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viding me a position to work in the NePhoS group at the University Rovira
i Virgili. Josep is real expert and good person, always ready to help and
to give valuable advice when it is necessary. I learned from him how to be
organized in the work I am doing and how to solve a problem in an efficient
way. He helped me, not only in my research project, but also in my daily
living problems. I am fortunate and proud of having him as my tutor and
friend.

The results achieved in this Ph.D. thesis would not be possible without
the collaboration of several groups. Firstly, I would like to acknowledge
the NePhoS research group at the Universitat Rovira i Virgili where this
work has been carried out. Then, I would acknowledge the MNT (Micro-
and Nano-Tecnologies) group from Department of Electronics, Polytech-
nic University of Catalonia (UPC), leaded by Professor Ramon Alcubilla,
and the collaborators Dr. Trifon Trifonov and Dr. Angel Rodŕıguez for
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Chapter 1

Introduction and objectives

Photonic crystals are periodically structured electromagnetic media which
prohibit the propagation of light inside the structure for frequencies within
a band gap (a frequency range in which the existence of any electromagnetic
modes is forbidden). Due to this ability, they have enabled existing new ways
of light control and have become an attractive structure for constructing
integrated optical devices.

As was first shown by E. Yablonovitch [Yablonovitch 87], the geometry
and the dielectric constant of the photonic crystal structure are the main
factors which dramatically change the propagation properties of the photons
inside it. This fact permits a precise control over the electromagnetic field
dispersion (photonic bands structure) inside the photonic crystal by appro-
priate tuning of its structure (e.g. by changing the design of the photonic
crystal lattice or by introducing defects into the otherwise perfect periodic
structure). However, previous theoretical analysis is of high importance.

The photonic band structure calculations are used to determine and
predict the dispersion relations of perfect, infinitely extended photonic crys-
tals, and photonic crystals with simple defects such as isolated cavities and
waveguides. More complex simulations such as transmission and reflec-
tion from finite slabs of photonic crystal material or through waveguide
bends are usually analyzed through direct simulations of Maxwell’s equa-
tions, based on Finite-Difference Time Domain (FDTD) or Finite Element
(FE) methods. An alternative is combining band structure calculations
with elements from diffractive optics, which enables to determine the re-
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18 Introduction and objectives

flection and transmission properties of finite photonic crystal (PhC) slabs
[Whittaker 99, Whittaker 02].

In recent years, most investigations have been concentrated on the mod-
eling and fabrication of photonic crystal materials. Many research groups
have also been focused on the experimental measurement of the photonic
crystal band structure. Initial studies of the photonic crystal bands have
been carried out in the microwave regime by phase-sensitive transmission
measurements [Yablonovitch 89] that yield the wave vector inside the crys-
tal at a given frequency. Another technique, based on the in-plane trans-
mission in two-dimensional (2D) waveguide photonic crystals has been used
to map the photonic bands from Fabry-Pérot fringes within the sample
[Labilloy 97]. Several authors have also measured the photonic bands disper-
sion in 2D photonic crystals by means of the Angular-Dependent Reflectance
Spectroscopy, first proposed by Astratov et al. [Astratov 98, Astratov 99a].

The present work is focused on the development of optical characteriza-
tion methods based on several techniques to study the optical and geomet-
rical properties of micro- and nano-structured PhC slabs. We propose here
a procedure to improve the recognition of the photonic bands with these
methods and we validate it by its application to various photonic crystal
samples.

1.1 Objectives

The aim of this Doctoral Thesis is comprised within the framework of the
development of characterization methods and their implementation to pla-
nar photonic structures that are useful within the NePhoS research group at
the University Rovira i Virgili and that are valuable for the rest of scientific
community. To this end, the following objectives have been established:

• Development of an experimental technique based on the Bragg diffrac-
tion in the near and middle infra red (IR) spectral range to determine
the lattice properties of photonic crystal structures.

• Application of the Angular-Dependent Reflectance Spectroscopy tech-
nique to characterize the band structure of PhC slabs in the near and
middle IR spectral range.
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Document structure 19

• Application of Angle-Resolved Spectroscopic Polarimetry to charac-
terize the band structure of planar photonic crystal structures in the
visible spectral range.

• Implementation of a numerical simulation tool i) to predict the opti-
cal behavior of the studied samples using the different measurement
techniques, and ii) to interpret the results obtained from the measure-
ments.

1.2 Document structure

The outline of this Doctoral Thesis is as follows. In chapters 2 and 3 the
framework of the present work is established. Chapter 2 is an introduction
to the concept of the Photonic Crystals and its modeling. In this chapter,
special attention is paid to the numerical formalisms implemented for the
calculation of the photonic band structure of the studied samples and for
the calculation of the reflectance properties of the PhC slabs, related to
the characterization techniques studied in this work. In chapter 3 a brief
introduction to the fabrication techniques used to obtain the samples studied
later in the work is given. These two chapters are not aimed at giving an
exhaustive treatment of these subjects, just to establish the state-of-the-art
and to give the necessary background for the following chapters.

In the fourth chapter the optical Bragg Diffraction technique for the
characterization of the lattice structure of the Photonic Crystals is intro-
duced. The next two chapters correspond to the techniques applied in this
work for the experimental measurement of the photonic bands and photonic
guided modes in PhC slabs. Chapter 5 is devoted to the presentation of
the application of the Angular-Dependent Reflectance Spectroscopy to the
characterization of PhC slabs in the middle IR, while chapter 6 presents
the results obtained on the application of the Angle-Resolved Spectroscopic
Polarimetry.

1.3 Framework

This Doctoral Thesis was made in the framework of the NePhoS research
group at the University Rovira i Virgili and funded by the Spanish Ministry
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of Science under project number TEC2005-02038, and HOPE CSD2007-
00007 (Consolider-Ingenio 2010). The three months intership provided by
the LPICM group at Ecole Polytechnique, Paris was also partially funded
by the Generalitat de Catalunya with the grant 2007-BE2-00163.
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Chapter 2

Introduction to the modeling

of photonic crystals

This chapter provides a basic introduction to the methods used in this work
for the modeling of photonic crystals. However, it is out of the scope of this
chapter to give a complete review of all of the work that has been done so
far in this field, because of its vast extension. The chapter is thought to give
the reader the theoretical background for the understanding of the results
presented in the thesis.

2.1 Fundamentals of photonic crystals

Photonic crystals1 are artificially created materials with a periodic varia-
tion of its refractive index on a wavelength scale [John 87]. The particular
behavior of photons inside these materials is analogous to that of electrons
in ordinary semiconductors. From the theory of quantum mechanics, a con-
duction electron propagating in the periodic potential caused by atoms in
the crystal lattice, behaves like a wave that suffers reflections from differ-
ent lattice planes, so called Bragg reflections [Ashcroft 76]. The existence

1It must be noted that the denomination ’Photonic Crystals’ is not correct as they
are not crystalline structures. The correct denomination for these materials is Photonic
Band Gap materials. However, the term Photonic Crystals is widely used and accepted,
as they are a photonic analogy of the actual molecular crystals. For this reason this last
denomination will be used throughout this work.

23
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Figure 2.1: (a) Schematic illustration of an electron wave propagating in a silicon
crystalline structure; (b) Schematic illustration of the propagation of a photon in a
two-dimensional photonic crystal structure with periodic variation of the dielectric
constant.

of a periodic potential, causing Bragg reflections, results in the build up of
constructive and destructive interferences between all the reflected waves
giving rise to the formation of energy bands (allowed energy states) and
energy gaps (forbidden energy states). If the electron has an energy inside
the gap, it can not propagate in certain directions in the crystal. Depending
on the strength of the periodic potential and on the lattice structure, the
gap can extend to cover all possible propagation directions, resulting in a
complete band gap. A fundamental example of band gap in semiconductors
is a gap between the valence and the conduction band, where in normal
situation (perfect silicon crystal without impurities) no electron with energy
within the gap will be found.

An optical analogous to a crystal lattice of a semiconductor is the pho-
tonic crystal, in which the atoms or molecules are replaced by optical scat-
terers with a size and a period of the order of magnitude of the wave-
length (Figure 2.1), and the periodic potential is replaced by a periodic
dielectric function (or, equivalently, a periodic refractive index). Let’s con-
sider photons moving through a block of transparent dielectric material that
contains a number of tiny air holes arranged in a lattice pattern. The
photons will pass through regions of high refractive index (the dielectric)
and regions of low refractive index (the air holes). This contrast in re-
fractive index looks just like the periodic potential that an electron expe-
riences travelling through a silicon crystal. The holes in the structure act
as strong scatterers. For certain wavelengths and directions, the interfer-
ence of the scattered electromagnetic waves by different lattice planes is
destructive. Waves with these wavelengths are Bragg reflected and can
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Figure 2.2: Schematic illustration of one-dimensional (a), two-dimensional (b) and
three-dimensional (c) photonic crystals.

not propagate inside the structure in the direction of the Bragg reflec-
tion. This results in a formation of allowed frequency regions separated
by forbidden regions, known as photonic band gaps. The patterned di-
electric material thus will block light with wavelengths in the photonic
band gap, while allowing other wavelengths to pass freely. The photonic
band gap is therefore an optical analogue of the band gap of a semiconduc-
tor [Yablonovitch 87, Yablonovitch 89, Yablonovitch 91b, Yablonovitch 91a,
Yablonovitch 93b, Yablonovitch 93a, Joannopoulos 97].

Photonic crystals can be classified depending on the dimension of their
periodicity into three categories [Joannopoulos 08]: that are, one-dimensional
(1D), two-dimensional (2D) and three-dimensional (3D) crystals depending
on whether the periodic variation of the dielectric constant is created in one,
two or three dimensions (Figure 2.2).

The one-dimensional (1D) photonic crystal (Figure 2.2a) is a periodic
dielectric multilayer structure, which consists of alternating layers of ma-
terial with different dielectric constants. This type of photonic crystal can
act as a mirror (a Distributed Bragg Reflector) or localize light modes for
light with a frequency within a specified range. The electromagnetic wave
propagation in a periodic multilayer was first studied by Lord Rayleigh in
1887, who showed that such structure has a band gap, however, with some
limitations. The 1D photonic crystals are generally angle-dependent on the
incidence and exhibit the photonic band gap for light traveling at normal
incidence. As we move away from the normal incidence (on-axis propaga-
tion), the band gap disappears, because the off-axis direction contains no
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26 Introduction to the modeling of photonic crystals

periodic dielectric regions to coherently scatter the light and split open a
gap. Special example of 1D photonic crystal is an omnidirectional mirror,
which reflects light for any angle of incidence and any polarization over a
specified range of wavelengths. Such 1D crystal was proposed by Winn et.
al. [Winn 98], and first experimentally realized by Fink et. al. [Fink 98].
Omnidirectional reflection is not a general property of 1D crystals. There
are two necessary conditions. First, the dielectric contrast between the two
mirror materials must be sufficiently large, and second, the smaller of the
two dielectric constants of the materials must be larger than the dielectric
constant of the ambient medium by a critical amount. Combining these two
criteria, the omnidirectional mirrors may even exhibit an omnidirectional
band gap [Xifré-Peréz 05, Bria 02, Chigrin 99]. The applications of the di-
electric multilayer structures are widespread e.g. high-reflection mirrors,
stop-band filters, anti-reflection coatings, etc.

A two-dimensional (2D) photonic crystal (Figure 2.2b) is a structure
periodic along two of its axes and homogeneous along the third axis. This
structure can block certain wavelengths of light at any angle in the plane of
periodicity, thus it can exhibit a complete in-plane photonic band gap. For
light propagating in this plane, the harmonic modes can be divided into two
independent polarizations, each with its own band structure.

We adopt the convention that for the TM (the transverse magnetic)
mode the electric field vector E is parallel to the scatterers, while for the
TE (the transverse electric) mode it is the magnetic field vector H which
is parallel to the scatterers. We use this electromagnetic mode convention
since it is also used in the book of Busch [Busch 04], and in the vast majority
of the literature concerning photonic crystals.

The earliest theoretical analysis of the 2D photonic crystal was made
by Plihal et al. [Plihal 91b]. The studied structure consisted of a periodic
array of circular dielectric rods in a square arrangement, embedded in a
background medium of different dielectric constant. The band structure
analysis showed the existence of photonic band gaps for different polariza-
tions of the electromagnetic waves, i.e. H- and E-polarization depending
on whether the magnetic H or the electric field E was polarized along the
rods. Many different configurations have since been studied in an attempt
to find 2D structures that have a large in-plane complete photonic band gap.
Examples include square [Villeneuve 92], triangular [Plihal 91a], honeycomb
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[Cassagne 96], and interstitial [Anderson 96, Wang 99] lattices coupled with
square [Villeneuve 92, Padjen 94], diamond [Wang 99, Padjen 94, Agio 00],
hexagonal [Padjen 94, Baba 95], elliptic [Qiu 99], and triangular [Padjen 94,
Baba 95] shaped rods.

A specific example of 2D photonic structure, which can confine light also
in the third dimension is a photonic crystal slab (PhC slab). It is also a pe-
riodic structure with the periodicity along two of its axes, but of a finite
thickness in the third axis. Such alternative 2D structure system has a band
gap for propagation in the plane of periodicity and uses the index guiding
to confine light in the third dimension. An example is the structure that
consists of a high-refractive-index film (a semiconductor, for example) per-
forated with a 2D photonic lattice and sandwiched between low-refractive-
index media. In this structure, light is controlled vertically by total internal
reflection (due to the refractive index contrast of the high-index core and
the low-index cladding), and laterally by distributed Bragg reflection due
to the presence of the 2D photonic pattern. The PhC slab has been exten-
sively studied because it generates a pseudo-photonic band gap that covers
almost all of the 3D angles and can be realized using standard lithographic
techniques based on 2D patterns [Johnson 99, Chutinan 02, Chutinan 00,
Painter 99, Baba 99, Krauss 96]. Another example is the PhC slab fab-
ricated on a SOI (silicon-on-insulator) substrate [Shinya 02, Loncar 00b,
Loncar 00a, Notomi 02]. The SOI substrate itself is intrinsically a slab
waveguide structure that is very effective at confining light. The PhC slabs
made from SOI wafers are extremely promising because they make use of
commercially available high-quality wafers and mature Si nanofabrication
technology. Also, the SOI slab fabrication process is relatively easy and
compatible with the current device fabrication process, which makes these
structures suitable for the realization of photonic integrated circuits. Sev-
eral applications have been found for 2D photonic crystals and PhC slabs:
semiconductor lasers [Imada 99] and light-emitting diodes [Fan 97], optical
fibers [Knight 98], low-loss waveguides and bends [Johnson 99, Chutinan 02,
Chutinan 00, Baba 99, Kuchinsky 00, Loncar 00b], polarizers [Ohtera 99],
or channel drop filters [Fan 99, Chutinan 01, Fan 98b, Fan 98a].

The most promising photonic material from the application point of
view is a three-dimensional (3D) photonic crystal with the possibility of
complete 3D photonic band gap. The 3D photonic crystal was first pro-

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF OPTICAL CHARACTERIZATION METHODS FOR MICRO- AND NANO-SCALE PLANAR PHOTONIC BAND GAP STRUCTURES 
Zdenek Kral 
DL: T-1537-2009/ISBN:978-84-692-4556-9 



28 Introduction to the modeling of photonic crystals

posed by Yablonovitch [Yablonovitch 87] and John [John 87] in 1987, ex-
actly one hundred years after Lord Rayleigh (1887) discovered a band gap
in the one-dimensional multilayer structure. The suggestion of a material
with a complete photonic band gap was shortly followed by other authors
Yablonovitch and Gmitter [Yablonovitch 89], Satpathy [Satpathy 90], Le-
ung and Liu [Leung 90], and Ho [Ho 90]. However, it took three more years,
in 1991, before the first artificial 3D photonic crystal was produced by me-
chanically drilling an array of holes along the three lattice vectors of the
fcc (face-centered) lattice into a block of dielectric medium with a refractive
index of 3.6. This photonic crystal has been named ”Yablonovite”, after its
discoverer and showed a stop-band for the transmission of microwave radia-
tion between 13 and 15 GHz [Yablonovitch 91a]. Other 3D structures that
have band gaps at microwave and radio frequencies have been developed by
Ozbay [Ozbay 94] and Noda [Noda 99].

The first 3D photonic crystal with a complete band gap at infrared
wavelengths was proposed by Ho et al. [Ho 94]. The so-called ”woodpile”
or ”picket fence” structure was formed by a stack of dielectric rectangular
”logs”. This 3D photonic band gap structure has been also extensively stud-
ied by other authors (Sözüer and Dowling [Sozuer 94]). Lin et al. [Lin 98]
obtained a complete band gap with a woodpile structure fabricated by stack-
ing micro-machined silicon wafers at a wavelength of 12 µm. Subsequently,
the same authors achieved a band gap around a wavelength of 1.6 µm by
reducing the size of the structure [Lin 99]. The key factor to fabricate the
woodpile structure was the accurate alignment of successive layers, however
it has become extremely difficult to achieve the required accuracy as the
dimensions of the structure were reduced, and as the number of the layers
was increased.

Another 3D photonic band gap structure was realized by self-arrangement
of sub-micron-sized silica spheres in a colloidal suspension. By subsequent
infiltration of the space between the spheres with a high-refractive dielec-
tric material and dissolving away the spheres, a structure called inverse
opal was created. This method has been published by several authors (Wi-
jnhoven et al. [Wijnhoven 98], Blanco et al. [Blanco 00], Vlasov et al.
[Vlasov 97, Vlasov 01])

In spite of a constantly growing development, the fabrication of useful
3D photonic crystals that work in the near-IR (780-3000 nm) and visible
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(450-750 nm) regions of the spectrum (the regions of their most promising
applications) is still a difficult task [Noda 00]. The problem consists in the
fundamentals of the band gap theory itself. Almost all of the applications
for photonic crystals rely on the existence of the photonic band gap. The
frequency at which the band gap occurs is directly related to the size and
period of the scattering elements that make up the photonic lattice. Specif-
ically, the size and period of the features must be of the order λ/2, where
λ is the wavelength of light at which the gap occurs. Therefore, to achieve
a band gap in the visible region one should be able to fabricate structures
with lattice constants in the order of one quarter of micron. Moreover, the
technology should be able to fabricate precisely small elements with roughly
ten lattice periods in each direction. To fulfill all these conditions is tech-
nically very difficult, especially when any deviations in the size or in the
period may affect the properties of the photonic crystal.

2.2 Photonic bands calculation

The mathematical formulation of bands in a photonic crystal has been
adapted from quantum mechanics and solid state physics. To study the
propagation of light in photonic crystals, we shall start with the Maxwell
equations and formulate the eigenvalue problem of the wave equation.

2.2.1 Maxwell equations and eigenvalue problem

Maxwell equations in the most general form are given in MKS units as
follows:

∇·D(r, t) = 0, (2.1)

∇·B(r, t) = 0, (2.2)

∇×E(r, t) = − ∂

∂t
B(r, t), (2.3)

∇×H(r, t) =
∂

∂t
D(r, t), (2.4)

where E and H are the macroscopic electric and magnetic field vectors, D

and B are the electric displacement and magnetic induction vectors. We
restrict our study to the eigen-modes of the radiation field, therefore we
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30 Introduction to the modeling of photonic crystals

assume here no free charges or electric currents. In order to solve the wave
equations derived from Maxwells equations, we need so-called constitutive
equations that relate D to E and B to H. Since we do not deal here
with magnetic materials, we take the magnetic permeability of the photonic
crystal equal to that in free space, µ0:

B(r, t) = µ0H(r, t). (2.5)

As for the dielectric constant2, we assume that it is real, isotropic, perfectly
periodic with respect to the spatial coordinate r, and does not depend on
frequency (and therefore independent of time as well). The periodicity of
the dielectric constant is defined by a function

ε(r + ai) = ε(r) (i = 1, 2, 3), (2.6)

where {ai} are the elementary lattice vectors (Appendix A) of the photonic
crystal. We denote the dielectric constant of free space by ε0 and the relative
dielectric constant of the photonic crystal by ε(r)3. The electric displacement
is thus given by

D(r, t) = ε0ε(r)E(r, t). (2.7)

All of these quantities are potentially functions of both position r and time t.
In the particular case of the light propagation in a periodic dielectric media
(e.g. a photonic crystal), the general Maxwell’s equations can be simplified
by replacing equations (2.5) and (2.7) in the master Maxwell’s equations
(2.1-2.4), we obtain following form:

∇· {ε(r)·E(r, t)} = 0, (2.8)

∇·H(r, t) = 0, (2.9)

∇×E(r, t) = −µ0
∂

∂t
H(r, t), (2.10)

2Some authors also call it the relative permittivity.
3Some authors use εr for the relative dielectric constant (or relative permittivity) and

ε for the permittivity ε0εr. In this work, we adopt the convention of dropping the r
subscript, since we work only with the dimensionless εr.
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∇×H(r, t) = ε0ε(r)
∂

∂t
E(r, t), (2.11)

When we eliminate E(r, t) or H(r, t) in equations 2.10 and 2.11, we obtain
the following wave equations:

1
ε(r)

∇× {∇×E(r, t)} = − 1
c2

∂2

∂t2
E(r, t), (2.12)

∇×
{

1
ε(r)

∇×H(r, t)
}

= − 1
c2

∂2

∂t2
H(r, t), (2.13)

where c stands for the light velocity in free space:

c =
1√
ε0µ0

. (2.14)

The field functions E and H , thanks to the linearity of Maxwell’s equa-
tions, can be expressed in a form of harmonic fields:

E(r, t) = E(r)e−iωt, (2.15)

H(r, t) = H(r)e−iωt, (2.16)

where ω is the eigen-angular frequency, and E(r) and H(r) are the eigen-
functions of the wave equations. By inserting equations (2.15) and (2.16)
into (2.12) and (2.13), in a few steps it is possible to recast the Maxwell’s
equations in a closed form either for the electric or magnetic fields:

1
ε(r)

∇× {∇×E(r)} =
(ω

c

)2
E(r), (2.17)

∇×
{

1
ε(r)

∇×H(r)
}

=
(ω

c

)2
H(r). (2.18)

We have transformed Maxwell’s equations in an eigenvalue problem,
where

(
ω
c

)2 are the eigenvalues, and the fields E(r) and H(r) are the eigen-
functions of our problem. There are two important properties of the equa-
tions (2.17) and (2.18). One property is that they are scale-independent
and the other is the time reversal symmetry of the wave equation. This
means that we can solve the equations once and then apply the same results
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32 Introduction to the modeling of photonic crystals

to problems at all length scales and frequencies. In other words, the scal-
ing law tells us that two photonic crystals which are similar to each other
essentially have the same photonic band structure, that is, the difference
between the two band structures is simply the scales of frequency and the
wave vector. Because of this scale invariance, it is convenient to use dimen-
sionless units for distance and time. Distances are usually represented as
multiples of a (a=lattice constant), and all angular frequencies in units of
2πc/a, which is equivalent to a/λ (λ= vacuum wavelength) [Sakoda 05].

2.2.2 Periodicity and Bloch-Floquet theorem

By definition, a photonic crystal is a periodic arrangement of different di-
electric media which implies that the dielectric constant ε(r) is a periodic
function of the position (r) defined by the equation 2.6. The analogy between
the electronic wave equation in ordinary crystals with a periodic potential
and the periodic dielectric function in photonic crystals allows to impose the
Bloch-Floquet theorem into equations (2.17) and (2.18). The Bloch-Floquet
theorem states that the general solution of equations (2.17) and (2.18) is in-
variant under a translational symmetry4. E(r) and H(r) from (2.17) and
(2.18) are thus characterized by a wave vector k in the first Brillouin zone5

and by a band index n as

E(r) = Ekn(r) = ukn(r)eik·r, (2.19)

H(r) = Hkn(r) = vkn(r)eik·r, (2.20)

where ukn(r) and vkn(r) are periodic vectorial functions that satisfy the
following relations

ukn(r + ai) = ukn(r), (2.21)

vkn(r + ai) = vkn(r), (i = 1, 2, 3). (2.22)

4Ek(r) = Ek (r + R) = eik·REk(r), Hk(r) = Hk (r + R) = eik·RHk(r), where
R =

∑
i niai is a linear combination of elementary lattice vectors.

5Detailed description of the first Brillouin zone and irreducible Brillouin zone is given
in Appendix A.
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2.2.3 Plane-wave expansion method

The plane wave expansion method is one of the techniques used to calcu-
late the photonic band structure. This method has been taken from solid
state physics and adapted to the photonic crystals. The method is based on
the Fourier expansion of the electromagnetic field and the dielectric func-
tion ε(r). The photonic band structure can be obtained straightforwardly
by considering the wave equation (2.17) or (2.18) in the reciprocal space6.
To this end, the inverse of the periodic dielectric function ε(r) should be
expanded in a Fourier series on the reciprocal lattice G:

1
ε(r)

=
∑

G

κ(G)eiG·r, (2.23)

where the Fourier coefficients κ(G) are obtained through an integration over
the primitive unit cell, whose volume is defined by Ω, as follows:

κ(G) =
1
Ω

∫

Ω
d3r

1
ε(r)

e−iG·r. (2.24)

Considering the spatial periodicity of the functions (2.19) and (2.20), the
eigenfunctions of the electromagnetic field will be expanded in Fourier se-
ries like the inverse of the dielectric function ε−1(r) in (2.23). The Fourier
expansion leads to the following form of the eigenfunctions:

Ekn(r) =
∑

G

Ekn(G)ei(k+G)·r, (2.25)

Hkn(r) =
∑

G

Hkn(G)ei(k+G)·r. (2.26)

For the sake of simplicity, the coefficients of reciprocal lattice space Ekn(G)
and Hkn(G) are denoted by the same symbols as the original ones in real
space. Substituting (2.23), (2.25) and (2.26) into (2.17) and (2.18), we obtain
the following eigenvalue equations for the expansion coefficients {Ekn(G)}

6see Appendix A
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and {Hkn(G)}:

−
∑

G′
κ(G−G′)(k+G′)×{(k+G′)×Ekn(G′)} =

(ωkn

c

)2
Ekn(G), (2.27)

−
∑

G′
κ(G−G′)(k+G)×{(k+G′)×Hkn(G′)} =

(ωkn

c

)2
Hkn(G), (2.28)

where ωkn denotes the eigen-angular frequency of the eigenmodes Ekn(r)
and Hkn(r). By solving these two sets of equations numerically, we can ob-
tain the dispersion relation of the eigenmodes, or equivalently, the photonic
band structure.

In order to solve equations 2.27 and 2.28, the most used approach is the
truncation of the expansions 2.23, 2.25 and 2.26 up to a finite number NG

of vectors7 of the reciprocal lattice G′. With this truncation, equations 2.27
and 2.28 are matrix eigenvalue equations that can be solved with standard
numerical procedures. The result is a set of eigenvalues {ωi} and, for each
eigenvalue, a set of the expansion coefficients {Hkn(Gi)} or {Ekn(Gi)}.

2.3 Numerical calculation of the interaction of light

with photonic crystal planar structures

The analysis methods developed in this Doctoral Thesis provide calcula-
tion of the interaction between light and photonic crystal planar structures.
These methods use a scattering matrix (S-matrix) treatment introduced by
Whittaker and Culshaw [Whittaker 99]. This treatment is based on the
modeling of the propagation of light in a patterned multilayer structure us-
ing the S-matrix formalism [Ko 88] and incorporates the extended boundary
conditions necessary to describe the coupling with the external radiation,
which is the basis for the characterization methods developed in this work.

The S-matrix formalism is originated in the development of the propa-
gating waves at each layer of the structure as a sum of plane waves which can
propagate at directions not necessarily perpendicular to the scatterers. The
plane waves are eigen functions for a given layer and constitute a complete
basis set of functions for the propagating waves. Then, the S-matrix method

7Number of the plane waves used in the expansion.
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is used to relate the waves at each layer of the structure with those at the
other layers, and also with the waves at the incident medium and at the
substrate. The S-matrix formalism is specially adequate for this modeling
since it deals better with numerical overflow than other methods such as
the transfer-matrix method. A brief outline of the method is given in this
section. Results of the simulations are shown in chapters 5 and 6.

The formalism begins with the determination of the eigenstates in each
layer of the strucutre. For this reason, the Maxwell equations are solved for
a structure indefinite in the z direction, and where the waves can propagate
in any direction. To this end, first the electric and magnetic fields are
expanded as a sum of plane waves with different amplitudes. The magnetic
field8 thanks to the Bloch-Floquet theorem can be expressed as

H(r, z) =
∑

G

Hk(G, z)ei(k+G)·r, (2.29)

where k = (kx, ky) is the Bloch wave vector, G is the reciprocal lattice vec-
tor, and r = (x, y). An harmonic time dependence with ω angular frequency
is assumed.

It is also necessary to introduce the Fourier expansion of the dielectric
function:

ε(G) =
1
S

∫

unitcell
dr ε(r)eiG·r, (2.30)

where S is the area of the in-plane unit cell. By substituting the expansions
in the Maxwell curl equations, the momentum representation in component
form is obtained:

ik̂yhz(z)− h′y(z) = −iε̂ex(z)
h′x(z)− ik̂xhz(z) = −iε̂ey(z)

ik̂xhy(z)− ik̂yhx(z) = −iε̂ez(z)

(2.31)

and
ik̂yez(z)− e′y(z) = iω2hx(z)
e′x(z)− ik̂xez(z) = iω2hy(z)

ik̂xey(z)− ik̂yex(z) = iω2hz(z),

(2.32)

where the hx, hy and hz are the coefficients of the expansion 2.29 expressed

8analogous for the electric field
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36 Introduction to the modeling of photonic crystals

as the three components. This is, hx, hy and hz are Fourier space vectors
whose index is the G in the expansion 2.29. The k̂x, k̂y are diagonal matrices
with (k̂x)GG = (kx + Gx) and (k̂y)GG = (ky + Gy), and the primes denote
differentiation with respect to z. The notation adopted in this section to
distinguish various types of vector and matrix is described in the following:
bold faces denote three vectors (E,H), while lower case italics are used for
Fourier space vectors (e,h). For a finite system with NG reciprocal lattice
vectors, the matrices that occur are mostly of dimension NG×NG, indicated
by hatted lower case (ε̂, η̂), or 2NG × 2NG, for which various upper case
symbols will be used (E , H, Φ).

