ALIVE4 methodology
and framework have been recently considered. In this way, it has been possible to design
and implement a robust infrastructure which is able to compose and coordinate ICDs’ Web
services dynamically (since we do not explicitly deal with these issues here we refer the
interested reader to [Gómez-Sebastià et al., 2009; Palau et al., 2010]).

On the other hand, ICDs usually do not distinguish users as individuals and similar
information is suggested to users with different characteristics. As such, these systems are

1 http://www.aberdeencity.gov.uk/regeneration/ikiosk/reg_ikiosks.asp
2 http://www.bristollegiblecity.info/projects/21/21.html
3 http://w3.bcn.es/fitxers/premsa/dppuntsbarcelona.126.pdf
4 The ALIVE framework [Lam et al., 2009] combines Model Driven Development (MDD) with co-

ordination and organizational mechanisms [Vázquez-Salceda et al., 2010], providing support for
highly dynamic and open systems of services. The ALIVE framework extends current trends in
engineering by defining three levels in the design and management of distributed systems: a Ser-
vice Level, a Coordination Level and an Organization Level. An essential distinction between the
ALIVE approach and existing ones is that it provides an organizational context (such as, for in-
stance, objectives, structures and regulations) that can be used to select, compose and invoke ser-
vices dynamically. Thus, (agentified) services are organization-aware services able to coordinate
with others according to a given organization and coordination model.

http://www.aberdeencity.gov.uk/regeneration/ikiosk/reg_ikiosks.asp
http://www.bristollegiblecity.info/projects/21/21.html
http://w3.bcn.es/fitxers/premsa/dppuntsbarcelona.126.pdf
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unable to filter available information in a personalized way and to satisfy users who are
typically looking for the most appropriate suggestions according to their preferences in a
specific context. Moreover, the system has to be able to filter and adapt big amount of in-
formation. These issues suggest that an enhancement of actual ICDs with a mechanism for
handling user preferences can be valuable.

A possible way to create such mechanism is by means of the logic programming frame-
work of LPPODs.5 The use of LPPODs for modeling user preferences has already been mo-
tivated (see Section 1.4.2 and Section 5.7). First, it can represent preferences in a compact
way and it can capture contextual and incomplete information. Secondly, it can measure
preference importance by means of weights associated to preference rules. Thirdly, it can
achieve an order between the outcomes of the preference model. Finally, it offers a practical
way to compute the user preference model (indeed, we provide an implementation of the
LPPODs framework).

In this chapter, we describe how LPPODs can be used to enhance the personalization
capabilities of an ICD. To this end, we employ LPPODs to model user profiles and to gener-
ate, in a given context, the most preferred outcomes to be taken into account in the content
filtering. The results of this chapter have been settled in the context of a use case targeted
in the ALIVE EU project.6.

The rest of the chapter is organized as follows. After providing a brief description of
the considered use case and its requirements (Section 7.1), in Section 7.2, we design an ab-
stract user profile adaptation process and, based on that, we motivate the need for context-
dependent preferences and preference weights. Then, in Sections 7.3-7.4, we propose a
knowledge level approach for representing context-dependent preferences by means of
an ontology. Section 7.5 presents some user profiles we have designed and integrated in
the system. Section 7.6 describes the LPPODs solver implementation and discusses its use.
Section 7.7 provides some hints about how personalized suggestions can be retrieved using
the solver outputs. Section 7.8 discusses some relations with other works in the literature.
Finally, Section 7.9 concludes the chapter.

7.1 Use Case and Requirements

Throughout this chapter we will use a typical ICD usage scenario. The scenario starts when
a user interacts with the systems interface (the ICD). At this point, the user logs in the sys-
tem and his/her profile is loaded. If the user profile does not exist, i.e., the user has just reg-
istered for the first time, a predefined profile filled with default preferences is loaded. The
system is now ready to presents an initial interface composed by several activities, such as
cinemas, restaurants and night venues. When the user requests for suggestions related with
one of these activities, the system reasons about the most appropriate user preferences for
that specific context. Contextual information consists of — but, it is not limited to — current
time, date, weather and location. Context-dependent preferences related to different activities

5 An LPPOD consists of context-dependent preference rules of the form: α : c1 × . . . × ck ←
b1, . . . , bm, not bm+1, . . . , not bm+n (see Chapter 5).

6 http://www.ist-alive.eu/

http://www.ist-alive.eu/
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can have different importance. For instance, some preferences can be requirements, while
other preferences can be less mandatory and they can have different priorities. To this end,
preferences are associated with a weight to specify the preference importance. User prefer-
ences are used to filter available content, i.e., information about available venues is gathered
and displayed on a map together with basic information, such as a brief description, ad-
dress and pictures, etc. Once suggestions have been provided, the user can express some
feedback over them. This can be done in an explicit way (explicit feedback), by evaluating
the quality of the suggestions received, or in an implicit way (implicit feedback), by show-
ing more interests in some type of venues (e.g., selecting several cultural suggestions). This
feedback is processed and the preferences are updated according to each context and do-
main. For instance, a negative feedback in a recommendation about a restaurant venue for
lunch, will trigger a lowering in the weight of the corresponding preference in the profile.
When the weight is very low or equal to 0, such preferences become obsolete.

From the aforementioned use-case, a list of requirements the system should be able to
fulfill has been compiled. In particular:

R1: addressing the cold-start problem: when the user interacts with the system for the first
time, the system should be able to create a predefined profile;

R2: weighted context-dependent preferences: the system should be able to represent weighted
context-dependent preferences in a compact way and obtain an ordering among them;

R3: dynamic recommendations: the list of suggestions based on contextual preferences can
change over the time due to the change of interests of the user;

R4: user feedback: user feedback should be taken into account in order to keep the user
profile up-to-date;

R5: domain independency: the system should be flexible enough to allow to extend prefer-
ence types and content information in an easy way;

R6: preference representation independency: the preference handling mechanism should be
flexible enough to allow its replacement in an easy way if needed.

7.2 User Profile Adaptation Process and Context-Dependent Preferences

To address requirements R1, R2, R3 and R4, a multi-stage user profile adaptation process
has been designed (Figure 7.1).

The user profile adaptation process follows four sequential phases each time a user
interacts with the system. The Profile Manager deals with the representation of user pref-
erences. At the beginning, an initial user profile is created from a user group. The profile
is stored according to a profile ontology which contains a list of weighted contextual prefer-
ence relations. New user profiles are created by inheriting preferences from predefined user
groups. As next, the abstract user profile representation is converted in a processable for-
mat for the Preference Reasoner. This module collects the current context and reasons about
context-aware preference rules. The reasoning generates an ordered list of context-aware
preference items. Preference items are processed by the Content Manager which is in charge
of filtering the appropriate content to be provided. Finally, once the suggestions are pro-
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Fig. 7.1. Overview of User Profile Adaptation Process

vided, the user can express some feedback that is processed by the Feedback Manager to
update the user profile.

The adaptation is concerned with several issues typically encountered in the represen-
tation of user profiles, such as cold-start problem, weighted context-dependent preference rep-
resentation, content filtering and user feedback. Despite all these issues, here we will only
focus on modeling and reasoning about weighted context-dependent preferences, i.e., we will
specially show how to deal with R2.

In order to represent context-dependent preferences and weights, we will adopt the
logic programming framework of LPPODs. In fact, as discussed in Chapter 5, by interpret-
ing LPPODs framework in terms of user profiles and user preferences, it can be noticed
how such framework can support:

• the specification of context-dependent preferences by means of ordered disjunction
rules;

• the specification of a weight to each context-dependent preference rule;
• the reasoning about user preferences to obtain an order among them.

Therefore, LPPODs can be used as a specification for user context-dependent prefer-
ences associated with a weight.

To satisfy requirement R5, domain knowledge in the application has been modeled by
means of a preference ontology which describes the application domain (Section 7.3).7,8

7 An ontology, in computer science, is a formal, explicit specification of a shared conceptualization [Gru-
ber, 1993]. An ontology provides a shared vocabulary, which can be used to model a domain i.e.,
the type of objects and/or concepts that exist, and their properties and relations.

8 In fact, the use of ontologies has become a common practice in knowledge-based information
systems in order to foster system reusability [Liu et al., 2007; Wang and Kong, 2007].
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Fig. 7.2. Preference Ontology

On the other hand, R6 imposes that the preference handling method chosen can be
replaced by another mechanism (if necessary) in an easy way. This flexibility has been
achieved reusing some concepts of Model-Driven Design (MDD).9

We have specified a user preference and profile ontology (Section 7.3) upon which a par-
ticular instance of a user profile can be created. Then, by the specification of an ontology
for LPPODs and a transformation function it is possible to automatically translate the user
profile abstract representation into the symbolic level representation of LPPODs (as we will
see in Section 7.4).

9 Model-Driven Design (MDD) refers to the systematic use of models as primary artifacts through-
out the Software Engineering (SE) development process. The defining characteristic of MDD is the
use of models to represent the important artifacts in a system [Nicolas et al., 2003]. Each of the
models in a MDD system is constructed from a language specified in a meta-model, which cap-
tures the concepts and relationships of the language in a structured and regular form. In relation to
these meta-models, the models can then be stored, manipulated and transformed to other models,
and to implementation artifacts.
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Fig. 7.3. Ontology for Rules containing User Preferences related to Context

7.3 User Preferences and Profile Ontology

The preference ontology developed with the Protégé Ontology Editor10 is shown in Figure
7.2. The graph represents the taxonomy of the classes involved in the use case and their
relations along with some individuals and various relations among users, their petitions
and preferences.

On the other side, user profiles are modeled according to a profile ontology which rep-
resents the relation between contexts and preferences by means of preference rules (see
Figure 7.3). In order to keep preferences independent from context, each preference rule
is modeled involving several ontological concepts that contain a set of preferences and an
activator.

The set of preferences of a rule is composed by several user preferences for a specific
domain, and the activator of a rule is built by different contexts and a domain petition. The
SentenceWeight links Preferences, Activity (i.e., preferences without domain) and Activator,
and they make it possible to represent preferences in different contexts and domains, along
with the management of priority among preferences.

This representation abstractly represents context-aware preference rules which, at run-
time, are converted into the format of the Preference Reasoner module.

7.4 Mapping User Profiles to LPPODs

As we do not want to stick to a particular formalism, language or technology for represent-
ing context-dependent preferences, we have defined a model describing how user profiles
should be specified in a general way (Section 7.3). The advantage of having a meta-model

10 http://protege.stanford.edu/

http://protege.stanford.edu/


7.5 User Preference Representation 109

Fig. 7.4. Ontology for LPPODs

is to have a specification general enough which can be translated to other languages or for-
malisms through model transformations [Mellor et al., 2004]. Generally speaking, a model
transformation takes as input a model, built according to a given meta-model and it pro-
duces as output another model conforming to another meta-model. The process of trans-
lating a model to another is specified by a mapping. The main advantage of this approach
is that, from the same meta-model specification, several mappings to different models can
be done through different mapping functions [Metzger, 2005].

We have defined a transformation t of a user profile UP specified according to the user
profile ontology PO to an LPPOD P specified according to an LPPOD ontology LPPOD as
t : UPPO → PLPPOD.

To be able to define the mapping, we first need an ontology which describes the for-
malism of LPPODs. A first proposal of an ontology for LPPODs is shown in Figure 7.4. An
LPPOD consists of a finite set of PODR, i.e., Possibilistic Ordered Disjunction Rules, associ-
ated with a Weight. Each rule has a Head and a Body, in which the head has an ordered set
of literals and the body consists of a negative and a positive part.

According to MDD the mapping t is specified by a script which translates the corre-
sponding elements of UP into elements of P (Figure 7.5). In this way, an LPPOD-based
encoding is produced.

7.5 User Preference Representation

At symbolic level, user preferences are represented according to the syntax of LPPODs.
Then, a user profile consists of a list of weighted context-dependent preferences and it is
encoded by a set of possibilistic ordered disjunction rules (see Chapter 5 Section 5.1):
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Fig. 7.5. MDD applied to User Preference Modeling

wi : p1 × . . .× pk ← b1, . . . , bm, not bm+1, . . . , not bm+n

in which pi’s (1 ≤ i ≤ k) are preference literals and each of the bj (1 ≤ j ≤ m + n) is a
context literal. w is an integer between [0, 100] representing the importance of a rule r. For
convention, we associate the left part of a rule r, p1 × . . .× pk, to an ordered disjunction of
preferences related with the activities discussed in the aforementioned scenario, with the
reading if possible p1, if p1 is not possible, then p2 and so on. We map the right part of a
rule r, b1, . . . , bm, not bm+1, . . . , not bm+n, with the context information needed to activate
the rule. In such a way, we are able to represent that the user has some preferences in a
particular context. Please observe how we are able to capture incomplete knowledge by
means of negation as failure.

Example 7.1. Let us consider some preferences a user can have about restaurants. The user
prefers (i) to eat in a Mediterranean restaurant rather than in a Vegetarian unless time is between
13 and 15, otherwise she prefers (ii) to eat in a Vegetarian restaurant rather than in a Mediter-
ranean. Moreover, she requires that (iii) she prefers to pay by Master Card over using her Visa.
This simple user profile UP can be encoded as:

UP =


r1 = 90 : type_Mediterranean× type_Vegetarian← pet_Restaurant, not 13− 15h.

r2 = 90 : type_Vegetarian× type_Mediterranean← pet_Restaurant, 13− 15h.
r3 = 100 : req_MasterCard× req_Visa← pet_Restaurant.


Taking the preference ontology presented in Section 7.3, user preferences are repre-

sented with the following information:

• Location: it represents spatial preferences. This class contains two subclasses, the district
and the street;

• Access: it represents the user preferred (public) transports;
• Cost: it represents the maximum cost the user wants to assume;
• Rate: it represents the minimum valuation the user wants to accept;
• Type: it represents the preferred types within the given domain, e.g., restaurants, cinema,

and night venues;
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Fig. 7.6. Examples of User Profiles (Citizen and Tourist) encoded by LPPODs in which Red boxes
denote Requirements, Orange boxes denote Preferences and Yellow boxes denote Context.

• Requirements: they represent the mandatory preferences of the user.

Generally speaking, LPPODs user profiles (see Figure 7.6) consider that the user may
be lodging or living in a district, while the user interacts with the system from another dis-
trict. Thus, proportional weights have been applied to the corresponding rules, obtaining
as location preferences both the district where they are located and the district where they
are staying (e.g., home or hotel district). For instance, a Citizen living in Sants, and inter-
acting with an ICD located in the Les Corts district, will have the following two location
preferences: Les Corts and Sants.

Some Access, Cost and Rate preference rules may have empty bodies. In such a case,
they are always considered. The ordered disjunction connector × is used to specify a pref-
erence order between several solutions. For instance, preferred access (public transport) for
a Tourist are L3 and L4 metro lines. Instead, since Citizen is a disabled person, the rule about
transport preferences will not be considered.

Requirements rules are considered as preferences with maximum weights, i.e., 100, and
generally higher than Type-based preference rules.

Type preference rules express general preference related to three types of activities the
system is able to consider: restaurants, cinema, and night venues. Each preference type rule is
associated with a weight corresponding to the priority of the preference rule. The weight
allows us to give priority to the preference type themselves in order to look for sugges-
tions or to filter preferences that do not satisfy a threshold. Moreover, these weights can
be updated by an implicit or explicit user feedback. For instance, the weight of a rule can
be increased or decreased when the user chooses or evaluates suggestions that are related
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Fig. 7.7. Overview of the posPsmodels system

with such preference rule. In case the weight of a rule is decreased to the minimum value,
i.e., 0, the rule will be not considered any more.

As stated in Section 6.5.2, the user context follows a dynamic behavior. Therefore, LP-
PODs user profiles consider current user context (i.e., user and environmental contexts are
updated at each petition). The contextual activation of specific preference rules is achieved
by means of contextual information in our LPPODs. This means that the context, along with
the user petition, is mapped into facts that activate other rules and, consequently, other
preferences.

7.6 User Preference Reasoning

Once user preferences have beens modeled, an order between them can be established. This
is achieved using the theory of LPPODs. In fact, in LPPODs, ordered user preferences can
be obtained by computing the solutions of an LPPOD, i.e., its possibilistic answer sets. The
LPPODs semantics specifies a formal way to obtain possibilistic answer sets and the possi-
bilistic preference relation provides a comparison criterion to rank-order LPPODs solutions
(see Chapter 5, Section 5.2).

At a practical level, the LPPODs semantics is implemented by the posPsmodels solver
[Confalonieri et al., 2010c]. PosPsmodels is an ASP-based solver able to process LPPODs
that can be used to compute possibilistic preferred answer sets under LPPODs semantics.

7.6.1 LPPODs Solver

The LPPOD solver implementation is depicted in Figure 7.7. The solver basically imple-
ments Algorithm 4 in a C++ program called posPsmodels.11

The system accepts an LPPOD and it returns an ordered set of possibilistic answer sets.
In our system, we have used lparse12, psmodels13 and posSmodels14 in an interleaved fashion

11 A beta version of the posPsmodels system can be downloaded from http://github.com/
rconfalonieri/posPsmodels/tarball/master.

12 http://www.tcs.hut.fi/Software/smodels/src/lparse-1.1.2.tar.gz
13 http://www.tcs.hut.fi/Software/smodels/priority/
14 http://www.info.univ-angers.fr/pub/pn/Softwares/posSmodels.html

http://github.com/rconfalonieri/posPsmodels/tarball/master
http://github.com/rconfalonieri/posPsmodels/tarball/master
http://www.tcs.hut.fi/Software/smodels/src/lparse-1.1.2.tar.gz
http://www.tcs.hut.fi/Software/smodels/priority/
http://www.info.univ-angers.fr/pub/pn/Softwares/posSmodels.html
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and we have implemented the modules for the LPPOD projection, the LPPODs transfor-
mations, the LPPODs possibilistic ×-reduction, and the possibilistic preference relation.15

The procedure to compute the possibilistic answer sets of an LPPOD can be described
as follows. First, we apply the projection ∗ to the input file containing the LPPOD P (Step
1). Then, we retrieve the answer sets of its classical part P∗, i.e., an LPOD (Step 2 and 3).
At the same time, we apply the transformation rules for LPPODs (Step 4). As next, we
build the representation needed by posSmodels which only accepts possibilistic normal logic
programs. This can be done via the implementation of the possibilistic×-reduction (Step 5).
The reduction used the answer sets of the LPOD P∗ in order to reduce the LPPOD P. Once
program P has been reduced, its possibilistic answer sets can be generated (Step 6). Step
5 and Step 6 are repeated for each answer set retrieved in Step 3. Finally, the possibilistic
answer sets are ordered (Step 7).

7.6.2 User Preference Computation and Ordering

The execution of the posPsmodels system over user profiles modeled as LPPODs produces
an ordered list of user preferences.

Below, we present some of most preferred sets generated for the Citizen profile (Figure
7.6). Concerning this profile, 8 solutions are computed, among which a preference order
can be obtained.

******** Possibilistic Model 1***********

(weather_Sunny,100) (time_13_15h,100) (loc_LesCorts,100)

(pet_Restaurant,100) (type_Mediterranean,90) (cost_2,70)

(req_Terrace,100) (req_Parking,100) (req_Wheelchairaccess,100)

(rate_3,80) (loc_Sants,60) (disabled,100)

******** Possibilistic Model 2***********

(weather_Sunny,100) (time_13_15h,100) (loc_LesCorts,100)

(pet_Restaurant,100) (type_Vegetarian,90) (cost_2,70)

(req_Terrace,100) (req_Parking,100) (req_Wheelchairaccess,100)

(rate_3,80) (loc_Sants,60) (disabled,100)

******** Possibilistic Model 3***********

(weather_Sunny,100) (time_13_15h,100) (loc_LesCorts,100)

(pet_Restaurant,100) (type_Mediterranean,90) (cost_2,70)

(req_Terrace,100) (req_Parking,100) (req_Wheelchairaccess,100)

(rate_1,80) (loc_Sants,60) (disabled,100)

******** Possibilistic Model 4***********

(weather_Sunny,100) (time_13_15h,100) (loc_LesCorts,100)

15 Briefly, the projection eliminates weights from the rules of an LPPOD; transformations reduce
the size of an LPPOD program preserving the LPPODs semantics; the possibilistic ×-reduction
reduces an LPPOD according to a set of atoms M and it is part of the LPPODs semantics definition;
finally, the possibilistic preference relation compares and orders the possibilistic answer sets of an
LPPOD. All these concepts have been formally defined in Chapter 5.
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(pet_Restaurant,100) (type_Mediterranean,90) (cost_3,70)

(req_Terrace,100) (req_Parking,100) (req_Wheelchairaccess,100)

(rate_3,80) (loc_Sants,60) (disabled,100)

...

******** Possibilistic Model 8***********

(weather_Sunny,100) (time_13_15h,100) (loc_LesCorts,100)

(pet_Restaurant,100) (type_Vegetarian,90) (cost_3,70)

(req_Terrace,100) (req_Parking,100) (req_Wheelchairaccess,100)

(rate_1,80) (loc_Sants,60) (disabled,100)

Concerning the solutions produced for the Citizen, we can observe the following. The
solver computes terrace and wheel chair access in all possibilistic answer sets. This can be
motivated by the fact that there are three requirement rules in the Citizen profile. Two rules
are computed when the user is a disabled person (the ones related to the wheel chair access
and the parking). These are general rules, since they are also valid in other contexts differ-
ent from a restaurant petition (e.g., in cinema or night petitions). The third rule is computed
when there is a restaurant petition, time is between 13 and 15h, and it is not raining. In this
example, the contextual information tell us (among other information) that the weather is
sunny, time is between 13h and 15h, and that the user is disabled. Therefore, terrace and wheel
chair access are added to all the possibilistic models. Among the context-dependent prefer-
ences related to restaurants, the user mostly prefers Mediterranean food, to eat in restaurants
with a category rate at least of rate 3 and cost category at most of cost 2. All the other solu-
tions are rank-ordered according to the order in which preferences have been specified.

Similarly, concerning the Tourist profile (Figure 7.6), we illustrate below some of the
most preferred solutions among the several ones which can be obtained (16). It can be
observed that, in this case, the requirement about having a terrace cannot be satisfied, since
in this particular context it is raining. Moreover, we can see that the solver cannot consider
access to metro line L3 as the user context excludes such a choice (probably because the line
is not working or it is far away from the user location). Therefore, only access to metro line
L4 is considered.

******** Possibilistic Model 1***********

(-access_L3,100) (weather_Rain,100) (time_13_15h,100)

(loc_Sants,100) (pet_Restaurant,100) (access_L4,80)

(type_Catalan,70) (req_MasterCard,100) (rate_3,60)

(cost_3,70) (loc_Gracia,40)

******** Possibilistic Model 2***********

(-access_L3,100) (weather_Rain,100) (time_13_15h,100)

(loc_Sants,100) (pet_Restaurant,100) (access_L4,80)

(type_Catalan,70) (req_Visa,100) (rate_3,60)

(cost_3,70) (loc_Gracia,40)



7.7 Retrieving Personalized Suggestions 115

******** Possibilistic Model 3***********

(-access_L3,100) (weather_Rain,100) (time_13_15h,100)

(loc_Sants,100) (pet_Restaurant,100) (access_L4,80)

(type_Peruvian,70) (req_MasterCard,100) (rate_3,60)

(cost_3,70) (loc_Gracia,40)

******** Possibilistic Model 4***********

(-access_L3,100) (weather_Rain,100) (time_13_15h,100)

(loc_Sants,100) (pet_Restaurant,100) (access_L4,80)

(type_Catalan,70) (req_MasterCard,100) (rate_3,60)

(cost_4,70) (loc_Gracia,40)

...

******** Possibilistic Model 16***********

(-access_L3,100) (weather_Rain,100) (time_13_15h,100)

(loc_Sants,100) (pet_Restaurant,100) (access_L4,80)

(type_Peruvian,70) (req_Visa,100) (rate_4,60)

(cost_4,70) (loc_Gracia,40)

The preferred answer sets, along with their associated weights (enclosed in parenthe-
ses), are considered to look for personalized suggestions. To this end, the Content Manager
will first use the most preferred possibilistic answer sets to build preference queries. If not
enough suggestions are found, less preferred answer sets are considered.

