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Resumen 
 

 

Existen diversas situaciones en las cuales la descripción en términos lingüísticos 

de fenómenos complejos permite mejores resultados. Bajo una perspectiva de gestión 

medioambiental, el manejo de la calidad de las aguas en términos lingüísticos debería 

proporcionar mejores resultados, que los usuales valores numéricos de los indicadores. 

A pesar de los volúmenes de información cuantitativa que se manejan actualmente, es 

bien sabido que la gestión de la calidad del agua todavía obedece fuertemente a juicios 

subjetivos y de interpretación por parte de los expertos. Por tanto, la pregunta clave es 

¿cómo introducir operaciones lógicas que computen con palabras en el análisis de los 

datos, para producir indicadores auto-interpretables de calidad del agua? De esta 

manera, los riesgos percibidos en cuanto a los diferentes usos del agua podrían ser 

mejor estimados. 

  

La lógica difusa es una potente herramienta que permite manipular la 

incertidumbre, la subjetividad y la imprecisión que están asociadas con las palabras 

empleadas en el análisis. También, la incertidumbre y la sensibilidad de las variables  

podrían considerarse mediante conjuntos difusos. Ejemplos de imprecisión lingüística 

son conceptos tales como “impacto significativo” o “nivel de preocupación”. Cada 

persona bien puede tener su propio criterio para definirlos. Esta imprecisión refleja la 

ambigüedad del pensamiento humano para expresar percepciones e interpretaciones.  

De allí que las variables lingüísticas se presenten como muy atractivas para el manejo 

de conceptos de la gestión medioambiental, como es el caso de la “calidad del agua”, el 

“nivel de riesgo” o el “estado ecológico”. En estos casos, las herramientas de la lógica 

difusa pueden resultar útiles para el desarrollo de mejores métodos clasificatorios y de 

toma de decisiones. 

 

En la presente Tesis, la flexibilidad de la lógica difusa para computar con 

palabras se ha adaptado a diversos tópicos en la gestión del agua. Primero, se desarrolló 

una metodología para evaluar la calidad de las aguas basada en sistemas de inferencia 

difusos. Así, se diseñó un índice multipropósito de calidad del agua que se obtiene 

mediante razonamiento difuso. El índice integra un extenso grupo de indicadores que 

incluyen: contaminación orgánica, nutrientes, patógenos, variables macroscópicas, así 
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como sustancias prioritarias micro-contaminantes. El índice es estructurado en forma 

jerárquica para facilitar la manipulación de la información y el análisis de los resultados. 

De la misma forma, la importancia relativa de los indicadores de la calidad de las aguas 

al interior del sistema de inferencia se estimó con un método bien valorado en el área 

del análisis de decisiones, y que se conoce como el proceso jerárquico analítico. 

Además, se consideró un método de desarrollo reciente para optimizar la consistencia 

en la elección subjetiva de los pesos de los indicadores. 

 

Con el índice difuso de calidad de las aguas se estudió el estado global del agua 

del río Ebro en el último tramo previo a su desembocadura en el Mar Mediterráneo. Los 

resultados obtenidos con el nuevo índice coinciden significativamente con los reportes 

oficiales de las agencias regionales de protección de la cuenca y con la opinión de los 

expertos, en cuanto al estado real del agua del río. El índice difuso logró mejores 

resultados cuando se comparó con índices tradicionales, primero porque utiliza más 

información y segundo por el mejor tratamiento de la incertidumbre lingüística. En esta 

etapa, se concluyó que el diseño de indicadores de calidad de las aguas, soportado en la 

metodología difusa, es una poderosa alternativa para los tomadores de decisiones 

encargados de la planeación y gestión sostenible de las cuencas hidrográficas. 

 

En una segunda fase, se utilizó una metodología híbrida que combina los 

sistemas de inferencia difusos y las redes neuronales artificiales, conocida en el campo 

de la inteligencia artificial como neuro-fuzzy, para el estudio de la clasificación del 

estado ecológico de los ríos. Esta metodología permitió un adecuado manejo de la no 

linealidad y naturaleza subjetiva de las variables involucradas en este problema 

clasificatorio. Aquí, el estado ecológico resulta de la integración de elementos 

biológicos, morfológicos y fisicoquímicos, de acuerdo con la reciente Directiva Marco 

del Agua propuesta en Europa. El modelo clasificatorio se entrenó y validó con 

información de la cuenca del Ebro. 

 

Con esta base de datos fue posible estudiar la complejidad de los sistemas de 

inferencia difusos, la selección apropiada del número de reglas lingüísticas requeridas, 

así como la influencia de la forma de las funciones matemáticas que transforman las 

variables numéricas en lingüísticas y viceversa. Con los sistemas neuro-fuzzy se 

lograron excelentes desempeños clasificatorios, por encima del 97%, lo cual resultó 
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bastante competitivo si se comparan estos resultados, con los obtenidos con otras 

herramientas clasificatorias, tales como la redes neuronales probabilísticas y los árboles 

de clasificación y regresión. Adicionalmente, se obtuvo una mejor capacidad 

generalizadora con los algoritmos neuro-fuzzy. Por tanto, este método híbrido es 

apropiado para el diseño de sistemas de inferencia difusos optimizados y capaces de 

representar  situaciones reales. 

 

En la tercera fase de esta Tesis, se desarrolló un modelo conceptual basado en la 

metodología de evaluación de riesgo ecológico preliminar. Este modelo considera la 

presencia de sustancias peligrosas, también llamadas micro-contaminantes, en los ríos. 

El modelo incorpora un sistema innovador para clasificar las sustancias químicas, que 

está basado en una red neuronal artificial no supervisada, llamada mapa auto-

organizativo. Este mapa permitió estimar la peligrosidad ecológica que representa la 

presencia de determinadas sustancias químicas en el agua. Así, los factores de 

peligrosidad se estiman mediante el reconocimiento de patrones de las variables de 

persistencia en el ambiente, potencial de bio-acumulación y toxicidad de las sustancias. 

Al combinar estos factores de peligrosidad con la concentración (dosis) de dicha 

sustancia en el medio acuoso, es posible estimar el “potencial de riesgo ecológico”. 

Debido a la alta imprecisión e incertidumbre lingüística, este potencial se obtiene a 

partir de un sistema de inferencia difuso. 

 

El modelo así creado, que se conoce como sistema neuro-fuzzy concurrente, 

involucra un procedimiento consistente para la normalización, lo que facilita una 

comparación sencilla de los niveles de riesgo entre las sustancias químicas encontradas 

en el agua. Por tanto, la estimación de los potenciales de riesgo ecológico para cada 

sustancia en cada sitio de la red de control, es capaz de identificar las sustancias que 

pueden requerir un estudio más detallado, así como un control más estricto de las 

emisiones. De esta manera, la integración de potenciales de riesgo ecológico para todas 

las sustancias, por medio de distribuciones empíricas acumuladas, permite analizar los 

cambios en la calidad del agua a través del tiempo. Este modelo se utilizó para estudiar 

la calidad del agua en términos del riesgo ecológico preliminar en la cuenca del Ebro. 

Los datos se obtuvieron de la red de control de sustancias peligrosas, y se analizó un 

periodo de cinco años. 
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El modelo concurrente neuro-fuzzy para evaluación de riesgo se validó mediante 

comparación con monitorización biológica. De aquí, se encontró por ejemplo, que la 

calidad del agua estimada a partir de índices basados en la presencia de comunidades de 

diatomeas (fitoplancton) ha disminuido, posiblemente como consecuencia de un 

aumento en la presencia de sustancias químicas en niveles preocupantes. Este modelo 

resulta entonces de gran utilidad para la evaluación del desempeño en los planes de 

prevención y control de la contaminación, establecidos por la agencias de protección del 

medio ambiente. 

 

 En la última etapa de esta Tesis, se estudiaron los probables impactos sobre los 

ecosistemas debidos a las actividades agrícolas, domésticas e industriales en el Bajo 

Ebro. Para ello, se planteó una evaluación de riesgo ecológico preliminar centrada en el 

análisis de los sedimentos, ya que con ello se logran resultados complementarios, 

especialmente en términos de variabilidad temporal. Se llevaron a cabo ensayos eco-

toxicológicos de respuesta rápida a los extractos acuosos y orgánicos obtenidos de los 

sedimentos de ribera. Para ello se utilizó el ensayo de inhibición de la luz producida por 

la bacteria Vibrio fischeri. Estos resultados se contrastaron con los valores de metales 

pesados y compuestos orgánicos clorados presentes en la zona. Las respuestas 

toxicológicas mostraron significativas correlaciones con los niveles de los 

contaminantes. También, en algunos sitios se notó que la toxicidad podría deberse a 

factores reductores en los sedimentos. Estos resultados, permitieron concluir que el 

ensayo de toxicidad con Vibrio fischeri resultó apropiado para la evaluación de riesgo 

preliminar. 

  

Se diseñó entonces un sistema jerárquico de inferencia difuso para manejar la 

información de la evaluación de riesgo en los sedimentos de ribera, con el fin de 

proporcionar mejores estimaciones del riesgo. De esta manera, los resultados obtenidos 

en los análisis químicos y eco-toxicológicos se introducen en dos sistemas de inferencia 

paralelos que estiman el grado de contaminación y toxicidad, respectivamente, en 

términos lingüísticos. Luego, la caracterización final del riesgo se logra mediante un 

tercer sistema de inferencia. Finalmente, el riesgo se proporciona en términos 

lingüísticos, con sus respectivos grados de certeza. Esta nueva metodología resulta muy 

apropiada para la estimación del riesgo si se compara con los métodos tradicionales.  
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Summary  
 

 

There are many situations where a linguistic description of complex phenomena 

allows better assessments. Under a perspective of water management, linguistic or 

narrative statements should be superior to numerical scores in giving risk-based water 

quality classifications. It is well known that the assessment of water quality continues 

depending heavily upon subjective judgments and interpretation, despite the huge 

datasets available nowadays. Therefore, a key question is how to introduce intelligent 

linguistic operations to analyse databases, and produce self interpretable water quality 

indicators. Definitions for water indicators and indexes in linguistic terms could be 

sufficiently rigorous to represent comprehensive assessments. In this way the perceived 

risks associated with different water uses could be better estimated.  

 

When uncertainty or imprecision are related to the words used in the analysis 

rather than to the events or variables, these can be conveniently addressed with fuzzy 

logic. The term fuzzy logic embraces a wide set of diverse methodologies intended to 

deal with uncertainty and subjectivity. Examples of lexical imprecision are concepts 

such as: “significant impact” or “level of concern” which are very common in 

environmental management. This imprecision reflects the ambiguity of human thinking 

when perceptions and interpretations are expressed. Linguistic variables are ideally 

suited to express many environmental concepts hard to evaluate, as: “water quality”, 

“level of risk”, or “ecological status”. In that sense, fuzzy logic tools could result useful 

to face this sort of decision and classification problems. 

 

In the present Thesis, the flexibility of computing with words offered by fuzzy 

logic has been considered in water management issues. Firstly, a methodology based on 

fuzzy inference systems to assess water quality has been developed. A multipurpose 

water quality index has been designed with fuzzy reasoning. It integrates a wide set of 

indicators including: organic pollution, nutrients, pathogens, physicochemical macro-

variables, and priority micro-contaminants. To facilitate the assessment, the index 

involves a hierarchical structure. Likewise, the relative importance of the water quality 

indicators has been dealt with the analytic hierarchy process, a common multi-attribute 

decision-aiding method. To test the consistency degree in the subjective choice of the 
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weights of the indicators, a recent theoretically well founded improvement to this 

method, based on single value decomposition, has been implemented.  

 

The potential application of the fuzzy water quality index has been tested with a 

real case study. A dataset collected from the Ebro River (Spain) has been used. The 

findings clearly agree with official reports and expert opinions about the pollution 

problems in the studied area. The proposed index has resulted superior to common 

indexes in estimating the real effects of anthropogenic discharges on water quality. 

Therefore, the design of water quality indexes based on the fuzzy methodology emerges 

as suitable and alternative tool to support decision makers involved in effective 

sustainable river basin management plans.  

 

In a second stage, a methodology based on a hybrid approach that combines 

fuzzy inference systems and artificial neural networks has been used to classify 

ecological status in surface waters. This methodology has been proposed to deal 

efficiently with the non-linearity and highly subjective nature of variables involved in 

this serious problem. Ecological status has been assessed with biological, hydro-

morphological, and physicochemical indicators, as requested by the European Water 

Framework Directive. A data set collected from the Ebro river basin has been used to 

train and validate the hybrid classification model.  

 

The complexity of inference systems, the appropriate number of linguistic rules, 

and the influence of the shape of the mathematical functions that transform numerical 

variables into linguistic variables (or vice versa), in intelligent neuro-fuzzy based 

classification systems, have been studied. Up to 97.6% of sampling sites have been 

correctly classified with neuro-fuzzy models. Such performance resulted very 

competitive when compared with other classification algorithms. With non parametric 

classification and regression trees and probabilistic neural networks, the predictive 

capacities were 90.7% and 97.0%, respectively. Moreover, the superior generalization 

skills were exhibited by neuro-fuzzy models. Therefore, the hybrid method has resulted 

useful to search for the optimum structures of the inference systems that better represent 

the real situations. 
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In a third stage, a conceptual model based on screening ecological risk 

assessment has been developed. It considers the presence of hazardous substances, or 

micro-pollutants, in river basins. The model incorporates an innovative ranking and 

scoring system for chemicals, based on a special kind of unsupervised artificial neural 

network called self-organizing map. It accounts for the likely ecological hazards posed 

by the presence of chemical substances in freshwater. Hazard factors for chemical 

substances have been calculated by pattern recognition of persistence, bioaccumulation, 

and toxicity properties. Due to the high imprecision and linguistic uncertainty in 

screening risk assessment, a fuzzy inference system has been proposed to compute 

ecological risk potentials, which are a combination of the hazard to aquatic sensitive 

organisms, and normalized environmental concentrations.  

 

With the concurrent neuro-fuzzy approach, a consistent normalization procedure 

has been proposed to compare the levels of concern between chemicals found in water. 

The estimation of ecological risk potentials for each substance at every site, allows 

identifying those substances requiring stricter controls and further rigorous risk 

assessment. Likewise, the aggregation of the ecological risk potentials, by means of 

empirical cumulative distribution functions, allows estimating those changes in water 

quality over time. The proposed conceptual model has been applied to a comprehensive 

dataset of the dangerous substances control network in the Ebro river basin.  

 

The neuro-fuzzy approach for screening risk has been validated by comparison 

with biological monitoring. It was found for instance that, water quality estimated with 

diatom community surveys has decreased, in several sampling sites, probably as 

consequence of higher presence of chemicals at levels of concern. The proposed 

approach has resulted useful to support decision-makers in the evaluation of the long-

term performance of pollution prevention and control strategies in river basins set out 

by environmental protection agencies.  

 

In the final part of this Thesis, the likely impacts on the ecosystems due to 

agricultural, human, and industrial activities carried out in an ecologically important 

area of the Ebro River have been studied. For it, a screening site specific ecological risk 

assessment was conducted. The study was centered in sediments, since they produce 

complementary findings to the water quality analysis, especially when temporal trends 
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are required. Considering the presence of high levels of potentially toxic substances, 

such as metals and chlorinated organic compounds, aqueous and organic extracts were 

used to assess toxicity in sediments by using the photo-luminescent bacteria Vibrio 

fischeri (Microtox) as screening response variable. Toxic responses have shown strong 

relationships to the levels of pollutants in the area. Moreover, various sites presented 

some toxicity level, probably because of other factors associated with reducing 

environments into the sediments. Results indicated that Microtox® bioassay is an 

appropriate tool to perform risk assessment studies at screening level.   

 

To manage the information collected in the sediment assessment, and provide 

better risk estimates, a hierarchical fuzzy inference system has been designed. Results 

from chemical and eco-toxicological analyses have been used as inputs in two parallel 

fuzzy inference systems to assess levels of contamination and toxicity, respectively. 

Results from both inference engines are then treated in a third inference engine which 

provides a final risk characterization. Finally, the risk is provided in linguistic terms, 

with their respective degrees of certitude or membership. The method has resulted 

highly favorable and competitive when compared with current risk assessment 

methodologies. 
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Introductory notes 
 
 
 
 
1. Motivation and hypothesis 

 

Water is a natural resource. It is essential to sustain the life. It also plays a 

crucial role in the economic development and social welfare. Rivers, lakes, estuaries, 

seas, and groundwater play a vital role in everyday life. These water bodies are 

important natural resources for agriculture, industry, recreational use, domestic tasks,  

and as sources of drinking water. Water also supports ecological habitats and species of 

paramount importance. Some of the water uses can threaten the water quality. Water 

pollution in rivers can come from point sources, such as industrial or sewage effluent 

discharges, or can be diffuse such as agricultural run-off.  

 

Environmental scientists are then motivated to contribute for sustainable water 

resource management. To do that, diverse technical and conceptual approaches must be 

developed. In particular, my interest has been the elaboration of rigorous and updated 

tools to help assess water quality, intended to the protection of aquatic ecosystems. This 

is the contribution of the present Thesis. 

 

There are many real cases where a linguistic description of complex phenomena 

allows broad analyses. Under a perspective of water management, linguistic or narrative 

statements could be superior to numerical values in giving risk-based water quality 

classifications. It is well known that the assessment of water quality continues 

depending heavily upon subjective judgments and interpretation, despite the huge 

databases available nowadays. Rich in data but poor in information seems to be the 

motto. Even if goodness or badness of water quality could be distinctly identified by a 

set of critical parameters, the complex interactions of different pollutants and their 

synergistic effects on aquatic species are unlikely to be reflected accurately in any 

numerical model. Therefore, the key question is how to introduce linguistic operations 
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to analyse water quality statistics, to produce self interpretable and easy-to-use water 

quality indicators. 

 

For example, the concept of “poor water quality” should be assessed in a way 

which reflects the perceived risks associated with different water uses. So, if a source 

contains “high” nitrate concentrations, it may be considered as “poor” for drinking 

water supply. If this source is also used for irrigation, then its quality should also be 

“poor”, if the chloride concentration is “high”. Whereas, “medium” levels of both 

nitrate and chloride would indicate “poor” quality for water supply, but “acceptable” 

quality for irrigation. The global water quality of the source may be considered “faulty” 

if it is “quite bad” for water supply and “quite good” for irrigation. In addition, “very 

bad” quality for irrigation and “quite good” for supply may also be a “failure” condition 

in a determined situation (Jowitt and Lumbers, 1982). In other scenarios different 

objectives could be defined and applied according to environmental expert preferences, 

feelings, and criteria. Definitions for water quality in these terms can be sufficiently 

rigorous to represent comprehensive assessments.  

 

The use of linguistic variables to describe and assess complex systems has 

already been extensively elaborated by computer scientists, in an amazing quite mature 

field: the Fuzzy Logic. Its extension to environmental science is currently matter of 

study. One of the main advantages of fuzzy logic is the ability to model expert human 

knowledge, a necessary feature to be considered in the complex process of 

environmental management. Indeed, computing with linguistic statements has given to 

fuzzy logic its fame. 

 

The term fuzzy logic embraces a wide set of diverse methodologies intended to 

deal with uncertainty and subjectivity. Since its introduction in 1965 by Lofti Zadeh, 

fuzzy logic has been applied to many research areas. The interest in fuzzy is still 

growing, as depicted in Fig. 1. The number of papers related to “fuzzy” in the Science 

Citation Index (SCI) for 2006 was 3616. 3.2% of papers also contained the term 

“water”. Likewise, thirty-three paper contributions in 2006 were associated to the terms 

“fuzzy”, and “water quality”. Further scientific advances within this field and their 

widespread acceptance and use are expected to follow. 
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Applications of fuzzy logic in the field of water management are then promising 

given the huge complexity and number of variables involved. Moreover, it is a problem 

that needs to be faced in a multidisciplinary way. According to the enunciated above, 

the hypothesis of the present PhD Project has been that “it is possible to improve the 

environmental assessment and management of water quality in rivers by means of the 

development of an integrative conceptual framework involving a broad range of 

interpretable water-quality indicators, able to summarize the real pollution situations 

that stress aquatic ecosystems in river basins, and helpful for the complex process of 

decision-making”.  
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Fig. 1. Evolution of the number of scientific papers, appearing in the Science Citation 
Index, related to the terms “Fuzzy” and “Water”. 
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2. Objectives 

 

2.1. General objective 

 

To develop a conceptual model to assess water quality in rivers from a perspective 

of environmental risk assessment, including a comprehensive way to manage linguistic 

uncertainty and subjectivity. 

 

2.2. Specific objectives 

 

1. To design a generalized river water-quality index able to consider the linguistic 

subjectivity and uncertainty in the assessment. 

2. To elaborate an automated model to classify the ecological status in river basins 

based on the integration of biological, physicochemical, and morphological indicators.  

3. To create an intelligent system for water-quality analysis based on the probable 

ecological risks because of the presence of multiple hazardous substances in river 

basins.  

4. To propose an integrated system to deal with multi-chemical screening risk 

assessment in river sediments.  
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3. Thesis structure 

 

To overcome the proposed objectives, the present document is structured as 

follows. Every chapter consists on a research paper holding a specific objective. 

Consequently, each chapter has its own organization: abstract, introduction, methods, 

results, discussions, conclusions, acknowledgments, and references. According to the 

hypothesis enunciated above, fuzzy inference systems (FIS) have been selected and 

validated as appropriate tools to deal with subjectivity and uncertainty in the problem of 

assessing water quality in river basins. Every chapter reflects therefore a FIS 

application, to be used in water management. Nevertheless, the connection between 

chapters is easily established, since a common aim has been followed throughout the 

Thesis.  

 

First, a global water quality indexing system from selected variables has been 

proposed to introduce fuzzy models into water management. Then, the interactions 

between biological, morphological, and physicochemical elements in river basins are 

explored. After, the likely environmental impacts due to the presence of micro-

contaminants are analysed. Finally, a decision support model to manage sediment 

quality, as necessary extension of water quality protection, has been elaborated. 

 

The development of a multipurpose water-quality index, within a FIS 

framework, is described in the Chapter 1. It is well known that some water-quality 

indicators are more important than others. To take into account that, a decision-aiding 

method that assigns a respective importance to each indicator, has been linked to the 

FIS. It consists on an improved version of the well known analytic hierarchy process 

(AHP).  

 

In the Chapter 2, the complexity of the inference engines within FIS has been 

explored. Consequently, interpretability and accuracy in FIS models have been studied. 

To take advantage of that, the complex relationships between hydro-morphological, 

physicochemical, and biological indicators, to provide a classification about the 

ecological status in river basins, have been considered. An adaptive neuro-fuzzy 

inference system, the ANFIS algorithm, was selected for the study. Its performance was 

compared to two state-of-the-art supervised methods, commonly used in classification 
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tasks: the probabilistic neural networks (PNN), and the classification and regression 

trees (CART).  

 

Chapter 3 proposes a novel screening ecological risk assessment (ERA) 

methodology to assess water quality because of the presence of hazardous micro-

contaminant chemicals in river basins. The method is based on a FIS and supported by a 

pattern recognition tool called self-organizing-map (SOM). The SOM-FIS structure can 

be seen as concurrent neuro-fuzzy model. Subjectivity and the uncertain nature of 

variables involved in risk estimation have conveniently been dealt with. Also, a strong 

relationship between the chemical pollution analysis with the neuro-fuzzy conceptual 

model, and biological water quality assessment, carried out with diatom communities in 

river basins, is also discussed. 

 

Nowadays, sediment quality protection has been viewed as logical and necessary 

extension of water quality protection. Therefore, the bases for a decision-making 

system, supported on FIS, to assess river sediments are settled in Chapter 4. Rapid 

screening toxicity bioassays and concentrations of hazardous chemicals present in river 

sediments have been collected. These have been used as inputs to a FIS intended to 

provide screening ecological risk assessment. A methodological procedure to improve 

the use of rapid screening toxicity bioassays, particularly in the Microtox test, is 

described too. Here, multivariate data exploratory analysis was carried out with 

principal component analysis (PCA). This Chapter is composed by two parts, Part A 

describing the collection of information, and Part B describing the design of the fuzzy  

inference system. 

 

Next, a brief description of methods utilized throughout the Thesis is provided. 

Their application to face the water quality problem is further explained in the respective 

chapters. All developed tools have been applied and validated with real case studies, 

usually involving the Ebro river basin, even though their application could easily be 

extended to other river basins. A Conclusion Chapter is presented as well. Finally, an 

Annex is presented where a probabilistic risk assessment has been conducted to a highly 

polluted river located in Colombia, South America. The Annex settles the bases for 

future research and International Cooperation. 
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4. Methods overview 

 

4.1. Ecological risk assessment 

 

During the 1980s, risk assessment emerged as a prominent regulatory tool, and 

consideration of ecological impacts began to influence regulatory and policy decisions 

(Hope, 2006). Since then, ecological risk assessment (ERA) has involved the 

assessment of the risks posed by the presence of substances released to the environment 

by man, in theory, on all living organisms in the variety of ecosystems which make up 

the environment (OECD, 2002). ERA methodology was developed from that already 

established for human health risk assessment (HRA) (USEPA, 2004).  

 

The general principles are widely agreed upon but the application of the process 

still provokes considerable debate. HRA is concerned with individuals and morbidity 

and mortality. ERA is concerned with populations and communities, and the effects of 

substances on mortality and fecundity (Lasinio et al., 2007). ERA has to deal with a 

multitude of organisms, all with varying sensitivities to chemicals and various groups 

have distinct exposure scenarios, such as free swimmers and sediment dwellers (EEA, 

1998). Many species in aquatic ecosystems are indeed more sensitive to pollution than 

humans. Therefore, the protection of water quality based on the precept of preserving 

good ecological status would involve the human health protection as well. 

 

Because of the difficulty in obtaining toxicity data on all organisms in an 

ecosystem, the recognized practice is to test selected representatives of major taxonomic 

groups and use these as surrogates for the whole system. This method is questionable as 

it may not protect the most sensitive species exposed in the environment. Failure to 

identify the effects of an agent on a potential receptor can result in widespread damage 

to organisms and ecosystems (EEA, 1998). A common example is the presence of 

antifouling paints containing tributyltin and the damaging effects on oysters (Alzieu, 

2000). 

 

A river basin site with multiple stressors may contain hundreds of chemicals. 

Therefore, it is important to screen contaminants of potential concern for the ecological 

risk assessment. Screening is usually accomplished by using a set of toxicological 
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benchmarks, or environmental quality standards (EQS). These EQS are helpful in 

determining whether contaminants deserve further assessment or are at a level that does 

not require further attention. If a chemical concentration or the reported detection limit 

exceeds a proposed lower benchmark, further analysis is needed to determine the 

hazards posed by that chemical. If, however, the chemical concentration falls below the 

lower benchmark value, the chemical may be eliminated from further study. 

Concentrations exceeding an upper screening benchmark indicate that the chemical in 

question is clearly of concern, and that remedial actions are likely to be needed (Jones et 

al., 1997). 

 

The use of multiple EQS also indicates the likelihood and nature of effects. For 

example, to surpass only one conservative EQS may provide weak evidence of real 

effects, whereas surpassing multiple EQS of varying conservatism may provide strong 

evidence of real effects (Suter II et al., 2000). In practice, EQS are highly subjective and 

uncertain (Fig. 2). EQS for many chemicals involve large methodological and inherent 

uncertainties, such as missing or insufficient physicochemical and/or molecular data, 

very low number of sensitive species tested, etc. In any case, the ERA process involves 

heavy uncertainties, and the tools to deal with them are still in early development. 

 

In a broad sense, ERA is the characterization of the potential adverse ecological 

effects resulting from ecological exposures to environmental hazards. The steps in the 

ERA process are: hazard identification, dose-response assessment, exposure assessment, 

risk characterization, and risk management (EC, 2003; USEPA, 2007).  

 

Hazard identification is the analysis of an environmental situation to ascertain if 

there is the potential for an exposure of an organism (including a human) or ecosystem 

to an environmental stressor that may cause harm. Dose-response assessment is the 

process of characterizing the relation between the dose of an agent received by a 

receptor (organism or ecosystem) and the incidence of an adverse effect on that 

receptor. Exposure assessment is the process of estimating the intensity, frequency, or 

duration of a human or ecological exposure to agents that are currently in the 

environment, or may be present in the future. Risk characterization is the process of 

estimating the incidence of an adverse effect under the conditions of exposure described 
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in the exposure assessment. It also includes the description of the meaning of the 

assessment, including variability and uncertainty in the preceding steps (USEPA, 2007). 

 

The risk assessment establishes whether a risk is present and defines a 

“magnitude” of that risk. A risk manager must integrate the risk assessment results with 

other considerations to make and justify risk management decisions. Other 

considerations in making risk management decisions include existing background levels 

of contamination, available cleanup technologies, costs of alternative actions, and 

remedy selections (USEPA, 1997). 

 

 
Fig. 2. Need for an appropriate management of uncertainty (∆U) in risk assessment. EQS 
is Environmental Quality standard. 
 

4.2. Microtox 

 

Microtox toxicity testing technology is a biosensor-based measurement of 

toxicity, and provides an effective way to monitor either accidental or deliberate water 

contamination. Microtox tests are based on the use of luminescent bacteria, called 

Vibrio fischeri which produce light as a by-product of normal metabolism. The 

inhibition of the normal metabolism caused by toxicity may result in a reduction in rate 

of luminescence. The higher the level of toxicity the lower the production of light is 

(SDI, 1998). The test provides rapid screening and confirmation results, which are cost-

effective, and easy to perform (Parvez et al., 2006). Microtox responds to a very broad 

range of toxicants and classes of chemical agents including metals, pesticides, 
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fungicides, chlorinated solvents, industrial chemicals, etc. (Farre et al., 2006; Hsieh et 

al., 2004; Muller et al., 2007; Redman et al., 2007).  

 

While chemical analysis can be very sensitive and precise, they are also very 

narrow and do not detect pollutants for which the analysis is not specifically looking. 

Chemical specific tests are time-consuming, costly and incomplete tools to screen 

toxicity. Unanticipated toxicants usually are undetected with chemical analyses in real 

situations. In addition, even when the chemical constitution of a sample was known in 

detail, its effective toxicity can not reliably be calculated, since different chemicals in 

complex samples may work sinergistically (or antagonistically) increasing (or 

decreasing) toxicity. Chemical analyses should be performed for identifying particular 

chemicals after a sample is known to be toxic. Therefore, extended monitoring 

programs in river basins would reduce costs in that way. By using screening toxicity 

tests, it is also possible to optimize time and costs of chemical sampling in real 

situations which facilitates the process of screening environmental risk assessment. 

 

4.3. The Water Framework Directive 

 

The European Water Framework Directive (WFD) is one of the most important 

pieces of environmental legislation produced in recent years, and is likely to transform 

the way that water quality monitoring is undertaken. It aims to complement a number of 

other existing legislative instruments including the Bathing (76/160/EEC), Drinking 

(98/83/EC), Fish (78/659/EEC) and Shellfish (79/923/EEC) Water Directives, as well as 

those based on specific substances or sources of pollution (i.e. Dangerous Substances 

(76/464/EC), Groundwater (80/68/EEC), Nitrate (91/676/EEC) and Pesticide 

(91/414/EEC) Directives). The objectives of the WFD (2000/60/EC) are to improve, 

protect, and prevent further deterioration of water quality. The term water within the 

WFD encompasses most types of water bodies, and therefore the legislation applies not 

only to groundwater but also to all coastal and surface waters (Allan et al., 2006). The 

WFD is similar in many aspects to the North American Clean Water Act, established in 

1977 (USEPA, 2002). 

