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Abstract

A scheme for the calculation of vertical interblock permeabilities for unsaturated flow in

soil was developed and illustrated for one and two-dimensional unsaturated flows. In the

proposed approach, interblock permeabilities were calculated from an average weight of

contiguous grid point permeabilities. A large set of exact database weight values was fitted to a

highly non-linear empirical-correlation equation as a function of the two contiguous block

permeabilities, the dimensionless grid spacing and a soil dependent parameter. The present

scheme was applied to the popular van Genuchten and, Brooks and Corey hydraulic functions for

relative permeabilities ranging from 10-8 to 1, dimensionless grid spacing ranging from 0.01 to 1

and the soil parameter n of value between 1.05 and 5. The present approach is more accurate

than other simple averaging schemes. At the same time, the computational effort for the present

approach is comparable to that in which the arithmetic and geometric means are used, while

enabling to estimate fluxes even with coarse grids.
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1.  Introduction

The simulation of water flow in homogeneous unsaturated soil is typically accomplished

by solving the unsaturated flow equation i.e., Richards' equation [Richards, 1931]. To solve the

Richards’ equation one requires a constitutive hydraulic function that describe the relationship

among fluid capillary pressures, water content and relative permeabilities or conductivities. Two

particularly popular forms of the hydraulic functions have been proposed by van Genuchten

[1980] and by Brooks and Corey [1964] and these are designated hereinafter as VG and BC,

respectively.

Numerical solution of Richards’ equation which are based on discritization of the flow

domain require estimation of the relative permeability between adjacent control volumes. A

popular procedure for estimating this interblock permeability is the arithmetic mean (AM) of the

permeabilities of two neighboring cells [Haverkamp and Vauclin, 1979; Celia et al., 1990;

Warrick, 1991; Zaidel and Russo, 1992]. However, it is known that this procedure leads to an

overestimation of the interblock permeability [Zaidel and Russo, 1992]. Another popular

alternative scheme is the geometric mean (GM) that was shown to lead to better results relative

to the AM approach under some conditions [Schnabel and Richie, 1984]. Other averaging

schemes have been proposed and tested in the literature with less success than the preceding

schemes. These include the harmonic mean of conductivities, conductivity at the arithmetic or

harmonic means of the capillary head, conductivity at the upstream node and numerical

integration of conductivity [Haverkamp and Vauclin, 1979; Srivastava and Guzman-Guzman,

1995].  It has been suggested that, for a given soil, different averaging procedures should be used

for the gravitational and capillary contributions to the flow and that each of these contributions in

turn also depends on the internodal distance [Baker, 1995]. The above observation clarifies why
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different authors, when evaluating the internodal flow for different soil characteristics and grid

spacing, have reached different conclusions regarding the most appropriate averaging scheme.

The piecewise Brooks-Corey Darcian mean approximation was introduced by Baker et al.

[1999] as a way to calculate effective conductivities. Such an approximation was shown to be

useful for the simulation of infiltration in a soil described by Haverkamp's hydraulic function

[Haverkamp et al., 1977]; however, the implementation of the approach is complex and its

performance for other soils has been not evaluated. In an earlier study,  Warrick [1991] proposed

a simple and effective way to calculate interblock conductivities. For a given pair of nodal

capillary heads, the effective conductivity was calculated as a weighted average of the

conductivities between adjacent nodes with weight values taken from previous exact calculations

of the flux. In the numerical implementation of the approach, the weights were stored in the form

of tables and interpolated when needed. This procedure led to excellent agreement with exact

solutions of the Richards' equation. However, in the above approach different soils and different

grid spacing (for a given soil) require the use of different tables. The generation of these weight

tables is computationally cumbersome, and for a non-homogeneous grid simulation the

procedure would require a separate table for each possible grid spacing.

The use of the integral average of the conductivity, with respect to the capillary head,

between adjacent points to evaluate the effective conductivity is known as the Kirchhoff integral

method and has received special attention. The Kirchhoff integral method provides an interblock

conductivity that is exact for horizontal flow [Schanbel and Richie, 1984; Warrick, 1991], but

does not consider the gravitational contribution to the integral for vertical fluxes. Nonetheless,

the Kirchhoff integral method, in its original [Srivastava and Guzman-Guzman, 1994; Miller et

al., 1998] or modified [Zaidel and Russo, 1992; Williams et al., 2000] forms, have been
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successfully applied to vertical fluxes. We note, however, that the use of the Kirchhoff integral

form has two main disadvantages. First, it is difficult to assess the error introduced by neglecting

the gravitational term in the integral. Secondly, it is not possible to express the transform

analytically except for simple hydraulic functions. This later difficulty can be overcome using

tables of suitable values and associated interpolation [Ross, 1992; Grifoll and Cohen, 1999]. It is

worth noting that the Kirchhoff integral method has not been widely used for the solution of the

Richards' equation mainly due to the complexity and computational effort involved.

In the present paper we present a simple procedure to calculate the weight values, as

defined by Warrick [1991], for calculating interblock conductivities without the need of

generating a table for each soil and grid spacing. Test cases are presented using the VG and BC

hydraulic functions. The aim is to calculate accurate interblock conductivities, even with relative

large internodal distances, and to provide an easy to implement numerical algorithm for such

calculations.

