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Objectives

1.1 INTRODUCTION

The first part of this chapter briefly introduces the importance of second-order
calibration in quantitative analysis using chromatographic data. This short
bibliographic revision is used to justify the objectives of the thesis (section 1.3).
Sections 1.4 and 1.5 contain, respectively, the structure of the thesis and the

references cited in this chapter.

1.2 SECOND - ORDER CALIBRATION IN QUANTITATIVE
CHROMATOGRAPHIC ANALYSIS

Analytical chemistry is constantly evolving to meet the changing demands of our
society [1]. Trends are moving towards increasing the automation of the analyses
and determining more analytes, in more complex matrices, faster, with lower

detection limits, and using smaller samples and less reagents.

Even though the analytical problems are varied, most situations require some of
the constituents of the sample to be identified (qualitative analysis) or their
concentration to be determined (quantitative analysis). Often, chromatography is
the analytical technique of choice. It is the most widely used separation technique
in chemical laboratories and in the chemical process industry [2-3]. Among the
different kinds of chromatography, High Performance Liquid Chromatography
(HPLC) is one of the most versatile. It is the key separation technique for the
analysis of polar and high molecular mass compounds which are not amenable by

gas chromatography.

Quantitative HPLC analysis is traditionally carried out by measuring univariate
signals (e.g., absorbance at one wavelength) along time. Then, the height or area of
the chromatographic peak is related to the concentration of the analyte by means of
univariate calibration [4]. Univariate calibration is simple and well-known
statistically, but requires the measurements to be selective for the analyte of
interest and not influenced by interferences (apart from a constant background
contribution) [5]. When complex samples are analyzed, such as environmental or

clinical samples, the sample matrix may contain new, unexpected interferences
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that were not present when the chromatographic separation was optimized. If such
interferences coelute with the analyte of interest, the non-selective measurements
[6] will cause biased predictions. Such bias can be avoided by selecting an
adequate instrumental set up and optimizing the experimental conditions. For

example by:

- Cleaning-up the sample. Specific pre-concentration columns have been
developed, using immunosorbents and molecular imprinted polymers (MIPs) [7,8],
which selectively retain a compound or a family of compounds, and avoid the

injection of other components into the chromatographic column.

- Coupling two different chromatographic techniques (multidimensional

chromatography) [9-11].

- Using adequate detectors [12], like the diode array detector (DAD), the excitation-
emission fluorescence detector (EEMs) or the mass spectrometry detector (MS) and

selecting the detection channel in which the interferences have no contribution.

- Changing the chromatographic separation conditions: chromatographic column,

mobile phase composition, temperature, pressure, etc.

- Derivatizing, i.e.,, adding a component that reacts either with the analyte of

interest or the interference, before or after the chromatographic separation [13].

Most options require extra time and resources to achieve the adequate selectivity.
Moreover, some solutions (i.e., modifying the composition of the mobile phase)
may improve selectivity for the actual sample but do not prevent a new
interference in the next sample from coeluting with the analyte of interest. For
example, the optimal experimental conditions, in the determination of water
pollutants in samples from different sources, were found to be different for each

sample [14].
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Alternatively, the analyst may take advantage of the multiple measurements that
the DAD and MS detectors provide. These detectors are becoming commonplace in
the analytical laboratories and can record the spectrum of the effluent along time.
Hence, the chromatogram is represented by a data matrix, time x detection
channel. Such type of data is called second-order data, in contrast to the first-order
data (single absorbance measurement along time) or zero-order data (a single
absorbance measurement). Second-order data is often underused for quantitative
HPLC analysis: quantitation is performed by using only one channel of the
measured spectrum, and the spectral dimension is only used for qualitative

analysis (i.e., identification of the analyte).

In this thesis we focus our interest on using the full structure of the second-order
data matrix. With second-order calibration methods, the concentration of the
analytes of interest can be determined in an overlapped peak [15] and selective
data are not needed. This reduces the time and cost of the analyses since there is no

need to obtain selective data.

Concretely, we focus our attention on HPLC-DAD data and the Generalized Rank
Annihilation Method (GRAM) [16,17]. GRAM is a second-order calibration method
relatively simple and fast, which only requires a standard (calibration sample) to
quantify the analyte in a test sample. GRAM decomposes the two data matrices to
obtain: the chromatographic profiles, the spectra of the analytes and the relative
concentration for each component. Hence, with GRAM both quantitative and

qualitative information are obtained simultaneously.

For applying GRAM, the data from the measured standard and the measured test
sample must follow a certain mathematical structure, called trilinearity. Variation
in retention time and shape of the chromatographic profiles between different runs
and samples produce lack of fit in the data structure that leads to unacceptable
predictions. This is a reason why, despite its advantages, GRAM is difficult to use
in routine applications [18,19]. Hence, research must be directed towards obtaining
more reproducible data and correcting retention time mismatch when it occurs.

Another reason for not using GRAM is that the input from a trained analyst is
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needed. The analyst must indicate the number of systematic variations present
both in the peak of the standard and in the peak of the test sample. This is required
because GRAM is a calibration method based on latent variables (factors). Each
latent variable will account for a systematic source of variation in the measured
data. Normally, for each analyte present in an overlapped peak, a latent variable is
needed. Baseline changes along the peak due, for example, to the change in
composition of the mobile phase will also need of a latent variable to describe it.
Mathematical methods must be developed that help the analyst to identify the
correct number of factors. Finally, the routine application of GRAM requires an
adequate outlier detection system that should warn against possible biased

predictions due to the lack of fit of the data to the trilinear structure.

1.3 OBJECTIVES OF THE THESIS

The objective of this thesis is to develop new methods to help in detecting and
correcting the time shift, deciding the optimal number of factors, and detecting
outlying samples in GRAM. These improvements are directed to increase the
confidence and automation of the application of GRAM in HPLC-DAD analyses,
and hence, increase the speed and reduce the cost of these analyses. In other
words, these developments should help in obtaining more information from
HPLC-DAD data that are usually recorded but underused.

More specifically, we developed:

1) A retention time shift correction method to align the chromatographic
profile of the analyte of interest between different runs and samples. This
method is based on Iterative Target Transformation Factor Analysis
(ITTFA), which decomposes the peak in the profiles of its constituent

analytes.
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2)

3)

A graphical criterion to determine the number of factors for the GRAM

model based on an internal weighting parameter of the GRAM algorithm
(@)

Two criteria to check whether the measured data have the required
trilinear structure, and, hence, estimations are correct. One criterion is

based on «, and one criterion is based on the net analyte signal (NAS).

In addition,

4)

5)

We have applied GRAM to quantify water pollutants in environmental
water samples from the area of Tarragona (Spain). Specifically, GRAM was
used to determine aromatic sulfonates, pesticides and phenols in different

water samples from the area of Tarragona (Spain).

We have compared the GRAM estimations with the ones provided by
other second-order methods like Parallel Factor Analysis (PARAFAC) and
Multivariate Curve Resolution — Alternating Least Squares (MCR-ALS).

1.4 STRUCTURE OF THE THESIS

The thesis is based on the papers published in international journals. These papers

have been edited to give uniform format and uniform mathematical notation along

the thesis.

The contents have been structured in six chapters.

- Chapter 1. Introduction and objectives contains the introduction, objectives and

structure of the thesis.
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- Chapter 2. Second-order chromatographic data. Theoretical background. Section 2.2
describes the concept of zero-, first- and second-order data and the instruments
that generate them. Section 2.3 describes the mathematical structure that will be
assumed for second-order HPLC-DAD data. Section 2.4 introduces the theoretical
background of curve resolution methods [20]. These methods are mainly used for
qualitative analysis and for determining the purity of chromatographic peaks. The
Iterative Target Transformation Factor Analysis method is described since it is the
base of the method used for correcting the retention time shift developed in
Chapter 3. Section 2.5 introduces the second-order calibration methods and
Section 2.6 reviews the evolution of the Generalized Rank Annihilation Method
during the last twenty-five years, written as an extract of the paper, Generalized
Rank Annihilation Method, a tutorial, |. Ferré, N.M. Faber, E. Comas, F.X. Rius, ].
Chromatogr. A (to be submitted).

- Chapter 3. Practical aspects in the application of GRAM deals with three aspects that
must be considered to obtain accurate predictions using GRAM. Section 3.2 studies
the retention time shift between samples and runs. This is a common effect in
liquid chromatography that makes the GRAM estimations incorrect. The paper
Time shift correction in second-order liquid chromatographic data with iterative target
transformation factor analysis. E. Comas, R.A. Gimeno, |. Ferré, R.M. Marcé, F. Borrull,
F.X. Rius, Anal. Chim. Acta 470 (2002) 163-173, develops a method to correct the
retention time shift.

Section 3.3 studies the determination of the number of factors needed to build a
GRAM model. A new graphical method is presented in the paper: Graphical
criterion for assessing trilinearity and selecting the optimal number of factors in the
Generalized Rank Annihilation Method using liquid chromatography-diode array detection
data. E. Comas, |. Ferré, F.X. Rius, Anal. Chim. Acta 515 (2004) 23-30.

Finally, section 3.4 considers the detection of outlying samples. A new method to
detect outliers in GRAM, based on the Net Analyte Signal (NAS), is presented in
the paper: Outlier detection in the Generalized Rank Annihilation Method applied to
chromatographic data. E. Comas, ]. Ferré, F.X. Rius, Anal. Chem. Submitted.

A paper in preparation is also included, which compares two strategies to

determine the amount of noise in a second-order peak.
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- Chapter 4. Application of GRAM to the determination of water pollutants contains two
papers that show applications of GRAM in complex situations. In the first one,
Using second-order calibration to identify and quantify aromatic sulfonates in water by
high-performance liquid chromatography in the presence of coeluting interferences, E.
Comas, R. A. Gimeno, ]. Ferré, R.M. Marcé, F. Borrull, F.X. Rius, |. Chromatogr A 988
(2003) 277-284, GRAM is used to determine aromatic sulfonates with ion-pair
liquid chromatography. Due to the polarity of these compounds, the time required
for a complete chromatographic separation was large (more than 45 minutes). With
GRAM, the time of chromatographic separation was lower than 8 minutes, since a
complete separation was not necessary for quantification.

In the second paper, Quantification from highly drifted and overlapped peaks using
second-order calibration methods, E. Comas, R.A. Gimeno, |. Ferré, R.M. Marcé, F.
Borrull, F.X. Rius, J. Chromatogr A 1035 (2004) 195-202, GRAM was applied to
quantify peaks over a highly drifted baseline. The analytes of interest, pesticides
and phenols, eluted overlapped at a high band due to the humic and fulvic acids.
GRAM was also compared with two other second-order calibration methods:
Parallel Factor Analysis (PARAFAC) and Multivariate Curve Resolution -
Alternating Least Squares (MCR-ALS).

- Chapter 5. Conclusions contains the conclusions of the thesis. The advantages and
limitations of the proposed methodologies are discussed and suggestions for

further research are outlined.

- The Appendix contains the chemical structure of the studied compounds, the list
of the abbreviations used in the thesis and the list of papers and meeting

presentations given by the author during the period of development of this thesis.
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Theoretical background

2.1 INTRODUCTION

The aim of this chapter is to introduce the theoretical background of the methods
used in the thesis. Section 2.2 introduces the nomenclature that is used to classify
the data that can be obtained from an analytical instrument: zero-order, first-order
and second-order data. Section 2.3 introduces the bilinear decomposition. Sections
2.4 to 2.6 focus on the methods that use second-order data. Section 2.4 deals with
curve resolution methods that only use one sample and their objective is
qualitative analysis. Iterative Target Transformation Factor Analysis (ITTFA) is
described since it is used in Chapter 3 as a part of a method for correcting the time
shift. Section 2.5 deals with second-order calibration methods where the objective
is quantitative analysis. Of those, the Generalized Rank Annihilation Method
(GRAM) is explained and its evolution in the last twenty-five years is reviewed in
Section 2.6.

2.2 ZERO-, FIRST- AND SECOND-ORDER DATA

Sanchez and Kowalski [1,2] established a terminology to name and classify the
experimental measurements and the analytical instruments that generate them.
When a sample is analyzed, we can measure a single value (e.g., an absorbance at
one wavelength), a value over time (e.g., an absorbance over time, which gives a
chromatogram) or a series of values over time (e.g., a spectrum over time).
Mathematically, these data are arranged as a scalar, a vector or a matrix of values
respectively, which we will refer to as ‘zero-/, ‘first-* and ‘second-" order data. This
classification of the data is also applied to the analytical instruments that generate
them, and calibration methods that use these data. Table 1 shows examples of

some instruments that generate these types of data.
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Table 1. Nomenclature of analytical data and instruments.

Data Data is Data type Instrument
order arranged as a
Zero Scalar Absorbance at one wavelength Colorimeter
Voltage pH meter
First Vector Chromatogram GC-FID
UV/Vis / NIR spectrum UV/Vis / NIR
spectrophotometer
Second Matrix Spectrochromatogram HPLC-DAD, GC-MS
Spectra from a kinetic study Spectrophometer measuring
over time
Two-dimensional LC X LC, GC X GC,
chromatogram LC X GC

Figure 1 represents the different orders of data. Lower-order data can also be
obtained from higher-order instruments. For example, in the chromatographic
peak of Figure 1 (second-order data), a slice at a given wavelength gives the
chromatogram (first-order data). In turn, we normally only use the height or area

of that chromatographic peak (zero-order data) for quantification.

1.2 . 1.1... 7.3
4.5 . 9.0... 0.1
3.2 [1.1...9.0... 2.2]
3.2 area
units
Order 0 Order 1 Order 2

Figure 1. Representation of the different orders of the data.
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When the order of the data increases, the cost of the technique and the complexity
of the mathematical / statistical data processing also increase. However, the
following benefits are obtained: (i) we can detect if other components (interferents)
also contribute to the measured signal, and (ii) we can quantify the analyte of
interest in the presence of those interferences, by mathematically deconvolving the

signal [3,4]. Table 2 summarizes these abilities.

Table 2. Capabilities of data of different orders.

Data Detection of Quantification in the presence of Common type of
order interferences non-calibrated interferences calibration
Zero No No Univaritate linear
regression
First Yes No Multivariate
calibration
Second Yes Yes Second-order
calibration

To benefit from first and second-order data, the mathematical algorithms must be
able to work with that data structure. Measuring a second-order peak like the one
shown in Figure 1, but using the time and wavelength dimensions separately, will

not enable us to make predictions in the presence of uncalibrated interferences.

A way of dealing with interferences is using first-order data and model the
interferences. For this, we need: (i) a series of standards with a known
concentration of the analyte of interest, in which the interferences are also present,
and (ii) measure, for both the standards and the test sample, at least as many
instrumental responses as interferents contribute to the signal. The use of first-
order data to build calibration models is known as multivariate calibration. This
type of calibration is widely used with spectroscopic data [5]. In chromatographic
analysis, the chromatogram also constitutes first-order data. Unfortunately,

obtaining reliable chromatograms to perform multivariate calibration is quite
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difficult because of the lack of reproducibility in retention times from sample to

sample.

When a test sample contains an interferent that was not considered in the
standards, a multivariate model will lately give biased predictions of the
concentration of the analyte of interest (like in univariate calibration). However,
unlike with zero-order data, we can detect the presence of the non-calibrated
interference, either visually (e.g., if the peak of the analyte of interest has one
shoulder, maybe an interferent is eluting with the analyte) or using more complex
diagnostics [5]. But we cannot know what effect the interference had on the
prediction and, therefore, we cannot correct the inaccurate prediction. With

second-order calibration this limitation is overcome.

With second-order data we can predict the concentration of an analyte in a sample
even in the presence of unknown interferents which were not present in the
calibration standards. This useful property is called ‘second-order advantage’ [3].
In addition to the improved quantitative information, a second-order
chromatogram can also be used to obtain qualitative information, such as whether
the peak is pure. If the peak is not pure, we can calculate the number of
compounds present in the mixture and, with the help of standards or a reference

library, identify them.

Notation

Throughout this thesis, bold uppercase letters indicate matrices (second-order
data), e.g. A; bold lowercase letters indicate vectors (first-order data), e.g. a; italic
uppercase letters indicate scalars (zero-order data), e.g. A [6,7]. Transposition of a
matrix or vector is symbolized by a superscripted “T’, e.g. AT. For a given matrix A,
the matrices A1 and A*stand for its inverse and pseudoinverse, respectively. In full
rank matrices A* = (ATA)1AT.
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2.3 BILINEARITY
2.3.1 Bilinear data

Second-order data is produced by instruments that give a matrix of responses for
each analyzed sample. Such matrices are obtained by measuring a multivariate
response over the variation of a certain magnitude. The response matrix of a pure
compound (an individual component, analyte k) R« is bilinear if it can be expressed
as an outer product of two vectors, representing the compound responses in each

of the two orders:
Ri = hxy«" = dixcyx” (1)

The scale of hx and y« is arbitrary. If they are scaled so that xxy«" is the component
response at unitary concentration, then dk is the concentration of the analyte.
Alternatively, both xk and yx can be normalized to length one. Then, dkis a scale
factor that is proportional to the concentration. To the extent that the experimental
noise can be neglected, Rk has rank one (which is called the pseudo-rank or
chemical rank). For some instrumentation the pseudo-rank of a measurement can
be assessed a priori, e.g., LC-UV usually gives a pseudo-rank 1 response per
analyte due to the specific properties of the LC and UV instruments. In the
equations bellow, the noise term has been omitted for simplicity. Table 3 shows

examples of such instruments and the measurements of both orders.

Table 3. Techniques that produce bilinear data.

Technique order 1 (xx) order2 (yx)
Fluorescence Spectral profile Spectral profile
emission/excitation

GC-IR, LC-UV, HPLC-DAD, Elution profile Spectral profile
FIA-DAD etc. (absorbance spectrum)

HPLC-MS, GC-MS Elution profile Spectral profile

(mass spectrum)

GC x GC Elution profile Elution profile
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C2. Second-order chromatographic data

Focusing the attention on HPLC-DAD, the measured chromatogram is a large
second-order data matrix. From it, the zone where the analyte of interest elutes
(sometimes overlapped with interferents) is selected (matrix R of dimensions Ji
retention times x ]2 wavelengths). If this matrix corresponds to a calibration
standard or a test sample, it will be designated Rc and R: respectively. Sometimes
the location of the peak is undetermined and wider or narrower zones can be
selected by different users. In chapter 3, we will see that choosing the exact zone is

desirable but not critical when algorithms based on second-order data are used.

2.3.2 Bilinear decomposition

In most cases, the peak of the test sample R: is a mixture of K analytes, each one
contributing as in Eq 1. The objective of the bilinear decomposition is to

decompose Rt as a linear combination of the contribution of each of the K analytes:

Re= hiy ™ = HYT ()

K
k=1
where H (J1 x K) and Y (J2 x K) contain the column and row profiles of Rt with a
chemical meaning (e.g., elution profile and spectra respectively for HPLC-DAD
data). H and Y may also contain the profile of a varying baseline, which can be

treated as an analyte.

Eq 2 has two unknowns (H and Y). Hence, the decomposition of Rt is subject to
ambiguities [8], i.e., Rt can be reproduced by using response profiles differing in
shape (rotational ambiguity) or in magnitude (intensity ambiguity) from the (true)
ones sought, leading to a range of feasible bands [9,10]. Chemical knowledge about
the system being studied can improve the mathematical solution and reduce the
number of feasible solutions. This knowledge is introduced as constraints on the
possible solutions [11]. The typical constraints in chromatography are the non-

negativity of the chromatographic profiles and spectra, and the unimodality (only
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one maximum) of the chromatographic profiles. Other constraints have been

developed recently regarding the concept of local rank [11], closure [12], etc.

Another way of reducing the number of possible solutions in Eq 2 is to add new
equations based on the responses of calibration samples and solve the system of
equations simultaneously. Hence, the decomposition of Eq 2 can be achieved by
using either R: alone or R: together with some calibration samples. Generally, the
methods that only use R: are called curve resolution methods. These methods
provide qualitative information, such as the chromatographic profiles of the
analytes in the peak and their spectra. When more than one sample is used,
quantitative information can also be obtained, provided that the reference values in

these other samples are known.

H and Y can be determined, basically, either by (i) decomposing Rt in factors, and
transforming them to H and Y, or (ii) by the iteratively improving initial estimation
of Hand Y.

i) Decomposition of Ry, via the singular value decomposition (SVD)

A liner combination of H and Y can be estimated by applying SVD [13]:

R:=USVT 3)

where the normalized columns of U (J1 x K) span the same space as the columns of
R;, the normalized columns of V (J2 x K) span the same space as the rows of R, and
S is a K x K diagonal matrix of scaling factors (in non-increasing order) called
singular values. U, V, and S have been truncated to include only the K significant
factors. For an HPLC-DAD peak, the columns of U are linear combinations of the

real elution profiles and the columns of V are linear combinations of the spectra.
H and Y can be determined from U, V and S by:
i.1) Projecting target vectors onto the space spanned by the columns of U. The

Iterative Target Transformation Factor Analysis (ITTFA) [14-17] uses the SVD to

span the vectorial space of the profiles. Then, a target vector is successively
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projected and modified until it is explained by the vectorial space of the profiles.
Such a modified vector will likely correspond to a chromatographic profile of one
of the analytes in R:.. Once the chromatographic profiles of all the analytes in the

peak (H) have been estimated, Y is estimated by solving Eq 2 via least squares.

i.2) Rotating U, V and S through an appropriate transformation matrix T:

H=UST
YT=TIVT 4)

In this case, the problem of finding the right profiles is reduced to obtaining T. This
is the approach used in GRAM [18], for which several formulas exist. Eq 3 is used
when the analytes included in the calibration standard are also included in Re. A
more general formulation decomposes the matrix Q = R¢+ o Re by SVD, in order to
span the space of all the analytes in both the calibration and the test sample (see
Section 2.6).

i.3) Finding pure component regions. Evolving Factor Analysis (EFA) [19-22]
and its variants [23-27] use this approach. Briefly, those methods apply SVD to
different parts of the peak, changing the size of the time window considered and
studying the evolution of the eigenvalues (the squares of the singular values in Eq
3). From those methods, the evolution of the system can be found out. Eq 2 can be

solved if there selective regions exist where only one analyte is present.

ii) Use initial estimations of the profiles H or Y. In these approaches Eq 2 is solved
by least squares and constraints are applied to every iteration to improve H and Y
successively. Examples are the calibration methods Parallel Factor Analysis
(PARAFAC) [28] and Multivariate Curve Resolution — Alternating Least Squares
(MCR-ALS) [29,30].

The next section gives a short overview of the curve resolution methods that only

use R since one of them, ITTFA, is used in this thesis. The last section gives an
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overview of the second-order calibration methods, which use Rt and one or more
calibration sample. Since GRAM is the calibration method used in this thesis, it is

fully explained in section 2.6.

2.4 CURVE RESOLUTION METHODS

Some curve resolution methods work with first-order data, i.e., the chromatogram
measured at only one wavelength. These approaches include the application of
neural networks [31], genetic algorithms [32], differential signal detection [33] and
the use of sets of equations that model the chromatographic peak [34,35]. The main
limitation of these methods is that they must assume the number of analytes in
each peak and the shape of the chromatographic profiles. Meyer [36,37] discussed
how to measure the area of a peak that elute overlapped with an interference in
different experimental situations. However, these situations were limited to

overlapped peaks that only contain the analyte of interest and one interference.

The problem of curve resolution can be treated in a more effective way using
second-order data and ‘Self-modeling curve resolution’ (SMCR) methods.
[11,38,39]. These methods are powerful approaches whose ultimate goal is to
determine the number of components in an overlapped chromatographic peak as
well as the spectrum and chromatographic profile of each compound, without

assumptions regarding peak shape, location, or identity [40].

Some reviews explain the state-of-the-art of curve resolution methods [11,38].
These methods have been extensively used in many industries, and especially in
the pharmaceutical industry [41-47], for example, to determine the presence of

impurities in drugs.
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2.4.1 Iterative Target Transformation Factor Analysis (ITTFA)

ITTFA is the curve resolution method used in the retention time shift correction

method developed in section 3.2. The ITTFA algorithm has four main steps:

Step 1) Singular value decomposition (SVD) of the overlapped peak under study
R-.