The next step is to find the eigen states of each layer of the structure
for waves that can propagate not only perpendicular to the scatterers but
in any angle. To this end, the waves are expanded as a sum:

H(r, z) =
∑

G

φx(G)
{
x̂− 1

q
(kx + Gx)ẑ

}
ei(k+G)·r+iqz (2.33)

+φy(G)
{
ŷ − 1

q
(ky + Gy)ẑ

}
ei(k+G)·r+iqz,

where x̂, ŷ and ẑ are the conventional unit vectors defining the coordinate
axes and φx(G), φy(G) are expansion coefficients. Substituting this expan-
sion into the Maxwell equations 2.31 and 2.32, an eigenvalue equation for ω

and for the expansion coefficients φx and φy is obtained,

[H(q2 + K) +K]φ = ω2φ, (2.34)

where φ = (φx, φy)T . With the proper transformations this equation can be
transformed to an eigenvalue equation for q:

[(ω2 −K)E(ω2 −K)− ω2K]φ = q2(ω2 −K)φ, (2.35)

where:

H =

(
η̂ 0
0 η̂

)
, (2.36)

K =

(
k̂xk̂x k̂xk̂y

k̂yk̂x k̂yk̂y

)
, (2.37)
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K =

(
k̂yη̂k̂y −k̂yη̂k̂x

−k̂xη̂k̂y k̂xη̂k̂x

)
, (2.38)

E =

(
k̂yη̂k̂y −k̂yη̂k̂x

−k̂xη̂k̂y k̂xη̂k̂x

)
. (2.39)

The solution to this equation is a set of eigenvectors φn with their corre-
sponding eigenvalues qn for a given k and ω, and for each of the layers of
the structure. This equation can be solved by truncating the expansions at
a finite number of reciprocal lattice vectors G and using standard matrix
algorithms. The calculations in this work have been all carried out with
121 plane waves. Although this is a small number of plane waves, it has
been tested that the convergence is enough for the simulations carried out
in the work. This is mainly due to the fact that the characterization meth-
ods developed in this work are applied to the lower bands of the photonic
crystals.

Any electromagnetic wave propagating inside one of the layers of the
structure can be expanded as a sum of these eigenmodes:

(
hx(z)
hy(z)

)
=

∑
n

(
φxn

φyn

)
(eiqnzan + eiqn(d−z)bn), (2.40)

and

(
−ey(z)
ex(z)

)
=

∑
n

(
η̂ 0
0 η̂

){
q2
n +

(
k̂xk̂x k̂xk̂y

k̂yk̂x k̂yk̂y

)}
(2.41)

×
(

φxn

φyn

)
1
qn

(eiqnzan + eiqn(d−z)bn).

Here, the an and bn correspond to the coefficients of the expansion. The
an correspond to the coefficients for eigenmodes propagating in the forward
direction (towards positive z) and the bn correspond to eigenmodes propa-
gating in the backward direction (see Figure 2.3). Thus, any propagating
wave in one of the layers of the structure is parameterized in the form of
a vector of the amplitudes (a, b)T . The S-matrix relates the amplitudes
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a0 al aN

b0 bN
bl

a0 al aN

b0 bN
bl

Figure 2.3: Labeling scheme for forward and backward going waves in different
layers of the structure. l=0 is the surface, l=N the substrate. After reference
[Whittaker 99].

(expansion coefficients) in two different layers of the structure:

(
al

bl′

)
= S(l′, l)

(
al′

bl

)
=

(
S11 S12

S21 S22

)(
al′

bl

)
. (2.42)

It is important to note that the S-matrix relates the amplitudes of the waves
propagating inward (al and bl′) with respect the two layers, l and l′, with the
amplitudes propagating outwards (al′ and bl). It is this detail that confers
numerical stability to the S-matrix formalism. The actual values of the S11,
S12, S21 and S22 are obtained by requiring that the fields on either side of the
interface satisfy the electromagnetic boundary conditions, this is continuity
of the in-plane components Hx, Hy, Ex and Ey. Once the S-matrix for the
whole structure is calculated, reflection and transmission coefficients can be
determined. The relevant S-matrix for this calculation is the one relating
the amplitudes in the incident medium (l = 0) with the amplitudes in the
substrate (l = N): S(0, N). For an experiment in which light is incident on
the sample surface, the amplitudes a0 are determined by the incident wave
and bN = 0 (as no wave is incident from the substrate). Thus, the reflected
amplitudes are b0 = S(0, N)a0. Then, it is only necessary to translate the
amplitudes a0, b0, aN and bN into experimental angle and polarization-
dependent external plane waves. An external plane wave is specified by its
polarization and direction of propagation, defined by polar coordinates (θ,
φ) relative to the surface normal (see Figure 2.4). Writing k0 =

√
εω/c,

where ε is the dielectric constant of the external medium, the in-plane wave
vector is

k = k0 sinθ(cosφx̂ + sinφŷ). (2.43)
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Figure 2.4: Schematic illustration of the direction of light propagation defined by
polar coordinates (θ, φ) relative to the surface normal. (a) Cross section and
(b) planar view, showing a triangular lattice of holes and examples of the high-
symmetry direction. A [Whittaker 99].

Then, the TE- and TM-polarized incident plane waves are given by the field
components

ETE = ε0ωcZ1/2(sinφx̂− cosφŷ)ei(k·r+qz)

HTE = Z−1/2(cosθ cosφx̂ + cosθ sinφŷ − sinθẑ)ei(k·r+qz)

ETM = ε0ωcZ1/2(cosθ cosφx̂ + cosθ sinφŷ − sinθẑ)ei(k·r+qz)

HTM = Z−1/2(−sinφx̂ + cosφŷ)ei(k·r+qz),

(2.44)

where Z =
√

µ0/(ε0ε) is the intrinsic impedance of the external medium.
These fields can be easily expressed in terms of the a0 amplitudes. Thus,
the b0 can be obtained from the S-matrix and translated back into the
amplitudes of the reflected plane waves and reflection coefficients, for the
different polarizations.
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Chapter 3

Fabrication of 2D photonic

crystal slabs

This chapter refers to some technologies related with the fabrication of the
planar photonic crystal structures that are investigated in the present work.
Each section describes the fabrication process of a particular type of planar
photonic crystal.

3.1 Lithography

Lithography is generally a process used to transfer a pattern from a mask
to a surface. The modern lithography techniques adapted in the micro-
fabrication industry mostly refer to photolithography (optical lithography),
which is basically a photographic process by which a light-sensitive polymer,
called a photoresist, is exposed and developed to form three-dimensional
relief images on the substrate. However, there are several other lithography
techniques available nowadays, which mainly differ in their physical principle
and size of the pattern to be able to print with adequate control. There is:

• Optical lithography (photolithography)

– Deep Ultra-Violet (DUV)

– Extreme Ultra-Violet (EUV)

– X-ray

41
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42 Fabrication of 2D photonic crystal slabs

– Immersion

• Electron Beam lithography (EBL)

• Nanoimprint lithography

• Laser Interference lithography (LIL)

A typical photolithography procedure consists of depositing a layer of
photoresist (by spin coating) several nanometers thick on a substrate. After
coating, the resulting photoresist film is prebaked, which removes the sol-
vent included in the photoresist. The main reason for removing the solvent
content is to stabilize the resist film. The subsequent step is placing a trans-
parent plate (UV transparent glass or deep UV transparent quartz) covered
by a thin patterned Cr layer with opaque areas, called a photo-mask between
a source of illumination and the substrate. Then, the layer of photoresist is
exposed to light. There are three methods of exposing a photoresist through
a master pattern: (i) contact printing which offers high resolution, but prac-
tical problems such as mask damage, (ii) proximity printing, where the mask
is kept a set distance above the substrate (lower resolution), and (iii) pro-
jection printing of the image of the mask onto the substrate throught a
reduction lens. During the exposure, light passes through the photo-mask
onto a photoresist-covered substrate, whereas the mask acts as a stencil. The
light induces a photochemical reaction in the exposed photoresist zones. Af-
ter exposure and subsequent post-exposure bake, the substrate is immersed
in a developer solution where either the exposed zones (positive tone resist)
or the un-exposed zones (negative tone) of photoresist are removed.

The ability to project a clear image of a very small feature onto the
photoresist-covered substrate is limited by the wavelength of the light that is
used and the ability of the reduction lens system to capture enough diffrac-
tion orders from the illuminated mask. In optical projection lithography,
resolution is given by the equation

W =
k1·λ
NA

, (3.1)

where λ and NA are the exposure wavelength and numerical aperture of
the optical lithography tool, and k1 is a constant for a specific lithographic
process (k1 depends on resist and substrate reflectivity).
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Lithography 43

Lithography systems have progressed from blue wavelengths (436 nm
mercury lamp filtered for G- and H-lines) to UV (365 nm I-line) to deep-
UV (248 nm line-narrowed KrF laser) to todays mainstream high resolution
wavelength of 193 nm (ArF excimer laser). In the meantime, projection
tool numerical apertures have risen from 0.16 for the first scanners to amaz-
ingly high 0.93 NA systems today producing features well under 100 nm in
size. The strategy to meet the continued demands for higher resolution and
larger depth of focus is to develop new lasers or migrate to an expensive
synchrotron to generate enough EUV (extreme ultraviolet) and X-ray pho-
tons. An alternative is the use of immersion photolithography, which is a
resolution enhancement technique that replaces the usual air gap between
the final lens and the substrate surface with a liquid medium that has a
refractive index greater than one. The resolution is increased by a factor
equal to the refractive index of the liquid. Current immersion lithography
tools use highly purified water for this liquid, achieving feature sizes of 37
nm [Wagner 07], with plans to bring 32 nm parts to market in late 2009.

An alternative to photolithography is electron beam lithography (EBL),
in which the photons for resist exposure are replaced by electrons. The
EBL is a technique for creating structures in electron-beam sensitive resists
by a focused electron beam. Because of its intrinsic high resolution (down
to 10 nm) and flexibility, EBL is at present the primary lithographic tech-
nique used in sub-quarter-micron device research (for prototyping of special
circuits, optical waveguides, nanodevices, quantum wires, finFETs, single
photon detectors, etc.). However, for the massive production of chips it is
not suitable due to the high cost and slow rate of production.

Nanoimprint lithography, first suggested by Chou et al. [Chou 96] is a
novel method of fabricating nanometer scale patterns. It is a simple process
with low cost, high throughput and high resolution (≈ 20 nm). It cre-
ates patterns by mechanical deformation of imprint resist and subsequent
processes. The imprint resist is typically a monomer or polymer formula-
tion that is cured by heat (thermoplastic nanoimprint) or UV light (photo
nanoimprint) during the imprinting. Adhesion between the resist and the
template is controlled to allow proper release. A key benefit of nanoimprint
lithography is its simplicity. There is no need for complex optics, high-energy
radiation sources or finely tailored photoresists designed for high resolution
and sensitivity. Moreover, a broader range of materials with varying prop-
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44 Fabrication of 2D photonic crystal slabs

erties are available for use with nanoimprint lithography. The increased
material variability gives the freedom to design new functional materials
rather than sacrificial etch resistant polymers. A functional material may
be imprinted directly to form a layer in a chip with no need for pattern
transfer into underlying materials. Potential applications of nanoimprint
lithography are in the fabrication of electronic devices (MOSFET, O-TFT,
single electron memories), in optics (subwavelength resonant grating filter,
polarizers, waveplate, anti-reflective structures), photonic and biological ap-
plications.

3.1.1 Laser-interference lithography

In this subsection we introduce the Laser-Interference Lithograhpy (LIL) in
detail since this technique was used for the fabrication of photonic crys-
tal (PhC) slabs that are investigated in chapter 6. The LIL is a tech-
nique based on the recording of a laser interference pattern on a material
[Zhang 07]. This method, also called holographic lithography was first pro-
posed and implemented for the fabrication of photonic crystals by Berger
et al. [Berger 97]. They fabricated a 2D hexagonal pattern in a photosen-
sitive polymer, which subsequently served as an etch mask for transfer to a
high-index silicon substrate.

The laser interference pattern consists of a periodic series of fringes rep-
resenting the high- and low-intensity regions (intensity minima and maxima)
produced by the interference of two or more coherent beams. The configu-
ration and the number of interfering beams determine the geometry of the
pattern. The spatial period of the features to be recorded can be as small
as half the wavelength of the interfering light. The interference lithography
method, however, can create only defect-free photonic structures.

Figure 3.1 shows the four-beam interference lithography system. There
is a laser beam that is divided into four beams by using three beam splitters.
These four beams are afterwards guided towards the sample in which they
interfere, using four mirrors. To describe the interference we introduce the
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Lithography 45

Figure 3.1: Four-beam laser interference lithography system (a) shematic illustra-
tion and (b) experimental setup [Ellman 08].

electric field of each laser beam as:

E1 = A1p1 cos(kn1· r± 2πft + φ1),

E2 = A2p2 cos(kn2· r± 2πft + φ2),

E3 = A3p3 cos(kn3· r± 2πft + φ3),

E4 = A4p4 cos(kn4· r± 2πft + φ4), (3.2)

were A1, A2, A3 and A4 are the amplitudes; p1, p2, p3 and p4 are the unit
polarization vectors; k = 2π

λ is the wave number; n1, n2, n3 and n4 are the
unit vectors in the direction of propagation; r is the position vector; f is the
frequency and φ1, φ2, φ3 and φ4, are the phase constants of the beams. The
superposition of these four beams can be expressed as:

4∑

m=1

Em =
4∑

m=1

Ampm cos(knm· r± 2πft + φm). (3.3)

The interference intensity distribution can be then determined by averaging
the square of the resulting electric field (Equation 3.3) over time. It is
important to notice that this intensity, which is implicit in the propagation
and position vectors, depends on the angles of incidence θ between the beams
and the sample. Other process parameters that have to be adjusted are the
polarization of the beams and the energy.

Figure 3.2 shows an example of the PhC slab fabricated with the LIL
technique. The sample is a silicon wafer with the native silicon oxide layer
(SiO2) over it and with an i-line positive low-viscosity photoresist (AZ1505)
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46 Fabrication of 2D photonic crystal slabs

Figure 3.2: SEM image of the photoresist PhC slab produced by laser-interference
lithography (LIL) [Ellman 08].

deposited by spin coating on the top. The thickness of the deposited pho-
toresist film is 400 nm. An annealing process (pre-bake at 100 ◦C for 30
seconds) is applied just after the spinning of the photoresist. The photore-
sist is patterned by the four-beam laser interference with an 8 ns laser pulse
of 18 mJ/cm2 fluence. The angle of incidence θ between the beams and
the sample is set to 20◦. The main TM polarized laser beam comes from a
frequency-tripled Quantel Nd:YAG laser (355 nm) with a coherent length of
3 m. After the patterning, the photoresist is subjected to a post-exposure
bake (at 110 ◦C for 2 minutes), which reduces the standing waves effect
on the photoresist. The development of the photoresist is carried out by
soaking the wafers in a solution of (AZ-315B) developer and ultra pure wa-
ter (1:5) at room temperature during 30 seconds. Finally, second post-bake
process (at 115 ◦C for 30 seconds) is applied to improve the definition of the
geometries in the photoresist [Ellman 08, Perez-Hernandez 08].

3.2 Electrochemical etching and oxidation

Etching is the most used subtractive technique in microfabrication. It can
be described as pattern transfer by chemical/physical removal of a material
from a substrate. Etching can be wet or dry depending on whether the etch
reactants come from a liquid source or from a gas/vapor phase source. The
parameters which determine the suitability of wet or dry etching technique
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are the etch rate, selectivity, and anisotropy. The etch rate is usually speci-
fied in angstrom per minute (Å/min) units. In general, dry etching has lower
etch rate than wet etching. Selectivity refers to the ability of the reactive
species to etch away only the material intended for removal, while leaving
all other materials intact (dry etching has less selectivity than wet etching).
Anisotropy is a property which determine whether the etching proceeds in
one or different directions at different rates (dry etching has higher degree
of anisotropy than wet etching).

Dry etching is technique assumed from micro-semiconductor devices in-
dustry to fabricate 2D photonic structures. There are different types of
dry-etching methods depending on which physical process is involved. Gen-
erally, dry etching is a process by which a solid surface is etched in the gas or
vapor phase, physically by ion bombardment (highly anisotropic and low se-
lective), chemically by a chemical reaction through a reactive species at the
surface (isotropic and high selective), or by combined physical and chemical
mechanisms (anisotropic with reasonably good selectivity). Most dry etch-
ing techniques are plasma-assisted. They are commonly divided into three
groups: chemical plasma etching, synergetic reactive ion etching, and phys-
ical ion-beam etching. There exist combinations like a chemically assisted
ion beam etching, which is probably the most used dry etching technique for
2D planar photonic crystals, photonic crystal waveguides and microcavities.
In this technique, reactive species are introduced into the process indepen-
dently of the etching ion beam, and in this way make it possible to control
the physical and chemical parameters separately.

Wet etching is a method based on removing a material from a solid sur-
face by immersing ”a wafer” (e.g. silicon crystal) in a liquid bath of a chem-
ical reactants. There are two kinds of wet etching reactants, isotropic and
anisotropic. Isotropic reactants attack the material being etched at the same
rate in all directions, whilst anisotropic reactants attack at different rates in
different directions. Anisotropic etching does not cause undercutting, and is
preferred in applications where straight side walls are essential. Anisotropic
etching requires a substrate with a well defined crystalline structure such as
silicon. The etching is directional and proceeds along the exposed plane in
the crystal lattice. As atoms are removed from the crystal lattice, different
planes are exposed to the reactant. Since the density of atoms on the planes
varies, the etch rate varies significantly.
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48 Fabrication of 2D photonic crystal slabs

Figure 3.3: Schematic illustration of the electrochemical etching set-up. The wafer
is mounted onto an electrochemical etching cell with the pre-structured front side
in contact with the electrolyte [Trifonov 04].

3.2.1 Light-assisted electrochemical etching of silicon

In this subsection we focus on a wet etching technique that uses selective
etching phenomena, the ability of the reactive species to etch away only
the material in desired direction of the crystal. The technique is applied to
crystalline silicon in order to fabricate the PhC slabs that will be the subject
of the optical characterization in chapter 5.

The PhC slabs based on macroporous silicon1 consist of ordered array
of pores (holes) formed by electrochemical etching of n-type silicon 〈100〉
(Si) in acid solution (HF solution). The Si wafer is prestructured by oxi-
dation, photolithography and subsequent tetramethyl ammonium hydroxide
(TMAH) etching to form the initial pits, which serve as nucleation centers
for the ordered pore growth. In the backside of the prestructured wafer, an
indium tin oxide layer is sputtered to provide a low-resistance transparent
ohmic contact. The wafer is then mounted together with a counter and
reference electrodes in an electrochemical cell with the front side in contact
with the electrolyte (see Figure 3.3). The silicon dissolution occurs only
under anodic polarization. A positive voltage is applied to the n-type sili-

1Macroporous silicon is named because of the generally ’macroscopic’ feature size of
the etched pores (1-50 µm).
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Figure 3.4: Schematic illustration of the macropore formation in low doped n-type
Si. A [Trifonov 04].

con against the platinum counter electrode. The pore formation mechanism
illustrated in figure 3.4 is ruled by the reverse-biased space-charge region
(SCR) [Trifonov 04] at the silicon-electrolyte interface. The silicon wafer is
backside illuminated in order to generate positive carriers (holes) in the bulk
of the semiconductor, which are in n-type silicon a minority. The positive
carriers (holes), required for anodic dissolution of silicon, diffuse through
the silicon wafer and reach the silicon/electrolyte interface where they are
consumed in the dissolution reaction [Trifonov 04]. The holes do not pen-
etrate the area between the pores, they are focused by the space-charge
region (SCR) mainly at the pore tips and promote dissolution there. Thus,
the macropore walls become passivated against dissolution and pores grow
in direction perpendicular to the wafer surface. Stable pore growth and
well-ordered macropore arrays are only achievable if etching parameters,
such as HF concentration, doping level, applied voltage and photogenerated
current, are properly adjusted [Lehmann 90, Lehmann 93, Lehmann 99]. It
must be noted that this can also be done in p-type silicon, where no illu-
mination is necessary. The drawback is that the illumination provides a
way of controlling the current (essential for stable macropore formation),
which is not possible for p-type silicon. Figure 3.5 shows an example of a
n-type macrporous silicon structure with the indicated dimensions of the
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Figure 3.5: SEM images of the macroporous silicon PhC slab illustrating the main
geometric features. A [Trifonov 04].

lattice constant and pore diameter in the depth. As it can be seen in the
figure, the pores exhibit strong conical shape with decreasing of pore diam-
eter in depth. The diameter (or size) of the pores is mainly dependent on
the applied current. By adjusting the applied potential and the backside
illumination intensity, uniform or even modulated pores in the depth can be
obtained [Lehmann 93, Lehmann 99, Trifonov 04].

3.2.2 Anodization of aluminum

Another approach for producing planar photonic crystal structures (studied
in chapter 6) is the anodic growth of porous alumina. The process consists
of an anodic oxidation of aluminum foil in an acid solution (mostly sul-
phuric H2SO4, oxalic (COOH)2 or phosphoric acid H3PO4), where a porous
oxide film is formed on the surface. This covering film, the porous an-
odic alumina (PAA) is the result of the formation of a regular structure,
in which the porous cells grow perpendicularly to the aluminum substrate
with self-organized hexagonal ordering over the surface. The driving force
for the self-assembly is attributed to mechanical stress caused by the re-
pulsive forces between neighboring pores during anodization [Thompson 97,
Sui 02, Foll 03, Choi 04].

The geometrical properties of PAA such as cell size, pore diameter, in-
terpore distance or pore depth are dependent on the anodizing conditions.
For example, the interpore distance is determined by the applied voltage
during the anodization process. The pore diameter strongly depends on the
electrolyte (the acid solution and its concentration), temperature, anodiz-
ing time and voltage. The ordering degree of the pores, which is essential
for the derived applications is related with the fabrication technique used
to produce PAA structure. In general, there are two widely used meth-
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Figure 3.6: A scheme of step-by-step fabrication process of porous alumina based
on two step anodization. Each step is represented by a drawing together with an
SEM image of the surface corresponding to particular state. (a) Surface image
of high purity (99.99 %) aluminum foil before the treatment (b) Surface image
of the aluminum foil after electropolishing (c) Top view on the surface of the self-
ordered alumina oxide layer after first anodization cycle (d) Top view on the surface
of the patterned aluminum foil after alumina oxide removal (e) Top view on the
surface of the ordered alumina oxide layer after second anodization cycle (f) Bottom
surface image of the detached alumina oxide membrane. [Vojk̊uvka 07, Marsal 07,
Marsal 08]

ods: (i) a self-organized two-step anodization leading to a 2D polydomain
(quasi-monodomain) structure, and (ii) a pre-patterned guided anodization
resulting in a 2D perfectly ordered pore lattice with a narrow size distribu-
tion and high aspect ratio [Masuda 05, Eftekhari 08].

The two-step anodization method was discovered in 1995 by Masuda
and Fukuda [Masuda 95]. This fabrication approach relies on a natural
pre-patterning of the aluminum substrate by the first anodization cycle and
subsequent selective dissolution of the resulting anodic alumina film, leaving
a pattern that is a replica of the hexagonal pore arrangement preserved
on the aluminum surface. This pattern serves as nucleation centers for
the formation of regular pores, which grow during the second anodization
perpendicularly to the aluminum substrate and gives rise a 2D polydomain
porous alumina structure. The two-step fabrication process represented by
a schematic drawing step-by-step is shown in figure 3.6.
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Figure 3.7: An example of 2D polydomain porous anodic alumina structure fabri-
cated by two-step anodization. [Vojk̊uvka 07, Marsal 07, Marsal 08]

The procedure starts with a cleaning of high purity aluminum foil (99.99%)
with acetone in an ultrasonic bath. Then, it is immersed in a mixture con-
taining HF/HNO3/HCl/H2O at a proper ratio in order to remove impurities
from the surface. Subsequent annealing in N2 atmosphere and electropolish-
ing is applied to obtain large single cystalline grains and to reduce the surface
roughness [Rauf 09] (1). In the next phase, the polished aluminum sample is
mounted in the electrochemical cell that is filled with the electrolyte and the
first anodization step (2) is performed under an appropriate voltage in the
potenciostatic mode. The exact value of applied voltage is highly electrolyte-
dependent [Li 98, Choi 04]. Since pores are randomly created on the surface,
the initial pore arrangement is very irregular (Figure 3.6c). However, due to
the repulsive forces between neighboring pores during the long-anodization,
self-organization occurs. As a result, hexagonally close-packed arrays are ob-
tained at the interface between the porous alumina layer and the aluminum
substrate. After the first anodization step, the porous alumina oxide layer
grown on the aluminum surface is removed by a selective wet chemical etch-
ing (3) in a solution containing of 0.4 M phosphoric acid and 0.2 M chromic
acid (1:1 volume ratio) [Montero-Moreno 07, Schwartz 76]. The dissolu-
tion of the alumina oxide layer is carried out at the temperature between
60◦and 80◦C. The second anodization step (4) is repeated under the same
experimental conditions as they were used in the first step. Finally, if it is
necessary the PAA film can be detached (5) from the aluminum substrate.
An example of resulting PAA structure is shown in figure 3.7. The struc-
tural characteristics such as the interpore distance can vary between 10 to
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 (a) (b)(a) (b)

Figure 3.8: An example of 2D monodomain porous anodic alumina structure fab-
ricated by anodization of pre-patterned aluminum. (a) Surface SEM image of per-
fectly ordered hexagonal structure; (b) Cross-section which demonstrates the high
aspect ratio of the structure. [Choi 03, Choi 04]

500 nm with the pore diameter in the range of 5 to 400 nm depending on
the anodizing parameters. The pore depth can reach several hundreds of
microns after the second anodization period [Vojk̊uvka 07].

The pre-patterned guided anodization method is based on the texturing
of electropolished aluminum foil before anodizing to obtain ideally ordered
pores. Several techniques have been successfully used to form the pattern on
the aluminum surface: focused ion beam lithography, holographic lithogra-
phy, resist-assisted focus ion beam lithography or with a tip of the scanning
probe microscope [Eftekhari 08]. However, the drawback of these techniques
is the low throughput and the high cost, since each sample has to be treated
individually. An alternative is the nanoimprint lithography suggested by
Chou et al. [Chou 96]. The idea for the fabrication of a monodomain porous
alumina structure with the nanoimprint lithography was proposed initially
by Masuda et al. in 1997 [Masuda 97]. They prepared a master stamp con-
sisting of hexagonal dot arrays with 150 nm lattice constant based on a SiC
single-crystal wafer by e-beam lithography. The master stamp was placed on
the aluminum and mechanically pressed using an oil press to form a regular
arrangement of shallow concave depressions onto the aluminum surface. The
predetermined pattern acts as initiation points and guide the growth of chan-
nels during the anodic oxidation. Later, Masuda et. al. [Masuda 01] showed
that not only hexagonal but also square and honeycomb configurations can
be fabricated by using a master stamp having appropriate configurations
before anodization. Figure 3.8 shows an example of 2D monodomain PAA
structure fabricated by anodization of pre-patterned aluminum. As can be
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54 Fabrication of 2D photonic crystal slabs

seen, the structure exhibits an ideally ordered hexagonal structure (a) with
a very high aspect ratio (b).

An alternative technique that can be applied to the fabrication of or-
dered PAA structures is hard anodization (HA). The HA has been widely
used in industry for high-speed fabrication of mechanically robust, very thick
(>100 µm) and low-porosity alumina films since the 1960s. The typical HA
process is characterized by the use of sulphuric acid at relatively low tem-
peratures and high current densities. Lee at al. [Lee 06], in 2006, reported
a new self-ordering regime of nano-PAA that is based on the HA of alu-
minium substrates using oxalic acid and applying potentials of 100-150 V,
which are more than three times higher than the voltage (40 V) used in
conventional oxalic acid anodization. On the basis of this newly found self-
ordering regime, they fabricated novel PAA membranes with periodically
modulated diameters of nanopores, with an interpore distance of 200-300
nm, and with extremely high aspect ratio (>1.000). They demonstrated
that the HA process offers a big advantage over conventional anodization
processes in terms of considerably shortened fabrication times due to the
high-speed film growth rate. The growth rate of the porous oxide film is 25-
35 times larger (>50 µmh−1) than for conventional anodization processes.
In academic research, however, the HA process is not favoured and has not
been frequently applied to the development of nanostructured materials be-
cause of difficulties in controlling important structural parameters, such as
pore size, interpore distance and the aspect ratio of the nanopores of the
resulting alumina membranes.
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Chapter 4

Characterization of photonic

structures using Bragg

diffraction

4.1 Introduction

In this chapter we develop an experimental technique based on the Bragg
diffraction in the near and middle infra red (IR) spectral range to determine
the lattice properties of photonic structures. Bragg diffraction is a particular
type of X-ray diffraction [Warren 90, Guinier 94], which was first proposed
by William Lawrence Bragg and William Henry Bragg in 1913 in response to
their discovery that crystalline solids produce patterns of reflected X-rays.
They found that for certain specific wavelengths and angles of incidence,
intense peaks of reflected radiation (known as Bragg peaks) were produced.
This occurs in crystalline solids when electromagnetic radiation or subatomic
particle waves1 with wavelength comparable to the atomic spacing are scat-
tered from lattice planes periodically separated by the interplanar distance
d. The scattered waves interfere constructively when the path length differ-
ent between the waves is equal to an integer multiple of the wavelength (see
Figure 4.1). The path difference between two waves undergoing constructive

1such as electrons or low-energy neutrons
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Figure 4.1: Schematic drawing of X-Ray Bragg diffraction from the lattice planes
of a crystalline solid.

interference is given by Bragg law:

2d· sin θ = n·λ, (4.1)

where λ is the wavelength, d is the spacing between the planes in the atomic
lattice, θ is the angle between the incident ray and the scattering planes, and
n is an integer known as the order of the diffracted beam. The diffraction
pattern is obtained by measuring the intensity of the scattered waves as
a function of the scattering angle. In practice, Bragg diffraction is mostly
employed in X-ray crystallography [Sands 94] where the produced pattern
gives information of the separations of crystallographic planes allowing one
to deduce the crystal structure.