2.  Theory

2.1. Governing Equations

It is accepted that the flux or specific discharge, q, (m/s) for unsaturated soils, obeys the

extension of Darcy´s law [Hillel, 1980], which, for one- dimensional (i.e. vertical) system, can be

written as







 −

∂
∂−= 1

z
kKq s

ψ
(1)

where Ks is hydraulic conductivity at saturation (m/s), k is the relative permeability, ψ is the



5

water pressure head (m) and z (m) is vertical distance (positive downwards). The discritization of

(1) between two adjacent vertical nodal points is typically written as







 −

∆
∆−= 1

z
kKq effseff

ψ
(2)

where ∆ψ = ψL - ψU is the pressure head difference between two adjacent lower (L) and upper

(U) nodes, ∆z = zL-zU is the internodal distance and qeff and keff are the effective flux and

effective relative permeability, respectively. It should be noted that the flux expression (2) is

applicable for both steady and unsteady conditions and uniform or non-uniform control volumes

(see Figure 1) An important requirement of the discritization methodology is that qeff, calculated

with (2) must be a representative value of the flux between cells U and L. Considering the

continuous form of the Richards' equation in which the flux is given by (1), it is apparent that

under unsteady state conditions q can vary along z, and this variation could be large when ∆z,

∆ψ or both are large. Such flux variations cannot be handled by the discritized form of (1) as

expressed in (2). Therefore, a unique flux value, between cells U and L, is assigned for both

steady and unsteady conditions.

For a system described by a soil with a given hydraulic function, and given the values

∆z, ψU and ψL, a coherent implicit definition of qeff can be deduced from (1), as given by

[Warrick, 1991]

( )
( ) ( )




⌡

⌠

−
=




⌡

⌠

−
=∆

L

U

L

U kK

q
d

kK

zq
d

z

s

eff

s

ψ

ψ

ψ

ψ ψ

ψ

ψ

ψ

11
(3)
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Given the above implicit expression for qeff, a consistent keff can be calculated with the aid of

(2).  As Warrick (1991) pointed out, keff must be bounded by kU = k(ψU) and kL = k(ψL).

Therefore, for each case there is a weight w, 0 < w < 1, such that

LUeff kwkwk )1( −+= (4)

If w is known, the calculation of qeff is straightforward through (4) and (2). We note that the

definition of w, as given in (4), differs from the definition given by Warrick (1991) who used a

vertical coordinate defined as positive upwards with w multiplying kL instead of kU, as used in

this work. The weight w defined in the present work is the complement (i.e., 1-w) to the one

defined by Warrick (1991).

In order to integrate (3) one needs to specify the hydraulic function k = k(ψ). For

example, for the unsaturated zone the BC function can be written as

( ) nk 31* −= ψ (5)

where refψψψ =*  is a dimensionless water pressure head and ψref is the bubble head ψb (m),

and n = λ+1, where λ is the pore size index as defined by Brooks and Corey (1964). The

equivalent function for the VG hydraulic function is

( )
( )[ ] 2*

2

*

1

1

1
11

mn
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n

k
ψ

ψ

+
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
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
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
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
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
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



+
−−

= (6)

where m = 1-1/n, and αψψ =* , where α is a parameter of the VG equation (m-1). It is
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interesting to note that in (5) and (6) the water pressure head is made dimensionless with respect

a reference pressure head, ψref (m), which is ψb for BC and 1/α for VG.

As defined by (2-4) and either (5) or (6), w depends on kU, kL, ∆z, n and ψref.

However, a reduction of the number of independent variables can be achieved by considering a

normalization procedure. First, we define the dimensionless variables q* = q/Ks and

z* = z/ψref, and then transform (1) to









−

∂
∂−= 1*

*
*

z
kq

ψ
(7)

which, when combined with (5) or (6), is independent of ψref. Therefore, for a given type of

hydraulic function [(5) or (6)] the weight w is only a function of kU, kL, ∆z* and n. We note

that the approach presented above is applicable both to one-dimensional problems (Sections 3.1

and 3.2) and for the vertical component of multidimensional problems as illustrated in section

3.3. The specific correlations for the VG and BC functions are presented in the Section 2.2.

2.2  Hydraulic Function Correlation

Given a type of hydraulic function (VG or BC) and a set of ψU, ψL, ∆z* and n, (3)

provides an implicit procedure for calculating qeff
*. The weight w is then calculated from (2)

and (4). In the present work, the integral in (3) was solved numerically with a globally adaptive

scheme based on the Gauss-Kronrod rules [IMSL, 1997]. The value of *
effq  was searched
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iteratively until the difference between the value of the integral in (3) and ∆z was less than

10-4 %. As suggested by Warrick (1991), the transformation variable u = ln(-ψ*) was used to

alleviate integration accuracy problems. Using the above integration procedure, two databases,

one for each type of hydraulic function, VG and BC, were created. Each database was designed

to contain 13328 calculated w values for all combinations of the following values of the

independent variables: kU and  kL = 10-i, 3 10-i (i = 1, 2,...,8); n = 1.05, 1.5, 2, 2.5, 3, 4, 5 and

