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A sample time step in Radner’s model for a network
with three nodes. At time ¢, processor A has a value
4 stored in its register (bold box) and two more items
waiting to be processed in its in-box. Similarly, nodes
B and C have values 8 and 5 in their respective registers
and items waiting in their in-boxes. In the next time
step, all the nodes have added the first value of the in-
box to the register. In addition, node C has sent the
content of its register to its superior A, and has reset its
register to 0.

Hierarchical network that processes one cohort of items
quasi-efficiently in Radner’s model.

Efficient networks in presence of specialization con-
siderations in Bolton and Dewatripont’s model. The
arrows indicate the introduction of raw data items. (a)
Regular pyramidal network, efficient when agents are
specialized in either processing or aggregating. (b)
Conveyor belt network, efficient when it is better to be
involved in both processing and aggregation.

Three examples of complex self-organized networks:
(a) the Internet; (b) the e-mail network of the Universitat
Rovirai Virgili, in Tarragona; and (c) the neural network
of the worm C. elegans.

Low dimensional regular lattices with nodes connected
to first and second nearest neighbors: (a) n-dimensional
lattice and (b) two-dimensional lattice
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1.6 The small world model of Watts and Strogatz. Starting
from a low dimensional regular lattice (left), some links
are randomly rewired. When the fraction of rewired
links is small (center) the network still has the low di-
mensional structure and a high clustering coefficient,
but the rewired links act as shortcuts reducing the av-
erage distance between nodes . When the fraction of
rewired links is high (right) the graph is completely random. 14

1.7 Scale free degree distribution of several real networks.
Note that in a log-log scale, a power law becomes a
straight line whose slope is the exponent of the power
law. (a) Internet. (b) Movie actor collaboration net-
work. (c) Co-authorship network of high-energy physi-
cists. (d) Co-authorship network of neuroscientists.
The figure has been taken from (Barabasi, 2002), pub-
licly available at http://xxx.arxiv.org/abs/cond-mat/0106096 16

1.8 Percolation transition in a 2D lattice. Lattice below (a)
and above (b) the percolation point f.. Each cluster
is plotted in a different color. Below the percolation
point the main component comprises almost all nodes
in the lattice, while above f. only small clusters are left.
(c) The top panel shows the behavior of the fraction of
nodes belonging to the main component, .S, asa function
of the fraction of removed nodes, f. The bottom panel
shows the average size of the remaining clusters, (s), as
a function of f. Different lines correspond to different
system sizes: 100 x 100 (dotted line), 200 x 200 (dashed
line), and 300 x 300 (full line). As the system size
grows, the order parameter, S, shows a sharp decay
around f. = 0.4073 and the susceptibility, (s), develops
a peak around the same value. 18

1.9 Effect of random removal (dashed line) and directed
attack (full line) of nodes in: (a) ER random graphs
and (b) BA scale-free networks. In both cases, the size
of the network is N = 10000 and (k) = 4. While
the BA network is slightly more robust against random
removal of nodes, it is significantly more sensitive to
directed attacks of the most connected nodes. 19

2.1 Typical hierarchical tree structure used for simulations
and calculations: in particular, itisatree (3,4). Dashed
line: definition of branch, as used for some of the calculations. 25
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Evolution of the total number of packets, IV, as a func-
tion of time for a (5,7) Cayley tree and different values
of p, below the critical congestion point (p = 1.1 -
10~* < p,), above the critical congestion point (p =
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Behavior of the order parameter. The solid line corre-
sponds to the analytical calculation for two nodes ex-
changing information packets (equation (2.11)). Sym-
bols correspond to simulations performed on different
Cayley trees.

Susceptibility for a (5,4) Cayley tree, for different time
windows T'. The vertical dotted line corresponds to the

mean field calculation of the critical point in equation (2.9).

Comparison between analytical (lines) and numerical
(symbols) values of p. obtained for hierarchical trees.
The error bars of the numerical points are smaller than
the size of the symbols.

Left: Power spectrum of N(¢) for different values of
the control parameter e and a (7, 5) Cayley tree. Power
spectra have been obtained averaging over 100 realiza-
tions of N (¢). Dotted lines represent a power law with
exponent -2. Right: Characteristic frequency as a func-
tion of the control parameter e = (p. — p)/pc. As ob-
served, the characteristic frequency tendsto0as p — p.
following a power law. The straight lines correspond to
fittings of equation (2.13).

Order parameter in the case of agent heterogeneity. Sym-
bols represent the same structures than in figure 2.3.
The bold line corresponds to the analytic prediction of
equation (2.19). The dotted line represents the critical
behavior observed in the case without agent heterogene-

ity.

Maximum number of packets that can be generated in
an organization per time unit without collapsing it, plot-
ted as a function of z. Different curves correspond to
different values of the linking capability, L.
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(a) and (c) Susceptibility for different time windows: (a)
1D and (c) 2D. The dotted vertical line in (a) represents
the mean field estimation of the congestion point. (b)
and (d) Dependence of the critical congestion point with
the size of the network: (b) 1D and (d) 2D. The line
corresponds in (b) to the mean field estimation and in
(d) is simply a power law fitting of the points, that yields
an exponent of -0.58.

Behavior of the order parameter in the critical case
for different network topologies. The solid line cor-
responds to the analytical calculation for two nodes ex-
changing information packets. Symbols correspond to

simulations performed in 1D, 2D and hierarchical lattices.

Left: Log-Log plot of the power spectrum of N(¢) for
different values of the control parameter e = (p. —
p)/pc and for different topologies: the 1D case (S =
100) and the 2D case (S = 7 x 7). Power spectra
have been obtained averaging over 100 realizations of
N(t). Dotted lines represent a power law with exponent
-2. Right: Characteristic frequency as a function of
the control parameter e for the different topologies. As
observed, the characteristic frequency tendsto0as p —
pc following a power law. The straight lines correspond
to fittings of equation (2.13).

Characteristic frequency f. as a function of the proba-
bility of packet generation p, for ¢ = 0.2 and different
sizes of a 1D lattice. As observed, f. never becomes 0
ashappensinthe critical ¢ = 1 case. Inset: Characteris-
tic frequency at p — 0, f2 (squares), and characteristic
frequency at large p, f& (circles). The lines represent
the fittings provided by equation (2.28) £9 oc S~1, and
equation (2.27) f o« §~1/(1=8)  respectively.

Congestion nuclei formation for large 2D lattices with
200 x 200 nodes, in the non critical case ¢ > 1. Dark
regions represent regions with small congestion levels
while bright regions correspond to highly congested re-

gions. (a) £ =5 and p = 0.001. (b) ¢ =2 and p = 0.01.
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Network topology and search in Kleinberg’s scenario.
Consider nodes A and B. The distance between them is
A sp = 6 although the shortest path is only 3. A search
process to get from A to B would proceed as follows.
From A, we would jump with equal probability to D
or F, since Apg = App = 5. suppose we choose
F. The next jump would then be to G or C with equal
probability since Acg = Agp = 4, although from C'it
is possible to jump directly to B. This is a consequence
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of the local knowledge of the network assumed by Kleinberg. 51

Construction of networks with multiple linking mech-
anisms. In both cases ¢ = 0.25 in such a way that
approximately one fourth of the links are long range. A
random node is selected at each time step and m = 4
new links starting from that node are created. Black
nodes represent nodes that have already been selected.
Dotted lines represent the links created during the last
time step in which node C was selected. In (a), the des-
tination of long range links is created at random (y = 0),
while in (b) they are created preferentially (v > 0) and
nodes A and B are attracting most of them.

(a) and (b) Average number of packets flowing in the net-
work as a function of the fraction of preferential links:
(@) p = 0.01and (b) p = 0.03. Symbol (+) corresponds
to v = 0 (random links) and symbol (x) corresponds to
~v = 6 (extremely focused links). Figures (c),(d) and (e)
show the typical shape of complex networks with partic-
ularly efficient configurations: (c)y = 0and ¢ = 0.12;
(d)y=6and ¢ =0.07;and () vy = 6 and ¢ = 1.0;
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Comparison between simulated and analytical load of a
node in the communication model described in section
3 of the present chapter. As observed, the behavior of
the nodes is in excellent agreement, as expected, with
a queue M/M/1. The behavior of an M/D/1 queue is
shown for comparison. Note that there is not any ad-
justable parameter to fit, since the load is calculated
according to equation (3.13). The vertical dashed line
corresponds to the critical congestion point of the net-
work, p. at which the most central node starts to col-
lapse. Then, some packets are accumulated at that node
and the load of the considered node is less than predicted
by equation (3.13). It does not represent a shortcoming
of the calculation because, at this point, the total load
of the network diverges.

Comparison between the predictions of equation (3.12)
for p. and the results obtained for the communication
model discussed in chapter 2. The analytical value is
a lower bound to the actual value. To keep the figure
simple, we do not show results corresponding to the
model discussed in section 3, but the points would lay
exactly on the diagonal line, since all the assumptions
of the calculation are fulfilled.

Performance of classical simulated annealing and gen-
eralized simulated annealing. Each line corresponds
to a single run of the optimization process. As tem-
perature is decreased, configurations with smaller and
smaller cost (load) are obtained. Generalized simulated
annealing with ¢ = —5 (full line) yields the best results.

Optimal structures for local search with congestion.
(a) Star-like configuration optimal for p < p*. (b)
Homogeneous-isotropic configuration optimal for p >
p*. (c) Polarization of the optimal structure as a func-
tion of p, for networks of size S = 32 and different
number of links L.

62

64

67

68



List of Figures

3.8

3.9

4.1

4.2

4.3

Pictorial representation of the empowerment process ac-
cording to Dow Chemical’s Strategic Blueprint. Here,
the position of nodes and links should not be understood
strictly as in the communication networks considered in
the rest of the work. Rather, the drawing metaphorically
represents a process by means of which leadership is de-
centralized and management tasks are assumed by the
employees.

Optimal topologies for networks with S = 32 nodes,
L = 32 links and global knowledge. (a) p = 0.010. (b)
p = 0.020. (c) p = 0.050. (d) p = 0.080. In this case
of global knowledge, the transition from centralization
to decentralization seems smooth.

Degree distribution of the e-mail network of the Univer-
sitat Rovirai Virgili. (a) In-and out-degree distributions
when all e-mails are considered. While the in-degree
distribution decays exponentially, the out-degree distri-
bution is highly skewed due to the presence of e-mail
lists. (b) In- and out-degree distributions when e-mails
sent to more than k = 50 users are discarded. In this
case, both distributions decay exponentially.

Degree distribution of the e-mail network of the Univer-
sitat Rovira i Virgili when only bidirectional e-mails are
considered. (a) Listsare noteliminated. (b) Lists, thatis
e-mails sent to more than k = 50 users, are disregarded.
In this case, most of the useless e-mails are removed by
the bi-directionality restriction and, therefore, the effect
of removing lists is small. In other words, most of the
e-mails that are sent to large amounts of people are not
answered and thus are not considered.

Example of a small dendogram. The circles at the bot-
tom represent the nodes of the original network, and
they are joined according to the hierarchical clustering.
The vertical axis represents the order in which the clus-
ters are joined together. In this case, A and B are joined
first, J and K second and E and F' third. Thenthe group
formed by A and B is joined to C, and so on.
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Identification of most central links in the GN algorithm.
(a) The network in the drawing contains two clearly dis-
tinguished communities. The GN algorithm identifies
the link that belongs to a higher number of minimum
paths between all pairs of nodes: in this case the link
BE. (b) Removal of this link yields two separate net-
works that correspond to the original communities.

The GN algorithm on well defined communities. (a)
When the network is completely uniform, the GN al-
gorithm separates one node from the rest. Iterating this
procedure, nodes are removed 1 by 1 and the resulting
split binary tree is a linear branch. (b) When the net-
work is star-like, nodes are also removed 1 by 1 but the
central node will be the last one being separated.

Communities and branches in the binary tree. When
communities are identified as in (a), they appear in the
binary tree as clearly differentiated branches (b).

Community structure from the binary tree. The com-
munity structure represented by the binary community
tree (a) can be regarded as a set of nested groups (b).

Calculation of the community size distribution and anal-
ogy with drainage area distribution in river networks.
(a) Community sizes. A and B form a community of
size 2. Together with E they form a community of size
3: this size is obtained by summing 1 from node E plus
2 from the community formed by nodes A and B. The
procedure is repeated from the leaves downward, be-
ing the size of each community the sum of the sizes of
the two offspring communities in the level immediately
above. (b) Drainage area. The area drained by one
node equals the number of nodes upstream from that
node plus one. For a given node this area can be ob-
tained summing up the areas of the two offspring nodes
in the level immediately above plus one.

Horton-Strahler index. Arbitrary binary tree (a) and the
corresponding values of the HS index of the branches.
When two branches of size k meet, they give rise to a
branch of index k£ + 1. When two branches of sizes &
and ko, with k1 > ko, meet the branch with index ks is
absorbed by the branch with index k1.
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Chapter 1

INTRODUCTION

The typical chemical company is large, usually with thousands of employ-
ees. According to data from the European Union, in 1990 almost 70% of the
total turnover generated by the chemical industry corresponded to companies
with more than 250 employees (European Comission, 2001). The remaining
30% corresponded, in similar amounts, to small companies with less than 50
employees and to medium sized companies with 50 to 250 employees. Indeed,
although some products have regional markets, chemical industry is essentially
global and is dominated by large multinationals like Bayer, with 117,000 em-
ployees,® BASF, with 93.000 employees,? DuPont, with 79.000 employees, or
Dow Chemical, with 50.000 employees.* Specially for such large companies,
organizational design and human capital management play a key role, as impor-
tant, at least, as technology or management of material resources. A substantial
part of the human workforce of such a company is devoted to information pro-
cessing rather than to "make" or "sell" products in the narrow sense. However,
most formal analysis of organizations have downplayed communication and
information processing and focused on issues related to individual incentives.
Only in the last decade, the importance of communication processes in organi-
zations has started to be understood, mainly in the economics literature.

Parallel to these efforts to understand the role of communication in organi-
zations, the appearance and fast development of huge technology-based com-
munication networks such as the Internet, as well as their inherent complex
structure and dynamics, has contributed to awaken the interest of the scien-

Lhitp://www.bayer.com/en/bayer/bayerwelt.php#top
2http://www.basf.de/en/corporate/overview/mitarbeiter/
Shttp://www.dupont.com/corp/overview/glance/index.html
4http:/www.dow.com/about/aboutdow/about.htm
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tific community in the so-called “complex networks”. Actually, the study of
networks was already a topic by itself in social sciences and in mathematics.
However, recent studies on these technology-based communication networks
as well as the discovery of surprising properties in big and complex networks
in fields as diverse as biology, physics, computer science, engineering or eco-
nomics, has generated a great interest. In particular, statistical physics has
played a particularly important role in understanding some of the properties
of such networks. The reason is that some of the tools derived to understand
complex collective behavior in physical systems (that differ from the addition
of the individual behaviors of the parts of the system) are applicable in the field
of complex networks.

The present work uses ideas from both the economics literature and complex
networks literature to understand the role of communication processes in orga-
nizations. This chapter presents the most important developments in the two
lines, communication and information processing in organizations on the one
hand and complex networks on the other, as well as the scope and main objec-
tives of the work. Section 1 discusses the main ideas, developed mostly during
the last ten years in the economics literature, about communication and decen-
tralized information processing in organizations. Section 2 explains how, from
the study of social networks, such as friendship networks, and technological
networks, such as the Internet and the Worldwide Web, a “science of networks”
has born and developed rapidly finding applications in physics, biology, etc.
Finally, section 3 presents the scope and main objectives of this work.

1.  Communication and information processing in
organizations

To a large extend, organizations exist to solve coordination problems, since
each individual or group within an organization is unable to acquire unbounded
knowledge and process an unlimited amount of information (Van Zandt, 1998).
Specialization thus arises as a consequence of this limitation. In turn, the need
for coordination and communication between individuals and groups arises as a
consequence of specialization. The internal organization of firms is designed to
minimize the costs of communication and to optimize information sharing and
processing. Inthissense, it has been established that the multi-divisional corpo-
ration, which is the most frequent form of organization in modern companies,
is suited to handle a continuously increasing flow of information (Chandler,
1966, Chandler, 1990). It has also been shown that, as firms grow, more man-
agers are hired and information processing is decentralized (Van Zandt, 1998).
Moreover, according to Radner (Radner, 1993):

The typical U.S. company is so large that a substantial part of its work force is devoted to
information-processing, rather than to “making” or “selling” things in the narrow sense.
Although precise definitions and data are not available, a reasonable estimate is that
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more than one-half of U.S. workers (including managers) do information-processing as
their primary activity.

From this perspective, it seems natural to develop a theory of decentralized
information processing in organizations, in which decentralization arises due
to information processing constrains or costs. However, most studies of orga-
nizations in the economic literature have focused on incentive problems and
not on communication problems, in part because there exists a well established
theoretical apparatus to analyze these issues. In those studies, the point is to
allocate incentives in such a way that the global outcome of the organizations
is maximized. The incentive approach cannot explain, among other things, the
interaction between communication technology and organizational structure.
For example, there seems to be some empirical evidence that computerization
of companies tends to reduce the number of organizational layers (Brynjolfsson
etal., 1989, Hangstrom, 1991).

Considering organizations in a broad sense as “collections of individuals or
groups whose actions are coordinated and for which there is some criterion
for evaluating the collective outcome” (Van Zandt, 1998), one can regard mar-
kets, for example, as organizations. Then, it is possible to retrace the study
of communication, information processing, and centralization/decentralization
to early debates about economic planning under socialist systems. However,
studies about information processing in organizations considered in a narrower
sense as firms or companies have appeared only in the last 30 years, and the
most significant developments started in the 1990’s with the work by Radner
and van Zandt (Radner and van Zandt, 1992, Radner, 1993). These develop-
ments are presented in the following sections. First, we show how the idea
of communication and information processing was introduced in the theory of
organizations. Next, we turn to more recent developments that have stressed
the key role of specialization and knowledge organization in relation to decen-
tralized information processing.

1.1  Decentralized information processing

Probably, the most influential work in the area of information processing in
organizations is the one by Radner (Radner, 1993). In the paper, the author
presents a stylized model of an organization that performs a decentralized asso-
ciative task, involving communication and information processing. The model
can describe a number of real situations including accounting and control (linear
operation), project selection, and pattern recognition.

The model is as follows. Consider a set of P processors (employees, for
example) and a set of IV data items, usually called a cohort, that need to be
summed by these processors. Each processor has an in-box and a register, and
is connected to a number of other processors by directed communication lines,
such that information can flow only one way. At each time step, any processor
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Figure 1.1. A sample time step in Radner’s model for a network with three nodes. At time
t, processor A has a value 4 stored in its register (bold box) and two more items waiting to be
processed in its in-box. Similarly, nodes B and C have values 8 and 5 in their respective registers
and items waiting in their in-boxes. In the next time step, all the nodes have added the first value
of the in-box to the register. In addition, node C has sent the content of its register to its superior
A, and has reset its register to 0.

can take one item from its in-box and add it to its register. Therefore, the in-box
is a sort of queue where data items wait until they are processed, and the register
contains the result of the processing. Additionally, at each time step processors
can send the contents of their register to any of their neighbors and reset their
register to zero, with no extra time cost. Such a time step is illustrated in figure
1.1. The basic design problem consists in finding the network of processors
that can perform the sum of the NV items with minimum delay. In addition, the
designer has to specify the times of communication and the way the IV items
are distributed in the in-boxes of the processors at the beginning of the process:
a network with this extra information is called a programmed network.

Next, Radner defined efficient programmed networks and turned to the prob-
lem of finding them. A programmed network is efficient for a given number of
items, N, if the number of processors cannot be decreased without increasing
the delay. In other words, a network is inefficient if it is possible to find a differ-
ent network with the same number of processors that performs the summation
of the N items with a smaller delay.

Finding exact efficient networks was out of the scope of the paper. However,
the author was able to find lower bounds for the delay and to show that a certain
type of hierarchies are close to this lower bounds. An example of such a quasi-
efficient hierarchy is shown in figure 1.2. Moreover, the paper discussed that
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Figure 1.2. Hierarchical network that processes one cohort of items quasi-efficiently in Rad-
ner’s model.

in presence of a continuous flow of items to be added, balanced hierarchies are
also quasi-efficient.

Although the model can seem very abstract, it can account for a number of
real situations. Consider, for example, the task of selecting the best project
in a collection of IV proposals. At each time step an employee can evaluate
one project and compare it to her register. After the comparison, the employee
will keep in the register the best of them and will discard the other. At certain
times, the employee will send to another employee (probably a superior) the
best project she has found so far. Similarly, the superior will compare this
project, which has already been filtered by the first employee and therefore is
in general one of the good projects, to the best one she has been able to find up
to that moment.

In spite of the importance of the work by Radner, there are several criticisms
that can be done. First, the model does not include specialization which, as dis-
cussed, is one of the key ingredients to understand the need for communication
in companies. Second, quasi-efficient networks (as the one shown in figure 1.2)
have a number of unrealistic features. For example, “skip-level reporting” is a
common practice in real organizations, but it is hard to believe that employees
at the lowest level can communicate directly with employees at the top level.
Moreover, hierarchical structures are postulated ad hoc and there is no hint
about the behavior of other arbitrary networks. Third, although the model can
account for some real situations, it is not clear that it is a good metaphor for
the global functioning of an organization. Some of these points were addressed
latter in the literature.



6 ORGANIZATIONAL DESIGN AND COMMUNICATION NETWORKS

1.2  Returns to specialization

The work by Bolton and Dewatripont addressed the issue of specialization
(Bolton and Dewatripont, 1994). The authors recognized the contribution of
Radner and van Zandt but stressed the trade-off between specialization and
communication.

Although the formal expression of the model is slightly different from that
of Radner, the main ideas are the same. The organization is immerse in an
environment that makes information available at each time ¢.°> Information
arrives, again, in form of cohorts, that is groups of IV data items. Each cohort
has the same informational content, and all the NV items must be processed so
that the organization obtains some benefit.

Processing of items is costly: it takes a time 7 to process each item. Com-
munication is also costly although, as in the case of Radner, what takes time
is to read the information that has been received and not to send it. Indeed, as
described in the previous section, in Radner’s work any processor could send
the information in its register to another processor to whom it was connected
without any additional cost (Radner, 1993). However, once the information
was sent, it was stored in the in-box of the receiver and took always one time
step to process it. In the work by Bolton and Dewatripont, there is also a cost
C for reading a report containing aggregated information sent by a processor
1, but the difficulty of reading such information depends on the amount of raw
items that the report contains, n;:

Clny)) =1(A+any), 1.2

where X\ and a are parameters. In Radner’s paper, A = 1 since the cost of
processing a report received from another processor is the same as processing
a single raw item, and a = 0 since the cost is independent of the amount of
processed items contained.

Except for this little generalization, Bolton and Dewatripont’s model is equiv-
alent, so far, to Radner’s. Also as in reference (Radner, 1993), the design
problem consists in finding the structure that minimizes the delay in processing
cohorts. With these conditions, the authors show a number of important prop-
erties of efficient networks. First, assuming that the communication network is
organized in layers and that reports (information) flow from the bottom to the
top, they demonstrate that delegation of processing tasks from the top to the
bottom only occurs when processors in the top are overloaded. In other words,
agents do not delegate unless they cannot process the information themselves,
in such a way that the number of agents through which a given item transits

5Note that in Radner’s work, data items arrived only at certain time steps separated of one another, while
here information is always available and the organization decides when to use it.
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Figure 1.3. Efficient networks in presence of specialization considerations in Bolton and De-
watripont’s model. The arrows indicate the introduction of raw data items. (a) Regular pyramidal
network, efficient when agents are specialized in either processing or aggregating. (b) Conveyor
belt network, efficient when it is better to be involved in both processing and aggregation.

is minimized. Even more significantly, they show that efficient networks are
essentially pyramidal because each agent only reports to one superior.

But the main contribution of Bolton and Dewatripont is probably that they
introduce the concept of specialization. Consider that cohorts are processed
with a frequency x. They assume that the processing time 7 is a decreasing
function of z: 7 = 7(z) and

dr

dx
so that the more an agent processes a certain type of information, the faster
she is able to do it and the higher the payoff of the organization. Considering
specialization, the paper shows that regular pyramidal networks (figure 1.3a)
are efficient when agents are specialized in either processing or aggregating,
and “conveyor belt” networks (that resemble assembly lines, as depicted in
figure 1.3b) are efficient when it is better to be involved both in processing and
aggregation.

<0, (1.2)

1.3 Problem solving and organization of knowledge

Although the work by Bolton and Dewatripont represents an important step
toward the understanding of the trade-off between specialization and communi-
cation, they simply equate specialization to a higher network throughput and do
not consider explicitly task heterogeneity, that is different types of problem to
solve. Garicano discusses that “if communication is available, workers do not
need to acquire all the knowledge necessary to produce”, and therefore proposes
a model where distribution and organization of knowledge plays a fundamental
role (Garicano, 2000).

Consider an organization formed by employees that are partitioned into L
groups of different sizes 5;,7 = 1, 2,..., L. The organization is immerse in an
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environment in which different problems arise. Each problem z appears with a
certain probability, given by a distribution F'(z). Beyond its size, each group i
is characterized by the set of problems it is able to solve A;, an ordered list, /;,
that specifies the groups to which ¢ can ask when facing an unknown problem,
and the fraction of time that the employees in the group dedicate to produce,
t¥ (the rest of the time, th =1- t¥, is dedicated to solve problems arising in
other groups). The output per capita is then:

L
Y =) |BtF (U Alc) — cBip(4;)
i=1

kel;

where F'(-) is the probability that a problem will find its solution in the list of 7
and therefore the probability that a problem will be solved, p(A;) is a measure
of the size of A; and c is the cost of knowledge. One can imagine that the
organization obtains a benefit every time that a problem arises and is solved,
but has to pay a cost to provide knowledge to employees (large sets A; are more
expensive than small ones).

Moreover, as in the case of Radner and Bolton and Dewatripont, to process
information is costly in terms of time. In Garicano’s model, this is included by

assigning a time to solve problems:
1-F| |J 4nm
m<pt

th = ( > hBty
kii€ly
where A is the helping cost and F'(-) is now the probability that the problem is
solved before 4 is asked by % (thus, 1 — F'(-) is the probability that 7 has to ask
k). In words, the members of a group spend time when they are consulted by
another agent, no matter if they have the solution or not.