R.=USVT ®)
Step 2) Estimation of the number of components in the peak and their position.

2.1 Ui is designed as containing only the first column of U.

2.2 A normalized target vector Xwarget with the shape of a chromatographic
profile is proposed. Possible shapes are Gaussian peaks of different size, needle
peaks [48] and triangular peaks.

2.3 Xurget is projected into the space described by the column of Ut:

Xprojected = U:UT Xtarget (6)
2.4 The norm of the difference of both vectors is calculated as:
d= | Xprojected — Xtarget I (7)
When xtarget is described by the column of Ui, Xprojected Will be similar to Xtarget and the
difference d will be small. Then Xtarget will be representative of the peak of one of the

analytes in Rt. If Xtarget is far from the real one, d will be larger.

2.5. Different Xtarget are tested, in different positions along the time axis. For

each Xwrget Steps 2.3 and 2.4 are repeated.

2.6.1- d is represented as a function of the position of the maximum of Xtarget

(see Figure 2).
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Figure 2. Steps 2.3 to 2.6 when Rt contains two analytes and two factors are considered. In
case (a) Xtrget is not well explained by U, whereas in case (b) Xtarget is almost fully explained
by U.

2.7. Steps 2.3 to 2.6 are repeated considering 2, 3, etc, columns of U: Uz, Us,
etc. For each number of factors considered, 1- d is represented against the position
of Xtrget. Each maximum suggests a location of the peak of one analyte. The optimal
number of factors A is the one when the number of maxima does not increase
when the number of factors is increased by one. Then, the number of factors

corresponds to the number of components in the peak, and the positions of the
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maxima indicate the approximate situation of the maxima of the chromatographic

profiles.

Step 3) Determination of the chromatographic profiles H.

3.1 A matrix Ua is created where the number of columns is the number of
factors A determined in Step 2, and the profile Xurget that corresponds to the

estimated position of the peak of the analyte is selected.

3.2 Xtarget is projected onto the space spanned by the columns of Ua.

Xprojected = UaUaT Xtarget (8)

Xprojected 1S @ tentative chromatographic profile of one of the analytes. It will
probably have negative values and more than one maximum, which is not the

expected shape for a chromatographic profile.

3.3 Non-negativity and unimodality constraints are applied to obtain

Xprojected, constrained.

3.4 Xprojected, constrained 15 considered as a new Xurget in Eq 8. Steps 3.2 and 3.3 are
repeated again until d = || Xprojected, constrained — Xtarget | is small enough, i.e., the
algorithm converges. After convergence, Xprojected corresponds to the

chromatographic profile of one analyte.

3.5 Steps 3.2 — 3.4 are repeated for each analyte whose position was
determined in Step 2. For each analyte a chromatographic profile is found. All the
profiles are arranged in H.

Step 4) Determination of the spectra Y by solving Eq 2:

Y = (H* R)T )
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2.5 SECOND-ORDER CALIBRATION METHODS

The objective of second-order calibration methods is quantitative. They relate the
response variables to the variation of the concentration of the analytes of interest.
They use one or more calibration samples and the test sample, in which the
concentration is unknown [49-55]. GRAM only needs one calibration sample, while
other methods like PARAFAC and MCR-ALS can use several calibration samples.
Figure 3 shows how the data are arranged in GRAM, PARAFAC and MCR-ALS.
The data in GRAM and PARAFAC are arranged in cubes whereas in MCR-ALS,
the data are structured as an augmented matrix. Although the first goal of MCR-
ALS is qualitative analysis (curve resolution), the concentration of unknown
samples can be determined from the height or the area of the resolved
chromatographic profiles. GRAM, PARAFAC and MCR-ALS also provide
qualitative information, which is necessary in order to identify the profile of the
analyte of interest. Other methods like n-PLS [54], do not provide qualitative

information.

GRAM MCR-ALS

Test sample
Calibration sample

Test sample

e d -
Calibration
sample 3
PARAFAC
Calibration
sample 2
Calibration sample 1 Calibration
sample 1
Calibration sample 2
Calibration sample 3 -

ay

Test sample

Figure 3. Data arrangement in GRAM, PARAFAC and MCR-ALS. Each slide represents a

second-order data matrix (e.g. a second-order chromatographic peak).
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GRAM is the method used in this thesis. The next section contains a review of
GRAM and its applications, as well as some experimental aspects that must be

taken into account to obtain accurate predictions with GRAM.

2.6 GENERALIZED RANK ANNIHILATION METHOD®

The Generalized Rank Annihilation Method (GRAM) stands behind a calibration
and curve resolution method that has periodically received attention in analytical
chemistry in the last twenty-five years. GRAM is one of the few calibration
methods that have been developed within the Chemometrics field. Bruce
Kowalski, one the authors, considered GRAM as one of the most important

achievements in his career [56].

2.6.1 Theory

Rank annihilation factor analysis (RAFA)

GRAM is based on rank annihilation. Rank annihilation (RA), also called rank
annihilation factor analysis (RAFA) [57], was developed by Ho et al. [58]. The
principle behind RAFA is that if Eq 2 is followed, the contribution of the analyte of
interest to the rank is one. Hence, if we iteratively subtract different amounts of the

response of the analyte Rc from Re, when the chemical rank of

E(g) = Re— gRe (10)

" (extracted from the paper: ‘Generalized Rank Annihilation Method, a tutorial’
J. Ferré, N.M. Faber, E. Comas, F.X. Rius

to be submitted to Journal of Chromatography A)
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is reduced by one, (i.e, rank(Rt — gRc) = rank(R:) — 1 = K- 1), then g is the
concentration of the analyte k in Rt relative to its concentration in R, i.e., = ckt/cke.
In practice, the eigenvalues of EET are monitored for different values of q. The
decrease in the rank is indicated by one of the eigenvalues approaching zero. The
eigenvalue does not become exactly zero because of errors in the data. Hence,
RAFA can estimate the concentration of an analyte in a sample of unknown matrix
composition using only the measured response of a pure standard of known
concentration (Rc) or its best rank one approximation [59]. However, RAFA does

not yield the profiles H and Y of the K analytes in R

The original RAFA involved an iterative refinement to obtain a precise estimation
of the concentration. Norgaard and Ridder [60] used the modified Simplex method
for finding it. Lorber [61] showed that the reduction in rank could be expressed as
a generalized eigenvalue problem and thus the solution could be found directly by
SVD. In this method, Rc must contain only one component. Later, Lorber [62]
extended the applicability of RAFA to cases in which R. of a single component is

characterized by a rank greater than one.

The Generalized rank annihilation method (GRAM)

The RAFA method can only quantitate a single analyte at a time. Ho et al. [63]
presented the simultaneous multicomponent rank annihilation (SMRA), which
generalized the RA procedure to allow the simultaneous computation of the
concentrations of all known components. Sanchez and Kowalski [18] generalized
Lorber’s method into the generalized rank annihilation factor analysis (GRAFA)
(later called generalized rank annihilation method, GRAM) in which several

components could be present/absent in both the calibration and the test samples.

In GRAM, only two samples are needed: Rc and Rt The GRAM algorithm has five

main steps:

1) Addition of Rc and Re:

Q=uRc+Ri 11)
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The columns and rows of Q span the vectorial space of the spectra and
chromatographic profiles of the analytes.

The weighting factor o was introduced by Faber et al. [64] to estimate and correct
the possible bias of the predictions. The original derivation of GRAM considers o. =
1, and this has been used along this thesis expect in the paper in section 3.3, in
which a is used to determine the number of factors in GRAM. For simplicity, we

consider o =1 in the equations below.

2) SVD of Q:

Q=USVT+E (12)

U, V, and S are truncated for the number of factors selected to calculate the model.

3) Resolution of the eigenvalue equation:

(STUTRWV) T = T® (13)

where T is the matrix of the eigenvectors and @ is the diagonal matrix of the

eigenvalues.

4) Reconstruction of the chromatographic profiles and spectra

H=UST (14)
Y=VT!

This step is necessary to identify the analyte of interest. The comparison of the
predicted spectra Y with the spectra measured in standards is used to identify the
analyte of interest. H and Y contain all the profiles of all the components present
both in Rc and Re. In the appendix it can be seen that R. and R: can be written as a

combination of Hand Y.
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5) Determination of the predicted concentration of the analyte of interest k.

— Kok (15)

where @, is the diagonal element of @ regarding the analyte of interest, and C_,

is the concentration of the analyte of interest in the calibration standard.

Appendix 1 shows the deduction of Eq 13.

2.6.2 Practical considerations for applying GRAM

To confidently apply GRAM, the data in Rc and Rt must be trilinear. Some
experimental aspects can introduce non-liniearities to the data, which makes the
GRAM predictions wrong. This section reviews the model assumptions, possible

violations and methods for solving them.
Model assumptions
The correct quantification with RAFA and GRAM requires the data to follow these
prerequisites:
- The response matrix of a pure compound must be bilinear, i.e. Eq 1.
- The signals from the different analytes are additive.
- The bilinear data matrices of the standard and the unknown mixture as a

group must also be trilinear, i.e.,, the pure analyte response at unit

concentration has the same form in both samples.

45



C2. Second-order chromatographic data

- The columns of H (and also Y) must be linearly independent. This means
that, for HPLC-DAD data, if the spectra or elution profiles of overlapped

components are identical, GRAM cannot find a solution.

- The ratio of concentrations calibration/unknown must be different for the
target analytes (i.e., cok/ctk # cojlctj for every k # j). Otherwise, the

components are not correctly resolved.

- The total number of unique component signals in the sample and standard

data matrices cannot exceed the smallest dimension of the data matrices.

Violation of model assumptions

Same ratio of concentrations calibration/unknown

The calibration standard in GRAM can be either a pure standard of known
concentration or and aliquot of the unknown sample with an added known
concentration of analyte (standard addition). The standard addition approach
(spiked samples) is usually preferred [65,66] since this ensures that two
components do not have the same ratio of concentrations between samples.
However, this situation of same ratio of concentrations is hardly found in real

samples.

Retention time and peak shape irreproducibilities

To give correct predictions, GRAM requires the profiles in H and Y of the analytes
of interest be the same both in Rc and Rt This means that, for example, for HPLC-
DAD data, the retention times and peak shapes for these analytes must be identical
in the two samples. However, analyses of hyphenated chromatographic/spectral
data sets often contain retention time and peak shape irreproducibilities [67],
especially when gradient elution programs are used [65]. The match in analyte’s
peak shape and width can be maximized by eliminating chemical matrix effects
through standard addition [68,69].
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Some authors have addressed the problem of chromatographic retention time
precision for second order chromatographic data [70-72]. These methods are

commented in the section 3.2 of the thesis.

Pseudo-rank higher than one and not rank linear additivity.

When the pseudo-rank of a pure analyte response is not one, or the rank linear
additivity does not hold (such in a described FIA system [73]), RAFA and GRAM
do not work well. Rank linear additivity means that if analyte 1 gives a rank r1
response and analyte two a rank r2 response, then the mixture of the two analytes
gives a rank r1 + r2 response. The direct generalization of GRAM for situations
with pure analyte responses of pseudo-rank higher than 1 is Nonbilinear Rank
Annihilation (NBRA) [74,75]. Quantification is still possible, but resolving
individual profiles is not possible. Both GRAM and NBRA break down if the rank
linear additivity property does not hold. A mathematical treatment of the
properties of GRAM, NBRA and the relation to rank linear additivity is given by
Kiers and Smilde [76]. Several methods have been described for complicated
second-order calibration, that is, cases where the rank 1 property and perhaps even
rank linear additivity do not hold. One of these methods is multivariate curve
resolution (MCR) with restrictions. Another method uses restricted Tucker3

models to calibrate the complicated second-order system [77].

Determination of rank
GRAM requires an input estimate of the number of components present both in R
and R.. The different ways to determine the number of factors are developed in

section 3.3 of the thesis.

While GRAM fails if the number of components considered is less than the actual
number, in the literature there is no agreement about if a number larger than the
optimal number has a negative influence in the predictions. Wilson et al. [74]
found that the concentration estimates obtained for the analytes of interest via a
variation of the GRAM algorithm are not very sensitive to the inclusion of a few
additional factors. As long as sufficient factors are included to describe the

responses of all the analytes, the computation of the concentration estimates is
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stable. Later, Li et al. [65] found these conclusions to be true for simulated data and
real data. In those cases, Li et al. [78] found that standard addition experiments can
be especially useful for selecting the proper number of principal components. The
difference in recoveries can be used as a criterion for estimating the number of
principal components to be used. For the ternary mixture of EEM, Frenich et al.
[69] did not found a significant influence of the number of factors (between 3 to 5)

on the estimated spectral profiles.

Complex-valued solution to eigenvalue problem

GRAM can yield complex eigenvalues and eigenvectors. Faber et al. [79]
commented the possibilities of obtaining complex eigensolutions and degenerate
eigensolutions. They also showed that complex solutions should not arise for
components present in both samples if the data follow the assumed linear additive
model. In case they arise, Li et al. [65] showed an improvement to the GRAM
algorithm that uses two similarity transformations for eliminating the imaginary

part in the eigenvalues and eigenvectors when they are obtained.

2.6.3 Applications of GRAM

The main benefit for the analytical chemist is that GRAM allows quantifying an
analyte in a sample without knowing the identity or amount of the other
components (interferents) that also contribute to the instrumental response. This
advantage has different readings. In chromatography, this property involves that
GRAM can mathematically resolve and quantify partially resolved peaks. Since the
compounds do not need to be completely separated from the interferences, sample
preparation procedures can be simpler and run times can be shorter [65,68] than
the ones based on univariate calibration. Moreover, with GRAM the quantification
can be carried out with only one calibration sample (a pure standard or a spiked
sample). In this context, GRAM has been applied to the chromatographic analysis
of a variety of clinical and environmental samples. In HPLC-DAD data GRAM
could accurately predict spectra and concentrations of components that are totally

overlapped such as drugs of abuse in clinical samples [68,78] or polycyclic
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aromatic hydrocarbons (PAHs) in water samples [66] among others [80,81]. It has
also found applications on gas chromatography-selected-ion monitoring GC/GC-
SIM [82], comprehensive GCxGC data [83] and bimodal HPLC-DAD data of
polycyclic aromatic hydrocarbons in which data were acquired from two different
chromatographic systems simultaneously and combined to form one data matrix
[84]. Gross et al. [85] used GRAM for prediction in parallel column liquid
chromatography with a single multi-wavelength absorbance detector. Fraga et al.
[68] used GRAM for the high-speed quantitative analysis of aromatic isomers in a
jet fuel sample using comprehensive two-dimensional gas chromatography (GC x
GC) using the standard addition method and an objective retention time alignment
algorithm. Fraga et al. [86] evaluated the theoretical enhancement provided by
application of the GRAM for the analysis of unresolved peaks in comprehensive 2-
D separations. They concluded that the use of GRAM should increase the number
of analyzable peaks for all forms of comprehensive 2-D separations.

GRAM has also been applied to excitation-emission fluorescence spectroscopy.
Frenich et al. [69] used GRAM for the resolution and quantitation of ternary
mixture of pesticides with overlapped spectra. They illustrated its application in

the analysis of real water samples containing the target pesticides.

RAFA, a predecessor of GRAM, has been applied to solve a variety of problems,
both in excitation-emission fluorescence [58,59], LC/UV data [57], thin Layer
Chromatography-reflectance imaging spectrophotometry [87] and flow injection
analysis (FIA) system with a pH gradient [60]. RAFA was used for
spectrophotometric study of complex formation equilibriums [88] with different
complexation stoichiometries and spectral overlapping of involved components
and also for determination of rate constants from two-way kinetic-spectral data
[89].

Windig and Antalek [90,91] developed a modification of GRAM, which they called
direct exponential curve resolution algorithm (DECRA), in which the data set from
one single experiment is used to build the two data sets needed in GRAM. Only
one experiment is needed when the contribution of the components in the mixture
spectra is of a decaying exponential character. DECRA was used with pulsed

gradient spin echo (PGSE) nuclear magnetic resonance (NMR) data and
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ultraviolet/visible data [91-93]. DECRA has also been used for rapid estimation of
rate constants wusing on-line short-wavelength near-infrared (SW-NIR)
measurements [94] and UV-vis spectra [95] when the contribution of the different

species in the mixture spectra is of exponentially decaying character [96].

Appendix 1. Deduction of the GRAM equations.

If Re and R: are bilinear, they can be written as the outer product of the
chromatographic profiles at unit concentration (X), times the concentration, times
the normalized spectra (Y). Then the sum matrix in Eq 11 can be written as

(considering a=1):

Q = Re + Ri = XCoYT + XCiYT = X(C+Cy) YT = HYT (16)

where H are the ‘real’ elution profiles and Y the ‘real’ spectra. H and Y contain the
profiles of all the analytes present in both matrices (Rc and Rr). Cc and C: are
diagonal matrices that contain the relative concentration for the different analytes
in Rc and Re If one analyte is not present in Rc or Ry, its corresponding element in

C. or Ctis zero.

The calibration and test samples can also be expressed in terms of H and Y:

Re=HIY'
R-H® Y (17)

where IT= (Cc + Ci)"' Cc and @ = (Cc + Ct)? Ce. It can be seen that IT + @ = I (identity

matrix):

Q = Rc+ R = HITYT + HOYT = H(II+®)YT = HYT (18)

The goal of GRAM is to find H and Y. The space spanned by the rows and columns
of Q is found via SVD of Q.
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Q=USVT+E (seeEq12)

A transformation matrix (T) must be found that converts the abstract profiles into

the real ones:

USTT'VT=HY"

Hence

H= UST
YT = T-VT = V(T
If we isolate @ from Eq 17, we find

HR(YT)' = D

where

H = (UST)* = T1§1UT
(YT)* = (T-VT) = VT

updating Eq 21

TIS1UTRVT = @
(SIUTRV) T = T®

(19)

(20)

21

(22)

(23)
(24)

which is an eigenvalue equation , where (STU™R{V) is a square matrix K x K, T is

the matrix of eigenvectors and @ the matrix of eigenvalues.

The analyte of interest is identified by spectral comparison of Y and the spectra

measured in standards. The predicted concentration in the test sample (ctk) can be

found from the kn diagonal element of @ :

(25)
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The predicted concentration of the analyte ctk is found as

_DCei (26)
YT 1-®,

Alternatively, the eigenvalue problem equation can be solved using R. instead of

using Re:
T'SURVT =11 (27)
(S'URV) T=TII (28)

where the predicted concentration corresponds to:

m oo G (29)
Cex T Cix
and
_c,0-m) (30)
tk =
IT,
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Chapter 3

Practical aspects in the
application of GRAM







Alignment of chromatographic peaks

3.1 INTRODUCTION

This chapter considers three aspects that must be taken into account in order to
obtain accurate predictions with GRAM: (i) the alignment of chromatographic
peaks, (ii) the selection of the number of factors to build the model and, (iii) the
detection of outliers. The research developed to solve these aspects is presented as
published papers. A paper in preparation is also included, which compares two
strategies to determine the amount of noise in a chromatographic peak. This is
needed in the outlier detection method. For simplicity, each section contains its

own references.

3.2 ALIGNMENT OF CHROMATOGRAPHIC PEAKS

3.2.1 Introduction

To obtain acceptable predictions with GRAM, the analyte of interest must elute at
the same retention time in the calibration and in the test sample [1-2]. In the cases
studied in this thesis, the retention times varied a few seconds between different
samples and runs. This difference was large enough to make the GRAM
predictions incorrect. In the case described on page 70, a time shift of 2 seconds
lead to prediction errors of 30%. This prediction error is also affected by the degree

of overlap of the analyte of interest with interferences (section 3.4).

Several methods tackle the problem of peak alignment [3-8] in chromatography.
This problem can also be encountered in other techniques and methodologies, like
the optimization of batch processes [9-12] for which own methods for solving time

shift between repetitions have been developed.

3.2.2 Experimental aspects that cause retention time shift
The main experimental aspects that can bring about retention time shift in HPLC
are [13]:

1) Changes in the mobile phase composition caused by temperature and

pressure fluctuations, variations in flow-rate and gradient dispersion.
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2) Imprecise injection.
3) Degradation of the stationary phase.

4) Column overloading due to the over-injected amount or some components

with a high concentration.

5) Possible interaction between analytes.

3.2.3 Detection and correction of the retention time shift

If the peaks of the calibration and test samples are pure, time shift can be detected
by visually comparing the position of the maximum of each peak. In overlapped
peaks, the chromatographic profile of the analyte of interest is unknown and the
observed maximum corresponds to the sum of the analyte and the interference

(Figure 4). Hence, visual inspection is not accurate enough to correct the time shift.

Calibration

Test

Observed: shifted non-shifted
Reality: non-shifted shifted

Figure 4. Visual inspection cannot detect time shift in overlapped peaks.
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The methods available solve the time shift problem by selecting a time window for
the peak of the calibration standard (Rc) and different time windows for the peak
of the test sample (R:). Then, an appropriate criterion is used to indicate in what

particular Rt the underlying elution profiles are aligned with those in Re.

One criterion is to examine the elution profiles estimated by GRAM. Provided that
the number of factors is correct, negative parts in the estimated profiles might
indicate retention time shift. In which case, different time windows are tested for R
until the shape of the profiles is as expected. However, sometimes these negative
parts may not be significant. Even, small retention time shifts may not produce

negative parts. Hence, this criterion is not accurate enough to detect time shift.

A second criterion is based on Bessel’s inequality [14]. R: is selected for different
windows in the chromatogram. At each position, the SVD of Rt is calculated, to
obtain the column space (spanned by the columns of U). A pure chromatographic
profile from the calibration sample is projected on the column space and Bessel's
inequality is calculated. Several positions are tested until the maximum in Besse’l
inequality is found. In the non-shifted position, the U matrix fully explains the
chromatographic profile of the calibration sample, i.e., the profile of the calibration
sample is included in the test sample. When retention time shift exists, the pure
chromatographic profile is not explained by the U space, and there is not such
agreement. The major limitation of this method is that the pure chromatographic
profile from a pure standard is needed. Moreover, this method may be influenced

by the noise in the profile of the standard.

A third criterion, developed by Prazen et al. [15,16], consists of building an
augmented matrix by adding column-wise the calibration sample and the test
sample. This is repeated for different time windows of R.. The SVD of each
augmented matrix is calculated and the singular values are studied by calculating
the percentage of residual variance [15]. When the peaks are aligned, one singular
value is associated to one analyte. When the peaks are not aligned, more singular

values are needed. The percentage of residual variance for each singular value is
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represented against the time shift. When the peaks are aligned a minimum appears

in the curve (Figure 5).