 

The Directive aims to achieve and ensure the “good ecological quality” status of 

all water bodies, and this is to be achieved by implementing sustainable management 
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plans at the river basin level. Monitoring is required to cover a number of water quality 

elements including, physical-chemical, hydro-morphological, biological, and chemical 

parameters (EC, 2000). Design of conceptual decision models for the integration of 

these elements is therefore mandatory for a better assessment. But, aquatic systems are 

too complex, and there are many problems associated with “measuring” their ecological 

quality and their composite elements. These measures are by definition highly 

subjective and linguistically uncertain. Therefore, advanced methods to manage 

information intended to provide such measures need to be considered. 

 

4.4. Fuzzy inference systems 

 

When uncertainty or imprecision are related to the words used rather than to the 

events or variables, these can be addressed with fuzzy logic (Shepard, 2005). Examples 

of lexical imprecision are concepts such as: “significant impact” or “level of concern”. 

This imprecision reflects the ambiguity of human thinking when perceptions and 

interpretations are expressed. Linguistic variables are ideally suited to express many 

concepts found in environmental management, such as water quality, level of risk, or 

ecological status.  

 

“The aquatic ecosystem in the river is at considerable risk because of high 

number of wastewater discharges” is a clear example of a statement inherently fuzzy. 

This sentence is very likely to be found in any water-quality analysis report. Actually, 

the level of risk contains terms, also called fuzzy sets, or qualifiers that represent a 

range within the variable. So, the risk for the aquatic ecosystem could include the 

following qualifiers: very low, low, moderate, high, severe, extreme, or deadly. Usually 

the number of qualifiers ranges from three to seven which overlap (commonly in a high 

percentage) in the values that they include. The scale used to measure linguistic 

variables is determined by convenience. The range from lowest to highest values of all 

qualifiers is called the universe of discourse. These ranges and qualifiers can be 

determined by consensus to reflect the local, regional, or national policies or beliefs, 

within the environmental protection agencies. According to the enunciated above, it is 

quite obvious that fuzzy logic offers a powerful framework to develop decision models 

for water management. 
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Fuzzy sets theory has been developed for modelling complex systems under 

uncertain or imprecise environments (Ross, 2004). Fuzzy logic uses sets with dynamic 

boundaries. An example of fuzzy sets has already been introduced in Fig. 2 (right). The 

qualifiers defined above for risk are other examples of fuzzy sets. In fuzzy logic for 

instance, the boundary among “moderate risk” and “high risk” is not a crisp (fixed) 

number but a range with different levels of membership, or belongingness, to both 

qualifiers. This is one of the most convenient advantages that fuzzy logic provides. A 

fuzzy inference system (FIS) is a framework, formulated or designed, to manage 

information from inputs to produce desired outputs (Mathworks, 2007a). The 

framework gives a basis to take decisions. The FIS is highly interpretable and somehow 

quite graphical thanks to commercial available software, but it is strongly dependent of 

the level of expertise of the modellers about the problem that is being modelled. To 

design environmental indicators, FIS are demonstrating to be quite appropriate. 

 

 

 

Fig. 3. Fuzzy inference system to design environmental indicators.  
 
 

Fuzzy logic is a methodology that allows computing with words, and no other 

modelling method offers such flexibility (Zadeh, 1996). FIS involves three important 

concepts: membership functions, logical operations, and inference if-then rules 

(Mathworks, 2007a). Membership functions transform the numerical values to the 

linguistic world and vice versa. The process is called fuzzification or defuzzification. 

So, the words (qualifiers) can be computed, with logical operations, into the set of 
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inference rules. Such rules reflect the level of expertise of the model. “If the 

concentration of mercury in water is high then the risk to ecosystems is extreme” is, for 

example, an if-then rule in a hypothetical FIS intended to “measure” ecological risk.  

 

 

 

Fig. 4. Examples of hierarchical fuzzy inference systems for complex systems. 

 

 

A FIS may be conveniently used to design environmental indicators. It is 

displayed in Fig. 3. A FIS is roughly divided into four parts: fuzzification, weighting, 

inference rules, and defuzzification (Mathworks, 2007a). The fuzzification process 

involves the definition of inputs, as well as their respective membership functions that 

transform the numerical value of a variable into a membership grade to a fuzzy set, 

which describes a level of the variable (e. g. low, high). Since not all variables have the 

same importance, it is necessary to guide, into the rules, the influence of each variable 

to the final score. The evaluation of inference rules includes the application of logic 

operations into each rule, and the use of aggregation methods to join the decisions 

(outputs) of every rule. It produces an integrated output fuzzy set that preserves the 

knowledge of the whole inference engine. Finally, defuzzification returns the fuzzy 

output to the numerical world. When a problem is complex, as those faced in the present 

Thesis, a structured hierarchy to interconnect various partial FIS can be developed. It 

facilitates the complete analysis and management of information (Gentile et al., 2003). 

Examples of hierarchical FIS are provided in Fig. 4.  
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4.5. Neuro-fuzzy systems 

 

Neuro-fuzzy systems are intelligent structures containing artificial neural 

networks and fuzzy logic systems. The hybridization produces systems that combine the 

human-like if-then reasoning style of fuzzy systems with the connectionist structure of 

neural networks. The main strength of neuro-fuzzy systems is that they can be seen as 

approximators with the ability to solicit interpretable rules (Paiva and Dourado, 2004). 

Neuro-fuzzy systems involve two contradictory requirements: interpretability versus 

accuracy. In practice, one of the two properties prevails (Ang and Quek, 2005). So, the 

neuro-fuzzy modelling research can be divided into two areas: linguistic modelling, 

focused on interpretability; and precise modelling, focused on accuracy. Linguistic 

fuzzy modelling would have application to environmental decision models. Precise 

fuzzy modelling would help to improve the performance of traditional environmental 

models already in use.  

 

The term neuro-fuzzy may describe several configurations involving fuzzy 

systems and neural networks. In Chapter 2 an integrated model is presented. In turn, a 

concurrent neuro-fuzzy model is developed in Chapter 3. In a concurrent model, the 

neural network assists the fuzzy system continuously to determine the required 

parameters, especially if the input variables of the FIS cannot be measured directly (Fig. 

5a). Such combinations do not optimize the fuzzy system but only aid to improve the 

performance of the overall system. Learning takes place only in the neural network and 

the fuzzy system remains unchanged during this phase (Abraham, 2001).  

 

In integrated models, neural network learning algorithms are used to determine 

the parameters of fuzzy inference systems. Integrated neuro-fuzzy systems share data 

structures and knowledge representations (Abraham, 2001). Fuzzy systems are 

characterized by being highly interpretable but the knowledge must be available. In 

turn, neural networks are able to “learn” from data, but their interpretation is not easy. 

To a large extent, the drawbacks pertaining to these two approaches seem 

complementary. Therefore, it seems natural to consider building integrated systems 

combining the concepts of FIS and neural networks. To do that, it is common to 

represent a FIS in a structure appropriate to apply neural network learning algorithms. It 
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can be observed in Fig. 5b. The list of integrated neuro-fuzzy models is widespread. The 

ANFIS algorithm is a very well known member of that family (Jang, 1992).  

 

a. Concurrent neuro-fuzzy system: 

Rule J

Rule K

Rule L

Σ

SOM FIS

Rule J

Rule K

Rule L

Σ

SOM FIS

 

b. Integrated neuro-fuzzy system: 

 

Fig. 5. Some structures of neuro-fuzzy systems. 

 

As enunciated above, FIS models consider membership functions that are fitted 

at judgment of the decision-maker. Moreover, the inference engine structure must be 

predetermined with settings from expert knowledge about the modelled system. With 

ANFIS models, it is possible to discern directly from data, the shape of the membership 

functions and the structure of the inference engine (Firat and Gungor, 2007). Thus, 
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rather than arbitrarily choosing the membership function parameters, and the FIS 

structure, these could be tailored to the input/output data space, in order to better 

account for uncertainties and variability in data. A practical application of ANFIS is 

discussed in Chapter 2. In ANFIS, the learning process is only concerned with 

parameter level adaptation within fixed structures. For large scale problems, it would be 

very complicated to determine the optimal antecedent consequent structures, number of 

rules, etc. (Abraham, 2001). Also, the computational requirements in ANFIS 

dramatically increase in problems with high number of input variables. It is commonly 

called “curse of dimensionality”. 

 

4.6. The analytic hierarchy process 

 

The analytic hierarchy process (AHP) is a structured tool to deal with complex 

decisions (Ho, 2008). It is used throughout the world in a wide variety of decision-

making problems. It was proposed by Thomas Saaty in the 1970s and has extensively 

been improved since then (Vaidya and Kumar, 2006). The AHP provides a framework 

to structure a decision problem, to represent and quantify its elements, to relate elements 

to goals and evaluate alternatives. A decision problem is decomposed into a hierarchy of 

more easily understandable sub-problems, each of which can be analyzed 

independently. 

 

Once the hierarchy is conceived, the decision makers may systematically 

evaluate its various elements, comparing them by pairs. In making the comparisons, the 

decision makers can use concrete data about the elements, and/or their judgments about 

the relative importance of the elements. The essence of the AHP is that human 

judgments, and not just the underlying information, can be used in performing the 

evaluations (Saaty, 2003). The AHP converts these evaluations into numerical values 

that can be processed and compared over the entire range of the problem. A numerical 

weight is derived for each element of the hierarchy, allowing diverse elements to be 

compared to another in a rational way.   

 

AHP is based on pair-wise comparisons. The relative importance of the different 

attributes is given on a 1 to 9 scale. These values are assigned by verbal elicitation of 

decision makers (Saaty and Ozdemir, 2003). For example, if a person says attribute A is 
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"moderately more important" than attribute B, A would have a relative weight 3 times 

that of B. In turn, if A is "extremely more important" than B, the weight of A would be 9 

times that of B. The 0-9 scale is arbitrary and alternative scales have been proposed. 

However, the main drawback of the AHP is that the perceived meaning of the verbal 

expressions varies from person to person, and also depends on the set of elements 

involved in the comparison. However, this trouble is correctable as many proposals are 

currently emerging in the field of decision theory.   

 

4.7. Probabilistic neural networks 

 

The PNN is in essence a combination of neural networks and Bayesian statistics. 

A PNN implements a practical solution (based on Parzen kernels, and spheres of 

influence) for the mathematical problem of approximating the unknown distribution of a 

given population based on a learning set consisting of multivariate sample data, and 

without making any assumptions on the nature of the distribution itself. Once the 

estimator is built, the predictions are generated via the well known Theorem of Bayes. 

The most common choice of kernel is the basic Gaussian kernel, which involves only 

the Gaussian function, and therefore one sphere of influence parameter. As Bayesian 

approximators, PNN may be used for both mapping and classification tasks 

(Mathworks, 2007b). According to their purpose, the architecture of the PNN follows 

very precise rules. The learning phase of the PNN involves only one pass through the 

training data, and there is no need for a training validation set. Judging a PNN 

generalization performance is handled through external validation. It is possible to 

validate the model using full cross-validation experiments based on random selection 

(Niculescu, 2003).  

 

The PNN training is so fast that for the case of a small number of input and 

output variables it can be performed in real time. In addition, the PNN is very robust, 

learning only the essential information from outliers, and being able to handle sparse 

samples. The basic Gaussian kernel mapping PNN performance is comparable to that of 

the best back-propagation neural networks. A major drawback of the PNN is that as the 

number of training cases grows, the same happens with the memory requirements 

associated with the network layers and their connections. It is appropriate to use PNN 

only for moderately large training sets. Large size of the training set impacts negatively 
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on the computational speed of the resulting PNN. Therefore, the use of the principal 

components analysis (PCA) to reduce the model inputs could be highly convenient in 

these cases. Selecting the appropriate kernel is a very delicate and complex 

experimental process. There is a strong connection between the kernel choice and the 

PNN learning and generalization performance. A common drawback of PNN is its black 

box structure (Niculescu, 2003). 

 

4.8. Classification and regression trees 

 

CART is a non parametric statistical methodology to analyze classification 

issues (Mathworks, 2007c). If the dependent variable is categorical, CART produces a 

classification tree. When the dependent variable is continuous, it produces a regression 

tree. In CART, the major aim is to produce an accurate set of classifiers by discovering 

the predictive structure of the problem under consideration. That is, CART helps in 

understanding the variables and their interactions that are responsible for a given 

phenomenon (Yohannes and Webb, 1999).  

 

The purpose of CART classifiers is to enable one to predict the class of any 

future observations from the profile of characteristics submitted for analysis. In brief, 

the construction of a CART classification rule centres on the definition of three major 

elements: the sample-splitting rule, the goodness-of-split criteria, and the criteria for 

choosing an optimal tree for analysis. CART builds trees by applying predefined 

splitting rules and goodness-of-split criteria at every step in the node-splitting process. 

In a highly condensed form, the steps in the tree-building process involve: growing a 

tree with a large number of nodes, combining some of the branches of this large tree to 

generate a series of sub-trees of different sizes, and selecting an optimal tree via the 

application of measures of accuracy of the tree (Yohannes and Webb, 1999). CART is a 

competitive classification algorithm (Kurt et al., 2008). 

 

4.9. Self organizing maps 

  

The self-organizing map (SOM) is a recent tool used for clustering, 

visualization, and abstraction. The basic concept behind the SOM is preservation of 

topology (relationships among data) (Vesanto et al., 2000).  
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A SOM is a one active layer neural network consisting of a multidimensional 

array of neurons. Each neuron in the grid is also an output neuron. The neurons are 

connected only with their closest neighbours in the array according to a prescribed 

topological scheme. The local feedback has the result that topologically close neurons 

react similarly when they receive similar input. In other words, if a particular neuron 

represents a given pattern, then its neighbours represent similar patterns. The SOM is 

trained through unsupervised competitive learning using a “winner takes it all” policy 

(Niculescu, 2003). 

 

All neurons in the active layer obtain the same multidimensional input and at the 

same time. A training case is presented to the network, and the winning neuron is found. 

That winner has its weights updated using the current learning rate, while the learning 

rate for the neighbours is scaled down proportional to the distance to the winner. 

Consequently, the knowledge of that pattern will be localized in the area of the winner. 

Any number of inputs may be used as long as the number of inputs is greater than the 

dimensionality of the grid space. Each training cycle involves one pass through the data 

and the training is stopped when changes to the network weights become insignificant. 

A new case is classified to the cluster associated with the corresponding winner neuron 

of the grid.  SOM are strictly linear in their response, therefore, their use as classifiers is 

limited to situations that tolerate it. They train relatively fast and are easy to interpret. 

Furthermore, SOM layers may be combined with other neural network type layers 

(Niculescu, 2003). 

 

4.10. Principal component analysis 

 

Principal components analysis (PCA) is a statistical technique widely used to 

reduce multidimensional data sets to lower dimensions for analysis (Mathworks, 

2007c). PCA is a powerful tool to exploratory data analysis and for making predictive 

models. PCA calculates the eigenvectors of the singular value decomposition of a 

dataset, usually after mean centring the data for each attribute. The results of PCA are 

component scores and loadings. They preserve the main features of the original dataset. 

PCA is an orthogonal linear transformation that converts the data to a new coordinate 

system such that the greatest variance by any projection of the data comes to lie on the 
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first coordinate (first principal component), the second greatest variance on the second 

coordinate, and so on. In theory, PCA is the optimum transformation for a given dataset 

in terms of least squares. 
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Chapter 1 

 
Assessing water quality in rivers with fuzzy inference systems:  

A case study1 
 

 

Abstract 

 

In recent years, fuzzy-logic-based methods have demonstrated to be appropriate 

to address uncertainty and subjectivity in environmental problems. In the present study, 

a methodology based on fuzzy inference systems (FIS) to assess water quality is 

proposed. A water quality index calculated with fuzzy reasoning has been developed. 

The relative importance of water quality indicators involved in the fuzzy inference 

process has been dealt with a multi-attribute decision-aiding method. The potential 

application of the fuzzy index has been tested with a case study. A data set collected 

from the Ebro River (Spain) by two different environmental protection agencies has 

been used. The current findings, managed within a geographic information system, 

clearly agree with official reports and expert opinions about the pollution problems in 

the studied area. Therefore, this methodology emerges as a suitable and alternative tool 

to be used in developing effective water management plans.  

 

Keywords: Water quality standards; Fuzzy inference systems; Analytic hierarchy 

process; Water management  

                                                
1 William Ocampo-Duque, Núria Ferré-Huguet, José L. Domingo and Marta Schuhmacher.  Assessing 
water quality in rivers with fuzzy inference systems: A case study. Environment International, Volume 
32, Issue 6, August 2006, Pages 733-742 
 

UNIVERSITAT ROVIRA I VIRGILI 
ON THE DEVELOPMENT OF DECISION-MAKING SYSTEMS BASED ON FUZZY MODELS TO ASSESS WATER QUALITY IN RIVERS 
William Andrés Ocampo Duque 
ISBN:978-84-691-9743-1/DL:T-225-2009



 42 

1. Introduction 

 

The number of pollutants compromising the health of river ecosystems can be 

very notable, depending on the economic and social characteristics of the riparian 

societies beneficiated with the water (Lekkas et al., 2004). Environmental protection 

agencies define comprehensive sets of indicators to monitor water quality. In order to 

protect the ecological status, as declared in the Water Framework Directive (EC, 2000), 

not only environmental concentrations of chemicals in rivers are being used to assess 

water quality, but also their effects on trophic chains. Much work is currently done in 

order to implement biological monitoring (Allan et al., 2006). However, chemical 

monitoring will continue being an important source of data. 

 

Water quality indicators have generally been grouped into three broad 

categories: physical, chemical and biological, each of them containing a significant 

number of water quality variables (CCME, 2004). The acceptability of water quality for 

its intended use depends on the magnitude of these indicators being often governed by 

regulations (EPA, 1994). In relation to this, for example, the Catalan Water Agency 

(Catalonia, Spain) uses more than 150 chemical indicators to survey the condition of 

freshwaters (ACA, 2005). 

 

Traditional reports on water quality tend to be too technical and detailed, 

presenting monitoring data on individual substances, without providing a whole and 

interpreted picture of water quality. To resolve this gap, various water quality indexes 

have been developed to integrate water quality variables worldwide ([SAFE] Strategic 

assessment of Florida's environment, 1995; Mitchell and Stapp, 1996; [WEP] Lower 

Great Miami watershed enhancement program, 1996; Cude, 2001; Liou et al., 2004; 

Said et al., 2004). Most of these indexes are based on the Water Quality Index (WQI) 

developed by the U.S. National Sanitation Foundation (NSF, 2005). 

 

The WQI is obtained by adding the multiplication of the respective weight factor 

by an appropriated quality-value for each parameter. The WQI index consists of nine 

parameters: dissolved oxygen (0.17), fecal coliforms (0.16), biochemical oxygen 

demand (0.11), pH (0.11), temperature change (0.1), phosphates (0.10), nitrates (0.10), 

turbidity (0.08), and total solids (0.07). In parentheses are given the weight factors 
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according to the importance of the parameters. Other indexes are also used at regional 

level to evaluate water quality. The Simplified Water Quality Index (ISQA) is currently 

applied by the Catalan Water Agency (ACA, 2005). It is mainly a correlation of 

dissolved oxygen, total organic carbon, suspended solids, and conductivity, with a 

weight vector of 0.30, 0.25, 0.25, and 0.20, respectively. 

 

However, WQI, ISQA, and other similar indexes exhibit a number of weak 

points, which enable the assignation of a quality value using a limited number of 

parameters. Most indexes do not consider toxic pollutants such as heavy metals, 

hydrocarbons, or pesticides. In turn, some parameters in the index equations can 

influence dramatically the final score without valid justification, while their 

formulations are rather elementary, and the number of variables involved is too limited. 

However, the most critical deficiency of these indexes is the lack of dealing with 

uncertainty and subjectivity present in this complex environmental problem (Chang et 

al., 2001; Mpimpas et al., 2001; Silvert, 2000). 

 

The need for more appropriate techniques to manage the importance of water 

quality variables, the interpretation of an acceptable range for each parameter, and the 

method used to integrate dissimilar parameters involved in the evaluation process is 

clearly recognized. In this sense, some alternative methodologies have emerged from 

artificial intelligence. These methodologies, mainly fuzzy logic and fuzzy sets, are being 

tested with real environmental problems. The final aim is to reduce the uncertainty and 

imprecision in criteria employed in decision-making tools (Chang et al., 2001; McKone 

and Deshpande, 2005). 

 

Fuzzy sets, characterized to be conceptually easy of understanding, and based on 

natural language, have been successfully used to model non-linear functions, to build 

inference systems on top of the experience of experts, and to deal with imprecise data 

(Zadeh, 1996; Pham and Pham, 1999; Romano et al., 2004; Ross, 2004). These 

advantages have been applied to face water related complex environmental problems 

(Sadiq and Rodriguez, 2004; Vemula et al., 2004; Liou and Lo, 2005; McKone and 

Deshpande, 2005; Ghosh and Mujumdar, 2006). In the present study, the fuzzy logic 

formalism has been used to assess water quality by developing a water quality index 
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based on fuzzy reasoning. Advantages and disadvantages of fuzzy logic over traditional 

methodologies are discussed. 

 

2. Methods 

 

2.1. Fuzzy inference systems 

 

Fuzzy set theory has been developed for modeling complex systems in uncertain 

and imprecise environment (Ross, 2004). Fuzzy logic uses sets with unclear boundaries. 

Fuzzy logic can be used for mapping inputs to appropriate outputs. Fig. 1 shows an 

input–output map for the water quality classification problem: “Given a comprehensive 

set of water quality indicators, what is the water condition in a river?” Water quality 

indicators and river condition are fuzzy definitions, since they do not present clearly 

defined boundaries.  

 

 
 

Fig. 1. Input–output map for the river water quality problem in a fuzzy inference 
system.  
 
 

Fuzzy inference is the process of formulating the mapping from a given input to 

an output using fuzzy logic. This mapping provides a basis from which decisions can be 

made, or patterns discerned. The fuzzy inference process involves three important 

concepts: membership functions, fuzzy set operations, and inference rules. Although 

these are briefly described below, a wide description can be found in Ross (2004). 
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A membership function is a curve that defines how each point in the input space 

is mapped to a membership value between 0 and 1. The input space is called the 

universe of discourse. The output-axis is called the membership value µ. If X is the 

universe of discourse and its elements are denoted by x, then a fuzzy set A is defined as 

a set of ordered pairs 

 

{ }XxxxA A ∈= |)(,µ                                           (1) 

 

where µA(x) is the membership function of x in A. A membership function is an arbitrary 

curve whose shape is defined by convenience. 

 

The standard fuzzy set operations are: union (OR), intersection (AND) and 

additive complement (NOT). They manage the essence of fuzzy logic. If two fuzzy sets 

A and B are defined on the universe X, for a given element x belonging to X, the 

following operations can be carried out: 

 

Intersection, AND:                    ))(),(min()( xxx BABA µµµ =∩         (2) 

Union, OR:                             ))(),(max()( xxx BABA µµµ =∪        (3) 

Additive complement, NOT:              )(1)( xx AA
µµ −=              (4) 

 

The third concept is the inference rule. An if–then rule has the form: “If x is A 

then z is C”, where A and C are linguistic values defined by fuzzy sets in the universes 

of discourse X and Z, respectively. The if–part is called the antecedent, while the then–

part is called the consequent. The antecedent and the consequent of a rule can have 

multiple parts. 

 

A fuzzy inference system (FIS) can be divided into four parts: fuzzification, 

weighting, evaluation of inference rules, and defuzzification. The fuzzification process 

involves the definition of inputs, outputs, as well as their respective membership 

functions that transform the numerical value of a variable into a membership grade to a 

fuzzy set, which describes a property of the variable. Since not all variables have the 

same importance, it is necessary to establish a way to guide the influence of each 

variable in the final score. The methodology suggested in this work for weight 
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assignment is the Analytic Hierarchy Process, which is described in Section 2.3. The 

evaluation of inference rules includes the application of fuzzy operations to multiple-

part antecedents, the application of implication methods from the antecedent to the 

consequent for every rule, and the use of an aggregation method to join the consequents 

across all the rules. Finally, defuzzification consists in transforming the fuzzy output 

into a non-fuzzy numerical value which can be used in non-fuzzy contexts (Silvert, 

2000). These steps are explained with the following example, in which the aim has been 

to assign a water quality score using just two variables: organic matter and dissolved 

oxygen managed within a FIS.  

 

2.2. Fuzzy inference systems, step by step 

 

The procedure carried out within a FIS is here described. We have hypothesized 

that the levels of dissolved oxygen (DO) and organic matter (BOD5) are sufficient to 

evaluate water quality (WQ) by means of an aggregated index called the Fuzzy Water 

Quality (FWQ) index. We have chosen “low”, “medium”, and “high” fuzzy sets for 

inputs, and “good”, “average”, and “poor” fuzzy sets for the output. Trapezoidal 

membership functions define these fuzzy sets (Fig. 2).  

 

In water quality assessment, expressions as the following are frequently used by 

the experts: “if the levels of organic matter in a river are low, and the levels or dissolved 

oxygen are high, then the expected water quality is good”. In fuzzy language, it could be 

enunciated as follows: 

Rule 1: If BOD5 is low and DO is high then WQ is Good. 

 

In the same way, other rules can be enunciated. Robustness of the system 

depends on the number and quality of the rules. In this example, we enunciate two more 

rules: 

Rule 2: If BOD5 is medium and DO is medium then WQ is Average. 

Rule 3: If BOD5 is high and DO is low then WQ is Poor. 
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Fig. 2. Membership functions for BOD5, DO and FWQ parameters.  

 

 

If we assume that it is necessary to evaluate water quality in two river points: 

“R1” and “R2”, having BOD5, DO values of 1.0, 9.0, and 3.3, 6.5, respectively, before 

any calculation, an expert would infer the water quality status in the R1 point by 
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applying the first rule. However, when input values are close to boundaries between a 

fuzzy set and another one, as in R2 point, the output is not so direct, and fuzzy 

operations should be carried out. 

 

Fig. 3. Fuzzy inference diagram for the water quality scoring problem with two 
variables and three rules.  

 

 

We must fuzzify the inputs for R2 point. According to membership functions in 

Fig. 2, we find that a value of 3.3 for BOD5 belongs to “low” and “medium” fuzzy sets, 

with membership degrees of 0.2, and 0.8, respectively. Similarly, a value of 6.5 for DO 

belongs to “high” and “medium” fuzzy sets, with membership degrees of 0.5, and 0.5, 

respectively. Thus, a variable could belong to more than one set. 

 

As there are multiple parts in the antecedents of the rules, fuzzy logic operations 

are applied to give a degree of support for every rule. Applying Eq. (2) to the 

antecedents of the three rules, we get 0.2, 0.5 and 0.0 degrees of support, respectively. 

 

The degree of support for the entire rule is used to shape the output fuzzy set. 

The consequent of a fuzzy rule assigns an entire fuzzy set to the output. This fuzzy set is 

represented by a membership function that is chosen to indicate the qualities of the 

consequent. If the antecedent is only partially true, having a value lower than 1, the 
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output fuzzy set is truncated at this value. This procedure is called the minimum 

implication method (Ross, 2004). As we got degrees of support lower than 1 for the 

example rules, we applied the implication method, obtaining that WQ belongs to 

“Good” fuzzy set, truncated at µ = 0.2, and WQ belongs to “Average” fuzzy set, 

truncated at µ = 0.5. This is shown in Fig. 3, where columns refer to the input/output 

fuzzy sets, and rows are the fuzzy rules.  

 

Since decisions are based on the testing of all the rules in the system, these must 

be aggregated to make a decision. As depicted in Fig. 3, output fuzzy sets for each rule 

are aggregated to a single output fuzzy set. The aggregation procedure used here is the 

maximum method (Ross, 2004), which is the union of all truncated output fuzzy sets. 

 

The final step is the defuzzification. The input for the defuzzification process is 

the aggregated output fuzzy set. As much as fuzziness helps the rule evaluation during 

intermediate steps, the final desired output is a numeric score. The defuzzification 

method preferred is the centroid, which is the most prevalent and physically appealing 

of all available methods (Ross, 2004). The centroid method returns the center of area 

under the curve formed by the output fuzzy set: 

∫
∫ ⋅

=∗

dzz

zdzz
z

)(

)(

µ

µ
                                                (5) 

 
By replacing the corresponding membership functions (shown in Fig. 2) in Eq. 

(5), the water quality index for the “R2” point is: 
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The above describes the procedure used to deal with information in a FIS. In 

Section 2.4, we describe the use of a fuzzy inference system to classify water quality in 

the Ebro River. A comprehensive set of 27 water quality indicators and 96 rules has 

been used. 
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2.3. The analytic hierarchy process 

 

The successful application of a FIS depends on an appropriate weight 

assignment to the variables involved in the rules. Weight assignment defines the relative 

importance and influence of the input parameters in the final score. For that reason, its 

definition should be carefully done. A good FIS could lead to erroneous simulations due 

to mistaken weights. In this study, a comprehensive multi-attribute decision-aiding 

method based on the Analytic Hierarchy Process (AHP) (Vaidya and Kumar, 2006) is 

proposed to estimate the relative importance of water quality variables. The AHP is a 

leading methodology to solve decision problems by the prioritization of alternatives. 

The basis of the AHP is the Saaty's eigenvector method (Saaty, 2003) and the associated 

consistency index. It is based on the largest eigenvalue and associated eigenvector of n 

× n positive reciprocal matrix A. aij elements of A are the decision maker's numerical 

estimates of the preference of n alternatives with respect to a criterion when they are 

compared pair-wise using the 1–9 AHP comparison scale. One means that both 

alternatives are equally preferred, while the preference of an alternative with respect to 

another could diminish until nine. 

 

Saaty's eigenvector method has a weak point in the methodology applied to 

measure the consistency of the weight vector formed. A consistency measure is 

necessary to test the approach degree in the subjective choice of the weights. Recently, a 

theoretically well-founded improvement to Saaty's method by using the singular value 

decomposition (SVD) has been proposed (Gass and Rapcsak, 2004). In the AHP-SVD 

method, the priority of the decision maker could be approximated by the uniquely 

determined, normalized positive weight vector w with the values: 

∑
=

+

+
=

n

j j
j

i
i

i

v
u

v
u

w

1

1

1

     i = 1, …, n       (6) 

 

where, u and v are the left and right singular vectors belonging to the largest 

singular value of matrix A, respectively, and n is the number of variables. The 

consistency measure (CM) of the weight vector is determined on an absolute scale by 

using the Frobenius norm: 
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=
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        (7) 

where matrix Ã is formed by setting (wi/wj) for every pair (i, j). If CM < 0.10 the matrix 

A is considered to be consistent else decision maker should pair-wise compare again. 

More details about AHP-SVD methodology can be found in Gass and Rapcsak (2004). 

 

2.4. Development of the Fuzzy Water Quality (FWQ) index 

 

A fuzzy index for the water quality assessment has been developed. Ranges and 

weights of the variables in the inference system have been optimized to match the 

predicted fuzzy scores with ISQA and WQI indexes for the case study (Table 1). The 

right prediction of the fuzzy model strongly depends on the number of fuzzy sets used 

in the mapping process, since it facilitates to give more continuity to the universe of 

discourse. However, three fuzzy sets to split the inputs and outputs have been 

considered suitable for the scope of this study.  