With these ingredients, Garicano draw important conclusions about efficient
networks, defined now as those that yield a maximum output. First, it is shown
that workers specialize either in production or in solving problems and that only
one class of workers specializes in production, while other classes specialize
in solving different types of problems. Second, Garicano demonstrates that
problem solvers learn how to solve the most exceptional problems. Finally,
he shows that efficient organizations have a pyramidal structure with a lot of
producers and successive smaller layers of problem solvers that know how to
solve more and more rare problems.

(1.3)

) /Bi (1.4)

2.  Complex self-organized networks

Graphs, or in a less precise language networks, are mathematical objects that
consist of a group of vertices or nodes, the agents, and a set of links that join
vertices and represent the relations between them. Just as happens in social
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networks (Wasserman and Faust, 1994), graphs are convenient representations
of organizations because they are particularly suited to represent inter-individual
relationships and to quantify important structural properties.

Social network analysis has a relatively short history. At the end of the
World War 11, Alex Bavelas founded the Group Networks Laboratory at M.1.T.,
although it was not until the 1970s—when modern discrete combinatorics, par-
ticularly graph theory, experienced rapid development and relatively powerful
computers became readily available—that the study of social networks really
began to take off as an interdisciplinary specialty (Wasserman and Faust, 1994).

In 1998, a work by Watts and Strogatz, originally motivated by a problem
on social networks, gave rise to a revolution in the scientific community. The
idea was simple. The interaction between elements in many systems (not only
social systems) gives rise to large and complex networks. Consider, for instance,
computers and routers connected by means of physical or wireless connections
in the Internet or chemicals in a cell connected by chemical reactions. For many
years, the structure of such networks had been considered secondary in front of
the interaction between the elements. As a consequence, simplistic approaches
were used to model the topology of the interactions, although sophisticated
models were used for the interactions themselves. Ordinarily, the connection
topology was assumed to be either completely regular or completely random.
The main contribution of the work by Watts and Strogatz was to show that real
networks are neither regular nor random, as shown in figure 1.4.

Since 1998, the scientific community has realized that, in many situations, it
can be completely wrong to assume such extreme cases of interaction topologies
because an important part of the behavior of the system is due to the complex
network of interactions and its non-trivial properties. Moreover, it has been
shown that some non-trivial properties hold for networks that seem, in principle,
completely unrelated: social, biological and technological networks share some
similarities that are not reproduced by regular lattices or random graphs.

Although it might be pretentious to claim that nowadays a “science of net-
works” has been established, it is fair to recognize the relevance of this new “net-
work approach” to problems in many different fields (Barabasi, 2002, Buchanan,
2002). Itistrue that there is not a solid and coherent theory of network structure,
but there is a lot of knowledge that can be classified in the following way:

m Empirical generalities that hold for networks arising in sociology, biology,
physics, chemistry and engineering. For example high clustering coefficient
and low average path length (Watts and Strogatz, 1998), scale free degree
distribution (Barabasi and Albert, 1999), assortativity and disassortativity
(Newman, 2002), etc.

= Evocative models (Willinger et al., 2002) that reproduce some of those
properties, and provide understanding on the structure of the networks. For
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Figure 1.4. Three examples of complex self-organized networks: (a) the Internet; (b) the e-mail
network of the Universitat Rovira i Virgili, in Tarragona; and (c) the neural network of the worm
C. elegans.

example the small world model of Watts and Strogatz (Watts and Strogatz,
1998), the scale free model of Barabasi and Albert (Barabasi and Albert,
1999), etc.

» Mathematical and computational tools that allow analytical analysis of both
the models and the data. For example the renormalization group (Newman
and Watts, 1999), the rate equation formalism (Dorogovtsev et al., 2000,
Krapivsky et al., 2000), the generating function formalism (Newman et al.,
2001), etc.



Introduction 11

In the following, the main developments in this field are presented.

2.1 Random graphs

The probabilistic treatment of random graphs was introduced by Erdos and
Renyi (Erdos and Renyi, 1959), as a counterpart of the enumeration and deter-
ministic approach taken by other authors (Gilbert, 1956, Ford and Uhlenbeck,
1957, Austin et al., 1959). Within the probabilistic approach, the interest is
in approximating a variety of exact values using probabilistic ideas rather than
obtaining exact formulas, which are usually very complicated.

To use probabilistic ideas, itis usual to consider a probability space consisting
of graphs of a particular type and a typical graph in this space. The simplest
such probability space consists of all graphs with a given set of N nodes and
M links, and each such graph is assigned the same probability. Another simple
family of graphs is defined as follows: take a set of NV nodes and for each
of the N(N — 1)/2 possible pairs of nodes establish a link with probability
p. For the purpose of the present work, both families are equivalent when
N — oo. Graphs constructed according to this procedures (in other words,
graphs randomly selected in these probability spaces) will be called Erdos-
Renyi (ER) random graphs or simply random graphs. Next, we discuss some
of the properties of ER random graphs.

First, we focus on the so called “degree distribution”. The degree of a node
is simply the number of links of that node, i.e. its connectivity. Consider,
again, the creation procedure: for each pair of nodes, a link is established with
constant probability p. Therefore, the probability f(k) of a node having degree
k is given by a binomial distribution of parameters p and N — 1. When the
size of the network is large, the binomial can be approximated by a Poisson
distribution: Ayk
e
f(k) = T
with mean A = (k) = pN. For large values of k, f(k) decays as a Gaussian
function, meaning that degrees that significantly deviate from the average, A,
are extremely rare.

Next, we focus on the average distance between nodes. It has been shown
that the diameter of a graph, é,4x, (i.€. the maximum distance between pairs of
nodes) is given by (Bollobas, 2001)

(1.5)

InN
=—. 1.6
57"0/’1 1n<k) ( )
Similarly, one expects that the average distance between nodes (or average path
length), d, is given by the same scaling

InN
In(k)’

dran X

(1.7)
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that is, that although the precise values of the average distance and the diameter
are not the same, their dependence on the main parameters of the network will
indeed coincide. It is worth noting that, fixed (k), the increase of the average
distance (or diameter) with the size of the system is very slow. For example,
for a network with N = 10° nodes, the average distance is only double than in
a network of size N = 103,

Finally, we consider the so-called “clustering coefficient”, that measures
the transitivity of the links: if A is connected to S and to T, the clustering
coefficient, C, is the probability that S is also connected to T (Wasserman and
Faust, 1994, Watts and Strogatz, 1998). Consider a node ¢ having degree k;.
The maximum number of links between its neighbors is k;(k; — 1)/2 and the
clustering coefficient of that node is

2E;
ki(ki — 1)
where F; is the actual number of links between neighbors. The clustering

coefficient of the network C' is the average of all individual C';’s. In a random
graph, since links are established independently with probability p, C; = p and

C; = (1.8)

(k)
=, 1.9
Cran N ( )
Therefore, for relatively large networks the clustering coefficient becomes very
small.

2.2  Regular lattices

Regular lattices are much simpler than random graphs, and one can easily
compute the quantities that we have discussed in the previous section: degree
distribution, average path length and clustering coefficient.

Consider the 1-dimensional (1D) and 2-dimensional (2D) lattices depicted in
figure 1.5, where nodes have been linked to first and second nearest neighbors.
Clearly, all the nodes have the same connectivity (at least when periodic bound-
ary conditions are considered or when the size of the system is large enough so
that boundary effects can be disregarded). Therefore the degree distribution is
1 for a given value of k£ and 0 otherwise.

Regarding the average path length, it is known that

dreg x N1/P (1.10)

where N is, again, the number of nodes and D isthe dimension of the embedding
space. Compared to the case of the random graph, this potential growth is very
fast. Recalling the example of the previous section, for a network with N = 106
nodes, the average distance would be 1000 times larger than in a network of
size N = 103 in the 1D case, and more than 30 times larger in 2D.
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Figure 1.5. Low dimensional regular lattices with nodes connected to first and second nearest
neighbors: (a) n-dimensional lattice and (b) two-dimensional lattice

Finally we consider the clustering coefficient. Since a high fraction of neigh-
bors of a particular node are connected to each other, C' will be large, that is
close to 1. Moreover, for large enough systems C will not depend on N and
therefore we have

Creg ~ 1. (1.11)

Again, this behavior is opposite to what happens in random graphs.

2.3 Small-world behavior

As already explained, before the seminal paper of Watts and Strogatz in
1998 (Watts and Strogatz, 1998), most of the systems were modeled either
as completely regular or completely random. One of the main findings of
this paper was to show that many real networks have properties of random
graphs and properties of regular low dimensional lattices. In particular, real
networks usually show average path lengths similar to those of a random graph,
but clustering coefficients that are much larger than expected for this sort of
networks. This behavior is known since then as “small world” behavior. Table
1.1 shows the average path length and clustering for some networks reported in
the literature and the corresponding comparison with the values expected for a
completely random graph.

Beyond realizing that, even for simple properties such as the average path
length or the clustering coefficient, simple network models fail to reproduce real
world networks, Watts and Strogatz hypothesized a mechanism leading to the
small world phenomenon. The idea of their model is very simple. To fix ideas,
consider a social network. In a social system, it is plausible that individuals
lay in a low dimensional social space where nodes are connected to nearest
neighbors. For instance, people living in the same town are more likely to be
connected to one another than to other individuals living in a different town;
people having a degree in philology are more likely to be connected to one
another than to people with a degree in biology; etc. However, there is a certain
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Net Size (k) d dran C Chran Reference
1 225 226 61 3.65 299 0.79 0.00027 (Watts and Strogatz, 1998)
2 52 909 9.7 59 479 0.43 0.00018  (Newman, 2001b)
3 1520 251 18.1 4.6 491 0.066  0.000011 (Newman, 2001b)
4 315 28.3 262 198 0.59 0.09 (Wagner and Fell, 2000)
5 460902 70.13 267 3.03 0437 0.0001 (Ferrer and Sole, 2001)
6 4941 2.67 187 124 0.08 0.005 (Watts and Strogatz, 1998)
7 282 14 265 225 0.28 0.05 (Watts and Strogatz, 1998)
8 153127 3521 3.1 335 0.1078 0.00023 (Adamic, 1999)

Table1.1. Valuesofthesize, average connectivity, average path length and clustering coefficient
for various real world networks, and comparison with the corresponding values of a random
graph. 1. Movie actors; 2. LANL co-authorship; 3. MEDLINE co-authorship; 4. E. coli
reaction graph; 5. Words coocurrence; 6. Power grid of the USA; 7. Neural network of the C.
elegans; 8. World-Wide Web.

Making connections

B

i rebwark : 1 setwork
connections to 4 nearest neighbours  a few long-range con

cted haphazardly

Srral-world re

Figure 1.6. The small world model of Watts and Strogatz. Starting from a low dimensional
regular lattice (left), some links are randomly rewired. When the fraction of rewired links is
small (center) the network still has the low dimensional structure and a high clustering coefficient,
but the rewired links act as shortcuts reducing the average distance between nodes . When the
fraction of rewired links is high (right) the graph is completely random.

probability that a person knows another person living at 20000km from his or
her hometown, or of a biologist knowing a philologist, for example. This links
can be seen as long range links in the social space. Therefore, roughly speaking,
a social network would look like a combination of a low dimensional (more or
less) regular social space plus some long range links. Watts and Strogatz put
these two ingredients in a very stylized model (figure 1.6). Nodes (individuals,
chemicals, computers, etc.) are assumed to be located initially in a regular
low dimensional space, say 1D. Then, with a certain probability p, each link
is rewired at random, in such a way that for p = 0 we recover the regular low
dimensional lattice, and for p = 1 one obtains a completely random network.
For small values of p such that pN ~ 1 (in 1D), the clustering coefficient is
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still high because most of the links are still established with neighbors in the
low dimensional lattice (figure 1.6). However, some random long range links
acting as shortcuts start to appear and the average path length between nodes
decreases dramatically, reaching a regime where d scales as In IV as in a random
graph.

2.4  Degree distribution: scale free networks and growth
constrains

The paper by Watts and Strogatz (WS) showed the inability of traditional
models to capture the complexity of real world networks and proposed a con-
ceptual framework to understand the small world behavior observed in fields
as diverse as biology, sociology and engineering. However, the model is too
simple to capture all the complexity observed in real networks.

The first important shortcoming of the model was found in the degree dis-
tribution. As in the case of ER random graphs, WS graphs show a degree
distribution that decays very fast (as a Gaussian function) for values k of the
degree larger than (k). Surprisingly, many real world networks show a highly
skewed degree distribution, usually with power law tails

p(k) oc k77, (1.12)

as shown in figure A.3. This fact indicates that high degree nodes, with &
being orders of magnitude larger than (k), are present in the network. In other
words, real networks are much less homogeneous than expected from all models
presented so far (regular, ER and WS).

The power law dependence of the degree distribution is certainly surpris-
ing, and networks with such a degree distribution have been called scale-free
networks. In physical sciences, the appearance of power laws is usually re-
lated to the proximity of a critical point with the corresponding emerging scale
invariance (Stanley, 1987). However, there are many other mechanisms that
have nothing to do with criticality and that can lead to power law distributions.
Significantly, multiplicative processes have been proposed as the underlying
mechanism generating power law distributions in many systems in biology,
sociology and economy (ljiri and Simon, 1977). In a multiplicative process,
the size of the variables is incremented by an amount which is proportional
to this size. Barabasi and Albert proposed a model to explain the ubiquity of
scale-free networks (Barabasi and Albert, 1999) that is, indeed, a multiplicative
model. They identified two main ingredients in the formation of real complex
networks: growth and preferential linking. First, they realized that many net-
works (and particularly the Internet) are subject to a continuous growth process
by the introduction of new nodes and links. Second, they postulated that when
new links are established, they are often directed to those nodes that are already
highly connected: in communication networks, establishing links with highly
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Figure 1.7. Scale free degree distribution of several real networks. Note that in a log-log scale,
a power law becomes a straight line whose slope is the exponent of the power law. (a) Internet.
(b) Movie actor collaboration network. (c) Co-authorship network of high-energy physicists.
(d) Co-authorship network of neuroscientists. The figure has been taken from (Barabasi, 2002),
publicly available at http://xxx.arxiv.org/abs/cond-mat/0106096

connected nodes can be good because they act as hubs; in social networks,
highly connected individuals can be though as having an important social role
and it can be useful to connect to them; etc. The Barabasi-Albert (BA) model
combines these two ingredients in the following way. Consider an initial small
set of nodes connected to each other. Then, at each time step, add a new node
to the network. When a new node is added, it establishes m links with already
existing nodes, in such a way that nodes with high degree have a high proba-
bility of being linked. In particular, a node i with degree k; has a probability of
being linked, IT;, given by
Zj k;

It has been shown (Dorogovtsev et al., 2000, Krapivsky et al., 2000) that this
process generates a network whose degrees are power law distributed

IT;

(1.13)

_ 2m(m+1) _
P(k) = k(k+ 0)(k+2) L (1.14)

Moreover, the exponent o = 3 is similar to the exponent observed in most
scale-free networks. Many works have shown that slight modifications of the
BA model yield a continuum of exponents from o = 2 to a = cc.
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After the discovery of scale-free networks, many systems were reported to
show scale-free topology. However, not all real complex networks are scale-
free. In some situations, preferential attachment simply does not work, but
even when preferential attachment is the mechanism driving the formation and
growth of the network there are usually restrictions that prevent the network
from being scale-free. Amaral and coworkers (Amaral et al., 2000) showed
that small-world networks can be classified in three groups according to their
degree distribution: scale-free networks (with power law degree distributions),
single scale networks (with exponential or Gaussian degree distributions) and
broad-scale networks (with degree distributions that show a power law region
followed by an exponential or Gaussian cutoff). Moreover, they discussed
that the existence of costs or restrictions in the establishment of links is the
responsible for the existence of a well defined scale in single-scale networks and
for the truncation of the scale-free behavior in broad-scale networks. Consider,
for example, the network of world airports, where every node corresponds to a
city and two cities are connected by a link if there is at least one direct flight
connecting them. Although for reasons of efficiency it is good to have a small
number of hubs connecting all flights, because of space and time constrains it
is impossible for an airport to become the hub of all companies in the world.
These sort of limitations prevent many real networks from being scale-free.

2.5  Percolation theory: fragility and robustness of complex
networks

The topological properties discussed so far have important consequences in
the behavior of real complex networks. One of the most relevant consequences
of the topology of the network is its fragility or robustness against the removal
of some of its nodes or, in other words, its vulnerability.

The effect of node or link removal on regular lattices has been studied within
percolation theory (Stauffer and Aharony, 1992). Consider, for example, a large
square lattice where every node is connected to its four nearest neighbors. Then,
start to remove nodes (an the corresponding links) randomly. When the fraction
of removed nodes, f, is small, the network will still essentially be formed by
one big cluster containing a finite fraction of the nodes in the network, the main
component, although some small groups of nodes will become disconnected
form the rest. Conversely, when f is very large all the nodes will belong to
small clusters. The transition from the former state, in which there is a main
component, to the last state, in which all nodes belong to small clusters, is called
the “percolation transition”, and occurs suddenly for a critical fraction f..6 The

8Strictly, the transition is only sudden in the so-called thermodynamic limit, that is, when the size of the
systems tends to infinity.
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Figure 1.8. Percolationtransitionina2D lattice. Lattice below (a) and above (b) the percolation
point f.. Each cluster is plotted in a different color. Below the percolation point the main
component comprises almost all nodes in the lattice, while above f. only small clusters are left.
(c) The top panel shows the behavior of the fraction of nodes belonging to the main component,
S, as a function of the fraction of removed nodes, f. The bottom panel shows the average size
of the remaining clusters, {s), as a function of f. Different lines correspond to different system
sizes: 100 x 100 (dotted line), 200 x 200 (dashed line), and 300 x 300 (full line). As the
system size grows, the order parameter, S, shows a sharp decay around f. = 0.4073 and the
susceptibility, (s), develops a peak around the same value.

transition is properly characterized defining two quantities: the fraction of nodes
that belong to the largest cluster in the network, S, and the average size of all
the other clusters, (s). The first, S, is close to 1 for small values of f, since
most of the nodes belong to the main component. Conversely, for f > f., S
is very close to 0, since all the clusters left are very small. Regarding (s), for
f — 0 the few nodes that do not belong to the main component are essentially
isolated and (s) =~ 1. Similarly, for f — 1 all nodes are isolated and (s) =~ 1.
Near the critical point f., the main component is broken, some large clusters
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Figure 1.9. Effect of random removal (dashed line) and directed attack (full line) of nodes in:
() ER random graphs and (b) BA scale-free networks. In both cases, the size of the network is
N = 10000 and (k) = 4. While the BA network is slightly more robust against random removal
of nodes, it is significantly more sensitive to directed attacks of the most connected nodes.

are left, and (s) > 1. Therefore, at f., S becomes 0 and (s) has a peak, as
shown in figure 1.8. The percolation transition turns out to be a phase transition
in which S and (s) play the role of the order parameter and the susceptibility
respectively.’

Similarly, one can study percolation-related properties of complex networks,
which will give an idea about their robustness against failure or intentional
removal of nodes. Albert and coworkers (Albert et al., 2000) found important
results. First, they showed that when nodes are removed randomly, BA scale-
free networks are slightly more robust than ER random graphs, that is, for
BA networks it is more difficult to break the main component (figure 1.9).
Analytical results have confirmed the resilience of scale-free networks in front
of random failure of the nodes (Cohen et al., 2000): when the exponent of the
degree distribution is o < 3 the percolation transition never occurs, meaning
that for any value of f there is always a main component.

Conversely, the effect of “directed attacks” can be very destructive in scale-
free networks. Consider now that, instead of removing nodes at random, one
intentionally attacks those nodes with highest degree (Albert et al., 2000). As
indicated by the highly skewed degree distribution, the most connected nodes
in a scale-free network concentrate an important fraction of the total number of
links. Therefore, the removal of these nodes will destroy the main component

A classical book on phase transitions is (Stanley, 1987).
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very fast (figure 1.9). This effect is less important in ER random graphs. There
are also analytical results supporting these findings (Cohen et al., 2001).

3. Scope of the work

The aim of the present work is to obtain a deeper understanding about com-
munication processes and apply it to the study, design and redesign of organiza-
tions. The problem of getting insights into communication processes is tackled
from a double perspective: theoretical and empirical.

From the theoretical perspective, a model for communication and informa-
tion processing is presented. Inthe model, task heterogeneity and specialization
are present and communication arises due to the need for solving problems that
are unknown. Although in this sense the model is closer to Garicano’s, the
precise formulation of the model is similar to Radner’s. The organization (or,
in general, the communication network) is immerse in an environment that
generates “problems” that need to be solved by the organization. Therefore,
individuals send and receive problems that travel through the network in form
of packets or information items. Unlike all the models discussed in this intro-
duction, the arrival of packets and the communication process itself are subject
to randomness. Actually, Radner already stressed the potential importance of
considering the effects of randomness (Radner, 1993):

The decentralization of information typically implies that the amount of data in a cohort

is subject to stochastic variation, a circumstance that gives rise to stochastic queuing in
the network of processors.

The presence of stochasticity in the model makes the tools of statistical
mechanics particularly useful. The model has been studied from this perspective
(Arenasetal., 2001, Guimeraetal., 2001a, Guimeraetal., 2002a) and the results
are presented in chapter 2.

Next, we move to the question of finding optimal network structures. Con-
sider a situation in which agents do not have a complete knowledge of the
structure of the network and therefore do not know exactly to whom they should
address a packet once they receive it. This scenario is adequate in situations
where employees are constantly subject to the arrival of new problems (new in
the sense that they have not been faced before) or simply when being aware of
the knowledge sets of each agent (using the Garicano’s language) is a scarce
result. In such a situation, the problem on network congestion as described
before is superposed to the problem of local search and, in general, there is a
trade-off between the first—that benefits from network decentralization—and
the second—that requires centralization so that information is available through
central nodes. Like the works in the economics literature, we focus on find-
ing structures that minimize the average delivery time of the packets, but we
proceed by exhaustive numerical calculation. First the search is restricted to
particular families of networks (Guimera et al., 2001b) and finally we look for
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global optimal networks without any restriction (Guimera et al., 2002¢). This
results are discussed in chapter 3.

In chapter 4 we take a complementary approach to unravel the role of com-
munication and information processing in organizations. We present a large
scale empirical analysis of the real communication network of an organization
with about 1,700 employees (Guimera et al., 2002b). Using tools from complex
networks theory it is possible extract information which is valuable from man-
agerial and fundamental points of view. These results, as well as the techniques
used to obtain them, are explained in chapter 4. Another real communication
network is studied in appendix A (Guardiola et al., 2002).

Concluding remarks and perspectives for future work are given in the last
chapter of the work.






Chapter 2

MODELING OF
COMMUNICATION PROCESSES

As explained in the first chapter, it seems clear that the modeling of com-
munication processes should provide valuable hints about which organizational
structures are more adequate in agiven environment. Although this has been un-
derstood by economists and there is a complete corpus of work in the economics
literature devoted to address the relation between communication efficiency and
organizational design (Radner, 1993, Bolton and Dewatripont, 1994, Van Zandt,
1998, Garicano, 2000), a stochastic microscopic model for general communi-
cation processes, describing how communication between individuals actually
occurs, is still lacking. By microscopic we mean a model that is defined through
a set of rules that prescribe the behavior of the atoms, in this case the commu-
nication agents and packets.

In the field of computer science and, in particular, of artificial intelligence,
there has been an important effort to model organizations formed by complex
intelligent agents from a microscopic perspective (Prietula et al., 1998). Agents
act according to quite exhaustive sets of rules that determine how decisions are
taken based on information inputs received from the other agents and also from
the environment. Within this approach, however, it is difficult to deal with
large numbers of agents due to the complexity of each one of these agents:
the behavior of each agent depends on a large collection of variables. On the
other hand, the great level of detail used in the definition of the agents makes
the models and the conclusions drawn from them very specific and problem
dependent.

The approach taken in this work lies somewhere between the abstract eco-
nomics approach and the very detailed artificial intelligence approach. Al-
though a microscopic model is proposed as in the artificial intelligence ap-
proach, the rules that the agents apply are intended to be as simple as possible
to allow settings with large number of agents. Therefore, the interesting out-

23
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put of the model is not the particular behavior of one node but the aggregated
emergent behavior of the collective of agents. This emergent behavior can be
understood using tools taken from statistical mechanics. Similar models exist
for computer based communication networks such as the Internet (Tretyakov
etal., 1998, Ohira and Sawatari, 1998, Sole and Valverde, 2001), but the models
are restricted to the very particular behaviors of simple computer queues where
packets are delivered according to very simple rules.

Section 1 presents the basic communication model in hierarchical networks
and discusses its main properties. Section 2 is devoted to discuss various pos-
sible extension of the model.

1.  Model for communication processes in hierarchical
networks

The model assumes that agents are connected by communication channels.
Agents and channels constitute the physical support for the communication
process, which can be mapped onto a graph where nodes represent agents and
links between nodes represent communication channels. This physical support
remains fixed in time, although it is possible to compare different commu-
nication network structures in different simulations of the model. As a first
step, this section considers only hierarchical networks which seem to be the
basic structure underlying complex organizational systems, even when real or-
ganizations tend to more decentralized charts (Warnecke, 1993). Hierarchical
networks have also been used in the economics literature to model organizations
(Radner, 1993, Bolton and Dewatripont, 1994). Actually, as described latter
in chapter 4, the structure of real complex organizations can be mapped onto
graphs which are, in general, far from being strictly hierarchical. However, hi-
erarchical networks provide a zeroth order approximation to real structures. To
check the generality and limitations of the conclusions drawn for hierarchical
networks, the model is extended to other topologies in the last section of the
present chapter.