∆z* = 0.01, 0.1, 0.2, 0.4, 0.6, 0.8, 1. The database did not include the cases in which kU = kL

because in such a situation w cannot be calculated directly from (4). The VG database had only

13029 points since in 299 cases (all for kU ≥ 0.1 and n = 1.05) the iterative w calculation

procedure did not converge. Non-convergence for the above cases was due to failure of the

quadrature method for such highly non-linear k(ψ) function. Clearly, the use of the weighting

function for VG (as described below) for n ~ 1.05, kU ≥ 0.1 should be considered an

extrapolation. We note, however, that the monotonic behavior of the function assures reasonable

weight values for these latter conditions. For the BC hydraulic function only the region ψ ≤ ψb

was included in the database. The case in which one internodal point is saturated (ψ > ψb)

whereas the other contiguous point is not, is covered in the appendix. Finally, we note that when

kU = kL = 1 it follows that keff = 1. We note that the range of n, 1.05 ≤ n ≤ 5, considered in the

present study, encompasses the range of values expected for natural soils. For VG, Carsel and

Parrish (1988) reported average n values, for different types of soil, which ranged from 1.09 to

2.68. Similar range of n values was reported by Rawls and Brakensiek (1989) for the BC

hydraulic functions.
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The dependence of w on the variables kU, kL, n and ∆z* is highly nonlinear. The

dependency of w with kU and kL was examined first, and after several trial and error searches, a

general equation for w was deduced to be of the following form

R

Ra
w

01
1

1

β+
+

= (8.a)

c
L

b
U

k

k
R = (8.b)

for the condition whereby ∆z* and n where maintained as constants. For each pair of ∆z* and n,

the parameters a, b, c and β0 were searched by fitting (8.a) and (8.b) to the values of w from

the database. The above parameters (a, b, c and β0) displayed monotonic variations with ∆z*

and n. The parameter β0 was only slightly dependent on ∆z* and more sensitive to variations in

n. For each n, the variation of a, b and c was also examined and several empirical equations

were tested with respect to their ability to reproduce the functionality of the parameters respect

∆z*. The final set of equations, selected to describe the set of parameters in (8a) and (8b), are

given below.

The parameter a is described by

*2
2

*
1

1

1

zna

za
a

∆+
∆−= (9)

in which a1 depends linearly on the decimal logarithm of n as given by

( )naaa log11101 += (10)
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The powers b and c in (8.b) are linear functions of ∆z* given as

*
10 zbbb ∆−= (11)

( ) *
00 1 zncbc ∆−+= (12)

Equations (11) and (12) share a similar intercept, dependent on the soil parameter n, through the

relation for bo

102

01
0 −

=
nb

nb
b (13)

Finally, β0 was found to be directly proportional to n according

nββ =0 (14)

Equations (8-14) include eight constants (a10, a11, a2, β, b01, b02, b1, c0) which when

properly chosen approximate the w weights stored in the database. These constants were

determined by fitting the w values contained in the database using the Marquardt-Levenberg

optimization algorithm [Press et al., 1990] to minimize the sum of the squared differences

between the observed and predicted values of the dependent variable (w). The optimization

procedure was initiated with values of the parameters obtained during the sequential deduction of

the form of the equations, as described above, thereby, enabling smooth convergence, to the final

values. Table 1 provides the parameter values that resulted from the optimization procedure for

the BC and VG hydraulic functions. The statistical parameters that qualify the goodness of the fit

are provided in Table 2. The average absolute error for both correlations was less than 0.025 with

standard deviations less than 0.041. The corresponding average relative error of the fit was 22%
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and the correlation coefficients for both cases were greater than 0.99, indicating that the fitted

function adequately describes the dependence of w on the independent variables (kU, kL, n and

∆z*).

A comparison of the w values from the database and the fitted function is provided in

Figures 2-4. Figures 2a and 2b show the variation of the weights for the BC and VG hydraulic

functions with kU for different values of kL, at fixed values of n = 2 and ∆z* = 0.20. For both

the BC and VG hydraulic functions, the variation of w with kU for a given kL has a typical

sigmoidal shape. For most conditions, higher weight values are obtained for the lowest

conductivity, either kU or kL. This characteristic behavior is also shared with the geometric

mean, which may explain why researchers have often found the geometric mean to be a preferred

choice among the traditional means. It is emphasized that when the kU and kL are very

dissimilar, the geometric mean yields too low keff and qeff values, as revealed, for example, by

numerical experiments of Schanbel and Richie (1984).