7.7 Retrieving Personalized Suggestions

The retrieval of personalized suggestions for the user consists in the following five-steps
process:

• parsing preference items: context-dependent user preferences returned by the posPsmod-
els system are parsed in order to map each element to the corresponding domain ele-
ment (defined according to the preference ontology). To this end, prefixes at the beginning
of atom names are used. For instance, pet_Restaurant is mapped into a Petition, while
req_Terrace is mapped into a Requirement;

• preference query generation: each possibilistic answer set is mapped into one or more pref-
erence queries. The query generation takes preference weights into account and it is
explained below;

• mapping queries into XPath expressions: since information sources retrieve XML-based
data, preference queries are mapped into XPath expressions;

• retrieving suggestions: XPath queries are executed against the XML-based information;
• visualization: the results retrieved in the previous step are composed in an ordered sug-

gestion set and converted into a visualization format (e.g., HTML).

Preference queries are generated as follows:
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• Location preferences: some results can provide more than one alternative for a Location
preference. Therefore, a disjunction between Location elements is considered;

• Rate preferences: these preferences are considered as the minimum Rate to be accepted.
Therefore, higher or equal rates (e.g., ≥) are considered;

• Cost preferences: these preference are considered as the maximum Cost to be accepted.
Therefore, a lower or equal costs (e.g., ≤) are considered;

• Type preferences: all preference Types are considered; however, low weighted preferences
are filtered for the benefit of the others;

• Requirements: all Requirements have to be considered. To this end, a conjunction of re-
quirements is considered.

We explain the preference query generation by means of the following example.

Example 7.2. Based on the above interpretations, given the following possibilistic answer
set:

(weather_Sunny,100) (time_13_15h,100) (loc_LesCorts,100)

(pet_Restaurant,100) (type_Mediterranean,90) (cost_2,70)

(req_Terrace,100) (req_Parking,100) (req_Wheelchairaccess,100)

(rate_3,80) (loc_Sants,60) (disabled,100)

the following pseudo-code for a preference query is generated:

(Petition = ’Restaurant’) and (Rate >= 3) and (Cost <= 2) and

(Type = ’Mediterranean’) and (Requirement = ’Parking’ and

Requirement = ’Terrace’ and Requirement = ’Wheelchairaccess’) and

(Location = ’LesCorts’ or Location = ’Sants’)

Please observe that, generally, a given query can be too demanding and its execution
returns an empty set of results. On the contrary, it can also happen that a query is too
relaxed and, in such a case, it returns too many items. In such cases, preference weights can
be used to relax or to over-constrain some query parameters.

For instance, from the preference query above, the following queries are obtained by
relaxing query parameters with a weight lower than 100:

(Petition = ’Restaurant’) and (Rate >= 3) and (Type = ’Mediterranean’) and

(Requirement = ’Parking’ and Requirement = ’Terrace’ and

Requirement = ’Wheelchairaccess’) and

(Location = ’LesCorts’ or Location = ’Sants’)

(Petition = ’Restaurant’) and (Type = ’Mediterranean’) and

(Requirement = ’Parking’ and Requirement = ’Terrace’ and

Requirement = ’Wheelchairaccess’) and

(Location = ’LesCorts’ or Location = ’Sants’)

On the contrary, from the preference query above, the following query is obtained:

(Petition = ’Restaurant’) and (Rate >= 3) and (Cost <= 2) and

(Type = ’Mediterranean’) and (Requirement = ’Parking’ and

Requirement = ’Terrace’ and Requirement = ’Wheelchairaccess’) and

(Location = ’LesCorts’)
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(a) Tourist’s Results (b) Citizen’s Results

Fig. 7.8. Final GUIs showing several suggestions

Preference queries are mapped into XPath expression which are queried against the
data offered by information sources (we omit these details). Therefore, results are obtained
using the most preferred solutions. Less preferred ones are used only if a sufficient number
(application-dependent) of suggestions cannot be achieved.

Once sufficient data have been retrieved, the results are visualized on (interactive) city
maps (see Figure 7.8). From this interface, the user can express his/her feedback about the
results obtained in order to help the system to keep his/her profile up-to-date as much as
possible.

7.8 Related Work

The reason for introducing LPPODs into the ICD was to enhance the system with a prefer-
ence handling method in order to represent and to manage user profiles. The representa-
tion of user profiles has been done by considering contextual and incomplete knowledge,
as well as weights between the preferences themselves. The process of retrieving person-
alized suggestions has been decoupled in a dedicate module (i.e., the Content Manager)
which is responsible to interpret preferences and associated weights. This has been a de-
sign choice, since the information is collected from several Web services (coordinated by
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the ALIVE-based infrastructure) which are queried according to user preferences specified
in the parameters of the service call.

Instead, in some of the approaches that deal with user preferences, preference repre-
sentation and preference queries are not decoupled. This is the case for the different lines
of research in the literature which deal with preferences queries in databases and in possi-
bilistic databases.

7.8.1 Database Preference Queries

Since classical queries can sometimes either return an empty set of answers (because the
condition(s) imposed by the query are too restrictive) or they can return too many results
(because there are too many items which can be matched), the interest in expressing pref-
erences inside database queries has been growing. In fact, plenty of proposals to flexile
querying can be found in the literature such as approaches based on databases [Lacroix
and Lavency, 1987; Kießling, 2002; Chomicki, 2003; Godfrey and Ning, 2004], on fuzzy set
[Dubois and Prade, 1997], on CP-nets [Brafman and Domshlak, 2004], and, more recently,
on possibilistic logic [Hadjali et al., 2008].

The main reasons behind introducing preferences in the querying process are different.
Main streamlines of research have focused on offering more expressive query languages
and on providing preference relations for rank-ordering the retrieved items. These different
points have been considered in the approaches mentioned above, although from different
perspectives. In particular, works in the database community study and refine algorithms
aiming at the efficient computation of non Pareto-dominated answers (i.e., the skyline point
of view [Börzsönyi et al., 2001]). Fuzzy set-based approaches use fuzzy set membership
functions for describing the user profiles on each attribute domain involved in the query.
This is especially convenient when dealing with numerical domains (a good comparison
between database vs. fuzzy set-based methods can be found in [Bosc and Pivert, 1992]).
Moreover, fuzzy-set based approaches have contributed with some noticeable ordering
refinements for min- and Pareto-based comparison criteria such as discrimin and leximin
[Dubois et al., 1997]. In [Brafman and Domshlak, 2004], it is shown how CP-nets can be
used for the specification of preference queries and of a composition operator for compos-
ing different preference orders into a single preference one. A more effective approach to
the handling of database preference queries, which takes its roots in the fuzzy set-based
approaches, is represented by possibilistic logic. Indeed, possibilistic logic improves the
CP-net based method from a preference-based ranking point of view [Hadjali et al., 2008].
A good discussion and comparison between CP-nets and possibilistic logic can be found in
[Kaci and Prade, 2007, 2008].

Preference queries have also been considered in the setting of possibilistic databases
[Hadjali et al., 2008; Bosc et al., 2009]. In this setting, possibilistic logic is used to handle
priority and certainty degrees in order to manage uncertain information and to rank-order
retrieved items. More recently, it has also been shown how possibilistic logic can be used
to encode preference queries built by means of weighted disjunction and conjunction [Bosc
et al., 2010]. Based on that, we have been able to draw a closer relation between possibilistic
logic and LPPODs. As such, a more detailed discussion is presented in the next section.
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7.8.2 Preference Queries in Possibilistic Databases

In the context of possibilistic databases, the use of possibilistic logic for representing un-
certain data can provide a strong representation system for the whole relational algebra
[Bosc et al., 2009]. In particular, a possibilistic database can be directly encoded in pos-
sibilistic logic by mapping keys into variables, attributes into predicates, and database
tuples into instantiated formulas [Bosc et al., 2009]. Then, answering a query such as ∃x
C1(x)∧ . . .∧ Cn(x) (resp. ∃x C1(x) ∨ . . . ∨Cn(x)) amounts to add the possibilistic logic for-
mula {(¬C1(x) ∨ . . .¬Cn(x) ∨ answer(x), 1)} (resp. {(¬C1(x) ∨ answer(x), 1),. . . ,(¬Cn(x)
∨ answer(x), 1)}) to the possibilistic base and to evaluate the query by the repeated ap-
plication of possibilistic resolution (¬P(x) ∨ Q(x, y), α), (P(a) ∨ R(z), β) `PL (Q(a, y) ∨
R(z), min(α, β)) [Dubois et al., 1994].

However, it can sometimes happen that these queries either return an empty set of
answers or they return too many results. Such cases have motivated the study of a way
to incorporate qualitative preferences inside queries in the context of possibilistic logic.
When modeling preferences in possibilistic logic, the necessity measure α associated to
a classical formula p in (p, α) is understood as the priority of p rather than its certainty
level.16 The incorporation of preferences inside a query can be achieved assigning a (total)
order over the necessity values associated to the query. In [Bosc et al., 2010], the authors
show how it is possible to represent conjunctive and disjunctive preference queries asking
for items satisfying conditions C1, C2, . . . , Cn−1, Cn with the information that C1 is required
and if possible C2 also,. . . , and if possible Cn too and Cn is required, or better Cn−1,. . .,or still better
C1 respectively.

For instance, given three conditions C1(x), C2(x), C3(x) and the necessity measures
1, α, β (seen as priority levels associated to the possibilistic formula representing the queries)
with 1 > α > β, the possibilistic logic encoding of a conjunctive (resp. disjunctive)
query is {(¬C1(x) ∨ ¬C2(x) ∨ ¬C3(x) ∨ answer(x),1), (¬C1(x) ∨ ¬C2(x) ∨ answer(x),α),
(¬C1(x) ∨ answer(x),β)} (resp. {(¬C1(x) ∨ answer(x),1), (¬C2(x) ∨ answer(x),α), (¬C3(x)
∨ answer(x),β)}).

Once a preference query is evaluated, the retrieved items are associated with two levels:
to what extent the answer satisfies the query (i.e., 1, α, β), and to what extent the data used in the
query evaluation are certain (i.e., the necessity measures in the database). These scales can be
used to achieve a totally ordered set of query results [Bosc et al., 2010].

In the following, we show how it is possible to encode uncertain data and preference
queries in the LPPODs framework. To this end, we first show how a preference query is
represented and processed in possibilistic logic and, then, how it can be represented and
processed in the LPPODs framework. We only show the case of a conjunctive query, since
an equivalence between conjunctive and disjunctive queries exists [Bosc et al., 2010]. For
the comparison, we will borrow an example presented in [Bosc et al., 2010].

Let us consider a database example DB with three relations R, S, and T containing
uncertain pieces of data (Table 7.1). The context considered is such that uncertainty may
pervade attribute values. We adopt the model proposed in [Bosc et al., 2009]. According to

16 This point of view has been discussed in Chapter 6, Section 6.2.
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Table 7.1. Relations R (top-left), S (top-right), and T (bottom) (example taken from [Bosc et al., 2010])

id Name City
1 John (Brest,a)
2 Mary (Lannion,b)
3 Peter (Quimper,c)

City Flea Market
Brest (yes,d)

Lannion (no,e)
Quimper (no,f)
Rennes (yes,g)

City Museum
Rennes (modern,h)

Quimper (contemporary,i)
Brest (modern,k)

it, each uncertain attribute value is associated with a certainty degree which is modeled as
a lower bound of a necessity measure.

Given the possibilistic database DB, let us consider the following preference query ask-
ing:

Example 7.3. [Bosc et al., 2010] Find people living in a city with a flea market ( f leaMarket(x))
and preferably a museum of modern art (modern(x)) and, if possible, a museum of contemporary
art (contemp(x)).
The query is clearly conjunctive and its possibilistic logic representation is:

Q∧ =


(¬ f leaMarket(x) ∨ ¬modern(x) ∨ ¬contemp(x) ∨ answer(x), 1)

(¬ f leaMarket(x) ∨ ¬modern(x) ∨ answer(x), α)

(¬ f leaMarket(x) ∨ answer(x), β)


where 1 > α > β.
By applying possibilistic logic resolution, it can be proved that valid answers to the query
are: {answer(”John”), α, min(a, d, k)} and {answer(”John”), β, min(a, d)}.

In the encoding of the database DB in LPPODs, we adopt the same convention used in
[Bosc et al., 2009]. According to it, keys become variables, attributes become predicates, and
database tuples are encoded by instantiated predicates. As attribute certainty is modeled
as a necessity measure, we can directly map it to the necessity values of program rules in
our LPPODs framework. Therefore, the LPPOD representing the DB in Table 7.1, denoted
by PDB, is:

PDB =



r1 = a : city(”John”, ”Brest”). r6 = f : ¬ f leaMarket(”Quimper”).
r2 = b : city(”Mary”, ”Lannion”). r7 = g : f leaMarket(”Rennes”).
r3 = c : city(”Peter”, ”Quimper”). r8 = h : modern(”Rennes”).

r4 = d : f leaMarket(”Brest”). r9 = i : modern(”Brest”).
r5 = e : ¬ f leaMarket(”Lannion”). r10 = k : contemp(”Quimper”).


Let us consider now the query in Example 7.3. Its encoding in the LPPODs framework,
denoted by PQ∧ , is:

r11 = 1 : q1(X)← city(X, Y), f leaMarket(Y), modern(Y), contemp(Y), not q2(X), not q3(X).
r12 = 1 : q2(X)← city(X, Y), f leaMarket(Y), modern(Y), not q1(X), not q3(X).
r13 = 1 : q3(X)← city(X, Y), f leaMarket(Y), not q1(X), not q2(X).
r14 = 1 : q1(X)× q2(X)× q3(X).
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The main difference w.r.t. the possibilistic logic encoding is in the way in which we rep-
resent the query priority. In fact, we encode priority about a query by a possibilistic ordered
disjunction rule (r14) rather than by means of necessity values as done in possibilistic logic.
Then, we associate queries and preferences about the queries with a necessity of 1 in order
to keep the necessity values of the queries results as the certainty values computed by the
fix-point operator (which reflects the possibilistic modus ponens, see Chapter 5, Section
5.2.1).

Concerning the query execution, it can be checked that the program PDB ∪ PQ∧ does not
have any result matching q1 (as in Example 7.3), while we obtain M1 = {q2(”John”),min(a,
d, k)} with degM1(r14) = 2 matching q2 and M2 = {q3(”John”), min(a, d)} with degM2(r14)

= 3 matching q3. Please observed that the retrieved items are associated with two levels: (i)
the satisfaction degree of the possibilistic answer set w.r.t. the ordered disjunction rule, (ii)
and the necessity values as certainty measures w.r.t. the data used in the query evaluation.
This is clearly in accordance with the result obtained in the possibilistic logic setting. More-
over, the total order of the preference queries in the possibilistic logic setting is reflected in
LPPODs as well. In fact, according to the possibilistic preference relation, M1 is preferred
to M2 since degM1(r14) < degM2(r14) (see Chapter 5, Section 5.4).

To conclude, the representation of preference queries in the LPPODs setting seems to
be feasible and there is a close relation between the two approaches. However, at represen-
tational level the possibilistic setting seems to be more expressive. In fact, in [Prade, 2009;
Bosc et al., 2010] it is claimed how possibilistic logic can also accommodate some cases
of disjunctive information (for instance the case in which the third tuple of relation R is
〈Peter, (Quimper ∨ Rennes, c)〉). Instead, the LPPODs syntax does not allow disjunction in
the head of program rules. A possible way to overcome this limitation is by extending the
LPPODs syntax and semantics with possibilistic disjunction [Nieves et al., 2011].

7.9 Discussion and Concluding Remarks

In this chapter, we have presented the enhancement of the personalization capabilities of a
specific instance of context-aware systems, an ICD, by means of user profiles. At knowledge
level, we have represented user profiles according to a user profile and preference ontol-
ogy. User profiles have then been translated, at symbolic level, into the logic programming
specification of LPPODs. Indeed, LPPODs has proved to be a suitable specification in order
to express user preferences which can depend both on contextual and incomplete informa-
tion. Furthermore, preferences can be associated with weights expressing the preference
importance. Such weights can be considered to relax or the over-constrain preference con-
ditions at the moment of retrieving personalized suggestions and (although not explicitly
covered here) to keep the user profile up-to-date.

The LPPODs features have been implemented in an ASP-based solver called posPsmod-
els. The solver has been encapsulated in a dedicated service which integrates with the sys-
tem infrastructure implemented with the ALIVE tools17. The integration of the LPPODs
solver into the system, due to its complexity, has only been done at a basic level. In the

17 http://sourceforge.net/projects/ict-alive/files/

http://sourceforge.net/projects/ict-alive/files/
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current version, the solver is wrapped by a Java-based interface which exposes some basic
methods for querying the preference profile against the most preferred options of the user
depending on the context. More functionalities should be added in order to support the
actualization of user profiles. Indeed, methods for changing preference rules and weights,
by using user feedback, can provide the basis to adapt user profiles according to the most
recent user tastes and dislikes.

Apart of the aforementioned improvements, another important aspect that needs to be
further considered is the preference representation. In fact, the syntax supported by LP-
PODs is quite limited. Since LPPODs generalizes LPODs (see Chapter 5), LPPODs intrinsi-
cally inherits, from a syntactical point of view, the expressiveness of LPODs. This basically
means that the LPPODs syntax only allows to express alternatives between preference lit-
erals rather than more general expressions. However, more complex preference statements
may need to be encoded in the ICD.

For instance, let us consider the user preferences about restaurants introduced in Exam-
ple 7.1. In that example, the user preferred to eat in a Mediterranean restaurant rather than in
a Vegetarian and she preferred to pay by Master Card over using her Visa. In such a case, it can
be valuable to be able to capture complex preference expressions in order to express equal-
ities between options and/or combinations over alternatives. Indeed, the user may prefer
to have Mediterranean over Vegetarian food over not having any of them, i.e., expressions
such as Mediterranean × Vegetarian × (not Mediterranean ∧ not Vegetarian); or she may
prefer to pay either by Master Card or by Visa over paying cash, i.e., expressions such as
(MasterCard ∨Visa)× cash.

In order to extend LPPODs, we first need to extend LPODs to support a richer formal-
ism to represent and to reason about these preference statements. As such, in Chapter 8,
we propose a first step towards an extension of LPPODs. We present a more general syn-
tax which allows the writing of nested (or non-flat) preferences expressions built by means
of connectives {∨,∧,¬, not,×}. To represent these formulas and to capture their seman-
tics, we define an extension of LPODs called Nested Logic Programs with Ordered Disjunction
(LPODs+).
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LPODs+: A Framework for Handling Nested Preferences

Handling user preferences in context-aware systems, which provide users with personal-
ized information, is an essential feature. As such, finding a suitable preference handling
method plays an important role in the development of these systems. LPPODs has shown
to be a suitable specification to represent and to reason about user preferences.1 Indeed,
LPPODs can support: (i) the representation of preferences which can depend on contextual
and incomplete information and which can have different importance; (ii) the specification
of a preference relation for achieving an order among preferred alternatives. Nevertheless,
the LPPODs syntax is too restrictive when more complex preference expressions need to
be encoded. This limitation is due to the fact that LPPODs relies on the LPODs framework.
Therefore, planning an extension of LPPODs means to extend LPODs first.

As far as LPODs is concerned, its syntax allows to express alternatives between pref-
erence literals. An LPOD can encode simple statements such as: At night I prefer going to
a pub over going to a cinema over watching tv (encoded as pub× cinema× tv ← night), but
the LPODs syntax is limited when other types of preference statements need to be formu-
lated. For example, at night when going to a pub is not possible, one might prefer to watch
a movie at the cinema or on tv with equal preference. This kind of preference equality has
been addressed in the DLPODs framework (see Chapter 6, Section 6.4.2). The DLPODs
syntax allows one to express preference equalities in ordered disjunction rules by means
of combinations of literals connected by ∨. For instance, the preference equality statement
about cinema and tv at night can be encoded as pub× (cinema ∨ tv)← night.

However, there may exist more complex preference statements that not even DLPODs
is able to express. In the nighttime preferences above, we can instead be concerned about
having both options at the same time, expressing that in case pub is not possible we do mind
watching a movie in the cinema and not on the tv, i.e., expressions such as pub× (cinema ∧
¬tv) ← night, or that we even want to have preference equalities and combinations at the
same time, i.e., expressions such as (pub ∨ bar) × (cinema ∧ ¬tv) ← night, or even more
complex preference expressions such as (pub ∧ (expensive × cheap)) × bar × (not pub ∧
not bar) ← night ∨ (not busy ∧ a f ternoon). These examples suggest that studying less
restricted syntaxes could be valuable.

1 In Chapter 7, we have shown how LPPODs can be employed to handle user preferences in a
context-aware system such as ICD.
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In this chapter, we present a more general syntax which make it possible to specify
nested (or non-flat) preference expressions built by means of connectives {∨,∧,¬, not,×}.
To represent these formulas and to capture their semantics, we define an extension of
LPODs called Nested Logic Programs with Ordered Disjunction (LPODs+).

The syntax of LPODs+ is based on a language which supports nested formulas that can
provide a richer syntax at the moment of writing conditional preferences. The language
we consider combines the propositional language of QCL (see Chapter 6, Section 6.1) with
negation as failure.

To define the LPODs+ semantics, we reuse and extend some of the results defined in
[Lifschitz et al., 1999] in which a semantics for nested logic programs is presented. As such,
we capture the semantics of a nested ordered disjunction program (OD+-program) in a
simple way and we show that, when an OD+-program syntactically corresponds to an
LPOD, the LPOD+ semantics and the LPODs semantics coincide.

With the presence of nested expressions in the head of preference rules, determining the
satisfaction degree of an answer set of an OD+-program can be sometimes more involved in
our approach. For this reason, we propose a recursive function to compute the optionality
of complex preference formulas in order to determine the rule satisfaction degree. As the
optionality function is a generalization of the rule satisfaction degree in LPODs, we can
directly use LPODs preference relations for comparing the answer sets of an OD+-program.
Consequently, our approach generalizes the LPODs framework in a proper way.

Since the LPOD+ syntax is too complex to be handled by existent answer set solvers,
we propose a translation procedure to map any OD+-program to an equivalent disjunctive
logic program. This result is significant, since the complexity added at the syntactic level
does not interfere with the computation of the LPOD+ semantics whose complexity coin-
cides with the complexity class ΣP

2 of disjunctive logic programs (propositional case [Eiter
and Gottlob, 1995]).

The rest of the chapter is structured as follows. In Section 8.1 and Section 8.2, we re-
spectively present the LPODs+ syntax and the LPODs+ semantics. In Section 8.3, we intro-
duce a recursive optionality function for computing the satisfaction degree of an answer
set of an OD+-program. In Section 8.4, we design a translation procedure which maps any
OD+-program into a disjunctive logic program. We also provide some guidelines about
the implementation of a tester program for computing the optimal answer set of an OD+-
program. Section 8.5 compares our work with other approaches in the literature. Finally,
Section 8.6 concludes the chapter.

8.1 LPODs+ Syntax

In the following, literals2, ⊥ and > are considered elementary formulas, while {∨,∧, not,×}
formulas (denoted A, B, C, . . .) are constructed from elementary formulas using the connec-
tives {∨,∧, not,×} arbitrarily nested (strong negation ¬ is allowed to appear only in front

2 A more general background on ASP can be found in Chapter 2, Section 2.1. Please remember that
a literal is an atom or an extended atom.
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Table 8.1. Example of rules captured by the LPODs+ syntax

Syntax Rule Type
(a ∧ (b× c))× (d ∨ ¬e)← g ∨ (not ¬i ∧ f ). Nested Ordered Disjunction rule
a ∧ not b← p ∧ not (¬q ∨ r). Nested rule [Lifschitz et al., 1999]
a× (b ∨ c)← d ∧ not e. Ordered Disjunctive rule [Kärger et al., 2008]
a× b← c ∧ not d. Ordered Disjunction rule [Brewka et al., 2004b]
a ∨ b← c ∧ not ¬e. Disjunctive rule [Gelfond and Lifschitz, 1991]

of atoms). We assume that the connectives ∧, ∨, and not have stronger bindings than ×.
We also assume that × is associative.

Then, given a finite set of literals L, a nested ordered disjunction rule (rule for short) is an
expression of the form

H ← B (8.1)

where H is either an elementary formula or a {∨,∧, not,×} formula (known as the head)
and B is either an elementary formula or a {∨,∧, not} formula (known as the body) built
using the literals in L. Some particular cases are facts, of the form H ← > (written as H),
and constraints, ⊥ ← B (written as← B). If no occurrences of not appear in a rule, then the
rule is a definite nested ordered disjunction rule (similarly a definite nested ordered disjunction
formula). If no occurrences of × appear in a rule, then the rule is a nested rule (similarly a
nested formula). If no occurrences of × and not appear in a rule, then the rule is known as
a definite nested rule (similarly a definite nested formula). Different formula combinations
lead to different rules as shown in Table 8.1.

A Nested Logic Program with Ordered Disjunction, or an OD+-program, is a finite set of
nested ordered disjunction rules and/or constraints and/or facts. If the program does not
contain not, then the program is called a definite OD+-program.