Beyond the physical support for the communication process, the information
itself, the object of the communication process, is needed. The model considers
that the information is formed by discrete packets that are sent from an origin
node to a destination node. Each node can store as many information packets
as needed. However, the capacity of nodes to deliver information cannot be
infinite. In other words, any realistic model of communication must consider
that delivering, for instance, two information packets takes more time than
delivering just one packet. A particular example of this would be to assume
that nodes are able to deliver one (or any constant number) information packet
per time step independently of their load, as happens in the communication
model by Radner (Radner, 1993) and in simple models of computer queues
(Tretyakov et al., 1998, Ohira and Sawatari, 1998, Sole and Valverde, 2001),
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Figure 2.1. Typical hierarchical tree structure used for simulations and calculations: in partic-
ular, itis a tree (3, 4). Dashed line: definition of branch, as used for some of the calculations.

but note that many alternative situations are possible. In the present model,
each node has a certain capability that defines how long does it take on average
to deliver a single packet and decreases as the number of accumulated packets
at the node—or load—increases. This limitation in the capability of agents to
deliver information can result in congestion of the network. Indeed, when the
amount of information is too large, agents are not able to handle all the packets
and some of them remain undelivered for extremely long periods of time. The
maximum amount of information that a network can manage gives a measure
of the adequacy of its organizational structure. In the study of the model, the
interest is focused in both when the congestion occurs and how it occurs.

1.1  Description of the model

As explained in the previous section, the model has three basic components:
(i) the physical support for the communication process—agents and communi-
cation channels—, (ii) the discrete information packets that are interchanged,
and (iii) the limited capability of the agents to handle such packets.

The communication network is mapped onto a hierarchical Cayley tree as
depicted in figure 2.1 where nodes mimic the communicating agents (employees
in the company or, in other scenarios, routers and servers in a computer network,
etc.) and the links between them represent communication lines. Cayley trees
are identified by their branching z and their number of generations or levels m,
and will be hereafter denoted by (z, m).

The dynamics of the model is as follows. At each time step ¢, an information
packet is created at every node with probability p. Therefore p is the control
parameter: small values of p correspond to low density of packets and high
values of p correspond to high density of packets. When a new packet is
created, a destination node, different from the origin, is chosen randomly in the
network. Thus, during the following time steps ¢ + 1, t + 2,..., t + T, the
packet travels toward its destination. Once the packet reaches the destination
node, it is delivered and disappears from the network. Another interpretation
is possible for this information transfer scenario. Packets can be regarded as
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problems that arise at a certain ratio anywhere in the company. When one of
such problems arises, it must be solved by an arbitrary agent of the network.
Thus, in subsequent time steps the problem flows toward its solution until it is
actually solved. This problem solving scenario can be considered a particular
illustrative case of the more general information transfer scenario. The problem
solving interpretation suggests a model similar to Garicano’s (Garicano, 2000)
in that there is task diversity and agents are specialized in solving only certain
types of tasks.

The organization will be regarded as hierarchical not only from a bureaucratic
point of view but also from a knowledge point of view. It is assumed in the
model that agents have complete knowledge of the structure of the network in
the subbranch below them. Therefore, when an agent receives a packet, he or
she can evaluate whether the destination is to be found somewhere below. If so,
the packet is sent in the right direction; otherwise, the agent sends the packet
to his or her supervisor. Using this simple routing algorithm, the packets travel
always following the shortest path between their origin and their destination.

The time that a packet remains in the network is related not only to the
distance between the source and the target nodes, but also to the amount of
packets in its path. Indeed, nodes with high loads—i.e. high quantities of
accumulated packets—will need long times to deliver the packets or, in other
words, it will take long times for packets to cross regions of the network that
are highly congested. In particular, at each time step, all the packets move from
their current position, 4, to the next node in their path, j, with a probability g;;.
This probability g;; is called the quality of the channel between 7 and j, and is

defined in as
qij = \/kik; , (2.1)

where k; represents the capability of agent < and, in general, changes in time.
Note that the capability of a node gives information about how each one of the
individual packets accumulated at the node will be delivered. The quality of
a channel is, thus, the geometric average of the capabilities of the two nodes
involved, so that when one of the agents has capability 0, the channel is disabled.
High qualities (¢;; ~ 1) imply that packets move easily while low qualities
(gi; =~ 0) imply that it takes a long time for a packet to jump from one node to
the next. The algorithmic representation of the model is as follows:

1 Start with a network with no packets at time ¢ = 0.
2 For each node in the network:

m Create a packet with probability p. When the packet is created, its
destination is fixed at random.

3 For all the packets in the network:
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= Determine the next node in the path and the quality of the corresponding
channel, g;;.

= Generate a random number r € [0,1]. If r < g;;, move the packet to
the next node.

m If the packet has arrived to its destination, remove it from the network.
4 Increase time t <— ¢t + 1 and repeat from 2.

It is assumed that k; depends only on the number of packets at node 4, v;,
through:

ki = f(vi) (22)

The function f(n) determines how the capability evolves when the number of
packets at a given node changes. We propose a general form

1 for v=0

f(”):{ v=¢  for v=1,2.3,... (2.3)

with ¢ > 0. Equation (2.3) defines a complete collection of models with agents
that behave qualitatively different depending on the exponent &.

The election of this functional forms for the quality of the channels and
the capability of the nodes is arbitrary. Regarding the first, equation (2.1) is
plausible for situations in which an effort is needed from both agents involved
in the communication process. For instance, this is true if information is to be
transmitted during a face to face meeting. If, on the contrary, information can
be transmitted without the collaboration of the receiver, an equation of the form

gij = ki, (2.4)

would be more adequate. This would be the case, for instance, in an e-mail
communication, where the receiver does not play an active role, and an arbitrary
amount of e-mails can be received, but not sent, without any time cost. Equation
(2.4) will be used for analytical understanding of the problem in chapter 3, but
for the moment the interest is focused in (2.1). Most of the relevant features of
the model, however, do not depend on this election.

Regarding the election of (2.3) for the capability of the nodes, it will be
shown to give rise to a general enough phenomenology. Indeed, the average
number of packets delivered during one time step by a node 4 to another node
j, Vij, is

Vij = Quigij = al/i/(uf/Quf-/Q) , (2.5)

where « represents the fraction of nodes at ¢ that are trying to jump to j.
Assuming that v; o v; the former expression is proportional to uil_é. The
proportionality is exact, as shown later, not only in the hierarchical lattice
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but also in other topologies. Therefore, for & < 1 the number of delivered
packets increases with the number of accumulated packets. For & > 1 the
number of delivered packets decreases as the number of accumulated packets
increases. Finally, for the particular case £ = 1, the number of delivered
packets is independent of the number of accumulated packets. These three
behaviors correspond to agents that react qualitatively different against load.
The first case £ < 1 correspond to agents that increase their efficiency as their
load increase. Although it might be difficult to find such a situation in real
communication environments, it is possible to justify it from a psychological
point of view, considering that agents react to an increased pressure with a
higher performance. On the other extreme, & > 1 represents agents that get
stressed when the pressure increases, a situation which is also understandable
from a psychological point of view. Finally, £ = 1 correspond to agents that do
not react against pressure and therefore their performance is unaltered. Note
that this particular case is consistent with simple models of computer queues
(Ohira and Sawatari, 1998), although the precise definition of the models may
differ from ours.

1.2 Communication dynamics

It has been shown that the cases ¢ < 1, £ = 1 and £ > 1 correspond to
qualitatively different behaviors of the agents. As a consequence, each of them
results in a completely different phenomenology.

For & > 1, the number of transmitted packets decreases as v; grows. For
very small values of the probability of packet generation per node and time
step, p, packets are generated only rarely and they can travel freely to their
destination without encountering other packets in their path. Therefore all the
packets are delivered and the average total number of packets in the network,
N =}, v;, remains constant. For slightly higher values of p, all the packets
are still delivered to their destination and, after a transient, the system reaches
a steady state in which IV fluctuates around a constant value. However, if we
continue to increase p, at some point the total number of packets will be so large
that the network will not be able to handle them, N will increase continuously
and, at the end, no packets at all will be delivered to their destination. This
state in which some packets are accumulated in the network at each time step
is referred to as congested.

On the contrary, for ¢ < 1, the number of transmitted packets grows with v;.
Thus, the number of delivered packets increases with N until an equilibrium
between generated and delivered packets is reached: at this point, N remains
constant (except fluctuations).

In the case & = 1, the number of delivered packets is constant irrespective of
the number of stored packets. This particular behavior is less obvious and will
be treated accurately from the viewpoint of critical systems. The remaining of
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Figure 2.2. Evolution of the total number of packets, IV, as a function of time for a (5,7) Cayley
tree and different values of p, below the critical congestion point (p = 1.1-10™* < p.), above
the critical congestion point (p = 1.5 - 10™* > p,), and close to the critical congestion point
(p =1.3-10"* ~ p.). Note the logarithmic scale in the Y axis.

section 1 and most of section 2 assume £ = 1, and the discussion of the other
cases in some more detail is left for section 2.3.2.

121 Congestion and network capacity

Consider, thus, the case ¢ = 1. Depending on the ratio of generation of
packets p, two different behaviors are observed. When p is small, or in other
words when the amount of flowing packets is small, the network is able to
deliver, all the packets that are generated and, after a transient, the total load N
of the network achieves a stationary state and fluctuates around a constant value.
These fluctuations are indeed quite small. Conversely, when p is large enough
the number of generated packets is larger than the number of packets that the
network can manage to solve and the network enters a state of congestion. As
already noted, in the case £ = 1 the number of packets that a node can deliver at
any time step is independent of its load. Therefore, when the number of packets
that arrive to a node at each time step is, on average, larger than the number of
packets it is able to deliver some packets are accumulated. Therefore, N does
never reach the stationary state but grows indefinitely in time. The transition
from the free regime, p small, to the congested regime, p large, occurs for a
well defined value of p, that will be denoted by p.. For values smaller than but
close to p, the steady state is reached but large fluctuations arise. Moreover,
the correlation times of these correlations become also enormous.
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The three behaviors (free, congested and close to the transition) are depicted
in figure 2.2. For p < p., the width of the fluctuations is small, indicating
short characteristic times. This means, among other thinks, that the average
time required to deliver a packet to the destination is small. It also means that
time correlations are short, that is, the state of the network at one time step has
little influence on the state of the network only a few time steps latter. As p
approaches p., the fluctuations are wider and one can conclude that correlations
become important. In other words, as one approaches p. the time needed to
deliver a packet grows and the state of the network at one instant is determinant
for its state many time steps latter. In the congested regime, the amount of
delivered packets is independent of the load and thus remains constant along
time, while the number of generated packets is also constant, but larger that the
amount of delivered packets. Thus, at each time step the number of accumulated
packets is increased by a constant amount, and N (¢) grows linearly in time.

The transition from the free regime to the congested regime is therefore
captured by the slope of N (¢) in the stationary state. When all the packets are
delivered and there is no accumulation, the average slope is 0 while it is larger
than 0 for p > p.. We use this property to introduce an order parameter, 7,
that is able to characterize the transition from one regime to the other:

1 (AN)
n(p) = tirc?o pS At (26)
Inthisequation AN = N (t+At)—N (t), (.. .) indicates average over time win-
dows of width At¢ and S is the number of nodes in the system. These averages
can be over one or many realizations, yielding the same result. Essentially, the
order parameter represents the ratio between undelivered and generated packets
calculated at long enough times such that AN o At. Thus, 7 is only a function
of the probability of packet generation per node and time step, p. For p > pe,
the system collapses, (AN) grows linearly with At and thus 7 is a function
of ponly. Forp < p., (AN) = 0 and n = 0. The behavior of the order
parameter is shown in figure 2.3. Since the order parameter is continuous at p.,
the transition to congestion is a critical phenomena and p.. is a critical point as
usually defined in statistical physics (Stanley, 1987).

Once the transition is characterized, the first issue that deserves attention is
the location of the transition point p. as a function of the parameters of the
hierarchical lattice. This transition point gives information about the capacity
of a given network. Indeed, the maximum number of packets that a network
can handle per time step will be N, = Sp.. Therefore, p. is a measure of
the amount of information an organization is able to handle and thus of the
adequacy of a given organizational structure. One reasonable problem to put is,
therefore, which is the network that maximizes p. fixed a certain set of available
resources (agents and links).
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Figure 2.3. Behavior of the order parameter. The solid line corresponds to the analytical
calculation for two nodes exchanging information packets (equation (2.11)). Symbols correspond
to simulations performed on different Cayley trees.

It is possible to estimate numerically the value of p.. One possibility would
be to observe the plot N (¢) and determine when the slope in the steady state is
different from 0. However, due to the existence of large fluctuations arising near
the critical point, it is difficult to establish precisely the location of p.. For a
better estimation of the transition point, it is possible to take advantage of these
fluctuations, the idea being that the fluctuations diverge at the critical point p..
A susceptibility-like function x(p) can be defined by analogy with equilibrium
thermal critical phenomena (Stanley, 1987, Binder, 1987), and used to estimate
more accurately the value of the critical probability of packet generation, p..
The susceptibility  is related to the fluctuations of the order parameter by

x(p) = Tlim Toy(T) (2.7)
— 00

where T is the width of a time window, and ¢, (7") is the standard deviation
of the order parameter estimated from the analysis of many different time win-
dows of width 7". Thus a calculation implies a long realization of N (¢), its
division into windows of width T, calculation of the average value of the order
parameter in each window and finally the determination of the standard devia-
tion of these values. As shown in figure 2.4, the susceptibility has a peak at p..
This peak becomes sharper as T" grows, as expected, and allows a quite precise
determination of the transition point.

1.2.2 Analytical estimation of the transition point

As happens in other problems in statistical physics (Stauffer and Aharony,
1992), the particular symmetry of the hierarchical tree allows an analytical
estimation of the critical point p.. In particular, the approach taken here is
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Figure 2.4. Susceptibility for a (5,4) Cayley tree, for different time windows 7. The vertical
dotted line corresponds to the mean field calculation of the critical point in equation (2.9).

mean field in the sense that fluctuations are disregarded and only average values
are considered. Since in the steady state regime there is no accumulation of
packets, the number of packets arriving to the top of the hierarchical structure
(level 1) per time unit, ©{, is, on average, equal to the number of packets that
are created in one branch of the network and have their destination in a different
branch (see figure 2.1). Since the origin and the destination of the packets are
chosen at random, from purely geometric considerations it is straightforward
to estimate this number of packets per unit time as:

— 2
vi=p (u + 1) . (2.8)

z2m—1

Within this mean field approach, it can be easily shown that it is indeed the top
node which is the most congested.

On the other hand, in our mean field calculation ¢15 is the average probability
that a given packet moves from one of the nodes in the second level to the top
node and vice versal, and is given, as a first approximation, by g = 1/\/vivs,
where vy is the average number of packets at level one and v5 is the average
number of packets at each of the z nodes in the second level. Thus the average
number of packets leaving the top at each time step will be v} = v1¢y9, and
the average number of packets going from the z nodes in the second level to
the top will be v§ = zaraqi2, Where « stands for the fraction of packets in
the second level that are trying to go up (some of the packets in level 2 are, of
course, trying to go down to level 3).

INote that, within the mean field approach, all the nodes at the second level are equivalent
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At the critical point the top agent becomes collapsed and the communica-
tions between the first and the second level are much more congested than the
communications between levels 2 and 3 so one can assume that « ~ 1. At
this point, by imposing the steady state condition »¢ = v} one arrives to the
relations v = zv, and v{ = /z. Using equation (2.8), the final expression for

pe 1S Obtained:
z
Pc = ﬁ (2.9)

zm—1 +1

Although strictly speaking the condition « = 1 provides an upper bound to
Pe, €quation (2.9) is an excellent approximation for z > 3, as depicted in figure
2.5.

The critical total number of generated packets, N. = p.S, with S standing
for the size of the system, can be approximated, for large enough values of z
and m such that z™ ! > 1, by

43/2

Ne=——
c Z—]_’

which is independent of the number of levels in the tree. It suggests that the
behavior of the top node is only affected by the total number of packets arriving
from each node of the second level, which is consistent with the mean field
hypothesis.

According to equation (2.10), the total number of packets a network can deal
with, N, is a monotonically increasing function of z, suggesting that, fixed the

(2.10)
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number of agents in the organization, S, the optimal organizational structure,
understood as the structure with higher capacity to handle information, is the
flattest one, withm =2and z = § — 1.

To understand this result it is necessary to take into account the following
considerations:

= \We are restricting our comparison only to different hierarchical networks
and in any hierarchical network, the top node will receive most of the pack-
ets. Since origins and destinations are generated with uniform independent
probabilities, roughly (z — 1)/z of the packets will pass through the top
node. Therefore, although it might seem that in a flat hierarchy the top
node receives much higher amount of packets, this turns out to be false. For
example, for a quite small value of the branching z = 5 the top node must
already process 80% of packets.

= Still, it could seem that having small z is slightly better according to the
previous consideration. However, it is important to note that, in the present
model (in particular due to equation (2.1)), the loads of both the sender
and the receiver are important to have a good communication quality. In a
network with small z, the nodes in the second level have also a high load,
while in a network with a high z the nodes in the second level are much less
loaded. This effect is responsible of the observed behavior and the situation
would change if the communication would only depend on the sender of the
packet as considered in the next chapter.

= \We have implicitly assumed that there is not any cost for an agent to have a
large amount of communication channels active. Thus, for the top agent it
is exactly the same to communicate with two agents every time step than to
communicate with 20 agents every time step. In section 2.2 we extend the
model to consider costly communication channels.

1.2.3 Analytical estimation of the order parameter

The behavior of the order parameter, which measures the ratio of accumula-
tion of packets, is studied next. It is possible to derive an analytical expression
for the simplest case where there are only two nodes that exchange packets.
Since from symmetry considerations v1 = vy, the average number of packets
eliminated in one time step is 2, while the number of generated packets is 2p.
Thus p. = 1 and with the present formulation of the model it is not possible
to reach the super-critical congested regime. However, p can be extended to
be the average number of generated packets per node at each step (instead of a
probability) and in this case it can actually be as large as needed. As a result,
the order parameter for the super-critical phase isn = (p — 1)/p. As observed
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in figure 2.3, the general form

n(p/pe) = 7’)/5/;: ! (2.11)

fits very accurately the behavior of the order parameter for any Cayley tree.

124 Power spectrum and characteristictime

Next we consider the behavior of the characteristic times of the system as
a function of the probability of packet generation per node and time step p.
By characteristic time we mean any time that is relevant in the behavior of the
system, including the average time to deliver a packet, the correlation time, etc.
From the theory of critical phenomena we know that any of these characteristic
times will behave in a similar way (Stanley, 1987).

Beyond the inherent interest of the study on the mean delay to deliver a
packet, for example, the understanding of the behavior of characteristic times
is interesting as it is related to other key quantities like the total load of the
network. Indeed, if 7 is the average time needed to deliver a packet and N is
the average load of the network,

= pS (2.12)

3=

from Little’s law of queuing theory (Allen, 1990). This law states that, in steady
state, the number of delivered packets and the number of generated packets are
equal. The number of delivered packets is simply the total amount of packets
N multiplied by the probability that a packet arrives to its destination in one
time step, that is 1/7.

Instead of studying directly the characteristic time, we consider its inverse
the characteristic frequency, f ~ 1/, by means of the power spectrum (i.e.
the square of the modulus of the Fourier transform) of the temporal series N (¢).
The analysis of the power spectrum shows that in the sub-critical regime, i.e.
in the free phase, the spectrum is well fitted by a Lorentzian characterized by a
frequency, f.. This means that the spectrum is flat—there are no correlations—
for frequencies smaller than f., that is, for long enough times. It is known that
Lorentzian power spectra correspond to exponentially decaying correlations
with a characteristic time 7. Figure 2.6 shows that, as p approaches p., fo — 0
and the power spectrum becomes 1/f2 for the whole range of frequencies.
Alternatively the characteristic time diverges: 7 — oo, meaning that packets
are essentially never delivered.

It is interesting to study how the characteristic frequency drops to 0 for each
network topology. Near the critical point, one expects the scaling behavior
(Stanley, 1987)

fc (&8 (pc - p)»y_ (213)
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(7,5) Cayley tree. Power spectra have been obtained averaging over 100 realizations of N (¢).
Dotted lines represent a power law with exponent -2. Right: Characteristic frequency as a
function of the control parameter e = (p. — p)/pc. As observed, the characteristic frequency
tends to 0 as p — p. following a power law. The straight lines correspond to fittings of equation
(2.13).

The value of the critical exponent -y can be estimated by fitting equation (2.13)
to values of f.(p) close enough to the critical point, as shown in figure 2.6.
Note that we fit p. and « simultaneously. This procedure yields very accurate
values of p. but the values of - are subject to large errors. Figure 2.6 yields
v = 2 for a (7,5) Cayley tree.

The determination of + is interesting not only from an academic point of
view, but also from an engineering perspective. As explained, this exponent is
related to divergences of other relevant quantities near the critical point. Any
characteristic time 7—the average time to deliver a packet, for instance—wiill
diverge as

7o (pe —p)7 (2.14)

and similarly the total number of packets

N o< (pe—p)7 (2.15)

The estimation of -~y is particularly interesting in electronic communication
protocols. Indeed, equation (2.14) is used to determine the waiting time before
a packet is considered lost in the network and therefore sent again (Jacobson,
1988). In practice, the exponent v = 1 predicted by classical queue theory
(Allen, 1990) is assumed, while our current results suggest that more complex
settings can lead to significantly different exponents.
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2.  Generalizations of the model

In the previous section we have introduced the simplest communication
model and have studied its main dynamical properties. The model can be
extended in many directions to account for a number of more realistic situa-
tions. In the following, we concentrate in some of these possible extensions and
their consequences regarding organization design. Note that these extensions
are independent of one another and they are only considered separately.

2.1  Agent heterogeneity

So far, it has been assumed that all agents in the network have the same
capability. However, in real situations some agents are more efficient than
others and, moreover, one individual work efficiently with some of his or her
colleagues and inefficiently with others due to personal reasons. This effect can
be taken into account in the model modifying equation (2.2) for the capability
of one agent. Now we consider that the capability of node 4 to communicate
with node j is

kij = G f (vi), (2.16)

where 0 < (;; < 1 is a number that characterizes the communication line
between 7 and j.

For simplicity, let us consider the case in which the variables (;; take random
values uniformly distributed in [0, 1]. A particular realization of these random
variables will result in a network configuration that will behave as the case
without disorder. For small values of p, the network will be in the free phase
and beyond a certain critical point p., the network will transit to the congested
phase. The main difference is that, now, due to the particularities of the pair
communications, the network will not collapse at the top node in general. How-
ever, the top node will still support the heaviest traffic and, therefore, it will be
optimum to place the node with highest capabilities in this position.

Now, we consider the average behavior of the system. Even for very small
values of p, a particular realization of the disorder can provoke a very weak
communication line and the congestion of the whole network. Thus there is
no transition controlled by p. However, it is still possible to define the order
parameter as in (2.6), just considering that the average (...) has to be taken
over time and over disorder realizations (figure 2.7).

Again, itis possible to obtain an analytical expression of the order parameter
in the case of two nodes. Asinthe ordered case, the number of packets generated
in atime step will be 2p. Now, however, for a particular realization, (15 and (51,
the maximum number of delivered packets will be 24/C12(o1. Thus, if {1901 >
p? the system will reach the steady state and the configuration will not contribute
to the order parameter, while if ¢19¢21 < p? the system will collapse and the

contribution will be 1¢,,¢,, = 1 — v/C1221/p.
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Figure 2.7. Order parameter in the case of agent heterogeneity. Symbols represent the same
structures than in figure 2.3. The bold line corresponds to the analytic prediction of equation
(2.19). The dotted line represents the critical behavior observed in the case without agent
heterogeneity.

Thus we can define:

qo0 for (i2€o1 > p?
n(p, C12,C21) = { 1—+C12Cot/p  for (ialar < p?

and the order parameter will be given by the average over the random variables:

(2.17)

1 1
n(p) = / dC1z / dCan(p, iz Con)- (2.18)
0 0

It is straightforward to obtain the result:

[ 1-4/(9p) for p>1
n(p) = { (502 —3p?Inp?) /9  for p<1 (2.19)

As depicted in figure 2.7, there is reasonable agreement between this analyt-
ical expression and the points obtained by simulation, always keeping in mind
the simplicity of our approach.

2.2  Costly communication channels

As it has been already discussed, in the basic model it turns out that the
hierarchical network that is able to cope with a largest amount of packets is
the flattest one with one top node and all the others directly connected to it.
However, from a practical point of view this structure is not possible: an orga-
nization with 10,000 employees, for instance, cannot be organized in only two
hierarchical levels, since it is impossible for the central node to maintain such a
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enormous number of communication lines. Thus, it is necessary to introduce a
cost for establishing links in order to get a more realistic picture of the problem.

Consider now a situation in which keeping communication channels open
has a certain cost even when there is no information transfer. This can be
introduced in the model modifying, again, equation (2.2) for the capability of
one agent. Consider, in particular, that

ki = Qr(ci) f(vi), (2.20)

where ¢; is the number of links or degree of agent 4, 0 < Qr(c) < lisa
cost factor related to these links (note that, the higher the number of links, the
smaller Q1,, S0 01, is a monotonically decreasing function of its argument), and
L is the linking capability that tunes the magnitude of this cost (higher values
of L correspond to low linking cost and vice versa).

In this case, following arguments analogous to those used in the case of
costless connections, we can arrive to the following expression for p..:

_ \/ZQL(Z)QL(Z + 1) . (2.21)

c z(zm71,1)2

2m—1 +1

Again, for z and m such that z™~! > 1, the maximum number of packets
that can be generated per time step without collapsing the system is independent
of m, and is given by

3/2 —1))1/2
N, 2 (Qu)Qulz — 1)) 77 (2.22)
z—1
Note that IV, is the maximum number of packets that one can generate at each
time step without collapsing the network and not the total load of the network

at pe.
To check the effect of the cost factor, we propose the following form for

QwL(c)

Qr(c) =1 — tanh % (2.23)

Although the election of @, is completely arbitrary, (2.23) has two desirable
properties: (i) it is a monotonically decreasing strictly positive function and
(ii) @, decreases linearly for small values of ¢ (compared to L). Also, Q
decreases faster for small values of L and vice versa.

As can be seen from figure 2.8, the scenario that arises with the introduction
of the cost factor is much more interesting. Now, the cost term compete with
the behavior we have found for the critical number of generated packets, N,
in the case of cost less connections. Thus, there is a maximum in N, related to
an optimum value of z, z*, which defines an optimal organizational structure
different from the trivial m =2and z = S — 1.
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Figure 2.8. Maximum number of packets that can be generated in an organization per time unit
without collapsing it, plotted as a function of z. Different curves correspond to different values
of the linking capability, L.

