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“Si conociéramos  

el verdadero fondo de todo, 

tendríamos compasión  

hasta de las estrellas.” 

 

Graham Greene, escritor inglés  
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1.1 Introduction 

 
1.1.1 Deoxyglycosides 

Glycoconjugates are the most functionally and structurally diverse compounds in the nature. It is 

well established that in addition to complex polysaccharides, protein– and lipid–bound saccharides 

haveessential roles in molecular processes.1 

In the last 150 years the field of glycosylation chemistry has focused on creating links between 

sugars. In the last decade, however, that focus has changed shifted toward developing general solutions 

for glycosylation methods. There is now more knowledge about glycoside synthesis and formation and 

more elements have been developed to control selectivity.2 However, the formation of complex 

oligosaccharides is still much more complicated than the synthesis of biopolymers such as peptides or 

nucleic acids. The increased numbed of possible combinations of monomers presents one of the biggest 

difficulties in the preparation of complex oligosaccharides. In addition, glycosydic linkages must be 

formed stereospecifically. 

Deoxysugars and deoxyoligosaccharides belong to the most important, yet most neglected, group 

of biological compounds. Deoxysugars are defined carbohydrates with a substitution of one or more of 

the hydroxylic groups with another heteroatom or hydrogen. They provide a challenge not only for 

synthesis, but also for the study of their various biological functions.  

These compounds are frequently found in natural secondary metabolites, including anticancer 

agents, antibiotics against Gram–positive bacteria (erythromycins 3, orthosomycins 1), antibiotics 

inhibitors of platelet aggregation (angucyclines) drugs used in the treatment of cardiac insufficiency 

(cardiac glycosides, digitoxin 5), antiparasitic agents (avermictins 7), and appetite suppressants (P57, 4) 

(Figure 1.1).3 It has been shown that aglycon parts of these molecules mediate their therapeutic effects; 

the glycosydic parts, however, are essential for the reagulation of its biological activity (interaction with 

nucleic acids, for example). There are deoxysugars in a large number of bioactive carbohydrates in 

lipopolysaccharides. The development of methods for the efficient and stereoselective construction of 

deoxyglycosidic linkages will likely lead to useful application in medicinal and bioorganic chemistry 

by helping to elucidate the biological mechanisms and to develop of new and less toxic drugs.4 
 

                                                 
1  (a) Boons, G.-J. Tetrahedron 1996, 52, 1095. (b) Meutermans, W.; Le, G. T.; Becker, B. ChemMedChem, 2006, 

1, 1164. 
2  (a) Davis, B. G. J. Chem. Soc., Perkin Trans. 1 2000, 2137. (b) Ernst, B.; Hart, G.W.; Sinaÿ, P. Eds., In 

Carbohydrates in Chemistry and Biology, Part I; Wiley, Weinheim, 2000. 
3  (a) Kennedy, J. F.; White, C. A. In Bioactive Carbohydrates in Chemistry, Biochemistry, and Biology, 

Chichester, Ellis Horwood, 1983. (b) Williams, N.; Wander, J. In The Carbohydrates: Chemistry and 
Biochemistry, Vol. 1B; Pigman, W.; Horton, D. Eds., Academic Press, New York, 1980. 

4  Kirschning, A.; Bechthold, A. F.-W.; Rohr, J. Bioorganic Chemistry Models and Applications 1996. 
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Figure 1.1 Natural 2,6-Dideoxyglycosides 
 

 
 

 

1.1.2 Biological Background for the Cardiac Glycosides. Digitoxin  

Congestive heart failure (CHF) is a condition in which the heart cannot pump enough blood to the 

body's other organs. It causes shortness of breath, fluid retention, swelling (edema), exercise 

intolerance, left ventricular dysfunction and, in the most severe cases, arrhythmias and sudden death. 

This highly lethal condition currently affects over nine million Americans, Europeans, and Japanese. 

Furthermore, CHF incidences are expected to continue increasing as the populations of these countries 

age.5  

Several compounds6 have been used to treat CHF, including diuretics (eg. furosemide [Lasix]),7 

natriuretic peptides,8 inhibitors of the angiotensin–converting–enzyme (ACE),9 inhibitors of the 

                                                 
5  (a) National Health and Nutrition Examination Survey III (NHANES III) pp. 1988; American Center for 

Disease Control (CDC)/NCHS data 1979. (b) Reddy, S.; Benatar, D.; Gheorghiade, M. Curr. Opin. Cardiol. 
1997, 12, 233. (c) American Heart Association; Heart and Stroke Statistical Update. Dallas: AHA, 2002. (d) 
Yusuf, S.; Garg, R.; Held, P.; Gorlin, R. Am. J. Cardiol. 1992, 69, 64G-70G. (d) National Institute for Clinical 
Excellence. Chronic heart failure: management of chronic heart failure in adults in primary and secondary care. 
Clinical Guideline 5. London: National Institute for Clinical Excellence; 2003 Jul. (e) Treatment of congestive 
heart failure-current status of use of Digitoxin. Belz, G. G.; Breithaupt-Grogler, K.; Osowski, U. Eur J Clin 
Invest. 2001 31(S2) 10. 

6  (a) Grupp, G. Mol. Cell. Biochem. 1987, 76, 97. (b) http://www.cardiologychannel.com/chf/treatment.shtml 
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phophodiesterase (PDE),10 β-blockers11 (e.g., carvedilol [Coreg®], metoprolol [Lopressor®, Toprol 

XL®]) and blood thinners (e.g., warfarin [Coumadin®]). Even with these recently developed 

treatments, CHF continues to cause a 5-year mortality rate of 50%. Unfortunately, only diuretics, 

inhibitors of the ACE, and digitalis fulfill at last some of the criteria for a first–line agent for treating 

CHF. None of these drugs satisfies all of the desired characteristics, however, and none can optimally 

manage the heart failure state when used alone. Thus, digitalis and cardiac glycosides continue to be the 

first choice in CHF treatment.5c-e 

Cardiac glycosides have been used as therapeutic agents for a very long time: they can be traced 

back to 1600 BC when ancient Egyptian manuscripts describe the medicinal prescription of the squill 

bulb, which contains cardienolides. Prescription of the squill bulb was again reported two centuries 

later in the Corpus Hippocraticum, for diuresis. In the medieval times, Welsh physicians write about 

Digitalis purpurea. In 1785, Withering was the first physician to describe the efficacy of digitalis in 

treating edema (dropsy).12 It wasn´t until 1869, however, that the different components, and particularly 

digoxin, were purified by Nativelle. In 1875 it was Johann Schmiedeberg who isolated the principal 

active constituent of digitalis, the glycoside digitoxin (5, Figure 1.1).13 

Cardiac glycosides14 are positive inotropic substances; thus, they increase stroke volume and 

cardiac output and improve cardiac performance.15 This class of compounds is characterized by an 

aglycon (genin) linked to a glycon (a carbohydrate, mono- to tetrasaccharide). It is the aglycon that 

possesse pharmacological activity, but the carbohydrate is thought to influence pharmacokinetics of the 

compound (absorption, distribution, metabolism, and excretion). 

                                                                                                                                            
7  Kramer B. K, Schweda F, Riegger G. A. Diuretic treatment and diuretic resistance in heart failure. Am J Med. 

1999. 106. 90. 
8  Sagnelli; G. A. Cardiovascular Research 2001, 51, 416. 
9  Krum H, Carson P, Farsang C, et al. Effect of valsartan added to background ACE inhibitor therapy in patients 

with heart failure: results from Val-HeFT. Eur J Heart Fail 2004; 6(7):937. 
10  (a) Monrad, E.; Bain, D. S.; Smith, H. Circulation 1985, 71, 972. (b) Cuffe, M. S.; Califf, R. M.; Adam, K. R. 

Jr. JAMA 2002, 287, 1541. 
11  (a) Pritchett, A. M.; Redfield, M. M. "Beta–blockers: new standard therapy for heart failure". Mayo Clin. Proc. 

2002, 77 (8), 839 (b) Pritchett, A. M.; Redfield, M. M. "Beta–blockers: new standard therapy for heart failure". 
Mayo Clin. Proc. 2002, 77 (8), 845. c) Hjalmarson, A.; Goldstein, S.; Fagerberg, B. et al "Effects of 
controlled–release metoprolol on total mortality, hospitalizations, and well–being in patients with heart failure: 
the Metoprolol CR/XL Randomized Intervention Trial in congestive heart failure (MERIT-HF). MERIT-HF 
Study Group". JAMA 2000, 283 (10), 129. 

12  Whitering, W. “An Account of The Foxglove, And Some Of Its Medical Uses; With Practical Remarks On 
Dropsy, And Other Diseases” Robinson, London, 1785. 

13  (a) Schmiedeberg J. E. O. Untersuchungen über die pharmakologisch wirksamen Bestandteile der Digitalis 
purpurea. Arch Exp Path Pharmak 1875, 3, pp. 16. (b) Greef, K.; Schadewalt H. Cardiac Glycosides Part I 
Exp. Pharmacology (Ed. Grieff, K. Handb. Exp. Pharmacol. 1981, 56/I, pp. 1 

14  (a) Barhmann, H.; Greeff, K. in Cardiac Glycosides Part I Exp. Pharmacology (Ed. Grieff, K. Handb. Exp. 
Pharmacol. 1981, 56/I, pp. 124). (b) Repke, R. H.; Megges, R.; Weiland, J.; Schön, R. Angew. Chem. Int. Ed. 
Engl. 1995, 34, 282. 

15  Joubert, P. H.; Grossman, M. Eur. J. Clin. Invest. 2001, 31 (S2), 1. 
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It is known that contraction of the heart muscle is activated by a transient increase in intracellular 

Ca2+ concentration. It is thought, though there is still debate, that cardiac glycosides act by inhibiting a 

membrane Na+K+ ATPase (NKA),16 causing less Ca2+ to be exported from the cell. Consequently, more 

Ca2+ accumulates in the sarcoplasmatic reticulum and is available during subsequent contractions, 

leading to an increased contraction force (Figure 1.2, via A).17 In contrast, Santana et al.18 found that 

cardiac glycosides may induce a slip-mode conductance through Na–channels (SOC), allowing Ca–ions 

to enter the cell via these channels (Figure 1.2, via C). Other researchers19 have found that cardiac 

glycosides enhance the release of Ca from the sarcoplasmatic reticulum (SR) by increasing single 

channel activity of ryanodine–receptors (RyR), which release Ca ions to the cytoplasm (Figure 1.2, via 

B). 

 

Figure 1.2 Mode of Action of Cardiac Glycosides20 
N
K A

N
KX SO
C

SR

ATP ADP+Pi

2K3Na

A

A

C

R
yR

Ca+Ca+

Ca+

Ca+
Ca+

Ca+
Ca+ Ca+

Ca+ Ca+

Ca+
SERCA

Ca+

Ca+

Ca+
Ca+

PLB

Ca+

B3Na

 
NCX = Na/Ca exchanger; NKA = Na/K ATPase; SOC = Sodium open channels; RyR = Ryanodine receptor; 

SR = Sarcoplasmatic Reticulum; SERCA = SR Ca–ATPase; PLB = phospholamban 

 

 

Recently, it was reported that digitoxigenin, its glycosides, and its derivatives (Figure 1.1) 

strongly inhibit the proliferation or induced apoptosis of various malignant cell lines.21 In response, 

                                                 
16  Heller, M. Biochem. Pharmacol. 1990, 40, 919. 
17  Lee, C. O.; Abete, P.; Pecker, M.; Sonn, J. K.; Vassalle, M. J. Mol. Cell. Cardiol. 1985, 17, 1043. 
18  Santana, L. F.; Gomez, A. M.; Lederer, W. J. Science, 1998, 279, 1027. 
19  Sagawa, T.; Sagawa, K.; Kelly, J. E.; Tsushima, R. G.; Wasserstrom, J. A. Am. Journ. of Physiology-Heart and 

Circulatory Physiology ,2002, 282, H1118. 
20  Adapted from: Schwinger, R. H. G.; Bundgaard, H.; Müller-Ehmsen, J.; Kjeldsen, K. Cardiovascular 

Research, 2003, 57, 913.  
21  (a) Ueda, J.; Tezuka, Y.; Banskota, A. H.; Tran, Q. L.; Tran, Q. K.; Saiki, I.; Kadota, S. J. Nat. Prod. 2003, 66, 

1427. (b) Laphookhieo, S.; Cheenpracha, S.; Karalai, C.; Chantrapromma, S.; Rat-a-pa, Y.; Ponglimanont, C.; 
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certain carbohydrate–modified moieties have been synthesized to impair Na/K ATPase activity and 

improve tumor–specific cytotoxic activity.22  

 

1.1.3 Challenges in the Synthesis of 2-Deoxyglycosides 

Once the biological importance of 2-deoxyglycosides was discovered, interest in the synthesis of 

these products increased. The ultimate goal for glycosyl chemists is to obtain 2-deoxyoligosaccharides 

in a highly efficient and stereoselective manner.  

The target of the synthesis of 2-deoxyglycosides is obtaining oligosaccharides by glycosylation, 

starting with 2-deoxymonomers in a highly stereoselective fashion. (Figure 1.3)  

 

Figure 1.3 Problems of the Glycosylic Bond Formation 

 

 
 

 

The most classical method of glycosylation involves activation of an anomeric leaving-group on a 

glycosyl donor in the presence of an acceptor. If the glycosyl donor is acylated, excellent 

stereoselectivity is obtained due to the anchimeric assistance of the acyl group in the carbenium 

intermediate (Scheme 1.1).  

However, the application of this method is limited; it cannot be effectively used for the synthesis 

of 2-deoxyglycosides. Another problem associated with 2-deoxyglycoconjugates is that the absence of 

a hydroxyl group at C-2 makes the glycosyl bond much more labile to acid hydrolysis. This is the 

drawback of several carbohydrate drugs that are administered as oral medications. 

In the absence of an ester group to serves as a stereodirecting neighbouring group at C-2, there is 

low stereoselectivity at the glycosylation step and an α/β mixture of glycosides is obtained (Scheme 

1.2). 

 

                                                                                                                                            
Chantrapromma, K. Phytochemistry 2004, 65, 507. (c) Kamano, Y.; Kotake, A.; Hashima, H.; Inoue, M.; 
Morita, H.; Takeya, K.; Itokawa, H.; Nandachi, N.; Segawa, T.; Yukita, A.; Saitou, K.; Katsuyama, M.; Pettit, 
G. R. Bioorg. Med. Chem. 1998, 6, 1103. (d) Lopez-Lazaro, M.; Pastor, N.; Azrak, S. S.; Ayuso, M. J.; Austin, 
C. A.; Cortes, F. J. Nat. Prod. 2005, 68, 1642. 

22  Langenhan, J. M.; Peters, N. R.; Guzei, I. A.; Hoffmann, F. M.; Thorson, J. S. Proc. Natl. Acad. Sci. U.S.A. 
2005, 102, 12305. 
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Scheme 1.1 Stereoselective Control of the Acyl Group 
 

 
 

 

Scheme 1.2 Glycosylation Products without Stereoselective Assistant 

 

 
 
 

In the last few decades, several strategies have been developed to address this problem. Many of 

these methods provide good yields and stereoselectivities; however, they are usually limited to the 

reaction condition and reagent. Therefore, a suitable general method for glycosylation is still missing. 

 

1.1.4 Methods for the Synthesis of 2-Deoxyglycosides 

Even with the above mentioned problems, there are many important antibiotic families prepared 

with 2-deoxyglycosyl structures. In the past few years, many synthetic strategies that allow for the 

synthesis of 2-deoxyglycosides have been published.23 The objective of this chapter is to briefly review 

these methods, which are classified according to the control elements used in position C-2 and the 

leaving group strategy. The selectivities of these synthesis methods will also be compared. 

 

1.1.4.1 No Control Element at C-2 

When there is no control element at position C-2, the ratio of α/β products depends on some 

combination of control elements known as ´kinetic anomeric effect´ and ´thermodynamic effect´. These 

favour axial linkage of nucleophilic species at C-1 and so produce mostly the α-product. Many 

                                                 
23  (a) Marzabadi, C. H.; Franck, R. W. Tetrhadron 2000, 56, 8385. (b) Kirschning, A.; Bechtold, A. F.-W.; Rohr, 

J. Top. Curr. Chem. 1997, 188, 1. 
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anomeric leaving groups have been used at C-1 in the last few decades to increase the selectivity of the 

glycosylation without a C-2 control element. 

 

Synthesis of 2-Deoxy-α-glycosides 

2-Deoxy-α-glycosides can be obtained from 2-deoxy glycosyl donors driving the glycosylation 

under thermodynamic conditions. 2-Deoxy-α-glycosides can be prepared without a control element at 

C-2 from a thioether,24 sulfoxide,25 phenylsulfonyl group,26 pyridylthiol, 2-pyridyl carboxylic acid,27 

fluoro glycoside,28 glycosyl derivatives as n-pentenyl,29 or phosphate,30 as well as from an inactivated 

hydroxyl at C-1,31 or by starting with glycals32 (Scheme 1.3, A).  
 

Scheme 1.3  Selected Methods for the Synthesis of 2-Deoxy-α-glycosides without a Control  

  Element at C-2 
 

 
                                                 
24  (a) Ravi, D.; Kulkarni, V. R.; Mereyala, H. B. Tetrahedron Lett. 1989, 30, 4287. (b) Toshima, K.; Nozaki, Y.; 

Tatsuta, K. Tetrahedron Lett. 1991, 32, 6887. 
25  Ge, M.; Thomson, C.; Kahne, D. J. Am. Chem. Soc. 1998, 120, 11014. 
26  Brown, D. S.; Ley, S. V.; Vile, S.; Thompson, M. Tetrahedron 1991, 47, 1329. 
27  Furukawa, H.; Koide, K.; Takao, K-I.; Kobayashi, K. Chem. Pharm. Bull. 1998, 46, 1244. 
28  (a) Junneman, J.; Lundt, I.; Thiem, J. Liebigs Ann Chem. 1991, 759. (b) Schene, H.; Waldmann, H. Chem. 

Commun. 1998, 2759. 
29  Mootoo, D. R.; Konradsson, P.; Udodong, U.; Fraser-Reid, B. J. Am. Chem. Soc. 1988, 110, 5583. 
30  Koch, A.; Lamberth, C.; Wetterich, F.; Giese, B. J. Org. Chem. 1993, 58, 1083. 
31  Takeuchi, K.; Higuchi, S.; Mukaiyama, T. Chem. Lett. 1997, 960. 
32  (a) Bolitt, V.; Mioskowski, C.; Lee, S-G.; Flack, J. R. J. Org. Chem. 1990, 50, 4576. (b) Nicolaou, K. C.; 

Trujillo, J. I.; Chibale, K. Tetrahedron 1997, 53, 8751. (c) Sabesan, S.; Neira, S. J. Org. Chem. 1991, 56, 5468. 
(d) Dushin, R. G.; Danishefsky, S. J. J. Am. Chem. Soc. 1992, 114, 3471. (e) Thiem, J.; Kopper, S. Tetrahedron 
1990, 46, 113. (f) Izumi, M.; Ichikawa, Y. Tetrahedron Lett. 1998, 39, 2079. 
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α-Products were also obtained from β-configured glycosyl phosphites33 (Scheme 1.3, B). Another 

important and general method for synthesizing 2-deoxy-α-glycosides is simply the acid–catalyzed 

activation of glycals in the presence of an acceptor to afford the final glycoside.34 However, the acid 

catalyst has to be carefully chosen to avoid the Ferrier allylic rearrangement. A Ph3P–HBr system is 

usually employed as a weak acid source (Scheme 1.3, C). 

 

Synthesis of 2-Deoxy-β-glycosides 

The absence of electron–withdrawing substituents on the saccharide units readily promotes the 

anomerization of β-glycosides under acidic glycosylation conditions. Furthermore, it is difficult to 

achieve glycosylation in a stereoselective manner when neighbouring–group participation from 

substituents at C-2 is unavailable and an enhanced conformational flexibility owing to a reduced 

number of substituents. However, several methods are available for direct β-selective glycosylations 

using 2-deoxy glycosyl donors35 (Scheme 1.4, A). 2-Deoxy-β-glycosides can be prepared without a 

control element at C-2 with an inactivated hydroxyl group at C-136 using radical chemistry37 or β-fluoro 

glycosides38 (Scheme 1.4, B) or the acid–catalyzed activation of glycals39 with Ph3P–HBr (Scheme 1.4, 

C). 

 Alternatively, Zhou and O’Doherty have developed a linear and stereocontrolled route to the 

mono-, di-, and trisaccharide of Digitoxin.40 This de novo procedure starts with the palladium–catalyzed 

glycosylation of digitoxigenin II with pyranone I to render product III, a single diastereoisomer. 

Further reduction, rearrangement, and dihydroxylation produces deprotected monodigitoxoside IV. 

Repetition of these procedures in an iterative manner yields the disaccharide first and, eventually, 

Digitoxin (Scheme 1.5). 

                                                 
33  Paterson, I.; McLeod, M. D. Tetrahedron Lett. 1995, 36, 9065. 
34  For some acid or metal−catalyzed strategies, see: (a) Sherry, B. D.; Loy, R. N.; Toste, F. D. J. Am. Chem. Soc. 

2004, 126, 4510. (b) Babu, R. S.; Zhou, M.; O’Doherty, G. A. J. Am. Chem. Soc. 2004, 126, 3428. (c) 
Toshima, K.; Nagai, H.; Ushiki, Y.; Matsumara, S. Synlett, 1998, 1007. 

35  (a) Tanaka, H.; Yoshizawa, A.; Takahashi, T. Angew. Chem. Int. Ed. 2007, 46, 2505. (b) Pongdee, R.; Wu, B.; 
Sulikowski, G. A. Org. Lett. 2001, 3, 3523. (c) Hashimoto, S. I.; Sano, A.; Sakamoto, H.; Nakajima, I.; 
Yanagiya, Y.; Ikegami, S. Synlett 1995, 1271. (d) Toshima, K.; Misawa, M.; Ohta, K.; Tatsuta, K.; Kinoshita, 
M. Tetrahedron Lett. 1989, 30, 6417. (e) Binkley, R. W.; Koholic, D. J. J. Org. Chem. 1989, 54, 3577. 

36  Finzia, G. J. Carbohyd. Chem. 1998, 17, 75. 
37  (a) Crich, D.; Hermann, F. Tetrahedron Lett. 1993, 34, 3385. (b) Kahne, D.; Yang, D.; Lim, J. J.; Miller, R.; 

Paguaga, E. J. Am. Chem. Soc. 1988, 110, 8716. 
38  Junneman, J.; Lundt, I.; Thiem, J. Liebigs Ann. Chem. 1991, 759. 
39  (a) Jaunzems, J.; Kashin, D.; Schönberger, A.; Kirschning, A. Eur. J. Org. Chem. 2004, 3435. (b) McDonald, 

F. E.; Wu, M. Org. Lett. 2002, 4, 3979. (c) McDonald, F. E.; Reddy, K. S. Angew. Chem. Int. Ed. 2001, 40, 
3653. (d) McDonald, F. E.; Reddy, K. S.; Díaz, Y. J. Am. Chem. Soc. 2000, 122, 4304. 

40  (a) Zhou, M.; O’Doherty, G. A. J. Org. Chem. 2007, 72, 2485. (b) Zhou, M.; O’Doherty, G. A. Org. Lett. 2006, 
8, 4339.  
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Scheme 1.4  Selected Methods for the Synthesis of 2-Deoxy-β-glycosides (from 2-Deoxy Glycosyl 

Donors and Acid–catalyzed Strategies) 
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Scheme 1.5  Selected Method for the Synthesis of 2-Deoxy-β-glycosides (de Novo Metal–  

 Catalyzed Strategy) 
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1.1.4.2 Control Element at C-2 

When a control element is present at C-2, it is usually a heteroatomic group. The advantage of this 

approach is that once the anomeric group is activated, the group at C-2 can act as a Lewis base, 

controlling the stereoselectivity of the glycosylation. This strategy furnishes 1,2-trans glycosides.  
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Synthesis of 2-Deoxy-α-glycosides 

Halogens have been found to add to the top face of D-glycals; the oxonium intermediates41 afford 

trans-diaxial products. Attack of the intermediates by alcohol nucleophiles produces mainly trans-2-

halo-glycosides. The rate of diastereomers formed in the reaction is highly dependent on the halogen. It 

was observed that iodine has the best selectivity, with decreasing selectivity from bromine to chlorine. 

One of the main advantages of these halogen groups is that they can be removed easily to form 2-

deoxyglycosides. 

There are several examples of halogen–controlled glycosylation in the literature. In this chapter, 

examples are classified by the reaction strategy. Two strategies can be distinguished: a) glycal is 

activated with an electrophilic halogen source in the presence of a glycosyl donor to give the 2-iodo-2-

deoxy glycoside in a so called ´one-pot´ reaction, such α-glycosides were obtained starting directly 

from glycals, as described by Thiem (Scheme 1.6, A);32e,42 or b) the 2-halogenated glycosyl donor is 

isolated and subsequently activated in the presence of an alcohol acceptor,43 α-glycosides were 

obtained in two steps, through 2-iodoglycosyl donors, as described by Roush (Scheme 1.6, B).44 

 

Scheme 1.6 Synthesis 2-α-Deoxy-glycosides from Glycals 

 

 
 

 

Synthesis of 2-Deoxy-β-glycosides 

Although the addition of electrophiles to glycals in the presence of an acceptor has become a 

useful protocol for directly providing α-linked disaccharides, this same protocol is not frequently used 

                                                 
41  (a) Bravo, F.; Viso, A.; Alcazar, E.; Molas, P.; Bo, C.; Castillon, S. J. Org. Chem. 2003, 68. 686. (b) Ayala, L.; 

Lucero, C. G.; Romero,  J. A. C.; Tabacco, S. A.; Woerpel. K. A. J. Am.  Chem. Soc. 2003, 125, 15521. 
42  (a) Kopper, S.; Thiem, J. Carbohydr. Res. 1994, 260, 219. (b)  Izumi, M.; Ichikawa, Y. Tetrahedron Lett. 1998, 

39, 2079. 
43  Roush, W. R.; Hartz, R. A.; Gustin, D. J. J. Am. Chem. Soc. 1999, 121, 1990. 
44  Kirschinng, A. Eur. J. Org. Chem. 1998, 2267. 
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to obtain β-glycosides.45 Glycosyl donors bearing halogens or chalcogens at C-2 are the more 

commonly employed precursors for the synthesis of β-linked disaccharides and oligosaccharides.46 The 

addition of any electrophilic iodine to glycals in acetic acid gives mixtures of trans-iodoacetates. Since 

iodoacetates have been successfully used as glycosyl donors for the preparation of α-glycosides, the 

preparation of equatorially disposed iodoacetate donors is highly desirable. Initially, Roush and Bennett 

performed the addition of NIS–AcOH to a 6-deoxyglycal under thermodynamic conditions.47 Although 

a 1:1 mixture of α-manno/β-gluco derivatives was obtained, it was possible to separate both 

diastereomers. After separation, the manno isomer could be reduced back to the starting glycal with 

lithium iodide in THF. Equatorially disposed iodoacetate donors have been efficiently prepared and 

used as β-selective glycosyl donors from the iodoacetoxylations of glycals bearing bulky silyl ether 

groups with hypervalent iodine reagents.44 The best results were obtained when the D-glycal precursor 

lacked oxygenation at C-6, or when it was bis-silylated and could readily exist in a twisted boat 

conformation 5H4 (Scheme 1.7, A).  

All other glycosyl donors that adopt the normal 4C1 conformation and/or have deactivating 

heteroatom substituents at C-6 require higher temperature. Alternatively, 2-deoxy-2-iodoglucosyl 

donors can be selectively prepared by opening, in acidic conditions, the corresponding 1,6-anhidro 

compound, which in turn can be easily obtained by iodocyclization of D-glucal48 (Scheme 1.7, B). 

When configurations that are different from the arabino are subjected to haloalkoxylation 

reaction, the presence of special protecting groups can lead to the formation of the desired equatorially 

disposed halo glycosyl donors in high yield. Thus, Durham and Roush developed 3,4-O-carbonate–

protected 2,6-dideoxy-2-halo-galactosyl donors that provide access to 2,6-dideoxy-β-galactosides with 

high diastereoselectivity (Scheme 1.7, C).49 

 

                                                 
45  For some approaches using glycals through a ´one-pot´ procedure, see: (a) Franck, R. W.; Kaila, N. Carbohydr. 

Res. 1993, 239, 71. (b) Grewal, G.; Kaila, N.; Franck, R. W. J. Org. Chem. 1992, 57, 2084. (c) Ramesh, S.; 
Franck, S. W. J. Chem. Soc., Chem. Commun. 1989, 960. (d) Preuss, R.; Schmidt, R. R. Synthesis 1988, 694. 
(e) Ito, Y.; Ogawa, T. Tetrahedron Lett. 1987, 28, 4701. 

46  For some approaches using glycals through a two-step procedure, see: (a) Durham, T. B.; Roush, W. R. Org. 
Lett. 2003, 5, 1875. (b) Blanchard, N.; Roush, W. R. Org. Lett. 2003, 5, 81. (c) Chong, P. Y.; Roush, W. R. 
Org. Lett. 2002, 4, 4523. (d) Roush, W. R.; Bennett, C. E. J. Am. Chem. Soc. 2000, 122, 6124. (e) Roush, W. 
R.; Gung, B. W.; Bennett, C. E. Org. Lett. 1999, 1, 891. (f) Dräger, G.; Garming, A.; Maul, C.; Noltemeyer, 
M.; Thiericke, R.; Zerlin, M.; Kirschning, A. Chem. Eur. J. 1998, 4, 7. (g) Roush, W. R.; Sebesta, D. P.; James, 
R. A. Tetrahedron 1997, 53, 8837. (h) Roush, W. R.; Sebesta, D. P.; Bennett, C. E. Tetrahedron 1997, 53, 
8825. (i) Roush, W. R.; Briner, K.; Kesler, B. S.; Murphy, M.; Gustin, D. J. J. Org. Chem. 1996, 61, 6098. (j) 
Hunt, J. A.; Roush, W. R. J. Am. Chem. Soc. 1996, 118, 9998. (k) Perez, M.; Beau, J. M. Tetrahedron Lett. 
1989, 30, 75. (l) Thiem, J.; Schottmer, B. Angew. Chem, Int. Ed, Engl. 1987, 26, 555. 

47  Roush, W. R.; Bennett, C. E. J. Am. Chem. Soc. 1999, 121, 3541. 
48  (a) Leteux, C.; Veyrières, A.; Robert, F. Carbohydr. Res. 1993, 242, 119. (b) Tailler, D.; Jacquinet, J.-C.; 

Noirot, A.-M.; Beau, J.-M. J. Chem. Soc., Perkin Trans. 1 1992, 3163. 
49  Durham, T. B.; Roush, W. R. Org. Lett. 2003, 5, 1871. 
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Scheme 1.7  Selected Methods for the Synthesis of 2-Deoxy-β-glycosides (from Glycals and 2- 

 Halo Glycosyl Donors) 

 

 
 
 

 Interestingly, in the presence of alcohols, electrophilic sulfur and selenium species add to the 

double bond of glycals in a trans fashion to give glycosides. The face–selectivity of this approach may 

be influenced by a variety of factors including the solvent polarity, conformation of the reacting glycal, 

and nature of the substituents on the glycal (Scheme 1.8, A). For D-glycals that exist in the normal 4H5 

conformation, sulfonium species have been observed to attack predominately from below the plane of 

the glycal. The good selectivities obtained from electrophilic sulfur reagents have given rise to their 

extensive use for the preparation of 2-deoxy-2-thio-β-glycosides. The sulfur group at C-2 is easily 

removed to afford the 2-deoxy-β-glycosides. In addition, different face–selectivity approaches are 

observed for the two electrophiles, sulfur and selenium. 

Alternatively, special glycosyl donors with substituents at C-250 acting as neighboring groups or 

1,2-anhydropyranoses51 are used, followed by reductive removal of the substituents at C-2. Nicolaou 

and co-workers52 reported an original approach for preparing 2-deoxy-2-phenylsufanyl- and 2-

phenylselelenenyl-β-glucopyranosyl fluorides whereby 1-thio-α- and 1-seleno-α-glycosides are reacted 

with the unprotected hydroxyl group at C-2 with diethylaminosulfur trifluoride (DAST) (Scheme 1.8, 

B). DAST first reacts with the hydroxyl group at C-2 converting it into a good leaving group and 

                                                 
50  (a) Yu, B.; Yang, Z. Org. Lett. 2001, 3, 377. (b) Castro-Palomino, J. C.; Schmidt, R. R. Synlett 1998, 501. 
51  Gervay, J.; Danishefsky, S. J. J. Org. Chem.1991, 56, 5448. 
52  (a) Nicolaou, K. C.; Ladduwahetty, T.; Randall, J. L.; Chucholowski, A. J. Am. Chem. Soc. 1986, 108, 2466. 

(b) Nicolaou, K. C.; Mitchell, H. J.; Fylaktakidou, K. C.; Suzuki, H.; Rodríguez, R. M. Angew. Chem. Int. Ed. 
2000, 39, 1089. 
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delivering a fluoride anion. A 1,2-migration of the group at the anomeric position and concomitant 

entry of fluorine at position C-1 produces the 2-deoxy-2-phenylsufanyl- and 2-phenylselenenyl-β-

glucopyranosyl fluorides. These compounds are excellent glycosyl donors and have allowed for the 

synthesis of complex oligosaccharides. 

In a novel approach, following the elegant synthesis of 2-aminosugar glycosides by [4+2] 

cycloaddition of azodicarboxylates to glycals,53 Franck and co-workers54 developed new bicyclic 

donors for the synthesis of 2-deoxy-β-glycosides. The cycloaddition appears to be a reaction with 

inverse electron demand, since the smallest differences in energy are between the HOMO of the glycal 

dienophile and the low–lying LUMO of the heterodiene (Scheme 1.8, C). 

 

Scheme 1.8  Selected Synthesis of 2-Deoxy-β-glycosides with sulfur and Selenium as Control 

 Elements at C-2 
 

 
 

 

β-Glycosides have been prepared in modest yields from various derivates of N-

formylglucosamine. Intermediate oxazolinium ions are thought to give rise to a high level of β-

selectivity in these glycosylation reactions (Scheme 1.9).55  

 

                                                 
53  Leblanc, Y.; Fitzsimmons, B. J.; Springer, J. P.; Rokach, J. J. Am. Chem. Soc. 1989, 111, 2995. 
54  (a) Dios, A.; Nativi, C.; Capozzi, G.; Franck, R. W. Eur. J. Org. Chem. 1999, 1869. (b) Dios, A.; Geer, A.; 

Marzabadi, C. H.; Franck, R. W. J. Org. Chem. 1998, 63, 6673. (c) Marzabadi, C. H.; Franck, R. W. J. Org. 
Chem. 1998, 63, 2197. 

55  Capozzi, G. Dios, A.; Franck, R. W.; Geer, A.; Marzabadi, C.; Menichetti, S.; Nativi, C.; Tamarez, M. Ang. 
Chem. Int. Ed. Engl. 1996, 35, 777. 
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Scheme 1.9  Selected Synthesis of 2-Deoxy-β-glycosides with Oxygen and Nitrogen as Control 

 Elements at C-2 
 

 
 

 

Synthesis of 2-Deoxy-α-glycosides or 2-Deoxy-β-glycosides by Stereocontrol 

Toshima and Tatsuta developed a conceptually different approach, whereby 2,6-anhydro-2,6-

dideoxy-2,6-dithio sugars are used for the stereocontrolled synthesis of 2,6-dideoxy-α- and -β-

glycosides.56 These new donors have a very rigid bicyclic structure (boat conformation) and the 

stereoselectivity of the glycosylation should not be affected by the anomeric effect in the same manner 

as it is with the more usual chair conformers (Scheme 1.10). 

A variety of leaving groups (X) can be used. Particularly with SPh or F, the activation under 

kinetic conditions produces the α-isomer in high yield and almost complete stereoselectivity. This 

outcome indicates that the interaction of the incoming alcohol with the sulfur electron pair in I is more 

important than the repulsion from the 3-OAc group. Alternatively, when X = OAc, the β-anomer is 

mainly obtained as a consequence of the evolution of the system to the more thermodynamically stable 

compound. 

 

Scheme 1.10 Selected Synthesis of 2-Deoxy-α- or 2-Deoxy-β-glycosides from 2,6-Anhydro-2,6- 

 dideoxy-2,6-dithio Sugars 
 

 
 

                                                 
56  Toshima, K. Carbohydr. Res. 2006, 341, 1282 and references therein. 
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In this way, both anomers can be stereoselectively obtained, depending on the reaction condition. 

However, when the 3-O-substituent is equatorial, no 1,3-diaxial interaction is present and the α-

glycoside is thermodynamically stable. The high reactivity of 2,6-anhydro-2-thioglycosyl donors is due 

to the electro–donating nature of the bridging sulfur atom. Indeed, the derived sulfoxides and sulfones 

have no glycosylating power and can thus be implied in block synthesis exploiting the armed–disarmed 

effect. 

Most of the procedures described above have been applied to the synthesis of 2,6-dideoxy-D-

arabino-hexo-pyranosides (D-olivose) and 2-deoxy-L-fuco-pyranosides. However, there are only a few 

reported examples of the synthesis of 2,6-dideoxy-D-ribo-hexoglycosides (D-digitoxose) and no reports 

of the synthesis of 2,6-dideoxy-D-xylo-hexoglycosides (D-boivinose), probably because of the difficulty 

of obtaining the corresponding glycals. Consequently, efficient methods for glycosylation, which are 

among the most fundamental and important reactions performed with carbohydrates, are of particular 

interest in the synthesis of these rare and biologically important configurations. 

 

1.1.5 Synthesis of 2-Deoxyglycosides from Furanoses through an Olefination – Cyclization – 

Glycosylation Process 

Our group presented a new method for the synthesis of 2-desoxyglycosides and oligosaccharides 

based on a new access to 2-deoxy-2-iodo glycosyl donors without the limitations of availability of 

pyranoid glycals and the stereoselective addition of electrophiles. This new synthetic route involves 

three reactions: olefination to yield an alkenyl derivative, electrophilic iodine–induced cyclization to 

give phenyl 2-deoxy-2-iodo-1-thiopyranosides as a new type of glycosyl donor,57 and finally 

glycosylation44,47,49,58 for synthesis of the natural product59 (Scheme 1.11 and Scheme 1.12). 
 

 

 

 

 

                                                 
57  Boutureira, O.; Rodríguez, M. A.; Matheu, M. I.; Díaz, Y.; Castillón, S. Org. Lett. 2006, 8, 673. (b) Rodríguez, 

M. A.; Boutureira, O.; Arnés, X.; Matheu, M. I.; Díaz, Y.; Castillón, S. J. Org. Chem. 2005, 70, 10297. (c) 
Arnés, X.; Díaz, Y.; Castillón, S. Synlett 2003, 2143. d) Boutureira, O. Tesis Doctoral, Tarragona, 2007. e) 
Rodríguez, M. A. Tesis Doctoral, Tarragona, 2007. 

58  For glycosylation methods that involve the use of 2-iodo-deoxy glycosyl donors see: (a) Kirschning, A.; 
Jesberger, M.; Schöning, K-U. Org. Lett 2001, 53, 3623. (b) Roush, W. R.; Narayan, S.; Bennett, C. E.; Briner, 
K. Org. Lett. 1999, 1, 895. (c) Roush, W. R.; Narayan, S. Org. Lett. 1999, 1, 899. (d) For a procedure of 
synthesis of glycosides involving a mercury–induced cyclization of enolethers see: Paquet, F.; Sinaÿ, P. 
Tetrahedron Lett. 1984, 25, 3071. 

59  For recent natural products incorporating pregnane 2-deoxyoligosaccharides see: (a) Perrone, A.; Paza, A.; 
Ercolino, S. F.; Hamed, A. I.; Parente, L.; Pizza, C.; Piacente, S. J. Nat. Prod. 2006, 69, 50. (b) Bai, H.; Li, W.; 
Koike, K.; Satou, T.; Chen, Y.; Nikaido, T. Tetrahedron 2005, 61, 5797. 
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Scheme 1.11 General Scheme for the Synthesis of 2-Deoxy-2-iodo-pyranosylglycosides from  

 Ribo/Xilo pentofuranoses 

 

 
 

 

Scheme 1.12 General Scheme for the Synthesis of 2-Deoxy-2-iodo-pyranosylglycosides from  

 Arabino/Lyxo Pentofuranoses 

 

 
 

 
The olefination of pentoses under Wittig–Horner (WH) conditions, using phosphine oxide 

carbanoins and Li–bases, proved the most effective for chemoselectivity, diastereoselectivity, and yield 

of alkene formation. As expected for semistabilized carbanions, the reaction yielded Z/E alkene 

mixtures.57c-e,60  

The iodine–induced cyclization of the corresponding hexenyl sulfides involves activation of the 

double bond by an interaction of electrophilic reagents towards the intramolecular nucleophilic attack 

of the free hydroxyl group. The regioselectivity of these cyclizations can usually be described well by 

                                                 
60  Arnés Novau, X. Tesis Doctoral, Tarragona, 2003.  
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the Baldwin’s rules (Scheme 1.13);61 however, there are some reactions that do not follow the 

Baldwin’s rules. Our group has extensively studied the parameters that govern the electrophile–induced 

cyclization of alkenols, such as the electrophilic species, protective groups, solvent, and base, kinetic or 

thermodynamic conditions. When terminal double bonds are involved in the reaction, the exo-

cyclization mode is usually favoured. The examined reactions show irreversibility in the presence of 

base.62 
 

Scheme 1.13 The Effect of Y Group by Electrophile–Induced Cyclization 

 

 
 

 

When a sulfanyl group is attached to the terminus of the double bond, however, the reaction is 

completely regioselective, and the 6-endo product is obtained. This regiochemical outcome can be 

explained by stabilization of the carbocation in the α-position of the electro–donating group. In 

contrast, the presence of an electron–withdrawing group favours the exo-attack, which could be 

considered a Michael reaction.   

The effect of an iodine electrophile and an allylic substituent on the stereoselectivity of the 

cyclization was also studied.63 It was found that the iodine, which is located in the C-2 position of the 

final hexose, as a result of electrophilic induced cyclization, was situated at the cis-position with respect 

to the C-3 alkoxy substituent, the formerly allylic group in the alkene substrate. This phenomenon can 

be explained with the so-called ´inside-alkoxy effect´.64 This stereoelectronic effect directs the 

conformation of the alkene to the most reactive position, where the allylic alkoxy is situated in the inner 

position of the plane of double bond and there is a minimum overlap between the double bond π orbital 

and the C–O bond σ* orbital. In such a conformation, therefore, the electron–withdrawing effect of the 

alkoxy group over the double bond is minimized, and the latter is then most reactive towards an 

electrophile (Scheme 1.14).  

                                                 
61  Knight, D. W.; Jones, A. D.; Redfern, A. L.; Gilmore, J. Tetrahedron Lett. 1999, 40, 3267 
62  Guindon, Y.; Soucy, F.; Yoakim, C.; Ogilvie, W. W.; Plamondon L. J. Org. Chem. 2001, 66, 8992. 
63  Castillón, S.; Bravo, F. Eur. J. Org. Chem. 2001, 507. 
64  Houk, K. N.; Moses, S. R.; Wu, Y.-D.; Rondan, N. G.; Jäger, V.; Schohe, R.; Fronczek, F. R. J. Am. Chem. 

Soc. 1984, 106, 3880. 
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This theory would explain the low reactivity observed with Z-vinyl sulfides, where the allylic 

alkoxy group takes an outside position due to a high steric hindrance in the inside-conformation. In this 

conformation, the double bound is less electron-rich and therefore the cyclization was slower and in 

some classes precluded (Scheme 1.14).  
 

Scheme 1.14 The Inside-Alkoxy Effect by Electrophile–Induced Cyclization 

 

 
 
 

In light of previous data obtained from our group on glycosylation reactions, it was thought that 

the oxocarbenium intermediates play an important role in the stereoselectivity of these glycosylation 

reactions, rather than the corresponding iodonium–ion intermediates (Scheme 1.15).42,46,49,57,65  

 

Scheme 1.15 Nucleophilic Attack on the Oxocarbenium Cations 
 

 
 

 

The selectivity observed would be determined by the nucleophilic attack on the oxocarbenium 

cations, the ground-state conformational preferences of these intermediates Ia-e and IIa-e, and the 

relative reactivity of each conformer, as mandated by Curtin–Hammet/Winstein–Holmess kinetics 

(Scheme 1.16).66 Thus, according to the results reported by Billings and co-workers,42b,67 I-axial 

intermediates IIa,b (D-manno and D-talo) and Ic-e (D-gluco, D-allo and D-gulo) are likely to be more 

stable than the corresponding I-equatorial conformers due to stabilizing hyperconjugative interactions 

between σC-I and π*C-O of the oxocarbenium. Additionally, it is known that nucleophilic attack on the 

                                                 
65  Boutureira, O.; Rodríguez, M. A.; Benito, D.; Matheu, M. I.; Díaz, Y.; Castillón, S. Eur. J. Org. Chem. 2007, 

3564. 
66  Seemann, J. I. Chem. Rev. 1983, 83, 83. 
67  Billings, S. B.; Woerpel, K. A. J. Org. Chem. 2006, 71, 5171. 
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oxocarbenium cations along a pseudoaxial trajectory to maximize overlap of the nucleophile HOMO 

with the LUMO of the oxocarbenium ion occurs with a facial preference to give a chair–like transition 

state. According to this stereoelectronic effect, the reaction of each conformer is expected to provide a 

different diastereomer of the product. However, the selectivity obtained in the glycosylation 

experiments cannot only be addressed in terms of relative conformer populations; developing 

destabilizing interactions in the transition state (transition–state effect) should also be considered. Thus, 

steric interactions between the C-3 alkoxy substituent and the incoming nucleophile may affect the 

reactivity of the oxocarbenium conformers to nucleophilic attack. 

Consistent with this idea, glycosylation of D-manno and D-gulo derivatives provide excellent α- 

and β-selectivities, respectively; by far the more stable axial I conformers IIa (D-manno) and Id (D-

gulo) are also more reactive towards nucleophilic attack. The D-allo derivative shows moderate β-

selectivity. When compared to the D-gulo derivative, the lower selectivity magnitude obtained could be 

explained by ground–state conformational preference variations. 
 

Scheme 1.16 Stereochemical Courses of Glycosylation Reactions of 2-Deoxy-2-phenylselenenyl-1-

thio-glycosyl Donors 
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In the D-allo derivative, the more reactive conformer Ic is also the more stable one (axial I); 

however, in this case the 1,3-diaxial interactions between I and the C-4 alkoxy group may increase its 

energy with respect to the case of D-gulo derivative, where such destabilizing interactions do not exist. 

The D-gluco donor provides no selectivity, probably because the reactivity of the more stable I-axial 

conformer Ie is seriously attenuated by steric interactions of the incoming nucleophile with the 

pseudoaxial C-3 substituent. Finally, to rationalize the observed β- and α-face approach of donors D-

allo and D-talo with restricted (3,4-O-isopropylidene) protecting groups, respectively, it was thought 

that the reaction might operate by way of a constrained conformation44,68 such as III and IV (Scheme 

1.16). However, β-selectivity in the 3,4-O-isopropylidene protected D-tallo derivative is lower than 

observed in the benzyl protected D-tallo derivative, suggesting that the relative enhancement of α-

selectivity is, in this case, predominantly a temperature effect. 

This new method to synthesize 2-deoxy-2-iodo-thioglycosides has been used to apply these 

glycosyl donors to the synthesis of 2-deoxyglycosides with good yield and stereoselectivity as well as 

to easily convert these molecules into other useful glycosyl donors, such as glycals.57 Our group refined 

the method to transform the sequential two-step cyclization–glycosylation process into a ´one-pot´ 

strategy, beginning with the alkenyl sulfide and finishing with the 2-deoxy-2-iodo-glycoside. This 

change eliminates the need to isolate the glycosyl donor intermediate (which is usually unstable, 

especially in the 6-deoxy series) and, thus, shortens the synthetic route to 2-deoxyglycosides. This 

approach was possible because the conditions used in cyclization [I+] are similar to those used in 

glycosylation ([I+], TfOH). The ´one pot´ procedure has higher yield than the stepwise procedure, with 

remarkable improvement in some cases and practically no loss of stereoselectivity in the final glycoside 

(Scheme 1.17).69  

 

Scheme 1.17 Refinement of the Original Stepwise Sequential Procedure into a More  

   Efficient ´One-pot´ Cyclization–Glycosylation Process 
 

 

                                                 
68   For a recent review dealing with the use of cyclic bifunctional protecting group in oligosaccharide synthesis, 

see: Litjens, R. E. J. N.; van den Bos, L. J.; Codée J. D. C.; Overkleeft, H. S.; van der Marel, G. A. Carbohydr. 
Res. 2007, 342, 419. 

69  Rodríguez, M. A.; Boutureira, O.; Matheu, M. I.; Díaz, Y.; Castillón, S. Eur. J. Org. Chem. 2007, 2470. 
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This strategy is a versatile method that can produce a variety of glycosyl donors in allo, manno, 

gulo, and talo configurations. Some of these are difficult to obtain through other approaches, such as 

the glycal assembly, which supports the value of our methodology (Figure 1.4). It would be desirable, 

nevertheless, to widen the scope of this reaction, as there are some configurations that are not accessible 

by this approach, such as altro, gluco, ido, and galacto (Figure 1.5).  

 

Figure 1.4  Accessible Configurations with the Strategy of Olefination and Cyclization (allo,  

 manno, gulo, and talo) 

 

 
 

  

Figure 1.5  Configurations that are not Accessible with Olefination and Cyclization (altro, 

 gluco, ido, and galacto) 
 

 
 

 

The elimination of the iodine moiety could follow two synthetic strategies, depending on the 

application, sensibility of the compounds intermediates, and the glycosides. 

Based on data presented in the literature and work already discussed in this section, it can be 

concluded that 2-deoxyglycosides can be successfully prepared from furanoses through an olefination–

cyclization–glycosylation process.  

As an initial step in this process, the WH olefination reaction can be used to successfully 

synthesize the desired sulfanyl alkenes with good to excellent yields, although usually in E/Z mixtures.  

Our group has studied in depth the electrophilic cyclization reactions with different electrophiles. 

Iodine was found to be an appropriate electrophile in these reactions, since it efficiently induces 
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cyclizations, is effective in controlling the stereoselectivity of the reaction, and can be easily removed 

to yield 2-deoxyglycosides. Other electrophiles, such as selenium and sulfur derivatives, may be also 

considered.  

These cyclization reactions are limited by the usual presence of Z-alkenes, since under conditions 

applied, these molecules cyclize significantly more slowly, as in the case of sulfanyl alkenes from 

ribofuranose, or not at al, as in the case of sulfanyl alkenes from arabinofuranose. 

As thioglycosides have been successfully used in glycosylation strategies,70 the 2-deoxy-2-iodo 

thioglycosides synthesized in our group were used as glycosyl donors in the stereoselective synthesis of 

2-deoxy-2-iodo glycosides. Glycosylation proceeds with good to excellent yields and stereselectivities. 

The ´one-pot´ cyclization–glycosylation procedure starting from the alkenyl sulfide, also provides good 

yields of 2-deoxy-2-iodo-glycoside with practically no loss of stereoselectivity. 

 

1.2 Goals 
The specific aims of this work are: 

1. Since Z-alkenes are rather reluctant to cyclization in the context of our synthetic 

olefination–cyclization–glycosylation strategy, it is necessary to improve E-alkene 

selectivity in the olefination reaction in order to increase the overall yield of final 

glycoside. For this reason, we designed the preparation of a library of sulfanylphosphine 

oxides with different SR bulky groups. The Second Chapter describes a new and simple 

method for the synthesis of sulfanylphosphine oxides and their use in the Wittig–Horner 

olefination reaction of pentoses to furnish 2-deoxy-2-iodo thioglycosides and subsequent 

stereoselective glycosylation of different glycosyl acceptors with the latter. The electronic 

and steric effects of SR group are studied not only in relation to the olefination reaction 

but also to cyclization and glycosylation.  

2. Although our group obtained good results with the olefination reactions of furanoses and 

subsequent 6-endo cyclization reactions furnishing 2-deoxy-2-iodo-1-thiopyranosides, we 

had no previous evidence to determine whether this strategy would also be successful for 

the ring expansion of pyranoses to obtain heptoses via olefination and subsequent 7-endo 

cyclization reaction of the corresponding heptenyl sulfide. In the Third Chapter, the 

synthesis study of septanosides is described. 

                                                 
70  Thio–Glycosides are useful glycosyl donors, see for instance: (a) Garegg, P. J. Adv. Carbohydr. Chem. 

Biochem. 1997, 52, 172. (b) Codeé, J. D. C.; Litjens, R. E. J. N.; van der Bos, L. J.; Overkleeft, H. S.; van der 
Marel, G. A. Chem. Soc. Rev. 2005, 34, 769. 
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3. The novel synthetic process developed in our group needs to be applied to natural product 

synthesis. Hence, two natural products were selected with similar structural 2,6-dideoxy-

glycosidic units: Digitoxin and the appetite suppressant P57. 

4. In Fourth Chapter an approach for the synthesis of the desired structural units is described. 
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SECOND Chapter: Study of the Olefination, Cyclization and Glycosylation of 

Ribo and Arabino Derivatives 
 

 

 

Abstract:  
Phopshine oxides with general formula Ph2P(O)CH2SR (R = t-butyl, cyclohexyl, p-

methoxyphenyl, 2,6-dichlorophenyl, 2,6-dimethylphenyl) were used in the olefination reaction with 

2,3,5-tri-O-benzyl-α,β-D-ribose and -arabinose to study the effect of a bulky R group in the 

stereoselective formation of desired alkenes or in electrophile–cyclization and glycosylation reactions. 
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“Nunca se da tanto como 

cuando se dan esperanzas.” 

   

  Anatole France, escritor francés 
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2.1 Introduction 

 

2.1.1 The Need for Synthesis of Novel Phosphine Oxides 

As discussed in the general introduction, our group has developed a general two-step procedure 

for synthesizing 2-deoxy-2-iodo-thioglycosides from furanoses. The first step is an olefination of 

furanoses to obtain sulfanylalkene derivatives, which undergoes a NIS–induced cyclization reaction to 

give 2-deoxy-2-iodo-1-thioglycosides in a regio- and stereoselective manner. In our previous work,57 

we observed that the Z-isomer cyclizes much more slowly than the E-isomer or not at all. Various 

reagents have been used in the olefination reactions of furanoses, including Wittig,71 Wittig–Horner 

(WH),72 Horner–Wadsworth–Emmons73 and Peterson olefination.74 We tested all these procedures and 

obtained the best results in chemoselectivity, diastereoselectivity, and yield of alkene formation under 

WH conditions,74 that is using phosphine oxide carbanions formed by Li–bases. However, as expected 

for semistabilized carbanions, the WH olefination reaction produced Z/E alkene mixtures (Scheme 2.1). 

To increase the stereoselectivity of olefination and, consequently, the efficiency of cyclization, we 

studied the influence of different SR groups on the E/Z-ratio, where R can be a phenyl, substituted 

phenyl, tert-butyl, cyclohexyl, etc. For this study, we synthesized the (sulfanylmethyl)-

diphenylphosphine oxides because many of these phosphine oxides had not been described in the 

literature. 

 

Scheme 2.1 General Scheme for the Synthesis of Sulfanyl Glycosides from Furanoses 

 

 
 

 

 

 

 

                                                 
71  Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863. 
72  (a) Warren, S.; Grayson, J. I. J. Chem. Soc., Perkin Trans. 1 1977, 2263. (b) Clayden, J.; Warren, S. Angew. 

Chem. Int. Ed. Engl. 1997, 36, 241. (c) Maryanoff, B. E.; Reitz, A. B. Chem. Rev.  1999, 89, 863. 
73  Corey, E. J.; Shulman, J. I. J. Org. Chem. 1970, 35, 777. 
74  Corey, F. A.; Court, A. S.; J. Org. Chem. 1972, 37, 939. 
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2.1.2 Previous Methods for the Synthesis of (Sulfanylmethyl)phosphine Oxides 

The most common procedure for preparing (sulfanylmethyl)phosphine oxide derivatives is the 

Arbuzov reaction,75 which consists of reacting O-ethyl-diphenylphosphinite with a sulfanyl halide. The 

Arbuzov reaction with available chloromethyl thioethers76 produce (sulfanylmethyl)phosphine oxides 

(Scheme 2.2a). The limitation of this reaction is that the required reagents for the Arbuzov reaction, 

RSCH2Cl are usually difficult to prepare and unstable.  

An alternative procedure involves obtaining the α-heteroatom substituted derivative 

methylphosphine oxide by a reaction with n-BuLi and an electrophilic reagent. These reagents are often 

not available and must be specifically prepared (Scheme 2.2b).77 

 

Scheme 2.2 Synthesis of Diphenylphosphine Oxides a) by Arbuzov Reaction, b) by Alkylation 

  Reaction 

 

 
 

 

Scheme 2.3 Synthetic Strategy of (Sulfanylmethyl)diphenylphosphine Oxide Derivatives 

                   

 
 

 

                                                 
75  Bhattacharya, A. K.; Thyagarajan, G. Chem. Rev., 1981, 81, 415. 
76  Dilworth, B. M.; McKervey, M. A. Tetrahedron 1986, 42, 3731. 
77  Silviera, C. C.; Benini, M. L.; Boeck, P.; Braga, A. L. Synthesis, 1997, 221. 
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(Sulfanylmethyl)diphenylphosphine oxides78 have been prepared from (tosyloxymethyl)-

diphenylphosphine oxide 9 in a substitution reaction with a sulfide salt.79,80 Tosyl derivative 9 can be 

prepared from the  (hydroxymethyl)diphenylphosphine oxide 8, which is obtained by reacting 

diphenylchlorophosphine with aqueous formaldehyde in concentrated hydrochloric acid. This 

procedure was considered more convenient for preparing a variety of 

(sulfanylmethyl)diphenylphosphine oxide derivatives since more common thiols or thiolates are used as 

nucleophilic reagents (Scheme 2.3). 

 

 

2.2 Results and Discussion 
 

2.2.1 Synthesis of (Sulfanylmethyl)diphenylphosphine Oxides and Sulfanyl Alkenes 

To explore the steric effect of substitutions at the sulfur atom on the stereoselectivity of the WH 

reaction, we prepared various substituted (sulfanylmethyl)diphenylphosphine oxide derivatives using 

the procedure showed in Scheme 2.3. p-MeOPh derivatives were also prepared to obtain thioglycosides 

to be used in orthogonal glycosylations. Starting from (tosyloxymethyl)diphenylphosphine oxide 9, 

phosphine oxides 10–15 were prepared in excellent yields in a reaction with thiolate anions, which were 

prepared from the corresponding thiols by treatment with NaH (Table 2.1).  

