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Abstract

Pyramidal neurons of the medial prefrontal cortex (mPFC)
project to midbrain serotonergic neurons and control their
activity. The stimulation of prefrontal 5-HT,4 and AMPA
receptors increases pyramidal and serotonergic cell firing, and
5-hydroxytryptamine (5-HT) release in mPFC. As the mPFC
contains abundant oy-adrenoceptors whose activation
increases the excitability of pyramidal neurons, we examined
the effects of their stimulation on local 5-HT release, using
microdialysis. The application of the «4-adrenoceptor agonist
cirazoline by reverse dialysis increased the prefrontal 5-HT
release in a concentration-dependent manner, an effect ant-
agonized by coperfusion of TTX, prazosin (x«;-adrenoceptor
antagonist), BAY x 3702 (5-HT,4 agonist), NBQX (AMPA/KA
antagonist) and 15,3S-ACPD (mGIuR II/1ll agonist), but not by
MK-801 (NMDA antagonist). Cirazoline also enhanced the

increase in 5-HT release induced by DOI (5-HTza2c agonist)
and AMPA. In addition, M100907 (5-HT.4 antagonist) but not
SB-242084 (5-HTsc antagonist) reversed the cirazoline- and
AMPA-induced 5-HT release. These results suggest that the
stimulation of prefrontal «y-adrenoceptors activates pyramidal
afferents to ascending serotonergic neurons. The effect of
cirazoline was also reversed by coperfusion of classical
(chlorpromazine, haloperidol) and atypical (clozapine, ola-
nzapine) antipsychotics, which suggests that a functional
antagonism of the w=;-adrenoceptor-mediated activation of
prefrontal neurons may partly underlie their therapeutic action.
Keywords: «,-adrenoceptors, glutamate receptors, 5-HT
release, 5-HTz, receptors, medial prefrontal cortex, micro-
dialysis.
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The prefrontal cortex is involved in a large number of higher
brain functions and controls neuronal activity in subcortical
structures (Fuster 1997; Miller and Cohen 2001). A reduction
of the prefrontal glucose metabolism has been found in
psychiatric conditions such as depression or schizophrenia
(Andreasen et al. 1997; Drevets et al. 1997). Pyramidal
neurons play a key role in prefrontal function, by integrating
excitatory inputs from other cortical and subcortical areas,
such as the mediodorsal nucleus of the thalamus (Berendse
and Groenewegen 1991; Kuroda ef al. 1998; Van der Werf
et al. 2002). They also receive a dense innervation from the
monoaminergic nuclei of raphe, ventral tegmental area and
locus coeruleus, which play a modulatory role (Azmitia and
Segal 1978; Thierry et al. 1983; Kosofsky and Molliver
1987; Durstewitz et al. 2000; Lewis and O’Donnell 2000).
Signal integration in pyramidal neurons is exerted at various
cellular levels, with a key role played by the large apical
dendrites which, in addition to ionotropic glutamate receptors,
contain abundant 5-HT,, receptors (Willins ef al. 1997;

Jakab and Goldman-Rakic 1998, 2000; Martin-Ruiz et al.
2001). Hallucinogens like LSD or DOI are partial agonists
and atypical antipsychotics are antagonists at 5-HT,, recep-
tors (Kroeze and Roth 1998; Meltzer 1999). Likewise, the
neocortex is enriched in various subtypes (o 5, 01 and o;p)
of o,-adrenoceptors (Palacios et al. 1987; McCune et al.
1993; Pieribone et al. 1994; Day et al. 1997). The stimulation
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of 5-HT,, receptors and o;-adrenoceptors activates phosp-
holipase C, which results in IP3 production and mobilization
of Ca®" stores (Bylund and U’Prichard 1983; Molinoft 1984;
Claro et al. 1993; Bartrup and Newberry 1994; Berg et al.
1998; Hagberg et al. 1998; Porter et al. 1999). 5-HT,,4 and
o -adrenoceptors mediate the excitatory actions of 5-hy-
droxytryptamine (5-HT) and noradrenaline, respectively, on
pyramidal neurons of the medial prefrontal cortex (mPFC)
(Araneda and Andrade 1991; Marek and Aghajanian 1999).