4.2 Bragg diffraction in near-and mid-IR

Analogous to crystalline solids, Bragg diffraction at optical wavelengths may
be also used to characterize photonic crystal lattices [Sakoda 97, Sakoda 99].
Following the theory of diffraction [Saleh 91, Goodman 96, Born 80], in the
far field the Fraunhofer approximation applies: the complex amplitude2 of

2with the implicit assumption that the scalar approximation for the electromagnetic
field can be applied at optical frequencies
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Bragg diffraction in near-and mid-IR 59

the diffracted monochromatic wave U(x, y) at a distance z of a diffracting
element can be written as:

U(x, y) ∝
∫ ∫ ∞

−∞
U(ξ, η)exp

[
−j

2π

λz
(xξ + yη)

]
dξdη, (4.2)

where U(ξ, η) is the complex amplitude of the wave at the plane of the
diffacting element, with coordiantes ξ and η and λ is the wavelength of the
incident wave. Following the scalar approximation the measured intensity
at the (x, y) plane is proportional to the square modulus of the complex
amplitude:

I(x, y) ∝ ‖U(x, y)‖2. (4.3)

Equation (4.2) states that: the complex amplitude of the diffracted wave at
a distance z of the diffracting element (with z big enough to be considered in
the far field) is proportional to the Fourier transform of the wave amplitude
at the plane of the diffractive element with a scale factor. The scale factor
is such that the spatial frequencies of the Fourier transform (νx and νy)
are related to the coordinates at the observation plane (x, y) through the
expression νx = x/(λz) and νy = y/(λz). Otherwise, the resulting wave
amplitude in (4.2) can be expressed as a function of the viewing angle instead
of the observation plane coordinates, taking into account that x << z and
y << z:

sin(θx) =
x

z
, and sin(θy) =

y

z
, (4.4)

where θx and θy are the angles of the viewing direction with respect to
the planes y − z and x − z, respectively (see Figure 4.1-1 from reference
[Saleh 91]).

The U(ξ, η) in equation (4.2) is the complex amplitude of the wave after
transmission or reflection on the diffracting element. In particular, we intend
to study photonic lattices in reflection, and thus the wave reflects on the
surface of a 2D photonic crystal slab (PhC slab) with scatterers distributed
periodically in a dielectric matrix, and where the scatterers and the dielectric
matrix have different reflectivities. This can be expressed as a reflectivity
function such as the following:

r(ξ, η) =
[
rUnit Cell ∗ lattice~a1,~a2

]
(ξ, η), (4.5)
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60 Characterization of photonic structures using Bragg diffraction

where rUnit Cell is the reflectivity function of a unit cell containing one of
the scatterers, ∗ is the convolution operation and lattice~a1,~a2

is the Bravais
lattice corresponding to the photonic crystal, with lattice vectors ~a1 and ~a2.
In this expression, the convolution operation indicates that the unit cell is
repeated indefinitely at all the lattice positions. If a monochromatic plane
wave normally incident to the surface is assumed, with amplitude U0, the
reflected wave amplitude can be written as:

U(ξ, η) = U0r(ξ, η). (4.6)

Following the interpretation of the diffraction formula in equation (4.2), the
complex amplitude of the diffracted field at a distance z is proportional to
the Fourier transform of the field amplitude at the plane of the diffraction
element with a λz scale. Hence:

U(x, y) ∝ F(rUnit Cell)(
x

λz
,

y

λz
) · lattice~b1,~b2

(
x

λz
,

y

λz
), (4.7)

where F(rUnit Cell) is the Fourier transform of the function representing the
unit cell reflectivity and ~b1 and ~b2 are primitive vectors of the reciprocal
lattice, that meet the condition:

exp
[
j2π (~ai ·~bj)

]
= δij , (4.8)

with δij the Kronecker delta symbol.

The light intensity that results from the field amplitude in equation
(4.7) corresponds to a group of diffraction maxima at positions (or viewing
angles) defined by the reciprocal lattice with the scale factor λz. The factor
corresponding to the Fourier transform of the unit cell modulates the relative
intensity of these diffraction maxima.

In this work we are restricted to one-and two-dimensional photonic crys-
tal structures with lattice sizes within a range of few microns. This permits
us to measure the intensity of the diffracted light with a standard FTIR
spectrometer. We use infra-red light from a halogen-tungsten lamp pointed
perpendicular to the sample surface and we collect the diffraction spectra at
a set of viewing angles along a given direction of the photonic crystal lattice.
A maximum of the detected intensity for a given wavelength and at a given
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Figure 4.2: Schematic drawing of Bragg diffraction at optical wavelengths from a
2D photonic crystal lattice.

viewing angle will be obtained when the following condition is fulfilled:

(
x

λz
,

y

λz
) = (

sin(θx)
λ

,
sin(θy)

λ
) = K1

~b1 + K2
~b2, (4.9)

with K1 and K2 integer numbers, which correspond to the diffraction orders.
For a given measurement direction on the photonic lattice, the previous
equation can be rewritten as a function of a single viewing angle and a
single integer order K:

sin(θ)
λ

= K(
1
L

), (4.10)

where L is the characteristic distance between the rows of scatterers at
that particular measurement direction (see Figure 4.2). By measuring the
intensity changes in a diffracted spectra as a function of the angle we are
able with proper data post-processing to evaluate the lattice period of the
photonic crystal structure.

4.3 Sample optical recognition

In this section we present the photonic structures which are subjects of
the optical characterization by the previously proposed Bragg diffraction
technique. The optical recognition of the samples is a step previous to the
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Figure 4.3: Optical microscope images of: (a) Two-dimensional photonic crystal
structure (2D PhC slab) formed in a crystalline silicon background; (b) diffraction
grating generated on the surface of a RTP crystal by ultrafast laser ablation; (c)
diffraction grating generated on the surface of a periodically poled LN crystal by
selective chemical etching of one of the ferroelectric domains.

measurement of the Bragg diffraction, since it is necessary to identify the
lattice directions on the sample in order to place the sample correctly in the
measurement setup. We study three different lattice structures shown in fig-
ure 4.3(a-c). Images of these samples are taken with an optical microscope
Carl Zeiss Axio Imager A1 with a 50× objective connected to a CCD cam-
era ProgRes C10 from JenOptic (Figure 4.4). The image processing is done
using i-Solution (iMTechnology) software. Figure 4.3a shows an example of
a 2D PhC slab consisting of a periodic array of square air holes formed in
a crystalline silicon background. The sample is fabricated by electrochem-
ical etching of a pre-structured N-type silicon wafer at room temperature
in aqueous HF electrolyte [Trifonov 05, Trifonov 04]. The lattice constant

 

Figure 4.4: Optical microscope Carl Zeiss Axio Imager A1 with CCD camera Pro-
gRes C10 from JenOptik.
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(a)(a)
 

(b)(b)

Figure 4.5: (a) FTIR spectrometer Bruker-Vertex 70; (b) Detail of the reflectivity
attachment consisting of a removable sample holder and two movable arms with
the reflective mirrors. Each arm can be moved independently in a range of angles
between 12◦and 90◦.

estimated from the microscope image is approximately 4 µm. Figure 4.3b
shows an example of a one-dimensional photonic crystal (diffraction grat-
ing) based on the non-linear optical material RbTiOPO4 (RTP), fabricated
by a microstructuration of the sample surface using ultrafast laser ablation.
The distance between the grooves estimated by the optical microscope is
approximately 15 µm. The third sample is also a diffraction grating, but
made of a different non-linear optical material LiNbO3 (LN), and fabricated
by selective etching of ferroelectric domains. Figure 4.3c shows the sample
topology with the indicated scale. The distance between the grooves esti-
mated by the optical microscope is approximately 5.1 µm. Details about
the fabrication process of both non-linear one-dimensional photonic crystals
can be found elsewhere [Carvajal 08].

4.4 Experimental measurement of Bragg diffrac-

tion

The Bragg diffraction spectra of the photonic structures presented in fig-
ure 4.3(a-c) were measured using a FTIR spectrometer Bruker-Vertex 70
equipped with a special reflectivity attachment (see Figure 4.5). As a light
source, the infra-red light from an halogen-tungsten lamp incorporated in
the FTIR spectrometer was used. The incident light was pointed perpendic-
ular to the sample surface and the diffraction spectra were measured at a set
of angles. The diffracted light was collected by the reflective mirror fixed on
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64 Characterization of photonic structures using Bragg diffraction

Wavenumber (cm−1)
K sin(20◦) sin(30◦) sin(40◦) sin(50◦) sin(60◦) sin(70◦) sin(80◦)

2D PhC

1 7310 5000 3889 3264 2887 2660 2539

2 14619 10000 7779 6527 5774 5321 5077

3 21929 15000 11668 9791 8660 7981 7616

1D RTP

1 1949 1333 1037 870 770 709 677

2 3898 2667 2074 1741 1540 1419 1354

3 5848 4000 3111 2611 2309 2128 2031

1D LN

1 5733 3922 3050 2560 2264 2087 1991

2 11466 7843 6101 5119 4528 4173 3982

3 17199 11765 9151 7679 6792 6260 5973

Table 4.1: Rough estimation of the wavenumbers at which the Bragg peaks ap-
pear for some selected angles and three diffraction orders. The frequencies are
represented in wavenumber units according to the FTIR spectrometer set-up. The
lattice constant values obtained from the optical microscope have been used for this
estimation.

the movable arm and detected with a liquid nitrogen-cooled detector. The
measurements were performed along the principal lattice directions defined
by the structure (see Appendix A). The specular reflection spectrum at an
incidence angle of 12◦was taken as a reference.

The lattice sizes of the photonic crystals indicate that the frequencies
at which the Bragg diffraction peaks may appear lie in the mid-and near-
IR. Using the equation 4.10, and the lattice constants obtained from the
optical recognition, we made a previous rough estimation. Table 4.1 shows
the calculated frequencies at which the Bragg peaks appear for the given
diffraction order K and the sinus of the angle of incidence θ. This estimation
helps us to correctly choose the spectral range of the measurements.

An example of measured Bragg diffraction spectra for the 2D silicon-
based PhC slab (Figure 4.3a) is given in figure 4.6. The graph presents the
intensity of Bragg-diffracted IR light as a function of the frequency for some
selected angles (30◦, 40◦, 50◦, 60◦, 70◦and 80◦) measured for light incident in
the ΓX direction. Based on the previous estimation shown in table 4.1, the
spectral range was set from 10000 cm−1to 3000 cm−1. As it can be observed,
there are several diffraction peaks (the intensity maxima) at frequencies that
increase with increasing angle of incidence. One of the peaks is labeled with
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Figure 4.6: Experimental Bragg diffraction spectra of a 2D silicon-based PhC slab
(see Figure 4.3a) measured with the FTIR spectrometer. The measurement was
performed for light incident in the ΓX direction at a set of angles. The intensity
curves for the selected angles shown in the graph are slightly offset for clarity. One
of the Bragg diffraction peaks is indicated by arrows.

arrows. A better visualization of the Bragg peaks is achieved with a 3D plot,
shown in figure 4.7. The intensity spectra is plotted versus the sinus of the
Bragg diffraction angle θ and the wavelength λ. The intensity maxima in
the 3D plot correspond to the peaks of different diffraction orders. With this
representation, it is easy to identify the diffraction peaks and their order.
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Figure 4.7: 3D plot of the Bragg diffraction spectra of a 2D silicon-based PhC slab.
The intensity maxima correspond to the Bragg peaks of three diffraction orders.
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66 Characterization of photonic structures using Bragg diffraction

4.5 Data analysis

To evaluate the lattice constant from the Bragg diffraction spectra, the col-
lected data need to be post-processed. To this end, a method including
several steps was developed. As can be seen in the example of the Bragg
diffraction spectra shown in figure 4.6, there are some resonances partic-
ularly in the range between 10000 cm−1and 8500 cm−1. These unwanted
intensity maxima correspond to saturation of the DLaTGs detector used in
the experiment. To reduce this noise, the first step of the post-processing
procedure consists of performing a windowed average of the spectrum: the
reflectivity value at a given wavenumber f is replaced by the average reflec-
tivities for an interval of wavenumbers around f .

It is also important to consider the dependence of the diffracted intensity
on the Bragg diffraction angle. It can be seen in figure 4.6 that the mag-
nitude of the intensity (the intensity maxima labeled by arrows) decreases
as the collection angle of the Bragg-diffracted light increases. For all the
wavelengths, this dependence of the intensity with the angle θ shows the
same tendency. The following step is to remove this general tendency by a
flattening procedure, demonstrated in figure 4.8. The flattening procedure
consists of fitting the intensity for a given wavelength as a function of the
θ angle to a straight line and subtracting the resulting straight line from
the data. Figure 4.8a depicts the intensity versus the diffraction angle for
a given wavelength, indicated on the graph. The dashed line represents the
linear fitting of the tendency. Figure 4.8b shows the flattened intensity in
a normalized scale. The intensity maxima (diffraction peaks) are indicated
by arrows. To show how the flattening procedure improves the recognition
of the Bragg peaks, the flattened spectra are represented in a 3D plot as
a function the sinus of the Bragg diffraction angle θ and the wavelength
(Figure 4.9). The three diffraction orders can be now clearly recognized.

The final step to evaluate the lattice constant is to fit the flattened data
with a function where at least one adjustable parameter is related to the
lattice constant. Concerning the shape of the diffraction maxima (see Figure
4.9), the function that can represent better their behavior is a Gaussian with
two variables, the wavelength λ and the sinus of the diffraction angle θ.
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Figure 4.8: Example of the flattening procedure on the spectra shown in figure 4.6
for one selected wavelength: (a) Fitting the intensity trend with increasing angle
of incidence to a straight line (dashed line) and subtracting the resulting straight
line from the data; (b) Flattened intensity at a normalized scale. The arrows
point to the maxima corresponding to the three diffraction orders observed in this
measurement.
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Figure 4.9: 3D plot of the flattened Bragg diffraction spectra from figure 4.6. The
intensity maxima correspond to the three diffraction orders.

The proposed function is:

I(λ, sinθ; a,wn) =
3∑

n=1

exp[(
sinθ − nλ

a

wn
)2], (4.11)

where the wn takes into account the width of the diffraction maxima, a is
the lattice constant and n is an integer (the number of the diffraction order).
Each of the terms with index n in equation 4.11 corresponds to one of the
diffraction orders. It must be noted that the lattice constant a is the same for
all the diffraction orders. The parameters to be determined are the lattice
constant a and the widths of the diffraction peaks {wn}. By fitting this
function to the experimental data (minimizing the difference between the
function 4.11 and the flattened data), the lattice constant can be extracted.

The procedure for the fitting consists of defining a function of merit that
evaluates the difference between the fitting function 4.11 and the flattened
data. This is a function of the fitting parameters a and the {wn}. If the
flattened data Ii are measured at a set of pairs wavelength-diffraction angle
{(λi, sin(θi))}, with i = 1...N , then this function of merit is defined as:

χ2(a,w1, w2, ...) =
1
N

N∑

i=1

(Ii − I(λ, sin(θi); a, w1, w2, ...))
2 (4.12)

By finding the minimum of this function using standard numerical algo-
rithms it is possible to estimate the fitting parameters. This technique
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Figure 4.10: 3D plot of the function 4.11 fitted to the experimental data (Figure
4.9) of the 2D silicon-based PhC slab (Figure 4.3a). The initial fitting parameters
of the function 4.11 are a=4 µm and wn=0.01, n=1,2,3.

gives a robust estimation of the lattice constant from the data, since all the
measured spectra for a given sample are taken into account simultaneously.
Figure 4.10 shows a 3D plot of the function 4.11 fitted to the flattened ex-
perimental data of the 2D silicon-based PhC slab (Figure 4.3a). The lattice
parameters of the diffraction gratings from figure 4.3b and figure 4.3c were
characterized by following the same approach. An extensive summary of all
measurements is given in the next section.

4.6 Results and conclusions

In this chapter we have developed a technique based on the Bragg diffrac-
tion at optical wavelengths to characterize photonic crystal structures. We
have demonstrated the feasibility of the technique and we have analyzed the
lattice properties of different photonic crystals. The Bragg diffraction spec-
tra were measured using a commercial FTIR spectrometer with a special
reflectivity attachment. The measured data were fitted to the theoretical
model to determine the lattice constants.

The analysis of the experimental data consisted of several steps illus-
trated with an example in section 4.5. The results are graphically inter-
preted in figure 4.11 for the 2D silicon-based PhC slab, in figure 4.12 for the
diffraction grating generated on the surface of a RTP crystal, and in figure
4.13 for the diffraction grating generated on the surface of a periodically
poled LN crystal. For example, figure 4.11a shows a 2D gray map of the
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Sample Opt. microscope Measured by Bragg diffraction

1
n

∑n
i=1 ai, n = 10 Γ−X Γ−M

2D PhCs 4 µm 4.3 µm 4.1 µm

1st meas. 2nd meas.

RTP-crystal 15 µm 14.9 µm 15.1 µm

LN-crystal 5.1 µm 5.2 µm 5.3 µm

Table 4.2: Lattice constant evaluation.

measured Bragg diffraction spectra of the 2D silicon-based PhC slab after
the flattening procedure represented as a function of the wavelength and the
sinus of the diffraction angle. The white zones in the graph are the diffrac-
tion peaks. Figure 4.11b is a 2D plot of the fitting function generated by
equation 4.11 and fitted to the flattened Bragg diffraction spectra. In this
case, three diffraction orders could be observed in the measurements and
were considered for the fitting function.

The overall summary of the obtained results is given in table 4.2, where
the second column shows the average value of the lattice constants estimated
from the optical microscope images (Figure 4.3) and the third and fourth
columns present the values obtained by the analysis of the Bragg diffraction
spectra. Two measurements on each sample were performed. The Bragg
diffraction spectra of the 2D silicon-based PhC slab were measured for the
light incident along the main lattice directions ΓX and ΓM. For the diffrac-
tion gratings, the spectra were collected for light incident perpendicular to
the grooves in two different measurements (1st and 2nd). A good agree-
ment between the optical microscope estimation and the measured diffrac-
tion spectra has been obtained.
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Figure 4.11: 2D silicon-based PhC slab: (a) 2D gray map of the flattened Bragg
diffraction spectra, (b) Detail image of the lattice structure with indicated main
lattice directions (sketch on the right), (c) 2D plot of the fitting function gener-
ated by equation 4.11 and fitted to the flattened Bragg diffraction spectra. Three
diffraction orders were considered for fitting the experimental data by the fitting
function.
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Figure 4.12: Diffraction grating generated on the surface of a RTP crystal: (a) 2D
gray map of the flattened Bragg diffraction spectra, (b) Detail image of the lattice
structure, (c) 2D plot of the fitting function generated by equation 4.11 and fitted
to the flattened Bragg diffraction spectra. Three diffraction orders were considered
for fitting the experimental data by the fitting function.
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Figure 4.13: Diffraction grating generated on the surface of a periodically pooled
LN crystal: (a) 2D gray map of the flattened Bragg diffraction spectra, (b) Detail
image of the lattice structure, (c) 2D plot of the fitting function generated by
equation 4.11 and fitted to the flattened Bragg diffraction spectra. Two diffraction
orders were considered for fitting the experimental data by the fitting function.
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Chapter 5

Angular-Dependent

Reflectance Spectroscopy

(ADRS)

5.1 Introduction

This chapter deals with an optical technique developed in this work to char-
acterize the band structure of photonic crystal (PhC) slabs1. PhC slabs of
different configurations (lattice types, scatterer shapes, sizes, and materi-
als) are experimentally studied by means of Angular-Dependent Reflectance
Spectroscopy (ADRS). This technique, first proposed by Astratov at al.
[Astratov 98] is based on the observation of the resonant coupling of external
radiation incident at oblique angles to the photonic modes that propagate
inside the slab structure. An overview of this and other related techniques,
together with the State-of-the-art is presented in section 5.2. In section 5.3
we perform numerical simulations of the interaction of the incident beam
with the samples, using the S-matrix formalism introduced in chapter 2.
Such calculations help us to predict and correctly interpret the experimental

1Photonic crystal slab is a 2D structure with periodicity along two of its axes, but of a
finite thickness. On the contrary, 2D photonic crystal means a structure indefinite in the
third dimension, and thus of infinite thickness. Such a definition is used throughout all
this work.
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Figure 5.1: Schematic drawing of the ADRS experimental geometry, where |kinc//
|

is the modulus of the incident light wavevector component parallel to the sample
surface, and |k//| is the modulus of the parallel wavevector of a propagating mode
inside the PhC slab.

measurements of the ADR spectra, given in section 5.4. In the last section,
we compare results of the simulations with the experimental measurements
of ADRS and we state the conclusions.

5.2 State-of-the-art of ADRS technique

The ADRS is a technique based on the identification of resonant features
in the reflectivity spectra at different angles of incidence. Such resonant
features are related to the coupling of the external radiation to the modes of
the PhC slab. They appear when the incident light wavevector component
parallel to the sample surface (kinc//

) matches the parallel wavevector of a
propagating mode inside the PhC slab (Figure 5.1). The k// is related to the
angle of incidence θ of the light onto the photonic crystal surface and to the
incident light wavelength as k// = (2π/λ) sinθ. When the angle of incidence
is varied, the parallel wavevector changes and the matching condition occurs
at different energies. Therefore, the dispersion of the photonic modes in a
given direction can be extracted from the energy position of the resonant
features in the reflectivity spectra, and then plotted versus the wavevector.

In the last two decades, there have been several scientific groups us-
ing the ADRS for identification of the photonic bands. V. N. Astratov
at al. first demonstrated this technique on a 2D photonic crystal waveg-
uide consisting of a honeycomb lattice of air holes in an AlGaAs/GaAs
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dielectric medium [Astratov 98, Astratov 99a, Astratov 99b, Astratov 00a,
Culshaw 00]. The same approach was also used to study heavy photon dis-
persion in 1D patterned AlGaAs waveguides [Astratov 00b, Bristow 02]. A
few years later, the group led by M. Galli used the same technique, al-
though they called it Variable-Angle Reflectance (VAR)2 to investigate the
photonic band structure of GaAs/AlGaAs-based 2D PhC slabs [Galli 02a,
Andreani 03, Patrini 03]. Several other authors demonstrated the capabil-
ity of this technique to study photonic structures of different characteris-
tics e.g.: 1D photonic crystals made of (Si/SiO2) multilayers [Patrini 02a];
2D photonic crystals based on macroporous silicon [Galli 02b, Bettotti 02]
or GaAs/AlGaAs [Pacradouni 00, Businaro 03]; silicon-on-insulator waveg-
uides [Patrini 02b, Peyrade 02, Belotti 06a, Belotti 06b]; and 3D structures
based on synthetic opals [Pavarini 05, Pallavidino 06] or noble metals
[Romanato 03].

One drawback of the ADRS (VAR) technique is the so-called light-line
problem in PhC slabs. This problem is based on the fact that the disper-
sion of light in the cladding material3 is separated into two regions of: truly
guided (evanescent) modes which lie below the light line in the first Bril-
louin zone (see Appendix A) and have zero radiation losses, and quasi-guided
(radiative) modes which lie above the light line and have a finite radiative
width due to out-of-plane diffraction. The ADRS (VAR) technique is capa-
ble to probe only quasi-guided modes, since these are the modes that can
be excited by the radiation incident from the medium. However, this lim-
itation can be overcome by a complementary technique called Attenuated-
Total Reflectance (ATR), which allows to expand the frequency-wave vector
range, thereby allowing one to study also the truly guided photonic modes
[Galli 04, Galli 05b, Galli 05a, Galli 06a]. This is done by placing a high
refractive index prism at a small distance from the sample surface, hence an
efficient coupling between the evanescent fields at the air-prism-sample in-
terfaces is achieved, thereby excitation of truly guided modes that lie below
the light line is possible. The thickness of the air layer between the prism
and the sample surface is a crucial parameter, because it determines the
coupling strength of the incident light to the guided modes of the photonic
crystal.

2In some articles it can also be find as Angle-Resolved Reflectance.
3A material with different refractive index surrounding the slab, but it can be also air.
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Figure 5.2: Optical microscope images of two-dimensional photonic crystal struc-
tures (2D PhC slab) with (a) square air holes in square lattice arrangement, (b)
square air holes in triangular lattice arrangement, and (c) circular air holes in
square lattice arrangement etched into crystalline silicon. The lattice parameters
are included in the images.

Another technique which can be related with ADRS (VAR) is the Angle-
Resolved Photoluminescence (ARP). This technique uses the photolumi-
nescence emission excited from an active medium (e.g. InAsP/InP quan-
tum wells) inside the photonic structure by a laser beam. The emission
is then collected outside of the structure at different angles by an optical
fiber coupled to a Fourier-transform spectrometer. The collected spectra
are used to determine the photonic band dispersion through conservation of
the wavevector parallel to the sample surface [Butte 02, David 05, Galli 06b,
Alija 07, Postigo 07, Martinez 08].

5.3 Sample characteristics

This section is devoted to the introduction of the PhC slab samples that
are subjects of the optical characterization by ADRS technique. Figure
5.2 presents optical microscope images of PhC slabs based on macroporous
silicon with different lattice configurations, fabricated by light-assisted elec-
trochemical etching (introduced in chapter 3). The lattice parameters as
lattice constant, hole diameter (width for square hole), and the main lat-
tice orientations are included in the images. Figure 5.3 shows a scanning
electron microscope (SEM) image of PhC slab that consists of a crystalline
silicon wafer covered with an PMMA fotoresist layer. The resist layer has
thickness of 400 nm and the refractive index of the PMMA material is
n=1.55 [Kaplan 04]. The 2D structure, created in the electron resist layer by
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Figure 5.3: SEM surface-image of PhC slab fabricated on PMMA fotoresist layer
by combination of electron beam lithography and wet etching. The slab consists of
square air holes arranged in a square lattice, etched in PMMA, with thickness (or
holes depth) of 400 nm. The characteristic parameters of the lattice are indicated.

electron-beam lithography combined with wet etching, consists of an ordered
array of square air holes arranged in a square lattice. The characteristic di-
mensions of the photonic structure (estimated by SEM) are indicated in the
figure.

5.4 Numerical simulation of ADRS using the Scat-

tering matrix method

The objective of this section is the simulation of the ADRS technique by a
numerical method based on the S-matrix treatment4 proposed by Whittaker
et al. [Whittaker 99]. This method follows the same approach as the plane-
wave expansion (PWE) computational technique but including additional
features to calculate the photonic modes propagating inside the sample and
the coupling efficiency of the incident wave to these modes. The PWE
method introduced in chapter 2 considers a 2D photonic crystal as indefinite
in the third dimension, however this is not the case of the samples that are
actually studied in this work, where the photonic structure is delimited by
the sample surface and by the substrate. Thus, in order to simulate the
interaction of the incident light with the samples, it is necessary to find an
expression for the photonic modes inside the PhC slab. Such expression
must be able to represent modes with oblique propagation directions. This
is accomplished by a modification of the standard PWE method to allow

4A general theory of the S-matrix is discussed in chapter 2.
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propagation in directions with a component in the third dimension. Then, in
combination with the S-matrix treatment, the coupling of the incident light
to these modes can be computed and translated to the reflectance spectra.

To explain the numerical method for simulation of ADRS, we should
start with a classical model of calculating the photonic bands of an ideal 2D
photonic crystal (indefinite in the third dimension) by the PWE method.
The PWE method assumes that an electromagnetic wave propagating in-
side a photonic crystal must fulfil Bloch’s theorem (Chapter 2), and conse-
quently, it can be expanded as a sum of plane waves propagating along all
directions defined by the reciprocal lattice (Equation 2.25 for the electric
field in chapter 2 or equivalently equation 2.26 for the magnetic field). By
restricting the expansion to a limited number of plane waves and applying
Maxwell’s equations to equations 2.25 and 2.26, a set of eigenvalue problems
is derived. This set can be separated in independent eigenvalue equations
2.27 and 2.28 by recalling that for 2D photonic crystals two independent
polarizations (TE and TM, with the magnetic and electric fields along the
holes, respectively) can be defined. The result of these eigenvalue problems
is that for a given in-plane Bloch wavevector k only some frequencies can
propagate inside the 2D photonic crystal, giving rise to the photonic bands
and the photonic band gaps.

An example of calculated photonic band structure using the PWE method
is given in figure 5.4. The diagram illustrates the photonic bands of an ideal
2D photonic crystal (infinite in the third dimension) consisting of an ordered
array of air holes with square section arranged in a square lattice. The lat-
tice constant (the distance between two holes in the lattice) is a=4 µm,
the holes width w=0.78a and the refractive index of the dielectric medium
n=3.4. The sizes of the lattice constant and the air holes are obtained from
an optical microscope image of an actual fabricated sample such as the one
shown in figure 5.2a. The bands for both the TE (dashed lines) and TM (full
lines) polarizations correspond to Bloch wavevectors along the ΓX lattice di-
rection. The dash-and-dot straight line indicates the light line, this is: the
ω-k points corresponding to waves propagating in free space perpendicular
to the holes. In relation with the ADRS, this is equivalent to light incident
at 90◦. The wavelength scale at the right y-axis indicates that some of the
photonic bands lie in the middle infra red (IR) region of the electromagnetic
spectrum.
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Figure 5.4: Photonic band structure represented in ω-k space of a 2D photonic
crystal consisting of an array of square air holes in a dielectric, arranged in a
square lattice. The lattice constant is a=4 µm, the holes width w=0.78a and the
refractive index of the dielectric material n=3.4. The bands are calculated for both
TE (dashed lines) and TM (solid lines) polarizations and for light incident along the
ΓX lattice direction (see Appendix A). The dash-and-dot straight line corresponds
to the light line.

Figure 5.4 shows a conventional representation of the photonic band di-
agram, however this interpretation is not convenient for our purposes. The
aim of our study is the identification of resonant features in the reflectiv-
ity spectra measured at different angles of incidence. Therefore, we plot
the measured ADR spectra as a function of the angle of incidence and the
wavenumber. Consequently, it is necessary to represent the photonic bands
and the simulations of the ADR spectra as a function of the measurement
variables. For instance, in figure 5.5 the bands are plotted as a function of
the angle of incidence and the wavenumber, and they are equivalent to the
photonic bands shown in figure 5.4.

As it was previously mentioned the fabricated 2D photonic crystals stud-
ied in this work are not indefinite in the third dimension, hence the math-
ematical model we use here to calculate the ADR spectra introduces the
third dimension to the equations 2.25 and 2.26 by allowing the wave to
propagate also along the z direction (the idea is demonstrated in figure 5.6).
For instance, for the magnetic field the wave expansion can be expressed as:

H(r, z) =
∑

G

hk(G)ei(k+G)r+iqz. (5.1)
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Figure 5.5: Photonic band structure represented in the wavenumber-angle of in-
cidence space of 2D photonic crystal structure as in figure 5.4. Dashed lines cor-
respond to TE bands, while solid lines correspond to TM bands. The bands are
calculated for light incident along the ΓX lattice direction.