The variation of w with respect to ∆z*, for different n values, are illustrated in Figs 3a

and 3b for the BC and VG functions, respectively, for the values kU = 0.5 and kL = 10-6. Low

∆z* values correspond to high water pressure head gradients and, under such extreme conditions,

the lowest relative hydraulic conductivity weighs more significantly in the keff calculation,

resulting in low values of w.  As ∆z* increases the above condition is relaxed, which implies an

increase in the contribution to the high conductivity of keff and thus an increase in w. This

increase is almost unnoticeable for n = 1.5. However, for n = 5 w rises from 0.05 to 0.42 for BC
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and from 0.07 to 0.33 for VG, as ∆z* increases from 0.01 to 1. A specific comparison is

provided in Figure 4 of w values, as defined in (4), calculated by Warrick (1991) for a Yolo light

clay soil and the present correlation, (8-14). The VG-hydraulic-function parameters for this soil

are given in Table 3. Clearly, the w values calculated here from the implicit definition, (3),

coincide with the values reported in Table 6 of Warrick (1991). Most of the w data, as illustrated

in Figure 4, are well represented by the present correlation. However, it is instructive to consider

the case for which the maximum discrepancy occurs when the point U is at a very dry condition

(i.e., ψU = -2.5 m, kU = 5.78 10-8) while L is at saturation (ψL = 0 m, kL = 1). In this situation,

for example, the value of w, as given by Warrick (1991) and the present integral calculation (2-

4), is 0.9007, whereas the present correlation predicts w = 0.9476. From (4) and the value

w = 0.9007, keff is determined to be 0.0993 while the value calculated from the correlation is

0.0524, which is almost a 50% lower. It is instructive to compare the above results with the

values estimated using the arithmetic (AM) and geometric means (GM). The AM predicts

keff = 0.5000, which is 400% higher than the integral calculation (2-4), and the GM yields

keff = 0.00024 which is more than two orders of magnitude less than the integral calculation (2-

4), termed as integral values hereinafter. Correspondingly, the fluxes will show the same relative

errors because they are proportional to keff as is evident from (2).

An illustration of the type of errors expected from the use of the weighting average, with

weights taken from the present correlation, and other averaging procedures is given in Table 4.

This table provides dimensionless fluxes calculated based on (2-4) and the ratio between the

fluxes obtained from different averaging procedures and the present integral values, for a typical
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sandy loam soil. The computed fluxes using AM averaging are greater than the integral value in

all the cases presented except when ψU= -0.01 m and ψL = -0.1 m. On the other hand, GM

averaging led to underprediction of the fluxes, except for (ψU,ψL)= (-0.1 m, -0.01 m) and

(-1 m, -0.1 m). Finally, WM averaging resulted in either under- or over-predictions, but with

greater accuracy than both the AM and GM averaging procedures, except for

(ψU,ψL)= (-0.1 m, -0.01 m) where the GM coincides with the integral value and the weighted

mean overpredict it by 17%. It is important to note that, for the conditions listed in Table 4, the

arithmetic mean can lead to overprediction of the flux by a factor of nearly 9000, whereas the

geometric mean can underpredict it by a factor of nearly 5000 times. In contrast, the WM

averaging procedure results in a maximum overprediction factor of about 60 and a maximum

underprediction factor of about 2.5 relative to the integral flux value.

3.  Results and discussion

3.1 Test Cases and Numerical Approach

In order to investigate the effectiveness of the proposed hydraulic function correlations,

for flux calculations in numerical simulations, four test cases were investigated. The first test

case, which consisted of infiltration under fixed head gradient, was performed to compare the

classical means and the present approach of internodal averaging. The second test case was

infiltration with fixed moisture content at the surface; this test case is presented to check the

performance of the present approach for different internodal distances and the type of hydraulic

function. The third test case is a two-dimensional axisymmetric infiltration from a surface area
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source. This simulation, which is computationally intensive, is presented to further demonstrate

the advantage of the present approach. Finally, infiltration into a layered soil is presented to

illustrate the potential application of the proposed approach to non-homogeneous systems.

All the numerical simulations employed a Newton-Raphson iterative scheme. When

using the weighted average, a series of test calculations demonstrated that the inclusion of the

dependence of w on ψ, when calculating the Jacobian of the Newton-Raphson method, did not

improve the convergence speed or the stability of the procedure. Therefore, the above approach

was not utilized in the examples presented.

The simulations were performed using the "mixed form" of Richards' equation (Celia et

al., 1990). The proposed weighting procedure described earlier is directly applicable to all

discritized forms of the Richards' equation in which the pressure head gradient is used as the

dependent variable when calculating the flux. This includes the standard "ψ-base" form and the

"mixed" form of the Richards' equation. Numerical permeabilities, as estimated in this paper,

provide accurate fluxes when using (2) and where the numerical approximation of the driving

force is given in terms of ∆ψ/∆z. Therefore, when using the "θ-base" form (Celia et al., 1990)

and other forms that are based on the transformation of the pressure head gradient [Williams et

al., 2000] as a driving force, the calculated fluxes would be less accurate.