The axons of prefrontal pyramidal neurons project to the
brainstem monoaminergic nuclei and controls their activity
(Aghajanian and Wang 1977; Thierry et al. 1983; Sesack
et al. 1989; Takagishi and Chiba 1991; Sesack and Pickel
1992; Murase et al. 1993; Sara and Hervé-Minvielle 1995;
Hajos et al. 1998; Jodo ef al. 1998; Peyron et al. 1998;
Au-Young et al. 1999). In particular, the mPFC controls the
activity of brainstem serotonergic neurons (Hajos ef al. 1998;
Celada et al. 2001). Pyramidal 5-HT, 4 and 5-HT,, receptors
are involved in the distal feed-back control of serotonergic
activity, as their activation decreased and increased, respect-
ively, the firing rate of dorsal raphe (DR) serotonergic cells
and the 5-HT release in mPFC and DR (Casanovas ef al.
1999; Celada et al. 2001; Martin-Ruiz et al. 2001). More-
over, the physiological increase of the thalamic excitatory
input onto AMPA receptors in the rat mPFC increased the
firing rate of pyramidal cells and the local 5-HT release
(Martin-Ruiz et al. 2001; Puig et al. 2003). Based on these
anatomical and functional data, we postulate the existence of
a mPFC-DR circuit in which prefrontal and serotonergic
neurons exert a reciprocal control that involves 5-HT, 5 and
5-HT,, receptors. These receptors would modulate the
excitatory inputs onto pyramidal neurons, thus controlling
the propagation of nerve impulses through pyramidal axons.

Given the similar laminar distribution of 5-HT,4 receptors
and o,-adrenoceptors in mPFC (Pazos et al. 1985; Palacios
et al. 1987) and their similar excitatory action on pyramidal
neuron activity (Araneda and Andrade 1991; Marek and
Aghajanian 1999), we tested the hypothesis that «,-adreno-
ceptor stimulation in mPFC might modulate the in vive 5-HT
release. We also examined the effect of classical and atypical
antipsychotics on this effect. These agents are used for the
treatment of schizophrenia and treatment-resistant depression
(Kroeze and Roth 1998; Meltzer 1999; Ostroff and Nelson
1999; Shelton et al. 2001; Marangell et al. 2002) and show
high affinity for receptors present in pyramidal neurons, such
as 5-HT,, and o-adrenoceptors (Sebban et al. 1999; Arnt
and Skarsfeldt 1998; Bymaster et al. 1999).

Materials and methods

Animals
Male Wistar rats (Iffa Credo, Lyon, France) weighing 280-320 g at
the time of the experiments were used. The animals were housed in

groups of four per cage until the onset of the experiments and kept
under a controlled temperature of 22 + 2°C and a 12-h lighting
cycle (lights on at 07 : 00 h). After surgery, rats were housed
individually. Food and water were always freely available through-
out the experiments. All experimental procedures were in strict
compliance with the Spanish legislation and the European Com-
munities Council Directive on ‘Protection of Animals Used in
Experimental and Other Scientific Purposes’ of 24 November 1986
(86/609/EEC).

Drugs and reagents

5-HT oxalate, (S)-AMPA (alpha-amino-3-hydroxy-5-methyl-4-is-
oxazole-4-propionate), chlorpromazine, cirazoline, DOI
(1-[2,5-dimethoxy-4-iodophenyl-2-aminopropane]),  (+)-MK-801
(dizocilpine), NBQX  (2,3-dihydroxy-6-nitro-7-sulfamoyl-ben-
zo(f)quinoxaline), SB 242084 (6-chloro-5-methyl-1-[6-(2-methyl-
pyridin-3-yloxy)pyridin-3-ylcarbamoyl]indoline),  prazosin  and
tetrodotoxin (TTX), were from Sigma/RBI (Natick, MA, USA).
1S,3S-ACPD (15,3S-aminecyclopentane dicarboxylic acid), halop-
eridol and clozapine were from Tocris (Bristol, UK). BAY x 3702
(R+(-)-2-{4-[(chroman-2-ylmethyl}-amino]-butyl} -1,1-dioxo-benzo[d]iso-
thiazolone'HC1), citalopram'HBr, M100907 (R-(+)-alpha-(2,3-di-
methoxyphenyl)-1-[4-fluorophenylethyl]-4-piperidinemethanol; Lil-
ly code LY 368675) and olanzapine were from Bayer AG, Lundbeck
AJS and Eli Lilly & Co, respectively. Other materials and reagents
were from local commercial sources. Drugs were dissolved in the
perfusion fluid or water (except clozapine, dissolved in acetic acid,
and olanzapine, dissolved in HCIl). Concentrated solutions (1 mm;
pH adjusted to 6.5-7 with NaHCO; when necessary) were stored at
—80°C and working solutions were prepared daily by dilution in
artificial CSF. Concentrations are expressed as free bases. Control
rats were perfused for the entire experiment with artificial CSF. The
bars in the figures show the period of drug application (corrected for
the void volume of the system).