This expansion spans over all the vectors G of the reciprocal lattice, k is the
Bloch parallel wavevector (since the waves propagating inside the ordered
structure must comply with the Bloch theorem, introduced in chapter 2), r

is the position in the x− y plane, z is the position along the holes and q is
the wavevector along the z direction. The introduction of the z component
of the wavevector q is necessary in order to allow the modeling of waves
that propagate inside the photonic crystal in an oblique direction and that
can couple to light from the incident medium. By limiting the expansion of
equation 5.1 to a finite number of reciprocal wavevectors G and applying
Maxwell’s equations (introduced in chapter 2) to equation 5.1 an eigenvalue
problem is obtained for q, at a given k and wave frequency ω. The solutions
of this eigenvalue problem are the modes allowed to propagate inside the
sample. Once these modes are determined, a S-matrix procedure is used to
impose the boundary conditions at the sample interfaces, this is: continuity
of the in-plane components of the electric and magnetic fields and of the
parallel wavevector component k. With this, it is possible to calculate the
coupling efficiency of the incident light to the modes of the photonic crystal
and to obtain the reflection coefficients for the two incident polarizations.
It must be noted that, from the mathematical derivation of the S-matrix
treatment it can be concluded that there may not be only one mode propa-
gating within the photonic crystal sample with a given k and ω, but several
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Figure 5.6: Schematic drawing illustrating the light propagation inside a PhC slab
(2D photonic crystal of a finite thickness). The drawing shows the z component of
the wavevector q introduced in equation 5.1.

modes for different values of q (Figure 5.6), and that these modes do not
propagate parallel to the sample surface.

It is known [Whittaker 99] that when the incident light couples to a mode
propagating inside the photonic crystal, a distinctive feature appears in the
spectrum. Such feature can be a maximum, a minimum or an inflection.
If the light is incident at an angle θ and the wave frequency at which the
feature appears is ω, the magnitude of the parallel wavevector is:

|k//| =
ω

c
sinθ, (5.2)

with c the speed of light in vacuum. Since this magnitude is conserved as
light enters the photonic crystal, it can be used to identify the photonic
modes in the spectra. Figure 5.7 shows a representative example of calcu-
lated ADR spectra for a sample consisting of an ordered array of square air
holes arranged in a square lattice with lattice constant a=4 µm. The width
of the holes is w=0.78a and their depth is 7.5 µm. The refractive index of
the dielectric medium is n=3.4. These dimensions are estimated from an
optical microscope image of the sample shown in figure 5.2a. The incident
light is TE-polarized and directed along the rows of the photonic crystal (the
ΓX lattice direction). The corresponding angles of incidence are indicated
in the graph. One of the resonant features is labeled by arrows, as it can be
seen, its wavenumber changes with the angle of incidence.
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Figure 5.7: Calculated angular-dependent reflectance (ADR) spectra for several
angles of light incidence (indicated at the right). The spectra are computed for
TE-polarized light along the ΓX lattice direction. The arrows point to a photonic-
band related resonant feature.

Nevertheless, with this representation it is difficult to recognize the pho-
tonic band-related resonant features. To improve their visibility we use a two
dimensional representation showing the ADR spectra in a gray map plotted
as a function of the angle of incidence and the wavenumber. An example is
given in figure 5.8 which demonstrates separately for each polarization the
same ADR spectra as in figure 5.7. The photonic bands for both TE (white-
dashed lines) and TM (white-black-solid lines) polarizations are included in
the graphics. With such representation some resonant features related to
coupling of TE-polarized light to the photonic modes can be clearly iden-
tified (Figure 5.8a). As it can be observed from figure 5.8b, there is no
coupling to TM modes for this photonic structure in the mid-IR spectral
range. Looking at figure 5.8a, it is worth noting that, the resonant features
(photonic modes) do not match exactly with the corresponding photonic
bands (with the same k|| and q=0), but they appear at higher frequencies.
The reason for this blue shift is that the frequency is proportional to the
modulus of the wavenumber (considering all in-plane and out-of-plane com-
ponents) inside the photonic crystal layer. The photonic bands correspond
to modes with zero q, while the modes represented by the resonant features
have nonzero q and consequently higher frequency or wavenumber.
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Figure 5.8: 2D plots of the calculated ADR spectra as a function of the angle of
incidence and the wavenumber. The two graphs show calculations corresponding
to TE and TM polarization of the incoming light along the ΓX principal lattice
direction. The characteristics of the sample are the same as in the previous figure
5.7, this is: a square lattice of square air holes etched on silicon with lattice constant
a=4 µm, the holes width is w=0.78a and depth is 7.5 µm. The white-black lines
correspond to the PWE method calculated photonic bands for this structure.
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86 Angular-Dependent Reflectance Spectroscopy (ADRS)

5.4.1 Effects of slab thickness

The slab thickness plays an important role in determining whether a PhC
slab has a band gap in its guided modes [Johnson 99]. We do not study
here the photonic band gap, but we investigate how the quasi-guided modes
represented by the resonant features change with the thickness5 of the PhC
slab. We perform the numerical simulation of ADR spectra considering the
photonic lattice structure shown in figure 5.2a, with three different thick-
nesses: (a) 7.5 µm, (b) 12.5 µm, and (c) 17.5 µm. The results are presented
in figure 5.9(a-c) as a gray map of the calculated reflectivity as a function of
the angle of incidence and the wavenumber. We show here only graphs with
the ADR spectra of TE-polarized incident light, since a very weak coupling
with TM-polarized incident light to the photonic modes was observed in
the previous study (Figure 5.8b). Figure 5.9 demonstrates that, for a given
band, there are several corresponding modes (resonant features) in the spec-
tra. This indicates that the incident light couples to more that one mode
with the same k but with different q. By comparing the graphs in figure 5.9,
it can be concluded that with increasing thickness the number of modes for
a given band also increases. Furthermore, the shift between the wavenumber
of the photonic band and the lowest mode associated with that band be-
comes smaller with increasing thickness. This denotes that in the photonic
structure with bigger thickness, a wave can propagate in a direction with a
smaller angle with respect to the interface. Finally, another characteristic
of the spectra in figure 5.9 must be noted: the reflectance spectra show os-
cillations, particularly in the range of the lower angles (the dark and light
stripes in the 2D plot) and their number also increases with the thickness.
These oscillations correspond to Fabry-Pérot interferences between the light
beams reflected at the interfaces of the photonic crystal layer with the air
and with the substrate. The period of such interferences becomes smaller
as the thickness of the PhC slab becomes bigger [Král 08b].

5Taking into account that the PhC slabs studied in this work consist of arrays of holes
etched in different materials, the thickness of the slab is equivalent to the depth of the
holes.
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Figure 5.9: Calculated ADR spectra of a PhC slab with the lattice characteristics
as the sample in figure 5.2a, but of different thicknesses: (a) 7.5 µm, (b) 12.5 µm,
and (c) 17.5 µm. The spectra are represented as a gray map of the reflectivity with
respect to the angle of incidence and the wavenumber. The spectra correspond to
incident TE light. The bands for the TE polarization and the ΓX lattice direction
are overlapped to the graphs.
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Figure 5.10: Calculated ADR spectra of a PhC slab with the lattice characteristics
as the sample in figure 5.2b, consisting of square air holes in a dielectric material
with a refractive index n=3.4 (Silicon) arranged in a triangular lattice. The lattice
constant is a=4 µm, w=0.83a. The spectra correspond to TE-polarized incident
light. The bands for the TE polarization and the ΓM lattice direction are overlapped
to the graph.

5.4.2 Study of different lattice structures

Using the same numerical simulation technique we investigate here PhC
slabs with different lattice configurations. We present calculations of ADR
spectra that correspond to PhC slab with lattice characteristics shown in
figures 5.2b and 5.2c. The ADR spectra of the PhC slab consisting of an
ordered array of square air holes in a dielectric material with a refractive
index n=3.4 (Silicon) arranged in a triangular lattice are shown in figure
5.10. The lattice constant is a=4 µm, while the holes width is w=0.83a
and their depth is 4 µm. The simulations for TE-polarized incident light
coming along the ΓM lattice direction show some modes related with the
three lowest photonic bands (beginning at 1500 cm−1, 1700 cm−1and 1800
cm−1at 20◦), although it is not easy to recognize them.

Figure 5.11 shows calculated ADR spectra of the PhC slab consisting
of an ordered array of circular air holes arranged in a square lattice of a
dielectric medium (Silicon) with a refractive index n=3.4 (Figure 5.2c). The
lattice constant is a=4 µm, the holes diameter is d=0.78a and their depth
is 4 µm. The ADR spectra are computed for TE-polarized incident light
coming along the ΓM lattice direction of the square lattice. The simulation
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Figure 5.11: Calculated ADR spectra of a PhC slab consisting of circular air holes
arranged in a square lattice of a dielectric material (Silicon) with a refractive index
n=3.4. The lattice constant is a=4 µm and the holes diameter is d=0.78a. The
bands for the TE polarization and the ΓM lattice direction are overlapped to the
graph.

results show clear multiple photonic modes (resonant features) related to
the first (beginning at 950 cm−1at 20◦), second (beginning at 1200 cm−1at
20◦) and third (beginning at 1250 cm−1at 20◦) photonic bands. As in the
case of the previous results presented in figures 5.8 and 5.9, a blue shift of
the photonic modes (resonant features) with respect to the bands can be
observed.

5.4.3 Effects of different dielectric material

Besides studying the ADR spectra of several lattice configurations we also
present simulations on the PhC slab made of a dielectric material with low
refractive index. The PhC slab structure, corresponding to the sample in
figure 5.3, consists of an ordered array of square air holes in a dielectric
material with refractive index n=1.55 (PMMA photoresist) arranged in a
square lattice. The lattice constant is a=1 µm, the holes width is w=0.5a
and their depth is 400 nm. The computed ADR spectra for the incident
light directed along the ΓM direction of the square lattice are plotted in
figures 5.12. Figure 5.12a corresponds to TE polarized incident light, while
figure 5.12b corresponds to TM polarized incident light. The photonic bands
for TE polarization are overlapped to the gray map of figure 5.12a while
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90 Angular-Dependent Reflectance Spectroscopy (ADRS)

the bands for TM polarization are overlapped to the map in figure 5.12b.
The simulation results show resonant coupling of the incident light to the
TE photonic modes (represented with three white stripes in figure 5.12a)
related with three photonic bands (beginning at 5900 cm−1, 6100 cm−1and
8000 cm−1at 20◦), and to the TM photonic modes (two white stripes in figure
5.12b) related with two photonic bands (beginning at 5700 cm−1and 6000
cm−1at 20◦). The significant shift in frequency (blue shift), between the
bands and the photonic modes, is probably caused by the small thickness
(holes depth) of the PhC slab. This is in agreement with our previous
results (see Figure 5.9) where we have found that the blue shift between
the photonic bands and the resonant features associated with that bands
becomes smaller with increasing thickness and vice versa.
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Figure 5.12: Calculated ADR spectra of a PhC slab consisting of square air holes in
PMMA arranged in a square lattice. The thickness of the slab is 400 nm, the lattice
constant a=1 µm, and the holes width w=0.5a. The two graphs show calculations
corresponding to TE (a) and TM (b) polarization of the incoming light along the
ΓM lattice direction.
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5.5 Experimental measurements using ADRS

In this section we present the experimental characterization of PhC slabs
using Angular-Dependent Reflectance Spectroscopy (ADRS). We describe
the measurement conditions and we show with one example that an adequate
post-processing of the measured data is crucial in order to recognize the
resonant features (photonic modes) in the spectra and to achieve a good
agreement with the numerical simulations from the previous section.

Many experimental investigations on photonic crystals were linked with
the ADRS method. Some of them are cited in section 5.2, but in contrast
to previous studies e.g. [Astratov 98, Astratov 99a, Galli 02a, Andreani 03,
Astratov 97] the lattice dimensions of the PhC slabs studied here require
that the measurements are carried out in the spectral range of the middle
infra red (mid-IR) light. This has been demonstrated in the previous section
5.4 where the numerical calculations show that for the investigated samples
(except the one with the square air holes arranged in a square lattice with the
lattice constant of 1 µm, shown in figure 5.3), the first photonic bands appear
in the range between 600 cm−1up to 3000 cm−1. Only few experimental mea-
surements on this range have been reported so far [Galli 02b, Bettotti 02]
and none, up to our knowledge, reached up to 600 cm−1, which is the lowest
wavenumber that can be reached with our measurement setup. The draw-
back of measuring in such spectral range is the recognition of the resonant
features (photonic modes) in the ADR spectra. Although in previous works
[Astratov 98, Astratov 99a, Astratov 99b, Astratov 00a, Astratov 00b] a di-
rect recognition of the resonant features is reported, in the mid-IR spectral
range there are several sources of clutter that make this direct recognition
a difficult task. Therefore, we propose here a procedure to improve the
recognition and we present the application of this procedure to our samples.

The ADR spectra are measured using a Fourier-transform infra red
(FTIR) spectrometer (Bruker, model Vertex 70) equipped with a special
reflectivity attachment6. The reflectivity equipment consists of a removable
sample holder and two movable arms with mirrors that enable to point and
collect the light in a range of angles between 12◦and 90◦. The IR light is
brought from a broadband halogen-tungsten lamp incorporated in the FTIR
spectrometer. The reflected light is collected by the mirror on the movable

6The equipment has been already introduced in figure 4.5 of chapter 4.
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Figure 5.13: A representative example of measured angular-dependent reflectance
(ADR) spectra for some selected angles of incidence (indicated at the right). The
measured sample (Figure 5.2a) consists of an ordered array of square air holes
electro-chemically etched in a crystalline silicon wafer (n=3.4) to form a square
lattice with lattice constant of a=4 µm, holes width w=0.78a and thickness (holes
depth) 7.5 µm. The measurement is carried out for incidence light along the ΓX
lattice direction and for unpolarized light. Three photonic band-related resonant
features are indicated by arrows in the graph. The intensity spectra are plotted
with offset for clarity.

arm and detected with a liquid-nitrogen cooled MCT7 detector. The angle
of incidence and reflected light is varied from 12◦to 66◦in steps of 2◦. The
spectral resolution is set to 4 cm−1. A polished N-type silicon wafer is used
as an absolute reflectance reference. The measurements are performed for
light incident along the principal lattice directions of the PhC slab structure,
according to the explanation in appendix A. It is important to remark that
all experimental measurements are carried out with unpolarized light, in
contrast with the numerical simulations in the previous section which were
presented for TE or TM incident light polarization.

One representative example of measured ADR spectra (reflectance in-
tensity) is given in figure 5.13. The ADRS measurement is performed on
the PhC slab previously shown in figure 5.2a of this chapter. The incident
light in the measurement is directed along the rows of the PhC slab (the ΓX
lattice direction). The intensity spectra are shown for some selected angles
of incidence, indicated in the graph. The photonic band-related resonant

7Mercury-Cadmium Telluride
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94 Angular-Dependent Reflectance Spectroscopy (ADRS)

features can be either maxima, minima or inflection points of the spectra.
Three of them are indicated by arrows. As it can be seen, their wavenumber
changes with the angle of incidence. In this example, it is clearly shown
that in the mid-IR spectral range the resonant coupling is weak (concerning
the shape of the resonant features). Moreover, there exist other features not
related to the photonic bands (such as those related to the silicon optical
properties [Astratov 98, Galli 02b, Bettotti 02]), which make specially diffi-
cult the recognition of the band-related resonant features. For this reason
it has been necessary to develop a procedure to post-process the measured
data.

A better visualization of the resonant features is obtained with a flat-
tening of the reflectance intensity as a function of the angle of incidence for
a fixed wavelength. The flattening (fully described in section 4.5 of chapter
4) removes from the spectra the general decreasing tendency of the reflected
intensity with increasing angle of incidence. Subsequently, the ADR spectra
are represented as a function of the angle of incidence and the wavenumber
in a 2D gray-map graph. Figure 5.14 shows the ADR spectra from figure
5.13 after the flattening procedure, for a range of measured angles (from
12◦to 66◦in steps of 2◦). The photonic bands, calculated with the PWE
method are overlapped to the graph.

A further improvement in the resonant features recognition is achieved
by filtering out the resonances in the IR spectra that are related to material
characteristics. We take into account that the wavenumber of the pho-
tonic bands usually changes with k//, while the material-related features
correspond to a fixed wavenumber. This leads to the idea that the partial
derivative of the reflectance with respect to the angle of incidence may fil-
ter out the material-related features. For our measurements, this partial
derivative is approximated using finite differences between two reflectivity
spectra corresponding to two neighboring angles. Thus, if the reflectance R

is measured at a set of wavenumbers ωi and of angles of incidence θj , the
partial derivative at a wavenumber ωi and angle of incidence θj is expressed
as:

∂R

∂θ
(ωi, θj) ≈ R(ωi, θj+1)−R(ωi, θj)

θj+1 − θj
. (5.3)

Figure 5.15 shows the ∂R/∂θ of the ADR spectra from figure 5.14 overlapped
with the calculated photonic bands of an ideal 2D photonic crystal structure
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Figure 5.14: 2D plot of the measured ADR spectra (see Figure 5.13) represented
as a function of the angle of incidence light and wavenumber after the flattening
procedure. The PWE calculated photonic bands are overlapped to the gray map,
the white-dashed and white-black-solid lines correspond to the TE and TM polar-
ization, respectively. The measurement is performed for unpolarized incident light
along the ΓX lattice direction.

(with infinite thickness). As it is demonstrated, this magnitude permits a
better recognition of the photonic band-related resonant features [Král 08a,
Král 08b].

By application of the post-processing procedure demonstrated on the
example above we have been able to characterize photonic modes of the
different PhC slabs. A summary of all experimental results together with
the corresponding numerical simulations is given in the following section.
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Figure 5.15: 2D plot of the partial derivative ∂R/∂θ applied to the ADR spectra
shown in figure 5.14, overlapped with the calculated TE (white-dashed lines) and
TM (white-black-solid lines) photonic bands.

5.6 Results and conclusions

In this chapter we have applied the Angular-Dependent Reflectance Spec-
troscopy (ADRS) to the characterization of photonic bands in PhC slabs.
The objective was the implementation of the ADRS technique to our sam-
ples with lattice parameters that require the measurement to be carried out
in the mid-IR spectral range.

First, we have implemented a numerical method to simulate the interac-
tion of the incident light with the PhC slab and thus to compute the ADR
spectra. The numerical method relies on the plane-wave expansion (PWE)
and the S-matrix formalism including some particularities to achieve the
goal of calculating the ADR spectra.

In the second part of this chapter, the experimental measurements of the
ADRS were performed with a FTIR spectrometer equipped with a special
reflectivity attachment. We have observed that in the mid-IR spectral range
the recognition of the characteristic resonant features related to photonic
bands is particularly difficult and that the measured spectra need to be post-
processed. To this end, we have developed a procedure that significantly
improves the recognition of these features and allows the detection of some
photonic modes predicted by the numerical simulations. The results of the
numerical simulations and measurements of the ADRS on various PhC slabs
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are concluded in the following paragraphs:

• Effects of slab thickness

We have investigated how the photonic modes represented by the res-
onant features change with the thickness of the PhC slab. We have
studied a PhC slab consisting of an ordered array of square air holes
(pores) arranged in a square lattice with three different holes depths:
(a) 7.5 µm, (b) 12.5 µm, and (c) 17.5 µm. The numerical simulations
shown in figure 5.16 have revealed that for a given photonic band (the
most visibly for the TE photonic band beginning at 1130 cm−1at 20◦)
of an ideal 2D photonic crystal (with infinite thickness), the incident
light can couple to several photonic modes in the PhC slab. These
modes correspond to waves that do propagate at different angles with
respect to the sample surface. Furthermore, the number of these modes
increases with increasing depth of the etched holes.

The measurement results of the ADRS shown in figure 5.17 have con-
firmed the existence of several resonant features for a single photonic
band and their increasing number with increasing hole depth. Further-
more, the resonant coupling of the incidence light is observed only to
TE photonic modes, which is in good agreement with the calculations.

It must be also noted that the calculations of the ADR spectra pre-
dicted oscillations (black and white stripes in figure 5.16), particularly
in the range of the lower angles, however they are not visible in the
ADRS measurements. These oscillations correspond to Fabry-Pérot
interferences between the waves reflected at the interfaces of the PhC
slab.

• Study of different lattice structures

We have applied the ADRS to different types of lattice configurations
with the objective to study the versatility of the technique. The calcu-
lated ADR spectra (Figure 5.18a) of the PhC slab with a square lattice
structure of circular air holes etched in silicon predicted the existence
of multiple photonic modes that are replicas of some TE photonic
bands (first beginning at 950 cm−1, second beginning at 1200 cm−1,
third beginning at 1250 cm−1, and fourth beginning at 1450 cm−1at
20◦). The existence of these photonic modes has been confirmed in the
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ADRS measurements. Figure 5.18c) shows clear white/black stripes
corresponding to photonic modes that are related to second, third, and
fourth TE band.

In the case of a triangular lattice structure with square air holes etched
in silicon, the calculated (a) and measured (c) ADR spectra (Figure
5.19) also show some band-related photonic modes, particularly with
the first, second, and fourth TE photonic band.

• Effects of different dielectric material

Finally, we have studied whether the ADRS technique can be also
used to characterize the photonic modes in the PhC slab made of low
refractive index materials. We have computed the ADR spectra of PhC
slabs based on PMMA (Figure 5.20a,b). The spectra have revealed
that resonant coupling of the incident light to the photonic modes
occurs, but due to the low contrast in the refractive index between
the scatterer (air, n=1) and the slab material (PMMA electro resist
n=1.55), it is not possible to distinguish whether the light couples
to TE or TM modes. This observation has been proved with the
measurement of the ADR spectra (Figure 5.20c,d). It is worth noting
that the measurements were carried out with unpolarized light.

It is also interesting to point out that the significant shift in frequency
(blue shift) between the photonic bands corresponding to an ideal 2D
photonic crystal and the photonic modes of the PhC slab. This blue
shift is probably caused by the small thickness (holes depth=400 nm)
of the PhC slab compared to the lattice constant (a=1 µm). This
is in agreement with our previous results (see Figure 5.9) where we
have found that the blue shift of the resonant features with respect
to the photonic bands becomes smaller with increasing thickness and
vice versa.
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Figure 5.16: Effects of slab thickness: Calculated ADR spectra of a 2D PhC slab
structure of different thicknesses (holes depth): (a) 7.5 µm, (b) 12.5 µm, and (c) 17.5
µm. The PhC slab consists of an array of square air holes in a dielectric, arranged
in a square lattice. The spectra correspond to TE-polarized incident light. The
bands for the TE polarization and the ΓX lattice direction are overlapped to the
graphs.
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Figure 5.17: Effects of slab thickness: Measured ADR spectra of 2D PhC slabs
with different thicknesses (holes depth): (a) 7.5 µm, (b) 12.5 µm, and (c) 17.5
µm. The PhC slabs consist of an array of square air holes in silicon, arranged in a
square lattice (Figure 5.2a). The bands for the TE polarization and the ΓX lattice
direction are overlapped to the graphs.
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Figure 5.18: Study of different lattice structures: 2D silicon-based PhC slab with a
square lattice structure of circular air holes. The microscope image in the middle
shows the lattice structure where the lattice constant, holes width and main lattice
directions are indicated. The graphs of calculated (a) and measured (b) ADR
spectra for light incident along the ΓM lattice direction are represented as a function
of the angle of incidence and the wavenumber. The calculated TE (dashed lines)
photonic bands of the corresponding photonic crystal are overlapped to the graph.
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Figure 5.19: Study of different lattice structures: 2D silicon-based PhC slab with
a triangular lattice structure of square air holes. The microscope image in the
middle shows the lattice structure where the lattice constant, holes width and main
lattice directions are indicated. The graphs of calculated (a) and measured (b)
ADR spectra for light incident along the ΓM lattice direction are represented as a
function of the angle of incidence and the wavenumber. The calculated TE (dashed
lines) photonic bands of the corresponding photonic crystal are overlapped to the
graph.
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Figure 5.20: Effects of different dielectric material: 2D PhC slab based on nanos-
tructured PMMA electro resist with refractive index n=1.55. The figure shows
graphs of calculated (a),(b) and measured (c),(d) ADR spectra for light incident
along the ΓM lattice direction. The microscope image in the middle shows the
lattice structure where the lattice constant, holes width and main lattice directions
are indicated. The calculations correspond to light incident with the TE polariza-
tion (a) and TM polarization (b). The measurements correspond to unpolarized
incident light. The calculated TE (dashed lines) and TM (solid lines) photonic
bands of the corresponding photonic crystal are overlapped to the graph.
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Chapter 6

Angle-Resolved

Spectroscopic Polarimetry

(ARSP)

6.1 Introduction

In this chapter we examine an alternative spectroscopic technique to the
ADRS, the Angle-Resolved Spectroscopic Polarimetry (ARSP). Polarimetry,
in general is a powerful technique for the study and accurate determination
of the dielectric function, optical properties and geometric characteristics of
anisotropic materials [Azzam 76, Azzam 77, Boher 04, Hatit 08].

2D photonic crystals are materials with an inherent optical anisotropy
[Netti 01]: the photonic bands and the photonic band gaps depend strongly
on the light polarization and the propagation direction. Polarimetry is a
technique that measures the change in the polarization state of the light
upon reflection or transmission. Therefore, by making polarimetry angle-
resolved in the reflection it can provide additional information about the
photonic band structure.

The objective of this chapter is the development and application of
the ARSP technique to characterize the band structure of photonic crystal
(PhC) slabs. To do so, we first theoretically study the viability of the tech-
nique for the characterization of such materials with numerical simulations.

105
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106 Angle-Resolved Spectroscopic Polarimetry (ARSP)

The method is based on the Mueller matrix polarimetry, which involves
the complete polarimetric description of the light by real four-dimensional
Stokes vectors and the polarization changes with 4×4 Mueller matrices.
The experimental measurements are then performed on real samples with
a spectroscopic Mueller-matrix polarimeter [Garcia-Caurel 04]. The main
concern of this work is studying the polarization changes upon reflection on
the structure in order to identify the photonic modes related to the TE-TM
photonic bands and modes of the slabs.

6.2 Spectroscopic polarimetry

Spectroscopic polarimetry is a technique widely used in the optical charac-
terization of a great variety of samples [Aspnes 04, Arwin 08, Novikova 06,
Tkachenko 06]. It is based on the change of light intensity and polarization
state caused by interaction with the sample. These changes depend on the
material optical properties, on the sample surface geometry, on the angle of
incidence, and on the initial polarization state of the beam. The correlation
between the polarization states of the incident and the reflected light beams
can be described either in terms of a 2×2 complex Jones matrix, when depo-
larization can be neglected, or more generally by a 4×4 real Muelller matrix
[Azzam 77].

Considering a fully polarized light (a monochromatic plane wave) inci-
dent on a non-depolarizing optical system consisting of either one or suc-
cessive series of optical elements, the resulting polarization of the emerging
light can be described by taking the product of a Jones matrix of the optical
system and a Jones vector of the incident light. The Jones vector is defined
by a complex 2x1 column vector whose elements (Ex(t)ejδx(t), Ey(t)ejδy(t))
are the time-dependent complex amplitudes of the x and y components of
the electric field. In the absence of non-linearity, the light polarization on
the output of the optical system is related to the light at the input of the
optical system by the linear equations

Eo,x = J11Ei,x + J12Ei,y,

Eo,y = J21Ei,x + J22Ei,y,
(6.1)

where Ei refers to the incident wave, and Eo to the outgoing wave. Equations
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in 6.1 can be combined in a matrix form

[
Eo,x

Eo,y

]
=

[
J11 J12

J21 J22

] [
Ei,x

Ei,y

]
, (6.2)

or, more concisely,
Eo = JEi, (6.3)

where

J =

[
J11 J12

J21 J22

]
(6.4)

is the 2×2 transformation matrix called the Jones matrix. The Jones matrix
J describes the overall effect of the optical system on the incident light. Its
components are, in general, complex and they are functions of: the optical
system under consideration; the frequency of the incident light (the light
wave); the orientation of the system with respect to the incident wavevector;
the location and azimuthal orientation of the input and output coordinate
axes around the incident and the outgoing wavevectors; and the particular
outgoing light wave, when more than one wave is generated as a result of
the interaction between the incident light wave and the optical system.

The Jones matrix description is only applicable to light that is fully po-
larized propagating through a non-depolarizing optical system. Light which
is unpolarized, partially polarized, or incoherent travelling through a depo-
larizing optical system that may also decrease the degree of polarization must
be treated using Mueller matrix formalism. The Mueller-matrix formulation
is based on the representation of the polarization state of the light wave by a
Stokes vector and the depolarizing optical system by a 4×4 Mueller matrix.
Any fully polarized, partially polarized, or unpolarized state of light wave
can be represented by a Stokes vector. The Stokes vector S is defined by a
set of four real quantities

S =




S0

S1

S2

S3




=




I

Q

U

V




, (6.5)

called the Stokes parameters, whereas each parameter has the dimensions
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108 Angle-Resolved Spectroscopic Polarimetry (ARSP)

of intensity. They are a mathematically convenient alternative to the more
common description of incoherent or partially polarized radiation in terms
of its total intensity I , (fractional) degree of polarization p, and the shape
parameters of the polarization ellipse. In terms of the Cartesian components
of the transverse electric field, the four Stokes parameters, denoted by S0,
S1, S2 and S3, are defined as follows

S0 = 〈E2
x(t)〉+ 〈E2

y(t)〉,
S1 = 〈E2

x(t)〉 − 〈E2
y(t)〉,

S2 = 2〈Ex(t)Ey(t)cos[δy(t)− δx(t)]〉,
S3 = 2〈Ex(t)Ey(t)sin[δy(t)− δx(t)]〉.

