
 
 
 

Lucas Montero de Espinosa Meléndez 
 
 

Plant Oils As Renewable Precursors Of 
Thermosetting And Flame Retardant Polymers 

 
 

PhD THESIS 
 

Supervised by Dr. Virginia Cádiz Deleito and Dr. Joan 
Carles Ronda Bargalló 

 
Departament de Química Analítica i Química Orgánica 

 
 
 
 
 

 
 

Tarragona 
2009 

UNIVERSITAT ROVIRA I VIRGILI 
PLANT OILS AS RENEWABLE PRECURSORS OF THERMOSETTING AND FLAME RETARDANT POLYMERS 
Lucas Montero de Espinosa Meléndez 
ISBN:978-84-692-9759-9/DL:T-205-2010 
 
 



UNIVERSITAT ROVIRA I VIRGILI 
PLANT OILS AS RENEWABLE PRECURSORS OF THERMOSETTING AND FLAME RETARDANT POLYMERS 
Lucas Montero de Espinosa Meléndez 
ISBN:978-84-692-9759-9/DL:T-205-2010 
 
 



 
 
 

 
 
Departament de Química Analítica 
i Química Orgánica 
c/ Marcel·li Domingo, s/n 
Campus Sescelades 
43007, Tarragona 
Telf. 977 559 769 
Fax. 977 558 446 
 
 
Virginia Cádiz Deleito, catedrática, y Joan Carles Ronda Bargalló, profesor 
titular, ambos del Departamento de Química Analítica y Química Orgánica 
de la Universidad Rovira i Virgili, 
 
CERTIFICAMOS: 
 
Que el presente trabajo, titulado “Plant oils as renewable precursors of 
thermosetting and flame retardant polymers”, que presenta Lucas Montero 
de Espinosa Meléndez para la obtención del título de Doctor, ha sido 
realizado bajo nuestra dirección en el Departamento de Química Analítica 
y Química Orgánica de esta universidad y que cumple los requisitos para 
poder optar a la Mención Europea. 
 
 
Tarragona, 6 de octubre de 2009 
 
 
 
 
 
 
 
 
Dra. Virginia Cádiz Deleito    Dr. Joan Carles Ronda 

UNIVERSITAT ROVIRA I VIRGILI 
PLANT OILS AS RENEWABLE PRECURSORS OF THERMOSETTING AND FLAME RETARDANT POLYMERS 
Lucas Montero de Espinosa Meléndez 
ISBN:978-84-692-9759-9/DL:T-205-2010 
 
 



UNIVERSITAT ROVIRA I VIRGILI 
PLANT OILS AS RENEWABLE PRECURSORS OF THERMOSETTING AND FLAME RETARDANT POLYMERS 
Lucas Montero de Espinosa Meléndez 
ISBN:978-84-692-9759-9/DL:T-205-2010 
 
 



UNIVERSITAT ROVIRA I VIRGILI 
PLANT OILS AS RENEWABLE PRECURSORS OF THERMOSETTING AND FLAME RETARDANT POLYMERS 
Lucas Montero de Espinosa Meléndez 
ISBN:978-84-692-9759-9/DL:T-205-2010 
 
 



UNIVERSITAT ROVIRA I VIRGILI 
PLANT OILS AS RENEWABLE PRECURSORS OF THERMOSETTING AND FLAME RETARDANT POLYMERS 
Lucas Montero de Espinosa Meléndez 
ISBN:978-84-692-9759-9/DL:T-205-2010 
 
 



 

 

 

En primer lugar, quiero agradecer a Virginia y a Joan Carles que me dieran la 

posibilidad de hacer la tesis y de conocer Tarragona, donde he pasado algunos de los 

mejores años de mi vida. 

 

También quiero agradecer a Marina su ayuda y comentarios durante el desarrollo de 

este trabajo, a Mike for receiving me in his group and counting on me for the next years 

y a José por ayudarme a encontrar un lugar donde hacer la tesis. 

 

Gracias a Pagi por diseñar la cubierta de esta tesis. No dudé ni un momento en pedírtelo 

a ti.  

 

De las personas que he conocido durante estos años me llevo muchos recuerdos, 

de Andy e Ixchel me quedan música y cocina, del núcleo duro, cafés y puerto, de 

Robert, unas cuantas técnicas y palas a última hora. Me veo con David partiendo la pana 

en la calle Sierpes, congelado en el Cavall Bernat con Jaime y escalando con Ciril en La 

Mussara. Recuerdo muchas paellas y muchas noches en el Déjà Vu, y a Aitor detrás de 

todas ellas. Recuerdo muchos jueves con Elena, Sergio, Cati, Gerald, Mihai, y con todos 

ellos muchas noches de Sala Zero. A Cristina en El Soportal, a Patricia muerta de risa, a 

Marisa y su pastel de papas. Me llevo comidas en casa de Simona, conversaciones con 

Vanessa y la compañía de los incondicionales del plafón. Me llevo la impaciencia 

adictiva de Hatice, el Rakı de Osman, el Glühwine con Thao y la expresividad de 

Manuela. Recuerdo Heavy Metal. Recuerdo a Quique, en todos los congresos, en 

Valero, en la calle Van Dyck, con Mayra, detrás de la red de Volley, a sus gatos. 

Recuerdo a Cristina, siempre, aquí y allá. Recuerdo a Ana, desde el primer verano, hasta 

la última copa. Recuerdo a Marta y recuerdo su enorme compañía. 

 

Esta tesis es para mi familia. Tiene su origen y sentido en ellos. 

UNIVERSITAT ROVIRA I VIRGILI 
PLANT OILS AS RENEWABLE PRECURSORS OF THERMOSETTING AND FLAME RETARDANT POLYMERS 
Lucas Montero de Espinosa Meléndez 
ISBN:978-84-692-9759-9/DL:T-205-2010 
 
 



  

 

  

UNIVERSITAT ROVIRA I VIRGILI 
PLANT OILS AS RENEWABLE PRECURSORS OF THERMOSETTING AND FLAME RETARDANT POLYMERS 
Lucas Montero de Espinosa Meléndez 
ISBN:978-84-692-9759-9/DL:T-205-2010 
 
 



 

 
 
 
 

 
 

El Roto 

UNIVERSITAT ROVIRA I VIRGILI 
PLANT OILS AS RENEWABLE PRECURSORS OF THERMOSETTING AND FLAME RETARDANT POLYMERS 
Lucas Montero de Espinosa Meléndez 
ISBN:978-84-692-9759-9/DL:T-205-2010 
 
 



 

UNIVERSITAT ROVIRA I VIRGILI 
PLANT OILS AS RENEWABLE PRECURSORS OF THERMOSETTING AND FLAME RETARDANT POLYMERS 
Lucas Montero de Espinosa Meléndez 
ISBN:978-84-692-9759-9/DL:T-205-2010 
 
 



Table of Contents 

 

General introduction        1  

 Plant oils in the context of sustainable development    1 

 Plant oils in polymer chemistry      2 

 Structure and reactivity of plant oils      3 

 

Objectives and summary        9 

 

First part          13 

The chemistry of singlet oxygen      15 

Introduction        15 

Singlet oxygen generation      15 

The ene reaction of singlet oxygen with alkenes   17 

    

Chapter one          19 

A New Enone-Containing Triglyceride Derivative as 

Precursor of Thermosets from Renewable Resources  21 

 

Quinoline-Containing Networks from Enone and 

Aldehyde Triglyceride Derivatives    35 

 

Chapter two          57 

A New Route to Acrylated Oils. Cross-linking and 

Properties of Acrylated Triglycerides from High 

Oleic Sunflower Oil      59 

 

Second part          77 

 Flame retardant materials       79 

  Introduction        79 

  Mechanism of action       80 

  Classification        81 

  Phosphorus-based flame retardants     82 

UNIVERSITAT ROVIRA I VIRGILI 
PLANT OILS AS RENEWABLE PRECURSORS OF THERMOSETTING AND FLAME RETARDANT POLYMERS 
Lucas Montero de Espinosa Meléndez 
ISBN:978-84-692-9759-9/DL:T-205-2010 
 
 



  Polymer flammability tests. Limiting Oxygen Index (LOI)  84 

 ADMET polymerization       89 

  Background        89 

  ADMET polymerization      91 

 

Chapter three         95 

A Straightforward Strategy for the Efficient Synthesis 

of Acrylate and Phosphine Oxide-Containing 

Vegetable Oils and their Cross-linked Materials  97 

 

Chapter four          119 

Fatty Acid Derived Phosphorus-Containing Polyesters 

via Acyclic Diene Metathesis (ADMET) Polymerization 121 

 

Phosphorus-Containing Renewable Polyester-Polyols 

via ADMET Polymerization. Synthesis, 

Functionalization and Radical Cross-Linking   143 

 

General conclusions        169 

 

Apendixes          171 

Apendix A. List of abbreviations      171 

Apendix B. List of publications      173 

Apendix C. Stages and meeting contributions    175  

UNIVERSITAT ROVIRA I VIRGILI 
PLANT OILS AS RENEWABLE PRECURSORS OF THERMOSETTING AND FLAME RETARDANT POLYMERS 
Lucas Montero de Espinosa Meléndez 
ISBN:978-84-692-9759-9/DL:T-205-2010 
 
 



 1

GENERAL INTRODUCTION 

 
Plant oils in the context of sustainable development 

 

The concept of sustainable development appeared in 1987 after the Brundtland 

commission1 as the main goal to be achieved in response to the accelerated deterioration 

of the environment. It was defined as the social and economic advance to assure human 

beings a healthy and productive life, but one that do not compromise the ability of 

future generations to meet their own needs.2 Although the availability of energy was 

admitted to be key for the future development, the necessity of a steady transition to a 

broader and more sustainable mix of energy sources was pointed out as a major 

objective. Sustainable development was further addressed in the United Nations 

Conference on Environment and Development (UNCED), held in 1992 in Rio de 

Janeiro.3 Among other documents that resulted from the Earth summit, Agenda 214 was 

launched as a wide-ranging blueprint for action to achieve sustainable development 

worldwide. Within the means of implementation, the role of sciences “in supporting the 

prudent management of the environment and development for the daily survival and 

future development of humanity” was established. It was pointed out that “scientific 

knowledge should be applied to articulate and support the goals of sustainable 

development” and that it was “necessary to build up scientific capacity and strengthen 

such capacity in all countries for the generation and application of the results of 

scientific research and development concerning sustainable development” (Agenda 21, 

Chapter 35). In relation to chemical sciences, the Environmental Protection Agency 

coined a new term in 1998 that collected the ideals of sustainability applied to 

chemistry: green chemistry, also called sustainable chemistry. It was formally 

delineated with the aim of preventing pollution through better process design rather than 

by managing emissions and waste. Green chemistry is based on a set of 12 principles5 

that provide a jumping-off point for all chemists and chemical engineers to use classical 

chemistry to design chemical products and processes that have little or no impact on the 

environment. 

In 2002, the Johannesburg summit6 aimed to assess progress toward attaining the 

goals of Agenda 21, strengthening commitment of parties to the program and setting 

priorities for further action. But more than anything else, the summit was a message to 

the world to stop talking about what needs to be done and to get on with 
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implementation.7 Important contributions have been made towards these objectives, 

being some of the most relevant the use of renewable raw materials, direct oxidations 

using oxygen, improved separations technology, and all forms of catalysis. However, 

progress toward sustainable chemistry has to increase drastically to meet the challenges 

of this century.8 

Although there are few examples of green processes that have had an industry 

wide impact, the increasing application of the principles of green chemistry to 

individual products and processes at lab scale has lead to the appearance of a new 

branch of chemistry, which is now consolidated. The fully application of the twelve 

principles in the development of new chemical processes or in the modification of the 

existing ones is not viable in most cases; however, if part of these principles can be 

accomplished, the objective of sustainable development will be closer. 

The use of raw materials and feedstocks that are renewable rather than depleting, 

as written in the fourth principle, is crucial both from environmental and economic 

reasons. Petrochemicals are the main feedstock for the chemical industry, but they are 

subjected to price variations due to its scarcity and non-renewable nature. Nowadays, 

renewable raw materials make up an approximate 10-12% of the feedstocks used by the 

chemical industry and it is expected to increase up to 25% in 2020. Oils and fats 

constitute the most important renewable raw materials for the chemical industry, 

followed by carbohydrates and other renewables such as proteins and protein 

surfactants.8,9 

 

Plant oils in polymer chemistry 

 

The application of plant oils and their derivatives in polymer chemistry has become an 

important research area in constant growth. The versatile chemistry that can be applied 

to triglyceride oils has lead to a wide variety of polymeric structures from linear, 

processible polymers10 to cross-linked systems with applications as resins and coatings 

among others.11 Due to the presence of fatty acid chains within the polymeric structure, 

these polymers present improved physical properties such as higher flexibility, adhesion 

and resistance to water and chemicals.11 Although to date plant oils have been widely 

used in polymer science, their potential for the development of new monomers and 

polymeric structures has not yet been fully exploited. Regarding the future 

developments in this area, the study of well defined polymers for specialty applications, 
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obtained by controlled/living polymerization techniques will improve the application 

possibilities.10 Furthermore, it is expected that fatty diacids as well as ω-amino fatty 

acids, and ω-hydroxy fatty acids derived from plant oils, will be available and may 

substitute during the next few years the respective petrochemical monomers for the 

production of polyamides, polyurethanes, and polyesters. Moreover, linear ω-

unsaturated fatty acids of different chain length will be available, being interesting 

monomers for copolymerization with alkenes.9 

 

Structure and reactivity of plant oils 

 

Plant oils are mainly constituted by triglycerides, which are the product of esterification 

between a molecule of glycerol and three fatty acids (Figure 1). They are liquid at 

ambient temperature and insoluble in water. Fatty acids are an approximate 95 % of the 

total weight of a triglyceride molecule and their length varies from 12 to 22 carbon 

atoms. Common fatty acids can be completely saturated but they can also present 

several double bonds. Besides, there is a number of naturally occurring fatty acids 

containing other functional groups such as hydroxyls or epoxides. The most common 

fatty acids are shown in figure 2. Each plant oil is composed by a characteristic fatty 

acid distribution that determines its physical and chemical properties (Table 1). 
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Glycerol  

 

Figure 1. General structure of triglycerides. In this example, with oleic, linoleic and linolenic 

acids. 

 

Triglycerides can be polymerized directly using its intrinsic reactivity but they 

can also be chemically modified in order to increase their reactivity towards 

polymerization. The first approach consists of the direct polymerization of the internal 

double bonds of the fatty acid chains of different plant oils. This process can be carried 

out via radical, cationic or thermal polymerization.12 In this way, castor oil can also be 
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directly cross-linked by reaction of the hydroxyl groups of ricinoleic acid with 

diisocianates or dicarboxilates to obtain elastomers and thermosetting materials. 
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Figure 2. Structure of some common fatty acids. Mistiric (a), myristoleic (b), palmitic (c), 

palmitoleic (d), stearic (e), oleic (f), linoleic (g), linolenic (h), calendic (i), α-eleostearic (j), 

vernolic (k), ricinoleic (l), arachidonic (m), gadoleic (n), behenic (o), erucic (p), lignoceric (q). 

 

Although straightforward, the direct polymerization of triglycerides do not 

provide polymeric materials with the mechanical and thermal properties required for 

some applications. Moreover, low crosslinking degrees are usually obtained which are 

accompanied by high soluble fractions.13 For these reasons, the second approach, that is, 

the chemical modification of the triglyceride is preferred, enabling the synthesis of 

designed monomers in the way to target polymeric materials. 

The chemical transformation of triglycerides affords a wide variety of monomers 

for the synthesis of linear10, hyperbranched14, or cross-linked structures10,11. The 

modification of triglycerides is performed using the reactivity of the functional groups 

in their structure. For the synthesis of cross-linked structures, the epoxidation of the C-C 

double bonds is one of the most important functionalization reactions, that can be 

achieved by environmentally friendly procedures such as catalyzed chemical oxidation 

with hydrogen peroxide15,16 or by enzymatic oxidation.17 The opening of the epoxide 

ring is a versatile reaction that leads to numerous products,18 some of which are 

represented in figure 3. 
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Table 1 Fatty acids percentage distribution in different plant oil. C: number of carbon atoms. 

DB: number of double bonds. 

Fatty acid C:DB Canola Corn 
Cotton 

seed 
Linseed Olive Palm Soybean Sunflower 

High 

oleic 

Mistiric 14:0 0.1 0.1 0.7 0.0 0.0 1.0 0.1 0.0 0.0 

Myristoleic 14:1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Palmitic 16:0 4.1 10.9 21.6 5.5 13.7 44.4 11.0 6.1 6.4 

Palmitoleic 16:1 0.3 0.2 0.6 0.0 1.2 0.2 0.1 0.0 0.1 

Margaric 17:0 0.1 0.1 0.1 0.0 0.0 0.1 0.0 0.0 0.0 

Margaroleic 17:1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 

Stearic 18:0 1.8 2.0 2.6 3.5 2.5 4.1 4.0 3.9 3.1 

Oleic 18:1 60.9 25.4 18.6 19.1 71.1 39.3 23.4 42.6 82.6 

Linoleic 18:2 21.0 59.6 54.4 15.3 10.0 10.0 53.2 46.4 2.3 

Linolenic 18:3 8.8 1.2 0.7 56.6 0.6 0.4 7.8 1.0 3.7 

Arachidonic 20:0 0.7 0.4 0.3 0.0 0.9 0.3 0.3 0.0 0.2 

Gadoleic 20:1 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 

Eicosadienoic 20:2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Behenic 22:0 0.3 0.1 0.2 0.0 0.0 0.1 0.1 0.0 0.3 

Erucic 22:1 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 

Lignoceric 24:0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

DB/Triglyceride  3.9 4.5 3.9 6.6 2.8 1.8 4.6 0.0 3.0 

 

 

 

O
OR2

OR1

O

O

O

O
OR2

OR1

O

O

O

H2O2
R-COOH

O

O
OR2

OR1

O

O

O Cl

OH

O
OR2

OR1

O

O

O Br

OH

O
OR2

OR1

O

O

O OCH3

OH
O

OR2

OR1

O

O

O OH

OH

O
OR2

OR1

O

O

O H

OH

O
OR2

OR1

O

O

O O

OH

O

a

b

f

e

c d

 

 

Figure 3. Ring opening products of epoxidized triglycerides with HCl (a), HBr (b), MeOH/H+ 

(c), H2O/H+ (d), catalytic hydrogenation (e) and acryloyl chloride (f). 
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Recent publications report the use of polyols derived from epoxidized plant oils 

for the preparation of polyurethanes,19 polyurethane dispersions,20 polyurethane 

foams,21 polyurethane IPNs22 and hybrid latexes prepared from waterborne PU and 

acrylic MMA/BA copolymers.23 Direct polymerization of epoxidized plant oils and 

fatty acids has also been reported with diamines,24 anhydrides25 or by cationic 

polymerization in the synthesis of linseed oil-POSS hybrid materials26.  

As mentioned above, some plant oils present functional groups in their structure. 

Castor oil has lately found applications in the synthesis of hyperbranched 

polyurethanes27, in the synthesis of biodegradable plastic foams by curing with maleic 

anhydide28 and in the preparation of UV-curable thiol-ene formulations.29 An interesting 

castor oil derivative is 10-undecenoic acid, which is produced by cracking of castor oil 

under pressure. It is one of the oldest renewable building blocks, being used in the 

industry as a Nylon 11 precursor. It has been recently used for the synthesis of a variety 

of α,ω-dienes as interesting monomers for acyclic diene metathesis (ADMET) 

polymerization.14 The dehydration of castor oil followed by crosslinking with 

bismaleimides via Diels-Alder reaction has been also recently reported30. 

Another recent examples of fatty acid and plant oil-based polymers include the 

synthesis of polyols through Pd catalyzed cyclotrimerization of fatty acid derivatives for 

polyurethane synthesis,31 the synthesis of isocyanate-containing triglycerides,32 the 

preparation of thermosets from soybean oil and p-dinitrosobenzene via an ene 

reaction,33 the development of a linseed oil-based thermoset via ROMP,34 the cationic 

polymerization of soybean oil in supercritical CO2
35 and the synthesis of soybean-based 

silicon-containing thermosets by cationic polymerization.36 

 

 

                                                 
1 The Brundtland Commission, formally the World Commission on Environment and 

Development (WCED). Convened by the United Nations in 1983. 
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OBJECTIVES 

 

As explained in the introduction, the use of renewable feedstocks, such as vegetable 

oils, for the development of polymers is a crucial step towards sustainability. The 

general objective of this thesis is the investigation of new approaches for the synthesis 

of plant oil-derived polymeric materials. 

The first objective consist of the development of new synthetic pathways for the 

synthesis of thermosetting materials using high oleic sunflower oil as starting material. 

High oleic sunflower oil is obtained from modified sunflowers.1 It contains a minimum 

of 80 % of oleic acid (monounsaturated) that makes it specially attractive for certain 

synthetic applications. 

The second main objective is the synthesis of phosphorus-containing plant oil 

monomers for the synthesis of reactive phosphorus-containing flame retardant 

materials. 

 

 

SUMMARY 

 

The first part of this thesis (chapters one and two) is focused on the modification of 

commercial high oleic sunflower oil for the synthesis of two triglyceride-monomers. 

Both monomers were synthesized through the singlet oxygen photoperoxidation of high 

oleic sunflower oil. Further dehydration or reduction led to a α,β-unsaturated ketone-

containing derivative and an allylic hydroxyl-containing derivative. 

 

 

O

O

O

O

O
O O

O

O

O

O
O

O

O

O

Aza-Michael
cross-link

High oleic sunflower oil
Radical

polimerization

O

O

O

O

O
O

OH

HO

OH

Acrylation

 

UNIVERSITAT ROVIRA I VIRGILI 
PLANT OILS AS RENEWABLE PRECURSORS OF THERMOSETTING AND FLAME RETARDANT POLYMERS 
Lucas Montero de Espinosa Meléndez 
ISBN:978-84-692-9759-9/DL:T-205-2010 
 
 



 10

• Chapter one contains the work developed on the cross-link of the enone 

derivative with an aromatic diamine via aza-Michael addition reaction. First, the 

reactivity of the curing system is presented and compared with a conventional epoxy-

diamine system. Secondly, a thorough study of the secondary reactions taking place, in 

relation with the reaction conditions, enabled the development of new quinoline-

containing triglyceride-based thermosets. 

• Chaper two contains the cross-link of the allylic hydroxyl derivative through 

acrylation and subsequent radical polymerization. The study of the effect of an increase 

of cross-link density on the material properties was carried out by using different 

amounts of pentaerythritol tetraacrylate as cross-linking agent. Moreover, a complete 

hydrogenation of the internal double bonds of the monomer was carried out to study the 

effect of unsaturations on the cross-linked polymer properties. 

 

 The second part of this thesis (chapters three and four) is focused on the 

development of phosphorus-containing plant oil-based materials with flame retardant 

properties. High oleic sunflower oil and 10-undecenoic acid (derived from castor oil 

cracking) were used as starting reagents. 

• Chapter three contains the synthesis of flame retardant thermosets from high 

oleic sunflower oil. The previously mentioned allylic hydroxyl derivative was partially 

modified by introducing different amounts of tertiary phosphine oxide groups via 

formation of allyl phosphinite and [2,3]-sigmatropic rearrangement. The remaining 

hydroxyls were acrylated and the subsequent radical polymerization afforded a family 

of thermosets with improved fire resistance. 
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 • Chapter four contains the synthesis of linear and cross-linked castor oil-derived 

phosphorus-based flame retardants. In the first section, a series of flame retardant linear 

polyesters with different phosphorus contents were synthesized via ADMET 

polymerization. The effect of the polymerization temperature on the molecular weight 

and thermal properties is also reported. In the second section, hydroxyl-containing 

linear polyesters with different phosphorus contents were synthesized via ADMET 

polymerization. The acrylation of the backbone hydroxyl groups followed by radical 

polymerization afforded a family of flame retardant thermosets. 
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1 Fick, G. N. (Breckenridge, MN) Sunflower products and methods for their production US 

Patent 4627192, 1986. 
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FIRST PART 

 

 

 

 

In the first part of this thesis, the ene reaction of singlet oxygen with the internal double 

bonds of high oleic sunflower oil has been applied as a general first functionalization 

step for the development of plant oil-based thermosets. The photoperoxidation of high 

oleic sunflower oil has been used for the synthesis of two different triglyceride 

derivatives. Chapter one describes the synthesis of thermosets from a triglyceride 

derivative containing α,β-unsaturated groups via aza-Michael reaction. Chapter two 

contains the synthesis of thermosets from a hydroxyl-containing triglyceride derivative 

via acrylation and radical polymerization. 
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THE CHEMISTRY OF SINGLET OXYGEN 

 

Introduction 

 

For more than 70 years, researchers in several areas of science have been intrigued by 

the physical and chemical properties of the lowest excited states of molecular oxygen. 

