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1.1. Motivation 
 
 
My earliest scientific interest in the field of chemistry was probably induced by my 
local environment: Tarragona, a town in Catalonia with a long and distinguished 
history and significant economic importance in Spain, is an area in which industry 
and services have grown without losing sight of the need to support the 
traditional role of agriculture and to consolidate the role of tourism. 
 
Tarragona has an important industrial and service activity, a large number of 
energy resources, one of the most important sea ports on the Mediterranean and 
excellent road and rail communications with the rest of Spain and Europe. 
Numerous multinational companies have set up their production centres in 
Tarragona. 
 
The chemical industry is an important part of Tarragona’s productive base. Other 
important areas of production are foodstuffs and electronic components. These 
industries are located near the large urban centres of the province and spread 
throughout the territory in a highly integrated network that employs more than 
70,000 workers. 
 
The historical and cultural traditions of Tarragona have also consolidated a 
young Rovira i Virgili University (URV), which has already become an important 
research centre and a significant factor in the training of the area’s human 
resources. 
 
In this context, I enrolled for the Degree in Chemistry at the URV. Every course I 
attended, every piece of knowledge I acquired and every practical lesson I took 
confirmed my love for Chemistry. In the last year of my undergraduate course, 
the Department of Physical and Inorganic Chemistry offered me the opportunity 
(remunerated) to work on a research project for young chemists, and to 
collaborate on educational tasks. 
 
I obtained my degree in Chemistry in 1998. I was rewarded by the University with 
the Bachelor’s Extraordinary Award, which recognises the best academic 
performance of the year. Moreover, in November 1999 the Port Authority of 
Tarragona awarded me the title of “Best Chemistry Student”. 
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After finishing my degree, my relationship with the research group into 
Chemometrics and Qualimetrics began as I joined a group of top quality, highly 
productive scientists and an excellent human team. My early participation with 
my new colleagues in a one-week Chemometric School in Granada (southern 
Spain) reinforced my enthusiasm for research, especially into chemometrics and 
multi-way analysis, and was the beginning of this doctoral thesis. 
 
On a personal note, my family have always encouraged me to study and I grew 
up with both the desire to reach the highest level of academic achievement and 
the conviction that studying all my life would bring me great personal and 
professional success. 
 
 

1.2. Objectives 
 
 
Introduction 

Chemistry is the science that deals with the properties of organic and inorganic 
substances and their interactions with other organic and inorganic substances. 
Historically, the science of chemistry is a recent development that has its roots in 
alchemy (from the Arabic word kimia, alchemy, in which al is Arabic for the) 

which has been practiced throughout the world for thousands of years. 
 
Chemistry is often called the central science because it connects other sciences. 
Its field of study is broad and often overlaps with that of physics, biology or 
geology. Chemistry encompasses many specialized sub-disciplines. Analytical 
chemistry is the analysis of material samples to gain an understanding of their 
chemical composition and structure. Analytical chemistry can be split into two 
main types, qualitative and quantitative. 
 
Qualitative analysis seeks to establish the presence of a given element, inorganic 
compound, functional group or organic compound in a sample. Quantitative 
analysis seeks to establish the amount of a given element or compound in a 
sample. 
 
Most modern analytical chemistry is quantitative. Popular sensitivity to health 
issues is aroused by the mountains of government regulations that use science 
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to, for instance, provide public health information to prevent disease caused by 
harmful exposure to toxic substances. The concept of the minimum amount of an 
analyte or compound that can be detected or analysed appears in many of these 
regulations (for example, to discard the presence of traces of toxic substances in 
foodstuffs) generally as a part of method validation aimed at reliably evaluating 
the validity of the measurements.  
 
The lowest quantity of a substance that can be distinguished from the absence of 
that substance (a blank value) is called the detection limit or limit of detection 
(LOD). Traditionally, in the context of simple measurements where the 
instrumental signal only depends on the amount of analyte, a multiple of the 
blank value is taken to calculate the LOD (traditionally, the blank value plus three 
times the standard deviation of the measurement). However, the increasing 
complexity of the data that analytical instruments can provide for incoming 
samples leads to situations in which the LOD cannot be calculated as reliably as 
before. 
 
General objectives 

The first objective of my doctorate was to study in depth the properties of the 
types of data, instruments and models that are used for calibration in analytical 
methods. The central axis of the study was the validation and estimation of 
figures of merit especially focusing on the detection parameters. 
 
The aim of this thesis is to develop theoretical and practical strategies for 
calculating the limit of detection for complex analytical situations. Specifically, I 
focus on second-order calibration methods, i.e. when a matrix of data is available 
for each sample. To do so, I deal with different types of data. First I select a 
proper calibration method and then propose a LOD calculation that is practical 
and consistent with the international guidelines and recommendations on 
detection concepts. 
 
Descriptions of the analytical situations treated in this thesis are given in the 
introductions to the corresponding chapters. In all cases under study, and 
because of the complexity of the data, calculating the LOD was a challenge. This 
was mainly because many analytes with very similar responses overlapped or 
because there were unwanted or unknown compounds that interfered with the 
analyte’s response. 
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Specific objectives 

1. To make a critical revision of the existing procedures for estimating the 
LOD for second-order calibration methods. 

2. To develop a LOD estimator for some widespread methods applied to 
second-order data: PARAFAC, ITTFA, MCR-ALS and N-PLS. 

3. To evaluate the relation between the LOD and other figures of merit.  

4. To establish guidelines for improving the detection capability of second- 
order calibration methods based on the effect of other figures of merit 
(e.g. sensitivity or selectivity) and on the experimental design. 

 
 

1.3. Structure 
 
 
This thesis is divided into two stages. In the first stage I will describe some of the 
chemometric concepts and terminology in multi-way analysis in order to later 
explain the analytical and theoretical problems and justify my proposals for 
solving them. The bibliographic references in the text are cited by (first) author 
and year of publication. The full list of references is in the corresponding section 
of the Appendix. 
 
In the second stage I discuss some practical applications and present my original 
work (chapters 3 to 6). The thesis is based on papers published in international 
journals. These have been edited to provide uniform format and mathematical 
notation throughout the thesis. However, for practical reasons, the original 
organization of the references is maintained. 
  
Formally, the thesis is divided into eight chapters: 
 
- Chapter 1. Description of the thesis contains the justification of this thesis and 

provides a brief overview of its context. The objectives of the thesis are 
explained and the structure of its contents is described. 

 
- Chapter 2. Introduction to chemometrics contains the fundamental concepts of 

multi-way analysis, from the types of data and instruments the analyst may 
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have to deal with to the calibration models to be used. Section 2.2.2 provides 
an overview of the calibration methods and, in particular, describes the 
second-order methods used in this thesis: PARAFAC, ITTFA, MCR-ALS and 
N-PLS. Section 2.2.3 introduces the figures of merit for method validation, 
particularly the analytical detection parameters and how to calculate them for 
data of different orders. 

 
- Chapter 3. Estimation of the LOD for PARAFAC contains the paper entitled 

Determination of carbendazim, fuberidazole and thiabendazole by three-

dimensional excitation-emission matrix fluorescence and parallel factor 

analysis. M. J. Rodríguez-Cuesta, R. Boqué, F. X. Rius, D. Picón Zamora, M. 

Martínez Galera and A. Garrido Frenich in Anal. Chim. Acta 491 (2003) 47-57, 

where the LOD is calculated from the second-order excitation-emission 
matrices (EEM) of a set of calibration samples which are resolved using 
PARAFAC.  

 

- Chapter 4. Estimation of the LOD for ITTFA contains the paper entitled 
Influence of selectivity and sensitivity parameters on detection limits in 

multivariate curve resolution of chromatographic second-order data. M. J. 

Rodríguez-Cuesta, R. Boqué and F. X. Rius in Anal. Chim. Acta 476 (2003) 

111-122, where the quality of the LOD estimator is defined as a function of the 

method performance characteristics and advice is given on how to improve the 
LOD by modifying experimental variables. 

 

- Chapter 5. Estimation of the LOD for MCR-ALS contains the paper entitled 
Development and validation of a method for determining pesticides from 

complex overlapped HPLC signals and multivariate curve resolution. M. J. 

Rodríguez-Cuesta�, R. Boqué, F. Xavier Rius, J. L. Martínez Vidal and A. 

Garrido Frenich in Chemom. Intell. Lab. Syst. 77 (2005) 251-260, where the 
LOD is calculated from the second-order spectro-chromatographic response of 
a set of calibration samples which are resolved using the ALS multivariate 
curve resolution method.  

 
- Chapter 6. Estimation of the LOD for N-PLS contains the paper entitled 

Standard error of prediction at low content levels and limit of detection 

estimation for multivariate and multi-linear regression. M. J. Rodríguez-Cuesta, 

R. Bro, R. Boqué and N. M. Faber in Anal. Chim. Acta (In press), which 
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describes how to calculate the LOD for a three-way prediction method and 
shows that the distribution of the responses at zero concentration is 
statistically different for samples containing different analyte/interferent ratios, 
thus leading to sample-specific LODs. 

 
- Chapter 7. Conclusions. Contains the general conclusions of the thesis and 

outlines suggestions for further research. 
 
- The Appendix contains the list of tables, the list of figures and the references 

cited in the thesis (excluding the papers) as well as a glossary with the 
abbreviations used and the definitions of some additional terms. The list of 
papers and meeting contributions collects the publications, the oral 
communications and poster presentations at international meetings during the 
development of the thesis. 

 

 

1.4. Notation and list of symbols 
 
 
General scheme for notation 

The notation of the quantities is important for differentiating between types of 

data. In one dimension, a scalar is a single value; in two dimensions, a vector is 

a “list” of values and a matrix is simply a “table” of values in three dimensions, 

three-way data are a “cube” of data, i.e. a set of tables of data. 

 

Throughout the thesis, the following conventions are used for these types of 

data:  

 

- Scalars are denoted by lowercase italic letters, e.g. a. 

- Vectors are denoted by lowercase bold letters, for instance a. All vectors 

are column vectors unless explicitly written as transposed. The 

transposition of a vector –or a matrix– is symbolized by a superscripted 

‘T’, e.g. aT. 
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- Matrices are denoted by bold capital letters, for instance A. Matrix 

elements are denoted by doubly indexed lowercase italic letters, for 

instance Aij is the element of the matrix A located in row i and column j. 

For a given matrix A, matrices A−1 and A+ stand for its inverse and 

pseudoinverse, respectively. In full rank matrices, A+=(ATA)−1AT. 

- Three-way structured data are denoted as matrices with an underlined 

letter, for instance A. 

 

List of frequently used symbols 

r, r, R, R response (scalar, vector, matrix or cube of 

responses) 

x, X, X a set of responses grouped in a vector, matrix or 

cube of data 

c, c, C, C content or concentration (scalar, vector, matrix or 

cube of responses) 

y, Y a set of concentrations grouped in a vector or 

matrix of data 

e, e, E, E  error 

b, b, B regression parameters of the model 

i=1,…I, j=1,…J, k=1,…K modes 

L, M, P, Q, R modes 

f=1,…,F number of components / number of analytes 

A, B, C, T, U, W, Q loading (scores) or weight matrices 
 

α probability of false positive or first type error 

β probability of false negative or second type error 

ν degrees of freedom 

σ standard deviation 
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z normal distribution 

t Student-t distribution 

 

This is the standard notation used in this thesis. In some cases, however, the 
same symbol is used with different meanings. This is in order to follow the 
accepted nomenclature found in the bibliography. When this occurs, it is 
explained in the text in order to avoid confusion. 
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2.1. Types of data and instruments used in analytical 
chemistry 
 
 

2.1.1. Historical background 
 
Basic analytical measurements date from ancient times. Standard weights were 
used by the Babylonians in 2600 BC and, as early as that time, they were 
considered so important that users were supervised by their priests. However, it 
was not until the 17th century that the term “analyst” was introduced by Robert 
Boyle in his book The Sceptical Chymist (1661). Boyle can therefore be 
considered the father of this branch of chemistry. 
 
 

 

  
 

Figure 1. Title page of The Sceptical Chymist by Robert Boyle 
(1627-1691). 
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Most classical or wet-chemical methods were based on separating the analytes 
by precipitation, extraction or distillation procedures. After this separation step, 
qualitative analyses were carried out by reaction with a reagent that yielded 
products that were recognizable by their colours, boiling or melting points, 
solubilities in different solvents, optical activities or refractive indexes. For 
quantitative analysis, gravimetric or titrimetric measurements were used to 
determine the amount of analyte. Inventions and the development of analytical 
instruments followed one after the other between the 18th and early 20th century, 
and instrumental methods gradually supplanted the classical ones (Rubinson and 
Rubinson, 2000; Skoog et al., 1998). The main advances have been made since 

the 1950s when chemical structures and composition information were first 
converted into electrical and optical phenomena such as spectra, 
voltammograms and chromatograms. Modern instrumental methods grew 
parallel to the development of the electronics and computer industries. The 
introduction of computers into analytical chemistry laboratories has made data 
storage easier and enabled data to be reconstructed, manipulated or transformed 
by, for instance, subtracting a background, smoothing the noise in the signals or 
calculating a ratio of responses. 
 
Nowadays, many analytical laboratories have computers and instruments that 
can generate huge amounts of (complex) data. These instruments can be 
classified according to the type of data they produce as response. Tensorial 
theory1 provides a unified language that is useful for describing the chemical 
measurements, analytical instruments and calibration methods. 
 

2.1.2. Tensor terminology 
 
In the classical approach, tensors are mathematical objects that can be 
represented by arrays of components such as an n-dimensional generalization of 
scalars, 1-dimensional vectors and 2-dimensional matrices. The order of the 

tensor is the number of the modes or spaces spanned by the tensor (in the 
literature we find ‘order’, ‘modes’, ‘spaces’ or ‘ways’ used as synonyms). The 

                                                 
1 The notation was developed around 1890 by Gregorio Ricci-Curbastro (1853-1925) and 
spread by his pupil Tullio Levi-Civita (1873-1941) with the publication of “The Absolute 
Differential Calculus” in 1900. Tensor Calculus was widely accepted with the introduction 
of Einstein’s theory of general relativity, which was completely formulated in the language 
of tensors. Tensor theory is also used in areas such as elasticity, fluid mechanics, etc. 
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number of elements in each order is called dimensionality. For each order of the 
tensor, the rank is defined as the number of varying independent factors and 
cannot be greater than the dimensionality of that order. 
 
In tensorial language, a scalar is a tensor of order 0 with rank 0, a vector is a 
tensor of order 1 with rank 1, and a matrix is a tensor of order 2 with rank 
equivalent to the rank of its matrix2. 
 
Often we have to analyze several samples. When the measured responses for 
these samples are scalars (zeroth-order tensors) they can be arranged in a 
vector, thus giving rise to a one-way structure. If the responses are first-order 
tensors, e.g. spectra, they give rise to a two-way structure. Working with a set of 
second-order responses may involve handling three-dimensional arrays of data, 
i.e. three-way structures. To generalize, a collection of nth-order data from each 
of many samples creates an (n+1)-way structure. A graphical representation can 

help to understand these concepts (see Figure 2). 
 
By analogy with the tensorial nomenclature for the data, instruments that 
generate a single datum per sample are called zeroth-order instruments. 
Examples of these instruments are the thermometer, which provides a specific 
temperature, and ion-selective electrodes such as the pH meter, which measures 
the pH of a solution. First-order instruments include all types of spectrometers 
and chromatographs. These produce multiple measurements per sample that are 
ordered in a data vector (or first-order tensor), such as the elution profile 
obtained with a liquid chromatograph or the spectrum obtained by a UV-Vis 
spectrophotometer. 
 
Instruments that generate two-dimensional arrays of data are second-order 
instruments. A typical example is a spectrofluorometer, which provides a set of 
emission spectra obtained at different excitation wavelengths. Many of the so-
called ‘hyphenated methods’ also provide second-order data generated by 
coupling two first-order instruments, e.g. a gas chromatograph coupled to an 
infrared spectrometer (GC-IR) or to a mass spectrometer (GC-MS), a liquid 
chromatograph coupled to a UV-Vis detector (HPLC-DAD), and a tandem mass 

                                                 
2 Note that second-order tensors and matrices are not identical. A matrix is any 
arrangement of elements written as an array (Budianski 1974). See “Tensor” in the 
Glossary of terms. 
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spectrometer (MS-MS) or a thermogravimetric analyzer coupled to an infrared 
spectrometer (TGA-IR). Table 1 summarizes these examples. 
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Figure 2. Graphical representation of the response from one 
sample (a tensor of zero, first or second-order), and the resulting 
array of responses from four samples (a structure of one, two or 
three ways). 

 
 
Higher-order tensors can also be directly generated, and the increasing 
complexity of the instrumentation is generally compensated by the gain in analyte 
selectivity. Going from methods that use zeroth-order data to methods that use 
nth-order data requires a deeper knowledge of the mathematics and statistics 

involved in chemometrics methods than in the more intuitive and widely 
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disseminated univariate models. However, the use of higher-order data is 
justified for mainly two reasons: first, undesirable or unexpected compounds 
(interferents) that contribute to the measured signal can be detected and second, 
the analyte of interest can be quantified in the presence of these interferents. 
Section 2.2 describes these features in detail. 
 

Table 1. Examples of data and instruments of different orders. 
 

Data order Data type Instrument 

Zeroth-order 
tensor 

� Temperature 
� pH value 

� Thermometer 
� pH-meter 

First-order 
tensor 

� Near infrared (NIR) spectrum 
� Chromatogram at a single wavelength 

� NIR spectrophotometer 
� HPLC-UV/Vis 

Second-order 
tensor 

� Spectrochromatogram 
� Excitation-emission matrix (EEM) 

� HPLC-DAD 
� EEM spectrofluorometer 

 
 
 

2.1.3. The concepts of bilinearity and trilinearity 
 
In the absence of noise, a second-order datum (i.e. the matrix of instrumental 
responses) corresponding to a pure compound, can ideally be written as the 
outer product of two vectors (or first-order tensors), also called a dyad, a bilinear 

component or, in the Principal Component Analysis (PCA) model (Wold et al., 
1997), a principal component

3. In HPLC-DAD data, for example, the column 

vector describes the concentration profile and the row vector describes the UV 
spectrum. The outer product concisely shoes that, ideally, the UV spectrum does 
not depend on elution time and that the elution profile is identical for all 
wavelengths. 
 
In mixtures, the bilinearity of a data matrix R means that the contributions of the 
compounds in the two orders of measurement are additive and, therefore, that 
the response matrix can be decomposed as R = CST. Following the HPLC-DAD 
example, the columns of C and S designate the intrinsic factors responsible for 

                                                 
3 Principal components are also called, in a more general sense, latent variables in 
contrast to the original variables, which are called manifest variables. 
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the observations, i.e. the pure chromatograms and spectra (up to a scalar that 
accounts for intensity) (see Figure 3). 
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Figure 3. Schematic decomposition of a second-order matrix R into 
the individual pure profiles of each compound in the mixture. 

 
 
In bilinear experimental data, the additional matrix of residuals E accounts for the 

experimental error and their elements are normally distributed with mean zero 
and standard deviation σ. Otherwise, i.e. if the residuals show a systematic 

variation, more components can be extracted due, for example, to the presence 
of an unexpected compound or to an instrumental baseline in one or more of the 
modes. In this latter case, however, data would not follow the bilinear model. 
 
Three-way structured data can be obtained from a set of second-order matrices 
(see Figures 2 and 4), when, for instance, several standards with different 
concentration of analyte/s (and/or interferents) are measured. Among other 
important enhancements (see Section 2.2), by using this matrix augmentation 
one can limit the mathematical results to only those that have a chemical 
meaning. 
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Figure 4. Decomposition of a set of second-order tensors in a 
three-dimensional structure into the product of A, B and C matrices 
that contain the first-order profiles in modes I, J and K, respectively. 
F is the number of underlying trilinear components and E is the 
residual matrix of non-modelled information. 

 
 
When these second-order matrices can be decomposed into first-order tensors, 
and these first-order tensors are reproducible along the samples, the concept of 
bilinearity extends to the third mode (trilinearity) and the original data can be 
decomposed into trilinear components, or triads. Thus, trilinear models further 

assume that the underlying phenomena are parallel proportional profiles4, i.e. the 
profiles are reproducible, have identical shape and differ only in intensity from 
experiment to experiment. 
 
The trilinearity of a data cube can in practice be assessed as follows. The three-

                                                 
4 This is the PARAFAC model, which is described in Section 2.2. 
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way structured data sized (I×J×K) can be matricized5 in the three different 
directions, giving a row-wise augmented matrix Rr (I×JK), a column-wise 
augmented matrix Rc (J×IK), and a tube-wise augmented matrix Rt (K×IJ). When 

the rank of these three matrices is the same, i.e. they all have the same number 
of components related to the chemical variations, the three-way structure follows 
a trilinear model. 
 
In real analyses we do not always handle ideal scenarios. Deviations from 
linearity, if not considered, can lead to misinterpretation of the results from the 
mathematical decomposition. Fortunately, there are suitable methods for 
approximating many of these deviations. 
 

2.1.4. Deviations from linearity 
 
Real experimental data do not always behave ideally, and high-order data are 
not an exception. Linearity is assumed in many (principal components-based) 
models in order to decompose the data into a sum of dyads or triads. Actually, 
the Direct Trilinear Decomposition (Sánchez and Kowalski, 1990), DTD, 
schematized in Figure 4, is only feasible when data are intrinsically trilinear. For 
the example of the three-way analysis of HPLC-DAD data, this means that the 
shapes of the spectrum and the elution profile of each chemical compound 
remain invariant in all samples. In practice, there are some applications in which 
this is not achieved. Some situations can be regarded as a violation of the strict 
trilinearity, such as changes in spectra shape due to matrix effects or changes in 
the shape or shifts of the retention time in the elution profiles. 
 
Another common example in which the linearity among the three modes breaks 
down appears in EEM fluorescence, when Rayleigh and Raman scattering are 
recorded. These diagonal patterns across the spectra are not multi-linear in its 
nature and therefore inefficiently modelled by trilinear calibration methods. To 
prevent the model from trying to fit these scatters, several useful procedures 
have been reported (Bro, 1997; JiJi and Booksh, 2000; Wentzell et al., 2001; Bro 
et al., 2002). Raman interference due to the solvent can often be almost 

                                                 
5 See “Matricizing” in the Glossary of terms. Among the different equivalent terms that 
define this reorganization, the commonly used term “unfolding” should be avoided since it 
has a specific meaning outside the chemometric community. 
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completely removed by subtracting the solvent spectra from the sample spectra. 
Rayleigh scattering, which occurs when the excitation wavelength is equal to the 
emission wavelength, can be disregarded by weighing the data or by restricting 
the analysis to the region in which the scatter does not appear. 
 
Trilinearity also cannot be assumed when the variables of the different slabs are 
not comparable, for example in size. Let us imagine the sensory analysis of 10 
attributes, e.g. colour, taste, etc., from 20 different wines samples carried out by 
5 experimented or trained panellists (20 samples in the rows, 10 attributes in the 
columns, 5 panellists in the slabs). If any of the judges does not assess all 
attributes, its corresponding slab will have a lower dimension. In such a situation, 
a trilinear model cannot fit the data. 
 
Generally, in order to adequately select the family of chemometric methods to 
use, any sampling problem, physical property or chemical interaction that 
involves a change in the underlying phenomena must be taken into account in 
case it affects the linearity of the data. 
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2.2. Calibration methods 
 
 

2.2.1. From zeroth- to second-order calibration 
 
All instruments should be calibrated to check that the instrument provides the 
proper response according to the employed standard. As well as instrumental 
calibration, there is analytical or methodological calibration. All analytical 
methods that use instruments that do not directly provide the property the analyst 
is interested in should incorporate the analytical calibration, i.e. the establishment 
of the relationship between the instrumental response (the signal, e.g. an 
absorbance value) and the property of interest (usually a concentration). This 
mathematical relation is called the calibration model and can be classified 
following the tensorial terminology depending on the type of data collected from 
the samples. 
 
The classical calibration curve built with a single-value response, e.g. an 
absorbance, from a set of calibration standards of known concentration, is an 
example of a zeroth-order calibration model. When a vector of absorbances, i.e. 
a spectrum, is collected from every standard, first-order calibration can be 
applied to extract information from the system. Similarly, second-order calibration 
concerns second-order data and so on. 
 
In many cases, zeroth-order calibration models are based on theoretical models 
such as Lambert-Beer’s law for spectral measurements or Nernst’s equation for 
potentiometric ones. The zeroth-order response, r, is defined as a function (which 
is not necessarily linear) of the analyte concentration c (r=f(c), i.e. the “classical 

model”). In the simplest linear case, the univariate model is 
 

r = b0 + b1c                                                                                      Eq. 1 

 
where b0 and b1 are the parameters of the model. The model can be defined from 

a single standard, as long as the straight line is forced to pass through the (0, 0) 
point. It is apparent that two points, (0, 0) and (c, r), define the univariate 

calibration line. However, it is usual to have several samples in order to average 
the influence of the random instrumental error and take into account the constant 
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offset in the response function. This function can be estimated by ordinary least 

squares regression, OLS. 
 
The signal from any other active compound in the samples is assumed to give a 
constant contribution to the response and is therefore removed mathematically 
as an offset. If the intensity contribution of the interference is not constant, it is 
not possible to distinguish between the signal due to the analyte and the signal 
due to the interference, so the estimated analyte concentration is biased (see 
Figure 5). 
 
 

Content, c

Response, r

canalyte cpredicted

ranalyte

rmeasured

rinterferent

error

r = b0 + b1 c

Content, c

Response, r

canalyte cpredicted

ranalyte

rmeasured

rinterferent

error

r = b0 + b1 c

 

 

Figure 5. Zeroth-order linear calibration: unknown interferences 
contribute to the zeroth-order response and the predicted analyte 
concentration is biased. 

 
 
In conclusion, a requirement of zeroth-order calibration is that the collected signal 
is due only to the analyte of interest, either using pure standards and samples or 
using a fully selective instrument. 
 
When complete physical resolution or the required selectivity is not fulfilled, 
interferents can be dealt with by modelling them, i.e. by including their 
contribution in the mathematical model. For this, the samples used to establish 
the calibration model should contain the interfering compounds and be measured 
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with a multichannel instrument (i.e. a first-order instrument). First-order 
calibration methods are based on a direct or on an inverse multivariate model. 
The direct multivariate model (Equation 2) is a generalisation of the classical 
univariate model (Equation 1) and can be estimated by classical least squares 

regression, CLS. The first-order response measured at j=1, …, J variables 

(sensors) is expressed as a function of the concentration of every varying 
compound in the samples (f=1, …, F analytes), according to the classical model 
formulation. This means that the signal at unit concentration, e.g. unity spectrum, 
of all the active compounds that contribute to the signal must be available (matrix 
S in Equation 2), which unfortunately is not the case in many applications where 

little is known about the composition of the sample. 
 
In the inverse multivariate model, the concentration of the analyte of interest (or 
generally speaking, the measurand) in the prediction sample is defined as a 
function of the response, as shown in Equation 3. The vector of regression 
coefficients is previously estimated from a set of calibration samples, where only 
the concentration (and not the unit signal) of the analyte of interest must be 
known. This is why, unlike zeroth-order calibration methods, the inverse model is 
often preferred for multivariate calibration. 
 

( ) ( ) ( )11 ×××
=

FFJJ
cSr                                                                                     Eq. 2 

( ) ( ) ( )11

T

11 ×××
=

JJ
c br                                                                                       Eq. 3 

 
The vector of regression coefficients in the inverse model represents the part of 
the response in r that is unique to the analyte of interest and orthogonal to the 

other active compounds in the sample. It is calculated from a set of calibration 
samples. When the multivariate model is used to predict the analyte 
concentration in a new sample (using Equation 3), its response is projected onto 
the regression vector. Every active compound should have been included in the 
calibration model. Otherwise, i.e. if the new sample contains non-calibrated 
interferences, abnormal behaviour can be detected (this is known as the first-

order advantage, see Figure 6) but an unbiased analysis is not possible. 

 

The most popular first-order methods among the chemometric community are 
inverse least squares (ILS) regression (also called multiple linear regression, 

UNIVERSITAT ROVIRA I VIRGILI
LIMIT OF DETECTION FOR SECOND-ORDER CALIBRATION METHODS.
M. José Rodríguez Cuesta
ISBN: 978-84-690-7787-0 / DL: T.1349-2007



Introduction to chemometrics 
 

- 25 - 

MLR) and, of the methods based on the reduction of variables, principal 

component regression (PCR) and partial least squares regression (PLSR). 
 

 

a) b)a) b)

 

 

Figure 6. Figure 4 from Sanchez and Kowalski [Ref. 1988]: 
Multivariate linear calibration. Projection from a multidimensional 
space to a two-dimensional plane for a three-constituent system (A, 
B and C). The black dots represent the calibration samples and the 
white dot is the response for an unknown sample. The calibration 
set only contains mixtures of analytes A and B, and only the 
concentration of A is known. (a) Modelled interference: if the 
unknown sample also contains A and B, then it is possible to 
estimate the concentration of A. (b) New interference: if the 
unknown samples also contain C, it is not possible to estimate the 
concentration of A, but the distance to the A-B model reveals that a 
problem exists and alerts the analyst to the unsuitability of using 
that model to predict this sample. 

 
 
Only with second-order data, is prediction in the presence of new interferences 
possible. This is known as the second-order advantage and can be achieved 

even with just one calibration sample. 
 
In second-order calibration the data are arranged as three-way arrays. The 
elements in the three-way array result from the contribution of every analyte, f, in 

the three modes. This array of data is decomposed into a set of basis vectors so 
that the three-dimensional R is defined in terms of three two-way loading 
matrices (one for each mode) A, B and C, as shown in Figure 4. This 
decomposition is referred to as the trilinear or the PARAFAC model (Bro, 1997). 

 
The additional complexity of three-dimensional organization is sometimes 
reduced by using multivariate models to deal with a collection of second-order 
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data. This is achieved by matricizing the matrix of responses from each sample 
into a long vector. However, this vectorization not only loses the original 
relationship in the rows, but also creates limitations of first-order calibration: a 
larger number of calibration samples are needed in order to span the variations 
in future samples, and prediction of the analyte concentration will not be possible 
in samples with new interferences that are not accounted for in the calibration 
step (Faber et al., 2002). 
 
Table 2 is a schematic summary of the capabilities of the different types of 
calibration, including the commonest type of calibration. Useful references for 
dealing with this issue are Booksh and Kowalski 1994, Bro 2003, and Boqué and 
Ferré 2004. 
 

Table 2. Capabilities of calibration of different orders. 