 

Table 1. Optimized predictions of current water-quality indexes with fuzzy inference 
systems 
 
Index Variables Value Fuzzy-Value 

ISQA TOC (0.32), SS (0.32), DO (0,32), CON (0,04) 83 ± 2 82 ± 2 

WQI 
BOD5 (0.1362), DO (0.2029), FC (0.0800), NO3(0.1251), 
pH (0.1362), PO4 (0.0917), SS (0.1251), TUR (0.1028) 74 ± 3 75 ± 4 

Optimized weights are in parentheses. ISQA is a simplified index used by the Catalan Water Agency. 
WQI is the index developed by the American National Sanitation Foundation. 
 

 

Twenty-seven parameters divided into 5 groups have been selected to cover the 

whole space of possible pollutant sources. Toxic substances (pesticides, heavy metals, 

aromatic hydrocarbons and organochlorines) were chosen in order to get representation 

of the list of priority substances included into the European Water Framework Directive 

(EC, 2000), as well as to add substances reported in the European Pollutant Emission 

Register (EC, 2005) for the studied zone. The groups of indicators are the following: 

• Primary: dissolved oxygen (DO), conductivity (CON), pH, and suspended 

solids (SS). 
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• Organic matter: biochemical oxygen demand (BOD5) and total organic carbon 

(TOC). 

• Microbiology: total coliforms (TC), fecal coliforms (FC), salmonellas (Sa), and 

fecal streptococci (FS). 

• Anions and ammonia: phosphates (PO4), nitrates (NO3), sulphates (SO4), 

chlorides (Cl), fluorides (F) and ammonia (NH4). 

• Priority substances: atrazine (Atr), benzene–toluene–ethylbenzene–xylenes 

(BTEX), nickel (Ni), simazine (Sim), trichlorobenzenes (TCB), chromium (Cr), 

hexachlorbutadiene (HCBD), polycyclic aromatic hydrocarbons (PAH), arsenic (As), 

lead (Pb) and mercury (Hg). 

 

Trapezoidal membership functions were used to represent “low”, “medium”, 

“high”, “poor”, “average”, and “good” fuzzy sets. They are represented as: 

 


















−
−

−
−= 0,,1,minmax),,,;(

cd

xd

ab

ax
dcbaxµ          (8) 

where a, b, c, and d are membership function parameters. A list of these parameters is 

summarized in Table 2. For the purposes of the present study, the shape of the 

membership functions is secondary. However, linear fuzzy sets facilitate the 

defuzzification. Ranges for fuzzy sets were based on European trend concentrations in 

river waters (EEA, 2003), guidelines for drinking-water quality (WHO, 2004), toxicity 

and ecotoxicity parameters, and Spanish available regulations for classifying water in 

river basins, and setting objectives. These ranges are also shown in Table 2. 

 

Ninety-six rules were enunciated, three for each indicator, and three for each 

partial score into groups. Each rule had only one antecedent in order to facilitate the 

weight assignment. The structure of fuzzy rules was: if indicator i is “Low” then FWQ 

is “Good”, if indicator i is “Medium” then FWQ is “Average”, and if indicator i is 

“High” then FWQ is “Poor”. There were exceptions for DO and pH, in whose case rules 

were: if DO is “Low” then FWQ is “Poor”, if DO is “Medium” then FWQ is 

“Average”, if DO is “High” then FWQ is “Good”, if pH is “Low” or pH is “High” then 

FWQ is “Average”, and if pH is “Medium” then FWQ is “Good”. 
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Table 2. Parameters for membership functions used in the fuzzy inference system 
 

 

 
 
 
 

"Low" "Medium" "High" 
Group Indicator Units 

a=b c d a b c d a b c=d 
Range 

 DO mg/L 0 3 4 3 4 7 8 7 8 12 0-12 
 pH - 0 6 7.5 6 7 8 9 7.5 9 14 0-14 
 CON µS/cm 0 600 700 600 700 800 900 800 900 1400 0-1400 

P
rim

ar
y 

 SS mg/L 0 8 11 8 11 14 17 14 17 24 0-24 

 DBO5 mg/L 0 2.5 3.5 2.5 3.5 4 5 4 5 10 0-10 

O
rg

an
ic

 
m

at
te

r 

 TOC mg/L 0 2 3 2 3 4 5 4 5 9 0-9 

 TC MPN/100 mL 0 50 100 50 100 1000 2000 1000 2000 10000 0-10000 

 FC MPN/100 mL 0 25 50 20 40 400 800 400 800 4000 0-4000 

 Sa 

Presence=1, 
Absence=0   

  in 1 L 0 0.2 0.4 0.2 0.4 0.6 0.8 0.6 0.8 1 0-1 M
ic

ro
bi

ol
og

y 

 FS MPN/100 mL 0 20 40 20 40 200 400 200 400 2000 0-2000 
 PO4 mg/L 0 0.2 0.4 0.2 0.4 0.6 0.8 0.6 0.8 1 0-1 
 NO3 mg/L 0 10 20 10 20 30 40 30 40 50 0-50 
 NH3 mg/L 0 0.07 0.14 0.07 0.14 0.18 0.24 0.18 0.24 0.5 0-0.5 
 SO4 mg/L 0 75 100 75 100 125 150 125 150 250 0-250 
 Cl mg/L 0 50 100 50 100 150 200 150 200 250 0-250 A

ni
on

s 
an

d 
am

m
on

ia
 

 F mg/L 0 0.3 0.6 0.3 0.6 0.9 1.2 0.9 1.2 1.5 0-1.5 
 Atr ng/L 0 80 160 80 160 240 320 240 320 500 0-500 
 BTEX µg/L 0 40 80 40 80 120 160 120 160 200 0-200 
 Ni µg/L 0 10 15 10 15 20 25 20 25 50 0-50 
 Sim ng/L 0 80 160 80 160 240 320 240 320 500 0-500 
 TCB µg/L 0 4 8 4 8 12 16 12 16 20 0-20 
 Cr µg/L 0 10 20 10 20 30 40 30 40 50 0-50 
 HCBD µg/L 0 0.4 0.8 0.4 0.8 1.2 1.6 1.2 1.6 3 0-3 
 PAH ng/L 0 20 40 20 40 60 80 60 80 100 0-100 
 As µg/L 0 15 25 15 25 35 45 35 45 60 0-60 
 Pb µg/L 0 15 25 15 25 35 45 35 45 60 0-60 

P
ri

or
ity

 S
ub

st
an

ce
s 

 Hg µg/L 0 0.2 0.4 0.2 0.4 0.6 0.8 0.6 0.8 1 0-1 
"Poor" "Average" "Good" Range 

FWQ Indexes - 0 40 50 40 50 70 80 70 80 100 0-100 

  
 
 

 

 

b c d 

µ 

 
a 

  1 
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2.5. Study area 

 

The Ebro River flows mainly through the Northeast of Spain and flows into the 

Mediterranean Sea after covering more than 900 km. The whole Ebro basin covers an 

area of 85 362 km2. When crossing Catalonia, the Ebro River takes the name “Low 

Ebro”. It starts at the village of Ribarroja and extends up to the Delta mouth, going 

through 134 km length. In 2004, the mean annual flow was 415 m3/s, but as all 

Mediterranean rivers, heavy fluctuations ranging from 127 to 962 m3/s have been 

recorded depending on the dry and wet seasons. An important human, agricultural and 

industrial activity is developed along its riparian zone (Navas and Lindhorfer, 2003). 

Some big chemical industries and a nuclear power plant are located in the riparian zone. 

Good water quality in the Low Ebro is crucial to preserve ecologically sensitive 

ecosystems, especially those settled in the Delta area. 

 

The Ebro Delta is one of the most important wetland areas in the western 

Mediterranean. It is valuable both economically and ecologically, highlighting rice 

agriculture, and bird habitats for more than 300 species. Part of the Delta was 

designated as a Natural Park with some special protected areas. It is considered of 

international importance for breeding and dwelling of endemic and endangered birds 

(DOGC, 2004). Ecosystems in the Low Ebro are facing a number of problems, mainly 

produced by water necessities for irrigation and supplying in dry zones, affecting the 

natural hydrological regime. Nowadays, the unsustainable management of the Ebro 

basin is acknowledged (Day et al., 2006) and the development of analytical tools to 

assess the present and future ecological condition of the water, as required in the 

European Water Framework Directive, is clearly necessary. 

 

Water quality in the Low Ebro is monitored by two Environmental Protection 

Agencies: the Catalan Water Agency (ACA) and the Confederación Hidrográfica del 

Ebro (CHE). Therefore, data from both agencies can be compared. Five periodic 

sampling points (SP) are located in the area (Fig. 4). ACA sampling points are: SP1 

(Flix), SP3 (Xerta), and SP5 (Tortosa, close to the Delta). In turn, CHE sampling points 

are: SP2 (after the Ascó nuclear power plant) and SP4 (Tortosa).  
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Fig. 4. Sampling sites in the studied area.  
 

3. Results 

 

The water condition for the Ebro River when crossing Catalonia has been 

assessed with the FWQ index. Input data extracted from public databases (ACA, 2005 

and CHE, 2005) have been used to assess water quality between 2002 and 2004. 

Weights for water quality indicators calculated with the AHP–SVD-method, which is 

described in Section 2.3, are shown in Fig. 5. The pair-wise comparison was conducted 

with risk quotients for the substances. These quotients were calculated in the way of 

characterization factors for use in Life Cycle Impact Assessment regarding to the 

emissions of pollutants to river streams. Multimedia fate transport and exposure models, 

particularly CalTOX and USES-LCA models were used for risk estimation. More 

details about this methodology were recently reported (Ocampo-Duque and 

Schuhmacher, 2005). In addition, some experts were consulted about the results of the 

weight assignment. It is important to remark that indicators here chosen have a very 

different nature.  
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Fig. 5. Optimized weights for indicators included in the fuzzy water quality index 
(FWQ) estimated with the AHP–SVD methodology. Consistency measures in 
parentheses.  
 

The results for the global FWQ index calculated according to the FIS are shown 

in Fig. 6. In turn, the comparative contribution to the global index for groups of 

indicators is depicted in Fig. 7. On the other hand, a comparison between the proposed 

FWQ index, the reputed WQI index, and the regional regulatory ISQA index is shown 

in Fig. 8.  

 

4. Discussion 

 

4.1. Evaluation of the water status in the Low Ebro with the FWQ index 

 

An index-based framework to assess water quality in the Low Ebro has been 

developed. Annual mean values of currently monitored indicators have been used to test 

this fuzzy index. In general, primary and organic matter parameters led to high values 

for FWQ indexes, indicating a relative good condition, mainly affected by conductivity 

values. However, low values for microbiology FWQ indexes drove to results of 

concern. The presence of coliforms, salmonellas and streptococci at high concentrations 

DO     0.6840     pH     0.1492 
CON  0.0904 SS      0.0764 

DBO5  0.6667    TOC   0.3333 

TC  0.3551 FC  0.2640 
Sa   0.1822 FS   0.1987 

PO4    0.2062  NO3  0.3184 
NH4   0.2342 SO4   0.0655 
Cl       0.1122 F        0.0635 

Atr        0.0260   PAH    0.1160 
BTEX   0.0336   As        0.1331 
Ni         0.0445   Pb        0.1525 
Sim      0.0590   Hg       0.1751 
TCB     0.0728   HCBD 0.1008 
Cr       0.0866 

Primary FWQ index 
(CM=0.0881) 

Organic Matter FWQ index 
(CM=0) 

Microbiology FWQ index 
(CM=0.0227) 

Anions and ammonia FWQ index 
(CM=0.0714) 

Priority substances FWQ Index 
(CM=0.0639) 

Global  
FWQ index 

(CM=0.0959) 

0.2524 

0.1318 

0.0832 

0.1662

0.3664 
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indicate that the Ebro River is receiving discharges without an adequate treatment. 

Likewise, agricultural run-off might also increase these indicators. Microbiology scores 

are lower in sampling sites located after cities. It can be observed in Fig. 7 for SP2, SP4 

and SP5. 
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Fig. 6. Results for the global fuzzy water quality index in the “Low Ebro”.  
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Fig. 7. Contribution of groups of indicators to the global fuzzy index in the studied area 

(year 2003).  
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Fig. 8. Results for water quality indexes in the “Low Ebro” river.  

 
 

We found that anions and ammonia FWQ indexes have been mainly reduced by 

the presence of high chloride and sulfate concentration. Sulfates are due to the presence 

of high natural gypsum concentration in the basin soils (Elorza and Santolalla, 1998), 

while high chloride levels are due to the presence of industrial facilities emitting more 

than 80 000 tones per year in the zone (EC, 2005). Consequently, the Ebro River has 
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high salinity due to the combination of both natural and anthropogenic reasons. High 

salinity levels in water are detrimental not only for urban uses, but also for agrarian 

systems threatened by salinization in the Delta. For priority substances, the score is 

mainly affected by the presence of mercury in concentrations very close to acceptable 

limits. However, low index scores are not perceived because of the nature of data used, 

representing annual means. Other values reported for priority substances are notably 

below the regulatory limits. 

 

An analysis of variance (ANOVA) over the fuzzy global results has shown that 

there are not significant (p < 0.05) differences between years assessed. It indicates that 

policies to diminish pollution are not giving optimistic results. On the other hand, 

ANOVA shows that there are significant differences between sampling sites. The SP2 

exhibits a marked good water quality, while SP5 shows the worst score. Differences 

between SP2 and the other sampling sites are due to the fact that this sampling site is 

located just after a big dam (Flix dam). The dam modifies the solute transport 

phenomena allowing sedimentation processes and the consequent reduction of pollutant 

concentrations in the stream. 

 

A global FWQ index of 67 ± 6 has been estimated for the period January-2002 

to December-2004. This estimation has been 74 ± 3 and 83 ± 2 with WQI and ISQA 

indexes, respectively. These values are far from appropriate water quality standards to 

be fulfilled by European rivers as declared in the Water Framework Directive (EC, 

2000). Global results show that water quality along Low Ebro River is deteriorated as it 

approaches to the Delta (Fig. 6). The lowest fuzzy scores have been found for SP5, 

located few kilometers from rice crops which are irrigated with river water. These 

results agree with those of environmental experts and official reports, which clearly 

declare the non-compliance of European precepts (CHE, 2004) appointed in the Water 

Framework Directive (EC, 2000). According to FWQ index results, many efforts in 

planning and control should be carried out by industries, farmers, citizens and 

stakeholders to enhance Low Ebro water quality in coming years. The current situation 

clearly endangers the river ecosystems and regional sustainability. 

 

The FIS has been optimized with WQI and ISQA scores. Since a more 

comprehensive set of indicators has been used, a lower score and higher variability have 
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been obtained with the fuzzy index. It has been found that one output fuzzy set differing 

from the normal results for the majority of the output fuzzy sets penalizes the final 

aggregated score much more than current scoring systems. This behavior observed in 

the defuzzification centroid method, normally used in Mamdani inference systems, 

could be avoided by defining more ranges and rules. However, the classification 

performance of the model probably would not significantly improve. This weakness 

could be also avoided with Sugeno inference systems, where singletons are used instead 

of output fuzzy sets. However, it is still under investigation by our research group. 

 

4.2. Validation of the proposed FWQ index 

 

The validation of an index such as FWQ index is not an easy task. Indexing 

processes suffer from the risk to miss information. Although indexing processes have 

many limitations, their benefits are significant when measuring sustainable development 

or environmental impacts. FWQ index does not aim at describing the variation of the 

concentration of a single pollutant or the alteration of a physical parameter. It is used to 

estimate the state of ecosystems generated by diverse driving forces and pressure 

agents. FWQ index represents the global stress exerted on the water body taking into 

account both natural and anthropogenic factors. 

 

The most relevant aspect to highlight here is the methodology applied to produce 

the index. The most important advantage of the fuzzy methodology is that the inference 

system is built with words. None equation is used to represent the inference model, 

which is characterized to be highly non-linear. Equations have been only used to map 

variables. This is especially valuable in water management decision processes, in which 

individuals without a mathematical background are involved. 

 

A comparison of the performance for the proposed index and some indexes 

currently employed by environmental protection agencies could address some 

interesting remarks. In Fig. 8, the FWQ index is compared to the ISQA index, which is 

used by the Catalan Water Agency for current reporting, and to the benchmarking WQI 

index (Said et al., 2004). The treatment of the information within the FIS directly 

influences the final score. WQI and ISQA scores are always over 70, giving a “good 

water quality” score in a non-fuzzy environment. ISQA scores are higher because they 
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do not consider microbiological pollution. FWQ scores give a water condition in the 

Low Ebro as “some portion is average and some portion is good”. FWQ outputs better 

agree with the real condition reported by the Confederación Hidrográfica del Ebro for 

the studied zone (CHE, 2004). This regional environmental protection agency reports 

that water quality decreases as it comes closer to the sea. It matches with the fuzzy 

index prediction. 

 

Anyhow, the best way to validate the performance of this index is comparing it 

with impact indicators in the trophic chain. Fish has been widely used as a model for 

determining the effects of environmental pollutants on living organisms (Lacorte et al., 

2006). In fact, some researchers (Lavado et al., 2004 and Lavado et al., 2006) have 

recently revealed that some biochemical responses in carps from the Ebro river show 

endocrine-disrupting effects, which are associated to exposure to domestic, agricultural 

and industrial effluents. These results match with FWQ index spatial data. In particular, 

variations in some biochemical marker activities measured in fish collected from the 

Delta region (close to SP5) have shown high differences when compared to those 

measured in fish collected from a “relative clean region” (Table 3). Unfortunately, the 

number of data reported by these researchers is limited to draw vast conclusions. 

Although the sampling campaigns corresponded to a period prior to FWQ index 

calculations, we have demonstrated that water quality has remained unchanged for a 

sufficient time.  

 
Table 3. Comparison between impact indicators (biochemical markers) and FWQ index 
for some sites in the “Low Ebro” 
 

Sampling Site 

Indicator Unit 
Clean 
area SP1 SP5 Reference 

 
Global FWQ index - 62 65 63  This study 
 
Priority substances  FWQ index - 86 62 63  This study 

EROD activity in carps 
pmol/min/
mg protein 69 416 689  Lavado et al. (2006) 

AChE activity in carps 
pmol/min/
mg protein 55 32 33  Lavado et al. (2006) 

UDPGT -T activity in male carps 
pmol/min/
mg protein 368 273 198  Lavado et al. (2004) 

UDPGT -E2 activity in male carps 
pmol/min/
mg protein 539 450 356  Lavado et al. (2004) 

EROD: 7 ethoxyresorufin O-deethylase, AChE: acetylcholinesterase,  
UDPGT: uridine diphosphate glucuronosyl-transferase, T: Testosterone, E2: Estradiol 
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5. Conclusions 

 

In this paper, we present a robust decision-making tool for water management in 

the form of the fuzzy water quality (FWQ) index. A suitable environmental application 

of inference systems based on fuzzy reasoning to integrate water quality indicators has 

been shown. The methodology developed in this research clearly improves methods 

used to date. The flexibility of fuzzy logic to develop classification models with a 

simple framework, built with natural language, should be recommended in the 

development of similar environmental indexes in which highly subjective information 

must be correlated. It has been demonstrated that computing with words within the FIS 

improves the tolerance for imprecise data. The FIS is also able to predict scores 

obtained with current indexes using the same number of parameters. Moreover, the 

necessity to link fuzzy inference systems and weighting methodologies to deal with the 

relative importance of input variables has been also shown. 

 

We have assessed water quality in the Ebro River with physicochemical 

indicators. Although the Water Framework Directive highlights the need to use biotic 

components in the global assessment of European waters, chemical monitoring 

networks will continue being a comprehensive source of information for decision 

making in water management. In this sense, the use of fuzzy logic has demonstrated that 

water quality in the Low Ebro is below sustainable expected scores.  
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Chapter 2 

 
A neural-fuzzy approach to classify the ecological status  

in surface waters2 
 

Abstract 

 

A methodology based on a hybrid approach that combines fuzzy inference 

systems and artificial neural networks has been used to classify ecological status in 

surface waters. This methodology has been proposed to deal efficiently with the non-

linearity and highly subjective nature of variables involved in this serious problem. 

Ecological status has been assessed with biological, hydro-morphological, and 

physicochemical indicators. A data set collected from 378 sampling sites in the Ebro 

river basin has been used to train and validate the hybrid model. Up to 97.6% of 

sampling sites have been correctly classified with neural-fuzzy models. Such 

performance resulted very competitive when compared with other classification 

algorithms. With non-parametric classification–regression trees and probabilistic neural 

networks, the predictive capacities were 90.7% and 97.0%, respectively. The proposed 

methodology can support decision-makers in evaluation and classification of ecological 

status, as required by the EU Water Framework Directive.  

 

Capsule: Fuzzy inference systems can be used as environmental classifiers. 

 

Keywords: Ecological status; EU Water Framework Directive; Fuzzy inference systems; 

Neural networks; Ebro river 

                                                
2 William Ocampo-Duque, Marta Schuhmacher and José L. Domingo.  A neural-fuzzy approach to 
classify the ecological status in surface waters. Environmental Pollution, Volume 148, Issue 2, July 2007, 
Pages 634-641. 
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1. Introduction 

 

Water pollution is one of the main environmental issues on which European 

citizens are seriously concerned (EC, 2005). The Water Framework Directive (WFD) 

was created as a response to such public concern (Achleitner et al., 2005). It constitutes 

a key mandatory document to establish good water quality across the European 

continent (Vighi et al., 2006). Its central requirement is that the environment must be 

protected to a high level in its entirety, emphasizing on ecological protection (Dodkins 

et al., 2005). This good ecological status should involve the values of the biological 

quality elements for surface water bodies which show low levels of distortion resulting 

from human activities (EC, 2000). In fact, to set boundaries among good, moderate, 

and/or bad ecological status has resulted in a highly subjective task. 

 

Because of ecological variability, the controls to preserve ecological conditions 

are regionally specified. Consequently, the ecological ranking is applied by comparing 

all water streams within a river basin against reference conditions specified for each 

river basin (Moreno et al., 2006; Munne and Prat, 2004). 

 

The Confederación Hidrográfica del Ebro (CHE) has established interesting 

mechanisms to rank the ecological status of surface waters (CHE, 2005). They are based 

on several environmental indexes. The overall evaluation system is somewhat complex. 

However, it is inevitable given the extent of uncertainty, subjectivity, and variability in 

ecological assessment, as well as the large number of parameters that must be dealt 

with. Moreover, it is practically impossible to measure inputs for all water bodies. For 

that reason, the development of appropriate models to simulate ecological status in data-

poor environments, based on well documented areas, is a current necessity. 

 

However, traditional equation based techniques to model this real world problem 

are hardly suitable to face the non-linearity, subjectivity, and complexity of the cause–

effect relationships among ecological variables (Marsili-Libelli, 2004). In order to 

classify ecological status, we here propose an emerging frame that combines the virtues 

of fuzzy inference systems to model expert human knowledge, with the proved adaptive 

learning capabilities of artificial neural networks. Inputs were selected to follow WFD 
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suggestions about river classification. The main objective has been to deal efficiently 

with uncertainty and subjectivity of the variables involved in the assessment of 

ecological status in rivers. 

 

2. Methods 

 

2.1. Study area and model variables 

 

The Ebro river basin (NE Spain) covers an area of 85 362 km2. It supports an 

important human, agricultural, and industrial activity. Various big chemical industries 

and nuclear power plants are located near to the flow channel. Consequently, many 

pollutants are released to the surface waters, stressing sensitive ecosystems, especially 

those located in the Delta. 

 

In this study, a representative index for each biological, hydro-morphological, 

and physicochemical component has been used to produce an ecological classification 

system for the Ebro river basin. A parameter to consider geographic variability is also 

included. A data set covering 378 sampling sites (Fig. 1) has been used to train and 

validate the models (CHE, 2004). Monitoring values corresponding to the summer 

2001–2002 periods have been used. The measured outputs (meaning: high, good, 

moderate, poor, or bad) are based on the ECOSTRIMED method (Bonada, 2003; Prat et 

al., 2000). These variables are described here:  

 

2.1.1. Ecotype 

 

Ecotypes are regions with similar environmental, structural, and ecosystemic 

characteristics identified according to the distribution of macroinvertebrates and their 

frequencies of appearance. River basins are subdivided into ecotypes to set reference 

conditions and establish quality objectives. Six ecotypes have been defined in the Ebro 

river basin (Munne and Prat, 2000). They are: (1) wet mountain, (2) great rivers, (3) 

depression, (4) Mediterranean mountain, (5) Ebro axis, and (6) high mountain (Fig. 1). 
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Fig. 1. Sampling sites and ecotypes in the studied area.  

 

2.1.2. QBR index 

 

Riparian habitat is a key element to preserve biodiversity (Ward et al., 2002). 

The QBR protocol is a simple method to evaluate riparian habitat quality (Munne et al., 

2003). In Spain, it is becoming popular in studies related to the implementation of the 

WFD (CHE, 2005). For QBR determination, the river is divided into three sections: the 

main channel, the floodplain zone, and the riparian area. Four components are surveyed: 

total riparian vegetation cover, cover structure, cover quality, and channel alterations. 

Differences in the river geomorphology are also considered. Table 1 shows the QBR 

scoring system which varies from 0 to 100. The higher the score the better the riparian 

quality.  

 

Table 1. Scoring system for the IBMWP and QBR indexes in the Ebro river basina 

IBMWP 

Status Description QBR Ecotype 1 Ecotypes 2,3,5 Ecotype 4 Ecotype 6 
High Pristine condition ≥ 95 ≥ 100 ≥ 65 ≥ 90 ≥ 110 
Good Slight disturbance 75 - 90 81 - 100 56 - 65 71 - 90 86 - 110 

Moderate Important modification 55 - 70 61 - 80 41 - 55 55 - 70 66 - 85 
Poor Strong alteration 30 - 50 31 - 60 20 - 40 25 - 54 35 - 65 
Bad Extreme degradation ≤ 25 ≤ 30 ≤ 20 ≤ 25 ≤ 35 

a(CHE, 2004). 
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2.1.3. IBMWP index 

 

The Iberian Biomonitoring Working Party (IBMWP) index (Alba-Tercedor et 

al., 2002) is the Spanish adaptation of the original British BMWP protocol (Hawkes, 

1998). The BMWP is a widely accepted biotic index to monitor water pollution. The 

IBMWP index surveys river water quality as a function of the abundance and diversity 

of aquatic invertebrates, since they are a key component of the food chain (Metcalfe, 

1989; Swaminathan, 2003). 

 

 

Fig. 2. QBR and IBMWP values in the studied area.  
 

The IBMWP index is based on two hypotheses. First, changes in abundance and 

biodiversity of macro-invertebrates community are caused by reduction in dissolved 

oxygen level that could be due to pollution. Second, some invertebrates are more 

sensitive to pollution than others. Based on this, the presence of highly sensitive species 

gives higher scores than highly tolerant species. The IBMWP index is obtained by 

adding the scores for all species found in a determined site. The higher the IBMWP the 

better the biological quality. As the IBMWP strongly depends on the ecotype, since 

there are regions where it is easier to find more abundance of invertebrates, the 
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boundary values to classify the status are set as in Table 1. For instance, in high 

mountain ecotype the minimum IBMWP for high status is 110, while the same status is 

attained with an IBMWP of 65 in great rivers ecotype. In Fig. 2, it can be observed the 

high spectrum of QBR and IBMWP values in the studied area, which is appropriate for 

the training steps of the neural-fuzzy models.  

 

2.1.4. FWQ index 

 

In spite of the maturity of physicochemical monitoring in rivers, current water 

quality indexes lack consistent ways to deal with uncertainty and subjectivity (McKone 

and Deshpande, 2005). In this study, a methodology based on fuzzy logic is used to 

integrate the most relevant (and available) physicochemical parameters in a unified 

score, known as the Fuzzy Water Quality (FWQ) index. A similar procedure to that 

reported by Ocampo-Duque et al. (2006) has been used. The FWQ index is obtained by 

applying a Fuzzy Inference System (FIS) to water quality variables. A typical FIS 

mainly consists of membership functions and fuzzy rules within an inference engine. 

 

Five variables were used: conductivity (0.25), dissolved oxygen (0.33), ammonia 

(0.14), nitrates (0.14), and phosphates (0.14). In parentheses are given the weights 

according to the importance of the parameters. Weights were adapted from those used 

by other water quality indexes (Ocampo-Duque et al., 2006). A FIS composed by 20 

inference rules, with trapezoidal membership functions (MF) has been created. MF are 

represented as: 
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where a, b, c, and d are the MF parameters reported in Table 2. For dissolved oxygen 

(DO) rules were: if DO is “very high” then FWQ is “high”, if DO is “high” then FWQ 

is “good”, if DO is “medium” then FWQ is “moderate”, if DO is “low” then FWQ is 

“poor”. For the other variables rules were: if variable is “low” then FWQ is “high”, if 

variable is “medium” then FWQ is “good”, if variable is “high” then FWQ is 

“moderate”, if variable is “very high” then FWQ is “poor”. Ranges for classes are also 

reported in Table 2. Finally, defuzzification is produced with the bisector method. FWQ 

scores vary from 0 to 100. The higher the score the better the physicochemical quality. 

More details about FWQ and FIS can be consulted in Ocampo-Duque et al. (2006).  
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Table 2. Parameters of trapezoidal membership functions for the FWQ index 

 

 

 

 

Low Medium High Very high 
Indicator Units a=b c d a b c d a b c d a b c=d 

 Conductivity µS/cm 0 800 1000 800 1000 1200 1400 1200 1400 1600 1800 1600 1800 2500 

 Oxygen %  O2 0 20 30 20 30 45 55 45 55 70 80 70 80 100 

Ammonia mg/L NH4 0 0.2 0.4 0.2 0.4 1.2 1.4 1.2 1.4 2.2 2.4 2.2 2.4 4 

Nitrates mg/L NO3 0 8 12 8 12 22 26 22 26 36 40 36 40 50 

Phosphates mg/L PO4 0 0.12 0.18 0.12 0.18 0.26 0.32 0.26 0.32 0.46 0.52 0.46 0.52 0.80 

    Poor Moderate Good High 

FWQ index - 0 40 50 40 50 60 70 60 70 80 90 80 90 100 
µ is the membership value, a, b, c, and d, are the parameters for the membership functions (equation 1). 

 

2.2. Adaptive Neural Fuzzy Inference Systems (ANFIS) 

 

FIS models focus on the use of heuristics in the system description. They can be 

seen as logical models that use “if–then” rules to establish qualitative and quantitative 

relationships among variables. Their rule-based nature allows the use of information 

expressed in the form of natural language statements, making the model transparent for 

interpretation (Vernieuwe et al., 2005). However, this approach is weak when there is a 

need of adjusting the linguistic knowledge of the expert with available data. 

 

FIS models as the described above consider membership functions that are fitted 

at judgment of the decision-maker. Moreover, the inference engine structure must be 

predetermined with settings from expert knowledge about the modeled system. In the 

problem described here regarding ecological classification, it is proposed to discern, 

directly from data, the shape of the membership functions and the structure of the 

inference engine. Thus, rather than arbitrarily choosing the MF parameters, and the FIS 

structure, these have been tailored to the input/output data, in order to account for 

uncertainties and variability in data, with an optimization technique called ANFIS. 

 

b c d 

µ 

 
a 

  1 
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Since its introduction (Jang, 1993), ANFIS benefits have successfully been 

proved in many engineering applications. However, its use in environmental issues is 

currently increasing. Recently, ANFIS was used to construct water level forecasting 

systems in reservoir management (Chang and Chang, 2006; Chau et al., 2005). ANFIS 

for prediction of pesticide occurrence in rural domestic wells with limited information 

has been explored (Sahoo et al., 2005). Recently, an ANFIS model was presented to 

predict groundwater electrical conductivity based on the concentration of positively 

charged ions (Tutmez et al., 2006). ANFIS has also been used to model nutrient loads in 

watersheds (Marce et al., 2004). 