With two singlet states lying close above its triplet ground state (Figure 1), the O2 

molecule possesses a very unique configuration, which gives rise to a very rich and 

easily accessible chemistry, and also to a number of important photophysical 

interactions. In particular, photosensitized reactions of the first excited state O2(
1∆g), 

play a key role in many natural photochemical and photobiological processes, such as 

photodegradation and aging processes including even photocarcinogenesis. Reactions of 

O2(
1∆g) are associated with significant applications in several fields, including organic 

synthesis, purification of water, bleaching processes, and, most importantly, the 

photodynamic therapy of cancer, which has now obtained regulatory approval in most 

countries for the treatment of several types of tumors. 
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Figure 1. Ground state and excited states of molecular oxygen. 

 

Singlet oxygen generation 

 

Singlet oxygen is the lowest excited state of the dioxygen molecule. The most common 

means of singlet oxygen generation is photosensitization or, more precisely, energy 

transfer to O2 from an excited state of a sensitizer, which is formed by the absorption of 

light in a specific wavelength region (Scheme1). A photosensitizer is irradiated to its 

singlet excited state, followed by conversion (called intersystem crossing) to its triplet 
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excited state. The triplet excited sensitizer may undergo radical reactions (type I 

process) or produce singlet oxygen (type II process). Ideal sensitizer properties and 

experimental conditions that favor the singlet oxygen (type II) pathway include (i) a low 

sensitizer and O2 concentration, (ii) a high intersystem crossing yield of the sensitizer, 

(iii) a low chemical reactivity of the sensitizer triplet state, and (iv) a small singlet-

triplet splitting of the sensitizer. However, competition between type I and II 

photooxidation chemistry is inevitable upon the formation of an excited sensitizer in the 

presence of 3O2.
1 Other experimental parameters influencing the singlet oxygen 

photosensitized generation are the solvent polarity, the temperature or the pressure.2 
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Scheme 1. Substrate photosensitized oxidation through type I and type II mechanisms. 

 

Figure 2 shows some examples of the great synthetic utility of singlet oxygen for 

generating oxygenated hydrocarbons, such as endoperoxides from [2 + 4] 

cycloadditions, dioxetanes from [2 + 2] cycloadditions, sulfoxides from sulfide 

oxidations, phosphine oxides from phosphine oxidations, and hydroperoxides from 

phenol oxidations and “ene” reactions. 
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Figure 2. synthesis of a) endoperoxides, b) dioxetanes, c) sulfoxides, d) phosphine oxides, and 

e) and f) hydroperoxides with singlet oxygen. 
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The ene reaction of singlet oxygen with alkenes 

 

Singlet oxygen reacts with alkenes through an ene reaction to form allylic 

hydroperoxides. This reaction was first described in 1945 by Schenck3 but it was not 

until 2003 that its mechanism was elucidated by combination of computational and 

experimental investigations on the reaction between 1O2 and cis-2-butene.4 It is now 

accepted that the ene reaction contains a valley-ridge inflection (VRI) between two 

transition states (TS1 and TS2) which are connected sequentially. The pathway  

bifurcates at the VRI point prior to TS2 to give the allylic hydroperoxide products 

(Scheme 2). 
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Scheme 2. Mechanism of the ene reaction between singlet oxygen and cis-2-butene. 

 

A biological example of the 1O2 “ene” reaction is in lipid peroxidation processes, where 

a shift in the double bond takes place. As an example, figure 3 shows the products of 

hydroperoxidation of linoleoyl groups at the 9´, 10´, 12´, and 13´ positions. 
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Figure 3. Products of the ene reaction of an ester of linoleic acid with singlet oxygen. 

 

 

The ene reaction of singlet oxygen with the internal double bonds of high oleic 

sunflower oil has been applied in this work as a general first step for the development of 

plant oil-based thermosets. The photoperoxidation of high oleic sunflower oil affords a 

triglyceride derivative with allylic hydroperoxides. Dehydration or reduction of the 

hydroperoxides can afford a triglyceride containing α,β-unsaturated groups or allylic 

hydroxyls that have been used as new monomers in the synthesis of plant oil-based 

thermosets. 

 

 

                                                 
1 Greer, A. Acc Chem Res 2006, 39, 797-804. 
2 Schweitzer, C.; Schmidt, R. Chem Rev, 2003, 103, 1685-1758. 
3 Schenck, G. O. Naturwissenschaften 1948, 35, 28-29. 
4 Singleton, D. A.; Hang, C.; Szymanski, M. J.; Meyer, M. P.; Leach, A. G.; Kuwata, K. T.; 

Chen, J. S.; Greer, A.; Foote, C. S.; Houk, K. N. J Am Chem Soc 2003, 125,1319-1328. 
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Chapter 1 

 

1. A New Enone-Containing Triglyceride Derivative as 

Precursor of Thermosets from Renewable Resources 

 

2. Quinoline-Containing Networks from Enone and 

Aldehyde Triglyceride Derivatives 
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A New Enone-Containing Triglyceride Derivative as 

Precursor of Thermosets from Renewable Resources 

 

Lucas Montero de Espinosa, Juan C. Ronda, Marina Galià, Virginia Cádiz 

Department of Analytical and Organic Chemistry, Rovira i Virgili University, Campus 

Sescelades, Marcel.lí Domingo s/n, 43007 Tarragona, Spain. 

 

ABSTRACT. A novel triglyceride containing α,β-unsaturated ketone was prepared 

through photoperoxidation from high oleic sunflower oil by two steps one pot 

environmentally friendly procedure. This new enone-containing triglyceride was 

crosslinked with diaminodiphenylmethane  (DDM) via aza-Michael addition. A kinetic 

study of the reaction of p-toluidine with either enone-containing methyl oleate or 

epoxidized methyl oleate, as model compounds, allowed to establish the higher 

reactivity of the former, thus confirming this curing system as an alternative to amine-

cured epoxidized vegetable oils. The thermal properties of thermosets from enone and 

epoxy-containing triglycerides with DDM have been evaluated.  

Keywords: triglyceride, crosslinking, renewable resources, aza-Michael  

 
 

INTRODUCTION 

 
The development of environmentally compatible polymers is one of the current 

challenges in polymer chemistry. The scarcity of non renewable resources encouraged 

the scientific community to develop and commercialize new biobased products that can 

alleviate the wide-spread dependence on fossil fuels and, enhance security, the 

environment and the economy.1 Natural oils are considered to be the most important 

class of renewable sources.2 The main component of the triglyceride vegetable oils are 

saturated and unsaturated fatty acids. Although they have double bonds which can be 

used as reactive sites in coatings, for obtaining high performance polymeric materials 

the introduction of more reactive functional groups, such as hydroxyl, epoxy or 

carboxyl groups, is much more suitable.3,4 Various chemical pathways for 

functionalizing triglycerides and fatty acids have been studied.5 Epoxidation is one of 

the most important functionalization reactions of the C-C double bonds, that can be 

achieved by environmentally friendly procedures such as catalyzed chemical oxidation 
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with hydrogen peroxide6,7 or by enzymatic oxidation.8 The opening of the epoxide ring 

is a versatile reaction that leads to numerous products.4,9,10 Thus, epoxidized vegetable 

oils are extremely promising as inexpensive renewable materials for industrial 

applications11 because they share many of the characteristics of conventional epoxy 

thermosets. In this way, naturally occurring epoxy oil, as vernonia seed oil or 

epoxidized vegetable oils from soybean, linseed or castor oils have been cured 

cationically12 or with conventional hardeners as diamines or dianhydrides.13-16 

The challenge to progressively replace fossil feedstocks by materials arising 

from plant-derived renewable sources implies not only the development of new original 

reactions and catalysts but also the application of well established reactions to the 

production of new tailor made compounds capable to produce competitive performance 

materials. 

In this communication we report the synthesis of a new highly reactive 

triglyceride derivative with α,β-unsaturated carbonyl groups. This enone-containing 

triglyceride is obtained by an environmentally friendly chemical procedure from high 

oleic sunflower oil and it could be an interesting alternative to epoxidized vegetable oils 

to produce thermosets by crosslinking with conventional aromatic diamines. Amine-

cured ω-epoxy fatty acid triglycerides have been shown to yield robust networks with 

good adhesive characteristics similar to those of conventional thermosets based on 

diglycidylether of Bisphenol A.13 However, epoxidized fatty oils such as epoxidized 

linseed and soybean oils, which contain oxirane groups that are hindered at both 

carbons, react sluggishly with nucleophilic curing agents.17 On the other hand, the 

Michael addition reaction is a valuable tool in the synthesis of polymeric networks.18 

The aza-Michael reaction, a variation in which an amine acts as the nucleophile, has 

been used in the synthesis of improved bismaleimide networks,19 but this reaction has 

not been applied to the synthesis of crosslinked polymers derived from vegetable oils. 

In this work the high reactivity of the enone groups has been proved. By means 

of a 1H NMR kinetic experiment, the reactivity of p-toluidine with either enone or 

epoxy functions in fatty acid derivatives as model compounds has been studied. The 

crosslinking of the enone- and epoxy-containing triglycerides with 

diaminodiphenylmethane was followed by FTIR spectroscopy and the thermal 

properties of the final materials were evaluated. 
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EXPERIMENTAL PART 
 

Materials 

High oleic sunflower oil (minimum 80% oleic acid) was kindly supplied by Borges. 

Methyl oleate (Alfa Aesar), meso-tetraphenylporphyrin (TPP) (Aldrich), 

borontrifluoride monoethanolamine complex (BF3·MEA) (Aldrich), p-toluidine 

(Aldrich), diaminodiphenylmethane (DDM) (Aldrich), triethylamine (Scharlau), acetic 

anhydride (Scharlau) and hydrogen peroxide 50% (w/v) (Scharlau), were used as 

received. Toluene was dried over sodium/benzophenone and dichloromethane from 

P2O5,  both distilled immediately before use. Epoxidized methyl oleate (EMO),20 and the 

mixture of methyl-9-oxo-10-octadecenoate and methyl-10-oxo-8-octadecenoate21 were 

synthesized as previously reported. Tetrakis(diperoxotungsto)phosphate was 

synthesized following a published procedure.22 TLC plates were developed by spraying 

with sulphuric acid/anisaldehyde ethanol solution and heating at 200 ºC. 

 

Photoperoxydation of high oleic sunflower oil. In a 450mL standard immersion-well 

photochemical reactor with a 400W high pressure sodium vapour lamp, high oleic 

sunflower oil (70 g, 79.1 mmol), TPP (0.02 g, mol) and dichloromethane (400mL) were 

introduced. Cold water was circulated through the lamp jacket, while a gentle stream of 

oxygen was bubbled through the stirred reaction mixture. After a few minutes, the lamp 

was turned on and the reaction was monitored by TLC (hexane/ethyl acetate, 5:1). After 

4 h of irradiation the total disappearance of isolated double bonds and formation of the 

intermediate allylic hydroperoxides was observed. The lamp was turned off and the 

reactor was placed into a water bath. Acetic anhydride (24.60 mL, 260.9 mmol) and 

triethylamine (18.20 mL, 130.4 mmol) were added with stirring at room temperature. 

After 30 min TLC (hexane/ethyl acetate, 5:1) confirmed the formation of the enone and 

the complete disappearance of the hydroperoxide. The solvent was then eliminated at 

reduced pressure. The reaction mixture was diluted with ethyl acetate (500 mL) and 

washed successively with water, saturated NaHCO3, HCl (10% v/v) and saturated NaCl. 

After drying over MgSO4 and concentrating under reduced pressure, the product was 

obtained as a triglyceride mixture with 2.3 α,β-unsaturated ketones per molecule 

(determined by 1H NMR spectroscopy). Further purification was achieved by 

crystallization, at 5ºC, from hexane (200 mL) obtaining a product with 2.6 α,β-

unsaturated ketones per molecule (determined by 1H NMR) with 76%yield. 
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FTIR: 1740 cm-1 (ester C=O, st), 1696 cm-1 (C=O,s-cis, st), 1673 cm-1 (C=O, s-trans, 

st), 1629 cm-1 (C=C, st), 1162 cm-1 (C-O, st). 
1H NMR (CDCl3, TMS, δ ppm): 6.78-6.70 (3H, m, H-11), 5.99 (3H, dd, J10-11= 16 Hz, 

J10-12= 1.6 Hz, H-10), 5.22-5.16 (1H, m, H-19), 4.24-4.20 (2H, m, H-20), 4.06 (2H, dd, 

J20´-20= 11.6 Hz, J20´-19= 6.0 Hz, H-20´), 2.44 (6H, t, J2-3= 7.2 Hz, H-8), 2.25-2.21 (6H, 

m, H-2), 2.15-2.09 (6H, m, J12-11≅ J12-13= 7.3 Hz, H-12), 1.58-1.43 (12H, m, H-3 H-7), 

1.43-1.30 (6H, m, H-13), 1.30-1.10 (42H, m, aliphatic chain), 0.83-0.76 (9H, m, H-18). 
13C NMR (CDCl3, TMS, δ ppm): 200.76 (C-9), 200.65 (C-9´), 173.21-172.66 (C-1 C-

1´), 147.33, 146.86 (C-11), 130.42-130.30 (C-10), 68.94-68.89 (C-19), 62.05 (C-20), 

40.12-39.94 (C-8), 34.11-33.89 (C-2), 32.47-32.35 (C-12), 31.95-31.76 (C-16), 29.72-

28.79 (C-Al), 28.13-27.92 (C-13), 24.86-24.67 (C-3), 24.29-24.15 (C-7), 22.72-22.64 

(C-17), 14.15-14.10 (C-18). 

 

Synthesis of epoxidized high oleic sunflower oil. A 250 mL round-bottomed flask 

fitted with a reflux condenser was charged with high oleic sunflower oil (50 g), 

tetrakis(diperoxotungsto)phosphate  (0.84 g, 0.38 mmol), 1,2-dichloroethane (50 mL) 

and H2O2 16% (50 mL). The mixture was heated to 70 ºC and stirred vigorously until 

TLC (hexane/ethyl acetate, 9:1) showed completion of the reaction (5 h). The reaction 

mixture was diluted with water (100 mL)  and the resulting two phases were separated. 

The organic layer was washed with 50 mL of water and dryed over MgSO4. The 

product was concentrated under reduced pressure and purified by crystallization at -25 

ºC from acetone. An epoxidized high oleic sunflower oil containing 2.7 epoxi groups 

per molecule (determined by 1H NMR) was obtained with 92% yield. 

 

FTIR: 1733 cm-1 (ester C=O, st), 1171 cm-1 (C-O, st), 844 cm-1 (ring, st). 
1H NMR (CDCl3, TMS, δ ppm): 5.26-5.22 (1H, m, -CH(O)-), 4.27 (2H, dd, J1= 12 Hz, 

J2= 4 Hz, -CH2-O), 4.12 (2H, dd, J1= 11.6 Hz, J2= 5.6 Hz, -CH2-O), 2.91-2.86 (5.3 H, 

m, -CH(O)- epoxide), 2.29 (6H, t, J= 7.2 Hz, -CH2-CO), 1.65-1.15 (78H, m, aliphatic 

chain), 0.86 (9H, t, J= 6.8 Hz, -CH3). 
13C NMR (CDCl3, TMS, δ ppm): 173.22, (COOR), 172.82 (C´OOR), 68.93 (-CH(O)-), 

62.13 (-CH2-O), 57.23-57.17 (-CH(O)-, epoxide), 34.18-34.02 (-CH2-CO), 31.98-29.01 

(C-Al), 27.89-27.86 (-CH2-CH(O)-), 26.68-26.65 (C-Al), 24.86-24.83 (-CH2-CH2-CO), 

22.73(Al), 14.17 (-CH3). 
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Kinetic Measurements 

Kinetic experiments were carried out by 1H NMR using rubber septa sealed NMR tubes. 

The precise amounts of a 1M solution of epoxidized methyl oleate or the methyl-oxo-

octadecenoate mixture and 0.5M solution of p-toluidine in dry deuterated toluene were 

introduced using general vacuum-line techniques. The reaction was monitored at  80 ºC. 

In the case of the epoxidized methyl oleate an experiment using 4% mol of BF3·MEA as 

catalyst was also carried out. 

 

Curing reactions 

The curing reactions were carried out as follows. The enone-containing triglyceride and 

the DDM were melted and then mixed. The resulting liquid was put into a previously 

heated (60 ºC) mold. The mixture was heated at 90 ºC for 12h and post-cured at 120 ºC 

for 6h. In the case of the epoxidized high oleic sunflower oil, the procedure was similar. 

The epoxy-containing triglyceride and DDM were melted, mixed and placed into a 

mold at 120 ºC for 6h. The material was post-cured at 140 ºC for 2h. In the catalyzed 

curing reaction, BF3·MEA (4% mol) was added to the mixture just before putting it into 

the mold. 

 
Instrumentation 
1H NMR 400 MHz and 13C NMR 100.6 MHz NMR spectra were obtained using a 

Varian Gemini 400 spectrometer with Fourier transform, CDCl3 as solvent and TMS as 

internal standard. The crosslinking process at 90ºC was monitored with a FTIR-

680PLUS spectrophotometer with a resolution of 4 cm-1 in the transmittance mode. An 

attenuated-total-reflection accessory with thermal control and a diamond crystal was 

used to determine FTIR/ATR spectra. 

Calorimetric studies were carried out on a Mettler DSC821e thermal analyzer 

using N2 as a purge gas (20 ml/min) at scan rates between 5 and 20ºC/min and dynamic 

mechanical thermal analysis (DMTA) apparatus (TA DMA 2928). The thermal 

transitions were studied in the -80-120ºC range at a heating rate of 10ºC/min and at a 

fixed frequency of 1 Hz. 

 Thermal stability studies were carried out on a Mettler 

TGA/SDTA851e/LF/1100 with N2 as a purge gas, in the 30-800ºC at scan rates of 

10ºC/min.  
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RESULTS AND DISCUSSION 

 

As mentioned in the introduction the synthesis of the new enone containing-triglyceride 

derivative was carried out by an environmentally friendly chemical procedure from high 

oleic sunflower oil. For this purpose we used the singlet oxygen “ene” reaction which is 

one of the highly investigated processes in organic chemistry to functionalize the allylic 

C-H bonds of unsaturated compounds. This reaction was discovered in 1948 by 

Schenck,23 who demonstrated that allylic hydroperoxides are handily prepared by 

reaction of alkenes with photochemically generated singlet oxygen. The mechanism of 

this reaction has been widely studied and it is actually well established.24 For synthetic 

applications, the unsaturated substrate can be photoxygenated “in situ” with singlet 
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Scheme 1. Synthesis of 1a) enone-containing fatty acid derivative and 1b) enone-containing 
triglyceride derivative. 
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 oxygen generated by means of a high pressure sodium-vapor lamp and TPP as 

sensitizer in an oxygen saturated medium, to give a mixture of isomeric allylic 

hydroperoxides (scheme 1a). This reaction has been used to oxidize the allylic position 

of fatty acids and their derivatives24-26 such the methyl oleate. The mild conditions 

utilized and the use of oxygen, as the only reagent, makes this process particularly 

favorable from both an economical and ecological viewpoint. 

The allylic hydroperoxides can undergo a number of different transformations.27 

One of the most interesting reactions is the conversion of these hydroperoxides into a 

regioisomeric mixture of enones (scheme 1a),28,29 that can be carried out in the presence 

of acetic anhydride and pyridine or tertiary amines. This reaction has been scarcely used 

with fatty acids and their derivatives. 21   The application of this reaction to unsaturated 

triglycerides, not  explored up to date, affords to a multifunctional reactive compound 

useful to obtain thermosetting materials from renewable resources. Thus, the 

photooxidation and further dehydration of samples of high oleic sunflower oil (scheme 

1b) led to the quantitative double bond transformation, according to 1H NMR 

measurements.  
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Figure 1. 1H, 13C, and HSQC NMR spectra of the enone-containing triglyceride. 

 
The obtained product was purified by crystallization in hexane at 5º C to remove 

some triglyceride fractions rich in saturated fatty acids. In this way, a product 
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containing 2.6 enone groups per triglyceride was obtained with a yield of 76%. Fig 1 

depicts the 1H, 13C and HSQC NMR spectra with all the assignments. 

To compare the reactivity of aromatic amines with either enone or epoxy 

functions in triglycerides, a 1H NMR kinetic experiment using the enone or the epoxy 

methyl oleate derivatives, as monofunctional model compounds, was carried out. In this 

way, the same amounts of 1M solution of epoxidized methyl oleate or the methyl-oxo-

octadecenoate mixture, were mixed with a 0.5M solution of p-toluidine in sealed NMR 

tubes (molar ratio 2:1). The reaction was monitored at 80 ºC through the disappearance 

of the characteristic multiplet epoxy signal at 2.68 ppm or the double bond doublet 

signal at 5.96 ppm corresponding to the methine directly attached to the carbonylic 

group. We used as internal reference the signal at 3.40 ppm corresponding to the methyl 

in the ester group. Fig. 2 shows the conversion of the enone and epoxy groups versus 

time. As can be seen, the enone groups react much faster with p-toluidine than epoxy 

groups do. Moreover, the analysis of the aromatic region (doublet at 6.39 ppm) allowed  
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Figure 2. kinetic 1H NMR experiment. Conversion versus time of a) EMO (□); b) EMO with 

4% mol BF3·MEA (○) and c) mixture of methyl-9-oxo-10-octadecenoate and methyl-10-oxo-8-

octadecenoate (■) when reacted with p-toluidine; d) secondary amine in reaction c) (▲). 

 

to follow the formation of the secondary amine which is depicted also in Fig. 2 for the 

case of enone derivative. The reaction between amine and enone groups occurs very 
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fastly reaching a plateau after 4h. Taking into account the molar ratio used and the 

observed conversion we can conclude that only the secondary amine is formed and 

other by-products are negligible. This could be confirmed in an experiment in which the 

methyl-oxo-octadecenoate mixture, was mixed with a 1M solution of p-toluidine in 

sealed NMR tube (molar ratio 1:1). The reaction was monitored at 80 ºC by 1H NMR 

until the enone groups completely reacted. As can be seen in Fig. 3 only signals 

corresponding to the secondary amine derivative could be observed. 
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Figure 3. 1H NMR spectrum of the product from the reaction between methyl-oxo-decenoate 

and p-toluidine in a 1:1 molar ratio. 

 

Because of the scarce reactivity observed in the case of epoxy derivative the 

reaction was investigated using BF3.MEA as catalyst. In this case, as can be seen in Fig. 

2, the reaction was accelerated but did not reach the high reactivity observed in the 

enone derivative.  

The curing reaction of enone-containing triglyceride with DDM was monitorized 

by FTIR-ATR spectroscopy. Both compounds were mixed in a amine/enone 1:1 molar 

ratio and heated at 90ºC during 5h. This technique allowed us to follow the evolution of 

the groups involved in the process by means of the variations in the corresponding 

absorptions. Fig. 4 shows FTIR spectra of the pure triglyceride derivative (a), the 

mixture with DDM at t=0 min (b) and the mixture after 60 min (c). In the spectrum b) 

typical primary amine bands at 3372 cm-1 and 3460 cm-1, conjugated ketone carbonyl 

group at 1696 cm-1 (s-cis) and 1673 cm-1 (s-trans) and double bonds stretching at 1629 
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cm-1 corresponding to both aromatic amine and enone, can be observed. In the spectrum 

c) only a band at 3385 cm-1 corresponding to secondary amine appears. Moreover, there 

is a shift of ketone carbonyl band to higher wavenumbers because of the disappearance 

of the conjugated double bond. This saturated ketone band overlaps to carbonyl ester 

group at 1741 cm-1. Therefore, we confirmed the reaction of the primary amine with the 

enone groups in the triglyceride. 
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Figure 4. FTIR-ATR spectrum of the enone-containing triglyceride (a) and the initial (b) and 

final (c) FTIR spectra of the crosslinking reaction. 