This method has been extensively used [17,18] and it is implemented in
commercial software [19]. It works smoothly when the calibration peak is pure.
However, when the calibration peak contains several analytes, which are also
present in the test sample, several minima can appear (one for each analyte) that
may lead to confusion. For example, in the paper presented in the section 3.2.6, the
calibration sample contained two analytes, and when one analyte was aligned, the

other was misaligned and vice versa.

b)

% residual variance

Shift

Figure 5. Representation of Prazen’s time shift correction algorithm. Rc is a pure peak and R: contains
the analyte of interest plus an interference. (a) The analyte of interest (---) is shifted, and two singular
values are needed to describe the analyte, plus one for the interference. (b) The analyte is aligned, hence

one singular value describes the analyte, plus one for the interference.
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3.2.4 A new method for correcting the time shift

We developed a method based on ITTFA (section 2.4.1). Both Rc and R: are
decomposed via ITTFA. The peak of the analyte of interest is identified in Rc and Rt
and a time window is selected in Rt so that the peak in Rc and Rt is aligned. The
advantage of this method is that the calibration peak can contain more than one
analyte and that the correction is selectively done for the analyte of interest. This

work is published in the paper shown in section 3.2.6.
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3.2.6 Paper
E. Comas, R.A. Gimeno, J. Ferré, R.M. Marcé, E. Borrull, F.X. Rius
Time shift correction in second-order liquid chromatographic data with iterative

target transformation factor analysis
Analytica Chimica Acta 470 (2002) 163
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Time shift correction in second-order liquid
chromatographic data with iterative target transformation

factor analysis

Enric Comas, R. Ana Gimeno, Joan Ferré, Rosa M. Marcé

Francesc Borrull, F. Xavier Rius

Department of Analytical and Organic Chemistry, Rovira i Virgili University
Pl. Imperial Tarraco 1, 43005, Tarragona, Spain

ABSTRACT

When the generalized rank annihilation method (GRAM) is applied to liquid
chromatographic data with diode-array detection, an important problem is the
time shift of the peak of the analyte in the test sample. This problem leads to
erroneous predictions. This time shift can be corrected if a time window is selected
so that the chromatographic profile of the analyte in the test sample is trilinear
with the peak of the analyte in the calibration sample. In this paper we present a
new method to determine when this condition is met. This method is based on the
curve resolution with iterative target transformation factor analysis (ITTFA). The
calibration and test matrices are independently decomposed into profiles and
spectra, and aligned before GRAM is applied. Here we study two situations: first,
when the calibration matrix has one analyte and second, when it has two analytes.
When the calibration matrix has two analytes, we selectively determine the time
window for the analyte to be quantified. There were considerably fewer prediction

errors after correction.

Keywords: HPLC, Time shift, ITTFA, Time window, Selectivity, GRAM
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1. INTRODUCTION

With high performance liquid chromatography (HPLC), we can separate and
quantify many analytes in a sample in one single analysis. Despite the great effort
involved in optimizing the chromatographic conditions of the separation with
standard solutions, new test samples, especially natural samples, such as river
water, may contain unknown compounds that may overlap with the analytes of
interest. Modifying the parameters of the chromatographic method to avoid such
interference can be very costly and time consuming, and it is not always the best
choice if it has to be done for each new test sample. The necessary selectivity,
without the complete separation of the interferences, can be mathematically
achieved by calibrating with second-order data. This type of data can be obtained,
for instance, by HPLC with diode array detection (DAD). A matrix of responses is
obtained for each chromatographic peak by recording the spectrum of the eluting

compounds at each retention time.

Of the second-order calibration algorithms that allow quantification in the
presence of non-calibrated components (known as the ‘second-order’ advantage)
[1], the generalized rank annihilation method (GRAM) [2] requires only two
matrices: one from the calibration sample (either a pure standard or a real sample
with known concentration of the analyte) and one from the test sample. This makes
GRAM a very useful quantification method for chromatographic data when the
number of analyses is important. However, GRAM has a serious limitation in
routine chromatographic analysis: the data matrices containing the peak of the
analyte in the calibration sample and in the test sample must be trilinear [3, 4], i.e.
the chromatographic profiles of the analytes of interest in the test sample and in
the calibration sample must be proportional. This means that in both samples the
analyte must elute at the same time, which is not so common in practice because
imprecision in injection timing, fluctuations in temperature and changes in flow
rate introduce time shifts in the peaks. Although other calibration methods that are
robust to time shift have been developed [5, 6], GRAM has been widely studied [4,
7-11]. Expressions are available for calculating figures of merit [12], such as
sensitivity, selectivity and limit of detection, as well as for removing the bias in the

predictions and calculating the variance of the predicted concentrations [13].
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Some algorithms have been developed to correct the time shift in second-order
data by selecting the right time window for the test matrix [14-16]. The crucial
point is to define the criterion that indicates when the profiles of the analyte of
interest in the two matrices coincide. Prazen et al. [14] used the calibration sample
matrix augmented with the peak of the test sample. The eigenvalues of the
augmented matrix were calculated and plotted for different time windows of the
test sample. A minimum in the plot indicates the optimal window. This method
gives unique solutions when the calibration sample is a pure peak, i.e. the standard
of the analyte of interest. However, when the peak of interest in the calibration
matrix overlaps with others also present in the test matrix, such as when the
calibration sample is the spiked test sample, it may show more than one minimum

and indeterminations may appear.

This paper presents a new method for correcting the time shift of second-order
HPLCDAD data, based on the curve resolution of the peaks. We use it to
determine the concentration of three polycyclic aromatic hydrocarbons, whose

peaks elute overlapped in the chromatographic analysis, from a mixture.

2. THEORY

2.1. Notation

Boldface uppercase letters represent matrices, e.g. A; italic letters represent scalars,

e.g. a; superscript "T' represents transposition.

2.2. Correction procedure

When GRAM is applied to HPLC'DAD data, it is assumed that the JixJ> matrices of
measured responses of the calibration (Rc) and test (Rt) samples can be expressed

as:

Rc = XCCYT + Ec (1)
Re=XC:YT+ Et (2)
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where the columns of X (/1xK) and Y (J2xK) are the normalized profiles and the
normalized spectra, respectively, K the total number of constituents in both
matrices, Cc and C: are KxK diagonal matrices of concentration-related scale
factors, and Ec and E: are error matrices. J1 is the number of spectra in the time
window where the analyte of interest is included, and it is determined for the

calibration sample.

In the method we propose, iterative target transformation factor analysis (ITTFA)
[17-19] is used to decompose each individual matrix into the profiles and spectra of
the analytes. In this case, the test matrix Rerwz (JitwexJ2) (the subscript "TW2'
indicates that this is not the same matrix as Rt in Eq 2 is initially selected from the
chromatogram so that its time window is arbitrarily wider than for the calibration
matrix R, i.e. Jitw2>[1. This ensures that Rytw2 includes the peak of the analyte to be

quantified. Then Rc and Rymw2 are individually decomposed with ITTFA:

Re= HCYCT + Ec (3)
Rerwe= HeY(T+ Egtw2 4)

where the columns of He (J1xK) and He (J1:xK:) are not normalized profiles and a
different number of analytes may be found for each matrix. Then, He and H: are
plotted and the profile of the analyte of interest is identified by comparing the
calculated spectra Yc and Yt with the spectrum of the pure analyte. The maximum
of each profile is separated by At time steps. The final Rt (J1x]2) is selected starting
at an elution time that is At from the starting elution time of R.. This correction
improves the trilinearity of the data and GRAM can be applied with more

guarantees.
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3. EXPERIMENTAL SECTION

3.1. Chemicals and samples

We studied three analytes: (A) Benzo[b]fluoranthene, from Aldrich Chemie (Beere,
Belgium); (B) benzo[k]fluoranthene, from Fluka (Buchs, Switzerland) and (C)
benzo[a]pyrene, from Sigma (Alcobendas, Spain), all with a purity of over 98%.
Standard solutions of each compound at a concentration of 500 mgl! were
prepared in HPLC-gradient grade acetonitrile (SDS, Peypen, France) and stored at
4 °C. All the working solutions used in this study were prepared by dilution. We
analyzed standards of each analyte, as well as mixtures of two components (A+B)
and three components (A+B+C). These working solutions contained the

compounds at a concentration of 1 mg 1.

3.2. Instrumental

We used an HP1100 series HPLC system (Agilent technologies, Waldbronn,
Germany) for the analysis. This consisted of a degasser, a binary pump, an oven, a
diode-array detector (DAD) and a manual injector with a 20 pl-loop. The
chromatographic column was a 15cm x 0.46 cm Eclipse XDB-C8 with a 5 um
particle size (Hewlett-Packard, Barcelona, Spain). Acetonitrile was the mobile
phase. This was delivered at a flow rate of 1.5mlmin? and the column

temperature was 40 °C.

For detection, the spectra were recorded between 220 and 300 nm, every 0.4 nm. A
spectrum was collected every 0.4 s, i.e. five spectra were measured every 2 s. Data
were recorded from 0 to 2min. In these conditions, the analytes eluted

approximately from 1.29 to 1.55 min (from 77 to 93 s).

In routine analysis of natural samples, it is not unusual for the analyte of interest to
coelute with interferences. Since the samples used here were synthetic, we created
the necessary data by selecting the chromatographic conditions so that the analytes
eluted overlapped. Although overlapping was forced, the time shift between the
successive analyses was not created artificially and was the result of repeated

injections.
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3.3. Software

The GRAM routine belongs to the N-way toolbox of R. Bro and C. Andersson and
was downloaded from their website [20]. The ITTFA algorithm and the shift

correction algorithm were made in house subroutines for MATLAB version 6 [21].

3.4. Data analysis

Our objectives were to quantify B in the test mixture A+B, using the standard of
analyte B as a calibration sample, and to quantify B in the test mixture A+B+C
using either the standard of analyte B or the mixture A+B as a calibration sample.
In this second case, we also determined the concentration of A. We analyzed each

sample three times to estimate the variability of the experiment.

We considered two time windows. Time window TW1 was from 1.29 to 1.55 min
(from 77 to 93 s) and was always used for Rc (i.e. Ji=40). Time window TW2 was

wider from 1.25 to 1.60 min (from 74 to 96 s) and was used for Retwz (i.e. J1tw2=50).

In the three situations we studied, we first applied GRAM to the measured data
using time window TW1 for both Rc and for R, which is the desired calibration
situation. We then selected Ritw2 with time window TW2 and corrected the time
shift. We then applied GRAM for the test matrix that had been corrected. We
validate the method by analyzing the improvement in the prediction errors and by
comparing the spectra and chromatographic profiles calculated with GRAM with
real ones from the pure standards. We also show the results of quantification using
the areas of the peaks obtained with ITTFA, which is insensitive to time shift (since

each matrix is tackled separately).
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4. RESULTS AND DISCUSSION

Fig. 1 shows the measured chromatographic profiles of the three pure analytes (A,
B and C), of a mixture of two components (A+B) and of a mixture of three
components (A+B+C) at the interval described by time window TW1. The selected
wavelength (254 nm) is the usual one for determining these analytes [22]. The
analytes in the eluted mixtures overlapped from the chromatographic column. This
lack of resolution cannot be avoided by selecting a different wavelength, since the

three analytes absorb at all the recorded wavelengths (see Fig. 2).

45

351
=)
£
= 25
o
c
©
2
o
(7]
<
15|

Time (min)

Fig. 1. Chromatographic profiles measured at 254 nm. (. . .) Individual standards (A,
B, C); (- - -) mixture A+B; (-) mixture A+B+C. The concentration of each

analyte is 1 mg 1" in all samples.
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4.1. Quantification of B in the mixture A + B using standard B as a calibration

matrix

Fig. 3 shows the calibration matrix (standard B, Rc) and the test matrix (mixture
A+B, Ri) in TW1 conditions. The overlap in Rt makes it difficult to identify the

position of the analyte of interest (B) and difficult to detect and correct any time
shift.
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Fig. 3. Measured matrices, (a) calibration sample Ro (B); (b) test sample Rt (A+B) in TW1 conditions.

Fig. 4 shows the chromatographic profiles of analyte B calculated by ITTFA for Rc
and the profiles of A and B calculated for Ritwz2. The profiles were assigned to the
analytes by comparing the calculated spectra with the spectrum of the standard
(the correlation coefficient in all cases was higher that 0.99). We can see that the
profile of the analyte B in Rytw: is shifted in At=1 time steps to a higher time than B
in Re. Therefore, we finally selected matrix Rt from the chromatogram starting at
one time step shifted in relation to TW1. In this way, the maximum of the profile
for analyte B in the test matrix (thick dashed line) calculated with ITTFA coincides

with that in the calibration matrix.
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Fig. 4. (-) ITTFA calculated profile of B in the calibration matrix (Rc) before time shift correction;
(...) ITTFA calculated profiles of A and B in the prediction matrix (Rytw2); (- - - - - ) ITTFA

calculated profiles of A and B in the test matrix after the time shift correction (Rt corrected).

Table 1 shows the relative percentage error in the concentration predicted by
GRAM applied to the data before shift correction (BSC) (conditions TW1 for Rec and
Ry), and applied to the shift-corrected data (SC) for three repeated measurements of
the mixture A+B. As expected, the errors always decreased after shift correction.
The improvement was greater when the measured peaks were shifted two time
steps (repetition number 3). After the correction procedure, the calculated error in
the three cases was of the same magnitude as the variability in the different

repetitions.
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Table 1. Relative percentage error in the GRAM prediction of analyte B in the mixtures A+B and

A+B+C using standard B as a calibration sample

Mixture | Repetition | % error At % error SC % error
(test BSC ITTFA
sample)
A+B 1 1.7 1 0.2 2.7
2 1.8 1 0.2 1.9
3 3.2 2 0.4 1.8
A+B+C 1 59 1 1.2 3.4
2 6.5 2 0.2 3.4
3 6.5 1 0.9 0.3

At: time shift (number of units) determined by ITTFA; BSC: data before shift correction; SC: shift
corrected data; % Error ITTFA: quantification using the areas calculated by ITTFA.

4.2. Quantification of B in the mixture A + B + C using standard B as a calibration

matrix

Table 1 also shows the results of predicting B in the mixture A+B+C. Initially, the
prediction errors were as high as 6.5%. This was mainly because the peaks of the
analytes overlapped a great deal, and small differences in the time shift produced
large errors in GRAM. The ITTFA results show that the shift was only 0.4 s (one
time step), which shows that the sensitivity of GRAM to the shift in the data is
significant. The prediction errors dropped to as low as 0.2% after the right time

window for Rt was determined.

With curve resolution methods, we can also quantify the analyte of interest from
the area of the resolved peaks [23]. To do this, we compared the areas under the
profiles calculated by ITTFA with the areas for the pure standards. Here, time shift
was not a disadvantage because the two samples were dealt separately. In this
case, we considered TW1 conditions for both Rc and R:. The results are also shown
in Table 1. For the mixture A+B, the prediction errors were of the same magnitude
as those obtained when we applied GRAM before correcting the time shift. For the
mixture A+B+C they were not so high, but they were still higher than the errors for
GRAM after the time shift had been corrected. These results may be due to the fact
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that ITTFA is not a calibration method but a curve resolution method with
rotational and scale indeterminations. Moreover, the exact profiles cannot always
be satisfactorily calculated by ITTFA, because the shape of the peak, and therefore
its area, varies according to the number of factors used for ITTFA, and because the
different resolution of the peaks affects the value of the area. The low error for
repetition number 3 (0.3) was attributed to chance. All of these problems restrict

correct quantification by the ITTFA calculated profiles.

4.3. Quantification of A and B in the sample A + B + C using sample A + B as a

calibration matrix

As well as calibrating with the pure standard, we can also use GRAM to quantify
several coeluting analytes of the test sample in the same analysis with a calibration

matrix that also contains all the analytes to be quantified.

Time shift correction when the calibration matrix has several coeluting analytes
that are also present in the test sample is more difficult than in the previous
situation because the relative retention time between the analytes may vary
slightly from one sample to another. In this case, the shift can be corrected for each
individual analyte. The next example shows that with ITTFA, only the analyte of
interest can be corrected. The calibration matrix contains analytes A+B. The test
matrix contains analytes A+B+C, where A and B must be quantified and C is

interference.

Table 2 shows the error in the predicted concentrations for three repetitions of the
calibration sample and two repetitions of the test sample. In all cases, the results
were significantly repetitive. The difference was due to random effects, such as
noise or variance in the overlap of the test analytes. When we applied GRAM to
the matrices in TW1 conditions for Rc and Ry, the prediction error was up to 6.5%
for analyte A and up to 20.4% for analyte B. The large error for analyte B shows
that the data do not follow (1) and (2). When the time shift correction was applied
for analyte A, we detected no shift between the different matrices. We were unable,
therefore, to improve the predictions with GRAM, so they are not shown here. For
analyte B, the shift was detected by ITTFA and, once the difference in the elution

time was corrected, the percentage of prediction error dropped to around 4%.
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However, the error in the concentration of A increased to 30%. This shows that a
global correction is not possible and the correction has to be done for each analyte.
It also shows that when one profile is aligned, the other is misaligned because the

matrix is ‘moved'.

Table 2. Relative percentage error in the GRAM prediction of A and B in a mixture A+B+C using

mixture A+B as a calibration sample

BSC Corrected B
Calibration | prediction A B At A B
sample sample (% (% (% error) (% error)
(number of | (number of | error) error)
repetition) repetition)
1 1 3.9 13.5 1 11.3 4.2
2 6.3 20.4 2 23.1 0.1
2 1 45 18.0 2 26.0 2.3
2 6.5 9.0 2 30.2 6.0
3 1 0.4 16.3 3 33.1 44
2 4.6 8.5 3 259 3.6

At: time shift (number of units) determined by ITTFA; BSC: data before shift correction.

We validated these results by comparing the chromatographic profiles and the
spectra calculated by GRAM before and after the time shift correction. The
chromatographic profile of analyte B calculated with GRAM (Fig. 5a) had a notable
negative part, which is impossible for this type of analysis. This suggests that the
data do not follow the trilinear model assumed by GRAM. One important reason
for this is the time shift of the peaks of Rt with respect to Rc. The calculated
spectrum of B (Fig. 5b) was also quite different from the spectrum of the standard
(Fig. 2). Fig. 5c and d show the chromatographic profiles and the spectra after the
shift has been corrected. Now the profile for analyte B has only one maximum and
no negative part, which is the expected shape for this kind of data. The calculated
spectrum was also like the measured spectrum from pure B. The negative part
observed for the chromatographic profile of analyte A was due to the fact that this
peak was misaligned when analyte B was corrected for the time shift. This agrees
with the large errors for A. These results show that the shift for each analyte to be
quantified needs to be corrected before GRAM is applied.
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The success of the method will depend on the ability of ITTFA for decomposing
the data matrix according to Eq. (3). Problems can arise when the peak of the
analyte of interest is either highly overlapped with or embedded in the peaks of
the interferences and its response is relatively low compared to the response of the
interferences. In addition, high collinearities between the spectra of the analytes

will make the identification of the analyte of interest more ambiguous.
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Fig. 5. Chromatographic profiles and spectra calculated with GRAM. Before shift

correction (a and b), and after shift correction (c and d).

83



C3. Practical aspects and developed algorithms

©

@

=)

<

£

[0}

2

8

5]

2

<

-40 1.35 1.42 1.48 1.55
Time (min)

=)

<

E

(v}

o

=

®
2

o

173
e}
<

0.1 L 1 | |
220 240 260 280 300

Wavelength (nm)

Fig. 5. (Continued)

84



Anal. Chim. Acta 470 (2002) 163-173

5. CONCLUSIONS

We present a time shift correction method for second-order liquid
chromatographic data based on determining the right time window. The correction
is made after the calibration and test matrix are individually decomposed by
ITTFA. This method can selectively correct the analyte of interest, thus making the
corrected results more precise. Although it may not completely correct the lack of
trilinearity, it can improve it so that prediction errors are lower. Variations of this
procedure could be based on other curve resolution methods, which also

decompose the individual matrices into profiles and spectra.
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3.3 SELECTION OF THE NUMBER OF FACTORS

3.3.1. Bibliographic revision
GRAM requires the number of factors to be specified. This number will be the
number of columns in the calculated matrices of the elution profiles (H) and

spectra (Y).

A factor (or latent variable), as used in first-order and second-order calibration, is a
variable made by linearly combining variables [1-3]. Such a linear combination
describes a systematic variation in the chromatographic peak caused by an eluting

analyte or a baseline change.

Several methods have been developed to determine the number of factors to be
used in second-order calibration methods. Some authors studied the lack of fit in
the PARAFAC model when it was unfolded in the different directions, and
different number of factors were considered [4-6]. Dable and Booksh [7] tested
different kinds of noise distribution to determine the number of factors.
Malinowski [3] developed statistical tests, like the F-test, to determine the number
of significant factors from the SVD decomposition. The number of factors can also
be found by checking the lack of fit of the reconstructed data from the GRAM
estimations and the measured data. However, no direct information about the
analyte of interest is obtained. The general fit may be unacceptable, but the fit
exclusive for the analyte of interest be sufficient. This is the case, for example when
one interferent is in both the calibration and the test sample, and the interference is
not trilinear, whereas the analyte of interest is trilinear. In this case, GRAM
predicts correctly, despite of the significant difference between the reconstructed
data from the GRAM predictions and the measured data.

Gerritsen et al. [8] used the correlation of the estimated profiles hi and y: with

library profiles hx and y« as a criterion:

K
S= Z [ corr (h; hi)? + corr (yi, yx)?]
K=

1
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where corr(-) is the correlation coefficient between the two vectors and hxand yrare
the concentration profile and UV spectrum of compound k that can be obtained, for
example, from the HPLC-UV data of a single component. The number of principal

components is the one that gives the highest value of S.

3.3.2 Graphical criterion to determine the number of factors in GRAM

Faber et al. [9] used a weight parameter (o) in the GRAM algorithm in order to
calculate and correct the bias in the predictions. We can use this parameter for
selecting the number of factors.

When the peaks are correctly aligned (i.e., trilinear data) and the right number of
factors is selected, all the GRAM models with a different value of o will predict the
same concentration for the test sample. However, when trilinearity is not fulfilled
or the number of factors is not correct, GRAM yields different predictions when o
varies. This trend can be followed graphically, representing the evolution of the
predictions for different number of factors and different values of a. This is shown

in the paper in section 3.3.4.
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3.3.4 Paper

Graphical criterion for assessing trilinearity and selecting the optimal number of
factors in the generalized rank annihilation method using liquid chromatography-
diode array detection data

E. Comas, J. Ferré, F.X. Rius

Analytica Chimica Acta 515 (2004) 23-30
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Graphical criterion for assessing trilinearity and selecting
the optimal number of factors in the generalized rank
annihilation method using liquid chromatography-diode

array detection data

Enric Comas, Joan Ferré, F. Xavier Rius

Department of Analytical and Organic Chemistry. Rovira i Virgili University
Pl. Imperial Tarraco 1, 43005, Tarragona, Spain

ABSTRACT

A weight parameter (o) was introduced into the Generalized Rank Annihilation
Method (GRAM) to calculate and reduce the bias in the predicted concentration.
Here we show that a can be used as an indicator to determine whether the
trilinearity assumptions are met and to select the right number of factors to
calculate the model.

The procedure is to calculate several GRAM models by varying a and the number
of factors. When the experimental data are trilinear and the right number of factors
is used, o does not affect the predicted concentration. If the condition of trilinearity
is not met or the correct number of factors is not used, the predicted concentration
changes when o changes. A graph shows this behavior.

Both simulated and real data were checked for trilinearity. Deviations from the
ideal mathematical model, such as the time shift or different shape of the
chromatographic profiles, were simulated. These parameters have an effect but the

greatest effect was produced by the selection of the number of factors.

Keywords: GRAM, Trilinearity, Number of factors, Weight parameter, Graphical

criterion.
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1. INTRODUCTION

In the analysis of environmental and biological samples by high performance
liquid chromatography (HPLC), the compound to be quantified sometimes elutes
overlapped with interferences. There are two main ways to properly quantify this
compound. One is to change the chromatographic conditions. This implies
spending time and resources because it must be done for that specific analyte in
that specific sample, and not always successful results are obtained. Moreover, the
new optimized conditions may not be suitable for another sample that may contain
a different interferent. Another way is to use second-order calibration methods to

quantify overlapped peaks.

Second-order calibration uses second-order data, which can be easily obtained by
using an HPLC-diode array detector (DAD) instrument. A spectrum is measured
at each retention time and a matrix of responses is therefore obtained for each

analyzed peak.

The special features of the generalized rank annihilation method (GRAM) [1-3]
make it a particularly suitable method for extracting information from this kind of
data. Only two samples, a calibration sample and a test sample, are required. The
calibration sample peak can be one of the standards used in the optimization of the
chromatographic process. The test sample peak is the already measured,
overlapped one, so more experimental work is not needed. Also, in comparison
with other second-order calibration methods, figures of merit such as the

sensitivity and the limit of detection can be easily calculated [4,5].