 

Calibration type Zeroth-order First-order Second-order 

Detection of interferences � � � 

calibrated 
Interferences � � � 

Quantification in 
presence of: new 

Interferences � � � 

Commonest type of calibration 
Univariate 

linear 
calibration 

Multivariate 
calibration 

Second-order 
calibration 

 
 
Note that the increasing complexity of models and methods involved in multi-way 
analysis, compared to those involved in zeroth- or first-order analysis, is even 
more evident in written language. Equations to transcribe such models and 
methods can be expressed graphically, e.g. Figure 4. These figures are easy to 
understand but they are limited to a maximum of three dimensions. A stricter 
notation is acquired by summations of indexed quantities, as in Equation 4. 
However, they lead to complex equations that are difficult to understand when 
many indices are involved. Actually, the conventional matrix and vector notation 
is normally used (Kiers, 2000), as in Equations 2 and 3, even though there is no 
absolutely agreed notation in multi-way analysis. 
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2.2.2. Resolution and calibration methods for second-order 
data 
 
The simplest three-way situation is to determine the concentration of the 
compounds in a mixture with unknown composition by directly comparing the 
matrix of the test sample and the matrix of a standard. This principle was 
introduced by Ho, Christian and Davidson in 1978 with the Rank Annihilation 
(RA) analysis (Ho et al., 1978; Ho et al., 1980). Their formulation was based on 

the assumption of bilinear data, i.e. second-order measurement from a sample is 
a linear combination of their respective contributions. Both the test sample Ru 
and the standard R0 therefore have one pair of vectors in common (first-order 
profiles of the analyte of interest; see Figure 3), 
 

∑
=

=
F

f

ff c
1

T
uu smR                                                                               Eq. 4 

∑
=

=
F

f

ff c
1

T
00 smR                                                                               Eq. 5 

 
where cu and c0 are the amounts of analyte in the test sample and standard, 
respectively, and one can find the ratio r of concentrations of the common 

analyte f in both samples by considering the expression R u− r fR 0 : the rank of the 

resulting matrix is one lower than that of R u  for the proper value of r f  giving the 
actual relation cu/c0 in the samples. 

 
The original method consisted of trying different values of r f  until the effect of 
removing (annihilating) the contribution of the analyte led to the reduction of the 
rank in one (up to the measurement noise). This method, also called rank 
annihilation factor analysis (RAFA) (McCue and Malinowski, 1983), relies on only 
one calibration standard and there is no way of detecting an error in the 
standard. As in lower-order calibration, using many calibration samples can 
control this situation (Appellof and Davidson, 1983). 
 
The quantification of several analytes at a time was also later dealt with (Ho et 

al., 1981; Lorber, 1984), culminating in the popular generalized rank annihilation 

method (GRAM) developed by Sanchez and Kowalski in 1986. 
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Rank annihilation can also be explained as the most simplified decomposition of 
the fundamental model proposed by Tucker 6. The Tucker3 models (Kroonenberg 

and Leeuw, 1980) reduce the three-way X array (I×J×K) sized into three loading 

matrices: A, B and C (see Equation 6 and Figure 7). As well as the remaining 
residual matrix E, a fourth matrix –the core matrix G– is also obtained, which 

gives the relations between the three modes. 
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Figure 7. The general Tucker decomposition of X into the sum of a 
structured part (A, B and C loading matrices) and a noise part E. 
The core matrix G gives the relations between the three modes. 

 
 

An important property of the Tucker models is that there is no requirement in the 
core matrix that the number of factors in A, B and C must be the same, i.e. this is 

                                                 
6 Though the earlier presentation of the general decomposition given by Tucker in 1963 
used a somewhat confusing notation, it was the same decomposition later published by 
Levin in 1965. One can find an analogue in the analysis of two-way arrays: the singular 
value decomposition (SVD). In the formula given here, it is not mandatory that C denotes 
concentrations or chromatographic profiles, the notation simply follows the standard 
convention (Kiers 2000). 

UNIVERSITAT ROVIRA I VIRGILI
LIMIT OF DETECTION FOR SECOND-ORDER CALIBRATION METHODS.
M. José Rodríguez Cuesta
ISBN: 978-84-690-7787-0 / DL: T.1349-2007



Introduction to chemometrics 
 

- 29 - 

a general decomposition and P, Q and R do not have to be equal. The loading 

vectors can interact; this is the explicit meaning of a nondiagonal matrix, although 
a physical interpretation of these interactions may not always be evident. 
 

When G is the identity matrix, i.e. a cube of size R×R×R with ones in the super-

diagonal and zeros in all the other positions, is equivalent to the PARAFAC 
model. PARAFAC is used to model trilinear data such as ideally, spectro-
chromatographic or the fluorescence data. Specifically, the intensity of 
fluorophore emissions in dilute solutions or suspensions, despite several 
environmental factors that influence fluorescence properties, is linearly 
proportional to their concentration. This principle was used in Chapter 3 to 
determine a set of pesticides by excitation–emission matrix (EEM) fluorescence 
in combination with parallel factor analysis (PARAFAC). A more detailed 
description of the model is given in Section 2.2.2.1. 
 
The methods that have been mentioned so far (RA based models, Tucker and 
PARAFAC) are three-way component models, i.e. models for three-way one-

block data analysis. It is sometimes desirable to find a model for predicting a 
measurable property from an independent block of data. Three-way regression 

models find the connection between a three-way array of data and a vector, a 
matrix or a three-way array of measured quantities, i.e. they are used for three-
way two-block data analysis, as schematized in Table 3. 
 

Table 3. Some component and regression models. 

 

 Two-way data Three-way data 

One-block 
Component models PCA TUCKER models 

PARAFAC 

Two-blocks 
Regression models 

PCR 
PLS 

N-PLS 

 
 
The same underlying theory of partial least squares regression (PLS) prevails in 
the extension to three-way data, the multi-linear PLS or N-PLS (Bro, 1996; Bro, 
1998). Both an X-block of independent data, e.g. spectra, and a Y-block of 

dependent data, e.g. analyte concentrations, are decomposed simultaneously 
into two PARAFAC-like trilinear models in such a way that the score vectors from 
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these models have maximal covariance. The regression model relating the two 
decomposition methods maximizes both the variance of the scores (thus 
ensuring that the model is real and not due to small random variation) and the 
correlation between scores (thus optimizing the predictive ability of the model). 
The predictive ability of the N-PLS model is further analysed in Chapter 6. 

Further details of this model are given in section 2.2.2.4. 
 
The analysis of multi-way data responds to the need for calibration (e.g. to 
calculate concentrations of overlapping constituents for every sample) but also to 
the need for resolution (e.g. to find pure spectra and chromatograms). As one 
may deduce from the summary here on calibration methods, some methods 
combine the ability to calibrate with the ability to resolve, while others specialize 
in one or the other. 
 
As the name suggests, multivariate curve resolution methods focus on extracting 
pure profiles typically from two-way structured data. These methods can be 
classified according to several criteria. For example: 
 
Space: 
Some methods are carried out in the space of the original variables, i.e. they 
work with the raw data, while others transform the original space into a new one 
defined by the principal components that only account for the relevant 
information, i.e. compress the original variables to a lower number of latent 
variables and disregard the noise contribution. 
 
Matrix analysis: 

Depending on the volume of data considered at one time for the analysis, the 
methods can be classified as full-rank, which use the whole matrix, or as 
evolutionary or local-rank, which analyse successive sub-matrices or windows 
from the original matrix. 
 

Procedure: 

The most common classification differentiates iterative methods from non-
iterative (or direct) methods. Iterative methods use an alternating least squares 
optimization to improve initial estimates in one of the orders and handle the data 
as a whole. They are fast and simple and require little user interaction or 
expertise. Non-iterative methods, on the other hand, use the concepts of local 
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rank and rank annihilation, so a deeper knowledge of the properties of the 
system and more user interaction are required. The main drawback with non-
iterative methods is that data sets with non-sequential profiles (e.g. data sets with 
embedded peaks) cannot be solved. 
 
The curve resolution methods applied in this thesis were the iterative approaches 
SIMPLISMA (SIMPle-to-use Interactive Self-Modelling Analysis), which extracts 
the most selective variables from the raw data, and EFA (Evolving Factor 
Analysis), which performs several local principal components analyses. Because 
of the information they provide, these methods can be performed as a previous 
step to calibration. The methods are explained in the Section 2.2.3. Iterative 
Target Transformation Factor Analysis (ITTFA) and Multivariate Curve 
Resolution–Alternating Least Squares (MCR-ALS) also belong to the group of 
iterative (and full-rank) methods. These methods were applied in two chapters of 
this thesis and are described in Sections 2.2.2.2 and 2.2.2.3, respectively. ITTFA 
was used in Chapter 4 to resolve, one at a time, second-order data matrices from 
simulated and real HPLC-DAD data to evaluate how the resolution is influenced 
by the chromatographic overlap, the spectral correlation and the relative 
sensitivity of the compounds. In Chapter 5, MCR-ALS was simultaneously 
applied to a set of second-order data matrices to identify and quantify several 
pesticides in multicomponent groundwater samples analysed by HPLC-DAD. In 
this application, second-order data were arranged into a two-way structure by 
setting one matrix below the other (i.e. matrix augmentation). 
 
2.2.2.1. Parallel factor analysis (PARAFAC) 

 
PARAFAC (PARAllel FACtor analysis) is a decomposition method that can be 
understood as a generalization of bilinear PCA. One of the main advantages of 
this model is the uniqueness of its solution, which means that the best 
parameters for the model are given in a least squares sense7 (up to permutation, 
sign and scaling indeterminacy). In most circumstances the model is uniquely 
identified from the structure and therefore no post-processing is necessary since 

                                                 
7 For comparative purposes, note that in first-order calibration, the decomposition of the 
calibration matrix is only unique when the basis vectors are constrained to be orthogonal. 
Generally in such case, the basis vectors do not represent the real first-order profiles, and 
a regression vector –the part of the analyte signal that is orthogonal to all other 
compounds– is required to estimate the concentration of the analyte of interest. 
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the model is calculated in a least squares optimization8. Further, when (1) the 
data are strictly or approximately trilinear, (2) the right number of components is 
used and (3) the signal-to-noise ratio is appropriate, three-way structured data 
can be fitted to a trilinear model using a PARAFAC model and lead to reliable 
interpretations. 

 
As above, a PARAFAC model of a three-way array X is given by three loading 
matrices, A, B and C, following the structural model written in Equation 7 and 

graphically represented in Figure 8. Detailed explanations of the model, the 
algorithm and the applications can be found in the literature (Bro, 1997; Bro, 
1998). 
 

ijk

F

f

kfjfifijk ecbax +=∑
=1

                                                                    Eq. 7 
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Figure 8. Scheme of a PARAFAC model of the three-way array X 
(residuals and indexes are omitted for brevity). 

 
 
Across all the frontal slices of the cube of data, the components af and bf remain 
the same and only their weights ck1, …, ckf are different. In practice this means 
that, for a set of k samples, the cube of data is decomposed into a nonorthogonal 

set of basis vectors (i.e. not independent) that directly represent the pure second-
order profiles of every linearly independent compound present in the samples as 

                                                 
8 Although no additional constraints are needed to identify the model, the algorithm can be 
modified according to external knowledge, such as non-negativity of the underlying 
parameters to ensure that the model parameters make sense. 
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well as their concentration. In the case of excitation–emission matrix fluorometry, 
the kth slice of the trilinear cube X is the matrix of excitation and emission profiles 
of the fluorescent compounds for the kth sample, the elements in the loading 
matrices A, B are the relative intensity in the emission and in the excitation 
domain, respectively, and the elements in the loading matrix C are the relative 

concentrations in the samples of each component. 
 
Using an alternating least squares (ALS) procedure, the trilinear model is found 
to minimise the sum of the squares of the residuals. In matrix notation, using the 
Khatri–Rao product9, the PARAFAC model can be formulated in terms of the 
matricized array as shown in Equation 8: 
 

{ { { { {
TT CZCABX ⋅=⋅⊗=

××××× )()()()()(

)(
FIJFKFIFJKIJ

k                                               Eq. 8 

 

Due to the symmetry of the model, the problem can be turned into a two-way 
problem of finding the least squares optimal C in the model X=ZCT+E. The 

solution to this problem is 

 

XZXZZZC TTT +− =⋅= 1)(                                                                    Eq. 9 

 
After giving starting values for A and B, the first estimation of Z is obtained 

(Equation 8) and the first estimation of C can then be calculated using Equation 

910. An update of B given A and C, an update of A given B and C and so on give 

rise to the optimization process that ends when the relative change in fit is small. 
Following the example of EEM fluorometry, the two loading matrices A and B 

contain the excitation and emission profiles of the active compounds and are 

used for qualitative identification of the fluorescent species in the samples 
(resolution purposes). Quantitative outputs are obtained from the C-loadings, 

which are the relative concentrations of the compounds. Absolute concentrations 
can be obtained from a regression of the C-loadings against the known 

concentration of the analyte of interest in the calibration samples. 

 

                                                 
9 See “Khatri-Rao product” in the Glossary of terms. 
10 In Equation 16, the superscript + denotes the pseudoinverse. For full rank matrices, the 
pseudoinverse is A+=(ATA)-1AT
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Figure 9. Two strategies for predicting new samples in PARAFAC 
(see details in the text). 
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When the model has been fitted, it can be used to predict the concentration of 
the compounds in new samples. The C-loading of these new samples are simply 
calculated using Equation 9 with the Z matrix of the model and the new sample 

data, Rnew (and converted on absolute concentration from the above-mentioned 

regression line). 

 

Another strategy for predicting future samples is to include them in the initial 
PARAFAC model. In this way, the loading matrices for both the calibration and 

the prediction sets are recovered. 

 

All the samples are considered simultaneously to calculate the model 
parameters. This forces the model to find the solution that best explains all the 

variations. This procedure may disguise outlying samples and lead to a poorer 

global fit, but in the absence of anomalous samples, and with a saving in 

calculation steps, the results may not differ significantly from those obtained by 

the first procedure. In figure 9 both procedures are schematized. 
 
2.2.2.2. Iterative target transformation factor analysis (ITTFA) 

 
Iterative Target Transformation Factor Analysis, ITTFA (Hopke et al., 1983; 
Vandeginste et al., 1985; Toft and Kvalheim, 1994), is a powerful multivariate 

curve resolution method whose aim is to determine the true factors of a second-

order matrix. In the case of HPLC-DAD analyses, ITTFA determines the number 

of components in an overlapped chromatographic peak and mathematically 

resolves the spectro-chromatographic data into the elution profiles and spectra of 
all co-eluting compounds. 

 

ITTFA tests whether a candidate factor or target is a true factor. The approach 

tries to improve targets in an iterative way using external knowledge such as 
non-negativity or unimodality to bring them close enough to one of the true 

factors. 

 

The algorithm starts with the singular value decomposition of the peak under 
study, R=UWVT, where U is related to the chromatographic space and V is related 
to the spectral space. A normalized target vector, xtarget, with the shape of a 

chromatographic profile is proposed (possible shapes are Gaussian peaks of 

different size, needle peaks and triangular peaks). 
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xtarget is projected into the space described by the first column of U (Equation 10) 

and the norm of the difference between the target and the projected vectors is 
calculated (Equation 11). 

 

target
T

11projected xuux ⋅=                                                                      Eq. 10 

targetprojected xx −=d                                                                       Eq. 11 

 
The target vector is tested along the time axis, so that d can be represented as a 

function of the position of the maximum of xtarget. When xtarget is described by the 

column vector u1, xprojected is similar to xtarget and the difference d is small, which 

means that such target is representative of the peak of one of the compounds in 
R (Figure 10b). The further xtarget is from the real one, the larger d is (Figure 10a). 
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Figure 10. A target vector at different positions is projected into the 
chromatographic space. When it is close to an underlying factor, d 
becomes minimal. 
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The same procedure is repeated by considering two, three, etc. columns of U. 

For each number of columns considered, i.e. the number of factors, d is plotted 
against the position of xtarget where each minimum of these plots suggests the 

location of one peak. The optimal number of factors, F, is the one such that the 

number of minima does not increase when the number of factors is increased by 

one. Then, the number of factors corresponds to the number of compounds in 

the peak, and the positions of the maxima indicate the approximate situation of 
the maxima of the chromatographic profiles (see Figure 11). 
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Figure 11. The number of minima that appear in the graphs and 
their position can be related to the number of compounds present 
in the sample and the time at which the elution peak of each 
compound appears, respectively. In this example, the proper 
number of factors is 3, because adding a new factor does not lead 
to a new minimum. 
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Once the number of factors is determined, for each factor a target vector whose 

maximum is at the estimated position from the graph is projected onto the 
chromatographic space. The projected vector can be improved using chemical 

knowledge, such as the adoption of non-negativity and unimodality according to 

the expected shape for a chromatographic profile. An iterative process, 

resubmitting the projected vector as the new input vector until convergence of the 

difference, leads to the estimation of the pure chromatogram. The process is 
repeated for each analyte whose position has previously been determined so that 

a chromatographic profile for each analyte is found. All the profiles are arranged 
in a new matrix of chromatographic profiles, C. 

 
Estimates for the pure spectra, S=[s1,…,sF], are then calculated using the 

generalised inverse of the matrix of chromatograms, as 

 

( )TRCS +=                                                                                        Eq. 12 

 

Resolution is achieved because, for each spectro-chromatographic data matrix, 

the number of eluting compounds, as well as their pure profiles is obtained. 

 

Once we have estimated the chromatograms of standards, we can regress the 
height or the area of the peak corresponding to the analyte of interest in each 

standard against the analyte concentration by fitting a univariate calibration 

model that can later be used to predict of new samples with overlapped signals. 

 
2.2.2.3. Multivariate Curve Resolution-Alternating Least Squares (MCR-

ALS) 

 
The versatile MCR-ALS (Tauler, 1995; Johnson et al., 1999; Tauler and de Juan) 

is a curve resolution method that is easily extended to the simultaneous analysis 
of several data matrices. Moreover, MCR-ALS shows the potential of handling 

second-order non-bilinear data, i.e. trilinear and non-trilinear structures, in 

contrast to PARAFAC-based models or generalized eigenvalue decomposition 

methods such as GRAM. 
 

This method tries to explicitly recover the true underlying first-order profiles on 

each order of the measurement as constrained least squares optimal estimates. 

The usual initial assumption in multivariate resolution methods is that the 
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experimental data follow a linear model similar to that in Figure 3: 

 

ECSR += T                                                                                     Eq. 13 

 
where R is, for example, the data matrix of spectra acquired at different times 

during the elution in an HPLD-DAD analysis, and C and S are the 

chromatographic and spectral profiles, respectively, of the eluting compounds. 
The number of chemical compounds is obtained directly from the chemical rank 
associated with the data matrix R. Starting estimates of C and S can be provided 

by techniques based on the detection of “purest” variables or from techniques 

based on Evolving Factor Analysis (an example of both is given in section 2.2.3). 
These initial estimations are optimized by solving Equation 13 iteratively by 

alternating least-squares optimization. At each iteration of the optimization, a new 
estimation of matrices C and S is obtained: 

 

( ) ( )( )++++ ==== TTTT *and SSCSRCCSCRCS                 Eqs. 14 

 
where the matrix R* is the PCA reproduced data matrix for the selected number 

of components. At each iterative cycle, convenient constraints can be applied 

(some of these are explained in section 2.2.3) until convergence is achieved or a 
pre-selected number of cycles is reached. At this point, resolution is achieved for 

the individual compounds in the samples. 

 

Extending this multivariate curve resolution method to the simultaneous analysis 
of several data matrices is easily performed by setting each of the individual data 
matrices Rk in a different reorganization that leads to a new augmented data 

matrix (see Figure 12). 

 

Usually, this organization sets one matrix on top of the others, with the columns 
in common. This new augmented data matrix, shown in Figure 12b, is 

decomposed into an augmented matrix that describes the elution profiles of each 
compound in the different data matrices Rk (row space) times a smaller non-

augmented matrix that describes the common spectral profile (column space). 

This data arrangement assumes that the spectra of the common active 
compounds are equal in the individual data matrices Rk but makes no 

assumption about the elution profiles in the different samples. 
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Figure 12. Augmentation of individual data matrices in the 
simultaneous analysis of several related data matrices. a) Row-
wise augmented matrix, [R1 R2 R3]. b) Column-wise augmented 
data matrix, [R1;R2;R3]. c) Row- and column-wise augmented data 
matrix, [R1 R2 R3; R4 R5 R6]. 

 
 

Once resolution has been achieved for a particular compound following the 

iterative procedure described above, calibration for that particular compound is 
possible. Since the spectra for all the Rk must be the same, the appropriate 
column in the corresponding resolved Ck matrix contains the relative contribution 

of this compound in this matrix Ck in relation to the other matrices included in the 

augmented C matrix. The relative concentration of a particular compound 
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(cunknown) can be simply obtained from the quotient between the area of its 

resolved elution profile (Aunknown) and the area of the resolved elution profile of the 

same compound in another data matrix (of calibration) included in the same 
simultaneous analysis (Astandard), i.e.: 

 

( ) standardstandardunknownunknown cAAc =                                                Eq. 15 

 
When several standards are employed in the decomposition, we can model the 

relative areas —with respect to the same reference standard— of the calibration 

samples against the known concentration of the analyte of interest. The relative 

areas of the prediction samples, which are also relative with respect to the 

reference standard, are then interpolated into the calibration line to obtain the 
estimated concentrations. Note that as prediction samples are used, together with 

the calibration samples, to build the calibration model, they have as much 

influence as the calibration set in the iterative decomposition procedure. On the 
other hand, the second-order advantage is fulfilled, i.e. the quantification of the 

analyte of interest in the prediction samples is possible even in the presence of 
new interfering compounds. 
 

2.2.2.4. Multi-linear Partial Least Squares (N-PLS) 

 
Partial least squares regression is a method for building regression models 
between independent (called x) and dependent (called y) variables. For multi-

way calibration, multi-linear PLS or simply N-PLS (Bro, 1996) is an extension of 

the ordinary regression model PLS, where the independent data are modelled in 

a way that emphasizes variation that is especially relevant for predicting the 
dependent variables. 

 
The general terminology of N-PLS depends on the order of the data: a Greek 

prefix indicates the order of X and an Arabic suffix after PLS indicates the order 

of Y. In tri-PLS1, therefore, each calibration sample is characterized by a J×K 

matrix Xi, to build a cube of data X of dimensions I×J×K, and for each sample 

there is a known measurand to be predicted by the independent variables, the 

values of which are collected in a general Y matrix of dimensions I×L×M. When 

the measurands are concentrations, they are collected in a I×1 vector called y. If 

more than one variable is sought, these are collected in a matrix Y of dimensions 

I×L, where L is the number of different analytes (tri-PLS2, tri-PLS3, etc.). When 
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several dependent variables are present, all yi can be modelled simultaneously 

(as in the PLS2) and each dependent variable can be modelled with the PLS1 
algorithm. 

 
The main feature of the N-PLS algorithm is that it produces score vectors that, in 

a trilinear sense, have maximum covariance with the unexplained part of the 

dependent variable. For tri-PLS(L) (with L≥2), a trilinear decomposition of X and 

Y is sought, as in Figure 13. Dependent and independent data are both assumed 

to be centred in the I mode, i.e. column-wise, and sometimes even scaled. 
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Figure 13. General scheme of an N-PLS decomposition. 
 
 
The aim of the algorithm is to decompose the array X into triads. A triad consists 

of one score vector (t) and two weight vectors, one in the second mode called wJ 

(J×1) and one in the third mode called wK (K×1). 

 

Let X be the I×JK matricized array of independent data and Y be the I×LM 

matricized array of dependent data. The N-PLS models decomposes these 

matrices as 
 

( ) X
TJK

)()()(
EWWTWTX T +⊗=⋅=

××× FJKFIJKI
                                           Eq. 16 
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( ) Y
TML

)()()(
EQQUQUY T +⊗=⋅=

××× FLMFILMI
                                          Eq. 17 

 
where the score vectors of X and Y are called T and U, respectively, and the 

weight vectors are called W and Q. The superscripts J or K and L or M, 

respectively, are used to specify which mode the vectors refer to. The model 
finds the set of vectors wJ, wK, qL and qM such that the least-squares score 

vectors t and u have maximal covariance. The scores are successively 

determined following this criterion until enough components are calculated. 

Cross-validation can be used as a criterion for the number of components to use 

in the final model. The scores are then related by setting the regression model for 

the so-called inner relation: 

 

U
)()()(

EBTU +⋅=
××× FFFIFI

                                                                          Eq. 18 

 
The regression matrix B must be calculated with the current and all previous t-

vectors since T has no orthogonality properties (nor does W). 

 
The N-PLS model is unique in the sense that it consist of successively estimated 

one-component models. However, uniqueness in this case will seldom infer that 

real underlying phenomena such as pure-analyte spectra can be recovered, 

because the model assumptions do not reflect any fundamental or theoretical 

model. Here the focus is on predicting Y. 
 

The dependent variable for a new sample rT
unknown (1×JK) is predicted as follows 

(this can also be applied to a set of new samples, Xunknown.) From the model of X 

(Equation 16), t can be determined. Through Equation 18 scores in the Y-space 
can be predicted and through the model of Y (Equation 17) the prediction of yT

pre 

is obtained: 

 

( )+
⋅=→⋅= TT

unknown
T
unknown

TT
unknown

T
unknown WrtWtr                Eq. 19 

Btu ⋅= T
unknown

T
unknown                                                                       Eq. 20 

TT
unknown

T
pre Quy ⋅=                                                                           Eq. 21 

 
If only the prediction of Y is wanted, it is possible to obtain a set of regression 
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coefficients that directly relates the centred/scaled X with the centred/scaled Y: 

 

( ) TT
PLS QBWB

+
=                                                                           Eq. 22 

 
Therefore, for a new sample rT

unknown the predicted Y variable is 

 

PLS
T
unknown

T
pre Bry ⋅=                                                                         Eq. 23 

 

 

2.2.3. Uniqueness, indeterminacies and constraints 
 
Some mathematical models do not have a unique solution. For the 

decomposition of second-order data, which is expressed as the outer product of 

two vectors, there are infinite pairs of vectors that provide the exact same fit to 

the data due to the rotational freedom of the model. To find a unique solution in 
such decompositions, one can force the resolution to satisfy several constraints. 

For example, the decomposition of a data matrix by PCA is unique because the 

extracted factors are defined to explain the orthogonal variation of the data. 

Uniqueness is achieved when no additional constraints are needed to identify the 

model; hence any change in the model parameters results in a change of fit. 
However, even in unique multi-linear models there remain two indeterminacies. 

First, let us imagine the spectrochromatogram for a pure compound. The 

decomposition of this data matrix into a dyad will provide an estimation, of the 

pure spectrum and the elution profile, scaled by some unknown factor: the 

amplitude of one of these can be increased with a corresponding decrease in the 
other, and the product of the two vectors remains the same. This is known as a 

scale or intensity ambiguity and it can be solved using external knowledge that is 

introduced into the decomposition as constraints. Usually, spectra are scaled to 

norm one so that samples with increasing concentration show proportionally 
increasing amplitude in their elution profile, and a univariate regression between 

the areas or the heights and the reference concentrations can be established. 

Other strategies are a closure constraint (the fulfilment of a mass balance 

condition) or an equality constraint (e.g. known spectra). In the analysis of three-

way structures, intensity/scale ambiguity is solved directly because relative terms 
are obtained and the absolute terms can be found by including known scale 

standards in the analysis. 

UNIVERSITAT ROVIRA I VIRGILI
LIMIT OF DETECTION FOR SECOND-ORDER CALIBRATION METHODS.
M. José Rodríguez Cuesta
ISBN: 978-84-690-7787-0 / DL: T.1349-2007



Introduction to chemometrics 
 

- 45 - 

The other ambiguity is the order in which the factors are arranged. This 

permutation freedom, called rotational ambiguity, is solved in PCA by ordering 
the factors according to a decreasing explained variance. In multi-linear models 

permutation ambiguity can also be solved using external knowledge about the 

system, e.g. by identifying some selective variables that have intensity 

contribution from only one compound or the known rank of reduced data regions 

(local rank). Natural constraints such as non-negativity (for example in the 
estimated concentrations) or unimodality (in signals known to have only one 

maximum) may also help to diminish the model’s rotational ambiguity. 

 

A restricted model reduces the number of feasible solutions and always leads to 
poorer fits than unconstrained models. However, the gain in interpretability 

normally justifies this loss. At this point, several constraints have already been 

cited. A further description of these constraints and their uses, and of other 
constraints, can be found in the literature (Tauler et al., 1995; de Juan et al., 

1997; Bro, 1998). Here, I will provide a brief overview of those used in this thesis. 
 

Orthogonality 

 

In the decomposition of an n-way structure into a set of basis vectors, these 

vectors can be defined as orthogonal11, i.e. linearly independent. This 

mathematical property is useful for modelling algorithms because it enables 

different sets of variables to be treated independently. Forcing the loading 

vectors in certain modes to be orthogonal leads to non-correlated components, 

may speed up the algorithms and avoids local minima and degeneracy12. 
However, orthogonal factors seldom represent real underlying phenomena. 

Chromatograms or spectra, for example, are often quite similar when different 

compounds from the same chemical family are analysed. This constraint is 

therefore only used for calibration and quantification purposes and is not used 
when curve resolution or visual interpretation is the aim of the decomposition. 

 

 

 

                                                 
11 See “Orthogonality” in the Glossary of terms. 
12 Degenerate solutions are found, for example, when a trilinear model is not appropriate 
for describing the data. 
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Normalization 

 
Some loadings are usually scaled to norm one in order to solve the intensity 

ambiguities and ensure that the estimated profiles differ only in shape, not in 

intensity. When talking about the norm of a vector or, even, of a matrix, we 

usually refer to the Euclidean (or Frobenius) norm, i.e. the square root of the sum 

of the squared elements in the vector or matrix13. 
 
Correlation and equality 

 
During the decomposition of an n-way structure, loadings, e.g. UV-Vis spectra, 

can be directly updated using the corresponding known values (equality) or 

according to their correlation with these previously known values. The known 

information can have different origins. We may, for example, know the pure 

profile of a certain compound (e.g. concentration profile or spectrum). In a local 

rank analysis (see below) of the data set, we may have detected selective 
regions of the data set in the concentration and/or in the spectral direction: in this 

case, we know that the rest of the species are absent, so the values of their 

related elements should be set to zero. 