 

A similar curing reaction of epoxidized high oleic sunflower oil with DDM was 

monitorized by FTIR-ATR spectroscopy. Both compounds were mixed in a 

amine/epoxy group 1:1 molar ratio and heated at 90ºC. After 5h no reaction was 

observed remaining in the spectrum the corresponding absorptions due to the primary 

amine. Moreover no hydroxyl absorption was observed. After this reaction the resulting 

compound was soluble indicating the no formation of the network. Thus,  BF3. MEA 

(4% molar) was added as catalyst to the mixture at 90ºC. In this case, the ring opening 

polymerization with DDM took place (primary amine absorptions diminish) but 
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homopolymerization of epoxidized triglyceride was favoured. This fact was confirmed 

by comparison of the spectra of this curing mixture and that of epoxidized triglyceride 

only with the Lewis acid catalyst. Both of them show a broad band at 1050 cm-1 

corresponding to ether bond in the resulting polyether.  

Finally, the thermal properties of these polymeric networks were evaluated by 

DSC and DMTA. Dynamic DSC experiments allowed us to select the appropriate 

curing cycles. Thus, the curing was performed at the onset temperature of the curing 

exotherm in the plot and the post-curing at the maximum of this exotherm.  In this way, 

the enone-containing triglyceride was cured for 12h at 90ºC and post-cured for 5h at 

120ºC and  the epoxidized triglyceride/BF3.MEA was cured for 6h at 120ºC and post-

cured for 2h at 140ºC. DSC traces after these curing cycles show Tg’s at –10ºC and –

7ºC respectively and no residual curing enthalpy was observed.  

The dynamic mechanical behavior of the crosslinked materials was obtained as a 

function of the temperature beginning in the glassy state of each composition to the 

rubbery plateau of each material (Fig. 5). The crosslinking density of a polymer can be 

estimated from the plateau of the elastic modulus in the rubbery state.30 However, this 

theory is strictly valid only for lightly crosslinked materials, and is therefore used only 

to make qualitative comparisons of the level of crosslinking among the various 

polymers. Figure 5 depicts the storage modulus and the tan δ of both samples. As can be 

observed, Tg values are 16ºC for the enone derivative and 19ºC for de epoxy derivative 

from the tan δ curves according to the elastomeric nature of these materials. Moreover, 

from storage modulus in the rubbery state and from the height of the tan δ peak, it can 

be inferred that crosslinking density is higher in the case of the enone derivative. 

Moreover, the tan δ peak width at half-height is broader, in the case of enone derivative, 

what is associated with the increasing number of branching modes and a wider 

distribution of structures. This could be due to a more complex crosslinking mechanism, 

than the single aza-Michael reaction. Further studies are now in progress and will be 

presented in a forthcoming paper. 

The thermal stability was evaluated by TGA under nitrogen atmosphere. In both 

cases the thermogravimetric plots show that the materials have good thermal stability 

with 5% of weight loss about 330ºC for the material cured via Aza-Michael and 370ºC 

for the material cured by catalyzed oxirane ring opening. The shapes of the first 
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derivative TGA plots show that the degradations take place in broad temperature ranges 

in both cases.  

 

CONCLUSIONS 

The “ene” reaction has been successfully applied to obtain α,β-unsaturated ketone-

containing triglycerides using a two steps one pot environmentally friendly procedure. 

This new enone-containing triglyceride derivative has shown high reactivity towards 

amines providing a promising route to obtain polymeric networks under mild conditions 

and without the aid of a catalyst. 
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Quinoline-Containing Networks from Enone and Aldehyde 

Triglyceride Derivatives 
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Department of Analytical and Organic Chemistry, Rovira i Virgili University, Campus 

Sescelades, Marcel.lí Domingo s/n, 43007 Tarragona, Spain. 

 
ABSTRACT. The crosslinking reaction of a triglyceride derivative containing α,β-

unsaturated ketones with diaminodiphenylmethane via aza-Michael addition has been 

extensively studied. First, a model study with monofunctional compounds showed that 

the conjugated addition product undergoes a series of transformations leading to 

formation of a substituted quinoline. The proposed reaction pathway is presented as a 

variation of the Skraup-Doebner-Von Miller quinoline synthesis. The presence of 

quinolines as crosslinking points in the cured materials has been proved by means of 

different characterization techniques and the properties derived from this aromatization 

process have been described. This new crosslinking approach has been successfully 

applied to an aldehyde-containing triglyceride to obtain high performance thermosets. 

Keywords: triglyceride, crosslinking, renewable resources, aza-Michael, aromatization. 

 

 

INTRODUCTION 

 

The utilization of fossil fuels for the manufacture of plastics accounts for about 7% of 

the worldwide use of oil and gas, which will arguably be depleted within the next 100 

years.1 In these next decades of increasing oil prices, global warming, and other 

environmental concerns, a change from fossil feedstocks to renewable resources is 

important for sustainable development into the future.2 Among the renewable raw 

materials, natural oils are the most widely used renewable resource for the chemical and 

polymer industries.3 The main component of the triglyceride vegetable oils are saturated 

and unsaturated fatty acids. Although they have double bonds which can be used as 

reactive sites in coatings, for obtaining high performance polymeric materials the 

introduction of more reactive functional groups, such as hydroxyl, epoxy or carboxyl 

groups, is much more suitable.4,5 Various chemical pathways for functionalizing 
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triglycerides and fatty acids have been studied.6 Epoxidation is one of the most 

important functionalization reactions of the C-C double bonds, that can be achieved by 

environmentally friendly procedures such as catalyzed chemical oxidation with 

hydrogen peroxide7,8 or by enzymatic oxidation.9 The opening of the epoxide ring is a 

versatile reaction that leads to numerous products.4,10,11 Thus, epoxidized vegetable oils 

are extremely promising as inexpensive renewable materials for industrial applications12 

because they share many of the characteristics of conventional epoxy thermosets. In this 

way, naturally occurring epoxy oil, as vernonia seed oil or epoxidized vegetable oils 

from soybean, linseed or castor oils have been cured cationically13 or with conventional 

hardeners as diamines or dianhydrides.14-18 

Recently, in a previous communication we reported the synthesis of a new 

highly reactive triglyceride derivative with α,β-unsaturated carbonyl groups.19 This 

enone-containing triglyceride obtained by an environmentally friendly chemical 

procedure from high oleic sunflower oil resulted an interesting alternative to epoxidized 

vegetable oils to produce thermosets by crosslinking with conventional aromatic 

diamines. The Michael addition reaction came out as a valuable tool in the synthesis of 

polymeric networks.20 The aza-Michael reaction, a variation in which an amine acts as 

the nucleophile, had been used in the synthesis of improved bismaleimide networks,21 

but this reaction had not been applied to the synthesis of crosslinked polymers derived 

from vegetable oils. In the aza-Michael reaction with the enone-containing triglyceride 

derivative we observed the existence of secondary reactions during the crosslinking 

process at high temperatures, reactions that can take place not only in this case, but also 

in any other curing process in which an aza-Michael addition is involved. Thus, this 

work is focused on the study of the nature of these secondary reactions and their extent, 

as they can have a great influence in the properties of the obtained thermosets. The 

reactions were followed by NMR, UV and fluorescence spectroscopy, showing that at 

high temperatures aromatic moieties are formed in the network. This finding is relevant 

to enhance the material properties. Usually, materials from oils are incapable of 

displaying the necessary rigidity and strength required for structural applications, and so 

modification or copolymerization with aromatic components are required to overcome 

this drawback.22 Finally, the evaluation of thermal properties of the final material could 

be related to the presence of the aromatic structures. 
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EXPERIMENTAL 

 

Materials. 

High oleic sunflower oil (minimum 80% oleic acid) was kindly supplied by Borges, 

BF3·MEA (Aldrich), Decanal (Aldrich), HClO4 (60%, Probus), NaIO4 (Fluka), NaHCO3 

(Scharlab) and MgSO4 (Scharlab) were used as received. p-Toluidine (Aldrich) was 

recrystallized from heptane. Hexane, ethyl acetate, tetrahydrofurane, dichloromethane 

and 1,4-dioxane were purchased to Scharlab and used directly. Silica for column 

chromatography was purchased to SDS (60 A. C. C. 40-63 µm) and Silica gel TLC 

aluminium sheets to Merck (60, F254). The mixture of methyl-9-oxo-10-octadecenoate 

and methyl-10-oxo-8-octadecenoate (4),23  gliceryl tris(9-oxo-10-octadecenoate) and 

gliceryl tris(10-oxo-8-octadecenoate) mixture (1)19 and epoxidized high oleic sunflower 

oil (15)19 were synthesized as previously reported. TLC plates were developed with an 

UV lamp (254 nm) or by spraying with sulphuric acid/anisaldehyde ethanol solution 

and heating at 200 ºC. 

Reaction between p-toluidine and methyl-9-oxo-10-octadecenoate/methyl-10-oxo-8-

octadecenoate mixture. The α,β-unsaturated ketone (300.0 mg, 0.96 mmol),  p-

toluidine (103.5 mg, 0.96 mmol) and BF3·MEA (3.3 mg, 0.03 mmol) were mixed in a 

10 mL round bottomed flask under argon. The stirred reaction mixture was heated at 90 

ºC for 30 minutes, at 110 ºC for 2h and finally at 140 ºC for 2h more. 100 mg samples 

were taken at the end of each reaction step and analysed by 1H-NMR spectroscopy. 

Quinoline (11) synthesis from decanal and p-toluidine. Decanal (200 mg, 1.28 

mmol), p-toluidine (137 mg, 1.28 mmol) and BF3·MEA (4.3 mg, 0.038 mmol) were 

mixed in a 10 mL round bottomed flask under argon. The stirred reaction mixture was 

heated at 50 ºC for 4h and then the temperature was raised to 140 ºC and maintained for 

12h. The final mixture was analysed by 1H-NMR spectroscopy. Quinoline 11 was 

isolated by column chromatography using hexane/ethyl acetate 150/1 with 38 % yield. 

FTIR (cm-1): 3060 (C-H, Ar), 3016 (C-H, Ar), 2921 (C-H), 2850 (C-H), 1602 (C=C), 

1562 (C=C), 1493 (C=C), 1460 (CH2 and CH3), 823 (C-H, Ar). 
1H NMR (CDCl3, TMS, δ in ppm) (assignations of quinoline ring according to IUPAC 

nomenclature): 7.90 (d, J = 8.50 Hz, 1H, C8-H), 7.74 (s, 1H, C4-H), 7.46 (s, 1H, C5-H), 

7.43 (dd, J = 8.58, 1.92 Hz, 1H, C7-H), 2.96-2.92 (m, 2H, Ar-CH2), 2.77-2.73 (m, 2H, 
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Ar-CH2), 2.49 (s, 3H, Ar-CH3), 1.81-1.74 (m, 2H, Ar-CH2-CH2), 1.71-1.63 (m, 2H, Ar-

CH2-CH2), 1.50-1.22 (m, 24H), 0.93-0.84 (m, 6H, CH3). 
13C NMR (CDCl3, TMS, δ in ppm) (assignations of quinoline ring according to IUPAC 

nomenclature): 161.50 (CAr2), 145.25 (quaternary), 135.31 (quaternary), 134.41 (CAr4), 

134.22 (quaternary), 130.70 (CAr7), 128.31 (CAr8), 127.41 (quaternary), 125.93 (CAr5), 

36.12 (Ar-CH2), 32.60 (Ar-CH2), 32.10 (CH2-CH2-CH3), 32.07 (CH2-CH2-CH3), 30.77 

(CH2), 30.17 (CH2), 30.07 (CH2), 29.80 (CH2), 29.78 (CH2), 29.68 (CH2), 29.54 (CH2), 

29.47 (CH2), 22.88 (CH2-CH3), 21.69 (Ar-CH3), 14.32 (CH3). 

Synthesis of vic-diol-containing triglyceride (16). Epoxidized high oleic sunflower oil 

(5g, 5.3 mmol) was dissolved in 400 mL of THF in a 1L round bottomed flask which 

was placed in a water bath at 20 ºC. A mixture of water (80 mL) and 60 % HClO4 (2.4 

mL) was added dropwise under vigorous stirring. The reaction was kept for 12 h and 

then reaction mixture was extracted with dichloromethane and washed with water. The 

organic layer was dried over MgSO4 and the solvent was removed at reduced pressure. 

16 was obtained with 96 % yield after crystallization from hexane. The product has an 

average of 2.5 diol groups per triglyceride (by 1H NMR spectroscopy). 

FTIR (cm-1): 3540 (O-H), 1742 (C=O), 1142 (C-O). 
1H NMR (CDCl3, TMS, δ in ppm): 5.28-5.20 (m, CH-OCO), 4.28 (dd, J = 12.0, 4.0 Hz, 

CH2-OCO), 4.12 (dd, J = 12.0, 6.0 Hz, CH2-OCO), 3.38-3.32 (m, CH-OH), 2.45-2.80 

(broad, OH), 2.29 (t, J = 7.4 Hz, CH2-CO), 1.65-1.52 (m, CH2-CH2-CO), 1.52-1.20 (m, 

CH2-CHOH and CH2), 0.85 (t, J = 6.8 Hz, CH3). 
13C NMR (CDCl3, TMS, δ in ppm): 173.55 (COOR), 173.12 (COOR), 74.70 (CH-OH), 

74.63 (CH-OH), 69.07 (CH-OCO), 62.31 (CH2-OCO), 34.40 (CH2-CO), 34.23 (CH2-

CO), 33.80 (CH2-CHOH), 32.07 (CH2-CH2-CH3), 29.91-29.14 (CH2), 25.91 (CH2-CH2-

CHOH), 25.01 (CH2-CH2-CO), 22.87 (CH2-CH3), 14.31 (CH3). 

Synthesis of aldehyde-containing triglyceride (17). 16 (5.2 g, 5.3 mmol) and NaIO4 

(3.11 g, 14.5 mmol) were placed in a 100 mL round bottomed flask and 50 mL of a 9/1 

mixture of 1,4-dioxane/water were added. The reaction mixture was stirred vigorously 

at room temperature for 1 h and then it was diluted with 20 mL of dichloromethane and 

washed twice with NaHCO3 and water. The pale brown oily product was connected to a 

high vacuum pump equipped with a liquid nitrogen trap to remove nonanal. The product 

was obtained quantitatively with an average of 2.5 aldehyde groups per triglyceride (by 
1H NMR spectroscopy). 
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FTIR (cm-1): 2719 (C-H, aldehyde), 1735 (C=O, ester), 1721 (C=O, aldehyde), 1162 

(C-O), 1096 (C-O). 
1H NMR (CDCl3, TMS, δ in ppm): 9.71 (t, J = 1.77 Hz, CHO), 5.24-5.18 (m, CH-

OCO), 4.25 (dd, J = 11.90, 4.28 Hz, CH2-OCO), 4.09 (dd, J = 11.91, 5.96 Hz, CH2-

OCO), 2.38 (t, J = 7.36 Hz, CH2-CHO), 2.27 (dt, J = 7.61 Hz, CH2-COOR), 1.64-1.50 

(m, CH2-CH2COOR and CH2-CH2CHO), 1.34-1.16 (m, CH2), 0.83 (t, J = 6.83 Hz, 

CH3). 
13C NMR (CDCl3, TMS, δ in ppm): 202.96 (CHO), 173.25 (COOR), 172.85 (COOR), 

68.99 (CH-OCO), 62.19 (CH2-OCO), 43.92 (CH2-CHO), 34.18 (CH2-COOR), 34.02 

(CH2-COOR), 32.01 (CH2-CH2-CH3), 29.79-28.89 (CH2), 24.80 (CH2-CH2-COOR), 

22.79 (CH2-CH3), 22.05 (CH2-CH2-CHO), 14.24 (CH3). 

Curing reactions and extraction of soluble parts. For the 1/DDM curing system 

(samples I and II), 1 and DDM were dissolved in dichloromethane and placed inside a 

petri dish. The mixture was heated at 50 ºC for 30 min to remove the solvent and then 

sample I was heated 4h at 90 ºC and sample II, 4h at 90 ºC and 12h at 120 ºC. For the 

1/DDM/BF3·MEA curing system (samples III-V), 1, DDM and BF3·MEA (3% mol 

related to ketone groups) were dissolved in dichloromethane and the solution was put 

inside a petri dish and heated at 50 ºC for 30 min to remove the solvent. For each 

sample, the corresponding curing program was then applied. Sample III (90 ºC / 4h), 

sample IV (90 ºC / 4h and 120 ºC / 12h) and sample V (90 ºC / 4h and 140 ºC / 12h). 

For the 17/DDM/BF3·MEA curing system (samples VI-VIII), 17 and DDM (see Table 1 

for proportions in each sample) were dissolved in THF separately. BF3·MEA (3% mol 

related to aldehyde groups) was added to the DDM solution and then both solutions 

were mixed. The mixture was quickly placed into a petri dish and maintained at 40 ºC 

for 2h to eliminate all the solvent. The same curing program was applied for the three 

samples: 4h at 90 ºC and 12h at 140 ºC.All samples were subjected to soxhlet extraction 

with previously distilled dichloromethane to determine their soluble fractions. 0.5g of 

each sample (previously grinded) were extracted with 125 mL of dichlorometane. 

 

Characterization. 1H NMR 400 MHz and 13C NMR 100.6 MHz NMR spectra were 

obtained using a Varian Gemini 400 spectrometer with Fourier transform. CDCl3 was 

used as solvent and TMS as internal reference. The IR analyses were performed on a 

FTIR-680PLUS spectrophotometer with a resolution of 2 cm-1 in the transmittance 

mode. An attenuated-total-reflection accessory with thermal control and a diamond 
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crystal was used to determine FTIR/ATR spectra. Dynamic mechanical thermal analysis 

(DMTA) was performed using a TA DMA 2928 in the controlled force-Tension Film 

mode with a preload force of 0.1 N, an amplitude of 10 µm and at a fixed frequency of 1 

Hz, in the –100 to 200 ºC range and at a heating rate of 3 ºC/min. Rectangular samples 

with dimensions 10 x 5 x 0.2 mm3 were used. Thermal stability studies were carried out 

on a Mettler TGA/SDTA851e/LF/1100 with N2 as purge gas. The studies were 

performed in the 30-800 ºC temperature range at a scan rate of 10ºC/min. The UV-vis 

data were acquired and monitored by a Hewlett-Packard 8452A spectrophotometer 

using the HP89531A software. The spectra were recorded from 190 to 800 nm in 4 nm 

steps. The spectrofluorimetric data were acquired on an Aminco–Bowman Series 2 

Luminescence spectrometer (SLM Aminco, Rochester, NY, USA) equipped with a 

150Wcontinuous xenon lamp and a PMT detector. For UV-vis and fluorescence 

measurements, 20 µm thick films supported on a quartz plate were used. For the 

preparation of the films, the dichloromethane or THF solutions employed for the curing 

reactions were cast over the quartz plate. 

 

RESULTS AND DISCUSSION 

 

As mentioned in the introduction we synthesized a new enone containing-triglyceride 

derivative (1) by an environmentally friendly chemical procedure from high oleic 

sunflower oil using the singlet oxygen “ene” reaction. A mixture of allylic 

hydroperoxides was obtained and further transformed in a regioisomeric mixture of 

enones in the presence of acetic anhydride and pyridine or tertiary amines.19 We proved 

the high efficiency of the aza-Michael crosslinking reaction between 1 and 

diaminodiphenylmethane (2) (Scheme 1) in a 1H-NMR kinetic experiment using model 

compounds. However, while conversion of the α,β-unsaturated ketone was uniform 

throughout the experiment until total consumption, it could be observed that formation 

of the aza-Michael adduct reached a point from which no further growing was observed. 

This fact, together with a slight decrease of the aza-Michael product concentration at 

long reaction times, made us think about the possibility of a secondary reaction taking 

place in which the aza-Michael product was involved. Moreover, the 

dynamomechanical analysis of the crosslinked material gave a very broad tan delta 

peak, indicating low structural homogeneity and therefore supporting the theory of the 
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existence of minor secondary reactions during the crosslinking process.19 We could also 

observed that at higher temperatures the extent of these secondary reactions increases, 

leading to an unexpectedly harder material. 
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Scheme 1. aza-Michael crosslinking reaction between 1 and DDM (2). 

 

Our first aim is to understand and establish the reactions taking place in the 

crosslinking reaction after the aza-Michael adduct is formed. As the reaction of 1 and 2 

leads to an insoluble crosslinked material (Scheme 1), the accurate analysis of the 

chemical reactions involved in the process can not be performed. For this reason, p-

toluidine (3) and a methyl oleate derived enone (4) were used as model compounds and 

a 1H-NMR analysis was carried out. 

As commented, high temperatures and long reaction times are important factors in the 

development of side reactions, for this reason, we tested the effect of adding a Lewis 

acid catalyst (BF3·MEA) to the reaction between 3 and 4 in an attempt to reduce the 

reaction time. The conversion of the reactants was accelerated and the 1H-NMR signals 

corresponding to the secondary products were even increased. The chromatographic 

isolation of the side products revealed the presence, among other complex structures, of 

a methyl ketone. This finding can only be explained by a Lewis acid catalyzed retro-

Mannich type fragmentation of the aza-Michael adduct,24 that would lead to the 

formation of a methyl ketone (8) and an aldimine (6) (Scheme 2). 

During the crosslinking reaction of 1 and 2, the fragmentation of the aza-

Michael adduct would mean the breakage of the forming network and a deterioration of 

the mechanical properties. However, while the non-catalyzed crosslinking reaction at 90 

ºC (sample I, Table 1) gave a material with a Tg of –8 ºC (maximum of the tan delta 
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Scheme 2. Lewis acid catalyzed retro-Mannich type fragmentation of the aza-Michael adduct 

and formation of a methyl ketone (8) and an aldimine (6). 

 

peak) and a soluble fraction of 25.6 %, the material obtained at 120 ºC (sample II, Table 

1) gave a Tg of 16 ºC, a soluble fraction of 20.3 % and a higher crosslinking density (by 

DMTA). From this data, it can be inferred that not only the retro-Mannich 

fragmentation is taking place, but also further reactions leading to crosslinked networks. 

As these chemical processes could be generalized to any other curing processes in 

which an aza-Michael addition is involved, it is important to determine their nature and 

the effect of the reaction conditions. 

For this purpose, 3 and 4 were reacted again in presence of 3% (mol) of 

BF3·MEA. In this model reaction no solvent was added to better reproduce the 

crosslinking reaction  
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Figure 1. 1H-NMR spectra of  reaction 3 + 4  in presence of 3% mol of BF3·MEA after heating. 

A) At 90 ºC for 30 minutes. B) After raising the temperature to 110 ºC for 2h. C) When the 

reaction mixture was heated 2h at 140 ºC. 
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conditions. To determine the effect of the temperature on the formed products, the 

mixture was first heated at 90 ºC for 30 minutes, then at 110 ºC for 2h and finally at 140 

ºC for 2h more. The progress of the reaction was followed by 1H-NMR spectroscopy 

(Fig 1). 

After heating the mixture at 90 ºC for 30 minutes, the signals c and d of the aza-

Michael product (5) can be observed together with a decreasing in the intensity of the 

conjugated ketone (4) double bond signals (a and b) (Fig 1A). However, a singlet (e) at 

2.07 ppm appears which belongs to a methyl ketone, presumably formed in the expected 

retro-Mannich type fragmentation (Scheme 2). This fragmentation, which proceeds 

through a BF3·MEA catalyzed condensation of a molecule of p-toluidine and the aza-

Michael adduct, produces two new species, an aldimine (6) and a ketimine (7). While 

the ketimine can be hydrolized under the reaction conditions to the observed methyl 

ketone (8) and p-toluidine, the aldimine 6 is more reactive and prone to undergo self-

aldol condensation25 (Scheme 3). 
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Scheme 3. Proposed self-aldol condensation of the aldimine 6 and further cyclization and 

aromatisation to give quinoline 11. 

 

When the temperature was raised to 110 ºC and kept for 2h, the starting enone 

and the intermediate aza-Michael adduct signals disappeared almost completely (Fig. 