From an organizational point of view, L is related to the availability of com-
munication technology. When efficient communication technology is available,
then the cost for communication is low and L is large. Conversely, when the
communication technology is outdated and not efficient, L is small meaning
that it is expensive in terms of time to keep channels open. With this interpreta-
tion, our results suggest that when communication technologies are improved,
organizations should tend to more flattened charts or, in other words, to an
increase of the span of control of managers. This reduction of layers related
to the improvement of communication technologies has been observed in real
organizations (Batt, 1996).

2.3 Non hierarchical networks

As we have discussed, the hierarchical network is probably the best zeroth
order approximation to the communication network of an organization. How-
ever, this chapter is devoted to understanding the communication model and, at
least from this perspective, it is interesting to consider different network topolo-
gies. In particular, we will focus in one-dimensional (1D) and two-dimensional
(2D) regular lattices. In the first part of this section, we will compare the critical
dynamics of the communication process in the different networks when ¢ =1,
that is, in the communication model considered so far. In the second part, we
will study the non-critical cases ¢ < 1and ¢ > 1 that have not been considered
for the hierarchical lattice.
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231 Critical congestion behavior in 1D and 2D lattices

Similarly to what we have done for the hierarchical lattice, in this section
we will study the position of the congestion critical point and its dependence
on the size of the network, and the behavior of the order parameter and of
the characteristic time of the system. As before, packets are forced to follow
minimum paths from their origins to their destinations. In 1D lattices the
minimum path between origin and destination is unique as happened in the
hierarchical networks. However, in 2D lattices there are many such minimum
paths and one of them is chosen at random. As will be shown, the coexistence
of many possible paths is important for the dynamic behavior of the system.

As in the hierarchical network, it is possible to derive a mean field expression
of p. for the 1D lattice. Since the most congested node is, from symmetry
arguments, the central one—the node at £ = S/2—, the network will collapse
when the amount of packets received by this central node is higher than the
maximum number of packets that it is able to deliver. Since in a large enough
network it is safe to assume that the central node will be congested similarly to
its neighbors, vy_1 = vy = vy, 1, the maximum number of delivered packets
should be 1. On the other hand, the number of packets arriving to the central
node at each time step is the number of packets that are generated at each time
step at the left half of the network and have their destination at the right half
and conversely, this is pS/2. Then the critical condition is given by

IDS
1=F2 5 P =

2
5
Figure 2.9.b shows the excellent agreement between this equation and simula-
tion results.

For the 2D lattice it is more difficult to obtain even a mean field expression
for p.. However, since for 1D lattices and hierarchical trees the scaling relation
pe o< S~ holds, one may expect the same behavior for the 2D lattice. Using
the susceptibility to numerically determine p. from simulations, one finds that
this turns out to be incorrect. Although it is difficult to obtain a precise value
of the exponent, figure 2.9.d shows that it is close to 0.6 instead of 1.0:

(2.24)

p2P oc 8706, (2.25)

This result suggests that the existence of multiple paths to get from the origin
to the destination has important consequences, not only in shifting the value of
Pe, but actually changing its critical scaling behavior.

The behavior of the order parameter is studied next. As observed in figure
2.10, the general form

n(p/pe) = PP —— / 5 /Cp: ! (2.26)
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The line corresponds in (b) to the mean field estimation and in (d) is simply a power law fitting
of the points, that yields an exponent of -0.58.

obtained before fits very accurately the behavior of the order parameter not only
for trees butalso for any 1D lattice. Two-dimensional lattices again deviate from
this behavior, although the deviation is small.

Finally we consider the behavior of the characteristic times. The analysis of
the power spectrum shows that in the sub-critical regime, i.e. in the free phase,
the spectrum is well fitted by a Lorentzian characterized by a frequency, f.,
as happened in the hierarchical case (figure 2.11). Near the critical point, we
have seen that scaling behavior holds (equation (2.13)). As before, the value of
the critical exponent -y is estimated by fitting equation (2.13) to values of f.(p)
close enough to the critical point, as shown in figure 2.11. This procedure yields
v = 0.9 for a 1D network with S = 100, and v ~ 2.5 for a 2D network with
S = 7 x 7, which are different from the values obtained for the hierarchical
lattice.
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Figure 2.10. Behavior of the order parameter in the critical case for different network topolo-
gies. The solid line corresponds to the analytical calculation for two nodes exchanging in-
formation packets. Symbols correspond to simulations performed in 1D, 2D and hierarchical
lattices.

232 Noncritical casesé < 1and ¢ > 1

We have shown in section 1.1 that the number of packets delivered by node is
uil_f and thus, when ¢ < 1, itincreases with the number of packets that this node
accumulates. It is difficult to imagine a real scenario with this characteristic.
However, this case has been included to understand the critical behavior when
& = 1, i.e., to show the relationship between criticality and the amount of
packets that can be delivered when load increases. As a consequence of the
increase of the deliver capability with the load, the transition to collapse will
never occur because, at some point in time, the number of accumulated packets
will be large enough and the number of delivered and created packets will
balance each other. Thus, the order parameter will be zero for any value of the
control parameter p, and the correlations will decay exponentially. As shown
in figure 2.12, the characteristic frequency tends asymptotically to f as p
increases. This asymptotic value depends on the size of the system.

Fora 1D lattice with a high density of packets (o — 1), the number of packets
that are delivered by a node is uil_g while the number of packets that are being
delivered to this node is proportional to .S (for instance, for the central node,
this number is simply pS/2). Therefore, v; oc S/(1=€). The total number of
packets is N = 3=, v; ~ §1+1/(1=8) and according to Little’s Law

£ o %S x ST€ (2.27)
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Figure 2.11. Left: Log-Log plot of the power spectrum of N (t) for different values of the
control parameter e = (p. — p)/p. and for different topologies: the 1D case (S = 100) and
the 2D case (S = 7 x 7). Power spectra have been obtained averaging over 100 realizations of
N(t). Dotted lines represent a power law with exponent -2. Right: Characteristic frequency as
a function of the control parameter € for the different topologies. As observed, the characteristic
frequency tends to 0 as p — p. following a power law. The straight lines correspond to fittings
of equation (2.13).

On the other hand, for p — 0 the scaling of the characteristic frequency is
given by
fOoc st (2.28)

since the packets success to jump from one node to the next at all time steps,
and therefore the characteristic time is directly the average path length between
nodes. Therefore, although there is no phase transition in this case ¢ < 1, there
is a cross-over from a low density behavior to a high density behavior, as shown
in figure 2.12. This crossover is also observed in 2D lattices and Cayley trees.

The phase transition observed for £ = 1 is recovered when £ > 1. Above a
certain threshold, some packets are accumulated in the network and the order
parameter differs from 0. However, the number of packets delivered by a node
1 in this case £ > 1 decreases with the number of packets accumulated at that
node. Therefore, when some packets are accumulated, v; grows and finally
no packets are delivered at all. Thus suddenly above the transition, which is
discontinuous, the order parameter becomes 1.



Modeling ofcommunication processes 45

c

0.04

0.02

Characteristic frequency, f

I
.0 0.2

| L | L | L
0.4 0.6 0.8 1.0
Control parameter, p

o
o
=)

Figure 2.12. Characteristic frequency f. as a function of the probability of packet generation
p, for & = 0.2 and different sizes of a 1D lattice. As observed, f. never becomes 0 as happens in
the critical ¢ = 1 case. Inset: Characteristic frequency at p — 0, f2 (squares), and characteristic
frequency at large p, fx (circles). The lines represent the fittings provided by equation (2.28)
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The change in the order of the phase transition (from continuous to discon-
tinuous) affects the spreading of the collapse over the network. In the critical
case £ = 1, the collapse starts at the most central node and then spreads from
this point to the rest of the network. In this case ¢ > 1, the reinforcement
effect—the fact that the more collapsed a node is, the more collapsed will get
in the future—Ileads to the formation of many congestion nuclei generated by
fluctuations, that spread over the whole network. Figure 2.13 illustrates the
formation of these congestion nuclei for 2D lattices with ¢ = 5 and p = 0.001,
and £ =2and p = 0.01

3. Summary

After stressing the importance of communication and information process-
ing in the theoretical analysis of organizations, in this chapter we have proposed
and studied a simple and general collection of stochastic models for commu-
nication processes. The models include only the essential elements present in
a communication process between two elements: (i) information packets to be
transmitted (delivered), (ii) communication channels to transmit the packets,
and (iii) limited capability of agents to handle information packets. Despite
its simplicity, the model reproduces the main characteristics of the flow of in-
formation packets in a real environment. In particular, we focus in a scenario
where nodes are able to deliver on average a fixed number of packets per time
step independently of their load, and observe the appearance of long queues



46 ORGANIZATIONAL DESIGN AND COMMUNICATION NETWORKS

(@) (b)

Figure 2.13. Congestion nuclei formation for large 2D lattices with 200 x 200 nodes, in the
non critical case £ > 1. Dark regions represent regions with small congestion levels while
bright regions correspond to highly congested regions. (a) £ = 5and p = 0.001. (b) £ =2 and
p=0.01.

that give raise to delays in the delivery of the packets, and the emergence of
scale-free fluctuations in the total amount of information packets in the network,
as reported in empirical analysis of real communication networks.

The behavior of the model is tuned by a parameter, p, that represents the
probability of packet generation per node and time step. When p is small (close
to 0) there are only a few packets traveling through the network and there is no
congestion. However, as p grows congestion starts to play an important role
and the delay to deliver a packet also increases. At a given critical point p.
the network collapses and the average delivery time diverges. For hierarchical
networks, we have been able to characterize the phase transition and to estimate
the position of the critical point, that gives a measure of the ability of the network
to handle information. We have also shown that, when it is costless for an agent
to keep a communication line open, the optimal hierarchical network is the
flattest one, with a central node and all the others connected to it.

Moreover, the basic model has been extended in a number of independent
directions. First, we have introduced the fact that agents are heterogeneous.
Second, we have considered that keeping communication channels open can
have a cost for agents. In this situation, we have shown that the optimal hier-
archical structure is not the flattest one in general. Rather, there is an optimal
span of control which is larger as the communication technology improves, as
happens in real organizations. Third, we have considered networks that are not
hierarchical and have concluded that when there is more than one path from
the origin to the destination, the critical behavior of the system changes quan-
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titatively. Finally, we have studied, in both hierarchical and non-hierarchical
networks, the behavior of the system when the number of packets that a node
is able to deliver is not independent of its load.






Chapter 3

OPTIMAL COMMUNICATION NETWORKS

In the previous chapter we have discussed the dynamical properties of a sim-
ple and general model of communication processes. At the end of the chapter,
some considerations about the optimal design problem have been included when
discussing the effect of costly communication channels. However, this study
has been restricted to the comparison between different hierarchical networks.
The purpose of the present chapter is to tackle the problem of optimal design
from a more general perspective, in the line expressed in the Introduction. The
question we try to answer is the following: given a set of agents and a limited
amount of links to connect them, which is the network setup that optimizes the
flow of information? As in previous works in the economics literature (Rad-
ner, 1993, Bolton and Dewatripont, 1994), optimality will be defined as the
minimization of the average delay to process a certain information item.

The model presented in the preceding chapter, or a slight modification of it,
will be used to measure the performance of a certain network configuration.
However, as long as arbitrary networks will be considered, it will be necessary
to extend the model. We have discussed before that, in the hierarchical network,
the different levels did not represent bureaucratic hierarchy but knowledge hi-
erarchy. Indeed, for every agent in the hierarchical lattice we have assumed
perfect knowledge of the corresponding subtree below that agent, in such a
way that packets always travel following the shortest path from their origin to
their destination. Similarly, when one-dimensional and two-dimensional lat-
tices have been introduced, we have also assumed that packets are still able
to find optimal paths. When networks with arbitrary topology are considered,
this assumption needs to be revised and the issue of search for the destination
without precise information about the network will become important. In gen-
eral, nodes will have at least local knowledge of the network, meaning that they
will be able to identify whether the destination of a given packet is one of their
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neighbors. Therefore, there will be a trade-off between centralization, which
is positive in absence of global knowledge, and decentralization, which avoids
network congestion.

The chapter is organized as follows. In the first section, we present some re-
cent developments on the issue of search in complex networks. Next, we move
to the study of optimal networks. In section 2 we consider model complex
networks that are combination of regular lattices, random ER graphs and pref-
erential BA networks, in which agents have local knowledge of the structure of
the network plus diffuse global knowledge of the location of the nodes. Finally,
in section 3 we consider a general analytical framework that allows to tackle
the general problem of optimality in arbitrary networks with different levels of
knowledge about the network, from purely local to complete knowledge.

1.  Search in complex networks

After the discovery of complex networks, one of the issues that has attracted
a lot of attention is “search”. Real complex communication networks such as
the Internet or the Worldwide Web are continuously changing and then it is not
possible to draw a map that allows to navigate in them. Rather, it is necessary
to develop algorithms that efficiently search for the desired computers or the
desired contents.

The origin of the study of this problem is again in sociology since the seminal
experiment of Travers and Milgram (Travers and Milgram, 1969). In the exper-
iment, randomly selected individuals from Boston, Massachusetts, and Omaha,
Nebraska, where asked to direct letters to a target individual in Boston, each
forwarding her letter to a single acquaintance whom she judged to be closer
than herself to the target. Surprisingly, Travers and Milgram found that the
average length of the resulting acquaintance chains was about six. This means
not only that short chains exist in social networks as reported, for example, in
the “small world paper” by Watts and Strogatz (Watts and Strogatz, 1998), but
even more striking that these short chains can be found using local strategies,
that is without knowing exactly the structure of the whole social network.

The first attempt to understand theoretically the problem of searchability
in complex networks was provided by Kleinberg (Kleinberg, 1999, Kleinberg,
2000). In his work, Kleinberg proposes a scenario where the network is mod-
eled as a combination of a two-dimensional regular lattice plus a number of
long-range links.! The distance A;; between two nodes 7 and j is defined as
the number of “lattice-steps” separating them in the regular lattice, that is disre-
garding long-range links (see figure 3.1). Long range links are not established
at random. Instead, when a node 7 establishes one of such links, it connects

INote that the long range links are added to the lattice without removing short range ones.
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Figure 3.1. Network topology and search in Kleinberg’s scenario. Consider nodes A and B.
The distance between them is A 4 = 6 although the shortest path is only 3. A search process
to get from A to B would proceed as follows. From A, we would jump with equal probability
to D or F, since App = Arp = 5: suppose we choose F. The next jump would then be
to G or C with equal probability since Acs = Agr = 4, although from C' it is possible to
jump directly to B. This is a consequence of the local knowledge of the network assumed by
Kleinberg.

with higher probability with those nodes that are closer in terms of the distance
A. In particular, the probability that the link is established with node j is

I o (Ayj)~" (3.1)

where r is a parameter.

The search algorithm proposed by Kleinberg is the following. A packet
standing at one node will be sent to the neighbor of the node that is closer to the
destination in terms of the distance A. The algorithm is local because, as shown
in figure 3.1, the heuristics of minimizing A does not warrant that the packet
will follow the shortest path between its current position and its destination.
Therefore, the underlying two-dimensional lattice has an imprecise global in-
formational content. Going back to the Travers and Milgram’s experiment, one
could imagine that each participant in Ohama started sending the letter to an
acquaintance in Boston or at least in Massachusetts, expecting that from there it
would be easier to get to the destination. Alternatively, in the Worldwide Web
environment, a user looking for a web page on a particular species of birds will
probably begin looking for a web page devoted to animals and from there will
probably move to a page devoted to birds and so on. Therefore, the underlying
space does not need to have a geographical meaning but is just a way to model
the fact that nodes are organized according to some criteria.

Kleinberg showed that with this essentially local scenario (with imprecise
global information), short paths cannot be found in general, unless the param-
eter 7 is fixed to » = 2.2 This raised the question of why real networks are

2In general, if one considers a n-dimensional embedding lattice instead of a two-dimensional lattice, the
condition is r = n.
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then searchable, that is, how is it possible that in real networks local strategies
are able to find paths that scale as log NV, where N is the size of the network.
Recently, Watts and coworkers have shown that with a similar idea to Klein-
berg’s, one can easily obtain searchable networks (Watts et al., 2002). Their
contribution consists in substituting the underlying low-dimensional lattice by
an ultra-metric space where individuals are organized in a hierarchical fashion
according to their preferences, similitudes, etc. In this case, a broad collection
of networks turn out to be searchable.

Parallel to these efforts, there have been some attempts to exploit the scale
free nature of some networks to design algorithms that, being local in nature,
are still quite efficient (Adamic et al., 2001, Tadic, 2001, Adamic et al., 2002).
The idea in all these works is to take profit of the scale-free nature of networks
such as the Internet and bias the search towards those nodes that have a high
connectivity and therefore act as hubs.

Our approach is complementary to these efforts. The question we pose is
the following: given a search algorithm that uses essentially local information
and a fixed set of resources—i.e. a fixed number of nodes and links—, which is
the topology that optimizes the search process? Moreover, we give an answer
to this question in a general situation where the network has to tackle several
simultaneous (or parallel) search problems, which in turn rises the important
issue of congestion (Jacobson, 1988, Arenas et al., 2001, Ohira and Sawatari,
1998, Sole and Valverde, 2001) at overburdened nodes, a question that has
been disregarded in the literature so far. Indeed, for a single search problem
the optimal network is clearly a highly polarized star-like structure, with one
or various nodes in the center and all the rest connected to them. This structure
is cheap to assemble in terms of number of links and efficient in terms of
searchability, since the average cost (number of steps) to find a given node is
always bounded (2 steps), independently of the size of the system. However, the
polarized star-like structure will become inefficient when many search processes
coexist in parallel in the network, due to the limitation of the central node to
process all information.

The discovery of optimal structures will be a useful guide to design, re-
design and drive the evolution of communication networks. Although it can
be argued that such a redesign process is not possible in networks like the
Internet, it is worth noting that other systems like peer-to-peer networks, dis-
tributed databases, and most significantly in the present context, organizations
can actually be designed and redesigned.

2. Communication and search in model networks

In this section we extend previous studies about local search in model net-
works in two directions. First, we consider networks that, as in Kleinberg’s
work, are embedded in a two-dimensional space, but study the effect not only
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of long range random links but also of long range preferential links, directed
to nodes that are already highly connected as in the BA model. Second and
more significantly, we consider the effect of congestion when multiple searches
are carried out simultaneously. As we will show, this effect has drastic conse-
quences regarding optimal network design.

2.1  Network topology

The small world model by Watts and Strogatz (Watts and Strogatz, 1998)
considered two main components: local linking with neighbors and random
long range links giving rise to short average distance between nodes. The idea
of Kleinberg is that local linking provides information about the social structure
and can be exploited to heuristically direct the search process. Latter, Barabasi
and Albert showed that growth and preferential attachment play a fundamental
role in the formation of many real networks (Barabasi and Albert, 1999). Even
though this model captures the correct mechanism for the emergence of highly-
connected nodes, it is not likely that it captures all mechanisms responsible
for the evolution of “real-world” scale-free networks. In particular, it seems
plausible that in many of the networks that show scale-free behavior there is
also an underlying structure as in the WS model. To illustrate this idea, consider
web-pages in the World Wide Web. It is plausible to assume that a page devoted
to physics is more likely to be connected to another page devoted to physics
than to a page devoted to sociology. That is, a set of pages devoted to physics is
likely more inter-connected than a set including pages devoted to physics and
sociology.

Therefore we consider networks with four basic components: growth, pref-
erential attachment, local attachment and random attachment. To create the
network the following algorithm is used:

1 Nodes are located in a two-dimensional square grid with no links intercon-
necting them.

2 A node 7 is chosen at random.

3 We create m links starting at the selected node. With probability ¢, the desti-
nation node is selected preferentially. With probability 1 — ¢ the destination
node is one of the neighbors of the selected node. When the destination
node is selected preferentially, we apply the following rule: the probability
of a given destination node j being chosen is a function of its connectivity

Il oc k7, (3.2)

where k; is the number of links of node j and -y is a parameter that allows
to tune the network from maximum preferentiallity to no preferentiallity.
Indeed, for v = 0 the links are random and for v = 1 we recover the BA
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Figure 3.2. Construction of networks with multiple linking mechanisms. In both cases ¢ =
0.25 in such a way that approximately one fourth of the links are long range. A random node is
selected at each time step and m = 4 new links starting from that node are created. Black nodes
represent nodes that have already been selected. Dotted lines represent the links created during
the last time step in which node C was selected. In (a), the destination of long range links is
created at random (v = 0), while in (b) they are created preferentially (4 > 0) and nodes A and
B are attracting most of them.

model, that generates scale free networks in the case ¢ = 1. For~ > 1, one
node tends to accumulate all the links.

4 A new node is chosen and the process is repeated from step 3, until all the
nodes have been chosen once.

Figure 3.2 shows two examples of networks in the process of being created
according to this algorithm.

Note that in this case, the number of links is fixed and the existence of long
range links implies that some local links are not present and therefore that the
information contained in the two-dimensional lattice is less precise.

2.2  Communication model and search algorithm

After the definition of the network creation algorithm, we move to the spec-
ification of the communication model and the search algorithm. For the com-
munication model, we will use the general model presented and discussed in
chapter 2. As already stated, this model is general enough and considers the
effect of congestion due to node limitation to handle information.

In comparison with hierarchical networks, there is only one ingredient of the
communication model that needs to be reformulated. In the hierarchical version
of the model, when a node receives a packet, it decides to send it downwards in
the right direction if the solution is there, or upward to the agent overseeing her
otherwise. This simple routing algorithm arises from the fact that we implicitly
assume that the hierarchy is not only a communicational hierarchy, but also a
knowledge hierarchy, where nodes know perfectly the structure of the network
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below them. In a complex network, this informational content of the hierarchy
is lost. Here we will use Kleinberg’s approach (Kleinberg, 1999, Kleinberg,
2000). When an agent receives a packet, she knows the coordinates in the
underlying two-dimensional space of its destination. Therefore, she forwards
the packet to the neighbor that is closer to the destination according to the lattice
distance A defined in section 1, provided that the packet has not visited that node
previously.® Note, however, that distance is refereed to the two-dimensional
space, but not necessarily to the topology of the complex network and, as in
Kleinberg’s work, the algorithm will ignore some short paths just because it is
necessary to increase A before getting to the right shortcut. Moreover, here long
range links replace short range links and are not simply added to short range
links. Therefore it is possible that following the direction of minimization of
A the packet arrives to a dead end and has to go back.

Considering this algorithm, it is worth noting that the three mechanisms to
establish links (local, random and preferential) are somehow complementary.
A completely regular lattice (all links are local) contains a lot of information
since all the agents efficiently send their packets in the best possible direction.
However, the average path length is extremely high in this networks and there-
fore the number of packets that are flowing in the network at a given time is also
very high. The addition of random links can reduce dramatically the average
path length as happens in small worlds. However, if the number of random
links is very high, then the number of local links is small and thus sending the
packet to the node closer to the destination is probably quite inefficient (since
it may happen that, even if it is very close in the underlying two-dimensional
space, there is not a short path in the actual topology of the network). Finally,
preferential links seem to solve both problems. They obviously solve the long
average path length problem but, in addition, there is not a big lost of infor-
mation because there are highly connected nodes that actually concentrate this
information. The star configuration is an extreme example of this: although
there are not local links, the central node is capable of sending all the packets
in the right directions. However, when the amount of information to handle
is big, preferential links are especially inadequate because highly connected
nodes act as centers of congestion. Therefore, optimal structures should be
networks where all the mechanisms coexist: complex networks.

2.3 Results

We simulate the behavior of the communication model in networks built
according to the algorithm presented in section 2.1. First, a value of the proba-
bility of packet generation per node and time step, p, is fixed. For that particular

Spackets are sent to previously visited nodes only if it is strictly necessary. This memory restriction avoids
packets getting trapped in loops
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value, we compare the performance of different networks: networks with differ-
ent preferentiallity, from random (v = 0) to maximum centralization (v > 1),
and with different fraction of long range links, from pure regular lattices with
no long range links (¢ = 0) to networks with no local component (¢ = 1). For
each collection of the parameters p, -y, and ¢, the network load, N, is calculated
and averaged over a certain time window and over 100 realizations of the net-
work, so that fluctuations due to particular simulations of the packet generation
and of the network creation are minimized. As in the economics literature, the
objective is to minimize the average delay 7 to arrive from the origin to the
destination.

According to Little’s Law of queuing theory (Allen, 1990), already presented
in the previous chapter, the characteristic time is proportional to the average
total load, N, of the network:

E:pS:>T:£ (3.3)
T pS

where p is the probability of packet generation per node and time step. Thus,
minimizing the average cost of a search is equivalent to minimizing the total
load N of the network. The main results are shown in figure 3.3.

Consider first the behavior of the networks at low values of p. Figure 3.3.a
shows the load of the network for p = 0.01 as a function of the fraction of
long range links, ¢, both when they are random v = 0 and when they are
extremely preferential v = 6. In the last case, long range links are established
only with the most connected node. In this case of small p, centralization is
not a big problem because congestion effects are still not important. Therefore,
preferential links are, in general, better than random long range links. In the
case of preferential links, it is interesting to understand the behavior of the
curve N(¢). For ¢ = 0 the network is a two-dimensional regular lattice and
then the average distance between nodes is large. As some long range links
are introduced, the average path length decreases as happens in the WS model
(Watts and Strogatz, 1998), and therefore the load of the network is smaller
because packets reach their destination faster. However, the addition of long
range links implies the lack of local links and when ¢ is further increased, the
heuristic of minimizing the lattice distance A becomes worse and worse. This
fact explains that for ¢ ~ 0.15 (the network is similar to the one depicted
in figure 3.3.d) the load has a local minimum that arises due to the trade-off
between the two effects of introducing long range preferential links: shortening
of the distances that tends to decrease N and destruction of the lattice structure
that tends to decrease the utility of the search heuristic and then to increase
N. If ¢ is further increased, one node tends to concentrate all the links and
for ¢ = 1 (figure 3.3.e) the network is strictly a star with one central node
and the rest connected to it. In this completely centralized situation, the lack
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Figure 3.3. (@) and (b) Average number of packets flowing in the network as a function of the
fraction of preferential links: (a) p = 0.01 and (b) p = 0.03. Symbol (+) correspondstoy = 0
(random links) and symbol (x) corresponds to v = 6 (extremely focused links). Figures (c),(d)
and (e) show the typical shape of complex networks with particularly efficient configurations:
(©)y=0and ¢ =0.12; (d)y = 6 and ¢ = 0.07; and (e) v = 6 and ¢ = 1.0;

of two-dimensional lattice is not important because the packets will be sent to
the central node and from there directly to the destination. Since for small p
congestion is not an issue, this structure turns out to be even better than the
locally optimal structure with ¢ = 0.15.