3.2  Vertical flux under constant head gradient and different soils

The first test case of one-dimensional vertical infiltration under a constant head gradient

illustrates the effect of different averaging procedures on the flux calculation between two

internodal points. In this example, the flux was estimated between two grid points with
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∆z* = 0.5, having dimensionless matric heads of ψU
* = -1 and ψL

* = -2 and soil properties

described by the VG hydraulic function. The dimensionless flux between these points is given by









−

∆
−−= 1*

**
*

z
kq UL

eff
ψψ

(15)

with keff calculated using the arithmetic mean (AM), the geometric mean (GM) or the present

weighted mean (WM) calculation. The variation of the dimensionless flux, q*, with respect to

the parameter n in the VG function, for the above conditions, is shown in Figure 5 along with a

fine grid (1000 grid points) steady state solution of the problem. The fine grid solution represents

the grid-independent solution, which also does not does not depend on the averaging procedure

for calculating keff. For values of n below 1.5 the predicted q* values are very similar; however,

as n increases differences among the different averaging procedures become more pronounced. It

is noted that for this test case, the geometric average led to the worst result, always

underestimating the flux relative to the fine grid solution, while the arithmetic mean consistently

resulted in overestimates of q*. The weighted mean is indistinguishable from the fine grid

solution for n < 2.5, but above this value, it slightly underpedicts the fine grid result. In all cases,

the maximum discrepancy is at n = 5 where the GM approach underpredicts the fine grid

solution by 91%, the AM overpredicts it by 45%, whereas the weighted average results in 7%

underprediction.
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3.3  Infiltration for an upper constant moisture condition

Infiltration into a Yolo light clay soil, with an upper constant moisture boundary

condition, was selected for a time-dependent infiltration example. This same example was

employed by Warrick (1991) to test his procedure. Soil parameters for this example are listed in

Table 3 as given by Warrick (1991). Initial and surface boundary conditions were set as constant

volumetric water content of θ = θini = 0.235 and θ = θs = 0.495, respectively. The lower

boundary condition was taken as a unit gradient at a depth of 1 m. The simulation was performed

with a fixed grid version of the numerical algorithm of Grifoll and Cohen (1999) using a time

step of 1 s. Further reduction of the time step did not affect the results. The above simulation

scheme assured that global mass balance errors were less than 0.05%.

The cumulative infiltration, CI (m) at any given time was calculated as

( )⌡
⌠ −=

L

ini dzCI
0

θθ (16)

where L (m) is the total length of the system considered. Equation (16) is appropriate when the

flux at the bottom soil boundary is negligible, as was indeed the case for all of the simulations

performed in this test case. An illustrative solution of this example was obtained for ∆z = 0.05 m

(∆z* = 0.10) and ∆z = 0.10 m (∆z* = 0.20) with the cumulative infiltration results shown in

Figures 6a and 6b. The cumulative infiltration was also calculated by the three-term quasi-

analytical solution [Philip, 1969] with the coefficients provided by Warrick et al. (1985). The

fine grid solution (∆z = 0.001 m), which coincided with the above quasi-analytical solution, was

independent of the averaging procedure. The fine grid solution, for the volumetric water content
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profile, was compared to the solutions obtained for coarser grids and different averaging

procedures. As seen in Figure 6, for grid spacing of both 0.05 m and the 0.10 m, use of the

geometric mean resulted in fluxes and correspondingly cumulative infiltration values (CI) which,

after 100 hours of infiltration, were too low by about 7.0% and 19.3%, respectively, thus

resulting in shallow penetration into the soil. In contrast, use of the arithmetic mean resulted in

excessively high relative permeabilities, and as a consequence higher cumulative infiltration (by

3.8% and 7.4% for grid spacing of 0.05 and 0.10m, respectively, after 100 hours of infiltration)

and deeper penetration of water into the soil. The solution in which the weighted mean was used

resulted, after 100 hours of infiltration, in a deviation of 1.0% and 3.6% below the fine grid

solution for the grid spacing of 0.05 m and 0.10 m.

3.4   Infiltration from an area source

In order to illustrate the beneficial performance of the present weighted mean (WM)

approach of estimating internodal fluxes for multi-dimensional simulations, two test cases are

presented for infiltration from an area source (at the soil surface). The problem is formulated in a

two-dimensional axisymmetric coordinate system with the mass conservation equation given as

( ) 0
1

=
∂
∂

+
∂
∂

+
∂
∂

z

q
qr

rrt
z

r
θ

(17)

where qr (m/s) and qz (m/s) are the radial and vertical components of the flux, and r (m) is the

radial coordinate. For the BC hydraulic function, the flux in the radial direction can be computed

exactly by the Kirchhoff transformation
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LR

LR
sr rr

Kq
−
−

−=
φφ

(18)

where R and L refer to right and left nodes and φ is the Kirchhof transform that for the BC

[obtained from integration of (5)] as

n

k
dk

32 −⌡
⌠ ==

∞−

ψψφ
ψ

(19)

The discritized form of (17) was solved using the alternating direction implicit (ADI) method

(Ferziger, 1981). According to Kirkland et al. [1992] the ADI method for solving the two-

dimensional Richards' equation worked well and was computationally more efficient relative to

other methods considered in their study.