1B). The singlet of the methyl ketone (e) remained unaltered ruling out the self-aldol 

condensation in the reaction conditions and new signals appeared in the aromatic region 

which could be attributed to further reactions involving the aldimine 6. 

Finally, the reaction mixture was heated 2h at 140 ºC. The methyl ketone still remained 

unaltered, but in this case, the new aromatic signals were clearly observed (Fig. 1C). As 

mentioned above, the aldimine 6 can undergo a BF3·MEA self-aldol condensation to 

yield 9, which, in the reaction conditions, can undergo a cyclization reaction to give the 

dihydroquinoline 10. The subsequent elimination of a molecule of p-toluidine,25 
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followed by aromatization through hydrogen transfer to Schiff bases present in the 

mixture, can give the quinoline 11 (Scheme 3). 

Thus summarizing, the reaction pathway proposed involves several reactions: 

aza-Michael addition, retro-Mannich type fragmentation, self-condensation of the 

aldimine fragment and its cyclization followed by deamination and aromatization. The 

fact that the methyl ketone remains unaltered throughout all the reaction steps suggests 

that the retro-Mannich fragmentation is irreversible and that the methyl ketone is not 

involved in further steps of the reaction. 

Studies on the Skraup-Doebner-Von Miller reaction by Denmark et al.26 allowed 

them to establish a complex mechanism for the condensation of aniline derivatives with 

3-disubstituted α,β-unsaturated ketones to form quinolines. It consists of a conjugated 

addition followed by a fragmentation to the corresponding imine and ketone and a 

recombination of both fragments to form an anil that leads to the final quinoline 

product. The initial conjugated addition and subsequent fragmentation are in accordance 

to our results. However, the presence of the ketone 8 at the end of the reaction rules out 

condensation with the aldimine 6. Instead of this, the aldimine 6 undergoes aldol-self 

condensation leading to the final quinoline product as described above. The difference 

may relay on the Michael acceptor used. In our study, the α,β-unsaturated ketone is 3-

monosubstituted and thus, fragmentation of the aza-Michael adduct yields an aldimine 

and a ketimine instead of two ketimines. The higher reactivity of the aldimine compared 

to the ketimine justifies the self-aldol condensation of the former instead of the cross 

condensation. 

The synthesis of quinolines through reaction of “in situ” generated alkylimines 

was described by Tanaka et al.27 Therefore, to further confirm the propensity of the 

intermediate aldimine to give self-aldol condensation and to produce the final quinoline, 

decanal (12) was taken as a model compound. 12 was reacted with p-toluidine in 

presence of BF3·MEA (3% mol) at 50 ºC to allow formation of the aldimine 13 and then 

at 140 ºC to favour the cyclization and aromatization reactions (Scheme 4). The 1H-

NMR spectrum of the final reaction mixture (Fig. 2A) revealed the formation of the 

expected quinoline 14 (Fig. 2B), which was obtained with 38 % yield after column 

chromatography. 
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Scheme 4. Reaction of decanal with p-toluidine in presence of BF3·MEA (3% mol) to give 

aldimine 13 and further cyclization and aromatization to quinoline 14. 
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Figure 2. 1H-NMR spectra of: A) Final reaction mixture of 12 + 3 in presence of BF3·MEA. B) 

pure quinoline 14. 

 

These results confirm the proposed mechanism and can help to explain the 

crosslinking-temperature dependent properties found in the materials obtained when 

triglyceride derivative 1 reacts with DDM. Moreover, since most plant-oil derived 

materials can be considered as elastomers due to their high content in long alkyl chains, 

the formation of quinolines as crosslinking points would lead to a marked improvement 

in their thermal and mechanical properties. Thus, the study of the properties derived 

from this aromatization process is of great interest. 

We started by studying the effect of the crosslinking temperature on the 

properties of the materials obtained by reaction of 1 and DDM in presence of 3% mol of 

BF3·MEA. For this purpose, equal amounts of the three-component mixture were put on 

three different petri dishes. The first dish (sample III) was heated at 90 ºC for 4h, the 

second dish (sample IV) was heated 4h at 90 ºC and 12h at 120 ºC and the third dish 

(sample V) was heated 4h at 90 ºC and 12h at 140 ºC. 

The expected chemical changes in this curing system include the Aza-Michael 

reaction of an aromatic amine with an enone system and the appearance of a new 
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aromatic structure. Thus, UV-vis and fluorescence spectroscopies can be useful 

techniques to monitor the crosslinking process. For this purpose, the measurements 

were performed with a 20 µm thick films supported on a quartz plate. Figure 3A) shows 

the normalized UV-vis spectra as a function of cure temperature for 1/2/BF3·MEA 

system. Although the spectral regions of several species overlap, there is a clear change 

in the spectra of cure temperatures over 90 ºC with the appearance of a new absorption 

peak at longer wavelengths (ca. 370 nm). As previously mentioned, the aromatization 

process proceeds at high temperatures. Since the quinoline structure has a higher 

conjugation degree than the initial species and possess a donor heteroatom, the observed 

red shift confirms their presence, which is maximized at 140 ºC. 
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Figure 3. Normalized UV-vis spectra as a function of cure temperature of : A) 1/2/BF3·MEA 

system (a: initial mixture; b: 90ºC; c: 110ºC; d: 120ºC ; e: 140ºC) and B) 17/2/BF3·MEA system 

(a: initial mixture; b: 90ºC; c: 110ºC; d: 140ºC). 

 

The crosslinking reaction could also be monitored following the changes in the 

fluorescence spectra. Figures 4A) and 4B) depict the fluorescence emission spectra of 

the 1/2/BF3·MEA system as a function of the cure temperature with excitation 

wavelengths at 255 and 325 nm. The excitation wavelengths were chosen as the ones 

giving the maxima of emission in a 2D excitation-emission spectrum of the initial 

mixture. By using a constant excitation wavelength throughout the curing process, the 

changes in the emission spectra can be related to the species involved in the process. In 

figure 4A), as the temperature is raised to 90 ºC, part of the fluorescence of the initial 

mixture occurring at short wavelengths disappears as a result of the reaction between 1 

and 2 and the subsequent fragmentation. When the sample is heated at 120 ºC and 
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finally at 140 ºC, the fluorescence intensity at longer wavelengths is increased due to 

the developing aromatization process. In figure 4B), a clear shift of the fluorescence 

spectra towards longer wavelengths is observed as the cure temperature is increased. 

These findings are in accordance with the development of an aromatic system with a 

higher conjugation degree. 
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Figure 4. Normalized fluorescence emission spectra as a function of the cure temperature of 

1/2/BF3·MEA system with excitation wavelengths at A) 255 nm and B) 325 nm (a: initial 

mixture; b: 90ºC; c: 120ºC; d: 140ºC ) and 17/2/BF3·MEA system with excitation wavelengths 

at C) 255 nm and D) 325 nm (a: initial mixture; b: 60ºC; c: 90ºC; d: 140ºC). 

 

As already explained, an increase of the crosslinking temperature should 

promote the formation of quinolines through the proposed mechanism. In this way, 

while sample III was expected to only suffer retro-Mannich type fragmentation, the 

crosslinking temperature used for sample V should allow quinoline formation. An 

increase in the aromatic content of the polymeric network would increase the rigidity 

and thus the glass transition temperature (Tg) should increase from sample III to sample 
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V. The dynamomechanical analysis of samples III, IV and V is shown in figure 5 and 

data is collected in table 1.  
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Figure 5. Tan δ plots as a function of temperature for the cured samples III-VIII. 

 

Table 1. Soluble fractions, Tgs and TGA data of the Cured Samples I-VIII. 

     TGA (N2) 

Sample 
Curing system 
(molar ratio) 

catalyst 
Soluble 
part (%)a Tg  (ºC)b T5% loss (ºC) Tmax (ºC)c Char 800ºC 

(%) 

I 
1 / DDM 
(1 / 1.25) 

- 25.6 -8 283 466 9.4 

II 
1 / DDM 
(1 / 1.25) 

- 20.3 16 320 466 11.7 

III 
1 / DDM 
(1 / 1.25) 

BF3·MEA 20.5 27 275 466 9.7 

IV 
1 / DDM 
(1 / 1.25) 

BF3·MEA 18.2 34 304 472 11.1 

V 
1 / DDM 
(1 / 1.25) 

BF3·MEA 13.0 48 324 468 13.9 

VI 
17 / DDM 
(1 / 0.75) 

BF3·MEA 7.0 57 339 414 / 467 16.1 

VII 
17 / DDM 

(1 / 1) 
BF3·MEA 6.4 73 331 413 / 468 16.3 

VIII 
17 / DDM 
(1 / 1.25) 

BF3·MEA 9.9 84 321 413 / 468 16.1 

 

a 12h soxhlet extraction of  0.5g with 125 mL of DCM . b Maximum of the Tan delta peak. c 

Temperature of the maximum weight loss rate. 
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As expected, the Tg (maximum of the tan delta peak) increases from sample III 

(27 ºC) to sample V (48 ºC). Interestingly, the height of the tan delta peak decreases 

from sample III to sample V indicating an increase in the crosslinking density despite 

the initial retro-Mannich fragmentation. However, the tan delta peak width at half-

height increases, what is associated with a increasing number of branching modes and a 

wider distribution of structures, showing a lower structural homogeneity, that should be 

caused by the mentioned fragmentation. It was explained above that aromatization of 

the dihydroquinoline 10 can be accomplished through hydrogenation of Schiff bases 

present in the reaction media. The amines formed this way are still crosslinking points 

and thus, no cleavage of the network is produced. Moreover, Tanaka et al.27 

demonstrated that aromatization of the intermediate hydroquinoline is promoted in air 

atmosphere. For this reason, despite the initial fragmentation, the crosslinking density 

increases together with the structural diversity. 

Soxhlet extraction with dichloromethane (Table 1) gave the higher soluble 

fraction for sample III (20.5 %) and the lower for sample V (13.0 %). The fact that the 

soluble part is lower for the higher crosslinking temperature also supports the proposed 

crosslinking mechanism taking place after the initial fragmentation. However, the 

samples undergo some weight loss during the crosslinking reaction due to evaporation 

of the free aliphatic methyl ketones released in the retro-Mannich fragmentation. 

Samples III, IV and V lost 11, 15 and 15 % of its total weight respectively, but anyway, 

these slight differences do not justify the differences in soluble parts. 

Another evidence of the increase in the aromatic content can be found in the 

thermogravimetric analysis (TGA) under N2 of samples III-V (Fig 6). As aromatic 

moieties are known to promote char formation during the combustion process, the 

analysis of the char yield at 800 ºC (Table 1) can provide valuable information. Sample 

III has a 9.7 % char yield due to the presence of DDM as one of the main components. 

The char yield increases to 11.1 % for sample IV as the quinolines start forming and 

finally, for sample V, the char yield obtained is 13.9 %. This increase in the char yield 

can be attributed to the aromatization process. In these TGA plots can also be observed 

that the temperature of 5% loss increases from sample III to sample V according to the 

higher content in aromatic structures and high crosslinking density of the sample V. 
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Figure 6. TGA plots under nitrogen for the cured samples III-VIII. 

 

Based on the information obtained with the model reactions and the study and 

interpretation of the properties of these materials, it seems shown that quinoline 

structures are formed as crosslinking points and that the temperature plays a key role on 

the aromatization process. However, the retro-Mannich fragmentation of the former 

intermediate aza-Michael adduct causes the presence of long aliphatic methyl ketones 

that can move freely acting as plastizicers. As starting triglyceride derivative 1 is a 

statistical mixture of positional isomers, the retro-Mannich fragmentation also leads to 

aliphatic methyl ketones which are not linked to the polymeric network. To overcome 

this problem and improve the thermal and mechanical properties of the final materials, a 

new strategy was used. Taking into account the high reactivity of aldimine 13 towards 

quinoline formation, we decided to prepare a triglyceride derivative containing aldehyde 

groups. The reaction of this new derivative with DDM in presence of BF3·MEA should 

give an intermediate aldimine which, at high temperature, would lead to quinoline 

formation (see scheme 4). In this way, we should be able to obtain a crosslinked 

polymer with higher content of quinolines as crosslinking points. 

For the preparation of the aldehyde-containing triglyceride, epoxidized high 

oleic sunflower oil 15 was used as starting material (Scheme 5). 
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Scheme 5. Synthesis of the aldehyde-containing triglyceride (17) and BF3·MEA catalysed 

crosslinking with DDM. 

 

The epoxide groups were hydrolized in presence of perchloric acid to give the 

triglyceride 16 with 2.5 diol groups (determined by 1H-NMR spectroscopy). The 

oxidative cleavage of the 1,2-diols was performed with sodium periodate to obtain a 

mixture of aldehyde-containing triglyceride 17 and nonanal. The later was removed by 

applying high vacuum to the stirred mixture at 80 ºC and 17 was obtained as a slightly 

yellow oil with 2.5 aldehyde groups per triglyceride (determined by 1H-NMR 

spectroscopy). 

In the model reaction of p-toluidine and decanal (see scheme 4), the formation of 

the quinoline structure requires two molecules of aldehyde for one of amine. However, 

a second amine molecule is needed as catalyst. Normally, a little excess of amine over 
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the 2/1 ratio could be enough, but in the case of crosslinking reactions, where reactants 

diffusion is limited, a higher amount of amine may be needed. For this reason, three 

different 17/2 ratios were used for the crosslinking reactions to determine the optimum 

proportion depending on the properties of the final materials. Since the reaction between 

2 and 17 proceeds very fast, to properly homogenize the curing mixture, both 

components were dissolved in THF separately. BF3·MEA was added to the DDM 

solution and then both solutions were mixed. The mixture was placed in a petri dish and 

maintained at 40 ºC for 2h to eliminate all the solvent. The temperature was raised to 90 

ºC for 4h and finally the sample was heated at 140 ºC for 12h to promote the cyclization 

and aromatization reactions. In this way, three samples were prepared with 17/2 ratios 

of 1/0.75 (sample VI), 1/1 (sample VII) and 1/1.25 (sample VIII) with 3% mol of 

BF3·MEA (related to aldehyde groups). 

The crosslinking of 17/2/BF3·MEA system was monitored by UV-vis and 

fluorescence spectroscopy. The measurements were performed with a 20 µm thick film 

supported on a quartz plate and to minimize DDM absorption interferences, the 17/2 

ratio used was 1/0.75. Figure 3B) shows the UV-vis spectra as a function of cure 

temperature in which the development of the absorption bands is similar to that of the 

1/2/BF3·MEA system. The appearance of an absorption band around 370 nm at high 

temperatures can be related with the presence of quinolines. The fluorescence emission 

spectra as a function of the cure temperature with excitation wavelengths at 255 and 325 

nm are depicted in figure 4C) and 4D) respectively. The spectra are similar to those of 

the 1/2/BF3·MEA system and therefore the same conclusions can be extracted. The 

batochromic shift observed in both spectra supports the formation of quinolines. 

The analysis of the tan delta peaks of samples VI-VIII shows as the main 

difference with respect to sample V a shoulder around 10 ºC due to the fragmentation 

products, that act as plastizicers in sample V. On the other hand, the tan delta peaks of 

samples VI-VIII are narrower, indicating a higher structural homogeneity. As the initial 

content of 2 is increased, the maxima of the tan delta peak shift to higher temperatures 

due to the higher aromatic content, reaching a Tg of 84 ºC for sample VIII. However, 

the peak height is similar for the three samples, indicating that a similar crosslinking 

density is achieved even when the amount of amine groups is increased. The diffusion 

of amines in the curing mixture is a limiting factor, but adding an excess does not seem 

to solve the problem provided that more amine groups will remain unreacted though 

quinoline formation might be favoured. To further confirm this fact, the soluble 
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fractions of samples VI-VIII were analysed by 1H-NMR. While DDM was found to be 

one of the main components of the soluble fraction of sample V, it was not found in the 

soluble part of samples VI and VII. It is also worth to mention the low soluble fraction 

weight percentages found in samples VI-VIII when compared to those of samples III-V.  

Fig. 6 depicts the thermal stability of samples VI-VIII showing similar behavior to that 

of samples III-V. Char yields are found around 16 %, slightly over sample V (14 %) due 

to the higher aromatic content. 

 

CONCLUSIONS 

 

The crosslinking reaction of 1 and DDM is a complex process which depends on the 

reaction conditions. First the aza-Michael adduct is formed. However, high 

temperatures and the presence of BF3·MEA promote a retro-Mannich type 

fragmentation followed by self-aldol condensation, cyclization and aromatization 

reactions. As a result, quinoline structures are formed as crosslinking points into the 

polymeric network. Based on these findings, a triglyceride functionalized with aldehyde 

groups has been reacted with DDM as an improved approach to quinoline-containing 

materials. The properties observed in the cured materials support the proposed 

crosslinking process. While common plant oils derived materials do not have the 

necessary rigidity and strength required for structural applications, the obtained 

materials present improved properties and could be considered as high performance 

thermosets. 
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Chapter 2 

 

1. A New Route to Acrylated Oils. Cross-linking and 

Properties of Acrylated Triglycerides from High 

Oleic Sunflower Oil 
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A New Route To Acrylated Oils. Crosslinking And Properties 

Of Acrylated Triglycerides From High Oleic Sunflower Oil 

 

Lucas Montero de Espinosa, Juan C. Ronda, Marina Galià, Virginia Cádiz 

Department of Analytical and Organic Chemistry, Rovira i Virgili University, Campus 

Sescelades, Marcel.lí Domingo s/n, 43007 Tarragona, Spain. 

 
ABSTRACT. Triglycerides with acrylate functionality were prepared from a new route 

that involves the singlet oxygen photooxygenation of high oleic sunflower oil and 

further reduction of the resulting hydroperoxide derivatives to a mixture of secondary 

allylic alcohols. These unsaturated alcohols can be further reduced to saturated alcohols. 

These two new hydroxyl-containing triglycerides were acrylated and radically 

crosslinked in presence of different amounts of pentaerythritol tetraacrylate. The 

crosslinking reactions were followed by FTIR spectroscopy and the thermal properties 

of the final materials were evaluated. 

Keywords: triglyceride, acrylate, crosslinking, renewable resources. 

 

 

INTRODUCTION 

 
The replacement of petroleum-based raw materials by renewable resources constitutes a 

major contemporary challenge in terms of both economical and environmental aspects.1 

Because of the wide variety of possibilities for chemical transformations, universal 

availability, and low price, oils, and fats of vegetable and animal origin are preferred by 

the chemical industry as alternative. Natural vegetable oils are considered to be one of 

the most important class of renewable sources.2 The main component of the triglyceride 

vegetable oils are saturated and unsaturated fatty acids. Although they have double 

bonds which can be used as reactive sites in coatings, for obtaining high performance 

polymeric materials the introduction of more reactive functional groups, such as 

hydroxyl, epoxy or carboxyl groups, is much more suitable. Various chemical pathways 

for functionalizing triglycerides and fatty acids have been studied3-5 including 

acrylation, maleinization, epoxidation (either chemical6-8 or enzymatic9,10), 

hydroxymethylation11, esterification, and halogenation.  Acrylated triglycerides are 

usually low viscosity monomeric liquids that can be free radically polymerized and can 

be copolymerized easily with other commercial comonomers due to the high reactivity 
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of the acrylate group.12 The special properties13 of these chemically modified 

triglycerides offer a widespread  field of applications and so they are excellent 

candidates for use as thermosetting liquid molding resins in techniques such as vacuum 

assisted resin transfer molding,5 composite fabrication processes14 or pressure-sensitive 

adhesives.15 

The traditional method used to obtain acrylated oils is to convert the triglyceride 

double bonds first to an epoxide and then open the epoxy groups with acrylic acid to 

yield hydroxy acrylated oils.16-18
 Alternatively acrylated groups can be introduced 

directly to the unsaturated fatty oil groups through a bromonium cyclic intermediate.19  

In this case a vic-bromoacrylate ester is obtained which not only is able to polymerize 

through the reactive acrylate, but also the presence of bromine imparts considerable 

flame resistance to the product polymer. 

The direct acrylation by esterification of hydroxyl groups in the fatty oil is a 

scarcely described pathway as there are not many hydroxy-containing natural oils. The  

remarkable exceptions are castor oil and lesquerella oil which has been used to prepare 

the corresponding acrylate derivatives.20,21 

In this work we report the synthesis of a new general and environmentally 

friendly route to introduce acrylate groups in unsaturated vegetable oils. The key step of 

this approach is the singlet oxygen “ene” reaction which has been used to oxidize the 

allylic position of fatty acids and their derivatives22-24 such the methyl oleate. The mild 

conditions utilized and the use of oxygen, as the only reagent, makes this process 

particularly favorable from both an economical and ecological viewpoint. The allylic 

hydroperoxides can undergo a number of different transformations.25 One of these 

reactions is the conversion of these hydroperoxides into a regioisomeric mixture of 

enones,26,27. The application of this reaction to unsaturated triglycerides, allowed us to 

obtain thermosetting materials by Aza-Michael crosslinking reaction with amines.28  

Another interesting transformation of allylic hydroperoxides is their reduction to 

the corresponding hydroxylic compounds. Thus, this work involves a three-step 

synthetic pathway that firstly uses the singlet oxygen photooxygenation of high oleic 

sunflower oil to lead to a mixture of allylic hydroperoxides, which secondly can be 

reduced to a mixture of secondary allylic alcohols. The new hydroxyl-containing 

triglyceride was acrylated and radically crosslinked in presence of different amounts of 

pentaerythritol tetraacrylate. Alternatively, the unsaturated alcohols can be further 

reduced to saturated alcohols which can be also acrylated and crosslinked. The 
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crosslinking reactions were followed by FTIR spectroscopy and the thermal properties 

of the final materials were evaluated. 

 
EXPERIMENTAL PART 
 

Materials 

High oleic sunflower oil (minimum 80% oleic acid) (SO) was kindly supplied by 

Borges. Meso-tetraphenylporphyrin (TPP) (Aldrich), sodium borohydride (Scharlab), 

NH4Cl (Scharlab), Pt/C (5% Pt) (Aldrich), dicumyl peroxide (DCP) (Aldrich), methanol 

(Sharlab) and ethyl acetate (Scharlab)  were used as received. Triethylamine (Aldrich) 

was dried by distillation over CaH2 and acryloyl chloride (Aldrich) was distilled before 

use. Dichloromethane was dried over P2O5 and distilled immediately before use. 

Pentaerythritol tetraacrylate (PETA) (Aldrich) was dissolved in ethyl ether and washed 

with an aqueous solution of NaOH (5%) before use to remove the stabiliser. TLC plates 

were developed by spraying with sulphuric acid/anisaldehyde ethanol solution and 

heating at 200 ºC. 

 

Synthesis of hydroxyl sunflower oil (HSO) (Scheme 1a). In a 450mL standard 

immersion-well photochemical reactor with a 400W high pressure sodium vapour lamp, 

high oleic sunflower oil (SO) (70 g, 79.1 mmol), TPP (0.02 g) and dichloromethane 

(400mL) were introduced. Cold water was circulated through the lamp jacket, while a 

gentle stream of oxygen was bubbled through the stirred reaction mixture. After a few 

minutes, the lamp was turned on and the reaction was monitored by TLC (hexane/ ethyl 

acetate, 5:1). After 4 h of irradiation the total disappearance of isolated double bonds 

and formation of the intermediate allylic hydroperoxides was observed. The lamp was 

turned off and the solvent was removed under reduced pressure. The reaction mixture 

was diluted with 200 mL of methanol and transferred to a 500 mL round bottomed flask 

which was cooled to 0 ºC. NaBH4 (3.8 g, 0.1 mol) was then added slowly with moderate 

stirring controlling that the temperature of the reaction mixture did not exceed 0 ºC. The 

reduction was followed by TLC (hexane/ ethyl acetate, 2:1) until completion and then 

the reaction was quenched carefully with 10% NH4Cl solution. The pH was adjusted to 

around 6 and the product was extracted with dichloromethane and washed twice with 

brine. The organic phase was dried over MgSO4 and the solvent was eliminated under 

reduced pressure obtaining a oil with 98% yield and  a number of hydroxyl groups per 

triglyceride of 2.6 (calculated by 1H-NMR spectroscopy).  
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FTIR: 3390 cm-1 (OH, stretching), 1739 cm-1 (ester C=O, stretching), 1675 cm-1 (double 

bond, stretching) and 967 cm-1 (double bond, bending). 
1H NMR (CDCl3, TMS, δ in ppm): 5.62-5.53 (3H, m, CH=CH-CHOH), 5.40 (3H, ddd, 

J = 15.28, 6.94, 1.02 Hz, CH=CH-CHOH), 5.26-5.20 (1H, m, CH-O), 4.26 (2H, dd, J1 

= 11.87 Hz, J2 = 4.21 Hz, CH2-O), 4.11 (2H, dd, J1 = 11.94 Hz, J2 = 5.94 Hz, CH2-O), 

3.98 (3H, q, J = 6.65 Hz, CH-OH), 2.28 (6H, t, J = 7.26 Hz, CO-CH2-), 1.98 (6H, m, J 

= 6.88 Hz, CH2-CH=CH), 1.94-1.78 (broad m, -OH), 1.63-1.52 (6H, m, CH2-CH2CO), 

1.52-1.39 (6H, m, CH2-CHOH), 1.39-1.15 (54 H, m, aliphatic), 0.84 (9H, t, J = 6.58 

Hz, CH3). 
13C NMR (CDCl3, TMS, δ in ppm): 173.34-172.88 (COOR), 133.38-133.12 (CH=CH-

CHOH), 132.06-131.66 (CH=CH-CHOH), 73.11 (CH-OH), 68.90 (CH-O), 62.15 (CH2-

O), 37.40-37.34 (CH2-CHOH), 34.22-34.03 (CH2-COOR), 32.27-32.16 (CH2-CH=CH), 

31.95-31.91 (CH2-CH2-CH3), 29.65-28.80 (aliphatic), 25.59-25.51 (CH2-CH2CHOH), 

24.91-24.81 (CH2-CH2COOR), 22.74-22.73 (CH2-CH3), 14.20 (CH3). 

