Efecto de la hiperactividad de la cdk4 en la fisiología del islote pancreático y en el desarrollo de la diabetes autoinmune

Tesis doctoral presentada por NÚRIA MARZO ADAM para optar al grado de Doctora en Bioquímica Laboratorio Experimental de Diabetes. IDIBAPS

> Directores : Dra. Concepció Mora Giral Dr. Ramon Gomis de Barbarà

Programa de doctorado Biología y Patología Celulares del Departamento de Biología Celular y Anatomía Patológica. Bienio 2001-2003 Tutor: Dr. Carles Enrich

VI.-ANEXOS

<u>ANEXO 1:</u> Secuencia de primers para el genotipado de los Idds que determinan el grado de fondo genético NOD.

Idd	Marcador microsatélite	Secuencia de primers para su genotipado
Idd1	D17Mit34	TGT TGG AGC TGA ATA CAC GC GGT CCT TGT TTA TTC CCA GTA CC
Idd2	D9Mit25	AAA CCC AGT CTT AAA AAC AAA ACA TTC ATT TTA TTT TCT TTG GAA AGG
Idd3	D3Nds6	AAG TAT GGG TCA GAT TGT GTG GG GTG GGA GTG TGT GCA AAA GAC
Idd3	D3Mit36	GAT TTT AAT TCA TTA AAT AAG GGT TAG GAA CAT ATG TGT AAG TAA AAT GTA C
Idd4	D11Mit115	GAA TCT CAT CTC TCA AAT GTC TCC AAG TGT TTC TTA TTT TGG AAA GTT CA
Idd4	D11Mit320	CCC ATA TAG TGA AGC AAG AAA CG TTA TAG TGT ATG CAT CCA GGT GTG
Idd5	D1Mit24	CCA ATC CAT CTT GGG CAG ATT GGT TTT GCT GAA CCA GG
Idd5	D1Mit26	GAG GAA TCT TGA ATG GGC AA CTG ACA ACA CCC TCT GGC TT
Idd6	D6Mit15	CAC TGA CCC TAG CAC AGC AG TCC TGG CTT CCA CAG GTA CT
Idd6	D6Mit52	TAA GTC AGC CCA AGG AAG TCA AAG GCA CCT ATA TTT GTG CAC A
Idd6	D6Mit15	CAC TGA CCC TAG CAC AGC AG TCC TGG CTT CCA CAG GTA CT
Idd6	D6Mit339	ATA TCG ATT GGC TTC TAA ATG TCA GCA GGT TGT CCT CTC ACC TC
Idd8	D14Mit11	AAT ATT TTC ATG TTT GGA GTC GTG CAC TGC AGT GTC AAT TTC TAC TTT
Idd9	D4Mit59	AGA GTT TGG TCT CTT CCC CTG TAT CCA ACA CAT TTA TGT CTG CG
Idd10	Tshb	TCT GAA GAG TTT GTC CTC ATC TGA ATA AAG GAC TCC TGA GCT
Idd10	D3Mit103	CCA GGG GTG GTG GTC TTA C TGT CAG GTG CCC AGG TCT
Idd11	D4 Mit202	GTC TTT TCC CTT GGG GAT TC AAG GGA ATA ATA CCA GAG GGT ACC
Idd12	D14Nds3	ACT ATC ATA TTG AGT GCA TTA TAG G AAT GTT ATA TTA GAG ACC TTT AGA AG
Idd13	D2Mit257	TCA AGG CAT TTC TTG GTA TGG TCT GTT TCT ACT TAA AAA TGG TGG C
Idd13	D2Mit395	AGG TCA GCC TGG ACT ATA TGG AGC ATC CAT GGG ATA ATG GT

Idd13	D2Mit17	AGG CAA TTA CAA GGC CTG G CAC CCA TCT CCC TCA GTC AT
Idd14	D13Mit61	TGC TCC AAT ACA ACA AGG TCC CCA GCC AAG GTG TGT TGA C
Idd15	D5Mit48	GAC TAT CAT CCA AGC CAA GAC C AAA AGA CAC TTT CCC TGA CAT AGC
Idd15	D5Mit69	CCA GCC TTT CTG GAG TGA AG ACC ATG GCA GAA AGC AGT TT

http://www-genome.wi.mit.edu/cgi-bin/mouse/sts_info?database=mouserelease

<u>ANEXO 2:</u> Cálculos para la cuantificación de la oxidación y utilización de glucosa por los islotes pancreáticos

Para la realización de los cálculos se prepararon y se procesaron del mismo modo que las muestras problema unos viales control que fueron los siguientes:

Control 5,5: solución de incubación sin islotes Control 16,7: solución de incubación sin islotes Max_{ox} 5,5: 10 µl sol. 5,5 + 250 µl hidróxido de hiamina + 12 ml de líquido de centelleo Max_{ox} 16,7: 10 µl sol 16,7 + 250 µl hidróxido de hiamina + 12 ml de líquido de centelleo Background_{ox} (bg ox): 250 µl hidróxido de hiamina + 5 ml de líquido de centelleo Sol.X: 25 µl U¹⁴C glucosa + 1 ml CM Sol.Y: 200 µl ³H₂O (1µCi) + 810 µl CM Max_{ut} 5,5: 10 µl sol. 5,5 + 0,5 ml HCl + 5 ml líquido de centelleo Max_{ut} 16,7: 10 µl sol. 16,7 + 0,5 ml HCl + 5 ml líquido de centelleo bg_{ut}: 0,5 ml HCl + 5 ml de líquido de centelleo To: 40 µl sol. Y + 0,5 ml HCl + 5 ml líquido de centelleo Tr: 40 µl sol. Y + 0,5 ml HCl + 20 µl venenos metabólicos + 5 ml líquido de centelleo Crossover: 10 µl sol. X + 250 µl hidróxido de hiamina + 5 ml líquido de centelleo Canal 1 (cn1): 3H Canal 2 (cn2): 14C ox.= oxidación ut.= utilización

OXIDACIÓN 14C

MAX 5,5_{ox} (cn1) – bg_{ut} = MAX 5,5 (cn1)* MAX 5,5_{ox} (cn2) – bg_{ox} = MAX 5,5 (cn2)* MAX 16,7_{ox} (cn1) – bg_{ut} = MAX 16,7 (cn1)* MAX 16,7_{ox} (cn2) – bg_{ox} = MAX 16,7 (cn2)* **Crossover** ^{14}C en el canal del ³H (¹⁴C en cn1): ^{14}C en cn1 = crossover (cn1)- bg_{ut} / crossover(cn2)- bg_{ox} ^{3}H en el canal del ¹⁴C (³H en cn2): ^{3}H en cn2 = (To(cn2) – bg_{ox}) / (To(cn1) – bg_{ut}) Max 5,5 real_{ox} (cn2)= [MAX 5,5 (cn2)* - (¹⁴C en cn1) x MAX 5,5 (cn1)*] / $[1 - (^{14}C en cn1) x (^{3}H en cn2)]$

F 5,5_{ox} (pmol/(cpms x islote)) = [(5,5 x 1000 pmol/ μ l) / (Max 5,5 real (cn2)/ μ l sol. 5,5)]x [1/n^o islotes]

cpms reales muestra_{ox} = cpms muestra_{ox} - cpms control cn2 sin islotes

Oxidación muestra (pmoles/(islote x 120 min)) = cpms reales muestra x F 5,5

Se repitió el mismo proceso para la concentración 16,7 mM de glucosa.

UTILIZACIÓN 3H

MAX 5,5_{ut} (cn1) - bg_{ut}= MAX 5,5_{ut} (cn1)**

MAX 16,7_{ut} (cn1) - bg_{ut}= MAX 16,7_{ut} (cn1)**

El crossover es el mismo que el calculado en el apartado de la oxidación.

Recovery (R)= $(Tr - Bg)/(To - Bg) \times 100$

F 5,5_{ut} (pmol/(cpms x islote)) = [(5,5 x 1000 pmol/ µl) / (MAX 5,5_{ut} (cn1)**

/µl sol. 5,5)] x [1/nº islotes] x (100/R)

cpms reales muestra_{ut} = cpms muestra_{ut} – cpms control cn1 sin islotes

Utilización muestra (pmoles/(islote x 120 min)) = cpms reales muestra x F 5,5

Se repitió el mismo proceso para la concentración 16,7 mM de glucosa.

<u>ANEXO 3:</u> Relación de marcadores de superficie analizados durante la caracterización fenotípica de los linfocitos de los ratones Cdk4R24C NOD.

CD3/CD4	CD3/CD8/FAS
CD3/CD8	CD4/FAS
CD4/CD8	CD4/CD8/FAS
CD3/CD4/CD8	CD19/FAS
CD3 / CD25	CD4/CD69
CD4/CD25	CD8/CD69
CD3/CD4/ CD25	CD4/CD8/CD69
CD19/CD25	Iad/CDIIc
CD19/CD69	CD4/CD62L
CD69/CD25	CD8/CD62L
CD19/CD69/CD25	CD4/CD8/CD62L
CD3/FAS	CD4/CTLA4
CD8/FAS	