However, GRAM has some mathematical requirements before proper
quantification can be carried out. Firstly, and most importantly, the data must
follow a trilinear model (see Section 2). Experimental factors such as the time shift
and the variation in the shape of the profiles introduce non-trilinearities into the
data. Secondly, a suitable number of factors must be selected in order to calculate
the predictions. This number is related to the number of analytes in both peaks and
it is required to separate the signal into the systematic part of the data, described

by the model, and the random part included in the residuals.
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Several methods have been proposed to determine the number of factors in
second-order calibration [6-10]. These algorithms are mainly applied to the parallel
factor analysis (PARAFAC) model, where more than two samples are used. In
brief, they study the change of fit in the model used (for example, PARAFAC)
when different models are tested by considering different subsets (split-half
analysis) or when the structure of the data is unfolded or not. In Ref. [10], the
number of factors is set after different kinds of noise structure are added to the
data.

Here we present a graphical criterion for checking the trilinearity of the data and
choosing the right number of factors for the GRAM model. Faber et al. [5]
introduced a weight parameter (a) into the algorithm to determine the bias and
figures of merit. a has no effect in the predicted concentration only if the data are
trilinear and a suitable number of factors is used. By studying the variation in the
predicted concentration when calculating several GRAM models for several values
of a and numbers of factors, we obtain an indication of the trilinearity of the data.
If the predicted concentration depends on the value of a, GRAM produces
misleading results. Some solutions will be reported to act in this case.

We will use simulated HPLC-DAD data to show how different experimental
aspects affect the results of GRAM and how they are detected by varying o. We
will study the influence of the high level of noise, the time shift and the different

shape of the profiles. Finally, we will test a real case.

2. THEORY

In the following discussion, we will use the following conventions: bold uppercase
letters to indicate matrices, e.g. A; italic uppercase letters to indicate scalars, e.g. A;

and superscript T to indicate transposition.

The GRAM equations can be found elsewhere [1,11]. As a summary, GRAM only
requires two samples, the calibration sample peak (Rc) and the test sample peak
(Ry). Each peak is decomposed as a product of three matrices, corresponding to the
chromatographic profiles (X), the relative concentration (C) and the spectra (Y).

There is also a term for the error (E):
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Re=XCcYT+E, Re=XC:Y+E )

This decomposition is called trilinear and assumes that the response at each time-
wavelength in Rc and Rt is the addition of the individual response of each analyte
at this time-wavelength. X and Y are the same for the decomposition of Rc and Rt.
This implies that the profile and the spectra are the same (same position and same

size). The only difference is due to the concentration.

The decomposition is done by solving an eigenvalue problem in which the
eigenvectors are related to the profiles (chromatographic and spectral) and the

eigenvalues are related to the concentrations.

Fig. 1 shows this decomposition. GRAM is both a calibration method and a curve

resolution method, i.e. both quantitative and qualitative information is obtained.
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Fig. 1. GRAM decomposition of the calibration sample peak (Rc) and the test sample peak (Rt) into
chromatographic profiles (X), spectra (Y) and relative concentration (C). The number of factors, in this

case, is 3.
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In order to decompose Rc and Rt according to Eq. (1), Faber et al. [5] weighted the

calibration sample peak as

Q=R:+oRc @)

where the eigenvalue problem is solved on Q. We can use a to calculate and

correct the bias in the prediction and to calculate figure of merit.

The concentration in the test sample peak (¢, ) is calculated as

= ®

where ¢, is the concentration of the analyte k in the calibration sample peak and

I1, is the corresponding eigenvalue.

When the data follow the trilinear model and the right number of factors is

selected, the value of a has no influence on ¢,, because it is compensated by the

value of II, . In this case, GRAM predicts correctly [11-12].

Therefore, trilinearity can be checked by studying whether ¢, changes when o

varies.

Several experimental aspects can affect the GRAM decomposition (Eq. (1)). One of
these is the time shift between the profiles, i.e. the profile of the analyte of interest
does not elute at exactly the same retention time in both peaks. Another is the
different shape of the chromatographic profiles in both samples. Other aspects that
can affect the decomposition are the noise or the complexity of the overlapped

peak.
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3. EXPERIMENTAL

3.1. Simulated data

The calibration sample peak and the test sample peak were simulated following
Eq. (1). The chromatographic peaks (X) were assumed to be Gaussian with 30 data
points. The spectra (Y) were taken from the study of Zscheile et al. [13] and

correspond to the analysis of ribonucleic acids.

For simplicity, in all the experiments it was considered that Rc only contained a
standard of the analyte of interest and R: contained the same analyte plus an
interferent. The concentration of the analyte of interest in Rc and Rt was 1 ppm.
Several aspects that can be found in practical chromatographic analysis were
studied. Table 1 summarizes the different experiments. Indicated for R. and Rt are
the maximum of the chromatographic peak (center) (different maxima indicate
time shift); the width (o) of the profile measured as the standard deviation of the
Gaussian peak (a different value involves a different shape); the noise, expressed as
percent of the maximum response of the matrix and the number of factors tested

for each experiment.
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Table 1. Parameters for the simulated data

Experiment | Matrix Analyte of Interference | % Noise | Factors Studied
interest Effect
Center o Center | O
1 R. 15 4 - - 1 2 Trilinearity
Rt 15 4 10 3
2 R. 15 4 - - 1 1
Rt 15 4 10 3
3 R. 15 4 - - 5 1,2,3 Noise
Rt 15 4 10 3
4 R. 15 4 - - 20 12,3
R: 15 4 10 3
5 R. 15 4 - - 1 1,23 Time shift
R: 14 4 10 3
6 R. 15 4 - - 1 1,23
Rt 16 4 10 3
7 R 15 4 - - 1 1,2,3 Shape
R: 15 5 10 3
8 Rc 15 4 - - 1 1,2,3
R: 15 3 10 3

For each experiment the maximum (center) and the standard deviation of the chromatographic profiles

in Rc and Ry, the percent of white noise added to the data, the number of factors tested and the studied

effect are indicated. Differences are written in bold.
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Fig. 2 shows the cases we studied. We can see the effects of the time shift, the noise
and the different shape. For simplicity, only the analyte of interest at one

wavelength is depicted. In practice we have a matrix and interferents.

Time shift

Time sensor

Noise Different shape

Time sensor Time sensor

Fig. 2. Different aspects that can affect trilinearity. For simplicity the profiles are only depicted at one

wavelength.
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3.2. Aromatic sulfonates

Aromatic sulfonates are widely used in the dye and tannery industries. Their
toxicology is not yet defined but their high solubility in water makes it very
difficult for them to be removed from the wastewater and they are thought to have

a contaminant effect.

The experimental chromatographic conditions for determining aromatic sulfonates
are described in Ref. [11]. We studied one aromatic sulfonate: the 6-amino-4-
hydroxy-2-naftalensulfonate. Fig. 3 shows the chromatographic profile measured

at 230 nm and the peak containing the analyte of interest.

025 | C ‘ SO3H
HoN
OH
Analyte of interest
015 |
2
o
2
£
o
3 0.05 |
<
0
L L L |
1 4 7 10

Time (min)

Fig. 3. Chromatographic profile of the water sample containing aromatic sulfonates measured at

230 nm. The peak of the analyte of interest is indicated.
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In both the simulated and the real data, the predicted concentration was calculated
by changing the value of o for each number of factors. GRAM was tested for
different numbers of factors, from 1 to 3 in simulated data, and from 1 to 4 in the
real aromatic sulfonates data. As a rule of thumb, the value of o should be around
the value of ¢t / cc in order to test both the cases where Rt has more weight than R
and vice versa. Here, in all cases, the value of a was from 0.1 to 3, in 0.1 steps, i.e.

we calculated 30 different models for each factor.

3.3. Software

All calculations were done using in-house subroutines for MATLAB [14] version 6.
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4. RESULTS AND DISCUSSION

4.1. Simulated data

Table 2 summarizes the mean predicted concentration and its range of variation,

expressed as the relative variation (%) with respect to the mean value, for the 30

models calculated by varying o. The variation is the difference between the

maximum value and the minimum value.

Table 2. Results for the simulated data

Experiment | Optimal number of Ct Range of Effect
factors variation (%)
1 2 0.99 0.02 Trilinear , optimal number of
factors
2 1 2.80 45.6 Trilinear, underfitting
3 2 0.99 0.5 5 % noise
4 2 1.04 6.5 20 % noise
5 2 1.09 47 Shift -
6 2 0.87 2.8 Shift +
7 2 0.94 2.2 o +1
8 2 1.08 2.8 o -1

For each experiment the optimal number of factors, the mean predicted concentration (ct) and its range

of variation along the 30 GRAM models (%) are indicated. The last column indicates which effect was

studied at each experiment.
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4.1.1. Trilinear data (Experiments 1 and 2)

Here the data were trilinear because the chromatographic profiles in both matrices
were proportional, i.e. they eluted at the same retention time and had the same
shape. Fig. 4 shows the predicted concentration against the value of o for 1 and 2
factors. When the data were trilinear and the right number of factors was selected,
the predicted concentration hardly varied in all the tested models (Experiment 1),
i.e. the value of a did not influence the predictions. The horizontal line in the plot
for two factors suggests that the data are trilinear and the correct number of factors

is two. This gives confidence to the concentration predicted by GRAM.
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Fig. 4. Predicted concentration by GRAM (Experiments 1-4). Effect of the noise and the wrong selection

of the number of factors.

When the number of factors was 1 (underfitting), the predicted concentration
depended on the value of o, even though the data followed the trilinear model.
Wrongly selecting the number of factors strongly affected the predicted

concentrations and led to wrong predictions.
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Once we have assessed that we can confidently apply GRAM to this data using
two factors, we can select the optimum value of a (cwpt). The calculation of aopt has
a meaning only when the trilinearity has already been assessed as before. As we
can see in Fig. 4, the value of a did not change the predicted concentration.

However, it did affect the variance and the bias of the predicted concentration.

The value of owpt is calculated by an iterative process [5]. First a GRAM model is
calculated with ci=1, and a ¢ is predicted. A new o is calculated as o2 = cc / c
Another GRAM model is then performed with the new value of a and a new « is

predicted. This process is done iteratively until convergence.

In all the simulations in this study without the presence of noise, the theoretical
value of a was 1. In experiment 1 the calculated owpt was 1.002, which was very

close to the real value.

The following sections take into account the different deviations from trilinearity

that may be found in chromatographic analyses.

4.1.2. Presence of high noise (Experiments 3 and 4)

The greater the increase in white noise in the data, the greater the change in the
predicted concentration values. We carried out tests with several levels of noise up
to 20%. Fig. 4 shows the results when we considered two factors (which is the
optimal value). Strong dependence on the predicted concentration was observed
when the noise level reached 20%. In our experience, 20% of noise is seldom found
in this kind of analysis (see Fig. 2) unless the concentration of the analyte is at the
limit of detection. The influence of the noise was low because the singular value
decomposition step in GRAM situated the noise in the factors that are not used for

prediction.

However, it is important to note that this variation (about 6%; see Table 2) was
much smaller than the one produced by wrongly selecting the number of factors
(about 45%). Notice the scale of Fig. 4.
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4.1.3. Time shift (Experiments 5 and 6)

The cases where the peak of the analyte of interest in R« is shifted to the left (shift —,
in Table 2) and to the right (shift +, in Table 2) are shown. In practice this
represents a shift of only 0.8 s (see the experimental section of [15]). Time shift is
common in HPLC. It is due to imprecisions in injection timing, fluctuations in
temperature and changes in the flow rate. Fig. 5 plots the predicted concentration
against o when 1-3 factors were considered. In all cases, dependency was
observed. The variations were greatest when 1 and 3 factors (wrong values) were
considered. The plot shows that the data were not perfectly trilinear, and that the
predictions will have a wider variability if the GRAM model is used.

1 Factor

090l 3 Factors

0.88 -

Predicted concentration (ppm)

2 Factors

0.86 -

0.5 1 1.5 2 25 3

Fig. 5. Predicted concentration by GRAM. Effect of the time shift when 1-3 factors are considered. In all

cases, a dependence on a is observed.

Fig. 5 is especially useful because in overlapped peaks the time shift cannot be
detected and corrected just by plotting the peak. This is because what is observed
is not the individual response, but the sum of the profiles of the different analytes
in the peak. It is therefore recommended that existing algorithms be applied to
correct the time shift [15-16] before GRAM is applied.
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4.1.4. Different shape of the chromatographic profiles (Experiments 7 and 8)

The chromatographic profiles of the analyte of interest in Rc and R: must be
proportional. In practice, the shape may be different if the composition of the
matrix is different. Table 2 shows that shape has an effect, since the predicted
concentration depends on oo when the shape varies. The standard addition method

is recommended for reducing this effect.

From the results in Table 2 we can conclude that although these effects influence
the predictions, the results are often still useful for practical analysis because the
variability introduced in the results is often acceptable. This shows that when the
data are not completely trilinear, GRAM can still provide useful results. More
shifted profiles (for instance by 4s) or a bigger difference in shape produce

misleading results.

Other factors can make it impossible to decompose Eq. (1): for example, when the
spectra of the different analytes are very collinear or when the experimental data
are rank deficient. This method shows that the data are not trilinear and by
correcting the possible shift or doing standard addictions the variations are still
observed. In this case, GRAM is not useful for quantifying and other methods that
can handle non-linear data, such as MCR-ALS or Tucker3 [17-18], should be used.

4.2. Aromatic sulfonates data

GRAM was first applied to the peaks when the same time window for the
calibration sample and the test sample was used. GRAM was tested from 1 to 4
factors. Fig. 6 shows the change in the predicted concentration for different values
of a and different numbers of factors. The large change in the predicted
concentration with o for all the tested factors suggests that the measured data are
not suitable for GRAM. For two factors, which is the one with the least variation,

the mean concentration was 0.23 ppm, but the range of variation was 11%.
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Fig. 6. Predicted concentration by GRAM for the raw aromatic sulfonates data.

Before excluding the use of GRAM, we checked for time shift in the profiles. We
used a previously developed algorithm [15] and found this effect. The algorithm
selected a time window in Rt so that the maximum of the chromatographic profile

of the analyte of interest coincided with the maximum of the profile in R..

After correcting the time shift, the plot of the predicted concentration versus a
showed significantly better results than when the data not corrected for the time
shift were used (see Fig. 7). When two factors were used, the concentration hardly
changed with different values of a. This suggests that the data follow the trilinear
model and the results obtained from GRAM are reliable. The mean concentration

was 0.23 ppm and the range of variation was 1%.
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Fig. 7. Predicted concentration by GRAM for the aromatic sulfonates data after correcting the time shift

of the chromatographic profile of the analyte of interest in the test sample peak.

If the number of factors was wrongly selected (1 or 3), the variation was around
50%.

As this data set had been used in a previous study, we knew that the real
concentration of the analyte was 0.24 + 0.1 ppm. This was determined by univariate
calibration after the complete resolution of the peak (tedious experimental work).
As we can see in Fig. 7, the value predicted by GRAM fully agreed with the one

obtained by univariate calibration. Here the value of copt was 1.64.

5. CONCLUSIONS

GRAM is a second-order calibration method that can extract information from

overlapped peaks in HPLC-DAD data. However, the data must satisfy certain

107



C3. Practical aspects and developed algorithms

mathematical requirements (trilinearity) and the number of factors to build the

model must be selected properly.

In chromatography, the time shift and the different shape of the peaks are common
factors that cause lack of trilinearity. A graphical representation of the predicted
concentration versus the value of a can detect whether the data are trilinear and
what the right number of factors is. These calculations indicate the quality of the
final results. We have shown that when the data slightly deviate from trilinearity,
useful results are still obtained and that wrongly selecting the number of factors

has the greatest effect.

Constructing the graph requires calculating several GRAM models by changing

the value of a and the number of factors, but this can be done very quickly.
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3.4 OUTLIER DETECTION IN GRAM

As in other analytical methodologies, the use of GRAM in the analysis of future
samples also requires validation tests. Such validation may involve analyzing
validation samples of a known analyte concentration, with a matrix similar to the
test samples that will be found in the future [1]. However, as opposed to zero- and
first- order calibration, in which the validated model is used for all the future
samples (except periodical updates), a GRAM model is calculated for each new test
sample. This makes the validation of the methodology more complex: validating
one GRAM model for one test sample does not imply that the model for the next
test sample will also be valid. The main reason is the lack of trilinearity (due to, for
example, retention time shift or variation of the peak shape) of the test sample peak
with respect to the peak in the calibration standard. Biased predictions may also be
caused by the wrong selection of the number of factors needed to build the GRAM
model (which may vary from one test sample to another because the number of
interferents in the overlapped peak may vary). Hence, as happens in zero- and
first- order calibration, outlier detection tools are also needed in GRAM to prevent

us from reporting largely biased predictions.

Since the GRAM solution is guaranteed to be acceptably correct when the
trilinearity requirement is fulfilled [2], the basic outlier detection tool must be
directed to checking whether such trilinearity exists. Here we present an outlier
detection criterion based on the Net Analyte Signal (NAS) calculated from the
GRAM estimations. The NAS is calculated both for the calibration sample and for
the test sample. Both NAS’s are proportional if both samples were modeled
correctly. Otherwise, there are reasons to suspect lack of trilinearity and the fact
that the predictions may be incorrect. This outlier detection tool is developed in the
paper Outlier detection in the Generalized Rank Annihilation Method applied to
chromatographic data. E. Comas, ]J. Ferré, F.X. Rius. Analytical Chemistry,
submitted. The detection of outliers through this criterion is based on the visual
inspection of the correlation of the NAS of Rt and the net sensitivity (NAS of Rc at
unit concentration) in the net analyte signal regression plot (NASRP) [3]. A
measurement of the noise is needed to determine when the lack of fit observed in

the NASRP is acceptable or not. Such measurement of noise may be obtained from
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either flat region of the chromatogram or by using the bilinear structure of the
peaks of the calibration and test samples. This last method compares the estimated
noise along the time axis with the estimated noise along the wavelength axis. Since
the lack of trilinearity is mainly caused by time shift, the estimated noise along the
wavelength axis can be considered as a pure estimation of the noise, whereas the
estimation of noise along the time axis may contain systematic variations when
retention time shift exists. The comparison of both estimated “noises” may be used
to detect that the test sample is an outlier. This criterion is explained in the paper
Estimation of the net noise in a second-order chromatographic peak (in preparation),

included at the end of this section.
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3.4.1 Paper

Outlier detection in the Generalized Rank Annihilation Method applied to
chromatographic data.

E. Comas, J. Ferré, F.X. Rius.

Analytical Chemistry, submitted.
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Outlier detection in the generalized rank annihilation

method applied to chromatographic data

Enric Comas, Joan Ferré, F. Xavier Rius

Department of Analytical and Organic Chemistry. Rovira i Virgili University
Pl. Imperial Tarraco 1, 43005, Tarragona, Spain

ABSTRACT

The Generalized Rank Annihilation Method (GRAM) can be used in HPLC-DAD
to determine the concentration of the analyte of interest when it elutes overlapped
with unknown interferences. Retention time shift and peak broadening between
measurements may cause the peak of the test sample to behave as an outlier, thus
producing an incorrect GRAM prediction. Here we present a method based on the
second-order net analyte signal (NAS) to assess the quality of the GRAM
predictions and detect such outliers. The chromatographic and spectral profiles
predicted by GRAM are used to define the space spanned by the interferences and
their orthogonal counterparts. The projections of the calibration and test sample
peaks onto this space are proportional if the trilinear model, assumed by GRAM, is
followed. Proportionality is checked by the regression of both unfolded
projections. The slope of the fitted straight line is equal to the GRAM prediction.
The size and distribution of the residuals indicate the degree of fit of the data to the
assumed trilinear model. Systematic trends in the residuals indicate a lack of
trilinearity and predictions with a large error. Simulated data were used to test this
method with respect to retention time shift and peak broadening. Analytical data
from the determination of two water pollutants were studied with the outlier
detection method. In one case, a retention time shift problem was detected. After
correction, the prediction error was reduced from 25% to 2%. In the other, the data

were acceptably trilinear.

Key-words: GRAM, HPLC-DAD, outlier, second-order NAS, trilinearity.
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INTRODUCTION

In High Performance Liquid Chromatography with Diode Array Detection (HPLC-
DAD), the separation is often optimized for mixtures of pure standards. Univariate
calibration is then used to quantify the analyte of interest in test samples based on
the area or height of the peak. When samples with complex matrices are analyzed
(such as environmental and clinical samples), the analyte of interest often elutes
overlapped with unexpected compounds. The experimental protocol must then be
modified to achieve the selectivity required in univariante calibration. This may
involve e.g. cleaning-up, adding specific compounds that react either with the
analyte of interest or with the interferences, modifying the chromatographic

parameters or changing the detection channel or detector [1].

The Generalized Rank Annihilation Method (GRAM) [2,3] is a good alternative to
such additional experimental work. This calibration method can predict the
concentration of the analyte of interest in an overlapped peak even when the
background signal varies from sample to sample. Qualitative information, i.e. the
elution profiles and the spectra, is also obtained. To obtain these advantages, the
spectrum of the effluent must be measured during the separation. In this way, a
matrix of absorbances (time x wavelength) for each peak is obtained. This is known
as second-order data [4]. Such data are recorded almost by default today, since
separations are often monitored by measuring the entire spectrum. This enables
the analyte to be identified both from its retention time and its spectrum. When
overlap is detected, GRAM can be applied without additional work because the
necessary data have already been recorded. Moreover, GRAM only requires one

calibration sample.

GRAM has been applied to techniques such as NMR [5], fluorescence [6] and UV-
vis [7] spectroscopies and chromatography [8,9]. It was recently applied in HPLC-
DAD analyses to determine polycyclic aromatic hydrocarbons (PAHs) [10,11] and
aromatic sulfonates [12] in water as well as pesticides and phenolic compounds
over a highly drifted baseline [13].
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Though GRAM may significantly reduce analysis time and costs, it is hardly used
in routine HPLC analyses. Partly this is for practical reasons such as the lack of
adequate commercial software and trained analysts. These may be circumvented as
the interest of chromatographers in this method grows. Other reasons are
technical. GRAM predictions are easily affected by the irreproducibility of the
separations. The retention time shift of the elution profiles and the change in their
shape (e.g. peak broadening) increase prediction error. For example, a prediction
error of as much as 30% was obtained in the analysis of PAHs when the peak in the
test sample shifted three seconds in relation to the peak in the standard [10].
Analysts will therefore rarely use GRAM in daily analyses unless they are
confident of the analyte concentration it predicts. This confidence is gained by
checking the procedure with validation samples and having adequate outlier

detection diagnostics to warn against biased predictions.

External validation of the method must be done by analyzing reference samples
that are representative of the test samples [14]. Recovery essays in which test
samples are spiked are also possible. This type of validation is not sufficient,
however, to provide complete confidence in the predicted concentration. One
reason for this is that the GRAM model is calculated for each new test sample, so
successful previous models do not guarantee correct quantification for the peaks of
the test samples at hand. Outlier detection therefore plays a primary role in the
application of GRAM to HPLC-DAD analyses.

A test sample is an outlier if it has extreme values or if it does not accommodate to
the calibration model. A test sample may not follow a calculated model for several
reasons. In univariate and multivariate calibration, one reason for this is the
presence of unknown interferences that contribute to the instrumental response
but were not considered when the model was calculated. Such a sample is not an
outlier in GRAM because, as the model is built especially for that test sample, the
signals of the interferences are ‘modeled’. Quantification is possible as long as the
selectivity is sufficient in both orders (i.e. the elution profile and the spectrum of
the analyte of interest are different enough from the profiles and spectra of the
interferences). The main reason why a test sample is an outlier in GRAM is that it

deviates from trilinearity. Trilinearity involves: (i) that the measured peak can be
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bilinearly decomposed as a sum of contributions of the different analytes and (ii)
that, except for a scaling factor related to the concentration, the elution profile and
spectrum of the analyte of interest are the same in both the standard and test
samples. When trilinearity is fulfilled, the GRAM predictions are accurate [15].
Retention time shift and peak shape variation can break down trilinearity and
cause incorrect predictions [16]. The sample may also be an outlier if the ratios of
the concentrations of two analytes in the calibration and test samples are the same
[17]. This last requirement is hardly found in real samples or can be avoided by

using standard additions.