We first explored the olefination of benzaldehyde using the phosphine oxides 10–15 to give 

sulfanyl alkenes 16–21. Highly hindered sulfanyl alkenes 17–20 were obtained with good to excellent 

yields (entries 2–5, Table 2.1). High stereoselectivities (E/Z >10:1) were reached when sulfur 

substituted alkyl groups were used, and when there were 2,6-disubstituted arylsubstituents. The 

formation of β-hydroxyphosphine oxide intermediates was not observed in these syntheses. 

Phosphine oxides 11 and 13 were treated with cyclohexanone in the presence of n-BuLi to give 

sulfanyl alkenes 22 and 23, respectively, in excellent yields. Phosphine oxide 14, which has a tert-butyl 

group, was made to react with acetophenone to give the sulfanyl alkene 24 with excellent yield and 

stereoselectivity (Table 2.2). The exact structure of compound 24 was not possible to confirm with 2D 

NMR studies so it is only a proposal. 

 

 

                                                 
78  (a) Otten, P. A.; Davies, H. M.; Steenis, J. H.; Gorter, S.; van der Gen, A. Tetrahedron, 1997, 53, 10527. (b) 

Otten, P. A, Davies, H. M.; Van der Gen, A. Phosphorus, Sulfur and Silicon and the Related Elements 1996, 
109. 

79  (a) De Wit, P. P.; van der Steeg, M.; van der Gen, A. Recl. Trav. Chim. Pays-Bas 1985, 104, 307. (b) Wegener, 
W. Z. Chem. 1971, 11, 262. 

80  Marmor, R. S.; Seyferth, D. J. Org. Chem. 1969, 34, 748. 
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Table 2.1 Synthesis of (Sulfanylmethyl)diphenylphosphine Oxides 10–15 and Sulfanyl Alkenes  

              16–21.  
 

 
Entry (Sulfanylmethyl)diphenyl-

phosphine Oxidea Yield (%) Sulfanyl Alkenesb Yield 
(%) 

E/Z Ratio 

1 
 

10 

89  
16 

93 1.3:1 

2 
 

11 

78 
 

17 

75 11:1 

3 
 

12 

72 
 

18 

63 15:1 

4 
 

13 

98  
19c 

86 10:1 

5 
P

O

S

 
14 

89  
20 

93 9:1 

6 
 

15 

79  
21 

96 10:1 

a)  Conditions: NaSR (10.5 mmol), 9 (10 mmol), THF, 2h.  
b)  Conditions: Phosphine oxide (2.0 mmol), n-BuLi (3.5 mmol) in THF at –78 ºC, 0.5 h, then 

benzaldehyde (1.0 mmol), and warm up to room temperature. 
c)  LDA (3.5 mmol) was used. 

 

 

2.2.2 Synthesis of Diphenylphosphine Oxides with General Formula Ph2P(O)CH2XR 

In Section 2.1, the (tosyloxymethyl)diphenylphosphine oxide 9 was shown to be an excellent 

starting material to obtain a variety of sulfanyl derivatives. We believed that this compound and its 

hydroxyl derivative 8 could be appropriate starting materials for synthesizing hetero-substituted 

methyldiphenylphosphine oxide derivatives of the general formula Ph2P(O)CH2X (X = Hal, SR, SeR, 

OR, NR2). These phosphine oxide derivatives could react with aldehydes and ketones under WH 

conditions to give a new access to halo, sulfanyl, selelenenyl and telluro alkenes, enol ethers and 

enamines. 
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Table 2.2  Synthesis of Sulfanyl Alkenes 22–24 by the Reaction of Ketones with (Sulfanyl- 

 methyl)diphenylphosphine Oxides 11, 13 and 14. 
 

Entry (Sulfanylmethyl)diphenyl-
phosphine Oxidea 

Ketone Sulfanyl Alkenesb Yield 
(%) 

E/Z ratio 

1 11  

 
 

22 

89 - 

2 13 
 

 

23 

93 - 

3 14 
 

 

24 

92 10:1 

a)  Conditions: NaSR (10.5 mmol), 9 (10 mmol), THF, 2h. 
b)  Conditions: Phosphine oxide (2.0 mmol), n-BuLi (3.5 mmol) in THF at –78 ºC, 0.5 h, then ketone 

(1.0 mmol), and warm up to room temperature. 
 
 

Scheme 2.4 General Scheme for the Synthesis of Hetero-Substituted Methyldiphenylphosphine  

 Oxide Derivatives and Hetero–Substituted Alkenes  
 

 
 
 

Scheme 2.5  Synthesis of (Phenylselelenylmethyl)- and (Phenyltelluromethyl)diphenylphosphine 

Oxides 25 and 26 

 

a) NaH

b)

THF

NaBH4

THF
P
O

Te

P
O

Se9 + PhSeH

25 (72%)

9 + PhTeTePh

26 (75%)  
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Thus, the (phenylselelenylmethyl)diphenylphosphine oxide 2581 was synthesized in 72%  yield by 

the reaction of 9 with PhSeH in basic medium (Scheme 2.5, a). Similarly, the reaction of 9 with 

PhTeTePh/NaBH4 produced phosphine oxide 26 in 75% yield (Scheme 2.5, b).77  

 

Table 2.3 Synthesis of (Oxymethyl)diphenylphosphine Oxides 27–34 from Compounds 8 and 9 
 

Entry Starting 
Material 

Reagents (Oxymethyl)diphenyl- 
phosphine Oxide 

Yield 
(%) 

1 9 

 

  
27 

65 

2 9 

 
HO

  
28a 

95 

3 9 
 

  
29a 

93 

4 8 

 
TMSCl 

 
30b 

90 

5 8 

 
TBDPSCl 

 
31b 

93 

6 8 

 

  
32b 

89 

7 8 

 

  
33b 

95 

8 8 
  

34b 

92 

a) Conditions: Alcohol (10.5 mmol), NaH (10.5 mmol), 9 (10 mmol), THF, 2h, room temperature.  
b) Conditions: 8 (10 mmol), RCl (R = TMS, TBDPS, Bz, Diphenylphosphinic, Diphenyl Phosphoryl) 

(10.5 mmol), imidazol (10.5 mmol), DMAP (0.5 mmol), CH2Cl2.  
 

 

Despite enol ethers having an important role in organic synthesis, only a few examples of the 

synthesis of these compounds by Wittig,82 WH,57,83 and Julia84 olefination procedures have been 

                                                 
81  Arbuzov reaction using PhSeCH2Cl allows obtaining compound 25 but in a poorest yield of 39%. Ref. 67. 
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reported. In the case of the WH reaction, the (alkoxymethyl)diphenylphosphine oxides were prepared 

by reacting the unstable alkoxymethyl chlorides with ethyl diphenylphosphinite. 

Starting from 8, different ester and silyl ethers can be easily prepared, generating the entry to a 

new family of WH reagents. Compounds 30 and 31 were prepared from 8 by reaction with TMSCl and 

TBDPSCl, respectively (Table 2.3, Entries 4 and 5). In addition, benzoate 32 was synthesized in a 

reaction of 8 with benzoyl chloride with an 89% yield after recrystallization (Table 2.3, Entry 6). 

Phosphinate 33 and phosphate 34 were also synthesized in excellent yields in a reaction of 8 with 

Ph2P(O)Cl and (PhO)2P(O)Cl,, respectively (Table 2.3, Entries 7 and 8). 

(Halomethyl)diphenylphosphine oxides, except for the chloro and fluoro derivatives, are rarely 

reported, in spite of halo vinyl ethers being widely used in organic synthesis, particularly in cross–

coupling reactions. 

 (Fluoromethyl)diphenylphosphine oxide 35 was already prepared from compound 9 and used in 

olefination reactions.80 In a similar fashion, treatment of compound 9 with either potassium chloride, 

potassium bromide, or potassium iodide in triethyleneglycol at 150 ºC generated phosphine oxides 35–

38 in excellent yields (Table 2.4).  
  
Table 2.4 Synthesis of (Halomethyl)diphenylphosphine Oxides 35–38 from Compound 9 
 

Entry 
(Halomethyl)diphenyl-

phosphine Oxide 
Yield 
(%) 

1 
P

O

F

 
35 

85 

2  
36 

92 

3 
P

O

Br

 
37 

98 

4  
38 

95 

a) Conditions: Compound 9 (1 mmol), KX (X = F, Cl, Br, 
I; 10 mmol), TEG, 150 ºC. 15 to 60 min.  

                                                                                                                                            
82  (a) Kulkarni, M. G.; Pendharkar, D. S.; Rasne, R. M. Tetrahedron Lett. 1997, 38, 1459. (b) Wollenberg R. H.; 

Albizati, K. F.; Peries, R. J. Am. Chem. Soc. 1977, 99, 7365. (c) Kluge, A. F. Cloudsdale, I. S. J. Org. Chem. 
1979, 44, 4847.  

83  (a) Suzuki, K.; Mukaiyama, T. Chem Lett. 1982, 683. (b) Earnshaw, C.; Wallis, C. J.; Warren, S. J. C. S. 
Perkin I. 1979, 3099. 

84  Surprenant S.; Chan, W. Y.; Brethelette C. Org. Lett. 2003, 5, 4851. 
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There are only a few reports describing the synthesis of (aminomethyl)diphenylphosphine oxides 

with an Arbuzov reaction.85 Therefore, it would be interesting to explore the preparation of enamines 

following the same methodology used for enol ethers. Thus, (aminomethyl)-diphenylphosphine oxides 

3986 and 4087 were easily prepared from 9 in a reaction with diphenyl- and dibenzylamine in almost 

quantitative yields after recrystallization (Scheme 2.6).88  

 

Scheme 2.6 Synthesis of (Aminomethyl)diphenylphosphine Oxides  

 

 
 

 

 

2.2.3 WH Olefination Reactions of Furanoses with Novel Sulfanyl Phosphine Oxides  

As the first target, 2,3,5-tri-O-benzyl-α,β-D-ribose 41 was reacted with (sulfanylmethyl)-

diphenylphosphine oxides 10–14 and the yield and stereoselectivity was compared to that observed for 

the pilot reaction with compound 42 (Table 2.5, entry 1). To drive the reaction, the phosphine oxide 

stabilized carbanion was formed at –78 ºC in the presence of n-BuLi or LDA, at –78 ºC in the presence 

of n-BuLi or LDA, in the case of (cyclohexylsulfanylmethyl)-diphenylphosphine oxide, and then a 

solution of the ribo derivative was added slowly. The reaction mixture was warmed to room 

temperature and left until the completion of the reaction. After the usual work-up the E/Z ratio was 

checked by 1H NMR before further purification. WH olefination reaction of 41 with the tert-butyl 

derivative 14 produced the sulfanyl alkene 44 with a 65% yield and an excellent E/Z ratio of 25:1 

(Table 2.5, Entry 2).  

 

 
 
                                                 
85  (a) Bakker, B. H.; Tjin A-Lim, D. S.; Van der Gen, A. Tetrahedron Lett. 1984, 25, 4259. (b) Broekhof, N. L. J. 

M.; Jonkers, F. L.; Van der Gen, A. Tetrahedron Lett. 1980, 21, 2671. (c) Broekhof, N. L. J. M.; Jonkers, F. L.; 
Van der Gen, A. Tetrahedron Lett. 1979, 20, 2433.  

86  Abu-Gnim, C.; Amer, I. J. Organometal. Chem. 1996, 516, 235. 
87  Broekhof, N. L. J. M.; J. Royal Nether. Chem. Soc. 1984, 103, 312. 
88  Palacios, F.; Vicario, J.; Aparicio, D. J. Org. Chem. 2006, 71, 7690. 
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Table 2.5 Olefination Reactions from Ribo Derivative 41.a 

 
O

BnO

OBn

OH

BnO

OH
OBn

SRBnO

OBn

Ph2P(O)CH2SR, n-BuLi,

THF, -78ºC to RT

43 R = Ph

44 t-Bu

45 Cy

41
46 p-OMe-Ph

47 2,6-di-Me-Ph

48 2,6-di-Cl-Ph  

a) Conditions: Phosphine oxide (2.0 mmol), n-BuLi (3.5 mmol) in THF at –78 ºC, 0.5 h, then  
aldehyde (1.0 mmol), and warm up to room temperature.  

b)  Determined by integration of the anomeric proton signals in the 1H NMR spectrum of the crude  
reaction mixture. 

c)  Reference 57b. 
d) LDA (3.5 mmol) was used. 

 

 

Better yield and stereoselectivity (83%, E/Z = 50:1) was obtained from the 2,6-di-methyl 

derivative 11 to give the sulfanyl alkene 47 (Table 2.5, Entry 5). The cyclohexyl derivative 13 

furnished the desired sulfanyl alkene 45 with a 47% yield and a moderate stereoselectivity (Table 2.5, 

Entry 3). WH reactions with the p-methoxy derivative 10 (Table 2.5, Entry 4) and the 2,6-di-chloro-

phenyl derivative 12 (Table 2.5, Entry 6) generated the corresponding products in low yields and 

selectivities.  

We conclude that increased stereoselectivities were obtained in almost all WH reactions with the 

phosphine oxides 10–14 compared to the (phenylsulfanylmethyl)diphenylphosphine oxide (42) (Table 

2.5, Entry 1); although, these reactions were not optimized. It is particularly relevant that the E/Z ratios 

of 25:1 and 50:1 were obtained with the phosphine oxides 14 and 11 (Table 2.5, Entries 2 and 5). 

The olefination reactions of 2,3,5-tri-O-benzyl-α,β-D-arabinofuranose 49 with (sulfanylmethyl)-

diphenylphosphine oxides 10–12, and 14 was further explored. As mentioned in the introduction, only 

the E-isomers of the sulfanylalkenyl-arabino derivatives cyclize. For this reason, in the olefination of 

derivatives, it is very important to use (sulfanylmethyl)diphenylphosphine oxide derivatives that are 

able to provide the highest percentage of E-isomer. This choice will not only reduce the reaction time 

Entry 
(Sulfanylmethyl)diphenyl-

phosphine Oxide (R) 

Sulfanyl 

Alkenes 
Yield % E/Z Ratiob 

1 42        (Ph) 43 72 4:1c 

2 14        (t-Bu) 44 65 25:1 

3 13        (Cy)d 45 47 7:1 

4 10        (p-MeO-Ph) 46 22 9:1 

5 11        (2,6-di-MePh) 47 83 50:1 

6 12        (2,6-di-Cl-Ph) 48 17 2:1 
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but also allow for a better yield of the cyclization product. The results of the olefination reactions are 

presented in Table 2.6. 
 

Table 2.6 Olefination Reactions of Arabino Derivative 49.a 

 

 

Entry 
(Sulfanylmethyl)diphenyl-

phosphine Oxide (R) 
Sulfanyl Alkenes Yield (%) E/Z ratiob 

1 42        (Ph) 50 100 1:1.5c 

2 14        (t-Bu) 51 93 8:1 

3 10       (p-MeO-Ph) 52 32 3:1 

4 11        (2,6-di-Me-Ph) 53 64 12:1 

5 12        (2,6-di-Cl-Ph) 54 78 6:1 

a)  Conditions: THF, 2h.  Phosphine oxide (2.0 mmol), n-BuLi, (3.5 mmol) in THF at –78 ºC,  
0.5 h, then aldehyde (1.0 mmol), and warming to room temperature.  

b)  Determined by integration of the anomeric proton signals in the 1H NMR spectrum of  
the crude reaction mixture. 

c)  Reference 57b. 
 

 

WH olefination reactions of 49 with the tert-butyl derivative 14 afforded compound 51 in 

excellent yield and with improved E-selectivity (Table 2.6, Entry 2) compares to those obtained with 

phenyl derivative (Table 2.6, Entry 1). In this case, the best stereoselectivity (E/Z = 12:1) was obtained 

with the 2,6-di-methyl derivative 11, although the yield was comparably lower than that for 51 (Table 

2.6, Entry 4). WH olefination reactions with 12 furnished the sulfanyl alkene 54, but resulted in worse 

yield and stereoselectivity than the previous examples (Table 2.6, Entry 5). In this case, the WH 

reaction with the p-methoxy derivative 10 (Table 2.6, Entry 3) produced the sulfanyl alkene 52 with 

poor yield and stereoselectivity. 

In all cases except when 10 was used, E-isomers were principally obtained with higher 

stereoselectivities than that of the reference compound 50 (Table 2.6, Entry 1), confirming our initial 

hypothesis. Among the different derivatives, the tert-butyl derivative 14 seems to combine better yields 

and stereoselectivies. 
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2.2.4 6-Endo Cyclization Reactions from Sulfanyl Alkenes 44, 47 and 51, 53  

The prepared sulfanyl-hex-1-enitols were tested in electrophile–induced cyclization reactions to 

study whether the presence of the different sulfanyl alkyl or aryl groups influence the yield and the 

selectivity of the 6-endo cyclization reaction.  

We selected for the cyclization study the sulfanyl ribo-hex-1-enitols 44 and 47, tert-butyl and 2,6-

dimethylphenyl groups respectively, that were obtained with the best E/Z ratio in the olefination 

experiments. The cyclization reaction was conducted under standard conditions, with NIS in the 

presence of sodium bicarbonate in DCM, starting at –60 ºC, and allowing the temperature to increase 

until the cyclization reactions started. Results are shown in Table 2.7. 

When compound 44 was placed under cyclization conditions, the 1-thioglycoside 56, resulting 

from a 6-endo cyclization, was obtained with 57% yield and an α/β  ratio of 1:13. The ratio 

α/β  (cis/trans ratio for substitutions at positions C-1 and C-2) was lower that in the reference reaction 

(Table 2.7, Entry 1) reflecting the higher percentage of E-isomer in the starting sufanyl-alkene. 

Unexpectedly, however, the yield decreased, showing that bulkier groups at the sulfur position 

negatively influence the cyclization reaction. 

A similar result was obtained in the cyclization of 47 to give the 1-thioglycoside 57, although 

yields were even lower in this case.  

 

Table 2.7 Cyclization of Ribo-hex-1-enitolsa 

 

 

Entry 
Ribo-hex-1-enitols 

(R) 
Compound Yield % α/β ratiob 

1 43     (Ph) 55 77 1:9c 

2d 43     (Ph) 55 64 1:41 

3e 44     (t-Bu) 56 57 1:13 

4 e 47     (2,6-di-Me-Ph) 57 49 1:25 

a)  Conditions: Ribo-hex-1-enitol (1.0 eq), NIS (1.5 eq), NaHCO3 (1.5 eq), solvent: CH3CN,  
–30 ºC to room temperature, 15h. 

b) Determined by integration of the anomeric proton signals in the 1H NMR spectrum of  
the crude reaction mixture. 

c)  Reference 57b. 
d)  Solvent: CH2Cl2; temperature: –78 ºC to room temperature; time: 19.5h. 
e)  Solvent: CH2Cl2; temperature: –78 ºC to –10 ºC; time: 18h. 
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The α/β-selectivity of the cyclization reaction depended on the solvent. Thus, cyclization 

reactions with compound 43 carried out in acetonitril produced compound 55 with α/β ratio of 1:9 in 77 

% yield, while in DCM, the same reaction gave the cyclization product 55 with α/β ratio of 1:43 in 64 

% yield. 

Subsequently, we studied the cyclization reactions of arabino-hex-1-enitols 51 and 53 (Table 2.8, 

Entries 2 and 3), which had produced the best results in the olefination reaction. When compound 51 

was put under cyclization conditions, compound 59 was obtained as an inseparable mixture with glycal 

resulting from the elimination of iodine and tert-butylsulfanyl group (ratio 2:1) with a 57% yield and 

with an estimated yield of compound 59 of 64% (Table 2.8, Entry 2). A similar elimination reaction had 

been observed when 2-deoxy-2-iodo-pyranoses were put under dehydrative glycosylation conditions.89 

Cyclization of compound 53 did not yield the expected compound 60, even at room temperature after 

several days of reaction. 

The relative stereochemistry of the cyclization products 55–59 was initially deduced by 1H, 13C, 

COSY and HSQC NMR analysis, taking into account the general rules observed for the coupling 

constants J1,2 and J2,3 of the different configurations of 2-deoxy-2-iodo-glycosides (Figure 2.1).  

 
Table 2.8 Cyclization of Arabino-hex-1-enitols 51, 53a 

 

 

Entry 
Arabino-hex-1-enitols 

(R) 
Compound Yield % α/β ratiob 

1 50     (Ph) 58 36 1:0c 

2d 51     (t-Bu) 59 57 (64)e 1:0 

3f 53     (2,6-di-Me-Ph) 60 - - 

a)  Conditions: Arabino-hex-1-enitol (1.0 eq), NIS (1.5 eq), NaHCO3 (1.5 eq), 4Å MS, solvent:  
   CH3CN, 0 ºC, 18h. 
b)  Determined by integration of the anomeric proton signals in the 1H NMR spectrum of the  
    crude reaction mixture. 
c)  Reference 57b. 
d) Solvent: CH2Cl2; temperature: –78 ºC to 0 ºC; time: 20h.  
e)  Yield estimated. 
f)  Solvent: CH2Cl2; temperature: –78 ºC to room temperature; time: 3d. 

                                                 
89  Rodríguez, M. A.; Boutureira, O.; Díaz, Y.; Matheu, M. I.; Castillón, S.; Seeberger. P. J. Org. Chem. 2007, 

72, 8998. 
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Figure 2.1 Assignment of the Configuration in 2-Deoxy-2-iodo-1-thioglycosides 55–59. 
 

 
 

 

This series of experiments confirmed that hexenyl-1-enitols 44 and 47, as well as 51 and 53, 

undergo a complete 6-endo regioselective electrophilic iodine–induced cyclization. The normal 5-exo 

course observed in analogue hexenols is biased to the 6-endo cyclization by the presence of the sulfanyl 

group (Scheme 2.7).90  

 

Scheme 2.7 Mechanism of Electrophile–Induced Cyclization of Vinyl Sulfides 

 

 
 

 

Furthermore, the cyclization reactions of ribo- 43, 44, and 47 and arabino-hex-1-enitols 50, 51, 

and 53 studied are highly stereoselective and have a very predictable stereochemical outcome. The 

relative stereochemistry of C-1 and C-2 in thioglycosides depends on the configuration of the starting 

alkene. Thus, the reaction of the E-alkene sulfides of compounds 43, 44, 50, and 51 yields a cyclization 

product in which the iodine atom and the respective sulfanyl group are in a trans arrangement; 

although, unexpectedly, compound 53E did not yield the cyclization product. The Z-alkenes of 

compounds 43, 44, 47, 50, and 51 underwent cyclization only in the case of the allo derivatives 43, 44, 

and 47 and did not take place in the case of manno derivatives 50, 51, and 53 (Scheme 2.8). 

Another important issue associated with stereoselectivity is the formation of cyclized products 

where the iodo group at C-2 is cis with respect to the benzyloxy group at C-3 (see Scheme 1.14). The 

stereoselectivity observed for the alkenes considered here is consistent with that reported for alkenols 

                                                 
90  For possible electrophilic–induced 6-endo cyclization assisted by sulfur, see: Galluci, J. C.; Ha, D.-H.; Hart, D. 

J. Tetrahedron Lett. 1989, 45, 1989. 
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with an allylic alkoxy group91 and is determined by a stereoelectronic effect known as the inside-alkoxy 

effect.92,57 This effect favours cyclization from the most reactive conformation, in which the benzyloxy 

group is situated inside the plane that configures the framework of the double bond. In this 

conformation, the σ* C–O orbital is perpendicular to the π-system of the double bond, which 

minimizes the electron–withdrawing effect and causes the double bond to be more electron–rich and 

hence more reactive toward the electrophile (see Chapter 1.1.5). 

 

Scheme 2.8 Cyclization Products with Iodine Electrophiles of E- and Z-Alkenes 
 

 
 

 

This stereodirecting role of the allylic group can be observed in the cyclization reaction of ribo 

derivatives 43, 44, and 47 and arabino derivative compounds 50, 51, and 53. For ribo derivatives, the 

most stable conformer is the one that leads to the preferred transition state for cyclization, which is the 

conformation where the large alkyl group is anti to the incoming electrophile and the allylic alkoxy 

group occupies the inside position. As a result, the cyclization proceeds readily (Scheme 2.9). In 

contrast, for arabino derivatives the preferred outside-alkoxy conformation is not the one that favours 

cyclization, and a conformational change must occur for cyclization to proceed. For these molecules, 

the transition state has a boat-like conformation, which is higher in energy than the transition state of 

the ribo derivatives. Consequently, the cyclization is slower for the arabino derivative and longer 

reaction times are needed than for the ribo derivatives.  

The inside-alkoxy effect may well explain why Z-thioether is less reactive than the corresponding 

E-isomer. Specifically, the inside-alkoxy conformation of the Z-alkenes is sterically crowded, and, 

therefore, the activation energy that must be overcome to reach the transition state for cyclization will 

                                                 
91  (a) Arnés, X.; Díaz, Y.; Castillón, S. Synlett. 2003, 2143. (b) Landais, Y.; Panchenault, D. Synlett. 1995, 1191. 
92  Halter, J.; Strassner, T.; Houk, K. N. J. Am. Che. Soc. 1997, 119, 8031. (b) Houk, K. N.; Moses, S. R.; Wu, Y.-

D.; Rondan, N. G.; Jäger, V.; Schohe, R.; Fronczek, F. R. J. Am. Che. Soc. 1984, 106, 3880. (c) Strock, G.; 
Kahn, M. Tetrahedron Lett. 1983, 24, 3951. 
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be higher than for the corresponding E-alkenes. For arabino derivatives 50, 51, and 53 the activation 

energy is sufficiently high to preclude cyclization. Although these compounds could also undergo 

cyclization via outside-alkoxy conformation, this conformation is insufficiently reactive to promote 

cyclization (Scheme 2.10). 

 

Scheme 2.9  Proposed Models for the Electrophile–Induced Cyclization Reactions of E-Hydroxy- 

Alkenyl Sulfides with Ribo Configurations 43, 44, and 47 and Arabino 

Configurations 50, 51, and 53 
 

 
 

 

Scheme 2.10 Proposed Models for the Electrophile–Induced Cyclization Reactions of Z-Hydroxy- 

Alkenyl Sulfides with Ribo Configurations 43, 44, and 47, and with Arabino 

Configurations 50, 51, and 53 
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2.2.5 Glycosylation of Cholesterol with the Glycosyl Donors 56 and 57 

Glycosylation reactions were carried out using cholesterol as acceptor and NIS and TfOH as 

promoter systems. The reaction was started at –60 ºC and then warmed until glycosylation was finished. 

Only the allo derivatives 56 and 57 were used since the manno derivatives either were not obtained in 

pure form (59 forming an inseparable mixture with the secondary product, glycal) or were not obtained 

at all (60). 

When tert-butyl 1-thio-glycoside 56 was used as a glycosyl donor, compound 61 was obtained 

with an excellent 95% yield. The ratio α/β = 1:7 was slightly higher than that obtained when starting 

from the phenyl 1-thio-glycoside 55.   

The glycosyl donor 57 (and 2,6-di-methyl-phenyl 1-thio-glycoside) also yielded the glycoside 61 

when it was reacted with cholesterol. Although the stereoselectivity was slightly better in this case, the 

yield was significantly lower (Table 2.9, Entry 3). 

The relative stereochemistry of the glycosylation product 61 was deduced by 1H, 13C, COSY, and 

HSQC NMR analysis. The J1,2 value of 9.0 Hz and J2,3 value of 2.8 Hz for the major isomer clearly 

shows that the β-anomer was preferably obtained. 

 

Table 2.9 Glycosylation Reactions with tert-Butyl and 2,6-di-Methyl Phenyl Sulfanyl Groupsa 

 

 

Entry 
Ribo-hex-1-enitols 

(R) 
α/β ratioa Compound  Yield %  α/β ratiob 

1 55     (Ph) 1:1.5 61 81 1:9 c 

2d 56     (t-Bu) 1:13 61 95 1:7 

3d 57     (2,6-di-Me-Ph) 1:25 61 60 1:10 

a)  Conditions: Glycosyl donor (1.0 eq), Cholesterol (2.0 eq), NIS (2.2 eq), TfOH (20 mol%), 4Å MS,  
   solvent: CH2Cl2, –40 ºC, 2h. 
b)  Determined by integration of the anomeric proton signals in the 1H NMR spectrum of the crude  
   reaction mixture. 
c)  Reference 57b. 
d)  Temperature: from –78 ºC to –40 ºC; time: 4h. 
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Scheme 2.11 Stereochemical Courses of Glycosylation Reactions of 2-Deoxy-2-iodo-1-thio-allo- 

  glycosyl Donors 

 

 
 

 

For years, the preferred trans selectivity obtained in glycosylation with 2-deoxy-2-halo-glycosyl 

donors was explained by the formation of a cyclic halonium cation intermediate. Based on the data that 

show that α/β mixtures are always obtained and the DFT calculations made by our group, it was 

suggested that the real intermediate was an oxonium cation and not the halonium (bromonium or 

iodonium).93 Recently,  Billings and Woerpel have demonstrated, theoretically and experimentally, that 

the intermediate in these cases is the oxonium cation and that the more stable conformer is I, in which 

iodine occupies and axial disposition (See Chapter 1.1.5 and Scheme 1.16).57 This is due to an 

hyperconjugative interactions between σC–I and π*C–O of the oxocarbenium. This more stable 

conformation is also the most reactive towards nucleophilic attack. This is because incoming 

nucleophile (Nu) from the upper β-face finds significantly less nonbonding interactions than the 

corresponding Nu attack from the α-face in II, where there appears to be significant non–bonding 

interactions between C-3–Nu (Scheme 2.11) resulting from attack of the glycosyl acceptor on the upper 

side to give mainly theβ-derivative. This preferred reaction path may be affected by steric interactions 

between the C-3 (OR3) and C-6 (OR1) alkoxy substituents and the incoming nucleophile.  

 

 

2.3 Conclusions 

 
In this chapter we have explored the synthesis of 2-deoxy-2-iodo-glycosides from furanoses in 

three steps: olefination of furanoses with (sufanylmethyl)diphenylphosphine oxides to give 

sulfanylalkenes, elctrophilic iodine–induced cyclization, and glycosylation. In particular, we have 

                                                 
93 Bravo, F.; Viso, A.; Alcazár, E.; Molas, P.; Bo, C.; Castillón, S. J. Org. Chem. 2003. 68. 686.   
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explored the effect of bulky substitutions at the sulfur on the yield and stereoselectivity of olefination 

and cyclization. The most relevant conclusions of this work are:   

 

-The (tosyloxymethyl)diphenylphosphine oxide 9 is an appropriate starting material for accessing 

the (sulfanylmethyl)diphenylphosphine oxide required for the olefination reaction.  

 

- The (tosyloxymethyl)diphenylphosphine oxide 9 and its (hydroxymethyl)diphenylphosphine 

oxide precursors 8 are appropriate starting materials to prepare a series of phosphine oxide derivatives 

with general formula Ph2P(O)CH2X (X = Hal, SR, SeR, OR, NR2). This procedure is an alternative to 

the Arbuzov procedure and opens the way for synthesizing heteroatom-substituted alkenes with the WH 

reaction. 

 

-The use of phosphine oxide derivatives Ph2P(O)CH2X (X= t-Bu, 2,6-di-Me-Ph) provided good 

yields and excellent E selectivities in the WH olefination reaction of both ribo- and arabinofuranoses 

and were selected as possible candidates for improving the efficiency of the process.  

 

- The presence of these bulky substitutions decreases the yield of cyclization reactions starting 

from ribo-hex-1-enitols and increases the cyclization of the tert-butyl arabino-hex-1-enitol derivative. 

However, no cyclization product was obtained starting from the 2,6-di-methyl phenyl arabino-hex-1-

enitol derivative. 

 

- Glycosylation reactions were studied starting from 2-deoxy-2-iodo-1-thio-allo-glycosides 56 and 

57, which have t-Bu and 2,6-di-Me-Ph groups, respectively, at the sulfur. It can be concluded that the 

yield increases with tert-butyl without affecting stereoselectivity much. With a 2,6-di-methyl phenyl 

group, however, the stereoselectivity is increased but yield decreased. 

 

- Table 2.10 shows the results of the three steps using t-Bu and 2,6-di-Me-Ph groups bonded to 

sulfur in comparison with the reference PhS group. From this data, it can be concluded that none of the 

groups explored were an improvement of the previous results, but the t-BuS group appears to be a 

promising group in this process. 
 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
STEREOSELECTIVE SYNTHESIS OF 2-DEOXYOLIGOSACCHARIDES.NEW APRROACHES TO THE SYNTHESIS OF DIGITOXIN AND P-57 
Andrea Köver 
978-84-691-9523-9 /DL: T-1261-2008 



SECOND Chapter 

 

 
47 

Table 2.10  The Results of Olefination – Cyclization – Glycosylation Reactions of tert-Butyl  

  and 2,6-di-Methyl Phenyl Sulfanyl Groups Compared to Phenyl Group 

 

 

Entry 
(Sulfanylmethyl)diphenyl-

phosphine Oxide (R) 

Olefination 

(%) 

E/Z 

ratio 

Cyclization 

(%) 

α/β 

ratio 

Glycosylation 

(%) 

α/β 

ratio 

Overall 

yield (%) 

1a 42   (Ph) 72 4:1 77 1:9 81 1:9 45 

2 14  (t-Bu) 65 25:1 57 1:13 95 1:7 35 

3 11   (2,6-di-Me-Ph) 83 50:1 49 1:25 60 1:10 24 

a) Reference 57b 
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THIRD Chapter: Oxepane Synthesis by 7-endo Electrophile–Induced 

Cyclization of Alkenylsulfides 

 
 

 

Abstract 
7-Endo electrophile–induced cyclizations of sulfanyl alkenes were studied, and applied toward the 

synthesis of septanosides. The sulfanyl alkenes were obtained by a Wittig–Horner WH olefination 

reaction of the corresponding pyranoses and furanoses.  
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“Sabio es aquel que  

constantemente se maravilla.” 

 

André Gide, escritor francés 
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3.1 Introduction 
 

The Septanosides are ring-expanded analogues of pyranosides that are characterized by a seven-

membered ring.94 The use of septanose glycosides in a biological setting relies on the efficient synthesis 

of these compounds. It has been shown that septanoside derivatives bind the lectin protein concanavalin 

A,95 are glycosidase inhibitors96 along with their aza analogs,97 and have been used to define new types 

of protein–carbohydrate interactions.98 Further, pharmacological investigations have shown that they 

have ion–change blocking,99 antiviral,100 and antifungal activities.101 Septanosides may be able to 

effectively adopt distorted conformations in glyco–enzyme binding sites,102 and as such, have been used 

to define new types of protein–carbohydrate interactions.103 These α-D-septenosyl glycosides have been 

prepared using an S-phenyl septanoside donor. 104 

Although considerable progress has been made in the synthesis of the septanoses, most of the 

strategies have relied on the cyclization of a natural pyranose through the C-6 hydroxyl group rather 

than C-5 hydroxyl group. Septanoses have been synthesized105 through the ring expansion of a 

cyclopropanated galactal (Scheme 3.1a).106 The sequential acid–catalyzed cyclization–elimination of 

hydroxy–acetals (Scheme 3.1b),107 and the ring–closing metathesis of dienes (Scheme 3.1c)108 have 

been shown to directly furnish 1,2-anhydro-septanose derivatives (glycals). These 1,2-anhydro-

                                                 
94  Pakulski, Z. Pol. J. Chem. 1996, 70, 667. 
95  Castro, S.; Duff, M.; Snyder, N. L.; Morton, M.; Kumar, C. V.; Peczuh, M. W. Org. Biomol. Chem. 2005, 3, 

3869. 
96  Tauss, A.; Steiner, A. J.; Stütz, A. E.; Tarling, C. A.; Whiters, S. G.; Wrodnigg, T. M. Tetrahedron: Asymmetry 

2006, 17, 234. 
97  (a) Martínez-Mayorga, K.; Medina-Franco, J. L.; Mari, S., Cañada, F. J.; Rodríguez-García, E.; Vogel, P.; Li, 

H.; Blériot, P.; Sinaÿ, P.; Jiménez-Barbero, J. Eur. J. Org. Chem. 2004, 4119. (b) Morís-Varas, F.; Qian, X.-H.; 
Wong, C.-H. J. Am. Chem. Soc. 1996, 118, 7647. 

98  Benner, S.A.; Sismour, A. M.  Nat. Rev. Genet. 2005, 6, 533. 
99   Candenas, M. L.;Pinto, F. M.; Cintado, C. G.; Morales, E. Q.; Brouard, I.; Diaz, M. T.; Rico, M.; Rodriquez, 

R.; Rodriguez, P. M.; Perez, R.; Perez, R. L.; Martin, J. D. Tetrahedron, 2002, 58, 1921.  
100   Venkateswarlu, Y.; Reddy, M. V. R.; Ramesh, P.; Rao, J. V. Indian J. Chem., Sect. B 1999, 38, 254. 
101   Edrada, R. A.; Proksch, P.; Wray, V.; Witte, L.; Ofwegen, L. J. Nat. Prod. 1998. 61, 358. 
102  (a) Martínez-Mayora, K.; Medina-Franco, J. L.; Mari, S.; Cañada, F. J; Rodríguez-Garcia, E.; Vogel, P.; Li, H.; 

Blériot, Y.; Sinaÿ, P.; Jiménez-Barbero, J. Eur. J. Org. Chem. 2004, 4119. (b) Morís-Varas, F.; Quian, X.-H., 
Wong, C. H. J. Am. Chem. Soc. 1996, 118, 7647. 

103   Benner, S. A. Nature 2003, 421, 118. 
104   Castro, S.; Fyvie, W. S.; Hatcher, S. A.; Peczuh, M. W. Org. Lett. 2005, 16, 4709. 
105   For more information in this field see: Snyder, N. L.; Haines, H. M.; Peczuh, M. W. Tetrahedron, 2006, 62, 

9321. 
106   Batchelor, R.; Hoberg, J. O. Tetrahedron Lett. 2003, 44, 9043. 
107   (a) Castro, S.; Peczuh, M. W. J. Org. Chem. 2005, 70, 3312. (b) McAuliffe, J. C.; Hindsgaul, O. Synlett, 1998, 

307. 
108 (a) Peczuh, M. W.; Snyder, N. L. Tetrahedron Lett. 2003, 44, 4057. (b)  Peczuh, M. W.; Snyder, N. L.; Fyvie, 

W. S. Carbohydr. Res. 2004, 339, 1163.  
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septanose derivatives were later modified by epoxidation and nucleophilic opening of the 

anhydroseptanose furnishing novel septanoside derivatives.109 Oxepines have also been prepared by 

Lewis–acid mediated opening of epoxy alcohols (Scheme 3.1d).110 Recently, oxepine 63 was 

synthesized by a tungsten–catalyzed cyclization of alkyne 62 (Scheme 3.1e).111 Under these conditions, 

the presence of an isopropylidene protecting group was required to favor the formation of the seven-

member ring.  

  

Scheme 3.1  Synthesis of Septanoses (a) by Ring Expansion; (b) by Sequential Cyclization– 

  Elimination; (c) by Ring–Closing Metathesis of Dienes: (d) by Lewis–Acid Mediated  

  Epoxy-alcohol Opening; (e) Tungsten–catalyzed 7-endo Cyclization 
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109  (a) DeMatteo, M. P.; Snyder, N. L.; Morton, M.; Baldisseri, D. M.; Hadad, C. M.; Peczuh, M. W.  J. Org. 

Chem. 2005, 70, 24. (b) Fyvie, W. S.; Morton, M.; Peczuh, M. W. Carbohydr. Res. 2004, 339, 2363. 
110   Oka, T.; Fujiwara, K.; Murai, A. Tetrahedron 1998, 54, 21. 
111  Alcázar, E.; Pletcher, J. M.; McDonald, F. W.  Org. Lett. 2004, 6, 3877. 
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In the Second Chapter we discussed the optimization of the synthesis57 of phenyl 2-deoxy-2-iodo-

1-thio-pyranosyl glycosides2b,70ª,112 from pentoses through a two-step procedure involving initial WH 

olefination to provide the requisite sulfanylalkenes, followed by iodonium−induced cyclization to the 

desired glycoside (Scheme 3.2).  
 

Scheme 3.2 Synthetic Strategy of 2-Deoxy-2-iodo-1-thiopyranosyl Glycosides 
 

 
 

 

The 1-thio-pyranosides were useful glycosyl donors for the stereocontrolled synthesis of 2-deoxy-

2-iodo-disaccharides, and this procedure was particularly efficient for the synthesis of 2-deoxy-β-hexo-

glycosides of both allo or gulo configuration.57 1-Thio-glycosides were also efficiently transformed into 

glycals (Scheme 3.3).  

In order to expand the scope of this strategy, we chose to explore an olefination-electrophile-

induced cyclization strategy as a direct route to 2-deoxy-2-iodo-septanosides (Scheme 3.3). There are 

few examples for the formation of oxepane rings by electrophile-induced cyclization, and those that 

have been reported involve the formation of lactones through a 7-exo cyclization.113 is one example of 

the formation of oxepanes by iodine–induced cyclization of hydroxyl-enolethers through a 7-endo 

cyclization Herein, we detail our results on the synthesis of heptenyl thioethers derived from protected 

hexo-pyranoses and pentoses, and the subsequent study of electrophile–induced cyclizations. 

 

 

                                                 
112 2-deoxy-thioglycosides have recently been used as glycosyl donors in a solid-phase–assisted synthesis of 2-

deoxyconjugates: Jaunzems, J.; Hofer, E.; Jesberger, M.; Sourkouni-Argirusi, G.; Kirschning, A. Angew. Chem. 
Int. Ed. 2003, 42, 1166. 

113  (a) Rousseau, G.; Homsi, F. Chem. Soc. Rev. 1997, 453. (b) Simonot, B.; Rousseau, G. J. Org. Chem. 1994, 59, 
5912. 
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Scheme 3.3 Synthetic Strategy of 2-Deoxy-2-iodo-1-thio-septanosyl Glycosides 

 

 
 

 

3.2 Results and Discussion  

 
3.2.1 Synthesis of Sulfanyl-alkenyl Derivatives from 2,3,4,6-tetra-O-Benzyl-D-glucopyranose 

As shown in previous studies, the conditions of the WH reaction for the synthesis of 

sulfanylalkenes displayed optimal chemoselectivity, diastereoselectivity, and yield107 when employing 

phosphine oxide carbanions and Li bases. The selected olefination reagent 

(phenylsulfanylmethyl)diphenylphosphine oxide (42) was prepared by an Arbuzov reaction in 94% 

yield starting from ethyl diphenylphosphinite and chloromethylphenyl sulfide,75 or in a similar yield by 

nucleophilic substitution of (tosyloxymethyl)diphenylphosphine oxide (9) by NaSPh, as shown in the 

Second Chapter. 

When the WH reaction was carried out starting from 2,3,4,6-tetra-O-benzyl-α,β-D-glucopyranose 

(64) and 42, the desired alkene 65 was obtained in 63% yield as an inseparable mixture of 

diastereomers (Z/E = 1:8).  This was expected for such semi-stabilized carbanions. Subsequently, the 

cyclization of alkenylsulfanyl derivative 65 was studied. Initially, the standard conditions reported by 

Barlett and co-workers114 employing iodine in acetonitrile in presence of NaHCO3, were examined. 

Under these conditions, however, only the starting material was recovered. An increase of the reaction 

temperature to 40 ºC, or substitution of NIS for iodine as an electrophile was also ineffective (Scheme 

3.4). 

 

Scheme 3.4 WH Olefination Reaction of 64 
 

 
 

 

                                                 
114  Barlett, P. A.; Mayerion, J. J. Am. Chem. Soc. 1978, 100, 3950. 
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We next examined increasing the nucleophilicity of the hydroxylic oxygen by first forming the 

requisite alkoxide. Treatment of 65 with KH and iodine115 in ether at –78 ºC did not provide the 

oxepane ring, but rather afforded compound 66 that was isolated in 64 % yield (Scheme 3.5).  

The structure of compound 66 was determined by 1H NMR, 13C NMR, COSY, HMQC, TOCSY 

and NOESY.  By analysis of this data, we made the following observations: a) the number of aromatic 

protons changed during the course of the reaction indicating the loss of one aromatic ring; b) the 

presence of two independent spin systems formed by protons H-1* and H-2 and H-4, H-5, H-6 and H-7 

was observed by a TOCSY experiment; c) two doublets were found at 6.8 ppm (J = 15.0 Hz) and 5.64 

ppm (J = 15.0 Hz) characteristic of protons of a E-configured double bond, assigned to H-1 and H-2; d) 

the presence of two carbons (CHs) at 129.5 and 124.6 ppm correlate with protons H-1 and H-2, and 

were consequently assigned to C-1 and C-2; e) the presence of a doublet at 4.2 ppm (J = 6.6 Hz) was 

assigned to H-4, and correlates with the signal at 33.9 characteristic of carbon bound to iodine; f) the 

presence of an acetalic quaternary carbon at 105.5 ppm was assigned as C-3; g) the relative 

configurations of the C-3 and C-4 were assigned by NOESY experiments. 

 

Scheme 3.5  Cyclization Reaction of 65 in the Presence of KH and Iodine 

 

 
 
 

We next attempted to form the requisite alkoxide by reaction of 65 with n-BuLi. Interestingly, the 

subsequent treatment with iodine afforded compound 67 in 62% yield (Scheme 3.6). 

The structure of compound 67 was determined by 1H NMR, 13C NMR, COSY, HMQC, TOCSY 

and NOESY.  By analysis of this data, we made the following observations: a) the presence of two 

independent spin systems formed by protons H-1, H-1’, H-2* and H-4, H-5, H-6 and H-7 was observed 

by a TOCSY experiment; b) the number of aromatic protons did not change during the course of the 

reaction; c) H-2 appeared at 4.18 ppm as a double of doublets (J = 10.8, 3.2 Hz) and correlated with a 

signal at 41.9 ppm in the 13C NMR spectrum, indicating that it is bound to iodine, and was subsequently 

assigned to C-2; e) the presence of a signal at 105.3 ppm, characteristic of an acetalic quaternary 

                                                 
115  Lipshutz, B. H.; Tirado, R. J. Org. Chem. 1994, 59, 8307. 
*  For the sake of clarity hydrogen and carbon atoms have been numbered according to the respective alkene 

starting material. 
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carbon, was attributed to C-3; f) the configuration of the C-3 and C-4 was assigned by NOESY 

experiments. 

 

Scheme 3.6 Cyclization Reaction of 65 in the Presence of n-BuLi and Iodine 
 

 
 

 

A similar behavior was previously observed in the cyclization reaction of tri-O-benzyl-arabino 

derivative 50 in the presence of KH,114 which led to the formation of oxetane 68 in 31% yield (Scheme 

3.7). However, in the presence of a weak base (such as NaHCO3), cyclization product 58 was 

preferentially formed.57a 

 
Scheme 3.7 Cyclization Reaction of 50 in the Presence of KH and Iodine 

 

 
 
 

This unexpected outcome occurred when cyclization of 65 was attempted using either n-BuLi or 

KH as bases in ether. Under strongly basic conditions, the more nucleophilic alkoxide 69 was expected 

to be formed, and eventually cyclize. However, as studied previously57a (see also SECOND Chapter), 

the preferred conformations in the arabino and gluco derivatives do not favour cyclization because the 

allylic benzyloxy group does not occupy an inside-position with respect to the C=C double bond As 

such, an alternative reaction pathway predominates. One possible pathway consists of an initial proton 

transfer to provide allylic anion 70 that could be reprotonated to provide enol ether 71. This is a 

considerably more electron rich species that would be more prone toward cyclization than the starting 

thioenol ether 69 (Scheme 3.8). Reaction with iodine would then afford compound 67 through 

intermediate 73. In this manner, the configurations of C-2 and C-3 would be determined by the reaction 

mechanism. At the same time under the alternate KH/THF conditions, anion 72 could be formed from 

70 by elimination of a benzyloxy group. Iodine induced-cyclization of 72 would provide 66 through 

intermediate 74 (Scheme 3.8). 
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Scheme 3.8  Proposed Mechanism of Cyclization Reaction of 65 by Treatment with n-BuLi or KH  

 in the Presence of Iodine 
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3.2.2 Synthesis of Oxepanes Starting from 75 and 83 
Recently, McDonald demonstrated that the presence of an isopropylidene protecting group in the 

alkynol structure was necessary for the 7-endo cyclization (See Scheme 3.1e).111 To test whether the 

presence of a dioxolane in the starting material would favor the desired cyclization, we prepared 

sulfanyl alkene 76 through the WH reaction of ribo derivative 75 with Ph2P(O)CH2SPh in the presence 

of n-BuLi. Treatment of 76 with benzyl bromide afforded 77, which was subsequently treated with 

TBAF to provide 78 (Scheme 3.9).  

Compound 79,116 with hydroxyl groups at C-5 and C-6, was also prepared from 76 to study the 

competition between 6-endo and 7-endo cyclizations (Scheme 3.10). 

 

 

 

                                                 
116  Aucagne, V.; Tatibouët, A.; Rollin, P. Tetrahedron 2004, 60, 1817. 
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Scheme 3.9 Synthesis of 78 
 

 
 

 

Scheme 3.10 Synthesis of 79 

 

 
 

 

When 76 was treated with NIS in a basic medium at low temperatures, compound 81 was isolated 

in 46% yield, as a result of a 6-endo cyclization through putative compound 80, followed by 

concomitant loss of the silyl protecting group (Scheme 3.11). The stereochemical outcome of the 

reaction was similar to that previously observed for related compounds lacking the isopropylidene 

protecting groups.2b,70a 
  

Scheme 3.11 Cyclization Reaction of 76  
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Compound 81 was also exclusively obtained starting from 79 in 53% yield, indicating that the 6-

endo cyclization is preferred over the 7-endo cyclization (Scheme 3.12). 

 

 Scheme 3.12 Cyclization Reaction of 79 
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When alkene 78 was employed as a starting material, the reaction proceeds more slower, and 

required extended periods of elevated temperature. After 24 hours at 35 ºC, compound 82 was isolated 

in 12% yield (Scheme 3.13), with 40% recovered starting material. The structure of 82 was determined 

according to the following data: a) the signals of H-1 and C-1, which appear at chemical shifts δ = 5.56 

ppm and 93.0 ppm, respectively, are characteristic of the anomeric proton and carbon, and a J6a,6b value 

of 13 Hz indicates that cyclization had taken place; b) the presence of iodine at position 2 was 

confirmed by the correlation of H-2 with a 13C signal at δ = 32 ppm (see Table 4.1); c) the obtained J1,2 

and J2,3 values confirmed an equatorial disposition for the substituents at these positions; d) the 

presence of H-2 on the bottom face of the molecule was confirmed by a significant NOE with the signal 

at δ = 3.81 ppm, corresponding to axial H-6. 

 

Scheme 3.13 Synthesis of 82  
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It should be noted that the relative stereochemistry of the iodine and the neighboring alkoxy group 

is trans, which is the opposite of that observed for the cyclizations yielding pyranoses (Scheme 3.13, 

see previous Chapter as well), where the relative stereochemistry was always cis as a result of 
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cyclization under the influence of the alkoxy-inside effect.61,117 In the more reactive conformer, this 

effect sets the alkoxy chain at an inside-conformation with respect to the double bond. The observed 

low reactivity is likely due to the high degree of substitution of the chain, which limits the number of 

reactive conformations. It may also be due to the fact that cyclization of compound 78 takes place 

through the less reactive alkoxy-outside conformer. 

In our laboratory, compound 84 had been previously prepared by olefination of lyxo derivative 83 

(Scheme 3.14),57 and we observed that benzyl ethers reacted in electrophile–induced cyclizations.61 In 

order to avoid this possibility, compound 84 was protected as ethyl ether (85), which was treated with 

TBAF to afford 86 (Scheme 3.14).  

Iodine–induced cyclization of 84 provided 2-deoxy-2-iodo-1-thio-pyranoside (87) in 55% yield 

(Scheme 3.15).57 
 

Scheme 3.14 Synthesis of 86 
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Scheme 3.15 Synthesis of 87  

 

 
 

 

                                                 
117  (a) Landais, Y.; Panchenault, D. Synlett 1995, 1191. (b) Stork, G.; Kahn, M. Tetrahedron Lett. 1983, 24, 3951. 

(c) Houk, K. N.; Moses, S. R.; Wu, Y.-D.; Rondan, N. G.; Jäger, V.; Schohe, R.; Fronczek, F. R. J. Am. Chem. 
Soc. 1984, 106, 3880. (d) Halter, J.; Strassner, T.; Houk, K. N. J. Am. Chem. Soc. 1997, 119, 8031. 
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When 86 was treated with NIS and NaHCO3, the reaction slowly evolved an anomeric α/β 

mixture of compounds 88β and 88α in 36% yield (32% of the starting material was also recovered), 

resulting from a 7-endo cyclization followed by hydrolysis of the anomeric phenylsulfanyl group 

(Scheme 3.16). This hydrolysis has been observed in other similar reaction when the cyclization was 

slow, due to competing activation of the 1-thiophenyl group by NIS.57 More relevant spectroscopic 

features allowing for the structural elucidation of 88α,β include following: a) the 13C chemical shifts at 

δ = 96.9 and 98.1 ppm for C-1, and at δ = 35.4 and 32.5 ppm for C-2, for 88β and 88α, respectively, 

together with the absence of aromatic carbons, confirms the presence of a hydroxyl group at C-1 and an 

iodine at C-2 (Table 3.1); b) the existence of acetalic carbons and the J6a,6b value of 13 Hz confirms that 

the compounds are acyclic; c) for compound 88β, the J2,3 value of 10.0 Hz indicates that these protons 

are in a trans-diaxial disposition, and the NOE cross peak observed between protons H-2 and H-5 

confirms that iodine is on the α-face. This suggests that for compound 88β a 7-endo cyclization has 

taken place under an alkoxy-outside control. The configuration of the minor product 88α could not be 

fully elucidated, but J1,2, J2,3, and J3,4 values suggest that it would be tentatively aasigned to 88α. 

 

Scheme 3.16 Synthesis of septanoses 88β  and 88α 

 

 
 

 

Table 3.1 Selected 1H NMR Data for Compounds 82, 88β, and 88α (δ  in ppm, J in Hz) 

 

 H-1 H-2 H-3 H-4 H-5 H-6a H-6b J1,2 J2,3 J3,4 J4,5 J5,6a J5,6b J6a,6b 

82 5.56 5.13 4.65 4.49 4.13 4.58 3.81 8.8 8.8 7.6 2.0 1.0 5.2 13.6

88β 5.48 4.18 4.72 4.25 3.47 3.95 3.57 1.2 10 8.0 7.2 9.6 2.0 13.2 

88α 5.41 4.10 4.41 4.32 3.75 4.33 3.45 8.0 11.2 7.6 9.2 nd nd nd 

nd: not determined  

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
STEREOSELECTIVE SYNTHESIS OF 2-DEOXYOLIGOSACCHARIDES.NEW APRROACHES TO THE SYNTHESIS OF DIGITOXIN AND P-57 
Andrea Köver 
978-84-691-9523-9 /DL: T-1261-2008 



Stereoselective Synthesis of 2-Deoxyoligosaccharides ─ New Approaches to the Synthesis of Digitoxin and P57 

 

 
 

62 

Table 3.2 Selected 13C NMR Data for Compounds 82, 88β, and 88α (δ  in ppm, J in Hz) 

 

 C-1 C-2 C-3 C-4 C-5 C-6 

82 93.0 32.0 80.1 76.9 77.8 63.5 

88β 96.9 35.4 76.5 80.4 78.8 60.7 

88α 98.1 32.5 77.0 78.5 78.1 62.0 

 

 

3.3 Conclusions 

 
In this chapter, we have explored the synthesis of 2-deoxy-2-iodo-1-thio-septanosyl glycosides 

through an olefination–cyclization strategy. The most relevant conclusions of this work include 

following: 
 

- Septanosides 82 and 88 were obtained in low-to-moderate yields from pentoses through a two–

step procedure. A WH olefination of pentoses 75 and 83 provided phenylsulfanyl derivatives 

76 and 84, and further protection and deprotection afforded alkenes 78 and 86 that underwent 

NIS–induced 7-endo cyclization to give provide 82 and 88. 7-endo cyclization took place 

preferentially under alkoxy-outside control when an isopropylidene protecting group was 

employed in the starting alkene. This was the first example of a 7-endo iodine–induced 

cyclization to yield highly substituted oxepanes. 

 

-  In the absence of an isopropylidene protecting group, the cyclization did not take place, and 

when more basic reaction conditions were employed, an alternate reaction took place, 

providing compounds 66 and 67.  
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FOURTH Chapter: Synthesis of 2,6-Dideoxyoligosaccharides. Approaches to 

the Synthesis of Digitoxin and P57 
 

Abstract:  
Cardiac glycosides, specifically digitoxin, are used for the treatment of congestive heart failure 

(CHF), and as inhibitors for tumor cells.   

In this chapter, we employ previously-developed procedures such as furanose olefination, alkene 

iodonium–induced cyclization (Second Chapter), glycosylation from alkenyl sulfanyl derivatives 

(´One-pot´) toward the synthesis of digitoxin and P57.  
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“A veces sentimos que lo que hacemos es 

tan solo una gota en el mar, pero si ésta 

no estuviera, Él la echaría de menos.” 

 

  Teresa de Calculta, Premio Nobel de Paz 
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4.1 Introduction 
 

4.1.1 Chemical Structure of the Digitoxin 

Several glycosides bearing a steroid type aglycon are used as cardiotonics in various therapies 

(Figure 1.1). The most important of these belong to the group of cardenolides containing aglycons with 

a 23-carbon core. These compounds have certain specific characteristics including unsaturation, a 

lateral lactone chain with four carbon atoms (butenolide), and C and D rings with a conserved cis 

configuration, with a β-oriented hydroxyl group at C-14. 

These compounds come from the 5-β series, and have a C-3 hydroxyl group in the β-configuration. 

Other hydroxyl groups are found at C-1, C-5, C-11, C-12, C-16 and C-19. These glycosides generally 

contain deoxysugars linked directly to the aglycon and to D-glucose. Upon enzymatic hydrolysis during 

a drying up period, the parent plant yields D-glucose, whereas acid hydrolysis liberates all sugars 

components. 