 

Synthesis of hydrogenated hydroxyl sunflower oil. (HSO[H]) (Scheme 1a). A 100 

mL round-bottomed flask was charged with HSO (10 g, 0.01 mol), Pt/C (5% Pt) (0.3 g) 

and ethyl acetate (20 mL).  A continuous flow of hydrogen was bubbled through the 

solution while stirring at room temperature until TLC (hexane/ethyl acetate, 2:1) 

showed completion of the reduction (3h). The catalyst was removed by filtration and the 

solvent was eliminated under reduced pressure obtaining a white solid with quantitative 

yield and an average of 2.6 hydroxyl groups per triglyceride (calculated by 1H-NMR 

spectroscopy). 

 

FTIR: 3383 cm-1 (OH, stretching), 1736 cm-1 (ester C=O, stretching). 
1H NMR (CDCl3, TMS, δ in ppm): 5.27-5.20 (1H, m, CH-O), 4.27 (2H, dd, J1 = 11.97 

Hz, J2 = 3.85 Hz, CH2-O), 4.12 (2H, dd, J1 = 11.88 Hz, J2 = 5.93 Hz, CH2-O), 3.59-

3.50 (3H, m, CH-OH), 2.29 (6H, t, J = 7.46 Hz, CO-CH2-), 2.03-1.69 (broad m, OH), 

1.69-1.50 (6H, m, CH2-CH2CO), 1.50-1.34 (12H, m, CH2-CHOH), 1.34-1.15 (66 H, m, 

aliphatic), 0.86 (9H, t, J = 6.76 Hz, CH3). 
13C NMR (CDCl3, TMS, δ in ppm): 173.46-173.04 (COOR), 72.09-72.06 (CH-OH), 

68.99 (CH-O), 62.24 (CH2-O), 37.67-37.57 (CH2-CHOH), 34.33-34.17 (CH2-COOR), 
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32.08-32.05 (CH2-CH2-CH3), 29.89-29.14 (aliphatic), 25.84-25.75 (CH2-CH2CHOH), 

25.00-24.97 (CH2-CH2COOR), 22.84 (CH2-CH3), 14.293 (CH3). 
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Please note that a mixture of isomers is obtained in each step of the synthesis. They 

are omitted for simplicity. 

 

Scheme 1 

 

Synthesis of acrylated sunflower oil (ASO) (Scheme 1b). A 100 mL round-bottomed 

flask with a magnetic stirrer and under inert atmosphere was charged with HSO (10 g, 

0.01 mol) and dichloromethane (50 mL). The solution was cooled to 0 ºC and acryloyl 
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chloride (3.3 mL, 0.04 mol) followed by triethylamine (11.3 mL, 0.08 mol) were added 

carefully. The resulting mixture was allowed to reach room temperature and was stirred 

for one additional hour. The solvent was removed at reduced pressure and the resulting 

oil was eluted with ethyl acetate through a short celite column.  The dichloromethane 

solution of the resulting product was washed twice with brine, dried over MgSO4 and 

concentrated to dryness to obtain ASO in 89% yield. The number of acrylate groups per 

triglyceride was found to be 2.5 by 1H-NMR spectroscopy. 

 

FTIR: 1740 cm-1 (ester C=O, stretching), 1720 cm-1 (acrylate C=O, stretching), 1675 

cm-1 (double bond, stretching) 1630 and 1618 cm-1 (acrylate double bond, stretching), 

1400, 1294, 1266 and 1042 cm-1 (CH and CH2 in-plane deformations) and 985, 960 and 

810 cm-1 (CH and CH2 out-of-plane deformations) and 1187 cm-1 (C-O, stretching). 
1H NMR (CDCl3, TMS, δ in ppm): 6.36 (3H, dd, J1 = 17.32 Hz, J2 =1.50 Hz, CO-

CH=CH2), 6.08 (3H, dd, Jt = 17.32, Jc =10.38 Hz, CO-CH=CH2), 5.77 (3H, dd, Jc = 

10.39, Jg = 1.51 Hz, CO-CH=CH2), 5.73-5.63 (3H, m, CH=CH-CHOH), 5.40-5.33 (3H, 

m, CH=CH-CHOH), 5.27-5.20 (4H, m, CH-OH and CH-O), 4.27 (2H, dd, J1 = 11.88, 

J2 = 4.26 Hz, CH2-O), 4.11 (2H, dd, J1 = 11.94, J2 = 5.84 Hz, CH2-O), 2.28 (6H, t, J = 

7.71 Hz, CO-CH2-), 1.99 (5H, dd, J1 = 14.16, J2 = 7.12 Hz, CH2-CH=CH), 1.71-1.47 

(12H, m, CH2-CHOH and CH2-CH2CO), 1.39-1.16 (54 H, m, aliphatic), 0.85 (9H, t, J = 

6.85 Hz, CH3). 
13C NMR (CDCl3, TMS, δ in ppm): 173.36-172.93 (COOR, triacylglyceride), 165.72 

(COOR, acrylate), 134.82-134.37 (CH=CH-CHO), 130.43 (COCH=CH2), 129.15 

(COCH=CH2), 128.51-128.23 CH=CH-CHOH, 75.34 (CH-O), 68.99 (CH-O), 62.21 

(CH2-O), 34.68-34.66 (CH2-CHO), 34.27-34.11 (CH2-COOR), 32.35-32.27 (CH2-

CH=CH), 31.99-31.96 (CH2-CH2-CH3), 29.85-28.79 (aliphatic), 25.34-25.30 (CH2-

CH2CHO), 24.92-24.88 (CH2-CH2COOR), 22.81 (CH2-CH3), 14.274 (CH3). 

 

Synthesis of acrylated hydrogenated sunflower oil (ASO[H]) (Scheme 1b). By 

similar way as described above, ASO[H] was obtained in 91% yield. The number of 

acrylate groups per triglyceride was found to be 2.5 by 1H-NMR spectroscopy  

 

FTIR: 1742 cm-1 (ester C=O, stretching), 1721 cm-1 (acrylate C=O, stretching), 1630 

and 1618 cm-1 (acrylate double bond, stretching), 1400, 1294, 1266 and 1042 cm-1 (CH 
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and CH2 in-plane deformations) and 985, 960 and 810 cm-1 (CH and CH2 out-of-plane 

deformations) and 1187 cm-1 (C-O, stretching). 
1H NMR (CDCl3, TMS, δ in ppm): 6.32 (3H, dd, 3Jt = 17.32 Hz, 2Jg = 1.36 Hz, CO-

CH=CH2), 6.05 (3H, dd, 3Jt = 17.31 Hz, 3Jc = 10.37 Hz, CO-CH=CH2), 5.74 (3H, dd, 
3Jc = 10.38 Hz, 2Jg = 1.15 Hz, CO-CH=CH2), 5.23-5.16 (1H, m, CH-O), 4.88 (3H, m, J 

= 6.67 Hz, CH-O-), 4.23 (2H, dd, J1 = 11.89 Hz, J2 = 4.12 Hz, CH2-O), 4.08 (2H, dd, 

J1 = 11.92 Hz, J2 = 5.88 Hz, CH2-O), 2.24 (6H, t, J = 7.31 Hz, CO-CH2-), 1.60-1.40 

(18H, m, CH2-CHOH and CH2-CH2CO), 1.40-1.08 (66 H, m, aliphatic), 0.81 (9H, t, J = 

6.63 Hz, CH3). 
13C NMR (CDCl3, TMS, δ in ppm): 173.31-172.90 (COOR, triacylglyceride), 166.13 

(COOR, acrylate), 130.26 (COCH=CH2), 129.06 (COCH=CH2), 74.63-74.60 (CH-O), 

68.92 (CH-O), 62.14 (CH2-O), 34.22 (CH2-COOR), 34.04, 32.00-31.95 (CH2-CH2-

CH3), 31.92, 29.78-29.08 (aliphatic), 25.35 (CH2-CH2CHO), 24.92-24.85 (CH2-

CH2COOR), 22.77-22.74 (CH2-CH3), 14.20 (CH3). 

 

Curing reactions and solubility tests. 

The curing reactions were carried out as follows. ASO or ASO[H] were deoxygenated 

using vacuum-argon cycles to prevent oxygen free radical inhibition processes. Then 

they were mixed with the desired amount of deoxygenated PETA. Dicumyl peroxide 

(1.5% w/w) was added with  effective stirring and the mixture was heated to 50ºC. The 

resulting homogeneous mixture was put in a previously heated (80 ºC) mold (100 x 6.5 

x 3 mm3). The temperature was increased from 80 ºC to 110 ºC at a heating rate of 2 

ºC/min and then the temperature was increased rapidly to 130 ºC and maintained for 2h.  

0.5 g of finely ground sample was extracted by refluxing in 50 mL of distilled THF 

during 12 h to determine the amount of soluble material. 

 
Instrumentation 
1H NMR 400 MHz and 13C NMR 100.6 MHz NMR spectra were obtained using a 

Varian Gemini 400 spectrometer with Fourier transform, using CDCl3 as solvent and 

TMS as internal standard. The IR analyses were performed on a FTIR-680PLUS 

spectrophotometer with a resolution of 4 cm-1 in the transmittance mode. An attenuated-

total-reflection accessory with thermal control and a diamond crystal was used to 

determine FTIR/ATR spectra. 

Calorimetric studies were carried out on a Mettler DSC821e thermal analyzer 

using N2 as a purge gas (20 mL/min) at a scan rate of 10ºC/min. Dynamic mechanical 
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thermal analysis (DMTA) was performed using a TA DMA 2928 in three-point bending 

geometry at a fixed frequency of 1 Hz in the –100 to 200 ºC range and at a heating rate 

of 3 ºC/min. The dimensions of the samples were 15 x 8 x 2.5 mm3. Thermal stability 

studies were carried out on a Mettler TGA/SDTA851e/LF/1100 with N2 as purge gas. 

The studies were performed in the 30-800 ºC temperature range at a scan rate of 

10ºC/min. 

 

RESULTS AND DISCUSSION 

 

As mentioned in the introduction the synthesis of a new secondary alcohol containing-

triglyceride derivative was carried out by an environmentally friendly chemical 

procedure from high oleic sunflower oil. For this purpose we used the singlet oxygen 

“ene” reaction which is one of the highly investigated processes in organic chemistry to 

functionalize the allylic C-H bonds of unsaturated compounds. Alkenes can be 

photochemically oxidized in situ with singlet oxygen generated with a high pressure 

sodium-vapor lamp and TPP as sensitizer in an oxygen saturated medium. In this way  a 

mixture of isomeric allylic hydroperoxides (scheme 1a) is obtained. The mechanism of 

this reaction has been widely studied and it is actually well established.22 These 

hydroperoxides are effectively reduced using triphenylphosphine,29,2 but they can also 

be reduced with many other common reducing agents, such as sodium borohydride.30 

Thus, the photooxidation and further reduction using sodium borohydride of samples of 

high oleic sunflower oil give a quantitative transformation to the corresponding allylic 

alcohol HSO (Scheme 1a). 1H NMR spectroscopy showed the complete disappearance 

of the signal at 5.3 ppm corresponding to the SO double bonds and the appearance of 

three new multiplets at 5.6, 5.4 and 4.0 ppm corresponding to the protons Ha, Hb and 

Hc of the allylic alcohol moiety. (Figure 1a). In this way, a product containing 2.6 

hydroxyl groups per triglyceride (determined by 1H NMR) was obtained with a yield of 

98%.  

The resulting allylic alcohol triglyceride derivatives were further transformed to 

the saturated analogues by hydrogenation at room temperature using 5% charcoal 

supported platinum as catalyst (Scheme 1a). Under these conditions complete reduction 

of the double bonds was achieved after 3h leading to HSO[H] in quantitative yield. The 
1H NMR spectrum of this product, depicted in Fig. 1b, shows the complete 

disappearance of the signals corresponding to the double bond and the shielding of the 
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methine proton linked to the hydroxylic group, which appears at 3.5 ppm. No signals 

attributable to by-products were detected. It must be noted that this same product could 

be obtained in one step by direct hydrogenation of the mixture of allylic 

hydroperoxides.31 
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Figure 1. 1H NMR spectra of a) HSO, b) HSO[H], c) ASO and d) ASO[H] recorded in CDCl3. 
 

The saturated and unsaturated secondary alcohol triglycerides, HSO and 

HSO[H], were acrylated with acryloyl chloride, in presence of triethylamine, following 

a conventional procedure (Scheme 1b).32 In this way, after a workup to remove the 

amine salts, yellowish liquids were obtained in about 90% yields. The characterization 

of the resulting acrylic products, ASO and ASO[H]  was carried out by 1H (Fig. 1c and 

1d), 13C NMR and FTIR/ATR spectroscopy. The 1H NMR spectra confirm the 

introduction of the acrylic moieties by the typical set of signals at  6.3, 6.1 and 5.7 ppm. 

and allow to determine its content in 2.5 acrylate groups per triglyceride. Moreover, 

total absence of remaining hydroxylic alcohols and other secondary products is 
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observed and therefore these acrylated triglyceride were used without further 

purification.  

ASO and ASO[H] were crosslinked in absence and in presence of 5,10, 15 and 

20% (w/w) of PETA, using 1.5 % (w/w) of DCP as radical initiator. DSC experiments 

were performed with ASO and ASO[H] to determine the appropriate crosslinking 

conditions. Figure 2 (a) and (b) shows the DSC traces of ASO and ASO[H] respectively 

with different PETA concentrations. The DSC traces of ASO and ASO[H] in absence of 

radical initiator are also shown. As can be seen, dicumyl peroxide lowers the curing 

exotherm of ASO and ASO[H], but in both cases, still remains a little residual exotherm  
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Figure 2. Curing DSC plots of a) ASO and b) ASO[H]. 1) without initiator, 2) 1.5% of DCP,  3) 

5%PETA and 1.5% DCP, 4) 10%PETA and 1.5% DCP, 5) 15%PETA and 1.5% DCP, 6) 

20%PETA and 1.5% DCP. 
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centred at 180 ºC that can be attributed to the thermal polymerization of the non reacted 

acrylates. In general, it was observed that the increase of PETA content lead to a 

slightly shift of the curing exotherms to lower temperatures. According to these data the 

curing was performed at 130 ºC for 2h. 

The crosslinking process of two representative samples was also followed by 

FTIR/ATR spectroscopy. Figure 3 (a) and (b) shows the initial and final IR spectra of 

the ASO or ASO[H]/10% PETA/1.5% DCP curing systems. The total disappearance of 

the acrylate double bond bands at ca., 1630 and 1618 cm-1 (stretching vibration), 1400, 

1294, 1266 and 1042 cm-1 (CH and CH2 in-plane deformations) and 985, 960 and 810 

cm-1 (CH and CH2 out-of-plane deformations) confirms the completion of the 

crosslinking in both cases.33,34 
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Figure 3. FTIR-ATR spectra of mixtures of a) ASO and b) ASO[H] with 10% of PETA and 

1.5% of DCP before heating (plain line) and after heating at 130ºC for 2h (dashed line). 

 

The extent of the crosslinking reactions was investigated by extracting the 

soluble part of the cured samples. Table 1 shows the weight percentages of the soluble 
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fractions for each system. These low values indicate the formation of crosslinked 

structures due to the reaction of the acrylated groups, in agreement with the IR data. 

Moreover, as PETA content increases a higher crosslinking  degree structure should be 

obtained which is in accordance with the lower values of soluble fractions calculated. It 

must be pointed out that even at high PETA concentrations soluble fractions are 

observed. This is related to the small fraction of rich-saturated chains in the starting oil. 

 

Table 1: Soluble fractions, Tg’s and thermogravimetric data of the cured ASO/PETA and 

ASO[H]/PETA systems. 

    TGA (N2) 

Triglyceride PETA 
 (%)a 

Soluble  
fraction (%)b Tg  (ºC)c T5% loss (ºC) Tmax (ºC)d Yield 800ºC 

(%) 

ASO 0 7.5 17 303 431  3.3 

ASO 5 2.7 25 305 431 / 455 3.3 

ASO 10 0.7 31 308 429 / 461 3.4 

ASO 15 0.4 27 307 434 / 462 3.2 

ASO 20 0.4 28 312 467 3.3 

ASO[H] 0 8.2 -2 334 356 / 421  3.7 

ASO[H] 5 3.5 4 333 356 / 421 3.4 

ASO[H] 10 1.1 1 332 353 / 418 / 458 3.7 

ASO[H] 15 1.0 8 333 353 / 420 / 458 3.9 

ASO[H] 20 0.8 11 334 350 / 420 / 462 4.2 

 
a Weight / weight percentages. b In THF . c Maximum of the Tan delta peak. d Temperature of 
the maximum weight loss rate. 
 

The dynamic mechanical behavior of the crosslinked materials was obtained as a 

function of the temperature beginning in the glassy state of each composition to the 

rubbery plateau of each material. The crosslinking density of a polymer can be 

estimated from the plateau of the elastic modulus in the rubbery state.35 However, this 

theory is strictly valid only for lightly crosslinked materials, and is therefore used only 

to make qualitative comparisons of the level of crosslinking among the various 

polymers. The DMA behaviour of these polymers was similar to that of other 

thermosetting polymers.36 Fig. 4 shows the dynamic mechanical analysis of the ASO 
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and ASO[H] systems. The tan δ peaks of both systems show the typical behaviour of 

triglyceride based thermosets elastomers. This behaviour is described as a combination 

of two factors, crosslinking density and plasticization.5,18 As the amount of 

tetrafunctional acrylate (PETA) increases the overall crosslinking increases broadering 

tan δ peaks and decreasing their height. The other factor, plasticization is due to the 

presence of saturated fatty acid in the trigliceryde that remain unreacted acting as 

plastizicers. So, these saturated chains introduce free volume and enable the network to  

 

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

-100 -50 0 50 100 150 200

T / ºC

T
an

 d
el

ta

1

2
3
4

5

0

0,05

0,1

0,15

0,2

0,25

-100 -50 0 50 100 150 200

T / ºC

T
an

 d
el

ta

1

2

3

5

4

a)

b)

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

-100 -50 0 50 100 150 200

T / ºC

T
an

 d
el

ta

1

2
3
4

5

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

-100 -50 0 50 100 150 200

T / ºC

T
an

 d
el

ta

1

2
3
4

5

0

0,05

0,1

0,15

0,2

0,25

-100 -50 0 50 100 150 200

T / ºC

T
an

 d
el

ta

1

2

3

5

4

0

0,05

0,1

0,15

0,2

0,25

-100 -50 0 50 100 150 200

T / ºC

T
an

 d
el

ta

1

2

3

5

4

a)

b)

 

 

Figure 4: Tan δ plots as a function of temperature for the systems cured with 1.5% of DCP at 

130ºC. a) ASO and b) ASO[H]. 1) without PETA, 2) 5%PETA, 3) 10%PETA, 4) 15%PETA,  

and 5) 20%PETA. 
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deform more easily. As it is well known the addition of small amounts of plasticizers to 

polymers drastically broadens the transition from glassy to rubbery state37. The Tg 

values estimated as the maximum of the tan δ peak are collected in Table 1 and show a 

slight increase with the PETA content indicating a higher crosslinking density. 

Moreover the height of the tan δ peak also decreases when PETA content increases. 

Because tan δ is the ratio of viscous component to elastic component, it can be assumed 

that the decreasing height is associated with lower segmental mobility and fewer 

relaxing species, and is therefore indicative that networks with higher PETA content 

show lower flexibility. The analysis of the width of the α-relaxation peak allow estimate 

the network structural homogeneity. For the ASO systems (Fig. 4a) we can observe that 

the peak width at half height of all samples does not broaden with the PETA content 

indicating the absence of triglyceride-rich and PETA-rich regions in these systems. In 

the case of ASO[H] systems shown in Fig. 4b) the tan δ peaks are less broad than those 

of the ASO systems. As ASO[H] was synthesized from ASO and no purification was 

carried out, the amount of saturated alkyl chains acting as plastisizers must be the same 

in both cases. However, according with the width of the α-relaxation peak, the 

ASO[H]/PETA curing systems seem to have a higher structural homogeneity. A 

possible explanation of this fact may relay on the absence of double bonds in ASO[H], 

that could allow the long alkyl chains to arrange in a more homogeneous way during the 

crosslinking process. Moreover, the width of the tan δ peaks is not appreciably affected 

by the increase of PETA except in the case of the highest content (20% PETA). Also, 

the general tendency of the tan δ maximums is towards higher temperatures as the 

PETA content increases, and a decrease of the height of tan δ peak is observed as the 

crosslinking density increases. 

The Tgs calculated for the ASO[H] systems (Table 1) are around 15-20 ºC above 

those of the ASO systems. The presence of double bonds contributes to increase the 

rigidity of the polymers network thus increasing the Tg values of the ASO/PETA 

materials. These materials can be considered elastomers as the Tg values are basically 

below the ambient temperature. All the cured samples show high toughness and good 

transparency.  

To determine the thermal stability of the polymers, thermogravimetric analyses 

were carried out under nitrogen atmosphere. The TGA curves and their derivatives for 

ASO and ASO[H] systems are represented in Figures 5 and 6 respectively, and the 

temperatures of 5% weight loss, the temperature of the maximum weight loss rate and 
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the residue at 800ºC are collected in Table 1. In both systems, it can be observed that 

the higher PETA content the higher thermal stability. The char yield at 800 ºC was 

around 3.5% for all the samples. 
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Figure 5: a) TGA plots and b) first derivative curves of ASO based systems cured with 1.5% 

DCP 1) without PETA,  2) 5% PETA, 3) 10% PETA, 4) 15% PETA and 5) 20% PETA. 

 

The ASO[H]/PETA polymers show higher thermal stability in the initial stages 

of degradation with temperatures of 5% weight loss around 30 ºC over those of the 

ASO/PETA polymers (see Table 1). This has to be attributed to the double bonds 

present in ASO, which favours the formation of allylic radicals and the thermal 

degradation process. Three maximum weight loss rate are observed in both cases in the 

derivative curves indicating the existence of several processes. The weight loss rate 

decreases as the PETA content increases for the two first steps while opposite is true for 
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the higher temperature step. These complex degradations can be related to different 

factors. Firstly, the different crosslinking density that increases with PETA content. 

Secondly, the different ability of saturated and unsaturated secondary esters to thermal 

β-elimination and finally the stability of neopentilic mieties. 
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Figure 6: a) TGA plots and b) first derivative curves of ASO[H] based systems cured with 

1.5% DCP 1) without PETA,  2) 5% PETA, 3) 10% PETA, 4) 15% PETA and 5) 20% PETA. 