(6.6)

In equation 6.6 〈v〉 stands for the time average of v,

〈v〉 =
1
T

∫ T

0
v dt. (6.7)

where T is an interval of time long enough to make the time-average integral
independent of T itself. If a beam of light is initially in the state Si and
then passes through an optical system defined by a 4×4 Mueller matrix and
comes out in a state So, then it is written:

So = MSi, (6.8)

where M is the 4×4 Mueller matrix and Si,So are the Stokes vectors of
incident and outgoing beam, respectively. For a non-depolarizing optical
system, the Mueller matrix can be derived from the Jones matrix defined
in equation 6.2. The 4×4 Mueller matrix M is then called a pure Mueller
matrix. The expression of such a relation between the Mueller matrix and
the Jones matrix can be written as:

M = A(J× J∗)A−1, (6.9)

where J in this equation is not the Jones matrix itself, but a coherency
vector with the 4 components of the Jones matrix in the appropriate order
{J11, J12, J21, J22}, A is the 4×4 coherency matrix (from equation (1.138a)
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in [Azzam 77]):

A =




1 0 0 1
1 0 0 −1
0 1 1 0
0 i −i 0




, (6.10)

and the A−1 stands for its inverse matrix. If we carry out the mathematic
operation in equation 6.9, we obtain:

M =




1
2 (E1 + E2 + E3 + E4) 1

2 (E1 − E2 − E3 − E4) F13 + F42 −G13 −G42

1
2 (E1 − E2 + E3 − E4) 1

2 (E1 + E2 − E3 − E4) F13 − F42 −G13 + G42

F14 + F32 F14 − F32 F12 + F34 −G12 + G34

G14 + G32 G14 −G32 G12 + G34 F12 − F34




,

(6.11)

where

Ei = JiJ
∗
i = |Ji|2, i = 1, 2, 3, 4,

Fij = Fji = Re(JiJ
∗
j ) = Re(JjJ

∗
i ), i, j = 1, 2, 3, 4, and

Gij = −Gji = Im(J∗i Jj) = −Im(J∗j Ji), i, j = 1, 2, 3, 4,

(6.12)

are auxiliary quantities to simplify the notation. Note that J1, J2, J3,
and J4 are used in equation 6.12 to represent J11, J22, J12, and J21 from
equation 6.4, respectively. Employing the above formulas (equation 6.11 and
equation 6.12), the Mueller matrix of an optical system whose Jones matrix
is known can be constructed. In this case, from the sixteen elements of the
4×4 Mueller matrix, only seven would be independent [Azzam 77, Gil 00,
Hovenier 94].

The optical instrument that measures the intensity and polarization
changes between the incident and reflected beam is called polarimeter. There
are different classes of polarimeters. A classical ellipsometer which is devoted
to the study of samples described by a diagonal Jones matrix. In other
words, it is dedicated to the characterization of non-depolarizing isotropic
thin films. Other type is a generalized ellipsometer that can measure any
Jones matrix1 (diagonal or not), thus it can be used for any isotropic or
anisotropic non-depolarizing sample. The last type is a Mueller-matrix po-
larimeter/ellipsometer, which provides a complete polarimetric characteri-

1also the Mueller matrix
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Figure 6.1: Schematic drawing of the Mueller-matrix polarimeter in the reflection
configuration (left) with a picture of the actual instrument MM16 (right).

zation of any type of samples, including partially depolarizing ones, which
can not be described by a Jones matrix [Kaplan 04].

In this work the Mueller-matrix type of polarimeter is used. Figure 6.1
shows the geometry and the picture of an actual polarimeter MM16 from
Horiba Jobin-Yvon [Garcia-Caurel 04]. The instrument is based on modu-
lation and analysis of light polarization by ferroelectric liquid crystal cells.
It consists of a Polarization State Generator (PSG) and a Polarization State
Analyzer (PSA) that can be adapted to work in reflection or transmission
mode. Both the PSG and the PSA consist of a linear polarizer, a quartz
retardation plate and two ferroelectric liquid crystal devices, each of which
can be switched between two different states. As a result, the PSG can
generate four different polarization states for the illumination beam and the
PSA with its elements in reverse order is used to analyze the polarization of
the emerging beam over another set of four different polarization states. Fi-
nally, the polarimeter subsequently measures a set of sixteen raw spectra at
high resolution and calculates the complete 16-element Mueller matrix. The
incident PSG and reflection PSA arms are attached to an automatic goniom-
etry unit that permits variable-angle spectroscopy measurements in a range
of angles of incidence between 45◦and 90◦in steps of 0.1◦. This instrument
also includes an automatically adjustable 360◦rotating stage allowing mea-
surements at different azimuth angles in the horizontal plane (x− y plane).
The source of illumination of the polarimeter is a 30W halogen lamp, and
the detector is a CCD array with 2 nm resolution coupled to a commercial
Jobin-Yvon diffraction grating optimized for operating in the visible range
between 430 nm and 850 nm. The calibration of the MM16 polarimeter is
achieved by the Eigenvalue Calibration Method [Compain 99], which is a
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Sample characteristics 111

general and self-consistent method for the calibration of polarization mod-
ulators, polarimeters and Mueller-matrix ellipsometers [Foldyna 08].

6.3 Sample characteristics

In this section we present the 2D photonic structures that will be studied
with the spectroscopic polarimetry. One of the goals of this Doctoral Thesis
is the development of optical characterisation methods for photonic crystals
based on nanoporous alumina slabs, which are fabricated within the frame-
work of the NePhoS (Nano-electronic and Photonic Systems) research group.
These nanoporous alumina slabs consist of a quasi-ordered array in triangu-
lar arrangement of holes etched in the alumina matrix. Their optical proper-
ties (lattice constant corresponding to visible wavelengths, refractive index,
luminescence) make them a good candidate for future photonic applications.
However, since the fabricated samples are not completely ordered and only
triangular lattices can be obtained, this chapter will also focus on another
kind of PhC slabs. They consist of an ordered array of holes etched in pho-
toresist onto silicon substrates produced by Laser-Interference Lithography
(LIL) [Ellman 08]. These structures can be fabricated in both square and
triangular geometries with lattice constants and refractive indices similar to
those of the nanoporous alumina. With this, the scope of applicability of the
characterization technique is enlarged. Furthermore, there exist other pre-
patterning techniques [Chou 96, Masuda 97, Pang 98, Masuda 01, Choi 03]
to obtain ordered nanostructures with a periodic variation of the refractive
index that provide with other kinds of samples that can also be studied with
the methods shown in this chapter.

Figure 6.2 shows an example of a nanoporous Anodic Aluminium Oxide
(np-AAO) slab. The np-AAO slab is produced by electrochemical anodiza-
tion under appropriate fabrication conditions which are described in detail
in chapter 3. Figure 6.2a is a SEM image of the sample surface, where the
clustered natural self-ordering of the pores can be observed. The pores are
naturally ordered and grown in a triangular lattice unless pre-patterning
techniques are used [Chou 96, Masuda 97, Pang 98, Masuda 01, Choi 03].
Figure 6.2b shows a closer view of one of the clusters where the triangular
lattice ordering is demonstrated. Finally, figure 6.2c shows a cross-section
view of the sample to illustrate the high aspect ratio and radius uniformity
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Figure 6.2: SEM images of a np-AAO slab obtained by electrochemical anodization.
a) Surface picture showing the self-ordering of the pores, b) surface view at a higher
magnification that illustrates the typical characteristic sizes considered later in the
calculations, and c) cross-section view that illustrates the in-depth pore uniformity.

Figure 6.3: SEM image of the photoresist PhC slab produced by laser-interference
lithography (LIL). The picture shows the square lattice with lattice constant a∼450
nm and the periodic modulation with a period of ∼2 µm, along the ΓM lattice
direction. [Ellman 08]

of the pores. Taking into account that one of the goals of this chapter is
the numerical simulation of the interaction of the incident light with these
samples, it is necessary to define an ideal sample that is a model of this np-
AAO slab. Therefore, in the numerical simulations we will assume a model
of np-AAO PhC slab based on average values of the fabricated samples. The
characteristics of the model are the following: np-AAO slab (n=1.67) sur-
rounded by air with a perfect triangular arrangement of cylindrical air pores
with complete radius uniformity (lattice constant a=153 nm, pore radius r=
47 nm).

Figure 6.3 shows a sample fabricated by the LIL technique introduced in
Chapter 3. The sample is a silicon wafer with the native silicon oxide layer
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Figure 6.4: (a) AFM topographic image of the photoresist PhC slab surface, (b)
section profile in the direction marked with the white line (a). [Ellman 08]

(SiO2) over it and with an i-line positive low-viscosity photoresist (AZ1505)
deposited by spin coating on the top. The thickness of the deposited photore-
sist film is 400 nm. The parameters of the sample are estimated by atomic
force microscopy (AFM). Figure 6.4 shows an AFM topographic image of
the surface together with a section profile. From a set of AFM measure-
ments, average values for the characteristic parameters of these photonic
crystals have been estimated in order to define an ideal sample, suitable for
numerical calculations. These average values are: lattice constant a=450
nm, the depth of the holes is d=370 nm and their radius is r=140 nm. It
can be observed from figure 6.3 that the photoresist pattern presents a pe-
riodic modulation of the lattice constant with a period of ∼2 µm, in the
ΓM direction of the lattice. This modulation is due to very small deviations
from the adequate value in the angles of incidence of the four interfering
beams.

6.4 Numerical calculation of angle-resolved polarime-

try spectra

In this section we apply the numerical calculation method based on the S-
matrix formalism, introduced in section 2.3 of chapter 2, with a view to
study the suitability of the angle-resolved spectroscopic polarimetry for the
characterization of PhC slabs. The S-matrix formalism permits to calculate
the reflection coefficients for a selected polarization of the incident and re-
flected beams. These reflection coefficients take into account modulus and
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114 Angle-Resolved Spectroscopic Polarimetry (ARSP)

phase and thus are indeed the four components of the 2×2 complex Jones
matrix, which for a non-depolarizing optical system can be converted into
an equivalent 4×4 real Mueller matrix, used in spectroscopic Mueller po-
larimetry.

It has been mentioned that 2D photonic crystals exhibit an inherent opti-
cal anisotropy: the photonic bands depend strongly on the light polarization
and propagation direction. In this section we will study polarimetry (a mea-
surement technique strongly related to the polarization characteristics of the
samples) with respect to the characterization of photonic crystals.

Taking into account that in the subsequent sections of this chapter the
analysis of measurements carried out with a MM16 polarimeter (figure 6.1)
will be presented, the calculations shown in this section will consider spectra
of two kinds: i) angle-resolved spectra for a fixed azimuth angle φ and
variable angle of incidence θ and ii) angle-resolved spectra for a fixed angle
of incidence θ and variable azimuth angle φ.2

6.4.1 Calculation of ARSP at fixed azimuth angle

This subsection shows calculations of angle-resolved polarimetry spectra for
two different photonic structures: i) np-AAO PhC slab with a triangular
lattice and ii) photoresist PhC slab with a square lattice. These numerical
simulations demonstrate the polarization changes of light upon the reflection
at various angles of incidence θ and for a fixed azimuth angle φ.

Figure 6.5 presents an example of calculated polarimetry spectra in the
form of the modulus of the Jones matrix components for the np-AAO PhC
slab. The calculation is carried out at a range of angles of incidence θ

and for a fixed azimuth angle φ that corresponds to the ΓM direction of
the triangular lattice (Appendix A). The numerical simulation assumes 121
plane waves to ensure the convergence and a model of np-AAO PhC slab with
the following parameters: ordered triangular lattice of cylindrical air pores
with lattice constant of a=153 nm, pore radius r=47 nm, refractive index
of the slab material (Aluminium Oxide) n=1.67, and thickness of the slab
(or equivalently pore depth) d=300 nm. The modulus of the Jones matrix
components is presented in a gray map graph as a function of the normalized

2Note in figure 6.1 the definition of the azimuth angle φ and the angle of incidence
θ. The azimuth angle φ is defined with respect to the lattice orientation, thus 0 degrees
corresponds to the ΓX direction, both for the triangular and for the square lattices.
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Figure 6.5: Angle-resolved polarimetry spectra of a np-AAO PhC slab. The four
gray maps show the modulus of the Jones matrix components that characterize
the change of polarization upon reflection on the slab. The light is incident on the
sample along the Γ-M direction of the photonic crystal triangular lattice. The four
gray maps correspond to the components |J11| (TE-polarized incident beam and
TE-polarized detected light), |J12| (TE-polarized incident beam and TM-polarized
detected light), |J21| and |J22|. The photonic bands calculated for the ΓM lattice
direction of the corresponding photonic crystal are overlapped to the gray map
graphs: TE polarization (dashed lines) and TM polarization (solid lines).
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incident light frequency, ωa/2πc, and of the angle of incidence, θ. The four
components of the Jones matrix are labeled in figure 6.5, together with
the corresponding polarizations of the incident and outgoing light beams.
Thus, component |J11| corresponds to the TE-polarized incident beam and
the TE-polarized emerging beam. In order to evidence the relative strength
of the Jones matrix components, the four graphs are represented with the
same gray scale. The TE and TM photonic bands3 are overlapped to the
graphs. As it can be observed, several features related to photonic bands
can be recognized in the spectra. More concisely, in the |J11| and |J21|
components, the features correspond to TE bands, while for the |J12| and
|J22| the features correspond to TM bands. It should be pointed out that
there is a significant amount of cross-polarization: an incident TE-polarized
beam is reflected with TE polarization, but also in a certain amount with
TM polarization. It is also interesting to note that the oscillations of the
reflection coefficient due to Fabry-Pérot interferences are visible (the dark
and bright stripes).

The calculation of polarimetry spectra for the photoresist sample with
a square lattice produced with LIL is shown in figure 6.6. The figure shows
the modulus of the Jones matrix components presented in the same form as
in the previous figure: four gray map graphs as a function of the normalized
incident light frequency, ωa/2πc, and of the angle of incidence, θ. The
calculation is carried out at a range of angles of incidence θ and for a fixed
azimuth angle φ that corresponds to the ΓX direction of the square lattice.
The parameters used for the model of the photoresist PhC slab are the
following: ordered square lattice with lattice constant of a=450 nm, pore
radius r=140 nm, refractive index of the slab material (photoresist AZ1505)
n = 1.67, and thickness of the slab (or equivalently holes depth) d=370 nm.
The spectra presented in figures 6.5 and 6.6 reveal that for both photonic
crystal structures the incident light of given polarization can couple to the
modes propagating inside the slab. However, there is a remarkable difference
between PhC slabs with triangular lattice and with square lattice. While for
the former cross-polarization is noticeable in the |J12| and |J21| components,
for the latter it is nonexistent since the |J12| and |J21| components vanish.

To validate the theoretical results demonstrated by the calculations of

3calculated with the lattice characteristics of the np-AAO PhC slab, but considering
an ideal 2D photonic structure infinite in the third dimension

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF OPTICAL CHARACTERIZATION METHODS FOR MICRO- AND NANO-SCALE PLANAR PHOTONIC BAND GAP STRUCTURES 
Zdenek Kral 
DL: T-1537-2009/ISBN:978-84-692-4556-9 



Numerical calculation of angle-resolved polarimetry spectra 117

20 40 60 80
0.4

0.5

0.6

0.7

0.8

N
o

rm
. 

F
re

q
. 

ω
a

/2
πc

Angle of Incidence θ (º)

|J
11

|, TE-TE

 

20 40 60 80
0.4

0.5

0.6

0.7

0.8

N
o

rm
. 

F
re

q
. 

ω
a

/2
πc

Angle of Incidence θ (º)

|J
12

|, TM-TE

 

20 40 60 80
0.4

0.5

0.6

0.7

0.8

N
o

rm
. 

F
re

q
. 

ω
a

/2
πc

Angle of Incidence θ (º)

|J
21

|, TE-TM

 

20 40 60 80
0.4

0.5

0.6

0.7

0.8

N
o

rm
. 

F
re

q
. 

ω
a

/2
πc

Angle of Incidence θ (º)

|J
22

|, TM-TM

 

 

0 0.5 1
Figure 6.6: Angle-resolved polarimetry spectra of a photoresist PhC slab. The light
is incident along the ΓX direction of the photonic crystal square lattice. The pho-
tonic bands calculated for ΓX lattice direction of the corresponding photonic crystal
are overlapped to the graphs: TE polarization (dashed lines) and TM polarization
(solid lines).
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118 Angle-Resolved Spectroscopic Polarimetry (ARSP)

angle-resolved polarimetry spectra presented in this section, we will use
spectroscopic Mueller polarimetry to measure real samples. The Mueller
polarimetry provides a complete polarimetric characterization of any type
of samples including partially depolarizing ones. Furthermore, it should
be pointed out that the studied np-AAO samples cause a partial degree of
depolarization of the reflected light in the experimental measurements, be-
cause of its quasi-ordered nature and the roughness of the sample surface
caused by the etching process. Therefore, the experimental angle-resolved
polarimetry spectra can not be described by the mathematical model pro-
posed in chapter 2, which assumes perfectly ordered and smooth samples.
For this reason, the following results will focus on the photoresist PhC slab
fabricated with LIL, which can be an alternative material to np-AAO, with
similar optical properties and a regularly ordered structure.

To compare the calculated polarimetry spectra with prospective experi-
mental measurements on real samples constituted by photoresist PhC slabs
(figure 6.3), the spectra need to be converted4 from the Jones matrix compo-
nents shown in figure 6.6 into its equivalent Mueller matrix representation
used in spectroscopic Mueller polarimetry. Figure 6.7 shows the Mueller
matrix components presented in a gray map graph as a function of the nor-
malized incident light frequency and of the angle of incidence. As it can
be seen in some of the Mueller matrix components, the spectra exhibit the
same band related features that have been observed in Jones matrix repre-
sentation. This is demonstrated in figure 6.8, which shows a detailed view
of the M34 component. The photonic bands of the corresponding photonic
crystal for the TE polarization (dashed lines) and for the TM polarization
(solid lines) are overlapped to the graph.

4assuming a non-depolarizing optical system
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Figure 6.7: Angle-resolved polarimetry spectra of a photoresist PhC slab repre-
sented in terms of the Mueller matrix components, and plotted as a function of the
normalized incident light frequency, ωa/2πc, and of the angle of incidence, θ. The
Mueller matrix components are represented with the same gray scale.
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Figure 6.8: Detailed view of the M34 component of the Mueller matrix shown in
figure 6.7. The photonic bands calculated for the ΓX lattice direction of the corre-
sponding photonic crystal are overlapped to the gray map graphs: TE polarization
(dashed lines) and TM polarization (solid lines).

6.4.2 Calculation of ARSP at fixed angle of incidence

In the previous subsection we have implemented a numerical method based
on the S-matrix formalism to calculate the angle-resolved polarimetry spec-
tra at a fixed azimuthal angle as a function of the angle of incidence. The
resulting polarimetry spectra exhibit some resonant features corresponding
to coupling of the incident light to photonic modes in the PhC slabs, related
to the photonic bands.

In this subsection we apply an alternative approach to studying these
photonic bands by calculating the polarimetry spectra of the photoresist
PhC slab at a fixed angle of incidence and varying the azimuth angle. In
this way the photonic band distribution can be studied along all lattice
symmetries. With this strategy, the recognition of the band-related resonant
features in the spectra is easier since these features must obey the symmetry
properties of the lattice.

The representation of these spectra requires the use of polar coordinates,
in which the frequency of the incident light ω is represented by the distance
to the center of the plot and the azimuth angle φ is represented by the
polar angle. In order to understand this representation in polar coordinates,
the relation with the standard photonic band representation (ω vs. k) is
demonstrated in the following figures 6.9 and 6.10. Figure 6.9 shows the
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Numerical calculation of angle-resolved polarimetry spectra 121

photonic bands, calculated with the PWE method, of an ideal 2D photonic
crystal structure (infinite in the z direction) consisting of a square lattice
of circular holes, with lattice dimensions a=450 nm and r=140 nm. These
dimensions are average values obtained from the actual samples such as the
one shown in figure 6.3, fabricated by LIL. The calculated photonic bands
are plotted in a standard representation as a function of the normalized
incident light frequency, ωa/2πc, and the wavevector k. Figure 6.9 shows
four separate graphs each corresponding to one of the lattice directions (ΓX
or ΓM) and one of the light polarizations (TE or TM), indicated in the
graphs. Only the four lowest photonic bands are presented for clarity. The
dashed-and-dot straight line represents the light line, this is: the ω−k points
corresponding to waves incident from air onto a slab of the photonic crystal
at an angle of incidence of 90◦. It is important to note that the first photonic
band (solid line with circles) lies below this light line. The straight solid line
labeled 60◦corresponds to waves incident onto a PhC slab from air at an
angle of incidence of 60◦. Each angle of incidence corresponds to such a line
in the ω − k representation.

The representation of the photonic bands as a function of the azimuth
angle for a fixed angle of incidence corresponds to the intersection of the
bands in figure 6.9 with the corresponding straight line, for all azimuth
angles. This is illustrated in figure 6.10, where the calculated photonic
bands as a function of the azimuth angle for an angle of incidence (AOI) of
60◦are shown. The two graphs for TE and TM polarizations are plotted.
In these graphs, the distance to the center corresponds to the normalized
frequency of the incident light , ωa/2πc while the polar angle corresponds
to the azimuthal angle, φ. Since in these graphs, the normalized frequency
ωa/2πc is represented as the distance to the center, the x− and y− scales are
in normalized frequency units. The dotted, the dashed, and the solid lines
correspond to the second (dotted line), third (dashed line), and fourth (solid
line) photonic bands from figure 6.9, respectively. The main directions of the
square lattice structure (ΓX and ΓM) are indicated in the graphs. The first
photonic band presented in figure 6.9 (the solid line with circles) intersects
the light line for any angle of incidence at the zero frequency. Thus, this
first band is only represented in the polar plot by the central point.

According to the photonic band representation of figure 6.10, the cal-
culated angle-resolved polarimetry spectra of the photoresist PhC slab is
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Figure 6.9: Band structure for an ideal (infinite in the z direction) 2D photonic
crystal with square lattice of cylindrical holes on a host material with n=1.67.
Lattice constant a=450 nm, pore radius r=140 nm. The bands are calculated along
the main lattice directions ΓX and ΓM for both polarizations, TE and TM. The
dashed-and-dot straight line represents the light line (ω-k values for light incident
onto a slab of the photonic crystal at an angle of incidence of 90◦). The solid
straight line represents the ω-k values of light incident onto a slab of the photonic
crystal at an angle of incidence of 60◦.
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Figure 6.10: Band structure of the 2D photonic crystal considered in the previous
figure 6.9. The bands are here plotted in polar coordinates, where the radial coor-
dinate is the normalized frequency ωa/2πc and the angular coordinate corresponds
to the azimuthal angle φ. The bands are calculated at the fixed angle of incidence
(AOI) θ=60◦for both polarizations, TE and TM. The main lattice directions of the
square lattice structure (ΓX and ΓM) are indicated.

plotted in figure 6.11 as a function of the normalized frequency, ωa/2πc ,
and the azimuth angle, φ. In the calculation of the spectra we considered
121 plane waves and the light incident at 60◦. We used the model of the
photoresist PhC slab with following parameters: ordered square lattice with
lattice constant a=450 nm, pore radius r=140 nm, refractive index of the
slab material (photoresist AZ1505) n = 1.67, and thickness of the slab (or
equivalently the hole depth) d=370 nm. The calculated spectra show res-
onant features that indicate that the incident light is coupling to photonic
modes (the electromagnetic states propagating inside the PhC slab). To re-
late these resonant features with corresponding photonic bands, let us focus
on one of the Mueller matrix components (M13). Figure 6.12 shows this
component with the previously calculated photonic bands. Each band is
plotted separately in different graphs in order to improve the recognition.
Figure 6.12 shows the resulting graphs of the M13 with the second (a), third
(b), and fourth (c) photonic band. As it can be seen, the resonant features
have the same shape as the photonic bands, but they appear at higher fre-
quencies than the corresponding bands. This shift in frequency (blue shift)
is in agreement with our previous results reported in chapter 5, where it has
been shown that the frequency of the resonant features is proportional to
the modulus of the wavenumber (considering all in-plane and out-of-plane
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Figure 6.11: Angle-resolved polarimetry spectra of a photoresist PhC slab in terms
of the Mueller matrix components. The components are plotted in polar coordinates
where the distance to the center corresponds to the normalized frequency (ωa/2πc)
and the polar angle corresponds to the azimuth angle.
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Figure 6.12: Detailed view of the selected Mueller matrix component M13 from
figure 6.11. The three first photonic bands calculated for the ideal photonic crystal
(Figure 6.10) are overlapped to the graphs. Each band is plotted in a separate
graph: (a) M13 with the second photonic band (white dotted line), (b) M13 with
the third photonic band (white dashed line), and (c) M13 with the fourth photonic
band (white solid line). The main lattice directions of the square lattice structure
(ΓX and ΓM) are indicated in the graphs.
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components). The resonant features have nonzero q, and consequently their
frequency is higher than the frequency of the corresponding photonic bands
(with the same k// and q=0). Another characteristic of the spectra should
be noted: for a given photonic band, there are several corresponding res-
onant features. This indicates that the incident beam couples to several
modes in the PhC slab with different nonzero q values [Král 09].

6.5 Experimental measurements with ARSP

In this section we show the experimental measurements carried out with
the Mueller matrix polarimeter MM16 [Garcia-Caurel 04] on the photore-
sist PhC slabs. We measure the polarimetry spectra with two different con-
figurations of the MM16 polarimeter: i) with a fixed azimuth angle φ and
variable angle of incidence θ and ii) with a fixed angle of incidence θ and
variable azimuth angle φ. According to the theoretical study we represent
the measured spectra in two separated subsections.

6.5.1 Measurement of ARSP at fixed azimuth angle

The polarimetry spectra were measured in the reflection mode at a fixed
azimuth angle φ and for a range of angles of incidence θ starting from 45◦to
71◦, with a step of 2◦. The photoresist PhC slab sample was placed in
horizontal position on the sample holder, which is an electromechanically
driven rotation plate with 1◦azimuth resolution. The measurements were
carried out in the visible spectral range (430-850 nm) at two fixed azimuth
angles φ that correspond to the main lattice directions (ΓX and ΓM) of
the photoresist PhC slab. Figure 6.13 shows an example of the obtained
polarimetry spectra in the form of the Mueller matrix components. All
the spectra are represented in the same gray scale to permit comparison
between the different components. In order to study in more detail these
measurements, we will focus the attention on one of the components of the
Mueller matrix. Figure 6.14 shows the M34 component for measurements
in two lattice directions: ΓX (figure 6.14a) and ΓM (figure 6.14b). The
calculated TE and TM photonic bands of the corresponding 2D photonic
crystal with a lattice constant a=450 nm are overlapped to the graphs.
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Figure 6.13: Angle-resolved polarimetry spectra of the photoresist PhC slab mea-
sured with the MM16 Mueller matrix polarimeter. The measurement was per-
formed at the fixed azimuth angle φ that corresponds to the ΓX lattice direction
of the sample and with variable angle of incidence θ, in the range from 45◦to 71◦.
The polarimetry spectra are plotted as a function of the photon energy, and of the
angle of incidence, θ.
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Figure 6.14: Detailed view of the selected Mueller matrix component M34 from
figure 6.13. The calculated photonic bands for an ideal photonic crystal with the
same characteristics as the sample (lattice constant a=450 nm) are overlapped to
the graphs. The two graphs represent the measurements: (a) along ΓX and (b) ΓM
lattice direction of the sample.
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6.5.2 Measurement of ARSP at fixed angle of incidence

The second series of measurements was carried out in the reflectivity config-
uration with a fixed angle of incidence, θ. The angle-resolved polarimetry
spectra on the photoresist PhC slab samples were measured as a function
of the azimuth angle and at three different fixed angles of incidence, θ=50◦,
60◦, and 70◦. The measurements were carried out in the visible spectral
range (430-850 nm) and for azimuth angles φ between 0◦to 180◦with a step
of 5◦. It should be noted that the azimuth angle φ is defined with respect
to the lattice orientation, thus 0◦corresponds to the ΓX direction of the
photoresist PhC slab square lattice. Figure 6.15 shows an example of the
polarimetry spectra in the form of the Mueller matrix components at the
angle of incidence θ=60◦. As in section 6.4.2, the measurements are repre-
sented in polar coordinates, where the distance to the center correponds to
the photon energy (or equivalently the light frequency) and the polar angle
corresponds to the azimuth angle. With this, the lower limit of the photon
energy for the data is 1.46 eV, while the upper limit is 2.76 eV.

In the figure 6.16 the M13 Mueller matrix component from figure 6.15 is
shown with the aim to relate the resonant features with the corresponding
photonic bands. The M13 is overlapped with the previously calculated TE
photonic bands5 (figure 6.10) of the corresponding 2D photonic crystal. On
each graph with the M13 component, only one band is included in order to
improve the recognition of the band-related features. Thus, figure 6.16a)
corresponds to the second photonic band, 6.16b) to the third photonic band
and 6.16c) to the fourth (the first photonic band is not represented as it lies
below the light line).

5Only TE photonic bands are included in these graphs because, due to the small index
contrast, TE and TM photonic bands are very similar. This similarity is even more evident
in polar representation.
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Figure 6.15: Angle-resolved polarimetry spectra of the photoresist PhC slab mea-
sured with the MM16 Mueller matrix polarimeter. The measurement for the angle
of incidence (AOI) θ=60◦, in the range of azimuth angles from 0◦to 180◦was per-
formed by rotating the optic axis with respect to the plane of incidence. The
polarimetry spectra are plotted in polar coordinates, where the distance to the
center corresponds to the photon energy and the polar angle corresponds to the
azimuth angle, φ.
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Figure 6.16: Detailed view of the selected Mueller matrix component M13 from fig-
ure 6.15. The calculated TE photonic bands corresponding to the ideal 2D photonic
crystal are overlapped to the graphs. Each band is plotted in a separate graph: (a)
M13 with the second TE photonic band (white dotted line), (b) M13 with the third
TE photonic band (white dashed line), and (c) M13 with the fourth TE photonic
band (white solid line).
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6.6 Discussion and conclusions

In this chapter we have presented an alternative approach to study the pho-
tonic bands and photonic modes in photonic crystal slabs by Angle-Resolved
Spectroscopic Polarimetry (ARSP). We have first studied the viability of
the polarimetry technique for the characterization of such materials with
numerical simulations. To this end, we have implemented a numerical algo-
rithm based on the S-matrix formalism introduced in chapter 2 to calculate
the polarization changes upon reflection on the photonic structure. With
this we are able to identify the coupling of the incident light into photonic
modes related to the TE-TM photonic bands. The calculations are used
then to predict the results of measurements with Mueller matrix polarime-
try, which involves the complete polarimetric description of the light by
real four-dimensional Stokes vectors and the polarization changes with 4×4
Mueller matrices. Following these methodology we have studied photoresist
PhC slab samples with a series of experimental measurements carried out
with the MM16 Mueller matrix polarimeter. The following figures compare
the calculation results with the experimental measurements on the photore-
sist PhC slab sample.