 

Figure 4.1 Structure of Different Cardiac Steroids 
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A second group of aglycons is of the “bufadienolides,” characterized by a six-membered ring 

lactone containing two double bonds. These glycosides are found in Scilla (star flower, Urginea scilla) 

and, in the non-glycosidic form, in toad poison (bufotoxine from Bufo vulgaris). 

 One of the principal cardiac glycosides is digitoxin (5, Scheme 1.1), found in Digitalis purpurea 

(Figure 4.2) and Digitalis lanata (Figure 4.3).  
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Figure 4.2 Picture of the Plant Digitalis purpurea 

 

  
 

 

Figure 4.23 Picture of the Plant Digitalis lanata 

 

  
 

 

Digitoxin contains a trisaccharide with three digitoxose (called digoxose) units linked to the 

hydroxyl group at C-3 of the aglycon digitoxigenin. However, this important aglycon has a steroid–like 

framework that shows differences with mammalian steroids and other cardienolides. The principal 

characteristic structural features of digitoxin are a) a cis C/D ring junction, b) a tertiary 14β-hydroxyl 

group, and c) a 17β-unsaturated lactone (see Figure 4.1). The unique structure and the diverse and 

potent bioactivities of digitoxin have made it the focus of numerous synthetic studies and total 

syntheses.118 

                                                 
118  Partial and/or from steroids synthesis: (a) Danieli, N.; Mazur, Y.; Sondheimer, F. Tetrahedron 1966, 22, 3189. 

(b) Bach, G.; Capitaine, J.; Engel, C. R. Can. J. Chem. 1968, 46, 733. (c) Pettit, G. R.; Houghton, L. E.; 
Knight, I. C.; Bruschweiler, F. J. Org. Chem. 1970, 35, 2895. (d) Lenz, G. R.; Schulz, J. A. J. Org. Chem. 
1978, 43, 2334. (e) Donovan, S. F.; Avery, M. A.; McMurry, J. E. Tetrahedron Lett. 1979, 3287. (f) Marini-
Bettolo, R.; Flecker, P.; Tsai, T. Y. R.; Wiesner, K. Can. J. Chem. 1981, 59, 1403. (g) Welzel, P.; Stein, H.; 
Milkova, T. Liebigs Ann. Chem. 1982, 2119. (h) Wicha, J.; Kabat, M. M. J. Chem. Soc., Perkin Trans. 1 1985, 
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Although the sugars in the cardiac glycosides appear to have no therapeutic action, they have a 

dramatic effect on the physical, chemical, and biological properties of these compounds.118i,119 The 

glycan chains are molecular elements that control the pharmacokinetics of the drug, and prolong their 

effects.  

 

4.1.2 Previous Syntheses of Digitoxin 

Elderfield et al. prepared the first glucosides of digitoxigenin and digoxigenin and showed that the 

glycosylation reaction was specific at the secondary hydroxyl group at C-3 of the aglycons.120 The less 

reactive tertiary hydroxyl group at C-14 was not glycosylated during this reaction. Nevertheless, this 

hydroxyl group is extremely sensitive to desiccating agents, as the aglycon tends to undergo 

dehydration forming anhydrodigitoxigenin derivatives. 

To overcome this problem, specific methods of glycosylation have been studied, based primarily 

on the Knoenigs–Knorr procedure. These methods are not generally applicable, but have to be adapted 

to the specific requirements of the substrates.  α-1,2-cis-halogenated carbohydrates have been coupled 

with cardenolide aglycons using azeotropic distillation,121 AgCO3 on celite,122 AgOTf,123 mercuric 

salts,124 Et4NBr,125 or by efficient disilver maleinate126 (which provide β-products). Other glycosyl 

donors such as glycals,123 1-O-acetylglycosides,127 trichloroacetimidates,125b,128 or enzymatic 

methods,129 have also been used to synthesize glycosylated cardienolides. 

                                                                                                                                            
1601. (i) Wiesner, K.; Tsai, T. Y. R. Pure Appl. Chem. 1986, 58, 799. (j) Kutney, J. P.; Piotrowska, K.; 
Somerville, J.; Huang, S. P.; Rettig, S. J. Can. J. Chem. 1989, 67, 580. (k) Groszek, G.; Kurek-Tyrlik, A.; 
Wicha, J. Tetrahedron 1989, 45, 2223. (l) Kocovsky, P.; Stieborova, I. Tetrahedron Lett. 1989, 30, 4295. (m) 
Hanson, J. R. Nat. Prod. Rep. 1993, 10, 313. (n) Almirante, N.; Cerri, A. J. Org. Chem. 1997, 62, 3402. (o) 
Bocknack, B. M.; Wang, L.-C.; Krische, M. J. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5421. For total 
synthesis see: (p) Stork, G.; West, F.; Lee, Y. H.; Isaacs, R. C.; Manabe, S. J. Am. Chem. Soc. 1996, 118, 
10660. (q) Honma, M.; Nakada, M. Tetrahedron Lett. 2007, 48, 1541. 

119   Davis, B. G. J. Chem. Soc., Perkin Trans. 1 1999, 3215. 
120   Elderfield, R. C.; Uhle, F. C.; Fried, J. J. Am. Chem. Soc. 1947, 69, 2235. 
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Despite the numerous procedures available for the glycosylation, only three total syntheses of 

digitoxin have been reported. The first130 was the carbohydrate approach by Wiesner131 in which the β-

stereoselectivity was achieved by the anchimeric assistance of an N-methylurethane or a p-

methoxybenzoyl group at the C-3 position (Scheme 4.1). Thus, digitoxose derivative 91 and the furyl 

steroid 93 were treated under acidic condition to obtain 94. The β-stereoselectivity of this method was 

likely due to the intermediacy of the bridged species 92. 

Since the urethane group was not suitable for the subsequent glycosylation steps, it was swapped 

out, and after standard functional group manipulations, acceptor 95 was coupled with ethyl 

thioglycoside 96. The β-stereoselectivity was achieved after mercury–catalyzed cleavage of 96 through 

intermediate 97, which reacted with monodigitoxoside 95 to yield disaccharide 98. A third 

glycosylation by use a mercury–catalyzed cleavage of ethyl thioglycoside, followed by deprotection 

and transformation of furyl structure provided the desired crystalline digitoxin (5). 

 

Scheme 4.1  Total Synthesis of Digitoxin by Wiesner 
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130  Digitoxose was coupled with digitoxigenin by Zorbach and Boivin groups (ref. 137), but with poor yields and 

stereoselectivities: Zorbach, W.W.; Henderson, N.; Saeki, S. J. Org. Chem. 1964, 29, 2016. 
131  (a) Jin, H.; Tsai, T. Y. R.; Wiesner, K. Can. J. Chem. 1983, 61, 2442. (b) Wiesner, K.; Tsai, T. Y. R.; Jin, H. 

Helv. Chim. Acta 1985, 68, 300. (c) Wiesner, K.; Tsai, T. Y. R. Pure Appl. Chem. 1986, 58, 799. 
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The procedure of Wiesner and co-workers suffered from the requirement that the butenolide be 

masked as a furan derivative during glycosylation, as well as excessive protecting group manipulations.  

As such, it required additional final steps to obtain digitoxin. McDonald and co-workers developed a 

more efficient synthesis by the direct attachment of a preformed trisaccharide donor 104 to 

digitoxigenin 105 (Scheme 4.2).132 The synthesis of 104 began with protic acid–catalyzed133 

stereoselective glycosylation of alkynyl alcohol 100 with glycal 99 to provide 2,6-dideoxyglycoside 

101. Reductive debenzoylation and tungsten carbonyl–catalyzed endo-selective 

cycloisomerization35d,134 of the alkynol substrate gave disaccharide glycal 103. Convenient protecting 

group manipulations and repetition of the glycosylation–cycloisomerization steps from 103 afforded the 

glycal 104, which could be readily attached to digitoxigenin (105)35b 

 

Scheme 4.2 Total Syntheses of Digitoxin by McDonald 
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Recently, O’Doherty developed a linear and stereocontrolled route to the mono-, bis-, and 

trisaccharides of digitoxin (Scheme 4.3).135 This procedure began with the palladium–catalyzed 

glycosylation of digitoxigenin 105 with pyranone 106 to provide 107 as a single diasteroisomer. Luche 

reduction (NaBH4/CeCl3) of 107 afforded a mixture of allylic alcohols 108, which were reduced136 to 

                                                 
132  McDonald, F. E.; Reddy, K. S. Angew. Chem. Int. Ed. 2001, 40, 3653. 
133  Bolitt,V.; Mioskowski, C.; Lee, S.-G.; Falck, J. R. J. Org. Chem. 1990, 55, 5812. 
134  McDonald, F. E.; Zhu, H. Y. H. J. Am. Chem. Soc. ,1998, 120, 4246.  
135  (a) Babu, R. S.; O’Doherty, G. A. J. Am. Chem. Soc. 2003, 125, 12406. (b) Babu, R. S.; Zhou, M.; O’Doherty, 

G. A. J. Am. Chem. Soc. 2004, 126, 3428. (c) Zhou, M.; O’Doherty, G. A. Org. Lett. 2006, 8, 4339. d) Zhou, 
M. O'Doherty, G. A. J. Org. Chem., 2007, ASAP DOI: 10.1021/jo062534+ 

136  Myers’ reductive rearrangement: Myers, A. G.; Zheng, B. Tetrahedron Lett. 1996, 37, 4841. 
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rearrange into alkene 109. Dihydroxylation of 109 using the Uphjohn conditions (OsO4/NMO)137 

furnished deprotected digitoxin monodigitoxoside 110. Application of an ortho ester 

formation/hydrolysis protocol to diol 110, afforded acetyl–protected acceptor 111. Repetition of these 

steps in iterative manner yielded disaccharide first, and eventually digitoxin (5). 

Both Wiesner’s carbohydrate-based and O’Doherty’s de novo synthesis of digitoxin are high 

yielding linear procedures which submit digitoxigenin 105 moiety to several transformations. By 

contrast, McDonald’s de novo approach successfully inserts the aglycon in the final steps, and is 

therefore a more appealing methodology if a valuable, chemically–modified aglycon is employed.138 

However, the final glycosylation step of glycal 106 with digitoxigenin derivative 111 was 

accomplished in poor yield and stereoselectivity.135 

 

Scheme 4.3 Total Syntheses of Digitoxin by O’Doherty 

 

 
 

 

 

                                                 
137  VanRheenen, V.; Kelly, R. C.; Cha, D. Y. Tetrahedron Lett. 1976, 17, 1973. 
138  Not chemically modified digitoxigenin, digoxigenin, gitoxigenin, strophanthidol and strophanthidin are 

available from Aldrich Chemical Company. 
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4.1.3 Chemical Stucture of P57 

P57 (4, Scheme 4.4) (3-O-[-β-D-thevetopyranosyl-(1→4)-β-D-cymaropyranosyl-(1→4)-β-D-

cymaro-pyranosyl]-12β-O-tigloyloxy-14-hydroxy-14β-preg-50-en-20-one; C47H74O15;M+:878, Scheme 

4.4) is a stereoidal glycoside that was extracted from the African plant of the genus Trichocaulon or of 

the genus Hoodia (Figure 4.4) and isolated by the South African Council for Scientific and Industrial 

Research (CSIR) in 1977. This compound is directly related to stereoidal glycosides with appetite 

suppressant activities. This activity has been harnessed from the cactus Hoodia, and used by the 

African population to bear hunger during heavy drought seasons. A synthetic approach to P57 was 

patented by Van Heerden et al. in collaboration with Phytopharm and Pfizer, in 1998.139 Shortly 

thereafter, Pfizer released the synthesis of P57 due to the difficult synthetic approach involved. Today, 

the Hoodia extract has become popular with consumers with obesity problems. 

  

Scheme 4.4 Structure of P57 
 

 
 

 

Figure 4.4 Picture of the African Plant of the Genus Hoodia Gordonii 

 

   
 

 

 

                                                 
139  Van Heerden, F.; Vleggar, R.; Learmonth. R.; Maharaj, V.; Whittal, R. WO 98/46243 
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4.1.4 Previous Synthesis of P57 

The key considerations in the synthesis of 2,6-dideoxy-oligosaccharides are the appropriate 

selection of protecting groups, deoxygenation of positions C-2 and C-6, and the execution of a 

stereoselective glycosylation procedure. The glycosylation can be linear or convergent, and both 

strategies were explored in the Van Heerden synthesis.139 In the convergent strategy, the glycosyl 

fluoride 112 was reacted with aglycon 113 in the presence of SnCl2 furnishing 114, the “right–half” of 

the molecule (Scheme 4.5).  A subsequent esterification provided 115. 

 

Scheme 4.5 The Convergent Synthesis of the “Right–half” of the P57 

 

 
 

 

Scheme 4.6 The Convergent Synthesis of the “Left–half” of the P57  
 

 
 

 

Disaccharide 120, the “left–half” of the molecule, was prepared by reaction of the glycosyl 

acceptor 117 with the glycosyl fluoride 116 as donor, using SnCl2. This provided disaccharide 118, 

which was reacted with TBAF to deprotect the hydroxyl at C-2. Subsequent reaction with DAST 
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afforded 120, through a reaction sequence involving OH activation, 1,2-migration of PhS group, and 

incorporation of fluorine at the anomeric position (Scheme 4.6). 

The two halves of P57 (120 and 115) were linked by glycosylation of 115 with the glycosyl donor 

120 using SnCl2 and AgOTf as activators. Finally the thiophenyl moiety at C-2 of the 1st and 2nd 

synthons were reduced with Raney–Ni, and the ester protecting groups were cleaved with NaOMe to 

furnish the desired compound, 4 (Scheme 4.7). 
 

Scheme 4.7  End Game in the Convergent Synthesis of 4 

 

 
 

 

Applying the linear strategy mentioned earlier, trisaccharide chain 123 was prepared by reaction 

of the disaccharide 120 with the glycosyl acceptor 117, to furnish 122.  This was treated with DAST to 

obtain the fluorine donor 123. Finally, aglycon 124 was glycosylated with fluorine trisaccharide 123 

using SnCl2, AgOTf and Cp2ZrCl2 as activators.  Reduction of the thiophenyl moiety and removal of all 

protecting groups with NaOMe furnished 4 (Scheme 4.8). 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
STEREOSELECTIVE SYNTHESIS OF 2-DEOXYOLIGOSACCHARIDES.NEW APRROACHES TO THE SYNTHESIS OF DIGITOXIN AND P-57 
Andrea Köver 
978-84-691-9523-9 /DL: T-1261-2008 



Stereoselective Synthesis of 2-Deoxyoligosaccharides ─ New Approaches to the Synthesis of Digitoxin and P57 

 

 

74 

Scheme 4.8  End Game in the Linear Synthesis of 4 

 

 
 

 

 

4.2 Results and Discussion 

 

4.2.1 Retrosynthetic Analysis of Digitoxin and P57 

In the previous chapters we have presented a new method for the synthesis of 2-deoxyglycosides 

from furanoses. This three-step sequence involves olefination with (phenylsulfanylmethyl)phosphine 

oxides, NIS–induced intramolecular cyclization, and glycosylation; the two latter steps can be 

conducted in´one-pot´. This method has been used in the synthesis of 2-deoxyglycosides (Introduction 

and Second Chapter), and septanosides (Third Chapter). We next sought to employ use this 

methodology for the convergent synthesis of digitoxin and P57. As such, our strategy should highlight 

the key coupling step with the aglycon in good yield and high stereoselectivity, together with a non–

iterative reaction sequence over the cardenolide moiety. 

As illustrates in Scheme 4.9, we envisioned digitoxin (5) arising from monodigitoxoside A and 

disaccharide B in a convergent manner. Monodigitoxoside A could be prepared in a ´one-pot´ fashion 

from enol thioether C and commercially available digitoxigenin 105. Disaccharide B may be formed 

either by the coupling of the glycoside donor G and glycal acceptor D, form G and acceptor I, or from 

donor I and acceptor D, that is, disaccharide B can be obtained by combining D, G and I as donors or 

acceptors. We envisioned preparing Glycal D from E by a reductive elimination. Compound E could 

also be transformed into 2-deoxy-2-iodopyranose F from which the trichloroacetimidate donor G or 

fluoride donor I could be straightforward obtained.  The key synthon, E, could be prepared from C by 
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an iodine–induced cyclization. The common key intermediate C could subsequently be prepared from a 

suitably protected ribonolactone such as 89 or from ribofuranose 90 by an olefination reaction. Starting 

from the ribonolactone 89, it is possible to differentially protect the hydroxyls at C-2 and at C-3 since 

the C-2 hydroxyl is more acidic, and displays similar reactivity to that of a primary hydroxyl group.140  
 

Scheme 4.9 Retrosynthesis of Digitoxin 

 

 
 
 

Unfortunately, a convergent approach to P57 was not applicable since the requisite aglycon was 

not available. Therefore, we were compelled to design a linear synthesis of the trisaccharide moiety of 

P57. In this case, the non-reductive end (3rd synthon) of trisaccharide B is different from the two other 

units (1st and 2nd synthon) (Scheme 4.10). The third synthon could arise from diacetone-D-glucose 125 

after selective protection at C-3 and reduction at C-6, in a manner similar to that previously reported. 

The two identical units (1st and 2nd synthons) could be prepared in a similar manner to that described 

above in the synthesis of digitoxin, by combining D, E, G or I as acceptors or donors, all of which can 

be obtained from intermediate C. Compund C is readily available from 1,4-D-ribonolactone 89 or α,β-

D-ribofuranose 90. 

                                                 
140  (a) Ariza, J.; Font, J.; Ortuño, R. M. Tetrahedron Lett. 1990, 46, 1931. (b) Lundt, I.; Madsen, R.; Synthesis 

1992, 1129. (c) Raveendranath, P. C.; Blazis, V. J.; Agyei-Aye, K.; Hebbler, A. K.; Gentile, L. N.; Hawkins, E. 
S.; Johnson S. C.; Baker, D. C. Carbohydr. Res. 1994, 253, 207. (d) Bell, A. A; Nash, R. J.; Fleet, G. W. J. 
Tetrahedron: Asymmetry, 1996, 7, 595. (e) Yang, W.-B.; Tsai, C.-H.; Lin, C.-H. Tetrahedron Letters, 2000 41, 
2569. 
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Scheme 4.10 Retrosynthesis of P57 

 

 
 

 

As mentioned, the above–described routes were designed to highlight the synthesis of 2,6-

dideoxy-2-iodo-pyranosides via a pentose olefination–electrophilic cyclization developed in our group. 

According to this strategy, either D-ribofuranose or ribonolactone can be used as a starting material. 

After the selective protection of the hydroxyl groups at C-2 and C-3 and deoxygenation at C-5, the five-

membered ring of 6-deoxy-ribofuranose could be expanded to a 6-deoxy-2-iodo-allopyranoside 

derivative after olefination and subsequent electrophile–induced cyclization. 

In order to follow this plan, the choice of protecting groups is a key consideration, as many of the 

well-known protecting groups, such as esters, are cleaved under the basic conditions required for the 

olefination step. The ribofuranose has three hydroxyl groups that should be orthogonally protected in 

order to elaborate them the core.  After a previous study, we decided to use ethers as protecting groups 

for all three hydroxyl groups, allowing for a global deprotection in the final step of the synthesis.  For 

the synthesis of digitoxin, a benzyl ether group was chosen to mask the hydroxyl group at C-3 of the 1st 

and 2nd synthons and the hydroxyls at C-3 and C-4 of the 3rd synthon, to allow for hydrogenolytic 

cleavage in the final step.  

In the case of P57, a methyl ether group was selected to protect the hydroxyl at C-3 of the 1st and 

2nd synthons, as it is required in the target product, P57.  A temporary protecting group for the hydroxyl 
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at C-4 of the 1st and 2nd synthons in both digitoxin and P57 should be selectively formed and cleaved 

before the glycosylation steps in the presence of benzyl group.  Furthermore, they should be stable 

under the varied conditions of the synthesis. To this end, a silyl protecting group were chosen. 

 

4.2.2 Synthesis of the 3rd Synthon of P57 

Unlike the 1st and 2nd synthons of P57, the 3rd synthon of P57 is not a 2-deoxymonosaccharide and 

its synthesis could be envisioned to involve the classical manipulation of glucose. The limitation 

imposed by the presence of a methyl ether at the hydroxyl group at C-3 validates the use of 

commercially available diacetone-D-glucose 125, where the only free hydroxyl group is that of C-3 

(Scheme 4.11). 

 

Scheme 4.11 Restrosynthetic Approach for 3rd Synthon 

 

 
 

 

Thus, compound 125 was methylated with MeI in the presence of NaH in anhydrous THF to 

furnish 126 in 96% yield. The 5,6-O-isopropylidene group was selectively hydrolyzed with iodine in 

the presence of water to provide diol 127 in 96% yield. The primary hydroxyl in compound 127 was 

next converted to iodide by reaction with iodine-triphenylphosphine (Appel type reaction)141 to afford 

compound 128 in 52% isolated yield together with considerable quantities of elimination product 129, 

isolated in 44% yield (Scheme 4.12). 

The formation of compound 129 likely proceeds trough the formation of diiodide 130 followed by 

subsequent radical elimination in the presence of the UV light (Scheme 4.14). When this reaction was 

initially tested on a 100-mg scale under the same conditions and reaction time, the formation of the 

secondary product was minimal relative to a 4-g scale reaction (Scheme 4.13).  

 

 

 

 

                                                 
141 Papageorgiou, C.; Benezra, C. Tetrahedron Lett. 1984, 25, 6041. 
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Scheme 4.12 Synthesis of 129 

 

 
 
 

Scheme 4.13 Proposed Mechanism of the Formation of Compound 129 

 

 
 

 

Compounds 128 and 129 were separated by column chromatography, and the synthesis continued 

with the deiodination of 128 with Bu3SnH/AIBN to furnish 131 in 87% yield.141 The isopropilydene 

moiety was then hydrolyzed with an acidic resin to obtain 6-deoxy-3-O-methyl-α,β-D-glucopyranose, 

which was subsequently acetylated to provide 132 in 87% yield as an α/β mixture (α/β = 3:1). The 

structure of these compounds was confirmed with 1D and 2D NMR methods, including HMBC and 

NOESY (Scheme 4.14).  
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Scheme 4.14  Synthesis of 132 as a Possible 3rd Synthon of P57 

 

 
 

 

 

4.2.3 Synthesis of the 3rd Synthon of Digitoxin 

The third synthon of digitoxin is a 2,6-dideoxy-2-iodo-allopyranose residue placed at the non-

reducing end of the oligosaccharide moiety, and consequently it must only act as a glycosyl donor in 

the glycosylation step for monosaccharide assembly.  As such, it does not require a temporarily 

protected hydroxyl group at C-4. Consequently, the hydroxyl groups at C-3 and C-4 were both 

protected as benzyl ethers. 2,3-di-O-Benzyl-5-deoxy-α,β-D-ribofuranose (136) was prepared by 

benzylation of 133 and 134 (the syntheses of which were described in section 2.4) in the presence of 

NaH in anhydrous THF, to provide 135 in 93% yield. Hydrolyzis of 135 in HOAc/H2O = 8:1 at 80 ºC 

for 4 hours rendered 136 in 78% yield (Scheme 4.15).  

 

Scheme 4.15 Synthesis of 136 

 

 
 

 

Scheme 4.16 Synthesis of 137 
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Olefination of 6-deoxy-ribofuranose 136 furnished 137 in 68% yield as an inseparable E/Z 

diastereoisomeric mixture (E/Z = 8:1). Significant amounts of β-hydroxyphosphine oxide 138 were also 

isolated, and were transformed into alkene 137 by treatment with KH in tetrahydrofuran (Scheme 4.16). 

Next, the mixture of enitols 137 was employed in cyclization reaction in the presence of NIS in 

the mixture of MeCN/H2O = 10:1 at –10 ºC for 45 minutes to furnish 2-iodo-α,β-D-allopyranoside 

(139) in 56% yield. The outcome of the reaction reveals that the thioglycoside initially formed from 

cyclization is further activated in situ by [I+] to provide the final hemiacetal 139 (Scheme 4.17). 139 

was next treated with DAST to afford an 96% isolate yield of the glycosyl fluoride 140 (the targeted 

synthon I in Scheme 4.10, R1 = R2 = Bn, Scheme 4.18).  

NMR data of phenylsulfanyl alkene 137 and related compounds are collected in Table 1, and 

NMR data of cyclized compounds are included in Table 4.2, in order to facilitate comparison of 

spectroscopic trends in these families of compounds. 
 

Scheme 4.17 Synthesis of 139 
 

 
 

 

Scheme 4.18 Synthesis of 140 

 

 
 

 

 

4.2.4 Synthesis of the 1st and 2nd Synthons of Digitoxin and P57 

 

4.2.4.1 Synthesis of Olefination Precursors 

As indicated in the retrosynthesic analysis of digitoxin and P57 (Schemes 4.9 and 4.10), the 

synthesis of all olefinic precursors was designed to highlight the olefination–cyclization strategy 

developed in our group. Two strategies for the synthesis of precursors were developed. The first was 

explored by Miguel Angel Rodríguez, and begins from ribonolactone 89.  This route involves initial 

formation of 2,3-O-isoprpylidene derivative 141, deoxygenation of position C-5 by iodination to 
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provide 142, and reduction with Bu3SnH to afford 143.141 Selective benzylation of at the C-3 hydroxyl 

group in 143 was carried out by reaction with Bu2SnO to obtain the stannyl acetal, followed by further 

reaction with BnBr and CsF furnished 144 in 71% overall yield (Scheme 4.19). 

 

Scheme 4.19 Synthesis of 14457e 

 

 
 

 

In order to account for the acid–sensitivity of the digitoxin aglycon, TES or TBS ethers were 

chosen as temporary protecting groups for the hydroxyl group at C-3. Thus, compound 144 was 

transformed into 6-deoxy-ribo derivatives 147 (Scheme 4.12) and 149 (Scheme 4.20) by silylation and 

lactone reduction (Scheme 4.21). 

 

Scheme 4.20 Synthesis of 147142 
 

 
 

 

Scheme 4.21 Synthesis of 149142 

 

 
                                                 
142  Prepared and described by Miguel Angel Rodrígez. 
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Although this synthetic process was successful for the synthesis of digitoxin precursors 147 and 

149 with benzyl protecting groups at C-2, it was not useful for the synthesis of the corresponding P57 

precursor with a methoxy group at C-2, as treatment of 143 with Bu2SnO and CsF, or with Ag2O and 

MeI in DMF provided only elimination product 150 (Scheme 4.22).  This result was accounted for in 

the literature by the basic reaction conditions and the use of polar solvent, which leads to β-elimination 

in aldonolactones via an ElcB mechanism.143 

 

Scheme 4.22 Reaction of 143 with Ag2O and MeI142 

 

 
 

 

We decided to explore an alternate approach starting from α,β-D-ribofuranose 90 for the synthesis 

of P57. Treatment of 90 with anhydrous methanol and catalytic H2SO4 afforded the methyl glycoside 

151. Next, protection of the hydroxyl groups at C-2 and C-3 as a p-methoxybenzylidene derivative with 

p-methoxy benzaldehyde in the presence of anhydrous ZnCl2 rendered 152 in 45% yield over the two 

steps.  This yield could be increased to 53% using an ultrasound treatment during the second step.144  
 

Scheme 4.23 Synthesis of 156 
 

 
 

                                                 
143  Jeronic, L. O.; Sznaidman, M. L.; Cirelli, A. F.; de Lederkremer, R. M. Carbohydr. Res. 1989, 1989, 130. 
144  Dhimitruka, I.; SantaLucia, J. Jr. Org. Lett. 2006, 8, 47. 
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Ribofuranoside 152 was deoxygented at C-5 in two steps by iodination to intermediate 153 

followed by radical hydrogenolysis with Bu3SnH/AIBN to compound 154.141 Compound 154 was then 

reduced with DIBAL-H to provide a mixture of 155 and 156, which were separated by recrystallization 

(Scheme 4.23).145 This process was repeated to obtain compounds 133 and 134 using benzaldehyde at 

the second synthetic step (Scheme 4.24). 

 

Scheme 4.24  Synthesis of 133 and 134 

  
 

 
 

 

Since we encountered problems with the application of TES and TBS groups in the synthesis 

developed by Rodriguez, we decided to use a more stable silyl protecting group under the basic 

conditions required for the olefination reaction. We considered both TIPS and TBDPS protecting 

groups, and selected the latter due to it superior stability. Silylation of the secondary hydroxyl at C-3 of 

156 using TBDPSCl in the presence of TEA and DMAP in anhydrous DCM furnished 160 in near 

quantitative yield. The PMB group was then deprotected by oxidation with DDQ in wet DCM, and 

subsequent etherification on the unmasked hydroxyl group with NaH and MeI in THF provided the 

desired methoxy ether 162. Traditional methods for acidic hydrolysis to afford the olefination 

precursors were unsuccessful, because the silyl ether at C-3 was deprotected faster than the anomeric 

hydrogenolysis. We discovered, however, that thiophenol in the presence of BF3•Et2O furnished a 

                                                 
145  Riley, A. M.; Jenkins, D. J.; Marwood, R. D.; Potter, B. V. L. Carbohydr. Res. 2002, 337, 1067. 
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thioglycoside146 that was easily hydrolyzed by NIS in MeCN/H2O = 10:1 to furnish 163 (Scheme 

4.25).147 

 

Scheme 4.25 Synthesis of 163 
 

 
 

 

4.2.4.2 Olefination Reactions 

Starting from the previously prepared precursors, olefination reactions were carried out under WH 

conditions. Thus, (phenylsulfanylmethyl)diphenylphosphine oxide was treated with n-BuLi at –78 ºC, 

and the solution of the appropriately protected 5-deoxy-ribofuranose was then added slowly at the same 

temperature. The reaction was warmed to room temperature until complete as determined by TLC 

analysis, by a colour change from orange to yellow, and by the formation of a solid precipitate. The 

reaction was quenched by addition of a saturated solution of ammonium chloride, and was then 

extracted with ethyl acetate to recover the desired product the alkene and excess phosphine oxide, and 

the β-hydroxyphosphine oxide intermediate. After the separation of the reaction mixture, the β-

hydroxyphosphine oxide was eliminated with t-BuOK or KH in THF to furnish the desired alkene in 

good yield.   

The olefination reaction for TES–protected 5-deoxy-ribofuranose 147 was first performed by 

Rodríguez. Unlike the analogous olefination reactions of ribofuranoses, where the 1H NMR spectra 

showed a mixture of two products corresponding to the E/Z alkenes, the E-alkene being the major one, 

the 1H NMR spectrum of the alkene mixture obtained from olefination reaction of 147 indicated four 

alkene products which were partially separated by chromatographic techniques. The olefinic signals in 

the 1H NMR spectrum indicated the existence of a mixture consisting of two alkenes of E configuration 

with J1,2 values of ca. 15 Hz and two alkenes of Z configuration with J1,2 values of ca. 10 Hz. Two of 

                                                 
146  Viso, A.; Pooppeiko, N.; Castillón, S. Tetrahedron Lett. 2000, 41, 407. 
147  Dinkelaar, J.; Witte, M. D.; van der Bos, L.; Overkleeft, H. S.; van der Marel, G. A. Carbohydr. Res. 2006, 

341, 1723. 
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the four alkenes were likely to be assigned to the desired enitols of ribo configuration as a result of 

direct olefination of 147. However, the structure of the other Z/E alkene pair was unclear at that 

moment. In view of the difficulty of determining the structure of the alkene products, we decided to 

continue with the synthetic route in order to carry out structural elucidation employing the 

corresponding cyclized products (Scheme 4.26). 

 

Scheme 4.26 Olefination Products of 147 from the 1H NMR142 

 

 
 

 

The cyclization reactions from the different isolated fractions were carried out to confirm the exact 

structure of the respective alkenes. NMR analysis of the cyclized products obtained by Rodríguez 

suggested that the unknown major E-alkene isomer corresponded to that of the arabino configuration, 

as a result of extensive epimerization at C-4 of the corresponding ribo derivative under the basic 

condition of olefination. 

Faced with the challenge of selectively obtaining enough synthetic amounts of ribo alkene, 

Rodríguez decided to reconsider the protecting group strategy and replace the TES group by the more 

robust TBS group that should minimize epimerization. Following an analogous process to that used for 

TES derivatives 147, TBS–protected 5-deoxy-ribo derivative 149 was synthesized and subsequently 

submitted to WH olefination. Four major alkene compounds were again observed in the 1H NMR 

spectrum, with no change in the product distribution. From structural elucidation of the partially 

separated products, it was deduced that the ribo alkene was formed in 61% yield as an inseparable 

mixture of isomers (Z/E= 1:16) and that the epimerized arabino product represented only a 16% yield 

(Scheme 4.27).  

 

Scheme 4.27 Olefination Products of 149 from the 1H NMR142 
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Due to these results, we decided to implement Rodriguez’ work with the use of bulkier TBDPS 

ether at C-3. However, the WH olefination reaction on TBDPS–protected ribose 163 also furnished a 

mixture of four alkenes with one major E-alkene in a 66% ratio based on 1H NMR analysis (Scheme 

4.28). 

 

Scheme 4.28 Olefination Products of 163 from the 1H NMR  

 

 
 

 

Previous experiments on 6-deoxy-furanosides in our group had provided variable amounts of 

epimerized alkene products, particularly in the presence of benzyl protecting groups.  Interestingly, 

furanosides proved to be resistant to this process. To gain insight into this problem, the complex alkene 

mixture obtained from olefination of 163 was purified and the two major alkenes were analyzed. For 

complete structural elucidation, it was necessary to submit these two products to cyclization in order to 

elucidate the structure of the cyclized products. All products obtained were analyzed by standard 1H 

and 13C NMR techniques, as well as by COSY, and, wherever possible, by HMBC, TOCSY, and 

NOESY experiments. The obtained spectroscopic data were compared with those obtained by 

Rodriguez from the TES– and TBS–protected derivatives that were tentatively assigned as the 

epimerized products. The results of this study are detailed in Tables 4.1 and 4.2.  

The 1H NMR features of the two major isomers in all cases showed many similarities. Signals 

corresponding to olefinic protons H-1 and H-2 were found at similar chemical shifts and with similar 
3J1,2 values of 15.6 Hz. Further similarities were found comparing coupling constants between other 

protons. The 13C NMR spectra of these alkenes showed only slightly more pronounced differences. 

However, for the determination of the exact structure of the alkenes further analysis was necessary.  

The existence of a correlation between the free hydroxyl proton with the proton in the 

neighbouring carbon in the COSY spectrum allowed us to directly address our problem. This 

correlation is often not observed or only with a big expansion. The major E-isomer of TBDPS–

protected alkene showed an interesting COSY correlation between a signal corresponding to H-4 and 

that corresponding to the free OH proton. The 1H-spectrum indicated that the signal corresponding to 

H-4 appeared as a dt instead of a t or dd, be expected. The same observation was made with one of the 

E-isomers in the TES– and TBS–derivatives, as well. The COSY's of the respective other E-isomers in 

TES–, TBS– and TBDPS–derivatives, on the contrary, showed a COSY correlation between H-5 and 
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OH, and similarly, a more complex H-5 signal was found at the 1H-spectra. Furthermore, the NMR 

spectrum pattern of these other E-isomers was nearly identical, with similar chemical shifts and 

coupling constants, regardless of the protecting group installed. 

Spectroscopic data allowed us to confirm the structure of the major alkenes obtained from 

olefination corresponding to alkenes of ribo configuration 167, 169 and 173, with the respective silyl 

groups installed at the corresponding hydroxyl groups at C-5 instead of C-4, as expected. 

 

Scheme 4.29 Mechanism of the Migration of Silyl Group under WH Olefination Reaction 
 

 
 

 

The mechanism of this migration is explained by the basic conditions under which olefination 

takes place, with formation of an intramolecular pentacoordinate silicate species either on the aldehyde 

substrate 149 furnishing intermediate 165, or the alkene already formed 164 furnishing intermediate 

166 (Scheme 4.29).148 The migrated product 167 could be also formed in the subsequent elimination 

step of the β-hydroxyphosphine oxide intermediate with t-BuOK or KH. Furthermore, it is reasonable 

to suggest that this second step may increase the amount of migration product. The driving force for 

this silyl migration appears to be the increased stability of the 5-O-silylated product due to the steric 

release produced upon migration of the bulky silyl group from an inner to a more peripheral position of 

the molecule. 
                                                 
148  Examples in the literature for silyl migration: a) Furegati, S.; White, A. J. P.; Miller, A. D. Synlett. 2005, 15, 

2385. b) Ogilivie, K. K.; Entwistle, D. W. Carbohydr. Res. 1981, 203, 89. c) Mulzer, J.; Schöllhorn, B. Angew. 
Chem., Int. Ed. Engl. 1990, 29, 431. d) Crich, D.; Ritchie, T. J. Carbohydr. Res. 1990, 29, 324. e) Friesen. R. 
W. Daljeet, Tetrahedron Lett. 1990, 31, 6133. f) Beaucage, S. L.; Iyer, R. P. Tetrahedron 1992, 48, 2223. 
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Once the silyl migration process was elucidated, the composition of the alkene mixture became 

clear. The four products observed by NMR in all olefination experiments were assigned to a Z/E alkene 

mixture of the expected products 164, 168 and 172 altogether with a Z/E alkene mixture of migration 

products 167(Scheme 4.30), 169 (Scheme 4.31), and 173 (Scheme 4.32), respectively  

 

Scheme 4.30 WH Olefination Reaction of 147142 

 

 
 

 

Scheme 4.31  WH Olefination Reaction of 149142 

 

 
 

Scheme 4.32  WH Olefination Reaction of 163 
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In order to mitigate the basicity of the olefinating reagent, thereby minimizing silyl group 

migration, a Wittig olefination reaction was tested for compound 163. Under such conditions, however, 

the migrated Z-isomer 173 was again predominantly formed together with smaller amounts of the 

desired Z-isomer 172, with only traces of E-isomers (Scheme 4.33). 

 

Scheme 4.33  Wittig Olefination Reaction of 163 

 

 
 

 

In summary, all silyl ethers derivatives studied experiment silyl migration under the olefination 

conditions studied. With TES and TBDPS protecting groups, the major products were the migrated 

compounds, whereas, with TBS the desired protected on hydroxyl at C-4 ether was produced in the 

same proportion to the silyl migration alkene. This result contrasts with the literature data on this issue 

that describe that TBDPS ethers are more stable to migrations than TBS.148 

In view of the outcome of these olefination reactions, it is clear that none of the well–known silyl 

ethers would be able to tolerate the strong basic conditions of the olefination reaction. We decided to 

assay the olefination reaction without protecting hydroxyl group at C-3. For this reason, 2-O-benzyl-6-

deoxy-α,β-D-ribofuranose 175 was prepared from the ribofuranoside 134. The ribofuranose 175 

obtained was submitted to the standard olefination reaction under WH conditions with 

(phenylthiomethyl)diphenylphosphine oxide anion. The evolution of the reaction was monitored by 

TLC analysis. After work-up with ammonium chloride, the higher Rf olefination product was separated 

from the low Rf mixture of starting material, and the formed β-hydroxyphosphine oxide derivative. The 

β-hydroxyphosphine oxide derivative was then eliminated with KH to increase the yield of alkene 

(Scheme 4.34). 

The olefination reaction of 175 furnished 176 in a poor yield, but good selectivity (28%, E/Z = 

10:1). The NMR data of compound 176 are included in Table 4.1 for comparison. 
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Scheme 4.34  Synthesis of 176 
 

 
 

 

 

4.2.4.3 Cyclization and Glycosylation Reactions: Study of the 5-Endo Cyclization Mode 

Silyl migration altered our plans to prepare the synthons for our Digitoxin and P57 syntheses, but 

provided access to valuable alkene derivatives on which electrophilic–induced cyclization could be 

further studied. Although our group has extensively studied this reaction for several years,57 we 

considered it interesting to gain further insight into the parameters that govern this process, carrying out 

electrophile–induced cyclization with the free hydroxyl group at C-6 alkenes generated as a 

consequence of silyl migration.  

Despite cycloetherification being an important tool in organic synthesis, 5-endo electrophile–

induced cyclization is not well studied in the literature.149 The 5-exo-trig cyclization was described by 

Baldwin in 1976, and is preferred over the 6-endo-trig mode, although the ratio of 6-endo product 

increases with increasing electron donor substituents at the terminal olefinic carbon (See section 1.1.5, 

Scheme 1.13). 

Previous studies in our group57 on the electrophile–induced cyclization of simple alkenyl sulfides 

showed that whenever 6-endo and 5-endo modes are in competition, the 6-endo cyclization is preferred 

even if the hydroxyl function involved in cyclization is protected as benzyl ether. Under these 

conditions, the 5-endo-trig product was obtained in only trace quantities.  On the other hand, the 5-exo-

trig mode does not appear to compete with the endo mode when a phenylsulfanyl group is attached to 

the terminus carbon atom of the double bond, and was not observed (Scheme 4.35). 

 

 

                                                 
149  Examples for the 5-endo cyclizations: a) Wender, P. A.; Glorius, F.; Husfeld, C. O.; Langkopf, E.; Love, J. A. 

J. Am. Chem. Soc. 1999, 121, 5348. b) Nonami, Y.; Baran, J.; Sosnicki, J.; Mayr, H.; Masoyama, A.; Nojima, 
M. J. Org. Chem. 1999, 64, 4060. c) Alabugin, I, V.; Manoharan, M. J. Am. Chem. Soc. 2005, 127,  9534. d) 
Chatgilialoglu, C.; Ferri, C.; Guerra, M.; Tomikhin, V.; Froudakis, g.; Giminiss, T. J. Am. Chem. Soc. 2002, 
124, 10765. e) Knight, D. W. Progress in Heterocyclic Chemistry, 2002, 14, 19. 
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Table 4.1 NMR Dates of 6-Deoxy Alkenes with Different Protecting Groups 

Entry 
 δ (ppm) J (Hz) δ (ppm) 

 H-1 H-2 H-3 H-4 H-5 H-6 1,2 2,3 3,4 4,5 5, 6 Hx-OH C-1 C-2 C-3 C-4 C-5 C-6 

1 
 

6.50 5.81 4.03 3.36 3.93 1.21 15.2 8.4 6.8 6.0 6.4 4.0 
H5-OH 129.3 129.0 81.8 84.5 69.3 19.1 

2 
 

6.59 5.92 4.92 3.49 3.93 1.23 9.2 9.2 5.6 6.4 6.8 4.0 
H5-OH 129.4 129.2 77.6 84.7 69.1 19.3 

3 
 

6.52 5.77 3.97 3.56 3.89 1.18 15.2 8.0 6.4 5.6 6.8 OH 
Broad 130.2 127.9 81.5 76.3 68.7 18.9 

4 
 

6.45 5.76 3.93 4.65 3.86 1.17 15.2 8.0 6.0 5.6 6.4 4.0 
H5-OH 128.1 128.7 81.7 78.3 69.9 18.8 

5 
 

6.48 5.84 3.92 3.62 
dt 3.94 1.10 14.8 8.0 6.0 5.6 6.4 2.4 

H4-OH 128.1 129.3 79.8 77.0 68.6 18.3 

6 
 

6.42 5.73 3.93 3.63 3.86 1.15 15.6 8.0 6.8 5.6 6.0 4.8 
H5-OH 128.6 129.4 81.5 78.2 69.8 18.8 

7 
 

6.55 5.84 4.50 3.75 3.86 1.2 9.6 9.2 4.8 5.2 6.4 4.8 
H5-OH 129.2 129.3 77.2 78.4 69.7 19.0 

8 
 

6.50 5.84 3.93 3.75 
dt 3.62 1.10 15.2 7.6 6.4 5.6 6.0 2.4 

H4-OH 128.9 128.7 79.6 76.9 68.9 18.2 

9 
 

6.64 5.86 4.34 
3.71 
dd 

broad 
4.08 1.10 9.6 8.4 8.0 4.0 6.8 H4-OH 

OH-broad 130.1 129.2 75.9 76.3 69.0 17.1 

10 
 

6.17 5.51 3.88 3.71 3.86 1.15 15.6 8.0 6.8 5.6 6.4 H5-OH 
OH-broad 128.5 129.1 83.7 79.3 69.9 19.0 

11 
 

6.35 5.68 3.75 3.68 3.95 1.05 15.6 8.0 6.8 5.6 6.0 COSY 
H4-OH 128.9 128.2 82.3 76.6 70.2 18.2 
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Scheme 4.35 5-exo-trig versus 5-endo-trig Cyclization Study 
 

 
 

 

The migrated alkenes have an analogous structure to those studied by Arnes. Therefore, we 

though it would be interesting to implement our study with the reaction of the former with NIS under 

the typical conditions of cyclization.   

To solve the problem of the structural elucidation of the alkenes obtained from olefination 

described above, electrophile–induced cyclization and ´one-pot´ cyclization–glycosylation reactions 

were carried out. These structures are beneficial because the coupling constants of six-membered 

mannopyranosides and allopyranosides have been well-studied in our group. Standard methods of 

cyclization were chosen with the iodine electrophile.  

 

Scheme 4.36  Synthesis of 180142 

 

 
 

 

First, the major TES–protected enitol 169 was studied in glycosylation and cyclization reactions to 

elucidate the exact compound structure. Following our overall plan, a ´one-pot´ cyclization–

glycosylation reaction was carried out by reaction with Digitoxigenine as a glycosyl acceptor. The 

enitol and the Digitoxigenine were stirred in the presence of NIS at –78 ºC. The reaction mixture was 

warmed to –20 ºC for 8 h, to promote the cyclization. The reaction mixture was then cooled to –60 ºC, 

and TFA was added to promote glycosylation of Digitoxigenine by activation of the thioglycoside 

intermediate 178. The reaction mixture was then warmed –30 ºC. After stirring for 15 hours, 
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digitoxigenyl glycoside 179 was obtained in 53% yield, together with the N-succinimide glycoside 

(Scheme 4.36). 

TES deprotection from 179 was studied with HF·Pyr to evaluate the stability of the glycosidic 

linkage towards desilylation. The reaction provided 181 in 63% yield (Scheme 4.37). 

 

Scheme 4.37 Synthesis of 181142 
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The ´one-pot´ cyclization–glycosylation from 167 and p-nitro-benzyl alcohol furnished the p-

nitrobenzyl furanoside 182 in 68% yield (Scheme 4.38). 

 

Scheme 4.38 Synthesis of 182142 
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The cyclization reaction from the TBS–protected enitol 167 in the presence of NIS in MeCN/H2O 

= 10:1 led to compound 183 in 95% yield in only 45 minutes at –10 ºC (Scheme 4.39). 

 

Scheme 4.39 Synthesis of 183142 

 

 
 

Correspondingly, the TBDPS–protected enitol 173 was cyclized in the presence of NIS and 

NaHCO3 in DCM to afford furanose 185 in 63% yield (Scheme 4.40). 
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Scheme 4.40 Synthesis of 185 

 

 
 

 

To confirm the structure of compound 185, it was acetylated with acetyl chloride in the presence 

of pyridine and DMAP in THF to give 186 in 75% yield (Scheme 4.41). 
 

Scheme 4.41 Synthesis of 186 

 

 
 

 

2-Iodofuranose 185, in turn, was transformed into the glycosyl fluoride with DAST to furnish 187 

in 86% yield (Scheme 4.42).  

When these cyclization experiments were carried out, we were excited to be working with 4-O-

silyl akenyl sulfides with a free hydroxyl function at C-5, leading to cyclization experiments that would 

provide direct access pyranosides. 

 

Scheme 4.42 Synthesis of 187 
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When these cyclization experiments were carried out we were in the conviction to be working 

with 4-O-silyl akenyl sulfides with a free hydroxyl function at C-5 and therefore that the cyclization 

experiments would render pyranosides.  

The 1H and the 13C NMR of fluoride 187, however, provided an important piece of information in 

the determination of the structure of the previously described five-membered cyclized products and 

eventually of the olefination products.  

It shows a signal at a relatively high chemical shift (δ = 6.11 ppm) identified from the HSQC 

spectrum as H-1 in the form of a doublet with 2J1,F of 66.4 Hz, a value that is far from the typical value 

located in pyranosyl fluorides (ca. 53 Hz). The related C-1 of compound 187 was found at δ = 116.49 

ppm with a 1J1,F = 228.1 Hz, a chemical shift that is also relatively high for a typical anomeric carbon in 

a pyranosyl fluoride (ca. 110 ppm).150 This was the first clue that made us suspect that we were working 

with an incorrect structural hypothesis. Further interesting data included the form of the signal of H-4 

(qd), the coupling constant between H-4 and F (4J4,F = 9.6 Hz), and H-2 in the form of double doublet 

with coupling constants (3J2,F = 8.0 Hz, 3J2,3 = 5.2 Hz) that was correlated in the 13C NMR spectrum 

with a signal at high field (δ = 33.32 ppm). This is characteristic of a carbon atom attached to iodine (C-

2) with the form of a doublet (JC2,F = 22.7 Hz). TOCSY, HMBC, and NOESY experiments were also 

carried out. TOCSY allowed identification of the spin system of the proton atoms in the ring 

framework. More interestingly, HMBC showed a correlation between the signal at 6.11 ppm in the 1H 

NMR spectrum and a signal at 87.5 ppm in the 13C NMR spectrum, assigned to H-1 and C-4, 

respectively. HMBC correlations are expected when the nuclei involved are 2 or 3 bonds apart, and 

therefore, the H-1–C-4 correlation should not be observed in a pyranosyl fluoride. No HMBC 

correlation was observed between H-1 and C-5 or H-5 and C-1. 

NMR data of fluoride 187 and the previously described cyclized products were included in a table 

with the other six-membered allopyranoside derivatives for the sake of comparison. This allowed for 

the identification of common spectroscopic trends either in five- and six-membered allo derivatives. 

Results of this study are provided in Table 4.2. In the case of allopyranosides, α- and β-isomers can be 

distinguished by the coupling constant between H-1 and H-2 (in case of α-isomers, J1,2 ranges from 0.0 

to 2.8 Hz, while in the case of β-isomers J1-2 ranges from 8.8 to 11.2 Hz). The coupling constants 

between other protons are comparable. This issue is not so clear for five-membered derivatives where 

the 3J1,2 values do not follow a regular trend. 

Chemical shifts of H-6 and C-6 also experience significant changes depending on the size of the 

ring. In the the 1H NMR spectra, proton H-6 signals appear in furanosides at lower fields (δ = 1.20 to 

1.35 ppm ) than those in the corresponding pyranosides (δ = 0.96 to 1.16 ppm ), whereas the general 

                                                 
150  Dax, K.; Albert, M.; Ortner, J.; Paul, B. J. Carbohydr. Res. 2000, 327, 47. 
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trend in the 13C NMR spectra is the opposite, as the C-6 signals appear at lower chemical shifts (δ = 

17.9 – 18.3 ppm) in furanosides than those in pyranosides (δ = 19.4 to 23.9 ppm). 

 Chemical shifts of C-4 and C-5 are also interesting because they depend on the size of the ring. 

Signals assigned to C-4 have chemical shifts between δ = 86 to 88 ppm in furanosides, whereas the 

analogous ones in pyranosides appear in the range between 70 and 82 ppm. Signals assigned to C-5 in 

furanosides appear nearly invariably at around δ = 69 ppm, whereas in pyranosides, the chemical shift 

values are considerably more irregular. 

These spectroscopic evidences allowed us to confirm the furanosidic nature of the cyclized 

products 179, 180, 181, 182, 183, 185, 186, and 187 in detriment to the pyranoside hypothesis, and 

eventually allowed us to establish the connection with their migrated alkene precursors 167, 169, and 

173, respectively.  

To understand whether 5-endo or 6-endo cyclization would be favoured, we carried out a 

cyclization reaction with an enitol from 6-deoxy-ribofuranose with two free secondary hydroxyls at C-4 

and C-5 (Scheme 4.43).  

 

Scheme 4.43 Cyclization 6-endo versus 5-endo 
 

 
 

 

After the preparation of enitol 176 by WH olefination reaction, cyclization reaction was carried 

out DCM in the presence of NIS (1.5 equiv), NaHCO3 (1.1 equiv), and 4Å MS at –60 ºC. After 30 

minutes, TLC analysis indicated that more than one cyclization product was formed with Rf higher than 

the respective enitol. The reaction was stopped after 20 hours by addition of a solution of Na2S2O3. The 

compounds obtained were separated by column chromatography, and one major compound was 

obtained in a 56% yield, and at least three minor products were obtained as an inseparable mixture 

(Scheme 4.44). 

The major compound was analyzed by 1H and 13C NMR and 2D NMR techniques, compared with 

other cyclization products prepared previously, and finally assigned as compound 189. As such, the 5-

endo mode was clearly favoured over the 6-endo cyclization.  
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Scheme 4.44 Cyclization Reaction of 176 
 

 
 

 

We were also interested in elucidating whether it was possible to obtain the desired 6-endo 

cyclized product at higher temperatures in a ´one-pot´ reaction. The ´one-pot´ cyclization–glycosylation 

from alkenyl sulfide 176 in the presence of Digitoxigenine as glycosyl acceptor was thus studied. The 

reaction mixture was stirred at –20 ºC in the presence of NIS to promote the cyclization event. When 

starting material disappeared as indicated by TLC analysis, the reaction mixture was cooled –60 ºC, and 

TFA was added to promote glycosylation. The resulting mixture warmed to –20 ºC and stirred for 18 

hours. The reaction products was isolated and analyzed with 1H and 13C NMR and 2D NMR 

techniques. Comparison of the spectroscopic data with those of the other cyclized products prepared 

previously allowed assignment the product to that of 5-endo cyclization–glycosylation product 182, 

obtained in a 63% yield starting from (Scheme 4.45). 

 

Scheme 4.45 ´One-pot´ Reaction of 176 
 

 
 

 

The silyl migration process was an obstacle that prevented synthesis of the monosaccharide 

moieties for digitoxin and P57 syntheses. However, they provided us with unexpected cyclization 

modes that were studied to gain further insight into a process we have studied for many years.  As such, 

digitoxin and P57 syntheses are pending in a near future, and depend upon the proper selection of 

temporary protecting groups at C-4. One recommended group is the PMB ether that can be deprotected 

under oxidative conditions, or alternatively dimethyl-t-butylsilyloxy methyl ethers that can be 

deprotected by treatment with TBAF. This group should, however, circumvent the undesired migration. 

Other possibilities such as THP, MOM, MEM and SEM ethers should also be considered.   
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Table 4.2 1H and 13C NMR Dates of Cyclization Products with Different Protecting Groups. 

Entry 
 δ (ppm) J (Hz) δ (ppm) 

 H-1 H-2 H-3 H-4 H-5 H-6 1,2 2,3 3,4 4,5 5, 6 1,F 2,F H,F C-1 C-2 C-3 C-4 C-5 C-6 

1 
 

5.45 4.88 3.89 4.28 4.63 1.31 0.0 2.8 2.4 9.2 6.0    88.6 28.3 80.5 70.7 67.0 18.1 

2 
O

SPh
I

BnO

OBn  
5.46 4.92-

4.39 4.00 3.97 4.92-
4.39 1.36 0.0 3.6 2.8 9.2 6.4    89.5 27.5 75.8 76.4 65.7 18.0 

3 
 

5.09 4.09 3.95 3.47 4.06 1.22 10.8 2.4 2.0 9.2 6.4    84.7 32.4 82.4 75.7 73.5 18.5 

4 
 

5.10 4.03 4.18 3.23 4.11 1.27 11.2 2.6 2.2 9.6 6.4    84.6 32.4 78.5 81.9 72.6 18.4 

5 

 

5.29 4.61 4.16 3.29 4.71 1.26 5.2 2.6 2.4 9.6 6.0    90.0 27.7 77.9 82.2 64.6 17.9 

6 
 

4.79 4.08 3.93 3.57 4.00 1.19 8.8 2.4 2.4 9.2 6.4    98.4 33.9 82.4 75.9 70.2 18.3 

7 

 

4.85 4.00 4.16 3.29 4.08 1.26 8.8 2.4 2.0 9.2 nd    98.9 33.9 78.3 82.0 69.4 18.3 

8 5.12 4.46 3.97 3.76 4.36 126 2.4 4.4 3.0 7.4 nd    99.5 28.7 78.0 76.0 65.4 18.3 

9 
 

5.55 3.99 4.14 3.35 4.10 1.35 8.8 6.0 2.4 9.2 6.0 52.4 8.4 3.6 
H3,F 

107.7 
d,  

JF,C1=  
209.8 

29.6 
d,  

JF,C2= 
82.3 

77.9 
d, 

 JF,C3= 
6.8 

81.3 

70.4 
d,  

JF,C5= 
4.6 

18.0 
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Table 4.2 1H and 13C NMR Dates of Cyclization Products with Different Protecting Groups (Continued). 

Entry 
 δ (ppm) J (Hz) δ (ppm) 

 H-1 H-2 H-3 H-4 H-5 H-6 1,2 2,3 3,4 4,5 5, 6 1,F 2,F H,F C-1 C-2 C-3 C-4 C-5 C-6 

10 

 

5.37 4.12 4.48 3.87 3.96 1.15 2.8 3.6 4.8 4.4 6.4    109.8 28.5 87.5 87.5 73.6 20.5 

11 O

OBn I

TESO
N

O

O  

5.93 5.20 4.63 4.08 3.99 1.10 9.0 7.8 6.6 2.4 6.8    88.1 21.6 85.1 86.1 68.3 19.4 

12 

 

5.42 4.15 3.93 4.47 3.99 1.15 1.2 2.4 6.0 3.0 6.4    109.7 28.4 86.5 86.9 

66.5 
with 
OH 
free 

 

23.9 

13 

 

5.45 4.37 3.73 3.98 3.88 1.14 3.6 5.6 5.2 4.8 6.0    110.0 31.9 77.8 86.9 69.2 20.4 

14 

 

5.61 4.23 3.81 4.58 4.05 1.12 4.4 4.0 nd nd nd    95.8 27.0 78.5 87.2 68.5 20.6 

15 

 

5.43 4.18 3.81 3.93 3.65 1.16 7.6 5.2 3.2 5.2 6.4    93.4 30.8 78.6 88.0 68.7 20.7 
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Table 4.2  1H and 13C NMR Dates of Cyclization Products with Different Protecting Groups (Continued). 