The simplest outlier detection method in GRAM is to verify that the estimated
elution profiles/spectra are as expected. The elution profiles should be unimodal
and non-negative. The spectra should be those obtained by measuring pure
standards of the analytes. The degree of coincidence can be checked with the
correlation coefficient [18] or, equivalently, with the dissimilarity value [19].
However, these comparisons are not sufficient (see below). Apparently, correct
elution profiles and spectra can be obtained even when the data are not trilinear
and the prediction errors are large [10]. More advanced outlier detection tools
check whether the peaks follow the trilinear model. A first measure of lack of
trilinearity is given by the difference between the measured peak and the predicted
peak. Large differences mean bad model fit either because the number of factors in
GRAM is wrong or because the data lack trilinearity. However, these differences
evaluate the peak globally and do not relate directly to the specific analytes we
wish to quantify. We may obtain non-random residuals but accurate predictions. A
related tool is to project one peak onto the space spanned by the rows and columns
of the other peak [2]. The projection should recover the projected peak within the
noise. However, this tool is limited when the two peaks contain different
interferences. Although the sum peak may be used to span the calibration space,
small deviations from trilinearity are still difficult to detect. A third tool is to
compare the chemical rank of the augmented matrices by joining the calibration
and test sample matrices both column-wise and row-wise [20]. Their rank is the
same if the data are trilinear. However, evaluating a significant increase in rank is
difficult because small non-linearities are distributed through the relevant

eigenvectors/eigenvalues and a few others. Recently, a visual criterion was
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proposed to assess the trilinearity of HPLC-DAD data and find the correct number
of factors to calculate a GRAM model [16]. However, this criterion is only partially

related to the quality of the predictions and more advanced tests are still needed.

Here we report a new graphical criterion for detecting outliers in GRAM for
HPLC-DAD data. It can be used to internally assess the quality of the predictions.
The criterion is inspired from an outlier detection method developed for the
classical least-squares (CLS) model [21]. CLS is the extension of the univariante
Lambert-Beer's Law to multivariate calibration. If the test sample follows the
calculated CLS model, the part of its spectrum that is orthogonal to the spectra of
the modeled interferences is proportional to the vector of regression coefficients (or
net sensitivity vector). This characterizes the regression model. Biased predictions
due to unmodeled interferences can be detected because this proportionality does
not exist. The same principle is applied here to GRAM for HPLC-DAD data, thus
extending this test to second-order calibration. The spectra and elution profiles
estimated by GRAM are used to define the space spanned by the interferences.
Projecting the peak of the standard and the test sample onto this space produces
two matrices that are proportional if both samples follow the trilinear model. This
is checked by examining the linear fit of one signal with respect to the other after
the matrices are unfolded. For trilinear data, the residuals of the fit are within the
noise range. Otherwise, (e.g. in retention time shifted data), systematic trends are

observed in the residuals and the reliability of the predictions can be questioned.

Simulated data were used to study the ability of the criterion to detect lack of
trilinearity due to time shift and peak broadening. Real data from the analysis of an
aromatic sulfonate and a phenolic compound in water samples were used to

demonstrate the utility of this tool.
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THEORY

1. Notation

Boldface uppercase letters represent matrices, boldface lowercase letters indicate
column vectors and italic letters indicate scalars. Transposition of a matrix or
vector is symbolized by a superscripted “I’. Vectorisation of a matrix (i.e., stacking
its columns from left to right) is indicated by ‘vec’. For a given matrix A, the
matrices A' and A" stand for its inverse and Moore-Penrose pseudoinverse,
respectively. A ‘hat/, e.g,, A, was added to the reconstructed calibration and test
data to differentiate them from the measured ones. The analyte of interest is

designated as ‘analyte k’. I is the identity matrix of the appropriate size.

2. The GRAM algorithm

GRAM uses the peak of the analyte of interest in a calibration sample (Rc), whose
known concentration is c;, and the peak of interest in the test sample (Rt). This peak
also contains contributions from one or more interferences. Both Rc and Rt have
size (J1 x J2) where the Ji columns correspond to the retention times and the J2 rows
correspond to the wavelengths. Rc can be obtained by measuring either a pure

standard [2,10] or a spiked sample [11].

The algorithm can be found in reference 2 but is briefly given here for the sake of

completeness:
1) Calculate the sum matrix R (J1 x J2)
R=Rc+Re (1)
2) Calculate the singular value decomposition (SVD) of R [22]:
R=USVT+E (2)

where the matrices of singular vectors (U,V) and singular values (S) have been

truncated for F factors [9]. Several tools have been developed to determine the
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number of factors [22,23]. Here, the F-test [22] was used. The residual matrix E

contains the non-modeled contributions.
3) Solve the eigenvalue problem:
(STUTR:V)TT=TD (3)

The diagonal matrix of eigenvalues (®P) has the relative concentration for each

analyte (f) in the calibration (cc) and test ( C, ) samples:

¢
@, = t, f

P E— 4)
Ct,f + Cc,f

4) Calculate the elution profiles H (J1 x F) and the spectral profiles Y (J2 x F):

H-UST )
Y=V(T)T (6)

Usually, the spectral profiles are normalized and the scaling constant is introduced
in H. H and Y include the profiles of all the components in Rc and Ry, so R can be
predicted as R=HY".

5) Find the columns of H and Y that correspond to analyte k. This can be done by
visually comparing Y with the spectrum of analyte k measured from a pure
standard. A dissimilarity value [19] can be used. A value under 0.0141 means that
the correlation between the two spectra is above 0.9999 [18]. The corresponding
diagonal element in the eigenvalues matrix @« can be used to calculate the

predicted concentration as

€ =— @)

Eq 3 can also be solved by considering Re instead of Ry, i.e. (§"U™RcV)™T = TIL In

this case the matrix of eigenvalues, for each analyte fis:
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m=—>2s ®)

The predicted calibration and the test matrices are

HITY? )
HOY! (10)

= 5
T

where IT+ @ =1

3. Net Analyte Signal (NAS)
The net analyte signal (NAS) [24] is the part of the measured response that is used
for prediction. The NAS of analyte k is calculated for both the calibration sample

and the test sample as:

R =PuR Py (11)

R¢=PuR Py (12)
where

Pu=1-H.«H- (13)

Py=1-YxYs (14)

are projection matrices, Hx and Y« where H and Y are without the column of
analyte k. Pu and Py project a peak onto the space that is orthogonal to the spectra
and elution profiles of the interferences. The double projection involves the NAS
taking into account the net contribution in each order. The rank of the NAS
matrices, which only have the contribution of the analyte of interest, is 1.

Combining equations 9 and 10 with 11 and 12 we find that

(15)

=
I
z)

Ol"')
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The proportionality constant is the ratio between the predicted concentration €,

and the concentration in the calibration standard. Hence, the net sensitivity matrix

is found as the NAS of the calibration sample divided by its concentration:

S = (16)

4. Trilinearity assessment and outlier detection

When both Rc and Rt are trilinear, their rows and columns are spanned by the
calculated spectra and elution profiles up to the noise level.

In this case, the projection of the measured peak R: onto the space that is

orthogonal to that spanned by the interferences
Re=PuRiPy=Pu (Rt+E)Py= R +E¢ (17)

will be approximately equal to the NAS (eq. 12), since the values of E: will be
random and small (E+ contains the part of Rt not explained by R ). When Rc and Rt
deviate from trilinearity, these deviations are embedded in H and Y, which no
longer span the rows and columns of Rc and R:. Hence, the projected test sample
peak R¢ contains the part that is used for prediction (R ) plus contributions from

the lack of trilinearity, and Ef' becomes large and systematic.

A visual measure of the relative appearance of E:" is obtained by regressing vecR¢

against vecS” with a non-intercept straight line model (net analyte signal regression
plot). The slope of the fitted line is the concentration predicted by GRAM, €, (see

the supporting information) since vecE: is orthogonal to vecS* (Figure 1). The
quality of the fit indicates the trilinearity of the data and can be used to detect
outliers. For non-trilinear data (e.g. time shifted peaks), systematic patterns are
observed in the residuals of the regression. For trilinear data, the residuals will be

approximately random.
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N
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Fig 1. Relationship between vecS* and vecR¢". Rt" is decomposed as R¢+Er.

The significance of the residuals of regressing vecR¢ against vecS* can be measured
by comparing them with an estimation of the net noise. The data will be trilinear
when these residuals are comparable to the net noise. The noise (N) is estimated
from a time window without analytes. This can either be a region as close as
possible to the peak of the analyte of interest or the same time window of the

analyte in a blank sample. The net noise (N") is then calculated as
N =PuNPy (18)

Since the analyte of interest is not present, the values in N* are non-systematic and

the variations are related to the amount of noise.

5. Reduction of prediction error by correcting the retention time shift

A probable reason why Rt is an outlier is the retention time shift with respect to Re.
Retention time shift correction methods [10,25] have been developed to align the
elution profile of the analyte of interest in both the standard and test samples. The
method of Comas et al. [10] will be used here. Briefly, both Rc and R: are
decomposed independently by Iterative Target Transformation Factor Analysis
(ITTFA). The analyte of interest in both matrices is identified by spectral
comparison. The time window of Rt is shifted so that the decomposed profile of the

analyte of interest is aligned with the elution profile of this analyte in Re.
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EXPERIMENTAL SECTION

Simulated data

Trilinear data. Second-order chromatographic peaks (R) were simulated for the
elution profiles (H) and spectra (Y), R = HY". The peak of the analyte in a pure
standard (Rc) was simulated as a Gaussian peak with 75 time points, standard
deviation 01 = 4 and maximum centered at the time step 25. As the chromatograph
in our laboratory records a spectrum every 0.4 seconds, 75 time points correspond
to 30 seconds. Its spectrum was that of Adenine from reference 26. The peak was
weighted to simulate a concentration of 1 ug 1. The peak in the test sample (R¢)
was simulated to contain the same analyte as Rc but at 0.6 pg 1 (same shape and
position as in Re) plus a highly overlapped interference (resolution less than 0.2): a
Gaussian peak with 75 time points and o2 = 4 but centered at the time step 35. The
spectrum was that of Guanine from reference 26. The interference was simulated at
5 pg 11, so the analyte of interest is a minor component in Rt.. White noise (1% in

relation to the maximum of the profile) was added to Rc and Re.

Non-trilinear data. Non-linearities are not usually found in the spectral mode in
HPLC-DAD data, so we focused on the retention time variations. Retention time
shift was simulated by modifying the position of the elution profiles in Rt. The time
window for Rt was shifted from 1 to 10 time steps to both shorter and longer
elution times. Time shift of 10 units corresponds to 4 seconds. Shifts of 1 or 2
seconds in daily routine measurements may be common. The variation in the
shape of the profiles (0) was also considered. For the analyte of interest in Ry, 02
was varied from 3.2 to 4.8, at 0.2 intervals. o1 was not changed. The value of 02 / o1
changed form 0.8 to 1.2.

Measured data

Two water pollutants were analyzed: the aromatic sulfonate 1-amino-6-

naftalensulfonate and the phenolic compound resorcinol.
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Aromatic sulfonates data. Aromatic sulfonates are used in the dye and tannery
industries. Their toxicology is not yet defined, but their high solubility in water
makes it very difficult to remove them from wastewater and they are thought to
have a contaminating effect. The sample was collected from the output of the
sewage treatment plant in Tarragona (Spain). The chromatographic conditions
were optimized with pure standards to simultaneously determine six aromatic
sulfonates [12]. Of these, 1-amino-6-naftalensulfonate (retention time = 7.8 minutes)
eluted overlapped with unknown interferences when the test sample was
analyzed, and was quantified by GRAM. To obtain a reference value for external
validation, the chromatographic conditions were varied in order to fully isolate the
analyte of interest and use univariate calibration. The concentration found was
0.089 ug I'l. The analysis lasted 45 minutes. This second optimization process was
tedious and did not guarantee that the analyte of interest would be isolated from

other interferences in future test samples.

Resorcinol data. Resorcinol is potentially hazardous both for the environment and
for human health. It is regulated by the European Union (EU) to ensure good
quality bathing and drinking water. Resorcinol was analyzed in water samples
from the Ebre River (Spain) as described in reference [13]. Due to its low
concentration, a preconcentration step by solid phase extraction (SPE) was carried
out. The SPE process also retained humic and fulvic acids, which caused a large
peak at the beginning of the chromatogram and baseline drift where the analyte of
interest elutes. To obtain the reference value, sodium sulfite (Na2SOs) was added to
react with the humic and fulvic acids and make them elute separately from the
analyte of interest. The concentration found with univariate calibration was 5.6 +
1.4 ng 1. However, as sodium sulfite does not always remove the baseline drift, we
tested GRAM in this situation. Unlike with aromatic sulfonates, Rc was not
obtained from a pure standard but from a standard addition of the analyte of

interest to the test sample.

In both data sets, chromatographic separation was carried out using an HP1100
system (Agilent Technologies, Waldbronn, Germany). This system consisted of a
degasser, two isocratic pumps, a manual injector provided with a 20 pl loop, a

column oven and a DAD. Each pump was used to deliver one fraction of the
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mobile phase. Separation was carried out using a 25 x 0.46 cm Kromasil 100 Cis
chromatographic column with a 5 pum particle size (Teknokroma, Barcelona,
Spain). The spectrum of the effluent was recorded between 220 and 300 nm every

0.4 nm.

Software
We made the GRAM and the second-order NAS methods subroutines in house for
MATLAB version 6 [27].

125



C3 Practical aspects and developed algorithms

RESULTS AND DISCUSSION

Simulated data

Figure 2 shows the variation in the prediction error of the GRAM estimations at
different retention time shifts. Each curve corresponds to a different shape of the
elution profile of Rt (peak broadening). The estimated concentration was highly
influenced by the retention time shift. For example, a time shift of -4 seconds, led to
a prediction error of 60%. The effect of shape variation in the prediction error was
not so large: the prediction error was less than 10% in all cases, irrespective of the
retention time shift. In our experience, such shape variations are not found in

practical analysis.

Prediction Error (%)

Retention time-shift (seconds)

Fig 2. Prediction error (%) from the GRAM estimations against the retention time shift. Each curve
corresponds to a different o2/c1 ratio, from 0.8 to 1.2. The two cases are indicated at retention time shifts

of 0 and -2.4 seconds.
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The curves in Figure 2 show that the effects of positive retention time shifts on
prediction error are different from those of negative retention time shifts. This is
because the prediction error caused by the lack of trilinearity is affected by the
overlap between the analyte and the interferences. In these simulations, the
interference is eluted after the analyte of interest. A shift to earlier elution times
(the negative shift in Figure 2) reduces the overlap between the analyte of interest
in Reand Rt and also increases the overlap of the interference in Rt with the analyte
of interest in R¢ (see Figure 3). This increases the prediction error. On the other
hand, when Rt elutes later (the positive shifts in Figure 2), the interference overlaps

less with the analyte in R, and prediction errors are lower.

As an illustration, this method of assessing trilinearity and detecting outliers was
applied to two cases: the trilinear case and, as an example of non-trilinear data
retention, data time shifted by -2.4 seconds. Both situations are shown in Figure 2.

All the other situations in Figure 2 are analogous to these cases.

08 L R,

o
o
T

Absorbance (AU)

Analyte of
interest in R,

________ —

20 30

Time (seconds)

Fig 3. Elution profiles of Rc and Rt at 220 nm in -2.4 seconds retention time shifted data. Dashed lines

indicate the underlying profiles in Re.
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Trilinear data.

In this case, the elution profiles regarding the analyte of interest are non-shifted
and have the same shape in Rc and Re. Figure 4 shows the regression of vecR¢
against vecS". The fit is satisfactory and the slope is the concentration estimated by
GRAM. Residuals are distributed randomly, which indicates that the values in E¢

are small and non-significant compared to those in R,". The correlation coefficient

was 0.9998.

0.04 |-

vecR,"

-0.04 |-

1
-0.08 -0.04 0 0.04 0.08
vecS”

Fig 4. Net analyte signal regression plot for trilinear data.
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Non-trilinear data.

Figure 3 shows the elution profiles of Rc and Rt at 220 nm for a retention time shift
of -2.4 seconds. The dashed lines are the underlying elution profiles in R:. Since the
main contribution in R: is the interference, the true retention time shift of the
analyte of interest cannot be detected by comparing R. and R.. GRAM analysis
yields a similar estimated spectrum of Adenine to the one used to simulate the
peak, with a dissimilarity value of less than 0.0141 (Figure 5). Therefore, the lack of
trilinearity along the time dimension did not affect the result over the wavelength
dimension and, despite the retention time shift, the qualitative analysis is correct.
The good agreement between the two spectra may lead us to incorrectly accept the
quantitative result, which, due to the retention time shift, has a large prediction
error of 22%. This shows that spectral comparison is a poor method of outlier
detection for GRAM. Also, no evidence of a lack of trilinearity was observed in the

elution profiles estimated by GRAM since they were unimodal and nonnegative.
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Fig 5. Estimated Adenine spectrum by GRAM (--) in -2.4 seconds retention time shifted data and the

one used for simulation (-).
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Non-trilinear data can be easily detected by considering the NAS. Figure 6 shows
S*and R¢'. The peak from 1 to 15 seconds corresponds to the analyte of interest. The
flat region from 20 to 30 seconds corresponds to the zone where only the
interference eluted (see Figure 3). The signal from the interference was removed in
the projection step (egs. 11 and 17) and only the one signal related to the analyte of
interest used for quantification remains. The negative parts on the surface are due
to the orthogonality of the projection. Figure 7 shows vecS" and vecRr". If Rc and Re
were trilinear, S* and Rr would be proportional and the two plotted lines would be
identical except for a scaling constant (the predicted concentration). In our case,
due to the significant contribution of E¢ in R¢’, the lack of trilinearity translated into
a shift between the two curves. The proportionality of S* and R¢ can be better
checked by plotting one curve against the other (see Figure 8). The trend in the
residuals indicate lack of trilinearity i.e. the values of E+ are significant. Hence, R« is
a second-order outlier and the predictions are erroneous. The circular pattern
observed in the residuals is due to the elements of S* where the signal increases
when confronted to the elements of Ri" where, due to the retention time shift, the
signal decreases. The many points around (0,0) correspond to the part of the peak
in which the analyte of interest is not present and the net signal is therefore zero.

Fewer points have extreme values which correspond to the largest net signal.
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Absorbance (AU)
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Fig 6. S’ (6a) and Rt (6b) in -2.4 seconds retention time shifted data.
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Fig 7. vecS™ (--) and vecR¢ (—).
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Fig 8. Net analyte signal regression plot in -2.4 seconds retention time shifted data.
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In our simulations, the prediction error was above 5 % when the correlation
between vecR:" and vecS” was less than 0.999. Although this cannot be extrapolated
as a strict rule because the error of the predicted concentration is affected by the
degree of overlap of the interferences and the amount of noise this correlation
provides a rough indication of the sensitivity of the regression tool for detecting
large prediction errors. In all simulations, the dissimilarity value for the spectra
was calculated. The estimated spectra were always similar to the simulated one,

which led to the false conclusion that the predictions were correct.

Measured data

Aromatic sulfonate data. Figure 9 shows the chromatogram measured at 230 nm.
The elution window of the analyte of interest was visually selected from 7.1 to 7.6
min for both Rc and Re. The net noise was estimated from the flat area between 6.4
and 6.9 min from R.. Here, N does not contain any signal that is not modeled in the
peak of interest. The trilinearity test was first applied to the raw data (Figure 10a)
for a GRAM model with three factors. The correlation coefficient was 0.823. The
large and systematic residuals suggest that the concentration predicted by GRAM
(0.065 pg 1) was inaccurate. The value found with univariate calibration in new
optimized conditions was 0.089 pg I'. The prediction error was therefore 25%.
Figure 10b shows the regression plot after the retention time shift was corrected.
Two factors were sufficient to build the GRAM model. The residuals no longer
show a systematic pattern. To check the significance of these residuals, their values
were compared to an estimation of the net noise. Figure 11 plots the residuals of
vecR¢ against those of vecS and those corresponding to vecN" before (11a) and
after (11b) the time shift is corrected. To simplify the figure, only one of every two
data points are plotted. We can see that in the first case the residuals are much
larger than the net noise but in the second case this difference is not so great.
Therefore, R: is an outlier in the first case but not in the second case, which
suggests that the predicted value (0.086 pg 1) after the retention time shift has
been corrected, is reliable. This value is close to the value of 0.089 pg 1! found with

univariate calibration.

133



C3 Practical aspects and developed algorithms

12~
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1-amino-6-naftalensulfonate
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Absorbance (AU)
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Fig 9. Chromatograms measured at 230 nm of the sewage water sample (—) and of the mixture of
standards (--).

vecR,"

vecS*

0.02

vecR/

0.1 0 0.1 0.2
vecS’

Fig 10. Aromatic sulfonates data. Net analyte signal regression plot in raw data (10a) and after the

retention time shift is corrected (10b).
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the regression of vecR" against vecS (-), and the noise (+)

of the raw data (11a) and after the retention time shift is corrected (11b).
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Fig 12. Chromatograms at 250 nm of the river water sample (—) and the standard addition sample (--).

Resorcinol data. Figure 12 shows the chromatogram at 250 nm of the river water
sample and the standard addition sample. Three factors were needed to build the
GRAM models. The outlier tool applied to the raw measured data and retention
time shift corrected data are shown in Figure 13. The peak only shifted one time
step (0.4 seconds). After time shift correction, the residuals were slightly smaller,
which suggests that the trilinear behavior of the calibration and test sample
improved. The net contribution of the noise was estimated using the signal from
6.8 to 7.1 min from R.. A difficulty may arise when the baseline varies from the
position of the peak of interest to the position of the blank zone. A different
baseline would involve a contribution that was not considered in GRAM, so the
net analyte signal in the elution profile (PuN) direction may have a systematic
contribution. However, in the area in which the peak elutes and where the blank
was considered, the background spectrum is probably the same and its net signal
NPy = 0. Therefore, N* = PuNPy will remove the signal even if the baseline in the

bank zone is different.
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Fig 13. Resorcinol data. Net analyte signal regression plot in raw data (13a) and after the retention time
shift is corrected (13b).
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Figure 14 compares the net noise with the residuals of the proposed criterion. We
can see that after the retention time shift was corrected, the differences between the
residuals of vecR¢ against vecS® and vecN" were slightly smaller than before the
retention time shift was corrected, which confirms the improvement in trilinearity.
The error in the GRAM predictions was checked against the reference value (5.6 pg
1), which was obtained using univariante calibration in new modified separation
conditions. In the raw data, GRAM predicted 4.8 pg 17 and in the time shift
corrected data, it predicted 4.9 ug I. The difference is not very large because the
retention time shift was only one time step. 4.9 pg 1! is acceptable and similar to 5.6
pg 17 for this type of analysis in which online preconcentration is a major source of

variability in the data.
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Fig 14. Resorcinol data. Residuals of the regression of vecRt" against vecS” (+), and the noise (+) of the

raw data (14a) and after the retention time shift is corrected (14b).

138



Anal. Chem. submitted

CONCLUSIONS

In the analysis of HPLC-DAD data, retention time shift and peak broadening can
make a test sample behave as an outlier in GRAM. Although the qualitative
analysis may still be possible, the quantitative analysis may be seriously affected.
We have demonstrated a visual tool for detecting such outliers that can be used to
internally assess the quality of the predictions. The criterion is based on checking
the proportionality between the net sensitivity matrix and the projected test sample
peak in the net analyte signal regression plot. When the data are not trilinear, the
residuals are large and show a systematic pattern. When the data are trilinear, the
residuals are small and random. Since this method is based on the net contribution
of the analyte of interest, it can be useful either when the calibration peak is pure or

when it is a mixture of analytes obtained from standard additions.
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Supporting information

Proof that the slope (b) of the regression of vecR(" against vecS" is the concentration

predicted by GRAM (,).