The soil domain, for the present 2D simulations, extended vertically from z = 0 (surface)

to a depth z = ZT and radially from r = 0 (centerline) to r = RT. The initial condition was set as

constant water pressure inside the domain (ψinitial).  At the surface the vertical flux from the

circular source area (0 ≤ r ≤ rbc) was set as

qz(r, 0) = q0 for 0 ≤ r ≤ rbc (20 a)

The flux boundary conditions for the remainder of the surface area and the lateral boundary are

given as

qz(r, 0) = 0 for rbc ≤ r ≤ RT (20 b)

qr(RT, z) = 0 for 0 ≤ z ≤ ZT (20 c)
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Finally, the gradient at the bottom boundary was specified as

( ) 0, =
∂
∂

TZr
z

ψ
 for 0 ≤ r ≤ RT (20 d)

The first axisymmetric simulation test case was rapid infiltration into a loamy sand (test

2DA) with domain and simulation system parameters given in Table 5 and soil parameters given

in Table 3. Simulations using the AM, GM and WM internodal averaging methods were

performed using a fixed grid with ∆z = 8 cm and ∆r = 1 cm and time step ∆t = 2 s. The

calculated contour profiles after 4 days of continuous infiltration are depicted in Fig. 7.

Simulations with successively smaller grid size, ∆z, demonstrated that at a grid spacing of

∆z=0.02 m, the solution for the three different averaging methods was sufficiently accurate to be

considered a fine grid solution (with maximum deviations <1% among the different averaging

methods

All of the simulation results were obtained with a water mass balance error that was no

greater than about 2x10-4%. We note that for all the above simulations smaller time steps (i.e. ∆t 

<2 s) did not improve the results depicted in Figure 7. The contours were very similar, except for

the GM simulation for which the θ = 0.20 and 0.15 contours profiles appear flattened as a result

of the excessive error introduced by the overprediction of the permeability by the GM method. It

is interesting to note that, for the above series of simulations, the computation time for the coarse

z-grid was between 62 and 76 min, whereas it took 5 hours of computation for the fine grid (both

simulations performed on a PC with a 866 MHz Pentium III Xeon processor).

The second axisymmetric test case was for a slow infiltration into a silty clay soil with

the system domain and simulation parameters given in Table 5 and soil hydraulic parameters in
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Table 3. For this test case a fixed coarse grid was set as ∆z = 0.30 m and ∆r = 0.04 m with a

time step of ∆t = 500 s. The fine grid solution was obtained for a grid of ∆z = 0.04 m

(∆r = 0.04 m, ∆t = 500 s). This is the larger ∆z for which the discrepancies, in terms of the

centerline-depth at which θ = 0.24 at the end of the simulation, were less than 1% when using

the AM, GM and WM internodal averages. Further reduction of the time step, for all simulations

of the above test case, did not produce appreciable changes in the solution for the simulation of 1

year of infiltration. The volumetric water content contours, at the end of a 1 year of infiltration,

are depicted in Figure 8 for the different averaging methods. While the contours appear to be

qualitatively similar, we note that severe deviations of the contours from the fine-grid solution

are noticeable for the GM and WM and AM procedures for θ = 0.24, which at r = 0 are ahead of

the fine grid-solution contours (for θ = 0.24) by 6.2%, 8.9% and 18.3%, respectively. We note

that the one-year fine-grid simulation required about 23-28 minutes of computer time for the

coarse grids. In contrast, 2 hours and 45 minutes were required to complete the computations for

the fine grid solution.

The above two-dimensional infiltration examples illustrate that the present approach

makes it feasible to use a coarse grid which results in significant computational time reduction. It

is also noted that only the WM procedure provides the proper θ-contour profiles for both of the

test cases considered above.



21

3.5  Infiltration into a layered soil

The proposed method of computing internodal conductivities can also be applied to

layered soils as illustrated in this section for one-dimensional infiltration. The application of the

algorithm involves the location of a grid nodal point at the boundary between layers, and the use

of pressure as a continuum variable along the system [Bear and Bachmat, 1991 The location of

the boundary nodes following the above strategy assures that all internodal fluxes are calculated

within a homogeneous soil layer.

The layered soil structure selected for the present example follows Hills et al. [1989]. The

soil domain consists of alternating layers of Berino loamy fine sand and Glendale clay loam,

each 20 cm thick with a total soil depth of 1m. Both soil types were described by the VG

hydraulic function with the parameters (Table 3) as reported by Hills et al. [1989]. The soil

system was set with an initial uniform water pressure head of -100 m and a top boundary

condition of constant water pressure head of ψ = -0.50 m. An illustrative results of the above test

case, after a 2 day infiltration period, are shown in Figure 9 for a grid of spacing of ∆z = 5 cm.

and ∆t = 1 s. Also shown in Figure 9 are a fine-grid solution (∆z = 0.005 m, ∆t = 1 s) and the

initial condition profile. We note that the simulation results (for all cases) were invariant to

further decrease of the time step. Comparison of the volumetric water content profiles for the

different solutions (Fig. 9) demosntrates that the WM procedure closely tracks the fine grid

solution. The profile front, located at a depth of 0.725 m according to the fine grid solution, is

overestimated by 3.45% (depth of 0.75 m). According to the fine grid solution the total volume

that has entered the system is 0.1409 m3/m2, while the WM simulation results in a discrepancy of

only 0.2%.  The AM method overshoots the location of the front setting it at 0.8 m with a
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corresponding 5.1% overestimate of the water volume that entered the system, relative to the fine

grid solution. The GM averaging method resulted in the greatest deviation with the water front

predicted at a depth of about 0.5 m and a total infiltrated water volume 20.3% below that of the

fine grid solution.