 

 

Fig. 3. Fuzzy inference system for ecological classification in the studied area.  

 

First, ANFIS generates an initial structure with a subtractive clustering 

algorithm. After, MF parameters are optimized with a hybrid algorithm which uses the 

steepest descent method (back-propagation) for input MF parameters, and the least 

squares estimation for output MF parameters. Finally, a methodology is applied to 

control over-fitting enhancing the generalization capability. 
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Fig. 3 shows the FIS model built for the ecological status classification problem. 

Ecotype, QBR, IBMWP, and FWQ indexes are integrated with FIS to represent the 

ecological status. Model parameters and structure have been optimized with the ANFIS 

algorithm.  

 

To compare the performance of the FIS against other classification tools, we 

selected two methods: the classification and regression tree (CART), and the 

Probabilistic Neural Network (PNN). 

 

2.3. Classification and regression trees (CART) 

 

CART is a method based on a binary recursive partitioning technique to identify 

important cause–effect relationships within variables (Razi and Athappilly, 2005). 

CART is an alternative technique to using multiple regression that automatically sifts 

large, complex databases, searching for and isolating significant patterns and 

relationships. This discovered knowledge is then used to generate reliable, easy-to-grasp 

predictive models (Breiman et al., 1993). It is non-parametric, and does not require any 

assumptions about data distributions. Recently, CART was found to be competitive to 

multiple regression and to artificial neural networks (Bennett et al., 2006; Garzon et al., 

2006). To our knowledge, comparative studies between ANFIS and CART are not 

available yet. 

 

2.4. Probabilistic Neural Networks (PNN) 

 

PNN is a class of neural network suitable for classification problems (Beltran et 

al., 2006; Xue et al., 2005). A PNN is a three layer network. The pattern layer represents 

an implementation of the Bayes classifier, where the class dependent probability density 

functions are approximated using a Parzen estimator. This approach provides an 

optimum pattern classifier in terms of minimizing the expected risk of wrongly 

classifying an object. The pattern layer operates competitively, where only the highest 

match to an input vector wins and generates an output. Thus, only one classification 

category is generated for any given input vector (Niwa, 2004). 
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3. Results 

 

Optimum initial FIS structure, determined with subtractive clustering algorithm, 

has resulted in 12 rules and 12 MF for each input. For each rule, an output MF was 

obtained. It has the form: 

j5,j4,j3,j2,j1,jO, kIBMWP*kQBR*kFWQ*kecotype*kµ ++++=              (2) 

where µO,j is the output MF of the rule j, ki,j are the linear parameters for the rule j. 

 

The ecological status (ES) is obtained as: 

j

R

1j
jO,j

w

µ*w

ES
∑

==                               (3) 

where wj, is the firing strength for the rule j, and R is the number of rules. The firing 

strength is calculated as: 

)(FWQµ*(IBMWP)µ*(QBR)µ*(ecotype)µw j4,j3,j2,j1,j =            (4) 

with µk,j being the MF of the input k in the rule j (k = 1 for ecotype, k = 2 for QBR, k = 

3 for IBMWP, and k = 4 for FWQ). 

 

Table 3. Performance of the neural-fuzzy models 

Parameters 

Model Membership Function Linear Nonlinear RMSE 

Well 
classified 

points  DEV-1 DEV+1 
1  Gaussian 60 96 0.2747 350 12 16 
2  Trapezoidal 60 120 0.2973 337 17 24 
3  Generalized Bell 60 144 0.1898 369 5 4 
4  Composite Gaussian 60 192 0.3284 329 19 30 
5  Sigmoidal 60 99 0.2566 356 11 11 
6  Asymmetric Sigmoidal 60 190 0.2623 259 93 17 

RMSE: Root Mean Square Error. 
DEV-1: Predicted ecological status has resulted one grade lesser than real  
DEV+1: Predicted ecological status has resulted one grade higher than real 
Total points: 378 
 

 

Different MF types including Gaussians, trapezoidals, bells, and sigmoidals 

were tested. The number of linear and non-linear parameters to be optimized is 

displayed in Table 3. During optimization, 10% of the data, randomly chosen, were 
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used for model checking in order to control the over-fitting. Optimum parameters were 

found once checking data error reached the minimum.  

 

The Root Mean Square Error (RMSE) and the number of correctly classified 

points have served to check the performance of the models. It is shown in Table 3. In 

turn, Table 4 shows the comparative performance of ANFIS versus other classification 

techniques. RMSE and percentage of correctly predicted points with ANFIS models 

were in the ranges 0.1898–0.3284, and 68.5–97.6%, respectively. The best fitting was 

obtained with the FIS composed by generalized bell MF. These functions are expressed 

as: 

jk,2b

jk,

jk,

jk,jk,jk,jk,

a

cx
1

1
)c,b,a(x;µ

−
+

=       (5) 

where ak,j, bk,j, and ck,j are non-linear MF parameters, for the input k and the rule j. Both, 

linear and non-linear parameters in Eqs. (2) and (5), have been optimized with the 

hybrid algorithm described in Section 2.3. A response surface, calculated with the 

Generalized bell ANFIS model for ecological classification, considering two 

independent variables, is depicted in Fig. 4. Finally, the twelve rules within the 

inference engine had the following structure: 

“If ecotype is µ1,j and QBR is µ2,j and IBMWP is µ3,j and FWQ is µ4,j, then 

ECOLOGICAL STATUS is µO,j”. 

 

Table 4. Comparative performance of classification models 

Model Well classified DEV-1 DEV+1 
 Generalized Bell ANFIS 369 5 4 
 Sigmoidal ANFIS 356 11 11 
 Classification and Regression Tree (CART) 343 12 23 
 Probabilistic Neural Network (PNN) 367 4 7 
DEV-1: Predicted ecological status has resulted one grade lesser than real  
DEV+1: Predicted ecological status has resulted one grade higher than real 
Total points: 378 
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Fig. 4. Response diagrams with the generalized bell ANFIS model.  
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A CART for the input–output data set has been developed. It is depicted in Fig. 

5. Ten percent of data has been used for testing. The best tree size was obtained with a 

re-substitution and cross-validation procedure. About 90.74% of total points have been 

well classified with CART. As shown in Table 4, the performance of the ANFIS models 

is competitive with the CART method. In fact, bell and sigmoidal FIS models resulted 

to be superior to the classification tree. However, the simplicity of CART over ANFIS 

must be remarked.  

 

Fig. 5. Classification tree for ecological status in the studied area.  
ET: ecotype, QBR: riparian quality index, IBMWP: biological index, FWQ: physicochemical fuzzy  
index.  

 

 

A PNN has also been developed with the same input/output data set. As shown 

in Table 4, high predictive capacities produced the PNN. However, the weak point of 

this approach occurred during the validation stage. When PNN was asked for predicting 

the ecological status for a validation data set composed by 38 sites, only 71.05% were 

correctly classified. In turn, CART and generalized bell ANFIS correctly classified the 

78.95% and 92.11% of validation points, respectively. It demonstrates the higher 

generalization skills of the neural-fuzzy models. 
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4. Discussion 

 

In general, high predictive capacities have been found with ANFIS as classifier 

for ecological status in surface waters. A clear influence of the shape of the MF is 

observed in Table 3. The best results were obtained with generalized bell MF. As shown 

in Table 3, in most sites FIS outputs agree with real values. Points in the DEV − 1 

column are those whose predicted ecological status has been ranked one grade lesser 

than real ones. In contrast, points in the DEV + 1 column received one grade higher 

than real ones. 

 

Misclassified points could be attributable to noise within variables. However, 

some patterns help explain misclassifications. In most of such situations the scores fell 

close to class boundaries among moderate, poor, and/or bad status. Also, there were 

cases where one indicator has given a classification quite different to the others. These 

patterns have resulted imprecise to the inference engine, and therefore difficult to 

predict. 

 

The subtractive clustering algorithm has allowed the use of few inference rules 

to get high predictive power. However, to maintain the model accuracy, a considerable 

number of MF, and non-linear parameters, were necessary. This high non-linearity 

comes from the very diverse nature of variables, representing states and impacts within 

the ecosystems. Fig. 4 depicts the non-linear structure of the modeled classification 

system. From a view over this Figure, it can be noticed that the IBMWP is the main 

indicator to decide the final ecological class. IBMWP defines the curvature over the 

other indicators. Likewise, QBR handles over FWQ. 

 

Looking into the produced inference engine, the capacity of the fuzzy model to 

extract knowledge from data with interpretability and transparency can be 

demonstrated. Thus, some automatic rules extracted from the optimized FIS could be 

put in verbal form as: 

1. If physicochemical quality is medium and riparian quality is low and biological 

quality is low then ecological status is bad. 

2. If riparian quality is high and biological quality is medium then ecological status 

is moderate. 
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The CART (Fig. 5) partitions the learning dataset in nodes (triangles) formed 

automatically. By continuously posing and answering binary yes/no questions, every 

data point flows down to next level of nodes. Left branches are for negative answers. 

Finally, each data point attaches to a terminal node that classifies the ecological status. 

IBMWP is the governing indicator for the ecological classification since it appears in 

more nodes. The QBR is the second discriminatory criterion being present in the upper 

nodes of the tree. The ecotype (ET) is also important to give the final class, but it is in 

the lower nodes. The FWQ is the least determinant indicator, since it only appears in 

two nodes. CART results agree with those from ANFIS, regarding the importance of the 

biological element over the others in the assessment of the ecological condition. 

 

In general, the high influence of the IBMWP over the final classification can be 

well predicted with ANFIS, and CART. It agrees with the ECOSTRIMED protocol, 

where it is enunciated that the biological element must receive more weight over other 

elements (CHE, 2004). Perhaps, the same conclusion could be got from PNN, given its 

demonstrated accuracy. But, its black-box structure hinders to draw a conclusion. 

 

With the FIS model, we have found that 54.76% of the sites within the Ebro 

river basin were below good ecological status for the assessed period. The main factor 

to get such results has been the low QBR score. A 76.72% of QBR data presented 

moderate, poor, or bad status. In turn, 35.19% of FWQ data, and 27.78% of IBMWP 

data were below expected scores. 

 

Therefore, important efforts should be carried out by citizens, stakeholders, and 

river protection agencies to improve the overall quality of waters. In that direction, we 

strongly suggest the use of the FIS classifiers to support decision-makers in evaluation 

and classification of ecological status, as required by the WFD. Moreover, for a better 

assessment, the use of more biotic, morphological, and chemical inputs is highly 

recommended. These could easily be inserted in a FIS model. Finally, the ability to 

classify ecological status by means of fuzzy boundaries is a valid advantage to deal with 

subjectivity and uncertainty. Therefore, it would be possible to classify a site as partially 

good, or partially moderate, which is more adjusted to the reality, taking into account 

that boundaries are usually hard to fit. 
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5. Conclusion 

 

A decision-making tool for water management in the form of an ecological 

status classification system based on morphological, biological, and physicochemical 

inputs is presented. A suitable environmental application of fuzzy logic to integrate 

water quality indicators is shown. The FIS classifier developed here has been 

competitive when compared with other statistical methods. The flexibility of fuzzy logic 

to develop classification models with a simple framework, built with natural language, 

is recommended in the development of similar environmental indexes, where highly 

subjective information must be correlated. The FIS classifiers allowed dealing 

efficiently with uncertainty and non-linearity, being appropriate for integration of 

qualitative and quantitative data. The main advantage of the FIS approach has been that 

correlations among variables were causally determined. The FIS models learned from 

data, and interpretable inference rules were automatically created. Although the FIS 

classification system has been optimized with information from a particular river basin, 

the methodology could be adapted to other studies regarding the WFD.  
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Chapter 3 
 

A concurrent neuro-fuzzy inference system for screening ecological 
r isk assessment in rivers3 

 
 

Abstract 

 

Because of the presence of hazardous substances in river basins, in this study a 

conceptual model to assess water quality has been developed. The model incorporates a 

novel ranking and scoring system, based on a special kind of artificial neural network 

called self-organizing map, to account for the likely ecological hazards posed by the 

presence of chemical substances in freshwater. Hazard factors for chemical substances 

have been calculated by pattern recognition of persistence, bioaccumulation, and 

toxicity properties. Due to the high imprecision and uncertainty in screening ecological 

risk assessment, a fuzzy inference system has been proposed to compute ecological risk 

potentials (ERP), which are a combination of the hazard to aquatic sensitive organisms, 

and normalized environmental concentrations. By aggregating the ERP, changes in 

water quality over time can be estimated. The proposed concurrent neuro-fuzzy model 

has been applied to a comprehensive dataset of the dangerous substances control 

network in the Ebro river basin (Spain). The ERP approach has been validated by 

comparison with biological monitoring. Diatom based water quality has decreased in 

four years, at least in 38% of studied sites, probably as consequence of higher presence 

of chemicals at levels of concern. The proposed approach can support decision-makers 

in the evaluation of the long-term performance of pollution prevention and control 

strategies in river basins set out by environmental protection agencies.  

 

Keywords: Fuzzy inference systems; Self organizing maps; Screening ecological risk 

assessment; Water quality; Ebro River 

                                                
3 William Ocampo-Duque, Ronnie Juraske, Vikas Kumar, Marti Nadal, Marta Schuhmacher, and José L. 
Domingo. A concurrent neuro-fuzzy inference system for screening ecological risk assessment in rivers. 
Submitted to Journal of Environmental Management. 
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1. Introduction 

 

Chemical pollution in rivers can alter aquatic ecosystems, causing loss of 

habitats and biodiversity (Lyons, 2006). Some pollutants may remain in the 

environment for a long time. They may bio-accumulate through the food chain and be 

dangerous to aquatic organisms. Developing reliable methods for estimating the risks 

due to these substances in aquatic environments has therefore become a priority 

(Camusso et al., 2002). Because of the growing number of potentially hazardous 

chemicals identified in water and other river compartments, there is a recognized need 

to create integrated risk-based systems to facilitate decision-making processes. Such 

systems must consider the concentration of most chemicals in field, and also their likely 

hazard to aquatic ecosystems. By extracting information from properties of toxicity, fate 

and transport, persistence, and potential for bioaccumulation, the hazard of a chemical 

substance can be quantified (Juraske et al., 2007). 

 

A number of difficulties have to be faced to design multi-substances risk-based 

systems for ecological protection. Firstly, owing to the need to integrate dissimilar 

criteria, and to manage large and diverse datasets, ranking and scoring methodologies 

require consistent ways to deal with subjectivity. Secondly, to estimate potential risks 

usually involves high methodological and inherent uncertainties. Fortunately, a step 

forward has been given by the progress in Artificial Intelligence (AI) to deal with such 

challenges. Skills to recognize non-linear patterns by means of self-learning and the 

easiness to deal with subjectivity, uncertainty, and imprecision, have considered AI 

tools to be appropriate to support water quality management (Chau, 2006). 

 

In particular, artificial neural networks (ANN) and fuzzy inference systems (FIS) 

have been consistently introduced into environmental modelling and data analysis. Self-

Organizing-Maps (SOM) have been pointed out as a suitable methodology to cluster 

heterogeneous data (Ferré-Huguet et al., 2006; Nadal et al., 2006; Stanimirova et al., 

2005). In turn, the use of fuzzy systems has recently been extended to assess water 

quality (Chang et al., 2001; Giusti and Marsili-Libelli, 2006; Karmakar and Mujumdar, 

2006; Ocampo-Duque et al., 2006, 2007; Sadiq and Rodriguez, 2004). One of the main 

advantages of fuzzy logic is the ability to model expert human knowledge, a necessary 

feature to be considered in the complex process of environmental management. 
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Because of the presence of hazardous substances in river basins, the purpose of 

the present study was to design a system to assess the potential screening risks. A 

concurrent neuro-fuzzy model, which integrates SOM and FIS, has been used to create 

the system which is intended to aquatic ecosystem protection, as requested by the 

European Water Framework Directive (WFD). The model has resulted useful to manage 

both uncertainty and subjectivity in risk estimation. 

 

2. Methods 

 

In ecological risk assessment, the risk is usually a function of damage and dose. 

Ideally, the damage would be an integrated measure of all adverse ecological health 

effects associated with acute and chronic exposures to a chemical. However, to provide 

useful information, the assessment needs to be forced to rely on available and reliable 

data. It must be noted that the number of chemicals in the environment is huge, and the 

efforts required for complete risk assessment are prohibitive. This has motivated to the 

development of multiple ranking and scoring methods in order to simplify and provide 

screening hazard values (Swanson and Socha, 1997). From scores produced by these 

methodologies, it would be suitable to design generalized risk indexing systems. Often, 

ranking systems have been based on three characteristics to quantitatively assign a score 

to each chemical substance: persistence, bioaccumulation and toxicity, commonly 

known as PBT properties (Knekta et al., 2004). The management of the subjectivity in 

those ranking methodologies is still a pending task. To overcome that, in this study a 

pattern recognition algorithm, the SOM, has been applied to PBT properties.  

 

Given the complexity in aquatic ecosystems for screening and indexing 

purposes, the dose can conveniently be replaced by environmental concentrations. 

Moreover, the variability in orders of magnitude of concentrations requires a consistent 

normalization procedure. The use of the Environmental Quality Standards (EQS) seems 

to be appropriate. However for real situations, a boundary standard below which the 

presence of a hazardous substance in the environment can be considered safe for 

ecosystems is uncertain, since EQS are fitted after extended analyses of eco-toxicity 

databases and experts’ opinion. In the present study, ecological risk potentials (ERP) are 

defined as alternative approaches to common risk assessment methodologies. ERP 
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combine the hazard to aquatic organisms, posed by the presence of toxic substances, 

and the concentration of the chemicals measured in field, within a FIS. The hypothesis 

has been that fuzzy arithmetic helps to manage uncertainty and subjectivity.  

 

2.1. Case study  

 

The Ebro river basin is located at the NE of Spain, covering an area of 85 362 

km2. It is formed by a river network of approximately 12000 km, and is drained toward 

the Mediterranean Sea. Population density in the basin is 33 inhabitants/km2. 7370 Hm3 

of water are annually used: 86% for agriculture, 7% in urban supplies, 6% for industrial 

activities, and 1% in cattle raising. Due to the large quantity of agricultural activities 

carried out in the basin, the considerable domestic uses, and the presence of important 

industrial processes in riparian zones, a comprehensive set of diverse pollutants is 

released to the river.  

 

Pollution control in the Ebro river basin is managed by the Confederación 

Hidrográfica del Ebro (CHE). The CHE has established a network, called red de control 

de sustancias peligrosas (RCSP), to control hazardous substances. Since there is clear 

evidence that most of these sites are heavily impacted by considerable releases of a 

number of toxic compounds, RCSP has been selected as case study. A map locating the 

network sites is depicted in Fig. 1. Data corresponding to the period 2002-2006 have 

been used to test the ERP approach. Moreover, a geographic information system (GIS) 

has allowed to analyze spatial variability. Mean annual concentrations in water for 

heavy metals, pesticides, and other hazardous substances (Table 1) were extracted from 

the RCSP database, and normalized according to: 

EQS

C
NoC w=            (1) 

where NoC, and Cw, are normalized concentration, and concentration of the chemical in 

water, respectively. The EQS here used are those recently defined by the WFD (EC, 

2006). Unfortunately, the WFD list lacks of EQS for many hazardous substances of 

concern in regional environments. Consequently, when these were unavailable, the 

median value of a comprehensive survey of freshwater benchmarks to protect aquatic 

organisms, currently applied by diverse environmental protection agencies (MMA, 
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2000; RAIS, 2007; SEPA, 2004; USDOE, 1999; USEPA, 2007a; USGS, 2004), was 

used as normalizing criterion. The list of EQS for equation 1 is given in Table 1.  

 

 

Table 1. Selected environmental quality standards (EQS) 

 
Substance CAS # EQS (µµµµg/l) Substance CAS # EQS (µµµµg/l) 

1.1.1-Trichloroethane 71-55-6 1.50E+02 d-HCH 319868 1.90E+03 
1.2-Dichloroethane* 107-06-2 1.00E+01 Heptachlor 76-44-8 6.90E-03 

3.4-Dichloraniline 95-76-1 3.00E-01 Heptachlor epoxide 1024-57-3 3.80E-03 
Alachlor* 15972-60-8 3.00E-01 Hexachlorobenzene* 118-74-1 1.00E-02 

Aldrin* 309-00-2 1.00E-02 Hexachlorobutadiene* 87-68-3 1.00E-01 
Ametryn 834-12-8 3.00E-01 Indeno[1,2,3-cd]pyrene* 193-39-5 2.00E-03 

Anthracene* 120-12-7 1.00E-01 Isodrin* 465-73-6 1.00E-02 
Arsenic 7440-38-2 1.90E+02 Isoproturon* 34123-59-6 3.00E-01 

Atrazine* 1912-24-9 6.00E-01 Lead* 7439-92-1 7.20E+00 
Benzene* 71-43-2 1.00E+01 Mercury* 7439-97-6 5.00E-02 

Benzo(a)pyrene* 50-32-8 5.00E-02 Metolachlor51218-45-2 4.40E+00 
Benzo[g,h,i]perylene* 191-24-2 2.00E-03 Methoxychlor 72-43-5 2.45E-02 

Benzo[k]fluoranthene* 207-08-9 3.00E-03 Molinate 2212-67-1 3.00E-01 
Cadmium* 7440-43-9 2.50E-01 Naphthalene* 91-20-3 2.40E+00 

Chlorfenvinphos* 470-90-6 1.00E-01 Nickel* 7440-02-0 9.35E+01 
Chlorobenzene 108-90-7 1.07E+01 Parathion-ethyl 56-38-2 1.30E-02 

Chloroform* 67-66-3 2.50E+00 Parathion-methyl 298-00-0 8.00E-03 
Chlorpyriphos* 2921-88-2 3.00E-02 Pentachlorobenzene* 608-93-5 7.00E-03 

Copper 7440-50-8 1.62E+01 Pentachlorophenol* 87-86-5 4.00E-01 
Chromium 7440-47-3 1.30E+02 Prometon 1610-18-0 3.00E-01 

DDT* 50-29-3 2.50E-02 Prometryn 7287-19-6 3.00E-01 
opDDT 789-02-6 1.00E-03 Propazine139-40-2 3.00E-01 
ppDDD 72548 1.10E-02 Selenium7782-49-2 5.00E+00 
ppDDE 72559 1.05E+01 Simazine* 122-34-9 1.00E+00 

ppDDT* 50293 1.00E-02 Terbutryn 886-50-0 1.00E+00 
Dichlorobenzene 95-50-1 1.70E+01 Tetrachloroethylene* 127-18-4 1.00E+01 

Dichloromethane* 75-09-2 2.00E+01 Tetrachloromethane* 56-23-5 1.20E+01 
Dicofol 115-32-2 1.98E+01 Tetradifon 116-29-0 3.00E-01 

Dieldrin* 60-57-1 1.00E-02 Toluene 108-88-3 1.20E+02 
Dimethoate 60-51-5 6.20E+00 Trichlorobenzene* 87-61-6 4.00E-01 

Diuron* 330-54-1 2.00E-01 Trichloroethylene* 79-01-6 1.00E+01 
Endosulfan* 115-29-7 5.00E-03 Trifluralin 1582-09-8 3.00E-02 

Endosulfan-sulfate 1031-07-8 1.14E+00 Xylenes 1330-20-7 3.00E+01 
Endrin* 72-20-8 1.00E-02 o-xylene 95-47-6 1.00E+01 

Ethylbenzene 100-41-4 1.10E+02 m+p-xylenes 108-38-3 2.00E+01 
Fluoranthene* 206-44-0 1.00E-01 Zinc 7440-66-6 2.13E+02 

Hexachlorocyclohexane* 608-73-1 2.00E-02 4-nonylphenol 104-40-5 3.00E-01 
a-HCH 319846 1.92E+01 4-(tert-octyl)phenol 140-66-9 1.00E-01 
b-HCH 319857 2.34E+05   

* Values from the Water Framework Directive (EC, 2006). 
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Fig. 1. Map of the network of selected sites to monitor hazardous substances in the Ebro river basin (Spain). 
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2.2. Self organizing maps and the ecological hazard index 

 

SOM are unsupervised neural networks inspired in the self-organizing capacity 

of the human brain. They are appropriate to cluster high-dimensional data (Vesanto and 

Alhoniemi, 2000). The method utilizes non-linear mapping of inputs onto a honeycomb 

map that preserves the most important topological relationships between the variables. 

The output map is an array of nodes. Each node contains a characteristic weight, which 

can appropriately be used in normalization tasks. More details of the algorithm are 

available from Vesanto et al. (2000). SOM has been recently applied as convenient tool 

for clustering of environmental data (Ferré-Huguet et al., 2006; Nadal et al., 2006; 

Stanimirova et al., 2005).  

 

In the present study, the SOM algorithm has been used to calculate the 

Ecological Hazard Index (EHI), a screening number to account for potential hazards 

posed by the presence of toxic substances to living aquatic organisms. The EHI is a 

slight modification of the Waste Minimization Prioritization Tool developed by the 

USEPA (2000). The methodology follows that recently proposed by Nadal et al. (2006). 

SOM outputs, called component planes are depicted in Fig. 2a. Each node of the map 

represents a normalized PBT value. This value, ranging between 0 and 1, has been 

found useful for scoring purposes. Fig. 2b shows the integrated SOM. Thus, the EHI is 

calculated as: 

daphniatoxSfishtoxSBCFSPovSEHI −+−++= *2*2*3*3      (2) 

where SPov, SBCF, Stox-fish, and Stox-daphnia are the individual node scores after SOM 

application to overall persistence (Pov), calculated from half-lives of the chemicals in 

air, water and sediments, bio-concentration factor (BCF), LC50 to sensitive fish (tox-

fish), and LC50 to Daphnia magna (tox-daphnia).  

 

Physical-chemical properties for the calculation of the overall persistence were 

obtained from the USES-LCA 2.0 database (Huijbregts et al., 2005). Sources for 

experimental data used in this database were obtained from Howard et al. (1991), 

Linders et al. (1994), Mackay et al. (2000), and Tomlin (2002). If no experimental data 

were found, the estimation method for biodegradation half-lives described by Aronson 
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et al. (2006), and the physical/chemical property and environmental fate estimation 

model EPI Suite™ (USEPA, 2007b), were used. Data on the bio-concentration factor in 

fish were taken from the USES-LCA 1.0 database (Huijbregts et al., 2000) and from 

Linders et al. (1994) and Meylan et al. (1999). In turn, ecotoxicological parameters 

regarding to LC50 to Daphnia magna and fish were taken from DEPA (2004), Linders 

et al. (1994), and Payet (2004). PBT data are summarized in Table 2. The scores and the 

EHI are shown in Table 3.  

 

 

Table 2. Persistence, bioaccumulation, and toxicity (PBT) properties used as inputs to 
the SOM* 

 

Substance SOM code 
Pov                 

(days) 
BCF fish             

(-) 
LC50 fish   

(mg/l) 

LC50 
daphnia 
(mg/l) 

1,1,1-Trichloroethane TCE 1.00E+03 1.50E+01 2.27E+01 2.55E+01 
1,2-Dichloroethane DCE 1.01E+03 2.00E+00 1.06E+02 1.12E+02 
3,4-Dichloraniline DCA 1.72E+03 3.00E+01 2.60E+01 8.80E-01 
Alachlor ALA 1.10E+01 3.90E+01 5.20E-01 2.30E-01 
Aldrin ALD 2.25E+02 3.72E+03 6.00E-02 3.00E-02 
Ametryn AME 1.05E+02 4.60E+01 9.00E+00 1.10E+01 
Anthracene ANT 3.06E+02 9.12E+02 1.19E-02 2.00E-02 
Arsenic As 1.00E+05 1.50E+02 5.60E-01 4.80E-01 
Atrazine ATR 1.99E+02 8.20E+00 1.17E+01 3.60E+00 
Benzene BEN 1.36E+02 6.00E+00 5.90E+01 6.30E+01 
Benzo(a)pyrene BPY 7.83E+02 5.69E+03 2.50E-02 5.00E-03 
Benzo[g,h,i]perylene BPE 2.17E+03 2.54E+04 8.00E-03 1.20E-02 
Benzo[k]fluoranthene BFL 4.81E+03 1.01E+04 2.60E-02 3.60E-02 
Cadmium Cd 1.00E+05 2.02E+02 1.10E-01 1.30E-01 
Chlorfenvinphos CFV 1.28E+02 3.17E+02 4.00E-02 2.50E-04 
Chlorobenzene CBZ 2.08E+02 2.70E+01 2.09E+01 2.34E+01 
Chloroform CFM 4.82E+02 4.00E+00 4.38E+01 2.89E+01 
Chlorpyriphos CPF 5.40E+01 1.70E+03 3.00E-03 1.70E-03 
Copper Cu 1.00E+05 1.20E+02 2.20E-02 5.00E-03 
Chromium Cr 1.00E+05 4.00E+01 1.60E+00 2.00E+00 
DDT DDT 6.54E+03 7.43E+04 9.00E-03 1.00E-03 
opDDT opDDT 6.54E+03 3.72E+04 9.00E-03 2.00E-03 
ppDDD ppDDD 5.60E+03 2.95E+04 4.50E-03 2.00E-04 
ppDDE ppDDE 6.39E+03 5.13E+04 1.60E-02 8.00E-03 
ppDDT ppDDT 6.54E+03 7.43E+04 9.00E-03 1.00E-03 
Dichlorobenzene DCB 8.98E+02 1.32E+02 6.82E+00 7.99E+00 
Dichloromethane DCM 1.61E+02 1.00E+00 2.62E+02 2.68E+02 
Dicofol DIC 2.16E+02 5.03E+03 1.83E-01 1.40E-01 
Dieldrin DIE 1.29E+03 7.61E+03 3.00E-02 6.00E-03 
Dimethoate DIM 6.80E+01 3.00E-01 6.20E+00 4.60E-01 
Diuron DIU 2.41E+02 6.00E+01 5.90E+00 1.40E+00 
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Endosulfan EDS 1.10E+01 6.01E+02 8.77E-01 4.73E+00 
Endosulfan-sulfate ENS 4.02E+02 2.19E+02 7.40E-01 3.32E+00 
Endrin END 9.12E+03 1.87E+03 1.00E-02 1.00E-03 
Ethylbenzene ETB 1.20E+01 5.30E+01 8.46E+00 9.74E+00 
Fluoranthene FLU 7.43E+02 4.92E+03 2.64E-01 3.46E-01 
Hexachlorocyclohexane HCH 1.07E+02 6.63E+02 1.62E+00 2.03E+00 
a-HCH aHCH 2.50E+02 3.03E+02 1.40E+00 8.00E-02 
b-HCH bHCH 2.15E+02 3.32E+02 1.00E+00 6.00E-02 
d-HCH dHCH 1.07E+02 6.63E+02 1.00E+00 5.00E-02 
Heptachlor HEP 1.00E+00 7.43E+03 2.30E-02 6.00E-03 
Heptachlor epoxide HEE 4.42E+02 6.63E+03 1.70E-01 2.30E-01 
Hexachlorobenzene HCB 8.02E+03 1.53E+04 5.00E-02 7.00E-02 
Hexachlorobutadiene HBU 6.78E+02 2.41E+03 9.00E-02 1.00E-01 
Indeno[1,2,3-cd]pyrene INP 2.32E+03 2.86E+04 8.00E-03 1.20E-02 
Isodrin ISO 2.59E+02 2.02E+04 6.00E-03 4.60E-04 
Isoproturon ISP 1.65E+02 5.50E+01 9.00E+00 5.07E+02 
Lead Pb 1.00E+05 3.28E+02 6.50E-01 9.00E-01 
Mercury Hg 1.00E+05 3.03E+03 1.40E-02 9.00E-03 
Metolachlor MET 2.22E+02 6.50E+01 2.00E+00 2.50E+01 
Methoxychlor MTO 4.33E+02 2.17E+03 5.20E-02 7.80E-04 
Molinate MOL 1.20E+01 7.80E+01 1.94E+01 2.21E+01 
Naphthalene NAP 5.10E+01 3.98E+02 4.50E+00 8.60E+00 
Nickel Ni 1.00E+05 8.70E+01 4.70E-01 5.20E-01 
Parathion-ethyl PAR 8.90E+01 1.59E+02 5.70E-01 2.50E-04 
Parathion-methyl MPA 8.50E+01 5.40E+01 2.70E+00 7.30E-03 
Pentachlorobenzene PCB 1.72E+03 5.75E+03 1.74E-01 2.34E-01 
Pentachlorophenol PCP 2.27E+02 6.95E+02 8.00E-01 1.08E+00 
Prometon PRO 6.10E+01 4.70E+01 1.20E+01 7.70E+00 
Prometryn PRT 1.06E+02 1.55E+02 2.50E+00 1.27E+01 
Propazine PRZ 1.05E+02 4.10E+01 1.75E+01 1.77E+01 
Selenium Se 1.00E+05 5.00E+02 1.35E+00 2.46E-01 
Simazine SIM 2.00E+02 1.40E+01 4.90E+01 9.21E+01 
Terbutryn TER 1.06E+02 2.63E+02 3.00E+00 2.66E+00 
Tetrachloroethylene PER 4.12E+02 1.80E+01 8.00E-01 8.50E+00 
Tetrachloromethane TCM 3.37E+03 3.00E+01 4.40E+01 4.86E+01 
Tetradifon TDF 9.75E+02 8.50E+02 1.01E+01 2.10E+00 
Toluene TOL 1.90E+01 2.40E+01 2.13E+01 2.36E+01 
Trichlorobenzene TCB 2.27E+02 8.81E+02 2.06E+00 2.52E+00 
Trichloroethylene TET 1.97E+02 3.90E+01 1.35E+00 2.74E+01 
Trifluralin TFL 1.35E+02 5.62E+03 1.47E+00 4.20E-01 
Xylenes XYL 2.60E+01 6.20E+01 7.43E+00 8.59E+00 
o-xylene OXY 2.60E+01 6.80E+01 8.00E+00 3.10E+00 
M+p xylenes MPX 2.50E+01 7.60E+01 9.20E+00 9.60E+00 
Zinc Zn 1.00E+05 1.00E+03 1.20E+00 1.50E+00 
4-nonylphenol NON 1.60E+01 9.16E+02 1.13E-01 2.77E-01 
4-(tert-octyl)phenol TOP 5.50E+01 5.73E+03 2.90E-01 5.10E-01 

*  Pov: overall persistence, BCF fish: Bio-concentration factor in sensitive fish, LC50 fish: lethal 
concentration 50% to sensitive fish, and LC50 daphnia: Lethal concentration 50% to Daphnia magna. 
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Fig. 2a. Component planes (c-planes) obtained with the SOM to PBT properties for all 
pollutants under study. 
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Fig. 2b. Self-organizing-map obtained to cluster PBT properties of the pollutants under 
study. Meaning of abbreviations is given in Table 3. 
 