 
Selective variables 

 

One variable, or a range of variables, are selective when the intensity 

contribution comes from only one compound of the mixture, e.g. wavelength 

ranges where only one compound absorbs. These variables, which are the most 
dissimilar or linearly independent variables in the system, can be detected using, 
for example, Orthogonal Projection Analysis (OPA) (Cuesta-Sánchez et al., 

1996) or SIMPLe-to-use Interactive Self-Modelling Analysis (SIMPLISMA) 
(Windig and Guilmet, 1991; Windig et al., 2002). SIMPLISMA was used in 
Chapter 5. This procedure is based on the relative standard deviation of the j 

columns of the original data matrix R corrected with a small off-set value or noise 

level, E, usually calculated as a percentage (often 1 to 5%) of the maximum of 

the mean sample. Following the HPLD-DAD example, the larger the relative 

standard deviation, the higher the wavelength’s selectivity or purity 

                                                 
13 Note that there are other ways to calculate a norm, though all p-norms are equivalent 
for finite dimensional spaces. See “Norm” in the Glossary of terms. 
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( )Ersp jj −= . The chromatograms at the purest wavelengths, i.e. the 

chromatograms that are least contaminated by the other compounds, are 
arranged in a matrix P and resolved into the pure spectra S by solving the 

equation R=PST, i.e. ST=(PTP)-1PTR. The estimated spectra in S are the pure 

variables (pure spectra) except for a normalization factor. 
 
Local rank 

 

To analyse the (global) rank in multicomponent mixtures, a second- (or higher-
order14) tensor is needed and the number of rows, I, or the number of columns, J, 

of the data matrix must be equal to or larger than the number of pure 
compounds, F. For a matrix, the mathematical rank is the maximum number of 

linearly independent vectors. However, in chemical experiments the chemical 

rank, understood as the number of analytes that contribute to the measured 
variance, is generally lower than the mathematical rank. The number of principal 

components or latent variables into which the data matrix can be decomposed is 

itself an estimation of the (global) chemical rank in the sample. However, the 

local rank, i.e. the rank of reduced data regions, varies within the structure when 

some analytes are present only in some windows, depending, for example, on 
their elution pattern or absorptivity spectra. Local rank information can be 

obtained by the evolutionary rank analysis based methods (Toft, 1995). These 

methods analyze the two-way data structure piece-way, i.e. they define 

submatrices or windows and decompose each of them into latent variables by 
PCA or singular value decomposition (SVD)15 to locally reveal the presence of 

analytes. Their power has been proven for multidetectional chromatographic 

structures in the retention time direction and in the wave numbers direction, 

separately, as well as in both directions simultaneously. 

 
In Evolving Factor Analysis (EFA), which was used in Chapter 5, the first time 

window is defined by the spectra at the two first retention times, the second time 

                                                 
14 The rank of a three-way array is equal to the minimal number of triads needed to 
describe the array. However, estimating the rank in multi-way arrays is not trivial and only 
some guidelines or results for particular cases are reported. For example, the maximal 
rank for a 2×2×2 array is 3, and 5 for a 3×3×3 array. For i×j×2 structures, Ten Berge [Ref. 
2000] and Ten Berge et al. [Ref. 1999] offer some concluding inequalities, such as rank=2j 
for i≥j and rank=i for j<i>2i. 
15 See “SVD” in the Glossary of terms. 
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window contains the first three spectra, and so on until the spectrum of the last 

retention time has been included. In each window, the number of latent variables 
is an estimate of the number of analytes present. This forward procedure reveals 

the appearance of the analytes (in the chromatogram) and the inverse procedure 
or backward EFA (starting from the last retention time) reveals their 

disappearance. A tutorial about EFA is cited in the bibliography (Keller and 

Massart, 1992) (see also Maeder [Ref. 1987] and Gemperline and Hamilton, 
[Ref. 1989]). Particularly useful for detecting minor components is the fixed-size 

moving window EFA (FSMW-EFA) (Keller and Massart, 1991), where the time window 

has a constant size (it usually contains 7 spectra), starts from the first retention time 

and moves stepwise until the spectrum at the last retention time is included. 
 
Non-negativity 

 

This constraint is a particular case of the inequality constraints in which the 

model parameters are forced to be equal or greater than zero. This measure can 
diminish rotational ambiguity and is actually based on the non-negativity of most 

physical properties such concentration and absorptivitiy. Non-negativity therefore 

reduces the number of feasible solutions and provides them with physical 

meaning. This was used in Chapters 3, 4 and 5. 
 
Unimodality 

 

Chromatographic peaks (i.e. elution profiles), concentration profiles in some 

chemical reactions and some peak-shaped instrumental responses can be 
assumed to show only one maximum. Unimodality is normally implemented by 

suppressing all local maxima to the right and to the left of the largest maximum. 
The concepts of vertical and horizontal unimodality refer to the way in which 

these local minima are suppressed, i.e. by setting the non-unimodal values to 
zero or to the nearest element maintaining the unimodal condition, respectively 
(de Juan et al., 1997). Some algorithms, e.g. Unimodal Least Squares 

Regression (ULSR) (Bro and Sidiropoulos, 1998) have been specially developed 

to implement unimodality in a least squares sense. 

 
Trilinearity 

 

The three-way data structure constraint allows a trilinear model to be selected to 
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describe the data set. From an operational point of view, this means that a 

trilinear structure implies a common shape for all profiles related to the same 
compound in the different samples, e.g. in the submatrices of an augmented 

direction in MCR-ALS. In this case, in a column-wise augmented matrix, the 
elution profile from a given compound would have the same shape in all Ci 

submatrices. 
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2.3. Validation of analytical methods 
 
 

2.3.1. What is method validation? 
 

In modern society, many decisions in science and technology depend crucially 
on the quality of the chemical measurements. Evidence shows that national and 

international regulations with commercial, medical or environmental impact 

implement limits and verify the implementation of these limits by setting out 

guidelines to reliably assess the quality of the measurements. Since the origin of 

such social and scientific necessity, the acceptance of quality has been based on 
an accreditation system (with more or less uniform and universal criteria). 

Concepts, terminology and approaches were not always as clear and universal 

as desired, however. 

 
In July 1993 two international organizations, the International Union of Pure and 

Applied Chemistry (IUPAC) and the International Organization for 

Standardization (ISO), convened the “Harmonization Meeting” with the aim of 

developing common concepts and terminology for the international chemical and 

metrological communities16. 
 
According to current international recommendations (Inczédy et al., 1998, 

EURACHEM 1998), analytical methods should be well characterized in order to 

define their application area and reliability, by meeting the specifications related 
to the intended use of the analytical results. This process, by which the method 

proves its “fitness for purpose”, is known as validation17. 

 

The validation process typically starts by defining the scope of the analytical 

procedure, which includes the matrix, target analyte(s), analytical technique and 
intended purpose. The next step is to identify the performance characteristics 

that must be validated, which may depend on the purpose of the procedure, and 

                                                 
16 IUPAC Recommendations 1995 (Currie 1995) and ISO Standard (11843.1-1997, 
“Capability of detection”) 
17 “Validation is the confirmation by examination and provision of the objective evidences 
that the particular requirements of a specific intended use are fulfilled” (ISO 17025-1999, 
5.4.4.1) 
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the experiments for determining them. Finally, validation results should be 

documented, reviewed and maintained (if not, the procedure should be 
revalidated) as long as the procedure is applied in routine work. 

 

 

2.3.2. Figures of merit. International recommendations 
 

Method validation implies the confirmation that performance capabilities are 

consistent with what the application requires. The method performance 

parameters that need to be characterised can depend on customer requirements, 

prior experience of the method or the current guidelines in a particular sector of 
measurement, e.g. food analysis. When these performance parameters are used 

to prove that the procedure is under control or suitable for a certain analytical 

problem, they should be determined not under optimal instrumental conditions 

but in a real matrix under routine conditions. 

 
The figures of merit of a chemical analytical process are ‘those quantifiable terms 

which may indicate the extent of quality of the process. They include those terms 

that are closely related to the method and to the analyte (sensitivity, selectivity, 

limit of detection, limit of quantification, ...) and those which are concerned with 
the final results (traceability, uncertainty and representativity) (Inczédy et al., 

1998). 

 

Typical figures of merit for the chemical measurement process, revised from the 
literature18, are: accuracy, working/linear range, precision (repeatability and 

reproducibility), sensitivity, selectivity, robustness, detection limit and 

quantification limit. Some of these have been used in this thesis and are defined 

below. 

 

• Accuracy 

The accuracy of an analytical method is defined as ‘the closeness of agreement 

between a test result and the accepted reference value’. Note that the term 
accuracy, when applied to a set of test results, involves a combination of random 

                                                 
18 Danzer and Currie 1998; Danzer et al. 2004; Olivieri et al. 2006; Danzer 1996; 
Wegscheider 1996; IUPAC ‘Orange’ Book (Inczédy et al. 1998); Thomson et al. 2002; 
among others. 
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components and a common systematic error or bias component (ISO 3534-

1:1993). 
 

The degree to which the determined value of an analyte in a sample corresponds 

to the true value may be determined by analysing a reference material of known 

concentration (this is not available for every determination), by the spiked-

placebo19 recovery method or by the standard addition20 method. Conceptually, 
inaccuracy (lack of accuracy) comprises imprecision (or standard deviation) and 

bias (lack of trueness or existence of systematic errors).  

 

• Working/linear range 
The relationship between signal and concentration (or content) is numerically 

determined by means of regression. The functional relation can often be 

described by linear functions. Linearity is the ability of an analytical procedure to 
produce test results that are proportional to the concentration of analyte in 

samples within a given concentration range. The working range of an analytical 

procedure is the interval of analyte concentrations in the sample for which it has 

been demonstrated that the analytical method has suitable levels of precision, 

accuracy and linearity. 
 

• Repeatability and reproducibility (precision) 
Repeatability and reproducibility refer to the closeness of the agreement between 

the results of successive measurements of the same measurand carried out in 

certain conditions of measurement (ISO 3534-1/1993): 

 

- Repeatability conditions, i.e. conditions where independent test results are 
obtained with the same method on identical test items in the same laboratory 

by the same operator using the same equipment within short intervals of 

time. Thus, repeatability reflects the best achievable internal precision. 

- Reproducibility conditions, i.e. conditions where test results are obtained with 

                                                 
19 In the spiked-placebo method, sometimes also named standard addition method, a 
known amount of pure active compounds is added to a sample that contains all other 
ingredients except the active(s). The resulting mixture is assayed, and the results obtained 
are compared with the expected result. 
20 In the standard addition method, a sample is assayed, a known amount of pure active 
compound is added, and the sample is again assayed. The difference between the results 
of the two assays is compared with the expected value. 
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the same method on identical test items in different laboratories with different 

operators using different equipment. 
- Intermediate conditions, i.e. the test results are obtained within the same 

laboratory by changing the operator, the equipment and/or the day. 

 

• Sensitivity 
Sensitivity is the change in the response of a measuring instrument divided by 

the corresponding change in the stimulus21 (EURACHEM Guide). In practice, in 

univariate calibration the sensitivity for a given analyte is defined as the slope of 
the analytical calibration curve which is usually constant at low concentration 

values (the calibration curve becomes a straight line). Analogously, for a classical 

multivariate model, the sensitivity is the slope of the pseudo-univariate calibration 

graph, and the inverse of the slope of this graph for an inverse model. Sensitivity 

can be defined as the net analyte signal NAS22 (or part of the spectrum which is 
orthogonal to the spectra of the others compounds), generated by an analyte 

concentration equal to unity (Lorber, 1986). It can therefore be calculated as: 

 

( ) NNNNNSEN sSSI +
−−−== NAS                                                Eq. 24 

 

I is the identity matrix and S−N is the response of the calibration sample without 

the N column (sN). 

 
For higher-order data, sensitivity is consistently generalized by Olivieri and Faber 

[Ref. 2004] for PARAFAC analyses.                                     

 

• Selectivity 
According to the latest IUPAC recommendation, ‘selectivity refers to the extent to 

which the method can be used to determine particular analytes in mixtures or 

matrices without interferences from other compounds of similar behaviour’ 
(Vessman et al., 2001). In other words, selectivity is the ability of a method to 

                                                 
21 ‘Stimulus may for example be the amount of the measurand present. Sensitivity may 
depend on the value of the stimulus. Although this definition is clearly applied to a 
measuring instrument, it can also be applied to the analytical method as a whole, taking 
into account other factors such as the effect of concentration steps’ (VIM 1984 and IUPAC 
‘Orange’ Book). 
22 See “NAS” in the Glossary of terms. 
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accurately and specifically determine the analyte of interest in the presence of 

other compounds in a sample matrix under the stated conditions of the test. To 
quantitatively measure the extent to which a substance interferes with the 

determination of the analyte according to a given procedure, a pair-wise 

selectivity index has been defined as the ratio of the slopes of the calibration 
lines of the analyte of interest and the particular interference (Thomson et al., 

2002). In multivariate analysis, however, the interferences can be suitably 
modelled, which is why calculating the multivariate calibration selectivity has 

been approached in several ways. In any case, selectivity typically accounts for 

all the interferences in the mixture, though there is some traces of research on 

individual (pair-wise) multivariate selectivity coefficients (C.D. Brown, in 
preparation). In this thesis, selectivity is calculated, as defined by Lorber (Lorber, 
1986 and Lorber et al., 1997) as the net analyte signal divided by the length of 

the spectrum of the corresponding compound: 

 

( )
f

fff

f

f
fSEL

s

sSSI

s

+
−−−

==
NAS

                                                      Eq. 26 

 
The range of Lorber’s selectivity is between 1 (fully selective or specific), when 
the spectra of the fth compound is completely free from overlap, and 0, when the 

spectra is the same as the other compounds’ spectra or may be described as a 
linear combination of them. This selectivity measure indicates which part of the 
total signal is lost due to spectral overlap and, according to the recommendations 
of IUPAC, it can be used in multivariate calibrations. 
 
For higher-order data, selectivity is also consistently generalized by Messick et 

al. [Ref. 1996]. These authors demonstrated that the Frobenius norm (||·||F) of the 
orthogonal projection of the matrix of responses of the f compound, ||Pf(Rf)||F 
divided by ||Rf||F works effectively as a local second-order selectivity measure 
(Messick et al. op. cit. also provided a straightforward approach for computing 
the projections). 
 

 

• Detection capability 
The limit of detection (LOD, or detection limit) is, in broad terms, the smallest 
amount or concentration of analyte in the test sample that can be reliably 
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distinguished from zero. Although detection capability is widely considered to be 

a fundamental performance characteristic of the chemical measurement process, 
the detection limit as estimated in method development (or in the brochures of 

instruments) may not be identical in concept or numerical value to the one used 

to characterize an analytical method. For most practical purposes in method 

validation, it is usual to choose a simple definition that enables a quickly 

implemented estimation that is used only as a guide to the utility of the method. 
Analytical detection involves several conceptual approaches that have led the 

chemical community to controversy, which justifies the deeper development in 

the next section. 

 
 

2.3.3. Analytical detection 
 
2.3.3.1. Hypothesis testing 

 
When an analyte-free sample is analyzed, the response produced by the 

measuring instrument may be nonzero. The signal observed for this blank is 
subtracted from the sample signal to obtain the net signal. However, if the blank 

measurement is repeated, the signal varies somewhat due to random errors, i.e. 
there is a blank signal distribution. To determine how large the instrument signal 
for a sample must be to reliably say that it contains the analyte, one calculates a 
threshold value for the net signal. This is called the critical value and is 
sometimes denoted by rC. If the observed net signal for a sample exceeds the 

critical value, the analyte is considered to be “detected”; otherwise, it is 
considered to be “not detected”. 
 
The methods most often used for making detection decisions are based on 
statistical hypothesis testing (EPA 2004) and involve a choice between two 
hypotheses about the sample. The first hypothesis is the “null hypothesis” (H0): 
the sample is analyte-free. The second hypothesis is the “alternative hypothesis” 

(H1): the sample is not analyte-free. 
 
In the hypothesis test there are two possible types of decision errors. An error of 
the first type, or Type I error, occurs when the signal for an analyte-free sample 

exceeds the critical value, leading one to conclude incorrectly that the sample 
contains a positive amount of the analyte. This type of error is sometimes called 
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a “false positive” and the probability of its being committed is often denoted by α. 
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Figure 14. Distribution of the observed signal for a blank (with 
mean µ0) and for a test sample (with mean µ1). Type I errors (false 
positives) are represented by the value of α  and type II errors 
(false negatives) are represented by the value of β. 

 

 
An error of the second type, or Type II error, occurs if one concludes that a 
sample does not contain the analyte when it actually does. The probability of a 

Type II error, also known as a “false negative”, is usually denoted by β. 

 
To calculate the critical value, rC, one must choose a significance level for the 

test. The significance level is a specified upper bound for the probability of a 

Type I error and is usually chosen to be α=0.05. This means that when an 

analyte-free sample is analyzed, there is a confidence level of 1−α=0.95, i.e. 

there should at most be a 5% probability of incorrectly deciding that the analyte is 
present. See Figure 14 for a graphical representation of these concepts. 

 
 
2.3.3.2. Critical level and detection limit 

 

Progresses in food science and technology in the 1940s led to a growth in 
knowledge and public awareness of food safety. Long before international 
organizations recommended chemical societies assess the performance 
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characteristics of the measurement processes, the need for analytical detection 

arose in order to provide end users (customers) with quality results, such as 
ensuring safe levels of hazardous materials. 

 

Early mentions of chemical limits of detection were published by H. Kaiser and 

L.A. Currie (Kaiser, 1947; Kaiser, 1967; Currie, 1968). Currie defined three 
levels: the “critical level”, LC, the “limit of detection (LOD)”, LD; and the “limit of 
determination”, LQ, at which quantification was achieved with a given precision. 

Mathematically, these limits were expressed as 

 

0σα ⋅= zLC                                                                                         Eq. 27 

DDCD zzzLL σσσ βαβ ⋅+⋅=⋅+= 0                                               Eq. 28 

QQQ kL σ⋅=                                                                                        Eq. 29 

 

where the factors zα  and zβ were abscissas of the standardized normal 

distribution for 1−α  and 1−β probability levels, σ0, σD and σQ were the standard 

deviations of the (net) signal when the true signal was 0, LD and LQ, respectively, 

and 1/kQ  was the requisite relative standard deviation, which for many problems 

is set at 10%. 
 
At zero concentration level, the standard deviation of the net concentration is 
expressed in a general way as: 
 

φσσ B=0                                                                                            Eq. 30 

 

σB is the standard deviation of the blank and nN /1/1 +=φ , where N and n are 

the number of replicates on the analysed sample and on the blank sample, 

respectively. φ = 1 (and therefore, σ0 = σB) in the special case when N=1 and n is 

high. When the net concentration is calculated in a paired experiment (i.e. as the 

concentration in the sample minus the blank), then 2=φ . If σB is not known, it 

must be replaced by its corresponding estimate, sB, in Equation 26. 
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2.3.3.3. Limit of detection from linear calibration curves 

 
Hubaux and Vos (1970) were pioneers in the evaluation of decision and 

detection limits from the calibration curve of an analytical procedure. Their 

implementation was based on external standards, a very common practice in 

calibration, and on some prior hypothesis to be accomplished. First, the 

standards were assumed to be independent (separately prepared) and to have 
accurately known concentrations. Second, the observed signals were assumed 

to have a Gaussian distribution around their expectation, with constant variance 

throughout the range of calibration. From these starting features, they described 

a new approach to define these lower limits, not from experimental repetitions of 
blanks, but from the confidence limits of the regression line. 
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Figure 15. Hubaux and Vos’ description of the critical level (rC) and 
detection limit (cD) from the upper and lower confidence limits of a 
linear calibration. 

 

 
As Figure 15 shows, rC is the lowest measurable signal and any signal under it 

will be disregarded unless the risk of stating that the analyte is present when it is 

absent is greater than α .  The abscissa corresponding to rC on the lower 

confidence limit, cD, is the lowest content that can be distinguished from zero. 

This means that any sample with a content of less than cD has a risk β of leading 
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to a signal lower than rC and therefore stating that it is a blank. Using Currie’s 

terminology, rC is (an estimation of) the “critical level”, LC, in the signal domain 
and cD is the “detection limit”. 

 
The critical level rC was defined in the signal domain, which meant taking an a 

posteriori decision (after measuring the signal). As the detection limit, cD, on the 

other hand, was related to content, it was inherent to the method and therefore 
computable a priori. Equations 31 and 32 below reflect the mathematical 

relationship between these limits and the confidence intervals of the regression 

line. 

 

( )∑ −
++⋅+=⋅+= −−−− 2

2

2,1002,10
11

cc
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nN
stbstbr

i

nnC αα             Eq. 31 

 
The statistical parameters of the linear regression used were the intercept (b0), 

the slope (b1), the standard deviation of the response at zero level content (s0), 

the estimate of the residual standard deviation (s) and the mean content of the n 

standards ( c ). 

 

t1−α ,n−2 was the statistical value for a one-sided Student-t distribution with n−2 

degrees of freedom and a probability α , and N were the number of repetitions of 

the future sample. Analogously, the limit of detection was expressed as 
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Eq. 32 
 

where t1−β,n−2 was the statistical value for a Student-t distribution with n−2 

degrees of freedom and a one-sided probability β. This expression can be 

resolved by an iterative procedure or by directly using the formulas developed by 

Garner and Robertson in 1988: 
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with 22
1 Vbu −= , SSXstV n ⋅= −− 2,1 β , and ∑ −= 2)( ccSSX i . 

 

Hubaux and Vos also indicated several ways of improving the decision and 
detection limits since they were directly related to the precision of the method (s). 

Of course, the number of standards, n, and the number of replication on the 

unknown, N, have strong influence (see Equations 31 and 32). However, they 

also studied the effect of the disposition of standards and the range of their 
contents. For example, in order to enhance sensitivity they found that the best 

arrangement of standards was for some of them to have the smallest admissible 

content and others to have the largest permissible content. 

 

 
Table 4. International recommendations and nomenclature on 
analytical detection and quantification concepts. 

 

RECOMMENDED TERM 
(and alternative) Concept Defining relations 

CRITICAL VALUE, LC 

(Critical Limit) 

To distinguish a chemical 
signal from background 
noise. 

( ) α≤=〉 0ˆPr LLL C
 

0σα ⋅= zLC
 

02,1 stL nC ⋅= −−α  (1) 
 

MINIMUM DETECTABLE 
(TRUE) VALUE, LD 

(Detection Limit) 

Measure of the inherent 
detection capability of a 
chemical measurement 
process 

( ) β==≤ DC LLLL̂Pr  

DD zzL σσ βα ⋅+⋅= 0  

( ) 0, sLD ⋅∆= βα  (2) 

MINIMUM 
QUANTIFICABLE (TRUE) 
VALUE, LQ 

(Quantification Limit) 

Measure of the inherent 
quantification capability of 
a chemical measurement 
process 

QQQ kL σ=   

where  
QQ RSDk 1=  

(1)  When σ0 is estimated by s0, based on ν degrees of freedom, z must be replaced by a 
Student’s-t. 
(2)  When σ0 =σD and it is estimated by s0, based on ν degrees of freedom, (zα+zβ) must be 
replaced by ∆(α,β), the non-centrality parameter of the non-central t distribution. For α=β and 
large ν, this parameter can be safely approached by 2t. 
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This way of calculating the limit of detection from the regression line and its 

confidence intervals was (and still is) a widely accepted method. However, for 
decades, the evolution of the concepts of detection and quantification limits was 

characterized by differences in criteria and terminology. In 1990, the World 

Health Organization23 formally expressed the need for homogeneous and 

international guidelines. ISO and IUPAC produced them in 1995. These 

organizations published separate documents (see above) based on the same 
formulation and nomenclature. These documents considered detection and 

quantification capabilities as fundamental performance characteristics of the 

chemical measurement process (CMP) derived from the statistical theory of 

hypothesis testing and the probabilities of Type I and Type II errors. These 
concepts and formulas are summarised in Table 4. 
 

2.3.3.4. Limit of detection in multivariate calibration 

 

The formulas developed for estimating the detection and quantification limits for 
zeroth-order data and univariate calibration essentially assume that the signal is 

highly selective for the analyte of interest. In complex samples, where selectivity 
is not achieved by improving the method either by experimental or instrumental 
means, multivariate calibration can be a powerful mathematical solution. 
 
An early discussion of the need for an accurate multivariate limit of detection 
estimator was carried out by Garner and Robertson [Ref. 1998]. The theoretical 
development of the concept of detection limit in multicomponent systems, as well 
as the theoretical approaches and the hypothesis on which they are based, were 
critically reviewed by Boqué and Rius [Ref. 1996], van der Voet [Ref. 2002] and, 
more recently, by Olivieri et al. [Ref. 2006]. The most illustrative types of 

estimators are discussed below. 
 
As explained above, multivariate calibration methods aim to construct a valid 

predictive model on the basis of (possibly highly) unselective multiple predictor 
variables (signal, response, etc.). The concept of net analyte signal (NAS) in 
multivariate calibration arises from the fact that a prediction sample response, 

                                                 
23 Codex Alimentarius Commision, committee on Methods of Analysis and Sampling, Food 
and Agricultural Organization (FAO) of The United Nations and World Health Organization 
(WHO), URL: http://www.codexalimentarius.net 
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e.g. a spectrum, may have different contributions from other sample components. 

The spectrum can be decomposed into two orthogonal parts: one that can be 
uniquely assigned to the analyte of interest (the NAS) and one that contains the 

(possibly different) contribution from other components. The NAS is therefore 

proportional to the concentration of the analyte of interest and it is more 

important than the total signal (Booksh and Kowalski, 1994). 

 
Many of the figures of merit that characterize multivariate methods are closely 

related to the concept of multivariate NAS as introduced by Lorber [Ref. 1986]. 

By considering the NAS, one can define error propagation24, the multivariate 

detection limit and other figures of merit for each component. 
 
Lorber (op. cit.) was one of the first researchers to calculate a multivariate LOD 

starting from the definition of the net analyte signal. Subsequently, Lorber et al. 

([Ref. 1997] and Lorber and Kowalski, 1998) defined the multivariate detection 

limit estimator as a function of the confidence intervals associated with the 
predicted concentration by checking whether the predicted concentration and its 

confidence intervals for a given test sample included the zero concentration 
value. The expression developed for the multivariate LOD on the signal domain 
took into account only the uncertainty in the signal measurements, which meant 
that its real application was rather limited. 
 
Several approaches to estimating the limit of detection apply an error-
propagation-based formula for standard error of prediction to a zero 
concentration level. This was the approach used by Bauer et al. [Ref. 1991] and 
Faber and Kowalski [Ref. 1997] to calculate the multivariate LOD in the 
concentration domain for the calibration using the classical model, and by Boqué 
et al. [Ref. 1999] for the commonly used inverse calibration models. The work 
reviewed by Boqué (op. cit.) demonstrated the utility of error-propagation for 
estimating concentration uncertainties and limits of detection. The formula 
selected accounted for all sources of errors in the data (signals and 

                                                 
24 The error propagation for a given component is the ratio f of the precision in 
concentration to the precision in the instrumental response. This value is an additional 
figure of merit that is concentration-independent and accounts for the possibility of 
dismissing this component with others because it has either the same instrumental 
response, e.g. spectrum, as another component or is a linear combination of the spectra 
of the others. This figure of merit is identified as the inverse of selectivity. 
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concentrations) of calibration and prediction samples, and the resulting 

multivariate LOD was able to quantify the probabilities of committing type I and 
type II errors and was sample-specific (i.e. dependent on the level of 

interferences in the sample). This approach is used in Chapter 6 to calculate the 

LOD for multi-linear regression (N-PLS). 

 

Typical method-specific approaches for higher-order data can be found in the 
literature. One example was developed by Boqué et al. [Ref. 2002] for estimating 

the limit of detection in second-order bilinear calibration with the generalized rank 

annihilation method (GRAM). A generally applicable non-parametric approach is 

to train a neural classifier to optimize the false positive and the false negative 
error rates for a fixed threshold concentration (Sarabia et al., 2002). 

 

Another strategy for estimating multivariate limits of detection is to transform the 

multivariate model into a univariate one. Several authors have suggested 

substituting the multivariate signal by a variable that is directly related to the 
concentration of the analyte, e.g. the height or the area of a chromatographic 

peak for the analyte of interest in the calibration samples. A univariate regression 
line (signal vs analyte concentration) can then be built and figures of merit such 

as accuracy, sensitivity and limit of detection can be derived. This approach can 
be extended to higher-order data once the first-order profiles have been 
resolved. For instance, when spectro-chromatographic (second-order) data are 
obtained for a set of calibration samples, they can be decomposed into the pure 
first-order profiles by a proper second-order method (MCR-ALS, PARAFAC, 
etc.). For each calibration sample, the chromatographic peak of the analyte of 
interest is obtained and the height (or the area) of these peaks can be regressed 
against the corresponding reference concentrations (see Figure 16 for a 
graphical example). 
 
The literature contains a few examples of the application of a “surrogate” signal 
to deal with the calculation of multivariate LODs. In the context of multivariate 
curve resolution, Saurina et al. [Ref. 2001] proposed using the areas of the 

recovered pure signal profiles of the analyte, which do not depend on the signal 
of interferent compounds. Ortiz et al. [Ref. 2003] applied a similar approach for 
multivariate and multi-linear PLS calibration. In this case, the surrogate variable 

is the concentration of the analyte in the calibration samples predicted by the 

optimal PLS model. 
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Figure 16. A univariate regression line built from the height of the 
peak of the analyte of interest in several calibration samples. From 
this regression line, figures of merit can be calculated using 
univariate statistics. 

 

 

In this thesis, we used the transformation approach for several applications: 
 
- In Chapter 3 we determined some pesticides by excitation-emission matrix 

(EEM) fluorescence in combination with PARAFAC. Decomposition of the 
three-way data by PARAFAC produced three loading matrices, one of which 
corresponded to the sample mode, i.e. the relative concentrations of the 
pesticides in the mixtures. In the calibration step, these loadings were 
regressed against the real concentrations of each pesticide in the mixtures to 
obtain the linear calibration line. 

 

- In Chapter 4 we decomposed second-order data matrices of a set of 
standards into estimated chromatograms (and spectra) with the ITTFA 
algorithm. The height of the peaks in these chromatograms was plotted 
against concentration and classic estimators of LOD for univariate linear 

calibration were used. 

 
- In Chapter 5 the resolved the second-order data matrices obtained by HPLC-

DAD for a set of multicomponent groundwater samples by MCR-ALS, which 

provided the pure spectrum and chromatogram of each pesticide present in 

the samples. The relative areas estimated by the curve resolution method 
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(the areas under the estimated chromatograms) were used as the surrogate 
variable to perform the calibration line of areas vs concentration. 
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3.1. Introduction 
 
 

To put into practice the knowledge we have acquired on the estimation of 

detection limits, we began looking for an analytical problem involving complex 

samples. We consolidated our relationship with researchers in the Department of 
Hydrogeology and Analytical Chemistry at the University of Almería, who 

analysed organic microcontaminants (pesticides) in air, water, vegetables and 

biological samples (blood, urine, fat tissues, milk, etc). They also produced 

multicomponent data sets for which quantification and even identification was a 

challenge. The analytical measurements were taken with an HPLC-DAD 
(Chapter 5) in one of these joint applications and with an EEM fluorometer 

(described in this chapter) in the other. Both types of measurements were (or 

were assumed to be) bilinear, which conditioned the chemometric procedure 

used. 
 