The slope of a regression line is

T *
vecS vecR,

b= *T * (al)
vecS  vecS
since R¢' = R," + Er, and VCCS*TVGCEt* =0 (see Figure 1):
- vecS™ vecR,” + vecS” vecE,’ B veeS™ vecR,” @)
veeS” vecS’ veeS” vecS’
From Egs 11 and 12, it is found that:
R ¢ = P HITY' Py (a3)
R = P HOYT Py (ad)
Operating;:
Re=2 e (a5)

I

where IT and @ are diagonal matrices (FxF). The diagonal elements of IT and ®

A

C C
with regard to the analyte of interest are — and L— respectively.
C. +C C. +C
Cy
Hence, R¢= — R=C,S* (ab)
CC
Updating Eq a3 with vecR = C, vecS’
T *
vecS  vecS
b=¢——F— - =¢ (a7)
vecS  vecS
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3.4.2 Paper in preparation

Net noise estimation in a second-order chromatographic peak.
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Net noise estimation in a second-order

chromatographic peak

(in preparation)

ABSTRACT

A recently proposed method for outlier detection in GRAM compares the Net
Analyte Signal (NAS) of the test sample and the NAS of the calibration sample.
The NAS matrices are calculated from the GRAM estimated profiles. To make the
NAS’s comparison useful, an estimation of the amount of noise in the measured
data is needed. In this paper two strategies to estimate the noise are compared: (i)
using a flat region in the chromatogram, and (ii) using the bilinear structure of the

peaks for estimating the noise in the time domain and in the spectral domain.

Keywords: noise estimation, NAS, GRAM, outlier, trilinearity.
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INTRODUCTION

In a previous paper (Outlier detection in GRAM applied to chromatographic data, Anal.
Chem. submitted) we developed a criterion to determine whether or not the
calibration sample and the sample are trilinear. If they are not, the test sample is
detected as an outlier for GRAM. The criterion is based on regressing the unfolded
Net Analyte Signal (NAS) of the test sample, vecRr, against the NAS of the
calibration sample at unit concentration, vecS*. The slope of the fitted line is the
concentration estimated by GRAM. The degree of fit is an indicator of the
trilinearity of the data. When data are trilinear, the residuals of the straight line are
random and comparable with the amount of noise. When the residuals are large
and systematic, the data are not trilinear and the concentration estimated by
GRAM may be incorrect. Visual inspection of the residuals of the regression of
vecR¢ against vecS” may show systematic trends that suggest that the GRAM
estimations are wrong. For example, Figure 8 in section 3.4.5 (page 132) shows
those large and systematic residuals. However, it is always desirable to use a
criterion that is more rigorous than the visual inspection of the residuals to
determine their significance. The residuals are compared with the net noise of the
measured data. Hence, to determine whether the residuals of the fit are significant,
an estimation of the amount of noise of the data is needed.

This paper compares two methods for estimating the noise. The advantages and
disadvantages of each one are commented on in the analysis of three water
pollutants.

Another strategy to estimate the amount of noise is by using replicates of the
analysis and calculating the standard deviation of each response (at I time sensor
and | wavelength) in the different replicates. However, all replicates must be
completely aligned, and the differences only due to the experimental noise. Hence,
time shift can make the determination of the standard deviation of each response

incorrect.
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THEORY

Two methods are proposed for estimating the noise:

Method 1. Estimation of the noise using a part of the chromatogram free of the
presence of the analyte. This zone (B) can be either the same time window where
the analyte elutes but in the chromatogram of a blank sample or, from the
chromatogram of the test sample, a zone close to the analyte of interest.

The net noise (B") is estimated as:

B’ = PuBPy 1)

where Pu and Py are the projection matrices described in section 3.4.1 (page 120).
When environmental and biological samples are analyzed, it is not easy to find a
blank sample, i.e., a similar sample without the analyte of interest. For that reason,
in the following examples, we estimated B from the test sample in a time window
where no analyte was present.

Notice that PuB will cancel the contributions in the time axis that have been
modeled and are not due to the analyte of interest. Therefore, if B contains a
systematic variation not included in the model (typically a baseline variation
different that one used for modeling), it will significantly contribute to PuB.
However, if the background spectrum is the same as used for calibration, the net
signal in the spectral profile direction will be cancelled BPy = 0, hence, B* = PuBPy
will remove the signal even if the baseline in the blank zone is different than the

baseline in the calibrated peaks.

Method 2. Net noise estimation from the NAS matrices of the analyte of interest
(R¢ and S7).

The residuals of the regression of vecR¢ and vecS* are estimated by regressing the
rows and columns of Rt against the rows and columns of S* respectively, i.e., along
the time domain and along the spectral domain (Figure 1). To obtain an estimation
of the net noise in the chromatographic profile direction, each column of Rt (each

net chromatographic profile) is regressed against the first elution profile of S
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(although any column of S can be used, since S has rank 1). The residuals (epi)
from each regression are stacked in a vector (ep). To obtain an estimation of the net
noise in the spectral direction, each row of Rt is regressed against the first row of
S*. The residuals (esi) from each regression are stacked in a vector (es). Figure 1
shows the procedure.

The lack of trilinearity is mainly caused along the time domain, but not along the
spectral domain (that is the reason why the spectral comparison is not enough to
validate the GRAM estimations, see section 3.4.1). The residuals in the spectral
direction are only due to the noise, whereas in the chromatographic profile
direction the residuals are due to the noise and the possible presence of effects that
introduce systematic contributions. ep corresponds to the residuals of the
regression of vecR¢ against vecS'. Hence, when ep and es are comparable, the data

are trilinear.

el
el
e, = |e2 - noise + systematic
P contributions
* *
R, s
e2
el
e, = | e2| = only noise

Figure 1. Net noise estimation from the NAS matrices.
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EXPERIMENTAL SECTION

Samples

Three analytes were studied: 1-amino-6-naftalensulfonate, from a waste water
sample, and resorcinol and phenol, from a river water sample. Figure 2 shows the
two chromatograms.

1-amino-6-naftalensulfonate is used in the dye and tannery industry. This analyte
is potentially hazardous. The usual way to analyze it is by ion-pair liquid
chromatography. This technique is quite tedious and GRAM can reduce the
separation time, since completely resolved peaks are not necessary.

Resorcinol and phenol are two polar water pollutants that can be found in river
waters. As their concentration level was very low, a preconcentration step was
needed prior to the chromatographic separation. This preconcentration step was
not selective enough, and the humic and fulvic acids were also retained in the
preconcentration cartridge and eluted at the beginning of the chromatogram,
producing a high band (see Figure 2b). Resorcinol and phenol eluted in that
varying baseline, making the application of univariate calibration difficult. By the
application of GRAM this problem was overcome (see chapter 4 of the thesis for
details).

RESULTS AND DISCUSSION

1-amino-6-naftalensulfonate

Figure 3 shows the regression of vecR:" against vecS® obtained for the GRAM model
built with the peaks indicated in Figure 2. The slope of the fitted line is the
predicted concentration, which is 0.082 pg 1. This result can be acceptable if the
residuals are only due to the noise. If residuals are due to a lack of trilinearity, the
test sample is detected as an outlier. Hence, we need to compare the magnitude of
the residuals with an estimation of the noise. These residuals of the fit of vecR¢
against vecS* are shown in Figure 4a together with the net noise (vecB’, Eq 1)
estimated from the “blank” time window shown in Figure 2a. The residuals of
vecR¢ against vecS” are larger than the net noise, indicating that there is a lack of
trilinearity and that the test sample is an outlier, and we cannot be confident of the
GRAM prediction.
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Figure 2. Chromatograms from the calibration (--) and test samples (). (a) waste water
sample and (b) river water sample measured at 240 nm. The analytes being studied and the

“pblank” time-window used to calculate the net noise are indicated.

149



C3. Practical aspects and developed algorithms

The same conclusions can be drawn by considering the net noise estimated from
the NAS matrices along the chromatographic profile direction (=) and the spectral

direction (+) (Figure 4b). The residuals along the elution profile direction (=) are the

same as the residuals of the fit ().
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Figure 4. (a) vecB’ (+) and the residuals of the fit (®). (b) es from the spectral direction (+) and

ep from the time direction (*).

Resorcinol and phenol

As can be seen in Figure 2b, the time window of the blank was determined from an
area where no analyte was present, but the baseline was different than in the
windows of resorcinol and phenol. This shows the difficulty of selecting the blank

zones in this kind of samples.

Focusing on resorcinol, Figure 5 shows the regression of vecR:" against vecS". The
slope corresponds to a predicted concentration, 4.69 pg 1. The fit is better than in
the case of l-amino-6-naftalensulfonate presented in Figure 3. The net noise
estimated by projecting the blank zone is not significantly different than the
residuals of the regression of vecR¢ against vecS* (Figure 6a). In addition, no

differences are observed between the noise calculated in the time direction and in
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the spectral direction (Figure 6b). Hence we conclude that the data are trilinear and

we can be confident of the concentration predicted with GRAM.
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Figure 6. (a) vecB’ (+) and the residuals of the fit (®). (b) es from the spectral direction (+) and

ep from the time direction (*).

Focusing on phenol, Figure 7 shows the regression of vecR¢ against S. The
predicted concentration is 5.32 pg I''. The apparently large residuals may indicate a
lack of trilinearity. When we compare the residuals of the fit with the net noise
estimated from the “blank” time window (Figure 8a), we see that the net noise is
much larger than the residuals of the fit. This indicates that the “blank” zone B
contained contributions that were not modeled by GRAM and produced
systematic variations in B*. Notice that the B used here is the same as the one used
for resorcinol. However, for resorcinol the background spectrum of B was also in
the resorcinol peak. Hence, for resorcinol, B* was random and not significant. This
background spectrum is not present in the phenol peak, and B" contains the

projection of this systematic variation. This renders method 1 useless.
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By considering method 2, the residuals found in the chromatographic profile
direction and in the spectral direction (Figure 8b) are similar, and we conclude that

the large residuals are probably due to random noise and the data are trilinear.
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Figure 7. vecR( against vecS” for phenol.
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Figure 8. (a) vecB" (+) and the residuals of the fit (®). (b) es from the spectral direction (+) and

ep from the time direction (*).
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CONCLUSIONS

Two methods for estimating the net noise needed for detecting outliers in GRAM
have been compared. Method 1 estimates the noise from a blank sample or from a
“blank” window in the test sample where the analyte is not present. This zone B, at
least in one direction (elution profiles or spectra), must be also included in Rt or Re
in order to obtain B" random. When this zone cannot be found in the
chromatogram, method 1 cannot be used.

Method 2 estimates the net noise directly from the NAS of the calibration and the
NAS of the test sample and it is not necessary to measure a blank region. This

makes method 2 preferable to method 1.
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Applications

4. APPLICATION OF GRAM TO THE DETERMINATION OF WATER
POLLUTANTS

4.1 Introduction

The aim of this chapter is to present two practical cases, where GRAM, PARAFAC
and MCR-ALS were applied to the analysis of water pollutants. The analytes of
interest were, in all cases, at very low concentration levels in very complex
matrices. The water samples were taken from a river and a waste water plant.

The presence of these analytes in the samples can be dangerous for the

environment and for human health, making their determination important.

Two studies are included. In the first one, aromatic sulfonates are determined. The
chromatographic conditions were optimized to determine several components
using pure standards. The total analysis lasted less than 8 minutes. When a real
sample was analyzed, some analytes eluted overlapped with interferences, making
their analysis by univariate calibration not possible. GRAM was applied in the
above conditions. To externally validate the GRAM predictions, the
chromatographic conditions were changed in order to isolate the analytes of
interest in those specific samples. It took over 45 minutes to achieve this, increasing

the time of separation six fold.

The second case represents another challenge for chromatographists; the
determination of analytes that elute overlapped at a high band. This band typically
appears when polar compounds are to be analyzed and a pre-concentration step is
done. The pre-concentration step is not selective enough and many polar
compounds, like the humic and fulvic acids are also retained in the
preconcentration step.

After the chromatographic separation, it is not easy to determine the area of each
peak. Moreover, it cannot always be assumed that the signal recorded at a range of
retention times is selective for the analyte of interest, which is required for
applying univariate calibration.

The change of the experimental conditions, to validate the predictions, was not

successful. Another strategy was used, the addition of sodium sulfite (Na:50s) to
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the sample. This compound reacts with the humic and fulvic acids producing non-
polar compounds that do not elute at the beginning of the chromatogram.
However, it should be taken into account that this compound can also react with
the analytes of interest and so is not always effective. The effect of the sulfite

depends on the composition of the water samples.
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4.2 Paper

Using second-order calibration to identify and quantify aromatic sulfonates in
water by high-performance liquid chromatography in the presence of coeluting
interferences.

E. Comas, R.A. Gimeno, J. Ferré, R M. Marcé, F. Borrull, F.X. Rius.

Journal of Chromatography A 988 (2003) 277 — 284.
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Using second-order calibration to identify and quantify
aromatic sulfonates in water by high-performance liquid
chromatography in the presence of coeluting

interferences

Enric Comas, R. Ana Gimeno, Joan Ferré, Rosa M. Marcé,

Francesc Borrull, F. Xavier Rius

Department of Analytical Chemistry and Organic Chemistry, Rovira i Virgili University
Imperial Tarraco, 1, 43005, Tarragona, Spain

ABSTRACT

We used the Generalized Rank Annihilation Method (GRAM), a second-order
calibration method, to quantify aromatic sulfonates in water with high-
performance liquid chromatography (HPLC) when interferences coeluted with the
analytes of interest. With GRAM, we can quantify in only two chromatographic
analyses, one for a calibration sample and one for the unknown sample. The
calculated concentrations were not statistically different to those obtained when
the chromatographic separation of the unknown sample was modified in order to
completely separate the analyte from the interferences before univariate
calibration. With GRAM, the concentrations are determined much more quickly

because a complete resolution is not required.

Keywords: Generalized rank annihilation method, Chemometrics, Co-elution,

Second-order calibration, Sulfonates.
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1. INTRODUCTION

Many factories discharge their wastewater into rivers or directly into the sea after a
treatment process to eliminate the most common contaminants. In the tannery and
dye industries, aromatic sulfonates are widely used and are highly soluble in
water. They are difficult to remove completely by the treatment process and have
been found in effluent waters [1]. Little is known about their toxicity but they have
a low biodegradability, so they are potentially hazardous for the aquatic

environment. It is therefore important to monitor them in these kinds of samples.

As the polarity of these compounds is high, the most common analytical technique
is ion-pair liquid chromatography with UV-Vis or fluorescence detection [2, 3].
This technique is not sensitive enough to quantify these compounds in real
samples, so an enrichment step is needed before the chromatographic analysis. The
most common preconcentration technique is ion-pair solid-phase extraction using
highly crosslinked polymeric sorbents such as isolute ENV+, which has a high

retention for the most polar analytes [1].

In natural waters, other polar compounds can also be retained in the solid-phase
extraction process and coelute with the analytes of interest during the
chromatographic analysis. This coelution may produce strongly biased
quantifications when the concentration is determined with univariate calibration,
which requires highly selective measurements. When coelution is detected, the
conditions of the HPLC method must be optimized again from the unknown
sample until the analyte of interest elutes separately from the interferences. This
may be difficult if the properties of the analyte and interferences are similar and is
an important outlay of time and resources. Also, since the interferences depend on
the source of the sample, it may be cumbersome to optimize the conditions for each

particular analyte and every unknown sample.

Mathematical separation is an alternative to chromatographic separation [4]. Diode
array detectors (DAD) can record the UV—-Vis spectra at every retention time, and a
matrix (elution timexwavelength) is obtained for each peak to be quantified.

Applying second-order calibration algorithms to this data matrix can: (a) indicate
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whether the peak of the analyte of interest contains coeluting interferences, (b)
determine the number of coeluting species, (c) determine which species are present
on the basis of their spectral features—qualitative analysis—and (d) determine the
concentration of the analyte of interest in the overlapping peaks (known as the

‘second order” advantage) [5].

Of the second-order calibration algorithms that allow quantification in the
presence of non-calibrated components, the Generalized Rank Annihilation
Method (GRAM) [6] is very useful for chromatographic data, where the number of
analyses is important. It only requires two data matrices. One of these is from a
calibration sample, i.e. the spectra measured at the different retention times of the
peak of the analyte obtained by analyzing either a pure standard or a sample with
a known added concentration of the analyte. The other is the spectra measured at
the different retention times of the peak from the unknown sample. Moreover,
GRAM has been widely studied [7-14] and mathematical expressions are available
for calculating figures of merit [15] and the variance of the predicted

concentrations [16].

In its application to HPLC-DAD data, it was pointed out that the different elution
times of the analytes of interest between analysis is an important problem that
leads to misleading results [13]. For this reason, the application of GRAM to
experimental chromatographic data in routine analysis is not as straightforward.
Here we report a systematic methodology for routine quantification using GRAM.
This includes a previous time shift correction step with a recently developed
algorithm [17] that allows a selective correction of the time shift depending on the

analyte of interest.

This methodology was applied to an implemented in-house routine method for the
determination of six aromatic sulfonates. When analyzing a sample of water from a
sewage treatment plant in Tarragona (Spain), the peak of two of the analytes of
interest overlapped with interferences. While the other four could be determined
by univariate calibration, the quantification of the two other analytes required
modifying the separation conditions until the peaks were completely resolved.

This paper shows that it is possible to quantify the unresolved peaks with GRAM

164



J. Chromatogr. A 988 (2003) 277-284

without more experimental work. Statistical tests are used to assess that the
concentrations found by both GRAM and full resolution of the peaks are

comparable.

2. THEORY

This section briefly describes the chemometrical tools we have used in this paper.

There is a more detailed explanation of the algorithms in the cited references.

We will use these conventions: bold uppercase letters to indicate matrices, e.g. A;
italic lowercase letters to indicate scalars, e.g. a; and superscript T to indicate

transposition.

For every analyzed sample, the peak of the analyte of interest (either pure or
overlapped with interference) is represented by a matrix R (time x wavelength),
where the element r; represents the absorption measured at the ith retention time

and the jth wavelength.

2.1. Generalized Rank Annihilation Method (GRAM)

For GRAM, the calibration matrix (Rc) is the spectra at each retention time of the
peak of the analyte obtained by analyzing the pure standard. The concentration of
the analyte of interest (ccx) is known. The prediction matrix is the spectra at each
retention time of the peak of the analyte in the unknown sample (R¢). Both matrices

are the same size (J1xJ2) and it is assumed that they can be expressed as:

Rc = XCCYT + Ec

Ri= XCiYT+ E:
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where X (JixK) and Y (J2xK) contain the normalized chromatographic profiles and
spectra, respectively, K is the total number of analytes in both matrices, Cc and Ct
are KxK diagonal matrices of concentration related scale factors, and E. and E: are
J1x]2 error matrices. Calibration and prediction with GRAM is a four-step process
[16]:

1. Singular value decomposition of the matrix Q=R«Rc as Q=USVT+E. This
equation is calculated only for a number of factors equal to the total

number of analytes contained in both matrices.

2. Resolution of the eigenvalue problem (S'U™R:V)TT=TII, where the
diagonal elements of IT are the eigenvalues m« and T is the matrix of
eigenvectors.

3. Calculation of the chromatographic profiles (peak shapes) X=UST and the

pure spectra Y=V(T-1)T.

4. Calculation of the concentration of the analyte k in the unknown sample:
- c. 10,
-,

In Step 4, we need to assign which of the calculated eigenvalues corresponds to the
analyte of interest. We do this by calculating the correlation coefficient between the
spectrum of the pure analyte (available from the peak of the pure standard) and
the spectrum calculated with GRAM in Y. The eigenvalue associated with the

spectrum with the highest correlation is used for prediction in step 4.

2.2. Time shift correction for the unknown sample peak

One requirement that prevents GRAM from being wused in routine
chromatographic analysis is that the data matrices containing the peak of the

analyte in the calibration sample and in the unknown sample must be trilinear [10,
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18]. This means that the chromatographic profile of the analyte in the unknown
sample must have the same shape and elute at the same time as in the calibration
sample matrix. Of these two requirements, complete coincidence of retention time
is not common in practice, because imprecision in injection timing, fluctuation in
temperature, and changes in flow-rate introduce time shifts in the peaks. The
characteristics of ion-pair chromatography also largely influence the time shift.
Several approaches exist for solving the problem of the time shift in different
chromatographic runs [14, 19] and improve trilinearity. We applied a recently

developed time shift correction algorithm to Rt before we applied GRAM [17].

The algorithm used is based on selecting the correct time window for Rt. Both R«
and R: are individually decomposed into pure spectra and concentration profiles
using Iterative Target Transformation Factor Analysis (ITTFA) [20-22]. The peak of
the analyte of interest in both matrices is located and a time window for R is
selected so that both matrices are aligned with respect to the analyte of interest.
This alignment is made so that the maximum of the profile of the analyte of
interest in both matrices occurs at the same time. To apply GRAM, Rc and Rt must
have the same number of rows (time units) and columns (wavelengths). However,
to correct the time shift, R: is first selected at a wider time window than the
calibration matrix to ensure that the profile of the analyte is contained in the
selected window. Using this methodology the matrices are selectively aligned with

regard to the analyte of interest.

3. EXPERIMENTAL
3.1. Reagents, standards and samples

3-Amino-1-benzenesulfonate,  6-amino-4-hydroxy-2-naphthalenesulfonate,  6-
amino-1-hydroxy-3-naphthalenesulfonate, ~1-amino-6-naphthalenesulfonate, 1-
naphthalenesulfonate and 2-naphthalenesulfonate were obtained as free acids or

sodium salts from Fluka (Buchs, Switzerland) or Aldrich Chemie (Beerse,
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Belgium). Standard solutions of 1000 mg 1! of each compound were prepared in
Milli-Q quality water. To increase solubility, we added several drops of sodium
hydroxide 0.1 N. All samples used in this study were prepared from these

solutions.

We used disodium hydrogen phosphate (Panreac, Barcelona, Spain), sodium
dihydrogen phosphate (Probus, Badalona, Spain), phosphoric acid 85% (Probus,
Badalona, Spain), tetrabutylammonium bromide (Fluka, Buchs, Switzerland),
methanol (HPLC grade, SDS, Peypen, France) and acetonitrile (HPLC gradient
grade, SDS, Peypen, France) to prepare mobile phase and samples.

Samples were collected from the output of the sewage treatment plant in
Tarragona (Spain) in precleaned amber glass bottles, filtered through a 0.45-um
membrane filter and kept at 4 °C until analysis. Although the 6-amino-1-hydroxy-
3-naphthalenesulfonate (A) and the 1-amino-6-naphthalenesulfonate (B) had been
previously found [1] in this kind of wastewater, they were not present in the
analyzed sample. Therefore, the samples were spiked at 0.08 and 0.15 mg 1" to

ensure their presence and test the usefulness of GRAM.
3.2. Instrumental

Chromatographic analyses were carried out using an HP1100 series system
(Agilent Technologies, Waldbronn, Germany) equipped with a Rheodyne manual
injector with a 20-ul injection loop, a degasser, a binary pump, a column oven and
a diode-array detector. The chromatographic column was a 25.0 cmx(0.46 cm

Kromasil 100 Cis with a 5-pm particle size (Teknokroma, Barcelona, Spain).

The enrichment was carried out using a solid-phase extraction manifold
(Teknokroma, Barcelona, Spain) connected to a vacuum pump (Gast

Manufacturing Company, Buckinghamshire, UK).
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3.3. Experimental conditions
3.3.1. Chromatographic conditions

3.3.1.1. Conditions 1

These conditions correspond to the in-house implemented method optimized for
the determination of the six aromatic sulfonates indicated in the Reagents,
standards and samples section. The optimal separation of a standard sample
containing the six aromatic sulfonates was carried out under isocratic conditions at
30 °C with a flow-rate of 1 ml min™'. The aqueous component of the mobile phase
was a Milli-Q water solution containing 8 mM of disodium hydrogen phosphate, 8
mM of sodium dihydrogen phosphate and 7 mM of tetrabutylammonium bromide.
Its pH was adjusted to 6.5 with phosphoric acid and the resulting solution was
filtered through a 0.45-um membrane filter [2]. The organic component was
acetonitrile (30%). The spectra from the effluent of the chromatographic system
were recorded between 220 and 300 nm, every 0.4 nm. The spectra were recorded

every 0.4 s. The analysis lasted 17 min.