Entry 
 δ (ppm) J (Hz) δ (ppm) 

 H-1 H-2 H-3 H-4 H-5 H-6 1,2 2,3 3,4 4,5 5, 6 1,F 2,F H,F C-1 C-2 C-3 C-4 C-5 C-6 

16 O

OBn I

HO
OH

 

5.29 4.38 3.88 3.91 3.84 1.07 0.0 4.8 0.8 7.6 7.2    108.9 35.6 76.5 83.8 73.6 17.7 

17 

 

5.45 3.86 3.48 3.89 3.72 1.09 7.2 5.2 3.2 6.8 6.8    93.2 30.1 81.0 87.3 69.8 20.7 

18 

 

6.17 4.28 3.78 4.03 4.04 1.03 4.8 6.4 2.4 6.8 6.8    96.8 26.2 79.0 88.8 69.2 20.2 

19 O

OMe I

TBDPSO
F

 

6.08 4.49 3.55 4.00 4.16 0.96 0.0 5.2 7.2 3.6 6.4 66.1 8.0 9.6 
H4,F 

116.5 
JC1,F= 
228.1 

33.3 
JC2,F= 
22.7 

77.7 87.2 69.0 19.4 
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4.3 Conclusions 
 

In this chapter, we have explored the total syntheses of digitoxin and P57. In particular, we have 

explored the application of an olefination – cyclization – glycosylation strategy for natural product 

synthesis. The relevant conclusions of this work are the following:  

 

- The 3rd Synthon of P57 132 was synthesized from the commercially available compound 125 in 6 

steps. Compound 132 can be used directly in glycosylation reaction, or can be readily converted to 

other glycosyl donors depending on the desired synthetic strategy. 

 

- The 3rd Synthon of digitoxin was synthesized through an olefination reaction from dibenzylated 

ribose derivative 136, followed by iodonium–induced cyclization to provide 2-iodo-allo-pyranose 

139 as a versatile agent for the preparation of glycosylation agents. Compound 139 was eventually 

converted into the corresponding glycosyl fluoride 140 in good yield.  

 
- Olefination, cyclization, and glycosylation reactions were studied toward the synthesis of 2,6-

didexy oligosaccharides. Unfortunately, no desired 6-endo cyclization products were obtained as 

major products due to a competing silyl migration process during the WH olefination step. Since 

the structural elucidation of migrated products was complicated, subsequent cyclization and 

glycosylation steps were necessary. 

 

- The cyclization reaction without a protecting group on the hydroxyl at C-4 furnished one major 

product that was determined to be the 5-endo product, along with an inseparable mixture of 

various cyclic products. 

 
- This approach to the synthesis of digitoxin and P57 has highlighted the requirement for a 

protecting group that is compatible with the basic conditions involved in the olefination step. 

Protecting groups such as PMB, THP, MOM, MEM and SEM or SOM ethers will be analyzed, 

and our results will be disclosed in due course.    
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“Uno no se da cuenta de lo que ha hecho, 

sino de lo que queda por hacer.” 

 

Marie Curie, Premio Nobel de Física 
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In the present work, a complete study for the synthesis of 2-deoxy-glycosides is described, 

applying a strategy previously developed in our group for the preparation of 2-deoxy-2-iodo-pyranoses. 

This strategy, that involves Wittig–Horner olefination from fully protected furanoses to give alkenyl 

sulfides, electrophilic–induced cyclization to furnish 2-deoxy-2-iodo-pyranosyl thioglycosides, gives 

access to a new type of glycosyl donor that can be used in glycosylation reactions of the desired 

glycosyl acceptors to give 2-deoxy-2-iodo-glycosides. 

This method is based, on one hand, in the availability of sulfanylmethylphosphine oxides to 

perform the olefination reaction over the furanoses. The usual access to these reagents is the Arbuzov 

reaction, that requires chloroderivatives as starting materials that are not easy to prepare and in many 

cases are unstable. Furthermore, the efficiency of the cyclization is limited by the obtaintion of E/Z 

alkene mixtures in the olefination step, because Z alkenes were proved to be reluctant to cyclization. 

To increase the efficiency of the whole process, two implementations were studied in this work. 

Firstly, a new approach for the preparation of sulfanylmethylphosphine oxides was investigated starting 

from (tosyloxymethyl)phosphine oxide. The method was also extended to heteroatomic substituted 

methylphosphine oxides (X, Se, Te, NR2, etc). 

Application of these novel sulfanylmethylphosphine oxides in the olefination of ribo- and 

arabinofuranoses resulted in the formation of the corresponding sulfanyl alkenes with increased E/Z 

stereoselectivity. 

The sulfanyl ribo and arabino alkenes were investigated in the iodonium–induced cyclization 

reaction. The effect of the bulkiness of the substituent at sulfur was studied and the results of 

cyclization compared to that of phenyl at the phenylsulfanyl parent compound. Cyclization of the 

arabino derivatives led to 6-endo cyclization products in lower yields whereas the t-butylsulfanyl 

arabino-1-hex-enitol proceeded in higher yield. No cyclization took place from 2,6-dimethylphenyl 

arabino-1-hex-enitol. 

Glycosylation of some of the thioglycosides synthesized were explored and compared with those 

obtained from phenylsulfanyl parent thioglycoside. t-Butyl thioglycoside was reacted with cholesterol 

to render glycosylated product in higher yield without almost affecting the stereoselectivity whereas 

with 2,6-dimethylphenyl thioglycoside the stereoselectivity increased but the yield was lower. 

The synthesis of septanosides was studied starting from pyranosides with the strategy of Wittig–

Horner olefination and subsequent electrophile–induced cyclization reaction, but the desired 7-endo 

cyclization did no work with secondary alcohols. To overcome this problem, starting from 

conformationally–restricted 2,3-O-isopropylidenefuranosides, hex-1-enitols with a free primary 

hydroxyl function were prepared, from which 7-endo cyclization reaction took place to furnish the 

desired oxepanes with moderate yields. 

The total syntheses of 2,6-dideoxyoligosaccharides digitoxin and appetite suppressant P57, with 

common 2,6-dideoxypyranose units, were explored, applying the three-step (olefination–cyclization–
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glycosylation) methodology. For the synthesis of common intermediate C, two different permanent 

protecting groups for free hydtoxyl group at C-3 were used: benzyl ethers for digitoxin and methyl 

ethers for P57. Different silyl groups (TBS, TES and TBDPS) were used for hydroxyl at C-4 that 

required temporary protection. Olefination of the different 6-deoxyribofuranoses rendered the 

corresponding 5-O-silyl hex-1-enitols (167, 169, and 173) as a consequence of silyl migration from 

hydroxyl at C-4 to C-5, altogether with the expected 4-O-silyl hex-1-enitols (164, 168, and 172). These 

products were analyzed by 1D and 2D NMR techniques. 

5-O-TES, 5-O-TBS or 5-O-TBDPS protected hex-1-enitols were submitted to iodonium–induced 

cyclization reactions to afford exclusively 5-endo cyclization products. Furthermore, 5-endo cyclization 

product 2-iodofuranose 189 was formed as a major product by cyclization from the C-4 unprotected 

enitol 176. 

Digitoxin and P57 synthesis will be reconsidered in a near future using other protecting groups 

that do not migrate under the basic conditions of the olefination. 
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“Una conciencia tranquila 

nos hace serenos.” 

 

   Lord Byron, poeta británica 
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General Remarks  

 

All chemicals used were reagent grade and used as supplied. HPLC grade dichloromethene 

(DCM), tetrahydrofurane (THF) and dimethylformamide (DMF) were dried using a solvent purification 

system (Pure SOLV system-400). Optical rotations were measured at room temperature in 10 cm cells 

in a Perkin–Elmer 241 polarimeter. P

1
PH, P

13
PC and P

31
PP NMR spectra were recorded using a Varian Gemini 

300 MHz (300 MHz and 75 MHz respectively) and 400 MHz (400 MHz and 100 MHz respectively) 

apparatus, with CDClB3B as solvent, with chemical shift (δ) referenced to intermal standards CDClB3B (δ = 

7.26 ppm P

1
PH, 77.23 ppm P

13
PC) or MeB4BSi as an internal reference (δ = 0.00 ppm P

1
PH), and HB3 BPO B4B (P

31
PP) as 

external standard. Elemental analyses were performed using a Carlo–Erba Microanalyzer. Flash column 

chromatography was performed using silica gel 60 A CC (230–400 mesh). Radial chromatography was 

performed on 1, 2 or 4 mm plates of Kieselgel 60 PFB254B silica gel, depending on the amount of product. 

Medium–pressure chromatography (MPLC) was performed using silica gel 60 A CC (6–35 µm).  

 

General Methods 
 

General Methods for the Synthesis of Diphenylphosphine Oxides 

General Method A: Synthesis of 10–15, 25, 26, 27–29. The respective thiol, selenol, tellurol or 

alcohol, (10.5 mmol) was added to a suspension of sodium hydride (60% in mineral oil, 10.5 mmol) in 

anhydrous THF (42 ml) at 0 ºC under argon atmosphere. The reaction mixture was warmed up to room 

tempeature and stirred for an hour. Subsequently, a solution of 9 (10.0 mmol) in anhydrous THF (20 

ml) was added at 0 ºC. The reaction mixture was warmed up to room temperature and stirred for 2 

hours. After quenching with the addition of saturated solution of NH4Cl the reaction mixture was 

extracted with ethyl acetate (3x20 ml). The combined organic layer was washed with water (2x20 ml), 

brine (1x20 ml), dried on MgSO4, filtered and concentrated under vacuum. The white solid obtained 

was recrystallized from ethyl acetate – hexane and in general white crystals were obtained. 

 

General Method B: Synthesis of 30–34. The respective chloro derivative (10.5 mmol) was added 

to a solution of 8 (10.0 mmol) in anhydrous DCM (40 ml), imidazol (10.5 mmol) and DMAP (0.5 

mmol) finally the reaction mixture that was heated to reflux overnight. The reaction was quenched with 

saturated NH4Cl, and extracted with ethyl acetate (3x25 ml). The combined organic layer was washed 

with water (2x25 ml), brine (1x25 ml), dried on MgSO4, filtered and concentrated under vacuum. The 

obtained crude product was recrystallized from ethyl acetate – hexane. 
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General Method C: Synthesis of 35–38. Compound 9 (4.0 mmol) and the respective potassium 

halide (40.0 mmol) were dissolved in triethylenglycol (80 ml). The reaction mixture was warmed up to 

160 ºC for 15 to 60 minutes depending on the halide. Then the reaction mixture was cooled to room 

temperature, quenched with NH4Cl and extracted with ethyl acetate (3x20 ml). The combined organic 

layer was washed with water (2x20ml), brine (1x20 ml), dried on MgSO4, filtered and concentrated 

under vacuum. The crude product was purified with flash chromatography (ethyl acetate: hexane = 1:1 

to ethyl acetate). 

 

General Method D: Synthesis of 39–40. The corresponding amine (12.0 mmol) was added to a 

solution of 9 (10.0 mmol) in anhydrous DMF (40 ml) in a round flask, subsequently the reaction 

mixture was heated to reflux overnight. The reaction was quenched with saturated NH4Cl and extracted 

with ethyl acetate (3x25 ml). The combined organic layer was washed with water (2x25 ml), brine 

(1x25 ml), dried on MgSO4, filtered and concentrated under vacuum. The obtained crude product was 

recrystallized from ethyl acetate – hexane. 

 

The Michaelis-Arbuzov Reaction 

Ethyl diphenylphosphinite (1.0 mmol) and the corresponding halo methyl derivative (1.05 mmol) 

were stirred at 150 ºC under argon atmosphere. The evolution of the reaction was monitored by TLC. 

After the completion of the reaction the mixture was cooled to room temperature and purified by 

recrystallization or by flash chromatography using hexane: ethyl acetate = 2:1 as eluent. 

 

General Methods of WH Olefination Reactions 

A n-BuLi solution (2.2 ml, 3.5 mmol, 3.5 eq, 1.6 M in hexane) was slowly added to the cold (–78 

ºC) solution of (alkylsulfanyl- or arylsulfanylmethyl)diphenylphosphine oxide (2.0 mmol) in anhydrous 

THF (13 ml) under argon atmosphere. The reaction mixture was further stirred under the same 

conditions for 30 minutes, subsequently a solution of the corresponding aldehyde (1.0 mmol) in 

anhydrous THF (5 ml) was transferred by cannula. The reaction mixture was warmed up to room 

temperature and stirred further under argon. The evolution of the reaction was followed by TLC 

analysis and usually after 24 h the reaction was completed. The reaction mixture was quenched with a 

saturated solution of NH B4BCl and extracted with ethyl acetate (3x20 ml). The combined organic layer 

was washed with water (2x20 ml), brine (1x20 ml), dried on MgSOB4B, filtered and concentrated under 

vacuum. After work-up and separation of the alkene the obtained β-hydroxyphosphine oxide was 

further treated with KH or t-BuOK in THF at 40 ºC for 30 minutes. Before any other purification the 

possible product range was checked by P

1
PH NMR. The crude of reaction was purified by 

chromatography (hexane to ethyl acetate) and the E/Z ratio was determined from P

1
PH NMR data. 
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General Procedure for Iodonium–induced Cyclization 

Method ATP122

114 NaHCOB3B (0.24 mmol) was added to a 0.5 M solution of alkene (0.16 mmol) in 

CH B3BCN. The mixture was cooled to –30 ºC and left to stir at this temperature for 5 min. NIS (0.24 

mmol) was then added and the reaction mixture stirred for several hours. The reaction temperature was 

left to increase depending on the reactivity of the substrate (from –78 ºC to room temperature). The 

mixture was diluted with dichloromethene and washed with a saturated solution of NaB2BS B3 BOB3, B extracted 

with ethyl acetate (3x20 ml). The combined organic layer was washed with water (2x20 ml), brine 

(1x20 ml), dried on MgSOB4B, filtered and concentrated under vacuum. The residue was purified by 

chromatographic techniques. 

 

Method B.115 A solution of the alkene (1.0 mmol) in anhydrous EtB2BO (7 ml) was added to a 

solution of KH 30% (1.3 mmol) at –30 ºC. The mixture was left to stir at this temperature for 20 minute 

until solution turned yellow, by the time the mixture was cooled to –78 ºC and a solution of IB2B in 

anhydrous EtB2BO (7 ml) was then added. The reaction was monitored by TLC (hexane: ethyl acetate = 

3:1) and left to stir until the cyclization was completed, warming gently if necessary. The reaction was 

quenched by adding EtB2BO and NaB2BS B2BO B3B, and the aqueous layer was extracted with ethyl acetate (3x20 

ml). The combined organic layer was dried over MgSOB4B, and concentrated under vacuum. The crude 

was purified by chromatographic techniques. 

 

General Procedure for Glycosylation 

A solution of the glycosyl donor (1.0 mmol) and the glycosyl acceptor (2.0 mmol) in anhydrous 

DCMB (4 ml) was stirred with 4Å molecular sieves for 2 h. The mixture was then cooled to –78 ºC, and 

NIS (2.2 mmol) and TfOH (0.2 mmol) were added. The mixture was allowed to warm to –40 ºC and 

stirred until the reaction had finished. The reaction mixture was then diluted with DCMB and washed 

with a solution of NaB2BS B3BO B3B and the aqueous layer was extracted with DCM (3x20 ml). The combined 

organic layer was washed with water (2x15 ml), brine (1x15 ml), dried on MgSOB4 B, filtered and 

concentrated under vacuum. The residue was then purified by radial chromatography. 

 

General Procedure for the ´One-pot´ Cylization – Glycosylation from Sulfanyl Alkenes 

Starting alkene (1 mmol), glycosyl acceptor (2 mmol), 4Å molecular sieves and 25 ml (0.02 M) of 

anhydrous DCMB were stirred together at rt during 30 min. The reaction was cooled at –65 ºC and then 

NIS (3.0 mmol) was added. While the reaction temperature was allowed to reach at –10 ºC, the reaction 

was monitored by TLC (hexane: ethyl acetate = 3:1) and left to stir until the cyclization was complete. 

The reaction mixture was then cooled to –60 ºC and then TfOH (0.2 mmol) was added. The reaction 

was left to stir at low temperature (between –40 ºC and –10 ºC) until the reaction was complete. The 
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crude of the reaction was quenched with NaHCOB3B–NaB2BS B2BOB3B solution, extracted with DCM (3x20 ml). 

The combined organic layer was washed with water (2x20 ml), brine (1x20 ml), dried on MgSOB4B, 

filtered and concentrated under vacuum.The crude was purified by chromatographic techniques. 

 

General Procedure of Silylation of Alcohols 

To a solution of alcohol (1.00 eq), imidazol (1.50 eq) and silyl chloride (1.05 eq) in anhydrous 

DCM (2.0 ml, 0.5 M), DMAP (0.20 eq) were added slowly. The mixture was vigorously stirred at rt for 

6 h and then diluted with ethyl acetate, quenched with NHB4BCl, extracted with DCM (3x20 ml). The 

combined organic layer was washed with water (2x20 ml), brine (1x20 ml), dried on MgSO B4 B, filtered 

and concentrated under vacuum. The crude product was purified by chromatographic techniques.  

 

General Procedure of Oxidation of PMB Group  

To a solution of PMB protected compound (1.00 eq) in humid DCM DDQ (1.05 eq) was added 

and the reaction was left to react at rt for 8 h. The reaction mixture was then quenched with NaHCO3, 

extracted with ethyl acetate, quenched with NHB4BCl solution, extracted with ethyl acetate (3x20 ml). The 

combined organic layer was washed with water (2x20 ml), brine (1x20 ml), dried on MgSOB4 B, filtered 

and concentrated under vacuum. The crude product was purified by chromatographic techniques.  

 

General Procedure of Demethylation 

Ribofuranoside (1.0 eq) and PhSH (1.5 eq) are dissolved in anhydrous DCM (20 ml, 0.2 M) and 

was added BFB3B.EtB2BO (1.5 eq) at –78 ºC and was warmed up to rt. The mixture was reacted at rt for 8 h 

and was quenched with TEA, concentrated and filtered on silice. The crude of the reaction was treated 

with NIS (1.2 eq) in MeCN/HB2BO = 10:1 and in 10 minutes quenched with the solution of NaB2BS B2 BOB3, 

extracted with DCM (3x20 ml). The combined organic layer was washed with water (2x20 ml), brine 

(1x20 ml), dried on MgSOB4B, filtered and concentrated under vacuum. The crude product was purified 

by chromatographic techniques. 
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Synthesis of Compounds 
 

 (Hydroxymethyl)diphenylphosphine Oxide (8). TP

78  

 
In a 1–L round flask diphenylchlorophosphine (20 g, 90.64 mmol), aqueous formaldehyde (158 

ml, 35%, 2.00 mol) and concentrated hydrochloric acid (163 ml, 37%, 2.00 mol) were heated to reflux 

overnight. The reaction mixture was then quenched with a saturated solution of sodium bicarbonate, 

concentrated under vacuum, and extracted with ethyl acetate (4x100 ml). The combined organic layer 

was washed with water (2x100 ml), brine (1x100 ml), dried on MgSOB4B, filtered and concentrated under 

vacuum. The white solid obtained was recrystallized from ethyl acetate – hexane to afforded compound  

8 (18.72 g, 89%) as white crystals.  

Mp: 135.0 – 136.0 ºC (Lit. 136.0 – 136.5 ºC) 

 

(Tosyloxymethyl)diphenylphosphine Oxide (9).TP

151
PT  

 
In a 1-L round flask previously filled with argon 8 (18.56 g, 80.00 mmol) was dissolved in 

anhydrous DCM (200 ml) and toluene-4-sulfonyl chloride (16.01 g, 84.00 mmol) and DMAP (11.73 g, 

96.00 mmol) were added. The reaction mixture was heated to reflux for four hours. After quenching 

with a saturated solution of NHB4BCl the DCM was removed under vacuum, the aqueous layer extracted 

with ethyl acetate (3x80 ml), and the combined organic layer washed with water (2x80 ml) and brine 

(1x80 ml), dried over MgSOB4B, filtered and concentrated under vacuum. Compound 9 was obtained in 

quantitative yield and was pure enough to be used in the next reactions without further purification.  

Mp: 123.0 – 124.0 ºC (Lit.TP PT124.0 – 125.0 ºC) 

 

(4-Methoxyphenylsulfanylmethyl)diphenylphosphine Oxide (10).  

 
Following the general method A for the synthesis of diphenylphosphine oxides, sodium hydride 

(60% in mineral oil, 420 mg, 10.50 mmol) and methoxythiophenol (930 µl, 10.50 mmol) were reacted 

in anhydrous THF (40 ml) at 0 ºC under argon atmosphere, then a solution of compound 9 (3.86 g, 

                                                 
151  van Steenis, J. H.; van der Gen, A. Eur. J. Org. Chem. 2001, 897. 
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10.00 mmol) in anhydrous THF (20 ml) was added and the reaction was monitored by TLC for 2 hours. 

General work-up and recrystallization from ethyl acetate – hexane afforded compound 10 (3.16 g, 89%) 

as white solid.  

Mp: 71.0 – 72.0 ºC.  

IR: ν (C=C): 1436.8 cmP

-1
P; ν (P=O): 1185.0 cmP

-1
P.  

Anal. Calcd for CB20BH B19O B2PSB: 67.78 C, 5.40 H, 9.05 S. Found: 67.44 C, 5.24 H, 8.93 S.  

RMN P

1
PH (CDClB3B, 400 MHz) δ in ppm: 7.77 (m, 4H, HBaromatic B); 7.52 (m, 2H, HBaromatic B); 7.45 (m, 4H, 

HBaromatic B); 7.27 (m, 2H, HBaromaticB); 6.74 (d, 2H, JBH,H B= 8.8 Hz, HBaromatic B); 3.76 (s, 2H, CHB3B); 3.63 (d, 2H, JBH,P 

B= 8.8 Hz, CHB2B). RMN P

13
PC (CDClB3B, 100.6 MHz) δ in ppm: 159.6, 132.4, 132.3, 128.8 (CBaromatic B); 134.1, 

132.2, 131.4, 128.7, 114.8 ( UCUH Baromatic B); 55.5 (OUCUHB3 B); 35.9 (d, UCUH B2B, JBC,P B= 67.9 Hz). RMN P

31
PP (CDClB3 B, 

162 MHz) δ in ppm: 28.74 (s, P=O).  

 

(2,6-Dimethylphenylsulfanylmethyl)diphenylphosphine Oxide (11).  

 
Following the general method A for the synthesis of diphenylphosphine oxides, sodium hydride 

(60% in mineral oil, 168 mg, 4.20 mmol) and 2,6-dimethylbenzenethiol (559 µl, 581 mg, d = 1.038 

g/ml, 4.20 mmol) were reacted in anhydrous THF (16 ml) at 0 ºC under argon atmosphere, then a 

solution of compound 9 (1.54 g, 4.00 mmol) in anhydrous THF (8 ml) was added and the reaction was 

monitored for 3 hours. General work-up and recrystallization from ethyl acetate – hexane afforded 

compound 11 (2.74 g, 7.79 mmol, 78%) as white crystals. 

Mp: 119.0 – 120.0 ºC.  

IR: ν (C=C): 1436.7 cmP

-1
P; ν (P=O): 1189.9 cmP

-1
P.  

Anal. Calcd for C21H21OPSB: 71.57 C, 6.01 H, 9.10 S. Found: 71.93 C, 5.96 H, 9.73 S.  

RMN P

1
PH (CDClB3B, 400 MHz) δ in ppm: 7.76 (m, 4H, HBaromatic B); 7.54 (m, 2H, HBaromatic B); 7.46 (m, 4H, 

HBaromatic B); 7.07 (m, 2H, HBaromatic B); 7.01 (m, 1H, HBaromatic B); 3.45 (d, 2H, JBH,P B= 9.6 Hz, CHB2 B); 2.35 (s, 3H, 

CH B3B). RMN P

13
PC (CDClB3B, 100.6 MHz) δ in ppm: 142.1, 142.0, 139.2, 131.2, 131.1 (CBaromatic B); 134.1, 

132.2, 131.4, 130.4, 128.7 (UCUHBaromatic B); 34.5 (d, JBC,P B= 67.1 Hz, UCUHB2B); 22.0 (UCUH B3B). RMN P

31
PP (CDClB3B, 162 

MHz) δ in ppm: 28.94 (s, P=O).  

 

 (2,6-Dichlorophenylsulfanylmethyl)diphenylphosphine Oxide (12).  
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Following the general method A for the synthesis of diphenylphosphine oxides, sodium hydride 

(60% in mineral oil, 420 mg, 10.50 mmol) and 2,6-dichlorobenzenethiol (1.88 g, 10.50 mmol) were 

reacted in anhydrous THF (40 ml) at 0 ºC under argon atmosphere, then a solution of compound 9 (3.86 

g, 10.00 mmol) in THF (20 ml) was added and the reaction was monitored for 4 hours. After general 

work-up and recrystallization from ethyl acetate – hexane afforded compound 12 (2.84 g, 7.22 mmol, 

72%) as white crystals. 

Mp: 181.5 – 183.0 ºC.  

IR: ν (C=C): 1436.7 cmP

-1
P; ν (P=O): 1188.9 cmP

-1
P.  

Anal. Calcd for C19H15Cl2OPS: 58.03 C, 3.84 H, 8.15 S. Found: 57.92 C, 3.57 H, 8.06 S. 

RMN P

1
PH (CDClB3B, 400 MHz) δ in ppm: 7.80 (m, 4H, HBaromatic B); 7.52 (m, 2H, HBaromatic B); 7.45 (m, 4H, 

HBaromatic B); 7.27 (m, 2H, HBaromatic B); 7.14 (m, 1H, HBaromaticB); 3.74 (d, 2H, J BH,P B= 8.8 Hz, CHB2B). RMN P

13
PC 

(CDClB3 B, 100.6 MHz) δ in ppm: 142.1, 142.0, 141.4, 131.2, 131.1 (CBaromatic B); 132.4-128.7 (UCUHBaromatic B); 

33.4 (d, UCUH B2B, JBC,P B= 67.10 Hz). RMN P

31
PP (CDClB3B, 162 MHz) δ in ppm: 28.54 (s, P=O).  

 

(Cyclohexylsulfanylmethyl)diphenylphosphine Oxide (13).TP

78  

 
Following the general method A for the synthesis of diphenylphosphine oxides, sodium hydride 

(60% in mineral oil, 420 mg, 10.50 mmol) and cyclohexylthiol (1.56 ml, 1.22 g, d = 0.78 g/ml, 10.50 

mmol) were reacted in anhydrous THF (42 ml) at 0 ºC under argon atmosphere, then a solution of 

compound 9 (3.86 g, 10.00 mmol) in THF (20 ml) was added and the reaction was monitored for 2 

hours. After general work-up and recrystalization from ethyl acetate – hexane afforded compound 13 

(3.25 g, 9.84 mmol, 98%) as white crystals. 

Mp: 100.0 – 101.0 ºC. 

IR: ν (C=C): 1436.7 cmP

-1
P; ν (P=O): 1183.1 cmP

-1
P.  

Anal. Calcd for C19H23OPSB: 69.06 C, 7.02 H, 9.70 S. Found: 68.95 C, 7.11 H, 9.73 S. 

RMN P

1
PH (CDClB3B, 400 MHz) δ in ppm: 7.79 (m, 4H, HBaromatic B); 7.59 (m, 2H, HBaromatic B); 7.51 (m, 4H, 

HBaromatic B); 3.28 (d, 2H, JBH,P B= 9.6 Hz, CHB2 B); 2.64 (m, 1H, CH); 1.90 (m, 4H, CHB2B); 1.80 (m, 4H, CHB2B); 

1.49 (m, 2H, CH B2B). RMN P

13
PC (CDClB3B, 100.6 MHz) δ in ppm: 142.05, 131.3, 131,2 (CBaromatic B); 132.3, 

131.4, 129.9, 128.8, 128.4 (UCUH Baromatic B); 45.6 (UCUH); 33, 2 (UCUH B2B); 28.5 (d, UCUHB2B, J BC,P B= 94.46 Hz); 26.1 

(UCUH B2B); 25.9 (UCUHB2B). RMN P

31
PP (CDClB3B, 162 MHz) δ in ppm: 29.86 (s, P=O).  
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(tert-Butylsulfanylmethyl)diphenylphosphine Oxide (14). P1

78 

P
 

Following the general method A for the synthesis of diphenylphosphine oxides, sodium hydride 

(60% in mineral oil, 168 mg, 4.20 mmol) and 2-methylpropane-2-thiol (473 µl, 379 mg, d = 0.8 g/mol, 

4.20 mmol) were reacted in anhydrous THF (16 ml) at 0 ºC under argon atmosphere, then a solution of 

compound 9 (1.54 g, 4.00 mmol) in THF (8 ml) was added and the reaction was monitored for 2 hours. 

After general work-up and recrystalization from ethyl acetate – hexane afforded compound 14 (1.08 g, 

3.55 mmol, 89%) as white crystals.  

Mp: 155.5 – 157.0 ºC.  

IR: ν (C=C): 1436.7 cmP

-1
P; ν (P=O): 1183.1 cmP

-1
P.  

Anal. Calcd for C17H21OPSB: 67.08 C, 6.95 H, 10.53 S. Found: 67.37 C, 7.01 H, 10.35  S. 

RMN P

1
PH (CDClB3B, 400 MHz) δ in ppm: 7.81 (m, 4H, HBaromatic B); 7.53 (m, 2H, HBaromatic B); 7.48 (m, 4H, 

HBaromatic B); 3.31 (d, 2H, JBH,P B= 12.4 Hz, CHB2B); 1.27 (s, 9H, CHB3 B). RMN P

13
PC (CDClB3B, 100.6 MHz) δ in ppm: 

131.2, 131.1 (CBaromatic B); 132.3, 131.6, 128.7 (UCUH Baromatic B); 50.2 (C); 34.4 (d, UCUH B2 B, J BC,P B= 67.20 Hz); 21.9 

(UCUH B3B). RMN P

31
PP (CDClB3B, 162 MHz) δ in ppm: 30.12 (s, P=O).  

 

(Ethylsulfanylmethyl)diphenylphosphine Oxide (15).TP

152
PT  

 
Following the general method A for the synthesis of diphenylphosphine oxides, sodium 

ethylthiolate (883 mg, 10.50 mmol) was diluted in anhydrous THF (40 ml) and a solution of compound 

9 (3.86 g, 10.00 mmol) in THF (8 ml) at 0 ºC under argon atmosphere was added and the reaction was 

monitored for 2 hours. After general work-up and recrystalization from ethyl acetate – hexane afforded 

compound  15 (2.18 g, 7.90 mmol, 79%) as white crystals.  

Mp: 88.0 – 89.0 ºC.  

IR: ν (C=C): 1436.70 cmP

-1
P; ν (P=O): 1178.3 cmP

-1
P.  

Anal. Calcd for C15H17OPSB: 65.20 C, 6.20 H, 11.60 S. Found: 65.04 C, 5.94 H, 11.36 S. 

RMN P

1
PH (CDClB3B, 400 MHz) δ in ppm: 7.79 (m, 4H, HBaromatic B); 7.56 (m, 2H, HBaromatic B); 7.49 (m, 4H, 

HBaromatic B); 3.26 (d, 2H, JBH,P B= 8.4 Hz, CHB2B); 2.64 (m, 1H, CH B2B); 1.20 (m, 3H, CHB3 B). RMN P

13
PC (CDClB3 B, 

100.6 MHz) δ in ppm: 132.7, 132.3 (CBaromatic B); 132.3, 131.4, 128.8 (UCUH BaromaticB); 31.1 (UCUHB2B); 29.9 (d, UCUH B2B, 

JBC,P B= 70.92 Hz); 14.4 (UCUH B3B). RMN P

31
PP (CDClB3 B, 162 MHz) δ in ppm: 30.05 (s, P=O).  

                                                 
TP

152 (a) Vanifatova, N. G.; Zolotov, Y. A.; Medved, T. Y. Zhurnal Neorganicheskoi Khimii 1977, 22(11), 3103. (b) 
Legin, G. Y. Zhurnal Obshei Khimii 1976, 43(3), 545. 
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E/Z-4-Methoxyphenyl-styryl-sulfane (16).TP

153
PT  

 
Following the general method of the WH olefination reactions, a n-BuLi solution (2.2 ml, 3.50 

mmol, 1.6 M in hexane) was added to a solution of 10 (709 mg, 2.00 mmol) in anhydrous THF (13 ml) 

that was then reacted with previously distilled benzaldehyde (102 µl, 106 mg, 1.0 mmol) in anhydrous 

THF (5 ml). After general work-up and chromatography (hexane to ethyl acetate) afforded compound  

16 (225 mg, 0.93 mmol, 93%, an E/Z inseparable mixture, E/Z = 1.3:1) as a light yellow oil. 

RBfB (hexane: ethyl acetate = 6:1): 0.83.  

Anal. Calcd for C15H14OSB: 74.34 C, 5.82 H, 13.23 S. Found: 74.04 C, 5.94 H, 13.36 S. 

Spectroscopic data obtained from E/Z diastereoisomeric mixture. 

16E: RMN P

1
PH (CDClB3B, 400 MHz) δ in ppm: 7.70 (m, 2H, HBaromatic B); 7.42 (m, 3H, HBaromaticB); 6.76 (d, 

1H, J BH,H B= 15.6 Hz, CH); 6.56 (d, 1H, JBH,H B= 15.6 Hz, CH); 2.98 (m, 1H, CH); 1.79 (m, 4H, CHB2 B); 1.57 

(m, 6H, CHB2B). RMN P

13
PC (CDClB3B, 100.6 MHz) δ in ppm: 159.5, 136.1, 124.3 (CBaromatic B); 133.9, 128.7, 

128.4, 127.6, 114.6 (UCUHBaromatic B); 131.7 (UCUH); 125.7 (UCUH); 55.2 (UCUH B3B).  

16Z: RMN P

1
PH (CDClB3B, 400 MHz) δ in ppm: 7.81 (m, 2H, HBaromatic B); 7.42 (m, 3H, HBaromaticB); 6.43 (d, 

1H, J BH,H B= 10.8 Hz, CH); 6.33 (d, 1H, JBH,H B= 10.8 Hz, CH); 2.98 (m, 1H, CH); 1.79 (m, 4H, CHB2 B); 1.57 

(m, 6H, CHB2B). RMN P

13
PC (CDClB3B, 100.6 MHz) δ in ppm: 159.9, 136.16, 127.1 (CBaromatic B); 133.9, 128.7, 

128.4, 127.6, 114.5 (UCUHBaromatic B); 131.9 (UCUH); 127.1 (UCUH); 55.2 (UCUH B3B). 

 

E/Z-2,6-Dimethylphenyl-styryl-sulfane (17).P

153b,
T

154
TP  

 
Following the general method of the WH olefination reactions, a n-BuLi solution (1.9 ml, 3.06 

mmol, 1.6 M in hexane) was added to a solution of 11 (616 mg, 1.75 mmol) in anhydrous THF (12 ml) 

that was then reacted with previously distilled benzaldehyde (89 µl, 93 mg, 0.88 mmol) in anhydrous 

THF (3 ml). After general work-up and chromatography (hexane to ethyl acetate) afforded  compound  

17 (180 mg, 0.75 mmol, 75%, an E/Z inseparable mixture, E/Z = 11:1) as a colourless oil.  

RBfB (hexane: ethyl acetate = 6:1): 0.80. 

Anal. Calcd for C16H16SB: 79.95 C, 6.71 H, 13.34 S. Found: 80.02 C, 6.94 H, 13.35 S. 

Spectroscopic data obtained from E/Z diastereoisomeric mixture. 

                                                 
153  (a) Leardini, R.; Nanni, D.; Zanardi, G. J. Org. Chem. 2000, 65, 2763. b) Marino, J. P.; Zou, N. Org. Lett, 

2005, 7(10), 1915. (c) Sridhar, R.; Surendra, K.; Srilakshmi, Krishnaveni, N.; Srinivas, B.; Rama Rao, K. 
Synlett, 2006, 3497. 

TP

154  Baliah, V.; Rathinasamy, T. K. Indian J. Chem. 1971, 9, 220. 
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17E: RMN P

1
PH (CDClB3B, 400 MHz) δ in ppm: 7.14 (m, 6H, HBaromatic B); 7.00 (m, 2H, HBaromaticB); 6.65 (d, 

1H, JBH,H B= 15.2 Hz, CH); 5.96 (d, 1H, JBH,H B= 15.2 Hz, CH); 2.49 (m, 3H, CHB3B); 2.22 (s, 3H, CHB3B). RMN 

P

13
PC (CDClB3B, 100.6 MHz) δ in ppm: 143.6, 143.5, 137.2, 134.9 (CBaromaticB); 128.6, 128.4, 128.1, 127.3, 

125.3 (UCUH Baromatic B); 128.5 (UCUH); 124.7 (UCUH); 21.9 (UCUH B3B); 21.7 (UCUH B3B).  

17Z: RMN P

1
PH (CDClB3B, 400 MHz) δ in ppm: 7.14 (m, 6H, HBaromatic B); 7.00 (m, 2H, HBaromatic B); 6.61 (d, 

1H, JBH,H B= 11.2 Hz, CH); 6.43 (d, 1H, JBH,H B= 11.2 Hz, CH); 2.47 (m, 3H, CHB3B); 2.19 (s, 3H, CHB3B). RMN 

P

13
PC (CDClB3B, 400 MHz) δ in ppm: Could not be determined. 

 

E/Z-2,6-Dichlorophenyl-styryl-sulfane (18). 

 
 Following the general method of the WH olefination reactions, a n-BuLi solution (2.2 ml, 3.50 

mmol, 1.6 M in hexane) was added to a solution of 12 (787 mg, 2.00 mmol) in anhydrous THF (13 ml) 

and was then reacted with previously distilled benzaldehyde (102 µl, 106 mg, 1.0 mmol) in anhydrous 

THF (5 ml). General work-up and chromatography (hexane to ethyl acetate) afforded compound  18 

(177 mg, 0.63 mmol, 63%, an E/Z inseparable mixture, E/Z = 15:1) as a white solid. 

RBfB (hexane: ethyl acetate = 6:1): 0.83. 

Anal. Calcd for C14H10Cl2S B: 59.80 C, 3.58 H, 11.40 S. Found: 59.75 C, 3.55 H, 11.45 S. 

Spectroscopic data obtained from E/Z diastereoisomeric mixture. 

18E: RMN P

1
PH (CDClB3B, 400 MHz) δ in ppm: 7.47 (m, 2H, HBaromatic B); 7.29 (m, 4H, HBaromatic B); 7.22 

(m, 2H, HBaromatic B); 6.65 (d, 1H, J BH,H B= 15.6 Hz, CH); 6.40 (d, 1H, JBH,H B= 15.6 Hz, CH). RMN P

13
PC (CDClB3 B, 

100.6 MHz) δ in ppm: 137.2, 135.5, 135.4, 134.9 (CBaromatic B); 132.9, 131.8, 128.7, 128.1, 127.8 

(UCUH Baromatic B); 128.5 (UCUH); 120.5 (UCUH).   

18Z: RMN P

1
PH (CDClB3B, 400 MHz) δ in ppm: 7.47 (m, 2H, HBaromatic B); 7.29 (m, 4H, HBaromatic B); 7.22 

(m, 2H, HBaromatic B ); 6.57 (d, 1H, J BH,H B= 11.2 Hz, CH); 6.00 (d, 1H, JBH,H B= 11.2 Hz, CH). RMN P

13
PC (CDClB3 B, 

400 MHz) δ in ppm: Could not be determined. 

 

E/Z-Cyclohexyl-styryl-sulfane (19).P

153b, 
T

155
TP  

 
Following the general method B of the WH olefination reactions, LDA solution (7.7 ml, 3.50 

mmol in 5 ml THF) was added to a solution of 13 (660 mg, 2.00 mmol,) in anhydrous THF (13 ml) an 

                                                 
TP

155 (a) Bates, C. G.; Saejueng, P: Doherty, M. Q.; Venkataramen, D. Org. Lett. 2004, 6(26), 5005. (b) Yatsumonji, 
Y.; Okada, O.; Tsubouchi, A.; Takeda, T. Tetrahedron, 2006, 62, 9981. 
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and was reacted with previously distilled benzaldehyde (102 µl, 106 mg, 1.0 mmol) in anhydrous THF 

(5 ml). After general work-up and chromatography (hexane to ethyl acetate) afforded compound  19 

(188 mg, 0.86 mmol, 86%, an E/Z inseparable mixture, E/Z = 11:1) as a colourless oil. 

RBfB (hexane: ethyl acetate = 6:1): 0.83. 

Anal. Calcd for C14H18SB: 77.01 C, 8.31 H, 14.68 S. Found: 76.95 C, 8.35 H, 14.54 S. 

Spectroscopic data obtained from E/Z diastereoisomeric mixture. 

19E: RMN P

1
PH (CDClB3B, 400 MHz) δ in ppm: 7.23 (m, 3H, HBaromatic B); 7.17 (m, 2H, HBaromaticB); 6.76 (d, 

1H, J BH,H B= 15.6 Hz, CH); 6.56 (d, 1H, JBH,H B= 15.6 Hz, CH); 2.97 (m, 1H, CH); 2.02 (m, 4H, CHB2 B); 1.79 

(m, 4H, CHB2B); 1.63 (m, 2H, CH B2B). RMN P

13
PC (CDClB3B, 100.6 MHz) δ in ppm: 137.4 (CBaromatic B); 128.8 

(UCUH); 128.8, 127.9, 125.8 (UCUHBaromatic B); 124.3 (UCUH); 45.5 (UCUH); 33.9 (UCUHB2 B); 33.8 (UCUHB2B); 30.0 (UCUH B2B); 26.3 

(UCUH B2B); 25.9 (UCUHB2B).  

19Z: RMN P

1
PH (CDClB3B, 400 MHz) δ in ppm: 7.23 (m, 3H, HBaromatic B); 7.17 (m, 2H, HBaromatic B); 6.42 (d, 

1H, J BH,H B= 11.2 Hz, CH); 6.32 (d, 1H, JBH,H B= 11.2 Hz, CH); 2.89 (m, 1H, CH); 2.02 (m, 4H, CHB2 B); 1.79 

(m, 4H, CHB2B); 1.63 (m, 2H, CH B2B). RMN P

13
PC (CDClB3B, 100.6 MHz) δ in ppm: 137.4 (CBaromatic B); 128.8, 

127.9, 125.8 (CBaromatic B); 128.4 ( UCUH); 125.2 (UCUH); 48.0 (UCUH); 34.0 (UCUHB2B); 33.9 (UCUHB2 B); 28.8 (UCUHB2B); 26.0 

(UCUH B2B); 25.9 (UCUHB2B). 

 

E/Z-tert-Butyl-styryl-sulfane (20).P

153b,154,
T

156
TP  

 
Following the general method of the WH olefination reactions, a n-BuLi solution (1.9 ml, 3.06 

mmol, 1.6 M in hexane) was added to a solution of 14 (532 mg, 1.75 mmol) in anhydrous THF (12 ml) 

and then was reacted with previously distilled benzaldehyde (89 µl, 93 mg, 0.88 mmol) in anhydrous 

THF (3 ml). After general work-up and chromatography (hexane to ethyl acetate) afforded compound  

20 (179 mg, 0.93 mmol, 93%, an E/Z inseparable mixture, E/Z = 3:1) as a colourless oil. 

RBfB (hexane: ethyl acetate = 8:1): 0.53. 

Anal. Calcd for C12H16SB: 74.94 C, 8.39 H, 16.67 S. Found: 74.75 C, 8.33 H, 16.53 S. 

Spectroscopic data obtained from E/Z diastereoisomeric mixture.P
 

20E: RMN P

1
PH (CDClB3B, 400 MHz) δ in ppm: 7.78 (m, 2H, HBaromatic B); 7.52 (m, 1H, HBaromatic B); 7.23 

(m, 2H, HBaromaticB);  6.87 (d, 1H, J BH,H B= 15.6 Hz, CH); 6.72 (d, 1H, J BH,H B= 15.6 Hz, CH); 1.40 (s, 9H, CHB3 B). 

RMN P

13
PC (CDClB3B, 100.6 MHz) δ in ppm: 135.6 (CBaromatic B); 131.5 (UCUH); 129.7, 128.5, 127.9 ( UCUHBaromatic B); 

122.0 (UCUH); 44.3 (C); 31.1 (UCUHB3B).  

20Z: RMN P

1
PH (CDClB3B, 400 MHz) δ in ppm: 7.78 (m, 2H, HBaromatic B); 7.52 (m, 1H, HBaromatic B); 7.23 

(m, 2H, Ar);  6.45 (d, 1H, JBH,H B= 11.2 Hz, CH); 6.36 (d, 1H, JBH,H B= 11.2 Hz, CH); 1.28 (m, 2H, CHB3 B). 

                                                 
156  Ichinose, Y.; Wakamatsu, K.; Nozaki, K.;  Birbaum, J.-L.; Oshima, K.; Utimoto, K. Chem. Lett., 1987, 1647. 
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RMN P

13
PC (CDClB3B, 100.6 MHz) δ in ppm: 135.3 (CBaromatic B); 131.2 (UCUH); 129.7, 128.5, 127.9 ( UCUHBaromatic B); 

124.2 (UCUH); 43.2 (C); 31.0 (UCUHB3B). 

 

E/Z-Ethyl-styryl-sulfane (21).P

155b,
T

157
T

  

P
 

Following the general method of the WH olefination reactions, a n-BuLi solution (2.2 ml, 3.50 

mmol, 1.6 M in hexane) was added to a solution of 15 (552 mg, 2.00 mmol) in anhydrous THF (13 ml) 

and then was reacted with previously distilled benzaldehyde (102 µl, 106 mg, 1.00 mmol) in anhydrous 

THF (5 ml). After general work-up and chromatography (hexane to ethyl acetate) afforded compound  

21 (184 mg, 0.96 mmol, 96%, an E/Z inseparable mixture, E/Z = 10:1) as a colourless oil. 

RBfB (hexane: ethyl acetate = 8:1): 0.63. 

Anal. Calcd for C10H12SB: 73.12 C, 7.36 H, 19.52 S. Found: 72.95 C, 7.33 H, 19.53 S. 

Spectroscopic data obtained from E/Z diastereoisomeric mixture. 

21E: RMN P

1
PH (CDClB3B, 400 MHz) δ in ppm: 7.78 (m, 2H, HBaromatic B); 7.35 (m, 3H, HBaromaticB); 6.73 (d, 

1H, J BH,H B= 15.2 Hz, CH); 6.46 (d, 1H, JBH,H B= 15.2 Hz, CH); 2.82 (ddd, 2H, J BH,H B= 14.4, 7.4, 7.2 Hz, CHB2 B); 

1.35 (dd, 3H, J BH,H B= 14.4, 7.2 Hz, CHB3B). RMN P

13
PC (CDClB3B, 100.6 MHz) δ in ppm: 137.2 (CBaromatic B); 

128.6, 128.5, 128.2 (UCUHBaromatic B); 131.6 (UCUH)B ;B 125.0 (UCUH); 26.7 (UCUH B2B); 14.7 (UCUH B3 B).  

21Z:  RMN P

1
PH (CDClB3B, 400 MHz) δ in ppm: 7.78 (m, 2H, HBaromatic B); 7.35 (m, 3H, HBaromatic B); 6.45 

(d, 1H, JBH,H B= 10.8 Hz, CH); 6.26 (d, 1H, JBH,H B= 10.8 Hz, CH); 2.80 (m, 2H, CHB2 B); 1.32 (m, 3H, CHB3B). 

RMN P

13
PC (CDClB3B, 400 MHz) δ in ppm: Could not be determined. 

 

Cyclohexylidenemethyl-2,6-dimethylphenyl-sulfane (22).  

 
Following the general method of the WH olefination reactions, a n-BuLi solution (2.2 ml, 3.50 

mmol, 1.6 M in hexane) was added to a solution of 11 (705 mg, 2.00 mmol) in anhydrous THF (13 ml) 

that was then reacted with cyclohexanone (104 µl, 98 mg, 1.0 mmol) in anhydrous THF (5 ml). General 

work-up and chromatography (hexane to ethyl acetate) afforded compound  22 (207 mg, 0.89 mmol, 

89%)  as light yellow oil. 

RBfB (hexane: ethyl acetate = 9:1): 0.9. 

Anal. Calcd for C15H20SB: 77.53 C, 8.67 H, 13.80 S. Found: 77.45 C, 8.53 H, 13.59 S. 

                                                 
TP

157 (a) Nguyen, V.-H.; Nishino, H.; Kajikawa, S.; Kurosawa, K. Tetrahedron, 1998, 54, 11445. (b) Tiecco, M.; 
Testferri, L.; Tingoli, M.; Chianelli, D.; Montanucci, M. J. Org. Chem. 1983, 48, 4795.  
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RMN P

1
PH (CDClB3B, 400 MHz) δ in ppm: 7.10 (m, 2H, HBaromaticB); 7.00 (d, 1H, J BH,H B= 7.6 Hz, H Baromatic B), 

5.36 (s, 1H, CH), 2.49 (s, 3H, CH B3B); 2.38 (d, 2H, J = 5.6 CHB2B); 2.23 (s, 3H, CHB3B); 2.10 (d, 2H, J = 5.6 

CH B2B); 1.56 (m, 4H, CHB2B); 1.25 (s, 2H, CHB2 B). RMN P

13
PC (CDClB3B, 100.6 MHz) δ in ppm: 143.6, 142.7, 

142.3, 128.5 (CBaromatic B); 129.5, 128.3 (UCUH Baromatic B); 115.2 (UCUH); 36.4 (UCUH B2B); 30.3 (UCUHB2B); 28.5 (UCUHB2B); 27.4 

(UCUH B2B); 26.7 (UCUHB2B); 22.3 (UCUHB3B); 21.9 (UCUH B3B). 

 

Cyclohexyl-cyclohexylidenemethyl-sulfane (23).TP

158
PT  

 
Following the general method of the WH olefination reactions, a n-BuLi solution (2.2 ml, 3.50 

mmol, 1.6 M in hexane) was added to a solution of 13 (660 mg, 2.00 mmol) in anhydrous THF (13 ml) 

that was then reacted with cyclohexanone (104 µl, 98 mg, 1.00 mmol) in anhydrous THF (5 ml). After 

general work-up and chromatography (hexane to ethyl acetate) afforded compound  23 (202 mg, 0.93 

mmol, 93%) as a colourless oil. 

RBfB (hexane:ethyl acetate = 6:1): 0.75. 

Anal. Calcd for C13H22SB: 74.22 C, 10.54 H, 15.24 S. Found: 74.34 C, 10.47 H, 15.33 S. 

RMN P

1
PH (CDClB3B, 400 MHz) δ in ppm: 5.60 (d, 1H, JBH,H B= 15.6 Hz, CH); 2.68 (m, 1H, CH); 2.21 

(m, 4H, CHB2B); 2.10 (m, 4H, CHB2B); 1.79 (m, 4H, CHB2 B); 1.57-1.18 (m, 8H, CHB2B). RMN P

13
PC (CDClB3B, 100.6 

MHz) δ in ppm: 143.0 (C); 113.1 (UCUH); 45.7 (UCUH); 37.4 (UCUH B2B); 33.7 (UCUH B2B); 30.4 (UCUHB2B); 28.4 (UCUH B2B); 

27.2 (UCUHB2B); 26.5 (UCUH B2B); 26.1 (UCUH B2B). 

 

E/Z-tert-Butyl-2-phenylprop-1-enyl-sulfane (24). 

 
Following the general method of the WH olefination reactions, a n-BuLi solution (2.2 ml, 3.50 

mmol, 1.6 M in hexane) was added to a solution of 14 (608 mg, 2.00 mmol) in anhydrous THF (13 ml) 

that was then reacted with acetophenone (117 µl, 120 mg, 1.00 mmol) in anhydrous THF (5 ml). 

General work-up and chromatography (hexane to ethyl acetate) afforded compound 24 (189 mg, 0.92 

mmol, 92%, an E/Z inseparable mixture, E/Z = 10:1) as a colourless oil.  

RBfB (hexane: ethyl acetate = 10:1): 0.70. 

Anal. Calcd for C13H18SB: 75.67 C, 8.79 H, 15.54 S. Found: 75.75 C, 8.83 H, 15.53 S. 

Spectroscopic data obtained from E/Z diastereoisomeric mixture. 

                                                 
TP

158 Harpp, D. N.; Aida, T.; Chan, T. H. Tetrahedron Lett., 1985, 26, 1795. 
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24E: RMN P

1
PH (CDClB3B, 400 MHz) δ in ppm: 7.38 (m, 5H, HBaromaticB); 6.42 (s, 1H, CH); 2.06 (s, 3H, 

CH B3B); 1.34 (s, 9H, CHB3B). RMN P

13
PC (CDClB3 B, 100.6 MHz) δ in ppm: 135.1 (CBaromaticB); 128.5-125.0 

(UCUH Baromatic B); 128.3 (UCUH); 120.0 (UCUH); 44.3 (C); 31.3 (UCUH B3B); 17.9 (UCUHB3 B).  

24Z: RMN P

1
PH (CDClB3B, 400 MHz) δ in ppm: 7.38 (m, 5H, HBaromatic B); 6.11 (s, 1H, CH); 2.10 (s, 3H, 

CH B3B); 1.28 (s, 9H, CHB3B). RMN P

13
PC (CDClB3B, 400 MHz) δ in ppm: Could not be determined. 

 

 (Phenylselenenylmethyl)diphenylphosphine Oxide (25).  

 
Following the general method A for the synthesis of diphenylphosphine oxides, sodium hydride 

(60% in mineral oil, 560 mg, 14.00 mmol) and commercial benzeneselenol (2.0 g, 12.73 mmol) were 

reacted in anhydrous THF (51 ml) at 0 ºC under argon atmosphere. Then a solution of compound 9 

(4.92 g, 12.73 mmol) in THF (25 ml) was added. General work-up and flash chromatography with ethyl 

acetate: hexane = 1:1 to ethyl acetate afforded compound 25 (3.12 g, 9.17 mmol, 72%) as white 

crystals. 

Rf: 0.625 in ethyl acetate.  

Mp: 121.5 – 123.0 ºC.  

IR: ν (C=C): 1434.78 cm-1; ν (P=O): 1187.94 cm-1.  

Anal. Calcd for C19H17OPSeB: 61.47 C, 4.62 H. Found: 61.96 C, 4.48 H. 

RMN 1H (CDCl3, 400 MHz) δ in ppm: 7.76 (m, 4H, Haromatic); 7.53 (m, 2H, Haromatic); 7.44 (m, 6H, 

Haromatic); 7.20 (m, 3H, Haromatic); 3.60 (d, 2H, JH,P = 7.6 Hz, CH2). RMN 13C (CDCl3, 100.6 MHz) δ in 

ppm: 139.6, 131.3, 131.1 (Caromatic); 134.4, 132.6, 130.2, 128.8, 128.1, 127.8 (CHaromatic); 25.6 (d, CH2, 

JC,P = 68.71 Hz). RMN 31P (CDCl3, 162 MHz) δ in ppm: 29.16 (s, P=O).  

 

(Phenyltelluromethyl)diphenylphosphine Oxide (26).77   

 
Diphenyl ditelluride (1.3 g, 3.18 mmol) and KBH4 (515 mg, 9.54 mmol) were reacted in anhyrous 

THF (32 ml) at room temperature under argon until the dark red colour of the diphenyl telluride became 

more clear. After the formation of the telluride anion, following the general method A for the synthesis 

of diphenylphosphine oxides, a solution of compound 9 (2.33g, 6.04 mmol) in THF (12 ml) was added. 

After general work-up and recrystalization from ethyl acetate – hexane afforded compound 26 (1.66 g, 

3.93 mmol, 65%) as yellowish crystals. 

Rf: 0.81 in ethyl acetate.  

UNIVERSITAT ROVIRA I VIRGILI 
STEREOSELECTIVE SYNTHESIS OF 2-DEOXYOLIGOSACCHARIDES.NEW APRROACHES TO THE SYNTHESIS OF DIGITOXIN AND P-57 
Andrea Köver 
978-84-691-9523-9 /DL: T-1261-2008 



EXPERIMENTAL SECTION 

 

 
123 

Mp: 122.5 – 123.5 ºC. (Lit: 123-124 ºC).  

IR: ν (C=C): 1431.89 cm-1; ν (P=O): 1180.22 cm-1. 

Anal. Calcd for C19H17OPTeB: 54.35 C, 4.08 H. Found: 54.56 C, 4.28 H. 

RMN 1H (CDCl3, 400 MHz) δ in ppm: 7.74 (m, 7H, Haromatic); 7.50 (m, 4H, Haromatic); 7.22 (m, 4H, 

Haromatic); 3.58 (d, 2H, JH,P = 13.2 Hz, CH2). RMN 13C (CDCl3, 100.6 MHz) δ in ppm: 138.6, 132.8, 

131.7 (Caromatic); 131.4, 130.6, 130.5, 128.8, 128.2, 128.1, 127.8, 111.6 (CHaromatic); 4.9 (d, CH2, JC,P = 

68.0 Hz). RMN 31P (CDCl3, 162 MHz) δ in ppm: 30.74 (s, P=O).  

 

(Phenyloxymethyl)diphenylphosphine Oxide (27).159  

 
Following the general method A for the synthesis of diphenylphosphine oxides, sodium hydride 

(60% in mineral oil, 420 mg, 10.50 mmol) and phenol (0.99 g, 10.50 mmol) were reacted in anhydrous 

THF (42 ml) at 0 ºC under argon atmosphere, then a solution of compound 9 (3.86 g, 10.00 mmol) in 

THF (20 ml) was added. After general work-up and recrystalization from ethyl acetate – hexane 

afforded compound 27 (2.93 g, 9.52 mmol, 95%) as white solid.  

Mp: 102.0 – 103.0 ºC.  

IR: ν (C=C): 1435.74 cm-1; ν (P=O): 1180.22 cm-1.  

Anal. Calcd for C19H17O2P: 74.02 C, 5.56 H. Found: 73.96 C, 5.48 H. 

RMN 1H (CDCl3, 400 MHz) δ in ppm: 7.89 (m, 4H, Haromatic); 7.58 (m, 2H, Haromatic); 7.50 (m, 4H, 

Haromatic); 7.29 (m, 2H, Haromatic); 7.29 (m, 1H, Haromatic); 6.99 (m, 2H, Haromatic); 4.73 (d, 2H, JH,P = 8.0 

Hz, CH2). RMN 13C (CDCl3, 100.6 MHz) δ in ppm: 163.8, 131.1, 130.9 (Caromatic); 132.7, 131.7, 129.7, 

128.8, 122.2, 114.7 (CHaromatic); 66.0 (d, CH2, JC,P = 88.43 Hz). RMN 31P (CDCl3, 162 MHz) δ in ppm: 

27.87 (s, P=O).  

 

(Cyclohexyloxymethyl)diphenylphosphine Oxide (28).  