Surgery and microdialysis procedures

An updated description of the microdialysis procedures used can be
found in Adell and Artigas (1998). Briefly, anesthetized rats (sodium
pentobarbital, 60 mg/kg i.p.) were stereotaxically implanted with
concentric microdialysis probes equipped with a Cuprophan
membrane. In most experiments rats were implanted with one
probe in mPFC at the following coordinates (in mm): AP +3.2,
L -0.8, DV —6.0 (probe tip 4 mm) taken from bregma and dura
mater (Paxinos and Watson 1986). To determine whether the
perfusion of cirazoline in the mPFC increased the activity of the
ascending serotonergic system, as we hypothesized, an additional
experiment was conducted, in which rats were implanted with two
probes, i.e. one in the mPFC, as above, and the other in the dorsal
raphe nucleus (DR) at AP =7.4, L =3.1, DV =7.5 with a lateral
angle of 30° (probe tip 1.5 mm) taken also from bregma and dura
mater (Paxinos and Watson 1986). All microdialysis experiments
were performed in freely moving rats on the day following implants.
The probes were perfused at 1.5 pL/min with artificial CSF
(125 mm NaCl, 2.5 mm KCI, 1.26 mm CaCl, and 1.18 mm MgCl,)
containing 1 pm citalopram. After 1 h stabilization period, four
fractions were collected to obtain basal values before local
administration of drugs by reverse dialysis. Successive 20-min
(30 pL) dialysate samples were collected. At the end of the
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experiments, rats were killed by an overdose of anesthetic. The
placement of the dialysis probes was examined by perfusion of fast
green dye and visual inspection of the probe track after cutting the
brain at the appropriate level.

The concentrations of cirazoline and prazosin were determined in
pilot experiments. Those of atypical antipsychotics were from
Bortolozzi et al. (2003) whereas the rest of the drugs were used at
concentrations known to reverse the increase in prefrontal
5-HT release induced by DOI (Martin-Ruiz er al. 2001). Given
the in vitro nanomolar affinity of cirazoline and prazosin for
o -adrenoceptors, the use of micromolar concentrations used may
appear non-selective. However, effective concentrations applied by
reverse microdialysis to stimulate/block brain receptors or trans-
porters differ typically 3-4 orders of magnitude from in vitro
affinities (see for instance Hervas et al. 2000; Tao et al. 2000; Sakai
and Crochet 2001; West and Grace 2002). This difference is due
mainly to the low application rates used together with the
continuous clearance of applied drugs via the brain capillaries and
the CSF so that only a very small drug fraction reaches the target
receptors. This factor is particularly important in the present study as
the effect of cirazoline on 5-HT release requires the stimulation of a
substantial receptor population in projection neurons to the DR in
order to elicit a measurable increase in terminal 5-HT release.

The concentration of 5-HT in dialysate samples was determined
by HPLC, as described by Adell and Artigas (1998). 5-HT was
separated using a Beckman (San Ramon, CA, USA) 3-pm particle
size column and detected with a Hewlett-Packard 1049 electro-
chemical detector at + 0.6 V. Retention time was between 3.5 and
4 min and the limit of detection was typically 1 fimol/sample.

Data and statistical analysis

Data (mean + SEM) are expressed as fmol/fraction (uncorrected for
recovery) and shown in figures as percentages of basal wvalues,
averaged from four predrug fractions. Statistical analysis of drug
effects on dialysate 5-HT was performed using analysis of variance
(anova) for repeated measures with time as repeated factor and drug
concentration as independent factor. Average values of selected time
periods were also calculated and compared using paired r-test.
Statistical significance was set at the 95% confidence level (two
tailed).

Results

Baseline 5-HT values were 26.2 £ 0.7 fmol/fraction in
mPFC and 44.4 = 7.9 in DR (n = 196 and 8, respectively).
The perfusion of artificial CSF for 4 h did not alter the 5-HT
release in mPFC (Fig. 1). The local application of cirazoline
(30, 100 and 300 pm) by reverse dialysis increased dialysate
5-HT in a concentration-dependent manner compared with
controls  receiving artificial CSF  (F35;2 = 19.06,
p <0.00001, group effect; F5315 = 32.2, p <0.00001, time
effect; Fys315 = 6.1, p <0.00001, time—group interaction).
The mean elevation once the effect of cirazoline had
stabilized was 110 + 6%, 171 + 9% and 223 £ 14% for 30,
100 and 300 pm, respectively (Fig. 1). In fact, the two
groups of eight rats correspond to two different experiments
with four animals each carried out 10 months apart (Fig. 1b).
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Fig. 1 (a) The local application of cirazoline 30 um (n = 5), 100 um
(n=8), and 300 um (n = 8) increased the 5-HT output in medial
prefrontal cortex in a concentration-dependent manner. The perfusion
of both concentrations of cirazoline was carried out in two different
experiments of four animals each (see b). *p < 0.05 vs. artificial CSF
(two-way anova). (b) Bar graph showing the effect of 100 and 300 pum
cirazoline on mPFC 5-HT release in two different experiments (n = 4
each) carried out 10 months apart. No significant differences were
noted and the data were pooled. *p < 0.001 vs. the corresponding
basal values depicted as open bars (paired t-test). See also the similar
increase in 5-HT produced in the experiment shown in Fig. 3.

Both experiments yielded the same results and the data was
therefore pooled. In pilot experiments, the perfusion of
increasing concentrations of cirazoline (100 and 300 pm, 2 h
each) also elicited a concentration-dependent increase in
5-HT (141 + 18% at 100 pm and 194 + 28% at 300 pm; data
not shown). The coperfusion of 1 pm TTX completely
canceled the increase in 5-HT release induced by cirazoline
and reduced 5-HT levels to below baseline (Fy36 = 24.9;
p <0.00001) (Fig. 2).