The use of {∨,∧, not,×} formulas in the head of nested ordered disjunction rules, rather
than elementary formulas or disjunctive formulas only, as in LPODs and DLPODs, pro-
vides a rich syntax for specifying conditional qualitative preferences. Indeed, using ∨ and
∧, we can express that some options are equally preferred, or that some combinations are
preferred over other combinations. The following program exemplifies some preference
statements that can be modeled by means of an OD+-program.

Example 8.1. Let P be an OD+-program representing some user preferences of the form:

P =


r1 : italian× peruvian× (not italian ∧ not peruvian) ← >.
r2 : (pub ∨ bar)× (cinema ∧ ¬tv) ← night.
r3 : night ← >.


Briefly, the intuitive reading of each of the rules of program P is the following: r1 expresses
that we generally prefer to have italian over peruvian food and we prefer to have one of
the options over not having any of them; r2 tells that at night we prefer to go to a pub or a
bar, and, if not possible, we want to watch a movie at the cinema but not on the tv; r3 just
states that it is night.
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8.2 LPODs+ Semantics

To define the semantics of LPODs+, we consider and extend some of the results of nested
logic programs [Lifschitz et al., 1999]. The first definitions are simply reported as they rep-
resent some basic results. Instead, Definition 8.4 and 8.5 extend the original ones for nested
programs to account for the case of × which characterizes our approach.

Definition 8.1. [Lifschitz et al., 1999] Let M be a set of literals. M satisfies a definite nested formula
A (denoted by M |= A), recursively as follows:

• for elementary A, M |= A if A ∈ M ∨ A = >
• M |= A ∧ B if M |= A ∧ M |= B
• M |= A ∨ B if M |= A ∨ M |= B

Definition 8.2. [Lifschitz et al., 1999] Let P be a definite nested logic program. A set of literals M
is closed under P if, ∀r ∈ P such that r = H ← B, M |= H whenever M |= B.

Definition 8.3. [Lifschitz et al., 1999] Let M be a set of literals and P a definite nested logic pro-
gram. M is called an answer set for P if M is minimal among the sets of literals closed under P.

Definition 8.4. The reduction of a nested ordered disjunction formula with respect to a set of literals
M is recursively defined as follows:

• for elementary A, AM = A
• (A ∧ B)M = AM ∧ BM

• (A ∨ B)M = AM ∨ BM

• (not A)M =

⊥, if M |= AM

>, otherwise

• (A× B)M =


AM, if M |= AM

BM, if M 6|= AM ∧ M |= BM

⊥, otherwise

Definition 8.5. The reduction PM
×+ of an OD+-program P with respect to a set of literals M is

recursively defined as follows:

• (H ← B)M = HM ← BM

• PM
×+ = {(H ← B)M | H ← B ∈ P}

Please observe that PM
×+ is a definite nested logic program. Hence, the following definition

follows from the answer set definition for definite nested logic programs in a straightfor-
ward way.

Definition 8.6. Let P be an OD+-program and M a set of literals. M is an answer set of P if it is an
answer set of PM

×+ . We denote the LPODs+ semantics of program P by means of SEMLPOD+(P).

Example 8.2. Let us consider the OD+-program P in Example 8.13 and the set of literals M
= {b, d, g}. Then P{b,d,g}

×+ can be obtained in three recursive steps by applying Definition 8.4

3 Due to representation issues we have changed the signature of the program from
{italian, peruvian, pub, bar, cinema, tv, night} to {a, b, c, d, e, f , g}.



8.3 LPODs+ Answer Sets Selection 127

and 8.5:

(1) (2) (3)

(a× b× (not a ∧ not b)){b,d,g} b{b,d,g} b
((c ∨ d)× (e ∧ ¬ f )← g){b,d,g} (c ∨ d){b,d,g} ← g{b,d,g} c ∨ d← g

(g){b,d,g} g g

Clearly, M is an answer set of P{b,d,g}
×+ and so M is an answer set of P. Similarly, it can be

checked that the sets of literals {a, c, g}, {a, d, g}, {a, e,¬ f , g}, {b, c, g}, {b, e,¬ f , g}, {c, g},
{d, g} and {e,¬ f , g} are valid answer sets of P as well.

It can be observed that an immediate property of the above construction is that, when
the formulas in LPODs+ are formulas without the × connective, the LPODs+ semantics
and the semantics for nested logic programs (denoted by SEMNLP(P)) [Lifschitz et al.,
1999] coincide.

Proposition 8.1. Let P be an OD+-program such that ∀r ∈ P, r = H ← B, H and B be formulas
× free, and M be a set of literals. M ∈ SEMLPOD+(P) if and only if M ∈ SEMNLP(P).

Considering the relationship between LPODs+ and LPODs, we can observe the follow-
ing. Besides the fact that an OD+-program has a richer syntax, it also has a richer semantics.
Indeed, when all the rules of an OD+-program P are ordered disjunction rules, the LPODs+

semantics and the LPODs semantics of P (denoted by SEMLPOD(P)) coincide.

Proposition 8.2. Let P be an OD+-program such that ∀r ∈ P, r = A1 × . . .× Ak ← B1 ∧ . . . ∧
Bm ∧ not Bm+1∧ . . . ∧ not Bm+n in which Ai’s (1 ≤ i ≤ k) and Bj’s (1 ≤ j ≤ m + n) are literals
and M be a set of literals. M ∈ SEMLPOD+(P) if and only if M ∈ SEMLPOD(P).

As a consequence, our approach can offer an alternative characterization of the LPODs
semantics and it generalizes the LPODs semantics in a proper way. Nevertheless, determin-
ing the satisfaction degree of an answer set of an OD+-program can sometimes be more
involved in our approach as we discuss in the next section.

8.3 LPODs+ Answer Sets Selection

LPODs+ is a specification to express context-dependent preferences, in which a preference
order among its answer sets is induced by means of the × connective. Therefore, the key
question now is how such ordering can be achieved. In the simplest case, when each rule
of an OD+-program P corresponds to an ordered disjunction rule, a satisfaction degree k
(1 ≤ i ≤ k) can be associated with an answer set M w.r.t. each rule of P. In this basic case,
the satisfaction degree corresponds to the position of the best satisfied literal [Brewka et al.,
2004b].

However, when we consider a nested ordered disjunction rule r = H ← B, in which H
and B can be formulas built from {∨,∧, not,×} and {∨,∧, not} respectively, the assignment
of the satisfaction degree is not so trivial. In fact, this degree depends on how many options
H admits. For this reason, we first define the optionality of an answer set M w.r.t. a nested
ordered disjunction formula H as follows:
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Definition 8.7. Let H be a {∨,∧, not,×} formula, and M be an answer set of an OD+-program
P. Then, the optionality of M w.r.t. H, denoted by optM(H), is recursively defined as:

optM(H) =



1, if H = A and A is an elementary formula

k



if H = (not A) then k = optM(A)

if H = (A ∧ B) then k = max{optM(A), optM(B)}

if H = (A ∨ B) then k = max{optM(A), optM(B)}

if H = (A× B) then

k = optM(A), if M |= AM

k = optM(A) + optM(B), otherwise

Based on this function, the satisfaction degree of an answer set M w.r.t. a nested ordered
disjunction rule r = H ← B can be defined as:

Definition 8.8. Let M be an answer set of an an OD+-program P. Then, the satisfaction degree M
w.r.t. a rule r = H ← B, denoted by deg+M(r), is:

deg+M(r) =

1, if M 6|= BM

optM(H), otherwise

The degrees can be viewed as penalties; in fact, a higher degree expresses a lesser satis-
faction. Therefore, if the body of a rule is not satisfied, then there is no reason to be dissat-
isfied and the best possible degree 1 is obtained [Brewka et al., 2004a,b].

We can observe that there is a direct property w.r.t. the optionality function we have just
defined for an answer set of an OD+-program. The optionality function clearly generalizes
the satisfaction degree of an answer set of an LPOD. More generally, the following property
holds.

Proposition 8.3. Let P be an OD+-program such that ∀r ∈ P, r = A1 × . . .× Ak ← B1 ∧ . . . ∧
Bm ∧ not Bm+1∧ . . . ∧ not Bm+n in which Ai’s (1 ≤ i ≤ k) and Bj’s (1 ≤ j ≤ m + n) are literals
and M be an answer set of P. Then, deg+M(r) = degM(r).4

Therefore, our approach also generalizes in a consistent way the preference relation
between answer sets of LPODs.

Definition 8.9. Let P be an OD+-program and let M1, M2 be two answer sets of P. Then M1 is
preferred to M2 (denoted by M1 � M2) iff ∃ r ∈ P such that deg+M1

(r) < deg+M2
(r), and @r′ ∈ P

such that deg+M2
(r′) < deg+M1

(r′).

The condition in the above definition follows the principle of Pareto optimality accord-
ing to which an object is preferred if it is better or equal to another in all attributes (in our
case in all nested ordered disjunction rules) and strictly better in at least one attribute.

Finally, we provide the definition of a preferred answer set of an OD+-program P:

Definition 8.10. Let P be an OD+-program and M be an answer set of P. M is called a preferred
answer set of P if there is no answer set M′ of P for which M′ � M holds.

4 For the definition of degM(r), we refer to Chapter 2, Section 2.2.4.
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Example 8.3. Let P be the OD+-program in Example 8.1 and M1 = {a, c, g}, M2 = {e,¬ f , g}
be two of the answer sets of P in Example 8.2. We want to show that M1 � M2. To this
end, we first have to compute the satisfaction degrees of M1 and M2 w.r.t. all the rules
in P. Applying Definitions 8.7 and 8.8, we can see how the degrees of M1 w.r.t. r1 and r2

correspond to deg+M1
(r1) = 1 and deg+M1

(r2) = 1 respectively, since:

optM1(a× b× (not a ∧ not b)) = 1

optM1(a× b) = 1

optM1(a)

1

optM1((c ∨ d)× (e ∧ ¬ f )) = 1

optM1(c ∨ b) = 1

1

The case of M2 looks more interesting as it shows how determining the degree of sat-
isfaction can sometimes be more involved. As M2 satisfies only the third condition in the
head of rule r1, its optionality w.r.t. this rule has to take into account that the first two con-
ditions are not satisfied, i.e., deg+M2

(r1) = 2 + optM2(not a ∧ not b). As shown below, the
degrees of M2 w.r.t. r1 and r2 correspond to deg+M2

(r1) = 3 and deg+M2
(r2) = 2 respectively,

since:

optM2(a× b× (not a ∧ not b)) = 3

��
�
��

HH
H

HH

optM2(a× b) = 2

�
��

H
HH

optM2(a)

1

optM2(b)

1

. . . (not a ∧ not b) = 1

��
�

HH
H

. . . (not a)

. . . (a)
1

. . . (not b)

. . . (b)
1

optM2((c ∨ d)× (e ∧ ¬ f )) = 2

��
��

HH
HH

. . . (c ∨ d) = 1

1

optM2(e ∧ ¬ f ) = 1

��
�

HH
H

optM2(e)

1

optM2(¬ f )

1

The simplest case of r3 is not represented as r3 is clearly satisfied by degree 1 by both
answer sets. Once the degrees are computed, the preference relation � can be used to com-
pare M1 and M2. It is easy to see how M1 is preferred to M2, since M1 satisfies the rules of
the program in a better way (M2 � M1 follows from Definition 5.16 as well).

8.4 Implementation Design

The LPODs+ syntax is too complex to be handled by existent answer set solvers such as
DLV, SMODELS, or GRINGO. In this section, we present a translation procedure which
can be used to map any OD+-program to an ordinary disjunctive logic program in order to
compute its answer sets. We also sketch a method for computing the optimal answer set of
an OD+-program.

8.4.1 Mapping LPODs+ to Disjunctive Logic Programs

Lifschitz et al. in [Lifschitz et al., 1999] already provides a procedure to translate nested logic
programs into disjunctive ones by defining several equivalent transformations. We extend
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this procedure by proposing a translation which maps any nested ordered disjunction rule
into a nested rule.

In order to keep the presentation clear, we first fix the notation used throughout this sec-
tion. We mainly deal with four classes of logic programs: LPODs+, Nested Logic Programs
(NLPs), Generalized Disjunctive Logic Programs (GDLPs) and Disjunctive Logic Programs
(DLPs).5

Transformations sometimes introduce new literals in the signature of a program. For
this reason, we explicitly use LPODs+L to denote the class of all nested ordered disjunction
logic programs over alphabet L; NLPsL to denote the subclass of nested logic program
over L; furthermore, GDLPsL stands for the subclass of NLPsL containing all generalized
disjunctive logic programs over L; and DLPsL is the class of all disjunctive logic programs
over L. In the following, we refer to a GDLPL and to a DLPL by P〈not,∨〉 and P〈∨〉 respec-
tively.

The translation procedure can be described as follows. Given an OD+-program P ∈
LPODs+L , we perform the following steps:

1. transform each nested ordered disjunction rule into a nested rule: the resulting program
is a nested logic program;

2. transform each rule in the nested logic program into the corresponding negative nor-
mal form, i.e., rules made up of (possibly negated-by-failure) literals, conjunctions and
disjunctions:

3. translate the program into a program containing only rules with conjunctions of (pos-
sibly negated-by-failure) literals in their bodies and disjunctions of (possibly negated-
by-failure) literals in their heads;

4. eliminate double negations in bodies and heads: the resulting program is a generalized
disjunctive logic program;

5. transform the generalized disjunctive logic program into an ordinary disjunctive logic
program, i.e., make all heads negation free.

Step 1 is realized using the transformation we propose in Proposition 8.4. Steps 2-4
are achieved by means of exhaustive application of program properties and distributive
laws according to Lifschitz et al. [Lifschitz et al., 1999] (Proposition 8.5). Step 5 exploits a
procedure due to Janhunen [Janhunen, 2001] (Definition 8.12).

Based on [Lifschitz et al., 1999] we follow the notion of formula equivalence according
to which:

Definition 8.11. [Lifschitz et al., 1999] A formula F is equivalent to a formula G (F ≡ G) if, for
any (consistent) sets X and Y of literals, X |= FY if and only if X |= GY.

Moreover, two programs are said to be equivalent if they possess the same answer sets.
Based on the above definition, we define the following equivalent transformation which
maps a nested ordered disjunction rule into a nested rule.

Proposition 8.4. For any formula A, B:

A× B ≡ A ∨ (not A ∧ B)
5 For the syntax of a DLP and a GDLP, please refer to Chapter 2, Sections 2.2.1 and 2.2.2.
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Once we have obtained a nested logic program, we can reuse the transformations pre-
sented in [Lifschitz et al., 1999] to transform it into a generalized disjunctive logic program.6

Proposition 8.5. [Lifschitz et al., 1999] For any formula A, B, C,

1. (A ∧ B) ∧ C ≡ A ∧ (B ∧ C) and (A ∨ B) ∨ C ≡ A ∨ (B ∨ C)
2. A ∧ (B ∨ C) ≡ (A ∧ B) ∨ (A ∧ C)
3. A ∨ (B ∧ C) ≡ (A ∨ B) ∧ (A ∨ C)
4. not (A ∧ B) ≡ not A ∨ not B
5. not (A ∨ B) ≡ not A ∧ not B
6. not not not A ≡ not A
7. A← B ∧ not not C ≡ A ∨ not B← C
8. A ∨ not not B← C ≡ A← not B ∧ C

9. A ∧ B← C ≡

A← C

B← C

10. A← B ∨ C ≡

A← B

B← C

By means of transformations in Proposition 8.4 and 8.5, it is possible to map a nested or-
dered disjunction logic program into an equivalent generalized disjunctive logic program.

Lemma 8.1. Any OD+-program P ∈ LPODs+L is equivalent to a generalized disjunctive program
P〈not,∨〉 ∈ GDLPsL.

Example 8.4. Let P be the OD+-program in Example 8.1.7 The corresponding generalized
disjunctive logic program P〈not,∨〉 ∈ GDLPsL is (r3 is omitted).

a× b× (not a ∧ not b) ≡


a ∨ not a

a ∨ b ∨ not b

a ∨ b ∨ not a

(c ∨ d)× (e ∧ ¬ f )← g ≡



c ∨ d ∨ not c← g

c ∨ d ∨ not d← g

c ∨ d ∨ e← g

c ∨ d ∨ ¬ f ← g

Finally, we eliminate any remaining negation possibly occurring in the heads of rules.
To this end a procedure due to Janhunen can be employed [Janhunen, 2001].

Definition 8.12. [Janhunen, 2001] A generalized disjunctive logic program P〈not,∨〉 ∈ GDLPsL
can be mapped into a disjunctive logic program P〈∨〉 ∈ DLPsL∪L′ by setting:

P〈∨〉 = P′〈∨〉 ∪{⊥ ← (p∧ p′), p′ ← not p | not p occurs in the head of some rules in P〈not,∨〉}

in which P′〈∨〉 results from P〈not,∨〉 by replacing each occurrence of a literal not p in the head of a
rule in P〈not,∨〉 by p′. L′ is the set of the new literals introduced in P′〈∨〉.

6 We omit some transformations, for a complete list we refer to Proposition 7 and Proposition 8 in
[Lifschitz et al., 1999].

7 As done in Example 8.2 we have replaced the signature of the program from
{italian, peruvian, pub, bar, cinema, tv, night} to {a, b, c, d, e, f , g}.
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Janhunen showed that replacements of the above kind lead to a transformation which
is faithful, i.e., it preserves the semantics of the transformed program. Therefore:

Lemma 8.2. Any generalized disjunctive logic program P〈not,∨〉 ∈ GDLPsL is equivalent to a
disjunctive logic program P〈∨〉 ∈ DLPsL∪L′ .

Example 8.5. Let P〈not,∨〉 be the GDLP in Example 8.4. The corresponding disjunctive logic
program P〈∨〉 ∈ DLPsL∪L′ with L′ = {a′, b′, c′, d′} is:

P〈∨〉 =


a ∨ a′ ← >. c ∨ d ∨ d′ ← g. a′ ← not a. ⊥ ← a ∧ a′.

a ∨ b ∨ b′ ← >. c ∨ d ∨ e← g. b′ ← not b. ⊥ ← b ∧ b′.
a ∨ b ∨ a′ ← >. c ∨ d ∨ ¬ f ← g. c′ ← not c. ⊥ ← c ∧ c′.
c ∨ d ∨ c′ ← g. g← >. d′ ← not d. ⊥ ← d ∧ d′.


The described procedure makes it possible to compute the answer sets of an OD+-

program by translating it into an equivalent disjunctive logic program as captured by the
following result.

Theorem 8.1. Let P ∈ LPODs+L and P〈∨〉 ∈ DLPsL∪L′ the disjunctive logic program obtained
by transforming P. If M′ is an answer set of P〈∨〉 then M = M′ ∩ L is answer set of P.

Example 8.6. Let P be the OD+-program in Example 8.2 and P〈∨〉 be the DLP in Example
8.5. It can be checked that ∀M′ ∈ SEM(P〈∨〉), M = M′ ∩ L is a answer set of P.

As far as complexity is concerned, it is known from [Eiter and Gottlob, 1995] that decid-
ing whether a disjunctive logic program has at least one answer set is ΣP

2 -complete (propo-
sitional case). Unfortunately, the complexity of the transformations involved in Steps 2-4
can be exponential in the worst case due to the fact that these transformations rely on dis-
tributive laws [Pearce et al., 2002]. Later on, Pearce et al. [Pearce et al., 2002] proposed a
technique based on the introduction of new atoms, called labels, abbreviating sub-formula
occurrences, which avoids such an exponential blow-up and whose complexity is poly-
nomial. Since our main construction (Step 1) occurs before any other step involved in the
mapping to disjunctive logic programs, distributive laws in Steps 2-4 can be replaced by
Pearce’s translation procedure. Under this hypothesis, deciding whether an OD+-program
has at least one answer set is ΣP

2 -complete, since our construction is linear and any nested
logic program can be faithfully reduced to a disjunctive logic program in polynomial time.
Therefore, the implementation of a solver for LPODs+ can be sketched as follows: after ex-
tending the compiler for nested logic programs (NLP8) to treat the× connector, the answer
sets of LPODs+ can be computed by a disjunctive logic programming system such as DLV.

8.4.2 Optimal Answer Set Computation

In order to compute the optimal answer set of an OD+-program, a technique similar to the
one adopted for ASO programs [Brewka et al., 2003] can be employed.

8 http://www.cs.uni-potsdam.de/~torsten/nlp/

http://www.cs.uni-potsdam.de/~torsten/nlp/
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An ASO program is a pair 〈Pgen, Ppre f 〉, where Pgen is a logic program (of any type)
called the generating program and Ppre f is a collection of preference rules. The computation
strategy followed in [Brewka et al., 2003] is based on a tester program that takes as input
an answer set generated by Pgen and generates a strictly better one if such an answer set
exists. If the tester fails to generate a strictly better one, then an optimal answer set is found.
Otherwise, if a strictly better answer set is discovered, the tester is run with the new answer
set as input. This continues until an optimal answer set is reached.

The translation procedure described in the previous section (or the one which can be
built by generalizing the procedure in [Pearce et al., 2002]) already provides us with a
method for computing the answer sets of an OD+-program. Therefore, the disjunctive pro-
gram P〈∨〉 obtained by an OD+-program P can be employed as the generating program.
On the other hand, it is possible to create a tester P〈∨〉T for P by adding specific testing rules
to P〈∨〉 in order to:

• compute the satisfaction degrees of an answer set w.r.t. the nested ordered disjunction
rules;

• perform a comparison of two answer sets based on their satisfaction degrees.

In the following, we assume that for any given answer set M there exists an associated
satisfaction vector VM = {vM(r1), . . . , vM(rn)} in which each vM(ri) is the rule satisfaction
degree of M w.r.t. the rules in P. To compute the satisfaction degree of an answer set w.r.t.
a rule r, each nested ordered disjunction rule can be translated into a set of normal rules
(possibly nested) that explicitly states the satisfaction degrees w.r.t. the available options.
We illustrate this idea by means of the following example:

Example 8.7. Let us consider r1 = a× b× (not a ∧ not b) and r2 = (c ∨ d)× (e ∧ ¬ f )← g in
Example 8.1. These rules can be translated into:

v(r1, 1) ← a
v(r1, 2) ← not v1(r1, 1) ∧ b
v(r1, 3) ← not v1(r1, 2) ∧ (not a ∧ not b)
v(r2, 1) ← not g
v(r2, 1) ← g ∧ (c ∨ d)
v(r2, 2) ← not v1(r2, 1) ∧ g ∧ (e ∧ ¬ f )

Each rule captures the satisfaction degree that corresponds to the formulas a given an-
swer set satisfies.9 For instance, for the answer sets M1 = {a, c, g} and M2 = {e,¬ f , g}
(taken from Example 8.3) the above rules generate the sets {v(r1, 1),v(r2, 1)} and {v(r1, 3),
v(r2, 2)} respectively.

Once we have obtained the satisfaction degrees, the comparison between two satisfac-
tion vectors VM0 , VM1 can be defined as geq(VM1 , VM0) if vM1(ri) ≥ vM0(ri) (for all ri ∈ P
with 1 ≤ i ≤ n). This comparison can be realized by the following rules:

← not better
better ← v0(R, V0) ∧ v1(R, V1) ∧ geq(V1, V0) ∧ not geq(V0, V1)

← v0(R, V0) ∧ v1(R, V1) ∧ not geq(V1, V0)

9 Instead, the fourth rule captures the idea that if the body of the rule is not satisfied, then the degree
of satisfaction is 1.
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Finally, the optimal answer set computation can be sketched as follows. The tester takes
as input an answer set M0 and its satisfaction vector modeled as facts v0(ri, deg+M0

(ri)) (for

each ri in the OD+-program P). If the tester program P〈∨〉T has an answer set M1, then M1

restricted to the original language of P〈∨〉 is an answer set for P that is strictly preferred
to M0. If P〈∨〉T does not have any answer sets, then no better answer set exists. It can be
observed that the tester program can be a nested logic program. In such cases, we can
reuse the translation procedure in Section 7.4, omitting Step 1, to convert the tester into a
disjunctive logic program.

Considering the complexity of finding an optimal answer set, we can observe the fol-
lowing. First, determining whether an optimal answer set exists is not more difficult than
determining whether any answer sets exist. Similar to [Kärger et al., 2008], complexity re-
sults of LPODs can be lifted by the ΣP

2 -completeness of disjunctive logic programs. Con-
sequently, the existence of a preferred answer set of an OD+-program has complexity ΣP

2 .
Then, a similar lifting also works for checking whether an answer set M is optimal [Kärger
et al., 2008]. Therefore, deciding whether an answer set M is an optimal answer set of an
OD+-program P is ΠP

2 -complete.