The situation is different when considering higher values of the probability of
packet generation (figure 3.3.b displays the the results for p = 0.03). Regarding
preferential linking, the two locally optimal structures with ¢ = 0.7and ¢ = 1
(figures 3.3.d and 3.3.e respectively) persist. However, in this situation and
due to congestion considerations the first is better than the second. Thus, at
some intermediate value of 0.01 < p < 0.03, there is a transition such that
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the optimal structure changes from being the star configuration to being the
mixed configuration with local as well as preferential links. Significantly, this
transition is sharp, meaning that there is not a continuous pass from the star to
the mixed.

Beyond the behavior of networks build with preferential long range links, it
is worth noting that when the effect of the congestion is important (figure 3.3.b),
the structure depicted in figure 3.3.c, where the long range links are actually
thrown at random, becomes better than the structure in 3.3.d. In other words,
the optimal network is, in this case, a completely decentralized small world
network a la Watts-Strogatz.

3. Search, congestion, and optimal networks

So far, we have been able to compare the behavior of different networks build
a priory following different rules (nearest neighbors linking, preferential attach-
ment, etc.). The main reason for focusing on a particular set of networks is that
it is very costly to compare the performance of two networks: it is necessary to
run a simulation, wait for the stationary state and calculate the average load of
the network. Specially close to the critical congestion point, the time needed
to reach the stationary state become prohibitively long. Here, we present a for-
malism that is able to cope with search and congestion simultaneously, allowing
the determination of optimal topologies. This formalism avoids the problem of
simulating the dynamics of the search-communication process which turns out
to be impracticable. We do not focus on detailed models of any of the above
mentioned communication networks (organizations, computer networks, etc).
Rather, we study a general scenario applicable to any communication process.
First we calculate the average number of steps (search cost) needed to find a
certain node in the network given the search algorithm and the topology of the
network. The calculation is exact if the search algorithm is Markovian. Next,
congestion is introduced assuming that the network is formed by nodes that be-
have like queues, meaning that are able to deliver a finite number of packets at
each time step (Allen, 1990, Ohira and Sawatari, 1998, Arenas et al., 2001). In
this context, we are able (i) to calculate explicitly the point at which the arrival
rate of packets leads to network collapse, in the sense that the average time
needed to perform a search becomes unbounded, and (ii) to determine, below
the point of collapse, how the average search time depends on the rate at which
search processes are started. In both cases, the relevant quantities are expressed
in terms of the topology of the network and the search algorithm. Finally we
obtain optimal structures by performing exhaustive generalized simulated an-
nealing (Tsallis and Stariolo, 1994, Penna, 1995) in the space of the networks
with fixed size and mean connectivity.
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3.1  Search cost in absence of congestion

Before we take into account the effect of congestion, we consider the average
cost to find a given node in an arbitrary communication network when there is
no congestion. In other words, we focus on a single information packet at node
1 whose destination is node %, that is, a packet searching for k. The probability
for the packet to go from 4 to a new node j in its next movement is pi.“j. In

particular, pﬁj = 0 Vj so that the packet is removed as soon as it arrives to
its destination. This formulation is completely general, and the precise form
of pfj will depend on the search algorithm. In particular, when the search is

Markovian, pfj does not depend on previous steps of the packet. In this case,
the probability of going from 4 to j in n steps is given by

Pi(n)y= Y phopie, Pl (3.4)

lil2yeln—1

Thus defining the matrices p* and P*(n), whose elements are pf; and P (n),

we have "
Pk(n) = (pk) . (3.5)

The objective is to obtain the search cost or, in other words the effective
distance, that a packet has to travel before it gets to its destination. For a packet
starting at node 4 which destination is k the effective distance is

dir, = P}(1) + 2P} (2) + 3PL(3) + ... (3.6)

Using matrix notation we can define the matrices D* whose elements ij
are such that d;; = D% . These matrices are given by

DF = i nPk(n) = i n (pk)n, (3.7)
n=0

n=0
and using standard matrix algebra one obtains for this summation

2

D* = [(1 "7 o, (38)

where I is the identity matrix. The elements ij are the average number of steps
needed to go from to j for a packet traveling towards £.% In particular, as stated,

the element ka is the average number of steps needed to get from 4 to & when
using the search algorithm given by the set of matrices p*. When the search

41t is assumed that the eigenvalues of the p* matrix are smaller than 1, which must be true if the number
of times that a packet goes through a certain node is finite. This condition will not hold, for instance, if the
network is formed by more than one connected component.
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algorithm has global knowledge of the structure of the network and the packets
follow minimum paths between nodes, the effective distance will coincide with
the topological minimum distance; otherwise, the effective distance between
nodes will be, in general, larger than the topological minimum distance.
Finally, the average search cost in the network when there is not congestion

is

J_ Yikdik _ Xik Dy, ’ (39)

S(S-1) S(S-1)

where S is the number of nodes in the network. This expression allows to cal-
culate exactly the average search cost performing simple matrix algebra. Note
that simulation based calculation of this quantity would require, in principle,
to generate an infinite amount of packets and let them travel from all possible
origins to all possible destinations following all possible paths, which are in
general arbitrarily long. This is why the analytical result is extremely useful.

3.2  Search cost in presence of congestion

Next, we consider a situation in which multiple search processes are per-
formed in parallel. As discussed in chapter 2, this will give rise to accumulation
of packets in the nodes due to the limitation of agents to handle information.
In this case, the effective distance is not a good measure of performance since,
even when the distance is small, accumulation of packets can generate long
delays. Rather, the characteristic time, 7, needed to get from the origin to the
destination is the right measure. As discussed before, minimizing 7 is equiv-
alent to minimizing N. In the following, we show how to calculate the load
of a network using only the p* matrices as has been done for the case of no
congestion.

Let us consider a measure of the centrality of each of the nodes in the com-
munication network. First, we calculate the average number of times, bfj, that
a packet generated at ¢ and with destination &k passes through 5. According to
the previous definitions

b = i PF(n) = i (r*)" = (1 —p) 5" (3.10)
n=1

n=1

Note that the elements bfj are sums of probabilities but are not probabilities
themselves. For example, imagine a packet starting at ¢ and going to %, and
assume that the probability for the packet to be in node j is one in steps 3 and
13 and zero otherwise—according to the search algorithm represented by the
p* matrices. Then, bfj will be 2, since that packet will pass two times through
7.

The effective betweenness of node j, Bj, is defined as the sum over all
possible origins and destinations of the packets, and represents the total number
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of packets that would pass through j if one packet would be generated at each
node at each time step with destination to any other node:

Bj =) b (3.11)
i,k

Again, as in the case of the effective distance, when the search algorithm is
able to find the minimum paths between nodes, the effective betweenness will
coincide with the topological betweenness, 3;, as usually defined (Freeman,
1977, Newman, 2001a). The topological betweenness, 3;, is the number of
minimum paths connecting pairs of nodes in the network that go through node
4. The effective betweenness of the nodes in a network contains valuable infor-
mation about its behavior when multiple searches are performed simultaneously
and congestion considerations become relevant.

Now consider the following general scenario. In the communication net-
work, each node generates one packet at each time step with probability p
independently of the rest of the nodes. The destination of each of these packets
is randomly fixed at the moment of its creation. On the other hand, the nodes
are queues that can store as many packets as needed but can deliver, on average,
only a finite number of them at each time step—without lost of generality, we fix
this number to 1. The model in chapter 2 is a particular example of this general
scenario and it has been shown that for low values of p the system reaches a
steady state in which the total number of floating packets in the network N (t)
fluctuates around a finite value. As p increases, the system undergoes a con-
tinuous phase transition from this free phase to a congested phase in which
N(t) o< t (Arenas et al., 2001). Right at the critical point, p., quantities such
as N (t) and the characteristic time diverge (Guimera et al., 2001a). In the free
phase, there is no accumulation at any node in the network and the number of
packets that arrive to node j is, on average, pB; /(S —1). Therefore, a particular
node will collapse when pB; /(S — 1) > 1 and the critical congestion point of
the network will be

S—1
Pc = B (3.12)
where B* is the maximum effective betweenness in the network, that corre-
sponds to the most central node.

To calculate the time average of the load of the network, NV, it is necessary to
establish the behavior of the queues. In the general scenario proposed above,
the arrival of packets to a given node j is a Poisson process with mean p; =
pB;/(S —1). Regarding the delivery of the packets, consider the following
simplification of the communication model proposed in chapter 2. For a node 7
with v; packets stored in its queue, each packet jumps to the next node (chosen
according to the algorithm defined through the matrices p*) with probability
1/v;. With respect to the previous communication model, the only change is




62 ORGANIZATIONAL DESIGN AND COMMUNICATION NETWORKS

g
o

o Simulation

o
[
T

Number of packets, log v,
o o
a1 o
T T

RO

e
o

L 1 . 1 .
0.02 0.04 0.06 0.08
Paquet generatlon ratio, P

Figure 3.4. Comparison between simulated and analytical load of a node in the communication
model described in section 3 of the present chapter. As observed, the behavior of the nodes is
in excellent agreement, as expected, with a queue M/M/1. The behavior of an M/D/1 queue
is shown for comparison. Note that there is not any adjustable parameter to fit, since the load
is calculated according to equation (3.13). The vertical dashed line corresponds to the critical
congestion point of the network, p. at which the most central node starts to collapse. Then, some
packets are accumulated at that node and the load of the considered node is less than predicted
by equation (3.13). It does not represent a shortcoming of the calculation because, at this point,
the total load of the network diverges.

that now communication depends only on the sender of the packet and not on
the receiver. This allows analytical treatment and yield more interesting results
as discussed later. In this new model, the delivery of packets is also a Poisson
process. In this simple case in which both the arrival and the delivery are
Poisson processes, queues are called M/M/1 in the computer science literature
and the average size of the queues is given by (Allen, 1990)

(vj) = —L— = —=—5. (3.13)
L—pj  1- L2

Figure 3.4 shows the perfect agreement between simulation of the model and
the values predicted by equation (3.13). The average load of the network N is

_ S LB
N=>Y ()= — 5 (3.14)
j=1 =11— 57

It is straightforward to extend the calculations to other types of queues. For
instance, the queues used in (Ohira and Sawatari, 1998) are such that one
packet is delivered deterministically at each time step. These queues are called
M/D/1 and the corresponding expression for the size of the queues is (v;) =
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u?/(l — p5). Moreover, it is worth noting that, although we started considering
a modification of the communication model presented in the previous chapter,
the fact that we are able to map the behavior of the nodes to that of M/M/1 queues
implies that any conclusion that we are able to draw will be valid in general for
any system of M/M/1 queues, and with small modifications for other types of
queues.

There are two interesting limiting cases of equation (3.14). When p is very
small, (v;) ~ y; and taking into account that 3>, B; = 3=, ; d%, one obtains

N =~ pSd p— 0. (3.15)
On the other hand, when p approaches p. most of the load of the network comes
from the most congested node, and therefore
1

1 — LB~
S—1

N =~ P = Pe (3.16)

where B* is, as before, the betweenness of the most central node. The last two
expressions suggest the following interesting problem: to minimize the load
of a network it is necessary to minimize the effective distance between nodes
if the amount of packets is small, but it is necessary to minimize the largest
effective betweenness of the network if the amount of packets is large. The
first is accomplished by a star-like network, that is, a network with one central
node and all the others connected to it. Rather, the second is accomplished by a
very decentralized network in which all the nodes support a similar load. This
behavior is common to any system of queues provided that the communication
depends only on the sender. In queues M/D/1, for example, equation (3.15)
reads N ~ (pSd)? (thus, minimization of N still implies minimization of d)
and equation (3.16) is unchanged.

3.3 Limitations of the calculation and bounds to other
models

It is worth noting that there are only two assumptions in the calculations
above. The first one has already been mentioned: the trajectory of the packets
needs to be Markovian to define the jump probability matrices p*. Although
this is not strictly true in real communication networks—where packets are not
allowed usually to go through a given node more than once—it can be seen as
a first approximation (Sole and Valverde, 2001, Arenas et al., 2001, Ohira and
Sawatari, 1998). The second assumption is that the jump probabilities pfj do
not depend on the congestion state of the network, although communication
protocols sometimes try to avoid congested regions, and then B; = B;(p).
However, all the derivations above will still be true in a number of general
situations, including situations in which the paths that the packets follow are
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Figure 3.5. Comparison between the predictions of equation (3.12) for p. and the results
obtained for the communication model discussed in chapter 2. The analytical value is a lower
bound to the actual value. To keep the figure simple, we do not show results corresponding to
the model discussed in section 3, but the points would lay exactly on the diagonal line, since all
the assumptions of the calculation are fulfilled.

unique, in which the routing tables are fixed, or situations in which the structure
of the network is very homogeneous and thus the congestion of all the nodes is
similar.

When these two assumptions are fulfilled the calculations are exact. For
example, the calculation of p. using equation (3.12) coincides exactly (within
the simulation error) with simulations of the communication model introduced
in this section where the communication only depends on the sender of the
packet. Compared to situations in which packets avoid congested regions,
equations (3.12)—(3.16) correspond to the worst case scenario and thus provide
bounds to more realistic scenarios in which the search algorithm interactively
avoids congestion. Consider, for example, p. in the model presented in the
previous chapter, where the communication depends not only on the sender
but also on the availability of the receiver. As discussed in section 2.3.1 of
that chapter, the fact that the packets are sent with higher probability to less
congested nodes implies that the flow is better balanced among nodes. Although
the assumptions of the present calculation do not apply, one would expect that
the value of p. estimated analytically will be a lower bound to the real situation
in which load is more balanced. Figure 3.5 shows that this is indeed true and,
moreover, that the analytical estimation provides a good approximation to the
simulated value. This figure also confirms another expected and useful result.
For a given size of the network and a given number of links, the most robust
networks, that is those with higher p.., are those with better balanced load. For
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these networks, the effect of avoiding congestion is less important and therefore
the analytical estimation turns out to be more accurate.

Of course, one can think of other interesting generalizations that can be in-
cluded in the formalism. For example, one could imagine that the generation of
packets with their corresponding destinations is not uniform, but that some ori-
gins and destinations are more common and even there are correlations between
origin and destination. To include this effect, it would be enough to introduce
a collection of weights in equation (3.11) such that

Bj = wirbf. (3.17)
i,k

3.4  Optimal network structures for local search

Equations (3.10), (3.11) and (3.14) enable us to tackle the problem of finding
optimal structures for local search. An optimal structure is defined as the
one that minimizes the average time needed to perform a search and therefore
minimizes N. In a purely local search scenario, nodes face the problem of
forwarding a given packet: if the destination of the packet is one of the neighbors
of the node, then the packet is sent to it; otherwise, the packet is just sent at
random to one of the neighbors of the node. The corresponding p* matrices are
given by
aij
2 air
where a;; are the elements of the adjacency matrix of the network: a;; = 1
if 4 and j are connected in the network and a;; = 0 otherwise. The first term
corresponds to 7 and & being neighbors: then the packet will go to j if and only
if j = k, i.e. the packet will be sent directly to the destination. The second
term corresponds to 4 and & not being neighbors: in this case, 5 is chosen at
random among the neighbors of i. Therefore, in the absence of information,
packets are distributed uniformly among neighbors. Finally, the delta symbol
ensures that p’,gj = 0 Vj and the packet disappears from the network.

Py = airdjk + (1 — aik — O (3.18)

34.1 Optimization algorithm

The optimization process is carried out using generalized simulated anneal-
ing (GSA) as described in (Tsallis and Stariolo, 1994, Penna, 1995). Classical
simulated annealing (CSA\) is a stochastic optimization technique based on ideas
from statistical mechanics that resembles the real annealing that experimental
physicists and metallurgist do in the laboratory (Kirkpatrick et al., 1983). The
idea is the following. Consider a crystalline solid whose atoms are organized
mostly in a regular cubic lattice. Some atoms, however, lay outside this cubic
lattice generating defects in the crystalline structure. Understanding why most
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atoms lay in the cubic lattice and why some of them do not are the key questions
to understand simulated annealing. Most of the atoms lay in the cubic lattice
because this is the best way to minimize the interaction energy between them.
However, some atoms are trapped in configurations that do not correspond to
this minimum energy configuration and they cannot scape because, even when
their configuration is not optimal, between their current configuration and the
optimal one there is a big energy barrier which is difficult to cross. Annealing of
solids is a technique to eliminate such defects, consisting in heating the material
so that atoms can move around their positions and then cooling slowly so that
atoms progressively tend to occupy the minimum energy configurations.

Simulated annealing proceeds similarly. Consider a system and a cost func-
tion, E, that depends on its configuration. The objective of an optimization
technique is to minimize such cost function, that is to find the global optimum
avoiding configurations that are only locally optimal. Then, a computational
temperature, T is introduced in such a way that for low temperatures the sys-
tem can only evolve towards a direction that minimizes E. Rather, at high
temperatures the system can evolve in any direction. The process starts at high
temperatures and then T is decreased slowly so that the system moves towards
the optimal minimum avoiding local minima. This technique is thus adequate
for systems with a complicated cost function with lots of local minima, where
the system could get trapped with conventional optimization techniques.

In CSA this is accomplished in the following way. Consider the system
in a given initial configuration whose energy (or cost) is E;. Then a random
modification is performed to the system, and the energy is changed to E. If
E; < E;, the change is accepted. Otherwise, the change is accepted with a
probability, P, that depends on AE = E; — E; and on 7"

AFE

PC’SA = exp —T . (319)

This process is repeated and the temperature is decreased progressively until
the system gets frozen in a given configuration.

In GSA as described in (Penna, 1995), the only difference is the form of the
acceptance probability, which is given by:

1/(1~q)
AE) , (3.20)

Pgsa = (1 -1~ q)T

where ¢ is aparameter that can be adjusted. Inthe limitg = 1, CSA isrecovered.
In general, GSA performs better than CSA provided that ¢ is chosen properly.
Figure 3.6 shows the result of several optimization processes with different
values of ¢q. The best performance is obtained for ¢ = —5, and this is the value
that will be used in the remaining of the chapter.

For the problem of network topology optimization, the cost function is the
total load of the network N and the following procedure is used:
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Figure 3.6. Performance of classical simulated annealing and generalized simulated annealing.
Each line corresponds to a single run of the optimization process. As temperature is decreased,
configurations with smaller and smaller cost (load) are obtained. Generalized simulated anneal-
ing with ¢ = —5 (full line) yields the best results.

m Start with an initial network configuration with a fixed number of nodes, S,
links, L, and ratio of packet generation, p, and with an initial temperature
T.

m Repeat until T < T, or the network has remained unchanged for more
than 5 x S x S iterations:

— Repeat S times:
1 Choose one node at random and redirect one of its links to a new
destination.
2 Evaluate the cost N ., of the new configuration according to equa-
tion (3.14).
3 If N, < N g accept the change and continue; otherwise, accept
according to the probability in equation (3.20).

— Decrease the temperature according to They = 0.99 X Tyy4.

Different sets of initial conditions are explored: for a given value of p, the
optimization process is started from 100 different random initial configurations
and also from networks that turned out to be optimal at similar values of p.
Of all the realizations, only the network with a smallest cost is considered as
optimal.

34.2 Results

The formalism introduced allows to perform an exhaustive search for op-
timal topologies in terms of parallel searchability avoiding the simulation of
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Figure 3.7.  Optimal structures for local search with congestion. (a) Star-like configuration op-
timal for p < p*. (b) Homogeneous-isotropic configuration optimal for p > p*. (c) Polarization
of the optimal structure as a function of p, for networks of size S = 32 and different number of
links L.

the dynamics of the search-communication process. These simulations would
result prohibitive in computational time, specially in situations in which one
approaches the critical congestion point, p., and therefore the characteristic
time diverges.

The main results of the optimization process are shown in figure 3.7. As
predicted by equation (3.15), for p — 0, the optimal network has a star-like
centralized structure as expected, which corresponds to the minimization of the
average effective distance between nodes. On the other extreme, for high values
of p, the optimal structure has to minimize the maximum betweenness of the
network, according to (3.16). This is accomplished by creating a homogeneous
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network where all the nodes have essentially the same degree, betweenness,
etc.

To clearly distinguish between the two opposite network topologies, star-
like and homogeneous, we introduce a measure of the polarization, «, of the
network:

B —(B)
& (3.21)

where 3 is, as before, the topological betweenness of the nodes, and 5* is the
largest betweenness in the network. For very homogeneous networks 7, = 0.
Conversely, for star-like networks the central node belongs to all minimum
paths and therefore, for N — oo, 8* oc N2 while {8) o< N° and thus 75 oc N.

One could expect that the transition centralized-decentralized occurs progres-
sively. Surprisingly, the results of the optimization process reveal a completely
different scenario (figure 3.7.c). According to simulations, star-like configu-
rations are optimal for p < p*; at this point, the homogeneous networks that
minimize B* become optimal. Therefore there are only two type of structures
that can be optimal for a local search process: star-like networks for p < p* and
homogeneous networks for p > p*. This result is similar to the one obtained
in the previous section for model networks. In that case, it would be possible
to argue that it is due to the restriction of the search space but not in the present
situation.

m =

3.5 Discussion

As already mentioned in the introductory chapter, the debate of centraliza-
tion/decentralization in organizations has a long history (Van Zandt, 1998).
However, none of the communication models in the economics literature can
account for a transition from clearly centralized structures to clearly decen-
tralized ones, both being optimal in different situations. Our developments in
this section show that both centralized and decentralized network structures
can be optimal in certain situations. In particular, centralization is good when
the amount of information to handle is small and, conversely, decentralization
is the best option in situations of information overload. Therefore, the need
for decentralization arises as a consequence of the existence of limitations in
agents’ communication and information processing capabilities. This result is
also related to the experimental evidence existing in the management literature
in that simple tasks are better carried out by centralized groups while complex
tasks are more properly accomplished by decentralized groups.

5Indeed, using again that Z]. Bj = ; x dix and that d;;, = 2 in most cases, one obtains (8) ~ 2N in
the limit of large networks.
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Figure 3.8.  Pictorial representation of the empowerment process according to Dow Chemical’s
Strategic Blueprint. Here, the position of nodes and links should not be understood strictly as in
the communication networks considered in the rest of the work. Rather, the drawing metaphori-
cally represents a process by means of which leadership is decentralized and management tasks
are assumed by the employees.

Our results also provide an explanation to the tendency existing in real multi-
national companies (Dow Chemical, in the chemical sector, is a good example)
towards empowerment, or leadership decentralization, of their work teams. Fig-
ure 3.8 shows the concept of empowerment according to the Strategic Blueprint
of Dow Chemical. It has been stated that empowered teams have a higher per-
formance than traditional leader directed teams. For instance, according to
Samuel L. Smolik (Smolik, 2001)

Just to show you a relationship between level of Empowerment and safety performance;
in 1999, we compared levels of empowerment in various plants to employee and contrac-
tor safety performance and found that the leader-directed organizations had a combined
injuryl/illness rate of 4.47 per 200,000 man-hours. The plants that had achieved a Stage
One level of Empowerment were performing at a 1.16 injury/illness rate; and the plants
that had reached the top level Stage Two level of Empowerment were operating at a
0.62 injury rate. This is a significant demonstration of the multiple benefits gained from
Empowerment of our employees.

It is worth emphasizing that, accordingly, our model predicts that decentral-
ized networks can be more efficient that centralized ones in situations with in-
formation overload. None of the models in the economics literature can explain
this fact in terms of communication and information processing capacities.

Beyond the existence of both centralized and decentralized optimal networks,
itisremarkable that the transition from one sort of networks to the other is abrupt,
meaning that there are not intermediate structures between total centralization
and total decentralization. As already mentioned, this property is shared by
the model networks in the previous section. The reason for the existence of
such an abrupt transition is the following. Since we are considering (in both the
present and the last sections) local knowledge of the network topology, centered
star-like configurations are extremely efficient in searching destinations and
minimizing, thus, the effective distance between nodes. This explains that
stars are optimal for a wide range of values of p, until the central node (or
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Figure 3.9. Optimal topologies for networks with S = 32 nodes, L = 32 links and global
knowledge. (a) p = 0.010. (b) p = 0.020. (c) p = 0.050. (d) p = 0.080. In this case of global
knowledge, the transition from centralization to decentralization seems smooth.

nodes) becomes congested. At this point, structures similar to stars will have
the same problem and will we much worse regarding search; at this point, the
only alternative is something completely decentralized, for which the absence
of congestion can compensate the dramatic increase of the effective distance
between nodes. Inthis situation, one should be able to obtain a smooth transition
from centralization to decentralization by considering global knowledge of the
network, in such a way that the average effective distance (that in this case
coincides with the average path length) is not much larger in an arbitrary network
than in the star. Our results for simple network parameters, figure 3.9, show
that this is indeed the case.

This global knowledge situation is also interesting for one last question: the
effect of the size of the network in centralization/decentralization. In this case,
B* = B™* because effective and topological quantities coincide. For the star
B} o« N2, and for a completely decentralized homogeneous network, By =
ik dik /N o« Nlog N, where we have assumed that the average distance
between nodes in this network scales as in a random graph, which seems very
reasonable. This means that

p. _ By logN
— = — X ,
pe By N

which is a decreasing function of the size of the system. In other words, it
means that as the organization grows it should tend to decentralization. This is
still another fact that has been observed in real organizations (Van Zandt, 1998).