The linearity assumed in many models simplifies the decomposition of the data. 
Even when the data are not strictly linear, this assumption can be used for 
practical reasons. When we deal with high-order data, linearity should be 
assessed in each order since, depending on the nature of the data, it can be 
maintained in some data but lost in others. Three-way excitation-emission 
matrices from EEM fluorescence analyses can be assumed to be trilinear if we 
do not record (or reject after they have been recorded) the scattered data due to 
the Raman and the Rayleigh interferences. 
 
In this chapter we present a published paper entitled “Determination of 

carbendazim, fuberidazole and thiabendazole by three-dimensional excitation-

emission matrix fluorescence and parallel factor analysis” in which we estimate 
the limit of detection for type of data, which are approximately trilinear.  
 
The samples under study were complex mixtures of three polluting compounds 

(carbendazim, fuberidazole and thiabendazole49) whose concentrations are 
regulated, for instance, in drinking waters. The molecular structure of these 

                                                 
49 These pesticides are used as fungicides. Thiabendazole is also a parasiticide that is 
primarily used to control mold, blight and other fungally caused diseases in fruits and 
vegetables. 
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pesticides is shown in Table 5: 

 
Table 5. Molecular structure of the pesticides under study. 

 

Commercial 
name 

Chemical name Structure 

Carbendazim 
methyl 2-
benzimidazolecarbamate 
CAS*: 10605-21-7 

O                 


CH3  O  C  NH 
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H

O                 
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CH3  O  C  NH 
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Fuberidazole 2-(2-furyl)benzimidazole 
CAS*: 3878-19-1 

N

N
H

O N

N
H

O

 

Thiabendazole 2-(4’-thiazolyl)benzimidazole 
CAS*: 148-79-8 

N

N
H

N

S

N

N
H

N

S

 

* See footnote50 
 
 
In the calibration step, we paid special attention to the criteria for selecting the 
calibration standards. The three-way calibration data was decomposed using 
PARAFAC and the LOD and other figures of merit were estimated by the 
transformation approach, i.e. from the univariate calibration line of model 
loadings versus the concentration of the standards. 
 
Two prediction strategies were used to test the accuracy of the method. In the 
first one, the PARAFAC model was performed with the standards of known 
concentration and the univariate calibration line was formulated with their 
loadings. The loadings of the new samples were mathematically calculated from 
the parameters of the model and then interpolated or extrapolated in the 
regression line.  
 

                                                 
50 CAS registry numbers are unique numerical identifiers for chemical compounds, 
polymers, biological sequences, mixtures and alloys. The Chemical Abstracts Service 
(CAS), a division of the American Chemical Society, assigns these identifiers to every 
chemical that has been described in the literature. As of February 2, 2006, there were 
27281529 substances in the CAS registry. About 4000 new numbers are added each day. 
The current number is published at: http://www.cas.org/cgi-bin/regreport.pl 
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In the second strategy, both calibration and prediction samples were used to 

perform the model. Only the loadings of the calibration samples were regressed 
against the known concentrations and then the loadings of the prediction 

samples were used to predict their concentration. 

 

The main conclusions of this paper are as follows: 

 
- The model had to cover the experimental domain, so standards have 

preferably to be taken at the ends of the domain to avoid subsequent 

extrapolation. 

- Information about the selectivity and sensitivity of the compounds may be 
useful for selecting the calibration samples. Including standards of the most 

sensitive or least selective compound of the mixtures may improve the model. 

- Two prediction strategies are feasible for PARAFAC. When the model is only 

performed with the calibration set, further calculation is needed to obtain the 

loadings of the prediction samples. However, we can detect samples of a 
different nature or outliers because their loadings will be outside the 
experimental domain. When the prediction set is included in the model, the 
recovered profiles may correlate worse with the reference profiles, since the 
model is forced to explain all the variations in the calibration and the prediction 
samples. Also, outlying samples cannot be detected by this strategy. 
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3.2. Paper. Determination of carbendazim, fuberidazole and 

thiabendazole by three-dimensional excitation-emission matrix 

fluorescence and parallel factor analysis. 
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Abstract  

We simultaneously determined carbendazim, fuberidazole and thiabendazole by 
excitation–emission matrix (EEM) fluorescence in combination with parallel factor 
analysis (PARAFAC). Three-way deconvolution provided the pure analyte 
spectra from which we estimated the selectivity and sensitivity of the pesticides, 
and the relative concentration in the mixtures from which we established a linear 
calibration. Special attention was given calculating such figures of merit as 
precision, sensitivity and limit of detection (LOD), derived from the univariate 
calibration curve. The method, which had a relative precision of around 2–3% for 
the three pesticides, provided limits of detection of 20 ng ml−1 for carbendazim, 
4.7 ng ml−1 for thiabendazole and 0.15 ng ml−1 for fuberidazole. The accuracy of 
the method, evaluated through the root mean square error of prediction 
(RMSEP), was 27.5, 1.4, and 0.03 ng ml−1, respectively, for each of the 

pesticides. 
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1. Introduction 
 
Pesticides are polluting compounds whose concentration is regulated by the 

European Commission in many samples such as drinking waters. Traditionally, 

instrumental techniques to determine these compounds involve gas (EPA 

method 515.1) or liquid chromatography (EPA method 531.1, 632 and 8318). 
Fluorimetric techniques can also be used to analyse pesticides in mixtures since 

many pesticides, including the ones studied in this paper, are intrinsically 

fluorescent. Fluorescence spectroscopy is a versatile analytical technique, which 

provides high sensitivity of detection. However, in multicomponent mixtures the 

fluorescence signal is normally overlapped and chemical procedures (in few 
cases) or chemometrical techniques of resolution have to be applied if it is to be 

quantitatively analysed. One of the mathematical resolution strategies is the 

collection of an entire excitation–emission matrix (EEM) fluorescence spectrum 

combined with multi-way deconvolution and calibration algorithms. In this way, 
Picón Zamora et al. [1] determined three pesticides by taking linear trajectories 

across the EEM and applying principal component regression (PCR) and partial 
least squares (PLS1 and PL2) algorithms; Saurina et al. [2] resolved the EEM of 
triphenyltin in synthetic and natural sea water samples with multivariate curve 
resolution (MCR); and JiJi et al. [3] determined carbamate pesticides by parallel 
factor analysis (PARAFAC) of the excitation–emission matrix. We applied a 
procedure similar to this latter one, and paid particular attention to the internal 
validation of the method and to the calculation of the figures of merit. 
 
We determined carbendazim, fuberidazole and thiabendazole in mixtures of the 
three pesticides by PARAFAC deconvolution of the three-dimensional excitation–
emission data. Internal validation was assessed from the correlation between the 
pure excitation and emission spectra of each compound, and the reference 
spectra, as a measure of the reliability of the model. The selectivities of the three 
pesticides were calculated from the recovered spectra. Next, a univariate 
regression was performed for each pesticide by relating the loadings of the 

PARAFAC decomposition with the known concentrations of the pesticides in the 
calibration samples. From these univariate calibration lines, figures of merit such 
as precision, sensitivity and limit of detection (LOD) were calculated. The effect 
of the spectral selectivities on these figures of merit is also discussed. Finally, the 

accuracy of the method was estimated by predicting a new set of samples, which 
were not included in the calibration step. 
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2. Theoretical background 
 
2.1. Three-way decomposition of fluorescence data 

Fluorescence three-way data can be decomposed by parallel factor analysis 

because each analyte in the sample can ideally be described by one PARAFAC 

component [4]. This means that each fluorophore’s contribution to the emission is 
independent of the contribution of the remaining fluorophores and identical for 

different samples (only varying in proportions). Hence, the PARAFAC model for a 
three-way array (rijk) can be denoted as: 

 

ijk

F

f

kfjfifijk ecbar +⋅⋅=∑
=1

                                                 Eq. 34 (as Eq. 7) 

 
In the case of excitation–emission matrix fluorometry, the kth slice of the trilinear 
cube R is the (I×J) matrix of excitation and emission profiles of the fluorescent 

components for the kth sample. Thus, aif, bjf and ckf are the typical elements of 

the loading matrices A, B and C (emission wavelength, excitation wavelength and 

relative concentrations in the samples, respectively) for a given number of 
components F. Using an alternate least squares (ALS) procedure, the trilinear 
model is found to minimise the sum of squares of the residuals eijk. In matrix 

notation, and using the Khatri–Rao product [5], the PARAFAC model can be 
formulated in terms of the unfolded array as shown in Equation 35: 
 

{ { { { {
TT CZCABR ⋅=⋅⊗=

××××× )()()()()(

)(
FIJFKFIFJKIJ

k                                         Eq. 35 

 
An important characteristic of the PARAFAC model is the uniqueness of its 
solution. This means that additional constraints, such as orthogonality or external 
information to solve rotational freedom are not needed to identify the model [6]. 
This property is an extension of the second-order advantage and so trilinear data 
(here fluorescence data) can be calibrated when there are unknown interferences 
in the samples. 

 
In dilute solutions or suspensions, fluorescence intensity is linearly proportional to 
the solute concentration, and fluorescent excitation–emission measurements 
follow a trilinear model, such as the PARAFAC [3, 5, 7, 8]. However, spectral 
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properties are affected by the local environment. The most common 

environmental factors that influence fluorescence properties are solvent polarity, 
pH and fluorescence quenching (quenching is any process which decreases the 

fluorescence intensity of a sample, e.g. excited-state reactions, molecular 

rearrangements, energy transfer, ground–state complex formation and collision 

quenching, such as the one produced by molecular oxygen) [9]. 

 
Despite this environmental influence, fluorescence measurements can still fulfil 

the trilinear model if we keep the conditions constant throughout the experiments. 

However, other problems cannot be so effectively handled by PARAFAC based 

models. One of these is the emission region below excitation, where the intensity 
is approximately zero, i.e. the fluorophore shows no fluorescence. Whether these 

data are recorded or not, they should be treated as missing values and cannot be 

replaced with zeros to prevent the PARAFAC model from trying to fit them [5,10]. 

Other potential problems are Rayleigh and Raman scattering. Raman 

interference due to the solvent can often be almost completely removed by 
subtracting the solvent spectra from the sample spectra. Rayleigh scattering 

occurs in the EEM when the excitation wavelength is equal to the emission 
wavelength and there are no intrinsic profiles in either the X- or Y-order to extract. 

Several strategies for solving this problem have been described in the literature 
(e.g. data analysis can be restricted to regions were the scattering does not 
appear, a blank spectra can be subtracted if available or the data points can be 
weighed) [3,11]. 
 
2.2. PARAFAC calibration and prediction 

The decomposition of the three-way data by PARAFAC gives rise to three loading 
matrices, one of which, C, corresponds to the sample mode. The C-loadings are 

the relative concentrations of the pesticides in the mixtures. In the calibration 
step, these loadings are regressed against the real concentrations of each 
pesticide in the mixtures to get a linear calibration line [2]. In the prediction step, 
this regression line can then be used to predict (if any new interferent is present) 
the concentration of each pesticide in future test samples, Run that are not in the 

initial calibration dataset, by interpolating their loadings of relative concentration, 
CT. These loadings can be previously calculated from the Equation 35 multiplying 
the pseudoinverse of the Z matrix by the test sample data, as shows Equation 36: 

 

unRZZZC TTT ⋅= −1)(                                                                      Eq. 36 
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Another way to predict future test samples is to include them in the initial 

PARAFAC model. In this way, the loading matrices for both the calibration and 
the prediction sets are recovered. All the samples are considered to calculate the 

model parameters although the regression fit is only performed with the 

calibration samples. Finally, the loadings of the PARAFAC model for the 

prediction samples are interpolated into the corresponding regression line to 

obtain the predicted concentration of each analyte. 
 

 

3. Experimental 
 
3.1. Samples and standards 

To determine the pesticides in synthetic samples, a set of 12 mixtures was 

prepared in methanol between 0 and 100 ng ml−1 for carbendazim, 0–0.7 ng ml−1 

for fuberidazole and 0–40 ng ml−1 for thiabendazole. A standard of each pure 
pesticide was also prepared (Table 6). 

 
Excitation–emission fluorescence matrices were recorded for all the standards. In 
each experiment, a methanol blank was subtracted to remove the interfering 
Raman effect of the solvent. 
 

Table 6. Concentration of the pesticides in the synthetic mixtures 
and individual standards. 

 

Sample 
Carbendazim 
(ng ml-1) 

Thiabendazole 
(ng ml-1) 

Fuberidazole 
(ng ml-1) 

M1     0 20 0.4 
M2   50 20 0.0 
M3   50   0 0.4 
M4   30 30 0.5 
M5   60 35 0.6 
M6   20 15 0.1 
M7 100 25 0.2 
M8   90 35 0.4 
M9   40 25 0.4 
M10   60 20 0.5 
M11   80 40 0.1 
M12   90 35 0.3 
Carbendazim   75   0 0.0 
Fuberidazole     0   0 0.7 
Thiabendazole     0 35 0.0 
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3.2. Instrumentation and data analysis 

Measurements were performed with an Aminco–Bowman Series 2 luminescence 
spectrometer equipped with a 150W continuous xenon lamp. The EEM were 

defined so that they would collect the variation in the signal caused by the 

pesticides, and not record either excitation signals below emission or Rayleigh 

scattering. The dimension of the data matrices was 50×38, from 310 to 370 nm in 

the emission domain and from 260 to 306 nm in the excitation domain. The 

excitation and emission slits were both maintained at 4 nm and the scanning rate 

was 7 nm s−1. All measurements were performed in a 10 mm quartz cell at 750 V. 

An AB2 software version 1.40, running under OS/2 2.0 was used for spectral 
acquisition and MATLAB 6.0 (The MathWorks Inc., 2000) was used for data 

analysis. In the Matlab environment, commercial [12] and home-made algorithms 

were used to process the data. 

 

4. Results and discussion 
 
4.1. Preliminary study of the data 

A preliminary principal component analysis (PCA) can provide information about 
the degree of correlation of the data and the presence of outliers or influential 
samples. So we unfolded column-wise the EEM of each sample to a row vector of 
1900 elements, and use them to build a new data matrix of 12 rows (samples) 
and 1900 columns (wavelengths). The dimensionality of the data was reduced 
with the unfold-PCA to two factors, which explained 97% of the variation in the 
data. In spite of there being three components, the high correlation between the 
fluorescence spectra explains the presence of only two significant principal 
components. Figure 17 shows the PC1–PC2 scores plot (explained variance is 
86 and 11%, respectively) and the influence plot (squared residuals on X versus 

leverage). We can observe that sample M12 is far from the centre in the scores 
plot and has a high leverage value, which indicates that it is an influential sample. 
A PARAFAC model with three factors was also performed with the whole set of 
mixtures to get an idea of the distribution of the samples. We represented the 

loadings of the sample mode in two dimensions and observed that M12 was 
again the most different sample, according to the U-PCA results. 
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Figure 17. Scores (a) and influence (b) plot from the PCA of the 
columnwise unfolded matrices corresponding to the 12 synthetic 
mixtures (explained variance 97%). 
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4.2. Individual standards 

Figure 18 shows the excitation and emission spectra obtained for each pesticide. 
They were obtained by applying PARAFAC with one factor and non-negativity 

constraints to the three-dimensional matrices for the individual fluorescence 

spectra of each pesticide. We regarded these normalised profiles as the spectra 
of the pure pesticides and used them as reference spectra to evaluate the 

reliability of the models in the calibration. 
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Figure 18. Excitation (solid lines) and emission (broken lines) 

spectra of (1) carbendazim (50 ng ml−1), (2) fuberidazole (0.7 ng 

ml−1) and (3) thiabendazole (35 ng ml−1). 

 

 
In a preliminary study [1], some of the authors recorded the pure excitation and 
emission spectra at the wavelengths of maximum emission and excitation, 

respectively. Correlation between those spectra and the ones in this paper, 
resolved by PARAFAC on the EEM of the individual pesticides, was higher than 
0.998. 
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We calculated the sensitivity and selectivity of the pesticides from their first-order 

profiles in both the excitation and the emission region (see Table 7). All figures of 
merit were calculated as described by Faber et al. [13]. In terms of first-order 

profiles, fuberidazole was the most sensitive compound, both in the excitation 

and the emission region, but one of the least selective, together with 

thiabendazole. The most selective pesticide was carbendazim, as its spectra are 

the most different in shape (see Figure 18) and therefore the least correlated. 
This preliminary information suggests that fuberidazole will be predicted at lower 

concentrations (it is the most sensitive) but with a higher error of prediction 

because it is highly correlated with thiabendazole. It also suggests that 

carbendazim will be the most accurately predicted because of its selectivity. 
 

 
Table 7. First-order sensitivities and selectivities of carbendazim, 
thiabendazole and fuberidazole, estimated from the standards of 
the pure pesticidesa. 

 

 Compound Sensitivity Selectivity 

Carbendazim 15.45 0.8068 

Thiabendazole 19.19 0.1976 

X (50×3) 
Emission 
spectra 

Fuberidazole 356.5 0.2073 

Carbendazim 7.635 0.3985 

Thiabendazole 11.23 0.1157 

Y (38×3) 
Excitation 
spectra 

Fuberidazole 240.9 0.1401 
a Figures of merit for first-order spectral profiles 

 
 
4.3. Calibration step 

In the calibration step, we performed several PARAFAC models, which consisted 
of different calibration samples, and not necessarily the individual standards of 
each pesticide. 
The models that included the individual standard of carbendazim in the 

calibration set recovered the profiles slightly better than the models that did not. 
The same occurred with the standard of thiabendazole. However, the presence 
of the standard of fuberidazole considerably improved the recovery of the profiles 

and, therefore, the correlation between them and the reference spectra. In the 

models which did not contain fuberidazole, on the other hand, the profiles of each 
pesticide could not be unequivocally identified. This is due to the sensitivity and 
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selectivity values of the compounds. When mixtures of three analytes were 

analysed by fluorescence, and the data were modelled by PARAFAC, the 
standard of the most selective and sensitive analytes did not have to be included, 

because the model was able to recover their profiles in the presence of other 

analytes. This was the case of carbendazim. However, thiabendazole and 

fuberidazole are less selective and highly correlated each other, so the model 

needs extra information (such as the individual standard) about the most 
sensitive of them (fuberidazole, in this case), so that the profiles can be reliably 

recovered. 

 

The best calibration set consisted of the calibration samples located at the 
extremes of the domain, i.e. M2, M5, M7 and M11 (extrapolation out of the linear 

range is avoided) together with the individual standard of fuberidazole (see 

above). This PARAFAC model was built with three factors and non-negativity 

constraints in all the modes. The estimated profiles matched the reference 

spectra (see Figure 19), with correlation coefficients of 0.996 for carbendazim, 
0.998 for thiabendazole and 1.000 for fuberidazole in the excitation region and 

0.9995, 0.996 and 1.000, respectively, in the emission region. 
 
Table 8 shows the figures of merit of this model. They were calculated, using 
univariate statistics, from the calibration line fitted with the loadings in the sample 
mode obtained with PARAFAC, as explained above. 
 
Sensitivity was defined as the slope of the calibration curve. The values of this 
sensitivity measure correlate well with those calculated from the net analyte 
signal of the first-order spectra of each pesticide. Other authors have suggested 
a single measure of sensitivity for PARAFAC models based on net analyte signal 
calculations [14]. From the results of Table 8 we can conclude that fuberidazole 
is the most sensitive compound in the mixture, followed by thiabendazole and 
carbendazim, in agreement with the spectroscopic data from Table 7. 
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Figure 19. (a) Excitation and (b) emission spectra for carbendazim 
(1), fuberidazole (2) and thiabendazole (3). Broken lines: reference 
spectra; solid lines: spectra recovered by the PARAFAC model. 
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Table 8. Statistical parameters and figures of merit of the linear 
relationship between the proportion loadings calculated by 
PARAFAC and the true concentration of each pesticide. 

 

 Carbendazim Thiabendazole Fuberidazole 
Number of data points 5  5  4 
Intercept 9.34 ×·10-3 - 9.37 ×·10-3 - 3.78 ×·10-3 
Sensitivity (slope) 6.54 ×·10-3  16.4 ×·10-3  349.3 ×·10-3 
Standard deviation of intercept 19.9 ×·10-3  11.9 ×·10-3  5.80 ×·10-3 
Standard deviation of slope 2.96 ×·10-4  4.27 ×·10-4  181.3 ×·10-4 
Standard error 22.3 ×·10-3  13.3 ×·10-3  8.26 ×·10-3 
Correlation coefficient (r) 0.9969  0.9990  0.9973 
Precision (%) 3.4  2.0  3.4 
Limit of detection (ng·ml-1) 20  4.7  0.15 
 

 

The precision for each pesticide was calculated in terms of concentration as the 
standard deviation of the C-loading residuals for all standards divided by the 

sensitivity, SEN, i.e. the slope of the calibration line as: 

 

( )
2

ˆ 2

1res

−

−
== ∑−

n

cc
SEN

SEN

s
Precision

ii
                                                   Eq. 37 

 

ic  are the C-loadings for the given pesticide estimated from the PARAFAC 

model and iĉ  are the loadings estimated from the calibration line C-loadings 

versus pesticide concentration. n is the number of calibration standards. 

 
Finally, the LOD for each pesticide was estimated from Equation 38, which takes 

into account the uncertainty of the calibration line and considers α and β 

probabilities of error, following the IUPAC recommendations [15]: 
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1),(
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i

βαδ                                                     Eq. 38 

 

ix  is the concentration of the given pesticide in each of the n calibration standard 

and x  is the average concentration. 
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The values of the correlation coefficients indicate the quality of the linear fits and 

the estimated precision shows that the calibration results are in close agreement. 
The detection limits of this method are in the order of magnitude of nanograms 

milliliters−1 (ng ml−1). Expressed as a percentage of the higher analyte 

concentration in samples, they were around 20% for carbendazim and 

fuberidazole and below 12% for thiabendazole. 

 
In order to test the second calibration strategy described in Section 2, we also 

performed the PARAFAC model with the chosen samples M2, M5, M7, M11, the 

standard of fuberidazole and the remaining samples to be predicted. We 

obtained the loadings of relative concentration for each sample, although the 
calibration line was fitted only with the calibration set. Table 9 shows the 

statistical parameters obtained for this regression. The estimated profiles were 

correctly recovered but the correlation coefficients with the reference spectra 

were slightly lower than those obtained with the model that did not include the 

prediction samples. This second model finds the solution that best explains all 
the variations, so we could not detect any outlying samples. Precision and limits 

of detection were of the same order for thiabendazole and higher for 
carbendazim and fuberidazole than with the previous model. 
 
 

Table 9. Statistical parameters and figures of merit of the linear 
relationship between the loadings of calibration samples obtained 
from a PARAFAC that includes the prediction samples (see details 
in text). 

 

 Carbendazim Thiabendazole Fuberidazole 
Number of data points 5  5  4 
Intercept 2.01 ·10-3 -4.45 ·10-3 -7.37 ·10-4 
Sensitivity (slope) 42,8 ·10-3  10.45 ·10-3  326.9 ·10-3 
Standard deviation of intercept 14.1 ·10-3  70.7 ·10-3  103.1 ·10-3 
Standard deviation of slope 2.10 ·10-4  2.55 ·10-3  32.2 ·10-3 
Standard error 15.9 ·10-3  7.94 ·10-3  14.7 ·10-3 
Correlation coefficient (r) 0.9964  0.9991  0.9905 
Precision (%) 3.7  1.9  6.4 
Limit of detection (ng·ml-1) 22  4.4  0.29 
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4.4. Prediction step 

We used the PARAFAC model built with the calibration set [M2, M5, M7, M11, 
Fub] to predict the concentration of carbendazim, thiabendazole and fuberidazole 

in the prediction set consisting of the remaining samples in Table 6. For each 
pesticide, we interpolated the estimated PARAFAC C-loadings, calculated from 

Equation 36, in the corresponding regression line (see Table 8) and calculated 

the predicted concentration. 
 

Figure 20 shows the calibration model with a straight line, and the prediction 

samples indicated with crosses. The prediction results for thiabendazole and 

fuberidazole are very good.  
 

The accuracy of the models was calculated by the root mean square error of 

prediction (RMSEP): 

 

( )
M

xx
RMSEP

ii∑ −
=

2ˆ
                                                                 Eq. 39 

 

where ix  and ix̂  are the measured and predicted concentrations of the given 

pesticide in each prediction sample, and M is the total number of prediction 

samples. RMSEP was 3.4% for thiabendazole and 3.9% for fuberidazole. 
However, in the prediction of carbendazim, samples M4, M10 and M12 behaved 
very differently from the model and the rest of the samples and increased the 
RMSEP from 5.6 to 27.5%. Work is in progress to efficiently detect and handle 
outliers in prediction for PARAFAC models. 
 
We also expressed these values in terms of recovery (as the percentage ratio 
between the predicted and the true concentration) so that they could be 
compared with those obtained by the procedure described in a previous study 
using multivariate calibration methods [1] (Table 8, Model C). The average 
recoveries for the PARAFAC procedure were 103.6% for thiabendazole, 99.9% 

for fuberidazole and 111.1% for carbendazim. For the multivariate calibration 
procedure they were 97.7% for thiabendazole, 93.3% for fuberidazole and 
102.3% for carbendazim. So, in all the cases, recoveries were around the ideal 
100% for both methods, although the dispersion of the results was lower for the 

multivariate calibration procedure than for PARAFAC. 
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Figure 20. Calibration graphs (straight line) for carbendazim (a), 
thiabendazole (b) and fuberidazole (c). The crosses (×) represent 
the prediction samples. 
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However, the methodology involving PARAFAC did not require as many 

calibration samples as the PLS models do and, what is more, would allow the 
determination of any of the three pesticides in the presence of unknown 

interferences (second-order advantage) even if they were not included in the 

model. 

We also predicted the samples in the prediction set by including them in the 

PARAFAC model. The loadings estimated from the PARAFAC model were 
interpolated into the calibration line that was fitted only with the loadings of the 

calibration samples. In this way, anomalous samples went unnoticed and the 

RMSEP values were higher than those obtained by prediction from Equation 36 

(see Table 10). What is more, we would have to rebuild the model for each new 
set of prediction samples, which is less practical in a real laboratory situation. 

 
Table 10. Prediction errors of the two PARAFAC calibration 
procedures (see details in text). 

 

RMSEP (%) Carbendazim Thiabendazole Fuberidazole 
PARAFAC 
 (calibration set) 

5.6 3.4 3.9 

PARAFAC 
 (calibration+prediction sets) 8.7 4.8 6.4 

 
 

5. Conclusions 
 
We determined carbendazim, fuberidazole and thiabendazole in mixtures of the 
three pesticides, by EEM fluorescence and three-way PARAFAC calibration. We 
used two main criteria for selecting the calibration standards. Firstly, the model 
had to cover the experimental domain, so standards were preferably taken at the 
extremes of the domain to avoid subsequent extrapolation. Secondly, we used 
the selectivity and sensitivity information about the compounds to select the 
calibration samples, and discussed whether it was necessary to include extra 
information (i.e. individual standards) in the model for the more sensitive or the 

less selective analytes in the mixtures. 
In the light of the results, we selected for further study a calibration set with six 
samples: five combinations of extreme concentrations for each pesticide and an 
individual standard of fuberidazole. The prediction ability of this model compared 

favourably with the prediction ability of previous PLS models. PARAFAC 
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calibration also required fewer samples and would make quantification possible 

even in the presence of uncalibrated interferents. 
 

Finally, the PARAFAC models were validated by calculating the univariate figures 

of merit from the calibration curves that had been built by regressing the 

PARAFAC sample loadings to the pesticide concentrations. These figures of 

merit were also used to compare the quality of the different models. 
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4.1. Introduction 
 
 

The objects of study in this chapter are the practical implications of estimated 

detection limits. The fact that some experimental factors affect the efficiency of 

the resolution of second- or higher-order data led to the hypothesis that they 
would directly affect the estimation of the LOD and, therefore, that the quality of 

the LOD estimator depends on the performance characteristics of the 

determination. 

 

In the paper in Section 4.2, we used HPLC-DAD data resolved by ITTFA to 
evaluate the influence of some significant parameters. Previous considerations 

for this work were as follows. The data from HPLC-DAD analyses lose their ideal 

linear structure when there are changes in the retention time between different 

runs and samples. This problem can be solved aligning the peaks27 because, if it 
is not corrected, the lack of reproducibility leads to biased predictions and 

subsequently unacceptable LODs. 
 
An alternative strategy for dealing with data that are not strictly bilinear is to treat 
each sample individually, i.e. to solve one second-order data matrix at a time. 
From the multivariate curve resolution methods that can be used for this purpose, 
for this paper we chose the iterative approach TTFA28, which we used to resolve 
the spectro-chromatographic data of a calibration set. 
 
The title of this paper was “Influence of selectivity and sensitivity parameters on 

detection limits in multivariate curve resolution of chromatographic second-order 

data”. Its main aims were to describe the influence of some performance 

characteristics on the ability to estimate spectra and elution profiles by the curve 
resolution method and analyse how this affects LOD estimation. Specifically, the 
three experimental factors chosen were: 
 
 

 
                                                 
27 Some examples are in the following references: Gemperline et al. 1999, Bylund et al. 
2002, Bogomolov and McBrien 2003 and Torgrip et al. 2003. 
28 Specifically for HPLC-DAD, Comas et al. (Ref. 2002) developed a method based on 
ITTFA for correcting the time shift. 
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- the chromatographic selectivity, 

- the spectral selectivity, and 

- the sensitivity of the analyte of interest (the relative intensity of the 

chromatographic peak). 

 

To meet these objectives, we reproduced HPLC-DAD measurements of ternary 

mixtures and performed the experimentation according to a factorial design in 
order to consider the three factors simultaneously. 

 

These samples were resolved by ITTFA and the LOD was estimated using the 

transformation approach, i.e. with univariate statistics from the calibration line 
obtained by the regression of the height of the estimated elution profile against 

the concentration. 

 

Our results showed that the three experimental factors (the sensitivity of the 

analyte and the selectivity of spectra and chromatograms) significantly affected 
the value of the LOD, so they can be modified in order to improve the detection 
threshold. We also indicated how the end user can improve the limit of detection 
by modifying these experimental variables. 
 