 
Following the general method A for the synthesis of diphenylphosphine oxides, sodium hydride 

(60% in mineral oil, 840 mg, 21.00 mmol) and cyclohexanol (2.0 ml, 21.00 mmol) were reacted in 

anhydrous THF (84 ml) at 0 ºC under argon atmosphere for 1h, then a solution of compound 9 (7.72 g, 

                                                 
159  (a) Chaunov, V. A.; Studnev, Y. N.; Rudnitskaya, L. S. Fokin, A. V. Zhournal Obschei Khimii, 1986, 56(11), 

2553. (b) Patsanovskii, I. I.; Ishmaeva, E. A.; Sundukova, E. N.; Yarkevich, A. N.; Tsvetkov, E. N. Zhournal 
Obschei Khimii, 1986, 56(3), 2563. 
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20.00 mmol) in THF (40 ml) was added. After general work-up and recrystalization the crystals of 

unreacted starting material were recovered, finally flash chromatography (ethyl acetate: hexane = 1:1 to 

ethyl acetate) afforded 4.15 g (13.22 mmol, 65%) compound 28 as orange oil that was crystallized from 

DCM.  

Rf: 0.56 in ethyl acetate.  

Mp: 65 – 67 ºC. IR: ν (C=C): 1437.67 cm-1; ν (P=O): 1182.91 cm-1.  

Anal. Calcd for C19H23O2P: 72.59 C, 7.37 H. Found: 72.96 C, 7.48 H. 

RMN 1H (CDCl3, 400 MHz) δ in ppm: 7.85 (m, 4H, Haromatic); 7.53 (m, 2H, Haromatic); 7.46 (m, 4H, 

Haromatic); 4.24 (d, 2H, JH,P = 7.6 Hz, CH2); 3.31 (m, 1H, CH); 1.79 (m, 4H, CH2); 1.62 (m, 4H, CH2); 

1.45 (m, 2H, CH2). RMN 13C (CDCl3, 100.6 MHz) δ in ppm: 140.1, 131.0, 130.9 (Caromatic); 132.2, 

131.7, 128.4 (CHaromatic); 80.44 (d, CH, JC,P = 9.96 Hz); 66.45 (d, CH2, JC,P = 90.04 Hz); 31.54 (CH2); 

25.77 (CH2); 23.70 (CH2). RMN 31P (CDCl3, 162 MHz) δ in ppm: 28.35 (s, P=O).  

 

(Benzyloxymethyl)diphenylphosphine Oxide (29).  

 
Following the general method A for the synthesis of diphenylphosphine oxides, sodium hydride 

(60% in mineral oil, 420 mg, 10.50 mmol) and benzyl alcohol (1.1 ml, 1.14 g, d = 1.05 g/ml, 10.50 

mmol) were reacted in anhydrous THF (42 ml) at 0 ºC under argon atmosphere, then a solution of 

compound 9 (3.86 g, 10.00 mmol) in THF (20 ml) was added. General work-up and recrystallization 

from ethyl acetate –  hexane afforded compound 29 (2.99 g, 9.29 mmol, 93%) as white solid.  

Mp: 105.0 – 106.0 ºC.  

IR: ν (C=C): 1437.67 cm-1; ν (P=O): 1177.33 cm-1.  

Anal. Calcd for C20H19O2P: 74.52 C, 5.94 H. Found: 73.96 C, 5.68 H. 

RMN 1H (CDCl3, 400 MHz) δ in ppm: 7.80 (m, 4H, Haromatic); 7.50 (m, 6H, Haromatic); 7.30 (m, 3H, 

Haromatic); 7.19 (m, 2H, Haromatic); 4.61 (s, 2H, CH2); 4.23 (d, 2H, JH,P = 6.6 Hz, CH2). RMN 13C (CDCl3, 

100.6 MHz) δ in ppm: 136.7, 133.0, 131.7 (Caromatic); 132.3, 131.7, 131.6, 128.7, 128.6, 128.2 

(CHaromatic); 75.7 (d, CH2, JC,P = 11.47 Hz); 68.1 (d, CH2, JC,P = 88.4 Hz). RMN 31P (CDCl3, 162 MHz) δ 

in ppm: 28.22 (s, P=O).  

 

(Trimethylsilyloxymethyl)diphenylphosphine Oxide (30).  
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Following the general method B for the synthesis of diphenylphosphine oxides, 8 (2.32 g, 10.00 

mmol) and trimethylsilyl chloride (1.3 ml, 1.09 g, d = 0.859 g/ml, 11.00 mmol) were reacted in 

anhydrous DCM (40 ml) in the presence of imidazol (715 mg, 10.50 mmol) and DMAP (244 mg, 2.00 

mmol) at room temperature under argon atmosphere. After general work-up and recrystallization from 

ethyl acetate – hexane afforded compound 30 (2.75 g, 9.04 mmol, 90%) as white solid. 

IR: ν (C=C): 1437.67 cm-1; ν (P=O): 1183.13 cm-1.  

Anal. Calcd for C16H21O2PSi: 63.13 C, 6.95 H. Found: 62.96 C, 6.86 H. 

RMN 1H (CDCl3, 400 MHz) δ in ppm: 7.80 (m, 4H, Haromatic); 7.48 (m, 6H, Haromatic); 4.31 (d, 2H, 

JH,P = 6.9 Hz, CH2); 0.15 (s, 9H, CH3). RMN 13C (CDCl3, 100.6 MHz) δ in ppm: 132.4, 132.0 (Caromatic); 

134.1, 132.4, 128.0, (CHaromatic); 62.3 (d, CH2, JC,P = 91.13 Hz); 2.3 (CH3). RMN 31P (CDCl3, 162 MHz) 

δ in ppm: 29.19 (s, P=O).  

 

(tert-Butyldiphenylsilyloxymethyl)diphenylphosphine Oxide (31).  

 
Following the general method B for the synthesis of diphenylphosphine oxides, 8 (2.32 g, 10.00 

mmol) and tert-butyldiphenylsilyl chloride (2.7 ml, 2.89 g, d = 1.057 g/ml, 10.50 mmol) were reacted 

in anhydrous DCM (40 ml) in the presence of imidazol (715 mg, 10.50 mmol) and DMAP (244 mg, 

2.00 mmol) at room temperature under argon atmosphere. General work-up and recrystallization from 

ethyl acetate – hexane afforded compound 31 (4.37 g, 9.29 mmol, 93%) of as white solid. 

Mp: 135.0 – 136.0 ºC.  

IR: ν (C=C): 1437.67 cm-1; ν (P=O): 1182.25 cm-1. 

Anal. Calcd for C29H31O2PSi: 74.01 C, 6.64 H. Found: 73.96 C, 6.48 H. 

RMN 1H (CDCl3, 400 MHz) δ in ppm: 7.85 (m, 4H, Haromatic); 7.57 (m, 2H, Haromatic); 7.49 (m, 4H, 

Haromatic); 7.41 (m, 6H, Haromatic); 7.29 (m, 4H, Haromatic); 4.33 (d, 2H, JH,P = 7.20 Hz, CH2); 0.95 (s, 9H, 

CH3). RMN 13C (CDCl3, 100.6 MHz) δ in ppm: 136.5, 136.3, 132.4, 132.0 (Caromatic); 135.8, 132.4, 

132.0, 130.2, 128.6, 128.0 (CHaromatic); 62.5 (d, CH2, JC,P = 92.25 Hz), 26.8 (CH3). RMN 31P (CDCl3, 

162 MHz) δ in ppm: 30.17 (s, P=O).  

 

Diphenylphosphoryl-methyl Benzoate (32).  

 
Following the general method B for the synthesis of diphenylphosphine oxides, 8 (2.32 g, 10.00 

mmol) and benzoyl chloride (950 µl, 1.48 g, d = 1.553 g/ml, 10.50 mmol) were reacted in anhydrous 
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DCM (40 ml) in the presence of imidazol (715 mg, 10.50 mmol) and DMAP (244 mg, 2.00 mmol) at 

room temperature under argon atmosphere. After general work-up and recrystallization from ethyl 

acetate – hexane afforded compound 32 (3.00 g, 8.93 mmol, 89%) as a white solid. 

Mp: 137.0 – 138.0 ºC.  

IR: ν (C=O): 1723.09 cm-1; ν (C=C): 1436.71 cm-1; ν (P=O): 1188.90 cm-1.  

Anal. Calcd for C20H17O3P: 71.42 C, 5.09 H. Found: 71.39 C, 5.01 H. 

RMN 1H (CDCl3, 400 MHz) δ in ppm: 7.84 (m, 6H, Haromatic); 7.53 (m, 6H, Haromatic); 7.39 (m, 3H, 

Haromatic); 5.10 (d, 2H, JH,P = 5.2 Hz, CH2). RMN 13C (CDCl3, 100.6 MHz) δ in ppm: 169.4, 140.3, 

134.3, 134.2 (Caromatic); 133.7, 132.8, 131.6, 130.0, 129.1, 128.7 (CHaromatic); 64.0 (d, CH2, JC,P = 88.4 

Hz). RMN 31P (CDCl3, 162 MHz) δ in ppm: 29.19 (s, P=O).  

 

 Diphenylphosphoryl-methyl Diphenylphosphinate (33).160  

 
Following the general method B for the synthesis of diphenylphosphine oxides, 8 (1.16 g, 5.00 

mmol) and diphenylphosphinic chloride (1.0 ml, 1.24 g, d = 1.24 g/mol, 5.25 mmol) were reacted in 

anhydrous DCM (20 ml) in the presence of imidazol (0.68 g, 10.00 mmol) and DMAP (30 mg, 0.25 

mmol) at room temperature under argon atmosphere. After general work-up and recrystalization  from 

ethyl acetate – hexane afforded compound 33 (2.05 g, 4.76 mmol, 95%) as white solid. 

Mp: 132.5 – 134.0 ºC.  

IR: ν (C=C): 1437.67 cm-1; ν (P=O): 1219.76 cm-1; ν (P=O): 1184.06 cm-1. 

Anal. Calcd for C25H22O3P2: 69.44 C, 5.13 H. Found: 69.55 C, 5.24 H. 

RMN 1H (CDCl3, 400 MHz) δ in ppm: 7.81 (m, 4H, Haromatic); 7.60 (m, 5H, Haromatic); 7.50 (m, 6H, 

Haromatic); 7.38 (m, 5H, Haromatic); 4.68 (t, 2H, JH,P = 5.6 Hz, CH2). RMN 13C (CDCl3, 100.6 MHz) δ in 

ppm: 140.0 (Caromatic); 134.2, 132.8, 132.4, 132.2, 129.3, 128.7 (CHaromatic); 60.8 (dd, CH2, JC,P = 87.02, 

7.65 Hz). RMN 31P (CDCl3, 162 MHz) δ in ppm: 35.79 (d, JP,P = 37.91 Hz, P=O); 28.26 (d, JP,P = 37.91 

Hz, P=O).  

 

 

 

 

 

                                                 
160  Frey, G.; Lesiecki, H.; Lindner, E.; Vordermaier, S. Chem. Ber. 1979, 112(2), 763. 
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Diphenylphosphoryl-methyl Diphenyl Phosphate (34).  

P O

O

O
P

O
O

 
Following the general method B for the synthesis of diphenylphosphine oxides, 8 (1.86 g, 8.00 

mmol) and diphenyl phosphoryl chloride (1.74 ml, 2.26 g, d = 1.299 g/mol, 8.40 mmol) were reacted in 

anhydrous DCM (32 ml) in the presence of imidazol (571 mg, 8.40 mmol,) and DMAP (49 mg, 0.40 

mmol) at room temperature under argon atmosphere. General work-up and recrystallization from ethyl 

acetate – hexane afforded compound 34 (3.42 g, 7.36 mmol, 92%) as white solid. 

Mp: 113.0 – 114.5  ºC.  

IR: ν (C=C): 1437.67 cm-1; ν (P=O): 1291.11 cm-1; ν (P=O): 1183.11 cm-1.  

Anal. Calcd for C25H22O5P2: 64.66 C, 4.78 H. Found: 65.02 C, 4.55 H. 

RMN 1H (CDCl3, 400 MHz) δ in ppm: 7.75 (m, 4H, Haromatic); 7.59 (m, 2H, Haromatic); 7.47 (m, 4H, 

Haromatic); 7.32 (m, 4H, Haromatic); 7.18 (m, 2H, Haromatic); 7.04 (m, 4H, Haromatic); 4.91 (dd, 2H, JH,P =  6.0, 

6.0 Hz, CH2). RMN 13C (CDCl3, 100.6 MHz) δ in ppm: 150.1, 150.0, 130.5, 130.5 (Caromatic); 132.8, 

132.2, 131.1, 128.7, 122.3, 120.3 (CHaromatic); 64.6 (dd, CH2, JC,P = 85.51, 9.15 Hz). RMN 31P (CDCl3, 

162 MHz) δ in ppm: 26.9 (d, JP,P = 30.7 Hz, P=O); 28.26 (d, JP,P = 30.7 Hz, P=O).  

 

(Fluoromethyl)diphenylphosphine Oxide (35).151 

 
Following the general method C for the synthesis of diphenylphosphine oxides, 8 (1.54 g, 4.00 

mmol) and potassium fluoride (2.32 g, 40.00 mmol) were reacted in triethylenglycol (32 ml, without 

anhydrousing) at 160 ºC for 15 minutes. After general work-up and flash chromatography (hexane: 

ethyl acetate = 1:1 to ethyl acetate) afforded compound 35 (801 mg, 3.42 mmol, 85%) as white crystals. 

Rf (hexane: ethyl acetate = 1:1): 0.32.  

Mp: 95.0 – 96.5 ºC. (Lit.: 95.0 – 95.5 ºC).  

IR: ν (C=C): 1437.67 cm-1; ν (P=O): 1183.11 cm-1.  

RMN 1H (CDCl3, 400 MHz) δ in ppm: 7.82 (m, 4H, Haromatic); 7.61 (m, 2H, Haromatic); 7.53 (m, 4H, 

Haromatic); 5.18 (dd, 2H, JH,F = 46.8; JH,P = 3.2 Hz, CH2). RMN 13C (CDCl3, 100.6 MHz) δ in ppm: 139.1 

(Caromatic); 134.2, 132.9, 128.6 (CHaromatic); 80.5 (dd, CH2, JC,F = 188.4; JC,P = 83.9 Hz). RMN 31P 

(CDCl3, 162 MHz) δ in ppm: 25.75 (d, JP,F = 64.8 Hz, P=O). RMN 19F (CDCl3, 376 MHz) δ in ppm: -

242.7 (dd, J = 125.96, 62.79 Hz). 
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(Chloromethyl)diphenylphosphine Oxide (36).161  

 
Following the general method C for the synthesis of diphenylphosphine oxides, 8 (1.54 g, 4.00 

mmol) and potassium chloride (2.98 g, 40.00 mmol) were reacted in triethylenglycol (32 ml, without 

anhydrousing) at 160 ºC for 30 minutes. After general work-up and flash chromatography (ethyl 

acetate: hexane = 1:1 to ethyl acetate) afforded compound 36 (920 mg, 3.68 mmol, 92%) as white 

crystals.  

Mp: 126.0 – 127.5 ºC.  

IR: ν (C=C): 1435.74 cm-1; ν (P=O): 1193.72 cm-1. 

 Anal. Calcd for C13H12ClOP: 62.29 C, 4.83 H. Found: 61.98 C, 5.02 H. 

RMN 1H (CDCl3, 400 MHz) δ in ppm: 7.81 (m, 4H, Haromatic); 7.58 (m, 2H, Haromatic); 7.51 (m, 4H, 

Haromatic); 4.06 (d, 2H, JH,P = 6.6 Hz, CH2). RMN 13C (CDCl3, 100.6 MHz) δ in ppm: 142.3 (Caromatic); 

134.2, 132.7, 128.5 (CHaromatic); 37.9 (d, CH2, JC,P = 73.7 Hz). RMN 31P (CDCl3, 162 MHz) δ in ppm: 

28.95 (s, P=O).  

 

(Bromomethyl)diphenylphosphine Oxide (37).162  

 
Following the general method C for the synthesis of diphenylphosphine oxides, 8 (1.54 g, 4.00 

mmol) and potassium bromide (4.12 g, 40.00 mmol) were reacted in triethylenglycol (32 ml, without 

anhydrousing) at 160 ºC for 45 minutes. After general work-up and flash chromatography (ethyl 

acetate: hexane = 1:1 to ethyl acetate) afforded compound 37 (1.16 g, 3.92 mmol, 98%) as white 

crystals.  

Mp: 165.5 – 167.0 ºC.  

IR: ν (C=C): 1434.78 cm-1; ν (P=O): 1192.76 cm-1.  

Anal. Calcd for C13H12BrOP: 52.91 C, 4.10 H. Found: 52.86 C, 4.21 H. 

RMN 1H (CDCl3, 400 MHz) δ in ppm: 7.81 (m, 4H, Haromatic); 7.55 (2H, m, Haromatic); 7.53 (m, 4H, 

Haromatic); 3.81 (d, 2H, JH,P = 6.0 Hz, CH2). RMN 13C (CDCl3, 100.6 MHz) δ in ppm: 142.0, 135.3, 135.1 

(Caromatic); 1134.2, 32.8, 128.9 (CHaromatic); 23.6 (d, CH2, JC,P = 69.6 Hz). RMN 31P (CDCl3, 162 MHz) δ 

in ppm: 27.71 (s, P=O).  

                                                 
161  Lawrence, N. J.; Liddle, J.; Jackson, D. J. Chem. Soc. Perkin I., 2002, 2260. 
162  Tkachenko, S. E; Yarkevich, A. N.; Timfeev, S. V.; Tsvetkov, E. N. Zhurnal Obshchei Khimii 1988, 58(3), 

531. 
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(Iodomethyl)diphenylphosphine Oxide (38).163  

 
Following the general method C for the synthesis of diphenylphosphine oxides, 8 (1.54 g, 4.00 

mmol) and potassium iodine (6.64 g, 40.00 mmol) were reacted in triethylenglycol (32 ml, without 

anhydrousing) at 160 ºC for 1 hour. After general work-up and flash chromatography (ethyl acetate: 

hexane = 1:1 to ethyl acetate) afforded compound 38 (1.31 g, 3.82 mmol, 95%) of as white, light-

sensitive crystals. 

Mp: 172.0 – 173.0 ºC.  

IR: ν (C=C): 1436.71 cm-1; ν (P=O): 1188.90 cm-1.  

Anal. Calcd for C13H12IOP: 45.64 C, 3.54 H. Found: 45.76 C, 3.21 H. 

RMN 1H (CDCl3, 400 MHz) δ in ppm: 7.79 (m, 4H, Haromatic); 7.48 (m, 2H, Haromatic); 7.51 (m, 4H, 

Haromatic), 3.60 (d, 2H, JH,P = 5.6 Hz, CH2). RMN 13C (CDCl3, 100.6 MHz) δ in ppm: 143.9 135.4, 135.0 

(Caromatic); 134.2, 132.7, 128.9 (CHaromatic); –4.8 (d, CH2, JC,P = 67.1 Hz). RMN 31P (CDCl3, 162 MHz) δ 

in ppm: 28.04 (s, P=O). 

 

(Diphenylaminomethyl)diphenylphosphine Oxide (39).164  

 
Following the general method D for the synthesis of diphenylphosphine oxides,  8 (3.86 g, 10.00 

mmol) and diphenyl amine (2.03 g, 12.00 mmol) were reacted in anhydrous DMF (40 ml) at 70 ºC in 2 

days under argon atmosphere. After general work-up and recrystalization from ethyl acetate – hexane 

afforded compound 39 (3.70 g, 9.64 mmol, 96%) as dark crystals. 

Mp: 44.0 – 45.0 ºC.  

IR: ν (C=C): 1437.67 cm-1; ν (P=O): 1172.51 cm-1.  

Anal. Calcd for C25H22NOP: 78.31 C, 5.78 H, 3.65 N. Found: 77.95 C, 5.93 H, 3.82 N. 

RMN 1H (CDCl3, 400 MHz) δ in ppm: 7.63 (m, 4H, Haromatic); 7.51 (m, 2H, Haromatic); 7.39 (m, 4H, 

Haromatic); 7.17 (m, 4H, Haromatic); 6.98 (m, 4H, Haromatic); 6.84 (m, 2H, Haromatic); 4.52 (d, 2H, JH,P = 7.2 

Hz, CH2). RMN 13C (CDCl3, 100.6 MHz) δ in ppm: 145.7, 143.2, 130.2, 129.6 (Caromatic); 133.0, 131.6, 

129.3, 128.3, 121.1, 117.9 (CHaromatic); 64.9 (dd, CH2, JC,P = 82.4 Hz). RMN 31P (CDCl3, 162 MHz) δ in 

ppm: 26.62 (s, P=O).  

 

                                                 
163  Dielmann, C. B.; Matt, D.; Jones, P. G. J. Organometallic Chem. 1997, 545-546, 461. 
164  Abu-Gnim, C.; Amer, I. J. Organometallic Chem. 1996, 516(1-2), 235. 
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(Dibenzylaminomethyl)diphenylphosphine Oxide (40).165  

 
Following the general method D for the synthesis of diphenylphosphine oxides, 8 (3.86 g, 10.00 

mmol) and dibenzyl amine (2.36 g, 12.00 mmol) were reacted in anhydrous DMF (40 ml) at 70 ºC for 2 

days under argon atmosphere. After general work-up and recrystalization from ethyl acetate – hexane 

afforded compound 40 (3.99 g, 9.70 mmol, 97%) as white crystals. 

Mp: 130.0 – 131.0 ºC.  

IR: ν (C=C): 1435.74 cm-1; ν (P=O): 1180.22 cm-1.  

Anal. Calcd for C27H26NOP: 78.831 C, 6.37 H, 3.40 N. Found: 78.95 C, 6.23 H, 3.62 N. 

RMN 1H (CDCl3, 400 MHz) δ in ppm: 7.55 (m, 6H, Haromatic); 7.40 (m, 4H, Haromatic); 7.26 (m, 6H, 

Haromatic); 7.14 (m, 4H, Haromatic); 3.82 (s, 4H, CH2); 3.32 (d, 2H, JH,P = 6.0 Hz, CH2). RMN 13C (CDCl3, 

100.6 MHz) δ in ppm: 138.8, 138.8, 132.9, 131.2 (Caromatic); 131.9, 131.4. 129.4, 128.6, 128.4, 127.2, 

(CHaromatic); 60.4 (dd, CH2, JC,P = 7.6 Hz); 53.0 (dd, CH2, JC,P = 86.2 Hz). RMN 31P (CDCl3, 162 MHz) δ 

in ppm: 29.84 (s, P=O).  

 

 (Phenylsulfanylmethyl)diphenylphosphine Oxide (42) 

 
Following the general procedure of the Michaelis–Arbuzov, the mixture of 10 g (43.4 mmol) of 

commercially available ethyl diphenylphosphinite and 7.2 g (45.6 mmol) of commercially available 

chloromethyl-phenyl-sulfane was stirred at 150 ºC under argon atmosphere for 3 hours. The evolution 

of the reaction was monitored by TLC analysis. After the completion of the reaction the mixture was 

cooled down to room temperature and was purified by recrystallization from ether petroleum – ethyl 

acetate to obtain the corresponding compound 42 (13.3 g, 94%). 

Bp: 101 – 2ºC. [lit. 101-2 ºC].  

RMN 1H (CDCl3, 400 MHz) δ in ppm: 7.81 – 7.16 (m, 15H, HBaromaticB); 3.73 (d, 2H, JH,P = 9.2 Hz, 

CH2). RMN 13C (CDCl3, 100.6 MHz) δ in ppm: 135.9-127.1 (CBaromatic B, CHBaromatic B), 34.1 (d, JC,P = 68.3 

Hz, CH2). RMN 31P (CDCl3, 162 MHz) δ in ppm: 29.4 (s, P=O). 

 

 

 

                                                 
165  (a) Frolovskii, V. A.; Studnev, Y. N.; Rozantsev, G. G. Zhurnal Obshei Khimii 1996, 66(4), 692. (b) Broekhof, 

N. L. J. M.; J. of the Royal Neth. Chem. Soc. 1984, 103/11. 312. 
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(E/Z)-3,4,6-tri-O-Benzyl-1,2-dideoxy-1-tert-butylsulfanyl-D-ribo-hex-1-enitol (44). 

 
Following the general method of the WH olefination reactions, a n-BuLi solution (1.91 ml, 3.06 

mmol, 1.6 M in hexane) was added to a solution of 14 (532 mg, 1.75 mmol) in anhydrous THF (10 ml) 

and then was reacted with a solution of 2,3,5-tri-O-benzyl-α,β-D-ribofuranose (368 mg, 0.88 mmol) in 

anhydrous THF (5 ml). After general work-up and radial chromatography (hexane to ethyl acetate) 

afforded compound  44 (288 mg , 0.57 mmol, 65%, an E/Z inseparable mixture, E/Z = 25:1) as a light 

yellow oil. 

RBfB (hexane: ethyl acetate = 3:1): 0.60. 

Anal. Calcd for C31H38O4S: 73.48 C, 7.56 H, 6.33 S. Found: 73.37 C, 7.43 H, 6.27 S.  

Spectroscopic data obtained from E/Z diastereoisomeric mixture. 

44E: RMN P

1
PH (CDClB3B, 400 MHz) δ in ppm: 7.33 – 7.21 (m, 15H, HBaromatic B); 6.44 (d, 1H, JB1,2 B= 

15.2 Hz, H-1); 5.90 (dd, 1H, JB2,3 B= 8.4 Hz, H-2); 4.76 (d, 1H, J BABB = 11.2 Hz, CHB2BPh); 4.65 (d, 1H, JBABB = 

11.2 Hz, CHB2BPh); 4.56 (d, 1H, JBABB = 11.2 Hz, CHB2BPh); 4.49 (d, 2H, JBABB = 11.2 Hz, CHB2BPh); 4.36 (d, 

1H, JAB = 11.2 Hz, CHB2BPh); 4.17 (dd, 1H, JB3,4 B= 4.2, Hz, H-3); 3.81 (m, 1H, H-5); 3.68 (dd, 1H, JB4,5 B= 

8.4, Hz, H-4); 3.61 (2H, m, H-6a, H-6b); 2.89 (bs, 1H, OH); 1.35 (s, 9H, CHB3B). RMN P

13
PC (CDClB3 B, 

100.6 MHz) δ in ppm: 138.51, 138.41, 138.15 (CBaromatic B); 128.99,  128.57, 128.53, 128.42, 128.30, 

128.03, 127.90, 127.82, 127.75; 127.71 ( UCUHBaromatic B,  C-1, C-2); 81.75 (UCUH, C-3); 80.98 (UCUH, C-4); 

74.30 (UCUH B2B, CHB2BPh); 73.43 (UCUH B2B, CHB2BPh); 71.14 (UCUH B2B, CHB2 BPh); 70.99 (UCUH, C-5); 70.31 (UCUHB2B, C-6); 

43.82 (UCU); 31.03 (UCUH B3B).  

44Z: RMN P

1
PH (CDClB3B, 400 MHz) δ  in ppm: Could not be determined. 

 

(E/Z)-3,4,6-tri-O-Benzyl-1,2-dideoxy-1-cyclohexylsulfanyl-D-ribo-hex-1-enitol (45). 

 
Following the general method of the WH olefination reactions, an LDA solution (diisopropyl 

ammine (490 µl, 354 mg, 3.50 mmol in 5ml of THF and n-BuLi solution 2.2 ml, 3.50  mmol, 1.6 M in 

hexane) was added to a solution of 13 (660 mg, 2.00 mmol) in anhydrous THF (8 ml) that was then 

reacted with a solution of 2,3,5-tri-O-benzyl-α,β-D-ribofuranose (420 mg, 1.00 mmol) in anhydrous 

THF (5 ml). After general work-up and chromatography (hexane to ethyl acetate) afforded compound 

45 (253 mg, 0.47 mmol, 47 an E/Z inseparable mixture, E/Z = 7:1) as a light yellow oil. 

RBfB (hexane: ethyl acetate = 3:1): 0.63.  
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Anal. Calcd for C33H40O4S: 74.40 C, 7.57 H, 6.02 S. Found: 74.03 C, 7.52 H, 6.07 S.  

Spectroscopic data obtained from E/Z diastereoisomeric mixture. 

45E: RMN P

1
PH (CDClB3B, 400 MHz) δ in ppm: 7.27 – 7.13 (m, 15H, HBaromatic B); 6.23 (d, 1H, JB1,2 B= 

15.2 Hz, H-1); 5.61 (dd, 1H, JB2,3 B= 8.4 Hz, H-2); 4.67 (d, 1H, J BABB = 11.2 Hz, CHB2 BPh); 4.55 (d, 1H, JBABB = 

11.2 Hz, CHB2BPh); 4.48 (d, 1H, JBABB = 11.2 Hz, CHB2BPh; 4.41 (d, 2H, JBABB = 11.2 Hz, CHB2BPh); 4.27 (d, 1H, 

J BABB = 11.2 Hz, CH B2BPh); 4.10 (dd, 1H, J B3,4 B= 4.4 Hz, H-3); 3.72 (m, 1H, H-5); 3.59 (dd, 1H, JB4,5 B = 8.4 

Hz, H-4); 3.42 (s, 1H, H-6a); 3.52 (d, 1H, J = 2.8 Hz, H-6b); 2.77 (m, 1H, CH); 2.70 (d, 1H, JBOH,5 B= 4.8 

Hz, OH); 1.89 (m, 2H, CHB2B); 1.66 (m, 2H, CH B2 B); 1.53 (m, 1H, CHB2 B); 1.18 (m, 5H, CH B2B). RMN P

13
PC 

(CDClB3B, 100.6 MHz) δ in ppm: 138.56, 138.48, 138.13 (CBaromatic B); 129.49, 128.56, 128.51, 128.42, 

128.36, 128.25, 128.03, 127.98, 127.90, 127.83, 127.79, 127.74, 127.66, 125.02 (UCUH BaromaticB, C-1, C-2); 

82.11 (UCUH, C-3); 81.05 (UCUH, C-4); 74.36 (UCUH B2B, CHB2BPh); 73.55 (UCUH B2B, CHB2BPh); 71.16 (UCUH B2B, CHB2BPh); 

71.14 (UCUH, C-6); 70.32 (UCUHB2B, C-5); 44.82 (UCUH); 33. 64 (UCUHB2B); 33.59 (UCUH B2 B), 26.15 (UCUH B2B); 25.80 (UCUH B2B).  

45Z: RMN P

1
PH (CDClB3B, 400 MHz) δ in ppm: Could not be determined. 

 

 (E/Z)-3,4,6-ttri-O-Benzyl-1,2-dideoxy-1-p-methoxyphenylsulfanyl-D-ribo-hex-1-enitol (46).  

 
Following the general method of the WH olefination reactions, a n-BuLi solution (2.2 ml, 3.50 

mmol, 1.6 M in hexane) was added to a solution of 10 (709 mg, 2.00 mmol) in anhydrous THF (13 ml) 

that was then reacted with a solution of 2,3,5-tri-O-benzyl-α,β-D-ribofuranose (420 mg, 1.00 mmol) in 

anhydrous THF (5 ml). After general work-up and chromatography (hexane to ethyl acetate) afforded 

compound 46 (125 mg, 0.22 mmol, 22%, an E/Z inseparable mixture, E/Z = 9:1) as an oil. Starting 

matherial (120 mg, 0.28 mmol, 28%)  was recovered. 

RBfB (hexane: ethyl acetate = 3:1): 0.65.  

Anal. Calcd for C34H36O5S: 73.35 C, 6.52 H, 5.76 S. Found: 73.20 C, 6.32 H, 5.67 S.  

Spectroscopic data obtained from E/Z diastereoisomeric mixture. 

46E: RMN P

1
PH (CDClB3B, 400 MHz) δ in ppm: 7.27 – 7.13 (m, 19H, HBaromatic B); 6.23 (d, 1H, JB1,2 B= 

15.2 Hz, H-1); 5.61 (dd, 1H, JB2,3 B= 8.4 Hz, H-2); 4.67 (d, 1H, J BABB = 11.2 Hz, CHB2 BPh); 4.55 (d, 1H, JBABB = 

11.2 Hz, CHB2BPh); 4.48 (d, 1H, JBABB = 11.2 Hz, CHB2BPh; 4.41 (d, 2H, JBABB = 11.2 Hz, CHB2BPh); 4.27 (d, 1H, 

J BABB = 11.2 Hz, CH B2BPh); 4.10 (dd, 1H, J B3,4 B= 4.4 Hz, H-3); 3.72 (m, 1H, H-5); 3.59 (dd, 1H, JB4,5 B = 8.4 

Hz, H-4); 3.42 (s, 1H, H-6a); 3.52 (d, 1H, J6b,5 = 2.8 Hz, H-6b); 2.77 (m, 1H, CH); 2.70 (d, 1H, JBOH,5 B= 

4.8 Hz, OH); 1.89 (m, 2H, CHB2B); 1.66 (m, 2H, CHB2B); 1.53 (m, 1H, CHB2B); 1.18 (m, 5H, CHB2B). RMN P

13
PC 

(CDClB3B, 100.6 MHz) δ  in ppm: 138.56, 138.48, 138.13 (CBaromaticB); 129.49, 128.56, 128.51, 128.42, 
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128.36, 128.25, 128.03, 127.98, 127.90, 127.83, 127.79, 127.74, 127.66, 125.02 (UCUH BaromaticB, C-1, C-2); 

82.11 (UCUH, C-3); 81.05 (UCUH, C-4); 74.36 (UCUH B2B, CHB2 BPh); 73.55 (UCUH B2B, CHB2 BPh); 71.16 (UCUH B2B, CHB2 BPh); 

71.14 (UCUH, C-6); 70.32 (UCUHB2B, C-5); 55.09 (UCUH B3B).  

46Z: RMN P

1
PH (CDClB3B, 400 MHz) δ in ppm: Could not be determined. 

 

(E/Z)-3,4,6-tri-O-Benzyl-1,2-dideoxy-1-(2,6-dimethylphenyl)sulfanyl-D-ribo-hex-1-enitol 

(47).  

 
Following the general method of the WH olefination reactions, a n-BuLi solution (1.75 ml, 3.05 

mmol, 1.6 M in hexane) was added to a solution of 11 (616 mg, 1.75 mmol) in anhydrous THF (10 ml) 

that was then reacted with a solution of 2,3,5-tri-O-benzyl-α,β-D-ribofuranose (368 mg, 0.88 mmol) in 

anhydrous THF (5 ml). After general work-up and chromatography (hexane to ethyl acetate) afforded 

compound 47 (403 mg, 0.73 mmol, 83%, an E/Z inseparable mixture, E/Z = 50:1) as a light yellow oil. 

RBfB (hexane: ethyl acetate = 3:1): 0.65.  

Anal. Calcd for C35H38O4S: 75.78 C, 6.90 H, 5.78 S. Found: 75.63 C, 6.85 H, 5.67 S.  

Spectroscopic data obtained from E/Z diastereoisomeric mixture. 

47E: RMN P

1
PH (CDClB3B, 400 MHz) δ in ppm: 7.31 – 7.09 (m, 18H, HBaromatic B); 6.23 (d, 1H, JB1,2 B= 

15.2 Hz, H-1); 5.17 (dd, 1H, JB2,3 B= 8.8 Hz, H-2); 4.65 (d, 1H, J BABB = 11.6 Hz, CHB2BPh); 4.57 (d, 1H, JBABB = 

11.6 Hz, CHB2BPh); 4.48 (d, 1H, JBABB = 11.6 Hz, CHB2BPh); 4.46 (d, 1H, JBABB = 11.6 Hz, CHB2BPh); 4.43 (d, 

1H, JBABB = 11.6 Hz, CHB2BPh); 4.29 (d, 1H, JBABB = 11.6 Hz, CH B2BPh); 4.10 (dd, 1H, JB3,4 B= 4.4 Hz, H-3); 3.76 

(m, 1H, H-5); 3.57 (m, 3H, H-4, H-6a, H-6b); 2.82 (d, 1H, JBOH,5 B = 3.6 Hz, OH); 2.45 (m, 6H, CHB3B). 

RMN P

13
PC (CDClB3B, 100.6 MHz) δ in ppm: 143.22, 138.55, 138.31, 138.10 (C Baromatic B); 129.78, 129.41, 

129.29, 128.50, 128.47, 128.32, 127.94, 127.91, 127.81, 127.73, 127.62, 127.56 ( UCUH Baromatic B, C-1), 

122.29 (UCUH, C-2); 81.44 (UCUH, C-3); 81.10 (UCUH, C-3); 74.02 (UCUHB2 B, CHB2BPh); 73.43 (UCUHB2 B, CH B2BPh); 71.10 

(UCUH B2B, CHB2BPh); 71.06 (UCUH, C-5); 70.22 (UCUHB2 B, C-6); 21.79 (UCUH B3 B).  

47Z: RMN P

1
PH (CDClB3B, 400 MHz) δ in ppm: Could not be determined. 

 

(E/Z)-3,4,6-tri-O-Benzyl-1,2-dideoxy-1-(2,6-dichlorophenyl)sulfanyl-D-ribo-hex-1-enitol (48).  

 
Following the general method of the WH olefination reactions, a n-BuLi solution (2.2 ml, 3.50 

mmol, 1.6 M in hexane) was added to a solution of 12 (787 mg, 2.00 mmol) in anhydrous THF (13 ml) 
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that was then reacted with a solution of 2,3,5-tri-O-benzyl-α,β-D-ribofuranose (420 mg, 1.00 mmol) in 

anhydrous THF (5 ml). After general work-up and chromatography (hexane to ethyl acetate) afforded 

compound 48 (103 mg, 0.17 mmol, 17%, an E/Z inseparable mixture, E/Z = 2:1) as a light yellow oil. 

Starting matherial was recovered (302 mg, 0.72 mmol. 72%) after 2 days of reaction time.  

RBfB (hexane: ethyl acetate = 3:1): 0.65.  

Anal. Calcd for C33H32O4S: 66.55 C, 5.42 H, 10.75 S. Found: 65.93 C, 5.32 H, 10.27 S.  

Spectroscopic data obtained from E/Z diastereoisomeric mixture. 

48E: RMN P

1
PH (CDClB3B, 400 MHz) δ in ppm: 7.43 – 7.15 (m, 18H, HBaromatic B); 6.25 (d, 1H, JB1,2 B= 

15.2 Hz, H-1); 5.50 (dd, 1H, JB2,3 B= 8.4 Hz, H-2); 4.82 (d, 1H, J BABB = 11.2 Hz, CHB2 BPh); 4.74 (d, 1H, JBABB = 

11.2 Hz, CHB2BPh); 4.68 (d, 1H, JBABB = 11.2 Hz, CHB2BPh); 4.53 (d, 1H, JBABB = 11.2 Hz, CHB2BPh); 4.50 (d, 

1H, JBABB = 11.2 Hz, CHB2BPh); 4.35 (d, 1H, JBABB = 11.2 Hz, CH B2BPh); 4.14 (dd, 1H, JB3,4 B= 4.4 Hz, H-3); 3.82 

(m, 1H, H-5); 3.66 (m, 3H, H-4, H-6a, H-6b); 2.78 (d, 1H, JBOH,5 B = 4.0 Hz, OH). RMN P

13
PC (CDClB3 B, 

100.6 MHz) δ in ppm: 141.19, 138.50, 138.21, 138.15 (CBaromatic B); 130.89, 129.07, 128.60, 128.58, 

128.53, 128.46, 128.06, 127.98, 127.93, 127.90, 127.78, 127.77, 125.72 ( UCUHBaromatic B, C-1, C-2); 81.36 

(UCUH, C-4), 80.95 (UCUH, C-3); 74.33 (UCUH B2B, CH B2BPh); 73.57 (UCUH B2B, CHB2BPh); 71.24 (UCUH B2B, CH B2BPh); 71.05 

(UCUH, C-5); 70.47 (UCUHB2B, C-6).  

48Z: RMN P

1
PH (CDClB3B, 400 MHz) δ in ppm: 7.43 – 7.15 (m, 18H, HBaromatic B); 6.22 (d, 1H, JB1,2 B= 10.4 

Hz, H-1): 5.90 (t(dd), 1H, JB2,3 B= 10.4 Hz, H-2); 4.82 (d, 1H, J BABB = 11.2 Hz, CHB2 BPh); 4.74 (d, 1H, JBABB = 

11.2 Hz, CHB2BPh); 4.68 (d, 1H, JBABB = 11.2 Hz, CHB2BPh); 4.53 (d, 1H, JBABB = 11.2 Hz, CHB2BPh); 4.50 (d, 

1H, JBABB = 11.2 Hz, CHB2BPh); 4.35 (d, 1H, JBABB = 11.2 Hz, CH B2BPh); 4.06 (dd, 1H, JB3,4 B= 4.4 Hz, H-3); 3.95 

(m, 1H, H-5); 3.57 (m, 3H, H-4 H-6a, H-6b); 2.89 (d, 1H, JBOH,5 B = 4.0 Hz, OH). RMN P

13
PC (CDClB3 B, 

100.6 MHz) δ in ppm: 140.61, 138.50, 138.21, 138.15 (CBaromatic B); 130.54, 130.48, 129.92, 129.76, 

128.97, 128.58, 128.41, 128.21, 128.02, 127.98, 127.93, 127.66, 127.32 ( UCUHBaromatic B, C-1, C-2); 81.36 

(UCUH, C-4); 81.07 (UCUH, C-3); 77.42 (UCUHB2B, CH B2BPh); 74.38 (UCUH B2B, CHB2BPh); 71.35 (UCUHB2B, CH B2BPh); 71.27 

(UCUH, C-5); 71.22 (UCUHB2B, C-6). 

 

(E/Z)-3,4,6-tri-O-Benzyl-1,2-dideoxy-1-tert-butylsulfanyl-D-arabino-hex-1-enitol (51). 

 
Following the general method of the WH olefination reactions, a n-BuLi solution (1.91 ml, 3.06 

mmol, 1.6 M in hexane) was added to a solution of 14 (609 mg, 2.00 mmol) in anhydrous THF (13 ml) 

that was then reacted with a solution of 2,3,5-tri-O-benzyl-α,β-D-arabinofuranose (420 mg, 1.00 mmol) 

in anhydrous THF (5 ml). After general work-up and chromatography (hexane to ethyl acetate) 
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afforded compound 51 (472 mg, 0.93 mmol, 93%, an E/Z inseparable mixture, E/Z = 8:1) as a light 

yellow oil. 

RBfB (hexane: ethyl acetate = 3:1): 0.60.  

Anal. Calcd for C31H38O4S: 73.48 C, 7.56 H, 6.33 S. Found: 73.39 C, 7.32 H, 6.27 S.  

Spectroscopic data obtained from E/Z diastereoisomeric mixture. 

51E: RMN P

1
PH (CDClB3B, 400 MHz) δ in ppm: 7.33 – 7.20 (m, 15H, HBaromatic B); 6.39 (d, 1H, JB1,2 B= 

15.2 Hz, H-1); 5.89 (dd, 1H, JB2,3 B= 7.6 Hz, H-2); 4.64 (d, 1H, J BABB = 11.2 Hz, CHB2BPh); 4.61 (d, 1H, JBABB = 

11.2 Hz, CHB2BPh); 4.52 (d, 1H, J BABB = 11.2 Hz, CHB2BPh); 4.47 (s, 2H, CHB2BPh); 4.36 (d, 1H, JBABB = 11.2 Hz, 

CH B2BPh); 4.14 (dd, 1H, JB3,4 B= 4.0, Hz, H-3); 4.00 (m, 1H, H-5); 3.61 – 3.54 (m, 3H, H-4, H-6a, H-6b); 

2.79 (d, 1H, J BOH,5 B= 5.2 Hz, OH); 1.34 (m, 9H, CHB3B). RMN P

13
PC (CDClB3 B, 100.6 MHz) δ in ppm: 138.17, 

138.10, 137.93 (CBaromatic B); 128.97; 128.53, 128.49, 128.40, 128.31, 128.25, 128.22, 127.99, 127.89, 

127.81, 126.59 (UCUH Baromatic B, C-1, C-2); 80.90 (UCUH, C-4); 79.49 (UCUH, C-3); 74.37 (UCUH B2 B, CHB2BPh); 73.47 

(UCUH B2B, CHB2BPh); 71.04 (UCUHB2B, CHB2BPh), 70.67 (UCUH B2 B, C-6); 70.30 (UCUH, C-5); 43.93 (C); 31.05 (UCUH B3B).  

51Z: RMN P

1
PH (CDClB3B, 400 MHz) δ in ppm: 7.33 – 7.20 (m, 15H, HBaromatic B); 6.49 (d, 1H, JB1,2 B= 9.6 

Hz, H-1); 5.83 (t(dd), 1H, JB2,3B= 9.6 Hz, H-2); 4.66 (dd, 1H, J B3,4 B= 4.0 Hz, H-3); 4.64 (d, 1H, JBABB = 11.2 

Hz, CHB2BPh); 4.61 (d, 1H, JBABB = 11.2 Hz, CH B2 BPh); 4.52 (d, 1H, JBABB = 11.2 Hz, CHB2 BPh); 4.47 (s, 2H, 

CH B2BPh); 4.36 (d, 1H, JBABB = 11.2 Hz, CHB2 BPh); 4.00 (m, 1H, H-5); 3.64 (dd, 1H, JB4,5 B= 6.4 Hz, H-4); 3.61 

– 3.54 (m, 2H, H-6a, H-6b); 2.96 (d, 1H, JBOH,5 B = 5.2 Hz, OH); 1.34 (m, 9H, CHB3B). RMN P

13
PC (CDClB3 B, 

100.6 MHz) δ in ppm: Could not be determined. 

 

(E/Z)-3,4,6-tri-O-Benzyl-1,2-dideoxy-1-p-methoxyphenylsulfanyl-D-arabino-hex-1-enitol 

(52).  

 
Following the general method of the WH olefination reactions, a n-BuLi solution (2.2 ml, 3.50 

mmol, 1.6 M in hexane) was added to a solution of 10 (709 mg, 2.00 mmol) in anhydrous THF (13 ml) 

that was then reacted with a solution of 2,3,5-tri-O-benzyl-α,β-D-arabinofuranose (420 mg, 1.0 mmol) 

in anhydrous THF (5 ml). After general work-up and chromatography (hexane to ethyl acetate) 

afforded compound 52 (176 mg, 0.32 mmol, 32%, an E/Z inseparable mixture, E/Z = 3:1) as a light 

yellow oil. Starting matherial was recovered (152 mg, 0.36 mmol, 36%).  

RBfB (hexane: ethyl acetate = 3:1): 0.53.  

Anal. Calcd for C34H36O5S: 73.35 C, 6.52 H, 5.76 S. Found: 73.19 C, 6.35 H, 5.56 S.  

Spectroscopic data obtained from E/Z diastereoisomeric mixture. 
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52E: RMN P

1
PH (CDClB3B, 400 MHz) δ in ppm: 7.51 – 7.32 (m, 17H, HBaromatic B); 6.99 (d, 2H, J BABB = 

11.6 Hz, HBaromaticB); 6.40 (d, 1H, JB1,2 B= 15.2 Hz, H-1); 5.73 (dd, 1H, JB2,3 B= 8.0 Hz, H-2); 5.04 – 4.56 (m, 

5H, CHB2BPh); 4.50 (d, 1H, JBABB = 11.2 Hz, CHB2 BPh); 4.26 (dd, 1H, JB3,4 B= 4.0 Hz, H-3); 4.11 (m, 1H, H-5); 

3.92 (s, 3H, OMe); 3.83 – 3.70 (m, 3H, H-4, H-6a, H-6b); 2.87 (d, 1H, JBOH,5 B = 4.8 Hz, OH). RMN P

13
PC 

(CDClB3B, 100.6 MHz) δ in ppm: 159.84, 138.18, 138.15, 138.13, 127.43 (CBaromaticB); 134.12, 130.16, 

128.51 – 127.66 (UCUHBaromatic B, C-1); 125.26 (UCUH, C-2); 114.98 (UCUHBaromatic B); 80.93 (UCUH, C-4); 79.44 (UCUH, 

C-3); 74.39 (UCUHB2B, CH B2BPh); 73.51 (UCUHB2B, CH B2BPh); 71.87 (UCUHB2 B, CH B2BPh); 71.01 (UCUH, C-5); 70.69 (UCUH, C-

6); 55.50 (OUCUHB3B).  

52Z: RMN P

1
PH (CDClB3B, 400 MHz) δ in ppm: 7.51 – 7.32 (m, 17H, HBaromatic B); 6.99 (d, 2H, JBABB = 

11.6 Hz, HBaromaticB); 6.57 (d, 1H, JB1,2 B= 9.2 Hz, H-1); 5.97 (t(dd), 1H, JB2,3 B= 9.2 Hz, H-2); 5.04 - 4.56 (m, 

6H, CHB2 BPh); 4.40 (dd, 1H, JB3,4 B= 4.8 Hz, H-3); 4.08 (m, 1H, H-5); 3.96 (s, 3H, OMe); 3.83 – 3.70 (m, 

3H, H-4, H-6a, H-6b); 3.12 (d, 1H, JBOH,5 B = 4.4 Hz, OH). RMN P

13
PC (CDClB3 B, 100.6 MHz) δ in ppm: 

Could not be determined. 

 

(E/Z)-3,4,6-tri-O-Benzyl-1,2-dideoxy-1-(2,6-dimethylphenyl)sulfanyl-D-arabino-hex-1-enitol 

(53).  

 
Following the general method of the WH olefination reactions, a n-BuLi solution (2.0 ml, 3.50 

mmol, 1.6 M in hexane) was added to a solution of 11 (705 mg, 2.00 mmol) in anhydrous THF (13 ml) 

that was then reacted with a solution of 2,3,5-tri-O-benzyl-α,β-D-arabinofuranose (420 mg, 1.00 mmol) 

in anhydrous THF (5 ml). After general work-up and chromatography (hexane to ethyl acetate) 

afforded compound 53 (357 mg, 0.64 mmol, 64%, an E/Z inseparable mixture, E/Z = 12:1) as a light 

yellow oil. Starting matherial was recovered (128 mg, 0.30 mmol, 30%).  

RBfB (hexane: ethyl acetate = 3:1): 0.65. 

Anal. Calcd for C35H38O4S: 75.78 C, 6.90 H, 11.54 S. Found: 75.62 C, 6.87 H, 11.39 S.  

Spectroscopic data obtained from E/Z diastereoisomeric mixture. 

53E: RMN P

1
PH (CDClB3B, 400 MHz) δ in ppm: 7.39 – 7.10 (m, 18H, HBaromatic B); 6.20 (d, 1H, JB1,2 B= 

15.2 Hz, H-1); 5.12 (dd, 1H, JB2,3 B= 8.8 Hz, H-2); 4.58 (d, 1H, J BABB = 11.6 Hz, CHB2 BPh); 4.47 (d, 1H, JBABB = 

11.6 Hz, CHB2BPh); 4.42 (s, 2H, CH B2BPh); 4.41 (d, 1H, JBABB = 11.6 Hz, CHB2BPh); 4.30 (d, 1H, JBABB = 11.6 Hz, 

CH B2BPh); 4.06 (dd, 1H, JB3,4 B= 3.6 Hz, H-3); 3.91 (m, 1H, H-5); 3.52 (d, 2H, J B6,5 B = 4.4 Hz, H-6a, H-6b); 

3.47 (dd, 1H, J B4,5B = 7.2 Hz, H-4); 2.66 (d, 1H, JBOH,5 B = 5.6 Hz, OH); 2.47 (m, 6H, CHB3B). RMN P

13
PC 

(CDClB3B, 100.6 MHz) δ in ppm: 143.37, 138.22, 138.17, 137.98 (C Baromatic B); 129.55, 128.96, 128.66, 

128.59, 128.57, 128.43, 128.29, 128.22, 128.05, 127.93, 127.89, 127.81 (UCUH Baromatic B, C-1); 121.75 (UCUH, 
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C-2); 81.42 (CH, C-4); 79.59 (UCUH, C-3); 74.49 (UCUH B2 B, CH B2 BPh), 73.48 (UCUH B2B, CHB2BPh); 70.95 (UCUH B2 B, 

CH B2BPh); 70.32, 70.31 (UCUH, C-5; UCUH B2B, C-6); 21.82 (UCUHB3B).  

53Z: RMN P

1
PH (CDClB3B, 400 MHz) δ in ppm: 7.39 – 7.10 (m, 18H, HBaromaticB); 6.03 (d, 1H, JB1,2 B= 10.0 

Hz, H-1); 5.78 (dd, 1H, JB2,3 B= 8.8 Hz, H-2); 4.72 (dd, 1H, J B3,4 B= 6.8 Hz, H-3); 4.58 (d, 1H, JBABB = 11.6 

Hz, CHB2BPh); 4.47 (d, 1H, JBABB = 11.6 Hz, CH B2 BPh); 4.42 (s, 2H, CHB2 BPh); 4.41 (d, 1H, J BABB = 11.6 Hz, 

CH B2BPh); 4.30 (d, 1H, JBABB = 11.6 Hz, CHB2BPh); 3.91 (m, 1H, H-5); 3.74 (dd, 1H, JB4,5B = 3.6 Hz, H-4); 3.65 

(d, 2H, JB6,5 B= 4.0 Hz, H-6a, H-6b); 3.02 (d, 1H, JBOH.5 B = 5.6 Hz, OH); 2.46 (m, 6H, CHB3B). RMN P

13
PC 

(CDClB3 B, 100.6 MHz) δ in ppm: Could not be determined. 

 

(E/Z)-3,4,6-tri-O-Benzyl-1,2-dideoxy-1-(2,6-dichlorophenyl)sulfanyl-D-ribo-hex-1-enitol (54).  

 
Following the general method of the WH olefination reactions, a n-BuLi solution (2.2 ml, 3.50 

mmol, 1.6 M in hexane) was added to a solution of 12 (787 mg, 2.00 mmol) in anhydrous THF (13 ml) 

that was then reacted with a solution of 2,3,5-tri-O-benzyl-α,β-D-arabinofuranose (420 mg, 1.00 mmol) 

in anhydrous THF (5 ml). After general work-up and chromatography (hexane to ethyl acetate) 

afforded compound 54 (464 mg, 0.778 mmol, 78%, an E/Z inseparable mixture, E/Z = 6:1) as a light 

yellow oil. 

RBfB (hexane: ethyl acetate = 3:1): 0.45.  

Anal. Calcd for C33H32Cl2O4S: 66.55 C, 5.42 H, 5.38 S. Found: 66.61 C, 5.32 H, 5.27 S.  

Spectroscopic data obtained from E/Z diastereoisomeric mixture. 

54E: RMN P

1
PH (CDClB3B, 400 MHz) δ in ppm: 7.42 – 7.17 (m, 18H, HBaromatic B); 6.21 (d, 1H, JB1,2 B= 

15.2 Hz, H-1); 5.40 (dd, 1H, JB2,3 B= 8.4 Hz, H-2); 4.62 (d, 1H, J BABB = 11.2 Hz, CHB2BPh); 4.54 (d, 1H, JBABB = 

11.2 Hz, CHB2BPh); 4.45 (d, 1H, J BABB = 11.2 Hz, CHB2BPh); 4.46 (s, 2H, CHB2BPh); 4.34 (d, 1H, JBABB = 11.2 Hz, 

CH B2BPh); 4.11 (dd, 1H, JB3,4 B= 7.2 Hz, H-3); 3.97 (m, 1H, H-5); 3.54 – 3.52 (m, 2H, H-6a, H-6b); 3.51 

(dd, 1H, JB4,5 B= 3.6 Hz, H-4); 2.62 (d, 1H, JBOH,5 B = 5.2 Hz, OH). RMN P

13
PC (CDClB3B, 100.6 MHz) δ in ppm: 

141.41, 138.27, 138.18, 137.92 (CBaromatic B); 131.08, 130.15, 129.12, 128.62, 128.48, 128.22, 128.09, 

127.99, 127.84, 127.56, 126.58, 125.15 ( UCUH Baromatic B, C-1, C-2), 81.29 (UCUH, C-4); 79.16 (UCUH, C-3); 74.53 

(UCUH B2B, CHB2BPh); 73.51 (UCUHB2B, CHB2BPh); 70.98 (UCUH B2B, CHB2 BPh); 70.58 (UCUH B2 B, C-6), 70.25 (UCUH, C-5).  

54Z: RMN P

1
PH (CDClB3B, 400 MHz) δ in ppm: Could not be determined. 
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tert-Butyl 3,4,6-tri-O-Benzyl-2-deoxy-2-iodo-1-thio-α,β-D-allopyranoside (56).  

 
As described in general method A of the iodium–induced cyclization, compound 44 (253 mg, 0.50 

mmol, 1.0 eq; mixture of E/Z = 8:1), NIS (169 mg, 0.75 mmol, 1.2 eq) and NaHCO3 (63 mg, 0.75 

mmol, 1.5 eq) were stirred in anhydrous DCM (10 ml) from –78 ºC to –10 °C for 18 h. The reaction 

was monitored by TLC (hexane: ethyl acetate = 3:1). Chromatographic purification (hexane → hexane: 

ethyl acetate = 3:1) afforded compound 56 (181 mg, 0.29 mmol, 57%, an α/β inseparable mixture, α/β  

= 1:12) as a yellowish syrup. 

RBf B(hexane: ethyl acetate = 3:1): 0.45.  

Anal. Calcd for C31H37IO4S: 58.86 C, 5.90 H, 10.12 S. Found: 59.02 C, 5.72 H, 10.13 S.  

Spectroscopic data obtained from α/β mixture. 

56β: RMN ¹H (CDClB3B, 400 MHz) δ in ppm: 7.48 – 7.23 (m, 15H, HBaromaticB); 5.05 (d, 1H, JB1,2 B= 10.8 

Hz, H-1); 4.92 (d, 1H, J BAB B= 11.2 Hz, CHB2BPh); 4.78 (d, 1H, JBAB B= 11.2 Hz, CHB2BPh); 4.64 (d, 1H, JBAB B= 

11.2 Hz, CHB2BPh); 4.58 (d, 1H, JBAB B= 11.2 Hz, CHB2BPh); 4.52 (d, 1H, JBAB B= 11.2 Hz, CHB2 BPh); 4.50 (d, 1H, 

JBAB B= 11.2 Hz, CH B2BPh); 4.19 (dd, 1H, JB3,4 B= 3.4 Hz, H-3); 4.16 (td, 1H, J B5,6a B= 9.6 Hz, JB5,6b B= 6.4 Hz, H-

5); 4.14 (dd, 1H, JB2,3 B= 2.8 Hz, H-2); 3.69 (m, 2H, JB6a,6b B= 9.6 Hz, H-6a, H-6b); 3.63 (dd, 1H, JB4,5 B= 10.0 

Hz, H-4); 1.37 (s, 9H, 3CHB3B). RMN P

13
PC (CDClB3B, 100.6 MHz) δ in ppm: 138.53, 137.76, 134.22 

(CBaromatic B); 129.70, 128.69, 128.45, 128.34, 128.20, 128.16, 128.02, 127.83, 127.91, 127.66 ( UCUHBaromatic B); 

81.86 (C-1); 78.78 (C-3); 76.77 (C-4); 75.94 (C-5); 75.65 (UCUHB2BPh); 73.55 (UCUHB2BPh); 72.31 (UCUHB2 BPh); 

69.91 (C-6); 44.84 (C); 32.31 (C-2); 31.62 (3 UCUH B3B). 