In double probe microdialysis experiments, the perfusion
of cirazoline 300 pm in the mPFC elevated significantly the
5-HT release in both areas, although the effects was more
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Fig. 2 The local application of cirazoline 300 um (n = 8) increased the
5-HT output in medial prefrontal cortex. The coperfusion of 1 pm TTX
completely reversed the elevation in 5-HT release elicited by the local
perfusion of 300 pm cirazoline in medial prefrontal cortex (n = 5).
*p < 0.05 vs. cirazoline alone.

marked in mPFC (F5,0s = 31.6; p <0.001) than in the DR
(Fis.105 = 6.9; p <0.000001) (Fig. 3a,b). The increase in
dialysate 5-HT produced by the perfusion of 300 pm
cirazoline in these animals was the same as that observed
in animals implanted with a single probe. On the other hand,
a previous dual-probe study showed that the perfusion of a
CSF in the mPFC did not alter the release of 5-HT in the DR
(Celada et al. 2001).

The coperfusion of the selective o;-adrenoceptor antag-
onist prazosin (100 and 300 pm) reversed the 5-HT increase
elicited by cirazoline 300 um (Fo36 = 6.2, p <0.0001 at
100 pm;  Foz6 = 264, p <0.00001 at 300 pm). Both
concentrations of prazosin were equally effective and
produced a slow decline in 5-HT which nearly reached
baseline values at the end of the prazosin perfusion
(Fig. 4a). The infusion of 100 pm prazosin rapidly and
completely reversed the 5-HT increase induced by the
application of 100 pm cirazoline (Fy 36 = 17.6, p <0.00001;
Fig. 4b).

Previous observations indicate that the coperfusion of the
selective 5-HT, 5 receptor agonist BAY x 3702 reverses the
increase in 5-HT release induced by the local application of
DOl and AMPA in mPFC (Martin-Ruiz ef al. 2001;
Bortolozzi ef al. 2003). This led us to examine the effect
of BAY x 3702 on the effect of cirazoline. The coperfusion
of 30 pum BAY x 3702 significantly reversed the increase in
5-HT release induced by 300 pm cirazoline (Fo4s = 3.6, p
<0.002; Fig. 5a). A higher concentration of BAY x 3702
(100 pm) elicited a similar antagonism (data not shown).
However, 30 pm BAY x 3702 rapidly and completely
reversed the effect of 100 pum cirazoline, and reduced 5-HT
release to slightly below baseline (£557 = 7.1, p <0.00005;
Fig. 5b).
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Fig. 3 In rats with dual-probe implants, the perfusion of 300 pm
cirazoline increased the release of 5-HT not only locally in mPFC (a)
but also in the DR (b). The perfusion of aCSF in the mPFC did not alter
the release of 5-HT in the mPFC or in the DR (Celada et al. 2001).

The coperfusion of cirazoline 300 um enhanced the 5-HT
elevation induced by the perfusion of DOI 100 pum
(Fos3 = 9.7, p <0.00001; Fig. 6). The stimulatory effect of
DOI on 5-HT release in mPFC depends on glutamatergic
transmission through AMPA receptors (Martin-Ruiz et al.
2001). We therefore examined whether the effect of ciraz-
oline was also dependent on glutamatergic inputs in mPFC.
The increase in 5-HT release elicited by 300 pum cirazoline
was reversed by the coperfusion of the AMPA/KA receptor
antagonist NBQX (300 um) (Fg27 = 9.8, p <0.00001;
Fig. 7a) but not by the NMDA receptor antagonist MK-
801 (Fig. 7b). Also, the non-selective mGluR 1I/III agonist
1S,3S-ACPD partially reversed the cirazoline-induced 5-HT
increase at 3 but not at 1 mm (Fo3¢ = 12.0, p <0.00001;
Fig. 7¢). Also, as previously shown (Martin-Ruiz ef al.
2001), the local perfusion of AMPA 300 pm increased the
5-HT release (Fig. 7d). This effect was potentiated by the
coperfusion of cirazoline 300 pm, which elevated 5-HT to
438 + 34% of baseline (Fg 36 = 26.8, p <0.00001; Fig. 7d).
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Fig. 4 (a) Reversal of the increase in 5-HT release induced by
cirazoline 300 um by the coperfusion of the «,-adrenoceptor antag-
onist prazosin (PRA) at 100 um (n = 5) and 300 um (n = 5). (b) The
coperfusion of 100 um prazosin (n = 5) fully reversed the increase in
5-HT release elicited by the application of cirazoline 100 um (n = 8).
*p < 0.05 vs. cirazoline alone (n = 8).