To calculate the limits of detection for second-order experimental data and apply 
the method proposed in the paper, we analysed real samples containing mixtures 
of 2,4-dinitrophenol (2,4-DNP), 2-chlorophenol (2-CP) and 4-chlorophenol (4-CP) 
by HPLC-DAD. The molecular structure of these compounds is shown in Table 
11. 
 
The LOD was calculated for 2-CP, a commercially produced chemical that is 
toxic to aquatic organisms and is used as an intermediate in the production of 
other chemicals. The other two compounds present in the mixtures were 
considered as interferences. 
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Table 11. Molecular structure of the compounds under study. 
 

Chemical name Structure 

2,4-dinitrophenol 
CAS: 51-28-5 

HO

O    

N'OH

O 


HON'

HO

O    

N'OH

O 


HON'

 

2-chlorophenol 
CAS: 95-57-8 

OH

Cl

OH

Cl  

4-chlorophenol 
CAS: 106-48-9 

OH

Cl

OH

Cl  
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4.2. Paper. Influence of selectivity and sensitivity parameters on 

detection limits in multivariate curve resolution of chromatographic 

second-order data. 

Analytica Chimica Acta 476: 111- 122 (2003) 
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Influence of selectivity and sensitivity parameters 

on detection limits in multivariate curve resolution 

of chromatographic second-order data 
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Pça. Imperial Tàrraco,1. 43005-Tarragona (Catalunya). SPAIN 

 

 

Abstract 

We have established a procedure for calculating limits of detection for second-
order data. One of the steps involves curve resolution by ITTFA and we have 

checked some experimental factors that affect the efficiency of resolution by 

ITTFA. Therefore, they directly affect the estimation of the LOD. In this paper we 

describe the quality of the LOD estimator as a function of the performance 

characteristics of a determination with HPLC-DAD (sensitivity and selectivity of 
spectra and chromatograms) and advise the end user about how he can improve 

it by modifying these experimental variables. 
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1. Introduction 

 

Analytical methods must be validated before they can be used routinely. Several 

performance characteristics, such as accuracy, precision, sensitivity, etc. must 
be tested to determine whether previously established requirements are met. 

This assesses the suitability of a particular method for a particular purpose. One 

common requirement of the validation process is to evaluate whether an 

analytical method can detect the presence of an analyte in a sample. This is 

particularly important for methods that work at low concentration levels. 
 

Analytical performance characteristics are well-defined in univariate [1–7] and 

multivariate calibration [8–10] (in which a scalar and a vector of data, 

respectively, is measured for each chemical sample). Second order data (where 
a matrix of instrumental data is obtained for each sample) are usually produced 

by second-order instruments such as an excitation-emission spectrofluorometer 

or by instruments used in so-called hyphenated techniques, i.e. high 

performance liquid chromatography (HPLC)-diode array detection (DAD), CE-

DAD, GC-MS GC-FTIR, LC-MS, HPLC-FTIR or 2D NMR. Although fundamental 
research in this field is very active, in the literature there are few applications of 

performance characteristics applied to second-order (or higher) calibration. 

 

The second-order advantage, i.e. determining the analyte concentrations in the 
presence of unwanted and/or unknown components in the test samples, is 

possible when the data matrix corresponding to the pure standards or reference 

mixtures are available and second-order calibration methods such as rank-

annihilation factor analysis (RAFA) [11] or the generalised rank-annihilation 
method (GRAM) [12,13] are used. In this way, Boqué et al. have recently 

presented a new estimator for calculating the limit of detection in bilinear second-

order calibration with GRAM [14] yielding promising results. 

 

However, second-order calibration methods are significantly limited when applied 

to data that deviate somewhat from trilinearity, which is one of the fundamental 
assumptions of these methods [15]. In HPLC-DAD analysis, these deviations are 

basically due to shifts in the peak retention times or changes in peak shapes. 

When such deviations are present we can use other methods, such as those 

based on curve resolution [16]. 
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In this paper, we provide a procedure for calculating limits of detection (LOD) 

when one is working with experimental second-order data. Specifically, we have 
developed a strategy that involves a curve resolution method (iterative target 

transformation factor analysis, ITTFA) to obtain the LOD estimator from the 

estimated pure chromatograms and spectra of each component of a mixture. 

With estimated chromatographic profiles we can establish a relationship between 

the area or height of the peak and a concentration value (quantitative analysis). 
Classical univariate LOD estimators can therefore be used satisfactorily because 

we can represent resolved signal versus concentration. 

 

The idea behind this procedure has already been devised by other authors [17]. 
Our aim in this work, however, is not only to provide a procedure for calculating 

the limit of detection in second-order data, but also to advise the end user about 

the quality of the LOD as a function of the characteristics of the problem at hand 

(sensitivity and chromatographic and spectral selectivities) in determinations that 

use a typical analytical technique such as HPLC with DAD. As well, Gemperline 
and Hamilton [18] calculated the limit of detection of minor components when 

overlapped with major components in hyphenated chromatographic techniques. 

They used principal component analysis for estimating the net signal due to the 

minor component in a binary mixture, and described the effect of relative 
concentration, chromatographic resolution and spectral similarity. Our approach 

is similar, but we performed the experimentation according to a factorial design to 

consider the effect of these three factors simultaneously, instead of considering 

them independently as they did. Moreover, the empirical basis of the procedure 

we described makes it more robust to face deviations from bilinearity in the data. 
 

2. Theoretical background 
 

In HPLC analysis, compounds may co-elute if they have similar interaction with 
the stationary phase. If this happens, the experimental conditions can be 

modified to achieve sufficient peak resolution. However, this can be a time-

consuming and expensive process. Another solution is to use multivariate curve 

resolution (MCR) methods. This is a group of methods intended to determine the 

number of eluting compounds and to recover the response profiles (e.g. spectra, 
pH profiles, time profiles and elution profiles) of the components in an unresolved 

mixture obtained in evolutionary processes when no previous information about 

the nature or composition of the mixtures is available. MCR methods can be 
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extended to analyse many types of experimental data, including multiway data 

and non-evolutionary processes [19]. 
 

Mathematically, multivariate curve resolution breaks down a two-way data matrix 

into the product of two smaller matrices, each of which is related to one of the 

two orders of the original data matrix. It looks for decompositions with physical 

and chemical meaning and finds the true underlying causes of data variation [20]. 
The ambiguities inherent to factor analysis decompositions of a single data 

matrix can be partly overcome if we extract the information from submatrices of 

reduced rank or if we apply constraints such as linear additivity, non-negativity, 

unimodality or closure, to the full rank matrix. 
 

Curve resolution methods can be divided into two groups: iterative methods and 

non-iterative or direct methods. Common examples of iterative approaches are 

ITTFA [21] and alternating regression (AR) [16]. Iterative methods are fast and 

simple to use and require less user interaction and expertise, but they do not use 
local rank information. Instead, they treat the data as a whole and do not provide 

unique results. 

 

In this study, the MCR used was ITTFA, which was introduced at the beginning 
of the eighties by Hopke et al. [22] in environmetrics and by Gemperline [23,24] 

and Vandeginste et al. [21] in chromatography. The advantages of the method 

are that it is simpler to use than earlier curve resolution methods and it is more 

general because the number of co-eluting compounds is not limited. Vandeginste 
et al. [21] showed that ITTFA is suitable for mathematically resolving a data 

matrix from HPLC with DAD into the pure elution profiles and spectra of all co-

eluting compounds. 

 

TTFA tests whether a candidate factor or target is a true factor. The principle of 
ITTFA is to try to improve targets to bring them close to one of the true factors. 

The target is modified (using chemical knowledge) and resubmitted in an iterative 

way until the tested target is considered to match one of the true factors 

satisfactorily. Spectro-chromatographic data are particularly suited for this type of 

procedure because the chromatograms are non-negative and unimodal. 
 

Details on how works ITTFA can be found elsewhere. TTFA starts decomposing 

the second-order data matrix using the singular value decomposition (SVD) 
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algorithm. The iteration is started projecting a trial solution onto the 

chromatographic space and calculating the norm of the difference between initial 
and projected vector. The graph of this difference as a function of the time 

position is plotted considering a determined number of significant principal 

components. The number of minima that appear in the graphs and its position 

can be related to the number of compounds present in the sample and the time 

at which the elution peak of each compound appears, respectively. For each 
compound, a target vector whose maximum is at the estimated position from the 

graph, is projected onto the chromatographic space. The projected vector can be 

improved correcting it for shoulders and negative regions (chemical knowledge). 

An iterative process, resubmitting the projected vector as the new input vector 
until convergence of the difference, leads to the estimation of the pure 

chromatogram. Then estimates for the pure spectra are calculated using the 

generalised inverse of the matrix of chromatograms. 

Finally, scale ambiguities inherent to the MCR method should be solved. This 

can be done using normalisation constraints. We divided the spectra by its norm 
and multiplied the chromatograms by the same factor (the norm of spectra), so 

the result of multiplying spectra by chromatograms did not change. 

 

Once we have estimated the chromatograms of standards, we can regress the 
height of the peak corresponding to the analyte of interest in each standard 

against the analyte concentration. From the univariate regression line, we can 

calculate the limit of detection LOD by applying classical univariate LOD 

estimators such as that recommended by Hubaux and Vos [3]: 
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Eq. 40 (as Eq. 32) 

 
where s is the standard deviation of the residuals of the regression line, b1 the 
slope of the regression line, N the number of replications performed on the 

unknown sample, n the number of standards, x  the mean of the concentrations 

of the standards of the calibration curve and t1−α,n−2 and t1−β,n−2 are the (1−α) and 

(1−β) quantiles of the Student’s t-distribution with n−2 degrees of freedom. In this 

calculation, α and β incorporate the probability of false positive (or type I error) 

and false negative (or type II error) as recommended by IUPAC [2]. 
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3. Procedure 
 
To prove that the procedure for calculating limits of detection when working with 

second-order data is valid, we first simulated second-order data by reproducing 

HPLC-DAD measurements in approximate real conditions. Our simulations 

covered several analytical situations, so we were able to approximately 
determine the quality of the estimated LOD when working with real data. We then 

applied the method to calculate the limit of detection of 2-chlorophenol in 

synthetic mixtures of three phenolic compounds. 

 
3.1. Limit of detection for second-order simulated data 

We simulated the response matrices of three components in unresolved 

mixtures. One of these components was the analyte of interest (analyte 2), for 

which we calculated the limit of detection. We obtained the second-order 

responses by multiplying a matrix of chromatographic profiles by the transposed 
matrix of normalised spectral profiles. We added homoscedastic noise to the 

spectral profiles to approximate to real conditions. The strength of this noise was 

about 2% of the maximum intensity of the spectral profiles (e.g. see Figure 21). 

Second-order data matrices had 100 rows and 80 columns. In other words, 

simulated chromatograms represented measurements collected at 100 retention 
times, at each of which absorbance was measured at 80 wavelengths. 
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Figure 21. Example of simulated chromatogram and noisy spectra 
used in this study. The second-order response is obtained by 
multiplying the matrix of chromatograms by the transpose of the 
matrix of spectra. 
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As we wished to establish a linear regression, we needed standards with 

decreasing concentration levels. To obtain simulated responses at different 
concentration levels, we set the elution profile of the analyte of interest at 

different heights. The heights of the elution profiles of the standards were h, 0.75, 

0.50, 0.25, and 0.10 (see example in Figure 22). 

 

We resolved each of the simulated second-order matrices by ITTFA, and 
calculated the limit of detection as described in Section 2 of this work. The 

method we have used in this study is summarised graphically in Figure 23. 
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Figure 22. Example of simulated elution profiles of standards at 
different concentration levels of analyte 2. 

 

 
 

3.2. Quality of the LOD estimator 

In general terms, and assuming a fixed (rather high) level of noise, the ability to 

estimate spectra and elution profiles by MCR depends on the similarity of the 
spectra, the overlap of the elution profiles and the relative intensity of the signal 

[25–27]. As the limits of detection calculated by this procedure are affected by 

the quality of the resolved profiles, we performed simulations according to a full 

33 factorial design of these three factors investigated at three levels. 
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Figure 23. Scheme of the proposed procedure for calculating LOD 
in second-order data. 

 

 

The next step was to test how significant the effect of each factor was. We did 

this by comparing the variance of the response accounted for by the effect with 

the residual variance, which summarises the experimental error. If the variance 
due to the effect is smaller than the variance due to the error, the effect can be 

considered negligible. If it is significantly larger than the error, it is regarded as 
significant. Numerically this can be expressed with the F-ratios, which compare 

the variance due to the effect with the residual variance. The higher the ratio, the 
greater the effect. A complementary measure is the P-value, i.e. the probability 

that effect=0. The smaller the P-value, the more likely it is that the effect is not 

due to chance. Usually an effect is declared significant if P-value>0.05 

(confidence level of 95%). 

 
We discuss these three factors studied below: chromatographic and spectral 

selectivities (that measure how unique the profile of the analyte of interest is 
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compared with the other species) and the sensitivity (understood as the relative 

intensity of the instrument response for the species present in the mixture), in 
certain conditions. Note that we worked with coded variables to denote the 

factor’s low, intermediate and high levels. 

 
3.2.1. Chromatographic selectivity 

 

 

Figure 24. Levels of the factors A (selectivity of chromatograms) 
and C (sensitivity). The individual profiles are displayed as full 
curves and the synthetic chromatograms are displayed as broken 
curves. The analyte of interest is the second peak in all cases. 
Units of x-axis: units of absorbance. Units of y-axis: units of time. 

 

 

Factor A was the chromatographic selectivity expressed as the resolution of the 

elution profiles. In the simulated mixtures of three components, the analyte of 

interest eluted the second and overlapped with the other two, which were 
considered the interferents. As recommended by IUPAC, we calculated 
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chromatographic resolution as RS=2(tR2−tR1)/(Wb1+Wb2), where tR is the retention 

time (tR2>tR1) and Wb is the Gaussian peak-width at base. As shown in the 

literature [25–27], spectra of good quality estimated by some MCR methods are 
obtained for a chromatographic resolution RS>0.45. We then chose the lowest 

level of this factor at this value, and the intermediate and high levels were 0.5 

and 0.6, respectively (see Figure 24). The coded (proportional) values of the 

levels were −1, −0.33, +1. 
 
3.2.2. Spectral selectivity 

Factor B was the spectral selectivity and was expressed as the correlation 

coefficient of the normalised spectra (norm=1, when dividing the spectra by its 
Euclidean norm). The higher the selectivity, the lower the correlation coefficient 
(Cf ), and vice-versa. As we had a mixture of three components, we fixed the 

correlation between the spectra of the analyte of interest and the spectra of the 
interferent that eluted at higher retention time (Cf=0.16). In this way, factor B 

implied a variation in the correlation between the spectra of the analyte of interest 
and the spectra of the interferent that elutes first. 

 

The low, intermediate, and high levels of spectral similarity corresponded to 
Cf=0.86, 0.49, and 0.20, respectively (see Figure 25). After proportional coding, 

they corresponded to −1, 0.12, +1.These values can also be expressed in terms 

of Lorber et al.’s selectivity [28], i.e. the net analyte signal (or part of the 

spectrum which is orthogonal to the spectra of the others components) divided by 

the length of the spectrum of the sample.  

 
This selectivity indicate what part of the total signal is lost due to spectral overlap 

and, according to IUPAC recommendations [29], it can be used in multivariate 
calibrations with some degree of success. Lorber et al.’s selectivity for the 

analyte of interest at the low, intermediate and high level was 0.36, 0.45, 0.51. 
 
3.2.3. Relative intensity of the signal 

Factor C was the sensitivity. This was expressed as the relative height of the 

elution profiles. The three levels chosen were 1:0.5:1, 1:1:1, and 1:2:1 (see 

Figure 24). These were coded as −1, 0, +1. 
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Figure 25. Levels of factor B (selectivity of spectra). Spectral 
selectivity is expressed as the correlation coefficient (Cf ) of the 
normalised spectra. Spectra of the analyte of interest are displayed 
as full curves (number 2) and spectra of the interferents are 
displayed as broken curves. 

 

 

To estimate how the selected factors affected the accuracy of a quantitative 

analysis, and particularly how they affected the calculation of the limits of 

detection, we performed simulations according to this design (see Table 12). 
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Table 12. Simulations according to a full 33 factorial design. Factor 
A is the selectivity of chromatograms, factor B is the selectivity of 
spectra and factor C is the sensitivity. The coding of the levels is 
explained in the text. 

 

 Factors 

point A B C 
1 -1 -1 -1 
2 -0.33 -1 -1 
3 1 -1 -1 
4 -1 0.12 -1 
5 -0.33 0.12 -1 
6 1 0.12 -1 
7 -1 1 -1 
8 -0.33 1 -1 
9 1 1 -1 

10 -1 -1 0 
11 -0.33 -1 0 
12 1 -1 0 
13 -1 0.12 0 
14 -0.33 0.12 0 
15 1 0.12 0 
16 -1 1 0 
17 -0.33 1 0 
18 1 1 0 
19 -1 -1 1 
20 -0.33 -1 1 
21 1 -1 1 
22 -1 0.12 1 
23 -0.33 0.12 1 
24 1 0.12 1 
25 -1 1 1 
26 -0.33 1 1 
27 1 1 1 

 
 

We processed our data according to the scheme in Figure 23. We generated five 

simulated samples with decreasing concentrations of the analyte of interest (as 

explained above), and resolved these second-order matrices using the ITTFA 

algorithm. After obtaining the estimated elution profile of each compound in the 
standards, we plotted the height of the analyte of interest against the 

concentration and calculated the limit of detection from the calibration curve 
using Equation 40 (we will call this value the true LOD or xD). 
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To evaluate the quality of the estimated true LOD, xD, we generated the second-

order response of M samples (M=100) with the concentration of the analyte of 
interest at the level of the true LOD (we set the height of the elution profile 

proportional to the LOD). We resolved these M samples by ITTFA to estimate 

their elution profiles and interpolated in the calibration curve the heights of the 
analyte of interest in the M samples. We could then compare the predicted M 

concentrations (from the M samples simulated at the LOD level) with the true 

LOD that we had previously calculated. 

 

The quality of the LOD can then be expressed in terms of the percentage of bias 
calculated from the difference between the mean of the M predicted 
concentrations and the true value of the limit of detection, xD, calculated from 

Equation 40 (see Equation 41). 
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With this procedure we obtained a bias estimation of the calculated LOD. 
Moreover, for every simulated condition of spectral selectivity, chromatographic 

selectivity and sensitivity, we repeated the procedure 50 times, i.e. we estimated 

50 values of bias for every specific condition. We expressed the quality of the 

LOD in robust average terms, by calculating the median value of the 50 
estimated biases. 

 
3.3. Material and methods 

To calculate the limits of detection for second-order experimental data, we 

analysed real samples containing mixtures of 2,4-dinitrophenol (2,4-DNP), 2-
chlorophenol (2-CP) and 4-chlorophenol (4-CP) by HPLC-DAD. We used a 1050 

Hewlett-Packard high-pressure liquid chromatograph equipped with a 1050 HP 

automatic injector and a HP 1050M diode array UV-Vis detector (interface: 

Hewlett-Packard 35900 model) coupled to an HP ChemStation, v.A.05.02. 
Analytes were eluted using a Spherisorb reversed-phase column (250mm×45mm 

i.d., 5 ml) as the stationary phase (partially cross-linked phase) at 60ºC. The 

injection volume was 20 ml and the flow rate was 1.0 ml/min. The mobile phase 

included methanol for gradient HPLC, and Millipore water (pH=2.6, acidified with 
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HAc for HPLC). Determinations were performed with an HPLC elution program 

as follows: an initial gradient elution from 55% of solvent A (MeOH) to 95% of the 
same solvent in 0.6 min, followed by an isocratic elution until minute 5. Finally, 

the program reached the initial conditions in 0.5 additional minutes to stabilise 

the corresponding mobile phase. Spectra were recorded from 250 to 350 nm in 

steps of 1.96 nm at a rate of 150 spectra per minute. 

 
The LOD was calculated for 2-CP, a commercially produced chemical that is 

used as an intermediate in the production of other chemicals and is toxic to 

aquatic organisms [30,31]. The other two compounds present in the mixtures 

were considered interferents. The initial mixture contained the three compounds 
at the following concentrations: [2,4-DNP]=0.6 mg/l, [2-CP]=6.5 mg/l and [4-

CP]=9.7 mg/l. To calculate the limit of detection of 2-CP, the synthetic samples 

contained decreasing concentrations of 2-CP (6.5, 4.9, 3.3, 1.6, and 0.7 mg/l), 

while the concentration of the two interferents was kept constant. The second-

order data recorded for each sample was transferred from the HP software to the 
Matlab [32] environment to be resolved using a home-made ITTFA algorithm. 

 

4. Results 
 
4.1. Simulated data 

We processed the median values of the calculated (true) LOD and their 

percentage of bias, calculated from Equation 41 obtained for all experiments in 

the experimental design (see Table 13 and Figure 26), by an analysis of variance 

(ANOVA) (Table 14) to evaluate how the factors affected the calculation of the 
LOD by this procedure. 

 
From the F-test we found that all the factors were significant and this was 

confirmed by the low values of statistical P. Of all the factors, factor B (similarity 

of spectra) had the weakest effect. Interactions between the effects were also 

significant in all combinations, but again the highest interaction involved factors A 

and C since, at the high level of A, the accuracy of the LOD was best when factor 

C was low, and vice-versa. 

 
We, therefore, assessed how important are the chromatographic and spectral 

selectivities, the sensitivity and their interactions (in the range studied) for 

calculating the limit of detection reliably. Also, the quality map indicates how we 
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can modify one or more of the factors to reduce, when necessary, the bias of the 

LOD calculated with the procedure discussed in this paper. 
 

Table 13. Median (M) of the calculated LOD and its accuracy. 

 

Point M (xD) M (percent bias)  Point M (xD) M (percent bias) 

1 0.01686 16,931  15 0.01629 0,260 

2 0.01843 6,756  16 0.01456 18,867 

3 0.01399 1,315  17 0.01815 4,903 

4 0.01587 18,665  18 0.01557 0,823 

5 0.01483 10,587  19 0.01728 2,201 

6 0.01922 0,653  20 0.01562 1,160 

7 0.01779 36,004  21 0.01743 0,093 

8 0.01638 19,587  22 0.02183 1,386 

9 0.01634 3,533  23 0.01436 0,912 

10 0.01467 10,247  24 0.01637 -0,296 

11 0.01648 2,911  25 0.01522 6,285 

12 0.01798 -0,004  26 0.01637 1,890 

13 0.01529 7,698  27 0.01599 0,199 

14 0.01490 3,788     

 

 

 
Table 14. Results of ANOVA. 

 

Effects F-ratio p-value  Interactions F-ratio p-value 

A 90.6 0.0000  A × B          6.5 0.0124 

B 23.5 0.0005  A × C        17.4 0.0005 

C 74.1 0.0000  B × C          5.6 0.0193 

Tabulated F-value for 95% significance: F0.05,1.27 =4.21 
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Figure 26. Quality of the LODs calculated. Graphical 
representation of the results expressed in percent bias, as 
explained in text. 

 

 

4.2. Real data 

To show the applicability of this procedure, i.e. to calculate the limit of detection 

and indicate how to improve it, we analysed real samples of mixtures of 2,4-DNP, 
2-CP and 4-CP and determined the limit of detection of the 2-CP. We resolved 

the second-order data recorded for the samples by the ITTFA algorithm. From 

the estimated spectra (Figure 27a), we unambiguously identified the two 

interferents and the analyte of interest by comparing them with a library of 
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spectra (the correlation between the estimated and the real spectra was always 

above 0.99). 
 

As the heights of the peaks are proportional to the concentration, the estimated 

chromatograms (Figure 27b) provided quantitative information, from which we 

calculated the limit of detection. 

 
As we can see in Figure 27a, the spectrum of the 2-CP is highly correlated with 
the spectrum of one of the interferents: Cf(2-CP–2,4-DNP)=0.87 and Cf(2-CP–4-

CP)=0.63, which we interpreted as a low level of spectral selectivity (Lorber et 

al.’s selectivity is 0.30), i.e. low level of factor B in this study. We calculated 

chromatographic selectivity from the estimated chromatographic profiles of the 

standard with the higher concentration of 2-CP. This selectivity, expressed in 

terms of resolution, was 0.60 between the first interferent and 2-CP and 0.61 

between the second interferent and 2-CP. This means that the level of factor A is 

high in the terms of this study. Also, the estimated chromatograms show us that 
the signal intensity ratio was approximately 1:1:1, which is interpreted as an 

intermediate level of factor C. 

 

We also compared the estimated chromatogram of each compound with the 
chromatogram obtained with the first-order instrument, e.g. HPLC with a UV-Vis 

detector. Figure 28 shows the chromatogram at 280 nm under the gradient 

conditions described in Section 3 of this work. 

 

At this wavelength, the three compounds overlapped so it was difficult to identify 
or quantify them. In this Figure 28, the broken lines are for the chromatograms 

estimated by ITTFA, with which we calculated the chromatographic resolution 

between the peaks and determined the relative intensity of the signal, two of the 

parameters discussed in this paper. 
 

We used the proposed procedure to calculate the limit of detection for 2-

chlorophenol (Table 15). In the previously described experimental conditions, this 

was 0.9 mg/l. 
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Figure 27. Spectra (a) and chromatograms (b) of the initial mixture 
estimated by ITTFA. Profiles of the analyte of interest are displayed 
as full curves and profiles of the interferents are displayed as 
broken curves. 

 

 
Table 15. Concentration of 2-CP in the standards and height of the 
estimated peak. 

 

[2-CP] (mg l-1) 6.5 4.9 3.3 1.6 0.7 

Height (a.u.)  181.0 147.5 105.2 52.7 40.9 
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Figure 28. Chromatogram at 280 nm (full curve), and estimated 
chromatograms by ITTFA (broken curves). 

 

 

According to the assays of quality performed with the simulated data (Figure 26), 
the LOD estimated for the experimental samples was biased at an order of 

magnitude of 0.004% (high level factor A; low level factor B; intermediate level 

factor C; as in simulation number 12). Depending on the problem at hand, the 

level of accuracy estimated may or may not be acceptable for the end user. The 

results of the simulations indicate how we can modify one or more of the factors 
to reduce this bias if necessary. 

 

For example, we can increase the selectivity of the analyte of interest removing 

chemically or physically some interferent, if possible (for example by previous 
preconcentration or separation). Thus, the recorded signal is more selective, 

resolution improves and it yields to a better quantification. To show this, we have 
recalculated the Lorber et al.’s selectivity of the analyte of interest used in the 

simulations. The three levels of spectral selectivity in a simulated mixture of three 

components were 0.36, 0.45, and 0.51. If the second interferent is removed, the 
three levels of spectral selectivity of the analyte of interest, in the binary mixture, 

would go up to 0.49, 0.60, 0.80. 

 

We can also improve the LOD by using more standards in the linear model or by 
increasing the number of replications of the unknown sample (n and N, 

respectively, in Equation 40). 
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In cases of severe overlap, MCR may not provide satisfactory results, but we can 

still increase selectivity by unfolding the matrices and performing partial least 
squares (PLS) [33]. 

 

5. Conclusions 
 
This procedure for calculating limits of detection for second-order data involves 

one step of curve resolution by ITTFA. The efficiency of the resolution by ITTFA 

depends on the characteristics of the data, e.g. deviations from the bilinearity 

due, for instance, to shifts in the peak retention times. In this paper, we have 

discussed the quality of the LOD estimator as a function of the performance 
characteristics of a determination with HPLC-DAD (sensitivity, spectral selectivity 

and chromatographic selectivity). We have shown that these sensitivity and 

selectivity parameters significantly affect the calculation of LOD, so we also show 

the end user how to improve this LOD by modifying the experimental variables. 
For example, we can modify the chromatographic resolution by changing the 

length of the column or the polarity of the mobile phase, etc. or we can modify the 

sensitivity by changing the ratio of signal intensity by removing some interferent. 

As the accuracy of the LOD estimation strongly depends on the quality of the 

curve resolution results, we are focusing our research on comparing the results 
obtained in this paper with the ones obtained with other MCR methods. 
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5.1. Introduction 
 
 

The aim of the application in this chapter was to estimate the LOD for second-

order data that are or can be treated as approximately linear. 

 
Our colleagues in the Department of Hydrogeology and Analytical Chemistry at 

the University of Almería provided us with a set of highly complex natural 

groundwater samples. These contained several pesticides and were analysed by 

HPLC-DAD. These data were used for this application because three-way data 

from HPLC-DAD analyses are bilinear under ideal conditions (the circumstances 
that prompt violation of linearity are changes in the shape of the spectra due, for 

example, to matrix effects, or changes in the shape or shifts of the retention 

time). The chemometric technique selected to elucidate and quantify the analyte 

of interest was the versatile multivariate curve resolution–alternating least 
squares (MCR-ALS) method. 

 
In Section 5.2 I present the paper entitled “Development and validation of a 

method for determining pesticides from complex overlapped HPLC signals and 

multivariate curve resolution”. As I have mentioned, we aimed to elucidate highly 

complex natural groundwater samples that contained several pesticides. The 

analytical problem was that the samples showed highly overlapped spectra, 

which made quantification especially difficult. Some of the co-authors had been 

working on these samples using several methods for a long time, so the results 

of the paper were a challenge in themselves. The procedure was established 
using synthetic samples. A set of natural groundwater samples was also used to 

validate the model and assess the fitness of the method for quantifying the 

pesticides in natural samples. We focused on determining four pesticides whose 

spectra were located in the region with the most severe overlapping. The 
molecular structures of these pesticides are shown in Table 1629. 

 

 

 
                                                 
29 Vinclozolin is a common fungicide used in vineyards and is a known endocrine 
disruptor. Clorfenvinphos is a colorless or amber liquid with insecticide activity that has 
harmful effects on the human nervous system. Tebuconazole and parathion-ethyl are 
pesticides with fungicide action. 
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Table 16. Molecular structure of the pesticides under study. 
 