(3.22)

4,  Summary

With the knowledge acquired in the previous chapter about the dynamics of
communication processes, here we have been able to address the main objective
of the theoretical part of the present work: to design optimal communication
networks. In particular, we have focused in a scenario in which agents do
not have complete knowledge of the structure of the network but just local
knowledge. In such a situation, there is a trade-off between search cost, that is
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minimized in centralized structures, and congestion effects, that are minimized
in decentralized structures. Therefore, in general it is not straightforward to
find the optimal structure. Here we tackle the problem with two different
approaches.

First, we have proposed an approach that is more intuitive but less general
and reliable. The main idea is to generate networks with rules defined a priori
and compare their efficiency. For a certain probability of packet generation per
node and time step, p, we simulate a communication dynamics according to the
model presented in the precious chapter, measure the total load of the network
and define the optimal network as the one that has a lower load.®

Networks are built combining mechanisms that have been proposed in the
literature of complex networks. First, there is a low-dimensional component
resembling social structure that has an informational content as assumed in
previous studies. Second, there is a preferential component, that can drift the
establishment of links towards those nodes that have already a higher connec-
tivity. Third, there is a random component. Each of these mechanisms has
positive as well as negative aspects regarding communication. In a pure low-
dimensional space, the informational content makes easy to find the destination
of the packets. However, the average distance between nodes is large. When
we substitute some of the links in the low-dimensional network by random long
range links, we loose part of the informational content but we get much shorter
distances between nodes. The average distance also decreases if we substitute
links in the low-dimensional lattice by preferential ones and in this case the lost
of informational content is less important than in the random case because the
highly connected nodes will be connected to a lot of other nodes and therefore
will have a lot of knowledge of the network. However, congestion effects will
be very important in such centralized networks.

Simulations have confirmed these ideas and have yielded some surprising
results. When the amount of packets is small, the optimal network is totally
centralized. Rather, when there are a lot of packets, the optimal network is a
combination of low-dimensional lattice and a few long range random links, that
is, a small world a la Watts-Strogatz. One could expect that, when the amount
of packets increases, the optimal structure was progressively less centralized,
but this intuition turns out to be incorrect. Surprisingly, the optimal structure
is totally centralized until for a certain value of p the optimal network becomes
suddenly as Watts-Strogatz small world.

However, the objective of this chapter was more ambitious, and this has led
us to the second approach. Without restricting our considerations to a partic-
ular family of a priory built networks, is it possible to find optimal network

8Actually, minimize the load is equivalent to minimize the average time needed to deliver a packet.
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structures? With the elements presented so far, the most general procedure to
find such optimal networks would be the following: generate a network, simu-
late the communication dynamics and calculate the load in the stationary state,
modify the network and repeat the procedure until a network that cannot be
further improved is found. However, such a process is prohibitively expensive
in terms of time, specially when the amount of packets is such that the network
is close to the collapse point and the time needed to get to the stationary state
becomes arbitrarily long. To avoid this problem, we have introduced a formal-
ism that is able to cope with search and congestion simultaneously and that
allows to calculate exactly the load of the network. With this, the optimization
procedure described above can be carried out. We have finally shown that, in
the considered case in which agents have local knowledge of the network, there
is, again, an abrupt transition between centralized and decentralized networks.

Although the debate centralization-decentralization in organizations is old,
there is not any model that allows to explain, incommunicational terms, why and
in which conditions one sort of the structure is better than the other. Our results
also allow to explain the empirical evidence that simple tasks are better carried
out by centralized groups and, conversely, that complex tasks are better carried
out by decentralized groups. Finally, these results also provide theoretical
foundation to the tendency, existing in the management of large corporations,
to empower (that is, decentralize) work groups at all levels.






Chapter 4

COMPLEX SELF-ORGANIZED COMMUNICATION
NETWORKS AND ORGANIZATIONS

In chapter 2, communication networks have been modeled mainly as hier-
archical networks, although some attempts of generalization have also been
presented and optimal networks have been studied in chapter 3. Hierarchical
networks are indeed a good approximation to model computer based commu-
nication networks such as the Internet (where there is a hierarchy of routers
and servers) and also the formal chart of classical organizations, with the CEO
at the top, her advisers at the second level and so on. For modern companies,
however, the formal chart is not strictly hierarchical and less centralized settings
have been shown to be much more efficient (Warnecke, 1993). This chapter is
not devoted to the formal chart but to the informal communication network that
naturally arises in a real organization. Krackhardt and Hanson (Krackhardt and
Hanson, 1993) have established the following parallelism:

If the formal organization is the skeleton of a company, the informal is the central nervous

system driving the collective thought processes, actions, and reactions of its business
units.

The formal chart of an organization is designed to handle routine and easily
anticipated problems, but when unexpected problems arise, new ties are formed
so that tasks can be accomplished properly. Ties in an organization also arise for
personal, political and cultural reasons. The understanding of the informal net-
works underlying the formal chart is a key element for successful management
(Mayo, 1949, Krackhardt and Hanson, 1993, Morgan, 1997), and therefore
managers are interested in knowing how these networks work. The traditional
way of investigating informal networks consists of two steps (Krackhardt and
Hanson, 1993). First a network survey using employee questionnaires is con-
ducted. However, employees answers often contain subjective elements such as
“political” motives and the worry about offending colleagues. This effect can
be minimized by the second step: cross-checking of the answers which is not

75
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free of subjectiveness either. A more significant limitation of the questionnaire
based analysis is that time and effort costs make it prohibitively expensive to
map the entire network even for medium sized organizations.

The rapid development of electronic communications provides a powerful
alternative for the analysis of informal networks. Indeed, the interchange of
e-mails between individuals in organizations reveal a lot about how people
interact and therefore should provide valuable hints about the real network
structure behind the formal chart (Economist, 2001, Ebel et al., 2002, Adamic
and Adar, 2002). This is interesting not only from a managerial point of view,
but also from a theoretical and a fundamental points of view, if one wants to
understand how organizations work and why do they work the way they do.
However, obtaining information from communication networks is not straight-
forward. For instance, it is not possible to discriminate between different sorts
of informal networks by analyzing an e-mail network. Krackhardt and Hanson
(Krackhardt and Hanson, 1993) stressed the differences between different in-
formal networks (advice network, trust network, etc.) and the importance of
knowing them separately. In an e-mail network all the informal networks and
even the formal chart contribute, interacting in a complex way. Nevertheless,
the information obtained from communication network studies is still valuable.
The second problem is methodological. The analysis of large and complex
networks is not straightforward and the extraction of information requires the
use of specific statistical techniques, developed recently in the field of statistical
physics of complex networks (Watts and Strogatz, 1998, Barabasi and Albert,
1999, Amaral etal., 2000, Albert and Barabasi, 2002, Dorogovtsev and Mendes,
2002).

The purpose of this chapter is to study the properties and the community
structure of the e-mail network of the University Rovira i Virgili (URV), at Tar-
ragona, as an example of how these techniques developed for complex networks
can be used in a real organization. In section 1 we describe how the network is
built and study some of its statistical properties, such as the degree distribution
and the clustering coefficient. Section 2 describes how can we obtain insights
about the community structure of the network and present this information in
a useful way. Next, we study the properties of the community structure. Strik-
ingly, we find that it shows emergent self-similar properties as occurs in other
natural systems like, for example, river networks. Finally, we show that the
results obtained for the community structure can be used for management pur-
poses. Appendix A, shows the study of a different communication network, the
so-called “web of trust”.
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Figure4.1. Degree distribution of the e-mail network of the Universitat Rovira i Virgili. (a) In-

and out-degree distributions when all e-mails are considered. While the in-degree distribution
decays exponentially, the out-degree distribution is highly skewed due to the presence of e-mail
lists. (b) In- and out-degree distributions when e-mails sent to more than k = 50 users are
discarded. In this case, both distributions decay exponentially.

1. Characterization of the e-mail network of the
Universitat Rovira i Virgili

Every time that an e-mail is sent, some information is registered in the cor-
responding server, including the address of the sender and the address of the
receiver. Therefore, an e-mail network can be built regarding each address as
a node and joining two nodes with a link if there is an e-mail communication
between them. Considering that e-mails are directed and that one can easily
distinguish between sender and receiver, the resulting graph will be, in prin-
ciple, directed. We build such a network considering the e-mails sent within
URYV during the first three months of the year 2002. Significantly, only e-mails
with sender and receiver belonging to the university were regarded, and external
e-mails were not. At the URV, there are three different servers that manage the
e-mail accounts of all the staff of the university (including academic and admin-
istrative staff, graduate students, managers, etc.). The total number of users is
approximately 1700, which corresponds to the size of a medium sized company
or of a site of a multinational company. Privacy is preserved by assigning a
random code to each address, in such a way that the study is performed keeping
the anonymity of the users. Moreover, it is worth noting that all the information
used is routinely recorded by any e-mail server.

First, we study the degree distribution. In principle, the in- and out-degree
distributions are measured considering the network as explained so far: nodes
are addresses and directed links represent e-mails sent from one address to
another. The results are shown in figure 4.1.a. The asymmetry between the
distribution of incoming (received) and outgoing (sent) e-mails is observable
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from the plot. While the maximum in-degree (that is, the maximum number of
users that are sending e-mails to the same address) is about 100, the maximum
out-degree (that is, the maximum number of addresses that a given user is
sending e-mails to) is more than 1000. Actually, the in-degree distribution
decays exponentially, while the out-degree distribution is highly skewed, due
to a few nodes sending e-mails to more than 1000 addresses. The origin of this
a priori surprising result is related to the existence of e-mail lists. Even when
some addresses are removed explicitly because they represent lists of users
instead of single users (all the academic staff in a department, for instance),
some of them cannot be removed because when an e-mail is sent to one of
these addresses it is expanded by the server, sent to all the addresses in the list
individually and registered in the server as many different e-mails sent by the
same user to different addresses. To overcome this problem, we fix a threshold
k. when a user sends an e-mail to more than « different users, this e-mail is
disregarded. The new in- and out-degree distributions obtained with k = 50
are shown in figure 4.1.b. In this case, both follow similar distributions with
exponentially decaying tails.

This result contrasts with the result obtained by Ebel and coworkers (Ebel
et al., 2002), that showed that the degree distribution of a different e-mail
network decays as a power law. There are different explanations to this apparent
contradiction. First, they considered all the e-mails sent and/or received by
users inside the university, while in the present study only e-mails with both
origin and destination inside the university are considered. Second, we have
shown that the skewness of the degree distribution could be due to the existence
of lists of addresses and have decided to disregard these e-mails. There is
nothing implicitly right or wrong in removing or not removing the lists. If
one is interested in virus spreading, for instance, it is worth keeping all the
e-mails because all of them could be infected. Rather, if one is interested in
understanding how does relevant information flow (this is indeed the case of
the present study) then it is fair to remove massive e-mails since they usually
have low informational content.

Still another approach consists in considering that two nodes are connected
if, and only if, there are e-mails flowing in both directions during the time
period considered. Again, this is a way to identify relevant communication
channels. In this case, in- and out- degree distributions coincide because all
the links are bidirectional, and the total degree distribution is shown in figure
4.2. Significantly, with this restriction lists do not play an important role and
the degree distribution depends only very slightly in the value of x (k = oo In
figure 4.2.a and x = 50 figure 4.2.b). The exponential decay is clear in this
case.

Regarding the cluster structure, it is worth noting that, using k = 50 and
considering only bidirectional e-mails, the largest cluster contains 1133 nodes.
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Figure 4.2. Degree distribution of the e-mail network of the Universitat Rovira i Virgili when

only bidirectional e-mails are considered. (a) Lists are not eliminated. (b) Lists, that is e-mails
sent to more than k = 50 users, are disregarded. In this case, most of the useless e-mails are
removed by the bi-directionality restriction and, therefore, the effect of removing lists is small.
In other words, most of the e-mails that are sent to large amounts of people are not answered
and thus are not considered.

The rest of the network is formed mostly by isolated nodes. For the largest
component with 1133 nodes the clustering coefficient is C' = 0.254, which is
approximately 30 times larger than the expected value for a random graph with
the same size and average degree. Such a high value of C' suggests a scenario
where the network is comprised of several highly connected communities—with
a lot of redundancy in the linking—which are loosely connected to other highly
connected communities. In fact it has been shown that there is a close relation
between highly clustered regions of a graph and the existence of communities
(Eckmann and Moses, 2002). Inthe next sections, we focus on the identification
of such communities and on the characterization of their structure.

2. Community analysis methodology

In the previous section, we have studied some of the statistical properties of
the e-mail network of the URV such as the degree distribution and the clustering
coefficient. Although some interesting properties of the network can already be
obtained from this statistical analysis (resilience of the network against removal
of nodes or spreading of viruses, for example), there is a lot of information that
is interesting from a managerial point of view that still remains unexploited.

As described in the introduction of this chapter, the intention of the anal-
ysis of the communication structure in an organization is to uncover the real
(informal) chart behind the formal one, and to establish who collaborates with
whom, which groups work together, etc. This analysis can be hardly performed
by visual inspection as it is usually done when using employee questionnaires
on small groups of 10-20 persons. Rather, it is necessary to design heuristic
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Figure 4.3. Example of a small dendogram. The circles at the bottom represent the nodes of
the original network, and they are joined according to the hierarchical clustering. The vertical
axis represents the order in which the clusters are joined together. In this case, A and B are
joined first, J and K second and E and F' third. Then the group formed by A and B is joined
to C, and so on.

algorithms capable of identifying groups and communities from the topological
properties of the complex communication network. In this section, such algo-
rithms are described and some measures that help to characterize the community
structure are presented.

2.1 Community identification using hierarchical clustering
methods

The traditional method for identifying communities in networks is hierar-
chical clustering. The idea is the following. For each pair of nodes ¢ and 5 in
the network, define a weight W;; that quantifies how closely connected they
are. Then create an empty network with all the nodes but with no links be-
tween them, and start adding links between the nodes with highest W;;. This
procedure gives rise to a nested set of increasingly large components, that can
be conveniently represented using the so-called dendograms (see figure 4.3).

A typical measure of the weights W;; is the number of node (or edge) inde-
pendent paths connecting the 2 nodes, that is the number of paths that connect
the two nodes without sharing any node (or edge) in common. Actually, from
the “Max Flow—Min Cut” theorem (Menger, 1927) it is known that the number
of node (edge) independent paths between ¢ and j equals the minimum number
of nodes (edges) that need to be removed from the network to separate ¢ and j
from one another.

In a recent article, Flake and coworkers have used the Max Flow—Min Cut
result with a different approach (Flake et al., 2002). The idea is to start from
a set of seed vertexes and identify the community around these seed vertexes.
This approach can be very useful for searching communities in the World Wide
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Figure 4.4. Identification of most central links in the GN algorithm. (a) The network in the
drawing contains two clearly distinguished communities. The GN algorithm identifies the link
that belongs to a higher number of minimum paths between all pairs of nodes: in this case the
link BE. (b) Removal of this link yields two separate networks that correspond to the original
communities.

Web, for example, but does not provide an exhaustive map of communities of
the whole network. Therefore, we will use a different algorithm.

2.2  Girvan-Newman algorithm for community
identification and visualization of the community
structure

The algorithm proposed by Girvan and Newman (GN) (Girvan and Newman,
2002) proceeds with a similar idea than the hierarchical clustering algorithms—
that is identifying the most important links in the network—but removing con-
nections from the initial network instead of adding them from an empty network
as before. The main point is to identify the most important links in the network,
that is those links that connect a maximum number of pairs of nodes, and re-
move them so that groups that are only slightly connected through these very
important links become separated of each other. This is more easily understood
considering figure 4.4. Imagine a network formed by 9 nodes, that will be
denoted with letters A to I, connected as in the picture (figure 4.4.a). The most
important link turns out to be the segment B E since it is necessary to use this
link to go from any of the nodes in the left to any of the nodes in the right.
The removal of the link BE actually separates the two communities correctly
(figure 4.4.b). In general, however, it will be necessary to remove more than
one link in order to split a given network.

The idea of most important links is formalized by means of the betweenness
of the links, which is a measure of their centrality in the network. Consider
all the minimum paths connecting pairs of nodes in the network. For instance,
in figure 4.4.a, the minimum path connecting A and G consists of three steps:
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AB, BE, and EG. The betweenness of a link is defined as the number of
such minimum paths that the link belongs to. It is straightforward to see that
this definition of betweenness identifies the most important nodes and yield the
desired results. Moreover, for a network with m links and n nodes, it is possible
to calculate the betweenness of all the nodes in a time of the order O(mn)
(Newman, 2001a), and therefore the calculation can be easily performed even
for relatively large networks (up to sizes of the order of 105 nodes).

The GN community identification algorithm proceeds as follows:

1 Calculate the betweenness for all the links in the network.
2 Remove the link with the highest betweenness.
3 Repeat from step 1 until no edges remain.

Girvan and Newman showed (Girvan and Newman, 2002) that this algorithm
provides striking results even in networks (both real world and computer gen-
erated networks) in which traditional community identification algorithms sys-
tematically fail.

The output of the GN algorithm is a binary community tree that can, again,
be represented as a dendogram. However, we choose not to plot it as a dendo-
gram. Starting from the original connected network, links are removed until the
network is split into two pieces. Then, each one of these two pieces is regarded
as a new network and links are removed until they also split into two. The
process is repeated until only isolated nodes are left. It is clear from figure 4.4
that when two communities are clearly separated, the GN split procedure will
separate them. However, it is also interesting to understand what will happen
when there is not a real community structure inside a group of nodes or, in
other words, when all the nodes in a network belong to a well defined com-
munity. Consider the two examples given in figure 4.5. In the first case (a) all
the nodes are equivalent and are connected to all the rest of the nodes. In this
situation, all the links are also equivalent and, therefore, one of them will be
selected arbitrarily by the GN algorithm. Imagine that the selected link is, for
instance, AB. After the removal of this link, the link between C and D will
remain unchanged, but the other links, that are connected either to A or B, will
have a higher betweenness than before because they have to absorb part of the
minimum paths that previously went through AB. Therefore, the next removal
will affect one of these nodes, say AD. Repeating the argument, it is easy to
see that the next removed link will be AC, and that the network will be finally
split into two pieces, one formed by node A and another one formed by a new
complete graph containing nodes B, C and D. This is represented in the right
side of the figure: at the beginning of the process, there is a single community,
1, containing nodes A, B, C and D; after some removals the network is split
into two pieces, one formed by node A and a new community, 2, formed by B,
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Figure 4.5. The GN algorithm on well defined communities. (a) When the network is com-
pletely uniform, the GN algorithm separates one node from the rest. Iterating this procedure,
nodes are removed 1 by 1 and the resulting split binary tree is a linear branch. (b) When the
network is star-like, nodes are also removed 1 by 1 but the central node will be the last one being
separated.

Cand D. The process would continue removing links and another isolate node
would again be separated of the main component, for instance node D. Finally,
the two remaining nodes would be separated of one another and the commu-
nity identification process would stop. Similarly, in figure 4.5.b all the links
are equivalent at the beginning and then would be removed arbitrarily. Again,
individual nodes would be separated from the main component and finally one
would be left with a pair of nodes formed by the central node A and one of its
neighbors, for instance D.

With all this, it is easy to understand, figure 4.6, that the GN algorithm
will separate different communities and that these communities will appear
as relatively well defined branches in the binary tree. Moreover, according
to figure 4.5, the final nodes of the branches can represent the most central
nodes in the community. Actually, these ideas provide a powerful method to
identify communities in large networks such as the e-mail of the Universitat
Rovira i Virgili. Moreover, the study of the topology of the binary tree will
provide quantitative information about the community structure of the network.
For example, a poorly ramified structure will represent a network with diffuse
network structure. Our main finding is that relevant information can be obtained
by studying the topological properties of the resulting binary tree.
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Figure 4.6. Communities and branches in the binary tree. When communities are identified as
in (a), they appear in the binary tree as clearly differentiated branches (b).

2.3  Topological measures of the binary community tree

Binary trees have been extensively studied in many different areas, from
discrete mathematics to computer science, geology or physics, and useful clas-
sification schemes and measures have been proposed. Some of them will be
used in the study of the e-mail communication network and are introduced in
this section.

231 Community sizedistribution

The first quantity that will be considered is the distribution of sizes of commu-
nities. Figure 4.7.a represents a hypothetical tree generated by the community
identification algorithm (for clarity, the tree is represented upside down). Black
nodes represent the actual nodes of the original graph while white nodes are
just graphical representations of communities that arise as a product of the split
procedure. Indeed, nodes A and B belong to a community of size 2, and to-
gether with E form a community of size 3. Similarly, C, D and F form another
community of size 3. This two groups together form a higher lever community
of size 6. Following up to higher and higher levels, the community structure
can be regarded as a set of nested groups as depicted in figure 4.7.b.

A natural way of characterizing the community structure is to study the distri-
bution of community sizes. In figure 4.7, for instance, there are 3 communities
of size 2, 3 communities of size 3, 1 community of size 6, 1 community of size
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Figure 4.7. Community structure from the binary tree. The community structure represented
by the binary community tree (a) can be regarded as a set of nested groups (b).

7, and 1 community of size 10. Note that a single node belongs, at different
levels, to different communities.

The characterization of the community binary tree using the cumulative size
distribution has its analogous in the river network literature (Rinaldo et al., 1993,
Rodriguez-Iturbe and Rinaldo, 1996, Maritan et al., 1996). The equivalent
measure is the distribution of drainage areas, that represents the amount of
water that is generated upstream of a given point. Consider how the community
size distribution is calculated. Assign, as shown in figure 4.8.a, a value 1
to all the leaves in the binary tree or, in other words, to all the nodes that
represent single nodes in the original networks (black nodes). Then, the size
of a community 4, s;, is simply the sum of the values s;, and s;, of the two
offspring communities (or individual nodes), 71 and js, in which 7 is split by the
community identification algorithm. Figure 4.8.b shows how the drainage area
of a given point in a river network is calculated. Consider that at any node of the
river network there is a source of 1 unit of water (per time unit). The drainage
area of a given point is the number of nodes upstream of it plus one. For a
point 4 with offspring 71 and ja, s; = s;, + s, + 1. Therefore, the community
size distribution would be equivalent to the drainage area distribution of a river
where water is generated only at the leaves of the branched structure.

2.3.2 Horton-Strahler index and topological self-similarity

One of the most fundamental quantities developed to describe the topologi-
cal properties of binary trees was introduced by Strahler (Strahler, 1952) as a
refinement of the scheme proposed by Horton (Horton, 1945) to quantify the
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Figure 4.8. Calculation of the community size distribution and analogy with drainage area
distribution in river networks. (a) Community sizes. A and B form a community of size 2.
Together with E they form a community of size 3: this size is obtained by summing 1 from node
E plus 2 from the community formed by nodes A and B. The procedure is repeated from the
leaves downward, being the size of each community the sum of the sizes of the two offspring
communities in the level immediately above. (b) Drainage area. The area drained by one node
equals the number of nodes upstream from that node plus one. For a given node this area can be
obtained summing up the areas of the two offspring nodes in the level immediately above plus
one.

topological properties of river networks. Consider the binary tree depicted in
figure 4.9.a. Asshown infigure 4.9.b, the leaves of the tree are assigned Strahler
index k = 1. For any other branch that ramifies into two branches with Strahler
indexes k; and ko, the Strahler index is calculated according to the following
rule:

k:{k1+1 if ki =ko (4.1)

max(kl, kg) if k; 75 ko

Therefore the index of a branch changes when it meets a branch with higher
index or when it meets a branch with the same value and both of them join
forming a branch with higher index (see figure 4.9.b).

The number of branches IV; with index i can be determined once the HS
index of each branch is known . Note that, for this computation, a branch with
many side branches of indexes smaller than its own index k, is counted as a
single branch. Therefore, in figure 4.9.b, Ny = 10, Ny, = 3 and N3 = 1.
The bifurcation ratios, By, are then defined as the ratio between the number of
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Figure 4.9. Horton-Strahler index. Arbitrary binary tree (a) and the corresponding values of
the HS index of the branches. When two branches of size & meet, they give rise to a branch of
index k + 1. When two branches of sizes k1 and k2, with k1 > k2, meet the branch with index
k2 is absorbed by the branch with index k.

branches of size k£ and the number of branches of size & + 1:
Niy1’

By, (4.2)
To understand the meaning of this ratio, consider the branching structure of
figure 4.9 and imagine that only branches of sizes 3 and 2 are present. The ratio
Bjs indicates how many branches of size 2 appear from the branch of size 3.
Similarly, if we consider only the branches of sizes 1 and 2, B represents the
number of branches that appear from each branch of size 2. When By, ~ B for
all the indexes k, the structure is said to be topologically self-similar, because
the overall tree can be viewed as being constructed of B trees, which in turn
are constructed by B smaller trees with similar structures and so forth down to
all scales.

Many systems in nature display topological self-similarity. Among others,
some examples of topologically self-similar systems are river networks, with
3 < B < 5 (Horton, 1945, Strahler, 1952), diffusion limited aggregates, with
B = 5.2 in 2 dimensional spaces (Halsey, 2000), and random binary trees, with
B = 4 (Halsey, 1997).

The meaning of the Horton-Strahler index in terms of communities and
organization is less clear than the meaning of the community size distribution.
Let us try to give an explanation. The index of a segment remains constant until
another segment of the same magnitude is found. In other words, the index of a
community changes when it joins acommunity of the same index. Consider, for
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instance, the lowest levels: individuals (index k£ = 1) joinin groups (k = 2); the
index of a lowest level group (k = 2) will change when it joins another group to
give a second level group, that is a group formed by different groups. Therefore,
the index reflects the level of aggregation of communities. In the university, for
example, one could expect to find the following levels: individuals (k = 1),
groups (k = 2), departments (k = 3), faculties and schools (k¢ = 4), and the
whole university (k = 5).

3. Communities in informal communication networks:
assessment of status and evolution of organizations

In the previous section we have shown how, from the original complex net-
work, one can obtain the community binary tree using the GN algorithm. More-
over, we have shown that it is possible to quantify the community structure by
means of measures carried out on this binary tree. In this section, we analyze
in detail the e-mail network of the URV and show some interesting properties
of its community structure.

3.1 Community analysis of the e-mail network of the
Universitat Rovira i Virgili

First, the community structure of the Universitat Rovira i Virgili is analyzed.
The network is built, as described in section 1, by considering all the e-mails
that were sent within the university during January, February and March of
2002. For community identification purposes, the following considerations are
taken into account:

= All e-mails sent to or received from addresses outside the university are
discarded.

m  Addresses corresponding to lists of users are discarded by identifying such
addresses in the e-mail servers.