8.5 Related Work

Preference handling in logic programming has been a hot investigation topic in the last two
decades. Indeed, preferences are not only an effective way to determine a choice among
different problem solutions, but they have also shown to have a strong connection with
nonmonotonic reasoning as we stressed in Chapter 3. As such, many ASP extensions have
been proposed [Delgrande et al., 2004; Osorio et al., 2004; Osorio and Zepeda, 2006; Osorio
et al., 2011; Zepeda, 2005]. Besides providing an effective way to express an order among
rules or among beliefs to be used in the reasoning process, preferences are also very impor-
tant when user preferences have to be encoded in a compact way. As our work is situated in
the latter world, we compare our approach with other works focused on the representation
of user preferences.

Besides the LPODs approach, which is properly captured by LPODs+, there are two
main logic programming approaches which relate to ours: DLPODs [Kärger et al., 2008]
and ASO programs [Brewka et al., 2003].

DLPODs has been proposed as an extension of LPODs to deal with ordinary disjunction
∨ in the head of rules. DLPODs makes it possible to specify preference equality statements
such as pub× (cinema ∨ tv)← not sunny.10

Since our semantics applies to any {∨,∧, not,×} formula, it should also provide a se-
mantics for DLPODs. Therefore, the interesting question is whether our semantics and the
DLPODs semantics coincide. Unfortunately, this is not the case as shown by the following
example [Cabalar, 2011].

Example 8.8. Let us consider a DLPOD P consisting of rules r1 = pub × (cinema ∨ tv) ←
not sunny and r2 = tv. Then the ODNF of r1 is (pub× cinema) ∨ (pub× tv) ← not sunny

10 An overview about DLPODs can be found in Chapter 6, Section 6.4.2.
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obtained by application of rewriting rule (i).11 Then, P has the following four split pro-
grams:

P1 =

{
pub ∨ pub ← not sunny

tv ← >

}
P3 =

{
cinema ∨ pub ← not sunny ∧ not pub

tv ← >

}

P2 =

{
pub ∨ tv ← not sunny ∧ not pub

tv ← >

}
P4 =

{
cinema ∨ tv ← not sunny ∧ not pub

tv ← >

}

The DLPOD P has three valid answer sets, since M1 = {pub, tv}, M2 = {tv}, M3 =

{cinema, tv} are the answer sets of its split programs. Instead, under LPODs+ semantics
the only admissible answer sets are M1 and M2.

Although the DLPODs semantics can generally yield more answer sets than the LPODs+

semantics, some solutions under DLPODs semantics look rather counterintuitive. For in-
stance, answer set M3 in the above example satisfies the second choice with both literals
even if the regular disjunction ∨ becomes satisfied when any of its disjuncts are true. An-
other counterintuitive example of the DLPODs semantics can be given by a program of the
form: {r1 = pub ∨ (cinema× tv) ← not sunny, r2 = tv}. In such a case, {pub, tv} is an ad-
missible answer set under DLPODs semantics, even if once tv is true and we do not choose
cinema, it is clear that (cinema × tv) holds and there is no clear reason to make pub true.
Also in this case, the counterintuitive solution {pub, tv} is not admissible under LPODs+

semantics. The reason for this discrepancy is that rewriting rule (ii)12, which is employed
in DLPODs, is not allowed in our setting because it leads to pairs of formulas which are not
equivalent. In fact, how the × operator irregularly behaves w.r.t. some distributive proper-
ties of conjunction and disjunction can be checked. In particular, × distributivity w.r.t. con-
junction is not satisfied for the following pair of formulas (A× B) ∧ C, (A× B) ∧ (A× C),
while distributivity w.r.t. disjunction only holds for the following formulas A × (B ∨ C),
(A× B) ∨ (A× C) (as formally studied in [Cabalar, 2011]).

ASO has been proposed by Brewka et al. in [Brewka et al., 2003] as a decoupled ap-
proach for representing and handling preferences in logic programming.13 Our approach
differs from ASO programs, since in the latter, answer set generation and comparison are
separated. Then, the preference handling is independent of the type of program used for
the answer set generation. In fact, in ASO programs preference rules have no role in gener-
ating answer sets; while, in our approach, preference rules affect which sets are and are not
answer sets.

Among quantitative approaches to preference specification, the work of Costantini et
al. [Costantini and Formisano, 2009], in which an extension of ASP is designed to model
quantitative resources and to enable the specification of non-linear preferences (both in the
heads and in the bodies), is worth mentioning. This approach has also been applied to pure

11 a× (b ∨ c) = (a× b) ∨ (a× c).
12 (a ∨ b)× c = (a× c) ∨ (b× c).
13 An overview about ASO program can be found in Chapter 6, Section 6.4.3.
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ASP in order to capture weight constraints with preferences [Costantini and Formisano,
2011].

Finally, other noticeable approaches, treating the problem of conditional (qualitative)
preference specification, are the works in the possibility theory [Benferhat et al., 2004, 2001;
Bosc et al., 2010] and in the CP-nets [Boutilier et al., 2004; Wilson, 2004] settings. Further-
more, for a more general overview about preferences in AI, we refer to [Domshlak et al.,
2011; Kaci, 2011].

8.6 Discussion and Concluding Remarks

In this chapter, we have defined the syntax and the semantics of Nested Logic Programs
with Ordered Disjunction (LPOD+). LPODs+ is a logic programming framework that al-
lows the specification of nested conditional preference expressions. The LPODs+ syntax
is based on formulas built from connectives {∨,∧, not} plus an ordered disjunction con-
nective × which was first introduced in QCL and then used in LPODs. As a result, rules
in LPODs+ are more general than rules which can be specified in related approaches of
qualitative context-dependent preferences between literals such as LPODs and DLPODs.

We have shown how the LPODs+ semantics can be defined in a concise way (Defini-
tions 8.4, 8.5 and 8.6) and how it can offer an alternative characterization of the LPODs
semantics (which is based on split programs). Indeed, when an OD+-program syntacti-
cally corresponds to an LPOD, the LPODs and LPODs+ semantics coincide (Proposition
8.2). Moreover, when the formulas of an OD+-program are × free, the LPODs+ semantics
coincide with the semantics of nested logic programs (Proposition 8.1). As LPODs+ sup-
ports the specification of complex formulas in the head of a rule, we have characterized
the satisfaction degree of an answer set w.r.t. a nested ordered disjunction rule (Definition
2.6) by means of a recursive optionality function (Definition 8.7). The optionality function
generalizes the satisfaction degree defined for LPODs (Proposition 8.3). The answer sets
of an OD+-program are compared by means of a comparison criterion that generalizes
the Pareto-based LPODs criterion. As a consequence, our approach generalizes the LPODs
framework in a proper way.

Considering the computation of the LPODs+ semantics, we have designed a translation
procedure for inferring the answer set of an OD+-program by inferring the answer sets of
its equivalent disjunctive logic program (Theorem 8.1). This is an important result, since
the complexity added at the syntactic level does not interfere with the computation of the
LPODs+ semantics whose complexity class stays in the complexity class of disjunctive logic
programs, i.e., ΣP

2 . An implementation design for a tester program for the computation of
the optimal answer set of an OD+-program has also been described.

To summarize, by defining the LPODs+ framework, we have put the basis for extend-
ing the LPPODs framework, and, in principle, the user preference handling we adopted in
Chapter 10. Indeed, an implementation of the LPODs+ framework can support the specifi-
cation of more complex preference expressions. This is a desired feature to add in a context-
aware system such as ICD which can require to represent more complex user preferences.
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Qualitative Decision Making Under Uncertainty

The formulation of classical decision theory relies on a probabilistic framework. The rank-
ing of decisions is done according to the maximization of an expected utility function in
terms of probabilities, modeling uncertainty about states, and utilities, modeling prefer-
ences over consequences of these decisions. Although this classical approach is satisfactory
in economics frameworks, new decision making scenarios which require a more qualitative
handling of information, have shifted the paradigm of decision theory from a quantitative
to a qualitative representation of uncertainty and preferences. As such, qualitative decision
making frameworks have appeared in the AI literature.

The chapter is organized as follows. After introducing some basic knowledge about
classical decision theory and introducing some of the motivations behind qualitative deci-
sion making (Section 9.1), in Section 9.2, we present the possibilistic semantics for making
an optimal decision in terms of a pessimistic and an optimistic criteria. In Section 9.3, the
classical and possibilistic logic views of a decision problem and a decision making prob-
lem under uncertainty are described. Section 9.4 overviews some logic programming ap-
proaches for modeling qualitative decision. Finally, in Section 9.5, we discuss the need of a
different logic programming methodology, closer to possibilistic logic, for modeling deci-
sion problems under uncertainty and for computing optimal decisions in the sense of the
possibilistic criteria.

9.1 Classical Decision Theory

Decision making, in its basic instance, can be formulated as the problem of selecting an
optimal decision among the possible ones, taking into account the consequences decisions
can produce and the preferences expressed about the consequences themselves.

More formally, in a decision problem, given a set S of states of the world and a set X
of consequences, a decision d is represented by a function d from S to X. Preferences among
consequences are modeled by an utility function u from X to a numerical scale U, where U
represents a preference scale.

In this decision process, uncertainty can usually appear in different stages: either the de-
cision functions are precisely defined, but the real situation is not fully known; or the real
situation is known, but the consequences of decisions are not. Therefore, decision making
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frameworks able to deal with uncertainty have been proposed [von Neumann and Mor-
genstern, 1944; Savage, 1972]. Classical approaches to decision making under uncertainty
(DMU) assume that uncertainty is handled by means of a probabilistic approach. For in-
stance, if a probability distribution p on the set of situations is assumed to be known, and a
numerical utility u is assigned to consequences, then decisions can be ranked according to
an expected utility function defined as (finite case):

u(d) = ∑
s∈S

p(s)u(d(s)) (9.1)

According to 9.1, a decision d is strictly preferred to a decision d′ if and only if u(d) >

u(d′). The ranking of decisions according to the expected utility of the consequences of
these decisions was a proposal made by Neumann and Morgenstern [von Neumann and
Morgenstern, 1944] in the 1950’s. Later on, Savage [Savage, 1972] proposed an axiomatic
framework of a theory of subjective expected utility, in which only a decision rule had a
quantitative nature, while preferences and uncertainties were derived from a total ordering
of decisions.

However, these classical approaches have several limitations [Doyle and Thomason,
1999]. First, an expected utility approach needs numerical probabilities for each state and
numerical utilities for all possible consequences. Unfortunately, such functions and distri-
butions are sometimes not always directly accessible or they are difficult to obtain. Then,
since preferences and knowledge are often human-oriented, a qualitative representation
of information is more adequate than a quantitative one as assumed in classical decision
theory. On the other hand, the emergence of new information technologies has generated
many new decision problems involving intelligent systems and it was not clear that a clas-
sical decision theory approach, which was developed in the framework of economics, was
fully adapted to these new problems. The above limitations and new decision making sce-
narios fostered the appearance of several frameworks of qualitative decision making.

9.2 Qualitative Decision Making

Qualitative decision making under uncertainty (DMU) relies only on a qualitative repre-
sentation of uncertainty and preferences. As such, a decision problem is formulated in a
qualitative way, in which knowledge and preferences have the form of human-like expres-
sions. Decision rules for choosing among decisions no longer relies on probability theory
nor numerical utility functions [Doyle and Thomason, 1999]. However, the term qualita-
tive decision making can refer to more than one kind of representation. Several qualitative
decision making frameworks have been proposed in the AI literature including [Boutilier,
1994; Tan and Pearl, 1994a,b; Dubois and Prade, 1995; Bonet and Geffner, 1996; Brafman
and Tennenholtz, 1996]. Among them, some works consider all-or-nothing notions of util-
ity and plausibility [Bonet and Geffner, 1996], while other works still use sets of integers
to describe rough probabilities or utilities [Tan and Pearl, 1994a,b]. In the following, we
describe the possibilistic approach for qualitative decision in which a commensurateness
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hypothesis between uncertainty and utility scales is assumed. We also point out others ap-
proaches which relax this assumption.1

9.2.1 Possibilistic Semantics of Qualitative Decision

A purely possibilistic approach to qualitative DMU has been proposed in [Dubois et al.,
2001; Dubois and Prade, 1995]. According to this approach, preferences and uncertainty
are graded on ordinal linearly ordered scales which are commensurate. In particular, two
sets of postulates for qualitative decision have been proposed that turn to be respectively
equivalent to the maximization of a pessimistic criterion and of an optimistic one [Dubois
et al., 2001; Dubois and Prade, 1995]. These two criteria are respectively estimating the
necessity and the possibility that a sufficiently satisfactory state is reached.

When uncertainty and preferences are matters of degrees, possibility distributions,
which map a set of interpretations to a scale, are a convenient way for expressing com-
plete pre-orderings. In particular, uncertain knowledge and preference can be represented
in terms of two different possibility distributions, π and µ, which respectively map the set
of states S and the set of consequences X to a scale S [Dubois et al., 2001; Dubois and Prade,
1995]. The scale S is made of n + 1 levels α1 = 1 > α2 > . . . > αn > αn+1 = 0. Certainty
and priority degrees are commensurate by an order reversing map n of scale S such that
n(αi) = αn+2−i for i = 1, . . . , n + 1.

The intuitive reading behind the two possibility distributions is that: the higher π(s),
the more plausible d as being the real state of the world; the greater µ(x), the more accept-
able x as a consequence. Therefore, the utility of a decision d whose consequence in state s
is x (for all states s) can be evaluated by combining the possibilities π(s) and utilities µ(x)
in a suitable way. In this setting, a pessimistic and an optimistic criteria which evaluate the
goodness of a decision d have been proposed in the literature:

u∗(d) = min
s∈S

max(n(π(s)), µ( f (s))) (9.2)

u∗(d) = max
s∈S

min(π(s), µ( f (s))) (9.3)

where n is the order reversing mapping defined above.
Maximizing u∗(d) means to look for a decision d whose highly plausible consequences

are among the most preferred ones. This pessimistic utility is small as soon as it exists a
possible consequence of d which is highly plausible and bad w.r.t. the preferences. The
pessimistic criterion corresponds to a risk-averse attitude. On the other hand, the other
utility function u∗(d) corresponds to an optimistic, risk-prone, attitude, since its value is
high as soon as there exists a possible consequence of d which is both highly plausible and
highly preferred.

1 For a general discussion about qualitative decision theory from different perspectives, we refer to
[Doyle and Thomason, 1999].
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9.2.2 Other Approaches

Boutilier proposed a nonmonotonic logic based on possible worlds semantics which allows
to represent and reason with qualitative probabilities and preferences [Boutilier, 1994]. Ac-
cording to this logic, conditional defeasible preferences of the form I(α | β), i.e., if α, then
ideally β, are given a semantics in terms of preference ordering on possible worlds. Since the
scales of normality and preference are incomparable, preferential inference of nonmono-
tonic reasoning can be exploited to make decisions on the basis of the most plausible states.

The case in which uncertainty and utility scales are incomparable was also explored in
the possibilistic logic setting [Dubois et al., 2002]. Under this assumption, a decision proce-
dure based on the likely dominance rule was drawn. Similar to nonmonotonic reasoning, this
rules assumes that one of the most normal situations compatible with the available infor-
mation prevails. As such, optimal decisions were made on the basis of the most plausible
states of the world. Although the commensurability hypothesis between uncertainty and
utility scales can be found too demanding, without this hypothesis, the obtained decision
rule is either not very decisive or it may lead to very risky decisions [Dubois et al., 2002].
Consequently, commensurateness is a requirement for effective decision rules.

Another noticeable approach is Brafman and Tenenholtz’s axiomatization of pessimistic
attitude to decision making [Brafman and Tennenholtz, 1996].

9.3 Modeling Qualitative Decision in Possibilistic Logic

In possibilistic logic [Dubois et al., 1994], a possibility distribution encodes the semantics
of a possibilistic logic base. A set of classical formulas can be gathered into several layers
according to their levels of certainty or priority. Then, the semantics of a possibilistic logic
base can be expressed by means of a function encoding an ordering on the set of possible
interpretations associated with the language. This ordering can either express certainty or
priority.

In this section, we will describe how qualitative DMU has been formulated in the pos-
sibilistic logic setting, in which knowledge and preferences are expressed in terms of strat-
ified knowledge bases. In particular, in [Dubois et al., 1999], it is shown how computing
a pessimistic and an optimistic utility (9.2 and 9.3) amounts to solve two maximization
problems.

First, the classical case, which shows how a decision problem can be stated in a way
similar to abductive diagnosis is presented.

9.3.1 Qualitative Decision in Propositional Bases

The logical view of a decision problem can be stated in the following way. Let K be the
knowledge base describing what is known about the world, D be the set of decision literals,
and P be another base describing goals delimiting preferred states of the world.

Then, a decision, defined as a conjunction d of decision literals such that:2

2 `CL denotes the logical consequence of classical logic.
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K ∧ d `CL P (9.4)

(with K ∧ d 6= ⊥) is for sure a good decision (if it exists), since it makes certain that all the
goals are satisfied. Looking only for such a decision corresponds to a cautious, pessimistic,
attitude.

A much more optimistic attitude would correspond to consider also potential decisions
d such that:

K ∧ d ∧ P 6= ⊥ (9.5)

which expresses that the possibility of satisfying all the goals remains open.
These two points of view can be extended to the case where K and P are possibilis-

tic logic bases [Dubois et al., 1994], i.e., when uncertainty and preferences are matters of
degrees.

9.3.2 Qualitative Decision in Stratified Propositional Bases

When uncertainty and preferences are matters of degrees, K is a set of more or less certain
pieces of knowledge and P is a set of goals with associated levels of priority. The certainty
and priority levels are supposed to belong to the same linearly ordered scale S and are
commensurate by means of the order reversing map n.

Then, given Kα as the set of formulas in K having certainty at least equal to α without
their certainty levels, and Pβ as the set of goals having a priority strictly greater than β

without their priority levels, the exact counterpart of the pessimistic and optimistic criteria
(expression 9.2 and 9.3), when the knowledge and the preferences are expressed under
the form of two possibilistic knowledge bases, have been shown in [Dubois et al., 1999] to
correspond to the following definitions:

Definition 9.1. The pessimistic utility u∗(d) of a decision d is the maximal value of α ∈ [0, 1] such
that

Kα ∧ d `CL Pn(α) (9.6)

Definition 9.2. The optimistic utility u∗(d) of a decision d is the maximal value of n(α) ∈ [0, 1]
such that

Kα ∧ d ∧ Pα 6= ⊥ (9.7)

with the convention max ∅ = 0. The intuition below u∗(d) is that we are interested in
finding a decision d (if it exists) such that Kα ∧ d `CL Pβ with α high and β low, i.e., such
that the decision d together with the most certain part of K entails the satisfaction of the
goals, even those with low priority. Taking β = n(α) requires that the certainty and priority
scales be commensurate. The optimistic utility can be understood in a similar way.

The computation of pessimistic and optimistic decisions has been explored in [Dubois
et al., 1999] in the context of Assumption Truth Maintenance Systems (ATMSs).
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9.4 Modeling Qualitative Decision in Logic Programming

There is not so much work in the logic programming literature addressing qualitative de-
cision problems. However, existing approaches [Brewka, 2005; Grabos, 2004] are based on
LPODs (Chapter 2, Section 2.2.4).

9.4.1 Answer Sets and Qualitative Decision Making

Brewka in [Brewka, 2005] proposed a general methodology for qualitative decision mak-
ing based on LPODs [Brewka et al., 2004b]. The basic idea is to encode the elements of
a decision making problem, i.e., generic knowledge about the states of the world, possible
decisions, their consequences and preferences, by means of an LPOD. According to this ap-
proach, generic knowledge, decisions, and consequences are modeled by extended normal
rules, while preferences are represented by ordered disjunction rules. In this way, solutions
to the decision problem correspond to those answer sets which are consistent with the en-
coded knowledge.

The use of ordered disjunction induces a partial order on the answer sets. Based on this
order, an order on the available decisions can be specified according to some comparison
criteria, e.g., cardinality, inclusion, or Pareto (Chapter 2, Section 2.2.4). However, in a deci-
sion making setting, it is not always sufficient to consider the most preferred answer sets
only. Indeed, this represents an extremely optimistic attitude. Moreover, uncertainty is not
explicitly represented and all states which belong to the answer sets are considered plausi-
ble. This means that no distinction between the degrees of plausibility of the states can be
made, and no further distinctions between the generated answer sets are possible.

For this reason, other selection strategies based on the order among the answer sets have
to be defined a posteriori in order to choose an optimal decision. For instance, an optimistic
selection strategy might reason from maximally preferred answer sets, choosing a decision
d over another decision d′ if the most preferred answer sets containing d are better than
the most preferred answer sets containing d′. Instead, a pessimistic selection strategy might
choose a decision whose worst outcome is most tolerable, i.e., reasoning from less preferred
answer sets and selecting a decision d over d′ if the least preferred answer sets containing
d are better than the least preferred answer sets containing d′.

9.4.2 Qualitative Model of Decision Making

In [Grabos, 2004], a generalization and extension of the work of Brewka [Brewka, 2005] is
presented. Similar to [Brewka, 2005], a decision making problem is modeled by means of
an LPOD, in which extended normal rules encode general knowledge about the world, de-
cisions and their consequences. The main difference relies on the use of ordered disjunction
rules. According to this approach, ordered disjunction rules represent two dimensions: the
plausibility about the states of the world (called belief rules) and the preferences over the
consequences of decisions.

The solutions of the decision problem have still the forms of answer sets of the LPOD
program, but answer sets can also be ranked according to the plausibility of states rather
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than only according to the preferences over the consequences. This allows to define differ-
ent selection strategies which can correspond to an optimistic and a pessimistic selection
criterion.

If a commensurability assumption between the plausibility and preference order is not
taken, then different attitudes can be used to select an optimal answer set and, conse-
quently, an optimal decision. When plausibility of states is assumed to be more important
than preferences, answer sets are compared on the basis of decisions with the most pre-
ferred consequences in the most likely states. On the contrary, answer sets are compared
on the basis of decisions with the highest degree of plausibility with the most preferred
consequence.

Instead, if a commensurability assumption between the plausibility and preference or-
der is assumed, then selection strategies which correspond to a pessimistic and an opti-
mistic criterion can be provided. A pessimistic optimal decision will be a decision made
among those answer sets whose decisions lead to the best among the worst consequences
of all decisions. On the contrary, an optimistic optimal decision will be a decision made
among those answer sets whose decisions lead to the highest plausible states among all the
most preferred consequences.

Although this approach looks closer to qualitative DMU than [Brewka, 2005], it lacks a
formal justification of the optimistic and pessimistic attitude. Indeed, answer sets selection
is based on empirical criteria.

9.5 Discussion

Existing ASP-based methodologies for handling qualitative DMU [Brewka, 2005; Grabos,
2004] amount to compile a decision problem as a logic program able to generate the space of
possible decision solutions and to specify an order between them by means of the ordered
disjunction connective×. Although such approaches are enough to cover decisions in com-
pletely certain environment, they become less effective when the knowledge is pervaded
with uncertainty.

The DMU problem with qualitative preferences and uncertainty has been studied in
the setting of possibility theory assuming a commensurateness hypothesis between the
level of certainty and the preference priority. As in classical utility theory, pessimistic and
optimistic criteria have been proposed and justified on the basis of postulates [Dubois et al.,
2001]. This approach has been adapted in the setting of possibilistic propositional logic in
which the available knowledge is described by formulas which are more or less certainty
true and the goals are described in a separate prioritized propositional base.

For this reason, it is interesting to look for a different logic programming methodol-
ogy, closer to possibilistic logic, for modeling decision problems and for computing op-
timal decisions in the sense of the possibilistic criteria. To this end, a logic programming
specification able to deal with necessity values (according to possibilistic logic) should be
considered. On the other hand, the similarity between decision and abduction problems,
as already stressed in [Sabbadin, 1998], is striking and logic programming can be also used
to model abduction problems [Eiter et al., 1999; Brewka, 2006]. In particular, in [Brewka,
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2006] it is shown how LPODs can provide an elegant modeling of abduction problems.
Therefore, it is natural to try to model decision making problems in terms of abduction and
by means of LPODs. When decisions are matters of uncertainty and preferences degrees,
like it happens in possibilistic logic, the possibilistic extension of LPODs, Logic Programs
with Possibilistic Ordered Disjunction (presented in Chapter 5) can be used to handle both
a knowledge base pervaded with uncertainty and a prioritized preference base. Then, a
logic programming counterpart to the computation of the possibilistic decision criteria can
be obtained by applying both a classic and a possibilistic ASP-based methodology. This
methodology is proposed in Chapter 10.