Commercial 
name Chemical name Structure 

Vinclozolin 

3-(3,5-
dichlorophenyl)-5-
ethenyl-5-methyl-
2,4-
oxazolidinedione 
CAS: 50471-44-8 

H3C

Cl

O

N

O

O

H2C 

HC

| 

Cl

H3C

Cl

O

N

O

O

H2C 

HC

| 

Cl  

Chlorfenvinphos 

2-chloro-1-(2,4-
dichlorophenyl) 
ethenyl diethyl 
phosphate 
CAS: 470-90-6 

O  CH2  CH3

|

O= P  O  CH2  CH3      

|                                     
O                                    
|                                     

CH                                  
|                                     

CH3  C CH3                                        

|                                     
CH2 

|                                     
Cl

Cl

Cl
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|
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|                                     
O                                    
|                                     

CH                                  
|                                     

CH3  C CH3                                        

|                                     
CH2 

|                                     
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Cl
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Tebuconazole 

1-(4-chlorophenyl)-
4,4-dimethyl-3-
(1,2,4-trizole-1-yl-
methyl)pentane-3-
ol 
CAS: 80443-41-0 

N

N

CH3                                          

|                              
CH3  C  CH3



CH2  C  CH2  CH2 
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Parathion-ethyl 
diethyl  
4-nitrophenyl 
phosphorothionate 
CAS:56-38-2 

S  
 
O  P  O  CH2  CH3


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HPLC-DAD data were resolved by MCR-ALS. A main feature of this study was to 

maintain the three-way structure of the data when decomposing several samples 
simultaneously and to impose trilinearity only for some compounds while 

preserving bilinearity for others. Prediction samples were used together with the 

calibration samples to build the calibration model. We then modelled the relative 

areas–with respect to the same reference standard–estimated by the MCR-ALS 

model for the calibration samples against the known concentration of the 
pesticide of interest. The relative areas of the prediction samples, which were 

also relative with respect to the reference standard, were then interpolated into 

the calibration line to obtain the estimated concentrations. Figures of merit were 

calculated by the transformation approach, i.e. from the fitted line and using 
univariate statistics. 

 

One proof of the complexity of these mixtures of pesticides, apart from the 

obvious signal overlap, was the presence of systematic data variation that could 

not be attributed to the expected four analytes. Further assays were performed to 
find out the correct number of species in the mixtures, the nature of these 

species, and what causes this behaviour e.g. whether there is a contamination or 

decomposition process for some compounds. However, none of the strategies 

we tried explained the abnormal number of sources of variance. 
 

In summary: 

 

- We use different calibration sets to test the proper number of standards from 

which the model would be fitted and the composition of these samples. Special 
attention was paid to the chromatographic and spectral selectivities and to the 

sensitivities of the compounds. 

 

- We used the prediction samples, together with the calibration samples, to build 
the calibration model so they had as much influence as the calibration set in 

the iterative decomposition procedure. 
 

- We used a multivariate curve resolution alternating least squares (MCR-ALS) 

mixed bilinear-trilinear model to determine the pesticides in groundwater. In 
this model trilinearity was imposed only for some compounds while bilinerarity 

was preserved for others. 
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- We validated the method by assessing its figures of merit not only to assess 

the reliability of the results but also to apply the method to future situations in a 
consistent way. 

 

-  We used a representative suite of test data and applied the method to 

determine these pesticides in natural samples. We obtained good results for 

three of the pesticides. 
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5.2. Paper. Development and validation of a method for 

determining pesticides from complex overlapped HPLC signals and 

multivariate curve resolution. 

Chemometrics and Intelligent Laboratory Systems 77(1-2): 251-260 (2005) 
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Abstract  

A method is presented to determine pesticides in groundwater by way of 

multivariate curve resolution alternating least squares (MCR-ALS) mixed 

bilinear–trilinear models of overlapped chromatographic second-order data 

(HPLC-DAD). Four of the pesticides in the samples showed highly overlapped 
spectra, which made the quantification especially difficult. Different calibration 

and validation sets were used to test the proper number and distribution of the 

samples. Performance characteristics (figures of merit) such as sensitivity, 

precision and limit of detection were assessed from the calibration mixtures. 

Accuracy in the predictions was estimated in terms of the root mean square of 
percentage deviation (RMSPD) and explained variance (Q2). We obtained values 

of RMSPD of 7%, 10% and 8% and Q
2-values of 99%, 93% and 99% for the 

pesticides vinclozolin, chlorfenvinphos and parathion-ethyl, respectively. A set of 

natural groundwater samples was also used to validate the model and to assess 
the fitness of the method for quantification of the pesticides in natural samples. 

Three of the pesticides under study were satisfactorily resolved and quantified in 

the groundwater samples by the proposed procedure achieving 88%, 96% and 

94% of the explained variance for the pesticides vinclozolin, chlorfenvinphos and 

parathion-ethyl, respectively. 
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1. Introduction 
 
The analysis of mixtures of pesticides using methods based on high-performance 

liquid chromatography (HPLC) sometimes results in complex separations and 

overlapped peaks. Nevertheless, complex multicomponent mixtures, as those 

coming from environmental analysis, can in many cases be qualitatively and 
quantitatively resolved by means of chemometrics. Depending on their nature, 

data can be arranged in a two-way structure (a table or a matrix), as in the case 

of collecting the absorbance spectra for many samples, or in a three-way 

structure, e.g. in HPLC-DAD, where spectra are recorded at several retention 

times for each sample (Figure 29). Such data arrangements in three- or higher 
way arrays can be handled using multi-way methods of analysis. These methods 

must also be validated following international ISO guidelines [1] in order to 

reliably use them as routine methods for the identification of the species present 

in the sample and the quantification of the analytes of interest. 
 

 

 
 
Figure 29. Three-dimensional plot of absorbance, wavelength and 
retention time corresponding to a multicomponent mixture of 
pesticides. 

 

 

An important step forward to build the best model is the selection of the 
calibration set, which implies to decide the number of calibration samples as well 
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as their composition. The number of standards from which the model will be fitted 

must be high enough to assess the robustness of the model. Nevertheless, 
increasing the number of standards will also increase the number of analyses 

and the time of experimentation. In any case, the user must be aware of that the 

selected calibration samples will define the interval of applicability of the method 

and the associated precision. 

 
Selectivity and sensitivity of the compounds present in the samples must be 

taken into account, too. These parameters influence the multi-way decomposition 

of the data and, therefore, the figures of merit of the analytical procedure [2]. 

Selectivity and sensitivity information about the system must be collected, if 
possible, beforehand and used to properly select the calibration samples. The 

authors have shown in a previous work [3] that this knowledge notably improves 

the fit of the model and its prediction ability. Therefore, special attention should 

be given to the chromatographic and spectral selectivities and sensitivities and to 

the selection of the calibration samples on the basis of these parameters. 
 

We put into practice these ideas by establishing a procedure to determine the 

pesticides of a multicomponent mixture. From the 12 pesticides present originally 

in the mixtures [4] (chlorfenvinphos, chlorothalonil, fenamiphos, iprodione, 
malathion, parathion-ethyl, parathion-methyl, procymidone, tebuconazole, 

triadimefon, triazophos and vinclozolin), we focused on four of them, located in 

the region where severely overlapped signals appeared: vinclozolin (Vi), 

chlorfenvinphos (Cf), tebuconazole (Te) and parathion-ethyl (Pe). 

 
These pesticides are usually determined by gas chromatography (GC) coupled to 

mass detection [5–7]. In addition, capillary electrophoresis has also been used 

for the determination of some of them [8]. To properly quantify the pesticides, 

these methods use a preliminary separation step, which is time-consuming and 
require expensive instrumentation and consumption of solvents. Application of 

chemometric approaches may avoid these disadvantages, since the separation 

step is eliminated and the resolution may be achieved mathematically. For 

example, partial least squares (PLS) models [9], cross-section (CS) approaches 

in combination with PLS and principal components regression (PCR) [10], peak 
purity assays such as SIMPLe to use Interactive Self-modelling Mixture Analysis 

(SIMPLISMA), orthogonal projection analysis (OPA), needle search (NS), 

positive matrix factorization (PMF2) and alternating least squares (ALS) [11,12] 
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were used to resolve that 12-analyte HPLC-DAD data into the individual 

concentration profiles and spectra of each pesticide. 
 

Among the other resolution strategies that, to the best of our knowledge, have 

not been reported to resolve this complex mixture, e.g. Heuristic Evolving Latent 

Projections (HELP) [13, 14], Stepwise Key Spectrum Selections (SKSS) [15] or 

Iterative Target Transformation Factor Analysis (ITTFA) [16], we evaluated the 
ability of the multivariate curve resolution (MCR-ALS) [17] procedure to obtain 

reliable qualitative and quantitative results for these pesticides. 

 

We established and validated a procedure for the determination of four pesticides 
using multivariate curve resolution (MCR-ALS) of the overlapped HPLC-DAD 

data. We resolved the mixtures and obtained the pure spectra of the pesticides. 

A main feature of this work is to keep the three-way structure of the data when 

decomposing several samples simultaneously, imposing the trilinearity property 

only for some compounds, while for others only bilinerarity is preserved. 
Validation of the method, through assessing its figures of merit, is a crucial step, 

not only for assessing the reliability of the results, but for consistently applying 

the method to future situations. Finally, we used a representative suite of test 

data and applied the proposed methodology to the determination of the 
pesticides in natural samples. 

 

 

2. MCR-ALS method 
 
The multivariate curve resolution method has been described elsewhere [17] and 

used for solving analytical problems similar to the one reported in this paper [18–

21]. It is based on a linear model which assumes the additivity of the response of 

all the compounds in the samples. The spectrochromatographic data is usually 
arranged column-wise, i.e. an augmented single matrix R is built by setting one 

matrix in top of the other. These data are modelled with the equation: 

 

( ) ( ) ( ) ( )JKIJFFKIJIK ××××
+⋅= ESCR T                                                   Eq. 42 (as Eq. 13) 

 
where R is the column-wise augmented matrix, built with K matrices of I spectra 

in the rows and J chromatograms in the columns, C is the augmented matrix of 
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chromatographic profiles for the F analytes, ST is the transposed matrix of 

absorption profiles and E is the matrix of residuals (see Figure 30). To estimate 
the matrices C and ST, from the matrix R of measured data, an alternating least 

squares (ALS) procedure is used, starting with initial estimates of the 

chromatographic elution profiles. 

 

During the iterative optimisation, several constraints, such as non-negativity, 
unimodality, closure and selectivity constraints [22, 23], may be applied to obtain 

chemically meaningful solutions. The optimisation ends when a convergence 

criterion is reached. The common minimization of the squared sum of the 

residuals was the criterion used in this work, despite others, like requiring that the 

change in )ˆˆdet( T
ff SS  to be sufficiently small (~10−8), have been reported to provide 

good indication of the completion of the resolution process [24]. 
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Figure 30. Graphical representation of the mathematical model. In 
this example of HPLC-DAD data, a column-wise augmented matrix, 
built with K=2 matrices of I spectra measured at J wavelengths, the 
resolution for F=3 components gives an augmented matrix C of 
chromatographic profiles and a matrix ST of common absorption 
profiles. 

 
 

The prediction step can be performed by comparing the area below the 

chromatographic profile of the analyte in a reference calibration standard and in 
the unknown sample as xunkown=(Aunkown/Astandard)xstandard, where xunkown and xstandard 
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are the concentrations of the analyte of interest in the unknown and standard 
samples, respectively, and Aunkown and Astandard are the areas below the 

chromatographic profiles in the unknown and in the standard samples, 

respectively. When several standards are employed in the decomposition, we can 

model the relative areas —with respect to the same reference standard— of the 

calibration samples against the known concentration of the analyte of interest. 

Then the relative areas of the prediction samples, which are also relative with 
respect to the reference standard, are interpolated into the calibration line to 

obtain the estimated concentrations. 

 

One of the main features that differentiates MCR-ALS second-order calibration 
from uni- or multivariate calibration are: (1) that prediction samples are used, 

together with the calibration samples, to build the calibration model, and therefore 

they have as much influence as the calibration set in the iterative decomposition 

procedure, and (2) that quantification of the analyte of interest in the prediction 

samples is possible even in the presence of new interfering compounds. 
 

3. Figures of merit 
 

Figures of merit were calculated after resolving the overlapped peaks by using 
univariate statistics from the calibration line fitted with the relative areas of the 

calibration standards against the known concentration of analyte of interest, as 

explained above. 

 

Sensitivity was defined as the slope of the calibration curve. Precision was 
calculated in terms of concentration as the standard deviation of the residuals 

relative areas for all standards divided by the sensitivity, SEN, as: 

 

( )
2

ˆ 2

1res

−

−
== ∑−

n

AA
SEN

SEN

s
Precision

ii
                      Eq. 43 (as Eq. 37) 

 

Ai are the relative areas estimated by MCR-ALS, 
iÂ  are the areas estimated from 

the calibration line of areas versus concentration and n is the number of 

calibration standards. 
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The limit of detection, LOD, was estimated from Equation 40, which takes into 

account the uncertainty of the calibration line and considers α  and β probabilities 

of error, following the IUPAC recommendations [25]: 

 

( )∑ −
++=

2

2
res 11

),(
xx

x

nNSEN

s
LOD

i

βαδ                     Eq. 44 (as Eq. 38) 

 

xi is the concentration of analyte in each of the n calibration standards and x  is 

the average concentration. N is the number of replications performed on the 

unknown sample. 

 

To estimate the accuracy of the prediction, we calculated the root mean square 

error of the percentage deviation [26], RMSPD, for each model validation as 

 

( )
100

ˆ 2
, ×

−
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M

cc
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iiref
                                                  Eq. 45 

 

where cref,i and 
iĉ  are the reference and the predicted concentrations of analyte 

in the ith prediction sample, and M is the number of prediction samples. Another 

generalised way of measuring the prediction ability is by means of the explained 
variance in the prediction set. Called Q

2-value [27], this variance can be 

calculated using Equation 46: 
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with cref,i , iĉ , ci and c as defined above. 
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4. Experimental 
 
4.1. Reagents and standards 

Pesticide standards (Pestanal quality) of chlorfenvinphos (Cf), chlorothalonil, 

fenamiphos, iprodione, malathion, parathion-ethyl (Pe), parathion-methyl, 

procymidone, tebuconazole (Te), triadimefon, triazophos and vinclozolin (Vi) were 
obtained from Riedel-de HaJn (Seelze, Germany); purity always >99%. Pesticide 

stock standards were prepared at 200 mg l−1 in acetonitrile, where they were 

stable for several months. Working solutions were prepared daily by diluting the 

stock standards. All standard solutions were stored at 4 ºC. Analytical-reagent 

grade solvents, acetonitrile, acetone and methylene chloride, obtained from 
Merck (Darmstadt, Germany), were also used. HPLC-grade water provided by a 

Millipore Milli-Q water filtration/purification system (Bedford, MA, USA) was used 

and anhydrous Na2SO4 was supplied by Panreac (Barcelona, Spain). 

 
4.2. Samples 

To determine the pesticides in synthetic samples, a data set of 34 mixtures was 

prepared in acetonitrile. The concentrations were randomly selected, covering the 

domain of concentrations and avoiding collinearity between mixtures. The linear 

ranges for the 12 pesticides were in the limits 0.3–12 µg ml−1 for all of them, 
except for malathion and tebuconazole, for which the values were between 2 and 

15 µg ml−1. Concentration data are shown in Table 17. 

 

Groundwater samples were taken from different deep wells (>300 m) on the 

Campo de Dalías (Almería), in the south eastern coast of Spain, in order to avoid 
a possible contamination by pesticides. Samples were collected in 1 litre amber 

glass bottles capped with Teflon-lined screw caps. Replicated samples were 

taken. After filling with water, the bottles were shaken vigorously for 1 min, iced 

down in the field and kept refrigerated at 4 ºC away from light prior to extraction, 
which was done within 48 h. The extracts were analysed before two weeks of 

collection. To determine the pesticides in these natural groundwater samples, a 

set of eight samples were spiked with the pesticides and pre-treated as explained 

below. Concentration data are also shown in Table 17. 
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Table 17. Concentration data (µg ml−1) for the synthetic mixtures 
(S#) and the spiked groundwater samples (AG#). 

 

Sample Vi Cf Te Pe  Sample Vi Cf Te Pe 
S1 2 8 8 3  S22 8 5 7 5 
S2 2 7.5 8 3  S23 4 4 5 7 
S3 10 2 3 8  S24 3 7 3 4 
S4 9.5 0 3 8  S25 3 7 3 4 
S5 5 2 5 5  S26 6 3 8 3 
S6 5 4 5 5  S27 6 3 8 3 
S7 4 7 4 0  S28 5 6 6 6 
S8 8 3 7 8  S29 5 6 6 6 
S9 6 3 7 8  S30 6 5 10 5 

S10 0 5 4 4  S31 6 5 10 5 
S11 7 2 6 6  S32 4 4 6 6 
S12 7 2 6 6  S33 4 4 6 6 
S13 3 6 8 7  S34 8 7 4 6 
S14 3 6 8 7  AG1 3 4 4 6 
S15 5 10 10 3  AG2 4 4 6 4 
S16 5 10 10 3  AG3 8 8 8 5 
S17 4 3 5 4  AG4 6 5 10 6 
S18 4 3 5 4  AG5 4 6 8 8 
S19 7 6 8 8  AG6 5 6 6 4 
S20 7 6 8 8  AG7 8 3 8 6 
S21 5.5 8 4 3  AG8 5 5 4 4 

 
 
4.3. Apparatus 

A Waters (Milford, MA, USA) model 990 liquid chromatographic system was 

used, equipped with a Model 600 E constant-flow pump, a Rheodyne six-port 

injection valve with a 20 µl sample loop; a Model 990 UV–visible photodiode-
array detector, a printer/plotter and a microcomputer using the Waters 991 

software package. 

 
4.4. Experimental procedure 

Synthetic mixtures were prepared by adequate dilution of working standard 

solutions and 20 µl volumes were injected into the HPLC system. 

 

Spiked groundwater samples (500 ml) containing 50 ml of acetone were shaken 

with 50 ml of methylene chloride for 2 min. Three extractions with methylene 
chloride were carried out. The combined organic phases were dried, by passing 

them through anhydrous Na2SO4, and evaporated using a rotary vacuum 
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evaporator. The samples thus concentrated were eluted with 1 ml of acetonitrile 

and 20 µl volumes injected into the HPLC system. 
 

HPLC separations were performed on a Hypersil C18 column (100�0.46 mm i.d., 

5 µm particle size). The mobile phase, under isocratic conditions, was 

acetonitrile/water (60:40 v/v). This mobile phase composition was used to reduce 

the time of analysis and avoid too much dispersion of peaks. 
 

The solvents were filtered daily through a 0.45 µm cellulose membrane filter 

before use, and degassed with helium before and during use. Samples (20 µl) 

were injected with the solvent flow rate maintained at 1 ml min−1. Photometric 
detection was performed in the range 200–280 nm, with a spectral resolution of 

1.4 nm. Data was obtained over an integration period of 1.4 s per spectrum. That 

is, in the original spectrochromatographic data absorbances were measured at 

215 times and 60 wavelengths. 

 
4.5. Chemometric procedure 

In order to focus the problem on the four unresolved peaks, we defined a window 

in the chromatographic direction from minute 3.50 to 4.43, obtaining matrices of 

41 rows (retention time) and 60 columns (wavelengths) (see Figure 31). The four 
analysed compounds were expected to elute in this region in the order Vi, Cf, Te 

and Pe. 

 

We did principal component analysis on a new unfolded data (unfold PCA), to 

check the presence of outliers or influential samples. The new data was a 
(34�2460) matrix, where the rows were each of the 34 (41�60) matrices 

previously converted into a (1�2460) vector. 

 

Evolving factor analysis (EFA) [28,29] and SIMPLISMA [30] were applied to 
collect information about the proper number of components and the variability 

sources in the system. 

 

For the calibration, the number of samples should be sufficient to statistically 

define the relationship between the signal and the concentration (usually 
established as a multiple of the number of factors employed in the calibration 

model). In order to optimize the procedure and to find a compromise between the 

number of analysis and the proper description of the experimental domain, we 
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tested three different situations by combining different training and validation 

sets. The calibration set #1 contained six standards covering the expected range 
of concentrations and uniformly distributed over the total range. The calibration 

set #2 contained 12 samples in the same way. To prove the validity of the 

method, we tested two validation sets, covering also the working range of 

concentrations. The prediction sets #1 and #2 contained 6 and 22 validation 

samples, respectively. The effect of the number of calibration and validation 
samples on the resolution and on the prediction error was evaluated in cases A 

(calibration set #1 and prediction set #1), B (calibration set #2 and prediction set 

#1) and C (calibration set #1 and prediction set #2), as summarised in Table 18. 

 
 

 
 

Figure 31. Three-dimensional plot of the elution window of 
tebuconazole, vinclozolin, clorfenvinphos and parathion-ethyl. 

 
 

Alternating least squares (ALS) [17, 31] was used as multivariate curve resolution 

method to quantify the pesticides from the multicomponent HPLC-DAD data 

(selected region). MCR-ALS was applied to resolve the column-wise augmented 

matrices into individual concentration and spectral profiles, in an iterative least 
squares process in which constraints can be introduced in both concentration and 

spectral matrices. The constraints applied were non-negativity in all the modes 
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and equal shape and retention time in some chromatographic profiles (mixed 

bilinear–trilinear models). 
 

 
Table 18. Definition of the calibration and prediction sets for cases 
A, B and C. 

 

 Calibration samples Prediction samples 

Case A Calibration ser #1: 
S7, S8, S10, S11, S15, S24 

Prediction set #1: 
S1, S12, S16, S17, S25, S34 

Case B Calibration set #2: 
S7, S8, S10, S11, S15, S24, S2, 
S9, S21, S26, S32, S33 

Prediction set #1: 
S1, S12, S16, S17, S25, S34 

Case C Calibration set #1: 
S7, S8, S10, S11, S15, S24 

Prediction set #2: 
S1, S12, S16, S17, S25, 
S34,S3, S4, S5, S6, S13, S14, 
S18, S19, S20, S22, S23, 
S27, S28, S29, S30, S31 

 

 

All the calculations were performed in MATLAB 6.5 (The MathWorks, 2002) using 

commercial [32, 33] and home-made routines. 

 
 

5. Results and discussion 
 
5.1. Rank analysis 

After performing unfold PCA on the (34�2460) matrix, the dimensionality of the 

data was reduced from 2460 variables to four factors, which explained 99.5% of 

the variation in the data. Neither outliers nor different groups of data were 

detected in this preliminary evaluation. 

 
The mathematical rank of each of the thirty-four 41�60 matrices was evaluated 

by singular value decomposition (SVD), as an estimation of the chemical rank or 

number of compounds in the mixtures. The number of statistically nonzero 

singular values (associated with the variance described by the eigenvector) was 
in all the cases between four and six depending on the sample. The matrices 

were also individually row-wise factor-analysed by means of EFA. From the 
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typical plot of eigenvalues as a function of the number of rows included in the 

window, we should have found four factors in each sample, theoretically 
corresponding to the four analytes. However, we found six factors in most of the 

samples. This behaviour pointed out systematic data variance other than the 

considered eluted components to be present. SIMPLISMA was also performed 

over an augmented matrix built up with the 34 samples. The pesticides’ spectra 

were really correlated and seriously overlapped over the full spectral domain. To 
identify them, we had to allow a large deviation, which led on five factors with 

23% of noise with respect to the maximum of the average spectrum. By selecting 

a smaller data set, SIMPLISMA could extract the expected four purest variables 

(with 15% of noise), which were in good agreement with those of reference, Vi, 
Cf, Te and Pe (see Figure 32), with correlations higher than 0.994 for Vi and Cf, 

0.96 for Te and 0.925 for Pe.  
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Figure 32. Spectra at purest time variables, corresponding to Vi 
(+), Cf (�), Te (�), Pe (�) and the unexpected profile (solid line). 
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The shape of the fifth UV–Vis spectra profile did not match to any of the 

pesticides. This might be due to different causes. One hypothesis is the 
contamination of the samples with an unexpected compound. Another hypothesis 

is the degradation of one of the pesticides from sample to sample. Since Vi, Cf 

and Pe were successfully determined and quantified in previous works [9,10], but 

not Te, we believed that tebuconazole possibly changed its spectra from sample 

to sample. 
 

Selectivity of these pesticides was calculated in both the chromatographic and 

the spectral domains. Spectral selectivities, whose values range between 0 and 

1, were estimated as described by Faber et al. [34] using the part of the signal 
due to the analyte, i.e. the net analyte signal (NAS), from the profiles recovered 

by MCR-ALS for one of the samples with known concentration (concretely, 

sample S34). As shown in Table 19, the spectral selectivities were low because 

the pesticides’ spectra were quite overlapped. 

 
 

Table 19. Spectral selectivity and chromatographical resolution of 
vinclozolin, clorfenvinphos, tebuconazole and parathion-ethyl, in 
the mixture S34. 

 

Compound Spectral 
selectivity 

Chromatographical 
resolution 

Vinclozolin 0.221 Rs(Vi, Cf)=0.211 
Clorfenvinphos 0.301 Rs(Cf, Te)=0.682 
Tebuconazole 0.279 Rs(Te, Pe)=0.743 
Parathion-ethyl 0.439  

 

 

Selectivities of the chromatograms (see Figure 33) were expressed in terms of 
chromatographic resolution, Rs. The first two elution profiles were quite 

overlapped (Rs=0.2) while the two last profiles showed larger resolution 
(Rs=0.74). 

 

Despite of the bell-shaped chromatograms obtained by MCR-ALS for some 

samples such as those plotted in Figure 33, tebuconazole resolution was in most 

of the cases not successful. Its elution profile was wider than expected (as had 
been reported previously [12]) and irregular. In many resolutions, tebuconazole 

chromatogram was already present at the beginning of the time window, and it 
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was present all along the recorded range, meanwhile other compounds appeared 

and disappeared. 
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Figure 33. Pesticide’s elution profiles estimated by MCR-ALS from 
one of the samples. Solution was constrained to non-negativity in 
both modes and, for Vi, Cf and Pe, also to trilinearity. 

 

 

Although the main idea of this work was to give a practical example following the 

guidelines of a proper calibration and validation procedure (selection of the 
training and test sets, assessment of the figures of merit, etc.), further strategies 

were carried out to find out the proper number of species in the mixtures and their 

nature. For instance, we performed PARAllel FACtor (PARAFAC) [35] analysis 

with four and five factors. The fifth component described only noise in the data, 

since the corresponding loadings in the first mode (concentration) were 
approximately constant for all the mixtures and the loadings in the third mode 

(spectrum) were around the baseline. A model in a smaller time window using 

two factors (because only Te and Pe were expected to elute) and using three 

factors (in case one interfering compound was present) was also tested. We did a 

sample by sample meticulous analysis that showed the tebuconazole spectrum 
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evolved indeed from sample to sample. We finally measured a standard of Te 

along a day to check the hypothesis of degradation (by air or light, for example). 
None of the strategies could explain the abnormal number of factors, and work is 

in progress to find an answer. 

 
5.2. MCR-ALS calibration and prediction 

An augmented matrix of calibration and prediction samples was arranged by 
setting one matrix on top of the others and keeping the common absorption 

wavelengths in the same column. We evaluated three different combinations of 

calibration and prediction sets, as explained above, so that we had 12 samples in 
case A (n=6, m=6), 18 samples in case B (n=12, m=6) and 28 samples in case C 
(n=6, m=22) (see Table 18). We resolved each resulting augmented matrix with 

MCR-ALS using the chromatographic profiles obtained from the SIMPLISMA 

analysis as initial estimates to start the iterative algorithm. All the models were 

calculated considering four factors and restricting the solution to non-negative 

values (in the three modes). For each situation, the results of the curve resolution 
procedure were the particular elution profile in each of the samples and the pure 

spectra of the four pesticides underlying in all the mixtures. The recovery of these 

spectra was in the three models higher than 0.99 for Vi and Cf, 0.96 for Te and 

0.98 for Pe. 
 

We established a linear relationship between the area comprised under the 

estimated chromatograms and the reference concentration for the calibration 

samples. Figures of merit related with this calibration step are shown in Table 20. 

It can be seen that models A and C were very similar, since the calibration 
samples were the same. The differences arose when we included different 

prediction samples in the MCR-ALS procedure. In these two models, the 

goodness of the linear relation can be assessed from the small values of the 

residual deviation (or standard error) for Vi, Cf and Pe calibration, and from the 
correlation coefficients, higher than 0.995 for Cf and Pe, and 0.97 for Vi. Using 

more calibration samples, i.e. in model C, did not lead to a significant 

improvement, which indicates that the small calibration set sufficiently spanned 

the concentration range and the possible sources of variation. Tebuconazole was 

deficiently modelled in all cases, not achieving the validation requirements. 
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Table 20. Statistical parameters and figures of merit of the 
calibration curves for cases A, B and C when MCR-ALS solution 
was constrained to non-negativity in all the modes. 

 

Model A Vi Cf Te Pe 
Data points (n) 6 6 6 6 
Intercept ×10-2 -0.3 -183 -26 -1.3 
Sensitivity a ×10-2 12 96 31 12 
S.D. Intercept ×10-2 7.2 28 63 3.0 
S.D. slope ×10-2 1.4 4.5 10 0.61 
Standard error ×10-2 8.9 30 60 3.7 
Correlation coefficient (r) 0.97 0.996 0.8 0.995 
Precision ×10-1 (%) b 7.5 3.1 25 3.0 
LOD (µg ml-1) 3.8 1.7 13 1.6 
Prediction samples (m) 6 6 6 6 
RMSPD (%) 20 13 46 16 
Q

2 (%) 91 85 31 93 
     
Model B Vi Cf Te Pe 
Data points (n) 12 12 12 12 
Intercept ×10-2 5.6 -152 - -7.9 
Sensitivity a ×10-2 10.8 88 - 13 
S.D. Intercept ×10-2 6.1 33 - 4.5 
S.D. slope ×10-2 1.2 5.6 - 0.89 
Standard error ×10-2 8.9 47 - 6.9 
Correlation coefficient (r) 0.94 0.98 <0.5 0.98 
Precision ×10-1 (%) b 8.2 5.2 >40 5.3 
LOD (µg ml-1) 3.4 2.2 <0 2.2 
Prediction samples (m) 6 6 6 6 
RMSPD (%) 21 13 56 12 
Q

2 (%) 93 89 <0 97 
     
Model C Vi Cf Te Pe 
Data points (n) 6 6 6 6 
Intercept ×10-2 -2.0 -137 -36 -0.21 
Sensitivity a ×10-2 12 78 33 12 
S.D. Intercept ×10-2 7.3 20 69 4.1 
S.D. slope ×10-2 1.4 3.3 11 0.84 
Standard error ×10-2 9.0 22 65 5.1 
Correlation coefficient (r) 0.97 0.997 0.8 0.990 
Precision ×10-1 (%) b 7.5 2.8 19 4.2 
LOD (µg ml-1) 3.8 1.5 13 2.2 
Prediction samples (m) 22 22 22 22 
RMSPD (%) 17 23 79 17 
Q

2 (%) 70 67 <0 59 
a  Defined as the slope of the calibration curve. 
b Precision relative to the maximum concentration of the analyte in the 
calibration samples 
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Table 21. Statistical parameters and figures of merit of the 
calibration curves for cases A, B and C when MCR-ALS solution 
was constrained to non-negativity in all the modes and, for Vi, Cf 
and Pe, also to trilinearity. 