Figure 6.17 compares the calculated (a) and the measured (b) polarime-
try spectra for the fixed azimuth angle φ6 and variable angle of incidence θ.
Looking at the spectra (b), two stripes (resonant features) that may corre-
spond to a replica of the first band (which is out of the measurement range)
can be recognized. These features are predicted by the S-matrix calculation
shown in spectra (a). However, it is difficult to recognize them since the fea-
tures are overlapped with clearly visible Fabry-Pérot oscillations (periodic
black and white stripes). These oscillation are due to light interferences on
the interfaces of the photoresist layer. In order to improve the recognition
of resonant features in these spectra, a post-processing of the data obtained
from the polarimetry measurements could be useful. In contrast with the
post-processing procedure introduced on chapter 5, where a post-processing
was necessary to filter out features in the spectra related to material reso-
nances in the IR, in this case the Fabry-Pérot oscillations could be filtered
out. To achieve this filtering, the Fabry-Pérot oscillations can be fitted

6the azimuth angle φ is defined with respect to the ΓX lattice orientation of the square
lattice.
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Figure 6.17: Comparison of calculated (a) and measured (b) angle-resolved po-
larimetry spectra. The two graphs show polarimetry spectra for fixed azimuth
angle φ and variable angle of incidence θ. The spectra correspond to the Mueller
matrix component M34. Graph (a) shows the M34 from the Mueller matrix in fig-
ure 6.7, while graph (b) shows the M34 from figure 6.13. The calculated TE and
TM photonic bands that correspond to an ideal 2D photonic crystal (infinite in z
direction) are overlapped to the graphs. The graphs are represented with the same
gray scale.

using a model of a uniform layer on the substrate with an effective index,
and then they can be subtracted from the measured spectrum.

Figure 6.18 illustrates the results corresponding to calculations and mea-
surements with a fixed angle of incidence θ and variable azimuth angle φ.
The calculated spectra (a, and b) of the selected M13 component (from figure
6.11) exhibit clear resonances related to the 2nd, 3th, and 4th (TE or TM)
photonic band. The measured spectra (c, and d) represented also with the
M13 component (from figure 6.15) show some resonances, mainly related to
the 4th band (Solid line). It is difficult, however, to distinguish between TM
and TE bands. The reason of such similarity is due to the very small refrac-
tive index contrast of the slab material. Probably, photonic crystals with
a higher refractive index contrast would show a better separation between
resonances for TE and TM bands.

It is also interesting to note that the resonance feature related to the
4th band shifts to smaller frequencies as the angle of incidence increases.
This can be seen in figure 6.19, where the polarimetry spectra for variable
azimuth angle φ measured at three different angles of incidence θ= 50◦, 60◦,
and 70◦are shown. The resonant feature appears at frequencies higher than
that of the 4th photonic band, and with increasing angle of incidence, the
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 Figure 6.18: Comparison of calculated (a, and b), and measured (c, and d) angle-
resolved polarimetry spectra, for fixed angle of incidence (AOI) θ=60◦and variable
azimuth angle φ. The spectra are plotted in polar coordinates, where the distance
to the center corresponds to the normalized frequency (graphs a and b) or to the
photon energy (c and d). The polar angle corresponds to the azimuth angle. The
component M13 of the Mueller matrix is shown. The photonic bands for the corre-
sponding ideal photonic crystal with lattice constant a=450 nm are overlapped to
the graphs. The dotted line corresponds to the 2nd photonic band, the dashed line
to the 3th and the solid line to the 4th.
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photonic band and the related feature shift to lower values. Furthermore,
there are other resonant features in each spectrum with the same shape
than the one corresponding to the 4th photonic band, but appear at lower
frequencies. These are replicas of the resonant feature corresponding to the
4th photonic band, but in contrast with the replicas of resonant features
observed in silicon PhC slab, these appear at smaller frequencies. This fact
indicates that these replicas are not due to the coupling to modes related
to this 4th photonic band that propagate at different angles with respect to
the PhC slab surface. Moreover, the replicas appear along the ΓM direction
of the photonic lattice, which is the direction of the modulation in pore
size and lattice constant of the photoresist PhC slab. For these reasons,
these replicas can be explained as higher diffraction orders caused by the
modulation.
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Figure 6.19: Angle-resolved polarimetry spectra measured for three different angles
of incidence (AOI) θ and variable azimuth angle φ. The M13 component of the
Mueller matrix is shown in polar coordinates. The 4th TE band of the corresponding
ideal 2D photonic crystal (infinite in z direction) is overlapped to each graph in
order to relate the resonance features with this band.
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Figure 6.20: Angle-resolved polarimetry spectra measured for fixed angle of in-
cidence (AOI) θ=60◦and variable azimuth angle φ. The M12 component of the
Mueller matrix is shown in polar coordinates. The black and white semicircular
stripes in the spectra are the characteristic Fabry-Pérot resonances.

Finally, figure 6.20 shows an example of the M12 component with mea-
sured spectrum, which is very sensitive to the thickness of the photoresist
layer, and shows clear Fabry-Pérot oscillations that overlap any other fea-
ture that could be related with coupling to the photonic modes.
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Chapter 7

Summary and conclusions

The characterization of photonic band gap materials (Photonic Crystals) is
a fundamental issue in the development of the technologies for their fab-
rication and future application. This Doctoral Thesis has dealt with the
development of optical characterization methods and their implementation
to planar photonic structures. According to the objectives established in
the present work we have obtained several results that are concluded in the
following paragraphs:

In Chapter 3, we have developed an experimental technique based on
the Bragg diffraction in the near and middle infra red (IR) spectral range
to determine the lattice properties of planar photonic structures.

• We have adapted a commercial FTIR spectrometer equipped with a
special reflectivity attachment to measure the Bragg diffraction spec-
tra.

• We have investigated the lattice characteristics of several photonic
planar structures based on different materials and obtained fabrica-
tion methods. More concisely, we measured Bragg diffraction spectra
of: (a) 2D PhC slabs consisting of a periodic array of square air holes
in a crystalline silicon background, (b) 1D photonic crystal (diffraction
grating) based on the non-linear optical material RbTiOPO4 (RTP),
fabricated by a microstructuration of the sample surface using ultra-
fast laser ablation, and (c) 1D photonic crystal (diffraction grating)
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based on non-linear optical material called LiNbO3 (LN), and fabri-
cated using selective etching of ferroelectric domains.

• The resulting Bragg diffraction spectra, obtained from the FTIR spec-
trometer showed several diffraction peaks (the intensity maxima) at
frequencies increasing with the diffraction angle θ. In order to extract
the information about the lattice constant of the particular sample,
we have developed a post-processing procedure consisting of several
steps: (i) apply a smoothing of each spectrum to reduce noise (the
smoothing is calculated by averaging, for each measured wavelength,
the diffracted intensity for a range of neighboring wavelengths) (ii)
flattening the intensity as a function of the angle of incidence θ for a
fixed wavelength. The flattening consists of fitting the intensity as a
function of the angle of incidence (for each measured wavelength λ)
to a straight line and subtracting the resulting straight line from the
data, and (iii) fitting the flattened data with a Gaussian function of
two variables, the wavelength λ and the sinus of the diffraction angle
θ. The fitting functions depend on several adjustable parameters that
are related to the lattice constant and to the spread of the diffraction
peaks. With this method, we determined the lattice constants of the
samples mentioned above and we compared the values with the estima-
tion by an optical microscope. A good agreement with the theoretical
model and the measured data has been obtained.

In Chapter 4, we have applied the Angular-Dependent Reflectance Spec-
troscopy technique (ADRS) to the characterization of photonic bands in
PhC slabs. The objective was the implementation of the technique to our
samples with lattice parameters that require the measurement to be carried
out in the mid-IR spectral range.

• To this end, we have adapted the FTIR equipment to the angular-
dependent reflectivity measurements.

• We measured the ADR spectra of different types of samples with dif-
ferent lattice configurations (e.g. PhC slabs based on macroporous
silicon or photoresist, with square or triangular lattices, different val-
ues of the lattice constant and different sizes of the holes/scatterers).

• To explain correctly the measurement results, we have implemented
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a numerical method to simulate the interaction of the incident light
with the PhC slab and thus to compute the ADR spectra. From
the calculations we have observed that for a given photonic band of
the ideal 2D photonic crystal structure (infinite in the third dimen-
sion), the incident light can couple to several modes in the PhC slab
(with a finite thickness). This coupling is recognized in the spectra as
resonant features consisting of maxima, minima or inflections on the
reflectance. The modes in the PhC slab correspond to states with the
same wavevector component parallel to the slab surface as the corre-
sponding photonic band, but with different values of the out-of-plane
wavevector component. Thus, this can be interpreted as modes that
propagate at different angles with respect to the slab surface. Further-
more, the number of these modes increases with increasing thickness
of the slab. The calculations also predicted oscillations in the ADR
spectra corresponding to Fabry-Pérot interferences between the waves
reflected at the interfaces of the PhC slab.

• Finally, we compared the calculation results with the ADRS measure-
ments. It has been observed that in the mid-IR spectral range the
recognition of the photonic band-related resonant features in the mea-
sured spectra is particularly difficult. For this reason it has been nec-
essary to develop a procedure to post-process the measured data. The
procedure consisted in three steps: first, filtering out the resonances
in the IR spectra due to material characteristics. These resonances do
no depend on the angle of incidence, but only on the light frequency
(wavenumber). On the contrary, photonic band-related features de-
pend both on the wavenumber and on the angle of incidence. Conse-
quently, the filtering is carried out by computing the partial derivative
of the reflectance spectra with respect to the angle of incidence. With
this, only photonic band-related features remain on the spectra. The
second step is to represent the spectra in a 2D plot as a function of the
wavenumber and of the angle of incidence, together with the photonic
bands calculated for the corresponding photonic crystal. Finally, the
photonic band-related features recognition is improved by limiting the
range of wavenumbers in the 2D representation. With this method it
has been shown that the angular-dependent measurement of spectra
and the adequate post-processing of the measured data, when neces-
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sary, are fundamental tools in the optical characterization of photonic
crystals.

In Chapter 5, we focused on another optical technique to characterize the
planar photonic structures, the Angle-Resolved Spectroscopic Polarimetry
(ARSP).

• First, the viability of the polarimetry technique for the optical charac-
terization of photonic planar structures has been studied. The study
focused on two kinds of structures: i) quasi-ordered nanoporous alu-
mina PhC slabs, fabricated by anodization of aluminum and ii) nanos-
tructured photoresist PhC slabs produced with the laser interference
lithography (LIL). To this end, a numerical method based on the S-
matrix formalism to calculate the polarization changes upon reflection
on the photonic structure has been implemented. This method has
permitted to identify the photonic modes related to the TE and TM
photonic bands. These samples were chosen because their lattice con-
stants and optical properties produce photonic bands in the visible
range, which corresponds to the spectral range of the instrument used
in this investigation: the MM16 Mueller polarimeter.

• Two approaches for the optical characterization of planar photonic
structures with the ARSP have been considered: (i) with a fixed az-
imuth angle φ and variable angle of incidence θ and (ii) with a fixed
angle of incidence θ and variable azimuth angle φ.

• The calculations revealed that for a given photonic band of the infi-
nite photonic crystal, the incident light can couple to several modes
in the PhC slab related to such photonic band. These modes corre-
spond to waves that propagate at different angles with respect to the
sample surface. Furthermore, the number of these modes increases
with increasing thickness of the slab. The spectra also show periodic
oscillations with the wavelength related to Fabry-Pérot interferences
of waves reflected at the interfaces of the PhC slabs. It has also been
demonstrated that for PhC slabs based on nanoporous alumina, with
a triangular lattice, the off-diagonal components of the Jones Matrix
show a certain amount of cross-polarization, but with the same char-
acteristics as the diagonal components. Instead, for PhC slabs with
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a square lattice based on nanostructured photoresist samples, there is
no cross-polarization.

• We measured the spectra of the nanostructured photoresist slabs using
the MM16 Mueller polarimeter: (i) with a fixed azimuth angle φ and
variable angle of incidence θ and (ii) with a fixed angle of incidence θ

and variable azimuth angle φ.

• The polarimetry spectra measured with a fixed azimuth angle φ and
variable angle of incidence θ show resonant features in some of the
Mueller matrix components that may correspond to photonic-band-
related resonant coupling, in agreement with the S-matrix calculation.
However, recognition of these features is difficult due to the presence
of the Fabry-Pérot oscillations. An adequate post-processing would
be required to compensate these oscillations and thus improve the
recognition of the photonic band-related resonant features.

• The polarimetry spectra measured with a fixed angle of incidence θ

and variable azimuth angle φ permits to identify the main lattice di-
rections on the sample. The measurements demonstrated that all the
Mueller matrix components are sensitive to the photonic modes re-
lated with the photonic bands. The spectra show resonant features
related to photonic bands, however, its recognition is difficult because
of two factors: i) the presence of Fabry-Pérot oscillations and ii) the
replication of the features due to diffraction caused by modulation of
the interpore distance in the sample.
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Resumen y conclusiones

La caracterización de materiales de gap fotónico (cristales fotónicos) es un
aspecto fundamental en el desarrollo de las tecnoloǵıas para su fabricación
y su futura utilización. Esta tesis doctoral se ha ocupado del desarrollo
de métodos ópticos de caracterización, aśı como de su implementación en
estructuras fotónicas planares, también conocidas como láminas de cristal
fotónico (photonic cristal slabs). De acuerdo con los objetivos fijados para
el presente trabajo, hemos obtenido varios resultados, los cuales se resumen
en los párrafos siguientes:

Se ha desarrollado una técnica experimental basada en la difracción de
Bragg en el rango espectral de la radiación infrarroja (IR) cercana y media,
para determinar las propiedades de varias estructuras fotónicas planas.

• Hemos adaptado un espectrómetro comercial FTIR equipado con un
accesorio de medida de reflectividad para diferentes ángulos de inci-
dencia para medir el espectro de difracción de Bragg.

• Hemos investigado las caracteŕısticas de varias estructuras fotónicas
planares, obtenidas a partir de diferentes materiales y métodos de fab-
ricación. Concretamente, hemos medido y interpretado los espectros
de difracción de Bragg de: a) láminas de cristal fotónico 2D con una
disposición periódica de agujeros de aire cuadrados formados en una
base de silicio cristalino, b) cristal fotónico 1D (red de difracción)
basado en el material óptico no lineal RbTiOPO (RTP), fabricado
mediante micro-estructuración de la muestra utilizando ablación láser
ultra-rápida, y c) cristal fotónico 1D (red de difracción) basado en un
material óptico no lineal llamado LiNbO3 (LN), y fabricado mediante
ataque qúımico selectivo de los dominios ferroeléctricos.

• Los espectros de difracción de Bragg obtenidos del espectroscopio
FTIR, muestran máximos de difracción cuya longitud de onda se de-
splaza al ángulo de difracción (θ). Con el fin de obtener la información
sobre el parámetro de red de una muestra en concreto, se ha desar-
rollado un postprocesado de los datos experimentales. El procesado
implica diversos pasos: el primero es un suavizado del espectro para
reducir el ruido. Esto se consigue mediante un promedio de los valores
alrededor de cada longitud de onda medida. El segundo es la elimi-
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nación de la tendencia decreciente de la intensidad de la difracción con
el ángulo de difracción (θ). Para ello, para cada longitud de onda del
espectro (λ), se ajusta la intensidad en función del seno del ángulo a
una recta y se substrae esta la recta obtenida de los datos. Finalmente,
el tercer paso es el ajuste de los datos obtenidos a una función Gaus-
siana con dos variables, (λ) y sin(θ), que modeliza el comportamiento
ideal de la difracción de la muestra. La función depende de un con-
junto de parámetros que describen la geometŕıa de la muestra y que se
determinan mediante el ajuste. Este método ha permitido investigar
los parámetros de red de las muestras mencionadas anteriormente y
comparar los valores con la estimación efectuada por un microscopio
óptico. Con todo ello se puede apreciar una buena concordancia entre
el modelo teórico y las medidas efectuadas.

Se ha aplicado la técnica de la espectroscopia de reflectometŕıa en ángulo
variable (Angular-Dependent Reflectance Spectroscopy, ADRS) a la carac-
terización de bandas fotónicas en láminas de cristal fotónico. El objetivo ha
sido la implementación de la técnica a las muestras fabricadas en el marco
del grupo NePhoS de la Universitat Rovira i Virgili. Estas muestras tienen
parámetros de red que requieren llevar a cabo una medición en un rango
espectral del infrarojo (IR) medio.

• Con esta finalidad hemos adaptado el equipo FTIR a las medidas de
ADRS usando el accesorio de reflectancia de ángulo de incidencia y
de colección variables. Con esta técnica se pueden reconocer en los
espectros caracteŕısticas resonantes relacionadas con las bandas del
cristal fotónico.

• Hemos medido los espectros ADRS de varios tipos de muestras con
distintos parámetros de red (por ejemplo, láminas de cristal fotónico
basados en silicio macroporoso o en resina fotosensible nanoestrucu-
trada, con redes de estructura cuadrada o triangular y de distintos
tamaños).

• Para poder explicar correctamente los resultados de medición, hemos
desarrollado un método que simula la interacción de la luz incidente
con las láminas de cristal fotónico y, de ese modo, permite calcular los
espectros de ADRS. Los cálculos demuestran que la luz en las láminas
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de cristal fotónico se propaga en modos que tienen el mismo vector
de onda paralelo que las bandas del cristal fotónico 2D infinito, pero
tienen además componentes de vector de onda no nulos en la tercera
dimensión. Además, también muestran cómo para un determinado
ángulo de incidencia de la luz, ésta se acopla a varios de estos mo-
dos, y que el número de modos al que se acopla varia con el grosor
de la lámina. Los cálculos de los espectros ADRS también predicen
oscilaciones en los espectros ADRS que corresponden a interferencias
Fabry-Pérot entre las interfases de la lámina de cristal fotnico.

• Finalmente, hemos comparado los resultados de cálculo con las medi-
das de ADRS. De esta comparación se puede concluir que en el rango
espectral del IR-medio el reconocimiento de caracteŕısticas resonantes
en el espectro relacionadas con los modos de la lámina fotónica y con
las bandas fotónicas es particularmente dif́ıcil y es necesario desarrol-
lar un procedimiento de postprocesado de los datos obtenidos de las
medidas. El procedimiento ha consistido en el análisis de espectros de
ADRS mediante el cálculo de la derivada parcial respecto del ángulo
de incidencia. Aśı, se aumenta la visibilidad de las caracteŕısticas
resonantes relacionadas con bandas fotónicas mientras que se filtran
otras caracteŕısticas relacionadas con el material y con ruido de la
medida, ya que estas últimas son constantes con el ángulo de inci-
dencia. Además, se representa esta derivada parcial en una gráfica
2D en función del vector de onda paralelo a la superficie de muestras
y la frecuencia, junto con las bandas fotónicas calculadas. Al super-
poner las bandas fotónicas se pueden reconocer con más facilidad las
caracteŕısticas resonantes. Finalmente, también se comprueba que re-
duciendo el rango de frecuencias representadas en la gráfica 2D, la
visibilidad de las propiedades resonantes aumenta notablemente.

Finalmente, se ha desarrollado otra técnica óptica para caracterizar es-
tructuras fotónicas planas: la polarimetŕıa espectroscópica de ángulo vari-
able.

• Primero, se ha estudiado la viabilidad de la técnica de la polarimetŕıa
para la caracterización de i) láminas de cristal fotónico quasi-ordenado
basadas en alúmina nanoporosa (fabricadas por anodización electroqúımica
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de aluminio) y ii) láminas de cristal fotónico basadas en resina fotosen-
sible nanoestructurada sobre silicio (producidas mediante litograf́ıa de
interferencia láser). Con este propósito, se ha desarrollado un método
numérico para calcular los cambios de polarización producidos al refle-
jarse luz en las estructuras fotónicas. Tal método permite comprobar
si en los espectros de polarimetŕıa dependiente del ángulo se pueden
identificar caracteŕısticas resonantes relacionadas con modos fotónicos
y bandas fotónicas.

• Para la técnica de la polarimetŕıa se ha tomado en consideración dos
tipos de espectros en función del ángulo: i) con un ángulo de acimut
fijo (φ) y ángulo de incidencia variable (θ) y ii) con un ángulo de
incidencia fijo (θ) y ángulo acimut variable (φ).

• Los cálculos resultantes han puesto de manifiesto que los espectros
de polarimetŕıa muestran caracteŕısticas resonantes relacionadas con
el acoplamiento de la luz incidente con modos de la lámina de cristal
fotónico. Esto se observa tanto para la polarimetŕıa con azimut fijo (φ)
como para la polarimetŕıa con ángulo de incidencia fijo (θ). Además,
tal y como ocurre con la espectroscoṕıa de reflexión, también se ob-
serva el acoplamiento de la luz incidentes a varios modos relacionados
con una misma banda fotónica, aunque con diferente componente z

del vector de onda. Asimismo, el número de modos aumenta con el
incremento de grosor de la lámina. Los espectros también muestran
oscilaciones periódicas con la longitud de onda, en relación con las in-
terferencias Fabry-Pérot en la lámina de cristal fotónico. Se ha com-
probado que para las muestras de cristal fotónico basado en alúmina
nanoporosa con una red triangular, los componentes no-diagonales
de la matriz de Jones muestran una cierta cantidad de polarización
cruzada. Contrariamente, no se manifiesta polarización cruzada para
las muestras de lámina de cristal fotónico basado en resina fotosensible
nanoestructurada con red cuadrada.

• Se han medido espectros de láminas de cristal fotónico basado en resina
fotosensible nanoestructurada utilizando un polaŕımetro MM16, que
permite medir todas las componentes de la matriz de Mueller: i) con
un ángulo de azimut fijo (φ) y ángulo variable de incidencia (θ) y ii)
con un ángulo fijo de incidencia (θ) y ángulo azimut variable (φ).
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• Los espectros de polarimetŕıa medidos con un ángulo fijo de incidencia
(θ) y ángulo de azimut variable (φ) han demostrado que todas las
componentes de la matriz de Mueller son sensibles al acoplamiento de
la luz incidente con los modos fotónicos (relacionados con las bandas
fotónicas). Sin embargo, la distinción entre los modos fotónicos TM
y TE no es posible para las muestras estudiadas, debido al pequeño
contraste de los ı́ndices de refracción entre el material de base del
cristal fotónico (alúmina o resina fotosensible) y el material de los
centros dispersores (aire).
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[Král 09] Z. Král, L. Vojkúvka, E. Garcia-Caurel, J. Ferré-
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[Xifré-Peréz 05] E. Xifré-Peréz, L. F. Marsal, J. Pallarés & J. Ferré-Borrull.
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Appendix A

The Reciprocal lattice, the

Brillouin zone, and the

lattice direction

This appendix describe the concept of the reciprocal lattice, the main lat-
tice orientations, and the first (irreducible) and higher Brillouin zones for
the two-dimensional square and triangular lattices. These are the 2D crystal
lattices considered throughout this work for photonic crystals. The funda-
mental concept comes from solid-state physics where a crystalline solid can
be described with the formalism of Bravais lattices. A Bravais lattice spec-
ifies the periodic array in which the repeated units of the structure (such
as the crystalline solid or photonic crystal) are arranged [Ashcroft 76]. A
Bravais lattice consists of all points with position vectors R of the form

R =
∑

i

niai, (A.1)

where ai are linear independent lattice vectors, and ni range through all
integers. The vectors ai are called primitive vectors and are said to generate
or span the lattice. A primitive unit cell is defined as a volume of space
that, when translated through all the primitive vectors, just fills all of the
space.
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174 The Reciprocal lattice, the Brillouin zone, and the lattice direction

In the case of photonic crystals, the primitive cell may contain one or
more photonic atoms (dielectric scatterers: rods, holes, spheres, etc.), sur-
rounded by a piece of the background material. The calculations of the
photonic band structure are then performed over the computational domain
that consists of one unit cell by applying periodic boundary conditions to
update the fields at the cell boundaries.

Instead of using the real space lattice to perform the calculations, it is
usually useful to use its associated reciprocal lattice. Consider a set of points
R constituting a Bravais lattice, and a plane wave eikr. Wave vectors K,
which satisfy the relation

eiK·(r+R) = eiK·r, (A.2)

for any r and for all R, belong to the reciprocal lattice of a Bravais lattice
of points R. Factoring out eiKr, the reciprocal lattice can be characterized
as the set of wave vectors K satisfying

eiK·r = 1, i.e. K·R = N · 2π, (A.3)

where N is an integer. A reciprocal lattice is defined with reference to a
particular Bravais lattice, which is called the direct lattice. The reciprocal
lattice is itself a Bravais lattice. The reciprocal lattice of a reciprocal lattice
is just the original direct lattice. In three-dimensional space, if ai, i = 1,
2, 3 are a set of primitive vectors of the direct lattice, the reciprocal lattice
can be generated by the primitive vectors bi, i = 1, 2, 3 through

G =
∑

i

hibi, (A.4)

where hi, i=1,2,3 are arbitrary integers and bi is related to the real space
primitive vectors ai according to:

b1 = 2π
a2 × a3

a1· (a2 × a3)
,

b2 = 2π
a3 × a1

a1· (a2 × a3)
, (A.5)

b3 = 2π
a1 × a2

a1· (a2 × a3)
.
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where a1· (a2 × a3) is the volume of the primitive unit cell. In reciprocal
space we can construct a region that surrounds the origin such that all k-
points enclosed are closer to the origin than to any other reciprocal lattice
point. This set of points in k-space is called the first Brillouin zone. As
is geometrically evident, the first Brillouin zone is the region enclosed by
the sets of planes that are perpendicular bisectors to the lattice vectors
connecting the origin in k-space to its nearest neighbor reciprocal lattice
points. In general, planes that are perpendicular bisectors of a line joining
the origin of k-space of a reciprocal lattice points are called Bragg planes.
Hence, the first Brillouin zone can also be defined as the set of points in k-
space that can be reached from the origin without crossing any Bragg plane.
Due to symmetry reasons, most of the time we only need to analyze a part
of the first Brillouin zone. This part is called the irreducible first Brillouin
zone. Higher Brillouin zones are simply other regions bounded by the Bragg
planes. The second Brillouin zone is defined as the set of points that can
be reached from the first Brillouin zone by crossing only one Bragg plane.
Similarly, the nth Brillouin zone is the set of points that can be reached from
the (n− 1)th zone by crossing one and only one Bragg plane. Alternatively,
the nth Brillouin zone can be defined as the set of points that can be reached
from the origin by crossing n− 1 Bragg planes, but no fewer.

We now consider the two mostly used two-dimensional lattices, namely
the square and the triangular lattice. For a square lattice with spacing a,
the simplest lattice vectors are

a1 = ax̂ and a2 = aŷ, (A.6)

where x̂ and ŷ denote unit vectors along the x and y axis, respectively. In
order to use equation A.5, we can use a third basis vector in the z-direction
of any length. The results are

b1 = (2π/a)x̂ and b2 = (2π/a)ŷ. (A.7)

It is easily seen that the reciprocal lattice of the square lattice is also a
square lattice, but with spacing 2π/a instead of a. The original lattice, the
reciprocal lattice, the first Brillouin zone and the irreducible first Brillouin
zone of the square lattice are depicted in figure A.1.
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Figure A.1: The two-dimensional square lattice. (a): Square lattice network with
spacing a in real space. The lattice vectors are denoted by a1 and a2. (b): Cor-
responding reciprocal lattice, a square lattice with spacing 2π/a. The reciprocal
lattice vectors are denoted by b1 and b2. The dotted lines are the perpendicu-
lar bisectors to the reciprocal lattice vectors connecting the origin (Γpoint) to its
nearest neighbor reciprocal lattice points. The region enclosed by these lines and
containing the origin is the first Brillouin zone (solid square). The shaded area
is the irreducible first Brillouin zone. The symmetry points Γ, M and X are also
shown.

The high symmetry k-points, which are the three corners of the irre-
ducible first Brillouin zone, are given by

Γ :
X :
M :

kx = 0,

kx = π/a,

kx = π/a,

ky = 0,

ky = 0,

ky = π/a.

(A.8)

For a triangular lattice with spacing a, the lattice vectors can be chosen as

a1 = a(
√

3x̂ + ŷ)/2 and a2 = aŷ, (A.9)

shown in figure A.2. Using equation A.5, we obtain the reciprocal lattice
vectors

b1 =
4π√
3a

x̂ and b2 =
4π√
3a

(−
√

3
2

x̂ +
1
2
ŷ). (A.10)

The reciprocal lattice is again a triangular lattice. Figure A.2 shows the orig-
inal lattice, the reciprocal lattice, the first Brillouin zone and the irreducible
first Brillouin zone. The three corners of the irreducible first Brillouin zone,
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Figure A.2: The two-dimensional triangular lattice. (a) Triangular lattice network
with spacing a in real space. The lattice vectors are denoted by a1 and a2. (b)
Corresponding reciprocal lattice, a triangular lattice with spacing 4π/

√
3a. The

reciprocal lattice vectors are b1 and b2. The dotted lines are the perpendicular bi-
sectors to the reciprocal lattice vectors connecting the origin (Γpoint) to its nearest
neighbor reciprocal lattice points. The region enclosed by these lines and contain-
ing the origin is the first Brillouin zone (solid hexagon). The shaded area is the
irreducible first Brillouin zone. The symmetry points Γ, M and K are also shown.

the high symmetry k-points, are defined as follows

Γ :
M :
K :

kx = 0,

kx = 2π√
3a

,

kx = 2π√
3a

,

ky = 0,

ky = 0,

ky = 2π
3a .

(A.11)

In figure A.3 we show the Bragg planes (dashed lines) and the first four
Brillouin zones for the two-dimensional square lattice and triangular lattice
space.

 

Figure A.3: The Brillouin zones of the square lattice and the triangular lattice. The
solid circles are the lattice points and the dashed lines are the Bragg lines. The
first four Brillouin zones are marked with different gray scales.
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Abstract

We report the experimental characterization of two-dimensional (2D) macroporous silicon photonic crystals using angular-dependent reflectance

spectroscopy in the mid-IR region. We have investigated different sample structures and we have shown that an adequate post-processing of the

measured data is crucial in order to recognize the photonic bands and to achieve a good agreement of the measured data with the theoretical

predictions for the studied structures.

© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Photonic crystals, first proposed by Yablonovitch [1] and

John [2], are artificial materials with a spatial periodicity of

their dielectric constant on a wavelength scale. This leads to

the existence of photonic bands, which are analogous to the

electronic bands in crystalline solids. Furthermore, there exist

frequency regions, the photonic band gaps, where light cannot

propagate through the material, thus suggesting possibilities for

novel light-guiding structures and devices. To enable the fabri-

cation of such devices, it is crucial to have good methods for

their characterization.

Photonic crystals have first been characterized in the

microwave regime by phase-sensitive transmission measure-

ments [3] that yield the wave vector inside the crystal at a given

frequency. Another technique, based on the in-plane transmis-

sion in two-dimensional (2D) waveguide photonic crystals has

been used to map the photonic bands from Fabry–Pérot fringes

within the sample [4]. Several authors have also measured the

∗ Corresponding author. Tel.: +34 977 55 86 53.