The close relationship between the AMPA-mediated
transmission, o -adrenoceptors and 5-HT,, receptors was
also illustrated by the functional antagonism of the S-AMPA-
induced 5-HT release exerted by prazosin (100 pm) and
M100907 (300 pum). The coperfusion of either antagonist
reversed the increase in 5-HT release produced by 300 pm
S-AMPA  (Fy36 = 12.0, p < 0.00001 prazosin effect;
Fo27 = 10.6, p <0.0001, M100907 effect; Fig. 8a). The
perfusion of prazosin 100 um totally reversed the 5-HT
elevation induced by the application of DOI 100 pm
(Fog1 = 40.2, p <0.00001; Fig. 8b). Likewise, the coper-
fusion of the selective 5-HT, 4 receptor antagonist M100907
(300 pm) antagonized the 5-HT increase induced by ciraz-
oline. This antagonism was partial at 300 pm cirazoline
(Fo36 = 9.8, p<0.00001; Fig. 8&) and total at 100 pm
cirazoline (Fo3¢ = 11.2, p < 0.00001; Fig. 8d). However,
the selective 5-HT,c receptor antagonist SB 242084
(100 pm) failed to significantly alter the effect of cirazoline
(Fig. 8c).

The increase in 5-HT release induced by cirazoline 100 pum
was also reversed by the coperfusion of 300 um of the
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Fig. 5 (a) The coperfusion of the selective 5-HT,, agonist
BAY x 3702 (BAY, 30 um) partially attenuated the increase in 5-HT
release induced by cirazoline 300 um (n = 6). (b) The same concen-
tration of BAY x 3702 fully reversed the increase in 5-HT release eli-
cited by 100 pm cirazoline (n = 4). Shown are in both graphs the
effects of the perfusion of cirazoline alone (a, 300 um, n = 8; b,
100 pm; n = 8). *p < 0.05 vs. cirazoline alone.
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Fig. 6 Additive effects of the stimulation of 5-HT.. receptors and
u4-adrenoceptors on the 5-HT release in medial prefrontal cortex. The
coperfusion of cirazoline 300 um enhanced the 5-HT release produced
by the local application of DOI 100 um (n = 8). Shown is also the effect
of DOI alone (n = 6); and cirazoline alone (n = 8). *p < 0.05 vs. DOI
alone.
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classical antipsychotics haloperidol and chlorpromazine
(Fos36 = 14.9, p <0.00001 and Fy45 = 14.8, p < 0.00001
for haloperidol and chlorpromazine, respectively; Fig. 9a,b).
Likewise, the atypical antipsychotics clozapine and olanza-
pine (300 pm each) significantly reduced 5-HT levels to or
below baseline (Fo36 = 10.2, p < 0.00001 and Fy,7 = 23.2,
p <0.00001 for clozapine and olanzapine, respectively;
Fig. 9¢,d).

In additional experiments we determined the effects of the
administration of the different compounds that reduced
dialysate 5-HT when perfused in combination with cirazoline.
For this purpose BAY x 3702 (30 pm), M100907 (300 pm),
NBQX (300 pm), prazosin (100 pm), haloperidol (300 pm),
chlorpromazine (300 um) and clozapine (300 pum) were
perfused alone. The response of dialysate 5-HT was averaged
over the last four samples, once the maximal effect was
stabilized, and expressed as the percentage change from the
corresponding basal (predrug) values. Paired t-test revealed
that each of these compounds, except NBQX, reduced
significantly (p < 0.01) the release of 5-HT (Fig. 10).

Discussion

Three main findings derive from the present study. First, the
activation of o-adrenoceptors in mPFC increases the local
release of 5-HT by an impulse-dependent mechanism.
Second, this effect is dependent on AMPA-mediated inputs.
Finally, antipsychotic drugs reduce the basal 5-HT release
and reverse the effect of o-adrenoceptor activation, an
observation possibly related to their therapeutic actions.

We would like to stress two different points relevant to the
discussion of the data of this study. First, the fact that

Fraction number (20 min each)

10 15 20 (n = 5). "p < 0.05 vs. cirazoline or S-AMPA

alone.

antipsychotics reverse the cirazoline-induced increase in
prefrontal 5-HT release does not imply that psychotic states
are necessarily associated to an increase in cortical seroton-
ergic transmission. We used the stimulation of o;-adreno-
ceptors in mPFC as a mean to activate the mPFC-raphe
circuit in order to explore drug interactions in vivo. Second,
because the mPFC has essentially an associative role, these
drug interactions need to be interpreted at cellular (pyram-
idal) and not at receptor level, because several drugs used to
reverse the effect of cirazoline (M100907, BAY x 3702,
NBQX) are not expected to interact with o-adrenoceptors in
the experimental conditions used.