 

Model A Vi Cf Te Pe 
Data points (n) 6 6 6 6 
Intercept ×10-2 1.1 -14 - -0.95 
Sensitivity a ×10-2 9.4 8.6 - 3.5 
S.D. Intercept ×10-2 4.2 1.3 - 0.68 
S.D. slope ×10-2 0.80 0.21 - 0.14 
Standard error ×10-2 5.1 1.4 - 0.85 
Correlation coefficient (r) 0.990 0.999 <0.60 0.997 
Precision ×10-1 (%) b 5.5 1.6 - 2.4 
LOD (µg ml-1) 2.8 0.92 - 1.3 
Prediction samples (m) 6 6 6 6 
RMSPD (%) 16 11 - 13 
Q

2 (%) 90 88 - 98 
     
Model B Vi Cf Te Pe 
Data points (n) 12 12 12 12 
Intercept ×10-2 6.7 -9.8 - -2.4 
Sensitivity a ×10-2 8.2 6.8 - 3.7 
S.D. Intercept ×10-2 2.5 2.0 - 1.0 
S.D. slope ×10-2 0.50 0.33 - 0.20 
Standard error ×10-2 3.7 2.8 - 1.6 
Correlation coefficient (r) 0.98 0.990 <0.50 0.98 
Precision ×10-1 (%) b 4.5 4.1 - 4.3 
LOD (µg ml-1) 1.9 1.8 - 1.8 
Prediction samples (m) 6 6 6 6 
RMSPD (%) 7 10 - 8 
Q

2 (%) 99 93 - 99 
     
Model C Vi Cf Te Pe 
Data points (n) 6 6 6 6 
Intercept ×10-2 4.1 -10 - -0.58 
Sensitivity a ×10-2 8.5 7.1 - 3.5 
S.D. Intercept ×10-2 3.1 1.7 - 0.52 
S.D. slope ×10-2 0.60 0.27 - 0.11 
Standard error ×10-2 3.8 1.8 - 0.66 
Correlation coefficient (r) 0.990 0.997 <0.60 0.998 
Precision ×10-1 (%) b 4.5 2.6 - 1.9 
LOD (µg ml-1) 2.3 1.4 - 1.0 
Prediction samples (m) 22 22 22 22 
RMSPD (%) 8 24 - 13 
Q

2 (%) 95 83 - 71 
a  Defined as the slope of the calibration curve. 
b Precision relative to the maximum concentration of the analyte in the 
calibration samples 

UNIVERSITAT ROVIRA I VIRGILI
LIMIT OF DETECTION FOR SECOND-ORDER CALIBRATION METHODS.
M. José Rodríguez Cuesta
ISBN: 978-84-690-7787-0 / DL: T.1349-2007



Estimation of the LOD for MCR-ALS 

- 149 - 

Prediction step was carried out by interpolating into the corresponding curve the 

area under the chromatograms for the prediction samples, also estimated by the 
MCR-ALS procedure. For cases A and B, where the prediction set was the same 

and only the calibration set differed, prediction errors and the explained variance 

for the prediction samples were similar. Concretely in model B, the most 
favourable case, Q2 was 93% for Vi, 89% for Cf and 97% for Pe. In the prediction 

of Te, the models only accounted for less than 50% of the variance. 
 

When predicting a higher number of samples (case C), the prediction parameters 

were in general worst, explaining around the 70% of the variance in the 

predictions set for Vi and Cf and about the 60% for Pe. Regarding Te, prediction 
was again not possible because it was not properly calibrated. One possible 

explanation is that, in the mixtures we studied, tebuconazole seemed to 

contravene one of the necessary conditions leading to uniqueness (unique 
resolution), described as resolution theorems by Manne [36] (as mentioned 

above, the resolved elution profile for Te was in most of the cases wider than 
expected, so that, for every interfering pesticide, tebuconazole had a subwindow 

where the interference was absent, and then it is mathematically possible to 

calculate the spectrum of this analyte; but, on the other hand, Cf and Pe elution 

profiles, which appeared inside the concentration windows of tebuconazole, did 
not appear outside its window, and therefore, it is not possible to calculate without 

ambiguities the concentration profile of Te). 

 

In case that the origin of the problem was a decomposition process or an external 

contamination of the mixtures, we imposed a trilinearity constraint to Vi, Cf and 
Pe, i.e. their elution profiles were supposed to be trilinear (same shape, only 

different intensity from sample to sample) and synchronized (same elution time, 

no significant time shifting), and allowed the fourth compound to change from 

sample to sample, i.e. bilinearity but no trilinearity was assumed. With this 
additional constraint applied only to some of the compounds, we performed the 

mixed bilinear–trilinear models following the same calibration and prediction sets 

definition as in cases A, B and C. Recovered spectra were well correlated with 

reference spectra in all the models, with correlation coefficients above 0.99 for Vi, 

Cf, above 0.98 for Pe and above 0.97 for Te. From the recovered elution profiles 
corresponding to the calibration samples, we established the linear relation with 

the known concentration. Figures of merit for these calibration curves are shown 

in Table 21. Vi, Cf and Pe calibration clearly improved, achieving better 
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correlation coefficients and lower detection limits in all the cases. Prediction of 

their content in the new samples also enhanced considerably: compared with the 
previous models, the RMSPD values were lower in all the cases and the 
explained variance (Q2) increased up to 99% for Vi, up to 93% for Cf and up to 

99.4% for Pe, e.g. in model B (see Table 21). 
 

5.3. Determination of the pesticides in groundwater samples 

To test the performance of the proposed methodology, eight groundwater 

samples were spiked at levels between 0 and 10 µg l−1 (Table 17) and pre-treated 

and analysed by HPLC-DAD as described in the literature [9]. 

Spectrochromatographic data were processed as explained above and two 
augmented matrices were built, by adding column-wise the groundwater samples 

(1) to the calibration set of six standards (case 1, likewise in model A) and (2) to 

the calibration set of 12 standards (case 2, likewise in model B). Both MCR-ALS 

models were performed with four factors and applying non-negativity in all the 

modes. The trilinearity constraint was applied to three of the compounds (since 
that improved significantly the prediction), so that we built mixed bilinear–trilinear 

models. The spectra recovered by the two models were very similar, showing 

good correlation with the reference ones: 0.995 for Vi, 0.993 for Cf, 0.97 for Te 

and 0.97 (in case1) or 0.98 (in case 2) for Pe. For each case, areas under elution 
profiles from the natural samples were interpolated in the previously calibration 

curve relating the areas and the known concentration corresponding to the 

calibration samples. The concentrations of the pesticides in the eight groundwater 

samples were estimated from these calibration curves. In both cases under study, 

tebuconazole responses did not show behaviour linear enough and therefore 
calibration was, as expected, not satisfactory. For the other three pesticides, in 

both cases the models were appropriate to predict the groundwater samples. 

Figure 34 shows the calibration curves for each pesticide and the prediction for 

the new samples. Case 2, where more calibration samples were used for the 
curve resolution procedure, provided better predictions, i.e. lower RMSPD and 
higher Q

2-values. The curve for Vi showed high residuals and the prediction 

samples with the higher concentration did not seem to follow the same linear 

tendency, and so the explained variance was only 88%. 
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Figure 34. Calibration curves (in case 2, see details in text) for Vi, 
Cf and Pe. Crosses are the calibration samples and circles the 
natural samples to be predicted. 
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The calibration curve for Cf was appropriate for the prediction of the unknown 

concentrations. With that model, we explained the 96% of the variance in the 
prediction set. In the Pe model, we could detect one sample (AG2) with lower 

response than the others with the same Pe concentration (AG6 and AG8), 

pointing it as a probable prediction outlier. The explained variance for the full 

prediction set was 94%, but it could be increased up to 98% if we discard sample 
AG2. In general, the Q2-values were lower and the RMSPD values higher for the 

prediction of natural samples than the values obtained for the prediction of 

synthetic samples, which can be explained from the increase in the matrix 

complexity. 

 

6. Conclusion 
 

In this work, we have faced the actual analytical problem of determining 

pesticides in complex mixtures. The complexity of these environmental samples 
was aforementioned in previous works. Actually, curve resolution assays showed 

some anomaly in the peak purities regarding one of the compounds. Calibration 

of the other pesticides under study was performed by bilinear–trilinear MCR-ALS, 

and the validity of these models was assessed by calculating the figures of merit. 

A data set of natural samples was also analysed and predicted with this 
procedure, giving good results for three of the pesticides. The quantitative results 

given in this paper could be improved including samples with more selective 

signals for each analyte, i.e. pure standards, if available, which is actually a very 

common practice. 

 
Always, the user must decide whether the validation parameters fit the particular 

purpose. This work provides a reasonable practice of validation for a method 

generating second-order data and gives the tools to decide whether an analytical 

methodology can be used for routine analysis. 
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6.1. Introduction 
 
 

In winter 2004 I spent four months with the Spectroscopy and Chemometrics 

group of the Quality and Technology Department of Food Science at the Royal 

Veterinary and Agricultural University (KVL) in Copenhagen, Denmark. During 
that research stay, I was supervised by Prof. Rasmus Bro. What began as an 

opportunity to further investigate chemometric techniques also become the 

source of interesting discussions. Out of these discussions came the idea behind 

the paper presented in this chapter. 
 

The aim of the paper entitled “Standard error of prediction at low content levels 

and limit of detection estimation for multivariate and multi-linear regression” was 

to develop a LOD estimator for a genuine three-way prediction method: multi-

linear partial least squares (N-PLS). In N-PLS, resolution capacity is lost in favour 
of higher prediction ability. 

 

A second objective was to study the influence of the predicted sample, through 

its leverage and uncertainty of prediction, on the LOD estimated. For samples at 

(or close to) zero concentration, the distribution of responses (net analyte signal) 
may depend on the amount and nature of interferences. LOD is usually 

considered to be a specific parameter of an analytical method but, if the standard 

deviation of prediction were statistically different for samples containing different 

analyte/interferences ratios, this would lead to a sample-specific LOD and mean 

that the whole concept of LOD would have to be re-evaluated. 
 

As in N-PLS the resolution capacity is lost in favour of higher prediction ability, 

and as our second objective was to study the influence of the predicted sample, 

through its leverage, on the LOD estimated, there was a different LOD for every 
sample. 
 

Finally, we also studied how the interferences (degree of overlapping and 

concentration level) affect the performance of the calibration model. This would 

make the LOD model-dependent for calibration samples with the same 
concentration of the analyte of interest. To study this hypothesis, we evaluated 

the standard error of prediction at low content (zero) level in the multivariate and 

multi-way scenarios. In both cases, complex three-component systems were 
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reproduced using the excitation-emission matrix of tryptophan30, indole31 and 

hydroquinone32. The molecular structures of these compounds are shown in Table 
22. 

 
Table 22. Molecular structure of the compounds under study. 

 

Commercial 
name Chemical name Structure 

Tryptophan 
(S)-2-amino-3-(1H-indol-e-yl)-
propanoic acid 
CAS: 73-22-2 N

H

O     NH2

  

HO  C  CH  CH2 
N
H

O     NH2

  

HO  C  CH  CH2 
N
H

O     NH2

  

HO  C  CH  CH2 

 

Indole 2,3-benzopyrrole 
CAS: 120-72-9 N

H
N
H  

Hydroquinone Benzene-1,4-diol 
CAS: 123-31-9 

HO  OHHO  OH

 

 
One conclusion of this paper was that the main source of variability is the 

replicate, especially for low levels of interferences. However, as the level of 

interferences increases, so does the variability due to the calibration model. This 

may be due to the effect of the increasing leverage of the prediction samples, 
since the average SEP0 also increases as the level of interferences increases. 

 

The higher the level of interferences, the greater the influence of the fit of the 

model to the calibration data on the variability of the predicted concentrations. 

This is because small changes in fit, i.e. small changes in the calibration model, 

                                                 
30 Tryptophan is one of the 20 amino acids in the genetic code and is essential in human 
nutrition. Its main function is as a building block in protein synthesis. Only the L-
stereoisomer appears in mammalian protein. 
31 Indole is an aromatic heterocyclic organic compound. It is solid at room temperature 
and has an intense fecal smell. At very low concentrations, however, it has a flowery smel, 
and is a constituent of many flower scents and perfumes. 
32 Hydroquinone is an aromatic organic compound with several uses that are mainly 
associated with its action as a reducing agent that is soluble in water. 
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have more effect on the ends of the domain than in the centre and the samples 

that are far from the centre therefore have a higher increase in their leverage. If 
the new prediction samples are similar to the calibration samples, they will have 

low leverages. Only when the new samples are far from the experimental domain 

of calibration will the prediction samples have high leverages and therefore high 

SEP. In our example, the calibration samples cover the experimental domain 

well. When the samples of the calibration set are not so homogeneously 
distributed, for instance with a distribution of interferences that does not cover the 

entire experimental domain, leverage has a greater effect on prediction. 
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6.2. Paper. Standard error of prediction at low content levels and 

limit of detection estimation for multivariate and multi-linear 

regression. 

Chemometrics and Intelligent Laboratory Systems. In press 
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Abstract  

The internationally accepted guidelines concerning analytical detection are 

intrinsically bound to the probability of committing false positive and false 

negative errors, as assessed from the probability density functions of the 

response of samples with concentrations at zero and at the limit of detection 
(LOD) levels, respectively. For the calculation of the LOD, accurate estimates of 

the standard deviation at these two low levels are needed. The distribution of the 

responses at zero concentration is here shown to be statistically different for 

samples containing different analyte/interferents ratios, and this leads to a 

sample-specific LOD in contrast to the traditional method-dependent LOD 
concept. 

Calibration of an analyte of interest was performed by multivariate PLS (two-way 

PLS) and by multi-linear PLS (three-way PLS or N-PLS) in the neighbourhood of 

the presupposed detection level. The standard deviations for blanks, with and 
without interferents, were compared. LODs were calculated from these standard 
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errors of prediction and validated using samples with known content of the 

analyte, by calculating the percentage of false positive and false negative errors. 
The proposed LODs fulfil the validation requirement both in multivariate and in 

multi-way situations, in contrast to the traditional-based procedures, which were 

proved in most of the cases to overestimate the detection limits. Some practices 

for LOD estimation are suggested, based on a capability concept linked to the 

distribution of the predicted concentration for the new test set. 
 

 

1. Introduction 
 
According to the IUPAC Nomenclature rules [1], “the performance characteristics 

of the chemical analytical processes are those quantifiable terms(…) which are 

closely related to the method and to the analyte, like: sensitivity, selectivity, limit 

of detection, limit of determination, etc. (…)”. The limit of detection (LOD), 

commonly defined as the minimum amount or concentration of substance that 

can be reliably detected [2], is a performance characteristic of a given analytical 

method and thus, an a priori defined value. 

 

However, for samples at zero concentration it is possible that the distribution of 
responses (net analyte signal) and hence the distribution of the predicted 

concentrations may differ as a function of the amount and nature of the 
interferents. As introduced, LOD is usually considered as one specific parameter 

of an analytical method, but if the standard deviation of prediction would be 

statistically different for samples containing different analyte/interferents ratios, 
then it would lead to a sample-specific LOD, implying that the whole concept of 

LOD may have to be re-evaluated. 

 

For the calculation of the LOD, accurate estimates of the uncertainty at zero and 
at the LOD levels are needed. Although the only generally accepted approach to 

prediction uncertainty in multivariate calibration is to use an overall measure such 

as the root mean square error of prediction (RMSEP), the necessity of a sample-

specific prediction uncertainty to yield realistic prediction intervals is fully justified 

[3]. For univariate calibration, the standard error of prediction (uncertainty) for a 
given concentration level can be estimated from the confidence limits of the 

regression line [4, 5, 6]. Since an inherent assumption of such zeroth-order 

calibration methods is to have full selectivity for the analyte of interest -otherwise 
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estimations are biased-, this standard deviation is estimated in the exemption of 

interferents situation (or assuming the interferents’ contribution to be constant so 
that they can be removed). When going beyond zeroth-order calibration, a full 

selectivity of the analyte of interest is not mandatory. The incorporation of the 

interferents in the multivariate or first-order models means that the distribution of 

the response (net analyte signal) and of the predicted concentration can differ as 

a function of the amount and nature of the interferents. This subject has been 
widely dealt with in multivariate calibration, resulting in several discussions and 

expressions for estimating sample-specific standard error of prediction for partial 

least squares regression (PLSR) [7-14], most incorporating an indirect 

dependence on the amount of interferents (usually through a leverage-
expression). 

 

The purpose of the current work is to assess whether the error of prediction 

depends on the level of interferents and to estimate a limit of detection on such 

basis. We work in two scenarios: in the multivariate scenario we use first-order 
data and models (excitation spectra from a set of samples with one analyte of 

interest and two interfering compounds at different proportions, which are 

modelled by multivariate partial least squares, PLS) and in the multi-linear 

scenario we used second-order excitation-emission matrices (EEMs) for samples 
with one analyte of interest and two interfering compounds at different 

proportions, which are modelled by multi-linear PLS or N-PLS. 

 

We simulate samples at zero and LOD levels of the analyte of interest with 

different level of interferents and compare the calculated method-characteristic 
LOD with the proposed sample-specific LOD estimated from the error of 

prediction. 

 

2. Theory 

 
2.1 Preliminaries 

Partial least squares regression is a widespread regression technique whose 

basis and algorithms can be easily found both for multivariate [15-16] and for 

multi-linear [17-18] PLS. Whatever the order of the data is, the model establishes 
a relation between the independent variables (X-block), e.g. spectra, and the 

dependent variables (Y-block), e.g. analyte concentrations, in such a way that 

the covariance between X and Y is maximized in the new reduced data space 
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defined by the new variables called PLS factors. Typically, the final goal of the 

calibration is to predict the concentration of a given analyte, ŷ , in an unknown 

sample from its instrumental response. Although the true concentration y is in 

practice unknown, the prediction error (PE) is defined as yyPE −≡ ˆ  and the 

standard error of prediction (SEP) is defined as the square root of the prediction 

error variance (prediction uncertainty).  

 
 
2.2. Estimation of the sample-specific standard error of prediction 

There are several expressions for standard error of prediction suitable for 

multivariate PLS calibration (see references [7-20] in [19]). For the case of 
negligible error in the independent variables, the simplest approach (ignoring the 

most complicated terms) was first proposed by Höskuldsson [20]. An equivalent 

expression can be found in ASTM (ASTM Standard E1655). On the basis of such 

approach, Faber and Bro [19] derived an expression for multi-linear partial least 

squares (N-PLS) to estimate sample-specific standard errors of prediction. It was 
recently applied to a fluorescence spectroscopic calibration problem where N-

PLS regression was appropriate, highlighting the validity and the generality of the 

proposed expression [21]. 

 
In the absence of bias, the sample-specific root mean squared error of prediction 

(standard error of prediction or SEP, for shortness) as derived by Faber and Bro 

depends on the leverage for the sample and on the mean square error of 

calibration (MSEC): 

 

( )[ ] 211 yii VMSEChSEP ∆−+=                                                             Eq. 47 

 

For zero-intercept models, the MSEC is obtained in the usual way from the 

squared fit errors as 

 

( )

ν

∑
=

−

=

I

i

ii yy

MSEC 1

2ˆ

                                                                       Eq. 48 

 
where I denotes the number of samples in the calibration set. The degrees of 

freedom in Equation 48 are calculated as ν=I−F, where F are the number of 
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factors used in the model (mean-centring, if it is applied, is accounted for by 

subtracting one additional degree of freedom). General requirements on the 
appropriateness of the MSEC (no significant changes by the in- or exclusion of 

one sample, consistency with the cross-validated MSE, etc) should necessarily 

be assessed to guarantee a reliable estimate of SEP. 

 
The leverage, denoted by h, quantifies the Mahalanobis distance from the 
prediction sample to the mean of the calibration set in the F-dimensional space. 

For zero-intercept models, the leverage is calculated as h=tT(TTT)-1t (mean-

centring is accounted by adding an 1/I term), where t is the F×1 score vector of 

the unknown sample and T the I×F matrix of scores for the calibration set. 

 

The correction term yV∆  is an estimate of the measurement error variance 

associated with the reference method; if unknown, it can be set to zero leading to 

a more pessimistic (higher) SEP. 

 

The application of Equation 47 only requires the standard deviation of the 
measurement error in the reference values, in contrast to prior expressions (see 

Eq. (8) in [19]) where estimates of the error variances for both predictor and 

predictand variables were required. Moreover, this expression is designed to 

work not only in the homoscedastic case but also in heteroscedastic conditions. 
 
2.3. SEP dependence on the level of interferents 

From Equation 47 it follows that SEP may actually vary for zero-analyte samples 

if the leverage varies. Assuming the expression is valid, it therefore immediately 

follows that LOD can not be constant even for zero-analyte samples for a given 
model if the level of interferents vary such that the leverages differ. This though 

relies on the adequacy of the approximation in Equation 48 and also on the 

extent to which the leverages vary significantly in realistic settings. 

 
To determine whether and to what extent the prediction uncertainty (SEP) 

depends on the level of interferents, it should be assessed whether the 

predictions of samples without analyte of interest, i.e. 0ŷ , and different amounts 

of interferent species, actually include the true (reference) concentration, i.e. 

00 =y . For the theory of hypothesis testing, the risk one accepts of committing a 

false positive decision is given by the value of α, and the risk of committing a 
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false negative decision is given by the value of β. Theoretically, for a given two-

tailed probability density function of e.g. predicted concentrations, 

100(1−2(α/2))% of the prediction intervals should contain the zero, while 

100(α/2)% of the predictions will be in the right side as false positives, i.e. stating 

that the analyte is present when in fact it is not. 

 

The prediction intervals can not be set up from Equation 47 because it does not 

lead to t-statistics: subtracting yV∆  not only may lead negative variance 

estimates for relatively large measurement error variances, but also induce 

prediction variance need not be approximately distributed proportional to a 

simple χ2 (see [19, 22]). Alternatively, the prediction intervals (PI≡ predicted 

concentration ± associated uncertainty) are built with the endpoints indicated in 

Equation 45 using the (1−2(α/2))th percentile of a Student's t-distribution with 

ν=I−F degrees of freedom, where I is the size of the population (number of 

samples in the prediction set) and SEP0 is the standard error of prediction for the 

sample without the analyte of interest. 

 

0,210ˆ SEPtyPI να−±=                                                                          Eq. 49 

 

It is essential to construct a large number of independent (randomly generated) 

models to calculate an accurate average value of the percentage predictions that 

include zero and compare it to the nominal value, e.g. 100(1-2(α/2))=95% for 

α=0.05. 

 
2.4. LOD estimation 

The decision of whether a given analyte is present or not in a sample is based on 

a comparison of the estimated quantity with a critical level, Cy , such that the 

probability of exceeding Cy  is no greater than α if analyte is absent [23]. This 

decision is then taken a posteriori, i.e. once the sample has been measured. 

However, LOD has been defined as an a priori parameter [23-24], characteristic 

of the analytical method at hand. ISO [24] defines the LOD (they use the term 

minimum detectable net concentration or amount) as the true net concentration 
or amount of the analyte in the material to be analysed which will lead, with 

probability (1-β) to the conclusion that the concentration or amount of the analyte 

in the analysed material is larger than that in the blank material. Analytical 
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detection guidelines are hence intrinsically bound to the probability of committing 

false positive and false negative errors. These come from the probability density 
functions of the response of samples with concentrations at zero and at the LOD 

levels, respectively, as shown in Figure 35. 
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Figure 35. Representation of the density probability functions at 
zero and LOD levels, with the probability of committing false 
positives (α) and false negatives (β) (see details in text). 

 
 

According to IUPAC Recommendations [23], the critical value Cy  for making the 

detection decision can be estimated as 01ˆ σα−= zyC  and the minimum 

detectable value Dy  or inherent detection capability of a chemical measurement 

process as DCD zyy σβ−+= 1ˆˆ . Here z1−α and z1−β represent respectively the (1-

α)th and (1-β)th percentage point of the standard normal variable and σ is the 

standard deviation of the estimated quantity. Assuming that the variances of the 

predicted concentrations 0ŷ  and Dŷ  are the same and taking the default values 

for α and β (i.e. 0.05), the previous expression reduces to (z1−α+ z 1−β)σ0 . If the 

standard deviation is replaced by an estimate s0 based on ν degrees of freedom, 

then the quantile z must be replaced by Student’s-t and (z1−α+ z 1−β)  must be 

replaced by the non-centrality parameter of the non-central-t distribution, δα, β, ν. 

 

On these statistical bases, Hubaux and Vos [4] introduced an estimator of the 
limit of detection from linear calibration curves. This LOD estimator was 
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connected to the concept of confidence limits and emphasized its dependence 

upon the calibration standards, as it is thereby explicit in the summary of 
expressions shown in the Appendix. 

 

Moving to higher-order calibrations, however, it has been recently reported by 
Ortiz et al. [25] that the limit of detection (as defined by the ISO in the norm 

11843 [23, 26]) was not suitable for soft multivariate or multi-way calibration 
methods since a vector or a matrix of numbers is available for each analyzed 

sample. Based on the fact that such LOD is invariant for linear transformations of 
the response variable, Ortiz et al. calculated the minimum detectable net 

concentration from the linear regression between the concentration of the 
analyte, yi, and that calculated with the (two- or three-way) PLS model of 

calibration, iŷ  (see Appendix). 

 

In the current work, the critical value Cŷ  and the limit of detection Dŷ  were 

estimated following the IUPAC recommended expressions based on the 
standard deviation of the estimated concentration at low content levels. The 

singular contribution lies in the use of the standard error of prediction of Equation 

47, yielding the following expressions, 

 

( )MSEChtSEPtyC 0,10,1 1ˆ +== −− νανα                                            Eq. 50 

( )MSEChSEPyD 0,,0,, 1ˆ +== νβανβα δδ                                           Eq. 51 

 

Note that Equation 51 is equivalent to Equation 49 (and to Eq. 5b in terms of 

concentration) of ref. 6, proposed by Currie, for the univariate case. Moreover, 

SEP0 in these equations is analogous, except for the term yV∆ , to Equation 46 

and paragraph above in ref. 6. 
 

 

3. Description of the simulations 
 

The standard error of prediction at zero content level was evaluated in the 
multivariate and in the multi-way scenarios. For both, three-component systems 

were simulated, in such a way that the response of the analyte of interest 

overlapped the response of the two interferent species, at different ratios. The 
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suitability of using simulated data is justified from the necessity of having as 

many observations as required to demonstrate a difference in performance, in 
addition to knowing their “true” concentration. 

To build the simulated first-order data we used the excitation spectra of 

tryptophan, hydroquinone and indole because of their moderate/high overlap. 

Tryptophan was the analyte of interest. Its spectrum is highly correlated with that 
of hydroquinone (correlation coefficient, r, was 0.93) and moderately correlated 
with indole (r=0.49). The left box in Figure 36 shows the three normalized 

spectra, S. The multivariate data X for each sample were built multiplying the 

corresponding diagonal matrix of concentrations, C (generally speaking, the Y-

block), by the normalized spectra transpose matrix, ST, and summing these 

weighted spectra. 
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Figure 36. Normalized excitation (left box) and emission (right box) 
spectra of tryptophan (A), hydroquinone (B) and indole (C). 

 

 
The simulated second-order data, excitation-emission matrices (EEMs), were 

built using the normalized excitation and emission spectra of tryptophan, 

hydroquinone and indole. Overlap in the excitation mode has already been 
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shown. In the emission mode there was also a strong overlap, with correlations 
of r=0.96 between tryptophan and hydroquinone and r=0.59 between tryptophan 

and indole (right box in Figure 36). 

 

The second-order data for each sample were built by multiplying the normalized 
emission spectra, A, by the corresponding diagonal matrix of concentrations, B, 

and by the transpose of the normalized excitation spectra matrix, CT. These 
weighted analyte EEMs were summed to give the overall EEM, X. 

 
Both to the multivariate and the multi-way data, white noise, E, was added such 

that the noise level was approximately 2% in terms of relative standard deviation 
at the maximum of the response. 

 

 
Table 23. Concentration of the three components in the 20 
calibration samples. 

 

Sample Tryptophan Hydroquinone Indole 

1 0 0.1 0.1 

2 0 0.1 2.0 

3 0 2.0 0.1 

4 0 2.0 2.0 

5 0.5 0.1 0.1 

6 0.5 0.1 2.0 

7 0.5 2.0 0.1 

8 0.5 2.0 2.0 

9 1.0 0.1 0.1 

10 1.0 0.1 2.0 

11 1.0 2.0 0.1 

12 1.0 2.0 2.0 

13 1.5 0.1 0.1 

14 1.5 0.1 2.0 

15 1.5 2.0 0.1 

16 1.5 2.0 2.0 

17 2.0 0.1 0.1 

18 2.0 0.1 2.0 

19 2.0 2.0 0.1 

20 2.0 2.0 2.0 
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Twenty calibration samples were defined in order to relate their (multivariate or 

multi-way) responses with the concentration of the analyte of interest, tryptophan, 
in the range from 0 to 2.0 (arbitrary) concentration units. For each level of 

tryptophan, the interferent analyte concentrations were distributed following a full 

factorial design 22 (low level 0.10 c.u., high level 2.0 c.u.) in order to span the 

range of concentrations of interferents between 0.10 and 2.0 c.u.. These 
concentrations (Y-block) are shown in Table 23. No noise was added to the 

concentration and no pre-treatment was applied on the data. 

 

The calibration models were built with two- or three-way PLS, respectively, using 

commercial [27] and home-made routines performed in MATLAB 6.5 (The 
MathWorks Inc., 2002). The models were all different due to the randomly 
distributed error added to the multivariate response, i.e. X=CST+E, or to the 

multi-way response. As an illustration, Figure 37 shows the multivariate data 
(rows in the two-dimensional X-block) used in one of the two-way PLS models 

and Figure 38 shows the EEM of one of the calibration samples (one slab in the 
three-dimensional X-block) used in one of the N-PLS models. 
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Figure 37. Multivariate response of the calibration samples. Each 
line represents the spectrum of one sample. 
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Figure 38. Calibration sample (sample 11) of one of the models. 
The composition of the mixture is 2.00 c.u. of tryptophan, 1.75 c.u. 
of hydroquinone and 0.89 c.u. of indole. 

 

 

 

The prediction data sets were defined at two levels of tryptophan concentration, 

0y and Dy . To test whether the standard error of prediction was affected by the 

presence of interferents, four different situations were analyzed at the zero 

content level for the analyte of interest, in which the concentration of the 

interferent species were randomly distributed in a given range of concentration 
named NONE, LOW, MEDIUM and HIGH. Additionally, when dealing with 
second-order data and N-PLS, a fifth situation was checked named EXTREME 

where the concentration of interferents was higher than that one modelled in the 

calibration, i.e. above 2.0 c.u. (see Table 24). 
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Table 24. Ranges of concentration (in arbitrary concentration units) 
of the three components in the calibration and prediction sample 
sets. 