» E-mails sent to lists of users are discarded even when these lists are explicit
lists of the users and do not correspond to any address in the e-mail servers.
This is accomplished by disregarding e-mails sent to more than a certain
number of users. Inthe present study, this maximum number of the receivers
is set to 50.

= Only bidirectional e-mails are considered. Since the interest of the study
is to identify relevant communication channels, a link between A and B is
established if, and only if, A have sent an e-mail to B and B have sent an e-
mail to A during the time period considered. Together with the elimination
of user lists, this is a way to minimize the effect of massive and useless
e-mail.
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Figure 4.10. E-mail network of the Universitat Rovira i Virgili. The plot represents the main
component of the e-mail network containing 1133 nodes and 5451 links. Only bidirectional e-
mails are considered, and lists of size larger than 50 are also disregarded. Each color represents
a center of the university.

With all these considerations, the main component of the e-mail network,
depicted in figure 4.10, comprises 1133 nodes and 5451 links among them. As
can be observed from the figure, the size and the complexity of the network
prevent from any attempt to perform visual analysis of its properties, even when
the nodes have been already plotted using the algorithm by Kamada and Kawai
(Kamada and Kawai, 1989) to optimize the layout.

However, some initial hints can already be obtained from this plot. The
university is divided into 18 different centers, including faculties or colleges,
and management units such as the office of the Rector of the university. Nodes
that belong to the same center are plotted in the same color. It is apparent from
figure 4.10 that nodes in the same center tend to be close to one another in the
e-mail communication graph as one would expect. Indeed, the high clustering
that has been found in section 1 is related to the community structure as happens
in other complex networks (Eckmann and Moses, 2002). It is also apparent that
yellow nodes tend to occupy the central region of the graph, indicating that the
corresponding center acts as a sort of hub for the other centers. This allows to
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Figure 4.11. Community identification tree from the e-mail network. Each branch represents
a community as identified by the GN algorithm. It is apparent that branches are mostly mono-
color, indicating that the algorithm is actually successful in identifying the communities. The
figure in the bottom shows more clearly the branching structure of the binary tree.

infer that yellow nodes represent individuals in the central management unit of
the university.

It is hard to obtain more precise information from this preliminary plot of
the e-mail network. The next step is therefore to apply the GN community
identification algorithm and study the results. The binary community identifi-
cation tree is depicted in a convenient way in figure 4.11. The root of the tree
is indicated by the arrow in the upper left corner of the plot.
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Figure 4.12. Community identification tree from a random network. The binary tree shows
that there is not a community structure in the network, as one would expect.

With the discussion of the previous sections about the equivalence between
branches and communities, the results of the community identification process
plotted in figure 4.11 are quite convincing. The branches obtained by the GN
procedure are essentially mono-color, indicating that we are correctly identify-
ing communities. This is specially true if one focus in the ends of the branches
since, as explained, this ends correspond to the most central nodes in the com-
munity. In regions close to the origin of the branches, the coexistence of colors
correspond to the boundaries of the communities. It is worth insisting in the fact
that the community identification has been carried out using only topological
information from the e-mail communication network. Therefore, as speculated
before, the structure of the communication network of an organization contains
information about how groups and teams are formed and interact with each
other, not only at the level of centers (in the case of the university) but also at
smaller scales (subbranches inside branches). It is also worth noting that previ-
ous works on community identification using the GN algorithm dealt with much
smaller networks (Girvan and Newman, 2002). For comparison, it is interesting
to see what would happen if, instead of the real e-mail communication network,
one would try to identify communities in a random network (Bollobas, 2001)
with the same number of nodes and links than the original e-mail graph. The
resulting binary tree is shown in figure 4.12. As expected, no communities are
identified, and the contrast with the tree obtained for the e-mail communities is
clear.

After the identification of communities, it is possible to study quantitatively
the properties of both the original network and the binary tree, and therefore
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Figure 4.13. Community size and drainage area distributions. (a) Community size distribution
for the e-mail network of the university. The distribution shows a power law region with exponent
-0.48 between 2 and 100, followed by a sharp decay at 100 and a cutoff at 1000. The dotted line
represents the community size distribution for the random graph. (b) Drainage area distribution
for the river Fella, in Italy, and some of its affluents (sub-basins). Consider, for example, the
triangles in the figure, that correspond to a sub-basin of approximately the size of the e-mail
network. The distribution also shows a power law region with exponent -0.45, followed by a
sharp decay at 100 and the cutoff at 1000 (figure taken from (Maritan et al., 1996)).

quantify concepts that have been traditionally used in a qualitative way in the
management literature. Also, it will be possible to find properties of the net-
work that will give hints about how organizations evolve. In the next two
sections both problems are covered. First, some properties of the binary tree
are studied to conclude that organizations show surprising emergent scaling and
self-similarity properties. Second, quantitative measures on the network and the
binary tree are related to concepts from organizational design and management.

3.2  Self-similarity properties in the community structure

In this section, some emerging properties of the community structure of the e-
mail network are discussed. First we focus on the community size distribution
as defined in section 2.3.1, and in the analogy existing with river networks.
Figure 4.13.a shows the cumulative distribution of community sizes, that is, the
probability P(s) that the size of a community is larger than s. Between s = 2
and s = 100, the distribution is well fitted by a power law P(s) oc s~ with
exponent o = 0.48. At s =~ 100, P(s) shows an abrupt decay, and at s ~ 1000
the distribution shows a cutoff that corresponds to the size of the system (the
whole network contains 1133 nodes). The power law of the community size
distribution suggests that there is not a characteristic community size in the
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network (up to size 100). The community size distribution corresponding to
the random graph (with the same size and connectivity than the e-mail network)
shows a completely different behavior. In this case, there are no communities of
sizes between 10 and 600, as observed in the plateau existing in the cumulative
distribution between these to values.

The similarity between the community size distribution of the e-mail net-
work and the area distribution of a river network is striking. Consider figure
4.13.b, that represents the drainage area distribution of the river Fella, in Italy,
and in particular the triangles that correspond to a sub-basin on the river of ap-
proximately the same size (number of nodes) than the e-mail community tree.
As observed, the area distribution shows a power law behavior at low values
of the area (but larger than a certain lower threshold which is approximately
10). Then there is an abrupt decay at a ~ 100 and, at a = 1000, the cutoff
corresponding to the size of the system. Moreover, the exponent of the power
law region is ayyer = 0.45, very close to the value o = 0.48 obtained for the
community tree. Similar exponents have been obtained for many other rivers
around the world (Rodriguez-Iturbe and Rinaldo, 1996, Maritan et al., 1996).

After discovering the functional analogy between the community size distri-
bution and the drainage area distribution of river networks, one question arises:
is it just chance or are there other properties shared by community trees and
river networks? To answer this question the Horton-Strahler index is studied
next.

As explained in section 2.3.2, for a self-similar tree the bifurcation ratio
By, = Ny /N1 is independent of the index k: By = B, Vk. In this case, it is
straightforward to show that the number of segments of index % is given by

(4.3)

The number of branches of index k, Ny, is measured for the binary community
tree and the results are shown in figure 4.14. As observed, equation (4.3) fits
perfectly the points obtained from the e-mail community tree with a bifurcation
ratio B = 5.76. This value of the bifurcation ration is large compared to
other systems displaying topological self-similarity. Indeed, for river networks
3 < B < 5 and in diffusion limited aggregates in two dimensions B = 5.2.
This means that the community tree is more bifurcated than the others. It is
also remarkable that we find 5 levels in the tree, that could perfectly correspond
to the levels outlined in section 2.3.2: individuals (kK = 1), groups (k = 2),
departments (k = 3), faculties and schools (k = 4), and the whole university
(k =5).

Once more, it is interesting to compare these results with those obtained for
the community tree corresponding to the random network. Asitis also shownin
figure 4.14, topological self-similarity does not hold in this case, since the points
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Figure 4.14. Topological self-similarity of the community binary tree. Filled circles represent
the number of segments of Horton-Strahler index k&, as a function of &, for the e-mail community
tree. The fact that log IV}, decreases linearly with k& shows that the tree is topologically self-
similar. This linearity does not hold for the tree obtained from a random network (void squares).

do not fall in a straight line, although N is still a monotonously decreasing
function of k. In any case, the best fit of equation (4.3) yields a much smaller
bifurcation ratio B = 3.46.

Summarizing: by means of the community size distribution and the Horton-
Strahler index, it has been shown that the community tree displays non-trivial
emerging properties. The comparison with the random case allows to conclude
that these properties are not a consequence of the community identification
algorithm. Rather, they must be related to the community structure of the
organization considered. Then, it is natural to wonder why such properties
emerge from the working relationships that the individuals have grown mostly
locally—that is, without considering the whole organization. A similar question
has been posed in river networks: while scaling and self-similarity emerge from
local erosion and flow rules? In the latter case, it has been shown that the scaling
relations and the self-similarity actually yield optimal networks, meaning that
they optimize some global quantity such as the energy dissipation. Moreover,
it has also been shown that local erosion rules can actually lead to these global
optimum (Rinaldo et al., 1993, Sinclair and Ball, 1996). This fact suggests that
the community organization could also be growing in such a way that some
global quantity (maybe related to communication flow) is being optimized.

Beyond the fundamental interest of understanding how organizations are as-
sembled and grow, the study of these properties can probably help managers.
If the existence of emerging scaling and self-similarity properties are related to
optimality as happens in other natural systems (Banavar et al., 1999), it should
be possible to relate quantities such as the exponent « or the bifurcation ratio B
to measures of performance and efficiency. Also, they could be used to measure
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evolution of structures: highly evolved structures showing nice emerging prop-
erties in contrast to poorly evolved ones. These speculations would certainly
require more investigations. Study of other organizations (other universities,
firms, etc.) in different cultural environments and with different traditions
are needed before the conclusions proposed here can be considered definitive.
However, these results open an interesting line of research that deserves interest
from both the theoretical/fundamental and the managerial points of view.

3.3 Communities and management

From a managerial point of view, there are many measures on the commu-
nication network and on the community binary tree that can provide valuable
information. While the measures presented in the previous section would only
be useful in an indirect way, here we present some examples of measures with
direct applicability to management.

3.3.1 Levesof organizational complexity

The HS index also turns out to be an excellent measure to assess the levels
of complexity in organizations. First, let us consider the interpretation of the
index in terms of communities within an organization. The index of a branch
remains constant until another segment of the same magnitude is found. In
other words, the index of a community changes when it joins a community of
the same index. Consider, for instance, the lowest levels: individuals (z = 1)
join to form a group (or team, with 7 = 2), which in turn will join other groups
to form a second level group (or department, « = 3). Therefore, the index
reflects the level of aggregation of communities. For example, in URV one
could expect to find the following levels: individuals (z = 1), research teams
(z = 2), departments (i = 3), faculties and colleges (: = 4), and the whole
university (z = 5). Strikingly, the maximum HS index of the community tree
is indeed 5, as shown in figure 4.14.

Figure 4.15 shows the community tree of the e-mail network with different
colors for different HS indices. This helps to distinguish the individual, team
and department levels within a branch. Actually, the university level is the
“backbone” of the network along which the separation of communities occurs
(from the top to the bottom of the figure). From this backbone, colleges, de-
partments and some research teams separate, although it is worth noting that
colleges or, in general, centers which are small and have no internal structure
will be classified with a HS index corresponding to a department or even a
team. Therefore, the HS index does not represent administrative hierarchy but
organizational complexity. For comparison figure 4.15c shows in color the HS
index for the binary tree of a random graph.
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Figure 4.15. (a) Binary community tree for the e-mail network as in figure 4.11, but without
showing the nodes so that the structure of the tree is clearly shown. Branches are colored
according to their Horton-Strahler index (b) Binary tree for a random graph with the same size
and connectivity than the e-mail network. Again, colors correspond to Horton-Strahler indices.

(b)

3.3.2 Measuresof interaction within the organization

The original e-mail network also contains information about interactions
within the organization. We propose two indicators to measure interactions in
the original network: (i) the average distance between centers (formal university
communities) and (ii) the probability of a node being connected to nodes in other
centers.

First, we focus on the average distance between centers. We take each node
in the network and measure the number of steps across the e-mail network
needed to reach any other node. Then we average over all the nodes in the
same center and obtain average distances between centers. To visualize this
information, we proceed as follows. First, we calculate the distance from one
center A to all other centers, d g, dac, etc. Then we compute the average
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Figure 4.16. Inter-center relations from distances in the e-mail network. A directed link is
established from A to B when the average distance between nodes in A and B is short (see text).
Five small centers with less than 10 persons have been disregarded.

distance from A to the other centers (d 4). Finally, node A (that now represents
a center, not an individual) is linked to another node B if d4p < (d4). In this
case, the network is directed because, in general, dap < (d4) does not imply
dpa = dap < (dp). Theresult is shown in figure 4.16. Numbers in this figure
correspond to the numbered communities (colors) in figure 4.15. According
to the figure there are three central communities (10, 11 and 13) that would
correspond to central offices and administrative centers of the university. These
three interact on the left with a group of four centers and on the right with
another one formed by five centers. There is one center that is only connected
to two of the central nodes and somehow isolated from the rest of the university.
No further comments can be made here due to confidentiality constrains.

The second important aspect is the probability of being connected to nodes
in other centers. For each node in the network, we just regard its neighbors and,
again, we average over all the nodes that belong to the same center. Two typical
cases are shown in figure 4.17. Center 13 is one of the three central nodes in
figure 4.16. As can be seen from figure 4.17, individuals that belong to center
13 are connected with a reasonably high probability not only to other individ-
uals in the same center but also to individuals belonging to most of the other
centers. Conversely, individuals in center 4 are mostly connected to others from
the same center and also to individuals in center 10, that has been already iden-
tified as a central management unit. Extreme cases of these two patterns could
be considered pathological: groups with lots of outside connections and very
few internal connections are said to show anomalous communication patterns,
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Figure 4.17. Probability of being connected to nodes that belong to other centers. Each bar
represents the probability of a node in center 4 or 13, to be connected with a node in another
center.

while groups with an extremely high fraction of internal connections but weakly
connected to other groups are said to show imploded relationships (Krackhardt
and Hanson, 1993).

4.  Summary

In this chapter we have shown how to extract valuable information describing
real complex communication networks behind the formal chart of an organi-
zation. We take advantage of the automatic registration of communication
processes, in particular e-mails log files, to reconstruct the real network of in-
teractions within the organization. The structure of this complex network has
been unraveled by the identification of the whole hierarchy of communities
using the Girvan-Newman algorithm. We have proposed a representation pro-
cedure that allows the identification of these communities by visual inspection.
Moreover, we have suggested measures that allow to characterize quantitatively
the community structure of the organization. As a real case study, we have stud-
ied the e-mail network of the University Rovira i Virgili. From this analysis,
we have been able to identify the real organization of the individuals of the uni-
versity into working teams, departments, faculties or colleges, and the whole
university, as well as the interrelations between them.

From a theoretical point of view, the methodology identifies emerging scal-
ing and self-similarity properties in the community structure as happens in
some other self-organized systems such as river networks. This result that
opens interesting questions about the mechanisms underlying the interactions
between individuals within an organization and, thus, the formation of complex
networks. Self-similarity is a fingerprint of the replication of the structure at
different levels of organization, and could be the result of the trade-off between
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the need for cooperation and the physical constrains to establish connections at
any organizational level (in our case study: individuals, research teams, cen-
ters, etc.). At the same time, the similitude with river networks suggests that
a common principle of optimization (of flow of information in our case or of
flow of water in rivers) could be the underlying driving force in the formation
and evolution of informal networks in organizations.

Finally, we have shown that the study of the informal communication network
using tools recently developed in the field of complex networks theory could
be useful for management purposes, for example, to assess formal charts or to
measure the degree of attainment over time of proposed organizational changes.






Chapter 5

CONCLUSIONS AND PERSPECTIVES

1. Conclusions

In this theses we have studied, from both a theoretical and an empirical points
of view, the role of communication and information processing in organizations
and its implications for organizational design. The following conclusions can
be drawn from the work.

= Any communication process with a stochastic component in which agents
have limited capability to handle information packets, that is discrete pieces
of information, gives rise to the formation of queues or, in other words, to the
accumulation of packets waiting to be delivered. When the average number
of packets that nodes can deliver during a period is bounded, the formation
of queues results at some point in the transition to a collapsed state in which
packets have to wait, on average, an infinitely long time to be delivered.
The transition is tuned by the probability of packet generation, p: for small
values of p, the traffic in the network is light and there is no collapse; for
p above a certain point p., the network collapses. The critical value p. is a
measure of the amount of information the communication network (say the
organization) is able to handle without collapsing.

When the average number of packets delivered per time period by a node is
fixed and independent of the load of the node, the transition to the collapsed
state is a continuous phase transition and the total load of the network, the
fluctuations of the total load, the average characteristic time, and other re-
lated quantities diverge. The transition is properly characterized considering
that the ratio of accumulation of packets is the order parameter. When the
average number of packets delivered per time period by a node is a decreas-
ing function of the load of the node, the transition to the collapsed state is

101
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discontinuous, and collapse arises in several nuclei that finally spread over
the whole network.

= \We focus on a situation where nodes deliver, on average, a fixed number of
packets and where the roles of the sender and the receiver of the information
are completely symmetric. Moreover, we consider hierarchical networks
in which nodes have complete knowledge of the subtrees below them. In
this situation, mean field estimations of the critical collapse point p. are
obtained. These analytical expressions are in excellent agreement with
simulations of the communication model, and show that for hierarchical
networks, the optimal design is the flattest possible one with only one node
at the top and all the others connected to it. When one considers that keeping
communication channels open has a cost for agents, the optimal hierarchical
structure is not the flattest one in general. Rather, there is an optimal span
of control which is larger as the communication technology improves, as
observed in real organizations.

= Consider a situation in which the nodes do not have global knowledge of
the structure of the network. In such a scenario, the effects of congestion, as
discussed in the previous items, and search for the destination of the packets
coexist. In general, from a search point of view centralization is positive,
but it is negative from a congestion point of view. As far as optimal network
designs are concerned, this trade-off between search and congestion results
in a transition from centralization to decentralization.

We have proposed a formalism that allows to cope with the problem of search
in presence of congestion analytically. Moreover, we have found that the
optimal network topologies for local search considering congestion are split
in two categories: star-like networks, that are optimal for small number of
parallel searches, and homogeneous-isotropic networks, that are optimal for
large numbers of parallel searches. Strikingly, the transition between these
categories is sharp, i.e. we are not able to find any optimal network topology
different from these two classes.

= We have studied the communication network (in particular, the e-mail net-
work) of a real organization with almost 1,700 employees: the University
Rovirai Virgili. It has been shown that the application of community identi-
fication algorithms developed recently in the literature of complex networks
is very successful in identifying the existence of centers, departments, and
even research teams, provided that the data is treated conveniently to elim-
inate massive and spam e-mail. The new methodology proposed allows to
identify all the communities mainly by visual inspection.

Moreover, we have been able to characterize quantitatively the community
structure. Our results reveal the emergence of self-similar properties that
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2.

suggest that some universal mechanism could be the underlying driving
force in the formation and evolution of informal networks in organizations,
as happens in other self-organized complex systems. It is worth noting that
the quantitative analysis of the community structure is a useful tool for man-
agers. In particular, we have shown that some concepts used frequently in
the management literature can be quantified with the proposed methodology,
and that large scale studies of organizations can be performed.

Perspectives
Although the objectives fixed at the beginning of the thesis have been mostly

accomplished, the research developed has opened a number of interesting lines
that are worth considering in the future. The most relevant of them are outlined
next.

= With the study of the communication models in chapter 2, we have been able

to get insights in the dynamics of communication processes. In particular,
we have established that, for regular queue systems, the transition to collapse
is a continuous phase transition. Our study has also shown that changes in
the topology of the network result in changes of the critical properties of the
congestion phenomenaand, singularly, of the critical exponents that describe
how quantities such as the load or the delivery time diverge near the collapse
point. Itis probably worth applying all the knowledge existing in the theory
of critical phenomena to design better communication protocols (specially
in computer based communication networks).

For example, classical queuing theory assumes that the average delivery time
diverges as (1 — p/p.) "1, where p/p. is the utilization ratio of the network.
We have shown that, in some situations the divergence can be much more
abrupt with an exponent of even -2.5 instead of 1. This has consequences
regarding how packets are resent in a real communication protocol.

We have faced the problem of optimal organization design in situations
where agents have purely local knowledge of the communication network.
However, the formalism developed allows to deal with other situations,
including global knowledge and any intermediate situation between purely
local search and global search.

Different knowledge scenarios will result, probably, in different optimal
networks and even in different scenarios for the transition from centralization
to decentralization, as already pointed out in chapter 3. It would also be very
interesting to study in which situations real networks (with scale-free and
small-world topology) might be optimal or almost optimal.

Still regarding optimal communication networks, the formalism we have
proposed open new doors for a deeper analytical treatment of the complex
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problem of finding optimal structures. In particular, it could be interesting
to apply tools from physics of disordered media to obtain and characterize
optimal networks.

= Finally, from an empirical perspective, it would be extremely interesting to
test the results obtained from the theoretical optimization of communica-
tion networks in a real environment. For example, it can be useful to test in
a controlled experiment whether centralized structures perform better than
decentralized and in which conditions they do. Although similar experi-
ments have been carried out and are in the literature, it would be worth to
use the results of the theoretical optimization analysis to design and guide
new experimental setups.

= The empirical analysis of the e-mail network has also opened a very inter-
esting research line in the interface between complex networks theory and
management. The work can be extended at least in two directions: one
methodological and another one applied.

Although it is true that the main components of the analysis methodology
have been established, it is possible, for example, to refine the community
identification algorithm or to propose new ways of characterizing the com-
munity structure. In particular, it is necessary to take into account that some
of the techniques used so far (singularly the Girvan-Newman algorithm)
were not specially devised to deal with community identification in orga-
nizations and therefore are susceptible of being improved using heuristics
or components that can only be applied to this very particular problem, and
not to other community identification problems in other areas.

Also interesting, specially from a managerial perspective, is the applied
line. The present study of the e-mail network of the University has shown
some properties of the organization that might very well be universal, as
happens in other complex systems that display self-organization. However,
comparison of our results with similar studies in different environments
are needed to be conclusive on this. Moreover, comparative studies would
definitely help to understand the impact of different elements. For instance,
it would be possible to determine quantitatively which is the influence of
the cultural environment in which the study is carried out, the difference
between public and private organizations, the evolution in time of a given
organization, the level of attainment of a intended redesign process, etc.
It would also be interesting to compare the results obtained for the e-mail
network with those obtained for the phone-call network, or the internal mail
network, for which it is also probably relatively easy to obtain massive data.



Appendix A
The “web of trust”

Electronic communication networks are examples of communication networks that have
experienced an amazing growth in the last years, and that are easy to quantify and study. However,
these networks have some special properties as compared to other types of communication
networks. Since information travels, in general, through a publicly available space (the Internet,
for instance), privacy can be forged relatively easy. The attempt to avoid the violation of privacy
has let to the creation of encryption algorithms that ensure that messages can only be read by the
desired user. In the Pretty-Good-Privacy (PGP) algorithm this is accomplished by a pair of keys
for encryption: a public key, which encrypts data, and a corresponding private, or secret key for
decryption (Garfinkel, 1994, Stallings, 1995). Users publish their public key to the worldwide
keeping their private key secret. Anyone with a copy of the public key of user A can encrypt
information that only A can read. It is computationally infeasible to deduce the private key from
the public key and, therefore, only the person who has the corresponding private key can decrypt
the information.

Used in the inverse way, public key cryptography also provides a method for employing
digital authentication. Digital authentication enables the recipient of information to verify the
authenticity of the information’s origin, and also verify that the information is intact. The basic
manner in which digital signatures are created is the following. Instead of encrypting information
using someone else’s public key, user A encrypts the information with his or her private key. If
the information can be decrypted with his or her public key, then it must have originated with A.
This authentication process requires that the recipient B is able to check, at least the first time that
he or she receives information from A, that A is indeed who claims to be. This is accomplished
by signing A’s public key. When B signs the public key of user A, it means that user B trusts
that A is indeed A, and in the future B will have the certainty that information allegedly sent by
A has indeed been sent by A.

One interesting point is that signatures of public keys are stored in some servers and made
publicly available. One may regard each key as a node, and each signature to define a directed
link between nodes; the resulting directed graph is known as the “web of trust”. Because of the
way it is formed, this web is a communication network since signature of keys means potential
interchange of secure information. Therefore, the study of the web of trust should help in the
understanding of other communication networks.

First, let us focus on the growth of the web of trust. The whole network contains a lot of
keys and many signatures among them, forming a large and complex web. However, the web
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Figure A.1. Growth of the web of trust. The circles represent the growth in the number of
keys that belong to the largest cluster. This growth is compatible with an exponential function
(dotted line). The squares represent the growth of the average distance between nodes. As
observed, this growth is much slower than that of the size, indicating that the web of trust has
grown efficiently and nodes are still only a few steps away from each other. For both the size of
the largest cluster and average path length, the representation shows the relative magnitude with
respect to December 1996 as a reference.

is not connected or, in other words, is formed by many different clusters containing a variable
number of keys. In a cluster, it is possible to jump from any node to any other node following
the directed links. Using the precise language of graph theory, our clusters are indeed strongly
connected sets.® In terms of trust, one can only be confident in the nodes that belong to the same
cluster: if A trusts B, and B trusts C, A can, in principle, trust C. Therefore, a good measure of
the efficiency of the web of trust is the size of the largest cluster and an ideal situation would
be that millions of persons belong to the same cluster. The real situation is still far from this,
but during the last 5 years, the largest cluster of the web of trust has grown by a factor of 6, as
shown in figure A.1. Actually, the growth is compatible with an exponential function, although
the number of data points available is probably too small to be conclusive.

The size of the largest cluster, however, is not the best measure of efficiency. Although in
principle the trust relation is transitive (if A trusts B and B trusts C, then A can trust C), some
experts state that one can only trust individuals directly, i.e. first neighbors in the network or, at
most, individuals at a distance small enough. Quite surprisingly, the web of trust has also grown
efficiently in this more restricted sense since, as shown also in figure A.1, the distance between
nodes has grown only very slightly (a factor of 1.1) in the 5 years studied, even when the size of
the largest cluster has been multiplied by 6.