Conclusions

A new procedure for evaluating interblock permeabilities for vertical flow in unsaturated

soil is proposed. The approach is based on estimating the weight of a weighting average of

contiguous grid point permeabilities. From a large set of refined numerical solutions of the

steady state vertical unsaturated flow, a correlation of the weights as a function of the

encompassing relative permeabilities, the dimensionless internodal distance and a soil dependent

parameter, was developed for soils described by the hydraulic functions proposed by van

Genuchten [1980] and Brooks and Corey [1964]. The correlation can be easily implemented in a

numerical code with a level of complexity comparable to the popular geometric and arithmetic

means. The proposed method can save computational time in multidimensional simulations with

a reasonable level of accuracy. The method is also applicable to layered soils with an accuracy

that is highest for the weighted mean procedure of averaging of internodal permeabilities. The

present results, consistent with previous studies, show that use of the arithmetic mean averaging

procedure overestimates the relative permeabilities while the geometric mean procedure tends to

underestimate the relative permeabilities. The present proposed weighted averaging scheme

allowed the use of coarse grids while maintaining a reasonably high accuracy (relative to a fine

grid solution) when predicting moisture profiles and cumulative infiltration.
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Appendix: Weighting scheme for transition from saturated to unsaturated

conditions.

The interblock relative conductivity can be easily calculated when two contiguous grid

points are locally saturated, since it is unity in both points and consequently, the interblock value

is also unity. A question arises when, locally, one grid point is saturated and its neighboring grid

point is unsaturated. In such a circumstance, the averaging scheme as presented in equations (3,

4) is not applicable and alternate scheme is required as presented below.

We consider an upper grid point (U) situated at zU and a contiguous lower grid point (L)

at zL. The point U is saturated with a head ψU, whereas L is unsaturated with a head ψL. The

goal is to calculate an effective relative conductivity, k', such as









−

−
−−= 1'*

UL

UL

zz
kq

ψψ
(A1)

Between zL and zU there must be a point, zS, at the border between the saturated and the

unsaturated zone. The water head at this point is ψS = 0 for the VG type of hydraulic function,

whereas ψS = ψb for the BC hydraulic function. Since the flux in the saturated and the

unsaturated contiguous parts must be equal the following must hold


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(A2)

where kS = 1 is the relative conductivity at saturation and kW is the relative conductivity,

calculated with the weighting procedure described in this paper, for the zone between zS to zL.
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Combining (A1) and (A2) leads to

( )
( ) ( )USWSL

ULW

zzkzz

zzk
k

−+−
−

=' (A3)

where zS is the single unknown necessary for calculating kW and k'. This zS can be calculated

exactly from (A2) using an iterative procedure. However, a reasonable approximation can be

arrived at by considering that the water head varies linearly between zU and zL. This

approximation is true for the saturated segment and hold reasonably well for the unsaturated

segment because it should be near saturation. Therefore, we can write

( )
UL

SL
ULSL zzzz

ψψ
ψψ

−
−

−=− (A4)

and finally,

( )
( ) ( )USwSL

ULw

k

k
k

ψψψψ
ψψ

−+−
−

=' (A5)

Evaluation of internodal conductivities calculations by (A5 was tested for a loamy sand with the

parameters (Table 3) reported by Rawls and Brakensiek [1989]. Comparison of the differently

computed effective conductivities for this soil, for a constant ψL = -1.0 m and ψU ranging from

ψb = -0.0869 to 0.5 m, is provided in Fig. A.1. Classical average calculations of k are insensitive

to variations of the upper water pressure head once saturation is reached, while the lower water

pressure is maintained constant. Figure A.1 shows these constant k values calculated with AM

and GM. In contrast, keff values calculated by quadrature of (3) show a monotonic increase as the

upper pressure increases. This increase is closely followed by k' as computed from (A5).
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Figure Captions

Figure 1. Schematic representation of the flux between non-uniform cells.

Figure 2. Weights from the correlation and exact database values for n = 2 and ∆z* = 0.20. (a)

Brooks and Corey and (b) van Genuchten type of hydraulic function.

Figure 3. Weights from the correlation and exact database values for kU = 0.5 and kL = 10-6. (a)

Brooks and Corey and (b) van Genuchten type of hydraulic function.

Figure 4. Weights for Yolo light clay according Warrick (1991) and present correlation.

Figure 5. Dimensionless fluxes, based on the different averaging procedures,  between two nodal

points with *
Uψ  = -1, *

Lψ  = -2, and ∆z* = 0.5 as a function of the parameter n of the van

Genuchten equation.