10

An ASP-based Methodology for Computing Decision Under

Uncertainty

The capability of computing decision under uncertainty represents a desirable and essen-
tial feature in intelligent systems that assist users in taking decisions. Unfortunately, the
computation of an optimal decision is not an easy task. Indeed, it amounts to find a good
tradeoff between the uncertainty about the states of the world and the preferences about
the consequences of a decision.

The formalization of qualitative DMU has been a hot investigation topic for a long time.
Several logic-based frameworks have been proposed in the literature such as the works in
[Boutilier, 1994; Dubois and Prade, 1995; Brafman and Tennenholtz, 1996]. In particular,
possibilistic logic offered a qualitative framework for modeling decision under uncertainty
[Dubois and Prade, 1995]. In this setting, pessimistic and optimistic decision criteria have
been formally justified.

On the other hand, not too much work can be found in the logic programming liter-
ature. The most noticeable approaches are the LPODs-based proposals in [Brewka, 2005;
Grabos, 2004]. Although such approaches can capture preferences, they lack a satisfactory
handling of uncertainty.1 To this end, Possibilistic Answer Set Programming (PASP) can
offer a qualitative framework for handling uncertain information. As a consequence, it is
reasonable to think that the LPPODs framework, the possibilistic extension of LPODs, can
be employed for the computation of optimal decisions under uncertainty.2 Unfortunately,
LPPODs cannot be used in a direct way. First, LPPODs handles uncertainty and preferences
together, whereas in decision making uncertain knowledge and prioritized preferences are
handled in two different knowledge bases. Secondly, uncertainty and preference degrees
must be commensurate in a proper way in order to provide effective decision rules. These
issues suggest to look for an alternative LPPODs-based construction.

In this chapter, we present an ASP-based methodology for modeling qualitative DMU
and for computing an optimal decision in the sense of the possibilistic criteria. In offering
the logic programming counterpart to the computation of the decision criteria, we formu-
late qualitative DMU in terms of abduction. In this way, we can handle both a knowledge
base pervaded with uncertainty and a prioritized preference base. Concerning the compu-
tation of the decision criteria, we will see that both a classic and a possibilistic ASP-based

1 For this discussion, please refer to Chapter 9.
2 The LPPODs framework has been presented in this document in the context of nonmonotonic

reasoning under uncertainty (see Chapter 5).
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methodology can be defined. Throughout the chapter, we will use the following running
example to exemplify our approach:

Example 10.1. An agent is supposed to know that (i) if I have an umbrella then I will be not wet;
if it rains and I do not have an umbrella, then I will be wet; and typically if it is cloudy it will rain
(this rule is uncertain) ii) it is known that the sky is cloudy, and iii) being not wet is more
important than not carrying an umbrella. The problem then is to decide whether or not to
take an umbrella.

The chapter is organized as follows. In Section 10.1, we address the decision problem
in ASP by proposing a modeling based on abduction. To this end, we present a methodol-
ogy to compute optimal minimal inclusion-set decisions when knowledge is fully certain
and preferences are all-or-nothing. In Section 10.2, we cope with the general case, i.e., when
certainty and preferences are matters of degrees. We propose a classic and a possibilistic
ASP-based methodology based on the LPPODs framework for computing optimal deci-
sions and utility values. In Section 10.3, we compare the proposed approach to previous
works. Finally, in Section 10.4, we present some concluding remarks and discussions.

10.1 Modeling Decision Making in ASP

Similarly to what happens in the logical view of qualitative decision making (see Chapter
9), we assume that knowledge about the world and preferences are separated. Considering
this separation, the similarity between decision making and abduction is striking [Sab-
badin, 1998]. Then, it is natural to want to model qualitative decision making in terms of
abduction.

In logic programming, several abductive frameworks [Kakas et al., 1992; Eiter et al.,
1997; Denecker and Kakas, 2002] and several ways for computing abduction problems have
been proposed [Eiter et al., 1999; Brewka, 2006]. A framework of abductive logic program-
ming was established and made popular by the survey paper [Kakas et al., 1992]. More
recently, some other abductive frameworks have been proposed [Eiter et al., 1999; Brewka,
2006]. For instance, Eiter et al. [Eiter et al., 1999] has modeled abduction in the context of
disjunctive logic programs (and the DLV system), while Brewka [Brewka, 2006] has shown
an encoding by means of LPODs.

10.1.1 Abduction and LPODs

According to [Eiter et al., 1999; Brewka, 2006], an abductive framework is a triple 〈P, H, O〉
in which P is a logic program, H is a set of facts, referred to as hypotheses, and O is a set of
literals, referred to as observations. Generally speaking, abduction is the process of generat-
ing explanations for a set of observations. Then, a set ∆ ⊆ H is a minimal explanation of O
w.r.t. P if there exists an answer set of P ∪ ∆ which contains O (credulous reasoning).3 An
explanation ∆i is minimal, if for every other explanation ∆j (i 6= j) of O, ∆j 6⊂ ∆i holds.

3 In the literature, some definitions of abduction are based on cautious reasoning, i.e., O must be
contained in all answer sets of P ∪ ∆.



10.1 Modeling Decision Making in ASP 149

Therefore, in logic programming, an abduction problem is cast in the problem of finding
a minimal set ∆ ⊆ H such that P ∪ ∆ |=c O.4 Brewka [Brewka, 2006] has shown that, given
an abduction problem 〈P, H, O〉, an explanation for O can be computed via the following
construction:

Pabd(P, H, O) = P∪{← not o | o ∈ O}∪{¬ass(h)× ass(h) | h ∈ H}∪{h← ass(h) | h ∈ H}

where ass(h) reads h is assumed. Using the above construction, it can be proved that the
set of explanation literals belonging to a consistent maximally preferred answer set of an
LPOD corresponds to a (minimal) explanation for the abduction problem. This result was
formally captured by the following proposition.

Proposition 10.1. [Brewka, 2006] Let H and O be sets of literals and let P be a logic program. ∆
is an explanation for O given P and H iff there exists a consistent maximally preferred answer set
M of Pabd(P, H, O) such that ∆ = {h ∈ H | ass(h) ∈ M}.

In principle, several minimal explanation sets may exist. It can be observed that the
minimality condition is guaranteed by the way in which × rules in Pabd(P, H, O) are con-
structed.

10.1.2 Fully Certain Knowledge and All-or-nothing Preferences

In the following, we assume that the knowledge about the world is encoded by an extended
positive logic programs and preferences by singleton literals.5 Then, we define:

Definition 10.1. A decision making problem DM is represented as a tuple 〈K, D, Pre f 〉 where

• K is an extended positive logic program representing the knowledge about the world,
• D = {d1, . . . , dm} is the set of decision literals, and
• Pre f = {p1, . . . , pn} is the set of goal or preference literals.

Example 10.2. Let us consider the decision problem in Example 10.1 without any uncer-
tainty and keeping all the goals as equally important. By denoting taking an umbrella by u,
not taking an umbrella by ¬u, being wet by w, not being wet by ¬w, it rains by r, and it is cloudy
by c, the decision problem can be modeled as follows:

K =


r1 : ¬w ← u.
r2 : w ← r,¬u.
r3 : r ← c.
r4 : c ← >.

 D =
{

u, ¬u
}

Pre f =
{
¬w, ¬u

}

As in the case of the logical view of a decision problem (see Chapter 9, Section 9.3.1), we
can define optimal decisions according to a pessimistic and an optimistic criterion.

4 |=c has been formally introduced in Chapter 2, Section 2.1.3.
5 A possible extension will be to consider preferences as propositional formulas and to extend |=c to

any propositional formula like it happens in ASO programs [Brewka et al., 2003].
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When K expresses completely certain knowledge and Pre f are all-or-nothing, optimal
decisions, according to a pessimistic point of view, are decisions that, in conjunction with
the knowledge, lead to the satisfaction of all the preferences. Based on the above definitions,
the pessimistic criterion can be formulated as follows.

Definition 10.2. Given a DM = 〈K, D, Pre f 〉, a pessimistic optimal decision is a minimal set of
decision literals ∆ ⊆ D such that K ∪ ∆ |=c Pre f .

In general, more than one minimal set of decisions may exist for a set of preference
literals Pre f . Therefore, we introduce the definition of label of Pre f .

Definition 10.3. Given a DM = 〈K, D, Pre f 〉, the label of Pre f , denoted by labelK(Pre f ), is the
set of all ∆i ⊆ D minimal for set-inclusion such that K ∪ ∆i |=c Pre f .

As far as an optimistic point of view is concerned, an optimistic optimal decision is a set
of decision literals ∆ ⊆ D such that ∆ is consistent with the knowledge and the preferences.
The optimistic criterion can be defined as:

Definition 10.4. Given a DM = 〈K, D, Pre f 〉, an optimistic optimal decision is a minimal set of
decision literals ∆ ⊆ D such that K ∪ ∆ ∪ Pre f is consistent.

Please observe how the above definition is less restrictive than the pessimistic one. It
only requires that K ∪ ∆ ∪ Pre f is consistent.

10.1.3 Computation of Decisions

Based on the above modeling and on the abduction modeling in Section 10.1.1, the compu-
tation of an optimal decision can be done translating a decision making problem DM into
an LPOD. As we will see, pessimistic and optimistic decision criteria require a different
construction.

Computation of Pessimistic Optimal Decisions

Let us start with the computation of the pessimistic criterion. To this end, we define the
following translation where the main construction is borrowed from [Brewka, 2006].

Definition 10.5. Given a DM = 〈K, D, Pre f 〉, a decision ∆ for DM can be computed via an
LPOD Pdm(〈K, D, Pre f 〉) = K ∪ {← not p | p ∈ Pre f } ∪ {¬ass(d)× ass(d) | d ∈ D} ∪ {d ←
ass(d) | d ∈ D}, where ass(d) reads d is assumed.

The computation of an optimal pessimistic decision is shown in Algorithm 5. The algo-
rithm accepts a decision making problem DM and returns the label of Pre f together with
its pessimistic utility value. The behavior of the algorithm can be explained as follows.

The abstract DM is converted into an LPOD Pdm according to the method decision

MakingToLPOD(DM) which implements Definition 10.5. In the resulting LPOD Pdm, the
use of ordered disjunction rules generates all the possible combinations of decisions, while
the use of constraints eliminates those answer sets in which preferences are not satisfied.
As such, once the answer sets of Pdm are computed (SEMLPOD(Pdm)), the optimal set of
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Algorithm 5 computePessimisticDecisions(DM) : 〈labelK(Pre f ), u∗〉

Input:
{

A DM = 〈K, D, Pre f 〉

Output:

{
labelK(Pre f ) : optimal decisions
u∗ : pessimistic utility

labelK(Pre f )← {}; u∗ ← 0;
Pdm ← decisionMakingToLPOD(DM)
if (SEMLPOD(Pdm) 6= {}) then

u∗ ← 1
for all Mi ∈ maxPre f erredAS(SEMLPOD(Pdm)) do

∆i ← getDecisionLiterals(D, Mi)
labelK(Pre f )← labelK(Pre f ) ∪ ∆i

end for
end if
return 〈labelK(Pre f ), u∗〉

decisions (getDecisionLiterals(D,M)) which are minimal (labelK(Pre f )) belongs to
the most preferred answer(s) set only (maxPreferredAS(SEMLPOD(Pdm))). If Pdm does
not have any answer sets, then the set of decision is empty and its utility is equal to 0.

Example 10.3. Let us consider the DM in Example 10.2 and its computation with Algorithm
5. The function decisionMakingToLPOD(DM) generates the following LPOD

Pdm =



r1 : ¬w ← u. r6 : ¬ass(¬u)× ass(¬u) ← >.
r2 : w ← r,¬u. r7 : u ← ass(u).
r3 : r ← c. r8 : ¬u ← ass(¬u).
r4 : c ← >. r9 : ⊥ ← not ¬w.
r5 : ¬ass(u)× ass(u) ← > r10 : ⊥ ← not ¬u.


It can be checked that, according to the LPODs semantics (see Chapter 2, Section 2.2.4),

the program Pdm does not have any answer sets. In fact, all the preferences cannot be sat-
isfied. Therefore, the set of best decisions is empty and the pessimistic utility is equal to
0.

More generally, the following result holds.

Proposition 10.2. Let DM = 〈K, D, Pre f 〉 be a decision making problem and let Pdm be the LPOD
generated by Algorithm 5. Then, ∆ ∈ labelK(Pre f ) is an optimal pessimistic decision if and only
if there exists a consistent maximally preferred answer set M of Pdm such that ∆ = {d ∈ D |
ass(d) ∈ M}.

Computation of Optimistic Optimal Decisions

As far as the optimistic criterion is concerned, Algorithm 5 can be modified to provide the
computation of the optimistic utility in a straightforward way. It amounts to replace the
function decisionMakingToLPOD(DM) with the function decisionMakingToLPOD’

(DM) which modifies Definition 10.5 in the following way:
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Algorithm 6 computeOptimisticDecision(DM) : 〈D, u∗〉

Input:
{

A DM = 〈K, D, Pre f 〉

Output:

{
D : optimal decisions
u∗ : optimistic utility

D ← {}; u∗ ← 0;
Pdm′ ← decisionMakingToLPOD′(DM)
if (SEMLPOD(Pdm′) 6= {}) then

u∗ ← 1
for all Mi ∈ maxPre f erredAS(SEMLPOD(Pdm)) do

∆i ← getDecisionLiterals(D, Mi)
D ← D ∪ ∆i

end for
end if
return 〈D, u∗〉

Definition 10.6. Given a DM = 〈K, D, Pre f 〉, a decision ∆ for DM can be computed via an
LPOD Pdm′(〈K, D, Pre f 〉) = K ∪ {p ← > | p ∈ Pre f } ∪ {¬ass(d)× ass(d) | d ∈ D} ∪ {d ←
ass(d) | d ∈ D}, where ass(d) reads d is assumed.

Based on the above definition, we can introduce Algorithm 6 for computing an optimal
decision according to an optimistic criterion.

The main difference with previous Definition 10.5 is in the treatment of the preferences.
Indeed, in the optimistic case, preferences are added as facts rather than constraints rules.
This expresses that the possibility of satisfying all the goals remains open. Consequently,
the existence of an optimal decision depends whether the generated LPOD is consistent or
not.

Example 10.4. Let us consider the DM in Example 10.2 and its computation with Algorithm
6. The generated LPOD for computing an optimistic optimal decision corresponds to:

Pdm′ =



r1 : ¬w ← u. r6 : ¬ass(¬u)× ass(¬u) ← >.
r2 : w ← r,¬u. r7 : u ← ass(u).
r3 : r ← c. r8 : ¬u ← ass(¬u).
r4 : c ← >. r9 : ¬w ← >.
r5 : ¬ass(u)× ass(u) ← > r10 : ¬u ← >.


In this case SEMLPOD(Pdm′) = {}. Then, the set of optimal decision is empty and the opti-
mistic utility is 0.

Remarks

Concerning the complexity of the computation of the pessimistic and optimistic optimal
decision, we can observe the following. Since the employed ASP formalism of LPODs offers
a complexity of ΣP

2 [Brewka et al., 2004b], we can bound the complexity of Algorithms 5
and 6 to the same complexity class.
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Similar to what happens in possibilistic logic, these criteria can be extended to the case
where K is a possibilistic logic program and Pre f is a set of possibilistic literals encoding
prioritized goals, i.e., when uncertainty and preferences are matters of degrees.

10.2 Modeling Decision Making Under Uncertainty in ASP

In stratified propositional bases, i.e., when K is a set of more or less certain pieces of knowl-
edge and P is a set of goals with associated levels of priority, the certainty and priority
levels are supposed to belong to the same linearly ordered scale S and to be commensurate
according to an order reversing map n.

Therefore, in order to be able to model qualitative DMU in a logic programming setting,
we have to consider a specification which allows one to associate certainty and priority
degrees to logic program rules and literals respectively. Since we follow the same principle
behind the modeling adopted in Section 10.1, we will consider LPPODs which offers an
extended version of LPODs with possibilistic logic (see Chapter 5).

In the following, we show how to use LPPODs to model qualitative DMU and to com-
pute optimal decisions based on two alternative but equivalent computation methodolo-
gies.

10.2.1 Uncertain Knowledge and Prioritized Preferences

When knowledge about the world is uncertain and preferences are prioritized, definitions
in Section 10.1.2 can be extended in the following way.

Definition 10.7. A decision making problem under uncertainty DMU is represented as a tuple
〈K, D, Pre f 〉 where,

• K is a possibilistic definite logic program representing the knowledge about the world,
• D is a set of decision literals, and
• Pre f = {((p1, β1) . . . , (pn, βn)} is a set of possibilistic literals, where βi ∈ S is the priority of

preference pi.

Several notations have to be introduced to deal with certainty and priority levels.
Let Kα denote the α-cut of K as Kα = {r∗ ∈ K | Nec(r) ≥ α}6, and let Pre fβ be the β-

cut of Pre f as Pre fβ = {(pi, βi)
∗ ∈ Pre f | βi ≥ β}. We also use the notations Kα and Pre fβ

(with α < 1 and β < 1, 1 being the top element of the scale) for denoting the set of rules and
the set of preferences with certainty and priority strictly greater than α and β respectively
(without certainty and priority degrees). In particular K0 = K∗ and Pre f0 = Pre f ∗ (0 being
the bottom element of the scale) where K∗ and Pre f ∗ denote the set of rules K and the set
of preferences Pre f without their certainty and priority levels respectively.

Example 10.5. Let us consider the decision problem in Example 10.1 with certainty levels
and prioritized goals. Then:

6 As seen in Chapter 5, Nec(r) denotes the necessity value α of a rule r and ∗ is the projection of a
rule r and a program P defined as r∗ = l0 ← l1, . . . , lm and P∗ = {r∗ | r ∈ P} respectively.
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K =


r1 = 1 : ¬w ← u.
r2 = 1 : w ← r,¬u.
r3 = λ : r ← c.
r4 = 1 : c ← >.

 D =
{

u, ¬u
}

Pre f =

{
(¬w, 1)
(¬u, δ)

}

where 0 < λ < 1 and 0 < δ < 1. In the example, certainty and priority degrees can be read
as follows: we are λ certain that when the sky is cloudy, it rains (rule r3 in K). Then, we do
not like to carry an umbrella, (¬u, δ), but we consider more important to be dry, (¬w, 1).

In the context of possibilistic logic, it has been proved that the pessimistic utility u∗(d)
of a decision d is the maximal value of α ∈ [0, 1] such that Kα ∧ d `CL Pn(α) (Definition 9.1).
Its counterpart in our approach can be formulated as:

Definition 10.8. Given a DMU = 〈K, D, Pre f 〉, a pessimistic optimal decision is a set of decision
literals ∆ ⊆ D that maximizes α such that Kα ∪ ∆ |=c Pre fn(α).

The above definition expresses the fact that a pessimistic optimal decision is computed
with the most certain part of K and that selected preferences, even those with low priority,
are satisfied.

Then, the label of a set of preferences can be defined as:

Definition 10.9. Given a DMU = 〈K, D, Pre f 〉, the label of Pre fn(α), denoted by labelKα(Pre fn(α)),
is the set of all ∆i ⊆ D minimal for set-inclusion such that Kα ∪ ∆i |=c Pre fn(α).

Concerning an optimistic attitude, the computation of an optimistic decision in possi-
bilistic logic amounts to find the maximum value of n(α) ∈ [0, 1] such that Kα ∧ d∧ Pα 6= ⊥
(Definition 9.2). Its counterpart in our approach can be formulated as:

Definition 10.10. Given a DMU = 〈K, D, Pre f 〉, an optimistic optimal decision is a set of decision
literals ∆ ⊆ D that maximizes n(α) such that Kα ∪ ∆ ∪ Pre fα is consistent.

The above definition expresses the fact that an optimistic optimal decision is a decision
that belongs to a consistent answer set in which the preferred literals are among the most
plausible ones.

Regarding the computation of a pessimistic optimal decision, there basically exist two
possible ways to proceed. The first one is based on successive computations of labels of
Pre f . It amounts to maximize α in applying α- and β-cuts (with β = n(α) ) to the knowl-
edge and preference base respectively (this means that the computation is reduced to the
classical case). The second one, as we will see, amounts to compute optimal values of α

according to an approach, closer to possibilistic logic inference, based on the LPPODs se-
mantics. The computation of an optimistic decision can be realized in a similar way.

10.2.2 Classical ASP-based Computation

Computation of Pessimistic Optimal Decisions

For the sake of computation of the pessimistic optimal decision we analyze different cases.
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Algorithm 7 computePessimisticDecisionsUU(DMU) : 〈D, u∗〉

Input:
{

A DMU = 〈K, D, Pre f 〉

Output:

{
D : the set of best pessimistic decisions
u∗ : the utility of the best pessimistic decisions

α, u∗ ← 0; D ← {}; f inish← f alse;
while (not f inish) do

{Inc(α) is a function changing the value of α into the immediately above value}
α← Inc(α)
labelKα(Pre fn(α))← computePessimisticDecisions(〈Kα, D, Pre fn(α)〉)
if (labelKα(Pre fn(α)) = {}) then

f inish← true
else

u∗ ← α
D ← labelKα(Pre fn(α))

end if
end while
return 〈D, u∗〉

In the case K is a set of rules associated with certainty degrees and Pre f are all-or-
nothing preferences, an optimal set of decision literals ∆ is the set of that allows to satisfy
any preference literal, considering only the totally sure rules in K1. However, such set may
not exist. Thus, the certainty level of K has to be considered. In terms of labels, the search of
∆ can be formulated as the optimization problem of maximizing α such that labelKα(Pre f )
is not empty. In this case, the pessimistic optimal utility corresponds to the level of α en-
countered.

In the case K is a set of fully certain rules and Pre f is a set of prioritized preferences, an
optimal set of decision literals ∆ is the set that allows to satisfy any preference literal, what-
ever its degree of priority is. Again, such decision may not exist. Then, the problem can be
formulated as the minimization problem of finding the smallest β such that labelK(Pre fβ) is
not empty, i.e., for which the degree of priority of the most important preference is low. In
such a case, the best pessimistic utility corresponds to n(β) (and for the commensurateness
hypothesis it amounts to maximize α).

In the most general case, i.e., when K contains certainty degrees and Pre f contains prior-
itized preferences, things get more complicated. In fact, in such a case, an optimal decision
is a decision that allows to satisfy the maximum number of preferences with the most cer-
tain rules of K. Therefore, the problem may be formulated as the problem of finding a set
of decisions ∆ with α as high as possible and β as small as possible. By commensurate-
ness hypothesis, the problem is converted in finding the maximum value of α such that
labelKα(Pre fn(α)) is not empty.

We are now able to propose an algorithm (Algorithm 7) for computing an optimal (pes-
simistic) decision for the general case. The algorithm is based on successive computations
of labels of Pre f which can be computed on the basis of Algorithm 5 (i.e., based on a classi-
cal ASP computation).
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The behavior of Algorithm 7 can be described as follows. Each time preferences belong-
ing to Pre fn(α) are satisfied, the set of potentially optimal decisions is updated by keeping
only the decisions that satisfy all the literals in Pre fn(α) considered so far. This is done,
first considering all program rules and highest labelled preferences. If such label is not
empty, then expectations are increased (Inc(α)) trying to satisfy less preferred preferences
by means of less knowledge. The procedure stops when a selected preference cannot be
satisfied.

Example 10.6. As seen in Example 10.5, K and Pre f contain two layers (both scales are com-
mensurate). First of all, according to function Inc(α), α is incremented to the lowest non-
null value, i.e., α = min{λ, n(δ)}. Whatever the relative positions of λ and δ, Kα = K∗. We
have the following cases:

λ > n(δ): then α = n(δ) and we have to compute labelK∗(Pre fδ). This means that Pre fδ =

{¬w}. Algorithm 5 will return the decision {u} as label for this preference since the
program7

P′dm =



r1 : ¬w ← u. r6 : ¬ass(¬u)× ass(¬u) ← >.
r2 : w ← r,¬u. r7 : u ← ass(u).
r3 : r ← c. r8 : ¬u ← ass(¬u).
r4 : c ← >. r9 : ⊥ ← not ¬w.
r5 : ¬ass(u)× ass(u) ← >.


has {¬w, u, ass(u), c, r,¬ass(¬u)} as its most preferred answer set. As a next step, α =

λ, thus Pre fn(λ) = {¬w,¬u}. But the computation of labelK∗(Pre f ∗) is found to be
empty (basically, it corresponds to the program built in Example 10.3). Therefore, the
set of best pessimistic decisions is in this case D = {u} with utility u∗ = n(δ).