56α: RMN ¹H (CDClB3B, 400 MHz) δ in ppm: Could not be determined. 

 

Dimethyl-phenyl 3,4,6-tri-O-Benzyl-2-deoxy-2-iodo-1-thio-α,β-D-allopyranoside (57).  

 
As described in general method A of the iodium–induced cyclization, compound 47 (203 mg, 0.37 

mmol, 1.0 eq, an E/Z inseparable mixture, E/Z = 1:50), NIS (193 mg, 0.86 mmol, 1.2 eq) and NaHCO3 

(47 mg, 0.56 mmol, 1.5 eq) were stirred in anhydrous DCMB  (10 ml), from –78 ºC to –10 °C for 18 h. 

The reaction was monitored by TLC (hexane: ethyl acetate = 3:1). Chromatographic purification 

(hexane → hexane: ethyl acetate = 2:1) afforded compound 57 (123 mg, 0.18 mmol, 49%, an 

α/β inseparable mixture, α/β  = 1:25) as a yellowish syrup. 
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RBfB (hexane: ethyl acetate = 3:1): 0.45.  

Anal. Calcd for C35H37IO4S: 61.76 C, 5.48 H, 9.40 S. Found: 62.03 C, 5.32 H, 9.27 S.  

Spectroscopic data obtained from α/β mixture. 

57β: RMN ¹H (CDClB3B, 400 MHz) δ in ppm: 7.42 – 7.04 (m, 18H, HBaromatic B); 4.90 (d, 1H, JBAB B= 11.2 

Hz, CHB2BPh); 4.88 (d, 1H, JB1,2 B= 10.8 Hz, H-1); 4.77 (d, 1H, J BAB B= 11.2 Hz, CHB2BPh); 4.63 (d, 1H, JBAB B= 

11.2 Hz, CHB2BPh); 4.53 (d, 1H, JBAB B= 11.2 Hz, CHB2BPh); 4.47 (d, 1H, JBAB B= 11.2 Hz, CHB2 BPh); 4.41 (d, 1H, 

JBAB B= 11.2 Hz, CH B2BPh); 4.27 (dd, 1H, J B2,3 B= 2.0 Hz, H-2); 4.17 (dd, 1H, JB3,4 B= 1.6 Hz, H-3); 3.89 (td, 1H, 

J B5,6a B= 9.6 Hz, JB5,6b B= 6.4 Hz, H-5); 3.76 (dd, 1H, JB4,5 B= 10.0 Hz, H-4); 3.57 (m, 2H, JB6a,6b B= 11.2 Hz, H-6a, 

H-6b); 1.37 (s, 9H, 3CHB3B). RMN P

13
PC (CDClB3B, 100.6 MHz) δ in ppm: 144.66, 138.48, 138.46; 137.83, 

131.76 (CBaromaticB); 129.13, 128.67, 128.46, 128.31, 128.26, 128.14, 128.08, 128.03; 127.86, 127.75, 

127.69 (UCUH Baromatic B); 86.60 (C-1); 79.04 (C-3); 76.48 (C-4); 75.87 (C-5); 75.76 (UCUH B2 BPh); 73.67 (UCUHB2 BPh); 

72.38 (UCUH B2BPh); 69.63 (C-6); 31.42 (C-2); 23.03 (3UCUH B3B). 

57α: RMN ¹H (CDClB3B, 400 MHz) δ in ppm: Could not be determined. 

 

tert-Butyl 3,4,6-tri-O-Benzyl-2-deoxy-2-iodo-1-thio-α,β-D-mannopyranoside (59). 

 
As described in general method A of the iodium–induced cyclization, compound 51 (253 mg, 0.50 

mmol, 1.0 eq, an E/Z inseparable mixture, E/Z = 8:1), NIS (169 mg, 0.75 mmol, 1.2 eq) and NaHCO3 

(63 mg, 0.75 mmol, 1.5 eq) were stirred in anhydrous DCM B(10 ml), from –78 ºC to 0 °C for 20 h. The 

reaction was monitored by TLC (hexane: ethyl acetate = 1:3). Chromatographic purification (hexane → 

hexane: ethyl acetate = 1:3) afforded compound 59 (179 mg, 0.28 mmol, 57%, an α/β inseparable 

mixture, α/β  = 1:0) as a yellowish syrup. 

RBfB (hexane: ethyl acetate = 3:1): 0.46.  

Anal. Calcd for C31H37IO4S: 58.86 C, 5.90 H, 5.07 S. Found: 58.07 C, 5.89 H, 4.99 S.  

Spectroscopic data obtained from α/β mixture. 

59α: RMN ¹H (CDClB3B, 400 MHz) δ in ppm: 7.55 – 6.99 (m, 15H, H Baromatic B); 5.72 (s, 1H, H-1); 4.85 

(d, 1H, JBAB B= 11.2 Hz, CHB2BPh); 4.79 (d, J2,3 =  3.6 Hz, H-2); 4.75 (d, 1H, JBAB B= 11.2 Hz, CHB2BPh); 4.64 (d, 

1H, JBAB B= 11.2 Hz, CHB2BPh); 4.58 (d, 1H, JBAB B= 11.2 Hz, CHB2 BPh); 4.52 (d, 1H, JBAB B= 11.2 Hz, CHB2BPh); 

4.45 (d, 1H, JBAB B= 11.2 Hz, CHB2BPh); 4.29 (m, 1H, H-5); 3.99 (dd, 1H, JB4,3 B= 8.8, JB4,5 B= 8.4 Hz, H-4); 3.86 

(dd, 1H, JB6a,6b B= 10.8 Hz, JB6a,5B= 4.8 Hz, H-6a); 3.73 (dd, 1H, JB6a,6b B= 10.8 Hz, JB6a,5B= 2.0 Hz, H-6b); 3.10 

(dd, 1H, JB3,4 B= 8.4 Hz, JB3,2 B= 3.6 Hz, H-3); 1.37 (s, 9H, 3CHB3B). RMN P

13
PC (CDClB3B, 100.6 MHz) δ in ppm: 

138.53, 137.76, 134.22 (C Baromatic B); 129.70, 128.69, 128.45, 128.34, 128.20, 128.16, 128.02, 127.83, 

127.91, 127.66 ( UCUHBaromatic B); 89.86 (C-1); 77.78 (C-3); 76.77 (C-4); 75.54 (C-5); 75.65 (UCUH B2BPh); 73.55 

(UCUH B2BPh); 71.31 (UCUH B2BPh); 68.91 (C-6); 44.84 (C); 35.00 (C-2); 31.62 (3UCUHB3B). 
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59β: RMN ¹H (CDClB3B, 400 MHz) δ in ppm: Could not be determined. 

 

Cholesteryl 3,4,6-tri-O-Benzyl-2-deoxy-2-iodo-α,β-D-allopyranoside (61).  

 
Starting from 56: Following the general procedure for glycosylation, 56 (144 mg, 0.23 mmol, 1.0 

eq, an α/β inseparable mixture, α/β  = 1:12), NIS (113 mg, 0.50 mmol, 2.2 eq), cholesterol (106 mg, 

0.27 mmol, 1.2 eq), 4Å molecular sieves (160 mg), and TfOH (1 drop) in anhydrous DCM (6.1 ml) 

were allowed to react at –78 ºC for 1 h and then at –40 ºC for 3 h. TLC (hexane: ethyl acetate = 3:1). 

Radial chromatography (hexane → hexane: ethyl acetate = 2:1) afforded 61 (202 mg, 0.22 mmol, 95%, 

inseparable an α/β inseparable mixture, α/β  =  1: 7) as a pale yellow solid. 

Starting from 57: Following the general procedure for glycosylation,  57 (98 mg, 0.14 mmol, 1.0 

eq, an α/β inseparable mixture, α/β  = 1:25), NIS (71 mg, 0.32 mmol, 2.2 eq), cholesterol (67 mg, 0.17 

mmol, 1.2 eq), 4Å molecular sieves (100 mg), and TfOH (1 drop) in anhydrous DCM (4.0 ml) were 

allowed to react at –78 ºC for 1 h and then at –40 ºC for 3 h. TLC (hexane ethyl: acetate = 1:3). Radial 

chromatography (hexane → hexane: ethyl acetate = 2:1) afforded 61 (81 mg, 0.09 mmol, 60%, an 

α/β inseparable mixture, α/β  =  1:10) a pale yellow solid. 

RBfB (hexane: ethyl acetate = 3:1): 0.62.  

Spectroscopic data obtained from α/β mixture. 

Anal. Calcd for CB54BH B73BIOB5B: 69.81 C, 7.92 H. Found: 69.87 C, 7.89 H.  

RMN ¹H (CDClB3B, 400 MHz) δ in ppm: 7.47 – 7.06 (m, 15H, HBaromatic B); 5.35 (d, 1H, JB B= 5.2 Hz, 

CH=BcholesterylB); 4.87 (d, 1H, JAB BB= 10.4 Hz, CHB2BPh); 4.86 (d, 1H, J1,2 B B= 9.0 Hz, H-1); 4.77 (d, JAB = 10.4 

Hz, CHB2BPh); 4.66 – 4.50 (m, 4H, 2CHB2BPh); 4.18 – 4.11 (m, 2H, H-3, H-5); 4.02 (dd, 1H, J1,2 = 9.0 Hz, 

J2,3 = 2.8 Hz, H-2); 3.73 – 3.64 (d, 2H, H-4, H-6a, H-6b); 3.48 (m, 1H, HCORBcholesterylB); 2.39 – 0.67 (m, 

44H, HBcholesterylB). RMN P

13
PC (CDClB3B, 100.6 MHz) δ in ppm: 143.6 – 127.7 (CBaromaticB, =CB cholesteryl B); 122.0 

(=UCUH B cholesterylB); 99.3 (C-1); 79.9 (UCUHORBcholesterylB); 78.6 (C-3); 76.9 (C-4); 75.8, 73.5 (UCUHB2BPh); 73.2 (C-

5); 72.4 (UCUH B2BPh); 69.6 (C-6); 57.0, 56.3, 50.3, 42.5, 40.0, 39.7, 38.7, 37.4, 36.9, 36.4, 36.0, 32.2, 32.0, 

29.7, 28.4, 28.2, 24.5, 24.0, 23.0, 22.8, 21.2, 19.6, 18.9, 12.15 (24CBcholesterylB) TP

166
PT; 33.4 (C-2). 
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(Z/E)-3,4,5,7-tetra-O-Benzyl-1,2-dideoxy-1-phenylsulfanyl-D-gluco-hept-1-enitol (65). 

 
 Folloing the general method of the WH olefination reactions, n-BuLi (2.6 ml, 4.20 mmol, 1.6 M 

in hexane) was slowly added to a solution of (phenylsulfanylmethyl)diphenylphosphine oxide (42) (1.3 

g, 4.00 mmol) in anhydrous THF (27 ml, 0.15 M) at –78 ºC. The resulting solution was stirred under 

argon atmosphere until an intensive orange colour appeared (1hour aprox.). Then a THF solution of the 

2,3,4,6-tetra-O-benzyl-α,β-D-glucopyranose (64) (1.00 mmol in 2.0 ml THF, 0.5 M) was added. The 

evolution of the reaction was monitored by TLC. The reaction did not evolve at –78 ºC and the solution 

was warmed up to room temperature. After full conversion (24 h) and work-up, the product was 

purified by flash chromatography (hexane: ethyl acetate = 3:1) to obtain compound 65 (406 mg, 0.63 

mmol, 63%, an E/Z inseparable mixture, E/Z = 8:1) as  an oil. 

Spectroscopic data obtained from 65 E/Z diastereoisomeric mixture. 

65E: RBfB (hexane: ethyl acetate = 2:1): 0.7.  

P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: 7.52 – 7.16 (m, 25H, H Baromatic B); 6.30 (d, 1H, JB1,2 B = 15.2 Hz, 

H-1); 5.70 (dd, 1H, JB2,3B = 8.0 Hz, H-2); 4.80 (d, 1H, JBABB = 11.2 Hz, CHB2 BPh); 4.71 (d, 1H, J BABB = 11.2 Hz, 

CH B2BPh); 4.67 (d, 1H, JBABB = 11.2 Hz, CHB2 BPh); 4.62 (d, 1H, JBABB = 11.2 Hz, CHB2BPh); 4.64 (d, 1H, JBABB = 

11.2 Hz, CHB2BPh); 4.50 (s, 2H, CH B2BPh); 4.48 (d, 1H, J BABB = 11.2 Hz, CHB2 BPh); 4.24 (dd, 1H, JB3,4 B = 5.6 Hz, 

H-3); 4.01 (m, 1H, H-5); 3.72 (m, 2H, H-4, H-6); 3.60 (s, 1H, H-7a), 3.58 (d, 1H, J B6,7b B = 2.0 Hz, H-7b), 

2.82 (d, 1H, J BOH,6 B = 6.0 Hz, OH). P

13
PC NMR (CDCl B3 B, 100.6 MHz) δ in ppm: 138.5, 138.3, 138.2, 138.1, 

134.4 (CBaromatic B);130.6 – 127.4 (UCUH Baromatic B); 128.6 (UCUH, C-1); 128.4 (UCUH, C-2); 81.6 (UCUH, C-4); 81.0 

(UCUH, C-3); 78.6 (UCUH, C-6); 75.0, 73.5, 73.3 ( UCUH B2BPh); 71.2 (UCUH B2 B, C-7); 71.0 (UCUH B2 BPh); 70.5 (UCUH, C-5). 

65Z: RBfB (hexane: ethyl acetate = 2:1): 0.6.  

P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: 7.35 – 7.18 (m, 25H, HBaromatic B); 6.50 (d, 1H, JB1,2 B = 9.2 Hz, 

H-1); 5.89 (dd, 1H, JB2,3B = 8.8 Hz, H-2); 4.80 – 4.40 (m, 8H, CHB2BPh); 4.24 (m, 1H, H-3), 4.0 (m, 1H, H-

5); 3.82 (m, 2H, H-4, H-6); 3.60 (s, 1H, H-7a); 3.58 (d, 1H, JB6,7b B = 2.0 Hz, H-7b); 2.87 (d, 1H, JBOH,6 B= 

5.2 Hz, OH). P

13
PC NMR (CDClB3B, 100.6 MHz) δ in ppm: Could not be determined. 

 

(2S,3S,4R,5R)-2,4-Bis(benzyloxy)-5-(benzyloxymethyl)-3-iodo-2-((E)-2-

(phenylthio)vinyl)tetrahydrofuran (66). 
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A solution of 65 (194 mg, 0.3 mmol) in 3.5 ml (0.085 M) of anhydrous THF was added to the 

mixture of potassium hydroxide (52 mg, 0.39 mmol) and 2.2 ml (0.175 M) of anhydrous THF at 0 ºC. 

The resulting mixture was stirred for an hour under argon atmosphere and was cooled down to –78 ºC. 

A solution of iodine (228 mg, 0.9 mmol) in anhydrous THF (2.1 ml, 0.43 M) was then added. TLC 

analysis was made and the completion of the reaction was observed in a half an hour. The mixture was 

quenched with Na2S2O3, and after the separation of the organic layer, it was extracted with ethyl acetate 

(3x20 ml). The combined organic layer was washed with water (2x20 ml), with brine (1x20 ml), dried 

on anhydrous MgSO4, and concentrated under vacuum. After the purification with radial 

chromatography (hexane → hexane: ethyl acetate = 1:2) compound 66 (127 mg, 0.191 mmol, 64%) was 

obtained. 

66E: RBfB (hexane: ethyl acetate = 2:1): 0.46. 
1H-RMN167 (CDCl3, 300 MHz) δ in ppm: 7.3 – 7.2 (m, 20H, Haromatic); 6.80 (d, 1H, J1,2 = 15.0 Hz, 

H-1); 5.64 (d, 1H, J2,1 = 15.0 Hz, H-2); 4.89 (dd, 1H, JAB = 11.4, 1.6 Hz, CH2Ph); 4.72 (dd, 1H, JAB = 

11.4, 1.6 Hz, CH2Ph); 4.6 – 4.5 (4H, CH2Ph); 4.45 (dd, H, J6,5 = 8.4 Hz, J5,4 = 6.3 Hz, H-5); 4.33 (m, J5,6 

= 8.4 Hz, H-6); 4.2 (d, H, J4,5 = 6.3 Hz, H-4); 3.52 (m, 2H, H-7a, H-7b). 13C-RMN (CDCl3, 75.46 MHz) 

δ in ppm: 138.68, 137.94, 133.62 (Caromatic); 131.5-125.03 (CHaromatic, C-1, C-2); 105.54 (C, C-3); 87.70 

(CH, C-5); 82.70 (CH, C-6); 73.70, 73.56 (CH2Ph); 71.80 (CH2, C-7); 64.65 (CH2Ph); 33.97 (CH, C-4). 

  

(2R,3S,4R,5R)-2,3,4-tris(benzyloxy)-5-(benzyloxymethyl)-2-(1-iodo-2-

(phenylthio)ethyl)tetrahydrofuran (67).   

 
As described in general method A of the iodium–induced cyclization, n-BuLi (53 µl,  0.08 mmol, 

1.6 M in hexane) were added to a solution of 65 (55 mg, 0.08 mmol) in anhydrous diethyl ether (1.0 ml, 

0.08 M) at –78 ºC. The mixture was stirred for one hour at this temperature under an argon atmosphere. 

Subsequently, a solution of IB2B (65 mg, 0.22 mmol) in 2.0 ml (0.43 M) of diethyl ether was added. TLC 

analysis showed the completion of the reaction after 5 min. The reaction was quenched with NaB2BS B2 BO B3 B, 

and the aqueous layer was extracted with ethyl acetate (3x20 ml). The combined organic layer was 

washed with water (2x20 ml), with brine (1x20 ml), dried on anhydrous MgSO4, and concentrated 

under vacuum. After purification by radial chromatography methods (hexane → hexane: ethyl acetate = 

1:2) compound 67 (41 mg, 0.05 mmol, 62%) as an oil was obtained.  

B BRBfB (hexane: ethyl acetate = 2:1): 0.67.   

                                                 
167  For the sake of clarity hydrogen and carbon atoms have been numbered according to the respective alkene 

starting material.  
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[α]BD PB

25 
P–21.5 (c 0.40, DCM).  

P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: 7.25 – 7.13 (m, 25H, H Baromatic B); 4.81 (d, 1H, JBABB = 11.2 Hz, 

CH B2BPh); 4.65 (d, 1H, JBABB = 11.2 Hz, CHB2 BPh); 4.61 (d, 1H, JBABB = 11.2 Hz, CHB2BPh); 4.58 (d, 1H, JBABB = 

11.2 Hz, CHB2BPh); 4.56 (d, 1H, JB4,5B = 6.4 Hz, H-4); 4.49 (d, 1H, JBABB = 11.2 Hz, CHB2 BPh); 4.46 (d, 1H, JBABB 

= 11.2 Hz, CHB2BPh); 4.44 (d, 1H, JBABB = 11.2 Hz, CHB2BPh); 4.38 (d, 1H, JBABB = 11.6 Hz, CHB2 BPh); 4.30 (dd, 

1H, JB5,6B = 7.2 Hz, H-5); 4.18 (dd, 1H, JB2,1a B = 10.8 Hz, JB2,1b B = 2.8 Hz, H-2); 4.12 (m, 1H, H-6); 3.86 (dd, 

1H, JB1a,1b B = 14.8 Hz, JB1a,2B = 2.8 Hz, CHB2B, H-1a); 3.69 (dd, 1H, JB7a,7b B = 10.8 Hz, JB7a,6B = 2.8 Hz, H-7a); 3.53 

(dd, 1H, JB7a,7b B= 10.8 Hz, JB7b,6B = 3.6 Hz, H-7b); 3.22 (dd, 1H, JB7b,6 B = 14.8 Hz, JB7a,7b B = 10.8 Hz, CHB2 B, H-

1b). P

13
PC NMR  (CDCl B3B, 100.6 MHz) δ in ppm: 139.0, 138.4, 138.4, 138.1, 136.0 (CBaromaticB); 129.6-125.3 

(UCUH Baromatic B); 105.3 (C, C-3); 87.2 (UCUH, C-4); 82.9 (UCUH, C-5); 80.6 (UCUH, C-6); 73.8, 73.1, 72.9 (UCUHB2BPh); 

69.5 (UCUHB2B, C-7); 65.8 (UCUH B2BPh); 41.9 (UCUH, C-2); 40.1 (UCUHB2 B, C-1).   

THRMS (TOF MS ES+): calcd for CB41 BH B41 BO B5BNaSI (MNa+) 795.1617; found,  795.1600. 

 

(Z/E)-6-O-tert-Butyldimethylsilyl-1,2-dideoxy-3,4-O-isopropylidene-1-phenylsulfanyl-D-ribo-

hex-1-enitol (76).  

 
Folloing the general method of the WH olefination reactions, n-BuLi (8.6 ml, 13.80 mmol, 1.6 M 

in hexane) was slowly added to a solution of (phenylsulfanylmethyl)diphenylphosphine oxide (42) 

(4.26 g, 13.10 mmol) in anhydrous THF (13 ml, 0.25 M) at –78 ºC and the solution was stirred under an 

argon atmosphere until the intensive orange colour occurred. The reaction mixture was stirred for an 

hour at this temperature, then the solution of 75 (1.0 g, 3.30 mmol) in anhydrous THF (2.0 ml, 0.5 M) 

was added. After full conversion (24 h) and work-up, the product was purified by flash chromatography 

(hexane: ethyl acetate = 6:1) to obtain compound 76 (920 mg, 2.24 mmol, 68%, an E/Z inseparable 

mixture, E/Z = 11:1) as an oil. 

Spectroscopic data obtained from E/Z diastereoisomeric mixture. 

76E: RBfB (hexane: ethyl acetate = 6:1): 0.62.  

P

1
PH  NMR (CDClB3B, 400 MHz) δ in ppm: 7.51 – 7.20 (m, 5H, HBaromaticB); 6.50 (d, 1H, J B1,2B = 15.2 Hz, 

H-1); 6.00 (dd, 1H, JB2,3B =  6.4 Hz, H-2); 4.77 (dd, 1H, JB3,4 B =  6.0 Hz,  H-3); 4.05 (dd, 1H, JB4,5 B = 9.2 Hz, 

H-4); 3.81 (dd, 1H, JB6a,6b B = 9.6 Hz, JB6a,5B = 3.2 Hz, H-6a); 3.68 (dd, 1H, JB6a,6bB = 9.6 Hz, J B6b,5 B = 5.2 Hz, H-

6b); 3.64 (m, 1H, H-5); 2.50 (d, 1H, JBOH,5 B = 6.0 Hz, OH); 1.46 (s, 3H, CH B3B); 1.35 (s, 3H, CHB3B); 0.92 (s, 

9H, CHB3B); 0.12 (s, 6H, CHB3B). P

13
PC NMR (CDCl B3B, 100.6 MHz) δ in ppm: 139.2 (CBaromatic B); 130.0 – 127.0 

(UCUH Baromatic B); 127.3 (UCUH, C-1); 126.7 (UCUH, C-2); 109.5 (C); 78.5 ( UCUH, C-3); 76.9 (UCUH, C-4); 69.0 (UCUH B2 B, 

C-6); 64.6 (UCUH, C-5); 28.1 (UCUHB3B); 26.1 (UCUHB3B); 25.6 (UCUH B3B). 
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76Z: P

1
PH  NMR (CDClB3B, 400 MHz) δ in ppm: Could not be determined. 

 

(Z/E)-6-O-tert-Butyldimethylsilyl-5-O-benzyl-1,2-dideoxy-3,4-O-isopropylidene-1-

phenylsulfanyl-D-ribo-hex-1-enitol (77).  

 
A solution of compound 76 (820 mg, 2.00 mmol) in anhydrous THF (8.0 ml, 0.25 M) was added 

to a suspension of sodium hydride (84 mg, 2.10 mmol) in THF, at room temperature. The reaction 

mixture was further stirred for an hour and benzyl bromide (250 µl, 2.1 mmol) was slowly added. The 

reaction mixture was stirred overnight, and the evolution of the reaction was followed by TLC analysis. 

The reaction was quenched by saturated NH4Cl solution. The aqueous layer was extracted with ethyl 

acetate (3x20 ml), the combined organic layer was washed with water (2x20 ml), with brine (1x20 ml) 

and dried on MgSOB4B, filtered and concentrated under vacuum. The resulting mixture was purified by 

chromatography (hexane → hexane: ethyl acetate = 3:1) to obtain compound 77 (361 mg, 0.74 mmol, 

37%, an E/Z inseparable mixture, E/Z = 11:1) as a light yellow oil. 

Spectroscopic data obtained from E/Z diastereoisomeric mixture. 

77E: RBfB (hexane: ethyl acetate = 8:1): 0.51.  

P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: 7.40 – 7.22 (m, 10H, H Baromatic B); 6.52 (d, 1H, JB1,2 B = 15.6 Hz, 

H-1); 5.86 (dd, 1H, JB2,3B = 6.4 Hz, H-2); 4.77 (d, 1H, JBAB B= 11.2 Hz CH B2BPh); 4.74 (dd, 1H, JB3,4 B = 5.6 Hz, 

H-3); 4.40 (d, 1H, JBABB = 11.2 Hz CHB2BPh); 4.26 (dd, 1H, JB4,5B = 8.8 Hz, H-4); 3.86 (dd, 1H, JB6a,6b B = 10.0 

Hz, JB6a,5B = 2.0 Hz, H-6a); 3.68 (dd, 1H, JB6a,6bB = 10.0 Hz, JB6a,5B = 5.2 Hz, H-6b); 3.61 (m, 1H, H-5); 1.45 

(s, 3H, CHB3B); 1.35 (s, 3H, CHB3B); 0.92 (s, 9H, CH B3B); 0.12 (s, 6H, CHB3B). P

13
PC NMR (CDClB3 B, 100.6 MHz) δ 

in ppm: 139.0, 134.5 (CBaromatic B); 130.0 – 127.0 ( UCUHBaromatic B); 127.3 (UCUH, C-1); 126.7 (UCUH, C-2); 109.5 (C); 

78.5 (UCUH, C-3); 76.9 (UCUH, C-4); 72.3 (UCUHB2 BPh); 69.8 (UCUH B2B, C-6); 64.6 (UCUH, C-5); 28.1 (UCUHB3B); 26.1 

(UCUH B3B); 25.6 (UCUHB3B). 

77Z: P

1
PH  NMR (CDClB3B, 400 MHz) δ in ppm: Could not be determined. 

 

 (Z/E)-5-O-Benzyl-1,2-dideoxy-3,4-O-isopropylidene-1-phenylsulfanyl-D-ribo-hex-1-enitol 

(78).  

 
Compound 77 (361 mg, 0.74 mmol) was dissolved in THF (3.0 ml) and tetra-butylammonium 

fluoride (275 mg, 0.78 mmol) was added. The reaction mixture was stirred at room temperature and the 
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reaction was monitored by TLC analysis. After an hour, the reaction was quenched with a saturated 

solution of sodium carbonate. The aqueous layer was extracted with ethyl acetate (3x20 ml), and the 

combined organic layer was washed with water (2x20 ml), with brine (1x20 ml) dried on MgSOB4 B, 

filtered and concentrated under vacuum. The mixture was separated by chromatography (hexane → 

hexane: ethyl acetate = 1:1) and compound 78 (276 mg, 0.71 mmol, 96%, inseparable mixture of Z/E = 

11:1) was obtained as a light yellow oil. 

Spectroscopic data obtained from E/Z diastereoisomeric mixture. 

78E: RBfB (hexane: ethyl acetate = 4:1): 0.46.  

P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: 7.43 – 7.20 (m, 10H, H Baromatic B); 6.50 (d, 1H, JB1,2 B = 15.2 Hz, 

H-1); 5.88 (dd, 1H, JB2,3B = 6.8 Hz, H-2); 4.77 (d, 1H, JBABB = 10.8 Hz, CHB2BPh); 4.76 (dd, 1H, JB3,4B =  6.0, H-

3); 4.40 (d, 2H, JBABB = 10.8 Hz, CHB2BPh); 4.26 (dd, 1H, JB4,5B = 8.8 Hz, H-4); 3.86 (d, 1H, JB6a,6b B = 10.4 Hz, 

H-6a); 3.66 (dd, 1H, JB6a,6b B = 10.4 Hz, JB6b,5 B = 5.2 Hz, H-6b); 3.65 (m, 1H, H-5); 1.45 (s, 3H, CHB3B); 1.35 

(s, 3H, CHB3B). P

13
PC NMR (CDClB3B, 100.6 MHz) δ in ppm: 138.4, 134.79 (CBaromatic B); 130.3 – 126.5 

(UCUH Baromatic B); 127.3 (UCUH, C-1); 126.7 (UCUH, C-2); 108.9 (C); 78.4 (UCUH, C-3); 77.3 ( UCUH, C-5); 76.9 (UCUH, 

C-4); 72.3 (UCUH B2BPh); 70.6 (UCUH B2B, C-6); 29.8 (UCUH B3B); 28.9 (UCUHB3 B). 

78Z: P

1
PH  NMR (CDClB3B, 400 MHz) δ in ppm: Could not be determined. 

 

 (Z/E)-1,2-Dideoxy-3,4-O-isopropylidene-1-phenylsulfanyl-D-ribo-hex-1-enitol (79). 

 
 Compound 76 (410 mg, 1.00 mmol) was dissolved in THF (4.0 ml, 0.25 M) and tetra-

butylammonium fluoride (331 mg, 1.05 mmol) was added. The reaction mixture was stirred at room 

temperature and the reaction was monitored by TLC analysis. After an hour, the reaction was quenched 

with a saturated NaHCO3 solution. The aqueous layer was extracted with ethyl acetate (3x20 ml), the 

combined organic layer was washed with water (2x20 ml), with brine (1x20 ml), dried on MgSOB4 B, 

filtered and concentrated under vacuum. The mixture was separated by chromatography (hexane → 

hexane: ethyl acetate = 1:1) and was obtained compound 79 (244 mg, 0.82 mmol, 98%, an E/Z 

inseparable mixture, E/Z = 11:1) as a light yellow oil. 

Spectroscopic data obtained from E/Z diastereoisomeric mixture. 

79E: RBfB (hexane: ethyl acetate = 6:1): 0.62.  

P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: 7.97 – 7.23 (m, 5H, HBaromatic B); 6.58 (d, 1H, JB1,2 B = 14.8 Hz, 

H-1); 5.90 (dd, 1H, JB2,3B = 6.8 Hz, H-2); 4.78 (dd, 1H, JB3,4 B = 6.0 Hz, H-3); 4.09 (dd, 1H, JB4,5B = 8.8 Hz, H-

4); 3.86 (d, 1H, J B6a,6b B= 10.4 Hz, H-6a); 3.68 (m, 1H, H-5); 3.66 (dd, 1H, J B6a,6b B= 10.4 Hz, J B6b,5 B=5.2 Hz, 

H-6b);  1.40 (s, 3H, CHB3B); 1.30 (s, 3H, CHB3 B). P

13
PC NMR (CDClB3B, 100.6 MHz) δ in ppm: 134.5 (CBaromatic B); 
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130.4 – 127.3 (UCUH Baromatic B); 128.0 (UCUH, C-1); 126.9 (UCUH, C-2); 109.2 (C); 78.2 (UCUH, C-3); 76.8 ( UCUH, C-

5); 74.84 (UCUH, C-4); 70.0 (UCUH B2B, C-6); 27.8 (UCUH B3B); 25.4 (UCUHB3 B).     

79Z: P

1
PH  NMR (CDClB3B, 400 MHz) δ in ppm: Could not be determined. 

                                                                                                                           

Phenyl 2-Deoxy-2-iodo-3,4-O-isopropylidene-1-thio-β-D-allopyranoside (81).  

 
As described in general method A of the iodium–induced cyclization, compound 76 (264 mg, 0.50 

mmol) was dissolved in acetonitrile (9.4 ml, 0.05 M) and the solution was cooled to –30 ºC. Sodium 

bicarbonate (59 mg, 0.70 mmol) and NIS (159 mg, 0.70 mmol) were then added. The reaction was 

monitored by TLC. After half an hour, full conversion was observed and the reaction was stopped by 

the addition of a saturated solution of Na2S2O3. The aqueous layer was extracted with ethyl acetate 

(3x20 ml), the combined organic layer was washed with water (2x20 ml), with brine (1x20 ml) dried on 

MgSOB4B, filtered and concentrated under vacuum. The crude reaction mixture was purified by 

chromatography (hexane → hexane: ethyl acetate = 1:1) and compound 81 (101 mg, 0.24 mmol, 47%) 

was obtained as a light yellow oil. 

RBfB (hexane: ethyl acetate = 4:1): 0.62.  

P81β: 1
PH NMR (CDClB3B, 400 MHz) δ in ppm: 7.51 – 7.26 (m, 5H, HBaromaticB); 5.60 (d, 1H, JB1,2 B = 3.6 

Hz, H-1); 4.64 – 4.57 (m, 2H, H-2, H-3); 4.43 (d, 1H, JB4,5 B = 9.6 Hz, JB4,3 B = 5.6 Hz, H-4); 4.29 (m, 1H, H-

5); 3.93 (dd, 1H, JB6a,6b B = 12.0 Hz, JB6a,5B = 2.8 Hz, CHB2 B, H-6a); 3.79 (dd, 1H, JB6a,6b B = 12.0, JB6b,5 B = 5.2 Hz, 

CH B2B, H-6b); 1.60 (s, 3H, CHB3B); 1.37 (s, 3H, CHB3 B). P

13
PC NMR (CDClB3 B, 100.6 MHz) δ in ppm: 135.2 

(CBaromatic B); 132.1 – 128.1 (UCUHBaromatic B); 111.60 (C); 89.51 (UCUH, C-1); 78.23 (UCUH, C-3); 71.19 (UCUH, C-5); 

70.41 (UCUH, C-4); 62.97 (UCUHB2B, C-6); 28.37 (UCUH B3B), 26.77 (UCUHB3B), 25.59 (UCUH, C-2). 

 

Phenyl  5-O-Benzyl-2-deoxy-2-iodo-3,4-O-isopropylidene-1-thio-α-D-altro-septanoside (82).  

 
As described in general method A of the iodium–induced cyclization, sodium bicarbonate ( 90 mg, 

1.07 mmol) and NIS (241 mg, 1.07 mmol) were added to a solution of compound 78 (276 mg, 0.71 

mmol) in acetonitrile (14.3 ml, 0.05 M) and cooled to –30 ºC and. The reaction was monitored by TLC 

analysis. The reaction was stirred for 24 hours at –10 ºC, then at room temperature for 30 hours and was 

finally warmed up at 35 ºC for 24h. The reaction was quenched with a solution of Na2S2O3. The 

aqueous layer was extracted with ethyl acetate (3x20 ml), the combined organic layer was washed with 
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water (2x20 ml), with brine (1x20 ml), dried on MgSOB4B, filtered and concentrated under vacuum. The 

reaction mixture was separated by chromatography (hexane → hexane: ethyl acetate = 1:1) and 

compound 82 (45 mg, 0.09 mmol, 12%) was obtained as a light yellow oil. Starting material (109 mg, 

0.28 mmol, 40 %) were also recovered. 

RBfB (hexane: ethyl acetate = 8:1): 0.38.  

[α]BD PB

25
P 156º (c 0.16, DCMB).  

P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: 7.50 – 7.26 (m, 10H, HBaromatic B); 5.56 (d, 1H, JB1,2 B = 8.8 Hz, 

H-1); 5.13 (t, 1H, JB2,3B = 8.8 Hz, H-2); 4.73 (d, 1H, JBABB = 11.2 Hz, CHB2BPh); 4.70 (d, 1H, JBABB = 11.2 Hz, 

CH B2BPh); 4.65 (dd, 1H, J B3,4B = 7.6 Hz, H-3); 4.58 (dd, 1H, JB6a,6b B = 13.6 Hz, J B6a,5B = 1.0 Hz, H-6a); 4.49 (dd, 

1H, JB4,5B = 2.0 Hz, H-4); 4.13 (m, 1H, H-5); 3.81 (dd, 2H, JB6a,6b B =  13.6 Hz, J B6b,5 B = 5.2 Hz, H-6b); 1.60 (s, 

3H, CHB3B); 1.40 (s, 3H, CHB3B). P

13
PC NMR (CDCl B3B, 100.6 MHz) δ in ppm: 138.3 (CBaromatic B); 131.5 – 127.6 

(UCUH Baromatic B); 108.3 (C); 93.0 (UCUH, C-1); 80.1 ( UCUH, C-3); 77.8 (UCUH, C-5); 76.9 (UCUH, C-4); 73.5 (UCUH B2BPh); 

63.5 (UCUHB2B, C-6); 32.0 (UCUH, C-2); 26.4 (UCUHB3B); 23.9 (UCUH B3 B).  

HRMS (TOF MS ES+): calcd for CB22 BH B25 BO B4BNaSI  (MNa+): 535.0416; found: 535.0413.  

Anal. Calcd for C22H25IO4SB: 51.57 C, 4.92 H, 6.26 S. Found: 51.90 C, 4.70 H, 6.10 S.  

 

 (Z/E)-6-O-tert-Butyldimethylsilyl-1,2-dideoxy-3,4-O-isopropylidene-1-phenylsulfanyl-D-lyxo-

hex-1-enitol (84).  

 
 Folloing the general method of the WH olefination reactions, n-BuLi (13 ml, 21.00 mmol, 1.6 M 

in hexane) was added slowly to a solution of (phenylsulfanylmethyl)diphenylphosphine oxide (42) 

(6.49 g, 20.00 mmol) in anhydrous THF (20 ml, 0.25 M) at –30 ºC. The mixture was stirred under an 

argon atmosphere until the occurrence of a intensive orange colour. The reaction mixture was further 

stirred for one hour at this temperature. A solution of 83 (1.52 g, 5.00 mmol) in anhydrous THF (10.0 

ml, 0.5 M) was then added. The reaction mixture was allowed to warm up to room temperature. After 

full conversion (24 h) and work-up, the resulting product was purified by flash chromatography 

(hexane: ethyl acetate = 6:1) and compound 84 (1.14 g, 2.78 mmol, 56%, an E/Z inseparable mixture, 

E/Z = 4:1) was obtained as a yellow oil. 

Spectroscopic data obtained from E/Z diastereoisomeric mixture. 

84E: RBfB (hexane: ethyl acetate = 6:1): 0.67.  

P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: 7.50 – 7.20 (m, 5H, HBaromatic B); 6.52 (d, 1H, JB1,2 B = 14.8 Hz, 

H-1); 5.95 (dd, 1H, JB2,3B = 7.2 Hz, H-2); 4.05 (dd, 1H, JB4,5 B = 4.0 Hz, H-4); 4.68 (dd, 1H, JB3,4B = 6.4 Hz, H-

3); 4.13 (m, 1H, H-5); 3.93 (dd, 1H, JB6a,6b B = 11.2 Hz, JB6a,5B = 5.2 Hz, H-6a); 3.81 (dd, 1H, JB6a,6b B = 11.2 Hz, 

J B6a,5B = 6.8 Hz, H-6b); 2.35 (d, 1H, JBOH,5 B = 5.6 Hz, OH); 1.46 (s, 3H, CHB3B);, 1.35 (s, 3H, CH B3B); 0.92 (s, 
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9H, CHB3B); 0.12 (s, 6H, CHB3B). P

13
PC NMR (CDCl B3B, 100.6 MHz) δ in ppm: 134.2 (CBaromatic B); 130.8 – 126.9 

(UCUH Baromatic B); 127.5 (UCUH, C-1); 126.9 (UCUH, C-2); 108.8 (C, isopropylidene); 80.9 (UCUH, C-5); 80.0 (UCUH, C-

4); 78.5 (UCUH, C-3); 61.6 (UCUH B2B, C-6); 27.4 (UCUH B3B); 26.0 (UCUHB3 B); 25.2 (UCUHB3B). 

84Z: RBfB (hexane: ethyl acetate = 6:1): 0.67.  

P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: 7.50 – 7.20 (m, 5H, HBaromatic B); 6.48 (d, 1H, JB1,2 B = 7.8 Hz, H-

1); 6.04 (dd, 1H, JB2,3B = 7.2 Hz, H-2); 5.17 (t, 1H, JB3,4 B = 7.2 Hz, H-3); 4.32 (dd, 1H, JB4,5 B =  2.4 Hz, H-4); 

4.13 (m, 1H, H-5); 3.93 (m, 1H, H-6a); 3.81 (m, 1H, H-6b); 2.40 (d, 1H, JBOH,5 B = 6.0 Hz, OH); 1.46 (s, 

3H, CHB3 B); 1.35 (s, 3H, CHB3B); 0.92 (s, 9H, CHB3B); 0.12 (s, 6H, CHB3B). P

13
PC NMR (CDClB3B, 100.6 MHz) δ in 

ppm: Could not be determined. 

 

(Z/E)-6-O-tert-Butyldimethylsilyl-5-O-ethyl-1,2-dideoxy-3,4-O-isopropylidene-1-

phenylsulfanyl-D-lyxo-hex-1-enitol (85). 

 
A solution of compound 84 (244 mg, 0.60 mmol) in anhydrous THF (2.4 ml, 0.25 M), was added 

to a suspension of sodium hydride (16 mg, 0.66 mmol) in THF at room temperature. The reaction 

mixture was further stirred for an hour at room temperature and subsequently anhydrous ethyl bromide 

(67 µl, 0.90 mmol) was slowly added. The reaction mixture was stirred overnight, and the evolution of 

the reaction was monitored by TLC. The reaction was then quenched with a saturated NH4Cl solution. 

The aqueous layer was extracted with ethyl acetate (3x20 ml), the combined organic layer washed with 

water (2x20 ml), with brine (1x20 ml), dried on MgSOB4B, filtered and concentrated under vacuum. The 

mixture was purified by chromatography (hexane → hexane: ethyl acetate = 1:1) and compound 85 

(361 mg, 0.74 mmol, 37%, an E/Z inseparable mixture, E/Z = 4:1) was obtained as a light yellow oil. 

Spectroscopic data obtained from E/Z diastereoisomeric mixture. 

85E: RBfB (hexane: ethyl acetate = 8:1): 0.56.  

P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: 7.50 – 7.20 (m, 5H, HBaromatic B); 6.45 (d, 1H, JB1,2 B = 15.2 Hz, 

H-1); 5.90 (1 dd, H, JB2,3B = 7.8 Hz, H-2); 4.63 (dd, 1H, JB3,4 B = 6.8 Hz, H-3); 4.28 (dd, 1H, JB4,5 B = 4.0 Hz, H-

4); 3.74 – 3.64 (m, 3H, H-6a, CH B2 B(Et)); 3.43 (dd, 1H, JB6a,6b B = 9.2 Hz, JB6b,5 B = 7.2 Hz, H-6b); 3.26 (m, 1H, 

H-5); 1.46 (s, 3H, CHB3B); 1.35 (s, 3H, CHB3B); 1.21 – 1.14 (m, 3H, CHB3 B); 0.92 (s, 9H, CHB3B); 0.12 (s, 6H, 

CH B3B). P

13
PC NMR (CDCl B3B, 100.6 MHz) δ in ppm: 134.5 (CBaromaticB); 130.2 – 127.0 (UCUHBaromatic B); 126.9 (UCUH, 

C-1); 126.6 (UCUH, C-2); 109.1 (C); 78.4 (UCUH, C-5); 77.6 (UCUH, C-3); 76.8 (UCUH, C-4); 66.7 (UCUHB2B); 62.6 

(UCUH B2B, C-6); 29.8 (UCUH B3B); 27.4 (UCUH B3B); 26.0 (UCUHB3 B); 25.2 (UCUHB3B).  

85Z: RBfB (hexane: ethyl acetate = 8:1): 0.55.  

P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: 7.50 – 7.20 (m, 5H, HBaromatic B); 6.48 (d, 1H, JB1,2 B = 7.8 Hz, H-

1); 6.04 (dd, 1H, JB2,3B = 7.2 Hz, H-2); 5.17 (t, 1H, JB3,4 B = 7.2 Hz, H-3); 4.32 (dd, 1H, JB4,5 B = 2.4 Hz, H-4); 
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3.74 – 3.26 (5H, m, H-5, H-6a, H-6b, CHB2 B(Et)); 1.46 (s, 3H, CHB3B); 1.35 (s, 3H, CHB3B); 1.21 – 1.14 (m, 

3H, CHB3B); 0.92 (s, 9H, CHB3B); 0.12 (s, 6H, CHB3B). P

13
PC NMR (CDClB3 B, 100.6 MHz) δ in ppm: Could not be 

determined. 

 

 (Z/E)-5-O-Ethyl-1,2-dideoxy-3,4-O-isopropylidene-1-phenylsulfanyl-D-lyxo-hex-1-enitol (86).  

 
Compound 85 (150 mg, 0.34 mmol) was dissolved in THF (3.0 ml) and tetra-butylammonium 

fluoride (118 mg, 0.38 mmol) was added to a solution. The reaction mixture was stirred at room 

temperature and the reaction was monitored by TLC. After one hour, the reaction was quenched with a 

saturated NaHCO3 solution. The aqueous layer was extracted with ethyl acetate (3x20 ml), the 

combined organic layer was washed with water (2x20 ml), with brine (1x20 ml) dried on MgSOB4 B, 

filtered and concentrated under vacuum. The reaction mixture was separated by chromatography 

(hexane → hexane: ethyl acetate = 1:1) and compound 86 (89 mg, 0.28 mmol, 81%, an E/Z inseparable 

mixture, E/Z = 4:1) was obtained as a light yellow oil. 

Spectroscopic data obtained from E/Z diastereoisomeric mixture. 

86E: RBfB (hexane: ethyl acetate = 4:1): 0.51.  

P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: 7.40 – 7.24 (m, 5H, HBaromatic B); 6.54 (d, 1H, JB1,2 B = 15.2 Hz, 

H-1); 5.96 (dd, 1H, JB2,3B = 6.4 Hz, H-2); 4.78 (dd, 1H, JB3,4 B = 5.6 Hz, H-3); 4.06 (dd, 1H, JB4,5B = 8.8 Hz, H-

4); 3.86 – 3.41 (m, 5H, H-5, H-6a, H-6b, CHB2 B(Et)); 2.46 (d,1H, JBOH,6 B = 5.2 Hz, OH); 1.45 (s, 3H, CHB3B); 

1.35 (s, 3H, CHB3B); 1.22 – 1.04 (m, 3H, CHB3 B). P

13
PC NMR (CDCl B3B, 100.6 MHz) δ in ppm: 134.5 (CBaromatic B); 

130.2 – 127.0 (UCUH Baromatic B); 126.9 (UCUH, C-1); 126.6 (UCUH, C-2); 109.1 (C); 78.4 (UCUH, C-5); 77.6 ( UCUH, C-

4); 76.8 (UCUH, C-3); 69.7 (UCUH B2B); 61.6 (UCUH B2 B, C-6); 27.4 (UCUH B3 B); 26.0 (UCUH B3B); 25.2 (UCUHB3 B).   

86E: RBfB (hexane: ethyl acetate = 4:1): 0.51.  

P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: 7.50 – 7.20 (m, 5H, HBaromatic B); 6.48 (d, 1H, JB1,2 B = 7.8 Hz, H-

1); 6.04 (dd,1H, JB2,3B = 7.2 Hz, H-2); 5.17 (t, 1H, JB3,4 B = 7.2 Hz, H-3); 4.32 (dd, 1H, JB4,5 B = 2.4 Hz, H-4); 

3.74 – 3.26 (m, 5H, H-5, H-6a, H-6b, CHB2 B(Et)), 2.51 (d, 1H, JBOH,6 B= 5.2 Hz, OH); 1.46 (s, 3H, CHB3B); 

1.35 (s, 3H, CHB3B); 1.21 – 1.14 (m, 3H, CHB3B). 
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 2-Deoxy-5-O-ethyl-3,4-O-isopopylidene-2-iodo-β-D-galacto-septanose (88β) and 2-Deoxy-5-

O-ethyl-3,4-O-isopropylidene-2-iodo-α-D-galacto-septanose (88α).  

 88

O OH
EtO

O

I

O

 
As described in general method A of the iodium–induced cyclization, a solution of compound 86 

(89 mg, 0.28 mmol) in acetonitrile (5.5 ml, 0.05M) was cooled to –30 ºC, then was NaHCO3 added at –

10 ºC. Then reaction mixture was further stirred at room temperature for 30 hours and finally warmed 

up at 35 ºC for 24 hours. The reaction was then quenched with the addition of a saturated solution of 

Na2S2O3. The aqueous layer was extracted with ethyl acetate (3x20 ml), the combined organic layer 

was washed with water (2x20 ml), with brine (1x20 ml) dried on MgSOB4B, filtered and concentrated 

under vacuum. The mixture was separated by chromatography (hexane → hexane:ethyl acetate = 1:1) 

and compounds 88β  and 88α  (23 mg, 0.10 mmol, 36%, an α/β inseparable mixture, α/β  = 1:1.4) were 

obtained as a light yellow oil. Starting material 86Z (29 mg, 0.09 mmol, 32 %) was also recovered. 

Spectroscopic data obtained from 88α/β stereoisomeric mixture. 

RBfB (hexane:ethyl acetate = 4:1): 0.37.  

88α: P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: 5.48 (d, 1H, JB1,2 B = 1.2 Hz, H-1); 4.72 (dd, 1H, JB3,4B = 

8.0 Hz, H-3); 4.25 (dd, 1H, JB4,5B = 7.2 Hz, H-4); 4.18 (dd, 1H, JB2,3B = 10.0 Hz, H-2); 3.95 (dd, 1H, JB6a,6b B = 

13.2 Hz, JB6a,5B = 9.6 Hz, H-6a); 3.57 (dd, 1H, J B6a,6b B = 13.2 Hz, JB6b,5 B = 2.0 Hz, H-6b); 3.78 – 3.74 (m, 1H, 

CH B2 B(Et)); 3.59 – 3.54 (m, 1H, CH B2 B(Et)); 3.47 (m, 1H, H-5); 1.51 (s, 3H, CH B3B); 1.39 (s, 3H, CHB3B); 1.33 

– 1.18 (m, 3H, CH B3B). P

13
PC NMR (CDClB3B, 100.6 MHz) δ in ppm: 108.2 (C); 96.9 (UCUH, C-1); 80.4 (UCUH, C-

4); 78.8 (UCUH, C-5); 76.5 (UCUH, C-3); 66.1 (UCUH B2BMe); 60.7 (UCUH B2B, C-6); 35.4 (UCUH, C-2); 27.7 (UCUH B3 B); 24.9 

(UCUH B3B); 15.6 (UCUHB3B, Et ).  

88β: P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: 5.41 (d, 1H, J B1,2B = 8.0 Hz, H-1); 4.41 (dd, 1H, JB3,4 B = 

7.6 Hz, H-3); 4.33 (m, 1H, H-6a); 4.32 (dd, 1H, JB4,5 B = 9.2 Hz, H-4); 4.10 (dd, 1H, JB2,3 B = 11.2 Hz, H-2); 

3.78 – 3.74 (m, 2H, H-5, CHB2 B(Et)); 3.59 – 3.54 (m, 1H, CHB2 B(Et)); 3.48 – 3.45 (m, 1H, H-6b); 1.51 (s, 

3H, CHB3B); 1.39 (s, 3H, CHB3B); 1.33 – 1.18 (m, 3H, CHB3B). P

13
PC NMR (CDClB3B, 100.6 MHz) δ in ppm: 109.1 

(C); 98.1 (UCUH, C-1); 78.5 (UCUH, C-4); 78.1 (UCUH, C-5); 77.0 (UCUH, C-3); 67.0 (UCUH B2BMe); 62.0 (UCUH B2B, C-6), 

32.5 (UCUH, C-2); 27.5 (CHB3B); 24.5 (UCUH B3B); 15.8 (UCUH B3B, Et).  

HRMS (TOF MS ES+): calcd for C11H19O5NaI (MNa+)  381.0175; found, 381.0180.  

Anal. Calcd for C11H19IO5SB: 36.89 C, 5.35 H. Found: 37.55 C, 5.47 H.  
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1,2:5,6-di-O-Diisopropylidene-3-O-methyl-α-D-gluco-furanose (126).TP 

 
 NaH (0.94 g, 23.51 mmol) was suspended in 80ml of THF when diacetone-D-glucose 125 

(5.45 g, 20.94 mmol) was added in small portions at 0 ºC under argon. The mixture was stirred for one 

hour at room temperature then MeI was added (3.27 g, 23.04 mmol). The evolution of the reaction was 

monitored by TLC (hexane: ethyl acetate =  4:1). The reaction was then quenched with the addition of a 

saturated solution of NH4Cl. The aqueous layer was extracted with ethyl acetate (3x20 ml), the 

combined organic layer was washed with water (2x20 ml), with brine (1x20 ml) dried on MgSOB4 B, 

filtered and concentrated under vacuum. The chromatographic purifycation (hexane: ethyl acetate = 

4:1) afforded compound 126 (5.49 g, 20.01 mmol, 96%) as a syrup. 

126: RBfB (hexane: ethyl acetate = 4:1): 0.49.    

RMN P

1
PH (DB3BC-C(O)-CDB3B, 400 MHz) δ  in ppm: 5.86 (d, 1H, JB1,2 B= 3.6 Hz, H-1); 4.57 (d, 1H, JB2,1 B= 

3.6 Hz, H-2); 4.30 (m, 1H, H-5); 4.06 – 4.11 (m, 2H, H-4, H-6); 4.00 (dd, 1H, JB6a,6b B= 8.8 Hz, JB6a,5 B= 5.2 

Hz, H-6a); 3.77 (d, 1H, JB3,4 B= 2.8 Hz, H-3); 3.46 (s, 3H, OMe); 1.50 (s, 3H, MeBac B); 1.43 (s, 3H, MeBac B); 

1.36 (s, 3H, MeBac B); 1.32 (s, 3H, MeBac B). RMN P

13
PC (DB3BC-C(O)-CDB3B, 100.5 MHz) δ  in ppm:  111.74, 

109.03 (C); 105.21 (C-1); 83.68 (C-3); 81.88 (C-2); 81.04 (C-4); 72.41 (C-5); 67.29 (C-6); 58.21 (UCUH B3 B, 

OMe); 26.93 (UCUH B3B, MeBac B); 26.87 (UCUH B3B, MeBac B); 26.27 (UCUHB3B, MeBac B); 25.44 (UCUH B3 B, MeBac B). 

 

1,2-O-Isopropylidene-3-O-methyl-α-D-gluco-furanose (127).TP 

 
IB2B (1.43 g, 5.62 mmol) was added to a solution of compound 126 (5.14 g, 18.72 mmol) in  

MeCN/H2O = 100:1 (190 ml :1.9 ml) at room temperature. The reaction mixture was further stirred for 

15h and was monitored by TLC analysis (hexane: ethyl acetate = 1:2). The reaction was quenched with 

saturated solution of NaB2BS B2BO B3.  The aqueous layer was extracted with ethyl acetate (3x20 ml), the 

combined organic layer was washed with water (2x20 ml), with brine (1x20 ml) dried on MgSOB4 B, 

filtered and concentrated under vacuum. The chromatographic purifycation (hexane: ethyl acetate = 

2:1) afforded compound 127 (4.20 g, 17.93 mmol, 96%) as a yellowish syrup. 
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127: RBfB (hexane: ethyl acetate = 2:1): 0.28. 

RMN P

1
PH (CDClB3B, 400 MHz) δ  in ppm: 5.79 (d, 1H, JB1,2 B= 4.0 Hz, H-1); 4.62 (d, 1H, JB2,1 B= 4.0 Hz, 

H-2); 4.02 (dd, 1H, JB4,5 B= 8.8 Hz, JB4,3 B= 3.0 Hz, H-4); 3.87 (d, 1H, JBOH,5 B= 7.6 Hz, OH); 3.83 (m, 1H, H-

5); 3.77 (d, 1H, J B3,4 B= 3.0 Hz, H-3); 3.77 (ddd, 1H, JB6a,6b B= 10.6 Hz, JB6,OH B= 5.6 Hz, JB6,5 B= 2.8 Hz, H-6a); 

3.61 (t (dd), 1H, JBOH,6a B= 5.6 Hz, OH); 3.52 (dt (ddd),1H, JB6a,6b B= 10.8 HZ, JB6b,5 B= 6.0 Hz, J B6b,OH B= 6.0 Hz, 

H-6b); 3.41 (s, 3H, OMe); 1.40 (s, 3H, MeBac B); 1.27 (s, 3H, MeBac B). RMN P

13
PC (CDClB3B, 100.5 MHz) δ  in 

ppm:  111.80 (C); 106.10 (C-1); 84.69 (C-3); 82.22 (C-2); 80.94 (C-4); 69.46 (C-5); 65.08 (C-6); 58.02 

(UCUH B3B, OMe); 27.11 (UCUHB3B, MeBac B); 26.46 (UCUHB3B, MeBac B). 

 

6-Deoxy-6-iodo-1,2-O-isopropylidene-3-O-methyl-α-D-gluco-furanose (128) and 5,6-Dideoxy-

1,2-O-isopropylidene-3-O-methyl-α-D-xylo-hex-5-enofuranose (129). 

  
PPhB3B (6.72 g, 25.62 mmol), IB2B (6.50 g, 25.61 mmol) and imidazole (2.31 g, 33.94 mmol) were added 

to a solution of compound 127 (4.10 g, 17.08 mmol) in anhydrous DCM (190 ml) under argon, finally 

the reaction mixture was heated to reflux for 16h. The reaction was monitored by TLC (hexane: ethyl 

acetate = 4:1). After the reaction completed was quenched with saturated solution of NaB2 BS B2BO B3. The 

aqueous layer was extracted with DCM (3x20 ml), the combined organic layer was washed with water 

(2x20 ml), with brine (1x20 ml) dried on MgSOB4B, filtered and concentrated under vacuum. The 

chromatographic purifycation (hexane: ethyl acetate = 4:1)B afforded compound 128 (3.06 g, 8.88 mmol, 

52%) as a yellowish syrup, and compound 129 (1.50 g, 7.52 mmol, 44%) as a yellowish solid. 