 
Table 3. Individual S scores of PBT properties as outputs after SOM application, and 
the  ecological hazard index (EHI) calculated with equation 2 

Substance SOM code SPov SBCF Stox-fish Stox-daphnia EHI 
DDT DDT 7.13E-01 9.57E-01 1.00E+00 1.00E+00 9.01E+00 
PpDDT ppDDT 7.13E-01 9.57E-01 1.00E+00 1.00E+00 9.01E+00 
PpDDE ppDDE 7.05E-01 6.54E-01 1.00E+00 1.00E+00 8.08E+00 
OpDDT opDDT 7.02E-01 4.73E-01 1.00E+00 1.00E+00 7.52E+00 
PpDDD ppDDD 6.33E-01 4.17E-01 1.00E+00 1.00E+00 7.15E+00 
Endrin END 8.95E-01 1.50E-01 9.99E-01 1.00E+00 7.13E+00 
Hexachlorobenzene HCB 8.95E-01 1.50E-01 9.99E-01 1.00E+00 7.13E+00 
Arsenic As 1.00E+00 8.16E-03 9.97E-01 9.99E-01 7.02E+00 
Cadmium Cd 1.00E+00 8.16E-03 9.97E-01 9.99E-01 7.02E+00 
Copper Cu 1.00E+00 8.16E-03 9.97E-01 9.99E-01 7.02E+00 
Chromium Cr 1.00E+00 8.16E-03 9.97E-01 9.99E-01 7.02E+00 
Lead Pb 1.00E+00 8.16E-03 9.97E-01 9.99E-01 7.02E+00 
Mercury Hg 1.00E+00 8.16E-03 9.97E-01 9.99E-01 7.02E+00 
Níkel Ni 1.00E+00 8.16E-03 9.97E-01 9.99E-01 7.02E+00 
Selenium Se 1.00E+00 8.16E-03 9.97E-01 9.99E-01 7.02E+00 
Zinc Zn 1.00E+00 8.16E-03 9.97E-01 9.99E-01 7.02E+00 
Benzo[k]fluoranthene BFL 5.74E-01 1.87E-01 9.97E-01 9.98E-01 6.28E+00 
Indeno[1,2,3-cd]pyrene INP 2.56E-01 3.77E-01 1.00E+00 1.00E+00 5.90E+00 
Benzo[g,h,i]perylene BPE 2.41E-01 3.44E-01 1.00E+00 1.00E+00 5.76E+00 
Isodrin ISO 3.60E-02 2.25E-01 9.99E-01 1.00E+00 4.78E+00 
Pentachlorobenzene PCB 1.82E-01 8.13E-02 9.86E-01 9.90E-01 4.74E+00 
Dieldrin DIE 1.47E-01 8.94E-02 9.97E-01 9.98E-01 4.70E+00 
Benzo(a)pyrene BPY 8.22E-02 7.26E-02 9.98E-01 9.98E-01 4.46E+00 
Fluoranthene FLU 8.22E-02 7.26E-02 9.98E-01 9.98E-01 4.46E+00 
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Heptachlor epoxide HEE 4.26E-02 8.10E-02 9.98E-01 9.98E-01 4.36E+00 
Heptachlor HEP 1.20E-02 9.89E-02 9.92E-01 9.98E-01 4.31E+00 
Hexachlorobutadiene HBU 6.94E-02 3.76E-02 9.90E-01 9.98E-01 4.30E+00 
Dicofol DIC 2.82E-02 6.81E-02 9.97E-01 9.99E-01 4.28E+00 
Trifluralin TFL 1.13E-02 8.40E-02 9.86E-01 9.97E-01 4.25E+00 
Methoxychlor MTO 4.13E-02 3.18E-02 9.96E-01 9.99E-01 4.21E+00 
Aldrin ALD 2.34E-02 4.37E-02 9.98E-01 9.99E-01 4.20E+00 
Chlorpyriphos CPF 1.61E-02 2.18E-02 9.96E-01 9.99E-01 4.10E+00 
Anthracene ANT 2.64E-02 1.30E-02 9.91E-01 9.98E-01 4.10E+00 
Chlorfenvinphos CFV 1.73E-02 1.09E-02 9.92E-01 9.98E-01 4.06E+00 
a-HCH aHCH 2.48E-02 8.20E-03 9.80E-01 9.95E-01 4.05E+00 
b-HCH bHCH 2.48E-02 8.20E-03 9.80E-01 9.95E-01 4.05E+00 
Pentachlorophenol PCP 1.93E-02 7.25E-03 9.86E-01 9.94E-01 4.04E+00 
Alachlor ALA 1.42E-02 6.31E-03 9.89E-01 9.95E-01 4.03E+00 
d-HCH dHCH 1.42E-02 6.31E-03 9.89E-01 9.95E-01 4.03E+00 
Parathion-ethyl PAR 1.42E-02 6.31E-03 9.89E-01 9.95E-01 4.03E+00 
Dichlorobenzene DCB 8.98E-02 1.41E-02 8.98E-01 9.52E-01 4.01E+00 
Endosulfan-sulfate ENS 2.16E-02 6.17E-03 9.80E-01 9.70E-01 3.98E+00 
Parathion-methyl MPA 1.99E-02 5.22E-03 9.62E-01 9.91E-01 3.98E+00 
Hexachlorocyclohexane HCH 1.85E-02 6.79E-03 9.73E-01 9.73E-01 3.97E+00 
Trichlorobenzene TCB 1.85E-02 6.79E-03 9.73E-01 9.73E-01 3.97E+00 
Terbutryn TER 1.61E-02 5.46E-03 9.60E-01 9.79E-01 3.94E+00 
Endosulfan EDS 2.07E-02 6.20E-03 9.75E-01 9.54E-01 3.94E+00 
Tetrachloroethylene PER 2.47E-02 3.97E-03 9.75E-01 9.26E-01 3.89E+00 
Tetradifon TDF 8.92E-02 7.08E-03 8.12E-01 9.68E-01 3.85E+00 
Dimethoate DIM 2.10E-02 1.52E-03 8.95E-01 9.79E-01 3.81E+00 
Diuron DIU 2.10E-02 1.52E-03 8.95E-01 9.79E-01 3.81E+00 
o-xylene OXY 1.95E-02 1.10E-03 8.62E-01 9.68E-01 3.72E+00 
Naphthalene NAP 8.57E-03 2.99E-03 9.10E-01 9.03E-01 3.66E+00 
Prometryn PRT 1.67E-02 1.98E-03 9.57E-01 8.43E-01 3.65E+00 
Atrazine ATR 2.12E-02 1.35E-03 8.27E-01 9.53E-01 3.63E+00 
Xylenes XYL 4.60E-03 1.77E-03 8.73E-01 9.03E-01 3.57E+00 
3,4-Dichloraniline DCA 1.72E-01 1.93E-03 5.52E-01 9.45E-01 3.52E+00 
Prometon PRO 1.14E-02 7.19E-04 8.15E-01 9.22E-01 3.51E+00 
Ethylbenzene ETB 4.63E-03 1.05E-03 8.48E-01 8.93E-01 3.50E+00 
M+p xylenes MPX 4.63E-03 1.05E-03 8.48E-01 8.93E-01 3.50E+00 
Ametryn AME 6.70E-03 9.67E-04 8.44E-01 8.80E-01 3.47E+00 
Metolachlor MET 2.15E-02 8.53E-04 9.68E-01 7.34E-01 3.47E+00 
Trichloroethylene TET 2.15E-02 8.53E-04 9.68E-01 7.34E-01 3.47E+00 
Propazine PRZ 9.05E-03 6.90E-04 7.19E-01 8.06E-01 3.08E+00 
Molinate MOL 1.53E-02 6.07E-04 6.69E-01 7.66E-01 2.92E+00 
Chlorobenzene CBZ 2.80E-02 4.49E-04 6.43E-01 7.43E-01 2.86E+00 
Toluene TOL 2.80E-02 4.49E-04 6.43E-01 7.43E-01 2.86E+00 
1,1,1-Trichloroethane TCE 5.31E-02 3.57E-04 6.21E-01 7.25E-01 2.85E+00 
1,2-Dichloroethane DCE 9.44E-03 2.91E-03 5.88E-01 7.77E-01 2.77E+00 
Chloroform CFM 1.68E-01 2.12E-04 2.75E-01 6.20E-01 2.30E+00 
Tetrachloromethane TCM 1.98E-01 2.48E-04 2.30E-01 4.79E-01 2.01E+00 
Isoproturon ISP 1.68E-03 7.04E-04 9.48E-01 3.97E-02 1.98E+00 
Dichloromethane DCM 3.26E-03 8.29E-04 1.27E-01 5.28E-01 1.32E+00 
Benzene BEN 5.39E-02 1.59E-04 1.16E-01 2.08E-01 8.11E-01 
Simazine SIM 5.39E-02 1.59E-04 1.16E-01 2.08E-01 8.11E-01 
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2.3. Fuzzy inference systems and the ecological risk potential 

 

FIS use heuristic rules to establish qualitative and quantitative relationships 

among variables. The rule-based nature allows managing information in the form of 

natural language statements. It is highly convenient in environmental modeling and 

management. FIS are supported on three concepts: membership functions, fuzzy 

operations, and inference rules. A membership function is a curve that defines the 

membership of a variable to a fuzzy set, which acts as a qualifier (e.g. “low” or “high”). 

Fuzzy operations used in this study were: intersection (AND) and union (OR). If two 

fuzzy sets A and B, with membership functions µA and µB, defined on a universe of 

discourse X, then for a given element x, we have:  

Intersection:    ( ))(),(min)( xBxAxBA µµµ =∩      (3) 

Union:   ( ))(),(max)( xBxAxBA µµµ =∪      (4) 

Finally, a rule may have the form: “If x is A AND y is B THEN z is C”, where A, B, and 

C, are linguistic qualifiers defined by fuzzy sets in the universes of discourse X, Y, and 

Z, respectively.  

 

Table 4. Sets of the fuzzy inference system and membership function parameters to be 
used in equation 5* 
 

EHI NoC ERP 
Fuzzy set σσσσ    c σσσσ    c σσσσ    c 

Low 1.0 1.0 0.38 0.000 17.0 0.0 
Moderate 1.0 3.0 0.38 0.675 17.0 30.0 

High 1.0 5.0 0.38 1.350 17.0 60.0 
Very High 1.0 7.0 0.38 2.025 17.0 90.0 
Extreme 1.0 9.0 0.38 2.700 17.0 120.0 
Range 0 - 10 0 - 2.7 0 - 120 

* EHI: Ecological hazard index, NoC: Normalized concentration, ERP: Ecological risk potential. 
 
 
2.3.1. Design of the membership functions 

 

A FIS was used to compute the ERP defined above. FIS inputs are the EHI and 

the NoC also described in previous sections. Gaussian membership functions were used 

to represent all the fuzzy sets. They are convenient because of the low number of 

parameters, having the shape: 
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where σ and c are parameters shown in Table 4.  

 

Table 5.Matrix of fuzzy sets used in equation 6* 
 

Number of Rule 
i 

EHI 
j=1 

NoC 
j=2 

ERP 
j=3 

1 low low low 

2 low moderate low 

3 low high moderate 

4 low very-high high 

5 low extreme very-high 

6 moderate low low 

7 moderate moderate moderate 

8 moderate high moderate 

9 moderate very-high high 

10 moderate extreme very-high 

11 high low low 

12 high moderate moderate 

13 high high high 

14 high very-high very-high 

15 high extreme extreme 

16 very-high low moderate 

17 very-high moderate high 

18 very-high high very-high 

19 very-high very-high very-high 

20 very-high extreme extreme 

21 extreme low moderate 

22 extreme moderate high 

23 extreme high very-high 

24 extreme very-high extreme 

25 extreme extreme extreme 
* EHI: Ecological hazard index, NoC: Normalized concentration, ERP: Ecological risk potential.  

 

Ranges to distribute fuzzy sets were defined as follows. For the EHI, the range 

was 0-10, since these are the minimum and maximum values that could be obtained 

after SOM mapping of PBT properties. In turn, for NoC the range was fitted to include 

96% of field data. Consequently, a maximum value of 2.7 was found in water. The 

maximum value of the FIS output (ERP=100) has been calibrated to be obtained after 

computing maximum values for EHI and NoC. For simplicity, ERP=100 was set for 

NoC>2.7 (i.e., 4 % of field data considered outliers). Consequently, five fuzzy sets were 
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symmetrically distributed into the universes of discourse of inputs and outputs. 

Membership functions of all variables are displayed in Fig. 3. 

 

 

 
 
Fig. 3. Membership functions. Parameters are provided in Table 4. 
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2.3.2. Design of the inference engine 

 

After fuzzification, which means to compute the degrees of membership of 

inputs to each fuzzy set, the next step was the computation with words. For it, each rule 

had the following structure: 

IF EHI is “set (i, 1)” AND NoC is “set (i, 2)” THEN ERP is  “set (i, 3)”  (6) 

where “set (i, j)” are those defined in the matrix of the Table 5. These were defined by 

an expert panel. The evaluation of the 25 rules involves the application of three 

sequential operations: integration of antecedents, implication, and aggregation. As 

antecedents are composed by two sets linked with the operator AND, a degree of 

support for every rule was calculated with equation 3. Then, an implication operation is 

applied to modify the output fuzzy set to the degree of support specified by the 

antecedent. With the implication method here used, the output fuzzy set of every rule is 

chopped off by the degree of support. Subsequently, all truncated output fuzzy sets are 

aggregated. Finally, the operation is translated back to the numerical world by using 

centroid defuzzification. For more details on fuzzy arithmetic the reader is referred to 

Ocampo-Duque et al. (2006). 

 

3. Results and discussion 

 

3.1. Ecological hazard index 

 

We hypothesized that the potential hazard to ecosystems posed by a pollutant 

depends mainly on PBT properties. The application of the self-organizing map 

algorithm to PBT data of pollutants considered in this study is depicted in Fig. 2b. The 

output SOM map structure looks like a honeycomb grid with 150 hexagons (15 × 10). 

The learning phase was broken down with 10 000 steps, and the tuning phase consisted 

on 10 000 additional steps. All chemicals were spread over the grid according to 

similarities of overall persistence (given by half-lives in water, sediments, and air), bio-

concentration factors in fish, and LC50 for sensitive fish and Daphnia magna. Four 

main clusters could be identified. (a) Heavy metals were grouped up in the left corner; 

(b) DDTs appeared down in the right corner; (c) many organochlorine pesticides were 

situated up in the right corner of the map, with the higher number of chlorines into the 

molecule seems leading toward the right boundary); (d) the remaining hazardous 
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substances form a widespread cluster with low molecular weight substances located 

down, and the rest overlapping with the pesticides cluster.  

 

According to the EHI determined by SOM and equation 2, DDTs were identified 

as the most hazardous pollutants, with values ranging from 7.15 to 9.01. This is due to 

their high values onto the three branches: toxicity, bioaccumulation, and persistence. All 

heavy metals also appeared in the upper ranking of the hazard index. This can be 

explained since there is no scientific consensus about the values to be used for their 

half-lives. Therefore, an overall persistence of 1E+05 days has been assumed for all 

metals. Secondly, all listed metals presented toxicities and bio-concentration factors 

quite similar as to be clustered in the same node.  

 

Heavy PAHs appeared below metals, with values ranging from 6.28 for 

benzo(k)fluoranthene to 4.46 for benzo(a)pyrene. These results were similar to those 

obtained in a recent study on human health (Nadal et al., 2006). Ranking positions in 

Table 3 are strongly influenced by the number of chlorine atoms in the molecules. 

BTEX (down in Table 3) have received scores ranging from 3.72 for o-xylene to 0.81 

for benzene. Simazine and isoproturon seem to be the least hazardous pesticides in this 

ranking. According to the data shown in Table 3, it is clear that toxicity was the 

governing factor in the scoring system. 

 

3.2. The ecological risk potential 

 

The ERP is the output of the concurrent neuro-fuzzy model. The term concurrent 

was introduced by Wang et al. (2005). The higher the ERP the greater the level of 

concern is in terms of screening-risk. NoC=1 and EHI=7 yield ERP=50. These 

hypothetical values provide an idea about the significance of the ERP scores presented 

in subsequent paragraphs. Actually, NoC can be interpreted as risk characterization 

ratios (RCR) (EC, 2003). Likewise, Fig. 3 (bottom) may help to decide the membership 

of an ERP to a risk level in linguistic terms. Ideally, ERP should be as low as possible.  

 

A view on ERP would allow identifying sites and substances of concern. 

Therefore, model results are managed with a Geographic Information System (GIS). An 

example, in which the analysis of aldrin in water can be carried out, is depicted in Fig. 
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4. Next, some findings in sites and substances at levels showing some degree of concern 

to preserve freshwater ecosystems are briefly reported. Regarding to heavy metals, ERP 

values below 40.0 were estimated for As, Cr, Ni, Se, and Zn. ERP for Cu were 

relatively low in most sites, even though a maximum value (48.1) was found in SP-23 

during 2004. For Pb, ERP in most sites were around 42.0 excepting a maximum score 

(65.1), which coincides in year and site with the maximum score for Cu. For Hg, most 

sites showed ERP values in the range 40.0-53.0, meaning NoC close to 1.0. Some ERP 

scores over 60.0 in SP-1, and SP-16 were also found for Hg. Very high scores were 

computed for Cd in many sites.  

 

In relation to persistent organic pollutants in water, ERP values, increasing with 

time, for aldrin, dieldrin, endrin, and isodrin were found in SP-1, SP-2, SP-4, SP-5, SP-

6, SP-7 and SP-8. For these pesticides peaks over 70.0 were obtained. Also, very high 

ERP were computed at different sites for op-DDT, pp-DDD, and pp-DDT, with 

paramount scores of 100.0, 78.1, and 90.5, respectively. Repeated worrying values for 

hexachlorobenzene were computed in the entire basin. Values of ERP increasing with 

time were also estimated in nine sites (SP-1 to SP-9) for pentachlorobenzene. Relative 

high ERP have resulted for 3,4-dichloroaniline, a by-product of degradation of original 

pesticides, in SP-24. For atrazine, an isolated maximum ERP of 54.6 in SP-21 was 

found during 2005. ERP>60.0 were calculated for chlorpyriphos in SP-21 and SP-23. 

Moreover, high ERP for endosulfan, heptachlor, heptachlor epoxide, molinate, lindane, 

parathion, and methyl-parathion were estimated at different sites and years. For PAHs, a 

number of very high ERP scores were found for benzo[g,h,i]perylene, 

benzo[k]fluoranthene, and indeno[1,2,3-cd]pyrene at various sites during the period 

assessed. 

 

Although the presence of just a chemical at levels of concern should be a 

necessary and sufficient condition to go on controls, for risk management purposes 

would be more convenient to count the number of chemicals that surpass some concern 

levels. Thus, empirical cumulative distribution functions (CDF) can be plotted with the 

calculated ERP of all substances. The results of the CDF to the entire river basin are 

depicted in Fig. 5. A raise in levels of concern over time is clearly observed. Data in 

Fig. 5 explain, for instance, that assuming levels of concern when ERP>50, the number 
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of worrying substances increased from 10% in 2002 to 22% in 2006. In other words, the 

cumulative distribution (y-axis) has decreased from 90% in 2002 to 78% in 2006.  

 

3.3. Sensitivity analysis 

 

ERP values depend on the membership function parameters and the inference 

engine structure (i. e., number, weight, and complexity of the rules). Since the SOM 

converges to a unique solution, and the inference engine operates with linguistic 

variables, sensitivity analysis should only be done to membership function parameters. 

Gaussian functions require two parameters: σ and c as expressed in equation 5. c 

parameters are constant unless the number of fuzzy sets, symmetrically distributed into 

the universes of discourse of all variables (Fig. 3), was modified. Therefore, a partial-

derivative sensitivity analysis to σ  parameters, which represent the width of the fuzzy 

sets and express their overlaps, has been carried out. The FIS has been run for a full and 

real domain of EHI and NoC inputs. Maximum 2.3% variation in ERP was obtained for 

10% perturbation in both inputs. In turn, maximum 4.6% variation in ERP has been 

obtained for 20% perturbation in both inputs. The low degree of sensitivity in outputs is 

highly favorable, and demonstrates the convenient management of uncertainty by 

computing with fuzzy arithmetic. 

 

3.4. Model validation  

 

The validation of a methodology such as the ERP approach is not an easy task. 

Screening risk-based indexing models suffer from the risk to miss information, having 

many limitations because of their necessary assumptions. However, their benefits are 

significant when measuring state and impacts, to give responses before undesired 

conditions, according to the DPSIR (Drivers-Pressure-State-Impact-Response) 

conceptual model (Bunke and Oldenburg, 2005). The ERP approach can be used to 

estimate the likely stress on aquatic ecosystems generated by diverse drivers and 

pressure agents. In this sense, it is not a methodology to quantify impacts, but impact 

indicators help to check its performance. A simpler way to test its usefulness is by 

comparing it with current screening risk assessment methodologies. Both ways have 

been explored to give confidence about ERP benefits. 
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Fig. 4. Geographic information system displaying ecological risk potentials (ERP) for aldrin in water (bars correspond to years). 
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Fig. 5. Empirical cumulative distribution function (CDF) of ERP in the Ebro river basin. 

 

 

Biological monitoring to support water quality has gained more relevance since 

the implementation of the WFD in Europe. Due to the interesting features of diatom 

communities to support the water quality analysis (Prygiel et al., 2002), impact 

indicators based on diatom surveys in freshwaters have been recently adopted in the 

Ebro river basin (CHE, 2005). Moreover, diatoms have been found useful to identify 

water pollution because of toxic substances (Legrand et al., 2006; Schmitt-Jansen and 

Altenburger, 2005). Therefore, three diatom indexes (the IPS index, the IBD index, and 

the CEE index), calculated with Omnidia software (Goma et al., 2004) and estimated in 

those sites where the ERP approach was also applied, were used for comparison. At 

each site, the mean of the three diatom indexes was used to give biological water quality 

in linguistic terms. Five classes, as requested by the WFD, were used: high, good, 

moderate, poor, and bad. More details about the diatom surveys and the biological water 

quality classification can be found in CHE (2002, 2005).  
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Table 6. Comparison between the analysis of chemical pollution estimated with the ERP 
approach and the biological water quality estimated with diatom indexes 

2002 2005 
Site ERP>50* ERP>75* Diatom mean index**  ERP>50* ERP>75* Diatom mean index**  
SP-1 4.1% 2.0% Good (16.2) 32.7% 16.3% Good (15.7) 
SP-2 1.3% 1.3% Bad (4.7) 25.3% 9.3% Poor (6.8) 
SP-3 9.3% 4.0% Good (13.8) 14.7% 5.3% - 
SP-4 2.0% 2.0% Moderate (11.7) 30.0% 14.0% - 
SP-5 2.0% 2.0% Moderate (12.3) 30.6% 14.3% Good (15.2) 
SP-6 2.0% 2.0% Poor (8.5) 30.6% 14.3% Poor (8.6) 
SP-7 2.0% 2.0% Good (15.4) 30.6% 14.3% - 
SP-8 2.0% 2.0% Poor (5.8) 30.6% 14.3% Poor (8.9) 
SP-9 6.7% 4.0% Moderate (9.3) 14.7% 5.3% Poor (8.6) 
SP-10 0.0% 0.0% Moderate (11.4) 12.9% 9.7% Poor (8.7) 
SP-11 6.5% 3.2% Good (15.8) 12.9% 9.7% Poor (8.4) 
SP-12 3.2% 3.2% Moderate (11.9) 12.9% 9.7% Moderate (10.5) 
SP-13 0.0% 0.0% Good (14.4) 15.4% 11.5% Good (14.5) 
SP-14 0.0% 0.0% Moderate (9.2) 12.9% 9.7% Bad (4.7) 
SP-15 0.0% 0.0% Bad (2.1) 10.3% 6.9% Poor (6.3) 
SP-16 7.1% 0.0% Good (14.0) 15.7% 7.1% Good (14.0) 
SP-17 0.0% 0.0% Good (13.7) 10.3% 6.9% Bad (4.6) 
SP-18 0.0% 0.0% Moderate (11.2) 13.3% 10.0% Poor (5.3) 
SP-19 15.2% 2.2% Poor (7.3) 19.6% 6.5% Poor (8.4) 
SP-20 13.0% 2.2% Moderate (10.7) 17.4% 6.5% Poor (8.6) 
SP-21 10.9% 0.0% Poor (8.6) 21.7% 6.5% Poor (6.0) 
SP-22 11.5% 1.9% Moderate (10.7) 19.2% 9.6% Moderate (10.3) 
SP-23 2.2% 0.0% Poor (7.5) 19.6% 8.7% Poor (8.0) 
SP-24 0.0% 0.0% Moderate (9.5) 17.4% 6.5% Poor (7.4) 

* ERP>50 and ERP>75 columns provide the percentages of toxic substances that surpass the respective 
level of concern. 
**Diatom mean index is the mean of three indexes (the IPS index, the IBD index, and the CEE index). 
Numerical scores are provided in parentheses. These are transformed to linguistic values, to give 
biological water quality, according to the following ranges: High (17-20), Good (13-17), Moderate (9-13), 
Poor (5-9), and Bad (0-5). More details about the diatom monitoring survey, in the Ebro river basin, can 
be found in CHE (2005). 

 

As shown in Table 6, the agreement between the screening ecological risk 

outputs, and the biological water quality analysis determined with diatom indexes, is 

quite satisfactory. During the period 2002 to 2005, the percentage of ERP of concern, 

that is ERP>50 or ERP>75 (worst case), has increased in all studied sites. Likewise, the 

biological water quality decreased, at least in 38% of sites. This reduction could be due 

to the higher stress by toxic substances. It is important to remark that changes in diatom 

communities could be consequence of a number of environmental factors, toxic 

substances included. In any case, the presence of toxic substances at levels of concern 

seems to have incidence in the high number of sites with “poor” and “bad” biological 

diatom quality (29% in 2002, and 63% in 2005). Although the comparative results are 
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fairly conclusive, more research is necessary about the complex relationships between 

chemical pollution and biological indicators. 

 

 
 
Fig. 6. Ecological risk potentials (ERP) versus risk characterisation ratios (RCR). 
 

 

The most common methodology to assess chemical risks in aquatic ecosystems 

is the risk quotient method. Recently, species sensitivity distributions (SSD) to estimate 

potentially affected fractions have been also proposed (Posthuma and De Zwart, 2006). 

SSD give better statistical confidence, because they consider a number of species 

instead of only the most sensitive ones. However, SSD are methods to deal with 

variability in risk quotients, by using more eco-toxicological data rather than a way to 
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manage their uncertainty. Uncertainty and variability are different concepts usually 

applied as synonyms by risk assessors. Uncertainty is more appropriate to manage 

subjectivity and/or “unknown” variability. The concept of risk is subjective and 

linguistically uncertain in nature. For that reason, it is here computed with fuzzy 

arithmetic.  

 

To test the performance of the ERP approach, a comparison versus the RCR 

method has been carried out. ERP and RCR (or NoC) in one of the most important 

sampling sites are depicted in Fig. 6. The ERP approach has identified a considerable 

number of concerning chemicals. The identification of some chemicals of concern is 

also possible with RCR. However, the “level” or “degree” of concern is better explained 

by FIS outputs, since they are conveniently normalized in a 0-100 scale after linguistic 

management of information. In fact, ERP can be also expressed in linguistic terms by 

using Fig. 3 (bottom). Certainly, the ERP approach is a modification of the RCR 

method. 

 

4. Conclusion 

 

A conceptual model to help decision-makers involved in sustainable river basin 

management, based on artificial intelligence tools, has been proposed. SOM have 

provided a convenient insight to cluster PBT properties. FIS have allowed dealing with 

subjectivity and uncertainty in risk estimation, and computing with words has given 

more sense to numerical outputs. The model generates a suitable indicator to search for 

levels of concern of pollutants that may mean potential threats to freshwater 

ecosystems. The ERP approach is suitable to analyze overall trends by anticipating the 

probable impacts from multiple substances, identifying those sites requiring enhanced 

protective measures. Although the ERP approach is built on multiple substances 

assessment, it is far of accounting for synergies among pollutants.   