λ < n(δ): then α = λ and we have to compute labelK∗(Pre fn(λ)). As n(λ) > δ, Pre fn(λ) =

{¬w}, and labelK∗(¬w) = {u} (indeed, the program above P′dm is constructed). A next
step is performed where α = n(δ) and labelKn(δ)

(Pre fδ) = {u} since the program P′dm\r3

(r3 is cut) has {¬w, u, ass(u), c,¬ass(¬u)} as its most preferred answer set.
We then have to perform a last step, where α = 1, but the computation of labelK1(Pre f ∗)
is equal to ∅. Therefore, the set of optimal decisions is in this case D = {u} with utility
u∗ = n(δ).

λ = n(δ): then α = λ = n(δ) and we have to compute labelK∗(Pre fδ) which is equal to the
computation of labelK∗(¬w) which returns {u}. Then a next step is performed where
α = 1 but labelK1(Pre f ∗) = ∅.

Therefore, the best pessimistic solution of the running example is always to take an
umbrella with utility n(δ).

Please observe that, in this case, the optimal pessimistic decision does not depend on
the exact value of λ and δ, and even not on their relative positions. However, in the general
case, only the positions of the priority and certainty levels matter.

7 Please observe that preference (¬u, δ) is cut. Consequently, it is not added to P′dm.
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Algorithm 8 computeOptimisticDecisionsUU(DMU) : 〈D, u∗〉

Input:
{

A DMU = 〈K, D, Pre f 〉

Output:

{
D : the set of best optimistic decisions
u∗ : the utility of the best optimistic decisions

α← 0;
D ← computeOptimisticDecision(Kα, D, Pre fα);
while (D = {}) and (α < 1) do

{Inc′(α) eliminates the least certain stratum remaining in K and Pre f }
α← Inc′(α)
D ← computeOptimisticDecision(Kα, D, Pre fα);

end while
return 〈D, n(α)〉

Computation of Optimistic Optimal Decisions

According to Algorithm 8, the computation of an optimistic optimal decision relies on
Algorithm 6 and it proceeds in the following way. First of all, we try to compute an op-
timistic decision w.r.t. K0 and Pre f0. If a decision is found, then the maximum utility, i.e.,
n(0) = 1 is returned. Otherwise, we keep on increasing the level of α until a decision con-
sistent with Kα and Pre fα is found (if it exists). The optimal optimistic utility is n(α).

Let us consider the behavior of Algorithm 8 in the computation of the optimal decision
and the optimistic utility in our running example.

Example 10.7. At the beginning, we try to compute an optimistic decision w.r.t. K0 and Pre f0.
Since K0 = K∗ and Pre f0 = Pre f ∗, the program built in Algorithm 8 is basically the same
as the program built in Example 10.4. Since this program is inconsistent, we proceed with
the next step. According to function Inc′(α), α = min{λ, δ}. We have the following cases:

λ > δ: then α = δ and we have to compute an optimistic decision w.r.t. Kδ and Pre fδ. This
means that Kδ = K∗ and Pre fδ = {¬w}. Algorithm 6 returns the decision {u} as an
optimal decision since the program:8

Pdm′ =



r1 : ¬w ← u. r6 : ¬ass(¬u)× ass(¬u) ← >.
r2 : w ← r,¬u. r7 : u ← ass(u).
r3 : r ← c. r8 : ¬u ← ass(¬u).
r4 : c ← >. r9 : ¬w ← >.
r5 : ¬ass(u)× ass(u) ← >.


has {¬w, u, ass(u), c, r,¬ass(¬u)} as its most preferred answer set. Therefore, the best
optimistic decision is {u} with utility u∗ = n(δ).

λ < δ: then α = λ and we have to compute an optimistic decision w.r.t. Kλ and Pre fλ. This
means that Kλ = (K\r3)

∗ and Pre fλ = {¬w,¬u}. Algorithm 6 returns the decision
{¬u} as an optimal decision since the program:9

8 Please observe that preference (¬u, δ) is cut. Consequently, it is not added to Pdm′ .
9 Please observe that r3 is cut. Consequently, it is not added to Pdm′ .
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Pdm′ =



r1 : ¬w ← u. r6 : ¬ass(¬u)× ass(¬u) ← >.
r2 : w ← r,¬u. r7 : u ← ass(u).

r8 : ¬u ← ass(¬u).
r4 : c ← >. r9 : ¬w ← >.
r5 : ¬ass(u)× ass(u) ← >. r9 : ¬u ← >.


is consistent (resp. inconsistent) when decision {¬u} (resp. decision {u}) is chosen.
Therefore, the best optimistic decision is {¬u} with utility u∗ = n(λ).

λ = δ: then α = λ = δ. We have to compute an optimistic decision w.r.t. Kλ and Pre fλ. This
means that Kλ = (K\r3)

∗ and Pre fλ = {¬w}. Algorithm 6 returns the decision {¬u}
and {u} as optimal decisions since the program:10

Pdm′ =



r1 : ¬w ← u. r6 : ¬ass(¬u)× ass(¬u) ← >.
r2 : w ← r,¬u. r7 : u ← ass(u).

r8 : ¬u ← ass(¬u).
r4 : c ← >. r9 : ¬w ← >.
r5 : ¬ass(u)× ass(u) ← >.


is consistent for both decisions {¬u} and {u}. Therefore, the best optimistic decisions
are {¬u} with utility u∗ = n(λ) and {u} with utility u∗ = n(δ).

According to the optimistic computation, optimistic optimal decisions are: 〈u, n(δ)〉 and
〈¬u, n(λ)〉. Therefore, the best decision in the optimistic case of this example depends on
the values δ and λ.

Remarks

Finally, we can observe that the complexity for the computation of a pessimistic and op-
timistic optimal decision, when certainty and preference are matters of degrees, is ΣP

2 . In-
deed, according to this classical ASP-based computation, Algorithm 7 and 8 both rely on a
computation based on LPODs.

10.2.3 Possibilistic ASP-based Computation

In the previous section, we have provided a method for computing pessimistic and opti-
mistic optimal decisions reducing the problem to a classical ASP computation. In general,
the computation of pessimistic and optimistic optimal decisions can also be realized by
means of an approach based on the LPPODs semantics.

Computation of Pessimistic Optimal Decisions

The computation of pessimistic optimal decisions based on PASP can be motivated by an
important result of possibilistic logic. This result is the following.

10 Please observe that r3 and r9 are cut. Consequently, they are not added to Pdm′ .
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Given a knowledge base K made of possibilistic formulas, i.e., K = {(ϕi, αi) | 1 ≤
i ≤ n}, proving a possibilistic formula (p, α) from K can be done in two equivalent ways:
according to possibilistic logic inference or according to classical logic inference. In fact, it
holds that K `PL (p, α) if and only if Kα `CL p, where Kα = {ϕ | (ϕ, β) ∈ K ∧ β ≥ α}, and
`PL and `CL are the possibilistic logic and classical inference respectively [Dubois et al.,
1994].

This property allows to use possibilistic logic inference to prove a set of prioritized pref-
erences (p1, β1), . . . , (pnβn) from a possibilistic knowledge base K and a decision d. In fact,
proving a preference belonging to a stratum βi amounts to check whether K ∧ (d, 1) `PL

(p, βi) which amounts to prove, by refutation, that K ∧ (d, 1) ∧ (p, 1) `PL (⊥, γ) with
γ ≥ βi.

In the following, we intend to mimic the described methodology above in the context
of possibilistic ASP. For this purpose, we first extend the notion of |=c to deal with sets of
possibilistic literals as:

Definition 10.11. Given a possibilistic logic program P and a set of possibilistic literals S, P |=p S
holds, if there exists a possibilistic answer set M of P such that S v M where the relation between
sets of possibilistic literals v is defined as:
S v M ⇐⇒ S∗ ⊆ M∗ ∧ ∀a, α, β, (a, α) ∈ S ∧ (a, β) ∈ M then α ≤ β.

Basically, the above definition is capturing the idea behind the weight weakening infer-
ence rule in possibilistic logic.11

We also extend Definition 10.5 to build an LPPOD given a qualitative DMU in the fol-
lowing way:

Definition 10.12. Given DMU = 〈K, D, Pre f 〉 and α ∈ S , an LPPOD for DMU can be built as
Pdmα

(〈K, D, Pre f 〉) = {r ∈ K | Nec(r) ≥ α} ∪ {1 : ¬ass(d)× ass(d) | d ∈ D} ∪ {1 : d ←
ass(d) | d ∈ D}.

Based on the above definitions and the property of possibilistic logic described above,
we are able to provide an LPPOD-based algorithm for computing the pessimistic optimal
decision and the pessimistic utility.

Algorithm 9 describes an LPPOD-based procedure to compute the set of pessimistic
decisions. Inc(α) is the function that returns the next level of α. At each iteration the ex-
pectation of satisfying as many preferences as possible given a level α is increased. Pdmα

is
constructed by a method decisionMakingToLPPOD(DMU,α) which implements Defini-
tion 10.12. Pdmα

is constructed by taking all the rules with certainty higher than the current
value of α. Preference satisfaction is checked by means of |=p. getDecisionLiterals al-
lows one to retrieve all (minimal) sets of decisions (D) which are able to satisfy preferences
contained in strata greater than n(α). The iteration keeps on until α has been maximized.

We exemplify the behavior of the algorithm by means of the following example.

Example 10.8. According to Inc(α), α = min{λ, n(δ)}. We have the following cases:

11 In possibilistic logic, for β ≤ α, (ϕ, α) `PL (ϕ, β).
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Algorithm 9 computePessimisticDecisionsUU(DMU) : 〈D, u∗〉

Input:
{

A DMU = 〈K, D, Pre f 〉

Output:

{
D : the set of best pessimistic decisions
u∗ : the utility of the best pessimistic decisions

D ← ∅; α, u∗ ← 0; f inish← f alse
while (not f inish) do

α← Inc(α);
Pdmα

← decisionMakingToLPPOD(DMU, α)
if Pdmα

|=p {(p, β) | (p, β) ∈ Pre f and β > n(α)} then
u∗ ← α;
D ← getDecisionLiterals(SEMLPPOD(Pdmα

), pβ)
else

f inish← true
end if

end while
return 〈D, u∗〉

λ > n(δ): then α = n(δ). This means that

Pdmn(δ)
=


r1 : 1 : ¬w ← u. r5 : 1 : ¬ass(u)× ass(u) ← >.
r2 : 1 : w ← r,¬u. r6 : 1 : ¬ass(¬u)× ass(¬u) ← >.
r3 : λ : r ← c. r7 : 1 : u ← ass(u).
r4 : 1 : c ← >. r8 : 1 : ¬u ← ass(¬u).


Pdmn(δ)

has two maximally preferred possibilistic answer sets, M1 = {(¬u, 1), (ass(¬u),
1), (c, 1), (r, λ), (w, λ), (¬ass(u), 1)} and M2 = {(u, 1), (ass(u), 1), (c, 1), (r, λ), (¬w, 1),
(¬ass(¬u), 1)}. The only preference to be considered is (¬w, 1). Then, Pdmn(δ)

|=p

(¬w, 1), since (¬w, 1) @ M2. Therefore, D = {u} and u∗ = n(δ). As a next step,
α = λ. Therefore, the preferences to be considered are {(¬w, 1)(¬u, δ)}. But Pdmn(δ)

6|=p

{(¬w, 1)(¬u, δ)}. The set of best pessimistic decisions is in this case D = {u} with
utility u∗ = n(δ).

λ < n(δ): then α = λ. As n(λ) > δ, the only preference to be considered is {¬w} and
Pdmλ

|=p (¬w, 1) (indeed, Pdmλ
is the same as the program above). A next step is

performed with α = n(δ). Pdmλ
\r3 (r3 is cut) has M1 = {(¬u, 1), (ass(¬u), 1), (c, 1),

(¬ass(u), 1)} and M2 = {(u, 1), (ass(u), 1), (c, 1), (¬w, 1), (¬ass(¬u), 1)} as its most
preferred possibilistic answer sets. Thus, Pdmλ

\r3 |=p (¬w, 1). We then have to perform
a last step with α = 1. Then, the preferences to be considered are {(¬w, 1)(¬u, δ)}.
But Pdmλ

\r3 6|=p {(¬w, 1)(¬u, δ)}. Therefore, the set of optimal decisions is in this case
D = {u} with utility u∗ = n(δ).

λ = n(δ): then α = λ = n(δ). The only preference to be considered is (¬w, 1). The LPPOD
Pdmn(δ)

built is the same as above. Then, Pdmn(δ)
|=p (¬w, 1), since (¬w, 1) @ M2. A next

step is performed with α = 1, but Pdmn(δ)
6|=p {(¬w, 1)(¬u, δ)}.

As a consequence, the pessimistic optimal decision isD = {u}with an utility u∗ = n(δ).
This agrees, as expected, with the label-based computation presented in Section 10.2.2.
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Algorithm 10 computeOptimisticDecisionsUU(DMU) : 〈D, u∗〉

Input:
{

A DMU = 〈K, D, Pre f 〉

Output:

{
D : the set of best optimistic decisions
u∗ : the utility of the best optimistic decisions

α← 0; D ← {};
Pdm′ ← decisionMakingToLPPOD(DMU, α)
for all (pi, βi) ∈ Pre f do

Pdm′ ← Pdm′ ∪ {βi : p← >}
end for
if ConsCutDeg(Pdm′) > 0 then

α← ConsCutDeg(Pdm′)
end if
if (SEMLPPOD(Pdm′α) 6= {}) then

for all Mi ∈ maxPre f erredAS(SEMLPPOD(Pdm′α)) do
∆i ← getDecisionLiterals(D, Mi)
D ← D ∪ ∆i

end for
end if
return 〈D, n(α)〉

Computation of Optimistic Optimal Decisions

Concerning the computation of an optimistic decision, we can observe the following. The
optimistic optimal criterion requires Kα ∧ d ∧ Pα to be logically consistent. If it is not the
case, consistency can be restored by trying to cut some knowledge contained below some
computed threshold.

In order to restore the consistency of an inconsistent possibilistic knowledge base, possi-
bilistic logic deletes the set of possibilistic formulas which are lower than the inconsistency
degree [Dubois et al., 1994].

Based on this inconsistency degree, a methodology for computing the optimistic opti-
mal decision can be defined in the possibilistic setting in a straightforward way. Indeed,
since when we compute an optimistic optimal decision, we are looking for the maximum
value of n(α) such that Kα ∧ d ∧ Pα is consistent, the inconsistency degree of Kα ∧ d ∧ Pα

corresponds to the value of the optimistic utility (the decision can be obtained by iterating
over all the decision contained in D).

By considering this idea, we can provide an alternative computation in the PASP setting.
First, the concept of consistency degree of a logic program should be considered. Nicolas et
al. [Nicolas et al., 2006] already defined the concept of α-cut for possibilistic logic programs
(see Chapter 2, Section 2.5). Based on this definition, we define its respective generalization
for our approach.

Definition 10.13. Let P be an LPPOD, then we define:

• Pα = {r ∈ P | Nec(r) > α}
• the consistency cut degree of P as
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ConsCutDeg(P) =

0 if P∗ is consistent

min{α | Pα is consistent} otherwise

Please observe that ConsCutDeg of an LPPOD identifies the minimum level of certainty
for which Pα is consistent.

Based on the above definition, Algorithm 10 computes the optimistic optimal decision
given a DMU according to a PASP-based computation. First of all, we build an LPPOD Pdm′

by means of the construction of Definition 10.12 and by adding all the preferences in Pre f
as possibilistic literals. If this possibilistic program is consistent, then the sets of decision
literals are retrieved and the maximum value for the optimal optimistic utility is returned.
Otherwise, the consistency degree of Pdm′ is computed. The consistency degree represents
the optimal optimistic utility n(α) and it is returned together with the corresponding sets
of decision literals.

Example 10.9. According to Algorithm 10, the computation of the DMU in Example 10.5
proceeds in the following way. ConsCutDeg(Pdm′) > 0 since Pdm′ is inconsistent. In such
a case, the next value of α to be considered is ConsCutDeg(Pdm′). We have the following
cases:

λ > δ: then ConsCutDeg(Pdm′) = δ and we have to build the program Pdm′δ
:12

Pdm′δ
=



r1 : 1 : ¬w ← u. r5 : 1 : ¬ass(u)× ass(u) ← >.
r2 : 1 : w ← r,¬u. r6 : 1 : ¬ass(¬u)× ass(¬u) ← >.
r3 : λ : r ← c. r7 : 1 : u ← ass(u).
r4 : 1 : c ← >. r8 : 1 : ¬u ← ass(¬u).

r9 : 1 : ¬w ← >.


which has {(¬w, 1), (u, 1), (ass(u), 1), (c, 1), (r, λ), (¬ass(¬u), 1)} as its most preferred
possibilistic answer set. Therefore, the best optimistic decision is {u} with utility u∗ =
n(δ).

λ < δ: then ConsCutDeg(Pdm′) = λ and we have to build the program Pdm′λ
:13

Pdm′λ
=



r1 : 1 : ¬w ← u. r5 : 1 : ¬ass(u)× ass(u) ← >.
r2 : 1 : w ← r,¬u. r6 : 1 : ¬ass(¬u)× ass(¬u) ← >.
r3 : λ : r ← c. r7 : 1 : u ← ass(u).

r8 : 1 : ¬u ← ass(¬u).
r9 : 1 : ¬w ← >. r10 : δ : ¬u ← >.


which has {(¬w, 1), (¬u, 1), (ass(¬u), 1), (c, 1), (¬ass(u), 1)} as its most preferred pos-
sibilistic answer set. Therefore, the best optimistic decision is {¬u} with utility u∗ =

n(λ).
λ = δ: then ConsCutDeg(Pdm′) = λ = δ and we have to build the program Pdm′λ

:14

12 Please observe that the rule δ : ¬u← > is cut.
13 Please observe that the rule λ : r ← c is cut.
14 Please observe that the rules λ : r ← c and δ : ¬u← > are cut.
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Pdm′λ
=



r1 : 1 : ¬w ← u. r5 : 1 : ¬ass(u)× ass(u) ← >.
r2 : 1 : w ← r,¬u. r6 : 1 : ¬ass(¬u)× ass(¬u) ← >.
r3 : λ : r ← c. r7 : 1 : u ← ass(u).

r8 : 1 : ¬u ← ass(¬u).
r9 : 1 : ¬w ← >.


which has {(¬w, 1), (¬u, 1), (ass(¬u), 1), (c, 1), (¬ass(u), 1)} and {(¬w, 1), (u, 1), (ass
(u), 1), (c, 1), (¬ass(¬u), 1)} as its most preferred possibilistic answer sets. Therefore,
the best optimistic decision are {¬u} with utility u∗ = n(λ) and {u} with utility
u∗ = n(δ).

Consequently, optimistic optimal decisions are {u} with an utility n(δ) and {¬u} with
an utility n(λ). This agrees, as expected, with the computation presented in Section 10.2.2.

Remarks

Concerning the complexity of the computation of the pessimistic and optimistic optimal
decision, we can observe the following. Since the employed formalism of LPPODs has
complexity ΣP

2 (see discussion in Chapter 5, Section 5.5), the computation of Algorithms
9 and 10 still belongs to the same complexity class.

10.3 Related Work

The treatment of qualitative DMU we have presented in this chapter is inspired by the work
in [Dubois and Prade, 1995] and it provides a syntactical counterpart to the semantical
treatment of plausibility states and utility function.

When the possibilistic semantics for qualitative decision is considered (see Chapter 9,
Section 9.2.1), optimal decisions are understood in terms of two possibilistic distributions
which rank-order interpretations: a distribution π which orders interpretations according
to their level of possibility (induced by the levels of certainty of the knowledge), and a util-
ity function µ which orders interpretations according to their level of satisfaction (induced
by the levels of priority). According to this semantical treatment, a pessimistic criterion
then is to look for a decision that makes all the less satisfied consequences hardly plausi-
ble. In [Dubois and Prade, 1995], it is shown how the semantical treatment of the example
presented in this chapter lead to the pessimistic utilities u∗(u) = n(δ) (and u∗(¬u) = 0).
The semantics of the optimistic criterion can be understood in a similar way.

Regarding logic programming, to the best of our knowledge, there are only few works
in the literature about modeling qualitative decision problems in ASP [Brewka, 2005; Gra-
bos, 2004]. These two approaches share the use the ordered disjunction connective × to
represent preferences and to rank-order different possible states of the world represented
as different answer sets. However, they differ in the way in which the uncertainty is han-
dled.

In [Brewka, 2005], uncertainty is not explicitly represented. This method is based on
the assumption that abnormal states of the world are totally disregarded and that all states
which are taken into account are considered plausible. As a consequence, states can be
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either negligible or plausible. But, in the latter case, no distinction between the degrees of
plausibility of the states can be made, and no further distinctions between the generated
answer sets are possible.

While in [Brewka, 2005] the existing method does not explicitly take into account an
uncertainty ordering, Grabos in [Grabos, 2004] proposed to use × not only for modeling
preferences but also for modeling the plausibility degrees of states. Depending whether a
commensurability assumption between the two degrees of plausibility and of preferences
is taken (resp. is not taken), decision rules give more importance (resp. is not not taken)
to one of the degrees in order to select the best answer set according to the attitude of the
decision maker w.r.t. the risk. Although this method offers a way to represent uncertainty,
decision rules are empirical and they are not based on postulates like the possibilistic cri-
teria. Moreover, although our commensurability assumption is a strong assumption, it has
been observed in [Dubois et al., 2002] that working without it leads to an ineffective deci-
sion method.

10.4 Discussion and Concluding Remarks

In this chapter, we have presented an ASP-based and a PASP-based methodology to model
qualitative DMU and to compute an optimal decision by considering two knowledge bases
whose degrees of certainty and priority are commensurate. We have first shown how to
encode fully certain knowledge and all-or-nothing preferences (Definition 10.2), and then,
on top of that, how to compute a pessimistic optimal decision when uncertainty and pref-
erences are matters of degrees (Definition 10.8).

The reader may be concerned why we have chosen not to take into account ASP op-
timization techniques (via objective functions) and to compute preferences at meta-level
rather than inside LPODs and LPPODs. Our design choice can be motivated by the need
of handling two separate knowledge bases and of having a formal handling of uncertainty
(in terms of possibilistic logic). In this way, we have been able to provide a possibilistic
ASP-based methodology which computes the same decisions of the label-based compu-
tation. This result agrees both with the classical and the possibilistic resolution views for
computing optimal decisions in possibilistic logic.

For the sake of completion, let us see how the decision scenario proposed in this chapter
looks like when cardinality constraints are used and preferences are directly encoded by
means of LPPODs constructs. The use of cardinality constraints can be justified to provide
the generation of the decision space (each decision literal will appear exactly once in one
solution of the program). Preferences can be encoded by means of the × connector. Then,
the following program can be obtained:15

15 Although we have not considered cardinality constraints in LPPODs, we assume here that they
are a short-hand for rules 1 : u← not ¬u and 1 : ¬u← not u [Simons et al., 2002].
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P =



r1 = 1 : 1{u,¬u}1.
r2 = 1 : ¬w ← u.
r3 = 1 : w ← r,¬u.
r4 = λ : r ← c.
r5 = 1 : c ← >.
r8 = 1 : ¬w×¬u ← >.


The above program has two possibilistic answer sets, e.g., {(c, 1), (r, λ),(u,1), (¬w, 1)},

{(c, 1), (r, λ), (¬u, 1), (w, λ)}. According to the preference relation induced by× (see Chap-
ter 5, Section 5.4), the former possibilistic answer set is preferred to the latter. Although the
result looks similar to what is obtained by the approach described in this chapter, it can be
observed that the second alternative (not taking the umbrella) is not a valid solution in our
approach. Indeed, it is a preference that it can never be satisfied and its pessimistic util-
ity is equal to 0. The handling of uncertainty and preferences together is not aligned with
the formulation of qualitative DMU as understood in the possibilistic logic setting (as also
discussed at the end of Chapter 5).

Instead, the methodology in this chapter is aligned with the possibilistic logic view.
It provides a computational solution for optimal decisions within two ASP-based frame-
works: LPODs and its possibilistic extension LPPODs. Moreover, although we have not
addressed any implementation issue, our approach can be implemented on top of two ex-
isting ASP-based solvers, psmodels16 and posPsmodels17 which provide a computation of the
LPODs and LPPODs semantics respectively.