128: RBfB (hexane: ethyl acetate = 4:1): 0.36. 

 RMN P

1
PH (CDClB3B, 400 MHz) δ  in ppm: 5.90 (d, 1H, JB1,2 B= 3.6 Hz, H-1); 4.61 (d, 1H, JB2,1 B= 3.6 Hz, 

H-2); 4.09 (dd, 1H, JB4,5 B= 8.0 Hz, JB4,3 B= 3.0 Hz, H-4); 3.91 (d, 1H, JB3,4 B= 3.0 Hz, H-3); 3.78 (m, 1H, H-5); 

3.56 (dd, 1H, J B6a,6b B= 10.4 Hz, J B6a,5 B= 3.2 Hz, H-6a); 3.47 (s, 3H, OMe); 3.40 (dd, 1H, J B6a,6b B= 10.4 Hz, 

J B6b,5 B= 7.0 Hz, H-6b); 2.52 (d, 1H, JBOH,5 B= 6.0 Hz, OH); 1.51 (s, 3H, MeBac B); 1,34 (s, 3H, MeBac B). RMN P

13
PC 

(CDClB3B, 100.5 MHz) δ  in ppm: 112.22 (CBquatB); 105.29 (C-1); 84.10 (C-3); 81.89 (C-4); 81.58 (C-2); 

68.40 (C-5); 58.21 (UCUHB3B, OMe); 27.09 (UCUHB3B, MeBac B); 26.56 (UCUH B3 B, MeBac B); 13.68 (C-6).  

129: RBfB  (hexane:ethyl acetate = 4:1): 0.68. 

RMN P

1
PH (CDClB3B, 400 MHz) δ  in ppm: 5.95 (m, 2H, H-1, H-5); 5.44 (ddd, 1H, JB6a,5 B= 17.2 Hz, JB6a,4 

B= 2.6 Hz, JB6a,6b B= 1.6 Hz, H-6a); 5.31 (ddd, 1H, JB6b,4 B= 10.8 Hz, JB6b,5 B= 2.6 Hz, JB6b,6a B= 1.6 Hz, H-6b); 4.62 

(m, 2H, H-2, H-4); 3.67 (d, 1H, JB3,4 B= 3.6 Hz, H-3); 3.41 (s, 3H, OMe); 1.51 (s, 3H, MeBac B); 1.33 (s, 3H, 
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MeBac B). RMN P

13
PC (CDClB3B, 100.5 MHz) δ  in ppm: 132.19 (C-5); 119.07 (C-6); 111.66 (C); 104.93 (C-1); 

86.09 (C-3); 82.18, 81.49 (C-2, C-4); 58.38 (UCUH B3 B, OMe); 26.95 (UCUHB3B, MeBac B); 26.38 (UCUHB3B, MeBac B). 

 

6-Deoxy-1,2-O-isopropylidene-3-O-methyl-α-D-gluco-furanose (131).P 

 
 BuB3BSnH (2.2 ml, 1.10 eq) and AIBN (0.05 eq) were added to compound 128 (2.93 g, 8.51 

mmol) in deoxygenated toluene (26 ml). The reaction mixture was heated to reflux and was monitored 

by TLC (hexane: ethyl acetate = 2:1). After the reaction completed the reaction mixture was 

concentrated in vacuum the flash chromatography (from hexane to hexane: ethyl acetate =  1:1) 

furnished compound 131 (1.62 g, 7.40 mmol, 87%) as a yellow syrup.  

131: RBfB  (hexane: ethyl acetate = 2:1): 0.26. 

RMN P

1
PH (CDClB3B, 400 MHz) δ  in ppm: 5.96 (d, 1H, JB1,2 B= 4.0 Hz, H-1); 4.62 (d, 1H, JB2,1 B= 4.0 Hz, 

H-2); 4.10 (sext, 1H, JB5,4 B= 6.4 Hz, JB5,6 B= 6.4 Hz, JB5,OH B= 6.4 Hz, H-5); 3.97 (dd, 1H, JB4,3 B= 3.6 Hz, JB4,5 B= 

6.4 Hz, H-4); 3.90 (d, 1H, JB3,4 B= 3.6 Hz, H-3); 3.46 (s, 3H, OMe); 2.59 (d, 1H, JB10,5 B= 6.8 Hz, H-10); 1.50 

(s, 3H, MeBac B); 1.33 (s, 3H, MeBac B); 1.32 (d, 3H, JB6,5 B= 6.8 Hz, H-6). RMN P

13
PC (CDClB3B, 100.5 MHz) δ  in 

ppm: 111.70 (C); 105.21 (C-1); 85.05 (C-3); 83.19 (C-4); 81.31 (C-2); 66.13 (C-5); 57.74 ( UCUH B3B, OMe); 

26.89(UCUH B3B, MeBac B); 26.80 (UCUHB3B, MeBac B); 20.85 (C-6). 

 

1,2,4-tri-O-Acetyl-6-deoxy-3-O-methyl-α,β-D-glucose (132).TP 

 
 Compound 131 (1.50 g, 6.87 mmol) was dissolved in a mixture of HB2 BO/dioxane = 1:1 and 

amberlite-120 resin (2.01 g) was added. The reaction mixture was heated to 80 ºC for 6 h and the 

evolution of the reaction was monitored by TLC analysis (in ethyl acetate). The resin was removed with 

filtration and the dissolvent was removed in vacuum with the help of toluene. The reaction crude was 

dissolved in 100 ml Ac B2BO and TEA (6.5 ml) was added. The reaction was monitored by TLC (in ethyl 

acetate) and after 7 h, the mixture was concentrated in vacuum. The subsequent flash chromatography 

afforded 132 (1.82 g, 5.98 mmol, 87%, an α/β inseparable mixture, α/β = 3:1) as a white solid. 

RBfB (ethyl acetate ): 0.75. 

Spectroscopic data extracted from α/β mixture. 
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132α: RMN P

1
PH  (CDClB3B, 400 MHz) δ  in ppm: 5.62 (d, 1H, JB1,2 B= 8.0 Hz, H-1); 5.08 (dd, 1H, JB2,1 B= 

8.0 Hz, JB2,3 B= 9.6 Hz, H-2); 4.84 (t (dd), 1H, JB3,2 B= 9.6 Hz, JB3,4 B= 9.6 Hz, H-3); 3.61 (m, 1H, H-5); 3.42 (s, 

3H, OMe); 3.49 (t (dd), 1H, J B4,3 B= 9.6 Hz, JB4,5 B= 9.6 Hz, H-4); 2.10 (s, 9H, Me Bac B); 1.22 (d, 3H, JB6,5 B= 6.4 

Hz, H-6). RMN P

13
PC (CDClB3B, 100.5 MHz) δ  in ppm: 169 (C=OBac B); 92.05 (C-1); 81.36 (C-4); 73.67 (C-

3); 71.44 (C-2); 71.21 (C-5); 59.18 (UCUH B3B, OMe); 20.9 (3UCUHB3B, MeBac B); 17.36 (C-6). 

132β: RMN P

1
PH  (CDClB3B, 400 MHz) δ  in ppm: 6.23 (d, 1H, JB1,2 B= 3.6 Hz, H-1); 4.97 (1H, dd, JB2,1 B= 

4.0 Hz, JB2,3 B= 10.0 Hz, H-2); 4.79 (t (dd), 1H, JB3,2 B= 10.0 Hz, JB3,4 B= 10.0 Hz, H-3); 3.91 (m, 1H, H-5); 

3.67 (t (dd), 1H, JB4,3 B= 10.0 Hz, JB4,5 B= 10.0 Hz, H-4); 3.47 (s, 3H, OMe); 2.10 (s, 9H, MeBac B); 1.17 (d, 3H, 

JB6,5 B= 6.4 Hz, H-6). RMN P

13
PC (CDClB3B, 100.5MHz) δ  in ppm: 169 (C=OBac B); 89.36 (C-1); 78.13 (C-4); 

74.26 (C-3); 71.49 (C-2); 68.28 (C-5); 60.13 (UCUH B3B, OMe); 20.9 (3UCUHB3B, MeBac B); 17.42 (C-6). 

 
Methyl 3-O-Benzyl-5-deoxy-α,β-D-ribofuranoside (133) and Methyl 2-O-Benzyl-5-deoxy-α,β-

D-ribofuranoside (134). 

 
A 1.0 M solution of DIBAL-H in DCMB (50 ml, 50 mmol) was added dropwise to a solution of 

ribofuranoside 159 (2.4 g, 10.0 mmol) in DCM (50 ml, 0.1 M) at –78 ºC. The reaction mixture was left 

to warmed to rt and the evolution of the reaction was monitored by TLC (hexane: ethyl acetate = 3:1) 

until the starting product was consumed. After 30 minutes at rt, the reaction was quenched by adding 

the reaction mixture to methanol (100 ml) at 0 ºC and allowed to warm to rt. The white gel obtained 

was dissolved with the addition of 100 ml of 10 w/v% KOH solution The aqueous phase was extracted 

with ethyl acetate (3x50ml). The combined organic extracts were washed with saturated NHB4BCl solution 

(2x30 ml), water (2x30 ml), brine (1x30 ml), dried on anhydrous MgSOB4B and concentrated under 

vacuum. The residue was purified by radial chromatography (hexane: ethyl acetate = 3:1) to afford 2.4 

g, 9.9 mmol (99%) of  133 and 134 mixture as a yellowish syrup. The mixture was separated by 

recrystallization (from hexane: ethyl acetate = 10:1) to furnish compound 133 (1.034 g, 4.34 mmol, 

43%), compound 134 (1.113 g, 4.67 mmol, 47%) and the mixture of both (216.8 mg, 0.91 mmol, 9%). 

RBfB (hexane: ethyl acetate = 2:1): 0.38.  

Spectroscopic data obtained from the α/β mixture. 

133β: P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: 7.35 (m, 5H, HBaromatic B); 4.82 (s, 1H, H-1); 4.61 (d, 1H, 

J BABB = 11.6 Hz, CH B2BPh); 4.55 (d, 1H, JBABB = 11.6 Hz, CHB2BPh); 4.13 (m, 1H, H-4); 4.04 (d, 1H, JB2,3 B = 4.4 

Hz, H-2); 3.83 (dd, 1H, JB3,4B = 6.4 Hz, H-3); 3.34 (s, 3H, OMe); 2.71 (dd, 1H, JBOH,2 B = 2.8 Hz, OH); 1.31 

(d, 3H, JB4,5B = 6.0 Hz, H-5). P

13
PC NMR (CDClB3B, 100.6 MHz) δ in ppm: 137.91 (C Baromatic B); 128.81, 128.43, 
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128.08 (UCUH Baromatic B); 108.48 (C-1); 84.1 (C-3); 77.49 (C-4); 73.70 (C-2); 72.99 (UCUHB2BPh); 55.13 (OUCUH B3B); 

21.04  (C-5). 

133α: P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: Could not be determined. 

RBfB (hexane: ethyl acetate = 2:1): 0.40.  

Spectroscopic data obtained from the α/β mixture. 

134β: P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: 7.34 (m, 5H, HBaromaticB); 4.86 (d, 1H, J B1,2 B = 1.2 Hz, H-

1); 4.73 (d, 1H, JBABB = 11.6 Hz, CHB2BPh); 4.61 (d, 1H, JBABB = 11.6 Hz, CHB2BPh); 3.99 (m, 1H, H-4); 3.93 

(qd, 1H, JB3,4B = 5.2 Hz, H-3); 3.86 (dd, 1H, JB2,3 B = 5.2 Hz, H-2); 3.35 (s, 3H, OMe); 2.63 (d, 1H, JBOH,3 B = 

8.4 Hz, OH); 1.31 (d, 3H, JB4,5B = 6.0 Hz, H-5). P

13
PC NMR (CDCl B3B, 100.6 MHz) δ in ppm: 137.30 

(CBaromatic B); 128.72, 128.30, 128.07 (UCUHBaromaticB); 105.88 (C-1); 82.60 (C-2); 80.41 (C-4); 76.02 (C-3); 

72.91 (UCUH B2BPh); 55.20 (OUCUH B3B); 20.19  (C-5). 

134α: P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: Could not be determined. 

 
Methyl 2,3-di-O-Benzyl-5-deoxy-α,β-D-ribofuranoside (135). 

 
NaH (88 mg, 2.20 mmol, 1.1 eq) was added to the mixture of 133 and 134 (477 mg, 2.00 mmol, 

1.0 eq) in anhydrous THF (40 ml, 0.1 M) and the mixture was stirred for 1 hour. BnBr (239 µl, 376 mg, 

2.20 mmol, 1.1 eq) ws added and the mixture finally was further stirred for 12 hours. The reaction was 

quenched with NHB4BCl solution (2x20 ml), water (2x20 ml), brine (1x20 ml), dried on anhydrous 

MgSOB4B and concentrated under vacuum. The chromatographic purification afforded compound 135 

(611 mg, 1.86 mmol, 93%). 

RBfB (hexane: ethyl acetate = 4:1): 0.46. 

Spectroscopic data extracted from α/β mixture. 

135β: P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: 7.35 (m, 5H, HBaromaticB); 4.82 (s, 1H, H-1); 4.73 (d, 1H, 

J BABB = 11.6 Hz, CH B2BPh); 4.63 (d, 1H, J BABB = 11.6 Hz, CHB2BPh); 4.60 (d, 1H, J BABB = 11.6 Hz, CH B2BPh); 4.55 

(d, 1H, JBABB = 11.6 Hz, CHB2BPh); 4.13 (m, 1H, H-4); 4.04 (d, 1H, JB2,3B = 4.4 Hz, H-2); 3.83 (dd, 1H, JB3,4 B = 

6.4 Hz, H-3); 3.34 (s, 3H, OMe); 1.31 (d, 3H, JB4,5 B = 6.0 Hz, H-6). P

13
PC NMR (CDClB3B, 100.6 MHz) δ in 

ppm: 137.91 (CBaromatic B); 128.81, 128.43, 128.08 (UCUH Baromatic B); 108.48 (C-1); 84.1 (C-3); 77.49 (C-4); 73.70 

(C-2); 73.05 (UCUH B2BPh); 72.91 (UCUH B2BPh);55.13 (OUCUHB3 B); 21.04  (C-5). 

135α: P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: Could not be determined. 
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2,3-di-O-Benzyl-5-deoxy-α,β-D-ribofuranose (136). 

  
Compound 135 (611 mg, 1.86 mmol) was dissolved in the mixture of AcOH/HB2 BO = 8:1 (18 ml) 

and was heated to 80 ºC for 6 hours till completion of reaction. The solvent mixture was eliminated in 

vacuum, and mixture was purified by radial chromatography (from hexane to hexane: ethyl acetate = 

1:1) to afford compound 136 (456 mg, 1.45 mmol, 78%, an α/β inseparable mixture, α/β  = 1:1.2). 

RBfB (hexane: ethyl acetate = 3:1): 0.35. 

Spectroscopic data extracted from α/β mixture. 

Anal. Calcd for CB19BH B22BO B4B: 72.59 C, 7.05 H. Found: 72.63 C, 7.03 H. 

136: RMN ¹H (CDClB3B, 400 MHz) δ in ppm: 7.37 – 7.30 (m, 10H, HBaromatic Bab); 5.35 (d, 1H, JB1a,OHa B= 

3.6 Hz, H-1a); 5.30  (dd, 1H, JB1b,OHb B= 11.2 Hz, JB1b,2b B= 4.4 Hz, H-1b); 4.73 – 4.45 (m, 8H, 4CHB2 BPhBa B, 

4CHB2BPhBbB); 4.33 (qd, 1H, JB4b,3b B= 3.2 Hz, JB4b,5b B= 6.4 Hz, H-4b); 4.29 (d, 1H, J BOHb,H1 B= 11.2 Hz, OHb); 

4.23 (dq, 1H, JB4a,5a B= 6.4 Hz, J B4a,3a B= 7.6 Hz, H-4a); 3.93 (dd, 1H, JB2b,1b B= 4.4 Hz, JB2b,3b B= 4.8 Hz, H-2b); 

3.85  (d, 1H, JB2a,3a B= 4.8 Hz, H-2a); 3.79  (dd, 1H, JB3a,4a B= 7.6 Hz, JB3a,2a B= 4.8 Hz, H-3a); 3.62  (dd, 1H, 

JB3b,2b B= 4.8 Hz, J B3b,4b B= 3.2 Hz, H-3b); 3.30 (da, 1H, JBOHa,1a B= 3.6 Hz, OHa); 1.32 (d, 3H, JB5a,4a B= 6.0 Hz, 

H-5a); 1.17 (d, 3H, JB5b,4b B= 6.4 Hz, H-5b). RMN P

13
PC (CDClB3 B, 100.6 MHz) δ in ppm: 137.9 – 137.5 

(CBaromatic B); 128.7 – 128.0 (CHBaromatic B); 100.2 (C-1a); 96.0 (C-1b); 82.8 (C-3a); 81.9 (C-3b); 80.5 (C-2a); 

77.4 (C-2b); 77.3 (C-4a); 77.2 (C-4b); 73.0, 72.9 (2UCUHB2BPhBa B); 72.6, 72.4 (2UCUH B2BPhBbB); 20.7 (C-5a); 19.9 

(C-5b). 

 

(E/Z)-3,4-di-O-Benzyl-1,2,6-trideoxy-1-phenylsulfanyl-D-ribo-hex-1-enitol (137). 

  
Folloing the general method of the WH olefination reactions, a sulotion of n-BuLi in hexane (1.2 

ml, 1.86 mmol, 1.6 M) was added to a solution of (diphenylphenylsulfanyl)methylphosphine oxide (42) 

(575 mg, 1.77 mmol) in anhydrous THF (2.4 ml, 0.74 M) at –78 ºC and the mixture was left to stir at 

low temperature for 30 min. A solution of 136 (150 mg, 0.44 mmol) in THF (2 ml, 0.22 M) was then 

added dropwise. The mixture was allowed to warm to room temperature overnight (17 h)and was 

quenched with saturated solution of NHB4BCl solution and extracted with ethyl acetate (3x20 ml). The 

combined organic layer was washed with water (2x20 ml), brine (1x20 ml), dried on anhydrous MgSOB4 B 

and concentrated under vacuum. The crude product was purified by flash chromatography (hexane: 

ethyl acetate = 4:1) to afford the enolthioether 137 (126 mg, 0.30 mmol, 68%, an E/Z inseparable 

mixture, E/Z = 8:1).  
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Data obtained from the E/Z diastereoisomeric mixture. 

Anal. Calcd for CB26BH B28BO B3BS: 74.25 C, 6.71 H, 7.62 S. Found: 74.20 C, 6.69 H, 7.60 S. 

137E: RMN ¹H (CDClB3B, 400 MHz) δ in ppm: 7.37 – 7.22 (m, 10H, HBaromatic B); 6.50 (d, 1H, JB1,2 B= 

15.2 Hz, H-1); 5.81 (dd, 1H, J B2,3 B= 8.4 Hz, J B2,1 B= 15.2 Hz, H-2); 4.81 – 4.37 (m, 4H, 4CHB2BPh); 4.03 (dd, 

1H, JB3,2 B= 8.4 Hz, JB3,4 B= 6.8 Hz, H-3); 3.93 (m, 1H, H-5); 3.36 (dd, 1H, JB4,3 B= 6.8 Hz, JB4,5 B= 6.0 Hz, H-4); 

2.64 (bs, 1H, OH); 1.21 (d, 3H, JB6,5 B= 6.4 Hz, H-6). RMN P

13
PC (CDClB3B, 100.6 MHz) δ in ppm: 138.4 – 

127.2 (CBaromatic B); 129.3 (C-1); 129.0 (C-2); 84.5 (C-4); 81.8 (C-3); 74.7 (UCUH B2BPh); 70.6 ( UCUH B2 BPh); 69.3 

(C-5); 19.1 (C-6). 

137Z: RMN ¹H (CDClB3B, 400 MHz) δ in ppm: 7.37 – 7.21 (m, 10H, HBaromatic B); 6.59 (d, 1H, JB1,2 B= 9.2 

Hz, H-1); 5.92 (t, 1H, JB2,3B= 9.2 Hz, JB2,1 B= 9.2 Hz, H-2); 4.81 – 4.37 (m, 5H, 4CHB2BPh, H-3); 3.93 (m, 1H, 

H-5); 3.49 (dd, 1H, JB4,3 B= 5.6 Hz, JB4,5 B= 6.4 Hz, H-4); 2.63 (bs, 1H, OH); 1.23 (d, 1H, JB6,5 B= 6.8 Hz, H-6). 

RMN P

13
PC (CDClB3B, 100.6 MHz) δ in ppm: 138.4 – 127.2 (CBaromatic B); 129.4 (C-1); 129.2 (C-2); 84.7 (C-4); 

77.6 (C-3); 74.6 (UCUH B2BPh); 70.9 (UCUH B2BPh); 69.1 (C-5); 19.3 (C-6). 

  

3,4-di-O-Benzyl-2,6-dideoxy-2-iodo-α,β-D-allopyranose (139). 

 
NIS (562 mg, 2.5 mmols, 2.5 eq) was added to a solution of the hex-1-enitol 137 (421 mg, 1.0 

mmols, 1 eq) in a CHB3BCN:HB2BO = 10:1 mixture (20 ml, 0.05M) at –10 ºC. After stirring for 45 minutes 

the reaction was quenched with NaB2BS B2BOB3B and extracted with ethyl acetate (3x20 ml). The combined 

organic layer was washed with water (2x20 ml), brine (1x20 ml), dried on anhydrous MgSO B4 B and 

concentrated under vacuum. The residue was purified by column chromatography (hexane: ethyl 

acetate = 3:1) to afford compound 139 (254 mg, 0.56 mmol, 56%, an α/β inseparable mixture, α/β  = 

1:12) as colourless syrup. 

139β: RMN ¹H (CDClB3B, 400 MHz) δ in ppm: 7.47 – 7.22 (m, 10H, HBaromatic B); 5.29 (d, 1H, JB1,2 B= 5.2 

Hz, H-1); 5.02 – 4.65 (m, 5H, 4CHB2BPh, H-5); 4.61 (dd, 1H, JB2,1 B= 5.2 Hz, J B2,3 B= 2.6 Hz, H-2); 4.16 (dd, 

1H, JB3,2 B= 2.6 Hz, JB3,4 B= 2.4 Hz, H-3); 3.29 (dd, 1H, JB4,3 B= 2.4 Hz, JB4,5 B= 9.6 Hz, H-4); 2.31 (bs, 1H, OH); 

1.26 (d, 3H, JB6,5 B= 6.0 Hz, H-6). RMN P

13
PC (CDClB3 B, 100.6 MHz) δ in ppm: 90.0 (C-1); 82.2 (C-4); 77.9 

(C-3); 75.7, 72.1 (UCUH B2BPh); 64.6 (C-5); 27.7 (C-2); 17.9 (C-6). 

139α: RMN ¹H (CDClB3B, 400 MHz) δ  in ppm: Could not be determined. 

 

3,4-di-O-Benzyl-2,6-dideoxy-2-iodo-α,β-D-allopyranosyl Fluoride (140). 
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DAST (74 µl, 101 mg, 0.76 mmol, 1.5 eq) was added to a solution of compound 139 (230 mg, 0.51 

mmol, 1.00 eq) in anhydrous DCM (5 ml) at 0 ºC. The reaction mixture was warmed up to room 

temperature and was further stirred for 2 hours. The reaction was quenched with NaHCOB3 B solution 

NaB2BS B2BO B3B and extracted with ethyl acetate (3x20 ml). The combined organic layer was washed with water 

(2x20 ml), brine (1x20 ml), dried on anhydrous MgSOB4 B and concentrated under vacuum. The mixture 

was purified by radial chromatography (from hexane to hexane: ethyl acetate = 3:1) to afford 

compound 140 (200 mg, 0.44 mmol, 86%, an α/β inseparable mixture, α/β  = 1:12) as a yellowish 

syrup. 

140: RBfB (hexane: ethyl acetate = 6:1): 0.63. 

Spectroscopic data extracted from α/β mixture. 

140β: RMN ¹H (CDClB3B, 400 MHz) δ  in ppm: 7.45 – 7.25 (m, 10H, HBaromatic B); 5.55 (dd, 1H, JB1,F  B= 

52.4 Hz, JB1,2 B= 8.8 Hz, H-1); 5.91 (d, 1H, JBAB B= 11.2 Hz, CHB2 BPh); 4.77 (d, 1H, JBAB B= 11.2 Hz, CHB2 BPh); 

4.70 (d, 1H, JBAB B= 11.2 Hz, CH B2BPh); 4.56 (d, 1H, JBAB B= 11.2 Hz, CHB2BPh); 5.10 (m, 1H, H-5); 4.14 (d, 

1H, JB3,4B= 6.0 Hz, H-3); 3.99 (dd, 1H, J B2,3B= 2.4 Hz, H-2); 3.35 (dd, 1H, JB4,5 B= 9.2 Hz, H-4); 1.32 (d, 3H, 

J B6,5B= 6.0 Hz, H-6). RMN P

13
PC (CDClB3B, 100.6 MHz) δ in ppm: 138.09, 137.38 (CBaromatic B); 128.82, 128.44, 

128.41, 128.21, 128.1, 128.00 (CHBaromatic B); 107.7 (d, JB F,C1 B= 209.8 Hz, C-1); 81.3 (C-4); 77.9 (d,  JB F,C3 B,= 

6.8 Hz, C-3); 75.87, 72.65 (UCUHB2BPh); 70.4 (d, J B F,C5 B= 4.6 Hz, C-5); 29.6 (d, J B F,C2 B= 82.3 Hz, C-2); 18.00 

(C-6). 

140α: RMN ¹H (CDClB3B, 400 MHz) δ  in ppm: Could not be determined. 

 

2-O-Benzyl-5-deoxy-3-O-triethylsilyl-D-ribono-1,4-lactone (146).TP

142
 

 
Following the general procedure of silylation, 2-O-benzyl-5-deoxy-D-ribono-1,4-lactone 144 (480 

mg, 19.3 mmols, 1 eq), EtB3BN (0.48 mg, 3.46 mmols, 1.6 eq), TESCl (0.54 ml, 3.24 mmols, 1.5 eq) and 

DMAP (198 mg, 1.62 mmol, 0.75 eq) in anhydrous DCM (9.3 ml, 0.25 M) was reacted at rt for 8 h. 

Column chromatography (hexane: ethyl acetate = 3:1) of the crude afforded 146 (725 mg, 100%) as a 

yellowish syrup. 

Anal. Calcd for CB18BH B28BO B4BSi: 64.25 C, 8.39 H. Found: 64.22 C, 8.40 H. 

[α]P

20
PBD B= +46.4 (c 1.00, DCMB). 

146: RMN ¹H (CDClB3B, 400 MHz) δ in ppm: 7.40 – 7.26 (m, 5H, HBaromatic B); 4.93 (d, 1H, JBAB B= 

11.8 Hz, CHB2BPh); 4.76 (d, 1H, JBAB B= 11.8 Hz, CHB2BPh); 4.45 (qd, 1H, JB4,3 B= 2.6 Hz, JB4,5 B= 6.8 Hz, H-4); 

4.07 (m, 2H, H-2, H-3); 1.32 (d, 3H, JB5,4 B= 6.8 Hz, H-5); 0.94 (t, 9H, JBCH3,CH2 B= 8.0 Hz, CHB3SiB); 0.60 (q, 

6H, JBCH2,CH3 B= 8.0 Hz, CHB2SiB). RMN P

13
PC (CDClB3B, 100.6 MHz) δ en ppm: 173.0 (C=O); 136.8 (CBaromatic B); 
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128.3, 128.1, 127.9 (UCUHBaromaticB); 81.5 (C-4); 73.9 (C-2); 74.0 (C-3); 72.0 (UCUHB2 BPh); 17.8 (C-5); 6.54 

(UCUH B3SiB); 4.60 (UCUH B2SiB). 

 

2-O-Benzyl-5-deoxy-3-O-triethylsilyl-α,β-D-ribofuranose (147). P

142
P
 

 
The lactone 146 (550 mg, 1.63 mmols) was reduced following the general procedure for 3 h at –

78ºC. Column chromatography of the residue (hexane: ethyl acetate = 1:1) afforded the furanose 147 

(530 mg, 96 %, an α/β inseparable mixture, α/β  = 1:3) as yellowish syrup. 

Spectroscopic data from α/β mixture: 

Anal. Calcd for CB18BH B30BO B4BSi: 63.87 C, 8.93 H. Found: 63.83 C, 8.91 H. 

147α: RMN ¹H (CDClB3B, 400 MHz) δ in ppm: 7.39 – 7.26 (m, 5H, HBaromaticB); 5.29 (d, 1H, JB1,OH B= 3.2 

Hz, H-1); 4.76 – 4.67 (m, 2H, 2CHB2BPh); 4.09 (dq, 1H, JB4,5 B= 6.4 Hz, JB4,3 B= 7.6 Hz, H-4); 4.04 (d, 1H, 

J BOH,1 B= 3.2 Hz, OH); 4.02 (dd, 1H, JB3,2 B= 4.4 Hz, JB3,4 B= 7.6 Hz, H-3); 3.71 (d, 1H, JB2,3 B= 4.4 Hz, H-2); 1.32 

(d, 3H, JB5,4 B= 6.4 Hz, H-5); 0.95 (m, 9H, CH B3SiB); 0.67-0.65 (m, 6H, CHB2SiB). RMN P

13
PC (CDClB3 B, 100.6 

MHz) δ in ppm: 137.7 (CBaromatic B); 128.5, 128.0, 127.9 (UCUHBaromatic B); 96.1 (C-1); 83.1 (C-2); 80.1 (C-4); 

77.2 (C-3); 72.7 (UCUH B2BPh); 20.1 (C-5); 6.98 (UCUH B3SiB); 4.60 (UCUHB2SiB). 

147β: RMN ¹H (CDClB3B, 400 MHz) δ in ppm: 7.38 – 7.28 (m, 5H, HBaromaticB); 5.27 (dd, 1H, J B1,OH B= 

11.6 Hz, JB1,2 B= 4.0 Hz, H-1); 4.76 – 4.64 (m, 2H, 2CHB2 BPh); 4.45 (d, 1H, JBOH,1 B= 11.6 Hz, OH); 4.21 (qd, 

1H, JB4,5 B= 6.8 Hz, JB4,3 B= 2.8 Hz, H-4); 3.88 (dd, 1H, J B3,4 B= 2.8 Hz, JB3,2 B= 4.4 Hz, H-3); 3.79 (dd, 1H, JB2,1 B= 

4.0 Hz, JB2,3 B= 4.4 Hz, H-2); 1.17 (d, 1H, JB5,4 B= 6.8 Hz, H-5); 0.97 (m, 9H, CHB3SiB); 0.67 – 0.60 (m, 6H, 

CH B2SiB). RMN P

13
PC (CDClB3B, 100.6 MHz) δ in ppm: 138.3 (CBaromatic B); 128.6, 128.1, 128.0 (UCUHBaromatic B); 100.0 

(C-1); 80.1 (C-4); 78.5 (C-4); 77.5 (C-2); 76.9 (C-3); 72.7(UCUH B2BPh); 19.6 (C-5); 6.91 (UCUH B3SiB); 4.60 

(UCUH B2SiB). 

 

3,5-Dideoxy-2-O-methyl-D-threo-2-en-1,4-lactone (150).142
 

 
In a round-bottomed flask, wrapped with aluminium foil, MeI (1.3 ml, 21 mmol, 7 eq) was addedd 

to a solution of lactone 143 (396 mg, 3 mmol, 1 eq) in anhydrous DMF (5 ml, 0.6 M). Then freshly 

prepared Ag2O (2.1 g, 9 mmol, 3eq) was added in portions with vigorous stirring. The mixture was 

stirred at rt for 5 h subsequently filtered through celite. The filtrate was evaporated, quenched with HB2BO 

and extracted with ethyl acetate (3x20 ml). The combined organic layer was washed with water (2x20 

ml), brine (1x20 ml), dried on anhydrous MgSO B4B and concentrated under vacuum. The crude product 
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was purified by column chromatography using hexane: ethyl acetate = 2:1 as the eluent to afford 

compound 150 (351 mg, 91%) as yellowish syrup. 

Anal. Calcd for CB6BH B8BOB3B: 56.24 C, 6.29 H. Found: 56.27 C, 6.30 H 

150: RMN ¹H (CDClB3B, 400 MHz) δ in ppm: 6.17 (d, 1H, JB3,4 B= 2.0 Hz, H-3); 5.07 (qd, 1H, JB4,5 B=  6.4 

Hz, JB4,3 B= 1.2 Hz, H-4); 3.81 (s, 3H, OMe); 1.45 (d, 3H, JB5,4 B= 6.5 Hz, H-5). RMN P

13
PC (CDClB3B, 100.6 

MHz) δ in ppm: 167.7 (C=O); 146.8 (C-2); 118.2 (C-3); 75.4 (C-4); 58.0 (OMe); 20.3 (C-5). 

 

Methyl α,β−D-Ribofuranoside (151). 

 
Acatalytic amount of cc. HB2BSOB4B (0.5 ml, 98% v/v) was added to a solution of α,β-D-ribofuranose 

90 (30.26 g, 200 mmol) in anhydrous MeOH (200 ml). The mixture was stirred for 48 h at 5 ºC until 

starting material was consumed (TLC analysis). The reaction was quenched adding portions of NaOMe 

and shaking vigorously until neutral pH was reached. The suspension was filtrated and concentrated 

under vacuum. The afforded crude product was used in the next reaction step. 

 

Methyl 2,3-O-p-Methoxybenzylidene-α,β-D-ribofuranoside (152). 

O

OO

OMe
HO

O  
Anhydrous ZnClB2B (13.1 g, 200 mmol) and anisaldehyde (p-methoxybenzaldehyde, 13.4 ml, 14.98 

g, 110 mmol) were added to a solution of ribofuranoside 151 (16.15 g, 100 mmol) anhydrous MeCN 

(50 ml). The mixture was stirred for 48 h at rt until starting material was consumed (TLC analysis). The 

reaction was quenched with NaHCOB3B solution and extracted with ethyl acetate (3x20 ml). The 

combined organic layer was washed with water (2x20 ml), brine (1x20 ml), dried on anhydrous MgSOB4 B 

and concentrated under vacuum. The crude product was purified by flash chromatography (hexane: 

ethyl acetate = 2:1) to afford the ribofuranoside 152 (15.06 g, 53.36 mmol, 53% in two steps) as a white 

solid. 

RBfB (hexane: ethyl acetate = 2:1): 0.40.  

Spectroscopic data obtained from the α/β mixture. 

152-major: P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: 7.38 (d, 2H, J = 8.4 Hz, HBaromatic B), 6.90 (d, 2H, J 

= 8.4 Hz, HBaromaticB); 5.92 (s, 1H, ArCHOB2B); 5.09 (s, 1H, JB1,2 B = 0.0 Hz, H-1); 4.97 (d, 1H, JB2,3 B = 6.0 Hz, H-
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2); 4.71 (d, 1H, JB3,4B = 0.0 Hz, H-3); 4.52 (qd, 1H, JB4,5 B = 3.2 Hz, H-4); 3.80 (s, 3H, OMe); 3.68 (d, 3H, H-

5); 3.47 (s, 3H, OMe); 3.20 (dd, 1H, JBOH,5 B = 9.2, 3.2 Hz, OH). P

13
PC NMR (CDClB3B, 100.6 MHz) δ in ppm: 

160.78, 128.33 (CBaromatic B); 128.21, 113.94 (UCUH Baromatic B); 109.29 (C-1); 105.86 (AcUCUHOB2B); 88.23 (C-4); 

85.09 (C-3); 81.07 (C-2); 64.16 (C-5); 55.70 (ArOUCUHB3B); 55.43 (OUCUH B3B). 

152-minor: P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: 7.42 (d, 2H, J = 8.8 Hz, HBaromatic B), 6.91 (d, 2H, J 

= 8.8 Hz, HBaromaticB); 5.72 (s, 1H, ArCHOB2B); 5.12 (s, 1H, JB1,2 B = 0.0 Hz, H-1); 4.88 (d, 1H, JB2,3 B = 6.0 Hz, H-

2); 4.67 (d, 1H, JB3,4B = 0.0 Hz, H-3); 4.60 (qd, 1H, JB4,5 B = 2.8 Hz, H-4); 3.80 (s, 3H, OMe); 3.66 (d, 3H, H-

5); 3.47 (s, 3H, OMe); 3.35 (dd, 1H, JBOH,5 B = 10.4, 2.4 Hz, OH). P

13
PC NMR (CDCl B3B, 100.6 MHz) δ in 

ppm: 160.96, 128.02 (CBaromaticB); 128.47, 113.94 (UCUH Baromatic B); 109.74 (C-1); 104.19 (AcUCUHOB2B); 88.21 (C-

4); 85.26 (C-3); 82.45 (C-2); 64.07 (C-5); 55.69 (ArO UCUH B3 B); 55.43 (OUCUHB3B). 

 

Methyl 5-Deoxy-2,3-O-p-methoxybenzylidene-5-iodo-α,β-D-ribofuranoside (153). 

O

OO

OMe
I

O  
Iodine (13.1 g, 53.2 mmol, 1.5 eq.) was added to a solution of ribofuranoside 152 (10 g, 35.5 

mmol, 1.0 eq), PhB3BP (13.97 g, 53.2 mmol, 1.5 eq) and imidazole (4.8 g, 71.0 mmol, 2.0 eq.) in 

anhydrous THF (355 ml, 0.1 M) and then was heated to reflux. After 1h the reaction mixturwe was 

cooled to rt and concentrated under vacuum, queched with water and extracted with ethyl acetate (3x20 

ml). The combined organic layer was washed with water (2x20 ml), brine (1x20 ml), dried on 

anhydrous MgSOB4B and concentrated under vacuum. The crude of the reaction was purified by column 

chromatography (from hexane to hexane: ethyl acetate = 3:1) to afford compound 153 (12.8 g, 32.7  

mmol, 92%) as a yellowish solid. 

RBfB (hexane: ethyl acetate = 6:1): 0.52.  

152-major: P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: 7.38 (d, 2H, J = 8.0 Hz, HBaromatic B); 6.88 (d, 2H, J 

= 8.0 Hz, HBaromaticB); 5.91 (s, 1H, ArCHOB2B); 5.20 (s, 1H, JB1,2 B = 0.0 Hz, H-1); 4.73 (d, 1H, JB2,3 B = 5.6 Hz, H-

2); 4.69 (d, 1H, JB3,4B = 0.0 Hz, H-3); 4.61 (dd, 1H, JB4,5a B = 10.0 Hz, JB4,5b = 6.4 Hz, H-4); 3.79 (s, 3H, 

ArOMe); 3.80 (s, 3H, OMe); 3.39 (s, 3H, OMe); 3.23 (dd, 1H, JB5a,5b B = 4.0 Hz, H-5a); 3.32 (dd, 1 H, 

J B5a,5b B = 4.0 Hz, H-5b). P

13
PC NMR (CDClB3B, 100.6 MHz) δ in ppm: 160.77, 128.05 (CBaromatic B); 128.50, 

113.87 (UCUH Baromatic B); 109.37 (C-1); 106.14 (AcUCUHOB2B); 87.23 (C-4); 85.93 (C-3); 83.40 (C-2); 55.45 

(ArOUCUHB3B); 55.59 (OUCUH B3B); 6.63 (C-5). 

152-minor: P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: 7.42 (d, 2H, J = 8.0 Hz, HBaromatic B), 6.88 (d, 2H, J 

= 8.0 Hz, HBaromaticB); 5.72 (s, 1H, ArCHOB2B); 5.15 (s, 1H, JB1,2 B = 0.0 Hz, H-1); 4.93 (d, 1H, JB2,3 B = 5.6 Hz, H-
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2); 4.72 (d, 1H, JB3,4B = 0.0 Hz, H-3); 4.56 (dd, 1H, JB4,5a B = 7.6 Hz, JB4,5a B = 6.8 Hz, H-4); 3.79 (s, 3H, 

ArOMe); 3.39 (s, 3H, OMe); 3.34 (dd, 1H, JB5a,5b B = 4.0 Hz, H-5a); 3.20 (dd, 1H, JB5a,5b B = 4.0 Hz, H-5b). 

P

13
PC NMR (CDCl B3B, 100.6 MHz) δ in ppm: 160.92, 128.27 (C Baromatic B); 128.50, 113.87 (UCUHBaromatic B); 109.42 

(C-1); 104.35 (AcUCUHOB2B); 86.82 (C-4); 84.57 (C-3); 82.78 (C-2); 55.45 (ArOUCUH B3B); 55.59 (OUCUH B3 B); 6.63 

(C-5). 

 

Methyl 5-Deoxy-2,3-O-p-methoxybenzylidene-α,β-D-ribofuranoside (154). 

O

OO

OMe

O  
AIBN (42 mg, 0.26 mmol, 0.8% mol) and BuB3 BSnH (9.4 ml, 10.2 g, 35.2 mmol, 1.1 eq) were added 

to a solution of ribofuranoside 153 (10 g, 32.0 mmol, 1.0 eq) in anhydrous and deoxygenated 

toluene(107 ml, 0.3M). The resulting mixture was warmed up under reflux for 17 h and the toluene 

evaporated. The crude was purified by column chromatography (from hexane to hexane: ethyl acetate = 

3:1) to afford compound 154 (12.8 g, 32.7 mmol, 92%) as a yellowish syrup. 

RBfB (hexane: ethyl acetate = 6:1): 0.50.  

Spectroscopic data obtained from the α/β mixture. 

154-major: P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: 7.38 (d, 2H, J = 8.8 Hz, HBaromatic B), 6.89 (d, 2H, J 

= 8.8 Hz, HBaromatic B); 5.92 (s, 1H, ArCHOB2B); 5.09 (s, 1H, JB1,2B = 0.0 Hz, H-1); 4.73 (d, 1H, JB2,-3 B = 5.6 Hz, 

H-2); 4.65 (d, 1H, JB3,4B = 0.0 Hz, H-3); 4.45 (qd, 1H, JB4,5B = 6.8 Hz, H-4); 3.79 (s, 3H, OMe); 3.35 (s, 3H, 

OMe); 1.34 (d, 3H, JB5,4B = 6.0 Hz, H-5). P

13
PC NMR (CDCl B3 B, 100.6 MHz) δ in ppm: 160.78, 128.33 

(CBaromatic B); 128.38, 113.91 (UCUHBaromatic B); 109.02 (C-1); 105.96 (AcUCUHOB2B); 86.42 (C-2); 84.97 (C-3); 82.84 

(C-4); 55.41 (ArOUCUH B3B); 54.52 (OUCUHB3B); 20.98 (C-5). 

154-minor: P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: 7.38 (d, 2H, J = 8.8 Hz, HBaromatic B), 6.89 (d, 2H, J 

= 8.8 Hz, HBaromaticB); 5.92 (s, 1H, ArCHOB2B); 5.09 (s, 1H, JB1,2 B = 0.0 Hz, H-1); 4.73 (d, 1H, JB2,3 B = 5.6 Hz, H-

2); 4.65 (d, 1H, J B3,4B = 0.0 Hz, H-3); 4.45 (qd, 1H, JB4,5 B = 6.8 Hz, H-4); 3.79 (s, 3H, OMe); 3.35 (s, 3H, 

OMe); 1.34 (d, 3H, JB5,4B = 6.0 Hz, H-5). P

13
PC NMR (CDCl B3 B, 100.6 MHz) δ in ppm: 160.81, 128.58 

(CBaromatic B); 128.49, 113.91 (UCUHBaromatic B); 109.28 (C-1); 104.10 (AcUCUHOB2B); 86.84 (C-2); 80.04 (C-3); 83.01 

(C-4); 55.41 (ArOUCUH B3B); 54.51 (OUCUHB3B); 21.98 (C-5). 
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Methyl 5-Deoxy-3-O-p-methoxybenzyl-α,β-D-ribofuranoside (155) and Methyl 5-Deoxy-3-O-

p-methoxybenzyl-α,β-D-ribofuranoside (156). 

   
A 1.0 M solution of DIBAL-H in DCMB (50 ml, 50 mmol) was added dropwise to a solution of 

ribofuranoside 154 (2.7 g, 10.0 mmol) in DCMB (50 ml, 0.1 M) at –78 ºC and was monitored by TLC 

(hexane: ethyl acetate = 3:1) until the starting product was consumed. After 30 minutes at –78 ºC, the 

reaction was quenched by adding the reaction mixture to methanol (100 ml) at 0 ºC and allowed to 

warm to rt. The white gel obtained was dissolved with the addition of 100 ml of 10 w/v% KOH solution 

The aqueous phase was extracted with ethyl acetate (3x20 ml). The combined organic layer was washed 

with water (2x20 ml), brine (1x20 ml), dried on anhydrous MgSOB4B and concentrated under vacuum.. 

The residue was purified by column chromatography (hexane: ethyl acetate = 3:1) to afford 2.6 g, 9.8 

mmol (98%) of 155 and 156 mixture as a yellowish syrup. The mixture was separated by 

recrystallization from hexane: ethyl acetate = 10:1 to afford compound 155 (977 mg, 3.64 mmol, 34%), 

compound 156 (1.194 g, 4.45 mmol, 41%) and the mixture of them (458 mg, 1.71 mmol 16%). 

RBfB (hexane: ethyl acetate = 2:1): 0.40.  

Spectroscopic data obtained from the α/β mixture. 

155β: P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: 7.27 (d, 2H, J = 8.4 Hz, HBaromatic B), 6.90 (d, 2H, J = 8.4 

Hz, HBaromatic B); 4.80 (s, 1H, JB1,2B = 0.0 Hz, H-1); 4.53 (d, 1H, JBABB = 11.6 Hz, CHB2BPh); 4.48 (d, 1H, JBABB = 

11.6 Hz, CHB2BPh); 4.08 (m, 1H, H-4); 4.01 (d, 1H, JB2,3 B = 4.4 Hz, H-2); 3.80 (s, 3H, ArOMe); (dd, 1H, JB3,4 B 

= 6.4 Hz, H-3); 3.34 (s, 3H, OMe); 2.82 (d, 1H, JBOH,2 B = 3.6 Hz, OH); 1.29 (d, 3H, JB4,5 B = 6.8 Hz, H-5). 

P

13
PC NMR (CDCl B3B, 100.6 MHz) δ in ppm: 159.68, 129.35 (C BaromaticB); 129.70, 114.06 (UCUHBaromatic B); 108.43 

(C-1); 83.64 (C-3); 77.40 (C-4); 73.58 (C-2); 72.59 (UCUHB2 BPh); 55.32 (ArOUCUH B3B); 54.91 (OUCUHB3B); 20.92 

(C-5). 

156α: Could not be determined. 

RBfB (hexane: ethyl acetate = 2:1): 0.38.  

Spectroscopic data obtained from the α/β mixture. 

155β: P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: 7.27 (d, 2H, J = 8.8 Hz, HBaromatic B), 6.89 (d, 2H, J = 8.8 

Hz, HBaromatic B); 4.84 (s, 1H, JB1,2B = 0.0 Hz, H-1); 4.66 (d, 1H, JBABB = 11.6 Hz, CHB2BPh); 4.54 (d, 1H, JBABB = 

11.6 Hz, CHB2BPh); 3.97 (m, 1H, H-4); 3.91 (dd, 1H, JB3,4B = 5.6 Hz, H-3); 3.84 (d, 1H, JB2,3 B = 4.4 Hz, H-2); 

3.81 (s, 3H, ArOMe); 3.35 (s, 3H, OMe); 2.57 (d, 1H, JBOH,2 B = 8.8 Hz, OH); 1.31 (d, 3H, JB4,5B = 6.4 Hz, 

H-5). P

13
PC NMR (CDClB3B, 100.6 MHz) δ in ppm: 159.75, 129.38 (CBaromatic B); 129.87, 114.14 (UCUHBaromatic B); 

106.01 (C-1); 82.36 (C-2); 80.52 (C-4); 75.98 (C-3); 72.72 (UCUHB2 BPh); 55.47 (ArOUCUH B3B); 55.23 (OUCUHB3B); 

20.24 (C-5). 
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156α: Could not be determined. 

 

Methyl 2,3-O-Benzylidene-α,β-D-ribofuranoside (157). 

O

OO

OMe
HO

 
Anhydrous ZnClB2B (13.1 g, 200 mmol) and benzaldehyde (10.2 ml, 10.6 g, 110 mmol) were added 

to a solution of ribofuranoside 151 (16.15 g, 100 mmol) anhydrous MeCN (50 ml). The mixture was 

stirred for 48 h at rt until the starting material was consumed (TLC analysis). The reaction was 

quenched with NaHCOB3B solution and the pruct was extracted with ethyl acetate (3x20 ml). The 

combined organic layer was washed with water (2x20 ml), brine (1x20 ml), dried on anhydrous MgSOB4 B 

and concentrated under vacuum. The crude product was purified by flash column (hexane: ethyl acetate 

= 2:1) to afford the lactone 157 (11.02 g, 43.72 mmol, 44% in two steps) as a white solid. 

RBfB (hexane: ethyl acetate = 2:1): 0.43.  

Spectroscopic data obtained from the α/β mixture. 

157-major: P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: 7.51 – 7.26 (m, 5H, HBaromatic); 5.98 (s, 1H, 

ArCHOB2B); 5.13 (s, 1H, H-1); 4.93 (d, 1H, JB2,3 B = 5.6 Hz, H-2); 4.70 (d, 1H, JB3,4B = 0.0 Hz, H-3); 4.62 (qd, 

1H, JB4,5B = 2.0 Hz, H-4); 3.73 (d, 2H, JB5,4B = 6.0 Hz, H-5); 3.71 (bs, 1H, OH); 3.48 (s, 3H, OMe). P

13
PC 

NMR (CDClB3B, 100.6 MHz) δ in ppm: 134.26 (CBaromatic B); 129.10, 128.66, 127.09 (UCUHBaromatic B); 109.78 (C-

1); 104.36 (AcUCUHOB2B); 88.29 (C-4); 85.33 (C-3); 82.70 (C-2); 64.24 (C-5); 55.84 (OUCUHB3 B). 

157-minor: P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: 7.51 – 7.26 (m, 5H, CBaromatic); 5.77 (s, 1H, 

ArCHOB2B); 5.11 (s, 1H, H-1); 4.89 (d, 1H, JB2,3 B = 5.6 Hz, H-2); 4.73 (d, 1H, JB3,4B = 0.0 Hz, H-3); 4.55 (qd, 

1H, JB4,5B = 2.0 Hz, H-4); 3.76 (d, 2H, JB5,4B = 6.0 Hz, H-5); 3.71 (bs, 1H, OH); 3.47 (s, 3H, OMe). P

13
PC 

NMR (CDClB3B, 100.6 MHz) δ in ppm: 134.21 (CBaromatic B); 129.86, 128.66, 126.75 (UCUHBaromatic B); 109.36 (C-

1); 104.36 (AcUCUHOB2B);B B89.20 (C-4); 86.47 (C-3); 81.26 (C-2); 64.15 (C-5); 55.84 (OUCUHB3 B). 

 

Methyl 2,3-O-Benzylidene-5-deoxy-5-iodo-α,β-D-ribofuranoside (158). 

O

OO

OMe
I

 
Iodine (7.6 g, 30.0 mmol, 1.5 eq.) was added to a solution of ribofuranoside 157 (5.0 g, 20.0 mmol, 

1.0 eq), PhB3BP (7.9 g, 30.0 mmol, 1.5 eq) and imidazole (2.7 g, 40.0 mmol, 2.0 eq.) in anhydrous THF 
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(200 ml, 0.1 M) and the reaction mixture was heated then to reflux. After 1h the reaction was cooled to 

rt and concentrated under vacuum, quenched with Na2S2O3  solution and extracted with ethyl acetate 

(3x20 ml). The combined organic layer was washed with water (2x20 ml), brine (1x20 ml), dried on 

anhydrous MgSOB4B and concentrated under vacuum. The crude of the reaction was used in the next step. 

RBfB (hexane: ethyl acetate = 6:1): 0.48.  

 

Methyl 2,3-O-Benzylidene-5-deoxy-α,β-D-ribofuranoside (159). 

O

OO

OMe

 
AIBN (26 mg, 0.16 mmol, 0.8% mol) and BuB3 BSnH (5.9 ml, 6.4 g, 22.0 mmol, 1.1 eq) were added 

to a solution of ribofuranoside 158 (20.0 mmol, 1.0 eq) in anhydrous and deoxygenated toluene (107 

ml, 0.3 M). The resulting mixture was heated to reflux for 17 h and the toluene evaporated. The crude 

was purified by column chromatography (from hexane to hexane: ethyl acetate = 6:1) to afford 

compound 159 (4.3 g, 18.3 mmol, 91% in two steps) as a yellowish syrup. 

RBfB (hexane: ethyl acetate = 6:1): 0.42.  

Spectroscopic data obtained from the α/β mixture. 

159-major: P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: 7.49 – 7.32 (m, 5H, HBaromatic); 5.97 (s, 1H, 

ArCHOB2B); 5.07 (s, 1H, H-1); 4.74 (d, 1H, JB2,3 B = 5.6 Hz, H-2); 4.67 (d, 1H, JB3,4B = 0.0 Hz, H-3); 4.47 (qd, 

1H, JB4,5B = 6.8 Hz, H-4); 3.37 (s, 3H, OMe); 1.35 (d, 3H, JB5,4 B = 6.0 Hz, H-5). P

13
PC NMR (CDClB3B, 100.6 

MHz) δ in ppm: 134.02 (CBaromatic B); 129.78, 128.63, 127.14 (UCUH Baromatic B); 109.29 (C-1); 104.28 (AcUCUHOB2B); 

86.64 (C-2); 85.17 (C-3); 82.92 (C-4); 54.64 (OUCUHB3B); 21.07 (C-5). 

159-minor: P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: 7.49 – 7.32 (m, 5H, HBaromatic); 5.77 (s, 1H, 

ArCHOB2B); 5.10 (s, 1H, H-1); 4.76 (d, 1H, JB2,3 B = 5.6 Hz, H-2); 4.60 (d, 1H, JB3,4B = 0.0 Hz, H-3); 4.54 (qd, 

1H, JB4,5B = 6.8 Hz, H-4); 3.36 (s, 3H, OMe); 1.34 (d, 3H, JB5,4 B = 6.0 Hz, H-5). P

13
PC NMR (CDClB3B, 100.6 

MHz) δ in ppm: 134.021 (CBaromatic B); 130.02, 128.63, 126.79 (CHBaromatic B); 109.06 (C-1); 106.13 

(AcUCUHOB2B);B B86.08 (C-3); 85.25 (C-2); 83.06 (C-4); 54.64 (OUCUH B3B); 21.23 (C-5). 

 

Methyl 3-O-tert-Butyldiphenylsilyl-5-deoxy-2-O-p-methoxybenzyl-α,β-D-ribofuranoside (160). 

 
Following the general procedure of silylation, ribofuranoside 156 (2.68 g, 10.0 mmol, 1 eq), Et B3 BN 

(1.2 ml, 16.2 g, 16 mmol, 1.6 eq), TBDPSCl (2.86 ml, 1.1 mmol, 1.1 eq) and DMAP (244 mg, 2.0 
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mmol, 0.2 eq) in anhydrous anhydrous DCM (50 ml, 0.2 M) were reacted at rt for 8 h. Column 

chromatography (hexane: ethyl acetate = 9:1) of the crude afforded 160 (4.97 g, 9.8 mmol 98%) as a 

yellowish syrup. 

RBfB  (hexane: ethyl acetate = 8:1): 0.78. 

Spectroscopic data obtained from the α/β mixture. 

160β: P

1
PH NMR (CDClB3B, 300 MHz) δ in ppm: 7.33 – 7.64 (4H, HBaromatic B); 7.44 – 7.28 (6H, HBaromatic B); 

7.18 (d, 2H, J = 8.4 Hz, HBaromatic B), 6.82 (d, 2H, J = 8.4 Hz, HBaromatic B); 4.73 (d, 1H, JB1,2 B = 0.9 Hz, H-1); 

4.53 (s, 2H, CHB2BPh); 4.13 (m, H-4); 4.05 (dd, 1H, JB3,4B = 6.6 Hz, H-3); 3.77 (s, 3H, ArOMe); 3.41 (d, 

1H, JB2,3B = 4.2 Hz, H-2); 3.22 (s, 3H, OMe); 1.05 (d, 3H, J B4,5 B = 6.6 Hz, H-5); 1.08 (s, 9H, tBu). P

13
PC NMR 

(CDClB3B, 75.4 MHz) δ in ppm: 159.24, 134.98, 133.79, 129.91 (CBaromaticB); 136.14, 136.11, 130.01, 

129.91, 129.40, 127.83, 127.76, 113.78 ( UCUH Baromatic B); 106.23 (C-1); 82.17 (C-2); 79.15 (C-4); 77.83 (C-

3); 71.96 (UCUHB2BPh); 55.40 (ArOUCUH B3B); 55.08 (OUCUH B3B); 27.14 (CH B3,tBuSiB); 26.73 (CBSiB); 19.99 (C-5). 

160α: P

1
PH NMR (CDClB3B, 300 MHz) δ in ppm: Could not be determined. 

 

Methyl 3-O-tert-Butyldiphenylsilyl-5-deoxy-α,β-D-ribofuranoside (161).  

 
Following the general procedure of oxidation of PMB group, ribofuranoside 160 (4.8 g, 9.5 mmol, 

1 eq), DDQ (2.3 g, 10 mmol, 1.05 eq) in humid DCM (48 ml, 0.2 M) were reacted at rt for 8 h. Column 

chromatography (hexane: ethyl acetate = 9:1) of the crude afforded 161 (3.49 g, 9.0 mmol 95%) as a 

yellowish syrup. 

RBfB  (hexane: ethyl acetate = 8:1): 0.43. 

Spectroscopic data obtained from the α/β mixture. 

161β: P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: 7.33 – 7.63 (4H, HBaromatic B); 7.49 – 7.38 (6H, HBaromatic B); 

4.80 (d, 1H, JB1,2B = 0.9 Hz, H-1); 4.05 (m, H-4, H-3); 3.86 (d, 1H, JB2,3 B = 3.6 Hz, H-2); 3.27 (s, 3H, OMe); 

1.11 (s, 9H, tBu); 0.87 (d, 3H, JB4,5B = 6.6 Hz, H-5). P

13
PC NMR (CDCl B3 B, 100.6 MHz) δ in ppm: 134.99, 

132.85, 132.50 (CBaromatic B); 136.03, 135.84, 130.48, 128.19, 128.11 ( UCUH Baromatic B); 108.42 (C-1); 79.99 (C-

4); 78.31 (C-3); 75.84 (C-2); 55.07 (OUCUHB3B); 27.15 (CHB3,tBuSiB); 26.74 (CBSiB); 20.13 (C-5). 