 

The ERP approach has been useful to study chemical pollution in the Ebro river 

basin. Several ERP scores of concern have been estimated throughout the basin. Among 

them, overall and substance specific assessment were performed. The most polluted 

sites have been identified in the high Ebro (sites SP-7 and SP-8), with concerning high 

levels especially for heavy metals. It coincides with the findings recently reported by 
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Terrado et al. (2006). On the other hand, important stresses because of the presence of 

persistent organic substances released by industrial processes and agriculture have been 

easily identified in many sites. In conclusion, results show that water quality in the Ebro 

river basin is below expected scores to fulfill the WFD. 
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Chapter 4  
 

Part A. Estimating the environmental impact of micro-pollutants in 
the low Ebro: An approach based on screening toxicity with Vibrio 

fischeri 4 
 
 

Abstract 

 

The aim of this study was to assess the likely impacts on the ecosystems due to 

agricultural, human, and industrial activities carried out in an ecologically important 

area of the Ebro River (Spain). For it, a screening site specific ecological risk 

assessment was conducted. Considering the presence of high levels of potentially toxic 

substances, such as metals and chlorinated organic compounds, aqueous and organic 

extracts were used to assess toxicity in sediments by using the photo-luminescent 

bacteria Vibrio fischeri (Microtox) as screening response variable. Sediment samples 

collected during 2005-2006 in the last course of the Ebro River and its Delta have been 

analyzed. Toxic responses have shown strong relationships to the levels of pollutants in 

the area. Moreover, various sites presented some toxicity level, probably because of 

other factors associated with reducing environments into the sediments. Results indicate 

that Microtox® bioassay is an appropriate tool to perform risk assessment studies at 

screening level. 

 
 
Keywords: Sediments; Ecological risk assessment; Vibrio fischeri; Ebro River (Spain) 

                                                
4 William Ocampo-Duque, Jordi Sierra, Núria Ferré-Huguet, Marta Schuhmacher, José L. Domingo. 
Estimating the environmental impact of micro-pollutants in the low Ebro: An approach based on 
screening toxicity with Vibrio fischeri. Chemosphere (Accepted). 
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1. Introduction 

 

Nowadays, the control of sediment quality is being considered as a necessary 

extension of the control of river water quality (Borja et al., 2004). The protection of 

river sediments is necessary since they are both sink and potential source of 

contaminants to the water column (Chau, 2006). In turn, sediments integrate pollutant 

concentrations over time, pollutant levels in water are more variable and dynamics 

(Ayyamperumal et al., 2006), while sediment pollutants may affect benthic and other 

food-chain organisms (Moreno-Garrido et al., 2007). Finally, sediments are also an 

integral part of the aquatic environment, providing habitat, feeding, and breeding areas 

for a number of organisms. Recently, sediments’ protection has become mandatory to 

preserve the ecological status in rivers, as requested by the Water Framework Directive. 

 

Although chemical analysis provides data about environmental pollutant 

concentrations, it gives little information about bioavailability and/or toxicity at the site. 

Therefore, biological analyses combined to chemical analyses are essential to infer 

probable adverse biological effects (Chapman, 2007). Different bioassays are currently 

in use, being most of them often expensive and time consuming. The need for cost 

effective and rapid screening methodologies to assess chemical toxicity has led to the 

development of tests based on microorganisms. Sediment microbial communities, 

especially bacteria, play an important role in nutrient cycling, organic matter 

decomposition, and pollutant fate in aquatic sediments. Microbial toxicity tests seem 

also to be more sensitive than those with animals or plants. Moreover, sediment quality 

guidelines derived from animal toxicity data are not always low enough to protect 

sediment microorganisms (van Beelen, 2003).  

 

The Vibrio fischeri luminescence inhibition test seems to be one of the most 

promising screening toxicity tests. It is able to detect toxicity for a wide spectrum of 

chemicals and has shown good correlation with other standard acute toxicity assays 

(Parvez et al., 2006). It poses few ethical problems being highly reproducible (Fulladosa 

et al., 2007). Microtox® toxicity testing for sediment samples can be performed with 

pore water, sediment elutriates, organic extracts, and bulk solid samples in solid phase 

tests. Pore water and sediment elutriates are useful in exposing the bacteria to water 

soluble substances, which provides a realistic estimation of bioavailability to pelagic 
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communities (Demuth et al., 1993). Organic extracts allow exposing the bacteria to non-

polar substances, whereas solid phase tests are useful to expose the bacteria to the whole 

sediment. However, some studies indicate that solid-phase assays can be affected by 

silt-clay contents due to the adsorption of bacteria to fine-grained sediments, resulting in 

false increase of toxicity (Ringwood et al., 1997).  

 

In this study, we conducted a screening site specific ecological risk assessment 

based on a riparian sediment survey for the last 134 km of the Ebro River (NE Spain) 

prior arriving to the Delta at the Mediterranean Sea. In this area, the river has 

historically been stressed by riparian industrial and agricultural activities (Ocampo-

Duque et al., 2006). Therefore, high concentrations of metals and persistent organic 

pollutants (POPs) in sediments have been reported (Lacorte et al., 2006), while evidence 

of endocrine disrupting effects in local fish has been also found (Lavado et al., 2006). 

Consequently, the objectives of the present investigation were the following: (1) to 

perform a screening toxicity study by using the Vibrio fischeri toxicity test bacteria for 

sediment samples, and (2) to search for the potential relationships between the presence 

of pollutants, compartmental characteristics, and toxic responses in the frame of a 

screening ecological risk assessment. 

 

2. Materials and methods 

 

2.1. Study area and sampling 

 

The Ebro River flows through the Northeast of Spain to the Mediterranean Sea. 

When crossing Catalonia, the river takes the name of “Low Ebro”. An important 

number of human, agricultural, and industrial activities are developed along its riparian 

zone. In recent years, historical releases from a chlor-alkali process to the Flix reservoir 

(SP4 in Fig. 1) have concerned regional environmental protection agencies, 

stakeholders, and general population (Lavado et al., 2006). Elevated concentrations of 

metals, organochlorine compounds, and pesticides were recently reported for different 

environmental compartments downstream (CHE, 2006). In order to contribute to the 

knowledge about the ecological status in the Low Ebro, two sampling campaigns were 

carried out in 2005-2006. Twenty sampling sites were selected (Fig. 1). Site selection 

was done according to the proximity to potential emission sources. At each site, a 
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composite sediment sample was prepared by mixing 3 sub-samples collected at 0-5 cm 

depth. Samples were stored at 4 ºC prior to analyses.  

 

Fig. 1. Sampling sites. 

 

2.2. Chemical analyses 

 

Details on the analytical procedure were previously reported (Nadal et al., 2004). 

In brief, 0.5 g of dried sediment samples was treated with 5 ml of nitric acid in Teflon 

vessels for 8 h at room temperature. Subsequently, they were heated at 80 °C in a stove 

for 8 h. After cooling, solutions were filtered and made up to 25 ml with ultrapure 

water. Metal concentrations were determined by ICP-OES (Mn, Ni, Zn), ICP-MS (Cd, 

Cr, Cu, Hg, Pb), and ICP-HG (As). A rigorous internal and external quality control was 

Flix Reservoir 
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performed by using certified reference material MESS-3-Marine Sediment Reference 

Materials for trace elements and other constituents (NRC-CNRC, Canada). Detection 

limits (mg/kg of dry weight) were the following: 0.1 for As, 0.03 for Cd, 0.25 for Cr, 

0.10 for Cu, 0.01 for Hg, 50 for Mn, 1.00 for Ni, 0.03 for Pb, and 5 for Zn.  

 

Compartmental characteristics of the sediments were also determined. Ammonia 

was determined on 2% NaCl aqueous extracts. These extracts were distilled in alkali 

media, and ammonia was trapped by boric acid solution, and subsequently titrated with 

sulfuric acid. Total organic matter was oxidized at 550ºC and loss of ignition was 

measured by gravimetric analysis. The pH values were measured on aqueous extracts at 

a ratio 1:1 (w:v). Finally, texture was also determined by a current particle-size analysis 

according to the Bouyoucos method (Bouyoucos, 1927). 

 

As the measured metal concentrations in sediments for the studied area were 

similar to those recently reported by regional environmental protection agencies (CHE, 

2005, 2006; ACA, 2006), in order to get a more comprehensive data set for sediment 

characterization, sediment concentrations for POPs (mainly PCBs, DDTs, HCHs, and 

hexachlorobenzene (HCB)) were obtained from those reports, as well as from the 

scientific literature (Fernandez et al., 1999; Pastor et al., 2004). They were also 

integrated to the assessment. 

 

 2.3. Ecotoxicological analyses 

 

To assess the sediments toxicity, Microtox® acute bioassay was conducted on 

aqueous and organic extracts of the samples. Basic test and 90% basic test for aqueous 

extracts were performed with determination at 15 minutes contact (Azur, 1999). 

Aqueous elutriates were obtained by mixing 10 g of wet sediment with 20 ml of 2% 

NaCl solution, shaking during 12 h, and finally filtered. This solution is isotonic to 

Vibrio fischeri and sodium has dispersive properties that allow the extraction of the 

soluble fraction and weakly adsorbed soluble pollutants to the sediment. These 

elutriates can give information about the possible transfer of pollutants from sediment to 

surface waters. 
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Organic extraction was done by adding 5 g of anhydrous sodium sulphate and 30 

ml of acetone:hexane (1:1) to 2 g of wet sediment. The mixture was treated for 20 

minutes in a microwave closed digester (Mars X) with controlled temperature (115ºC). 

Extracts were then filtered and evaporated, and the remaining residue dissolved in 4 ml 

of dimethyl sulphoxide (DMSO). 0.5 mg of wet sediment yielded a volume of 1 µl of 

DMSO. DMSO extracts were added to Microtox® vials to give a final concentration 

equivalent to 1%. DMSO, a polar aprotic solvent that dissolves both polar and non-polar 

compounds, is suitable for bioassays due to its low toxicity. An organic extraction blank 

was performed to assess the likely toxicity of the used solvents. EC50 results are 

expressed in mg of dry sediment per ml of extract, as well as in percentage of extract 

dilution. 

 
Table 1. Sediment characteristics for samples collected in the “Low Ebro” river (Spain)  
 
Sampling 

site 

Location Sediment 
type 

Sediment 
texture 

pH % TOM  mg N-NH 4
+/kg 

SP1 Riba-Roja Reservoir Clay loam 7.60 0.30 74.80 
SP2 Riba-Roja Reservoir Clay loam 7.70 0.62 34.20 
SP3 Flix Reservoir Clay loam 7.70 0.29 20.85 
SP4 Flix Reservoir Clay loam 7.69 0.56 24.48 
SP5 Ascó Fluvial Clay loam 7.62 0.47 70.56 
SP6 Garcia Fluvial Clay loam 7.30 0.43 223.18 
SP7 Mora d’Ebre Fluvial Clay loam 7.50 0.68 285.09 
SP8 Miravet Fluvial Clay loam 7.64 0.38 31.40 
SP9 Benifallet Fluvial Clay loam 7.99 0.07 18.73 
SP10 Xerta Fluvial Clay loam 8.00 0.03 37.98 
SP11 Xerta Fluvial Clay loam 8.02 0.09 24.60 
SP12 Tortosa Fluvial Sandy clay loam 8.18 0.21 13.91 
SP13 Punta Banya Marsh Sandy clay loam 7.45 0.28 16.71 
SP14 Palma Marina Marsh Sandy clay loam 7.52 0.46 39.50 
SP15 La Tancada Marsh Sandy clay loam 7.50 0.22 38.65 
SP16 Regants la Cinta Fluvial Sandy clay loam 7.42 0.29 28.12 
SP17 Fangal Marsh Clay loam 7.52 0.48 129.82 
SP18 Far de l’Arenal Marsh Sandy loam 7.51 0.27 7.21 
SP19 Pont dels Moros Fluvial Silty clay loam 7.94 0.56 5.89 
SP20 El Garxal Fluvial Silty clay loam 8.32 0.05 7.07 

TOM: total organic matter. 

 

3. Results and discussion 

 

Table 1 shows sampling location and sediment characteristics. In general, 

sediments were fine textured except for marsh samples with a high sand content. 

Sediments were alkaline with a low content of organic matter and variable concentration 

of ammonia. Table 2 summarizes metal concentrations for the sites included in the 
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current study. Data for POPs in various zones of the Low Ebro are given in Table 3. US 

EPA freshwater sediment benchmarks have been used for comparative analysis (US 

EPA, 2007).  

 

Table 2. Measured concentrations (mg/kg of dry weight) of metals in sediments 

Site* Cd Cu Hg Pb Zn As Cr Ni Mn 
SP 1-05 0.13 8.80 0.03 11.12 25.53 5.79 0.52 0.05 254.99 
SP 1-06 0.12 9.10 0.15 11.16 53.42 4.05 8.61 18.29 158.20 
SP 2-05 0.19 28.58 0.06 19.90 45.27 8.40 0.72 0.05 461.46 
SP 2-06 0.09 100.65 0.09 16.55 34.90 4.49 7.32 12.88 184.88 
SP 3-05 0.13 11.51 0.02 14.65 29.25 6.36 0.42 0.05 185.82 
SP 4-05 0.67 17.32 3.03 34.80 62.69 6.57 0.87 0.05 412.75 
SP 4-06 0.24 8.05 1.82 11.20 37.22 5.93 10.38 22.81 198.97 
SP 5-05 0.37 18.82 4.20 28.72 65.95 11.17 1.11 24.64 529.37 
SP 5-06 0.50 22.82 4.92 19.78 95.33 9.61 18.79 26.52 2316.04 
SP 6-05 0.33 14.80 1.08 31.20 63.40 6.21 0.79 19.39 546.28 
SP 6-06 0.35 20.93 2.56 108.50 80.32 8.86 15.04 29.46 1570.96 
SP 7-05 0.30 15.03 1.26 13.84 54.36 6.86 0.85 23.82 1268.95 
SP 8-05 0.31 14.10 0.57 37.92 60.88 6.03 0.61 18.54 376.14 
SP 8-06 0.71 22.48 1.36 193.06 176.49 8.87 17.78 23.36 525.16 
SP 9-05 0.50 21.66 1.40 31.25 60.35 6.03 0.68 22.90 434.38 
SP 10-05 0.14 4.78 0.21 10.23 29.97 2.74 0.26 10.98 223.43 
SP 11-05 0.16 8.33 0.27 13.30 34.71 4.28 0.45 13.74 307.41 
SP 11-06 0.19 3.71 0.25 34.07 48.74 3.68 7.12 18.10 179.60 
SP 12-05 0.35 13.96 0.64 21.00 53.23 5.03 0.77 18.73 492.44 
SP 12-06 0.12 5.22 0.11 22.95 39.08 4.24 5.78 15.20 137.75 
SP 13-05 0.08 5.03 0.04 7.96 25.14 6.97 0.40 0.05 256.15 
SP 13-06 0.10 3.03 0.04 11.61 32.75 6.48 8.17 18.83 259.00 
SP 14-05 0.08 3.93 0.03 5.95 17.36 6.15 0.41 10.20 229.35 
SP 14-06 0.13 2.80 0.04 7.50 31.80 8.98 8.55 17.94 274.13 
SP 15-05 0.09 6.44 0.03 9.48 22.86 6.44 0.41 14.36 279.08 
SP 16-05 0.05 3.51 0.03 4.09 12.61 4.05 0.25 10.04 129.80 
SP 16-06 0.17 9.03 0.10 10.26 36.77 15.88 10.33 16.40 255.70 
SP 17-05 0.25 17.22 0.11 16.86 41.82 7.05 1.05 19.51 349.53 
SP 17-06 0.16 6.72 0.08 12.16 37.53 8.22 18.41 17.18 272.07 
SP 18-05 0.08 3.11 0.03 5.15 14.74 7.18 0.31 10.63 200.86 
SP 18-06 0.09 0.89 0.02 4.37 29.13 7.18 5.75 14.45 210.16 
SP 19-05 0.25 18.61 0.15 32.84 57.86 8.56 0.73 27.92 376.18 
SP 19-06 0.10 3.13 0.06 9.34 39.34 2.98 7.67 18.98 130.37 
SP 20-05 0.17 7.28 0.14 10.56 27.37 6.24 0.37 13.69 190.34 
SP 20-06 0.05 2.36 0.01 3.90 23.10 3.04 4.11 14.68 119.74 

Benchmark**  0.99 31.6 0.18 35.80 121.00 9.80 43.40 22.70 460.00 
* Samples have been coded as SPXX-YY, XX: sampling site, YY: year  
** Values correspond to US EPA freshwater sediment benchmarks (US EPA, 2007). 

 

 

Table 4 shows the results for eco-toxicological analyses. Results from both 

extracts, inorganic and organic, are provided. Toxicity classification is expressed 

according to Bombardier and Bermingham criteria (Bombardier and Bermingham, 

1999). According to these criteria, four levels should be used to classify toxicity. EC50 
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dilution percentages and EC50 dilution levels (expressed as µl DMSO per ml Microtox® 

solvent) are used for aqueous and organic extracts, respectively. Selected ranges in both 

extracts are: non-toxic (≥100%, ≥1 µl/ml), marginally toxic (10-99%, 0.1-0.9 µl/ml), 

moderately toxic (1-9%, 0.01-0.09 µl/ml), and highly toxic (<1%, <0.01 µl/ml).  

 

Table 3. Concentrations (µg/kg of dry weight) of persistent organic pollutants (POPs) in 
sediments for various sites of the studied area 
 

Site Statistic PCBs DDTs HCHs HCB References 
SP4 Max 665.40 17941.00 255.00 6323.50 

 Mean 496.51 7521.65 57.81 1530.89 
(ACA, 2006) 

SP5 Max - 28.60 5.60 38.00 
 Mean - 19.46 2.65 16.60 

(CHE, 2006) 

SP8 Mean 203.00 390.00 14.10 480.00 (ACA, 2006) 
SP12 Max 98.00 240.53 6.00 68.40 

 Mean 28.42 101.51 4.03 18.75 
(CHE, 2006; 
ACA,2006) 

SP16 Max 10.60 55.00 2.80 11.90 
 Mean 5.90 15.70 0.20 1.80 

(Pastor et al., 2004) 

SP19 Mean 87.65 63.50 10.10 42.00 (ACA, 2006) 
SP20 Mean 39.00 31.95 5.70 17.00  

Benchmark  59.80 5.28 3.00 20.00 (US EPA, 2007) 

 

Evidence of toxic responses has been identified in the Low Ebro with the 

Microtox® bioassay. For extracts soluble in water (i.e. elutriates), and according to the 

Bombardier and Bermingham criteria, 55.6% of samples were classified as “non-toxic”, 

while 41.7% were “marginally toxic”. Likewise, 2.7% of samples resulted to be 

“moderately toxic”. For organic extracts, most samples were classified as “marginally 

toxic” (52.8 %) and “moderately toxic” (41.7 %). Most pollutants appeared in organic 

phases. Lower toxicities in elutriates versus organic extracts could be due to washing 

effects in superficial sediments, and the subsequent lower soluble fraction of toxic 

substances. Thus, non-washed pollutants would be adsorbed by organic and solid 

sediment particles.  

 

The current results could also suggest a higher sensitivity in Microtox® 

bioassays when DMSO extracts are used compared to aqueous extracts. It was also 

noted in a recent study by Grant and Briggs (2002). According to this, it seems clear 

that testing sediment toxicity using organic extracts with Microtox® bioassay provides 

better numerical estimates than using elutriates (Demuth et al., 1993).
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Table 4. Results of ecotoxicity basic tests with Vibrio fischeri for sediments collected in the “Low Ebro” river (Spain) 

 Aqueous extracts Organic extracts 
 EC50 EC50 

Site*  mg dry sediment / ml  % v/v Criterion **  mg dry sediment / ml µµµµl DMSO/ml Microtox solvent Criterion **  
SP1-05 538.9 (448.8-602.7) >100.0 NoTox 3.31 (3.01-3.76) 0.331 (0.301-0.376) MaTox 
SP1-06 >1000.0 (-) >100.0 NoTox 1.16 (1.03-1.32) 0.230 (0.204-0.261) MaTox 
SP2-05 301.8 (199.3-415.4) 60.4 (39.9-83.1) MaTox 2.22 (1.67-3.02) 0.264 (0.198- 0.359) MaTox 
SP2-06 441.7 (394.6-516.2) 88.3 (78.9-103.2) MaTox 0.64 (0.57-0.74) 0.105 (0.093-0.123) MaTox 
SP3-05 >1000.0 (-) >100.0 NoTox 6.42 (6.33-7.15) 0.679 (0.669-0.756) MaTox 
SP4-05 151.9 (120.1-165.5) 30.4 (24.0-33.1) MaTox 0.06 (0.06-0.07) 0.014 (0.014-0.016) MoTox 
SP4-06 169.1 (133.4-184.0) 33.8 (26.7-36.8) MaTox 0.07 (0.06-0.08) 0.016 (0.014-0.019) MoTox 
SP5-05 22.2 (17.1-27.4) 4.4 (3.4-5.4) MoTox 0.20 (0.14-0.32) 0.060 (0.042-0.096) MoTox 
SP5-06 229.1 (181.9-288.3) 45.8 (36.4-57.6) MaTox 0.08 (0.07-0.10) 0.020 (0.018-0.023) MoTox 
SP6-05 97.6 (76.8-124.1) 19.5 (15.3-24.8) MaTox 0.07 (0.05-0.08) 0.028 (0.021-0.032) MoTox 
SP6-06 154.0 (75.1-185.7) 30.8 (15.0-37.2) MaTox 0.38 (0.33-0.44) 0.104 (0.093-0.122) MaTox 
SP7-05 98.0 (12.3-171.3) 19.6 (2.5-34.3) MaTox 0.72 (0.66-1.09) 0.206 (0.189-0.312) MaTox 
SP8-05 >1000.0 (-) >100.0 (-) NoTox 1.86 (1.41-2.19) 0.165 (0.125-0.193) MaTox 
SP8-06 >1000.0 (-) >100.0 (-) NoTox 3.65 (3.48-4.16) 0.567 (0.538-0.645) MaTox 
SP9-05 >1000.0 (-) >100.0 (-) NoTox 5.02 (4.39-5.74) 0.595 (0.456-0.723) MaTox 
SP9-06 >1000.0 (-) >100.0 (-) NoTox 5.36 (4.77-6.26) 0.599 (0.52-0.699) MaTox 
SP10-05 279.1 (205.5-417.1) 55.8 (41.1-83.4) MaTox 1.83 (1.40-2.41) 0.194 (0.148-0.256) MaTox 
SP11-05 558.1 (452.2-762.2) >100.0 (-) MaTox 2.05 (1.79-2.80) 0.265 (0.231-0.360) MaTox 
SP11-06 >1000.0 (-) >100.0 (-) NoTox 6.12 (5.70-6.57) 0.718 (0.669-0.7719 MaTox 
SP12-05 >1000.0 (-) >100.0 (-) NoTox 0.14 (0.14-0.14) 0.020 (0.020-0.020) MoTox 
SP12-06 >1000.0 (-) >100.0 (-) NoTox 12.96 (12.07-13.91) 1.358 (1.265-1.458) NoTox 
SP13-05 >1000.0 (-) >100.0 (-) NoTox 0.74 (0.67-0.85) 0.063 (0.057-0.072) MoTox 
SP13-06 586.3 (276.0-812.4) 117.3 (55.2-162.5) MaTox 0.10 (0.10-0.11) 0.012 (0.012-0.013) MoTox 
SP14-05 340.2 (293.0-399.1)  58.6 (50.5-68.8) MaTox 0.04 (0.03-0.05) 0.007 (0.005-0.009) HiTox 
SP14-06 >1000.0 >100.0 (-) NoTox 0.41 (0.41-0.45) 0.059 (0.059-0.064) MoTox 
SP 15-05 >1000.0 (-) >100.0 (-) NoTox 4.76 (3.88-6.15) 0.559 (0.456-0.723) MaTox 
SP16-05 >1000.0 (-) >100.0 (-) NoTox 0.42 (0.32-0.56) 0.050 (0.038-0.067) MoTox 
SP16-06 339.2 (276.4-389.5) 67.8 (55.2-77.8) MaTox 0.10 (0.09-0.12) 0.016 (0.014-0.019) MoTox 
SP17-05 121.4 (85.4-183.1) 24.3 (17.1-36.7) MaTox 0.27 (0.27-0.27) 0.071 (0.071-0.071) MoTox 
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SP17-06 155.4 (111.3-195.3) 31.1 (22.3-39.1) MaTox 0.18 (0.12-0.20) 0.025 (0.017-0.029) MoTox 
SP18-05 >1000.0 (-) >100.0 (-) NoTox 0.16 (0.14-0.22) 0.014 (0.012-0.019) MoTox 
SP18-06 >1000.0 (-) >100.0 (-) NoTox 2.69 (2.00-3.76) 0.335 (0.249-0.468) MaTox 
SP19-05 >1000.0 (-) >100.0 (-) NoTox 7.65 (3.57-15.95) 0.806 (0.376-1.679) MaTox 
SP19-06 >1000.0 (-) >100.0 (-) NoTox 2.48 (2.21-2.90) 0.307 (0.272-0.358) MaTox 
SP20-05 >1000.0 (-) >100.0 (-) NoTox 0.60 (0.56-0.68) 0.061 (0.056-0.069) MoTox 
SP20-06 >1000.0 (-) >100.0 (-) NoTox 1.88 (1.59-2.69) 0.220 (0.186-0.315) MaTox 

*Samples have been coded as SP XX-YY, where XX is the site and YY is the year. EC50: 50% effect concentrations of sediment aqueous and organic extracts. 95% 
confidence limits in parenthesis. 
** NoTox: Non-toxic, MaTox: Marginally toxic, MoTox: Moderately toxic. HiTox: Highly toxic. These criteria have been defined by Bombardier and Bermingham (1999). 
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The area exhibiting higher sediment toxicity, coincides in both extracts with the 

area influenced by significant industrial activities. A chlor-alkali plant is located close 

to SP4 (Fig. 1). As observed from chemical analyses, the concentrations of organic 

pollutants (mainly PCBs, DDTs, HCHs, and HCB), and Hg in this site substantially 

exceeded the benchmarks protective for aquatic ecosystems. However, and fortunately 

for the ecological community welfare downstream, most pollutants remain trapped in 

sediments because of a dam located in that zone. It can be noticed in Table 3. 

Nowadays, the need to dredge those sediments, stored along many years, is clearly 

acknowledged by local stakeholders.  

 

Higher toxicities also coincide with the area of influence of a Nuclear Power 

Plant, which is located close to SP5. Although in this site, concentrations of POPs are 

still high, they have been dramatically reduced when compared with concentrations in 

SP4 (Table 3). Likewise, the levels of metals in this site also exceeded the US EPA 

benchmarks (Table 2). In fact, measured concentrations of metals were higher in SP5 

than in SP4. In SP5, metal levels were 25-fold and 3-fold higher than the benchmarks 

for Hg and Mn, respectively. The high presence of Mn could be due to geochemical 

features of the river basin (Ferre-Huguet, 2007). High values, close to benchmarks, for 

As and Ni were also detected. The concentrations of these elements remain high for the 

sites SP6, SP7 and SP8. Values up to 5-fold higher than the benchmark for Pb were also 

detected at these sites. It could be attributable to a natural presence of Pb in soils, as 

well as to the presence of lead pellets resulting from hunting, which is frequent in the 

area (Ferre-Huguet, 2007). Moreover, lower river slopes, and a meandering behavior 

contribute to settle pollutants in sediments. It is important to point out that the presence 

of radionuclides has not been considered in the analysis. However, the water 

concentration of artificial radionuclides due to this nuclear power plant seems to be 

negligible (Pujol and Sanchez-Cabeza, 2000). 

 

Downstream the industrial area (from SP9 to SP12), the toxicity degree seems to 

be reduced (Table 4). In fact, metal concentrations in sediments appeared below the 

benchmarks, excepting Hg. Each metal and persistent organochlorines have tended to 

decrease downstream these affected points. For instance, in SP12, mean values for 

PCBs, DDTs, HCHs, and HCB were 0.5-fold, 20-fold, 0.9-fold and 0.77-fold the 
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benchmarks. In Spain, policies to control DDT river releases are still weak, and DDT 

production and trade are still permitted (Greenpeace, 2004).  

 

In the Ebro Delta, Microtox® results have revealed moderate toxicity, especially 

for DMSO organic extracts. In this area, isolated concentrations upper than the 

benchmarks have been only detected for As (1.6-fold higher than the benchmark in 

SP16), and Ni (1.2-fold higher than the benchmark in SP19). In this zone is also 

common reaching total DDTs concentration between 1 and 10 times the benchmarks. In 

particular, macro-invertebrate species living in Delta sediments have exhibited high 

DDT concentrations (Pastor, 1995). In addition, the impact of agricultural activities 

releasing a considerable number of agrochemicals used in intensive rice crops (Terrado 

et al., 2007), covering the 66% of the Delta area, could be also responsible for such 

toxicity responses. However, further studies should be conducted to assess this issue.  

 

Interesting findings have been obtained after applying principal component 

analysis (PCA) to the results concerning the monitored pollutants, including the eco-

toxicological outputs and the compartmental characteristics (ammonia concentration (N-

NH4
+), and total organic matter (TOM)). Previous to PCA, environmental 

concentrations were normalized dividing them by their respective benchmark. Spearman 

correlation analysis was also performed to help identify possible relationships among 

variables. PC1 contains organic compounds (PCBs, DDTs, HCHs and HCB), Hg, and 

toxicity in organic phase (TUorg) (Table 5). PC1 explains 50.8% of the variance. It 

agrees with the fact that most of these compounds have been identified as released at the 

same point (Flix reservoir). This finding would also presume the presence of organic 

mercury compounds. PC2 explains 13.8% of the variance. It assembles heavy metals 

with similar oxidation numbers which behave as cations (Cd, Cu, Pb, Zn). In turn, PC3 

explains 8.4% of the variance, grouping Cr, Ni, N-NH4
+, Mn, and toxicity in aqueous 

phase (TUaq). This group may contain soluble species, such as Cr6+, ammonia and Ni 

cations. Finally, PC4 explains 6.6% of variance, mainly groups toxicity in organic phase 

(TUorg), TOM, and As. The PCA has classified both toxicity outputs in different PCs. 

However, a significant correlation between both, aqueous and organic, toxicity outputs 

was found (Spearman´s rho = 0.558, p<0.01). It indicates that both tests overlap 

responses, being complementary in the screening assessment of toxicity. The presence 
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of TOM and TUorg in the same PC is also remarkable, despite the low variance 

explained by it. PCA Figures are presented as supplementary data. 

 

Table 5. Matrix of rotated principal components* 

 Principal Component 
1 (50.84%) 2 (13.85%) 3 (8.37%) 4 (6.62%) 

Cd 0.493 0.770 0.134 0.208 
Cu 0.350 0.660 0.516 0.175 
Hg 0.766 0.310 0.377 0.177 
Pb 0.037 0.919 0.070 0.019 
Zn 0.215 0.921 0.176 0.183 
As -0.008 0.164 0.321 0.727 
Cr 0.323 0.405 0.573 0.430 
Ni -0.023 0.389 0.658 0.114 
Mn 0.360 0.339 0.574 0.155 
N-NH4

+ 0.173 0.037 0.766 0.064 
TOM 0.209 0.174 0.096 0.713 
PCBs 0.922 0.257 0.215 0.081 
DDTs 0.950 0.062 0.140 0.210 
HCHs 0.897 0.313 0.240 0.038 
HCB 0.937 0.215 0.207 0.118 
TUaq 0.443 -0.125 0.578 0.145 
TUorg 0.647 -0.138 -0.123 0.617 

N-NH4
+: Ammonia. TOM: Total organic matter. HCB: Hexachlorobenzene. TUaq=100/EC50(mg/ml) for 

aqueous extract. TUorg=100/EC50(mg/ml) for organic extract. 
*Rotation method: Normalization Varimax with Kaiser. Explained variance in parenthesis. 