 

CONCLUSIONS 

 

Acrylated triglycerides were obtained by a new route that involves the singlet oxygen 

photooxygenation and further reduction of the resulting hydroperoxides derivatives to a 

mixture of secondary allylic alcohols. These unsaturated alcohols can be further reduced 
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to saturated alcohols. These two new hydroxyl-containing triglycerides were easily 

acrylated. These acrylate-containing triglyceride derivatives have shown high reactivity 

to radical polymerisation in presence of different amounts of pentaerythritol 

tetraacrylate providing a promising route to obtain polymeric networks. These materials 

show properties and characteristics as good as other acrylated triglyceride-based 

thermosets reported. 
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SECOND PART 

 

 

 

 

The second part of this thesis is focused on the development of plant oil-based flame 

retardant polymers. Chapter three describes the synthesis of phosphine oxide-containing 

thermosets from high oleic sunflower oil. In chapter four, acyclic diene metathesis 

polymerization has been used as a way to linear and cross-linked phosphorus containing 

renewable polymers.  
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FLAME RETARDANT MATERIALS 

 
Introduction 
 
Every day in Europe there are about 12 fire victims and 120 people severely injured. 

The total economic damage is estimated at about 25 billion € per year. When it comes to 

global statistics, fires kills an average of over 37.000 persons per year in the 31 (2.3 

billion inhabitants) countries covered by CTIF (International Association of Fire and 

Rescue Services).1 About 80 % of all fire deaths occur in residential buildings, where 

fires can develop rapidly and violently due to the presence of upholstered furniture, 

varied electrical and electronic equipment (made mainly of plastics) and many other 

consumer goods. 

A recent study by the US National Institute for Science and Technology (NIST)2 

confirms that the increasing fire load of consumer products and home decorations is 

effectively making home fires increasingly dangerous. The heat released in such fires 

results within minutes in “flashover”, that is the fire gas and smoke in a room reaches 

temperatures such that all combustible materials in the room will ignite (around 600°C), 

so that death of room occupants is inevitable. The risk of fire can be reduced by:3 

 

• The use of non-combustible materials or materials less likely to ignite and 

propagate a fire. 

• The treatment of potentially flammable materials to inhibit ignition and spread 

of fire. 

• Designing and constructing buildings that are safer. 

• Using "fire stop" sealings to help confine a fire to one area or compartment. 

• Using smoke detectors, fire alarms and sprinkler systems. 

• By educating people, at all levels, of the importance of fire safety. 

 

In order to fulfil these requirements, flame retardants (FRs) are thus increasingly 

critical to slow fire spread and development. 

Concerning the toxicity of FRs, many studies have been carried out3 and show 

that modern flame retardants, when appropriately applied, can be used in consumer 

products without significant risk to human health or the environment. As concluded by 

the DPI report4 in 1999, “the major hazards of most fires arise from the existence of the 

fire, not from the materials burned and there is no evidence that flame retardants 
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contribute to the direct human health risks arising from toxic gas effects” and 

“information available suggests that the benefits of many flame retardants in reducing 

the risk from fire outweigh the risks to human health”. 

 

Mechanism of action 

 

To better understand the role of flame retardants it is first necessary to 

understand the combustion process of polymeric materials; a process that takes place in 

the condensed phase, in the gas phase and in the interphase between both. In the first 

stage of the combustion cycle, an external source of heat causes the thermal degradation 

of the material. Due to scission of the chemical bonds, volatile residues are released to 

the surrounding air (gas phase) forming a flammable mixture that leads to combustion 

in the moment that its ignition temperature is reached. If the exothermic combustion 

reactions taking place produce the required thermal energy to maintain the thermal 

degradation of the material, the combustion cycle proceeds (Fig. 1). 
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Figure 1. Combustion cycle of polymeric materials 

 

Flame retardants are compounds that reduce the chances of a fire starting by 

providing increased resistance to ignition. Even if ignition does occur, flame retardants 

will act to delay the spread of flame, providing extra time in the early stages when the 

fire can be extinguished or an escape can be made. They can be added to or applied as a 

treatment to materials such as plastics, textiles, foams or timber (Additives). 

Alternatively they can be used during the production process as a chemical modification 

of some plastic materials (Reactives). Flame retardants can perform their activity in the 

condensed phase, in the gas phase or in both depending on their composition.5 
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• The gas-phase activity of flame retardants is based on its interference in the 

reactions that maintain the combustion cycle. The combustion of polymeric materials 

produces species capable of reaction with atmospheric oxygen. As a result, the 

propagation of combustion occurs through the following branching reactions. 

 

 [1]  H·  +  O2   =   HO·  +  O· 

 [2]  O·  +  H2   =   HO·  +  H· 

 [3]  HO·  +  CO  =  CO2  +  H· 

 

The main exothermic reaction is [3] and provides the most energy to maintain 

the flame. Halogenated flame retardants release hydrogen halides during combustion 

(reaction [4]), which effectively interfere with these branching reactions acting as flame 

inhibitors (reactions [5] and [6]). 

 

 [4]  RX   =   HX  +  R· 

 [5]  H·  +  HX   =   H2  +  X· 

 [6]  HO·  +  HX   =   H2O  +  X· 

 

• The condensed-phase mechanism implies a chemical interaction between the 

flame retardant and the polymer through two main modes of interaction: dehydration 

and cross-linking. Both contribute to formation of char, a solid residue that protects the 

polymer by isolating the non-burned surface from the heat source and preventing the 

volatile species to reach the flame and feed it. 

 

Classification 

 
As already mentioned, flame retardants are usually classified in two main categories, 

namely additives and reactives.6 Additives are added mechanically to manufactured 

polymers, while reactives are introduced during the synthesis of polymers and thus they 

are chemically bound to their structure. Additives are cost effective and more widely 

applicable than reactives; however, high loads are usually needed to reach good flame 

retardancy (10-40 % w/w) that modify the physical and mechanical properties of the 

parent polymer. Furthermore, since additives are mechanically blended with the 
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polymer, migration can take place at long usage times. On the other hand, the synthesis 

of intrinsic flame retardant polymers through the design of flame retardant monomers or 

the chemical modification of existing polymers, enables a better control of the final 

polymer properties. Moreover, low levels of modification have comparable effects to 

those achieved with relatively high loadings of FR additives and the migration problems 

associated with additives are avoided.7 

Flame retardants can also be roughly classified in two groups: halogenated FRs 

and non-halogenated FRs. This classification obeys the nowadays concerns about 

environment and health protection. Halogenated FRs are the most widely applied. Very 

low amounts are needed to infer good flame retardancy to polymers, they are cheap and 

versatile. However, during combustion, toxic decomposition products like 

dibenzodioxines and halogenated dibenzofuranes and corrosive gases like hydrogen 

halides are evolved. Some of these products are non-easily degradable and accumulate 

in the environment being classified as persistent organic pollutants (POPs). Non-

halogenated flame retardants stand as the alternative to overcome these drawbacks. 

There is an immense range of different non-halogenated flame retardant products such 

as inorganic chemicals (metal hydroxides, antimony oxides or stannates) and FRs based 

on heteroatoms like phosphorus, nitrogen, silicon and boron.7 Among them, 

phosphorus-based FRs have been extensively studied and proven to act efficiently in the 

condensed phase. Moreover, a number of studies describe their action also in the gas 

phase. 

 

Phosphorus-based flame retardants 

 

The use of phosphorus compounds to infer flame retardant properties to polymeric 

material is well established.8 Phosphorus-based FRs can be inorganic, organic, or 

elemental (red phosphorus), can be active in the gas phase or in the condensed phase, 

and sometimes may operate simultaneously in both phases. Phosphine oxides9 and 

phosphonates10,11 have been proven to act in the gas phase through the formation of PO· 

radicals (reactions [7] to [10]), and PO2·, HOPO·, and HOPO2· radicals respectively, 

which terminate the highly active flame-propagation radicals (HO· and H·). These 

radicals are formed after the decomposition of the parent compound and therefore, the 

flame inhibition does not depend on the form of the parent compound, provided that the 

parent breaks down in the flame.10 
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 [7]  (P)   �   PO·  +  P·  +  P2 

 [8]  PO·  +  H·   =   HPO 

 [9]  HO·  +  PO·   =   HPO  +  ·O· 

 [10]  P2  +  PO·   =   PO·  +  P· and so on... 

 

In the condensed phase mechanism, the phosphorus FR is thermally decomposed 

giving phosphoric acid, which is further dehydrated to polyphosphoric acid. 

Polyphosphoric acid promotes condensation and dehydration reactions in the surface of 

the polymer giving rise to unsaturated carbonous species that make up a residue that 

protects the polymer surface from further degradation (Fig. 2). 
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Figure 2. condensed phase mechanism of phosphorus-based FRs. 

 

The carbonization process takes place through several stages.12 During the 

process, in addition to polyphosphoric acid being formed, also reducing compounds 

such as phosphites can be present. They reduce carbon oxidation in favor of char.13 

Phosphate, phosphonate and phosphinate based FRs have been the most widely used; 

The P-O bond has a quite high thermal stability (heat of dissociation about 85 

Kcal/mol); however, it presents general poor hydrolytic stability14,15 that limits the 

range of application of the final polymeric materials. On the other hand, phosphine 

oxides present a P-C bond, which has a lower reactivity, being more stable and having a 

higher hydrolytic stability. Moreover, it also has a quite high thermal stability (heat of 

dissociation about 65 Kcal/mol).15,16 

As commented above, the disadvantages of additives make the reactive approach 

a more suitable way to flame retardant polymeric materials. In this way, increasing 

research is now being directed at the synthesis of phosphorus-based FR polymers. Some 

recently published examples include polyphosphonates17, phosphonate-based 
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polyurethanes,18 epoxy resins,19 poly(ether-ester)s 20 and polymethacrylates,21 phosphate 

containing nylon22, silk23 and polyacrylates,24 modification of cotton fabric with 

phosphoric acid,25 phosphine oxide-based epoxy resins26 polybenzoxazines,27 

polyethers,28 poly(ether-ester)s29 and poly(ether-ketone)s,30 DOPO-containing epoxy 

resins,31,26d polybenzoxazines,32 polyesters,33 polyethers28 and poly(ether-ester)s.29a 

Other examples are ionomer polyesters,34 polyphosphorinanes,35 and advances in flame 

retardant polystyrene, HIPS, ABS and polystyrene foams.36 

 

 

Polymer flammability tests. Limiting Oxygen Index (LOI) 

 

Various organizations throughout the world crate fire standards. These include both 

national and international organizations, being the American Society for Testing and 

Materials (ASTM), Underwriters Laboratories (UL) and the International Organization 

for Standardization (ISO) some of the most important. All of these organizations create 

various types of fire standards-mainly guidance documents and test methods addressing 

most of the major fire properties.37 

 All the standards of polymer combustibility can be subdivided into five major 

types: ignitability tests, flame spread tests, oxygen index, heat release tests and smoke 

tests. In this thesis, the combustibility measurements have been carried out using the 

Limiting Oxygen Index (LOI). 

The LOI test is a widely used research and quality control tool for determining 

the relative flammability of polymeric materials. A numerical index, the ‘LOI’, is 

defined as the minimum concentration of oxygen in a flowing oxygen/nitrogen mixture, 

required to just support candle-like downward burning of a vertically mounted test 

specimen. Hence, higher LOI values represent better flame retardancy. This test method 

is generally reproducible to an accuracy of + 0.5% and although originally designed for 

testing of plastics, the method has been used extensively for evaluating the relative 

flammability of rubbers, textiles, paper, coatings and other materials. 

LOI tests can be conducted in accordance with international standards including 

ASTM D2863 and ISO 4589-2.  

UNIVERSITAT ROVIRA I VIRGILI 
PLANT OILS AS RENEWABLE PRECURSORS OF THERMOSETTING AND FLAME RETARDANT POLYMERS 
Lucas Montero de Espinosa Meléndez 
ISBN:978-84-692-9759-9/DL:T-205-2010 
 
 



 85

                                                                                                                                               
1 www.ctif.org, CTIF 9

th 
Annual Report, June 2003 

http://www.vfdb.de/feuerwehr/index/vfdbproducts/stres_ctif/stresctif_ger/textvorlagen/CTIF_R

eport9_2003.pdf. 
2 http://smokealarm.nist.gov Full study report: NIST July 2004 study, Bukowski, R.W. et al. 

“Performance of Home Smoke Alarms, Analysis of the Response of Several Available 

Technologies in Residential Fire Settings” NIST Technical Note 1455 (396 pages) 

http://smokealarm.nist.gov/HSAT.pdf. 
3 European Flame Retardants Association (EFRA) http://www.flameretardants.eu/content. 
4 Stevens, G. C.; Mann, A. H. “Risks and benefits in the use of flame retardants in consumer 

products”. A report for the UK Department of Trade and Industry, January 1999, DTI 

References URN 98/1026. 
5 Lewin M.; Weil, E. D. In Fire Retardant Materials; Horrocks, A. R. and Price, D., Eds.; CRC 

Press, 2001; 31-68. 
6 Ebdon, J. R.; Jones, M. S. In Concise Polymeric Materials Encyclopedia; Salamone, J. C., Ed.; 

CRC Press, 1996; 2397-2411. 
7 Lu, S. Y.; Hamerton, I. Prog Polym Sci 2002, 27, 1661-1712. 
8 Ebdon, J. R.; Price, D.; Hunt, B. J.; Joseph, P.; Gao, F.; Milnes, G. J.; Cunliffe, L. K. Polym 

Degrad Stab 2000, 69, 267-277. 
9 Shmakov, A. G.; Shvartsberg, V. M.; Korobeinichev, O. P.; Beach, M. W.; Hub, T. I.; 

Morgan, T. A. Mendeleev Commun 2007, 17, 186–187. 
10 Macdonald, M. A.; Gouldin, F. C.; Fisher, E. M. Comb Flame 2001, 125, 668–683. 
11 Jayaweera, T. M.; Melius, C. F.; Pitz, W. J.; Westbrooka, C. K.; Korobeinichev, O. P.; 

Shvartsberg, V. M.; Shmakov, A. G.; Rybitskaya, I. V.; Curran, H. J. Comb Flame 2005, 140, 

103–115. 
12 Delobel, R.; Le Bras, M.; Ouassou, N.; Descressain, R. Polym Degrad Stab 1990, 30, 41-56. 
13 Hörold, S. Polym Degrad Stab 1999, 64, 427-431. 
14 Beach, M. W.; Rondan, N. G.; Froese, R. D.; Gerhart, B. B.; Green, J. G.; Stobby, B. G.; 

Shmakov, A. G.; Shvartsberg, V. M.; Korobeinichev, O. P. Polym Deg Stab 2008, 93, 1664-

1673. 
15 Quin, L. D. A guide to organophosphorus chemistry, John Wiley & Sons, 2000. 
16 Morgan, P. W.; Herr, B. C. J Am Chem Soc 1952, 74, 4526-4529. 
17 Ranganathan, T.; Zilberman, J.; Farris, R. J.; Coughlin, E. B.; Emrick, T. Macromolecules 

2006, 39, 5974-5975. 
18 Chen, H.; Luo, Y.; Chai, C.; Wang, J.; Li, J.; Xia, M. J Appl Polym Sci 2008, 110, 3107–

3115. 

UNIVERSITAT ROVIRA I VIRGILI 
PLANT OILS AS RENEWABLE PRECURSORS OF THERMOSETTING AND FLAME RETARDANT POLYMERS 
Lucas Montero de Espinosa Meléndez 
ISBN:978-84-692-9759-9/DL:T-205-2010 
 
 



 86

                                                                                                                                               
19 Seibold, S.; Schäfer, A.; Lohstroh, W.; Walter, O.; Do¨ring, M. J Appl Polym Sci 2008, 108, 

264–271. 
20 Canadell, J.; Mantecón, A.; Cádiz, V. J Polym Sci Part A: Polym Chem 2007, 45, 1980–1992. 
21 a) Youssef, B.; Lecamp, L.; El Khatib, W.; Bunel, C.; Mortaigne, B. Macromol Chem Phys 

2003, 204, 1842–1850, b) Edizer, S.; Sahin, G.; Avci, D. J Polym Sci Part A: Polym Chem 

2009, 47, 5737–5746 
22 Yang, H.; Yang, C. Q.; He, Q. Polym Deg Stab 2009, 94 1023–1031. 
23 Guan, J.; Yang, C. Q.; Chen, G. Polym Deg Stab 2009, 94, 450–455. 
24 Xing, W. Y.; Hua, Y.;Song, L.; Chen, X. L.; Zhang, P.; Ni, J. X. Polym Deg Stab 2009, 94, 

1176–1182. 
25 Cireli, A.; Onar, N.; Ebeoglugil, M. F.; Kayatekin, I.; Kutlu, B.; Culha, O.; Celik, E. J Appl 

Polym Sci 2007, 105, 3747–3756. 
26 a) Spontón, M.; Ronda, J. C.; Galià, M.; Cádiz, V. J Polym Sci Part A: Polym Chem 2007, 45, 

2142–2151, b) Ren, H.; Sun, J.; Zhao, Q. Zhiqi, C.; Ling, Q.; Zhou1, Q. J Appl Polym Sci 2009, 

112, 761–768, c) Seibold, S.; Schäfer, A.; Lohstroh, W.; Walter, O.; Döring, M. J Appl Polym 

Sci 2008, 108, 264–271, d) Lligadas, G.; Ronda, J. C.; Galià, M.; Cádiz, V. J Polym Sci Part A: 

Polym Chem 2006, 44, 6717–6727. 
27 Spontón, M.; Ronda, J. C.; Galià, M.; Cádiz, V. Polym Deg Stab 2009, 94, 145–150. 
28 Hoffmann, T.; Pospiech, D.; Häußler, L.; Komber, H.; Voigt, D.; Harnisch, C.; Kollann, C.; 

Ciesielski, M.; Döring, M.; Graterol, R. P.; Sandler, J.; Altstädt, V. Macromol Chem Phys 2005, 

206, 423–431. 
29 a) Canadell, J.; Mantecón, A.; Cádiz, V. J Polym Sci Part A: Polym Chem, 2007, 45, 1980–

1992, b) Canadell,J.; Hunt, B. J.; Cook, A. G.; Mantecón, A.; Cádiz, V. J Polym Sci Part A: 

Polym Chem 2006, 44, 6728–6737. 
30 Chen, X. T.; Sun, H.; Tang, X. D.; Wang, C. Y. J Appl Polym Sci 2008, 110, 1304–1309. 
31 a) Seibold, S.; Schäfer, A.; Lohstroh, W.; Walter, O.; Döring, M. J Appl Polym Sci 2008, 

108, 264–271, b) Lligadas, G.; Ronda, J. C.; Galià, M.;. Cádiz, V. J Polym Sci Part A: Polym 

Chem 2006, 44, 5630–5644. 
32 a) Hwang, H. J.; Lin, C. Y.; Wang, C. S. J Appl Polym Sci 2008, 110, 2413–2423, b) 

Spontón, M.; Lligadas, G.; Ronda, J. C.; Galià, M.; Cádiz, V. Polym Degrad Stab 2009, 

doi:10.1016/j.polymdegradstab.2009.06.020. 
33 Yang, S. C.; Kim, J. P. J Appl Polym Sci 2007, 106, 2870–2874, b) Yang, S. C.; Kim, J.P. J 

Appl Polym Sci 2008, 108, 2297–2300, c) Zhao, C. S.; Chen, L.; Wang, Y. Z. J Polym Sci Part 

A: Polym Chem 2008, 46, 5752–5759. 
34 Ge, X. G.; Wang, C.; Hu, Z.; Xiang, X.; Wang, J. S.; Wang, D. Y.; Liu, C. P.; Wang, Y. Z. J 

Polym Sci Part A: Polym Chem 2008, 46, 2994–3006. 

UNIVERSITAT ROVIRA I VIRGILI 
PLANT OILS AS RENEWABLE PRECURSORS OF THERMOSETTING AND FLAME RETARDANT POLYMERS 
Lucas Montero de Espinosa Meléndez 
ISBN:978-84-692-9759-9/DL:T-205-2010 
 
 



 87

                                                                                                                                               
35 Negrell-Guirao, C.; Boutevin, B. Macromolecules 2009, 42, 2446-2454. 
36 Levchik, S. V.; Weil, E. D. Polym Int 2008, 57, 431-448. 
37 Lomakin, S. M.; Zaikov, G. E. Modern Polymer Flame Retardancy, VSP, 2003, 8-28 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UNIVERSITAT ROVIRA I VIRGILI 
PLANT OILS AS RENEWABLE PRECURSORS OF THERMOSETTING AND FLAME RETARDANT POLYMERS 
Lucas Montero de Espinosa Meléndez 
ISBN:978-84-692-9759-9/DL:T-205-2010 
 
 



 88

                                                                                                                                               
 

UNIVERSITAT ROVIRA I VIRGILI 
PLANT OILS AS RENEWABLE PRECURSORS OF THERMOSETTING AND FLAME RETARDANT POLYMERS 
Lucas Montero de Espinosa Meléndez 
ISBN:978-84-692-9759-9/DL:T-205-2010 
 
 



 89

ADMET POLYMERIZATION 

 

Background 

 

In the last years, olefin metathesis has become one of the most powerful synthetic 

methods.1 Although double-bond scrambling reactions were initially reported in the 

mid-1950s,2 and Banks and Bailey from Philips Petroleum conducted the first research 

on olefin metathesis and its industrial application in 1964,3 it was not until 1967 that 

Calderon and co-workers recognized that both ring-opening polymerization and the 

disproportionation of acyclic olefins were the same reaction. They coined the term 

“olefin metathesis” (from greek, changing or exchanging positions).4 As shown in 

figure 1, this transformation has a variety of applications. The illustrated examples 

include ring-opening metathesis (ROM), ring-closing metathesis (RCM), ring-opening 

metathesis polymerization (ROMP), acyclic diene metathesis polymerization 

(ADMET), and cross-metathesis (CM). These reactions have enabled the synthesis of an 

impressively wide range of unsaturated molecules which were challenging or even 

impossible to prepare by any other means. 
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Figure 1. Various metathesis reactions. 
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From the mid-1950s to the early 1980s, all olefin metathesis was accomplished 

with poorly defined, multicomponent homogeneous and heterogeneous catalyst 

systems. These systems consisted of transition metal salts combined with main group 

alkylating agents or deposited on solid supports. The utility of these catalysts, however, 

was limited by the harsh conditions and strong Lewis acids that they required and that 

made them incompatible with most functional groups.5 Extensive work was done to 

overcome these problems and to better understand this transformation. The mechanism 

of the reaction remained unknown until 1970, when Chauvin proposed that the key step 

in the reaction involves the formation of a metallocyclobutane ring intermediate from a 

metal carbene and an alkene (Scheme 1).6 

 

[M] [M] [M]

R3R2R2 R3 R2 R3

R1R1 R1

 

 

Scheme 1. Mechanism proposed by Chauvin and Herisson. 

 

The discovery of the mechanism of olefin metathesis eventually led to the 

rational design of progressively more advanced, well-defined catalyst systems. A 

significant breakthrough occurred in 1990 with Schrock’s discovery of the well-defined, 

single-site tungsten and molybdenum alkylidene catalysts.7 However, these early 

transition metal based complexes are highly oxophilic, making them susceptible to air 

and moisture poisoning if they are not employed under rigorously dry, oxygen-free 

conditions. They are also relatively intolerant to many functional groups, such as 

alcohols, aldehydes, and carboxylic acids. These factors limited the use of early 

transition metal-based catalyst for the metathesis of certain functionalized olefins, and 

thus, the key to improved functional group tolerance in olefin metathesis was the 

development of catalysts reacting preferentially with olefins in the presence of 

heteroatomic functionalities. Among the transition metal metathesis catalysts, 

ruthenium reacts preferentially with carbon-carbon double bonds over most other 

species, which makes these catalysts unusually stable toward alcohols, amides, 

aldehydes, and carboxylic acids. 