The effect of cirazoline likely involves the activation of
ay-adrenoceptors on pyramidal neurons projecting to the DR,
as previously observed for 5-HT,, receptors (Fig. 11). This
assumption is based on (i) the common signal transduction
mechanisms activated by 5-HT,4 and o,-adrenoceptors (see
Introduction); (ii) the great abundance of both receptors in
the prelimbic and infralimbic areas of the mPFC (Pazos et al.
1985; Palacios et al. 1987) which project to the DR (Hajos
et al. 1998; Peyron et al. 1998); (iii) the increase in the DR
5-HT release produced by cirazoline application in mPFC;
and (iv) the reversal of the effect of cirazoline by agents
acting on pyramidal neurons (see below).

To our knowledge, there is no direct immunohistochemical
evidence on the presence of o,-adrenoceptors in pyramidal
cells, although autoradiographic and in situ hybridization
studies revealed abundant o o/p/n-adrenoceptors at various
cortical layers rich in pyramidal cells (Palacios et al. 1987,
McCune et al. 1993; Pieribone et al. 1994; Day et al. 1997;
Domyancic and Morilak 1997). In common with other
cortical areas (Sato ef al. 1989; Mouradian ef al. 1991;
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Fig. 8 (a) AMPA (300 um, n = 5) enhanced dialysate 5-HT in the
medial prefrontal cortex. The coperfusion of the «y-adrenoceptor ant-
agonist prazosin (PRA, 100 um, n = 5) or the selective 5-HT;, ant-
agonist M100907 (300 um, n = 4) completely reversed the elevation in
prefrontal 5-HT release induced by the local application of S-AMPA
(300 pm). (b) The perfusion of DOl 100 um elicited a persistent
increase of prefrontal 5-HT release for the whole sampling period
(n = 6). The coperfusion of prazosin 100 um reversed the 5-HT

McCormick et al. 1993; Devilbiss and Waterhouse 2000),
the stimulation of o;-adrenoceptors in mPFC elicits
excitatory responses (Araneda and Andrade 1991; Marek
and Aghajanian 1999). Hence, a cirazoline-induced activa-
tion of mPFC pyramidal neurons, including those projecting
to the midbrain raphe, is the most likely cause of the increase
in 5-HT release. This view is strengthened by the increase of
5-HT release in the DR induced by cirazoline application in
mPFC. The smaller effect in DR (compared to mPFC) may
be due to a different sensitivity of 5-HT release to nerve
impulse in both areas. However, it was similar to that
produced by the electrical stimulation of the mPFC (Celada
et al. 2001). Indeed, the DR probe may not be sampling
exactly the neuronal population activated by mPFC afferents.

Cirazoline is not entirely selective for o,-adrenoceptors
and displays affinity for receptors and
o-adrenoceptors, where it behaves as an antagonist (Ruffolo
and Waddell 1982). However, the comparatively lower
affinity for these sites (Molderings et al. 1998) suggests that
its effects are mediated by o;-adrenoceptors. Moreover, the
blockade of its effect by prazosin suggests that cirazoline acts
via oj-adrenoceptors although its similar affinity for the
various subtypes does not allow to clarify which one(s) were
involved. Two areas projecting to the mPFC (thalamus and

imidazoline
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elevation induced by DOI 100 pm (n = 10). (c) Cirazoline (300 pm,
n = 8) increased dialysate 5-HT. The application of M100907 300 pum
partly reversed the elevation produced by 300 um cirazoline (n = 5).
However, the selective 5-HT,¢ receptor antagonist SB 242084 (SB;
100 um, n = 6) did not reverse the effect of cirazoline. (d) The perfu-
sion of M100907 (300 um) was able to fully counteract the increase in
5-HT release evoked by 100 um cirazoline (n = 5). *p < 0.05 vs. cir-
azoline or S-AMPA alone.

midbrain raphe) express abundant o, g-adrenoceptor mRNA.
The good correspondence between receptor protein and
mRNA suggests a somatodendritic location (Palacios et al.
1987; McCune et al. 1993; Pieribone et al. 1994; Day et al.
1997; Domyancic and Morilak 1997) and appears to exclude
the possibility that putative terminal o,g-adrenoceptors
mediate the effect of cirazoline. Terminal 5-HT,, receptors
(Jakab and Goldman-Rakic 1998) in thalamocortical affer-
ents to the mPFC have been suggested to mediate the 5-HT;4
receptor-dependent increase in the spontaneous excitability
of pyramidal neurons in mPFC (Aghajanian and Marek
1999; Marek ef al. 2001). However, terminal 5-HT;p
receptors in mPFC do not seem to be located in glutamatergic
axons and extensive thalamic lesions left unaltered the effect
of DOI on pyramidal cell firing (Miner et al. 2003; Puig
et al. 2003), which suggests that postsynaptic S5-HT;p
receptors are involved in the excitatory effect of 5-HT,4
receptor stimulation. The analogy of effects of 5-HT and
noradrenaline on pyramidal excitability (Marek and Aghaja-
nian 1999) suggests a similar location for o;-adrenoceptors.
Moreover, the effect of cirazoline was canceled by the
coapplication of NBQX, BAY x 3702 and antipsychotic
drugs, which act on receptors located on intrinsic neurons of
the prefrontal cortex (Petralia and Wenthold 1992; Kia et al.
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Fig. 10 Effect of the perfusion of BAY x 3702 (BAY, 30 um, n = 4),
M100907 (300 um, n = 5), NBQX (300 um, n = 5), prazosin (PRA,
100 um, n = 5), haloperidol (HALO, 300 um, n = 4), chlorpromazine
(CPZ, 300 pm, n = 4), and clozapine (CLZ, 300 um; n = 4) on dialysate
5-HT. Data are averaged 5-HT values over the last four samples (once
the effect was stabilized) and expressed as the percentage change
from the corresponding basal (predrug) values depicted as open bars.
*p < 0.01, paired t-test.