E-mail address: zdenek.kral@urv.cat (Z. Král).

photonic bands dispersion in 2D photonic crystals by means of

the angular-dependent reflectance spectroscopy, first proposed

by Astratov et al. [5–9]. This method relies on the observation

of resonant features in the reflectance spectra at different inci-

dence angles. The resonant features occur when the incident light

wave vector component parallel to the photonic crystal surface

(k‖) matches the wave vector of a propagating mode inside the

photonic crystal. The k‖ is related to the angle of incidence on

the photonic crystal surface θ and to the incident light frequency

ω as k‖ = (ω/c) sin θ, where c is the speed of light. By recogniz-

ing the resonant features in the reflectivity spectra, the photonic

bands can be mapped out.

In this paper, we report the characterization of 2D macrop-

orous silicon photonic crystals by angular-dependent reflectance

spectroscopy. Many experimental investigations of photonic

crystals were linked with this method, but in contrast to previ-

ous studies [10–20], the lattice constants of the samples studied

here require that the measurements are carried out in the range of

the mid-IR. Only few experimental measurements on this range

have been reported so far [11,12], and none, up to our knowledge,

reached up to 600 cm−1, which is our lower wavenumber limit.

The drawback of measuring in such spectral range is the recogni-

tion of the resonant features in the spectra. Although in previous

0921-5107/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
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works [5–20] a direct recognition of the resonant features is

possible, in the mid-IR range there are several sources of clut-

ter that make this direct recognition a difficult task. Therefore,

we propose here a procedure to improve the recognition of the

photonic bands and we report the application of this procedure

to our samples.

2. Sample preparation

Macroporous silicon photonic crystals of different lattice

types were prepared by a photo-electrochemical etching process.

An n-type (1 0 0) silicon wafer with a resistivity of 2–6 ! cm

was first pre-structured by oxidation, photolithography and sub-

sequent tetramethyl ammonium hydroxide (TMAH) etching to

form the initial pits. Such a patterned structure consists of

ordered pyramidal notches that act as nucleation centers for

the subsequent ordered pore growth. The pore growth mech-

anism is ruled by the reverse-biased space charge region at

the silicon–electrolyte interface. The positive carriers (holes),

required for anodic dissolution of silicon, are focused mainly at

the pore tips, which let the pores grow perpendicularly to the

surface and at the same time the pore walls become passivated

against dissolution. In order to create a good ohmic contact at

the silicon–electrolyte interface, a uniform n+-layer was created

on the wafer backside by ion implantation. The electrochemical

etching was carried out in aqueous hydrofluoric acid (HF) with

a concentration of 5 wt.% at 15 ◦C. During the anodization, the

wafer was backside illuminated by a 100 W halogen lamp, cou-

pled to an IR cut-off filter. More detailed information about the

sample fabrication and sample structures used in this paper can

be found elsewhere [21].

3. Experimental measurements

All the studied samples have lattice constants that range

between 4 !m and 5 !m. Standard plane–wave expansion band

calculations show that, for these lattice constants, the first

photonic bands lie in the mid-IR range. For this reason, the

angular-dependent reflectivity was measured in the mid-IR

region (4000–400 cm−1) using a Fourier-transform IR spec-

trometer (Bruker, model Vertex 70) equipped with a special

reflectivity attachment. The light source was a broadband

halogen–tungsten lamp. The angle of incidence θ was varied

from 12◦ to 66◦ in steps of 2◦ and the plane of incidence was per-

pendicular to the sample surface. The reflectivity spectra were

recorded with a liquid-nitrogen-cooled MCT detector. The spec-

tral resolution was set to 4 cm−1. A polished n-type silicon wafer

was used as absolute reflectance reference. The measurements

were performed for light incident along the Γ X and Γ M lattice

orientations for the square lattice structure, and along the Γ M

and Γ Z directions for the triangular lattice.

4. Results and discussion

To recognize the resonant features associated to the coupling

of the incident light to the photonic bands we first represent the

measured spectra as a 2D plot of the angular-dependent reflec-

Fig. 1. 2D plot of the angular-dependent reflectivity spectra versus the wavenum-

ber and the angle of incidence. The photonic bands are overlapped to the 2D

plot, the -dashed lines and full lines correspond to the TM and TE polarizations,

respectively. The inset shows the measured macroporous silicon structure where

the lattice constant and the measured lattice direction are indicated.

tivity versus the wavenumber and the incident light wavevector

component parallel to the surface (k‖). A representative exam-

ple of this plot is shown in Fig. 1, where the inset shows the

measured structure, the lattice constant a and the measurement

direction. The lines correspond to the photonic bands calculated

using the known sample geometrical parameters and optical

properties. The solid lines correspond to the TE bands while

the dashed lines correspond to TM. The black solid line corre-

sponds to the light line (corresponding to an angle of incidence

of 90◦).

In this example, it can be seen that in the mid-IR spectral

region the coupling is weak and that there exist other features not

related to the photonic bands (such as those related to the silicon

optical properties [5,11,12]) which make specially difficult the

recognition of the resonant features. The calculated photonic

bands overlapped to the 2D plot may assist to this recognition,

but even in this case the corresponding features are difficult to

be seen.

In order to improve the resonant feature recognition, it must

be noted that the wavenumber of the photonic bands usually

changes with k‖, while the material-related features correspond

to a fixed wavenumber. This leads to the idea that calculating the

partial derivative of the reflectance with respect to the incidence

angle may be useful to filter out the material-related features. For

our measurements, this partial derivative is approximated using

finite differences between two reflectivity spectra corresponding

to two neighboring angles. Thus, if the reflectance R is measured

at a set of wavenumbers {ωi} and of incidence angles {θj}, the

partial derivative at a wavenumber ωi and angle of incidence θj

is expressed as

∂R

∂θ
(ωi, θj) ≈

R(ωi, θj+1) − R(ωi, θj)

θj+1 − θj

(1)

Fig. 2 shows the 2D plot of the ∂R/∂θ for the same measure-

ment as in Fig. 1 together with the calculated photonic bands.
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Fig. 2. 2D plot of the ∂R/∂θ corresponding to the measurement shown in Fig. 1,

overlapped with the calculated photonic bands.

This magnitude permits a better recognition of the photonic band

resonant features.

A further improvement in the recognition can be obtained if

the 2D plot of the ∂R/∂θ is restricted to a wavenumber range

where fewer photonic bands are expected. With this, two main

outcomes are expected: (i) restricting the range reduces the

overall reflectance spectral variations and thus the photonic

band-related resonances are in relation enlarged, and (ii) by

choosing a range where a small number of photonic bands are

expected, it should be easier to distinguish their related features

from others. Fig. 3 shows the 2D plot of the reflectance spec-

tra for the same measurement as in Fig. 1, but with a restricted

wavenumber range, where the first TM band is clearly identified.

This procedure has been applied to the characterization of

macroporous silicon photonic crystals with different lattice

structures. Fig. 4 shows a representative set of the obtained

results corresponding to samples with square and triangular

Fig. 3. Range-restricted 2D plot of the ∂R/∂θ corresponding to the measurement

shown in Fig. 1.

Fig. 4. Measured photonic bands for different samples: (a) round holes in a

square lattice and (b) rounded square holes in a triangular lattice. The measured

lattice direction and the lattice constant are indicated in the insets.

lattices. The lattice type, the lattice dimension and the lattice

orientation of the measurement are specified in the insets.

5. Conclusions

We have applied the angular-dependent reflectivity technique

to the characterization of porous silicon photonic crystals. The

characteristics of the samples require that the measurement is

performed in the mid-IR, which implies the adaptation of the

technique. In this spectral range, the recognition of the photonic

band-related features is difficult and it is necessary to develop a

procedure to post-process the data and improve the band mea-

surement. The procedure is based on the analysis of the 2D

plot of the reflectance spectra as a function of the wavevector

component parallel to the sample surface and the wavenumber

together with the calculated photonic bands. Furthermore, the

partial derivative of the reflectance with respect to the incidence

angle is used to filter-out the material-related resonances and

improve the resonant feature recognition. Finally, by restrict-

ing the wavenumber range of the 2D plot, the visibility of the
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resonant features is further enhanced. With this method we

have been able to distinguish several photonic bands in macrop-

orous silicon structures with different lattice constants and lattice

structures.
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Abstract

We report the characterization of two-dimensional silicon photonic crystals using angular-dependent reflectivity in the mid-IR. The photonic

crystals are obtained by electrochemical etching of an ordered array of holes into silicon. The measurements are compared with the theoretical

calculations of the corresponding model based on the interaction of the incident light with the photonic crystal sample. A good agreement between

the measurements and the calculations is achieved.

© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Photonic crystals [1, 2] are artificial materials with a spatial

periodicity of their dielectric constant on a wavelength scale.

This leads to the existence of photonic bands, analogous to the

electronic bands in crystalline solids, and to photonic band

gaps: frequency ranges where light cannot propagate through

the material. Photonic crystals offer great possibilities for novel

light-guiding structures and devices and their characterization is

a key issue for the fabrication of such devices.

Several methods for the characterization of photonic crystals

have been proposed. In the microwave regime phase-sensitive

transmission measurements have been used [3] to obtain the

wave vector inside the crystal at a given frequency. Another

technique, based on the in-plane transmission in two-dimensional

(2D) waveguide photonic crystals has been used to map the

photonic bands from Fabry–Pérot fringes within the sample [4].

One of the most widespread techniques is the angular-dependent

reflectance spectroscopy [5–9], which is based on the identifica-

tion of resonant features in the reflectivity spectra at different

angles of incidence. Such resonant features are related to the

coupling of the incident light into the photonic crystal. They

appear when the incident light wavevector component parallel to

the photonic crystal surface (k//) matches the wave vector of a

propagating mode inside the photonic crystal. The k// is related to

the angle of incidence on the photonic crystal surface θ and to the

incident light frequency ω as k//=(ω/c) sinθ, where c is the speed

of light. By recognizing the resonant features in the reflectivity

spectra, the photonic bands can be mapped out.

In this paper we report the characterization of 2D macro-

porous silicon photonic crystals by angular-dependent reflec-

tance spectroscopy. We first focus on the modeling of the

interaction of the incident light with the sample, to be able to

simulate and interpret the measurements. Then, we will show

the experimental measurements and we will compare them with

the results obtained from the modeling.

2. Modeling of the spectrophotometric characterization of

2D photonic crystals

The method we apply to characterize the photonic crystal

samples is the angular-dependent reflectance spectroscopy. The

experimentally measured reflectance spectra are then compared

with model calculations, which simulate the interaction of a plane

wave (incident at a given angle and with a given polarization)

with the photonic crystal sample. The model allows to evaluate

the coupling efficiency of the incident wave to the photonic

modes and to obtain the reflection and transmission coefficients.

The samples we study consist of an ordered array of holes

etched in a silicon wafer and perpendicular to the sample

surface. The distance between holes is constant and ranges

Available online at www.sciencedirect.com
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between 4 and 6 μm, their shape is approximately square

(square with rounded edges), their width is between 1 and 2 μm

and their depth can reach up to 200 μm.

The method we use is based on the scattering matrix

treatment proposed by Whittaker et al. [10]. This method relies

on the plane-wave expansion (PWE) method but it includes

some particularities to achieve the goal of calculating the

angular-dependent reflectance spectra. The PWE method has its

origin in the fact that the refractive index of the photonic crystal

is periodic, which implies that any electromagnetic wave

propagating inside the material fulfills the Bloch theorem:

H rþ Rð Þ ¼ eikd RH rð Þ; ð1Þ

(and equivalently for the electric field). In Eq. (1) r= (x,y) is

the position in the plane of symmetry of the photonic crystal

(the holes are oriented along the z direction),R is a lattice vector

and k=(kx,ky) is the in-plane Bloch wavevector. Thus, the plane

wave expansion assumes that this wave can be expanded in a

sum of plane waves propagating along all the directions defined

by the reciprocal lattice:

H rð Þ ¼
X

G

hk Gð Þei kþGð Þd r
; ð2Þ

where the G are the reciprocal lattice vectors and the hk(G) are

the expansion coefficients . It can be shown that Eq. (2) fulfills

the Bloch theorem. By restricting the expansion to a limited

number of plane waves and applying Maxwell's equations to

Eq. (2) (and its equivalent for the electric field) a set of

eigenvalue problems is derived. This set can be separated in

two independent eigenvalue equations by recalling that for 2D

photonic crystals two independent polarizations (TE and TM,

with the magnetic and electric fields along the holes,

respectively) can be defined. The result of these eigenvalue

problems is that for a given Bloch wavevector k only some

frequencies can propagate inside the photonic crystal, giving

rise to the photonic bands and the photonic band gaps.

The PWE method considers the 2D photonic crystal as

indefinite in the z direction, however this is not the case of our

samples, where the photonic crystal is delimited by the sample

surface and by the substrate. The model we use to calculate the

angular-dependent reflectance introduces the third dimension

by allowing the wave to propagate also along the z direction:

H r; zð Þ ¼
X

G

hk Gð Þei kþGð Þd rþiqz
; ð3Þ

where q is the out-of-plane wavevector component. By limiting

the expansion and applying Maxwell's equations to Eq. (3) an

eigenvalue problem is obtained for q, for given k and wave

frequency. Taking into account that the in-plane wavevector k is

conserved through all the interfaces of the sample (incident

medium-photonic crystal and photonic crystal-substrate), the

eigenstates with their corresponding eigenvalues {qn} obtained

from this problem can be used to calculate the efficiency of the

coupling of an incident plane wave with a given k and

frequency to the structure. This is done with the help of a

scattering matrix procedure which is obtained by applying the

boundary conditions to the fields at each side of an interface.

This coupling efficiency can be then translated into reflection

and transmission coefficients, and subsequently into angular-

dependent transmittance and reflectance spectra.

It must be noted that, from the mathematical derivation of the

scattering matrix treatment it can be concluded that there may not

be only one mode propagating within the photonic crystal sample

with a given k, but several modes for different values of q, and

that these modes do not propagate parallel to the sample surface.

Fig. 1 shows the calculation of the reflectance spectra for TE-

polarized light for a sample consisting of square holes etched on

silicon in a square lattice. The incident light is directed along the

rows of the photonic crystal (the ΓX lattice direction). The

lattice constant is 4 μm, the width of the holes is 2 μm and the

depth is 7.5 μm. The corresponding angles of incidence are

indicated in the graph. The photonic band-related resonant

features can be either maxima, minima or inflection points of

the spectra. One of the resonant features is indicated by arrows,

as it can be seen, its wavenumber changes with the incidence

angle. Nevertheless, with this representation it is difficult to

recognize the photonic band-related resonant features.

A better visualization of the angular-dependent reflectance

spectra can be obtained with a 2D representation of the

reflectance as a function of the angle of incidence and the

frequency. This representation is shown in Fig. 2a), for the same

sample as in the previous figure and also for TE-polarization.

The photonic bands of the corresponding infinite photonic

crystal are also included (black solid lines). In this representa-

tion the resonant features can be clearly identified, but a shift

between the frequency of the photonic bands and the resonant

features can be seen. This shift is due to the fact that the incident

light is coupled to modes with a nonzero q, or equivalently to

modes that do not travel parallel to the sample surface.

Finally, Fig. 2b) shows the angular-dependent reflectivity

spectra for the TE polarization of a sample with the same

characteristics as in the previous figures but with a bigger

thickness: 12.5 μm. The resonant features can also be recognized,

but it is worth noting that, for a given band, there are several

corresponding resonant features. This indicates that the incident

Fig. 1. Calculated angular-dependent reflectivity spectra for different incidence

angles (indicated at the right) for TE-polarized light and for the ΓX lattice

direction. The arrows point to a photonic-band related resonant feature.
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light couples to more that one mode with the same k but with

different q. From these two figures, we can conclude that when

the depth of the holes increases, the number of modes that can

propagate inside the photonic crystal with the same k and

different q increases. Furthermore, the shift between the photonic

band and the lowest resonant feature associated with that band

becomes smaller for increasing hole depth. This indicates that as

the hole depth increases, the wave can propagate inside the

photonic crystal in a direction with a smaller angle with the

interface. Another characteristic of the spectra in Fig. 2b) must be

noted: the reflectance shows oscillations, particularly in the range

of the lower angles. These oscillations correspond to Fabry–Pérot

interferences between the interfaces of the photonic crystal layer.

3. Experimental

3.1. Sample preparation

The macroporous silicon photonic crystals were prepared by

a photo-electrochemical etching process: n-type (100) silicon

wafers with 2–6 Ω cm resistivity were first pre-patterned by a

standard photolithography process to form the initial pits. Such

a patterned structure consists of ordered pyramidal notches that

act as nucleation centers for the subsequent ordered pore

growth. The pore growth mechanism is ruled by the reverse-

biased space charge region at the silicon-electrolyte interface.

The positive carriers (holes), required for anodic dissolution of

silicon, are focused mainly at the pore tips, which let the pores

grow perpendicularly to the surface and at the same time

passivates pore walls against dissolution. The electrochemical

etching was carried out in aqueous hydrofluoric acid (HF) with

a concentration of 5 wt.% at 15 °C. During the anodization, the

wafer was backside illuminated by a 100 W halogen lamp,

coupled to an IR cut-off filter in order to generate positive

carriers for the dissolution. More detailed information about the

sample fabrication and sample structures used in this paper can

be found elsewhere [11].

3.2. Experimental measurements

The studied samples have a 4 μm lattice constant, which

implies that the first photonic bands lie in the mid-IR range. For

this reason, the angular-dependent reflectivity was measured in

the mid-IR region (4000–400 cm−1) using a Fourier-transform

IR spectrometer (Bruker, model Vertex 70) equipped with a

special reflectivity attachment. The light source was a broad-

band halogen–tungsten lamp. The angle of incidence θ was

varied from 12° to 66° in steps of 2°, the plane of incidence was

perpendicular to the sample surface and the incident light was

unpolarized. The reflectivity spectra were recorded with a liquid

nitrogen-cooled MCT detector and the spectral resolution was

set to 4 cm− 1. A polished n-type silicon wafer was used as

reflectance reference.

In the mid-IR spectral region it is especially difficult to

identify the photonic band-related resonant features because

they appear together with several other features. As it was

shown in the previous section, the photonic band-related vary

their frequency with the angle of incidence, instead, the other

features present in the spectra usually correspond to fixed-

frequency resonances. For these reasons, to analyze the angular-

dependent reflectivity measurements it is convenient to work

with the partial derivative of the reflectivity with respect to the

angle [12]. Using this partial derivative, the features with

constant frequency with the angle are filtered out, leaving

features related to the photonic bands.

Since the measurements are carried out at a discrete number

of angles, this partial derivative is approximated by the

difference of the spectra for consecutive measured angles:

AR

Ah
xi; hj

! "

c

R xi; hjþ1

! "

" R xi; hj

! "

hjþ1 " hj
; ð4Þ

where the {ωi} are the frequencies and the {θj} the angles of

incidence where the measurements are performed.

Fig. 3 shows the obtained ∂R/∂θ for three samples consisting

of square holes in a square lattice with a lattice constant 4 μm.

The depth of the holes is (from top to bottom) 7.5, 12.5 and

Fig. 2. 2D plots of the calculated angular-dependent reflectivity spectra as a

function of the angle of incidence and of the wavenumber, for TE-polarized light

and for the ΓX lattice direction. The calculations correspond to two samples

with a square lattice of square holes etched on silicon. The distance between

holes is 4 μm, their width is 2 μm and their depth is 7.5 μm for a) and 12.5 μm

for b). The photonic-band resonant features can be recognized easily. The lines

correspond to the actual photonic bands for the structure.
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17.5 μm. The measurement direction is ΓX. The inset shows a

microscope image of the surface of the 7.5 μm hole depth

sample, together with the lattice constant and the measurement

direction. The corresponding photonic bands for the TE

polarization and for the ΓX direction calculated for this sample

(taking as the width of the square holes 2 μm) are overlapped to

the measurements as dot–dashed white lines.

From the figure it can be deduced that, even after the post-

processing with the ∂R/∂θ, it is difficult to directly recognize

the resonant features. The calculated photonic bands overlapped

to the measurement help in this recognition and show a clear

coupling associated with the lowest band (beginning at

800 cm− 1 at 20°) and the highest band (beginning at

1150 cm− 1 at 20°). Furthermore, for the graphs b) and c), the

resonant features corresponding to the highest band are repeated

at higher frequencies and their number increases with increasing

hole depth. This indicates the coupling to the different modes

associated to the same band but with different q, and it is in

agreement with the calculations.

It is worth noting that although these measurements are carried

out with unpolarized light, only TE bands can be recognized.

This is also in agreement with the calculations, that do not predict

coupling to TMmodes in this frequency region for these samples.

4. Conclusions

We applied the angular-dependent reflectivity technique in

the mid-IR to the characterization of macroporous silicon

photonic crystals. These photonic crystals consist of an ordered

array of holes electrochemically etched in a silicon matrix.

The characterization consists in the measurement of the

angular-dependent reflectivity with an FTIR equipment and the

comparison of the measurement with the mathematical modeling

of the interaction of the incident light with the photonic crystal.

From the calculations we have observed that for a given

photonic band of the infinite photonic crystal, the incident light

can couple to several modes in the finite photonic crystal

constituted by our samples. These modes correspond to waves

that propagate at different angles with respect to the sample

surface. Furthermore, the number of these modes increases with

increasing depth of the etched holes.

Finally, we have compared the calculations with the

measurement of real samples. We observed that, after the

proper post-processing of the data, the spectra show resonant

features that can be associated to photonic bands. The existence

of several resonant features for a single photonic band, their

increasing number with increasing hole depth and the coupling

of only TE modes are in good agreement with the calculations.
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Zdeněk Král a, Lukáš Vojkůvka a, Enric Garcia-Caurel b,*,
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Abstract

Calculations of angular-dependent reflectance and polarimetry spectra of nanoporous anodic alumina-based two-dimensional

photonic crystal slabs are presented. The calculations are obtained using a scattering matrix numerical model that gives the

polarization change as a function of the incidence angle and of the wavelength. The results reveal that the incident light can couple

to several modes propagating in the photonic crystal slab at different angles with respect to the sample surface, and that the number

of these modes increases with increasing pore depth. Two different lattice structures are studied: triangular and square. For the

triangular lattice the off-diagonal components of the Jones Matrix show a certain amount of cross-polarization, while for the square

lattice, there is no cross-polarization.

# 2008 Elsevier B.V. All rights reserved.

PACS : 07.60.Fs; 42.70.Qs; 78.20.Bh

Keywords: Spectroscopic polarimetry; Photonic crystals; Porous alumina; Optical characterization; Numerical simulation

1. Introduction

Photonic crystals are materials with a periodic

variation of its refractive index on a wavelength scale

[1–3]. The particular behaviour of photons inside these

materials, with the existence of photonic bands and

photonic band gaps, makes them interesting for a great

variety of applications: photonic crystal fibres [4], low-

threshold lasers [5], photonic circuits [6], etc. Two-

dimensional (2D) photonic crystals are a particular class

of such materials that can be fabricated with many

different techniques, mainly by combination of litho-

graphy and etching [7–9]. Nanoporous anodic alumi-

nium oxide (np-AAO) is a material fabricated by

anodization of aluminium foils with the pores naturally

ordered in a triangular 2D lattice [10–12]. With the

conventional methods for growing np-AAO, the pores

are naturally ordered but not all over the sample surface

[13]. However, in order to obtain perfectly ordered

samples, nanoimprint prepatterning techniques can be

used [14]. This material may be of special interest

in photonic applications for the visible range of the
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electromagnetic spectrum for several reasons: (i) its

dimensions can be tuned for applications in the visible

range [15], (ii) it is relatively transparent in this range

[16], and (iii) it has luminescent properties [17].

The optical characterization of photonic crystals is

an interesting research subject due to the particular

optical behaviour of these materials. Much research has

been devoted to the development of new characteriza-

tion techniques that measure different aspects of

this optical behaviour: measurement of the photonic

band gaps [18], transmission and reflection properties

through the photonic crystal samples [19], or measure-

ment of the photonic bands [20]. One of the techniques

to measure photonic bands is the Angular-Dependent

Reflection Spectroscopy (ADRS) [21–25]. In our

previous works we applied this technique to 2D pho-

tonic crystals based on macroporous silicon produced

by electrochemical etching [26,27].

Spectroscopic polarimetry is a technique widely

used in the optical characterization of a great variety of

samples [28–31]. Polarimetry measures the change in

the polarization state of the light upon reflection or

transmission, thus polarimetry is specially suited to

materials that show optical anisotropy. 2D photonic

crystals, and in particular np-AAO-based photonic

crystal slabs, are materials with an inherent optical

anisotropy [32]: the photonic bands and the photonic

band gaps depend strongly on the light polarization and

propagation direction.

In this work we aim at applying an alternative to the

ADRS, the angular-dependent reflection polarimetry, to

the optical characterization of np-AAO-based photonic

crystal slabs. The main objective of this communication

is the simulation of such polarimetry measurements.

The technique that will be used is the Mueller matrix

polarimetry, which involves the complete polarimetric

description of the light by real four-dimensional Stokes

vectors and the polarization changes with 4 ! 4Mueller

matrices. Our goal is simulating measurements per-

formed with a spectroscopic Mueller polarimeter,

designed to work in a broad spectral range (from UV

to near IR) [33]. Such instrument is particularly suited

to our nanoscale porous alumina photonic crystal slabs,

as its expected photonic bands lay in the visible range.

This optical instrument is based on modulation and

analysis of light polarization by ferroelectric liquid

crystals cells. It consists of a polarization state generator

(PSG) and polarization state analyzer (PSA) that can be

adapted to work in reflection or transmission mode.

Both incident (PSG) and reflection (PSA) arms are

attached to a goniometry unit that permits variable-

angle spectroscopy measurements in the angle of

incidence range between 458 and 908. As a source of

illumination, the polarimeter uses a 30 W halogen lamp,

and as a detector, a CCD array coupled to a commercial

Jobin-Yvon diffraction grating optimized to work bet-

ween 400 nm and 800 nm.

The rest of this work is organised as follows: in the

next section we briefly outline the numerical model we

have used to calculate angular-dependent reflectivity

and polarimetry spectra. Then, in Section 3 we report

the calculation of angle-dependent reflectivity and

polarimetry spectra on ideal, perfectly ordered, np-

AAO photonic crystal slabs. Finally, in Section 4 we

state our conclusions.

2. Numerical model for the interaction of the

incident light with the photonic crystal slabs

The main goal of this paper is the study of the

polarization state change upon reflection on nanoporous

anodic aluminium oxide photonic crystal slabs. To this

end we use a numerical method based on the scattering

matrix treatment proposed by Whittaker and Culshaw

[34]. This method follows the same approach as the

plane-wave expansion (PWE) method but including

additional features to calculate the photonic modes

propagating inside the sample and the coupling

efficiency of the incident wave to these modes. The

scattering matrix method is based in the fact that the

waves propagating inside the structure can be expanded

in a sum of plane waves. For instance, for the magnetic

field this expansion can be expressed as

Hðr; zÞ ¼
X

G

hkðGÞ eivtþiðkþGÞrþiqz
: (1)

This expansion spans over all the vectors G of the

reciprocal lattice, k is the Bloch parallel wavevector

(since the waves propagating inside the ordered

structure must comply with the Bloch theorem), r is

the position in the x–y plane, z is the position along the

pores and q is the wavevector along the z direction. The

introduction of the z component of the wavevector (q) is

necessary in order to allow the modeling of waves that

propagate inside the photonic crystal in an oblique

direction and that can couple to the photonic crystal slab

from the incident medium at a given angle.

By limiting the expansion of Eq. (1) to a finite

number of reciprocal wavevectors G and applying

Maxwell’s equations an eigenvalue problem is obtained

for q, at a given k and wave frequency v. The solutions

of this eigenvalue problem are the modes allowed to

propagate inside the sample. It must be noted that there

may not be only one mode propagating within the
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photonic crystal sample with given k and v, but several

modes for the different eigenvalues of q propagating

oblique to the sample surface (with q 6¼ 0). Once these

modes are determined a scattering matrix procedure is

used to impose the boundary conditions at the sample

interfaces, this is: continuity of the in-plane components

of the electric and magnetic fields and of the parallel

wavevector component k. With this, it is possible to

calculate the coupling efficiency of the incident light to

the modes of the photonic crystal slab and to obtain the

reflection coefficients for the two incident polarizations.

It is known [34] that when the incident light couples to a

mode propagating inside the photonic crystal slab, a

distinctive feature appears in the spectrum. Such feature

can be a maximum, a minimum or an inflection. If the

light is incident at an angle u and the wave frequency at

which the feature appears is v, the magnitude of the

parallel wavevector is:

jkj ¼
v

c

sin u; (2)

with c the speed of light in vacuum. Since this magni-

tude is conserved as light enters the photonic crystal, it

can be used to identify the photonic bands in the spectra.

3. Reflectometry and polarimetry of nanoporous

anodic aluminum oxide-based 2D photonic

crystals

In this section we show the results obtained with the

scattering matrix formalism introduced in the previous

section. First, in order to illustrate how the features

present in the spectra are related to the photonic bands,

we show angular-dependent reflectance spectra (ADRS)

of photonic crystal slabs based on np-AAO. Nanoporous

AAO is a material with air pores in an alumina matrix.

Under the appropriate fabrication conditions the pores

are naturally ordered in a triangular lattice, although it is

not monodomain unless prepatterning techniques are

used [14]. Fig. 1 shows an example of a np-AAO slab

produced by electrochemical anodization. The specific

conditions of the process can be found elsewhere [12].

Fig. 1a is a SEM image of the sample surface, where the

clustered natural self-ordering of the pores can be

observed. Fig. 1b shows a closer view of one of the

clusters where the triangular lattice ordering is

demonstrated. Finally, Fig. 1c shows a cross-section

view of the sample to illustrate the high aspect ratio and

radius uniformity of the pores. The model for the

simulations requires that the sample is ideally periodic

to apply the Bloch theorem. For this reason, in our

simulations we will assume a np-AAO photonic crystal

with a perfect triangular arrangement of the pores. More

concisely, Fig. 2 shows a schematic diagram of the

model for the sample consisting of a slab of alumina

(n = 1.67), surrounded by air, with a periodic triangular

lattice (lattice constant a) of circular holes (radius r).

The thickness of the slab (or equivalently the pore

Z. Král et al. / Photonics and Nanostructures – Fundamentals and Applications 7 (2009) 12–1814

Fig. 1. SEM pictures of a np-AAO slab obtained by electrochemical anodization. (a) Surface picture showing the self-ordering of the pores, (b)

surface view at a higher magnification that illustrates the typical characteristic sizes and the lattice direction considered later in the calculations, and

(c) cross-section view that illustrates the in-depth pore uniformity.