When we analyzed the wastewater sample, the 6-amino-1-hydroxy-3-
naphthalenesulfonate (A) and the 1-amino-6-naphthalenesulfonate (B) eluted
overlapped with other interferences, so we concentrated specifically on

quantifying these two analytes.

3.3.1.2. Conditions 2

These conditions were determined for the wastewater sample in order to fully
separate the analytes A and B that, in Conditions 1, overlapped with interferences.
In this case, the optimal composition of the mobile phase was 22% acetonitrile and
the chromatographic separation lasted 65 min. Absorbance was measured at 250

nm because this wavelength was selective for the analytes of interest.
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3.3.2. Solid-phase extraction

Before solid-phase extraction, tetrabutylammonium bromide was added to the
sample in a concentration of 3 mM as an ion-pairing reagent and the pH was
adjusted to 7 with a disodium hydrogen phosphate/sodium dihydrogen phosphate
buffer to ensure the ion-pair formation. The preconcentration cartridge, an Isolute
ENV+ cartridge (International Sorbent Technology, Mid. Glamorgan, UK), was
conditioned with 5 ml of acetonitrile and 5 ml of Milli-Q water. Then 50 ml of
sample was preconcentrated at a flow-rate of 5 ml min'. Finally, the retained
analytes were eluted with 5 ml of methanol. Solvent was eliminated with a
nitrogen carrier stream and the analytes were redissolved with 1 ml of the
chromatographic mobile phase. In these conditions, recoveries (of the six aromatic
sulfonates) were between 50 and 90%, with %RSD between 4 and 8%.

3.4. Software

All calculations were done using in-house subroutines for MATLAB [23] version 6.
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4. RESULTS AND DISCUSSION
4.1. Detection of overlap

Fig. 1 shows the superposed chromatographic profiles recorded from 220 to 300
nm of the wastewater spiked at 0.08 ppm of A and B. The vertical lines indicate the
expected elution time of A and B that had been found with standards. Overlap of
the peaks of these analytes was detected by visual inspection of the spectra over
time and calculation of the chemical rank for each peak. A closer look at the peaks
reveals that they are time shifted with respect of the peaks from the standards. Fig.
2a shows the profile of A obtained from the pure standard of 0.4 ppm of A (Rc).
Fig. 2b shows the peak of analyte A overlapping with other interferences in the
wastewater sample analysis, which was later used for prediction with GRAM. No
selective wavelengths were found, so quantification using univariate calibration
may be largely biased. With conditions 1, we used the GRAM to determine the
concentration of A and B.

0.12
B

R, initial —p
R,— - —

0.08

Absorbance

0.04

5 55 6 6.5 7 7.5 8

Retention time, min

Fig. 1. Superposed chromatographic profiles of the wastewater recorded from 220 to 300 nm
spiked with 0.08 ppm of A and B from 5 to 8 min. The vertical lines indicate the expected elution
time for both analytes determined with standards. The time windows selected for Rc and Re

(before and after time shift correction) are indicated.
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Fig. 2. Peak of analyte A in the wavelength range studied. (a) A pure standard of

A. (b) Wastewater, where A elutes overlapping with interferences.
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4.2. Time shift correction and GRAM

For the calibration matrices Rc, we considered the time window where each analyte
elutes. In this case, it was from 5.75 to 6.01 min for A and from 7.10 to 7.52 min for
B. To correct the time shift in the wastewater sample, we selected a window that
was 10 time steps wider on both sides, i.e. from 5.68 to 6.07 min for A and from
7.03 to 7.59 min for B. Fig. 1 schematically shows the time windows of R. and Re
before and after we applied the time shift correction. Notice that for applying

GRAM,, the time window for Rt was the same size as R..

In all cases, we calculated GRAM with two factors. Fig. 3 compares the spectra
calculated by GRAM when determining A using the same time window for both
matrices, i.e. not taking into account the time shift, and the spectra calculated by
GRAM once the time shift was corrected. The calculated spectra of analyte A are
very similar in both cases. The correlation coefficients of the spectrum of A in the
pure standard and both calculated spectra were higher than 0.996. However, the
shape of the spectrum of the interference was like that obtained in the non-spiked
water only when the time shift was corrected. Results were similar for analyte B,
whose correlation coefficient between the GRAM calculated spectrum of B and the
spectrum of B measured in a standard sample, was higher than 0.999. If GRAM
was applied without a correction of the time shift, considering the same time

window for Re and for Ry, large prediction errors, around 30% were obtained.
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Fig. 3. Calculated spectra with GRAM in the determination of analyte A. (- - -) Before shift
correction (BSC) of Ru; (—) after shift correction (ASC) of Ry; (- - -) spectrum of a blank sample,

where analyte A was not present.

In the initially optimized conditions 1, we recorded three replicate data matrices
for the calibration sample (the standard contained 0.4 ppm of A and 0.4 ppm of B)
and three for the unknown sample. Therefore, we were able to calculate nine
different GRAM models (after the time shift had been corrected) by combining
each calibration and each unknown sample matrix at each spiked level. To
calculate the mean concentration and the precision (expressed as standard
deviation) of the method, the nine models were divided into three groups of three
models each, as shown in Table 1. All the models in each group are independent,
since no matrix is repeated. From each group, the mean and the standard deviation
of the predicted concentration are calculated. A pooled variance [24] was

calculated as:

Z:(n[—l)si2
S P
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where 1n=3 is the number of elements in each group. The denominator corresponds
to the degrees of freedom that were used in the statistical test (see next section). In
this case there were six degrees of freedom. As an example, Table 1 contains the

results for analyte A in the sample spiked at 0.08 ppm.

Table 1. Mean value and standard deviation of the GRAM models for the analyte A spiked at 0.08 ppm

Group 1 Group 2 Group 3
Rc/ Rt 1-1 1-1I 1-101
2-11 2-1II 2-1
3-1II 3-1 3-1I
Mean 0.0650 0.0648 0.0650
concentration
Standard deviation 0.0059 0.0006 0.0052
(si)
Grand mean
(calculated 0.065
concentration)
Standard deviation 0.003

Three groups of three independent models were analyzed, combining each calibration
R (1,2,3) and prediction R (I, II, IIT) matrices.

4.3. Validation

We compared the predicted concentration values obtained by GRAM with the
values obtained by univariate calibration. The experimental conditions were again
optimized for the water sample so that analytes A and B eluted separately from
any interference. Under these conditions 2, which we have specified in the
Chromatographic conditions section, the test sample was measured three times.
We carried out univariate calibration at 250 nm using standard solutions of A and
B with concentrations ranging from 0 to 0.2 ppm. Linearity was very acceptable for
this range, with determination coefficients (R?) of 0.9984 and 0.9990 for A and B,

respectively.
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Table 2 shows the predicted concentration values obtained by GRAM and the
values obtained by univariate calibration. An F-test was used to evaluate the
precision of both methodologies. With a confidence interval of 95%, no significant
differences were observed, i.e. at this level of significance, both strategies provide

the same precision.

Table 2. Mean concentration and standard deviation obtained by GRAM and univariate calibration for
analytes A and B spiked at two concentration levels. t-Test indicates the calculated ¢- value and the

minimal alpha so that fcalculated < ftabulated .

Analyte Spiked GRAM (conditions 1) Univariate Calibration t - test
concentration (conditions 2)
(ppm) Calculated  Standard | Calculated  Standard | calculated  Minimal
concentration deviation | concentration deviation alpha (%)
A 0.08 0.065 0.003 0.065 0.005 0.01 62
A 0.15 0.167 0.007 0.173 0.005 1.09 77
B 0.08 0.084 0.003 0.089 0.002 2.05 95
B 0.15 0.171 0.005 0.166 0.003 1.35 84

We used a two-sided t-test to compare the results obtained with GRAM with those
obtained with univariate calibration. This comparison was not carried out using
the value of the initial spiked concentration in order to avoid errors due to the

irreproducibility of the extraction and chromatographic processes.

In all cases, the results were similar for a confidence interval of 95%. This proves
that, for the studied cases, GRAM can be used for quantification and that the
results obtained with this method are similar to those obtained with univariate
calibration. It is important to note that the peaks of the analytes A and B eluted in
less than 8 min. In this case, their shapes were sufficiently similar among the
different samples to enable good quantification. Nevertheless, in future
applications of GRAM, it must be considered that if the analyte of interest elutes at

much higher retention times, the shape of its chromatographic profile may vary
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from one sample to another, causing a significant deviation from the trilinearity
and unreliable predictions. Usually, this can be detected by comparing the

spectrum calculated by GRAM and the spectrum of the pure standard.

5. CONCLUSIONS

We have shown that GRAM can be used to quantify aromatic sulfonates in
environmental samples with HPLC-DAD when the peak of the analyte of interest
is not completely resolved from the other interferences. As it requires only two
analyses, GRAM is an efficient alternative to the tedious and time-consuming
chromatographic separation of the analytes followed by univariate calibration. The
problem of time shift between the calibration and the unknown sample in GRAM
can be solved, and results are similar to univariate calibration. GRAM can be
applied to samples from different sources without any extra experimental work.
With univariate calibration, optimization must be done for each individual analyte

in every sample, which in practice is almost impossible.
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4.3 Paper

Quantification from highly drifted and overlapped peaks using second-order
calibration methods.
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Quantification from highly drifted and overlapped
chromatographic peaks using second-order calibration
methods

Enric Comas, R. Ana Gimeno, Joan Ferré, Rosa M. Marcé,

Francesc Borrull, F. Xavier Rius

Department of Analytical Chemistry and Organic Chemistry, Rovira i Virgili University
Pl. Imperial Tarraco, 1, 43005, Tarragona, Spain

ABSTRACT

For determining low levels of pesticides and phenolic compounds in river and
wastewater samples by high performance liquid chromatography (HPLC), solid
phase extraction (SPE) is commonly used before the chromatographic separation.
This preconcentration step is not necessarily selective for the analytes of interest
and it may retain other compounds of similar characteristics as well. In this case,
we present, humic and fulvic acids caused a large baseline drift and overlapped
the analytes to be quantified. The inaccurate determinations of the area of the
peaks of these analytes made it difficult to quantify them with univariate
calibration. Here we compare three second-order calibration algorithms
(generalized rank annihilation method (GRAM), parallel factor analysis
(PARAFAC) and multivariate curve resolution-alternating least squares (MCR-
ALS)) which efficiently solve this problem. These methods use second-order data,
i.e, a matrix of responses for each peak, which is easily obtained with a high
performance liquid chromatography—diode array detector (HPLC-DAD). With
these methods, the area does not need to be directly measured and predictions are
more accurate. They also save time and resources because they can quantify
analytes even if the peaks are not resolved. GRAM and PARAFAC require trilinear
data. Biased and imprecise concentrations (relative standard deviation,

%R.S5.D.=34) were obtained without correcting the time shift. Hence, a time shift
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correction algorithm to align the peaks was needed to obtain accurate predictions.
MCR-ALS was the most robust to the time shift. All three algorithms provided
similar mean predictions, which were comparable to those obtained when sulfite
was added to the samples. However, the predictions for the different replicates
were more similar for the second-order algorithms (%R.S.D. = 3) than the ones
obtained by univariate calibration after the sulfite addition (%R.S.D. = 13).

Keywords: Peak overlap, Second-order calibration, GRAM, PARAFAC, MCR-ALS,

Water analysis, Uncertainty reduction, Pesticides, Phenolic compounds.
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1. INTRODUCTION

High performance liquid chromatography with diode array detection (HPLC-
DAD) is routinely used for the qualitative and quantitative analysis of natural
samples. In optimized separation conditions, each chromatographic peak ideally
corresponds to a single compound. Actually, peaks may overlap, particularly when
the samples are environmental and biological and have a complex matrix. In this
case, quantification with univariate calibration requires special attention in order to

neither incorporate bias nor reduce precision.

One such case is shown in Fig. 1. The chromatogram is of a water sample from a
sewage treatment plant, which is studied in this paper. The analytes of interest are
two phenolic compounds (resorcinol and phenol) and two pesticides (oxamyl and
methomyl). These compounds are potentially hazardous for the environment and
human health, so they are regulated by the European Union (EU) to ensure good
quality bathing [1] and drinking water [2]. Because of their low concentrations, a
preconcentration step by solid phase extraction (SPE) is carried out before the
chromatographic separation [3, 4]. The SPE process also retained humic and fulvic
acids because their polarity was similar to that of the analytes of interest. This
caused a large peak at the beginning of the chromatogram (around 3—4 min) and
baseline drift. This baseline drift considerably increases the uncertainty of the
predicted concentration of resorcinol if univariate calibration is used, since it is not
possible to know where the peak starts and finishes. Since the baseline cannot be
defined precisely, both the area and the height of the peak will be uncertain.
Moreover, univariate calibration requires selective measurements, i.e., the area or
height of the peak must be due only to the analyte of interest. Here, it is difficult to
check whether other compounds of similar polarity coeluted with the analyte of
interest, since the spectrum at each retention time also contains the contribution of
the humic and fulvic acids. Hence, the peak purity parameter that is commonly

found in the software of the HPLC instrument will fail.
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Fig. 1. Chromatographic profile of the sewage treatment plant sample measured at 240 nm.

The analytes of interest are indicated.

The analytes of interest can be determined more precisely by changing the
experimental conditions to achieve full resolution. This involves spending time
and resources and there is no guarantee that the separation will be complete. In
particular, resorcinol is difficult to isolate from humic and fluvic acids because

their chemical properties are similar.

A second option is to add sodium sulfite (Na25Os) to the sample before it is
preconcentrated [5]. This compound reacts with the humic and fulvic acids and
makes them elute separately from the analytes of interest. However, the effect of
sodium sulfite depends on the sample matrix and in some cases, such as the

analyses of water from a sewage treatment plant (see below), it is not useful.

In this paper, we study and apply a third solution: the chemometric processing of
the peak, in order to obtain the net contribution of the analyte of interest. This can

be done with a variety of mathematical approaches. Basically, when the detection
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is based on absorbance responses in the UV-Vis region, they can be classified into
two groups: those based on mono-channel detection, i.e, one absorbance value
measured at each retention time; and those based on multi-channel detection, i.e., a

UV-Vis spectrum measured at each retention time.

The approaches that use mono-channel detection include neural networks [6],
genetic algorithms [7], differential signal detection [8] and the development of a set
of equations that model the chromatographic peak [9, 10]. One of the drawbacks of
these methods is that they must assume that the chromatographic profile has a
particular shape and that each peak has a number of analytes. Meyer [11, 12] fully
discussed how the area of the peak should be measured for different experimental
situations. However, these conditions were limited to overlapping peaks

containing only the analyte of interest and a single interference.

Here, we show that multi-channel detection with HPLC-DAD instruments can be
used to treat this problem in a more efficient way. Since we can measure the
spectrum at each retention time, a matrix of absorbances can be obtained for each
peak analyzed: a second-order data matrix. Each row of the matrix is a spectrum
measured at each retention time. Each column is a chromatographic profile at one

wavelength. Fig. 2 shows the second-order data matrix of the resorcinol peak.
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Fig. 2. Second-order data and its equivalence in matrix notation for the resorcinol peak.

Several algorithms can be used to predict the analyte concentration in a non-
resolved peak using second-order data [13-17]. Here, we compare the performance
of the three that are most commonly used: generalized rank annihilation method
(GRAM) [13], parallel factor analysis (PARAFAC) [14] and multivariate curve
resolution—alternating least squares (MCR-ALS) [15]. They make quantification
possible even if the test sample contains interferences that are not considered in the
calibration samples. This is known as ‘the second-order advantage’ [18]. This
advantage is particularly looked for in our case where the interferences in the

sample are the humic and fulvic acids.

Mitchell and Burdick [19] argued that PARAFAC and MCR-ALS have better
properties and that their results are more reliable than those of GRAM. Recently,
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Faber [20] compared them in a simulation study and concluded that GRAM can
also be a useful option in many cases. Here, we extend Faber’s study to a real case:
the analysis of water samples from the Ebre river (Spain), and from a sewage
treatment plant in Tarragona (Spain). Hence, the objective of this paper is two-fold:
(a) to demonstrate that GRAM, PARAFAC and MCR-ALS can be used to quantify
from highly drifted and overlapping peaks and (b) to point out in which situations
one method is better than the others. Their results were externally validated by a
reference methodology based on chromatographic optimization and univariate

calibration.

2. EXPERIMENTAL SECTION

2.1. Reagents and standards

The compounds studied were: (1) resorcinol (Sigma, Madrid, Spain), (2) oxamyl
(Riedel-de-Haén, Seelze, Germany), (3) methomyl (Riedel-de-Haén), (4) phenol
(Aldrich Chemie, Beere, Belgium), (5) 4-nitrophenol (Aldrich Chemie), (6) 2,4-
dinitrophenol (Aldrich Chemie). They are all more than 97% pure. Standard
solutions at a concentration of 2000 mg 1! were prepared in acetonitrile (SDS,
Peypen, France) for compound 1 and methanol (SDS) for the other compounds.
These solutions were stored at 4 °C. All the working solutions were prepared by
diluting these standard solutions. Analytes 1 to 4 were to be determined. Analytes

5 and 6 were included to test the reproducibility of the system.

HPLC gradient grade acetonitrile (SDS) was used for the mobile phase in the
chromatographic separation and the extraction process. Ultra pure water was
prepared by ultra filtration with a Milli-Q water purification system (Millipore,
Bedford, MA, USA). Hydrochloric acid (Probus, Barcelona, Spain) was used to
adjust the pH of the mobile phase and the samples. In the validation of the results
obtained by the second-order algorithms, sodium sulfite (Probus) was added to
reduce the peak at the beginning of the chromatogram caused by humic and fulvic

acids in the water samples.
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2.2. Samples

Samples were collected from the Ebre River (Spain) and from the output of the
sewage treatment plant in Tarragona (Spain) in precleaned amber glass bottles. The
pH of these samples was adjusted to 2.5 with hydrochloric acid in order to prevent
the compounds of interest from being in ionic form. They were filtered through a

0.45 um membrane filter and kept at 4°C until analysis.

The analytes of interest have only occasionally been found in this kind of samples
[4]. To ensure that they were actually present, the samples were spiked at different
levels of concentrations. One aliquot of the river-water sample was spiked at 5 pgl
for resorcinol and at 1 pg 1! for the other analytes. This sample was taken as the
test sample. In the same way, one aliquot was spiked at 20 pg 1! for resorcinol and

at 5 pg 1! for the other analytes. This sample was taken as the calibration sample.

The sample from the sewage treatment plant was treated in the same way. Here
the levels were 20 pg I for resorcinol and 5 pg 17 for the other analytes in the test
sample, and 80 pg 1! for resorcinol and 20 pg I for the other analytes in the

calibration sample.

2.3. Instrumental

The chromatographic separation was carried out using an HP1100 system (Agilent
Technologies, Waldbronn, Germany). This system consisted of a degasser, two
isocratic pumps, a manual injector provided with a 20 pl loop, a column oven and
a DAD. Each pump was used to deliver one fraction of the mobile phase.
Separation was carried out using a 25 cmx0.46cm Kromasil 100 Cis
chromatographic column with a 5um particle size (Teknokroma, Barcelona,

Spain).

For on-line SPE, an Applied Biosystems pump (Ramsey, USA) was used to
preconcentrate samples through a stainless steel precolumn (10 mmx3 mm, i.d.)

(Free University, Amsterdam, The Netherlands), which was laboratory-packed
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with isolute ENV + sorbent (International Sorbent Technology, Mid. Glamorgan,
UK).

Chromatographic and extraction systems were on-line coupled by means of a
Rheodyne 7010 valve. The set-up of the system allowed the compounds retained in
the extraction cartridge to be eluted with only the organic part of the mobile phase
[21]. This set-up was used to prevent the peaks from broadening out because of the

low elutropic force of the mobile phase.

2.4. Experimental conditions

2.4.1. Separation

Chromatographic separation was performed under gradient conditions. The
mobile phase consisted of acetonitrile and Milli-Q water (pH 3 adjusted with
hydrochloric acid to prevent the column degradation). The gradient started with
20% of acetonitrile and it was linearly increased to 55% in 20 min and then to 100%
in 5min. This percentage was maintained for 10 min to return to the initial
conditions in 5 min. The column was equilibrated for 5 min. The temperature of
the column was 65°C and the mobile phase flow rate was 1 mlmin?. The
spectrum of the effluent was recorded between 220 and 300 nm every 0.4 nm. For

univariate calibration, absorbance at 240 nm was used.

2.4.2. Solid phase extraction

The on-line solid phase extraction was as follows: the precolumn was first washed
with 10 ml of acetonitrile and then with 10 ml of Milli-Q water (pH 2.5 adjusted
with hydrochloric acid) at 4 ml min™; the position of the valve was changed and
the tubes were then purged with the sample; finally, the appropriate volume of
sample was preconcentrated at 4 ml min-'. The retained analytes were eluted in
back-flush mode by means of the acetonitrile of the mobile phase when the valve
position was changed again. The sample volume preconcentrated was 100 ml for

the river-water and 25 ml for the sewage treatment plant water.
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For univariate calibration, 1 ml of sodium sulfite 10% (w/v) solution was added to
the sample before it was preconcentrated in order to decrease the high peak that
appears at the beginning of the chromatogram when the river-water was

preconcentrated.

2.5. Algorithms

Three second-order calibration methods were considered: generalized rank
annihilation method, parallel factor analysis and multivariate curve resolution—-
alternating least squares. The three methods decompose the chromatographic peak
into pure chromatographic profiles and their corresponding spectra. By including
samples with known concentration, they can be used as calibration methods. So,
we tested how well they predicted the concentration of the analytes of interest
when the baseline drift was large, this drift being caused by the presence of the

humic and fulvic acids.

The equations can be found elsewhere [13-15]. Briefly, GRAM only needs the peak
of the analyte from a calibration sample (which can be either a pure standard [22]
or a spiked sample [23]), and the peak of interest in the test sample. This is very
attractive for the routine use of chromatography, since there is no need to measure
additional samples, which is an important saving of time and resources. The
algorithm is non-iterative and based on the resolution of an eigenvalue problem. It
is very fast (less than 1s on a Pentium IV 1.4 GHz) and figures of merit can be
calculated easily [24, 25].

PARAFAC and MCR-ALS are iterative methods and can work with more than two
samples. They need initial estimations of the chromatographic profiles or the
spectra to start the iterative process [26]. Here we used, as initial chromatographic
profiles, the solutions of the evolving factor analysis [27] applied to the test sample.
An attractive property of PARAFAC is that the decomposition of the peak is
unique, with no rotational ambiguities. To improve the solutions from PARAFAC
and MCR-ALS, constraints in the iterative process are imposed, based on the

chemical knowledge of the system. For chromatographic peaks, we imposed that
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the chromatographic profiles and the spectra had to be non-negative and that the

chromatographic profile of each analyte had to be unimodal (one maximum only).