1996; Vysokanov et al. 1998; De Felipe ef al. 2001). Given
the complex pharmacological profile of the mGluR II/11I
agonist 1S,3S-ACPD, it is unclear whether this agent may act
presynaptically (i.e. by reducing glutamate release) and/or
postsynaptically, by activating postsynaptic inhibitory
mGluRs.

As observed with the action of DOI (Martin-Ruiz et al.
2001), the 5-HT-increasing action of cirazoline depends on
glutamatergic transmission in mPFC as it was reversed by
AMPA/KA (but not NMDA) receptor blockade and mGIuR

Fraction number {20 min each)

alone.

II/1II activation, and was mimicked by the local application
of §-AMPA. Indeed, the 5-HT- and noradrenaline-induced
increase in pyramidal excitability was also abolished by
AMPA receptor blockade (Marek and Aghajanian 1999),
suggesting a dependence on glutamatergic inputs onto
mPFC.

The activation of 5-HT;, receptors by the pre- and
postsynaptic 5-HT;, agonist BAY x 3702 (De Vry et al.
1998; Casanovas et al. 1999, 2000) counteracted the effect
of DOI and cirazoline on 5-HT release (Martin-Ruiz et al.
2001; this study). 5-HT,, receptors have been reported to
occur in the somatodendritic compartment and axon hillock
of pyramidal neurons (Kia et al. 1996; De Felipe et al. 2001)
and their activation results in neuronal hyperpolarization and
reduction of firing rate (Araneda and Andrade 1991; Ashby
et al. 1994). Hence, BAY x 3702 may oppose to the increase
in excitability produced by the activation of o,-adrenocep-
tors, thus reducing the excitatory input onto midbrain 5-HT
neurons and, hence, 5-HT release (see scheme in Fig. 11).
The specificity of BAY x 3702 is supported by its total lack
of action in the mPFC of 5-HT, 5 receptor knockout mice at
the concentration used herein (Amargos-Bosch et al.,
unpublished results).

The reciprocal antagonism between 5-HT,, and o-
adrenoceptors (M100907 of cirazoline’s effect and prazosin
of DOI's effect) appeared surprising. These neurochemical
results parallel behavioral data showing that the 5-HT,4-
mediated, DOI-induced head shakes in rodents were sup-
pressed by prazosin and a number of ligands acting at cortical
receptors, such as 5-HT o agonists, S-HT, A »c antagonists or
classical antipsychotics such as haloperidol, among others
(Schreiber et al. 1995; Dursun and Handley 1996), an
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Fig. 11 Schematic representation of the interactions between the
medial prefrontal cortex (mPFC) and the midbrain raphe 5-HT neu-
rons, with some of the receptors and neurotransmitters involved.
Pyramidal neurons express 5-HT., receptors and u4-adrenoceptors
whose activation increases the excitability and/or firing activity of
prefrontal pyramidal neurons. Anatomical and functional studies indi-
cate the existence of marked reciprocal interactions between the
mPFC and the midbrain raphe nuclei. The selective activation of
AMPA, 5-HT;4 and «4-adrenoceptors in mPFC by local application of
agonists (S-AMPA, DOI, cirazoline -CIR-, respectively) increased the
local 5-HT release (Martin-Ruiz et al. 2001; this study) whereas that of
5-HT, receptors (e.g. by BAY x 3702) decreased local 5-HT release
and counteracted the 5-HT-increasing action of DOI, AMPA and
cirazoline (Casanovas et al. 1999; Celada et al. 2001; Martin-Ruiz
et al. 2001; Bortolozzi et al. 2003; this study). 5-HT,4 receptors have
been reported to occur in the somatodendritic region of cortical
pyramidal neurons as well as in the axon hillock (Kia et al. 1996; De
Felipe et al. 2001). The changes in 5-HT release are likely to be
mediated by a modulation of the activity of pyramidal neurons in pre-
limbic and infralimbic mPFC that project densely to the DR (Hajos et al.
1998; Peyron et al. 1998), and control the activity of 5-HT neurons
(Celada et al. 2001) and GABA interneurons (Celada et al. 2001; Varga
et al. 2001) in midbrain (for simplicity, GABA receptors are not depic-
ted). Antipsychotic drugs would possibly counteract the increased
activity of pyramidal neurons by an action at «;-adrenoceptors (clas-
sical antipsychotics) and at «y-adrenoceptors and 5-HT,, receptors
(atypical antipsychotics), thus reducing the activity of pyramidal cells
and, thus, the increase in 5-HT release produced by the activation of
a1-adrenoceptors in projection (pyramidal) neurons of the mPFC.