Fig. 2. Schematic diagram illustrating the measurement geometry for

angular-dependent spectroscopy and polarimetry.
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depth) is d. The diagram also shows the angle of

incidence of the light, u.

Fig. 3 shows the photonic bands, calculated with the

PWE method, of an ideal np-AAO 2D photonic crystal

(infinite in the z direction), with dimensions a = 157 nm

and r = 47 nm. These dimensions are obtained from an

average of the dimensions of actual fabricated samples

such as the one shown in Fig. 1. The bands in Fig. 3

correspond to the lattice direction GM indicated in

Fig. 1b for both the TE (electric field perpendicular to

the pores) and TM (magnetic field perpendicular to the

pores) polarizations. The dashed straight line corre-

sponds to the light line, this is: the v–k points

corresponding to waves incident at 908. The wavelength

scale at the left y-axis shows that some of the photonic

bands and band gaps lie in the UV–vis region of the

electromagnetic spectrum.

Fig. 4 shows angular-dependent reflectance spectra

for np-AAO photonic crystal slabs with different

thicknesses d. The lateral dimensions are the same as

for the band calculation in Fig. 3 and illustrated in Fig. 1

The picture shows a 2D representation of the reflection

coefficient versus the frequency of the incident light, v,

and its angle of incidence, u. The corresponding pore

depths are d = 300 nm, d = 600 nm and d = 900 nm,

from top to bottom. The simulations are performed for

light incident along the GM direction and for TE

polarization of the incident and detected light. The

second, third and fourth TE photonic bands for this

structure (Fig. 3a) are overlapped to the picture.
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Fig. 3. Photonic band structure (calculated with the PWEmethod) for

the GM direction of a 2D photonic crystal with the same character-

istics as the np-AAO. The bands for TE (magnetic field along the

pores) and TM (electric field along the pores) polarization are shown.

The dashed straight line corresponds to the light line, this is: any

incident light from the air has v and k above this line.

Fig. 4. Angular-dependent reflectance spectra of np-AAO photonic

crystal slabs with three different thicknesses: (a) 300 nm, (b) 600 nm

and (c) 900 nm. The spectra are represented as a gray map of the

reflectivity with respect to the angle of incidence and the normalized

frequency. The reflectance spectra are for light incident in the GM

direction and the bands correspond to the TE polarization and the GM

direction.
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The graphs in Fig. 4 show that for the second (with

v = 0.66 2pc/a at u = 208) and third (with at v = 0.74

2pc/a at u = 208) TE bands there exist several resonant

features in the ADR spectra. Such features are due to the

coupling of the incident light to the photonic modes that

propagate inside the structure at different angles with

respect to the surface. These photonic modes corre-

spond to the nonzero real eigenvalues q of the wave

equation inside the structure. It is important to remark

that the resonant features do not match exactly with the

corresponding photonic bands (with the same kk and

q = 0), but they appear at higher frequencies. The reason

for this blue shift is that the frequency is proportional to

the modulus of the wavenumber (considering all in-

plane and out-of-plane components). The modes

indicated by the resonant features have nonzero q,

and consequently their frequency is higher than the

frequency of the corresponding photonic bands. From

the figure it can also be concluded that with increasing

pore depth the number of resonant features for a given

band also increases. This indicates that the incident

beam couples to several modes in the photonic crystal

with different nonzero q values.

Finally, another characteristic of the spectra in Fig. 4

must be noted: there are oscillations in the reflectance

spectra (the dark and light stripes in the 2D plot) and

their number increases with pore depth (or equivalently,

with the thickness of the photonic crystal slab). These

oscillations correspond to Fabry-Pérot interferences

between the light beams reflected at the interfaces of the

photonic crystal slab with the surrounding air. The

period of such interferences decreases when the

thickness of the photonic crystal slab increases.

The main concern of this work is the numerical

calculation of the polarization change upon reflection

on nanoporous AAO 2D photonic structures with a view

to its application to the simulation of Mueller matrix

spectroscopic polarimetry measurements. The mathe-

matical model introduced in the previous section

permits to calculate the reflection coefficient for a

selected polarization of the incident and reflected

beams. These four coefficients are the components of

the 2 ! 2 complex Jones matrix [35] for the reflection

upon the structure, which (for structures with perfectly

flat interfaces and perfectly cylindrical pores) can be

converted into an equivalent 4 ! 4 real Mueller matrix

[36].

Fig. 5 shows angular-dependent polarimetry spectra

in the form of the modulus of the four Jones matrix

components for the np-AAO 2D photonic crystal slab

with thickness 300 nm. The modulus of the Jones

matrix components is represented as a function of the
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Fig. 5. Angular-dependent polarimetry spectra of a np-AAO photonic crystal slab with thickness 300 nm. The four gray maps show the modulus of

the Jones matrix components that characterize the change of polarization upon reflection on the slab. The four gray maps are (a) JTE–TE component

(TE-polarized incident beam and TE-polarized detected light), (b) JTE–TM (TE-polarized incident beam and TM-polarized detected light), (c) JTM–TE

and (d) JTM–TM. Notice that the cross-polarization components JTE–TM and JTM–TE are represented in a smaller gray scale. The spectra are for light

incident in the GM direction. The bands correspond to both polarizations, TE (solid lines) and TM (dashed lines), and to the GM direction.

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF OPTICAL CHARACTERIZATION METHODS FOR MICRO- AND NANO-SCALE PLANAR PHOTONIC BAND GAP STRUCTURES 
Zdenek Kral 
DL: T-1537-2009/ISBN:978-84-692-4556-9 



Author's personal copy

incident light frequency, v, and of the angle of

incidence, u. Fig. 5a shows the JTE–TE component

(TE-polarized incident beam and TE-polarized detected

light), Fig. 5b corresponds to the JTE–TM (TE-polarized

incident beam and TM-polarized detected light), Fig. 5c

JTM–TE and Fig. 5d JTM–TM. Notice that the cross-

polarization components JTE–TM and JTM–TE are

represented in a smaller gray scale to enable the

comparison of the relative strengths of the components.

The direction of incidence is along the GM direction of

the triangular lattice. The TE and TM photonic bands of

the corresponding infinite photonic crystal are over-

lapped to the graph of each Jones matrix element. As it

can be observed from the graphs, several features

related to photonic bands can be observed in the spectra.

More concisely, in the JTE–TE and JTE–TM components,

the features correspond to TE bands, while for the JTM–

TE and JTM–TM the features correspond to TM bands. It

is interesting to note that there is a significant amount of

cross-polarization: an incident TE-polarized beam is

reflected with TE polarization, but also in a certain

amount with TM polarization. As in the case of the

ADRS, the oscillations of the reflection coefficient due

to Fabry-Pérot interferences are visible.

It is also interesting to study the results that could be

obtained for other lattice structures. Although np-AAO

grows naturally in a triangular lattice, square lattices of

pores in a material with similar refractive index and

with similar dimensions can be fabricated. One

possibility is the holographic four-beam patterning of

photoresist layers [37,38]. Fig. 6 shows the JTE–TE and

JTM–TM components for a sample consisting of a square

lattice of cylindrical pores in a material with refractive

index 1.67. The lattice constant is a = 153 nm, the depth

of the pores is d = 300 nm and their radius is r = 47 nm.

The incident light is along the GM direction of the

lattice, as indicated in the graph inset. The JTE–TM and

JTM–TE components are not shown since they vanish. It

is remarkable the difference between the previous

triangular lattice and this square lattice: while for the

former cross-polarization is noticeable, for the latter it is

nonexistent.

4. Conclusions

We have obtained simulated angular-dependent

polarimetric spectra of nanoporous anodic alumina-

based two-dimensional photonic crystal slabs. For the

simulations, we used a mathematical model based on a

scattering matrix treatment to obtain the polarization

change upon reflection of incident light onto np-AAO,

as a function of the incidence angle and of the

wavelength.

The calculations reveal that for a given photonic

band of the infinite photonic crystal, the incident light

can couple to several modes in the finite photonic

crystal constituted by the porous alumina samples.

These modes correspond to waves that propagate at

different angles with respect to the sample surface.

Furthermore, the number of these modes increases with

increasing pore depth. The spectra also show periodic

oscillations with the wavelength related to Fabry-Pérot

interferences in the thickness of the photonic crystal

slabs.

We have simulated two different lattice structures:

triangular and square lattice. This is interesting because,

although np-AAO has a natural triangular structure,

other materials with similar optical properties can be

fabricated with a square structure. We have found that

for the triangular lattice, the off-diagonal components of

the Jones Matrix show a certain amount of cross-

polarization, but with the same characteristics as the

diagonal components. Instead, for the square lattice,

there is no cross-polarization.

Z. Král et al. / Photonics and Nanostructures – Fundamentals and Applications 7 (2009) 12–18 17

Fig. 6. Angular-dependent polarimetry spectra of a photonic crystal slab with thickness 300 nm and with a square lattice of holes in a material with

the same refractive index as np-AAO. The lateral dimensions are a = 153 nm and r = 47 nm. Only the JTE–TE (a) and JTM–TM (b) components are

shown as the cross-polarization components are zero. The spectra are for light incident in the GM direction. The bands correspond to both

polarizations, TE (solid lines) and TM (dashed lines), and to the GM direction.
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a b s t r a c t

We revisited two different strategies to fabricate 1D photonic crystals of nonlinear optical dielectric

materials based on ultrafast laser ablation of the surface of an RbTiOPO4 crystal, and selective etching of

ferroelectric domains of the surface of a periodically poled LiNbO4 crystal. We evaluated their behaviour

as Bragg diffraction gratings. We also presented the recent advances we developed in a new procedure

of fabrication of 2D and 3D photonic crystals of KTiOPO4 (KTP) grown on the surface of a KTP substrate

by liquid phase epitaxial means within the pores of a silicon macroporous template. Optical, structural,

morphological, and compositional characterization for the photonic crystals produced through this

technique are presented.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

Since 1987, when the first work about photonic crystals

(PCs) was published [1,2], many interesting properties have been

studied in one, two, and three dimensions. Besides their peculiar

linear optical properties [3], photonic crystals present many

interesting features for controlling the nonlinear optical interac-

tions. They provide the possibility to enhance [4–6] a second-

order nonlinear optical interaction and an alternative phase-

matching mechanism [7,8]. It has been shown that even in a

centrosymmetric material it is possible to hold an efficient

second-order interaction employing the photonic crystal proper-

ties [9]. Furthermore, the periodic modulation of both refractive

index and second-order nonlinear susceptibility might allow

backward parametric oscillation [10], a nonlinear effect predicted

many years ago but not yet observed experimentally.

To obtain a very efficient and durable nonlinear interaction in a

PC it would be adequate to use a material with high second-order

nonlinear optical properties, such as LiNbO3 (LN), KTiOPO4 (KTP),

and its isostructural RbTiOPO4 (RTP). Lithium niobate, LN, is a

ferroelectric material of considerable interest to the optical, laser,

and communications industry, due to its large values of nonlinear

optical, electro-optic, piezoelectric, and acousto-optical coeffi-

cients [11]. Potassium titanyl phosphate, KTP, has been recognized

as the material of choice for second-harmonic generation of

Nd:YAG light, due to its extremely low onset power threshold,

high-power conversion efficiency, and high threshold to laser-

induced damage [12]. It has also been the focus of considerable

attention for optical parametric oscillation, sum and difference

frequency mixing [13], and electro-optic switching [14]. Among

the isostructural materials to KTP, RTP presents a high surface

damage threshold (9.0�106MWm�2) and large temperature

matching bandwidth (50K cm�1), double than that of KTP [15].

In this paper, we propose two different strategies to fabricate

1D photonic crystals based on these nonlinear optical materials.

These strategies are based on previous methodologies used for

the microstructuration of the surface of materials to fabricate
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diffraction gratings, such as the ultrafast laser ablation, and the

selective etching of ferroelectric domains. We fabricated diffrac-

tion grating on the surface of an RTP and the periodically poled

LiNbO3 crystals, and evaluated their behaviour as Bragg diffraction

gratings.

One of the challenges for fabricating higher dimensional (2D

and 3D) photonic crystals is the production of these structures

with sufficient precision to prevent scattering losses blurring the

crystal properties. We present here the advances we developed

recently in a completely new procedure that combines top-

down and bottom-up approaches to fabricate 2D and 3D PCs of

nonlinear dielectric materials, and that for the moment has been

tested on KTP [16]. These crystals are grown on the surface of a

KTP substrate, which gives to the photonic structure the requested

crystallographic orientation, within the pores of a silicon macro-

porous template that gives the final shape to the photonic

structure.

2. Strategies to fabricate diffraction gratings: towards the

fabrication of 1D photonic crystals

Optical diffraction gratings constitute a fundamental optical

component used to periodically modulate the phase or amplitude

of incident waves, and are expected to be useful devices for

wavelength division multiplexing systems in optical communica-

tions and optical sensors. Moreover, in integrated optoelectronics

they have applications as optical wave couplers and filters.

2.1. Ultrafast laser ablation

A 1D relief grating was recorded on the surface of an RTP

sample by ultrafast laser ablation. This technique uses very short

(some tens picoseconds is the limit for the process, depending on

the materials) and intense laser pulses to remove thin layers from

the surface of a bulk target by means of physical mechanisms

different from those taking place in conventional laser ablation.

The collateral thermal and mechanical effects around the ablated

area are diminished to such an extent that precision and quality

of the microstructures higher than those obtained with other

techniques can be achieved. Nonlinear absorption and ionization

processes are on the basis of this technique. Focusing on

dielectrics, within the duration of a pulse and for moderate

intensities, a thin layer on the surface of the material is almost

fully ionized by multiphoton and collisional mechanisms so that

the number of free electrons rapidly amounts to the solid-state

density. As a consequence of the poor electric transport properties

of the material, surface charging takes place and the ultraintense

‘‘quasielectrostatic’’ field generated overcomes the binding energy

of the ions and drag them out of the solid. This mechanism is

known as Coulomb explosion and since thermal coupling with the

lattice is negligible during this short period of time, the process is

a purely non-thermal process.

For larger intensities, total ionization of the surface is achieved

for the leading edge of the laser pulse. Therefore, free electrons

can absorb energy from the laser pulse in the presence of the

lattice atoms and ions by means of inverse bremsstrahlung

mechanism. This absorbed energy contributes to raise the tempe-

rature of a deeper surface layer by electron heat diffusion to a

value close to the thermodynamic critical temperature giving rise

to a phase explosion process, resulting in violent expulsion of

both vapor and equilibrium liquid droplets [17]. The depth of the

ablated layer is determined by the electron heat diffusion length

and the laser fluence. Although the process is still very fast, some

thermal damage must be expected on the areas surrounding the

microstructured region.

We have used a commercial Ti:Sapphire oscillator (Tsunami,

Spectra Physics) and a regenerative amplifier system (Spitfire, Spectra

Physics) based on chirped pulse amplification (CPA). The system

delivers linearly polarized 120-fs pulses with central wavelength

795nmwith a repetition rate of 1kHz. The maximum available pulse

energy is 1mJ but for the purpose of microstructuring the grating it

was reduced to 0.78mJ using a half-wave plate and a linear polarizer.

The transverse mode is gaussian and the beam width is 9mm (1/e2

criterion). The beam was then focused by a 50mm achromatic lens

resulting in a peak fluence of �7 J cm�2 at focus.

The sample was placed on a motorized XYZ translation stage

in order to achieve optimal focusing on the target surface. The

focused beam moved in straight lines across the sample surface

at a constant scanning speed of 130mms�1 avoiding iterative

passes along the same line. The pitch between successive grooves

was set to 15mm. For this scanning speed, the number of pulses

contributing to the ablation of a point within the sample surface

was approximately 40. We have estimated the ablation threshold

fluence following the procedure described in Ref. [18], giving

1.4470.18 J cm�2 for 40 pulses. For multishot conditions (4100

pulses) the value for the threshold decreases to 1.1870.15 J cm�2

(incubation factor x ¼ 0.783 [19]).

Fig. 1 shows two pictures, taken with a scanning electron

microscope (SEM) FEI QUANTA 600, of the sample after the

ultrafast laser ablation process where it can be seen the diffraction

grating generated on the surface of the sample. The sample

was also observed under a Carl Zeiss Axio Imager A1 optical

microscope. The lattice constant estimated from this microscope

is approximately 15mm. However, the roughness achieved on the

lateral walls of the channels is still excessive for optical purposes.

We have recorded Bragg-diffraction spectra of this sample by

using a FT-IR spectrometer (Bruker-Vertex 70) equipped with a

special reflectivity attachment. The light source was a halogen

tungsten lamp, and we collected the intensity of the diffracted

light with a DLATGS detector in the spectral range from 7500 to

400 cm�1. The incoming light was pointed perpendicular to the

plane of the sample and the diffraction spectra were measured in

a direction perpendicular to the grooves and at collection angles

ranging from 241 to 601 in 21 steps. Two repeated measurements

were collected for the sample. The measured data are represented

in Fig. 2 with an intensity plot as a function of the wavelength and

the diffraction angle.
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Fig. 1. SEM images of the diffraction grating generated on the surface of an RTP

crystal by ultrafast laser ablation.
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To evaluate the lattice constant, the Bragg-diffraction spectra

were fitted to the following two-variable function:

Iðl; sin yÞ ¼
X

3

n¼1

exp
sin y� ðnl=aÞ

wn

� �2
" #

(1)

where wn takes into account the width of the diffraction peaks, a

is the lattice constant, and n is an integer (the number of the

diffraction order). The fitting of this function to the experimental

data gives a robust estimation of the lattice constant from

the data, since all the measurements are taken into account

simultaneously. The value of the lattice constant measured by this

procedure was 14.92mm, which was in good agreement with the

value estimated by optical microscopy.

2.2. Selective chemical etching of ferroelectric domains in

periodically poled crystals

Ferroelectric domains of opposite spontaneous polarization

present different etching speeds when dipped in some acid

mixtures. This property has been used to reveal the domain

pattern at the surface of periodically poled crystals. However, the

selective etching process provides further capabilities for versatile

surface engineering of domain-engineered crystals, allowing the

production of deep, high aspect ratio structures, with side-

walls that can be extremely smooth [20]. These structures can

find applications in the fields of optics and optoelectronics for

waveguides, Bragg reflectors, and photonic band-gap devices.

More recently, the fabrication of periodic 1D and 2D surface

structures in congruent LN by periodic electric-field poling at the

overpoling regime and selective wet chemical etching under

appropriate conditions have also been reported [21–23], with

feature sizes and periods down to submicron and nanoscale range.

The most common wet selective etchant reported for the

ferroelectric domains of LN has been a mixture of hydrofluoric

(HF) and nitric (HNO3) acids, which attacks the negative z face

(�z) of LN at a rate that is appreciably higher than the positive z

face (+z) [20,22,24]. At room temperature, in a 1:2 mixture of HF

and HNO3 acids, the �z face experiences etch rates of �1mmh�1,

whereas the +z face remains unetched. Even at temperatures up to

368K, where the �z etch rate increases to �30mmh�1, the +z face

appears not to etch at all, apart from at isolated sites where

defects or dislocations may occur. Furthermore, independent of

the mixture composition, the etch depth increased linearly with

respect to etch time.

We used a commercially available periodically poled LN crystal

sample from INO, 0.5mm thick, with a period of 5.4mm. The

sample was etched in a HF:HNO3 ¼ 1:2 acid mixture for 30min at

room temperature. After etching, the surface was monitored by

optical and electronic microscopy. The surface of the sample after

etching is shown in Fig. 3.

The lattice constant estimated from the optical microscope

images is 5.13mm. The characterization of the Bragg-diffraction

spectra (see Fig. 4) resulted in a lattice constant of 5.25mm.

3. A new strategy to fabricate 2d and 3d photonic crystals

One of the main challenges for the production of photonic

structures with higher dimensionality is the fabrication of these

structures with sufficient precision to prevent scattering losses
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Fig. 2. A 2D intensity plot as a function of the wavelength and the diffraction angle

for the diffraction grating generated on the surface of an RTP crystal by ultrafast

laser ablation. Dark zones represent the diffraction orders.
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Fig. 3. SEM images of the diffraction grating generated on the surface of a

periodically poled LN crystal by selective chemical etching of one of the

ferroelectric domains.
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for the diffraction grating generated on the surface of a periodically poled LN

crystal by selective chemical etching of one of the ferroelectric domains.

J.J. Carvajal et al. / Journal of Luminescence ] (]]]]) ]]]–]]] 3

Please cite this article as: J.J. Carvajal, et al., J. Lumin. (2009), doi:10.1016/j.jlumin.2009.03.035

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF OPTICAL CHARACTERIZATION METHODS FOR MICRO- AND NANO-SCALE PLANAR PHOTONIC BAND GAP STRUCTURES 
Zdenek Kral 
DL: T-1537-2009/ISBN:978-84-692-4556-9 



blurring the crystal properties. For this reason, new fabrication

techniques can be proposed to avoid or reduce these problems.

The procedure for fabricating 2D and 3D photonic crystals we

developed combines two well-known techniques: the fabrication

of 2D and 3D macroporous silicon membranes and the epitaxial

growth of KTP within the pores of these membranes. This

procedure, in addition to its simplicity, results in KTP and silicon

integrated in a single structure that would eventually be used to

generate or modulate light.

We fabricated these 2D and 3D PCs in four different steps

which involved the preparation of high-quality ordered macro-

porous silicon templates, the growth of the KTP epitaxial layer

within the pores of the silicon template, the polishing of the top or

bottom surface of the KTP epitaxial layer, and finally, a selective

etching of the silicon matrix.

Silicon membranes were prepared by light-assisted electro-

chemical etching and post-processing. The starting material was

n-type /10 0S silicon with resistivity of 2–6Ocm. The front side

of the wafers was patterned with inverted pyramidal shaped pits

arranged in a square or triangular periodic lattice with periods

ranging from 4.5 to 10mm by oxidation, photolithography and

subsequent etching with tetramethyl ammonium hydroxide

(TMAH) that act as nucleation sites for the ordered pore growth

along the /10 0S direction. A low-resistance transparent ohmic

contact was formed by n+-ion implantation on the back side of the

silicon wafer. The wafers were incorporated in an electrochemical

etching cell containing a 5wt% aqueous solution of hydrofluoric

acid. The chemical dissolution of silicon requires the generation

of positive carriers (holes), which was achieved by using an

LED matrix (880nm peak emission wavelength) for back side

illumination and the size and the quality of the pores was

controlled by means of a computerized feedback mechanism that

regulates the generation of holes by continuously adjusting the

back side illumination. Periodicity in the third dimension was

introduced by modulating the light intensity during etching

which leaded to a modulation of pore diameter in depth.

Macroporous arrays with sine-wave modulated pores were

produced in this way. In order to fabricate a fully 3D structure,

adjacent pores had to be also connected laterally, i.e. in /110S

directions. To do that the samples were subjected to multiple

oxidation/oxide-removal cycles after etching. In each cycle, pores

became widened because of the dissolution of the silicon

consumed during the thermal oxidation. After several cycles, pore

walls were dissolved first at the position of diameter maxima

of the pores and adjacent pores become then connected sideways.

To obtain a free-standing macroporous membrane, the back side

of the samples was polished down until the opening of the pores.

Fig. 5 shows some SEM images of the silicon templates produced,

with thicknesses over 100mm.

In a second step, the silicon template was closely bound to a

KTP single-crystal substrate with typical dimensions 5mm long,

3mm wide, and 1mm thick. The crystal was oriented in such a

way that the largest surface was perpendicular to the c crystal-

lographic direction with the edges parallel to a and b crystal-

lographic directions. The template/substrate set was immersed

into a solution formed by mixing of K2O, P2O, TiO2, and WO3 with

a molar % composition K2O–P2O–TiO2–WO3 ¼ 42–14–14–30 for

a period of time between 5 and 10min. WO3 was used for

decreasing the viscosity of the solution and allowing a faster

growth process. A special vertical furnace was used for the

epitaxial growth experiments of KTP that provided a wide region

with practically no axial gradient. The temperature was controlled

by a Eurotherm 903 P controller–programmer. We determined

accurately the saturation temperature (Ts) and the epitaxial

growth of the KTP photonic structure started two degrees below

Ts, which provided a supersaturation degree in the solution of

about 2%. After the epitaxial growth experiment, the template/

substrate/epitaxy composite was removed from the solution, but
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Fig. 5. SEM pictures of a (a) 2D and a (b) 3D macroporous silicon template.

J.J. Carvajal et al. / Journal of Luminescence ] (]]]]) ]]]–]]]4

Please cite this article as: J.J. Carvajal, et al., J. Lumin. (2009), doi:10.1016/j.jlumin.2009.03.035

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF OPTICAL CHARACTERIZATION METHODS FOR MICRO- AND NANO-SCALE PLANAR PHOTONIC BAND GAP STRUCTURES 
Zdenek Kral 
DL: T-1537-2009/ISBN:978-84-692-4556-9 



kept inside of the furnace above the surface of the solution while

the furnace was cooled down to room temperature at a cooling

rate of 15K/h in order to avoid thermal stresses that could result

into cracks in the photonic structures or in the substrate.

After growth, the top part of the KTP photonic structure was

polished. The different hardness between silicon and KTP made

the polishing process of the two materials simultaneously not

easy. We used different procedures for this purpose, including

alumina powders, colloidal silicon, and diamond powders. In

Fig. 6 several SEM pictures show the top surface of a 2D KTP

photonic structure polished following these procedures. The best

results were obtained when polishing with diamond powders

f ¼ 0.1mm.

Once an optical-quality surface for the KTP photonic structure

was obtained, the last step in our approach was to remove the

silicon template by selective chemical etching with TMAH diluted

in distilled water (5 vol%) at 354K. The effect of the selective

etching is clearly visible in Fig. 7, where a side-view image of the

KTP photonic structure taken with the SEM is shown.

By using the aforesaid procedure we fabricated different KTP

PCs with triangular and square lattices and lattice parameters

ranging from 4.5 to 10mm.

The crystallographic orientation of the substrate is transferred

to the KTP photonic structure. To prove this we performed an

X-ray texture analysis of the final photonic structure after

removing the KTP substrate to ensure that the measured signal

comes only from the photonic structure. Part of the silicon

membrane was still maintained on the lower part of the photonic

structure to give the 2D PCs the necessary mechanical rigidity for

further characterization. The texture characterization was per-

formed with a Siemens D5000 diffractometer equipped with an

Euler goniometer and we obtained a 2y scan from 101 to 701, with

a step size (ss) of 0.051 and a step time (st) of 3 s. This procedure

also provided an estimation of the degree of crystallinity of the

photonic structure. Fig. 8 shows the 2y scan for a 2D KTP PC

(pattern i), the substrate (pattern ii), and for a KTP crystalline

powder sample, milled from a single crystal (pattern iii). The

reflections were indexed according to the powder diffraction

pattern of KTP, entry 80–0893 of the database maintained by the

Joint Committee for Powder Diffraction Studies (JCPDS). As can be

seen, the peak with the highest intensity in patterns (i) and (ii) is
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Fig. 6. SEM figures of the top surface of a 2D KTP photonic structure after polishing and partial removing of the silicon template. (a) Sample polished with 0.3mm-size Al2O3

powders. (b) Sample polished using colloidal silicon (Logitech SF1). (c) Sample polished with 0.1mm-size diamond powders.
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Fig. 7. SEM pictures of a (a) 2D and a (b) 3D KTP photonic crystal after polishing of the top surface and selective etching of the silicon template.
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the (0 0 4) peak. However, this is not the dominant peak in the

powder diffraction pattern (iii), which indicates the high degree

of texturization and orientation of the KTP columns grown from

the KTP substrate. The full-width at half-maximum (FWHM) for

the (0 0 4) peak in the photonic structure was found to be 0.41,

very similar to that of the initial substrate, indicating the high

degree of crystallinity of the photonic structure. The transference

of the crystallographic orientation of the substrate to the KTP PC is

advantageous for second-order nonlinear applications since it

may allow the use of the most appropriate nonlinear or electro-

optic coefficient for a specific application in combination with

a phase-matching condition, which would be provided by the

photonic structure. This is not possible with bulk KTP where

phase-matching relies on the birefringence and the coefficients

with the largest nonlinearity cannot be used for efficient SH

generation.

A more detailed optical characterization of a 2D KTP PC can be

found in Ref. [13]. Here we present the results of some basic light

diffraction measurements performed on these structures. The

surface of the photonic crystal will act as a diffraction grating

and one would expect to see a diffraction pattern in accordance to

the KTP photonic structure distribution in a square or triangular

lattice. When measuring the linear diffraction in reflection

we placed the sample on a XYZ positioning stage mounted on a

rotating stage to be able to change the angle of incidence. Once

mounted, the sample was illuminated with light at 527nm. Some

pictures of the observed diffraction patterns from samples with

triangular and square lattices can be seen in Fig. 9. In those

pictures one can see the presence of an intense central spot

corresponding to the specular reflection and some other spots that

reflect the lattice of the sample.

The PC properties of a 2D KTP structure were demonstrated by

performing a measurement of the specular reflection as a function

of the wavelength of the incident field. We used a 2D KTP PC

of KTP columns in air and periodicity of 4.5mm. The sample was

shined with p-polarized laser pulses, spectrally tuned in the range

940–1220nm, at an angle of incidence of 251 with respect to the

axis of the photonic structure. The specular reflectance spectrum,

as shown in Fig. 10, presents a dip at 1100nm, which corresponds

to the spectral position of the third-order Bragg reflection band,

which was determined from a numerical calculation using the

transfer matrix method.

4. Conclusions

We have used two techniques for the fabrication of 1D

photonic crystals: the fabrication of periodically poled ferro-

electric materials, such as LiNbO3, and partial removing of one of

the ferroelectric domains by selective wet chemical etching; and

the microstructuration of the surface of nonlinear optical crystals,

such as monoclinic double tungstates and RbTiOPO4, by ultrafast

laser ablation.

We have also fabricated 2D and 3D KTP photonic crystals by

the templated growth of KTP by liquid phase epitaxy within

the pores of a Si template. In this way, the single-crystal substrate

provided the desired crystallographic orientation, while the

silicon template gave the desired final form to the thin layer.

In the data we collected from the growth procedure

we followed there is no indication that KTP PCs with smaller

periods could not be grown, as macroporous silicon templates or

templates of other kind, with a smaller diameter pore become

readily available. Additionally, this approach to fabricate 2D and

3D photonic structures can be extended to other nonlinear and

optical materials that can be grown by liquid phase epitaxy.

With these photonic structures, in the future, we pretend to

study different effects, such as the generation of light at different

frequencies, parametric oscillation, and guiding and bending of

light in previously designed line defects.
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