GRAM and PARAFAC require perfect trilinear data whereas MCR-ALS does not.
Trilinearity can be viewed as an extension of Beer’s law to second-order data. This
amounts to assuming that the measured peak is the sum of the individual peaks of
each analyte and that the profile and the spectrum of one analyte are proportional
in all the samples. However, trilinearity is not always accomplished in
chromatography. For it to be so, the profile of the analyte of interest must elute at
exactly the same retention time in all the samples. In practice, time shift is usual in
this kind of analysis [22] because of imprecision in the injection or fluctuations of
pressure and temperature in the on-line system. Moreover, as the chromatographic
separation is done in gradient mode, time shift is even more significant than when
isocratic conditions are used. Several methods have been proposed for correcting
the time shift [28, 29]. Prazen et al. [28] plotted the eigenvalues of the augmented
matrix containing the calibration sample peak and the test sample peak, for
different time windows of the test sample. A minimum in the plot indicated the
optimal window. Comas et al. [29] selected the time window of the test sample
after the deconvolution of the calibration and the test samples independently,
using a curve resolution method, the iterative target transformation factor analysis
(ITTFA). Both methods were tested in a preliminary step and provided the same

results. The one described by Comas et al. [29] was used

2.6. Validation of the results from second-order algorithms

Validation of the predictions from second-order calibration algorithms is currently
an active area of research [22, 30]. The philosophy underlying these algorithms is
different than for multivariate calibration methods such as partial least squares
(PLS) or principal components regression (PCR). In multivariate calibration,
calibration and prediction are independent steps. Hence, we can check the
performance of the model before it is used for prediction. In second-order
calibration, both calibration and prediction are performed in one step, and both
calibration and prediction samples are used at the same time. That is to say, a new
model is calculated for each sample analyzed. Hence, methods are needed to check

that the model is calculated correctly and to guarantee as far as possible the
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accuracy of the predicted concentration in the test sample. This process, which is
called internal validation, is possible thanks to the fact that the three methods
studied provide the pure spectrum and the chromatographic profile of each
analyte. If the calculated spectra are comparable with the true ones (known from
standards), and the estimated chromatographic profiles are non-negative and

unimodal, the confidence that the predictions are correct is greater.

2.7. Software

The PARAFAC routine belongs to the N-way toolbox of R. Bro and C. Andersson
and was downloaded from their website [31]. The MCR-ALS routine belongs to
the MCR toolbox of R. Tauler and A. de Juan and was downloaded from their
website [32]. We made the GRAM and ITTFA algorithms subroutines in house for
MATLAB version 6 [33].

2.8. Data acquisition and data processing

The following procedure was used:

(1) The reproducibility of the on-line preconcentration and separation system
was estimated before the second-order calibration methods were applied

and validated. Poor reproducibility would make the study meaningless.

(2) Each sample was analyzed by the on-line SPE-HPLC-DAD method, and

the second-order chromatogram was recorded.

(3) For both the calibration (with known concentration of the analytes of
interest) and test samples, we manually selected the time window in which
each analyte of interest eluted. When the start and the end of the peak was
uncertain (e.g., resorcinol in Fig. 1), we considered a wider range. The start

and end of the peaks need not be precisely estimated for second-order
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(4)

©)

(6)

?)

calibration algorithms. These algorithms also make quantification possible

with only a fraction of the peak.

The chromatographic profiles were aligned with a time shift correction
algorithm [29]. This was necessary for GRAM and PARAFAC.

GRAM, PARAFAC and MCR-ALS were applied to the corrected peaks.

The predictions were internally validated by checking that the predicted
spectra were similar to the spectra of the pure analytes, and that the
chromatographic profiles were non-negative and unimodal. This gave

confidence in the predictions.

The predictions were externally validated. They were compared to the
predictions obtained by adding sodium sulfite to the sample and using
univariate calibration. External validation was only possible for the river-
water sample. Sodium sulfite had no effect on the water from the sewage

treatment plant.

3. RESULTS AND DISCUSSION

3.1. River-water sample

In order to check the reproducibility of the analytical procedure, we analyzed five

replicates of the calibration sample (i.e., five aliquots of the same spiked sample).

The reproducibility was checked both graphically and by measuring the area of the

peaks. Measuring the area in highly drifted peaks was not easy so we added

analytes 5 (4-nitrophenol) and 6 (2,4-dinitrophenol) to the sample. These

compounds are less polar so they eluted at 9.5 and 12 min, respectively, far from

the peak of the humic and fulvic acids. Fig. 3 shows the chromatographic profile of

the five replicates measured at 240 nm.
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Fig. 3. Five replicates of the river-water sample with absorbance measured at 240 nm and used to check

the reproducibility of the analytical system.

Table 1 shows the mean value of the area calculated by the integration algorithm of
the HPLC instrument and its relative standard deviation (R.S.D.) expressed as a
percentage. Taking into account the low concentration levels determined, the
reproducibility of the on-line system is acceptable for this kind of analysis, and it is

similar to what has already been reported [4].

Table 1. Area of the peaks in the different replicates of river-water

Analyte Mean value RSD (%)
Resorcinol 523.2 10.0
Oxamyl 741.2 25
Methomyl 663.5 3.4
Phenol 409.2 3.1
4-nitrophenol 665.5 21
2,4-dinitrophenol 1777 1.1
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A closer look at the peak of resorcinol in Fig. 3 shows that the maximum of the
peak in the different replicates was not at the same retention time, but that the
maximum absorbance was the same. This time shift is usual in this kind of analysis
and had to be corrected before GRAM and PARAFAC were applied.

Once the reproducibility had been assessed, the test samples were analyzed under
the same conditions. The selected time ranges where each analyte eluted are shown
in Table 2.

Table 2. Time range selected for each analyte

Analyte Initial time (min) Final time (min)
Resorcinol 4.16 4.83
Oxamyl 4.78 5.30
Methomyl 5.44 5.85
Phenol 8.05 8.66
4-nitrophenol 9.11 9.75
2,4-dinitrophenol 11.84 12.30

GRAM, PARAFAC and MCR-ALS were run with only two matrices, i.e.,, one
calibration and one test sample. Since we used two replicates for the calibration
sample and two for the test samples, we built four models for each algorithm and
analyte. In MCR-ALS, the matrices were considered column-wise, i.e, the spectra
were considered to be common in both matrices. In all cases the number of factors
needed to run these algorithms corresponded to the sum of the number of analytes
in both matrices. Several methods have been developed to determine the number
of factors [30, 34-36]. The one used here was the F-test [36]. In all cases the number
of factors was either 2 or 3, but never 1, which is what is required for univaritate
calibration. Table 3 shows the mean predicted concentration (from the four
models) and its relative standard deviation (%) when the same time window was
considered for the calibration and test samples (before SC in Table 3) and after the
time shift had been corrected (after SC). When the time shift was not corrected, the
three methods gave substantially different predictions, especially for resorcinol

and oxamyl. Also, the predicted concentrations are very dissimilar among
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replicates, resulting in an increase in the R.S.D. value. The reason for this is that
GRAM and PARAFAC require trilinear data, whereas ALS does not. When the
time shift was corrected, the predictions of the three methods were similar and the
R.S.D. for each analyte was considerably reduced. GRAM and PARAFAC
predicted very similar concentrations, and the four models provided close
predictions. On the other hand, the predictions made by MCR-ALS with and
without correction of the time shift are very similar. This was to be expected since

MCR-ALS does not require the data to be trilinear in the time mode.

Table 3. Mean value (ug I?) and its R.S.D. (%) of the predicted concentration with second-order
calibration methods, considering the same time range in the calibration and test sample (before SC) and

after the time shift had been corrected (after SC)

Analyte GRAM MCR-ALS PARAFAC

Before SC After SC Before SC After SC Before SC After SC
Mean RSD | Mean RSD |Mean RSD | Mean RSD | Mean RSD | Mean RSD
Resorcinol | 1033 21.3 | 439 82 | 541 58 | 511 6.1 | 418 34.1 | 420 126

Oxamyl | 098 36 |09 34 (118 130|112 18 [ 089 216|096 3.8
Methomyl | 098 5.1 | 1.00 3.1 | 104 11 |1.04 1.0 | 095 57 |1.00 39

Phenol 128 64 | 131 30 (121 15 |120 12 | 126 84 | 130 29

The reliability of the results was first checked by internal validation. Fig. 4
compares the spectra of resorcinol obtained with GRAM, PARAFAC and MCR-
ALS. All three spectra are very similar, with correlation coefficients higher than
0.999 which shows that the results of the three methods are similar. An extensive
study is being carried out in our laboratory to test which is the threshold value in

the correlation coefficient to be confident of the predictions.
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Fig. 4. Spectra provided by GRAM (-), PARAFAC (-+) and MCR-ALS (- -).

Finally, the predictions were externally validated with univariate calibration.
Sodium sulfite was added to the sample to decrease the large band corresponding
to the humic and fulvic acids. Fig. 5 shows the chromatogram at 240 nm of the
same sample before and after sodium sulfite had been added. The sulfite was
successful at removing the peak of fulvic and humic acids and univariate

calibration could be used since the area of each peak was determined more

accurately.
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Fig. 5. Chromatographic profiles of the river-water measured at 240 nm before (-) and after (--) sodium

sulfite was added.

The river-water sample was spiked at different concentration levels. Those samples
were analyzed in the same conditions as the previous samples and the univariate
models were constructed. For each spiked aliquot, three replicates were analyzed

and the compounds studied were quantified. Table 4 shows the results.

Table 4. Mean predicted concentration (ug 1) and its R.S.D. found by univariate calibration in the

water sample with added sodium sulfite

Analyte Univariate calibration
Mean value RSD (%)
Resorcinol 5.60 25.1
Oxamyl 1.09 13.2
Methomyl 1.10 8.1
Phenol 1.26 8.6
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As we can see, the results are similar to those in Table 3. A two-sided t-test was
used to compare the results obtained by the different methods with those obtained
with univariate calibration. In all cases, the results were similar for a confidence
interval of 95%. This validates the results obtained from the second-order

calibration methods.

Hence, any of the three methods can be used, but the MCR-ALS has the advantage
that the shift is not a problem as it is in GRAM and PARAFAC. As far as practical
aspects of the algorithms are concerned, GRAM is faster and no initial estimations
are needed, while MCR-ALS and PARAFAC are iterative and the time needed for
completion depends on how similar the initial estimation and the final solution

are.

3.2. Sewage plant water

Three calibration samples and three test samples were analyzed in accordance with
the conditions in the Experimental section. Unlike the river-water samples, the
addition of sodium sulfite had hardly any effect on the organic matter that
produced the high band at the beginning of the chromatogram (Fig. 6). Hence, the
peaks of the analytes could not be resolved chemically and the external validation

could not be done as it was for the river-water sample.
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Fig. 6. Chromatographic profiles of the sewage treatment plant water measured at 240 nm before (-)

and after () sodium sulfite was added.

The concentration of the analytes of interest could only be determined using
second-order calibration. Table 5 shows the predictions in pgl'. For methomil,
there was a large difference because when it eluted it was largely overlapped with
other interferences. For the three methods, the predicted spectra were similar to the
ones measured with standards, with correlation coefficients higher than 0.999.
Unlike the river-water, where we recovered approximately the spiked amount, the
predicted concentration for resorcinol was significantly larger than what we
spiked. To check whether the analyte was present in that sample, we applied
GRAM, PARAFAC and MCR-ALS using the non-spiked sample as a test sample.
The predicted concentrations were 48.6, 47.3 and 44.4 ug I, respectively. This
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agrees with the obtained value presented in Table 5, which corresponds to the

concentration found in the non-spiked sample, plus the amount spiked (20 pg 1).

Table 5. Mean predicted concentration in sewage water (ug 1!) and its R.S.D.

Analyte GRAM MCR-ALS PARAFAC
Mean RSD (%) Mean RSD (%) Mean RSD (%)
value value value

Resorcinol 68.65 7.4 66.86 3.9 62.58 14.1

Oxamyl 5.21 1.7 5.28 7.8 4.96 2.0

Methomyl 6.87 49.2 6.61 35.1 6.39 13.7
Phenol 7.74 0.6 8.08 4.6 7.71 1.0

4. CONCLUSIONS

GRAM, PARAFAC and MCR-ALS were able to quantify overlapped and highly
drifted chromatographic profiles. Such profiles can be found in the determination
of compounds at very low concentrations (ug 1) in natural samples. With these
methods it is not critical to assess where the peak starts or finishes. Of the three

second-order calibration methods, GRAM is fast, and requires only two matrices

and no initial estimations of the chromatographic profiles and the spectra of the

analytes. Also the figures of merit can be easily calculated. On the other hand,
PARAFAC and MCR-ALS are iterative. GRAM and PARAFAC require trilinear
data, which is difficult to achieve in this kind of data because of the time shift in

the chromatographic profiles.
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Conclusions

5.1 INTRODUCTION

This chapter contains the conclusions of the work presented in this thesis. Some
suggestions are also indicated about future work on the application of GRAM and

other second-order calibration methods to non-selective chromatographic data.

5.2 CONCLUSIONS

1. The Generalized Rank Annihilation Method can be used to identify and quantify
analytes in non-selective HPLC-DAD data provided that the necessary
“precautions” are taken into account (see below). When properly implemented, it
may save time and resources as the analytes of interest do not need to be resolved.

In addition, only one calibration sample is needed.

2. Applying GRAM requires that:

a. The signal regarding the analyte of interest has to be trilinear, i.e.,
proportional between the different samples.

b. The number of factors needed to build the model has to be
properly selected.

Specific tools have been developed to ensure that each condition was fulfilled.

2.1. Detection and correction of the retention time shift

Retention time variability is common in HPLC-DAD data due to the lack of
reproducibility of the separations. Small changes in the experimental conditions
and in the manipulation of the sample may affect the reproducibility and introduce
shift in the peak of the analyte of interest. The shift may be larger when an on-line
preconcentration step is performed before the chromatographic analysis.

With the technique and instrument used in this thesis, and for the cases studied,
the observed retention time shifts were not larger than 2 seconds. However, these
variations were large enough to make the concentration predicted by GRAM

incorrect, for example, leading to 30% of prediction error in the case of analyzing
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polycyclic aromatic sulfonates (PAHs). This prediction error is also influenced by

the degree of overlap of the analyte of interest with the interferences.

We developed a method to correct the retention time shift, based on the application
of the curve resolution method ITTFA. A time window in the test sample is
selected so that the profile of the analyte of interest coincides with its profile in the
calibration sample. The correction is done selectively for the analyte of interest.
With this method, for example, the prediction errors were reduced from 30% to 2%

in the analysis of PAHs.

2.2. Determination of the number of factors used to calculate the GRAM model

The wrong selection of the number of factors used to calculate the GRAM model
may also lead to large prediction errors. These are higher when the selected
number is lower than the optimal one (underfitting). When the number of factors is
larger than the optimal one (overfitting), GRAM models noise and non-relevant
information, but the predicted concentration is not as affected as in the underfitting
case. This has been observed by other authors (see section 2.6).

We developed a graphical tool to determine the right number of factors: several
GRAM models are tested by changing the number of factors and the weight
parameter a. A large variation in the predicted concentration when o varies
indicates underfitting or lack of trilinearity. A limitation of this criterion is that, for
each model, the prediction that corresponds to the analyte of interest must be
identified, which requires automatic algorithms that select which prediction is that

of the analyte of interest.

2.3. Check for trilinearity and outlier detection

Two methods were studied to check if the data are trilinear enough to be used for
calculating a GRAM model. In the first one we studied the relationship between o
and the predicted concentration by GRAM, by testing different values of o.. When
the predicted concentration did not vary, the data were trilinear. We concluded
that even when perfect trilinearity is not accomplished, useful results can still be
obtained, and that the wrong selection of the number of factors produces the

largest errors (see section 3.3).
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A new outlier detection method for GRAM was also developed. Different from
univariate and multivariate calibration, a sample that contains interferences not
considered in the calibration step is not an outlier in GRAM. In GRAM, outlying
samples are those where the analyte of interest in the test sample does not follow
the same data structure as in the calibration sample.

With HPLC-DAD data the comparison of the measured and predicted spectra is
not accurate enough for detecting such outliers. The reason is that the lack of
trilinearity in chromatography is commonly present in the time domain but not in
the spectral domain. Hence, although the elution profiles and the concentration
may be wrong, the estimated spectra can still be correct. This means that such data
can be used for qualitative analysis but not for quantitative anlaysis.

The developed criterion for detecting outliers is based on the projection of the
measured matrices onto the Net Analyte Signal (NAS) space described by the
GRAM estimations. The residuals of a fitted straight line indicate lack of
trilinearity. To know whether the residuals are significative, an estimation of the
noise is needed, which can be obtained either from a blank sample or from the
projected peaks of the calibration and test sample onto the NAS space. The second

option seems preferable (see section 3.4).

3. Applications of GRAM

GRAM was applied to the analysis of aromatic sulfonates through ion-pair liquid
chromatography, and to the analysis of phenols and pesticides in water.

Both analytical challenges required a preconcentration step in order to detect the
concentration levels found in the water samples. The separation conditions were
optimized with standards. However, when the test samples were analyzed the
analytes of interest eluted overlapped with interferences. The experimental
chromatographic conditions were changed in order to isolate those components.
The optimization must be done for each analyte in every sample, which in practice
is almost impossible. By the application of GRAM all those problems were

overcome.

Aromatic sulfonates. The application of GRAM was an efficient
alternative to the tedious and time-consuming optimization of the ion-pair liquid

chromatographic separation method followed by univariate calibration. GRAM
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was applied to the overlapped peaks, and after less than 8 minutes, the analytes of
interest were determined. To validate the results, the experimental
chromatographic conditions were changed in order to isolate those components,
and the analysis lasted 45 minutes. In these conditions, we then applied univariate
calibration. We found similar results when GRAM was applied to the former

conditions. Using GRAM, in this case, we saved analysis time.

Phenolic compounds and pesticides. The analytes of interest eluted
highly overlapped with a high band of humic and fulvic acids. We compared the
GRAM predictions with two other second-order calibration methods, PARAFAC
and MCR-ALS. No differences were found between the predictions of GRAM and
the predictions of PARAFAC and MCR-ALS, in triliner data. However, GRAM
seems preferable because GRAM is faster than PARAFAC and MCR-ALS. The
speed of PARAFAC and MCR-ALS depends on the similarity of the initial

estimations of the model results.

4. Real evaluation of GRAM

For the cases above, the separation time was reduced as no selective measurements
were needed. Although this makes this step of the analysis faster, applying GRAM
actually increased the total time of analysis. The reason is that important input is
required from a trained analyst in most of the steps of the data analysis: (a)
exporting the data from the chromatograph software to the software where GRAM
is implemented (in this thesis, Matlab), (b) locating and selecting the peak of
interest both in the calibration sample and in the test sample and creating the
necessary data matrices for these peaks (Rc and Ri), (c) determining the total
number of contributions to both peaks (d) identifying which of the solutions of
GRAM corresponds to the analyte of interest through spectral comparison (which
requires having the spectrum of the analyte of interest available in Matlab
environment), and (e) checking the possibility of the test sample being an outlier.
These tasks are not as yet automatized. This makes the total time of analysis larger
than the possible time required through optimizing the conditions and using
univariate calibration. However, we have shown the possibility of using GRAM to

solve those analytical problems and the implementation of these methods in the
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software of the chromatograph is just a technical aspect that can easily be

overcome as interest in these methods increases.

Validation of the analytical method is another aspect that must be taken into
account when GRAM is used for routine analysis. Figures of merit such as limit of
detection, sensitivity, selectivity, linear range, etc., are calculated as a way of
characterizing the performance of the analytical methods based on univariate and
multivariate calibration. Although similar expressions are also available for
calculating such figures of merit when GRAM is used for quantitation, their

practical calculation and interpretation still needs further study.

5.3 SUGGESTIONS FOR FUTURE RESEARCH

This thesis focuses on the application of GRAM to nonselective HPLC-DAD data.

The work presented here points towards a number of areas that still need to be
studied in more detail. One area is related to the application of second-order
methods to non-selective chromatographic data. Another is related to the

application of those methods to other techniques and analytical situations.

1. Application of GRAM and other second-order calibration methods to non-

selective chromatographic data.

a) The calculation of the uncertainty of the GRAM predictions has been
developed. The GRAM estimations are slightly biased. Faber et al. [Chem.
Intell. Lab. Syst. 55 (2001) 67-90] showed the calculation and correction of
that bias. As far as we know, those equations have not been tested in
measured data yet. The difficulty is that an estimation of the standard
deviation of the noise is needed. The net noise calculated from blank
samples or from the NAS matrices as developed in section 3.4 could be

possible candidates for these equations.
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b)

Develop user-friendly software that automates most of the aspects
mentioned in point 4 (page 210) and increases the speed of the analysis
based on GRAM.

2. Application of GRAM to other techniques

a)

b)

The application of GRAM and other second-order calibration methods to
other techniques, such as chromatography with Mass Spectrometry (MS)
detection or Capillary Electrophoresis (CE) with DAD detection has yet to
be further investigated. Some aspects mentioned before, such as

exporting/importing data for MS detector need to be studied.

The application of second-order calibration methods to CE with DAD
detection seems to be the next step, because the recorded signal is of a
similar kind to the one measured by HPLC-DAD. Although CE
instruments provide much more irreproducible data than an HPLC
instrument, CE has some advantages over HPLC-DAD, such as power of
resolution and reduction of the time of analysis, which makes the research
into the application of second-order methods to that technique

worthwhile.

The application of second-order calibration algorithms to dynamic
processes in which the signal (e.g. a spectrum) is measured within a
process over time. Second-order data are obtained, and by the application
of second-order calibration algorithms, the composition, the evolution, the
kinetics and the mechanisms of the reactions can be determined on-line,
without the use of off-line measurements to characterize the process and

the chemical reactions.

212



Appendix







Studied analytes

INTRODUCTION

This chapter contains three appendixes: the molecular structure of the compounds

studied in this thesis, the abbreviations used, and the list of papers and meeting

presentations given by the author during the thesis.

STUDIED ANALYTES
Name Family Structure
?,
0=s=0
3-aminobenzenesulfonate Benzenesulfonates

6-amino-4-hydroxy-2-

naphthalenesulfonate

6-amino-1-hydroxy-3-

naphthalenesulfonate

1-amino-6-

naphthalenesulfonate

Naphthalenesulfonates

Naphthalenesulfonates

Naphthalenesulfonates

w =0

R
<Z:
o=
|
o

=0

Ko

z
Oo=w
|

o
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Name

Family

Structure

1-naphthalenesulfonate

2-naphthalenesulfonate

Benzo[a]pyrene

Benzo[b]fluoranthene

Benzo[k]fluoranthene

2,4-dinitrophenol

Naphthalenesulfonates

Naphthalenesulfonates

Polycyclic aromatic

hydrocarbons

Polycyclic aromatic

hydrocarbons

Polycyclic aromatic

hydrocarbons

Phenols
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Studied analytes

Name Family Structure
OH
4-nitrophenol Phenols
NO,
OH
Phenol Phenols
OH
Resorcinol Phenols
OH
CH,
Methomyl Pesticides HC—NH-C—0—N=C_
SCH,
Ol /CH3
7 C—N N
Oxamyl Pesticides H,C—NH-C—O=N=C CH,
SCH,
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ABBREVIATIONS

Abbreviations used in the thesis

ALS

BZS

CE

CR

DAD
DECRA
EEM
EFA

EU

FA
FSWEFA
GC
GRAM
HELP
HPLC
ITTFA
MCR
MIP’s
MS

NS

OPA
PAHs
PARAFAC
PCA
PCR

PLS
RAFA
RSD
SIMPLISMA

Alternating Least Squares

Benzenesulfonate

Capillary Electrophoresis

Curve Resolution

Diode Array Detector

Direct Exponential Curve Resolution Algorithm
Excitation Emission Matrix - Fluorescence
Evolving Factor Analysis

European Union

Factor Analysis

Fixed Size Window Evolving Factor Analysis
Gas Chromatography

Generalized Rank Annihilation Method
Heuristic Evolving Latent Projection

High Performance Liquid Chromatography
Iterative Target Transformation Factor Analysis
Multivariate Curve Resolution

Molecular Imprinted Polymers

Mass Spectrometry

Naphthalenesulfonate

Orthogonal Projection Approach

Polycyclic Aromatic Hydrocarbons

Parallel Factor Analysis

Principal Components Analysis

Principal Component Regression

Partial Least Squares

Rank Annihilation Factor Analysis

Relative Standard Deviation

Simple-to-use interactive self-modeling mixture analysis
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Abbreviations

SMCR
SPE
SVD
TFA
TLD
T™W
UV-Vis

Self-Modeling Curve Resolution
Solid Phase Extraction

Singular Value Decomposition
Target Factor Analysis

Trilinear Decomposition

Time Window

Ultraviolet visible
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(Chapter 3)
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