 

Situation Tryptophan Hydroquinone Indole 

Calibration samples 0-2.0 0-2.0 0-2.0 

NONE -without interferences 0 0 0 
LOW level of interferences 0 0-0.4 0-0.4 
MEDIUM level of interferences 0 0.8-1.2 0.8-1.2 
HIGH level of interferences 0 1.6-2.0 1.6-2.0 

Prediction 
samples 

EXTREME level of interferences 0 2.4-2.8 2.4-2.8 

 
 
3.1. Evaluation of the sample-specific SEP dependence on the level of 

interferents 

One hundred two-way PLS and one hundred N-PLS models were built (all with 3 

factors) to draw general conclusions in the end that come from averaging and not 
from a particular situation. In both scenarios and for each level of interferents 
analyzed (NONE, LOW, MEDIUM and HIGH for the multivariate analysis and the 

additional situation EXTREME for the multi-way analysis), the concentration of 

the analyte of interest, i.e. tryptophan, is zero. The prediction sets consisted of 
200 prediction sample response vectors and 5 replicates of each one. These 

1000 samples were simulated in the same way as the calibration samples, i.e. by 

multiplying the normalized spectra (for the multivariate data) or excitation-

emission matrix (for the multi-way data) by the corresponding concentrations and 

adding ∼2% of white noise in terms of relative standard deviation at the maximum 

of the response. The only difference from the calibration data was that the 

analyte concentration was zero. 

 

The concentration of tryptophan in these 1000 samples was predicted using the 
(multivariate or multi-linear) PLS models, concretely, we predicted 10 samples (2 

samples with 5 replicates) with each of the 100 models. The associated sample-
specific standard error of prediction SEP0 was estimated using Equation 47 and 

the RMSEP was also calculated for each sample from its 5 replicates. For each 
sample, we estimated the 95% prediction interval, PI, as shown in Equation 49, 

with α=0.05 and ν=I−F=20−3=17 degrees of freedom (standard calculation of 

degrees of freedom was used but the pseudo-degrees of freedom by H. van der 

Voet [28] may be used for complex predictive models). Within the specified level 
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of interferents, we calculated the percentage of those prediction intervals that 

actually did not include the reference value, i.e. zero, and compared it with the 
nominal value of 5%. 

 
3.2. LOD estimation 

LOD was estimated from simulated data for multivariate and for multi-linear PLS 

following three different procedures. Two of them are based on traditional LOD 
concepts, i.e. as an inherent capability of the method, and the third one is the 

one introduced in the current work, which is based on the standard error of 

prediction at the individual sample level. These procedures are schematized in 

Figure 39 and described next. 
 
3.2.1. Method-characteristic LODs 

Both for first- and second-order data, we had already built 100 PLS models. 

From the linear regression between the concentration of the analyte, iy , and that 

calculated with the (two- or three-way) PLS model of calibration, iŷ , we 

estimated the critical level and the limit of detection following (I) Ortiz et al. 

procedure and (II) Hubaux and Vos approximation. For the latter, the LOD 

equation (see Appendix) was resolved by means of algebraic manipulations and 
the quadratic formula using the Garner and Robertson estimator [29]. 

 

We simulated 4 (or 5, for second-order data) different levels of interferents sets 

of 100 prediction samples at those detection levels of concentration. So that for 

each of the 100 models, we estimated Cŷ  and Dŷ  (using approximation I or II) 

and predicted the four/five sets of 100 samples each one with the corresponding 

PLS model. To test the adequacy of the method-dependent LODs, we compared 

the predicted concentration with the associated Dŷ  and obtained the 

experimental probability of false negatives, βexp, which would have to be 

comparable to the pre-defined value of 5%. 
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Figure 39. Schema of the procedures used in this work for 
estimating the limit of detection (see details in text). 
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3.2.2. Sample-specific LODs 

Both for first- and second-order data, we had already samples at different level of 
interferents and no analyte of interest. We selected 100 of those samples from 

each interferent level data set, and predicted their concentration using different 
PLS models, as well as their leverage, h0,i and their SEP0,I (in this work, the error 

in the reference measurement was zero and thus we discarded the last term in 

Equation 47). Then, we calculated the sample-specific critical level and limit of 
detection for each of the 100 samples of each set using Equations 50 and 51. As 

for the method-dependent LODs, we simulated 4 (or 5, for second-order data) 

different level of interferents sets of 100 prediction samples each one at those 

detection levels of concentration, and predicted them using different PLS models. 
Finally, we tested the adequacy of the LODs for the individual sample levels 

comparing the predicted concentration with the associated Cŷ  and obtained the 

experimental probability of false negatives, βexp, which would have to be 

comparable to the pre-defined value of 5%. In addition, we compared the 

proposed LOD estimations with the results from the two method-dependent LOD 

estimators. The SEP was also analyzed at the LOD level to further evaluate its 
dependence on the level of interferents. 

 

4. Results and discussion 
 

4.1. SEP dependence on the level of interferents 

For a fixed confidence level of 95% there should be 5% of the PI of samples 

without analyte of interest (tryptophan) that do not include the reference 

concentration, i.e. 00 =y ). We used histograms to graphically summarize and 

display the distribution of the predicted concentrations in each situation analyzed. 

The range of the data (horizontal axis: predicted concentration) was split into 
nonoverlapping equal wide bars. The heights of the bars (vertical axis: frequency, 

i.e. counts for each bar) represent observed frequencies, i.e. what proportion of 

cases fall into each specified range. Among other information, these histograms 

show the location and scale of the variable, i.e. the mean and the standard 
deviation of the predicted concentration. 
 

4.1.1. First-order situation 

The mean estimated concentration of the first-order data prediction sets was 

found to be slightly biased from zero (Figure 40). This bias was negligible for the 
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prediction set without interferents (situation NONE), with mean of the predicted 

concentration ŷ =−6·10-3, and it was increasing when going to higher level of 

interferents, up to ŷ =0.11. 
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Figure 40. Distribution of the predicted concentration by 
multivariate PLS for samples with zero content level of analyte of 
interest at the different level of interferences analyzed. 

 

 

After bias correction, e.g. subtracting the mean deviation from zero to all the 

predictions, we estimated the associated uncertainty (with the above equation) of 

each predicted concentration to estimate the PI and counted how many of those 
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intervals do not include the zero. The percentage of PI that fulfil that requirement 

(see Figure 41) was not exactly the expected probability because of the 
experimental error and the limited number of simulations but they agreed with the 

pre-defined value of β=5%, which gave an indication of the suitability of the 

expression used to estimate the prediction error. The prediction error was further 

evaluated. The mean SEP was approximately the same for all the situations 
analyzed. For each level of interferents, the RMSEP was calculated from the 

prediction of the replicates (same analyte concentration, i.e. 0y  with random 

noise). The mean RMSEP was of the same order of magnitude as the (mean) 

SEP for none or low level of interferents, while their values were prone to 

discrepancy for higher level of interferents (Table 25, upper rows) accordingly to 
the slight increase of the standard deviation of the predicted concentration. 
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Figure 41. First-order data and multivariate PLS models. 
Percentage of prediction intervals (PI) for samples without analyte 
of interest that do not include 0, at the different levels of interferents 
analyzed. The symbol (�) correspond to the original results and 
(�) to the bias corrected PI. The expected 5% is indicated with a 
dotted line. 
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Table 25. Standard deviation of the predicted concentrations, mean 
SEP for prediction samples at y0=0 and mean RMSEP calculated 
from the prediction of 5 replicates. 
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Std. deviation of ŷ  0.153 0.159 0.160 0.168 - 

SEP
 (a)  0.156 0.156 0.157 0.161 - 

First-order 
data and models 

RMSEP
 (b) 0.147 0.150 0.163 0.193 - 

Std. deviation of ŷ ×103 0.794 0.835 0.831 0.900 0.946 

SEP ×103  (a) 0.831 0.831 0.832 0.843 0.885 
Second-order 
data and models 

RMSEP ×103  (b) 0.751 0.801 0.799 0.854 0.907 
(a) for 1000 prediction samples 
(b) from 5 replicates      

 

 

 
4.1.2. Second-order situation 

Unlike first-order data, accurate concentrations were predicted for the second-

order data from samples without analyte, regardless of the level of interferents 

(Figure 42). The PIs were small and they included the expected reference value 

around 95% of the times in all cases (Figure 43), in agreement with the assumed 

(1-β) probabilities. The SEP, for each individual sample, and the RMSEP 

calculated from 5 replicates, were of the same order of magnitude, and both 

slightly increased when the level of interferents increased (Table 25, lower rows), 

as well as the standard deviation of the predicted concentration. 
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Figure 42. Distribution of the predicted concentration by N-PLS for 
samples with zero content level of analyte of interest at the different 
level of interferences analyzed. 
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Figure 43. Second-order data and N-PLS models. Percentage of 
prediction intervals (PI) for samples without analyte of interest that 
do not include 0, at the different levels of interferents analyzed. The 
expected 5% is indicated with a dotted line. 

 

 
4.2. LOD estimation 

 
4.2.1. First-order situation 

As seen in Figure 40, the predictions from multivariate data, also at the LOD 

level, needed to be bias-corrected. The LOD estimated for the traditional 

procedures and the mean of the proposed LODs at each level of interferents set 
are plotted in Figure 44a. The mean individual standard error of prediction was 

almost the same at the LOD concentration for none, low and medium level of 

interferents and increased for the higher level of interferents. Therefore, the 

mean LOD estimated from these SEPs remain almost constant for low level of 

interferents too and then increased with the amount of interferents. In any case, 
these LODs were lower than the ones estimated by the traditional-based 

procedures. Suitable conclusions could be drawn from the validation. The 
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proposed LODs were satisfactorily validated by comparison of the experimental 

probability of false negative with the pre-defined value, 5%, for all the levels of 
interferents (Figure 45a). However, both method-dependent estimations were 

prone to overestimate the LOD, especially for lower level of interferents, i.e. the 

distribution of the predicted concentrations is shifted to higher values, giving less 

prediction below the critical level than expected. 

 
4.2.2. Second-order situation 

Predicted concentrations from second-order data and models were accurate 

(predictions were not biased). The LOD estimated by the two traditional-based 

procedures and the mean of the estimated LODs as proposed in this work at 
each level of interferents set are plotted in Figure 44b. As observed before, the 

LOD for the individual sample level differed for different level of interferents. The 

remarkable observation is that the sample-dependent LOD from multi-way 

determinations of samples with none or low content of interferents were higher 

than the ones obtained by the traditional procedures but lower than those ones 
when the level of interferents increased and, in addition, almost unchangeable for 

medium, high or extreme level of interferents in the samples. Validation was 

again the filter to a proper discussion. The probability of committing false 

negatives was, in general terms, around the pre-defined 5% (Figure 45b). 
Focusing our attention on the situations with lower level of interferents (NONE, 

LOW and MEDIUM), we could assess that the traditional-based approaches 

provided overestimated LODs since the experimental β were lower than 

expected (as in the multivariate simulations), while the proposed LOD seemed to 
be more accurate. Moving to very higher level of interferents, all the LODs were 

somewhat underestimated, resulting in high β probabilities. However, the 

sample-dependent LOD provided again the nearest approximation to the 

expected value. 
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Figure 44. Both in multivariate (a) and in multi-way (b) simulations, 
the LOD estimated by procedure I (�) and by procedure II (□) were 
constant for all the prediction sets with different level of 
interferences, while the mean LOD estimated by the proposed 
procedure (○) varied from set to set. 
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Figure 45. Both in multivariate (a) and in multi-way (b) simulations, 
the three LOD estimators approached the pre-defined value of 
β=5%. LODs estimated by procedure I (�) and by procedure II (□) 
were in most of the cases overestimated (lead to lower β 
probabilities), while the mean LODs estimated by the proposed 
procedure (○) were slightly more accurate approximating better to 
the expected β probabilities. 
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5. Conclusions 
 
The distribution of the predicted concentrations at low content levels of the 

analyte of interest is statistically different for samples containing different amount 

of interferents. The standard error of prediction defined at the individual 

analyte/interferent ratio is used in this work to estimate the limit of detection. 
Therefore, the LOD depends on the uncertainty of the analyte-specific part of the 

sample which depends on the sample matrix; hence it makes sense to take a 

detection decision for each particular sample. In this way, the LOD is sample-

specific and it is calculated after the measurement on the new sample is made, 

contrary to the traditional concept of the LOD that defines this performance 
characteristic as an inherent detection capability of the chemical measurement 

procedure. 

 

A sample-specific detection limit is the lowest level of an analyte that would have 
been reliably detected in the specific sample. This value will be a more realistic 

detection decision since it takes advantage of being a posteriori estimation. 

However, note that this approach is fully compatible with the official requirements 

because that sample-specific or matrix-specific detection limits can always be 

integrated to obtain a (traditional) detection limit, which pertains to a well-defined 
population of samples [30]. 

 

The sample-specific LODs were validated following a common practice: to 

assess that the percentage of samples generated at the LOD level whose 

predicted concentration is below the critical level agree, up to the experimental 

error, with the pre-defined probability β or type II error. In the simulations 

performed, the proposed sample-specific LOD fulfil the validation requirements 

both for multivariate and for multi-way data and PLS models. It was properly 

assessed for different pre-fixed β values (1%, 5% and 10%), although only 

results from β=5% were shown here. 

We do not forget that, to calculate the sample-dependent LOD, we need an 
estimation of the SEP at zero content level and the same analyte/interferent ratio 

than in the test sample. However, this apparent limitation can be overcome 

easily. One possibility is to build a synthetic test set with the given range of 

interferents and no analyte of interest and consider the mean of their SEP0 (or 

the highest one, to be warier). This solution would provide an approximate LOD 
valid for such range of analyte/interferent ratio. In actual situations, however, it 
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may not be so easy to know or to reproduce the matrix of the unknown sample. 

An alternative, subject to further research, would be to obtain the prediction error 
from the cross-validation results of the lower content standards.  

 

In any case, the results of the current work open a new door in detection 

capability concepts. LOD is not only an inherent characteristic of the method, but 

the particular detection level that can be reached for any new sample. The use of 
one or the other notion will depend on the particular purpose of the matter, but 

once the sample dependence is realised, the (multivariate or multi-way) 

calibration sets should be designed in such a way that the calculated LOD is 

representative of the future samples, e.g. including several realistic levels of 
interferents at each level of concentration. 

 
Appendix 

 

The classical univariate LOD estimators recommended by Hubaux and Vos [4] 
are here given. 
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where t1-α,ν and t1-β,ν are the quantiles of the one-sided Student’s t-distribution 

with the corresponding α and β probability respectively, s is the standard 

deviation of the residuals of the regression line, b1 the slope of the regression 

line, I the number of standards, n the number of replications performed on the 

unknown sample and y  the mean of the concentrations of the standards of the 

calibration curve. The degrees of freedom are constricted by the regression line, 

i.e. ν=I−2. 

 

The critical level and the limit of detection as defined by the ISO 11843-2 norm 

[26], were used in reference [25] to calculate the minimum detectable net 
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concentration from the linear regression between the concentration of the 

analyte, iy  and that calculated with the (two- or multi-way) PLS model of 

calibration, iŷ . The nomenclature of these formulations is here conveniently 

adapted to simplify the presentation: 
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where t is the quantile of the one-sided Student’s t-distribution and δ is the non-

centrality parameter of the non-central t-distribution, with the corresponding α 

and β probabilities and ν=I−2 degrees of freedom (from the linear regression 

between predicted and reference concentration). The terms s, b1, I, n, and y  

have been already defined. 
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7.1. Introduction 
 
 

In this chapter I present an overview of the main conclusions of this thesis and 

make several suggestions for future work on second-order calibration methods 

with non-selective high-order data. Finally, I express some personal impressions 
about how my time spent working on this PhD has developed me as a scientist 

and as a person. 

 

 

7.2. Conclusions 
 

 
Conclusions of the thesis 

In the last few years, second-order data and instruments have become usual in 
most laboratories of analysis. Rather than rejecting some of the measurements in 

order to simplify to first-order measurements, or even to single signals, and 

performing multivariate or univariate calibration models, second-order calibration 

methods are a practical solution. 

 
The wide range of second-order calibration methods means it is possible to 

select the most suitable method for each analytical problem. I have found that 

there is no absolute or definitive method: it always depend primarily on the type 

of data we are dealing with, and on the characteristics of the laboratory or analyst 
concerned e.g. the material and human resources, the time available and the 

desired quality of results. 

 

Validation of the method is an essential step. Assessing the figures of merit 

related to the procedure used is indispensable for ensuring the quality of the 
results. 

 

The limit of detection is usually one of the figures of merit to be estimated. For 

univariate and multivariate calibration, LOD estimation is well defined. For 
second-order calibration, however, there is still certain confusion for many users. 
 

In this thesis we have shown, with practical examples, that the limit of detection 

can be calculated for complex analytical data using second-order calibration 

methods and different strategies. 
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Our main conclusions are: 
 
LOD for PARAFAC: 

 

- Parallel Factor Analysis (PARAFAC) can be used to identify and quantify 

pesticides in non-selective EEM data that are approximately trilinear. 

- Information about the selectivity and sensitivity of the compounds can be used 

to select the calibration samples. Including standards of the most sensitive or 

the least selective compound in the mixtures may improve the model. 

- Two prediction strategies are feasible for PARAFAC. When the model is 
performed only with the calibration set, further calculation is needed to obtain 

the loadings of the prediction samples. However, we can detect outliers and 

the model is valid for future samples within the experimental domain. Including 

the prediction set in the model can save time, but outliers may not be detected. 

Also, if outliers exist, there is a loose fit of the model and of the correlation 
between the estimated and the reference profiles. 

- The LOD (and other figures of merit) can be suitably estimated for PARAFAC 

using the transformation approach, i.e. with univariate statistics from the 

calibration line obtained by the regression of the model loadings against the 
concentration of the standards. 

 
LOD for ITTFA: 

 

- Iterative Target Transformation Factor Analysis (ITTFA) can be used to identify 
and quantify compounds in non-selective HPLC-DAD data that are not trilinear 

since it resolves one second-order (bilinear) data matrix at a time. 

- The LOD can be suitably estimated for ITTFA using the transformation 

approach, i.e. with univariate statistics form the calibration line obtained by 
regression of the height of the estimated elution profile against the 

concentration. 

- Chromatographic selectivity, spectral selectivity and the sensitivity of the 

analyte of interest (e.g. the relative intensity of the chromatographic peak) are 

experimental factors in HPLD-DAD determinations that significantly affect the 
resolution and, therefore, the estimated LOD. 
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LOD for MCR-ALS: 

 

- Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) can be 

used to identify and quantify pesticides in complex natural groundwater 

samples that are analysed by HPLC-DAD. 

- The resolution of complex data by MCR-ALS can be improved by preserving 
the three-way structure of the data when decomposing several samples 

simultaneously, imposing trilinearity only for some compounds and preserving 

bilinearity for others. 

- The LOD can be suitably estimated for MCR-ALS using the transformation 
approach, i.e. with univariate statistics form the calibration line obtained by 

regression of the relative areas estimated by MCR-ALS against the 

concentration. 

 
LOD for N-PLS: 

 

- The distribution of the predicted concentration at low levels of the analyte of 

interest is statistically different for samples containing different amounts of 

interferents. 

- The LOD can also be suitably estimated for both multivariate and multi-linear 

PLS from the standard error of prediction defined at the individual 

analyte/interferent ratio. The LOD therefore depends on the uncertainty of the 

analyte-specific part of the sample, which depends on the sample matrix. 

- We suggest taking a detection decision for each sample. This means that the 
LOD is sample-specific and that it is calculated after the measurement of the 

new sample has been made. This definition is contrary to the accepted 

concept of the LOD, which defines it as an inherent parameter of the chemical 

measurement procedure. In our case, LOD is understood as the lowest level of 
an analyte that would have been reliably detected in the specific sample. To 

be compatible with the IUPAC recommendations, it would be possible to 

define a LOD for a particular type of sample from the mean LOD of 

representative samples. 
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Suggestions for the future 

 
- For N-PLS, as well as the suggested sample-dependence of the LOD, a 

model-dependence of the LOD could be studied. 

- For the various calibration methods, guidelines on how to improve the LOD as 

a function of the experimental design of the calibration set of samples could be 

established. 

- A LOD estimator for non-bilinear data, such as MS-MS data could be 

developed because it is not available. 

 
Personal impressions 

Doctoral programmes are considered a crucial source of a new generation of 

researchers and are meant to serve as the main bridge between the European 

Higher Education and Research Areas. Doctoral training is, however, markedly 

different from the first and second cycles of education. Its main characteristic, 

which makes it specific, is that its most predominant and essential component is 
research33.  

 

Certainly, PhD candidates do produce much of the research conducted in 

universities. Moreover, we often participate in teaching activities, tutoring and 
even outreach activities. By completing this level of studies and working full time, 
we can be considered as professionals, specifically as early stage researchers 

(ESRs). In the context of the Bologna Process, “ESRs are professionals who are 

trained through research in the conception or creation of new knowledge, 

products, processes, methods and systems, and in the management of the 

projects concerned”. I therefore feel that, with the presentation of this thesis I 

have completed part of the early stage of a research career. 

 

Doctoral candidates have to prove their ability to perform original and 
independent research in a scientific discipline. Scientific training in core research 

skills is usually mandatory in doctoral programmes. However, training in 

transferable professional and personal skills and competences is offered more on 

a voluntary basis. Individuality, originality and a certain autonomy are important 

features of a doctorate and I believe that during my PhD I have made good use 

                                                 
33 Extracted and adapted from “Doctoral Programmes for the European Knowledge 
Society”, Report on the EUA Doctoral Programmes Project 2004-2005 of the European 
University Association asbl (EUA). URL: http://www.eua.be 
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of my time to develop several skills and competences, most of which have been 
self-trained (“learning by doing”). Important personal improvements I have made 

in core and transferable skills include writing and communication skills such as 

scientific writing; networking and team-working; time management; problem 

solving; research methodology and techniques; research management; analysis 

and diffusion; and awareness of scientific ethics and intellectual property rights. 
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Bilinearity 

 
A data matrix is bilinear when the contributions of the compounds in the two orders 

of measurement are additive and therefore it can be decompose into the outer 
product of two matrices containing the intrinsic factors of each compound in each 
mode.  

 
 
Khatri-Rao Product 
 

The Khatri-Rao product of two matrices, with the same number of columns, is 

denoted by the symbol |⊗| (or �). For its definition, the Kronecker tensor, ⊗, should 

be firstly defined. 

The Kronecker tensor product of A and B where A is of size I×J holds that 

 

















=⊗
BB

BB

BA

IJI1

1J11

xx

xx

L

MM

L

                                                                          Eq. Ap1 

 
Then, the Khatri-Rao product between A=[A1 … AJ] and B=[B1 … AJ] is defined as 
 

A|⊗|B = [A1⊗B1 … AK⊗BK]                                                                          Eq. Ap2 

 
The Khatri-Rao product is a useful matrix product used in this thesis because it 
provides an efficient way to write a PARAFAC model, especially simple and 
transparent for higher-order PARAFAC models. 

 
 
NAS (Net Analyte Signal) 

 
The NAS concept arises in multivariate calibration from the fact that a prediction 
sample response, e.g. a spectrum, may have varying contributions from other 
sample compounds. The spectrum can be decomposed in two orthogonal parts: a 
part than can be uniquely assigned to the analyte of interest (the NAS), and the 
remaining part that contains the (possibly varying) contribution from other 
compounds. Hence the NAS is proportional to the concentration of the analyte of 
interest. 
 
NAS for first order data is defined in Equation Ap1, in which I is the identity matrix, 

R−−−−f is the matrix of pure profiles (e.g. spectra) of all constituents except the fth 

analyte, and rf is the profile (e.g. spectrum) of the analyte. The superscript + 

symbolizes the pseudoinverse. NAS is a vector, and it is related to the regression 
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vector b by Equation Ap2. 

 

( ) ffff rRRI +
−−−=NAS                                                                                  Eq. Ap1 

fNAS
1

 =b                                                                                              Eq. Ap2 

 
Since the NAS is the only part of the spectrum employed for prediction, no 
information is lost when transforming the vector NAS into a scalar (typically, the 
Euclidean norm is taken, i.e., its length). 

 
 
Norm 

 
Mathematically, the norm is any scalar-valued function, denoted by the double bar 
notation || · ||, which satisfies three properties: 

(1) The norm of every tensor is positive: ||A|| ≥ 0 (||A|| = 0 if A = 0) 

(2) Scaling a vector scales the norm by the same amount, ||sA|| = |s| ||A|| 

(3) The "size" of the sum of two tensors is less than or equal to the sum of their 

“sizes", ||A+B|| ≤ ||A|| + ||B||. 

Particular norms are distinguished by subscripts, such as ||·||V , when referring to a 
norm in the space V. A class of vector and matrix norms, called p-norms and 
denoted by ||·||p , is defined as: 

 

pp

n

pp
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1

21 
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 +++= aaaa L                                                            Eq. Ap3 

The most widely used are the 1-norm, 2-norm (sometimes also called the Euclidean 

or Frobenius norm) and ∞-norm, shown for vectors and for matrices in the next table: 
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Maximum absolute row sum 
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Orthogonality 

 
Two vectors, a=(a1,a2,…,ai)’ and b=(b1,b2,…,bi)’, are orthogonal when their cross 

product sum is zero: (a1 b1 + a2 b2 + … + ai bi ) = 0. In a three-dimensional space that 

means that the angle between them is 90º. For higher dimensional space, this 
concept can be taken as the definition of orthogonality, which can be written in matrix 
algebra as a’b=0. 

 
 
SVD (Singular Value Decomposition) 

 
Any data matrix A, of dimension I×J, can be decomposed according to the 
relationship: A=UWVT, where U (I×J) is related to the scores of the objects, V (J×J) is 
related to the loadings of the original (or manifest) variables and W (J×J) is a 

diagonal matrix related to the variation explained by successive latent variables. The 
elements on the diagonal of W are arranged in descending order of magnitude and 

correspond to the singular values wi, i.e. the square root of the eigenvalues λi (λi =wi
2 

or in matrix notation ΛΛΛΛ=W2). 

 
 
Tensor 

 
Mathematical object defined as a generalization of scalars, vectors and matrices. It 
can be represented by an array of components that fulfil certain transformation rules 
(Budianski 1974). 
 
Dimensionality of a tensor: Number of elements in each order. Figure Ap1 shows 

an example of third-order tensor with different dimensionality in each order. 
 

Second mode

Third mode

First mode

Second mode

Third mode

First mode
 

Figure Ap1. Third-order tensor with the following 
dimensionalities: 4 in the first order, 5 in the second mode 
and 3 in the third mode. Each cube represents a datum, i.e. 
a scalar. 
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Order of a tensor: Number of spaces that the tensor spans. Also named ‘mode’, 

‘way’ and even ‘dimension’ (do no confuse this term with the dimensionality of the 
tensor). 
 
Rank of a tensor: Number of varying independent factors for a given order of the 

tensor. It cannot be greater than the dimensionality of that order. 

 
 
Trilinearity 

 
Extension of the bilinearity concept to a third mode. That involves that the underlying 

profiles are reproducible, i. e. they have identical shape and only different intensity 
(proportional to concentration) from experiment to experiment. 

 
 
Unfolding 

 
In the chemometric community, to unfold a first- or higher-order tensor is to 
reorganize its elements for a particular convenience. Also called matricizing, 
concatenation, augmentation, etc., this reorganization can help to handle the data 
but, on the other hand, some information may be lost in the process, such as the 
interrelation between the slices. 
 
The following figures exemplify the principle of unfolding: 
 
Figure Ap2: The second-order tensor can be concatenated row-wise to a row vector 
(or column-wise to a column vector). 
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Figure Ap2. Matricizing a second-order tensor.  
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Figure Ap3: a third-order tensor of dimension I×J×K can be unfolded preserving one 

mode and confounding the other two. When the first mode is preserved, the left-most 

matrix in the resulting array is the I×J matrix equal to the first frontal slab (K=1). The 

following frontal slices are concatenated to the right side of the previous one. The 

resulting array has dimension I×JK. When the second mode is preserved, the frontal 

slices are arranged one on the bottom of the other building a IK×J array. When the 

preserved mode is the third, the resulting array has dimension K×IJ. 
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Figure Ap3: Matricizing a third-order tensor. 
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Abbreviations 

 
ANOVA Analysis of Variance 
ALS  Alternating Least Squares 
CAS  Chemical Abstracts Service 
CE  Capillary Electrophoresis 
CLS  Classical Least Squares 
CMP  Chemical Measurement Process 
CS  Cross-Section 
DAD  Diode Array Detector 
DTD  Direct Trilinear Decomposition 
EEM  Excitation-Emission Matrix 
EFA  Evolving Factor Analysis 
EPA  Environmental Protection Agency 
FAO  Food and Agricultural Organization 
FTIR  Fourier Transform Infrared Spectroscopy 
GRAM  Generalized Rank Annihilation Method 
GC  Gas Chromatography 
HELP  Heuristic Evolving Latent Projections 
HPLC  High Performance Liquid Chromatography 
IR  Infrared 
ILS  Inverse Least Squares 
ISO  International Organization for Standardization  
ITTFA  Iterative Target Transformation Factor Analysis 

IUPAC  International Union of Pure and Applied Chemistry 
LC  Liquid Chromatography 
LOD  Limit of Detection 
MCR  Multivariate Curve Resolution 
MLR  Multiple Linear Regression 
MS  Mass Spectrometry 
NAS  Net Analyte Signal 
NBRA  Non-Bilinear Rank Annihilation 
NIR  Near Infrared 
NMR  Nuclear Magnetic Resonance 
N-PLS  Multi-linear Partial Least Squares 
NS  Needle Search 
OLS  Ordinary Least Squares 
OPA  Orthogonal Projection Analysis 
PARAFAC Parallel Factor Analysis 
PCA  Principal Component Analysis 
PCR  Principal Component Regression 
PLS  Partial Least Squares 
PLSR  Partial Least Squares Regression 
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PMF2  Positive Matrix Factorization 
RA  Rank Annihilation 
RAFA  Rank Annihilation Factor Analysis 
RBL  Residual Bilinearization 
RMSEP Root Mean Square Error of Prediction 
RMSPD Root Mean Square of Percentage Deviation 
SEL  Selectivity 
SEN  Sensitivity 
SIMPLISMA Simple-to-use Interactive Self-modelling Analysis 
SKSS  Stepwise Key Spectrum Selections 
SVD  Singular Value Decomposition 
TGA  Thermogravimetric Analysis 
U-PCA Unfold Principal Component Analysis 
UV-Vis Ultraviolet Visible 
WHO  World Health Organization 
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