By studying the sizes of the different clusters that form the network, it is possible to get more
insights on how the network is growing. Unfortunately, information about the different clusters
is not registered in the elder databases (those from 1996 and 1997). However, newer databases
contain information that allow to retrace the evolution of the web of trust. In particular, we focus

I\Weakly connected sets are formed by nodes that are mutually reachable but considering that all links are
bidirectional.
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Figure A.2. Cluster size distribution for the web of trust. The web of trust is not a connected
network but contains many disconnected clusters. The largest one contains 9652 nodes. The
points represent the cumulative distribution of sizes of the rest of the clusters, and the straight
line is a power law fit, with exponent —2.7.

in the network as recorded at http://dtype.org on July 2001, when it comprised 191,548 keys and
286,290 signatures. This 191,548 keys include only keys with at least one signature; many others
without any signature are discarded. From this database, the distribution of cluster sizes, P(n),
is calculated as shown in figure A.2. The distribution follows a power law with exponent —2.7,
P(n) « n™ 27, between 2 and 100 approximately. Beyond these small clusters, the largest one
contains (usually called the main component) 9562 keys (nodes). The power law distribution of
cluster sizes suggests that the largest cluster has emerged as a result of a percolation transition
(Stauffer and Aharony, 1992).

The next step is to study in detail the structure of the web of trust, and in particular its state
as recorded, again, at http://dtype.org on July 2001. The average path length between nodes
is small: in the largest cluster, that contains 9562 keys that have signed 5.80 different keys
on average, the mean distance is 6.58. More surprisingly, as shown in figure A.3, it is found
that the in- and out-degree distributions P(k), that is the distribution of number of incoming
or outgoing connections k;, and ko, have scale-free power law decays, P(k) o k=" with
exponentsy;, = 1.8and+~y,,+ = 1.7ashappens in other complex networks (Barabasi and Albert,
1999, Amaral et al., 2000). In particular, at least two different computer based communication
networks have been shown to display a similar scale free behavior: the e-mail network of the Kiel
university in Germany (Ebel et al., 2002), and the instant messaging network (Smith, 2002). For
the first one, only the total number of links was considered (that is, the study did not distinguish
between in-coming and out-going links), and the exponent found was quite small, v = 0.81, at
least in a region including nodes with degrees between 5 and 100. In the last one, the exponents
were vin = 1.2 and you: = 1.4.

The existence of a scale free degree distribution has been shown to have important impli-
cations. First, Albert and coworkers (Albert et al., 2000) showed that scale free networks are
robust against random elimination of their nodes but very fragile against selective removal of the
most connected nodes. Second, Pastor-Satorras and Vespignani (Pastor-Satorras and Vespignani,
2001) demonstrated both numerically and analytically that virus (either biological or electronic)
spread very easily in such networks.
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Figure A.3. Cumulative degree distribution for the web of trust. Both the in-degree and the
out-degree distributions show a power law decay in nearly three decades. The exponent is
approximately —1.7.

However, the web of trust has some properties that have not been reported in other scale-free
networks, specially related to the clustering coefficient. As reported in the introduction, in a
random graph, the clustering coefficient, C, is given by

Crandom = % (A 1)

where (k) is the average connectivity and S is the number of nodes in the network. Similarly, ina
scale free network as proposed by Barabasi and Albert (Barabasi and Albert, 1999), C decreases
very fast with the system size (Klemm and Eguiluz, 2002)

(log 5)*
- (A.2)
The fact that the network is not connected but formed by a collection of separate clusters

allows a study of the clustering coefficient as a function of the system size. Figure A.4 shows

the results. Independently of the number of nodes in the cluster, the clustering coefficient is
approximately constant as happens both in the small world model of Watts and Strogatz and in

low dimensional lattices (Watts and Strogatz, 1998).

Although it is usually implicitly assumed that the degree distribution contains all the infor-
mation necessary to understand the network behavior, the correlations in the establishment of
connections (quantified, in this case, by the clustering coefficient) have important implications.
In the case of the web of trust, the response to intentional attacks (i.e. removal of the most
connected nodes) is modified by the existence of highly interconnected groups of nodes. Figure
A.5 shows a comparison between the response to attack of the web of trust and of a random
graph with exactly the same degree distribution. The figure shows the behavior of the largest
strongly-connected cluster of the web of trust and of a random graph with the same in- and out-
degree distributions that the web of trust. Initially, both graphs have 9562 nodes with an average
degree of 5.80. As the fraction f of nodes removed increases, the cluster is split into smaller
components. Figure A.5.a shows the relative size S of the largest strongly-connected cluster, and
A.5.b the average size (s) of the other clusters. Note that for the web of trust the largest strongly-
connected cluster breaks down faster but that the other strongly-connected clusters have average

Cpa x
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Figure A.4. Clustering coefficient for the different clusters in the web of trust. As expected for
a low dimensional lattice and for a small world network a la Watts and Strogatz, the clustering
coefficient is essentially independent of the size of the cluster. For a Barabasi-Albert scale free
network and for an Erdos-Renyi random graph the clustering coefficient would decay very fast
as the cluster size increases. In particular, for a model scale-free with the same connectivity
and size than the largest cluster, the clustering coefficient would be approximately 100 of times
smaller than its actual value.
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Figure A.5. Structure and resilience of the web of trust. (a) and (b) Intentional attack on the
nodes with the highest in-degree of the largest cluster of the web of trust (full line) and a random
graph with the same in- and out-degree distributions (dotted line). (a) Relative size S of the
largest strongly-connected cluster. (b) Average size (s) of the other strongly-connected clusters.
(c) A strongly-connected cluster comprising 21 nodes. White lines indicate bi-directional links
while yellow arrows indicate unidirectional links. This cluster is strongly connected because
every node is reachable from any other node. The red nodes indicate the groups that give rise to
a large clustering coefficient.

sizes that remain unchanged up to the total destruction of the largest strongly-connected cluster.
For the random graph, the small clusters formed by removing nodes are almost all isolated nodes,
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which explains the slower decrease of S and also the constant value of (s) = 1. Therefore the
web of trust is disintegrated more easily but the low level structure remains essentially unaltered.
The explanation to this is related to the structure of the web of trust (figure A.5.c), that contains
highly interconnected groups that contribute to the clustering, and a few hubs organized in a
hierarchical fashion that give rise to the scale free degree distribution.



Resum de la Tesi

1. Introduccio

La companyia quimica tipica és una companyia gran, sovint amb milers
de treballadors. Segons dades de la Uni6 Europea, I’any 1990 quasi el 70%
de la facturaci6 en el sector quimic corresponia a empreses amb més de 250
treballadors. La resta se la repartien a parts iguals empreses petites, de menys
de 50 treballadors, i mitjanes, d’entre 50 i 250 treballadors. De fet, encara
que alguns productes tenen mercats d’abast regional, la ind(stria quimica és
essencialment global i la dominen multinacionals com ara Bayer, amb 117.000
treballadors, BASF, amb 93.000 treballadors, DuPont, amb 79.000 treballadors,
0 Dow Chemical, amb 50.000 treballadors. Especialment per aquestes grans
multinacionals, el disseny organitzatiu i la gestio dels recursos humans juguen
un paper clau, tan important, si més no, com la tecnologia o la gestio dels
recursos materials.

L’estudi teoric de les organitzacions i el seu disseny han estat tradicional-
ment tractat dins I’ambit de I’economia. La majoria de treballs en la literatura
economica s’han concentrat en problemes relacionats amb incentius, en part
perqueé existeix un marc teoric ben establert que permet tractar aquesta mena
de problemes. En els Gltims deu anys, pero, s’ha proposat i desenvolupat un
nou enfoc del problema de I’organitzaci6: el que podriem anomenar I’enfoc
comunicacional. Laideaessencial és que les organitzacions existeixen, en bona
mesura, per resoldre el problema de coordinacio que planteja la limitacio de ca-
pacitat dels individus per processar informacio. Efectivament, I’especialitzacio
sorgeix com a consequiéncia d’aquesta limitacio i, simultaniament, la necessitat
de coordinaci6 i comunicacio sorgeix com a conseqiiéncia de I’especialitzacio.
Per altra banda, és un fet establert empiricament que bona part del treball en una
organitzacio consisteix en processar informacio6 i comunicar més que no pas en
fer o vendre coses en el sentit més estricte. Des d’aquesta perspectiva, en I’enfoc
comunicacional s’entén que I’organitzacio és un processador d’informacio i, per
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tant, s’estableix que el problema de disseny és un problema de minimitzacio
dels costos de comunicacio i d’optimitzacio del flux d’informacio.

Paral.lelament, I’aparicio i el rapidissim desenvolupament de xarxes de co-
municacions tecnologiques com ara I’Internet, i també la complexitat de la seva
estructura i la seva dinamica, han despertat I’interes de la comunitat cientifica,
en particular la de la fisica estadistica. L’estudi de xarxes (o grafs) ja era una
matéria amb entitat propia en I’ambit de la sociologia o de la matematica, pero
el descobriment de propietats sorprenents en grans xarxes complexes reals ha
portat a estudiar sistemes propis de la biologia o de I’enginyeria des d’una nova
perspectiva.

En aquest treball fem servir idees i eines tant de la literatura economica
com de I’emergent fisica de les xarxes complexes per entendre el paper de la
comunicacio i del processament d’informacio en organitzacions. Ho fem des
d’una doble perspectiva: tedrica i empirica. Des del vessant teoric, proposem
i estudiem un model general i simple per processos de comunicacio. Amb
el coneixement adquirit del model, ataquem el problema de trobar estructures
de comunicacio optimes. Des del vessant empiric, estudiem les xarxes de
comunicacio d’organitzacions reals i en traiem informaci6 sobre I’estructura
de comunitats, informaci6 que es pot fer servir com a indicador quantitatiu de
I’estat i evolucio de I’organitzacio.

2. Modelitzaci6 de processos de comunicacio

Un cop emfatitzada laimportancia que I’intercanvi i el processament d’informacio
tenen en I’analisi teodrica de les organitzacions, en aquest capitol es proposa i
s’estudia una col.leccio de models simples i generals pels processos de comu-
nicaci6. Els models inclouen només els ingredients basics que prenen part en
qualsevol comunicacio entre dos agents: (i) els paquets d’informacié que hom
vol transmetre, (ii) els canals de comunicacio a través dels quals els paquets
han de ser transmesos i (iii) la capacitat limitada que els agents tenen per tractar
paquets d’informaci6. Tot i la seva simplicitat, els models reprodueixen les
caracteristiques principals del flux d’informaci6 en un entorn real. De tota la
col.leccio de models ens concentrem, en particular, en un escenari en qué els
nodes son capagos de lliurar en mitjana un nombre fixat de paquets indepen-
dentment de la seva carrega, és a dir, de la quantitat de paquets que en aquell
precis moment tinguin acumulats. En aquesta situacio, observem que apareixen
cues llargues de paquets que esperen per ser transmesos i també fluctuacions
sense una escala caracteristica en la quantitat total de paquets que viatgen per
la xarxa, tal com s’ha observat en estudis empirics de xarxes de comunicacions
reals.

El comportament del model depén d’un parametre extern, p, que determina
la probabilitat que, en un node de la xarxa de comunicacions i en un instant
de temps donat, es generi un paquet per ser lliurat. Quan p és petit (proper
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a 0) hi ha pocs paquets circulant per la xarxa, no s’interfereixen els uns amb
els altres i, per tant, no hi ha congestio. Quan p creix, pero, aquest efecte de
congesti6 comenca a jugar un paper important. De fet, a un cert punt critic,
Pe, la xarxa de comunicacions col.lapsa i el temps mig necessari per lliurar un
paquet al seu destinatari divergeix. Per xarxes de tipus jerarquic, som capagos
de caracteritzar la transicio de fase entre el regim col.lapsat i el regim lliure i
d’estimar la posicio del punt critic, p., que en certa manera mesura la capacitat
de la xarxa per tractar informaci6. També hem demostrat que, quan mantenir
canals de comunicaci6 no té cap cost pels agents, I’estructura optima, entesa
com la que té més capacitat, &s la més plana possible, amb només un node al
primer nivell i tota la resta d’agents en el segon i connectats a ell.

A mésames, aquest model basic I’hem estés en diferents sentits i hem estudiat
com les extensions modifiquen el comportament de la xarxa de comunicacions.
Primer, hem introduit el fet que els agents son heterogenis pel que fa a les seves
capacitats i les seves relacions amb altres agents. En segon lloc, s’ha tingut
en compte que mantenir molts canals de comunicacio oberts pot ser costos
per als agents en termes de temps. En aquesta situacio, s’ha demostrat que
I’estructura jerarquica optima no sera, en general, la més plana possible. Per
contra, hi ha una jerarquia optima que és més plana a mesura que el cost dels
canals de comunicaci6 és més baix i a la inversa. Aquest és un fet contrastat
empiricament en empreses reals. En tercer lloc, hem considerat xarxes que
no tinguin estructura jerarquica i hem conclos que el fet que hi hagi diferents
camins per arribar de I’origen a la destinacio dels paquets té conseqiiéncies
importants pel que fa al comportament critic que es produeix en el punt de
col.lapse. Finalment, s’ha estudiat, tan en xarxes jerarquigues com en Xxarxes
no jerarquiques, el comportament del sistema quan la quantitat de paquets que
un agent és capag de lliurar no és independent de la seva carrega.

3. Xarxes de comunicacions optimes

El capitol anterior ens ha permeés entendre la dinamica dels processos de
comunicacio. Amb aquest coneixement, en el present capitol ens centrem en el
que és I’objectiu principal de la part tedrica d’aquest treball de tesi: dissenyar
estructures de comunicaci6 optimes. En particular, ens centrem en un escenari
en que els agents no tenen un coneixement precis de I’estructura de la xarxa
sind6 nomeés un coneixement local. En aquest cas, es produeix un conflicte
d’interessos: per una banda, estructures centralitzades minimitzen el cost de
cerca pero, per I’altra, maximitzen els problemes de congesti6. En general,
doncs, no és trivial esbrinar quina sera la millor xarxa de comunicacions. En
aquest capitol ataguem el problema amb dos enfocs diferents.

El nostre primer enfoc és intuitiu perd molt poc eficient. La idea és senzilla,
generar xarxes amb regles definides a priori i estudiar-ne I’eficiéncia. Per una
determinada probabilitat de generaci6 de paquets per node i instant de temps, p,
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generem una dinamica de comunicaci6 d’acord amb el model que s’ha presentat
en el capitol anterior, mesurem quina és la carrega total de la xarxa i definim la
xarxa Optima com aquella que té una carrega menor.!

Les xarxes les construim combinant mecanismes que han estat proposats en
la literatura de xarxes complexes. En primer lloc, hi ha un component bidimen-
sional, que té un contingut informacional similar a estudis anteriors. En segon
lloc, hi ha un component preferencial que fa que els nodes tinguin tendencia
a connectar-se amb aquells altres nodes de la xarxa que ja tenen una connec-
tivitat més alta. En tercer lloc, hi ha un component aleatori. Resulta, a més,
que cada component té avantatges i inconvenients pel qué fa a la comunicacio.
En una xarxa bidimensional pura, el contingut informacional fa que sigui facil
trobar camins que duen a la destinacio dels paquets. Les distancies mitges
entre nodes, pero, son grans. Quan substituim part de les connexions en la
xarxa bidireccional per connexions aleatories de llarg abast, perdem part del
contingut informacional de la xarxa bidimensional pero, a canvi, fem decréixer
drasticament la distancia mitja entre nodes. La distancia mitja també decreix si
les connexions de llarg abast son preferencials i, en aquest cas, la centralitzacio
de les connexions en uns quants (pocs) nodes fa que la pérdua de contingut in-
formacional no sigui tan greu, perqué els nodes importants tenen, de fet, tota la
informacio necessaria. En canvi, aquesta centralitzacio té efectes molt negatius
pel que fa a la congestio.

Les simulacions confirmen aquestes idees i aboguen, a més, alguns re-
sultats sorprenents. Quan la quantitat de paquets que es generen és petita,
I’estructura Optima és totalment centralitzada. En canvi, quan hi ha molts pa-
quets, I’estructura Optima és una combinacio de xarxa bidimensional i xarxa
aleatoria, és a dir, un mon petit a la Watts-Strogatz (WS). De fet, es podria
esperar que, a mesura que augmenta la quantitat de paquets, I’estructura optima
fos cada vegada més descentralitzada: aquesta intuicio resulta ser equivocada.
El que s’observa, sorprenentment, és que I’estructura optima és totalment cen-
tralitzada fins que, en un cert punt, esdevé una xarxa WS.

L’objectiu del present capitol, pero, és més ambicids. Sense cenyir-nos a
una familia concreta de xarxes construides aprioristicament, és possible trobar
xarxes optimes? Amb els elements que tenim fins aquest punt, el procediment
més general seria el seglient: generem una xarxa, simulem la dinamica de
comunicacio i mesurem la carrega de la xarxa, fem un petit canvi i tornem a
mesurar la carrega, acceptem o rebutgem el canvi d’acord amb alguna regla
consistent i iterem el procediment. Aix0, perd, és prohibitiu degut a que la
simulacio de la dinamica pot ser molt lenta, especialment a prop del punt critic
decol.lapse. Pertant, unsegon enfoc consisteix, en primer lloc, en desenvolupar

1De fet, minimitzar la carrega de la xarxa és equivalent a minimitzar el temps mig necessari per lliurar un
paquet.
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un formalisme que permeti calcular la carrega d’una xarxa de manera meés
rapida. Un cop fet aix0, ja podem obtenir estructures Optimes en general. En
el cas que ens interessa en qué els nodes tenen només informacio local de
I’estructura de la xarxa, els resultats mostren, novament, una transici6 sobtada
centralitzacio-descentralitzacio.

Encaraque el debat centralitzacio-descentralitzacio en organitzacions és molt
antic, no hi ha cap model que permeti explicar, en termes comunicacionals, per
qué i en quines condicions son millors unes o altres estructures. EIl nostre
resultat també permet explicar I’evidéncia empirica constatada en la literatura
que problemes senzills son resolts millor per grups centralitzats i a la inversa,
i la tendéncia de les grans multinacionals actuals a descentralitzar la presa de
decisions a tots els nivells.

4.  Xarxes de comunicacions complexes en organitzacions
reals

Un cop assolit I’objectiu d’estudiar des d’un punt de vista teoric les es-
tructures de comunicacio optimes, en aquest capitol adoptem una perspectiva
totalment empirica dels processos de comunicacio en organitzacions. Mostrem,
en particular, com és possible treure informacio de la xarxa de comunicacions
complexa que hi ha darrera I’organigrama formal d’una organitzacio. Per tal
de reconstruir aquesta xarxa informal, aprofitem el registre automatic de les
comunicacions, i en particular del correu electronic, que es fa en una organ-
itzacio. Un cop construida la xarxa, n’estudiem I’estructura de comunitats,
és a dir I’organitzaci6 d’individus i grups i les seves interaccions, mitjangant
I’algorisme de Girvan-Newman que s’ha proposat molt recentment. Més enlla
del propi algorisme, proposem una técnica de visualitzacio que permet iden-
tificar aquesta estructura de comunitats per inspeccio visual. A més a més,
suggerim tota una colla de mesures que permeten caracteritzar quantitativa-
ment I’estructura de comunitats de I’organitzaci6. Com a cas d’estudi, ens
concentrem en la xarxa de correu electronic de la Universitat Rovira i Vir-
gili, que representa les comunicacions electroniques entre les aproximadament
1700 persones que hi treballen. Amb aquesta analisi som capacos d’identificar,
efectivament, I’organitzacio6 dels individus en equips de recerca, departaments
i escoles i facultats, a part de les diferents unitats administratives, i també les
interaccions entre uns i altres.

Des d’un punt de vista teoric, aquesta metodologia ens permet identificar,
també, certes propietats emergents d’invariancia d’escala i d’autosimilitud, si-
milars a les que s’observen en certs sistemes naturals com les xarxes de rius.
Aquest resultat obre preguntes molt interessants sobre els mecanismes subja-
cents a les interaccions entre individus en una organitzacio. L autosimilitud és
un senyal de replicacio de I’estructura a diferents nivells organitzatius, i podria
ser el resultat de la competéncia, a tots els nivells, de dos factors: la necessitat
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de comunicacio6 i les limitacions de capacitat. Alhora, el paral.lelisme amb
les xarxes de rius suggereix que algun principi d’optimitzacio global podria
ser el responsable de I’emergencia de propietats d’escala. Efectivament, en
rius, aquestes propietats emergeixen quan s’optimitza la dissipacio d’energia.
Es possible que en el cas de les xarxes de comunicacions s’optimitzi d’alguna
manera el flux d’informacio.

Finalment, mostrem que I’estudi de la xarxa informal de comunicacions fent
servir eines desenvolupades en I’ambit de la fisica de xarxes complexes pot ser
molt Gtil per I’administracio d’organitzacions. Per exemple, pot ser una manera
objectiva de mesurar I’evoluci6 d’una organitzacio o el grau d’adequacio a un
cert objectiu.

5. Conclusions

En aquest treball de tesi hem estudiat, tant des d’una perspectiva teorica com
empirica, el paper de la comunicacio i el processament d’informaci6 en orga-
nitzacions i les seves implicacions en els problemes de disseny organitzacional.
Podem treure’n les seglients conclusions.

= Qualsevol procés de comunicacié amb un component estocastic en qué els
agents tenen una capacitat limitada per tractar paquets d’informaci6 (els
paquets son unitats discretes d’informacio) dona lloc a la formacio de cues
0, en altres paraules, a I’acumulacio de paquets que esperen per ser lliurats.
Quan el nombre mig de paquets que els nodes poden lliurar per unitat de
temps és finit i afitat, la formacio de cues pot resultar en un estat de col.lapse
de la xarxa, en que el temps d’espera dels paquets esdevé infinitament llarg.
La quantitat de paquets que una xarxa de comunicacions (per exemple, una
organitzacio) pot lliurar per unitat de temps sense col.lapsar es una mesura
de la seva capacitat.

La transici6 a I’estat de col.lapse és una transici6 de fase. Quan la quantitat
de paquets lliurats per un agent és independent de la seva carrega, la tran-
sici6 es continua i podem aplicar I’instrumental desenvolupat en la teoria
de fenomens critics. Per contra, quan el nombre de paquets lliurats dismi-
nueix amb la carrega, la transici6 és discontinua i el col.lapse es produeix
mitjancant la formaci6 de nuclis congestionats.

= Fixem-nos en una situacié en qué els nodes de la xarxa de comunicacio
lliuren, en mitjana, un nombre fixat de paquets independentment de la seva
carrega i en qué el paper que juguen I’emissor d’un paquet i el seu receptor
son totalment simétrics. A més, considerem xarxes jerarquiques en que els
nodes tenen un coneixement total de la subxarxa que penja per sota seu.
En aquesta situacid som capagos d’obtenir, mitjangant una teoria de camp
mig, el valor del punt de col.lapse. Les expressions obtingudes coincideixen
perfectament amb els valors obtinguts en simulacions numeriques.
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D’aquests resultats se’n pot concloure que, quan mantenir connexions amb
altres agents no té cap mena de cost, I’estructura optima (és a dir, aquella
que pot tractar una quantitat de paquets més gran sense col.lapsar) és la
jerarquia plana o estrella, en que un sol node supervisa tota la resta. Per
contra, quan mantenir connexions actives té un cost en termes de temps,
apareixen jerarquies optimes que no son, en general, tan planes. A mesura
que el cost de les connexions disminueix, la jerarquia optima esdevé més i
més plana, fet que s’ha observat empiricament en organitzacions reals.

» Considerem una situacio en que els nodes no tenen un coneixement global
exacte de la topologia de la xarxa. En aquest cas, els efectes de la con-
gestid, com s’ha esmentat en els punts anteriors, i de la cerca de la des-
tinacio dels paquets coexisteixen. En general, des del punt de vista de la
cerca la centralitzaci6 de les comunicacions és positiva, pero és negativa
des del punt de vista de la congestio. Pel que fa a les estructures optimes,
la competici6 d’aquests dos efectes dona lloc a una transici6 centralitzacio-
descentralitzacio.

Hem proposat un formalisme que permet tractar el problema de cerca amb
congesti6 analiticament. A més a més, hem trobat que les estructures
optimes per cerca amb congestio es poden dividir en dues families: xarxes
de tipus estrella, quan la quantitat d’informacio és suficientment petita, i
xarxes homogenies i isotropiques, quan la quantitat d’informacio creix. Sor-
prenentment, la transicio entre xarxes d’una familia i d’una altra és sobtada,
és a dir, no hi ha estructures optimes per cerca local amb congestié que no
pertanyin a una d’aquestes dues classes.

= Hem estudiat la xarxa de comunicacions (en particular, la xarxa de correu
electronic) d’una organitzacio amb gairebé 1.700 treballadors: la Universitat
Rovira i Virgili. Hem demostrat que I’aplicacio d’algorismes per identificar
comunitats desenvolupats recentment en I’area de les xarxes complexes és
molt eficient a I’hora d’identificar centres, departaments i fins i tot equips
de recerca dins la Universitat. Per aix0, cal tractar la informacio del correu
electronic convenientment, per tal d’eliminar correu massiu que no té un
autentic valor des del punt de vista informacional. La nova metodologia
que hem proposat permet identificar les diferents comunitats per inspeccio
visual.

A mésameés, hem estat capagos de caracteritzar quantitativament I’estructura
de comunitats. Els resultats revelen I’existéncia de propietats d’autisimilitud
que suggereixen que el mecanisme subjacent a la formaci6 de comunitats
podria ser, en algun sentit, universal i no pas particular de la Universitat
considerada, com passa en altres sistemes complexos. També és destacable
que I’analisi quantitativa de I’estructura de comunitats és una eina Gtil des
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d’un punt de vista organitzacional. En particular hem explicat que alguns
conceptes que sovint es fan servir en la literatura de management es poden
quantificar amb la metodologia que hem proposat i que és possible aplicar-la
a estudis d’organitzacions a gran escala.
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