As general improvements, the decision method used is not able to identify decisions
that may satisfy all the goals from the highest level to the lowest one, except one goal at
some level β. In fact, the algorithm stops at the first unsatisfied preference and does not
proceed with preferences at lower strata. The algorithm can be modified accordingly to
deal with this case. Definition of |=c and |=p can also be extended to handle more complex
preference expressions.

16 http://www.tcs.hut.fi/Software/smodels/priority/
17 https://github.com/rconfalonieri/posPsmodels

http://www.tcs.hut.fi/Software/smodels/priority/
https://github.com/rconfalonieri/posPsmodels
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Conclusion

Throughout the research presented in this thesis, we have aimed to understand the role
played by preferences in logic programming in different domains. Indeed, logic program-
ming, by supporting symbolic representation and computation of knowledge, can provide
an effective tool to build the reasoning mechanisms needed by intelligent systems which
assist users in the fulfillment of complex tasks. In order to support users and to understand
user choices, such systems need a concise and processable representation of incomplete and
uncertain information. In order to be able to choose among different options in a desirable
way, they also need a concise and processable representation of preferences. Preferences
can provide an effective way to choose among outcomes, whether these are the most plau-
sible states of the world according to pieces of default knowledge, such as in nonmonotonic
and uncertain reasoning, or the most satisfactory states when expressing user preferences
in a given context, or decisions under uncertainty such as in qualitative DMU.

The overall objective of this thesis has turned to be an attempt to contribute on these
active research trends in the field of logic programming. Therefore, our research has con-
sisted of a collection of results on the study of the representation of preferences focusing on
different domains such as reasoning under incomplete and uncertain information, user preference
modeling, and qualitative decision making under uncertainty. From the research performed, we
can conclude that preferences have a multi-faceted relationship with several knowledge
representation domains and they have been understood in different ways in the literature.
We believe that our proposed research analysis, frameworks, and methods might prove
to be useful for the logic programming research towards the design of automated reason-
ing mechanisms for handling incomplete and uncertain knowledge, user preferences, and
decision under uncertainty.

Apart of the individual discussions that we have provided at the end of each chapter,
in the following section, we briefly discuss and summarize the achieved results. After that,
we point out some future extensions and we provide some possible directions for future
work.

11.1 Summary

In the first part of this thesis, our main results are focused on preferences in nonmonotonic
and uncertain nonmonotonic reasoning (Part I).
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In nonmonotonic reasoning, preferences are used to select default rules that support
conflicting conclusions. In Chapter 3, we have seen how preferences in logic programming
are used in two ways: explicit and implicit. Most approaches belong to the former cate-
gory. Indeed, in logic programming, exceptions to default rules are encoded by means of
negated-by-failure atoms in order to capture exceptional situations. Then, rules are selected
by means of explicit preferences expressed in different ways: literal-oriented, rule-oriented
or context-dependent such as in LPODs. On the other hand, implicit preferences can pro-
vide an effective mechanism for handling incomplete information in logic programming.
Implicit preferences can emerge by considering the specificity of rules according to the
information described by the defaults. While there are a lot of approaches for handling
preferences in an explicit way in logic programming, only a few approaches have been
proposed to handle preferences implicitly. Therefore, our first contribution has been:

C1: An approach to nonmonotonic reasoning using implicit preferences

In Chapter 4, we have proposed a logic programming procedure able to consider im-
plicit preferences based on the specificity of defaults to handle incomplete information in
extended definite programs. The specificity has been obtained by means of the Z-ordering
of System Z [Pearl, 1990] adapted to logic program. Following the work in [Garcia et al.,
2009], we have defined the tolerance of a rule w.r.t. other rules in terms of atom set inclusion
rather than logical entailment (as it originally happens in System Z). Based on the partitions
obtained by the Z-ordering, we have designed a rewriting procedure which converts de-
fault rules into strict rules in which exceptions are made explicit. In particular, we have
been able to show that exceptions to logic programs rules can be caught in terms of strong
negation and a set of completion rules aiming at completing the incomplete information
in the program. This result strengthens an earlier result by Dimipoulos and Kakas [Di-
mopoulos and Kakas, 1995], showing how nonmonotonic reasoning can be handled with
preferences rather than negation as failure. Furthermore, we have established that, under
certain conditions, we can recover the results obtained by the method proposed in [Garcia
et al., 2009] which encode exceptions by means of negation as failure (Proposition 4.3). This
result is significant, since it suggests how negation as failure can be captured, in the class
of stratified logic programs, by an operational approach which can provide a dual view to
nonmonotonic reasoning in logic programs. The proposed approach has turned to provide
a methodology to restore the consistency of inconsistent programs that implicitly involve
a specificity ordering between the rules (Proposition 4.2). Restoring the consistency of a
logic program is an interesting feature which can be used in different ways: in qualitative
decision making (Chapter 10), when knowledge about the world is inconsistent, exceptions
have to be made explicit before proceeding to the computation of an optimal decision; in
a knowledge integration scenario, when the knowledge coming from different agents is
inconsistent, the proposed method can be used to solve inconsistent situations (as also dis-
cussed in Section 4.4).

However, the representation of simple default statements encoded as extended definite
rules is of quite limited applicability for representing user knowledge in an intelligent sys-
tem. In particular, having only one option in each context does not give so much flexibility
in modeling different choices. On the other hand, the LPODs framework [Brewka et al.,
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Table 11.1. Summary of the results in the first part

Objs. Contribution Domain Preference Main Chapter
Type Feature(s)

1-2
C1 nonmonotonic implicit / - exceptions handling 4

reasoning context-dependent - inconsistency handling

3-4
C2 uncertain explicit / - uncertainty handling 5

nonmonotonic context-dependent - possibilistic
reasoning answer sets selection

2004b] allows to specify more than one option in a given context and to select answer sets
by means of the preference degrees induced by the ordered disjunction operator × (see
Chapter 2, Section 2.2.4). Indeed, LPODs is designed to specify context-dependent preferences
which can be used to do two things: to specify a preference order among exceptions for
the selection of default rules (as we have considered in Chapter 5) and to specify a prefer-
ence order among several alternatives encoding user preferences (as we have considered in
Chapter 7).

Under the former view, when information is uncertain, the selection of exceptions to
default rules can also be a matter of uncertainty. Indeed, one can be interested in select-
ing default rules based on the most certain rules in a logic program. However, most of the
approaches in logic programming able to deal with uncertainty do not consider nonmono-
tonic reasoning or, if they do, no notion of explicit preference has been considered (Chapter
3). Therefore, our second contribution has been:

C2: A framework for dealing with explicit preferences and uncertainty

In Chapter 5, we have proposed a possibilistic logic programming framework, called
Logic Programs with Possibilistic Ordered Disjunction (LPPODs), which supports the se-
lection of uncertain default rules. The framework is able to model explicit preferences about
rules having exceptions and certainty degrees in terms of necessity values according to pos-
sibilistic logic [Dubois et al., 1994]. LPPODs is the first logic programming specification able
to consider explicit preferences and uncertainty together based on possibilistic logic and
answer set semantics. LPPODs is a smooth extension of two existing logic programming
frameworks: LPODs and possibilistic normal programs [Nicolas et al., 2006].

On one hand, from LPODs, the framework inherits the distinctive feature of expressing
explicit context-dependent preferences among different exceptions to default rules (mod-
eled as literals of a logic program). On the other hand, possibilistic normal programs allow
to capture certainty degrees expressing to what extent a rule is certain (modeled as neces-
sity values according to possibilistic logic) and to associate certainty degrees to possibilistic
answer sets (in terms of possibilistic answer set semantics). The selection of the most plau-
sible beliefs induces an order among the possibilistic answer sets of an LPPOD. In order to
define such ordering, we have defined a possibilistic comparison criterion (Definition 5.17)
which is able to consider both preference and certainty degrees. To be able to consider cer-
tainty degrees, the comparison criterion is applied to the normal form of an LPPOD which
has been obtained by means of a set of transformation rules. Such transformation rules al-
low to propagate certainty values between program rules preserving the LPPODs seman-
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tics (Lemma 5.1 and Theorem 5.1). The preference relation turns to properly generalize the
comparison criterion for LPODs (Proposition 5.4). One important aspect of the LPPODs
framework is that the its semantics is computable (Theorem 5.2) and that its complexity
belongs to the same complexity class of its classical part, that is, LPODs. This has been an
important result, since it has shown that LPPODs can yield a more expressive framework
without increasing the complexity of the semantics we have defined.

Table 11.1 summarizes the results we have achieved in this first part.
On the other hand, preferences in logic programs are not only a way for selecting default

rules implicitly or explicitly. In the modeling of user preferences (Part II), logic programs
can offer an effective way for representing a preference model. Indeed, several logic pro-
gramming extensions not only can encode user preferences in a compact way, but they can
also draw an order between the outcomes of the preference model (Chapter 6). For instance,
LPODs is a suitable specification for capturing context-dependent preferences and for spec-
ifying an order among several preferences of the users (modeled in terms of the literals of
the answer sets of an LPOD). Capturing context-dependent preferences and drawing an
order among the outcomes of a preference model are important features for building an
effective preference handling method when modeling user preferences in context-aware
(information) systems (Chapter 6). Indeed, these systems need to characterize user in a
personalized way in order to be able to filter big amount of information and to provide
personalized content to users. Personalization can be achieved by modeling user prefer-
ences in terms of user profiles. However, the modeling of user profiles bring several issues
related to knowledge representation. User profiles should be rich enough to represent pref-
erences that can depend both on contextual and incomplete information, but sufficiently
compact to be processed in a fast way. Moreover, user preferences can change over the
time. This means that preferences in some contexts can be more important than others or
that some preferences can become obsolete. These concerns have suggested to explore for
an enhancement of the personalization capabilities in a context-aware system by means of
a logic programming-based preference model. Therefore, our third contribution has been:

C3: A logic programming-based preference model for handling user preferences in a
context-aware system

In Chapter 7, we have proposed to model user preferences in a specific use-case of
context-aware systems, Interactive Community Displays (ICDs), by means of a preference
handling method based on the LPPODs framework (Chapter 5). Although LPPODs was
introduced in the context of uncertain nonmonotonic reasoning, its preference representa-
tion capabilities have fit particularly well for building the preference model imposed by
the requirements of the ICDs use-case (Section 7.1). First, most of the time, preferences de-
pend on contextual information such as date and time, user location, weather condition, etc.
For instance, the content suggested to a user who is staying in a given location at a given
time, asking for a restaurant suggestion, has to be clearly different from the content sug-
gested when (s)he is asking for a cinema suggestion. This context dependency has been
captured in terms of possibilistic ordered disjunction rules (Section 7.5). Secondly, prefer-
ences can depend on incomplete information: normally, a user can have some preferences
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Table 11.2. Summary of the results in the second part

Objs. Contribution Domain Preference Main Chapter
Type Feature(s)

5-6-7
C3 preference explicit / - user profile modeling 7

modeling / context-dependent /
nonmonotonic weighted

reasoning

8-9
C4 preference explicit / - rich syntax 8

modeling / context-dependent /
nonmonotonic nested

reasoning

unless some exceptional conditions are met. For instance, a user can prefer to go to a restau-
rant with a terrace rather to a restaurant without terrace unless the weather conditions are
not favorable (e.g., not rain). This has been captured by negation as failure (Section 7.5).
Thirdly, user profiles should be represented in a compact way and processed in a quick
way. Users can have many preferences and preventing the user from having to wait too
long is a main challenge to be considered in these systems. This has been achieved by rep-
resenting user profiles in terms of LPPODs and by implementing the LPPODs semantics
in the ASP-based solver posPsmodels (Section 7.6.1). Finally, preferences in a given context
can be more important than others and a mechanism to measure preference importance
was needed. Indeed, in such systems, users can have many preferences and an approach
that considers all the specified preferences as equally important at the moment of select-
ing the content to suggest based on user preferences can be too rigid. Therefore, we have
reinterpreted necessity values associated to LPPODs rules as weights for expressing the
importance of preference rules, and, consequently, of the preferences contained in the rules
(Section 7.6.2). If LPPODs has shown to provide an effective way to encode and process
user preferences, it is unlikely that, at application level, preferences will be directly en-
coded in a symbolic way. Since the use of ontologies has become a common practice in
knowledge system nowadays, we have integrated the LPPODs specification by means of a
user profile and preference ontology (Section 7.3). Then, user profiles have been translated
into the LPPODs symbolic representation and processed in a practical way by means of the
posPsmodels solver.

However, as discussed in Section 7.9, preference expressions supported by LPPODs are
quite limited. Indeed, since LPPODs generalizes LPODs (see Chapter 5), it inherits the ex-
pressiveness of LPODs which is limited to capture preference statements consisting of sin-
gleton preference literals. To be able to model more complex context-dependent preference
expressions, our fourth contribution has consisted in:

C4: A framework for handling nested preferences

In Chapter 8, we have provided an extension of LPODs, called Nested Logic Programs
with Ordered Disjunction (LPODs+), which allows the formulation of nested preference
expressions built by means of connectives {∨,∧,¬, not,×}. We have shown how LPODs+

can be defined in an easy way (Definition 8.4, 8.5 and 8.6) by reusing and extending some
definitions related to the syntax and semantics of nested logic programs [Lifschitz et al.,
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Table 11.3. Summary of the results in the third part

Objs. Contribution Domain Preference Main Chapter
Type Feature(s)

10-11-12
C5 qualitative decision meta-preferences - computation of 10

making under pessimistic and
uncertainty optimistic criteria

1999]. Moreover, LPODs+ properly generalizes LPODs (Proposition 8.2, 8.3) and nested
logic programs (Proposition 8.1). Since the syntax of LPOD+ is too complex to be handled
by existent answer set solvers, we have reduced the problem of inferring the answer sets
of an OD+-program to the problem of inferring the answer sets of an equivalent disjunc-
tive logic programs by means of a faithful translation procedure (Theorem 8.1). This is an
important result. In fact, despite the flexibility added at the syntactic level, the complexity
of deciding whether an OD+-program has at least one answer set corresponds to the com-
plexity class of disjunctive logic programs, that is, ΣP

2 [Eiter and Gottlob, 1995]. In this way,
complexity results of LPODs+ can be lifted by the ΣP

2 -completeness of disjunctive logic
programs.

Table 11.2 summarizes the results we have achieved in this second part.
User preferences can also be a matter for making decisions under uncertainty. Indeed, in

the last part of this thesis (Part III), we have considered the notion of preference in qualita-
tive DMU. Existing logic programming-based methodology for handling qualitative DMU
lack a satisfactory handling of preference and uncertainty. In most of the approaches pro-
posed, no explicit notion of uncertainty is considered. Furthermore, preferences are as-
sumed to belong to the same program encoding the knowledge base at hand. However,
in classical DMU, knowledge about the world and preferences are handled by two sepa-
rate knowledge bases and the selection of an optimal decision is a matter of certainty and
preference degrees. Therefore, our fifth contribution has been:

C5: An ASP-based methodology for computing decision under uncertainty

Contrary to what existing logic programming-based methodologies for handling qual-
itative decision proposed (see Chapter 9), in Chapter 10, we have associated preferences
and knowledge about the world with priority and certainty degrees modeled in terms of
necessity values (according to possibilistic logic) and we have treated them as two differ-
ent knowledge bases. Indeed, in the proposed approach, optimal decisions are a matter of
certainty and preference degrees and they can be ranked according to a pessimistic and
optimistic decision criteria (already proposed in the possibilistic logic setting). We have
provided a logic programming-based computation of these criteria. First, we have encoded
a decision problem in terms abduction and LPODs. Then, we have generalized this result
to the case in which knowledge and preferences are matters of degrees using the LPODs
and LPPODs frameworks. The proposed methodology attempt to bridge the gap between
logic programming and qualitative DMU since, to the best of our knowledge, any proposal
with a satisfactory handling of preferences under uncertainty was made in this respect.

Table 11.3 summarizes the results we have achieved in this third, and last, part.
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11.2 Possible Extensions and Future Work

As far as frameworks and methods presented in this thesis are concerned, the following
extensions/improvements are possible:

• Rule ranking: the ranking of default rules we proposed in Chapter 4 is currently based
on the Z-ordering. If the determination of the tolerance for few rules seems easy, it is
not true in general. Computing such ordering is expensive and in the worst case, for a
program P of n rules, it is necessary to isolate and stratify the 2n subsets of P. This raises
the question whether another ordering can be used to replace the Z-ordering.1

• LPOD+ framework: concerning the computation of the optimal answer set of an OD+-
program, we have designed the implementation of a tester program in order to com-
pare the answer sets of an OD+-program. Although the tester design provides a first
approximation, it does not look general enough to provide a general methodology for
computing the satisfaction degree of an answer set w.r.t. {∨,∧, not,×} formulas. This
is due to the fact that, since formulas in an OD+-program can contain expressions with
the × arbitrarily nested, the nesting level of × is not known a priori. This suggests that
the use a recursive construction for building the tester program can be valuable. We
believe that recent advances on recursive aggregates in ASP [Faber et al., 2011] can pro-
vide the appropriate constructs for computing the satisfaction degree of a {∨,∧, not,×}
formula, and, as a consequence, for designing a more general tester program.

• Preference expressions: in the ASP model for qualitative DMU proposed in Chapter
10, user/agent preferences are limited to preference literals only. However, richer pref-
erence expressions need sometimes to be captured, especially when more realistic de-
cision scenarios are addressed. Preference statements should be generalized not only
to formulas built with disjunction, conjunction and implication, but also to more ad-
vanced constructs such as weighted disjunction and conjunction [Brewka et al., 2004b;
Bosc et al., 2010]. Such constructs might improve the flexibility of the model in the en-
coding of preference statements.

As a result of the contributions of this work, we envision some future lines of research:

• Merging Logic Programs: the rewriting procedure proposed in Chapter 4 isolates con-
flicting default rules (belonging to different levels of specificity) in order to establish a
consistency between all the rules contained in an extended definite logic program. From
a wider perspective, the method can be thought as a procedure which can be used to
merge different knowledge bases, modeled in terms of logic programs (as also discussed
at the end of Chapter 4). Indeed, the problem of merging multiple, potentially conflict-
ing pieces of information, arises in different contexts. For example, an agent may receive
reports from differing sources of knowledge. In this case, the problem of combining
logic programs that may be jointly inconsistent in order to get a consistent logic pro-
gram is interesting. This observation naturally raises the question whether the merging
procedure and merging operators, studied in the literature, can be related. The problem

1 This is more an open issue rather than an extension.
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of merging multiple, potentially conflicting bodies of information is a well studied prob-
lem in classical logics [Konieczny and Pérez, 2011, 1998; Grégoire and Konieczny, 2006].
Therefore, there are a lot of properties that could/should be investigated. However,
there is one main difference from the classic work on merging and our approach, and
that is the consideration of default rules. Merging and information fusion approaches
mostly deal with classical logics. Thus, we believe that it would be interesting to inves-
tigate how the properties of classical merging can be applied to a logic programming
setting with default rules. This should be an interesting future research direction, as
there is not so much work on merging logic programs, apart of the works in [Hué et al.,
2009; Delgrande et al., 2009]. This might also be interesting from another perspective,
i.e., belief revision in logic programming which is a similar problem [Delgrande et al.,
2008; Krumpelmann and Kern-Isberner, 2010].

• Argumentation-based Decision Making: the qualitative DMU model proposed in
Chapter 10 is based on the comparative evaluation of different alternatives by means
of pessimistic and optimistic criteria. Therefore, the decision process is limited to de-
cision criteria and it prevents the user from understanding why a decision is worse or
better than another one. On the other hand, approaches based on argumentation theory
[Fox et al., 2007; Dung et al., 2008; Amgoud and Prade, 2009; Matt, 2010] seem to be
flexible enough for justifying/explaining rational decisions. In particular, the work in
[Amgoud and Prade, 2009] provides an argumentation framework for explaining deci-
sions in the possibilistic logic setting. It articulates optimistic and pessimistic decision
criteria in terms of an argumentation process that consists of several steps: the con-
struction of pros and cons arguments w.r.t. decisions; the evaluation of the strengths of
these arguments; and the comparison of possible decisions on the basis of the relations
between arguments. In this respect, we aim at extending the model proposed in Chap-
ter 10 within an argumentation framework, in order to cast the work in [Amgoud and
Prade, 2009] into a logic programming setting. This is promising since, recently, quite
few works have been done on using ASP as a mechanism for computing extensions in
argumentation [Toni and Sergot, 2011]. Moreover, possibilistic semantics for logic pro-
gramming already exist. A first attempt in the direction of explaining decisions using
an argumentation framework in a logic programming setting is our preliminary work
in [Nieves and Confalonieri, 2011] based on possibilistic well-founded semantics. How-
ever, the selection of an optimal decision is due to preference relations over extensions
and arguments supporting a decision, rather than optimistic and pessimistic decision
criteria such as in [Amgoud and Prade, 2009].
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A

Proofs

A.1 Proofs of Chapter 4

Proposition 4.1 Algorithm 1 terminates.

Proof. The proof will consist in showing that step 3, i.e., the rewriting procedure, in algo-
rithm 1 terminates, since all the other steps obviously terminate.

It can be noticed that algorithm 2 examines each rule of each stratum. For a rule of a
stratum ∆k, the algorithm executes at most two consistency tests with each rule of strata of
rank greater or equal to k + 1. Since each stratum is finite, the algorithm terminates.

ut

Proposition 4.2 The program P〈S,FC,CR〉 returned by Algorithm 1 is consistent.

Proof. The proof will consist in showing that the set of rewritten rules S is consistent, since
the consistency test done by Algorithm 3 returns a program P〈S,FC,CR〉 in which completion
rules are consistent w.r.t. the set of rules S and the factual knowledge FC.

At the beginning, S is consistent since it is built on the set ∆n of rules tolerated by
the set ∆\(∆0, . . . , ∆n−1). At each step, a rule r∆ is added to S only if its head is consis-
tent with all the heads of the rules in S. Otherwise, for a rule r∆k = h∆k ← b∆k from
a stratum ∆k, if it exists a rule rs = hs ← bs in S such that (for simplicity and with-
out loss of generality we assume that the rules body of rs and r∆k are singleton literals)
cons({h∆k} ∪ {hs}) ∧ incons({b∆k} ∪ {bs}), then r∆k is replaced by a rule r = l∆k ←
l∆k ∪ ϕ(ls) (where ϕ is the mapping function we defined in Definition 4.2). Note that
l∆k ∪ ϕ(ls) is consistent since, by construction, every rule of ∆k+1 is tolerated by r. r mod-
ified by specifying all its exceptions is added to S only when it does not exist any rule in
∆k+1 such that its conclusion is inconsistent with b∆k . Thus, S remains consistent.

ut

Proposition 4.3 Let ∆ be a set of extended definite rules with an implicit inheritance relation, FC
be a factual context, and AR be a pair of additional rules according to Definition 4.9. Let P′ be the
extended normal logic program obtained by the algorithm in [Garcia et al., 2009]. Let ∆′ = ∆∪ AR,
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and P〈S,FC,CR〉 be the definite program obtained from ∆′ by Algorithm 1. If M is answer set of
P′ ∪ FC and M′ = Cn(P〈S,FC,CR〉) then M ⊆ M′.

Proof. Ab absurdo: the proof will consist in assuming that M 6⊆ M′, i.e., M′ ⊂ M. First
it can be noticed that since ∆ contains a set of rules with an implicit inheritance relation,
the program P′ ∪ FC is stratified and it has a unique answer set [Baral, 2003]. For having
M′ ⊂ M, program P′ ∪ FC must have an extra rule that is supported by the other rules
such that its head can be added to the set of literals M. But this contradicts the hypothesis
that the program P′ ∪ FC and P〈S,FC,CR〉 are generated by the same set of extended definite
rules ∆ (and generally extra rules can be added for the generation of the program P〈S,FC,CR〉
only). Therefore, M ⊆ M′.

ut

A.2 Proofs of Chapter 5

Proposition 5.2 Let P be an LPPOD, and M∗ be an answer set of P∗. If ∀r ∈ P, Nec(r) = 1,
then M = {(ϕ, 1) | ϕ ∈ M∗} is a possibilistic answer set of P.

Proof. By Definition 5.5 we know that if M∗ is answer set of P∗ then M = ΠCn(PM∗
× ) is a

possibilistic answer set of P. We have to prove that the necessity values of the atoms of
the possibilistic answer set of the possibilistic definite logic program PM∗

× corresponds to 1.
By the possibilistic consequence operator definition (Definition 5.4), we know that given a
possibilistic set of atom M, the applicability degree β of a rule in M captures the necessity of
the conclusion that the rule can produce w.r.t. M. Given a rule r = 1 : c← B+, we consider
the following cases:

Case (i) : B+ = ∅, then the rule is 1-applicable in M
Case (ii) : B+ * M, then the rule is 0-applicable in M.
Case (iii) : B+ ⊆ M, then the rule is 1-applicable in M since min{α, α1, . . . , αm} = 1 in

which ∀(bi, αi) ∈ B+, 1 ≤ i ≤ m, (bi, αi) ⊆ M and α = α1 = . . . = αm = 1.