Figure 6. Cumulative infiltration (a, b) and volumetric water content profile (c, d) after 100 h of

infiltration into a soil with n = 2 and van Genuchten type of hydraulic function. Numerical

solution with ∆z = 0.05 m (a, c) and ∆z = 0.10 m (b, d).
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Figure 7. Contours of the volumetric water content after 4 days of infiltration from a surface

circular area source of 0.055 m. Comparison of a fine grid solution and results based on the

different averaging procedures with ∆z = 0.08 m.

Figure 8. Contours of the volumetric water content after 365 days of infiltration from a surface

circular area source of 0.220 m. Comparison of a fine grid solution and results based on the

different averaging procedures with ∆z = 0.30 m.

Figure 9. Volumetric water content profile in a layered soil. Comparison of a fine grid solution

with results from the different averaging procedures with ∆z = 5.0 cm after 2 days of infiltration

under a constant surface water pressure head.

Figure A.1. Interblock permeabilities for a saturated upper node with different water pressures

and constant water pressure at the lower node (calculations for a loamy sand).
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Table 1. Constants for the correlation w = w(kU, kL, n, ∆z*) for the hydraulic functions of Brooks

and Corey (BC) and van Genuchten (VG).

a10 a11 a2 b01 b02 b1 c0 β

BC 0.208 0.634 0.191 0.690 2.294 0.049 0.020 0.0080

VG 0.465 0.052 0.112 0.551 1.939 0.057 0.0090 0.011

Table 2. Statistical parameters for the errors and correlation coefficient for the fitting of the

weights (w) to the databases values for Brooks and Corey (BC) and van Genuchten (VG)

hydraulic functions.

BC VG

Average absolute error 0.013 0.025

Average relative errors 22% 20%

Correlation coefficient 0.998 0.992

( ) ( ) ncorrelatioidatabaseii wwerror −= , for i = 1,..,ndb; where ndb is the number

of points in the database; ndberrorerrorabsoluteaverage
ndb

i
i∑

=

=
1

;

( )( ) 100
1

xndbwerrorerrorrelativeaverage
ndb

i
databaseii∑

=

=
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Table 3. Parameters used for different soils.

Functions ψref (m) n θs θr Ks (m/s)

Sandy loam VG 0.133 1.89 0.41 0.065 1.23 10-5

Carsel and Parrish [1988]

Yolo light clay VG 0.667 2 0.495 0.124 1.23 10-7

Warrick [1991]

Loamy sand BC 0.0869 1.474 0.401 0.035 1.70 10-5

Rawls and Brakensiek [1989]

Silty caly BC 0.3419 1.127 0.423 0.056 2.50 10-7

Rawls and Brakensiek [1989]

Berino loamy fine sand VG 0.357 2.2390 0.3658 0.0286 6.26 10-5

Hills et al. [1989]

Glendale clay loam VG 0.962 1.3954 0.4686 0.1060 1.52 10-6

Hills et al. [1989]
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Table 4. Dimensionless fluxes for an average sandy loam soil and ratio between the flux

calculated using different averaging procedures and the integral value(a).

ψU (m)
ψL (m) -0.01 -0.1 -1 -10 -100

q*  (integral)
-0.01 0.805 0.110 -2.20e-2 -2.22e-2 -2.22e-2
-0.1 0.817 0.120 -6.64e-3 -6.80e-3 -6.80e-3
-1 0.819 0.123 3.86e-5 -4.60e-5 -4.60e-5
-10 0.819 0.123 7.96e-5 2.38e-9 -3.59e-8
-100 0.819 0.123 7.97e-5 3.80e-8 1.14e-13

q*  (arithmetic mean)/ q*  (integral)
-0.01 1.00 2.31 72.4 889. 9062.
-0.1 0.82 1.00 31.7 430. 4420.
-1 2.92 2.69 1.00 18.5 207.
-10 25.1 24.8 11.2 1.00 14.9
-100 246. 245.3 120. 14.2 1.00

q*  (geometric mean)/ q*  (integral)
-0.01 1.00 1.55 1.00 9.67e-2 7.61e-3
-0.1 0.55 1.00 1.14 0.12 9.59e-3
-1 4.05e-2 9.65e-2 1.00 0.29 2.51e-2
-10 2.72e-3 6.96e-3 0.17 1.00 0.23
-100 2.07e-4 5.32e-4 1.46e-2 0.22 1.00

q*  (weighted mean)/ q*  (integral)
-0.01 1.00 0.89 1.17 0.77 0.41
-0.1 1.12 1.00 1.11 0.79 0.43
-1 1.12 1.31 1.00 0.86 0.51
-10 5.77 5.77 3.29 1.00 1.17
-100 55.9 55.7 27.4 3.58 1.00

(a)VG parameters for an average sandy loam soil as reported by Carsel and Parrish [1988]
and given in Table 3. The internodal distance considered is ∆z = 0.20 m.
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Table 5. System, boundary and initial conditions for the examples in cylindrical coordinates.

Test rbc (m) RT (m) ZT (m) q0 (m/s) soil
ψinitial

(m)
simulation

time
 (days)

2DA 0.055 0.70 1.100 1.389 10-5 Loamy sand -20. 4

2DB 0.220 2.80 4.100 8.333 10-8 Silty clay -100. 365