observation for which no clear neurobiological basis has
been provided so far. The present data suggest that pyramidal
neurons may play an integrative role for these actions to
modulate motor output. Indeed, our observations suggest a
close association between 5-HT,a, o;-adrenoceptors and
AMPA receptors to regulate the activity of projection
neurons in mPFC, which is the driving force of the observed
changes in 5-HT release (Fig. 11). Also, cortical 5-HT;4,
oj-adrenoceptors  (but not AMPA receptors) appear to
tonically control basal 5-HT release, given the reduction in
5-HT release produced by their local perfusion (o;-adreno-
ceptors in the raphe also control tonically the activity of 5-
HT cells and its local and terminal release; Baraban and

o -Adrenoceptors and 5-HT release 839

Aghajanian 1980; Rouquier ef al. 1994; Adell and Artigas
1999; Bortolozzi and Artigas 2003).

The effects of 5-HT,, receptor and o;-adrenoceptor
activation on pyramidal cell excitability are consistent with
a postsynaptic location. Indeed, most cortical 5-HT,4
receptors in mPFC are located postsynaptically (Miner
et al. 2003). The tonic activation of both receptors can elicit
a phospholipase C-mediated increase in Ca®" signaling (sce
Introduction), which may facilitate AMPA-mediated trans-
mission. This is also consistent with the o;-adrenoceptor-
mediated facilitation of the excitatory action of glutamate
on cortical neurons (Mouradian et al. 1991; McCormick
et al. 1993). The removal of the tone on either receptor by
the respective antagonist may result in a loss of synergism
and a subsequent reduction of pyramidal activity and of the
descending excitatory input onto 5-HT neurons, which
might explain the effect on basal and cirazoline-stimulated
5-HT release. Interestingly, prazosin and M100907 appli-
cation completely reversed the 5-HT-increasing action of S-
AMPA, an observation, which further supports the interac-
tion between these receptors. However, we cannot clarify
whether M100907 and prazosin act as pure antagonists in
vivo as at least prazosin has been reported to be an inverse
agonist in artificial cell systems (Zhu er al. 2000; Hein
et al. 2001).

Interestingly, the basal and cirazoline-stimulated 5-HT
release was also reversed by classical (chlorpromazine,
haloperidol) and atypical antipsychotics (clozapine, olanza-
pine). All these agents display high in vitro affinity for
o-adrenoceptors (in the low nanomolar range), whereas the
only the atypical drugs have such high affinity for 5-HT,A
receptors (Arnt and Skarsfeldt 1998; Bymaster ef al. 1999;
Sebban et al. 1999). Both prazosin and M100907 reversed
the elevation in mPFC 5-HT release produced by cirazoline
(this study) and DOI (Bortolozzi et al. 2003). Similarly,
chlorpromazine, haloperidol, clozapine and olanzapine also
counteracted the increase in 5-HT produced by cirazoline
(this study) and DOI (Bortolozzi et al. 2003). Based on the
relative affinities of the four antipsychotic drugs tested, we
postulate that only o,-adrenoceptor blockade participates in
the reversal of the effect of cirazoline by classical antipsych-
otics whereas both 5-HT,4 receptors and o,-adrenoceptors
may be involved in the action of atypical antipsychotics.
Given the complex pharmacological profile of these drugs, it
is likely that only the use of murine knockout models can
clarity which receptor is involved in this reversal.

Atypical antipsychotics are 5-HT,, receptor antagonists
(Meltzer 1999). Likewise, the blockade of o,-adrenoceptors
by prazosin potentiated the antipsychotic-like effect of
dopamine D2 receptor antagonists (Wadenberg et al. 2000)
and there is increasing interest in the role played by 5-HT 5
receptors in the activity of atypical antipsychotics (Millan
2000; Ichikawa et al. 2001). It is noteworthy that these three
properties (5-HT,, receptor and o-adrenoceptor blockade,
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stimulation of 5-HT, 5 receptors) converge in the same effect
in mPFC, i.e. a reduction of the 5-HT release, which likely
parallels the change in activity of pyramidal neurons. This
suggests that, in addition to their antidopaminergic action,
antipsychotics may partly exert their palliative effect by
reducing the activity of prefrontal pyramidal neurons by any
of these mechanisms. This would agree with the key role of
the frontal lobe in the pathophysiology of schizophrenia and
its treatment (for review, see Weinberger et al. 1994; Amt
and Skarsfeldt 1998; Lidow et al. 1998; Lewis and Lieber-
man 2000). Further work is required to examine the neuronal
distribution of these three receptors in mPFC in order to
clarify the cellular site(s) of interaction.
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