 

 

As expected for aqueous extracts, high Spearman correlations were found 

between metal concentrations (Hg, Cd, Zn, Mn and Cr) and toxicity. Metals are present 

in water-soluble fraction and/or would remain weakly adsorbed onto the sediment 

matrix. Therefore, they may become bio-available and easily contaminate water. The 

presence of organic pollutants is probably the main responsible of toxicity results for 

DMSO organic extracts, since few metals have shown some correlation with Microtox® 

outputs. Particularly, correlations of TUorg with Mn and As are notable. It indicates that 

some of those metals could be bound to water insoluble organic compounds, as humic 

substances, or being present as organometallic compounds. Recently, organic arsenic 

has been found toxic to Vibrio fischeri (Fulladosa et al., 2007). Likewise, As-containing 

molecules are widely employed in poultry and other animals farming and agriculture. 

Arsenic concentrations resulted high in agricultural sites. In any case, the toxicity levels 
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found in both extracts, and the high levels of POPs and metals for many sites in the 

studied area could negatively affect benthic communities.  

 

It is important to remark that toxicity in sediments, evaluated by bioassays, can 

often be strongly influenced by natural factors known as “confounding factors”. Clearly, 

there are multiple natural factors which contribute to the potential toxicity of sediments. 

A reference toxic could exhibit different toxicity responses depending on the pH, grain 

size, ammonia, salinity, total organic carbon, pore-water volume, and ratio of 

simultaneously extracted metals/acid volatile sulfide (SEM/AVS) (Lapota and Word, 

2000). Between them, ammonia seems to show a significant influence in creating a 

reducing environment that may pose a risk of adverse effects to benthic organisms 

(Delistraty and Yokel, 2007). The correlation between N-NH4
+ and toxicity in aqueous 

phase is highly significant (Spearman´s rho = 0.59, p<0.01). Indeed, most samples 

exhibiting marginal toxicity in aqueous phase showed high N-NH4
+ concentration. The 

alkaline nature of waters in the Ebro, pH close to 8, could contribute to increase the 

toxicity to Vibrio fischeri because of the presence of unionized ammonia. No correlation 

between N-NH4
+ and toxicity in organic phase could be detected. On the other hand, the 

biological effects of sulfide in sediments are poorly understood, while the influence of 

sulfur compounds to Vibrio fischeri is controversial (Salizzato et al., 1998; Delistraty 

and Yokel, 2007).  

 

The organic matter has shown some relationship with toxic responses due to 

both, the presence of metals bound onto this sediment fraction, and the inclusion of 

POPs. High organic matter levels are commonly associated with fine grain sediment. 

Bacteria feed on organic matter and cause a chain of events, which include oxygen 

depletion and elevated levels of sulfide and ammonia. These are natural processes and 

should not be confused with contaminants of concern. It is obvious that in sediments, 

final toxic effects are probably a consequence of synergistic relationships between 

multiple pollutants present in concentrations close to protective values, as well as other 

factors associated to compartmental characteristics, which can not be avoided. The low 

matter content in the samples of the current study (<0.7%) could minimize the 

importance of the confounding factors in the toxicity. However, further research is 

necessary to elucidate the contribution of confounding factors. 
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In the present investigation, it has been demonstrated that Microtox® bioassay 

applied to sediments provides complementary information to current analytical 

techniques. Additionally, Microtox® has been used to detect overall effects produced by 

the presence of multiple pollutants and natural contamination, which is common when 

conducting ecological risk assessment in real scenarios. This study also illustrates that 

sediments are convenient compartments to test the impact of micro-pollutants in aquatic 

ecosystems. Therefore, the setting of European sediment quality standards within the 

context of the Water Framework Directive is an urgent necessity. With regard to the 

studied area, an evidence of “marginal to moderate” risk to aquatic ecosystems has been 

found from both, chemical and screening toxicity analyses, especially downstream 

industrial releases, and in the area of intensive agriculture. 
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6. Supplementary  material  

 

Fig. S1 shows the Principal Component Analysis of samples collected in the 

Low Ebro.  It can be observed that most polluted sites are clearly identified by the PC1. 

It gives the highest PC score to the site located in the Flix reservoir (SP4). Sampling 

sites downstream SP4 appear ordered when going down toward the cluster, which is 

mainly composed by the sampling sites located in the Delta (Fig. S1 A). PC1 groups 

organic compounds (PCBs, DDTs, HCHs and HCB), mercury, and toxicity in organic 

phase. PC2 assembles heavy metals with similar oxidation numbers that behave as 

cations (Cd, Cu, Pb, Zn). The Figure S1 B shows that toxicity is conveniently classified 

by PC3 and PC4 scores, for aqueous and organic extracts, respectively. In both cases, 

higher PC scores are given to more toxic sites. PC3 groups Cr, Ni, N-NH4
+, Mn, and 

toxicity in aqueous phase. PC4 mainly groups toxicity in organic phase, TOM, and As, 

even though it only explains 6.62% of the variance. 
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Fig. S1. Principal component analysis. 

A 

B 

UNIVERSITAT ROVIRA I VIRGILI 
ON THE DEVELOPMENT OF DECISION-MAKING SYSTEMS BASED ON FUZZY MODELS TO ASSESS WATER QUALITY IN RIVERS 
William Andrés Ocampo Duque 
ISBN:978-84-691-9743-1/DL:T-225-2009



 129 

 
 
 
 

Part B. Sediment based risk assessment for rivers: A chemical and 
ecotoxicological fuzzy approach5 

 

 

Abstract 

 

Nowadays, the need to include sediment compartments in the assessment of 

impacts produced by anthropogenic activities stressing river ecosystems is clearly 

acknowledged. Sediments produce complementary findings to water compartment, 

specially when temporal trends are required. In this work, a methodological model has 

been proposed to deal with site-specific environmental risk assessment based on 

sediment analysis. The model uses fuzzy logic tools to manage the information and 

establish the relationships between the different variables. In that sense, a survey of 

physical-chemical, inorganic, organic, and toxicological indicators has been collected in 

the Ebro river, in order to test the fuzzy approach. Results suggest a clear relationship 

among the increased levels of pollutants and eco-toxic responses (measured as 

inhibitory reductions of light for photo-luminescent bacteria Vibrio fischeri, due to 

overall reduction in water and sediment quality). The model has resulted useful to 

estimate the likely environmental risks specially in sites located downstream important 

industrial releases and in areas with intensive agriculture. 

 
Keywords: Environmental risk assessment, Vibrio fischeri, Ebro river, Hierarchical 
fuzzy inference systems. 

                                                
5 William Ocampo-Duque, Jordi Sierra, Núria Ferré, Marta Schuhmacher, José L. Domingo. Sediment 
based risk assessment for rivers: A chemical and ecotoxicological fuzzy approach. Proceedings of the 
International Meeting on Soil and Wetland Ecotoxicology (SOWETOX 2007), Barcelona, Nov. 26-27, 
2007. ISBN: 978-84-475-3247-6. 
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1. Introduction 

 

Nowadays, the control of sediment quality is being considered as a necessary 

extension to the control of river water quality [1]. The protection of river sediments is 

needed since: sediments are both sink and potential source of contaminants to the water 

column [2], sediments integrate pollutant concentrations over time, whereas pollutant 

concentrations in water are more variables and dynamics [3], some toxic pollutants 

found as traces in water may accumulate in sediments to elevated levels, sediment 

pollutants may affect benthic and other food-chain organisms [4], and sediments are an 

integral part of the aquatic environment, providing habitat, feeding, and breeding areas 

for many organisms. 

 

Chemical analysis provides information about contaminant concentrations, but 

gives little insight about bioavailability or toxicity at the site. Therefore, biological 

analyses combined to chemical analyses are mandatory to infer probable adverse 

biological effects. Different bioassays are currently in use, and most of them are often 

expensive and time consuming. The need for cost effective and rapid screening 

methodologies to assess chemical toxicity has led to the development of tests based on 

micro-organisms. The Vibrio fischeri luminescence inhibition test seems to be one of 

the most promising screening toxicity tests. It is able to detect toxicity for a wide 

spectrum of chemicals, has shown good correlation with other standard acute toxicity 

assays, poses few ethical problems, and is highly reproducible [5].  

 

In a previous study (this Chapter Part A), a screening site specific ecological risk 

assessment based on a riparian sediment survey was conducted for the Low Ebro [6]. In 

this region, the river has historically been stressed by riparian industrial and agricultural 

activities; therefore, high concentrations of heavy metals and persistent organic 

pollutants in sediments have been reported, and evidence of endocrine disrupting effects 

in local fish has also been found. In that study, the purposes were: (1) to perform a 

screening toxicity study by using the Vibrio fischeri toxicity test bacteria for sediment 

samples, and (2) to search for the probable relationships among the presence of organic 

and inorganic pollutants, compartmental characteristics, and toxic responses in the 

frame of a screening ecological risk assessment. Based on the results of the previous 

study, the present paper introduces the use of fuzzy logic as a suitable tool for risk 
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management. A hierarchical fuzzy inference system has been built to manage the 

collected information and to provide a final status of the probable adverse effects caused 

by the presence of  toxic substances in sediments.  

 

2. Methods 

 

Fuzzy models focus on the use of heuristics for systems description. They can be 

seen as logical models that use “if–then” rules to establish qualitative and quantitative 

relationships among variables. Their rule-based nature allows the use of information 

expressed in the form of natural language statements. It provides a convenient basis for 

environmental decision-making, since models are transparent for interpretation. Fuzzy 

inference is supported on three concepts: membership functions, fuzzy operations, and 

if-then rules. A membership function (MF) is a curve that defines the degree of 

belongingness of a variable to a fuzzy set, which acts as a qualifier. Gaussian 

membership functions have been used in this work. They have the shape: 













 −−=
22

2)(
exp),,(

σ
σµ cx

cx          (1) 

where (σ, c) are the MF parameters and µ is the membership degree. MF parameters 

used in this work are defined below. 

 
The fuzzy operations used in this work were: intersection (AND), and union 

(OR). If two fuzzy sets A and B, are defined on a universe of discourse X, with 

membership functions µA and µB, for a given element x belonging to an universe of 

discourse X, then:  

Intersection:   ( ))(),(min)( xBxAxBA µµµ =∩     (2) 

Union:       ( ))(),(max)( xBxAxBA µµµ =∪     (3) 

 

Finally, an if–then rule has the form: “If x is A AND y is B THEN z is C”, where 

A, B, and C are linguistic values (or qualifiers) defined by fuzzy sets in the universes of 

discourse X, Y and Z, respectively. The if–part and the then–part are called antecedent 

and consequent, respectively.  
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To design a fuzzy inference system (FIS), two parts are clearly separated: the 

membership functions and the inference engine (the set of rules). When designing 

membership functions, the ranges of the qualifiers of the inputs and outputs (i.e., fuzzy 

sets like: “low”, “moderate”, or “high”), and the shape of these qualifiers is adjusted. 

For the inference engine, a simultaneous process to evaluate all rules is defined. It 

includes the application of fuzzy operations to antecedents, the use of implication 

methods to transfer information from antecedents to consequents, and the employment 

of an aggregation method to join the consequents across all the rules, in order to make a 

final decision. Finally, a defuzzification process is applied to transform fuzzy outputs 

into numerical values. Recently, benefits of FIS have been extended to environmental 

science with promising results, particularly in the development of environmental 

indicators for water quality management [7, 8].  
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Fig. 1. Hierarchical fuzzy inference system for ecological risk assessment in river 
sediments. 

 

In this work, a hierarchical FIS arrange is proposed to deal with the estimation of 

risk values in sediment based risk assessment. Results from chemical and eco-

toxicological analyses are used as inputs in two parallel FIS to assess levels of 

contamination and toxicity, respectively. Results from both inference engines are then 

treated in a third inference engine which provides a final risk characterization. The Fig. 

1 depicts the hierarchical FIS. 
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In the contamination inference engine, concentrations of persistent organic 

pollutants, heavy metals and other relevant water quality indicators are used to provide a 

degree of contamination. To do so, sediment concentrations are normalized dividing 

them by the subsequent USEPA sediment quality benchmark [9]. Normalized 

concentrations are then fuzzified with Gaussian membership functions (MF). Fuzzy sets 

and MF parameters have been: Low (σ = 0.528, c = 0), Moderate (σ = 0.528, c = 1.2), 

and High (σ  = 0.528, c =  2.4). The parameters σ and c were defined in equation 1. 

Input fuzzy sets are then used in the inference engine to give a degree of contamination. 

Rules within the contamination inference engine were: 

 

If concentration is low then contamination is low 
If concentration is moderate then contamination is moderate 

If concentration is high then contamination is high. 
 

Fuzzy sets and MF parameters for contamination variable were: Low (σ = 22, c 

= 0), Moderate (σ = 22, c = 50), and High (σ = 22, c =  100). Defuzzification is operated 

with the bisector method to provide a contamination score. Since each substance or 

indicator receives a contamination score, then the degree of contamination in a sampling 

site is defined as the highest contamination score between all available contamination 

indicators.  

 

Results from Microtox acute bioassays conducted on aqueous and organic 

extracts are used in the toxicity inference engine to give a screening toxicity score. 

EC50 dilution percentages and EC50 dilution levels (expressed as µL DMSO * mL-1 

Microtox solvent) are used for aqueous and organic extracts, respectively. Details about 

these indicators can be consulted in [6] (this Chapter Part A). These inputs are also 

fuzzified with Gaussian MF. Fuzzy sets and MF parameters have been: Low (σ =  22, c 

=  0), Moderate (σ = 22, c =  50), and High (σ = 22, c =  100) for aqueous EC50s. In 

turn, fuzzy sets and MF parameters have been: Low (σ = 0.22, 0), Moderate (σ = 0.22, c 

= 0.5), and High (σ = 0.22, c = 1.0) for organic EC50s. Rules within the toxicity 

inference engine were: 

 

If EC50 is low then toxicity is high 
If EC50 is moderate then toxicity is moderate 

If EC50 is high then toxicity is low. 
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Fuzzy sets and MF parameters for the toxicity variable were similar to those for 

the contamination variable. The third inference engine integrates results from 

contamination and toxicity inference engines to give a risk score. Nine rules have been 

used: 

If contamination is low and toxicity is low then risk is low 
If contamination is low and toxicity is moderate then risk is moderate 

If contamination is low and toxicity is high then risk is high 
If contamination is moderate and toxicity is low then risk is moderate 

If contamination is moderate and toxicity is moderate then risk is moderate 
If contamination is moderate and toxicity is high then risk is high 

If contamination is high and toxicity is low then risk is high 
If contamination is high and toxicity is moderate then risk is high 

If contamination is high and toxicity is high then risk is high 
 

After rules evaluation, the risk score is calculated by defuzzification. Again, the 

method used has been the bisector. Likewise, fuzzy sets and MF parameters for the risk 

variable were similar to those used for contamination and toxicity variables. 

 

3. Results and discussion 

 

Table 1 displays the results after applying the hierarchical FIS model to data 

from the ERA study in the Low Ebro. Table 1 shows that all sites monitored in the low 

Ebro have shown evidence of “Moderate” and “High” risk. Cleaner sites have received 

a “Moderate” fuzzy score with belongingness (or certitude) equal to 1.0. Also, more 

polluted sites have received scores belonging to the “High” fuzzy set with an important 

degree of membership (or certitude) to this set (close to 0.4), leaving a possibility (close 

to 0.7) of the risk to belong to the “Moderate” fuzzy set.  

 

For the sake of simplicity, in this study we have used just three fuzzy sets for all 

variables (i.e. low, moderate and/or high). However, the conceptual model could use a 

higher number of qualifiers, considering other fuzzy sets (like very low, very high, 

marginal, etc.) to provide a better assessment. Results exhibited here, and extracted 

from the hierarchical FIS agree enough with those described in [6] (this Chapter, Part 

A), where the overall conclusion has been “an evidence of marginal to moderate” risk to 

aquatic ecosystems in the studied area. Critical results, those with higher membership 

degrees in the high fuzzy set, coincide with industrial releases and areas of intensive 

agriculture. 
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Table 1. Risk values (as degrees of membership) for different sites in the studied area 
 

2005 2006 Site 

Low       Moderate High Low       Moderate High 
SP1 0.076 1.000 0.076 0.076 1.000 0.076 
SP2 0.076 1.000 0.076 0.006 0.662 0.395 
SP3 0.076 1.000 0.076 ND ND ND 
SP4 0.006 0.662 0.395 0.006 0.662 0.395 
SP5 0.007 0.689 0.371 0.006 0.662 0.395 
SP6 0.008 0.716 0.347 0.006 0.662 0.395 
SP7 0.006 0.662 0.395 ND ND ND 
SP8 0.006 0.662 0.395 0.006 0.662 0.395 
SP9 0.006 0.662 0.395 ND ND ND 
SP10 0.076 1.000 0.076 ND ND ND 
SP11 0.076 1.000 0.076 0.076 1.000 0.076 
SP12 0.006 0.662 0.395 0.006 0.662 0.395 
SP13 0.076 1.000 0.076 0.076 1.000 0.076 
SP14 0.076 1.000 0.076 0.076 1.000 0.076 
SP15 0.076 1.000 0.076 ND ND ND 
SP16 0.006 0.662 0.395 0.006 0.662 0.395 
SP17 0.068 0.999 0.084 0.068 0.999 0.084 
SP18 0.076 1.000 0.076 0.076 1.000 0.076 
SP19 0.008 0.716 0.347 0.006 0.662 0.395 
SP20 0.006 0.662 0.395 0.006 0.662 0.395 

 

It is important to point out that in relation to the risk perception, the hierarchical 

FIS outputs are similar to those reported in [6] (this chapter Part A), despite the low 

number of qualifiers. In any case, the purpose of this paper has been to describe the 

advantages and the inputs required in such a novel methodology, rather than defining an 

optimized model. To optimize a FIS model, the nature and number of rules, as well as 

the most convenient shape of the membership functions, must be defined by a panel of 

experts in a consensus way. Furthermore, the FIS model could be fitted from field 

observations and expert judgment in order to develop a more robust tool. Some 

algorithms are already available for this task [8]. 

 

The hierarchical FIS model described above allows carrying out an 

Environmental Risk Assessment (ERA) from a heuristic point of view. Since “risk” 

should be defined as a subjective and uncertain variable which integrates a number of 

observations, rather than as deterministic quotient between contamination and effects of 
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single pollutants. Therefore, the integration of fuzzy logic and ERA is promising. The 

flexibility of fuzzy logic to develop classification models with a simple framework, 

built with natural language, is timely for the development of risk indexes in which 

highly subjective information must be correlated. Moreover, computing with words 

within FIS improves the tolerance for imprecise data, a common scenario in risk 

assessment.  

 

In this paper, we have described a convenient application of fuzzy logic to 

environmental risk assessment. The methodology adopted in this research clearly 

improves methods used to date. The use of fuzzy sets provides an alternative approach 

to current deterministic risk quotients. The approach is closer to human judgment, 

because of computation based on words (used as qualifiers). Moreover, the fuzzy 

approach takes into account the subjective nature of risk variables, a fact that is closer to 

real assessments at which expert opinion is conclusive. Although risk indexing 

processes may have many limitations, since they may suffer from the risk to miss 

information, their benefits are significant for decision making. In that sense, a good 

model should preserve the most important features of the inputs, and the fuzzy frame is 

appropriate to such task. Therefore, the most relevant aspect to highlight here is the 

methodology applied to produce the risk index, rather than the numerical or linguistic 

findings. The most important advantage of the fuzzy methodology is that the inference 

system is built with words. None equation is used within the inference engine, which is 

characterized to integrate high non-linear data. This is especially valuable in water 

management decision processes, in which variables from a very diverse nature have to 

be integrated.  
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General Conclusions 
 

 

In this Thesis, a suitable set of applications for decision making in water 

management, based on modern paradigms for environmental protection, has been 

designed and validated. The key success factor in methodologies here developed has 

been the appropriate management of the information through hierarchical and heuristic 

structures built with fuzzy inference systems. The flexibility of fuzzy logic for 

computing with simple words, expressing the expert knowledge in natural statements, to 

provide consistent environmental evaluations under anthropogenic driving forces, have 

allowed dealing easily with subjectivity and linguistic uncertainty. It has made easier to 

face concepts such as water quality, ecological status, or environmental risk, which are 

usually hard to classify and assess. It has been demonstrated that computing with words 

within fuzzy systems improves significantly the tolerance for the ambiguity of human 

thinking when perceptions and interpretations on water management issues need to be 

expressed and integrated. Therefore, the use of fuzzy inference systems, especially to 

produce self interpretable water management indicators, has resulted highly promising, 

and therefore strongly recommended to design conceptual models for environmental 

asssessment. 

 

Interpretability has been perhaps the main feature to consider the applicability of 

fuzzy logic in the development of risk based water quality composite indicators. 

However, these artificial intelligence systems are not infalible. Some of the drawbacks 

of the fuzzy inference systems were clearly identified, and resolved linking them to 

other methodologies. These linkages have given more power to the tools here 

developed. The use of methods from decision theory has provided consistent ways to 

take into account the importance of the diverse variables considered in the assessments. 

In turn, learning algorithms from artificial neural networks have been so useful in 

building automated inference engines starting from experimental evidence. Likewise, 

pre-processing algorithms, such as the self organizing maps, have allowed deciphering 

patterns from original data prior to their presentation to the inference systems which 

supply the final outcomes.  
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With the advantages and disadvantages of fuzzy inference systems, several 

appropriate indicators for water management have been designed and validated 

throughout this Thesis:  

 

(1) A composite water quality index for multipurpose analysis in rivers, which 

integrates diverse pollution indicators, such as macrovariables, nutrients, organic 

pollution, local priority micro-contaminants, and pathogens. 

 

(2) An automated classification model to integrate physicochemical, morphological 

and biological indicators, to estimate the ecological status in rivers.  

 

(3) A conceptual methodology for screening ecological risk assessment in rivers, 

based on the estimation of ecological risk potentials, which give an idea about 

the likely hazards posed by the presence of dangerous substances in aquatic 

ecosystems. These risk potentials are conveniently integrated by means of 

empirical cumulative distributions to assess the evolution in water pollution in 

river basins over time. Likewise, the ecological risk potentials help finding those 

substances which need stricter control of emissions, in order to prevent 

impairment of ecosystems. 

 

(4) A sediment-based screening risk assessment methodology based on linguistic 

risk estimation, which delivers the level of risk in catchments through the 

monitoring of chemicals of concern, such as metals and persistent organic 

pollutants, and the application of ecotoxicity tests using biological responses to 

measure toxic effects which provide integrated information about the 

significance of chemical contamination. In that sense, the tests based on Vibrio 

fischeri bioluminescence inhibition have offered rapid, easy-to-use and cost 

effective responses for the toxicity assessment in real complex situations. 
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Annex 

 
Desarrollo de un modelo para la gestión de cuencas hidrográficas 

basado en evaluación de riesgo ambiental: Experiencias europeas y 
aplicación a ríos colombianos6 

 
 
 
Resumen 

 

Un recurso natural cuyo valor ha cobrado gran importancia mundial es la 

diversidad biológica. En Latinoamérica, este recurso se está perdiendo a una tasa 

acelerada debido principalmente a la desaparición de los ambientes naturales como 

consecuencia del incremento de la actividad industrial y de un desarrollo mal 

planificado. Actualmente se reconoce que la protección de ambientes naturales, se 

sustenta en una apropiada gestión integral del agua, como se reconoce en la legislación 

Europea, conocida como “Directiva Marco del Agua”. En esta se manifiesta que todas 

las aguas deben protegerse para garantizar un estado ecológico bueno. Ante esta visión, 

se hace necesario establecer herramientas y modelos de gestión fundamentados en la 

protección y recuperación de ecosistemas acuáticos, principalmente aquellos que se 

destacan por su riqueza biológica, con el propósito de conservar y fomentar la 

diversidad biológica. Al conservar estas zonas se garantiza la continuidad de los 

procesos vitales de poblaciones naturales de un número importante de organismos.  

 

La cuenca del río Cauca, que se caracteriza por una alta heterogeneidad 

ambiental debido a sus características geológicas y climáticas que garantizan alta 

disponibilidad de nichos ecológicos y buena oferta de biodiversidad, requiere de 

adecuadas herramientas para sus modelos de gestión de los recursos naturales. Además, 

la demanda actual del agua para diversos usos: doméstico, industrial y agrícola, requiere 

de una gestión eficiente del recurso hídrico. De forma particular, en el entorno 

colombiano existe una carencia de metodologías adecuadas para gestionar los riesgos 

por presencia de sustancias químicas peligrosas en las aguas y sus probables efectos 

                                                
6 William Ocampo-Duque y Marta Schuhmacher. Desarrollo de un modelo para la gestión de cuencas 
hidrográficas basado en evaluación de riesgo ambiental: Experiencias Europeas y aplicación a ríos 
colombianos. Memorias del 50º  Congreso de la Asociación Colombiana de Ingeniería Sanitaria y 
Ambiental(ACODAL) y 12º Congreso Bolivariano de AIDIS. Santa Marta (Colombia), 12-14 septiembre 
de 2007 
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sobre la salud de las personas y los ecosistemas. A nivel Europeo, se están 

estableciendo mecanismos para la gestión sostenible de las cuencas, fundamentados en  

conceptos de gestión y análisis de estos riesgos. En el presente proyecto, se ha 

desarrollado un modelo metodológico que permite una evaluación del riesgo ambiental 

por presencia de agentes contaminantes en el río Cauca. Esta herramienta se fundamenta 

en reglamentaciones internacionales vigentes y en procedimientos ampliamente 

aceptados para la evaluación del riesgo. En este trabajo se presentan algunos resultados 

del modelo conceptual que se está proponiendo para analizar la contaminación en el río 

Cauca en la zona del Departamento del Valle del Cauca. Los resultados demuestran que 

se deben proponer mecanismos para reducir la presencia de sustancias micro-

contaminantes que pueden afectar seriamente la salud de las personas y los ecosistemas. 

 

Palabras clave: Evaluación de Riesgo Ambiental, Análisis Monte Carlo, Pesticidas, 
Microtox®, río Cauca. 
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1. Introducción 

 

La Directiva Marco del Agua (DMA), establecida en el año 2000 en la Unión 

Europea (Correlje et al., 2007), se ha convertido en un documento rector que ha 

despertado muchas esperanzas para las personas interesadas en la protección y 

conservación de la calidad medio ambiental de los ríos. La DMA pretende establecer 

una regulación de todo el ciclo hidrológico para poder garantizar en el futuro la 

conservación y recuperación de todos los ecosistemas acuáticos, dando una importancia 

fundamental a la situación de las comunidades biológicas que viven en los diferentes 

ecosistemas. La directiva ha acuñado el concepto de estado ecológico que está llamado 

a ser un elemento fundamental para la mejora de los ecosistemas acuáticos.  

 

De acuerdo con el profesor Narcís Prat, de la Universidad de Barcelona, con el 

advenimiento de la DMA debe generarse una “Nueva Cultura del Agua”, en la que se 

garantice que el agua sea utilizada por todas las especies, de tal manera que las 

funciones ecológicas de los ecosistemas no queden alteradas a la vez que se usa el agua 

en beneficio propio. Hoy en día una sola especie, la humana, utiliza de forma directa o 

indirecta una gran parte del agua dulce del planeta (hasta un 50% de los recursos 

fácilmente utilizables) para sus intereses, sea para beber, para regar, para producir 

electricidad o para navegar. Pocos rincones quedan sin su intervención, y en algunos 

casos el 100% del agua que circula por una cuenca está siendo empleada para usos 

humanos. Hay ríos en España, en los cuales debido a la inapropiada gestión, se ha 

conseguido que este no llegue al mar, que toda el agua sea usada por el hombre sin que 

circule por el lecho del río (Prat, 2001). La nueva cultura del agua no es otra cosa que la 

observación del respeto por los recursos naturales que han promulgado las grandes 

culturas de la humanidad a través de la historia. Es la misma visión de los pueblos 

indígenas latinoamericanos, ajustada a las necesidades actuales. 

 

La conservación del funcionalismo de los ecosistemas acuáticos es el aspecto 

clave que implica la nueva Directiva Marco del Agua (DMA) de la Unión Europea. 

Pero a fin de que los ecosistemas acuáticos mantengan su funcionalismo próximo a un 

sistema sin afección humana, o en el caso de los sistemas muy modificados llegar al 

máximo potencial ecológico, son necesarios cambios profundos en los actuales modelos 

de gestión del agua, cambios que afectan a cómo se gestiona el recurso de forma 
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cuantitativa, cómo se gestiona la calidad del agua por los diferentes usos, la manera 

como los sistemas de ribera son gestionados, y en general la política de ordenamiento 

territorial. La Nueva Cultura del Agua se tiene que aplicar a cada uno de estos aspectos 

para alcanzar los objetivos de la conservación o restauración de los ecosistemas 

acuáticos. Hay que reconocer que los ríos, los lagos, los embalses y las marismas 

pueden mantener un buen estado ecológico, con una comunidad biológica que conserve 

su funcionalismo cercano a las condiciones que existían cuando el ser humano no era 

tan omnipresente en el territorio, solamente si se logra conservar la cantidad y la calidad 

del agua. Este capítulo anexo trata de la Calidad del Agua en el río Cauca. 

 

El río Cauca en su recorrido por el Departamento del Valle presenta serios 

problemas de polución. Estos se encuentran asociados con el uso inadecuado del suelo, 

las descargas de aguas de uso doméstico de los centros urbanos, entre los que se 

encuentra la ciudad de Cali, los aportes de aguas residuales de las industrias, la 

explotación minera, los procesos de deforestación y la contaminación por el inadecuado 

manejo de los residuos sólidos procedentes de los municipios. Esto ha producido un 

deterioro creciente de la calidad del agua del río. En el área de jurisdicción de CVC 

(corporación autónoma regional del valle del Cauca, entidad de protección ambiental 

regional), se cuenta con alto conocimiento, al menos de las variables macroscópicas, de 

la calidad del agua en la cuenca y de los vertimientos generados en las diferentes 

actividades, debido a que se realizan monitoreos sistemáticos desde 1980, a lo largo de 

19 estaciones (Figura 1).  

 

En estos puntos se determinan periódicamente variables tales como: pH, 

Temperatura, Color, Turbiedad, Sólidos, DBO, DQO, Oxígeno Disuelto, Durezas, 

Calcio, Magnesio, Alcalinidades, Sulfatos,  Fosfatos, Fósforo Total, Nitrógeno Total, 

Nitrógeno Amoniacal, Nitratos, Nitritos, Hierro, Manganeso, Sodio, Potasio, Cobre, 

Zinc, Cadmio, Cromo, Níquel, Plomo, Cloruros, Coliformes Totales y Coliformes 

Fecales. La contaminación por materia orgánica, la alta presencia de patógenos, la gran 

carga de sólidos y las preocupantes bajas concentraciones de oxígeno disuelto en un 

trayecto importante, son las variables que ha tenido en cuenta CVC para establecer 

objetivos de calidad hacia el año 2015 (CVC, 2006). Sin duda, todos los esfuerzos de la 

entidad ambiental y de los usuarios del agua y de la población en general, deberán 

destinarse a cumplir estas metas. Un número importante de familias se benefician del 
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agua del río, la bocatoma de la planta de potabilización que suministra gran parte del 

agua de Cali, se encuentra en un punto de alta contaminación del río, lo que incrementa 

sustancialmente el costo del tratamiento. También, la salud de los trabajadores que 

extraen arena, la calidad del agua para el riego agrícola y para los diversos usuarios y la 

salud de las familias ribereñas se ven comprometidas por causa de la contaminación.   