The first well defined ruthenium based metathesis catalyst (1, figure 2), 

developed by Grubbs in the early 1990s, permitted the application of the olefin 
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metathesis reactions in presence of a wide variety of functional groups.8,9 The 

metathesis activity as well as the functional group tolerance of these catalysts was 

further improved by the substitution of one of the trialkyl phosphine ligands by a N-

heterocyclic carbene (NHC),10 leading to the second generation Grubbs catalysts (2 and 

3 are shown as representative examples in figure 2).11 Thus, with the introduction of 

highly active and robust metathesis catalysts, the number of polymeric structures 

available through the design of new monomers has ever since increased. 
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Figure 2. Grubbs 1st generation, Grubbs 2nd generation and Hoveyda-Grubbs 2nd generation 

metathesis catalysts 

 

 

ADMET polymerization 

 
Acyclic diene metathesis (ADMET) polymerization is performed on α,ω-dienes to 

produce well-defined strictly linear polymers with unsaturated polyethylene backbones, 

as shown in figure 1. This step-growth polymerization is a thermally neutral process 

driven by the release of a small molecule condensate, ethylene. The development of the 

robust ruthenium metathesis catalysts greatly increased the versatility of this 

polymerization reaction to a point that “with few exceptions, if the diene monomer can 

be made, then a polymer can be produced by ADMET”, as affirmed by Wagener et al.12 

The mechanism of the ADMET polymerization cycle (Figure 3) has been well 

documented where coordination of the olefin, followed by formation of a 

metalacyclobutane intermediate (4), and productive cleavage leads to the formation of 

the metathesis active alkylidene complex (5). Subsequent reaction with the double bond 

of a diene produce the metalacyclobutane ring (6) that leads to polymer formation. The 

continuation of the cycle proceeds by the coordination of another diene or growing 

polymer, productive cleavage, and the release of ethylene. 
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Figure 3. Mechanism of ADMET polymerisation. 

 

It has been proven that ADMET polymerization can be carried out with 

heteroatom-containing monomers if the number of carbon atoms between an active 

olefin group and the functional group containing the heteroatom is high enough. This 

way, a potential coordination of the catalyst to the non-bonded electron pairs of the 

heteroatom is minimized, a phenomenon that has been called the negative neighboring 

group effect (NNGE).13 Figure 4 shows some examples of polymers synthesized via 

ADMET containing different functional groups.12 

Some examples of the versatility of ADMET polymerization found in recent 

literature include the ADMET polymerisation of glucose14 and aminoacid-derived 

monomers,15 the synthesis of fluorophore-containing organosilicon polymers,16 

carbosilane-based polymers,17 telechelic elastomers containing silacyclobutane end 

groups,18 halogen-19 or nitro20-containing polymers, carbazol-,21 thiophene-,22 and 

diketopiperazine23-based polymers, polyamides,24 polyesters,25 polyacetals,26 and even 
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oligomers of a transition metal-based monomer with phosphine ligands27 and a 

monomer containing a dimeric transition metal (Mo) complex.28 
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Figure 4. ADMET polymers with different functional groups 
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1. A Straightforward Strategy for the Efficient Synthesis 

of Acrylate and Phosphine Oxide-Containing 

Vegetable Oils and their Cross-linked Materials 
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A Straightforward Strategy for the Efficient Synthesis of 

Acrylate and Phosphine Oxide-Containing Vegetable Oils and 

their Cross-linked Materials 

 

Lucas Montero de Espinosa, Juan C. Ronda, Marina Galià, Virginia Cádiz 

Department of Analytical and Organic Chemistry, Rovira i Virgili University, Campus 

Sescelades, Marcel.lí Domingo s/n, 43007 Tarragona, Spain. 

 
ABSTRACT. Phosphorus-containing triglycerides were prepared from a new route that 

involves the singlet oxygen photooxygenation of high oleic sunflower oil and further 

reduction of the resulting hydroperoxide derivatives to a mixture of secondary allylic 

alcohols. These allylic alcohols in presence of chlorodiphenylphosphine give allylic 

phosphinites capable to undergo a [2,3]-sigmatropic rearrangement leading to tertiary 

phosphine oxides directly linked to triglyceride in a one pot two step reaction. The 

obtained phosphorus-containing triglycerides with different hydroxyl content were 

activated to polymerisation by acrylation and these acrylate triglycerides were radically 

crosslinked in presence of different amounts of pentaerythritol tetraacrylate. The 

thermal, dynamic-mechanical, and flame retardancy properties of the final materials 

were evaluated. Thermal and thermooxidative degradation was studied by gas 

chromatography/mass spectrometry, 31P HR-MAS NMR spectroscopy, and scanning 

electron microscopy. 

Keywords: triglyceride, phosphorus-containing, acrylate, crosslinking, renewable 

resources.  

 

 
INTRODUCTION 

 
The exhaustion forecasts of petroleum reserves have lead the chemical industry to 

search for alternative feedstocks that can provide raw materials for the development of 

polymeric materials.1 Plant oils, which can be found all around the world, are an 

attractive alternative to petroleum derivatives as precursors of polymeric materials.2 

Soybean oil, sunflower oil or linseed oil contain internal double bonds and have been 

used directly to obtain polymeric resins by cationic copolymerization with styrene and 

divinylbenzene.3 However, the reactivity of these internal double bonds is limited. For 
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this reason, much work has been done on the functionalization of triglycerides to obtain 

useful monomers for the development of polymeric materials.4,5 The epoxidation of 

natural oils and subsequent ring opening with acrylic acid has been well studied giving 

rise to different derivatives as acrylate epoxydized soybean oil (AESO),6 which is 

commercially available. These monomers, that can be polymerized either radically or 

photochemically,7 have been used in the development of resins. The properties of these 

materials, that can be conveniently modified by copolymerization with styrene or by 

variation of the monomer functionality8 are comparable to those of conventional 

polymers and composites.9,10 Recently, we described a new environmentally friendly 

route to obtain acrylate tryglicerides by photoperoxidation of high oleic sunflower oil 

and further reduction of the resulting hydroperoxide to allylic alcohols capable to be 

acrylated.11  

Among all the desirable properties thermosets and elastomers should have, flame 

retardancy is one of the most important concerning the security of the final users of 

these materials. There are two ways to achieve flame retardancy in polymers. The first 

one is to incorporate flame retardants to manufactured polymers as additives, which is 

the most economical and straightforward way to infer flame retardancy. However, high 

amounts of the flame retardant component must be added to be effective and problems 

like incompatibility, migration and reduction of the mechanical properties of the base 

polymer make this approach unattractive. The second approach to flame retardancy is 

the design of new intrinsically flame retardant polymers. This reactive approach avoids 

the problems that can be found in additive flame retardants and permits the preparation 

of polymers with specific properties through the design of flame retardant monomers. 

In this way, we are working on the development of flame retardant thermosets 

based on phosphorus-containing vegetable oils.12,13 There are few examples on the 

modification of plant oils to infer flame retardant properties. Küsefoglu and Eren14 

reported the bromoacrylation of soybean and high oleic sunflower oil to afford a new 

monomer that was used in the preparation of flame retardant thermosets. Halogenated 

flame retardants present advantages as the high efficiency, even in very small amounts, 

or the low cost. However, they have clear disadvantages as the generation of toxic and 

corrosive gases during the combustion process. Efforts have been made in the 

development of halogen-free flame retardants such as those containing P, N, Si and B, 

which are known to inhibit or retard the fire spreading by acting in the condensed phase, 

in the gaseous phase or in both. Among them, phosphorus is known to act in the 
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condensed phase promoting char formation and thus preventing air to reach the material 

surface and diffusion of gaseous products into the flame.15 There is a wide range of 

phosphorus containing flame retardants since phosphorus can exist in several oxidation 

states. Phosphate, phosphonate and phosphinate based reactive flame retardants have 

been widely used.15-19 They have proved to generate very efficiently the char residue, 

but also there are evidences of their action in the gas phase.16-18 However, the P-O bond 

has a general poor hydrolytic and thermal stability20 that limits the range of application 

of the final polymeric materials. The tertiary phosphine oxides have also been used as 

reactive flame retardants.19,21,22 They have P-C bonds that confer a higher thermal and 

hydrolytic stability to the polymers.23  

Among the different possible ways of preparing tertiary phosphine oxides-

containing triglycerides, we chose the simple and straightforward [2,3]-sigmatropic 

rearrangement of allylic phosphinites.24 Thus, in this work we describe the synthesis of 

phosphorus-containing triglycerides from a new route that involves the singlet oxygen 

photooxygenation of high oleic sunflower oil and further reduction of the resulting 

hydroperoxide derivatives to a mixture of secondary allylic alcohols that are suitable 

precursors of the allylic phosphinites. The obtained phosphorus-containing triglycerides 

with different hydroxyl content were activated to polymerisation by acrylation and these 

acrylate triglycerides were radically crosslinked in presence of different amounts of 

pentaerythritol tetraacrylate. Following this strategy, a range of phosphorus-containing 

triglycerides has been prepared from high oleic sunflower oil and their thermal and 

flame retardance properties (LOI) have been investigated. 

 

EXPERIMENTAL  

 

Materials 

High oleic sunflower oil (SO) (minimum 80% oleic acid) was kindly supplied by 

Borges. Meso-tetraphenylporphyrin (TPP) (Aldrich), N,N´-dimethylaminopyridine 

(Aldrich), chlorodiphenylphosphine (Aldrich), dicumyl peroxide (DCP) (Aldrich), 

ethylacetate (Scharlab), celite 535 (Fluka) and MgSO4 (Scharlab) were used as received. 

Triethylamine (Aldrich) was dried by distillation over CaH2 and acryloyl chloride 

(Aldrich) was distilled before use. Dichloromethane was dried over P2O5 and distilled 

immediately before use. Toluene was distilled over sodium/benzophenone immediately 

before use. Pentaerythritol tetraacrylate (PETA) (Aldrich) was dissolved in ethyl ether 
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and washed with an aqueous solution of NaOH (5%) before use to remove the stabiliser. 

Hydroxyl sunflower oil (HSO) was synthesized as previously described.11 TLC plates 

were developed by spraying with sulphuric acid/anisaldehyde ethanol solution and 

heating at 200 ºC. 

 

Synthesis of Phosphorus-containing Sunflower Oil (P-SO) (Scheme 1). 10 g (0.01 

mol) of HSO and the desired amount of N,N´-dimethylaminopyridine: 0.76 g (0.006 

mol), 1.51 g (0.012 mol) or 2.27 g (0.018 mol) were placed in a 500 mL round 

bottomed flask and  degassed applying vacuum for 10 minutes. 250 mL of dry toluene 

were added under argon atmosphere and the mixture was stirred. The required amount 

of chlorodiphenylphosphine: 1.32 g (0.006 mol), 2.65 g (0.012 mol) or 3.97 g (0.018 

mol) was added and the mixture was stirred for 1 hour at room temperature. The 

mixture was then heated to reflux for 12 h. The reaction was allowed to cool down and 

toluene was removed under reduced pressure. The reaction mixture was dissolved in 

100 mL of dichlorometane and washed with 10% HCl, brine and water. The organic 

layer was dried over MgSO4 and the  solvent was removed under reduced pressure. P-

SO was obtained as an oily product with 90% yield. 

FTIR: 3396 cm-1, 3054 cm-1 (Aromatic, stretching), 1734 cm-1 (ester C=O, stretching), 

1436 cm-1, (P-CAr, stretching), 1116 cm-1 (P=O, stretching), 748 and 696 cm-1 

(Aromatic, out-of-plane deformation). 
1H NMR (CDCl3, TMS, δ in ppm): 7.82-7.67 (m, o-Ar), 7.50-7.36 (m, m-Ar, p-Ar), 

5.63-5.54 (m, CH=CH-CHOH), 5.41 (dd, J = 15.6, 7.2 Hz, CH=CH-CHOH), 5.32-5.19 

(m,-CH=CH- and CH-O), 4.31-4.22 (m, CH2-O), 4.16-4.08 (m, CH2-O), 3.99 (q, J = 6.7 

Hz, CH-OH), 2.94-2.84 (m, CH-P), 2.33-2.20 (m, CO-CH2-), 1.98 (q, J = 6.67 Hz, CH2-

CH=CH-CHOH), 1.93-1.81 (m, CH2-CH=CH-CHP), 1.66-1.41 (m, CH2-CH-P and 

CH2-CH2-CO), 1.47-0.91 (m, aliphatic), 0.89-0.78 (m, CH3). 
13C NMR (CDCl3, TMS, δ in ppm): 173.36-172.95 (COOR, ester), 137.27-136.87 

(CH=CH-CHP), 133.41-133.13 (CH=CH-CHOH), 132.52-132.12 (CH=CH-CHOH), 

132.12-131.17 (Ar), 128.72-128.23 (m-Ar or p-Ar), 124.15-123.87 (CH=CH-CHP), 

73.17 (CH-OCO, acrylate), 68.95 (CH-OCO, glyceryl), 62.18 (CH2-OCO, glyceryl), 

43.93 (d, J = 70.42 Hz, CH-P) out-of-plane deformation, 37.44 (CH2-CHOH), 34.22-

34.08 (CH2-CO), 32.69 (CH2-CH=CH-CHP), 32.31-32.19 (CH2-CH=CH-CHOH), 

31.98-31.84 (CH2-CH2-CH3), 29.80-28.82 (aliphatic), 27.75-27.62 (CH2-CH2CHP), 
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27.09 (CH2-CHP), 25.79-25.55 (CH2-CH2CHO), 24.92 (CH2-CH2COOR), 22.76 (CH2-

CH3), 14.20 (CH3). 
31P NMR (CDCl3, H3PO4, δ in ppm): 34.30, 34.25. 

 

Synthesis of Phosphorus-containing Acrylate Sunflower Oil (P-ASO) (Scheme 1). 

A 100 mL round-bottomed flask was charged with P-SO (10 g), dichloromethane (50 

mL) and a magnetic stirrer under inert atmosphere. The solution was cooled to 0 ºC. 

Acryloyl chloride: 3.3 mL (0.041 mol), 2.36 mL (0.029 mol), 1.62 mL (0.020 mol) or 

1.07 mL (0.013 mol) followed by triethylamine: 11.3 mL (0.081), 8.1 mL (0.058 mol), 

5.6 mL (0.040 mol) or 3.7 mL (0.026) were carefully added with immediate formation 

of a white precipitate. The resulting mixture was allowed to reach room temperature and 

was stirred for 1h more. The solvent was eliminated at reduced pressure. Then 5 mL of 

ethyl acetate were added. The solution was filtered through a short pad of celite and 

ethyl acetate was passed to recover the entire product. The solvent was removed at 

reduced pressure and then the oily product was dissolved in dichloromethane and 

washed twice with brine. The organic layer was dried over MgSO4 and the solvent was 

removed under reduced pressure to obtain P-ASO. The number of acrylate groups per 

triglyceride in the three derivatives was found to be 1.6, 1.4 and 1.0 per triglyceride by 
1H-NMR spectroscopy (calculated by the integration of methine linked to P). No further 

purification was carried out. Yields 83-88%.  

FTIR: 1740 cm-1 (ester C=O, stretching), 1722 cm-1 (acrylate C=O, stretching), 1636 

and 1618 cm-1 (double bond, stretching), 1403 cm-1 (double bond, in-plane 

deformation), 1187 cm-1 (C-O, st.), 809 cm-1 (double bond, out-of-plane deformation). 

1H NMR (CDCl3, TMS, δ in ppm): 7.83-7.67 (m, o-Ar), 7.52-7.35 (m, m-Ar,  p-Ar), 

6.36 (dd, J = 17.32, 1.27 Hz, CO-CH=CH2), 6.09 (dd, J = 17.31, 10.40 Hz, CO-

CH=CH2), 5.78 (dd, J = 10.38, 1.45 Hz, CO-CH=CH2), 5.72-5.64 (m, CH=CH-CHOH), 

5.37 (ddd, J = 15.32, 7.46, 1.58 Hz, CH=CH-CHOH), 5.30-5.20 (m, -CH=CH-CHP and 

CH-O), 4.27 (dd, J = 11.77, 3.75 Hz, CH2-O), 4.15-4.07 (m, CH2-O), 2.94-2.84 (m, 

CH-P), 2.33-2.20 (m, CO-CH2), 1.99 (q, J = 7.05 Hz, CH2-CH=CH-CHOH), 1.93-1.79 

(m, CH2-CH=CH-CHP), 1.70-1.47 (m, CH2-CH-P, CH2-CHOH and CH2-CH2-CO), 

1.45-0.98 (m, aliphatic), 0.90-0.78 (CH3). 
13C NMR (CDCl3, TMS, δ in ppm): 173.09-172.64 (COOR), 165.45 (COOR, acrylate), 

136.97-136.58 (CH=CH-CHP), 134.55-134.17 (CH=CH-CHO), 131.45-130.98 (Ar), 
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130.21 (CO-CH=CH2), 128.94 (CO-CH=CH2), 128.54-128.04 (m-Ar or p-Ar), 128.33-

128.08 (CH=CH-CHO), 124.13-123.87 (CH=CH-CHP), 75.10 (CH-OCO, acrylate), 

68.82 (CH-OCO, glyceryl), 61.99 (CH2-O, glyceryl), 43.83 (d, J = 69.38 Hz, CH-P), 

34.47 (CH2-CHO), 34.04-33.81 (CH2-COOR), 32.51-32.45 (CH2-CH=CH-CHP), 32.14-

32.05 (CH2-CH=CH-CHO), 31.86-31.67 (CH2-CH2-CH3), 29.63-28.55 (aliphatic), 

27.60-27.33 (CH2-CH2-CHP), 27.01 (CH2-CHP), 25.12-25.07 (CH2-CH2CHO), 24.77-

24.62 (CH2-CH2COOR), 22.63-22.55 (CH2-CH3), 14.09-14.05 (CH3). 
31P NMR (CDCl3, H3PO4, δ in ppm): 34.26, 34.20. 

 

Curing reactions and solubility tests. 

The curing reactions were carried out as follows. Each triglyceride derivative, ASO and 

P-ASOs was deoxygenated using vacuum-argon cycles to prevent oxygen free radical 

inhibition processes. Then they were mixed with the desired amount of deoxygenated 

PETA. Dicumyl peroxide (1.5% w/w) was added with  effective stirring and the mixture 

was heated to 50ºC. The resulting homogeneous mixture was put in a previously heated 

(80 ºC) mold (100 x 6 x 4 mm3). The temperature was increased from 80 ºC to 110 ºC at 

a heating rate of 1º C/min and then the temperature was increased rapidly to 130 ºC and 

maintained for 2h.  

The soluble part of the cured samples was extracted by refluxing 0.5 g. of each 

sample (thoroughly triturated) in 50 mL of distilled THF during 12 h. 

 

Instrumentation 
1H NMR 400 MHz, 13C NMR 100.6 MHz and 31P 161.9 MHz NMR spectra were 

obtained using a Varian Gemini 400 spectrometer with Fourier transform, CDCl3 as 

solvent and TMS as internal standard. 1H and 31P HR-MAS spectra were recorded on a 

Bruker Avance III 500 spectrometer operating at a proton frequency of 500.13 MHz. 

The instrument was equipped with a 4-mm triple resonance (1H, 13C, 31P) gradient HR-

MAS probe. A Bruker Cooling Unit (BCU-Xtreme) was used to keep the sample 

temperature at 27°C. Samples conveniently prepared with CDCl3 were spun at 6 kHz in 

order to keep the rotation side bands out of the spectral region of interest. One-

dimensional (1D) 1H spectra  were acquired in 1 min and 16 scans with a 1.0-s 

relaxation delay. The IR analyses were performed on a FTIR-680PLUS 

spectrophotometer with a resolution of 4 cm-1 in the transmittance mode. An attenuated-
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total-reflection accessory with thermal control and a diamond crystal was used to 

determine FTIR/ATR spectra. 

Calorimetric studies were carried out on a Mettler DSC821e thermal analyzer 

using N2 as a purge gas (20 mL/min) at a scan rate of 10ºC/min in the 30-300ºC 

temperature range. Dynamic mechanical thermal analysis (DMTA) was performed 

using a TA DMA 2928 in three-point bending geometry at a fixed frequency of 1 Hz in 

the –100 to 200 ºC range and at a heating rate of 3 ºC/min. The dimensions of the 

samples were 15 x 6 x 4 mm3.  

Thermal stability studies were carried out on a Mettler TGA/SDTA851e/ 

LF/1100 with N2 as purge gas. The studies were performed in the 30-800 ºC temperature 

range at a scan rate of 10ºC/min. 

The limiting oxygen index (LOI) (ASTM D 2863) is the minimum concentration 

of oxygen determined in a flowing mixture of oxygen and nitrogen that will just support 

the flaming combustion of materials. LOI values were measured on a Stanton Redcroft 

instrument provided with an oxygen analyser. The dimensions of the polymer plaques 

were 100 x 6 x 4 mm3. 

Degradation studies were carried out in a Carbolite TZF 12/38/400 oven 

connected to a condenser cooled by liquid nitrogen. GC-MS measurements were carried 

out using an HP 6890 gas chromatograph with an Ultra 2 capillary column (crosslinked 

5 % PH ME siloxane) and an HP 5973 mass detector. 

Scanning electron microscopy (SEM) was performed on a JEOL JSM 6400 

scanning electron microscope, at an activation voltage of 10 kV. For the atomic 

mapping, an Oxford INCA Energy Dispersive X-Ray Micro Analyzer was used. 

 

RESULTS AND DISCUSSION 

 

In the synthesis of phosphorus-containing triglycerides (Scheme 1) we used as starting 

compound a secondary alcohol containing-triglyceride derivative (HSO) which was 

synthesized through photoperoxidation with singlet oxygen and further reduction of 

high oleic sunflower oil (SO).11 The allylic hydroxyls of HSO were reacted with 

chlorodiphenylphosphine (CDPP), in presence of DMAP as base, to obtain the 

intermediate allylic phosphinites. When heated to 120 ºC, these allylic phosphinites 

undergo a [2,3] sigmatropic rearrangement to give a tertiary phosphine oxide with new 

P-C bonds that link the phosphorus directly to the fatty acid chains (P-SO). To the best 
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of our knowledge, this thermal rearrangement (Arbuzov-type rearrangement) of allylic 

diphenylphosphinites has not been applied to a triglyceride derivative, as a very 

efficient procedure to obtain allylic phosphine oxides. 
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Scheme 1. Synthesis of hydroxyl functionalized triglycerides (HSO), phosphorus-containing 

derivatives (P-SO) and acrylated phosphorus-containing derivatives (P-ASO). 
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This phosphorus-containing triglyceride was obtained with high purity after 

work-up of the reaction and no further purification was carried out. Taking into account 

that the average number of allylic hydroxyls per triglyceride in the starting material is 

2.5 (measured by 1H-NMR), we could react it with different amounts of CDPP in order 

to obtain a set of triglyceride derivatives with different phosphorus content. The 

remaining hydroxyl groups were esterified with acryloyl chloride in presence of 

triethylamine to obtain P-ASOs, thus introducing the necessary reactive sites for further 

crosslinking.  

NMR spectroscopy allowed us to follow each step of the synthesis. Figure 1a) 

shows the 1H-NMR spectrum of the starting triglyceride HSO where the three multiplets 

at 5.6, 5.4 and 4.0 ppm corresponding to the protons Ha, Hb and Hc of the allylic 

alcohol moiety can be seen. The 1H NMR spectrum of the P-SO, depicted in Fig. 1b, 

shows the partial disappearance of the signals corresponding to the double bond (HA 

and HB) of HSO and the appearance of new double bond signals (HD and HE) 

corresponding to the allylic tertiary phosphine oxide in P-SO. Moreover, there is a 

decreasing in the intensity of the signal belonging to the methine proton linked to the 

hydroxylic group (HC) at 4.0 ppm, and a multiplet of new appearance due to the methine  
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Figure 1. 1H NMR spectra of a) HSO, b) P-SO and c) P-ASO recorded in CDCl3. 
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linked to the phosphorus (HF) centered at 2.8 ppm. Fig 1c) shows the 1H NMR spectrum 

of P-ASO which confirms the complete introduction of the acrylic moieties by the 

typical set of vinyl signals at  6.3, 6.1 and 5.7 ppm (HG, HH and HI respectively), the 

disappearance of the signal HC of proton methine linked to OH and the presence of the 

signal HL of proton methine linked to O-CO-CH=CH2. 