The necessity values of the atoms contained in the fix-point reached by the possibilistic
consequence operator (Definition 5.4) are inferred by
ΠTP(M) = {(ϕ, δ)|ϕ ∈ head(P∗), App(P, M, ϕ) 6= ∅,

δ = maxr∈App(P,M,ϕ){β|r is β-applicable in M}}
All applicable rules are 1-applicable in M. Then, δ = 1 and M = {(ϕ, 1) | ϕ ∈ M∗} is a
possibilistic answer set of P.

ut

Proposition 5.3 Let P be an LPPOD and M be a set of possibilistic atoms such that M∗ is an
answer set of P∗, then

ΠM(PM∗
× ) = {(ϕ, NPM∗

×
(ϕ))|ϕ ∈ LPM∗

×
, NPM∗

×
(ϕ) > 0}

is a possibilistic answer set of P.
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Remark A.1. PM∗
× is a possibilistic definite logic program.

Proof. By Definition 5.5, given that M∗ is an answer set of P∗, M is a possibilistic answer
set of P if and only if M = ΠCn(PM∗

× ). We have to prove that Π(PM∗
× ) = ΠCn(PM∗

× ). This
follows in a straightforward way by Theorem 1 in [Nicolas et al., 2006], since PM∗

× is a
possibilistic definitive logic programs. Thus, M is a possibilistic answer set of P.

ut

Lemma 5.1 Let P and P′ be two LPPODs related by any transformation in CSLPPOD. Then
SEMLPPOD(P) ≡p SEMLPPOD(P′).

Definition A.1 (Rewriting System for LPODs). [Confalonieri et al., 2010] Let P be an LPOD
and CSLPOD be the rewriting system based on transformation rules {→EC,→RED+ ,→RED− ,→S,
→F,→Loop}, where each transformation is defined by redefining CSLPPOD omitting the necessity
values associated to programs rules in each transformation.

Remark A.2. It can be noticed how SEMLPPOD(P)∗ ≡p SEMLPPOD(P′)∗ is equivalent to
SEMLPOD(P∗)≡ SEMLPOD(P′∗), where SEMLPOD is the LPODs semantics (Definition 2.5),
and ≡ denotes the equivalence relation w.r.t. the LPODs semantics.

Remark A.3. Let P be an LPPOD. Then un f (P) = LP∗\MM(de f (ordis− nor(P)∗)

Remark A.4. Let P be a definite logic program, the least model M of P can be computed
as the least fix-point of the consequence operator TP : 2LP → 2LP such that TP(M) =

head(App(P, M).

Proof. To prove that SEMLPPOD(P)≡p SEMLPPOD(P′) we have to show that given two LP-
PODs P, P′ related by any transformation {→PeC,→PRED+ ,→PRED− ,→PS,→PF,→PLoop},

ΠCn(PM∗
× ) = ΠCn(P

′M∗

× ) holds. As the LPPODs semantics is a generalization of the LPOD
semantics, we prove this lemma by first proving that the transformation rules for LPODs
are invariant w.r.t. the LPODs semantics.

To this end, let us consider P∗, P′∗, and CSLPOD (Definition A.1). By Remark A.2 we
have to show that SEMLPOD(P∗

M∗

× ) = SEMLPOD((P′)∗
M∗

× )). We can observe that P∗
M∗

× and
(P′)∗

M∗

× are definite logic programs. From [Brewka et al., 1997], it is known that the stable
semantics is closed w.r.t. the rewriting system CS ′LPOD = CSLPOD\(→Loop) and in [Oso-
rio et al., 2001a] it has been proven that the transformation rule →DLoop for disjunctive
programs also preserves the stable semantics. In the case of LPODs, the stable seman-
tics is also closed under →Loop. This is straightforward to see, since we can notice that
∀M ∈ SEMLPOD(P), M ∩ un f (P) = ∅ by construction (Remark A.3), i.e., only program
rules which contain false atoms are removed by→Loop. Thus, the LPOD semantics is closed
under CSLPOD.

Then, we can see in a straightforward way that the LPPODs semantics is closed under
the transformation rules in the rewriting system CS ′LPPOD = CSLPPOD\(→PS), since the
transformation rules {→PeC, →PRED+ , →PRED− , →PF, →PLoop} do not affect the necessity
values associated to program rules.
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The only transformation that affects necessity values is the Possibilistic Success. Hence,
we have to prove that given two LPPODs P and P′, →PS, and M∗ answer set of P∗,
ΠCn(PM∗

× ) = ΠCn(P
′M∗

× ). For a better visibility, let us call ΠCn(PM∗
× ) = M1 and ΠCn(P

′M∗

× ) =

M2.
Now, let us suppose P = P1 ∪ {α : C× ← b. ; β : b.} and P′ = P1 ∪ {min{α, β} : C×.

; β : b.}. By applying the ×-possibilistic reduction using M∗ to both P and P′, we obtain
PM∗
× = PM∗

1× ∪ {α : c ← b. ; β : b.} and P
′M∗

× = PM∗
1× ∪ {min{α, β} : C×. ; β : b.}. It can be

observed that PM∗
1× is the same subprogram.

Then, we can observe that given the answer set semantics definition in terms of fix-
point of the immediate consequence operator (Remark A.4) and that →S is closed under
answer set semantics, since M∗ is an answer set of P∗, then (ΠCn(PM∗

× ))∗ = (ΠCn(P
′M∗

× ))∗,
i.e., M∗1 = M∗2 .

To prove ΠCn(PM∗
× ) = ΠCn(P

′M∗

× ), let us suppose ab absurdo that M1 6= M2. Since M∗1 =

M∗2 , this basically means that M1 and M2 have the same atoms but they can differ at least
in one of the necessity values associated to their atoms. Let us consider P∗ and P′∗. Without
loss of generality, let us assume that P1 = ∅ and P∗1 = ∅. This means that M∗1 = M∗2 =

{(c, b)}. However, by assuming M1 6= M2, M1 = {(c, δ), (b, β)} and M2 = {(c, δ′), (b, β)}
with δ 6= δ′.

By applying the fix-point operator to PM∗
× , we obtain:

ΠT0
PM
×

= ∅

ΠT1
PM
×

= ΠTPM
×
(∅) = {(b, β)}

ΠT2
PM
×

= ΠTPM
×
({(b, β)}) = {(b, β), (c, min{α, β})}

ΠT3
PM
×

= ΠTPM
×
({(b, β), (c, min{α, β})}) = {(b, β), (c, min{α, β})}

Then, by applying the fix-point operator to P
′M∗

× , we obtain:
ΠT0

P′M×
= ∅

ΠT1
P′M×

= ΠTPM
×
(∅) = {(b, β)}

ΠT2
P′M×

= ΠTPM
×
({(b, β)}) = {(b, β), (c, min{α, β, min{α, β}})}

ΠT3
P′M×

= ΠTPM
×
({(b, β), (c, min{α, β, min{α, β}})}) = {(b, β), (c, min{α, β, min{α, β}})}

Thus, M1 = {(b, β), (c, min{α, β})} and M2 = {(b, β), (c, min{α, β, min{α, β}})}. But
the necessity values associated to the atoms are the same and no other rules can have
influenced the necessity values of the atoms, since we have assumed that P1 = ∅. This
contradicts the hypothesis M1 6= M2.

Thus, the LPPODs semantics is closed under CSLPPOD.
ut

Theorem 5.1 Let P be an LPPOD. Then CSLPPOD is confluent, noetherian and normCSLPPOD (P)
is unique.

Remark A.5. Let T1 and T2 be two transformation rules, and P, P1, P2, and P3 be logic pro-
grams. T1 and T2 commute, if P→T1 P1 and P→T2 P2 then P1 →T2 P3 and P2 →T1 P3.
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Remark A.6. Let T1 and T2 be two transformation rules, and P, P1, P2 be logic programs. T1

absorves T2, if P→T1 P1 and P→T2 P2 then P2 →T1 P1.

Proof. We have to prove only that CSLPPOD is confluent and noetherian, since by rewriting
system theory it is known that if a rewriting system is confluent and noetherian then its
normal form always exists and it is unique (see Chapter 2, Section 2.3). Thus, we have to
prove that:

• CSLPPOD is noetherian
• CSLPPOD is confluent

It is easy to see that CSLPPOD is noetherian, since all our program transformations de-
crease the size of an LPPOD.

The confluence of CSLPPOD can be proved using local confluence as stated by New-
man’s lemma [Newman, 1942]. According to [Newman, 1942], a noetherian rewriting sys-
tem is confluent if it is locally confluent. As we know that CSLPPOD terminates, it is a
long but easy exercise to verify the local confluence of CSLPPOD. For doing this, we have
to show that for each pair of transformations in CSLPPOD, either two transformations
commute (Remark A.5) or one transformation absorbs the other one (Remark A.6) (com-
mutation and absorption are special cases of local confluence). In the following, we present
some cases and we generalize this result for all the other combinations.

Let us suppose that we have an LPPOD P and we apply a transformation to get P1. Let
us also suppose that from P it is possible to apply another transformation to get P2. Thus,
we need to show that it exists P3 such that P1 can arrive to P3 by the use of some transfor-
mations (possibly none) and also P2 can arrive to P3 by the use of some transformations
(possibly none). Let us consider some cases.

Case 1:→PeC and→PS commute. Let P be:

P: α1 : Head1 ← c, not c, Body1.
α2 : Head2 ← e, Body2.
α3 : e.
P′

in which α1 > α2 > α3 are necessity values in S = {α3, α2, α1}. P′ denotes the rest of the
rules in P, Head1 and Head2 denote rules heads, and Body1, Body2 denote the rest of the
rules body.
If we apply→PS to P we obtain P1, and if we apply→PeC to P we obtain P2:

P1: α1 : Head1 ← c, not c, Body1. P2:
α3 : Head2 ← Body2. α2 : Head2 ← e, Body2.
α3 : e. α3 : e.
P′ P′

Now, if we apply→PeC to P1 we obtain P3, and if we apply→PS to P2 we obtain P3:

P3: P3:
α3 : Head2 ← Body2. α3 : Head2 ← Body2.
α3 : e. α3 : e.
P′ P′
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Thus, for this case both transformation rules→PeC and→PS commute.
Case 2:→PeC and→PRED+ commute. Let P be:

P: α1 : Head1 ← c, not c, Body1.
α2 : Head2 ← not e, Body2.
α3 : e.
P′

Thus, if we apply→PeC to P we obtain P1, and if we apply→PRED+ to P we obtain P2:

P1: P2: α1 : Head1 ← c, not c, Body1.
α2 : Head2 ← not e, Body2.
α3 : e. α3 : e.
P′ P′

Now, if we apply→PRED+ to P1 we obtain P3, and if we apply→PeC to P2 we obtain P3:

P3: P3:

α3 : e. α3 : e.
P′ P′

Thus, for this second case both transformation rules→PeC and→PRED+ commute.
Case 3:→PLoop absorbs→PeC. Let P be:

P: α1 : a← b, not b.
α2 : c← c.
α3 : d.

Thus, if we apply →PLoop to P we obtain P1 (since un f (P) = {a, b, c}), and if we apply
→PeC to P we obtain P2:

P1: P2:
α2 : c← c.

α3 : d. α3 : d.
Now, if we apply→PLoop to P2 we obtain P1 (since un f (P) = {c}):

P1: P1:

α3 : d. α3 : d.
Thus,→PLoop absorbs→PeC (it can be shown how→PLoop and→PeC also commute).

Case 4:→PRED+ absorbs→PRED− . Let P be:

P: α1 : Head1 ← not b, not p, Body1.
α2 : p.
P′

Let us suppose that b /∈ HEAD(P). If we apply→PRED+ to P we obtain P1 and if we apply
→PRED− to P we obtain P2:
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P1: P2: α1 : Head1 ← not p, Body1

α2 : p. α2 : p.
P′ P′

Now, if we apply→PRED+ to P2 we obtain P1:

P1: P1:
α2 : p α2 : p.
P′ P′

Thus, →PRED+ absorbs →PRED− (it can be shown how →PRED+ and →PRED− also com-
mute).
In a similar way, all the following pairs of transformations commute and/or absorb:

Case 5 :→PeC and→PRED− .
Case 6 :→PeC and→PF.
Case 7 :→PeC and→PF.
Case 8 :→PRED+ and→PS.
Case 9 :→PRED+ and→PLoop.
Case 10 :→PRED− and→PF.
Case 11 :→PRED− and→PS.
Case 12 :→PRED− and→PLoop.
Case 13 :→PF and→PS.
Case 14 :→PLoop and→PF.
Case 15 :→PS and→PLoop.

As CSLPPOD is noetherian and as all pair of transformations in CSLPPOD are locally conflu-
ent, then CSLPPOD is confluent.

ut

Proposition 5.4 Let M1 and M2 be possibilistic answer sets of an LPPOD P, �p be the preference
relation based on rules satisfaction degrees only, and �pp be the possibilistic preference relation. If
M∗1 �p M∗2 then M1 �pp M2.

Remark A.7. M∗1 >p M∗2 iff ∃ r ∈ P∗ such that degM∗1
(r) < degM∗2

(r), and @r′ ∈ P∗ such that
degM∗2

(r′) < degM∗1
(r′) (Definition 5.16).

Remark A.8. normLPPOD(P)∗ = normLPOD(P∗)

Proof. Ab absurdo: let us suppose that M1 ≯pp M2. We have two cases: either (i) M2 >pp M1

or (ii) M2 ≯pp M1 (and M1 ≯pp M2).

Case (i): M2 >pp M1. If M2 >pp M1, then ∃ r ∈ normCSLPPOD (P) such that degM∗2
(r∗) <

degM1(r
∗), and @r′ ∈ normCSLPPOD (P) such that degM∗1

(r′∗) < degM∗2
(r′∗) and n(r) <

n(r′). By Remark A.8 this would mean that ∃ r∗ ∈ normLPOD(P∗) such that degM∗2
(r∗) <

degM∗1
(r∗), and @r′∗ ∈ normLPOD(P∗) such that degM∗1

(r′∗) < degM∗2
(r′∗), i.e., M∗2 >p

M∗1 . This contradicts the hypothesis M∗1 >p M∗2 (Remark A.7).
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Case (ii): M2 ≯pp M1. If M2 ≯pp M1 (and M1 ≯pp M2), then neither ∃ r ∈ normCSLPPOD (P)
such that degM∗2

(r∗) < degM∗1
(r∗), and @r′ ∈ normCSLPPOD (P) such that degM∗1

(r′∗) <

degM2(r
′∗) and n(r) < n(r′), nor ∃ r ∈ normCSLPPOD (P) such that degM∗1

(r∗) <

degM∗2
(r∗), and @r′ ∈ normCSLPPOD (P) such that degM∗2

(r′∗) < degM∗1
(r′∗) and n(r) <

n(r′). This is only true if ∀r ∈ P, degM∗1
(r∗) = degM∗2

(r∗) and ∃r′ ∈ P such that
degM∗1

(r∗) = degM∗2
(r∗) and n(r) = n(r′). However by Remark A.8 this would mean

that ∀r∗ ∈ normLPOD(P∗), degM∗1
(r∗) = degM∗2

(r∗). Thus, M∗2 ≯p M∗1 and M∗1 ≯p M∗2 .
This contradicts the hypothesis M∗1 >p M∗2 (Remark A.7).
ut

Theorem 5.2 Let P be an LPPOD, such that P ⊆ ProgA−S , where ProgA−S is the set of all
LPPODs which can be generated by a finite set of atoms A and a finite set of necessity values S .
Then, the LPPODs semantics is computed by the function SEMLPPOD : P→ PS .

Proof. The proof is straightforward, since Algorithm 4 computes the LPPODs semantics.
ut

A.3 Proofs of Chapter 8

Proposition 8.1 Let P be an OD+-program such that ∀r ∈ P, r = H ← B, H and B be formulas
× free, and M be a set of literals. M ∈ SEMLPOD+(P) if and only if M ∈ SEMNLP(P).

Remark A.9. Let P be a nested logic program and M be a set of literals. M is an answer set
of P if it is an answer set of PM ([Lifschitz et al., 1999]).

Proof. The proof follows in a straightforward way, since it can be noticed that when ∀r ∈ P,
H and B are formulas × free, PM

×+ coincides with PM of nested logic program. Therefore,
the LPODs+ semantics (Definition 8.6) and NLP semantics (Remark A.9) coincide as well.

ut

Proposition 8.2 Let P be an OD+-program such that ∀r ∈ P, r = A1 × . . .× Ak ← B1 ∧ . . . ∧
Bm ∧ not Bm+1∧ . . . ∧ not Bm+n where Ai’s (1 ≤ i ≤ k) and Bj’s (1 ≤ j ≤ m + n) are literals
and M be a set of literals. M ∈ SEMLPOD+(P) if and only if M ∈ SEMLPOD(P).

Remark A.10. The PM
× reduction is defined as

⋃
r∈P rM

× , where rM
× := {Ai ← B1 ∧ . . . ∧

Bm|Ai ∈ M and M ∩ ({A1, . . . , Ai−1} ∪ {Bm+1, . . . , Bm+n}) = ∅} ([Brewka et al., 2004b]).

Remark A.11. Let P be an LPOD, and M be a set of literals. M is an answer set of P (M ∈
SEMLPOD(P)) if and only if a) M is a minimal model of PM

× and b) it is closed under P
([Brewka et al., 2004b]).

Proof. The proof consists in showing the two implications:



A.3 Proofs of Chapter 8 187

Case(i): If M ∈ SEMLPOD+(P) then M ∈ SEMLPOD(P). By Definition 8.6, M is answer
set of PM

×+ , i.e., M is minimal among the sets of atoms closed under PM
×+ . Moreover, if

M ∈ SEMLPOD+(P), then M is closed ∀r ∈ P. Thus, condition b) in Remark A.11 is
satisfied by definition. It can also be observed that, since M is an answer set of P, PM

×+

and PM
× coincide. Since M is a minimal model of PM

×+ and, the set of rules reduced by
PM
×+ and PM

× are the same, then M is a minimal model of PM
× as well.

Case(ii): If M ∈ SEMLPOD(P) then M ∈ SEMLPOD+(P). By Remark A.11, M is a minimal
model of PM

× and it is closed under P. Since M is closed under P, M is closed under PM
×+ ,

and it is a minimal model of PM
×+ since, as M is an answer set of P, the two reductions

coincide.
ut

Proposition 8.3 Let P be an OD+-program such that ∀r ∈ P, r = A1 × . . .× Ak ← B1 ∧ . . . ∧
Bm ∧ not Bm+1∧ . . . ∧ not Bm+n where Ai’s (1 ≤ i ≤ k) and Bj’s (1 ≤ j ≤ m + n) are literals
and M be an answer set of P. Then, deg+M(r) = degM(r).

Proof. Given an answer set M of an OD+ program P two situations can occur:

Case (i): the body of the rule r is not satisfied by M. Then, by Definition 8.8, deg+M(r) = 1
and, by Definition 2.6, degM(r) = 1. Therefore, deg+M(r) = degM(r).

Case (ii): the body of the rule r is satisfied by M. Then, by Definition 2.6, degM(r) = min{j |
Aj ∈ M, 1 ≤ j ≤ k}. By Definition 8.8, deg+M(r) = optM(A1 × . . .× Ak), in which:

optM(A1 × . . .× Ak)



1, if M |= AM
1

2, if M 6|= AM
1 ∧M |= AM

2

. . .

k, if M 6|= AM
1 ∧M 6|= AM

2 ∧ . . . ∧M |= AM
k

Thus, deg+M(r) = min{j′ | M |= Aj′ , 1 ≤ j′ ≤ k}. Since Aj = A′j, then j = j′ and
deg+M(r) = degM(r).
ut

Proposition 8.4 For any formula A, B:

A× B ≡ A ∨ (not A ∧ B)

Proof. For doing this proof we have to show that:

X |= (A× B)Y iff X |= (A ∨ (not A ∧ B))Y

Then:
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X |= (A× B)Y iff
(A× B)Y = > iff
(Y |= AY) ∨ (Y 6|= AY ∧Y |= BY) iff
AY = >, (not A)Y = >, BY = > iff
X |= AY ∨ (X |= not AY ∧ X |= BY) iff
X |= AY ∨ X |= (not AY ∧ BY) iff
X |= AY ∨ X |= (not A ∧ B)Y iff
X |= AY ∨ (not A ∧ B)Y iff
X |= (A ∨ (not A ∧ B))Y

ut

Proposition 8.5 For any formula A, B, C,

1. (A ∧ B) ∧ C ≡ A ∧ (B ∧ C) and (A ∨ B) ∨ C ≡ A ∨ (B ∨ C)
2. A ∧ (B ∨ C) ≡ (A ∧ B) ∨ (A ∧ C)
3. A ∨ (B ∧ C) ≡ (A ∨ B) ∧ (A ∨ C)
4. not (A ∧ B) ≡ not A ∨ not B
5. not (A ∨ B) ≡ not A ∧ not B
6. not not not A ≡ not A
7. A← B ∧ not not C ≡ A ∨ not B← C
8. A ∨ not not B← C ≡ A← not B ∧ C

9. A ∧ B← C ≡

A← C

B← C

10. A← B ∨ C ≡

A← B

B← C

Proof. The proof of this proposition follows by Proposition 4 and Proposition 6 in [Lifschitz
et al., 1999].

ut

Lemma 8.1 Any OD+-program P ∈ LPODs+L is equivalent to a generalized disjunctive program
P〈not,∨〉 ∈ GDLPsL.

Proof. As the transformation in Proposition 8.4 transforms nested ordered disjunction for-
mulas to disjunction and conjunction formulas, and since all the other transformations in
Proposition 8.5 correspond to those presented in [Lifschitz et al., 1999], this proposition
follows from Proposition 7 in [Lifschitz et al., 1999] in a straightforward way.

ut

Lemma 8.2 Any generalized disjunctive logic program P〈not,∨〉 ∈ GDLPsL is equivalent to a
disjunctive logic program P〈∨〉 ∈ DLPsL∪L′ .

Proof. Since the mapping defined in Definition 8.12 is faithful, i.e., it preserves the seman-
tics of a logic program [Janhunen, 2001; Pearce et al., 2002], it translates a GDLPL into an
equivalent DLPL∪L′ .
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ut

Theorem 8.1 Let P ∈ LPODs+L and P〈∨〉 ∈ DLPsL∪L′ the disjunctive logic program obtained
by transforming P. If M′ is an answer set of P〈∨〉 then M = M′ ∩ L is answer set of P.

Proof. This theorem follows in a straightforward way by transitivity from Lemma 8.1 and
Lemma 8.2.

ut

A.4 Proofs of Chapter 10

Proposition 10.2 Let DM = 〈K, D, Pre f 〉 be a decision making problem and let Pdm be the LPOD
generated by Algorithm 5. Then, ∆ ∈ labelK(Pre f ) is an optimal pessimistic decision if and only
if there exists a consistent maximally preferred answer set M of Pdm such that ∆ = {d ∈ D |
ass(d) ∈ M}.

Proof. The proof will consist in showing that K ∪ ∆ |=c Pre f and that ∆ is minimal. The
proof for this proposition is similar to the proof provided for Proposition 4.1 in [Brewka,
2006].

K ∪ ∆ |=c Pre f . Pdm ∪ ∆ |=c Pre f if and only if it exists a consistent answer set M of
K ∪ ∆ ∪ {not p | p ∈ Pre f }. This is true if and only if {ass(d) | d ∈ ∆} ∪ {d ← ass(d) |
d ∈ D} ∪ K ∪ {not p | p ∈ Pre f } has a consistent answer set M ∪ {ass(d) | d ∈ ∆} and ass
does not appear in M, but this can happen if and only if K ∪ {not p | p ∈ Pre f } ∪ {d ←
ass(d) | d ∈ D} ∪ {¬ass(d)× ass(d) | d ∈ D} has a consistent answer set M ∪ {ass(d) | d ∈
∆} ∪ {¬ass(d) | d ∈ D\∆}.

The minimality of ∆ can be proved observing that ∆ is minimal if and only if M ∪
{ass(d) | d ∈ ∆} ∪ {¬ass(d) | d ∈ D\∆} is a maximally preferred answer set of Pdm. This
is true since making decision of the form ass(d) is non-preferred according to the ordered
disjunction-based construction in Pdm.

ut
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