161α: P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: Could not be determined. 

 

Methyl 3-O-tert-Butyldiphenylsilyl-5-deoxy-2-O-methyl-α,β-D-ribofuranoside (162). 
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Ribofuranoside 161 (3.1 g, 8.0 mmol, 1.0 eq), NaH (384 mg, 9.6 mmol, 1.2 eq) in anhydrous THF 

(40 ml, 0.2 M) and finally MeI (890 µl, 1.4 g, 1.2 eq) were reacted at rt for 8 h. The reaction was 

quenched with saturated NH4ClB solution and extracted with ethyl acetate (3x20 ml). The combined 

organic layer was washed with water (2x20 ml), brine (1x20 ml), dried on anhydrous MgSO B4 B and 

concentrated under vacuum. The crude product was purified by flash column (hexane: ethyl acetate = 

9:1) of the crude afforded 162 (3.04 g, 7.6 mmol 95%) as a yellowish syrup. 

RBfB  (hexane: ethyl acetate = 8:1): 0.80. 

Spectroscopic data obtained from the α/β mixture. 

162β: P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: 7.75 – 7.63 (4H, HBaromatic B); 7.49 – 7.37 (6H, HBaromatic B); 

4.77 (d, 1H, JB1,2B = 0.9 Hz, H-1); 4.10 (m, H-4); 4.00 (dd, 1H, JB3,4 B = 6.4 Hz, H-3); 3.84 (dd, 1H, JB2,3 B = 4.8 

Hz, H-2); 3.27 (s, 3H, OMe); 3.24 (s, 3H, OMe); 1.12 (d, 3H, JB4,5 B = 6.4 Hz, H-5); 1.09 (s, 9H, tBu). P

13
PC 

NMR (CDClB3B, 75.4 MHz) δ in ppm: 133.81, 133.74 (CBaromatic B); 136.13, 136.06, 130.01, 129.96, 129.88, 

127.84, 127.78 ( UCUHBaromatic B); 105.60 (C-1); 84.22 (C-2); 79.22 (C-4); 77.60 (C-3); 58.06 (OUCUH B3 B); 55.13 

(OUCUHB3B); 27.12 (CHB3,tBuSiB); 27.06 (CBSiB); 20.19 (C-5).  

162α: P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: Could not be determined. 

 

3-O-tert-Butyldiphenylsilyl-5-deoxy-2-O-methyl-α,β-D-ribofuranose (163). 

 
Following the general procedure of demethylation, a cold (–78 ºC) solution of ribofuranoside 162 

(1.6 g, 4.0 mmol, 1.0 eq), PhSH (613 µl, 661 mg, 6.0 mmol, 1.5 eq) and BFB3B.EtB2BO (633 ml, 850 mg, 6.0 

mmol, 1.5 eq) in anhydrous DCM (20 ml, 0.2 M) was left to warm up to rt. The mixture was reacted at 

rt for 8 h and was quenched with TEA, concentrated and filtered over silica gel. The crude of the 

reaction was treated with NIS (1.08 g, 4.8 mmol, 1.2 eq) in MeCN/H B2BO = 10:1 and in 10 minutes 

quenched with the solution of NaB2BS B2BO B3 and extracted with ethyl acetate (3x20 ml). The combined 

organic layer was washed with water (2x20 ml), brine (1x20 ml), dried on anhydrous MgSO B4 B and 

concentrated under vacuum. Column chromatography (hexane: ethyl acetate = 6:1) of the crude 

afforded 163 (851 mg, 2.2 mmol 55%, an α/β inseparable mixture, α/β = 1:3) as a yellowish syrup. 

RBfB  (hexane: ethyl acetate = 6:1): 0.36. 

Spectroscopic data obtained from the α/β mixture. 

Anal. Calcd for CB22BH B30BO B4BSi: 68.36% C, 7.82% H. Found: 68.83% C, 7.91% H. 

163α: RMN ¹H (CDClB3B, 400 MHz) δ in ppm: 7.66 – 7.63 (4H, HBaromatic B); 7.22 – 7.16 (6H, HBaromatic B); 

5.14 (dd, 1H, J B1,OH B= 4.0 Hz, J B1,2 B= 5.6 Hz, H-1); 4.32 (d, 1H, JBOH,1 B= 4.0 Hz, OH); 3.99 (m, 1H, H-4); 

3.77 (dd, 1H, JB3,2 B= 4.4 Hz, JB3,4 B= 7.6 Hz, H-3); 3.38 (dd, 1H, JB2,3 B= 4.4 Hz, H-2); 1.01 (m, 9H, CHB3tBuSi B); 
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0.69 (d, 3H, JB5,4 B= 6.4 Hz, H-5). RMN P

13
PC (CDClB3B, 100.6 MHz) δ in ppm: 133.88, 132.62 (CBaromatic B); 

135.95, 135.88, 130.18, 129.87, 128.82, 127.90 ( UCUH BaromaticB); 99.11 (C-1); 80.68 (C-4); 78.69 (C-2); 

75.29 (C-3); 57.77 (OUCUH B3B); 26.98 (CBSiB); 26.94 (UCUHB3,tBuSiB); 19.17 (C-5). 

163β: RMN ¹H (CDClB3B, 400 MHz) δ in ppm: 7.58 – 7.56 (4H, HBaromatic B); 7.22 – 7.16 (6H, HBaromaticB); 

5.17 (d, 1H, JB1,OH B= 4.0 Hz, H-1); 4.32 (d, 1H, JBOH,1 B= 4.0 Hz, OH); 4.05 (m, 1H, H-4); 3.77 (dd, 1H, JB3,2 

B= 4.4 Hz, JB3,4 B= 7.6 Hz, H-3); 3.38 (d, 1H, JB2,3 B= 4.4 Hz, H-2); 1.01 (m, 9H, CHB3tBuSi B); 0.69 (d, 1H, JB5,4 B= 

6.4 Hz, H-5). RMN P

13
PC (CDClB3B, 100.6 MHz) δ in ppm: 133.07, 132.56 (CBaromatic B); 136.10, 135.91, 

130.18, 130.06, 127.81, 127.75 (UCUH Baromatic B); 95.95 (C-1); 80.18 (C-4); 79.83 (C-2); 76.65 (C-3); 58.56 

(OUCUHB3B); 26.98 (CBSiB); 26.94 (UCUHB3,tBuSiB); 19.13 (C-5). 

 

(E/Z)-3-O-Benzyl-4-O-tert-butyldimethylsilyl-1,2,6-trideoxy-1-phenylsulfanyl-D-ribo-hex-1-

enitol (164) and (E/Z)-3-O-Benzyl-5-O-tert-butyldimethylsilyl-1,2,6-trideoxy-1-phenylsulfanyl-D-

ribo-hex-1-enitol (167). TP

142
 

  
Folloing the general method of the WH olefination reactions, ribofuranose 149 (520 mg, 1.54 

mmol, 1eq), (phenylthiomethyl)diphenylphosphine oxide (1.49 g, 4.61 mmol, 3eq), and n-BuLi (3.0 ml 

of 1.6 M hexane solution, 4.76 mmol, 3.1 eq) were left to react for 15 h. The reaction was monitored by 

TLC (hexane: ethyl acetate = 1:4). Column chromatography (from hexane to hexane: ethyl acetate = 

3:1) afforded desired 164 (417 mg, 0.94 mmol, 61%, a Z/E inseparable mixture, Z/E = 1:16) as 

yellowish syrup and migrated compound 167 (109 mg, 0.26 mmol, 16%, a Z/E inseparable mixture, Z/E 

= 1:21) as yellowish syrup. 

Spectroscopic data obtained from E/Z mixture. 

164E: RMN ¹H (CDClB3B, 400 MHz) δ in ppm: 7.39 – 7.24 (m, 10H, HBaromaticB); 6.42 (d, 1H, JB1,2 B= 15.6 

Hz, H-1); 5.73 (dd, 1H, JB2,3 B= 8.0 Hz, JB2,1 B= 15.6 Hz, H-2); 4.61 (d, 1H, JBAB B= 11.6 Hz, CHB2BPh); 4.37 (d, 

1H, JBAB B= 11.6 Hz, CHB2BPh); 3.93 (dd, 1H, JB3,2 B= 8.0 Hz, JB3,4 B= 6.8 Hz, H-3); 3.86 (m, 1H, H-5); 3.63 (dd, 

1H, JB4,3 B= 6.8 Hz, JB4,5 B= 5.6 Hz, H-4); 2.14 (d, 1H, JBOH,5 B= 4.8 Hz, OH); 1.15 (d, 3H, JB6,5 B= 6.0 Hz, H-6); 

0.87 (s, 9H, tBuSi); 0.06 (s, 3H, MeSi); 0.05 (s, 3H, MeSi). RMN P

13
PC (CDClB3B, 100.6 MHz) δ in ppm: 

138.1 – 127.3 (CBaromatic B, UCUH Baromatic B); 129.4 (C-2); 128.6 (C-1); 81.5 (C-3); 78.2 (C-4); 70.5 (UCUHB2BPh); 69.8 

(C-5); 26.2 (UCUHB3,tBuSiB) 18.8 (C-6); 18.4 (CBtBuSiB); –3.70, –4.15 (UCUHB3SiB).  

164Z: RMN ¹H (CDClB3B, 400 MHz) δ in ppm: 7.40 – 7.23 (m, 10H, HBaromaticB); 6.55 (d, 1H, JB1,2 B= 9.6 

Hz, H-1); 5.84 (dd, 1H, JB2,3 B= 9.2 Hz, JB2,1 B= 9.6 Hz, H-2); 4.63 (d, 1H, JBAB B= 11.6 Hz, CHB2 BPh); 4.50 (dd, 

1H, JB3,2 B= 9.2 Hz, JB3,4 B= 4.8 Hz, H-3); 4.42 (d, 1H, JBAB B= 11.6Hz, CHB2BPh); 3.86 (qd, 1H, JB5,6 B= 6.4 Hz, JB5,4 

B= 5.2 Hz, H-5); 3.75 (dd, 1H, JB4,3 B= 4.8 Hz, JB4,5 B= 5.2 Hz, H-4); 2.47 (d, 1H, JBOH,5 B= 4.8 Hz, OH); 1.20 (d, 
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3H, JB6,5 B= 6.4 Hz, H-6); 0.91 (s, 12H, tBuSi); 0.095 (s, 3H, MeSi); 0.082 (s, 3H, MeSi). RMN P

13
PC 

(CDClB3 B, 100.6 MHz) δ in ppm: 138.5, 138.3 (C Baromatic B); 129.5 – 126.9 (UCUHBaromatic B); 129.3 (C-2); 129.2 

(C-1); 78.4 (C-4); 77.2 (C-3); 70.8 (UCUH B2BPh); 69.7 (C-5); 26.2 (UCUHB3,tBuSiB) 19.0 (C-6); 18.4 (CBtBuSiB); –3.57, 

–4.32 (UCUH B3SiB). 

Spectroscopic data obtained from E/Z mixture.  

Anal. Calcd for CB25BH B36BO B3BSSi: 67.52 C, 8.16 H, 7.21 S. Found: 67.58 C, 8.17 H, 7.22 S. 

167E: RMN ¹H (CDClB3B, 300 MHz) δ in ppm: 7.49 – 7.23 (m, 10H, HBaromaticB); 6.50 (d, 1H, JB1,2 B= 15.0 

Hz, H-1); 5.84 (dd, 1H, JB2,3 B= 7.5 Hz, JB2,1 B= 15.0 Hz, H-2); 4.65 (d, 1H, JBAB B= 12.0 Hz, CH B2BPh); 4.40(d, 

1H, JBAB B= 12.0 Hz, CHB2BPh); 3.93 (dd, 1H, JB3,2 B= 7.5 Hz, JB3,4 B= 6.4 Hz, H-3); 3.77 – 3.73 (m, 1H, H-4); 

3.62 (qd, 1H, JB5,6B= 6.0 Hz, JB5,OH B= 2.7 Hz, H-5); 2.32 (d, 1H, JBOH,5 B= 2.7 Hz, OH); 1.10 (d, 3H, JB6,5 B= 6.0 

Hz, H-6); 0.85 (s, 9H, tBuSi); 0.069 (s, 3H, MeSi); 0.033 (s, 3H, MeSi). RMN P

13
PC (CDClB3 B, 75.4 MHz) 

δ in ppm: 138.2, 138.1 (CBaromaticB); 130.4, 129.4, 128.9, 128.7, 128.6, 128.1, 127.9, 127.2 ( UCUH Baromatic B, C-1, 

C-2); 79.7, 76.8, 70.4 (C-4, C-3, UCUHB2BPh); 68.9 (C-5); 26.0 (UCUH B3,tBuSiB); 18.22 (CBtBuSiB); 18.20 (C-6); –3.84, 

–4.59 (UCUH B3SiB). 

167Z: RMN ¹H (CDClB3B, 400 MHz) δ in ppm: 7.41 – 7.24 (m, 10H, HBaromatic B); 6.64 (d, 1H, JB1,2 B= 9.6 

Hz, H-1); 5.86 (dd, 1H, JB2,3 B= 8.4 Hz, JB2,1 B= 9.6 Hz, H-2); 4.66 (d, 1H, JBAB B= 11.6 Hz, CHB2 BPh); 4.41(d, 

1H, JBAB B= 11.6 Hz, CHB2BPh); 4.34 (dd, 1H, JB3,2 B= 8.4 Hz, JB3,4 B= 8.0 Hz, H-3); 4.08 (qd, 1H, JB5,6 B= 6.8 Hz, 

J B5,4 B= 4.0 Hz, H-5); 3.71 (dd, 1H, JB4,3 B= 8.0 Hz, JB4,5 B= 4.0 Hz, H-4); 2.21 (s, 1H, OH); 1.10 (d, 3H, J B6,5 B= 

6.8 Hz, H-6); 0.88 (s, 9H, tBuSi); 0.09 (s, 3H, MeSi); 0.08 (s, 3H, MeSi). RMN P

13
PC (CDClB3 B, 100.6 

MHz) δ in ppm: 136.1, 135.9 (CBaromatic B); 130.1 (C-1); 129.5 – 126.9 (UCUH Baromatic B); 129.2 (C-2); 76.3 (C-4); 

75.9 (C-3); 70.7 (UCUH B2BPh); 69.0 (C-5); 26.0 (UCUH B3,tBuSiB); 18.2 (CBtBuSiB); 17.1 (C-6); –4.14, –4.61 (UCUH B3SiB). 

 

(E/Z)-3-O-Benzyl-1,2,6-trideoxy-4-O-triethylsilyl-1-phenylsulfanyl-D-ribo-hex-1-enitol (168) 

and (E/Z)-3-O-Benzyl-1,2,6-trideoxy-5-O-triethylsilyl-1-phenylsulfanyl-D-ribo-hex-1-enitol 

(169).TP

142
 

OH

OBnTESO

desired 168, Z/E 1:5

SPh

 
Folloing the general method of the WH olefination reactions, ribofuranose 147 (625 mg, 1.85 

mmol, 1eq), (phenylthiomethyl)diphenylphosphine oxide (2.10 g, 6.46 mmol, 3.5 eq), and n-BuLi (4.15 

ml of 1.6 M hexane solution, 6.65 mmol, 3.6 eq) were left to react for 18 h and eliminated for 2 h. The 

reaction was monitored by TLC (hexane: ethyl acetate = 4:1). Column chromatography (from hexane to 

hexane: ethyl acetate = 3:1) afforded migrated compound 169 (517 mg, 1.65 mmol, 63%, a Z/E 

inseparable mixture, Z/E = 1:11) as yellowish syrup and desired compound 168 as (140 mg, 0.45 mmol, 

17%, a Z/E inseparable mixture, Z/E = 1:5 mixture) as yellowish syrup. 
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Spectroscopic data obtained from E/Z mixture. 

168E: RMN ¹H (CDClB3B, 400 MHz) δ in ppm: 7.40 – 7.23 (m, 10H, HBaromatic B); 6.43 (d, 1H, JB1,2 B= 

15.0 Hz, H-1); 5.74 (dd, 1H, JB2,3 B= 8.4 Hz, JB2,1 B= 15.0 Hz, H-2); 4.63 (d, 1H, JBAB B= 11.6 Hz, CHB2BPh); 4.38 

(d, 1H, JBAB B= 11.6 Hz, CHB2BPh); 3.91 (dd, 1H, J B3,2 B= 8.0 Hz, J B3-4B= 6.0 Hz, H-3); 3.84 (ddd, 1H, JB5,4 B= 5.2 

Hz, JB5,6 B= 6.0 Hz, JB5,OH B= 4.8 Hz, H-5); 3.63 (dd, 1H, JB4,3 B= 6.0 Hz, JB4,5 B= 5.2 Hz, H-4); 2.21 (d, 1H, JBOH,5 B= 

4.8 Hz, OH); 1.15 (d, 3H, JB6,5 B= 6.0 Hz, H-6); 0.93 (t, 9H, JBCH3,CH2 B= 8.0 Hz, CHB3SiB); 0.60 (q, 6H, JBCH2,CH3 

B= 8.0 Hz, CHB2SiB). RMN P

13
PC (CDClB3B, 100.6 MHz) δ in ppm: 138.2 – 134.8 (CBaromatic B); 138.6 – 127.4 

(UCUH Baromatic B, C-1, C-2); 81.8 (C-3); 78.3 (C-4); 70.6 (UCUH B2BPh); 69.9 (C-5); 18.8 (C-6); 7.17 (UCUHB3SiB); 5.42 

(UCUH B2SiB). 

168Z: RMN ¹H (CDClB3B, 400 MHz) δ in ppm: Could not be determined. 

169E: RMN ¹H (CDClB3B, 400 MHz) δ in ppm: 7.41 – 7.32 (m, 10H, HBaromatic B); 6.49 (d, 1H, JB1,2 B= 

15.2 Hz, H-1); 5.83 (dd, 1H, JB2,3 B= 8.4 Hz, JB2,1 B= 15.2 Hz, H-2); 4.64 (d, 1H, JBAB B= 12.0 Hz, CHB2BPh); 4.38 

(d, 1H, JBAB B= 12.0 Hz, CHB2BPh); 3.95 – 3.90 (m, 2H, H-5, H-3); 3.63 (ddd, 1H, JB4,3 B= 5.6 Hz, JB4,5 B= 6.0 Hz, 

JB4,OH B= 2.4 Hz, H-4); 2.37 (d, 1H, JBOH,4 B= 2.4 Hz, OH); 1.10 (d, 3H, JB6,5 B= 6.0 Hz, H-6); 0.92 (t, 9H, 

J BCH3,CH2 B= 8.0 Hz, CHB3SiB); 0.57 (q, 6H, JBCH2,CH3 B= 8.0 Hz, CH B2SiB). RMN P

13
PC (CDClB3B, 100.6 MHz) δ in 

ppm: 138.2, 134.8 (CBaromatic B); 130.4, 129.3 ( UCUH Baromatic B); 129.0 (C-1); 128.6 (UCUH Baromatic B); 128.5 (C-2); 

128.1, 127.9, 127.2 (UCUHBaromaticB); 79.9 (C-3); 77.0 (C-4); 70.4 (UCUH B2BPh); 68.6 (C-5); 18.2 (C-6); 7.07 

(UCUH B3SiB); 5.25 (UCUH B2SiB). 

169Z: RMN ¹H (CDClB3B, 400 MHz) δ in ppm: Could not be determined. 

 

(E/Z)-4-O-tert-Butyldiphenylsilyl-1,2,6-trideoxy-3-O-methyl-1-phenylsulfanyl-D-ribo-hex-1-

enitol (172) and (E/Z) -5-O-tert-Butyldiphenylsilyl -1,2,6-trideoxy-3-O-methyl-1-phenylsulfanyl-D-

ribo-hex-1-enitol (173). 

   
Folloing the general method of the WH olefination reactions, ribofuranose 163 (387 mg, 1.0 mmol, 

1eq), (phenylthiomethyl)diphenylphosphine oxide (42) (1.3 g, 4.0 mmol, 4.0 eq), and n-BuLi (2.75 ml 

of 1.6 M hexane solution, 4.4 mmol, 4.4 eq) were left to react for 18 h and eliminated for 2 h. The 

reaction was monitored by TLC (hexane: ethyl acetate = 1:4). Column chromatography (from hexane to 

hexane: ethyl acetate = 1:3) afforded migrated compound 173 as (276 mg, 0.56 mmol, 56%, a Z/E 

inseparable mixture, Z/E = 1:6.6) as yellowish syrup and desired compound 172 as (90 mg, 0.18 mmol, 

18%, a Z/E inseparable mixture, Z/E = 1:7) as yellowish syrup. 

Spectroscopic data obtained from E/Z mixture. 
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172E: RMN ¹H (CDClB3B, 400 MHz) δ in ppm: 7.72 – 7.66 (m, 5H, HBaromaticB); 7.42 – 7.26 (m, 10H, 

HBaromatic B); 6.17 (d, 1H, JB1,2 B= 15.6 Hz, H-1); 5.51 (dd, 1H, JB2,3 B= 8.0 Hz, JB2,1 B= 15.6 Hz, H-2); 3.88 (dd, 1H, 

J B3,2 B= 8.0 Hz, JB3,4B= 6.0 Hz, H-3); 3.71 (m, H-5, H-4); 3.16 (s, 3H, OMe); 2.21 (d, 1H, JBOH,5 B= 4.8 Hz, 

OH); 1.15 (d, 3H, JB6,5 B= 6.4 Hz, H-6); 1.05 (s, 9H, CHB3tBuSi B). RMN P

13
PC (CDClB3B, 100.6 MHz) δ in ppm: 

136.2 – 134.8 (CBaromatic B); 136.41, 136.16, 130.34, 129.97, 129.13, 127.90, 127.76, 127.18 (UCUHBaromaticB) 

129.13 (C-2); 128.45 (C-1); 83.66 (C-3); 79.29 (C-4); 69.61 (C-5); 56.30 (UCUHB3 B); 27.33 (UCUHB3,tBuSiB); 

27.15 (UCUBSiB); 18.8 (C-6). 

172Z: RMN ¹H (CDClB3B, 400 MHz) δ in ppm: Could not be determined. 

173E: RMN ¹H (CDClB3B, 400 MHz) δ in ppm: 7.68 – 7.64 (m, 5H, HBaromaticB); 7.43 – 7.24 (m, 10H, 

HBaromatic B); 6.35 (d, 1H, JB1,2 B= 15.6 Hz, H-1); 5.68 (dd, 1H, JB2,3 B= 8.0 Hz, JB2,1 B= 15.6 Hz, H-2); 3.95 (m, 1H, 

H-5); 3.75 (dd, 1H, JB3,2 B= 8.0 Hz, JB3,4B= 6.0 Hz, H-3); 3.68 (dd, 1H, JB4,5 B= 5.6 Hz, JB3,4B= 6.0 Hz, H-4); 3.23 

(s, 3H, OMe); 2.45 (d, 1H, JBOH,5 B= 4.8 Hz, OH); 1.06 (d, 3H, JB6,5 B= 6.4 Hz, H-6); 1.05 (s, 9H, CHB3tBuSi B). 

RMN P

13
PC (CDClB3B, 100.6 MHz) δ in ppm: 135.97, 134.88, 134.18 (CBaromaticB); 136.06, 135.94, 134.99, 

130.15, 129.97, 129.87, 129.79, 129.30, 127.88, 127.74, 127.09 (UCUHBaromatic B) 128.92 (C-1); 128.21 (C-2); 

82.29 (C-3); 76.59 (C-4); 70.13 (C-5); 56.42 (UCUH B3 B); 26.73 (UCUH B3,tBuSiB); 276.27 (UCUBSiB); 18.38 (C-6). 

173Z: RMN ¹H (CDClB3B, 400 MHz) δ in ppm: Could not be determined. 

 

2-O-Benzyl-6-deoxy-α,β-D-ribofuranose (175). 

 
Following the general procedure of demethylation, a cold solution (–78 ºC) of ribofuranoside 134 

(715 mg, 3.0 mmol, 1.0 eq), PhSH (460 µl, 496 mg, 4.5 mmol, 1.5 eq) and BFB3 B.EtB2BO (317 µl, 426 mg, 

3.3 mmol, 1.1 eq) in anhydrous DCM (15 ml, 0.2 M) was left to warm up to rt. The mixture was reacted 

at rt for 8 h and was quenched with TEA, concentrated and filtered on silice. The crude of the reaction 

was treated with NIS (810 mg, 3.6 mmol, 1.2 eq) in MeCN/H B2 BO = 10:1 and in 10 minutes quenched 

with the solution of NaB2BS B2BOB3B. Column chromatography (hexane: ethyl acetate = 1:6) of the crude 

afforded compound 175 (404 mg, 1.8 mmol, 60%, an α/β inseparable mixture, α/β = 1:2) as  yellowish 

syrup. 

RBfB (hexane: ethyl acetate = 1:1): 0.25.  

Spectroscopic data obtained from the α/β mixture. 

175β: P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: 7.33 (m, 5H, Haromatic); 5.36 (d, 1H, J B1,2 B = 4.8 Hz, H-

1); 4.75 (d, 1H, JBABB = 11.6 Hz, CHB2BPh); 4.66 (d, 1H, JBABB = 11.6 Hz, CHB2 BPh); 4.17 (m, 1H, H-5); 3.92 (t, 

1H, JB2,3B = 4.8 Hz, H-2); 3.87 (dd, 1H, JB4,5B = 1.6 Hz, H-4); 3.81 (bt, 1H, JB3,4 B = 4.8 Hz, H-3); 3.03 (bs, 1H, 

OH); 1.23 (d, 1H, JB5,6B = 6.8 Hz, H-6). P

13
PC NMR (CDClB3B, 100.6 MHz) δ in ppm: 136.95 (CBaromaticB); 
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128.85, 128.42, 128.11 (UCUHBaromaticB); 95.82 (C-1); 83.04 (C-4); 79.23 (C-5); 77.84 (C-2); 75.23 (C-3); 

73.42 (UCUH B2BPh); 19.31 (C-6). 

175α: P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: 7.33 (m, 5H, Haromatic); 5.36 (d, 1H, JB1,2 B = 6.4 Hz, H-

1); 4.74 (d, 1H, J BABB = 11.6 Hz, CHB2BPh); 4.63 (d, 1H, JBABB = 11.6 Hz, CHB2BPh); 4.17 (t, 1H, JB2,3B = 4.0 Hz, 

H-2); 3.98 (dd, 1H, JB3,4B = 4.8 Hz, H-3); 3.98 (m, 1H, H-5); 3.87 (dd, 1H, J B4,5 B = 1.6 Hz, H-4); 3.03 (bs, 

1H, OH); 1.35 (d, 1H, JB5,6B = 6.0 Hz, H-6). P

13
PC NMR (CDCl B3 B, 100.6 MHz) δ in ppm: 137.28 (CBaromatic B); 

128.75, 128.59, 128.34 (UCUHBaromaticB); 99.71 (C-1); 83.04 (C-4); 80.16 (C-5); 79.23 (C-2); 75.67 (C-3); 

72.82 (UCUH B2BPh); 20.14 (C-6). 

 

(E/Z)-3-O-Benzyl-1,2,6-trideoxy-1-phenylsulfanyl-D-ribo-hex-1-enitol (176). 

 
Starting from 168:142 Vacuum–dried TBAF (20 mg, 0.078 mmol, 1.1 eq) was added to a solution of 

168 (30 mg, 0.071 mmols, 1 eq, a Ε/Ζ  inseparable mixture Ε/Ζ  = 13:1) in anhydrous THF (2 ml, 0.036 

M) at 0 ºC. The mixture was stirred for 20 min. The crude obtained was concentrated under vacuum 

and filtrated by column chromatography to afford compound 176 (22 mg, 0.066 mmol, 93%, a Ε/Ζ  

inseparable mixture, Ε/Ζ = 6:1) as yellowish syrup. 

 

Starting from 175: Folloing the general method of the WH olefination reactions, 2-O-benzyl-6-

deoxy-α/β-D-ribofuranose 176 (179 mg, 0.80 mmol, 1 eq), (phenylthiomethyl)diphenylphosphine oxide 

(42) (1.04 g, 3.20 mmol, 4.0 eq), and n-BuLi (2.75 ml of 1.6 M hexane solution, 4.40 mmol, 5.5 eq) 

were left to react for 10 h at rt. The reaction was monitored by TLC (hexane: ethyl acetate = 1:1) to 

ensure that only one product was formed. Column chromatography (from hexane to ethyl acetate) 

afforded 176 (92 mg, 0.28 mmol, 28%, a Ε/Ζ  inseparable mixture, E/Z = 10:1) as yellowish syrup and 

a lower RBfB fraction which correspond to β-hydroxyphosphine oxide intermediate. 

RBfB (hexane: ethyl acetate = 1:1): 0.56.  

Spectroscopic data obtained from the Ε/Ζ mixture. 

176E: P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: 7.34 (m, 10H, Ar); 6.52 (d, 1H, JB1,2 B = 15.2 Hz, H-1); 

5.77 (dd, 1H, J B2,3B = 7.6 Hz, H-2); 4.65 (d, 1H, J BABB = 11.6 Hz, CHB2 BPh); 4.38 (d, 1H, J BABB = 11.6 Hz, 

CH B2BPh); 3.97 (dd, 1H, JB3,4B = 6.4 Hz, H-3); 3.89 (m, 1H, H-5); 3.56 (dd, 1H, JB4,5 B = 5.6 Hz, H-4); 2.46 (bs, 

1H, OH); 1.18 (d, 1H, JB5,6B = 6.8 Hz, H-6). P

13
PC NMR (CDCl B3B, 100.6 MHz) δ in ppm: 137.76, 134.28 

(CBaromatic B); 130.52, 129.44, 128.69, 128.10, 128.07, 127.47 (UCUHBaromatic B); 130.16 (C-1); 127.94 (C-2); 

81.48 (C-3); 76.33 (C-4); 70.63 (UCUHB2BPh); 68.72 (C-5); 18.86 (C-6). 

176Z: RMN ¹H (CDClB3B, 400 MHz) δ in ppm: 7.40 – 7.22 (m, 10H, HBaromatic B); 6.66 (d, 1H, JB1,2 B= 9.6 

Hz, H-1); 5.85 (dd, 1H, JB2,3 B= 9.2 Hz, JB2,1 B= 9.6 Hz, H-2); 4.68 (d, 1H, JBAB B= 11.2 Hz, CHB2BPh); 4.45 (d, 
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1H, JBAB B= 11.2 Hz, CHB2BPh); 3.90 – 3.85 (m, 2H, H-3, H-5); 3.69 (dd, 1H, J B4,3 B= 5.6 Hz., JB4,5 B= 5.8 Hz, H-

4); 2.32 (bs, 1H, OH); 2.04 (bs, 1H, OH); 1.24 (d, 3H, JB6,5 B= 5.8 Hz, H-6). RMN P

13
PC (CDClB3 B, 

100.6 MHz) δ in ppm: Could not be determined. 

 

Digitoxigenyl 3-O-Benzyl-2,6-dideoxy-5-O-triethylsilyl-2-iodo-α,β-D-allo-furanoside (179) and 

Succinimide 3-O-Benzyl-2,6-dideoxy-5-O-triethylsilyl-2-iodo-α,β-D-allo-furanoside (180).TP

142
 

 
As described in the ´one-pot´ cyclization-glycosylation procedure, the title compound was prepared 

starting from 169 (100 mg, 0.24 mmol, 1 eq) and digitoxigenin (133 mg, 0.36 mmol, 1.5 eq) in 

anhydrous DCM (5.5 ml, 0.045 M). The reaction mixture was stirred from –78 ºC to –20 ºC for 8 h 

(cooled to –60 ºC and then AgOTf (24 mg, 0.09 mmol, 0.4 eq) was added to start glycosylation. The 

mixture was stirred from –60 ºC to –30 ºC for 15 h. (monitored by TLC (hexane: ethyl acetate = 1:3). 

Radial chromatography (from hexane to hexane: ethyl acetate = 1:4) of the crude afforded compound 

179 (104 mg, 0.14 mmol, 53%, an α/β inseparable mixture, α/β = 1:22) as a syrup and compound 180 

(26 mg, 0.06 mmol, 25%) as yellowish solid. 

Spectroscopic data extracted from α/β mixture. 

Anal. Calcd para CB43BH B65BIOB7BSi: 60.83 C, 7.72 H. Found: 60.79 C, 7.70 H. 

179β: RMN ¹H (CDClB3B, 400 MHz) δ in ppm: 7.35 – 7.26 (m, 5H, HBaromatic B); 5.87 (s, 1H, HB22digB); 

5.37 (d, 1H, JB1,2 B= 2.8 Hz, H-1); 5.00 (d, 1H, J BAB B= 18.0 Hz, HB21Adig B); 4.75 (d, 1H, JBAB B= 18.4 Hz, HB21BdigB); 

4.63 (d, 1H, JBAB B= 11.6 Hz, CHB2BPh); 4.76 (d, 1H, JBAB B= 11.6 Hz, CHB2 BPh); 4.48 (dd, 1H, JB3,2 B= 3.6 Hz, JB3,4 

B= 4.8 Hz, H-3); 4.12 (dd, 1H, J B2,1 B= 2.8 Hz, JB2,3 B= 3.6 Hz, H-2); 3.96 (qd, 1H, JB5,6 B= 6.4 Hz, JB5,4 B= 4.4 Hz, 

H-5); 3.93 (m, 1H, HB3digB); 3.87 (dd, 1H, JB4,5 B= 4.4 Hz, JB4,3 B= 4.8 Hz, H-4); 2.77 (m, 1H, OH B14digB); 2.36 – 

1.13 (m, 22H, HBdigB); 1.15 (d, 3H, JB6,5 B= 6.4 Hz, H-6); 0.98 (t, 9H, JBCH3,CH2 B= 8.0 Hz, CHB3SiB); 0.92 (s, 3H, 

MeBdigB); 0.87 (s, 3H, MeBdigB); 0.63 (q, 6H, JBCH2,CH3 B= 8.0 Hz, CH B2SiB). RMN P

13
PC (CDClB3B, 100.6 MHz) δ in 

ppm: 174.8 (C-20BdigB), 174.8 (C=O); 138.2 (C Baromatic B); 128.5, 127.9, 127.8 (UCUHBaromatic B); 117.9 (C-22BdigB); 

109.8 (C-1); 87.5 (C-3); 87.5 (C-4); 85.8 (C-14BdigB); 73.6 (C-5); 73.1 (C-21BdigB); 72.2 (UCUH B2BPh); 68.7 (C-

3BdigB); 51.1 – 15.9 (CBdigB); 28.5 (C-2); 20.5 (C-6); 7.17 (UCUHB3SiB); 5.27 (UCUH B2SiB). 

179α: RMN ¹H (CDClB3B, 400 MHz) δ in ppm: 7.44 – 7.26 (m, 5H, HBaromatic B); 5.87 (s, 1H, HB22digB); 

5.38 (d, 1H, JB1,2 B= 5.2 Hz, H-1); 5.01 (dd, 1H, JBAB B= 18.0 Hz, JB21,22dig B= 1.2 Hz, HB21Adig B); 4.83 (dd, 1H, JBAB 

B= 18.0 Hz, JB21,22dig B= 1.2 Hz, HB21BdigB); 4.61 (d, 1H, JBAB B= 11.4 Hz, CHB2 BPh); 4.53 (d, 1H, J BAB B= 11.4 Hz, 

CH B2BPh); 4.21 (t, 1H, JB2,1 B= 5.2 Hz, JB2,3 B= 5.2 Hz, H-2); 3.93 (m, 1H, HB3digB); 3.86 (dd, 1H, JB4,5 B= 0.4 Hz, 

J B4,3 B= 3.4 Hz, H-4); 3.83 (qd, 1H, JB5,6 B= 6.0 Hz., J B5,4 B= 0.4 Hz., H-5); 3.71 (dd, 1H, JB3,2 B= 5.2 Hz, JB3,4 B= 3.4 
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Hz, H-3); 2.78 (m, 1H, OHB14dig B); 2.36 – 1.13 (m, 22H, HBdigB); 1.16 (d, 3H, JB6,5 B= 6.0 Hz, H-6); 0.94 (t, 9H, 

J BCH3,CH2 B= 8.0 Hz., CHB3SiB); 0.92 (s, 3H, MeBdigB); 0.87 (s, 3H, MeBdigB); 0.60 (q, 6H, JBCH2,CH3 B= 8.0 Hz, CHB2SiB). 

RMN P

13
PC (CDClB3B, 100.6 MHz) δ in ppm: 174.8 (C-20BdigB), 174.8 (C=O); 128.5, 128.0, 127.8 (CBaromatic B); 

117.9 (C-22BdigB); 108.6 (C-1); 86.5 (C-4); 85.8 (C-14BdigB); 78.6 (C-3); 74.0 (C-21BdigB); 72.2 (UCUH B2BPh); 69.6 

(C-5); 68.7 (C-3BdigB); 51.1 – 15.9 (CBdigB); 33.4 (C-2); 20.5 (C-6); 7.13 (UCUHB3SiB); 5.22 (UCUH B2SiB). 

RBfB (hexane: ethyl acetate = 4:1): 0.45. 

Spectroscopic data obtained from the α/β mixture. 

180β: P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: 7.40 – 7.26 (m, 5H, HBaromaticB); 5.93 (d, 1H, JB1,2 B = 9.0 

Hz, H-1); 5.20 (dd, 1H, JB2,3B = 7.8 Hz, H-2); 5.02 (d, 1H, JBABB = 11.2 Hz, CHB2BPh); 4.75 (d, 1H, JBABB = 11.2 

Hz, CHB2BPh); 4.63 (dd, 1H, JB3,4B = 6.6 Hz, H-3); 4.08 (dd, 1H, J B4,5 B = 2.4 Hz, H-4); 3.99 (qd, 1H, JB5,6 B = 6.8 

Hz, H-5); 2.73 (s, 4H, CH B2succinimideB); 1.10 (d, 3H, JB5,6B = 6.8 Hz, H-6); 0.98 (t, 9H, JBCH3,CH2 B = 7.8 Hz, Me); 

0.63 (q,  6H, JBCH2 B, BCH3 B= 7.8 Hz, CHB2BSi). P

13
PC NMR (CDClB3B, 100.6 MHz) δ in ppm: 176.33 

(O=CBsuccinimideB); 137.92 (CBaromaticB); 128.60, 128.09 (UCUHBaromaticB); 88.13 (C-1); 86.82 (C-4); 85.14 (C-3); 

73.05 (UCUH B2BPh); 68.28 (C-5); 28.23 (UCUH B2 succinimideB ); 21.61 (C-2); 19.44 (C-6); 7.11 (UCUH B3 B); 5.08 (UCUHB2B). B 

180α: P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: Could not be determined. 

 

Digitoxigenyl 3-O-Benzyl-2,6-dideoxy-2-iodo-α,β-D-allo-furanoside (181). 

O

OBn I

HO
ODig

 
Starting from compound 179:142 HF·70% in pyridine (0.23 ml, 8.99 mmol, 100 eq) was added to a 

solution of 179 (75 mg, 0.090 mmols, 1.00 eq, an α/β inseparable mixture, α/β  = 1:8) in anhydrous  

THF (1.2 ml, 0.077 M) at 0 ºC. The mixture was stirred for 6 h. The crude obtained was concentrated 

under vacuum and purified by column chromatography168
PT to yield compound 181 (36 mg, 0.049 mmol, 

70%, , an α/β inseparable mixture, α/β  = 1:8) as yellowish syrup. 

Starting from compound 176: As described in the ´one–pot´ cyclization–glycosylation procedure, 

the title compound was prepared starting from 181 (92 mg, 0.28 mmol, 1.00 eq. an Ε/Ζ inseparable 

mixture, E/Z = 10:1) and digitoxigenin (155 mg, 0.36 mmol, 1.50 eq) in anhydrous DCM (6.2 ml, 0.045 

M). The reaction mixture was stirred from –78 ºC to –20 ºC for 8 h (cyclization, cooled to –60 ºC and 

then AgOTf (29 mg, 0.11 mmol, 0.40 eq) was added to start glycosylation. The mixture was stirred 

from –60 °C to –30 ºC during 15 h. (monitored by TLC (hexane: ethyl acetate = 1:1). Radial 

chromatography (from hexane to ethyl acetate) of the crude afforded compound 181 (130 mg, 0.177 

mmol, 63%, an α/β inseparable mixture, α/β  = 1:50) as yellowish syrup. 

                                                 
TP
168

PT  Also were recovered 10 mg of digitoxigenin (30% from starting product). 
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RBfB (hexane: ethyl acetate = 1:1): 0.40. 

Spectroscopic data extracted from α/β mixture. 

Anal. Calcd for CB37BH B51BIOB7B: 60.49% C, 7.00% H. Found: 60.51% C, 6.98% H. 

181β: RMN ¹H (CDClB3B, 400 MHz) δ in ppm: 7.36 – 7.28 (m, 5H, HBaromatic B); 5.87 (s, 1H, HB22digB); 

5.42 (d, 1H, JB1,2 B= 1.2 Hz, H-1); 5.00 (d, 1H, J BAB B= 18.0 Hz, HB21Adig B); 4.81 (d, 1H, JBAB B= 18.0 Hz, HB21BdigB); 

4.78 (d, 1H, JBAB B= 11.6 Hz, CHB2BPh); 4.60 (d, 1H, JBAB B= 11.6 Hz, CHB2 BPh); 4.47 (dd, 1H, JB4,5 B= 3.0 Hz, JB4,3 

B= 6.0 Hz, H-4); 4.15 (dd, 1H, J B2,1 B= 1.2 Hz, JB2,3 B= 2.4 Hz, H-2); 3.99 (qd, 1H, JB5,6 B= 6.4 Hz, JB5,4 B= 3.0 Hz, 

H-5); 3.93 (m, 2H, HB3digB, H-3); 2.77 (m, 1H, OHB14digB); 2.17 – 1.20 (m, 22H, HBdigB); 1.15 (d, 3H, JB6-5B= 6.4 

Hz, H-6); 0.94 (s, 3H, MeBdigB); 0.87 (s, 3H, MeBdigB). RMN P

13
PC (CDClB3B, 100.6 MHz) δ in ppm: 174.8, 

174.7 (C=O, C-20BdigB); 137.7 (CBaromatic B); 128.6, 128.2, 128.1 (UCUHBaromatic B); 117.8 (C-22BdigB); 109.7 (C-1); 

86.9 (C-4); 86.5 (C-3); 85.7 (C-14BdigB); 73.7 (C-21BdigB); 72.8 (C-3BdigB); 72.3 (UCUHB2BPh); 66.4 (C-5); 51.1 – 

15.9 (CBdigB); 28.4 (C-2); 23.5 (C-6). 

181α: P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: Could not be determined. 

 

p-Nitrobenzyl 3-O-Benzyl-5-O-tert-butyldimethylsilyl-2,6-dideoxy-2-iodo-α,β-D-manno-

furanoside (182).TP

142
 

  
Compound 167 (75 mg, 0.17 mmol, 1eq, an Ε/Ζ inseparable mixture, E/Z = 21:1), and p-

nitrobenzyl alcohol (52 mg, 0.34 mmol, 2.00 eq) in anhydrous DCM (3.4 ml, 0.05 M) were reacted 

following the ´one–pot´ cyclization-glycosylation procedure. Cyclization step was carried out from –

60 ºC to –20 ºC in 16 h and glycosylation from –78 ºC to –20 ºC in 4 h. Chromatographic purification 

yielded compound 182 (67 mg, 0.13 mmol, 68%, an α/β inseparable mixture, α/β  = 35:1) as colourless 

syrup. 

Spectroscopic data extracted from α/β mixture. 

182β: RMN ¹H (CDClB3B, 400 MHz) δ in ppm: 8.23 – 8.17 (m, 2H, HBaromaticB); 7.51 – 7.26 (m, 7H, 

HBaromatic B); 5.45 (d, 1H, JB1,2 B= 3.6 Hz, H-1); 4.86 (d, 1H, JBAB B= 13.6 Hz, CHB2 BPhNOB2B); 4.63 (d, 1H, JBAB B= 

13.6 Hz, CHB2BPhNOB2B); 4.61 (d, 1H, JBAB B= 11.2 Hz, CHB2BPh); 4.48 (d, 1H, JBAB B= 11.2 Hz, CH B2BPh); 4.37 

(dd, 1H, JB2,1 B= 3.2 Hz, JB2,3 B= 5.6 Hz, H-2); 3.98 (dd, 1H, JB4,5 B= 4.8 Hz, JB4,3 B= 5.2 Hz, H-4); 3.88 (qd, 1H, 

J B5,4 B= 4.8 Hz, JB5,6 B= 6.0 Hz, H-5); 3.73 (dd, 1H, JB3,2 B= 5.6 Hz, JB3,4 B= 5.2 Hz, H-3); 1.14 (d, 3H, JB6,5 B= 6.0 

Hz, H-6); 0.85 (s, 9H, tBuSi); 0.055 (s, 3H, MeSi); 0.026 (s, 3H, MeSi). RMN P

13
PC (CDClB3B, 100.6 MHz) 

δ in ppm: 147.6, 145.1, 137.3 (CBaromatic B); 128.6, 128.2, 128.1, 128.0, 127.9, 123.8 (CH BaromaticB); 110.0 (C-

1); 86.9 (C-4); 77.8 (C-3); 72.4 (UCUHB2BPh); 69.2 (C-5); 69.1 (UCUH B2BPhNOB2 B); 31.9 (C-2); 26.0 (UCUH B3tBuSi B); 

20.4 (C-6); 18.2 (CBtBuSiB); –4.18, –4.37 (UCUHB3BSi). 
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182α: P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: Could not be determined. 

 

3-O-Benzyl-5-O-tert-butyldimethylsilyl-2,6-dideoxy-2-iodo-α,β-D-allo-furanose (183). 

 
NIS (252 mg, 1.12 mmols, 2.5 eq) was added to a solution of the enitol 167 (200 mg, 0.45 mmols, 

1eq) in a MeBCN/HB2BO = 10:1 mixture (9 ml, 0.05 M) at –10 ºC. After stirring for 45 minutes the reaction 

was quenched with NaB2BS B2BOB3B and extracted with ethyl acetate (3x20 ml). The combined organic layer 

was washed with water (2x20 ml), brine (1x20 ml), dried on anhydrous MgSOB4B and concentrated under 

vacuum. The residue was purified by column chromatography (hexane: ethyl acetate = 7:1) afforded 

compound 183 (205 mg, 0.43 mmol, 95%, an α/β inseparable mixture, α/β = 1:5) as colourless syrup. 

Spectroscopic data obtained from α/β mixture 

183α: RMN ¹H (CDClB3B, 400 MHz) δ in ppm: 7.53 – 7.26 (m, 5H, HBaromaticB); 5.61 (d, 1H, JB1,2 B= 4.4 

Hz, H-1); 4.78 (d, 1H, JBAB B= 11.2 Hz, CHB2BPh); 4.64 (d, 1H, JBAB B= 11.2 Hz, CH B2BPh); 4.58 (m, 1H, H-4); 

4.23 (dd, 1H, JB2,1 B= 4.4 Hz, JB2,3 B= 4.0 Hz, H-2); 4.05 (m, 1H, H-5); 3.81 (m, 1H, H-3); 1.12 (m, 3H, H-6); 

0.86 (s, 9H, tBuSi); 0.072 (s, 3H, MeSi); 0.064 (s, 3H, MeSi). RMN P

13
PC (CDClB3B, 100.6 MHz) δ in ppm: 

133.1 – 127.8 (CBaromatic B); 95.8 (C-1); 87.2 (C-4); 78.5 (C-3); 72.7 (UCUH B2BPh); 68.5 (C-5); 27.0 (C-2); 26.1 

(UCUH B3tBuSi B); 20.6 (C-6); 18.2 (CBtBuSiB); –4.21, –4.34 (UCUH B3BSi). 

183β: RMN ¹H (CDClB3B, 400 MHz) δ en ppm: 7.53 – 7.24 (m, 5H, HBaromaticB); 5.53 (d, 1H, JB1,2 B= 7.6 

Hz, H-1); 4.63 (d, 1H, JBAB B= 12.0 Hz, CHB2BPh); 4.56 (d, 1H, JBAB B= 12.0 Hz, CHB2BPh); 4.18 (dd, 1H, JB2,1 B= 

7.6 Hz, JB2,3 B= 5.2 Hz, H-2); 3.93 (dd, 1H, JB4,5 B= 5.2 Hz, JB4,3 B= 3.2 Hz, H-4); 3.81 (dd, 1H, J B3,2 B= 5.2 Hz, 

J B3,4 B= 3.2 Hz, H-3); 3.65 (qd, 1H, JB5,4 B= 5.2 Hz, JB5,6 B= 6.4 Hz, H-5); 1.16 (d, 3H, JB6,5 B= 6.4 Hz, H-6); 0.87 

(s, 9H, tBuSi); 0.045 (s, 3H, MeSi); 0.030 (s, 3H, MeSi). RMN P

13
PC (CDClB3B, 100.6 MHz) δ in ppm: 

137.5 (CBaromatic B); 133.1 – 127.8 (CHBaromatic B); 93.4 (C-1); 88.0 (C-4); 78.6 (C-3); 72.3 (UCUHB2BPh); 68.7 (C-

5); 30.8 (C-2); 26.1 (UCUHB3tBuSi B); 20.7 (C-6); 18.2 (CBtBuSiB); –4.19, –4.26 (UCUHB3BSi). 

 

5-O-tert-butyldiphenylsilyl-2,6-dideoxy-2-iodo-3-O-Methyl-α,β-D-allo-furanose (185). 

 
NIS (270 mg, 1.2 mmols, 1.20 eq) was added to a solution of the enitol 173 (569 mg, 1.0 mmols, 

1.00 eq) in anhydrous DCM (9 ml, 0.05 M) at –60 ºC and the reaction mixture was warmed up to –20 

ºC for 20 h. After the completion of the reaction, the reaction crude was quenched with NaB2 BS B2BO B3B and 
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extracted with ethyl acetate (3x20 ml). The combined organic layer was washed with water (2x20 ml), 

brine (1x20 ml), dried on anhydrous MgSOB4B and concentrated under vacuum. The residue was purified 

by column chromatography (hexane: ethyl acetate = 7:1) to afford compound 185 (332 mg, 0.63 mmol, 

63%, an α/β inseparable mixture, α/β = 1:15) as colourless syrup. 

RBfB (hexane: ethyl acetate = 8:1): 0.35.  

Spectroscopic data obtained from the α/β mixture. 

185β: P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: 7.66 – 7.23 (m, 10H, HBaromatic B), 5.45 (d, 1H, JB1,2 B = 7.2 

Hz, H-1), 3.89 (d, 1H, JB4,5B = 6.8, H-4), 4.86 (dd, 1H, JB2,3 B = 5.2 Hz, H-2); 3.72 (m, 1H, H-5); 3.48 (dd, 

1H, J B3,4B = 3.2 Hz, H-3); 3.36 (s, 3H, OMe); 1.09 (d, 3H, JB5,6 B = 6.8 Hz, H-6); 1.06 (s, 9H, Me). P

13
PC NMR 

(CDClB3 B, 100.6 MHz) δ in ppm: 133.4 (CBaromatic B); 136.17, 132.85, 130.07, 129.98, 129.27, 129.11, 

127.10, 127.79 (UCUH Baromatic B); 93.18 (C-1); 87.31 (C-4); 81.01 (C-3); 69.85 (C-5); 58.04 (OUCUHB3B); 30.13 

(C-2); 29.92 (C): 27.27 (UCUHB3B); 20.66 (C-6). 

185α: P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: Could not be determined. 

 

Acetyl 5-O-tert-Butyldiphenylsilyl-2,6-dideoxy-2-iodo-3-O-methyl-α,β-D-allo-furanoside 

(186). 

 
AcCl (84 µl, 93 mg, 1.18 mmol, 2.00 eq) and DMAP (13 mg, 0.12 mmol, 0.20 eq) were added to a 

solution of 185 (312 mg, 0.59 mmol, 1.00 eq) in pyridine (5 ml) and and was stirred for two hours. The 

reaction was stopped with the addition of NHB4BCl solution and was extracted with ethyl acetate. 

Coloumn chromatographic purification of the crude afforded compound 186 (252 mg, 0.44 mmol, 75%, 

an α/β inseparable mixture, α/β = 1:15) as yellowish solid. 

RBfB (hexane: ethyl acetate = 6:1): 0.45. 

Spectroscopic data obtained from the α/β mixture. 

186β: P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: 7.67 (m, 4H, Ar); 7.41 (m, 6H, Ar); 6.17 (d, 1H, JB1,2 B 

= 4.8 Hz, H-1); 4.28 (dd, 1H, J B2,3B = 6.4 Hz, H-2); 4.04 (m, 1H, H-5); 4.03 (dd, 1H, JB4,5B = 6.8 Hz, H-4); 

3.78 (bt, 1H, JB3,4B = 2.4 Hz, H-3); 3.45 (s, 3H, OMe); 2.11 (s, 3H, OAc); 1.03 (s, 9H, Me); 1.03 (d, 3H, 

J B5,6B = 6.8 Hz, H-6).P

13
PC NMR (CDClB3B, 100.6 MHz) δ in ppm: 170.51 (O=C); 134.25, 133.09 (CBaromaticB); 

136.08, 136.00, 130.13, 130.01, 127.94, 127.88, 127.81 (UCUHBaromatic B); 96.75 (C-1); 88.79 (C-4); 79.04 (C-

3); 69.21 (C-5); 59.14 (OUCUH B3B); 29.89 (C): 27.22 (UCUHB3B); 26.21 (C-2); 21.50 (O=CUCUH B3 B); 19.50 (C-6). 

186α: P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: Could not be determined. 
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5-O-tert-Butyldiphenylsilyl-2,6-dideoxy-2-iodo-3-O-methyl-α,β-D-allo-furanosyl Fluoride 

(187). 

 
DAST (64 µl, 87 mg, 0.66 mmol, 1.50 eq) was added to a solution of compound 185 (230 mg, 0.44 

mmol, 1.00 eq) in anhydrous DCMB (4 ml) at 0 ºC. The reaction mixture was warmed up to room 

temperature and was further stirred for 2 hours. The reaction was quenched with NaHCOB3 extracted 

with ethyl acetate (3x20 ml). The combined organic layer was washed with water (2x20 ml), brine 

(1x20 ml), dried on anhydrous MgSOB4B and concentrated under vacuum. The chromatographic 

purification the mixture was purified by radial chromatography (from hexane to hexane: ethyl acetate = 

3:1) and to afford 187 (200 mg, 0.44 mmol, 86%, an α/β inseparable mixture, α/β = 1:15) as a 

yellowish syrup. 

RBfB (hexane: ethyl acetate = 8:1): 0.67. 

Spectroscopic data obtained from the α/β mixture. 

187β: P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: 7.72 (m, 4H, HBaromaticB); 7.49 (m, 6H, HBaromatic B); 6.11 (d, 

1H, J B1,FB = 66.4 Hz, J B1,2B = 0.0 Hz, H-1); 4.49 (dd, 1H, JB2,FB = 8.0 Hz, J B2,3 B = 5.2 Hz, H-2); 4.16 (m, 1H, H-

5); 4.00 (qd, 1H, JB4,FB = 9.6 Hz, JB4,5B = 3.6 Hz, H-4); 3.55 (dd, 1H, JB3,4 B = 7.2 Hz, H-3); 3.32 (s, 3H, OMe); 

1.07 (s, 9H, Me); 0.96 (d, 3H, J B5,6B = 6.4 Hz, H-6).P

13
PC NMR (CDCl B3B, 100.6 MHz) δ in ppm: 134.85, 

133.11 (CBaromaticB); 136.22, 136.14, 130.67, 129.88, 129.82, 129.28, 127.78, 127.72 (CH Baromatic B); 116.49 

(d, J BC1-FB = 228.1 Hz, C-1); 87.16 (C-4); 77.67 (C-3); 69.04 (C-5); 58.08 (OCHB3B); 33.32 (d, JBC1-FB = 22.7 

Hz, C-2); 29.91 (C): 27.09 (UCUHB3B); 19.43 (C-6). 

187α: P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: Could not be determined. 

 

3-O-Benzyl-2,6-dideoxy-2-iodo-α,β-D-allo-furanose (189). 

 
NIS (65 mg, 0.29 mmols, 1.2 eq) was added to a solution of the enitol 176 (80 mg, 0.24 mmols, 

1.00 eq, an E/Z inseparable mixture, E/Z = 10:1) in anhydrous DCM (9 ml, 0.05 M) at –60 ºC and the 

resulting mixture was warmed up to –20 ºC for 20 h. After the completion of the reaction, the reaction 

mixture was quenched with NaB2BS B2BO B3B and extracted with ethyl acetate (3x20 ml). The combined organic 

layer was washed with water (2x20 ml), brine (1x20 ml), dried on anhydrous MgSOB4B and concentrated 

under vacuum. The residue was purified by column chromatography (hexane: ethyl acetate = 2:1) to 
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afford compound 189 (49 mg, 0.13 mmol, 56%, an α/β inseparable mixture, α/β = 1:10) as yellowish 

syrup. 

RBfB (hexane: ethyl acetate = 2:1): 0.35.  

Spectroscopic data obtained from the α/β mixture. 

189β: P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: 7.66 – 7.23 (m, 5H, HBaromaticB), 5.29 (s, 1H, H-1), 4.57 

(d, 1H, JBAB B= 11.2 Hz, CHB2BPh); 4.38 (d, 1H, JB2,3 B = 4.8 Hz, H-2); 4.29 (d, 1H, JBAB B= 11.2 Hz, CHB2 BPh);  

3.91 (dd, 1H, JB4,5B = 7.6, H-4), 3.89 (dd, 1H, J B3,4B = 0.8 Hz, H-3); 3.84 (m, 1H, H-5); 1.09 (d, 3H, JB5,6B = 

6.8 Hz, H-6).P

13
PC NMR (CDClB3B, 100.6 MHz) δ in ppm: 131.11(CBaromaticB); 129.28, 128.67, 128.56, 

127.28, 127.67 ( UCUHBaromatic B); 108.86 (C-1); 83.80 (C-4); 76.50 (C-3); 73.63 (C-5); 72.59 (CH2Ph); 35.59 

(C-2); 29.92 (C); 17.29 (C-6). 

189α: P

1
PH NMR (CDClB3B, 400 MHz) δ in ppm: Could not be determined. 
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