 

 

 

Figura 1. Estaciones de monitoreo de CVC en el río Cauca. 

 

Para la protección efectiva del medio ambiente, se deben controlar tanto los 

indicadores macro-contaminantes, como los micro-contaminantes (Ocampo-Duque et 

al., 2006). El Valle del Cauca, por ser una región eminentemente agrícola, con 200.000 

hectáreas sembradas de caña, puede presentar cantidades significativas de pesticidas en 

sus aguas, sedimentos y biota. Asimismo, la presencia de grandes asentamientos 

industriales en la región, destacando la producción de pulpa y papel, las artes gráficas, 

la industria química y la metalmecánica, sugieren una posible presencia de sustancias 

peligrosas, que debe ser perjudicial para el estado ecológico del río. Los impactos 
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negativos por la presencia de sustancias peligrosas (micro-contaminantes) se evalúan 

apropiadamente, siguiendo la metodología de evaluación de riesgo (Laenge et al., 

2006).  

 

Figura 2. Marco conceptual para la gestión del riesgo ambiental. 

 

2. Metodología 

 

El marco conceptual de las evaluaciones de riesgo ambiental (Figura 2) 

utilizadas para la toma de decisiones en la gestión de ríos y sus ecosistemas consta de 

las siguientes etapas: 

 

a. Identificación de la naturaleza del problema. Después de seleccionar las áreas 

de interés (ecosistemas estratégicos, como es el caso de la Laguna de Sonso, en el Valle 

del Cauca, o los bosques de ribera), se bosquejan los posibles impactos por presencia de 

productos químicos presentes en las aguas y sedimentos, como consecuencia de las 

emisiones de las industrias locales, se colecta e integra la información sobre las 

características de movilidad, toxicidad y persistencia de los presuntos contaminantes y 

la probable cuantificación de fuentes de emisión. 
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b. Análisis de la exposición. Se estiman los efectos producidos por procesos de 

transporte y degradación de los contaminantes y el posible destino hacia los ecosistemas 

del río. Para complementar la información de campo, se puede recurrir a modelos de 

simulación de múltiples medios. También se aplican índices de contaminación o 

alteración de la calidad de las aguas y se formulan estrategias de monitoreo necesarias 

para completar los análisis.  

 

c. Análisis de impactos. Se evalúa el impacto desfavorable en el ecosistema, 

mediante la cuantificación de parámetros indicadores de la contaminación con énfasis 

en la protección de ecosistemas acuáticos. Se buscan impactos químicos mediante el 

análisis de concentraciones ambientales de compuestos orgánicos e inorgánicos 

presentes. Finalmente, se correlacionan con bio-ensayos eco-toxicológicos y con 

estándares máximos permisibles de calidad para el agua, establecidos por agencias 

ambientales internacionales y por la comunidad científica. 

 

d. Evaluación del riesgo. Integra los resultados de la evaluación de los 

potenciales de exposición con los impactos, a fin de estimar el potencial de daño 

ecológico y hacia la salud humana. Hay diversas técnicas para estimar los riesgos. El 

procedimiento normal consiste en comparar los niveles de exposición a los cuales está 

expuesta o puede estar expuesta una población con los niveles a los cuales no se espera 

que ocurran efectos tóxicos. Actualmente, se están utilizando métodos de la teoría de la 

probabilidad y de la posibilidad para el tratamiento de la variabilidad y la incertidumbre 

de las variables, con el fin de estimar los umbrales del daño. Finalmente, los estimativos 

de riesgo se pueden gestionar mediante sistemas de información geográfica.  

 

La evaluación de riesgo ambiental se divide en dos grandes ramas: la evaluación 

del riesgo para la salud humana y la evaluación del riesgo ecológico. El riesgo para la 

salud humana está a su vez subdividido en: riesgo cancerígeno y riesgo no-cancerígeno. 

Este último es el riesgo potencial para la salud y se expresa como un cociente de 

peligrosidad HQ (hazard quotient). En términos generales, el riesgo se produce como 

una combinación de la dosis y de la peligrosidad de la sustancia. La dosis debe 

estimarse a partir de mediciones en campo de las concentraciones de los contaminantes 

en las diferentes matrices (agua, sedimentos, biota, aire) o mediante modelos de 
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transporte, en el caso de que se quieran estimar los riesgos aguas abajo de una fuente 

puntual de emisión.  

 

La peligrosidad es una función de parámetros tales como la persistencia, el 

potencial de bio-acumulación y la toxicidad. En el caso del riesgo carcinogénico, la 

peligrosidad se determina a partir del factor de cáncer CSF (cancer slope factor). Para la 

estimación del HQ, el indicador de peligrosidad que se utiliza, se conoce como la dosis 

de referencia, RfD (Reference dose). Para estimar el cociente de riesgo ecológico 

(EcoRisk), se utilizan benchmarks, los cuales son valores para los cuales existe la 

certeza de que los efectos sobre las poblaciones biológicas pueden ser mínimos. 

Generalmente, los benchmarks se fijan para proteger las especies más sensibles a la 

polución, es decir, se fijan teniendo en cuenta el principio de precaución (EPA, 2001). 

 

De acuerdo con lo anterior, los valores de riesgo en cada caso, se pueden estimar 

mediante:  

ATBW

EDEFIRC
CDI

*

***= , CSFCDIRisk *= ,  
RfD

CDI
HQ = ,  

BM

C
EcoRisk=  

donde, CDI: ingesta crónica del contaminante (mg/kg/día), C: concentración del 

contaminante en agua (mg/L) IR: velocidad de la ingestión (L/día para agua), EF: 

frecuencia de la exposición (días/año),  ED: duración de la exposición (año), AT: tiempo 

promedio (días), BW: peso medio de un individuo (kg),  RfD: dosis de referencia 

(mg/kg/día), CSF: factor de cáncer (mg/kg/día)-1, Risk: nivel de riesgo cancerígeno,  

BM: benchmark protectivo para ecosistemas acuáticos (mg/L). 

 

3. Resultados y discusión 

 

En el año 2006, la CVC ha realizado una campaña para el monitoreo de la 

presencia de algunos pesticidas en las aguas del río Cauca. En total se han determinado 

4 pesticidas organo-fosforados y 16 organo-clorados. Algunas de las sustancias 

detectadas corresponden a sub-productos de la descomposición de los pesticidas 

originales (como la endrin-cetona que se produce por descomposición fotoquímica del 

Endrin). A continuación se presentan los resultados de la evaluación del riesgo 

ambiental que se ha llevado a cabo para dichos pesticidas. La evaluación de riesgos se 
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ha llevado a cabo utilizando simulación Monte Carlo. Este es un método probabilístico 

sugerido por la Agencia de protección Ambiental Americana (EPA)(EPA, 2001). 

 

 Con este método se emplean distribuciones de probabilidad para caracterizar las 

variables dentro de las ecuaciones del riesgo, en vez de utilizar estimaciones puntuales. 

De esta manera, el valor resultante en el cálculo del riesgo es un rango y no un valor 

puntual. Así, los valores resultantes dentro del rango calculado para el riesgo tienen 

unas probabilidades asignadas, conocidas como percentiles. Con este método se 

manejan adecuadamente tanto la variabilidad como la incertidumbre de las variables, 

con lo que se pueden obtener mejores estimaciones del riesgo, ya que se consideran los 

valores más (y/o menos) probables a la hora de la toma de decisiones ambientales. 

 

En este trabajo se han utilizado los resultados de la campaña de monitoreo de 

CVC para estimar los riesgos hacia la salud y hacia los ecosistemas por la presencia de 

pesticidas. Los CSF y las RfD fueron tomadas de la base de datos IRIS de la EPA. Se 

tomaron los BM sugeridos por EPA, algunos de los cuales aparecen en la Tabla 1. Se 

estimó un margen de incertidumbre de un 10% en el valor central sugerido por EPA, 

para llevar a cabo las simulaciones. Las otras variables se tomaron como funciones 

probabilísticas usando valores sugeridos por agencias internacionales y por criterios 

expertos. Así: IR lognormal(0.25,0.025) , ED lognormal(71.14, 7.11), EF triangular(0, 

182.5, 365), BW lognormal(70, 7) y AT se tomó como valor puntual igual a 25 550 días. 

 

Riesgos de cáncer: De las pruebas realizadas con animales, existe suficiente 

evidencia científica para decir que los pesticidas organoclorados con más de cinco 

cloros en su molécula presentan efectos carcinogénicos. El riesgo carcinogénico 

admisible según la EPA, es del orden de 1.0E-06 para cualquier sustancia tóxica. Este 

valor implica que una persona en un millón, tendría probabilidades de desarrollar cáncer 

como consecuencia de la exposición crónica a dicha sustancia. De acuerdo con las 

estimaciones llevadas a cabo en este trabajo, se han encontrado estimaciones de riesgo 

del orden de 1.0E-04 para aldrin, y 1.0E-05 para alfa-lindano y heptacloro epóxido, en 

aquellos sitios en los que se encontraron las concentraciones más elevadas. Los 

resultados obtenidos mediante simulación Monte Carlo se muestran en la Figura 3, para 

estos tres pesticidas, en los sitios con máximas concentraciones reportadas. Se exhiben 

como distribuciones de probabilidad y/o como funciones de probabilidad acumulada. 
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Figura 3a. Valor de riesgo cancerígeno para Aldrin en la estación SP12 (Vijes) durante 
el muestreo de noviembre 2006. 
 

Cumulative Chart

 Risk

Mean = 1,71E-5
,000

,250

,500

,750

1,000

0

8800

4,19E-7 9,85E-6 1,93E-5 2,87E-5 3,82E-5

8.800 Trials    8.728 Displayed

Forecast: Alfa-Lindano, SP13, ago-06

 

  

Figura 3b. Valor de riesgo cancerígeno para alfa-lindano en la estación SP13 (Yotoco) 
durante el muestreo de agosto de 2006. 
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Figura 3c. Valor de riesgo cancerígeno para heptacloro epóxido en la estación SP11 
(Paso de la Torre, Yumbo) durante el muestreo de noviembre de 2006. 
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De acuerdo con los resultados anteriores, se puede decir que los tres pesticidas 

se han encontrado en concentraciones preocupantes en algunas zonas del río Cauca. 

También hay áreas con bajas concentraciones, que pueden suponen valores de riesgo 

bajos. La gran variabilidad geográfica hace suponer que los contaminantes provienen de 

fuentes difusas (agricultura). En términos de salud humana, la situación es preocupante 

ya que en el área existe una buena cantidad de empresas de extracción de arena en las 

que laboran muchas personas, por tratarse de un proceso altamente artesanal. También 

muchos niños son expuestos al agua del río ya que viven en las riberas y se bañan en él, 

así que la exposición dérmica puede incrementar el riesgo. 

 

 

Figura 4. Valores de riesgo cancerígeno (percentil 95) para aldrin en las estaciones de 
monitoreo de CVC durante 2006. Valores de fondo corresponden a la mitad del límite 
de detección reportado. 

 

En este estudio se han tomado los resultados de los monitoreos en tres meses 

marzo, agosto, noviembre. Se debe esperar que las concentraciones sean más elevadas 

durante los meses de verano porque el caudal del río se reduce sensiblemente. En la 

Figura 4 se muestran la variabilidad temporal y geográfica para el pesticida aldrin. La 

zona con mayor valor de riesgo corresponde a la SP12 (Vijes), para el mes de 

noviembre. También, existen otras zonas con valores de riesgo preocupantes. En agosto 

aparece un mayor número de sitios (9 de 19) con valores de riesgo superiores a 1.0E-05. 

En noviembre de 2006 aparecen 4 sitios de muestreo con valores de riesgo del orden de 
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1.0E-5, y un valor en el orden de 1.0E-04. El aldrin es una sustancia de uso prohibido 

según la Agencia de protección ambiental de los Estados Unidos. Valores similares se 

obtienen para los otros pesticidas clorados. 

 

Riesgo no-cancerígeno: A diferencia de los valores presentados anteriormente, 

en la zona de estudio los HQ alcanzan siempre valores menores que la unidad. Se 

considera seguro para la salud humana un HQ<1, pero este valor tiene en cuenta efectos 

diferentes a los cancerígenos. Los valores máximos de HQ corresponden nuevamente a 

los pesticidas organoclorados, aldrin y heptacloro epóxido, con valores (percentiles 95) 

del orden de 0.636 y 0.848. En este caso, considerando sólo las concentraciones de los 

pesticidas se puede asegurar que las concentraciones encontradas en el río Cauca no 

presentarían efectos negativos hacia la salud humana. 

 

Tabla 1. Cocientes de peligrosidad HQ para los pesticidas monitoreados en el río Cauca, 
región Valle del Cauca 
 

HQ 
Sustancia percentil 10 percentil 50 percentil 95 Localidad Fecha 

Diazinon 3.48E-03 8.65E-03 2.96E-02 SP14, Mediacanoa ago-06 
Metil paratión 6.84E-04 1.70E-03 5.71E-02 SP8, Juanchito ago-06 
Malatión 4.80E-05 1.16E-04 3.23E-04 SP12, Vijes ago-06 
Clorpirifos 6.04E-03 1.47E-02 4.01E-02 SP14, Mediacanoa ago-06 
Heptacloro 8.62E-04 2.20E-03 7.84E-03 SP6, Puente Hormiguero nov-06 
Aldrin 7.22E-02 1.75E-01 6.36E-01 SP12, Vijes nov-06 
Heptacloro epóxido 1.00E-01 2.44E-01 8.48E-01 SP11, Paso de la Torre nov-06 

 

 

Riesgo ecológico: En el caso del análisis de riesgo ecológico, se han tomado los 

valores de referencia (o benchmarks) sugeridos por la EPA para aguas de ríos y se han 

utilizado funciones probabilísticas triangulares para parametrizar la incertidumbre del 

benchmark, con una incertidumbre del 10% para cada benchmark. La Tabla 2 muestra 

los valores máximos obtenidos para el parámetro EcoRisk en la zona del Valle del 

Cauca. Como se puede ver en la Tabla, se han encontrado concentraciones máximas de 

pesticidas que sobrepasan en varios órdenes de magnitud los valores de referencia 

sugeridos por la comunidad internacional. Siendo los casos más críticos aquellos 

localizados entre Yumbo y Mediacanoa, para los pesticidas clorpirifos, heptacloro y 

heptacloro epóxido, con valores EcoRisk del orden de 800, 320 y 930, respectivamente. 

Los valores del parámetro EcoRisk deberían ser menores que uno para que no exista 
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ningún nivel de alerta, por tanto los niveles de alerta aquí tienen que ser máximos. 

Según la Tabla, los valores máximos se han obtenido en el mes de agosto. Estos valores 

tan significativamente altos ponen en riesgo la salud de los ecosistemas del río, tanto las 

comunidades de invertebrados como los peces y las aves que se benefician del agua del 

río, poniendo en peligro la alta biodiversidad de la zona. En realidad, muchas especies 

biológicas son considerablemente más sensibles a la contaminación que los humanos, 

de allí que los valores para proteger las comunidades biológicas se consideren seguros 

también para los humanos, y se haga actualmente tanto énfasis por parte de la 

comunidad científica en el buen estado ecológico de los ríos. Como se muestra más 

adelante, el uso de varias de estas sustancias se ha prohibido en algunos países por el 

alto nivel de riesgo ambiental que representan. 

 

Tabla 2. Cálculos estocásticos del índice EcoRisk para las concentraciones máximas de 
pesticidas monitoreados en el río Cauca, región del Valle del Cauca 
 

EcoRisk 
Pesticida 

Benchmark 
(µµµµg/L)  * Percentil 10 Percentil 50 Percentil 95 Localidad Fecha 

Diazinon 0.043 9.52 10.05 10.78 SP 14, Mediacanoa ago-06 
Metil Paration 0.008 28.20 29.77 31.90 SP 8, Juanchito ago-06 
Malation 0.097 14.45 15.26 16.37 SP12, Vijes ago-06 
Clorpirifos 0.0035 761.23 803.59 863.09 SP14, Mediacanoa ago-06 
Heptacloro 0.0019 301.88 318.39 341.79 SP 6, Jamundí nov-06 
Aldrin 3.000 0.92 0.97 1.05 SP 12, Vijes nov-06 
Heptacloro epóxido 0.0019 882.58 930.99 998.92 SP 11, Yumbo nov-06 
*Valores sugeridos por USEPA, Fuente: http://www.epa.gov/ 
 

 

El esfuerzo de CVC por monitorear pesticidas es valioso pero limitado. La 

cantidad de sustancias tóxicas emitidas por la agricultura debe ser sustancialmente 

mayor, por lo que muchos compuestos no se monitorean. Además, algunas sustancias 

peligrosas son adsorbidas por los sedimentos y el material particulado. La presencia de 

sustancias peligrosas en la biota (invertebrados, peces y aves) también debería ser 

monitoreada, ya que los efectos sobre los ecosistemas deben vigilarse. Estas matrices no 

hacen parte de las campañas de monitoreo todavía, y deberían ser incluidas en los años 

venideros. Muchas sustancias peligrosas presentan riesgos significativos para la salud 

humana debido a la capacidad de persistir en el medio ambiente y de migrar a través de 

la cadena trófica. Con urgencia, a nivel nacional (en Colombia) se debe emprender la 

tarea de establecer los valores de referencia (benchmarks) protectivos para los 

ecosistemas acuáticos tanto marinos como de aguas dulces, con el fin de tomar medidas 
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para reducir los peligrosos efectos de la contaminación sobre los ecosistemas y sobre la 

salud humana. 

 

Asimismo, los límites de detección que se han usado para estas determinaciones 

son relativamente altos (200 ng/L, para la mayoría de pesticidas) considerando la 

peligrosidad de las sustancias que se están analizando. En España, se han establecido 

límites de 100 ng/L para las sustancias prioritarias de la DMA y 1000 ng/L cuando el 

pesticida reviste poca peligrosidad. Igualmente, cuando se carece de estándares de 

calidad ambiental, como en el caso de los valores permisibles para proteger la fauna 

bentónica, es decir, valores benchmarks para sedimentos, el objetivo se fija como la 

reducción anual, o al menos que los valores no incrementen en el tiempo. En el caso de 

cultivos estacionales, los muestreos se hacen durante cierta época del año, este no es el 

caso colombiano, ya que se cultiva caña de azúcar durante todo el año. Asimismo, la 

lista carece de pesticidas ampliamente usados en cultivos de caña, tales como: glifosato 

(round-up), captano, carbofurano (Furadam 5G), Aldicarb (Temik 10G), o benomil 

(benlate) (Victoria et al., 1995). Pesticidas como atrazina, diuron, dieldrin, ametrina, y 

simazina, también han sido detectados en sedimentos de canales de irrigación de 

cultivos de caña (Muller et al., 2000) y por tanto deberían monitorearse.  

 

La Tabla 3 muestra los niveles de riesgo genérico para algunos pesticidas 

asociados con cultivos de caña de azúcar en diferentes partes del mundo. El riesgo 

genérico se ha establecido en nuestro grupo de investigación a partir de diversos 

indicadores: dosis, persistencia en el medio ambiente, capacidad de bio-acumulación y 

toxicidad a humanos, mamíferos, abejas y peces, así como el potencial de transporte 

hacia zonas remotas (Juraske et al., 2007). La ADI en la Tabla 3 corresponde a la 

Acceptable Daily Intake, es decir a la cantidad diaria que una persona podría recibir por 

vía oral, sin que se presenten problemas para la salud. Este parámetro lo ha establecido 

la Organización Mundial de la Salud.  

 

4. Propuesta para el control de la contaminación por sustancias peligrosas 

 

Los daños causados por la contaminación de las aguas son enormes y generan 

altos costos sociales y privados. Sin embargo, evitar estos daños debe hacerse de 

manera efectiva y con el mínimo costo posible para una economía que necesita tasas de 
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crecimiento sostenidas. Las tasas retributivas por vertimientos puntuales, establecidas 

por la Ley 99 de 1993 y reglamentadas en el Decreto 901 de 1997, son un instrumento 

económico diseñado para minimizar el costo total de cumplimiento de una meta 

regional concertada con la comunidad. El objetivo es inducir a quienes vierten 

contaminantes a las aguas a implementar su opción de descontaminación menos costosa 

e incentivar la innovación tecnológica en opciones de mínimo costo. Se cobran por los 

vertimientos puntuales de carga contaminante de Demanda Bioquímica de Oxígeno 

(DBO5) y de Sólidos Suspendidos Totales (SST). A Diciembre de 2003, las tasas 

retributivas tenían un costo de 74.24 $COP/kg y 31.75 $COP/kg, para DBO5 y SST, 

respectivamente. Sin embargo, estos dos parámetros son insuficientes para “penalizar” 

de manera efectiva el “costo de la contaminación”.  

 

Tabla 3. Niveles de riesgo para pesticidas asociados con cultivos de caña 
 

# Pesticida 
Riesgo 

genérico* Uso 
ADI  

(mg/kg/día) Observaciones 
1 Aldicarb Muy alto Insecticida 3.00E-03  
2 Aldrin Muy alto Insecticida 1.00E-04 Prohibido en USA 
3 Ametrina Bajo Herbicida 1.50E-02  
4 Atrazina Muy alto Herbicida 5.00E-03  
5 Benomil Moderado Fungicida 3.00E-02  
6 Captano Moderado Fungicida 3.00E-01  
7 Carbofurano Alto Insecticida 2.00E-03  
8 Clorpirifos Muy alto Insecticida 3.00E-03  
9 DDT Muy alto Insecticida 2.00E-03 Prohibido en USA 
10 Diazinon Muy alto Insecticida 1.00E-03  
11 Dieldrin Muy alto Insecticida 1.00E-04 Prohibido en USA 
12 Diuron Muy alto Herbicida 1.00E-02  
13 Endosulfan sulfato Moderado Insecticida 8.00E-03  
14 Endrin Muy alto Insecticida 2.00E-04 Prohibido en USA 
15 Glifosato Moderado Herbicida 3.00E-01  
16 Heptachlor epoxide Muy alto Insecticida 5.00E-04 Prohibido en USA 
17 Heptacloro Muy alto Insecticida 5.00E-04 Prohibido en USA 
18 Lindano Muy alto Insecticida 3.00E-03  
19 Malatión Alto Insecticida 5.00E-02  
20 Metil Paratión Muy alto Insecticida 2.00E-04  
21 Simazina Muy alto Herbicida 5.00E-03  

*Definido de acuerdo con (Juraske et al., 2007) 

 

Se deberían entonces utilizar parámetros adicionales con los que se puedan 

determinar los efectos de los contaminantes sobre la salud de los ecosistemas. La 

Toxicidad a una especie sensitiva, como tercer parámetro dentro de las tasas 
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retributivas, podría ser un indicador razonable y apropiado para gestionar los costos de 

la contaminación. Además de la cantidad de los vertidos, su grado de peligrosidad 

(toxicidad) puede generar un mayor (o menor) deterioro de la calidad ecológica. Es 

claro que una sustancia muy tóxica que se encuentre presente aún en bajas 

concentraciones puede producir más daños ambientales que una sustancia poco tóxica 

que se descargue en cantidades importantes. Tal es el caso de las dioxinas y los furanos 

(Mari et al., 2007). Así, sería necesaria la inclusión de, al menos, una variable que 

cuantifique la “toxicidad hacia los ecosistemas” dentro de las tasas retributivas 

nacionales. Asimismo, se hace fundamental el establecimiento de tasas retributivas por 

contaminación de otras fuentes, como es el caso de los contaminantes que aparecen en 

las aguas subterráneas y aquellos contaminantes que surgen como producto de la 

actividad agrícola (contaminación por fuentes difusas). Es bien sabido que la 

contaminación difusa es mayoritariamente responsable por la contaminación de los ríos.  

 

Tabla 4. Tasas retributivas utilizadas en Cataluña (España) 
 

Parámetro Costo 

Materias en suspensión (MES) 0.24 €/kg  

Materias inhibidoras (MI) 4.78 €/equitox 

Materias oxidables (MO) 0.48 €/kg 

Sales solubles (SOL) 3.8 €/S/cm 

Nitrógeno (N) 0.30 €/kg 

Fósforo (P) 0.61 €/kg 

Fuente: (GENCAT, 1999) 
 

 

Un estado óptimo de las aguas de una región requiere unas infraestructuras 

difícilmente financiables bajo asignación presupuestaria nacional. La creación de un 

tributo ecológico como un canon de saneamiento podría permitir el cumplimiento de la 

premisa de "quien contamina paga", lo que a su vez permitiría subvencionar los gastos 

del tratamiento de las aguas residuales. Este canon de saneamiento ha sido 

recientemente implementado en algunas comunidades en España. Para gravar la 

toxicidad potencial de los efluentes industriales, se utilizan las unidades de Toxicidad 

(equitox).  
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El valor de la EC50 se determina mediante el ensayo estándar de bacterias 

luminiscentes, conocido comercialmente como microtox® y/o el ensayo de inhibición de 

la movilidad de Daphnia magna, de acuerdo con la legislación vigente (Gibert, 2004). 

Luego se calculan los equitox mediante la siguiente expresión, equitox = 100/EC50. 

Finalmente, los equitox medidos para un efluente industrial o urbano permiten 

determinar el coste variable que la compañía debe asumir por el peligro ambiental de su 

emisión.  

 

La Tabla 4 muestra los costos del canon de saneamiento de Cataluña (España). 

De manera similar en Uruguay, se ha propuesto el uso del índice SEDTOX, para la 

determinación de la toxicidad de efluentes industriales. Este índice ha sido desarrollado 

en Canadá y representa un valor integrado producto de una batería de bio-ensayos, ya 

que las respuestas biológicas de estos bio-ensayos tienen gran variabilidad (Bombardier 

and Bermingham, 1999). Cabe destacar que los bio-ensayos propuestos aquí, presentan 

muchas ventajas, ya que constituyen pruebas directas del efecto de los vertidos tóxicos 

sobre los organismos, presentan un protocolo relativamente sencillo y son en general de 

bajo costo operativo.  

 

Actualmente estamos llevando a cabo bio-ensayos con Microtox® a muestras 

colectadas en el río Cauca. En junio de 2007, se colectaron muestras de sedimentos en 

diversos sitios de la cuenca. El monitoreo de los sedimentos permite conocer el estado 

de la contaminación a largo plazo, ya que los sedimentos presentan menor movilidad y 

facilidad para acumular sustancias tóxicas. Adicionalmente, muchas sustancias 

peligrosas tienden a ligarse a las fases sólidas, por lo que no serían detectables en las 

muestras acuosas. Las sustancias ligadas a los sedimentos son igualmente peligrosas 

para la fauna acuática, especialmente para aquellos organismos que se alimentan en la 

zona béntica.  

 

Se han tomado muestras en el río Cauca, en las cercanías a la desembocadura de 

los principales ríos tributarios y en la Laguna de Sonso, que ejerce como zona 

protegida. La Tabla 5 muestra los resultados de la valoración con Microtox® para las 

muestras analizadas, siguiendo los criterios del índice SEDTOX (Bombardier and 

Bermingham, 1999). Se observan valores significativamente altos para toxicidad tanto 

por sustancias acuosas como por sustancias orgánicas. Una vez más la gran variabilidad 
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en el comportamiento puede deberse al hecho de la alta contaminación difusa en la 

zona.  

 

Tabla 5. Resultados cualitativos del análisis de toxicidad de diversas muestras 
colectadas en Junio de 2007 para el río Cauca y tributarios* 
 

Sitio de Muestreo Tipo 
Toxicidad extracto 

orgánico 
Toxicidad extracto 

acuoso 
Río Palmira Tributario Altamente tóxico No tóxico 
Río Fraile Tributario Marginalmente tóxico Altamente tóxico 
Canal CVC en Laguna de Sonso Tributario Marginalmente toxico No tóxico 
Río Cerrito Tributario Altamente tóxico Marginalmente tóxico 
Río Amaime Tributario No tóxico Marginalmente tóxico 
Río Bolo Tributario Marginalmente toxico No tóxico 
Río Yumbo Tributario Altamente tóxico Marginalmente tóxico 
Laguna de Sonso Zona protegida Marginalmente tóxico No tóxico 
SP5, Jamundí Río principal No tóxico No tóxico 
SP6, Jamundí Río principal Moderadamente tóxico No tóxico 
SP7, Navarro Río principal Marginalmente tóxico Marginalmente tóxico 
SP8, Juanchito Río principal Moderadamente tóxico No tóxico 
SP10, Yumbo Río principal Marginalmente tóxico Moderadamente tóxico 
SP11, Paso de la Torre Río principal Marginalmente tóxico Marginalmente tóxico 
SP12, Vijes Río principal Marginalmente tóxico Marginalmente tóxico 
SP14, Mediacanoa Río principal Marginalmente tóxico Marginalmente tóxico 
*El grado de toxicidad debe interpretarse como Altamente tóxico > Moderadamente tóxico > 
Marginalmente tóxico > No tóxico. 

 

Todos los tributarios del río Cauca que fueron analizados presentaron algún 

grado de toxicidad. Esta toxicidad es probablemente debida a la presencia de fuentes 

difusas, aunque también muchos tributarios reciben efluentes de plantas industriales de 

la zona, así como descargas de las aguas residuales de las poblaciones que atraviesan. 

En el río Cauca también los valores de toxicidad han resultado altos, especialmente 

aguas abajo de la zona industrial de Yumbo, donde los extractos acuosos presentan 

toxicidad moderada y los extractos orgánicos presentan toxicidad marginal. Dicha 

toxicidad también se ve reflejada en las muestras tomadas en la Laguna de Sonso, zona 

protegida distante más de cuarenta kilómetros de la ciudad de Cali y de Yumbo, en la 

que la evidencia de contaminación por sustancias orgánicas puede afectar la salud del 

ecosistema. 

 

Los efectos combinados de la toxicidad en las aguas por sustancias provenientes 

de la agricultura, por efluentes domésticos y por actividades industriales se estudian 

muy apropiadamente, y a menor costo, mediante bioensayos, ya que la detección del 
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número significativo de sustancias contaminantes que se envían a los ríos incrementa 

notablemente los costos del control de la contaminación y dificulta el establecimiento de 

planes de mejoramiento de la calidad ambiental, para las autoridades ambientales. Por 

esta razón, en este trabajo se ha propuesto el uso de bioensayos para controlar efluentes 

tanto industriales como domésticos y agrícolas, ya que estos pueden reflejar de una 

mejor manera, y a menor costo, las posibles consecuencias de la polución.  

 

La vigilancia de las sustancias micro-contaminantes en el Valle del Cauca es 

prioritaria, y se debe incluir en los planes de control de la contaminación. La toma de 

decisiones de las autoridades ambientales no debe reducirse sólo a criterios 

macroscópicos, como actualmente se acostumbra. Variables como la carga orgánica 

(DBO5), los niveles de oxígeno disuelto y la presencia de sólidos son insuficientes para 

la toma de decisiones en la mejora de la calidad del medio ambiente. En este trabajo, se 

ha demostrado que en la región del Valle del Cauca, la presencia de micro-

contaminantes reviste peligrosidad tanto para la salud, debido al uso de pesticidas 

organoclorados que son precursores de cáncer, como para la vida acuática, llegando en 

muchos casos a encontrarse concentraciones de sustancias tóxicas de dos y tres órdenes 

de magnitud superiores a las concentraciones normalmente aceptadas por la comunidad 

científica internacional. Asimismo, la evidencia de efectos adversos para la salud de los 

ecosistemas ha sido probada mediante bio-ensayos de ecotoxicidad. 
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