As the phosphorus content of the modified oil was increased, the number of free 

hydroxyl groups decreased. The problem associated with this fact is that few 

crosslinking reactive sites were available at high phosphorus contents. As the properties 

of the resulting materials are directly related to the crosslinking density, the use of a 

crosslinking agent is necessary to obtain highly crosslinked materials at high 

phosphorus contents. In a previous work we used pentaerythritol tetraacrylate (PETA) 

as crosslinking agent to improve the properties of two different acrylate high oleic 

sunflower oil derivatives.11 We could determine that the addition of 5% w/w of PETA 

was enough to increase significantly the Tg value and to decrease the soluble part until 

2-3%. Thus, if we take as reference the 5% w/w of PETA added in the ASO 

crosslinking, the contents of PETA in the P-ASOs were increased to compensate the 

lower number of acrylate groups (Table 1). The phosphorus content in P-ASOs was 

determined by 1H-NMR spectroscopy. After crosslinking, the phosphorus content in the 

final materials was calculated regarding the amount of P-ASO and PETA added in each 

sample. In this way, four crosslinked materials were synthesized with 0.0 (ASO/PETA), 

1.4, 2.0 and 2.8 % w/w of phosphorus content. 

 

Table 1. Soluble fractions, Tg values of the cured P-ASO/PETA systems. 

Triglyceride PETA 
(%)a 

P content 
(%)a 

Soluble  
Fraction (%)a,b Tg  (ºC)c 

ASO 5 0.0 2.7 25 

P-ASO-I 17 1.4 3.0 15 

P-ASO-II 20 2.0 4.9 18 

P-ASO-III 25 2.8 12.6 14 

 
a Weight / weight percentages, b in THF, c maximum of the Tan δ peak. 

 

DSC experiments were carried out in order to establish the curing conditions. 

Figure 2 shows the DSC traces of the four curing systems. The 0% phosphorus sample 
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(curve a) exhibits a crosslinking exotherm centered at 153 ºC with a little shoulder 

around 190 ºC  that can be attributed to the thermal crosslinking of the remaining 

unreacted acrylates.11 However, the exotherms belonging to the phosphorus-containing 

curing systems show multiple exotherms. The P-ASO-I sample (curve b) presents a 

main exotherm at 158 ºC with a shoulder at 142 ºC. When the phosphorus content is 

increased to 2.0% in P-ASO-II (curve c), the intensities of both exoterms are reversed, 

the exotherm at 142 ºC significantly increases and the other one, at 158 ºC, becomes 

smaller. The P-ASO-III sample (curve d) gives two similar exotherms at 142 ºC and 150 

ºC. 
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Figure 2. DSC plots of the curing systems a) ASO/PETA; b) P-ASO-I/PETA; c) P-ASO-

II/PETA and d) P-ASO-III/PETA. 

 

To better understand this behavior, DSC experiments of samples with different 

phosphorus and PETA contents were run. The results are shown in Figure 3. Firstly, the 

plot of the 0% phosphorus sample (ASO) gave, either in absence (Fig. 3a) or in 

presence (Fig. 3b) of PETA, only one sharp exotherm showing a similar reactivity 

between both acrylate groups. However, when P-ASO-I was run in absence of PETA 

(Fig. 3c) a broadening of the exotherm was observed. The addition of PETA to P-ASO-I 

caused the splitting of the exotherm in two peaks (Fig. 3d). Therefore, the presence of 
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phosphorus in any studied system produces either a broadening or even two maxima in 

the DSC curves, indicating that more than one process occurs. This fact is also observed 

in the case of P-ASO-II and P-ASO-III where the presence of PETA causes the same 

behavior (see curve c and d in Fig. 2). 
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Figure 3. Curing DSC plots of a) ASO; b) ASO/PETA; c) P-ASO-I and d) P-ASO-I/PETA. 

 

Taking the information from DSC curing, we applied the same curing program 

to all systems. The samples were heated in a mould from 80 ºC to 110 ºC at 1 ºC/min 

and then at 130 ºC for 2h. The temperature was raised at 1 ºC/min to avoid bubbles 

formation during the first steps of the crosslinking. The curing was followed by FTIR- 

ATR spectroscopy. Figure 4 shows the initial and final spectra of the P-ASO-II curing 

system. The total disappearance of the acrylate double bond bands at ca., 1630 and 1620 

cm-1 (stretching vibration), 1405, 1292, 1261 and 1057 cm-1 (CH and CH2 in-plane 

deformations) and 981, 967 and 806 cm-1 (CH and CH2 out-of-plane deformations) 

confirms that the crosslinking reaction takes place.25,26 

The extent of the crosslinking reactions was investigated by extracting the 

soluble part of the cured samples by refluxing in THF for 12h. Table 1 shows the weight  
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Figure 4. FTIR-ATR spectra of a mixture of P-ASO-I/ PETA before heating (plain line) and 

after curing (dashed line). 

 

percentages of the soluble fractions for each system. These values indicate the 

formation of crosslinked structures due to the reaction of the acrylate groups, in 

agreement with the IR data. These values are the result of two opposite factors. First, an 

increase of the phosphorus content leads to a decrease of the acrylate functionality in the 

triglyceride and thus to a higher soluble fraction. On the other hand, as PETA content 

increases a higher crosslinking degree structure should be obtained with lower values of 

soluble fractions. However, this last factor seems not to be significant. 

High Resolution MAS NMR spectroscopy was used as a useful tool to further 

study the extent of the crosslinking reaction in the resulting thermosets. Conventional 

solid NMR spectroscopy usually results in signal broadening due to the lack of 

molecular mobility. However, HR-MAS NMR spectroscopy reduces significantly this 

broadening by spinning the sample around an axis oriented at an angle θ = 54.7º with 

the direction of the magnetic field. The sample is spinned at a rate larger than the 

anisotropic interactions causing them to be averaged to their isotropic value and 

therefore, resulting in signal narrowing. In order to obtain a good spectrum, a solvent 
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must be added that swells the polymer in some extent. However, the swelling is less 

effective in the sections of the polymer with a higher crosslinking density. As a result 

the crosslinking sites cannot be seen with the same resolution as the sections with 

higher mobility. Figure 5 depicts the 1H and 31P HR-MAS NMR spectra of P-ASO-III. 

This powerful technique makes possible to analyze in an accurate way the structural 

changes that took place during crosslinking. In the 1H NMR, spectrum not remaining 

acrylate signals are observed. Moreover, the internal double bonds of the triglyceride 

can still be observed indicating that these groups are less reactive than acrylate towards 

radical polymerisation and remain unreacted in the polymeric network. The 31P NMR 

spectrum shows a broad peak centred at 34 ppm showing that during crosslinking the 

phosphine oxide moiety remains unaltered. 
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Figure 5. 1H (a) and 31P (b) hr-MAS NMR spectra of cured P-ASO-III. 

 

The dynamic mechanical behavior of these polymers was similar to that of ASO 

systems11 and other thermosetting polymers.27 Figure 6 shows the DMA analysis of the 

P-ASO system. The Tgs were taken as the maximum of the Tan δ peaks. The values, 

summarized in table 1, are similar for all the samples and were found around room 

temperature. The increase in the phosphorus content caused a slight decrease in the Tg 

value. As the phosphorus content is increased, the acrylate functionality in the 

triglycerides is decreased. Adding PETA as crosslinker increases the crosslinking 

density of the polymers, but does not avoid the increasing content of free fatty acid 

chains acting as plastizisers. As a consequence, the Tan δ peak maxima shift to lower 
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temperatures. However, this effect is not so strong due to the increasing content of 

aromatic rings and strongly polar phosphoryl groups, that cause restriction in segmental 

mobility. The decreasing crosslinking density is in accordance with the height of the 

Tan δ peaks, which increase with the phosphorus content indicating a lower rigidity of 

the polymeric network. 
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Figure 6. Tan delta plots as a function of temperature for the cured systems: a) ASO/PETA; b) 

P-ASO-I/PETA; c) P-ASO-II/PETA and d) P-ASO-III/PETA. 

 

The thermal stability of these polymers was evaluated both under nitrogen and 

air atmosphere. The thermogravimetric plots are shown in figure 7 and 8 respectively 

and the temperature of 5% weight loss, the temperature of the maximum weight loss 

rate and the residue at 800ºC are collected in Table 1. The temperatures of 5 % weight 

loss of all samples are in the 305-330 ºC range under nitrogen and between 270-300 ºC 

under air. The residues obtained at 800 ºC range from 3 to 5 % under nitrogen and from 

0 to 2 % under air atmosphere. This low residues could indicate that volatile phosphorus 

compounds are released upon heating. Thus, a gas-phase flame retardancy mechanism 

might be expected in combination with the condensed-phase mechanism.16-18 The first 

derivative plots show that under nitrogen the degradation process consist of two main 

steps (Fig. 7b), while under air at least four maximum weight loss rates are involved 
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indicating the existence of more complex processes (Fig. 8b). Under air atmosphere and 

above 500 ºC polymeric materials undergo a weight loss due to the char formed 

oxidized. It can be seen that the weight loss rate of the phosphorus-containing resins is 

significantly lower than that of the phosphorus-free resin in this thermo-oxidative 

degradation. In this retarded-degradation phenomenon, the phosphorus groups promote 

an insulating protective layer which prevents the combustible gases from transferring to 

the surface of the materials, increases the thermal stability at higher temperatures and 

improves the fire resistance. 
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Figure 7. A) TGA plots under nitrogen and B) first derivative curves of the cured systems: a) 

ASO/PETA; b) P-ASO-I/PETA; c) P-ASO-II/PETA and d) P-ASO-III/PETA. 

 

The flame retardancy of the resins was evaluated using the Limiting Oxygen 

Index value (LOI). The results are depicted in table 1. ASO resin gave a LOI of 19.6 

which indicates that this material is not flame retardant. The addition of 1.4% of 
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phosphorus gave a LOI of 21.2 and the maximum content of phosphorus (2.8 %) gave a 

LOI of 22.4. These values show that this slight  improvement on the flame retardant 

properties is related to the increase in the phosphorus content. 
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Figure 8. A) TGA plots under air and B) first derivative curves of the cured systems: a) 

ASO/PETA; b) P-ASO-I/PETA; c) P-ASO-II/PETA and d) P-ASO-III/PETA. 

 

To further investigate the thermal degradation mechanism, samples of P-ASO-

III were heated in an oven at different temperatures with air and nitrogen as purge gases. 

The degradation temperatures were selected from dynamic TGA data as the 

corresponding to weight loss rate maxima. Under nitrogen atmosphere the used 

temperatures were 350, 425 and 465ºC and under air 340, 415 and 450 ºC. In both 

atmospheres the heating time was 1h per each temperature. Volatile products were 

trapped at the liquid nitrogen temperature and subsequently analysed by GC/MS and 
31P-NMR spectroscopy. 
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The thermal decomposition of plant oils has been widely reported in literature.28 

Considering the structure of P-ASOs, mainly composed by triglycerides, we can expect 

similar findings when analyzing the evolved gases. Thus, the main degradation products 

are long chain fatty acids (R-COOH), esters (R-COOR’), acrolein and substituted 

ketenes (R’’-CH=C=O). Ketones (R-CO-R’) and aldehydes (R-CHO) are secondly 

formed from fatty acids. These oxygenated hydrocarbons undergo decarbonylation 

giving hydrocarbon radicals (R and R’) in the case of ketones and aldehydes while in 

the case of fatty acids and esters the products are alcohols (R-OH). Substituted ketenes 

decompose giving CH2=C=O and hydrocarbon radicals (R”). Moreover, the formation 

of alkanes and alkenes can be attributed to the generation of a RCOO· radical through 

triglyceride cleavage followed by decarboxylation. Unsaturated sites enhance the 

cleavage of the C-C bonds at allylic position and this cleavage is a dominant reaction. 

The formation of aromatics is supported by Diels-Alder ethylene addition of conjugate 

dienes.  

Taking into account that P-ASOs are polyacrylates with ester function prone to 

suffer thermal C-O scission, the presence of secondary alcohols among the degradation 

products can be expected.29 

On the other hand, the analysis of the evolved gases, in all fractions, shows the 

presence of several phosphorus aromatic compounds. In the degradation under nitrogen, 

diphenylphosphine oxide, methyldiphenyl phosphine oxide and methyl 

diphenylphosphinite could be detected. In the degradation under air, ethyldiphenyl 

phosphine oxide, n-propyldiphenyl phosphine oxide, isopropyl diphenylphosphine 

oxide, methyldiphenyl phosphine oxide and methyl diphenylphosphinite could be 

detected. The formation of these compounds could be explained through different 

chemical processes that involve some of the compounds evolved in the decomposition 

of  triglyceride moieties . These reactions are summarized in Scheme 2. In reaction 1, P-

C bond cleavage occurs due to the availability of a hydrogen in β position to the P atom 

in the starting tertiary phosphine oxide to give diphenylphosphine oxide and a 

conjugated diene.30 This diene, as mentioned above, could react with alkenes (reaction 

2) to form aromatic compounds which have been detected by GC-MS. 

Diphenylphosphine oxide is strongly nucleophilic due to P-H bond and can easily react 

with electrophile groups such as acrolein, ketene, ketones and esters, formed during the 

thermal decomposition (reaction 3). The products of these reactions would be tertiary 
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phosphine oxides, what was confirmed by the presence of typical signals in the tertiary 

phosphine oxides region in 31 P NMR spectroscopy. 
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Scheme 2. Proposed thermal degradation pathways of P-ASO thermosets. 

 

Diphenylphosphine oxide tautomer (Ph2P-OH) could undergo a esterification in 

presence of different alcohols evolved in the thermal decomposition. The formed Ph2P-

OR can be oxidized to alkyl diphenyl phosphinites (reaction 4). 

It is described that the secondary phosphine oxides can undergo a thermal 

disproportionation 30 to give a secondary phosphine and a phosphinic acid (reaction 5). 

As diphenylphosphine oxide, diphenylphosphine also shows high reactivity towards the 

electrophiles above mentioned (reaction 6) and can give the same tertiary phosphine 

oxides, after oxidation of the tertiary phosphine adducts, than reaction 3. 

On the other hand, diphenyl phosphinic acid can be esterified with the different 

alcohols evolved in the thermal decomposition to give different alkyl diphenyl 

phosphinites (reaction 7). 

The solid residues obtained after degradation under nitrogen and air were 

analyzed by 31P HR-MAS NMR spectroscopy. Any signal was observed in the spectrum 

of residue sample obtained under nitrogen. This fact is probably due to the availability 

of a hydrogen in β position to the P, in the starting tertiary phosphine oxide, that favors 

the cleavage of P-C bond and elimination of phosphorus-containing volatiles. However, 

in the spectrum of residue sample obtained under air a peak at 0 ppm (H3PO4) was 
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observed. In this case the different evolved phosphorus species are oxidized to 

phosphoric acid. Looking the very low char yield obtained for P-ASO-III at 800 ºC in 

TGA analysis under air, we can think that most of the phosphorus species are released 

to the gas phase instead of being oxydized and stay in the residue. 

To better understand the role of phosphorus in the polymer flame retardancy, 

element mapping was performed with energy-dispersive X-ray spectroscopy (EDX) on 

the surface of a P-ASO-III sample after the LOI test (Fig 9). P mapping of the non-

burned area showed a homogeneous distribution of this element, as can be observed in 

the micrograph (Fig. 9 b). The white points in the Fig. denote P rich zones. After 

burning, the presence of phosphorus in the char was confirmed by 31P MAS NMR 

spectroscopy which shows a broad peak at 0 ppm typical of phosphoric acid. Fig. 9 c) 

shows the P mapping of the  burned zone of the P-ASO-III. The P distribution shows 

that the phosphorus density increased in the top burned surface and that a phosphorus-

rich layer formed. When phosphorus compounds are heated they can form glass-like 

polyphosphoric acid, which protects the burning surface. 
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Figure 9. SEM (a) and SEM-EDX P-mapping micrographs of non-burned area (b) and burned 

area (c) of cured P-ASO-III. 

 

CONCLUSIONS 

 

Phosphorus-containing triglycerides were prepared from a new route that involves the 

preparation of intermediate secondary allylic alcohol triglyceride. These allylic alcohols 

UNIVERSITAT ROVIRA I VIRGILI 
PLANT OILS AS RENEWABLE PRECURSORS OF THERMOSETTING AND FLAME RETARDANT POLYMERS 
Lucas Montero de Espinosa Meléndez 
ISBN:978-84-692-9759-9/DL:T-205-2010 
 
 



Journal of Polymer Science: Part A: Polymer Chemistry 
DOI: 10.1002/pola.23466 

117

in presence of chlorodiphenylphosphine give allylic phosphinites capable to undergo a 

[2,3]-sigmatropic rearrangement leading to tertiary phosphine oxides directly linked to 

triglyceride in a one pot two step reaction. The obtained phosphorus-containing 

triglycerides with different hydroxyl content were activated to polymerization by 

acrylation and these acrylate triglycerides were radically crosslinked in presence of 

different amounts of pentaerythritol tetraacrylate. The cured materials could be 

characterized by HR-MAS NMR spectroscopy. Final elastomeric materials with good 

thermal stabilities were obtained showing properties and characteristics as good as other 

acrylated triglyceride-based thermosets. The presence of phosphorus slightly increased 

the LOI values. Thermal degradation study showed that phosphorus-containing 

compounds are released upon heating acting through a gas phase mechanism. Moreover, 

by SEM and NMR it was possible to confirm the production of a char residue consistent 

with condensed-phase fire-retardant action. 
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ABSTRACT. The acyclic diene metathesis (ADMET) polymerization of a phosphorus-

containing α,ω-diene prepared with a plant oil derived building block is reported. 

Different ruthenium based metathesis catalysts and conditions were tested in order to 

optimize the ADMET polymerization of this new monomer. Undecylenyl undecenoate 

was used as comonomer in order to obtain polyesters with different phosphorus contents 

and to increase the renewable part of the final polymers. Copolymerization caused 

marked variations in the molecular weights leading to polyesters from 6 to 38 KDa. The 

effect of the ADMET polymerisation temperature in the thermal properties of the 

copolymers was studied and their thermal degradation and flame retardant properties 

were evaluated. 

Keywords: polyester, renewable resources, ADMET, phosphorus-containing polymer, 

flame retardant. 

 

 

INTRODUCTION 

 

Acyclic diene metathesis (ADMET) polymerization of α,ω-dienes has been shown to be 

an efficient tool for the synthesis of a wide variety of linear polymers and polymer 

architectures that are not available using other polymerization methods.1 Essentially, 

ADMET is a step-growth polycondensation reaction in which two terminal olefins react 

to form a new internal carbon-carbon double bond and a molecule of ethylene. Since the 

metathesis reaction is an equilibrium, the ethylene must be removed by applying 

vacuum or a constant flow of an inert gas in order to shift the equilibrium towards the 

product. The first well defined ruthenium based metathesis catalyst, developed by 
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Grubbs in the early 1990s, permitted the application of the olefin metathesis reactions in 

presence of a wide variety of functional groups.2,3 The metathesis activity as well as the 

functional group tolerance of these catalysts was further improved by the substitution of 

one of the trialkyl phosphine ligands by a N-heterocyclic carbene (NHC),4 leading to the 

second generation Grubbs catalysts.5 Thus, with the introduction of highly active and 

robust metathesis catalysts, the number of polymeric structures available through the 

design of new monomers has ever since increased. 

It has been demonstrated that ADMET polymerization can proceed in the presence 

of heteroatoms, as long as the terminal olefins are far enough apart from them.6 There 

are many examples of ADMET of heteroatom-containing α,ω-dienes in the literature, 

since the introduction of functionalities in the backbone of the polymers provides 

different properties and permits further modifications.1,7-9 

One very desirable property for polymers is the flame retardancy.10 Many kinds of 

flame retardants (FRs) have been tested to improve the flame resistance of polymers and 

have been applied to commercial products. Among them, halogenated FR are the most 

common. However, many kinds of halogenated FRs, especially brominated FRs., are 

restricted in many countries due to the formation of dioxins under combustion11 

Therefore much work has been done on the development of halogen-free FR polymers 

such as those containing phosphorus, which are known to promote the formation of a 

protecting char during combustion. This protecting layer isolates the material from the 

heat source and prevents the diffusion of gaseous products into the flame.12 FR 

polymers can be prepared by blending with phosphorus FR and/or by polymerization of 

phosphorus-containing monomers. However, due to the problems associated with the 

blending method, the synthesis of inherent FR polymers is becoming more common.12 

Allcock et al.13,14 prepared a series of substituted cyclic phosphazene-containing 

polymers with various pendant substituents on the phosphorus atoms using Grubbs 1st 

and 2nd generation catalysts. They could determine that the activity of the catalysts was 

affected by both electronic (preferential catalyst coordination to a functional group) and 

steric effects. To the best of our knowledge, this is the only example of the ADMET 

polymerization of a phosphorus-containing monomer. 

Among the different commercially available polymers, polyesters are widely used 

for textile fibers, technical fibers, films, bottles or as a finish on high-quality wood 

products. The world demand of polyesters in 2008 was estimated to grow up to 50 

million tons.15 Furthermore, due to environmental concerns much work is devoted to the 
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industrial use of products from renewable resources. For this reason, renewable raw 

materials such as plant oils, polysaccharides, sugars and wood are widely used by the 

chemical industry for many purposes, and among them, plant oils and their derivatives 

have a large potential for the substitution of the currently used petrochemicals in the 

synthesis of polymeric materials.16-19 Recent work has focused to the synthesis of 

monomers from plant oil derivatives for the development of linear,20,21 branched,22 as 

well as crosslinked23-25 polymers. 

In the present work, a phosphorus-containing monomer bearing two 10-

undecenoic acid moieties has been homopolymerized and copolymerized with 

undecylenyl undecenoate via ADMET in absence of solvent. This procedure allowed us 

to synthesize a variety of polyesters with controlled phosphorus contents. All polymers 

were fully characterized and the thermal and flame retardant properties of these 

polyesters were studied. 

 

EXPERIMENTAL 

 

Instrumentation  
1H NMR (400 MHz), 13C NMR (100.6 MHz) and 31P NMR (162 MHz) spectra were 

obtained in CDCl3 using a Varian Gemini 400 spectrometer. Chemical shifts were 

reported relative to tetramethylsilane or phosphoric acid as internal standards. 

Calorimetric studies were carried out on a Mettler DSC822 differential scanning 

calorimeter using N2 as a purge gas (20 mL/min) at a scan rate of 20ºC/min. Thermal 

stability studies were carried out on a Mettler TGA/SDTA851e/LF/1100 with N2 or 

synthetic air as purge gases. The studies were performed in the 30-800 ºC temperature 

range at a heating rate of 10ºC/min. Molecular weights were determined on a Shimadzu 

gel permeation chromatography (GPC) system equipped with a LC-20AD pump, RID-

10A refractive index detector, SIL-20A autosampler, and a CTO-20A column oven set 

to 50 ºC. A PLgel 5 µm Mixed-D column from Polymerlabs in THF at a flow rate of 1 

mL/min was used. Linear poly(methyl methacrylate) standards (Polymer Standards 

Service PPS, Germany, Mp 102-981.000 Da) were used for calibration. GC-MS (EI) 

chromatograms were recorded using a VARIAN 3900 GC instrument with a capillary 

column FactorFourTM VF- 5ms (30 m x 0.25 mm x 0.25 mm, Varian) and a Saturn 

2100T ion trap mass detector. Scans were performed from 40 to 650 m/z at rate of 1.0 

scans x s-1. The oven temperature program was: initial temperature 95 °C, hold for 1 
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min, ramp at 15 °C x min-1 to 200 °C, hold for 2 min, ramp at 15 °C x min-1 to 325 °C, 

hold for 9 min. The injector transfer line temperature was set to 250 °C. Measurements 

were performed in the split–split mode (split ratio 50:1) using helium as carrier gas 

(flow rate 1.0 ml x min-1). Measurements were performed in the splitless and split-split 

mode (split ratio 50:1) using helium as the carrier gas (flow rate 1.0 mL/min). Thin 

layer chromatography (TLC) was performed on silica gel TLC-cards (layer thickness 

0.20 mm, Fluka). Compounds were visualized by permanganate or iodine reagents. For 

column chromatography silica gel 60 (0.035-0.070 mm, Fluka) was used. Limiting 

oxygen index (LOI) values were measured on a Stanton Redcroft instrument provided 

with an oxygen analyser in vertical tests. The samples were impregnated on glass fibre 

plaques (50 x 10 x 1 mm3) using concentrated THF solutions of the polymers and. LOI 

values were taken as the average of three measurements. 

 

Materials 

9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) was kindly supplied 

by Aismalibar S.A., p-benzoquinone (Aldrich), 10-undecenoyl chloride (Fluka), 10-

undecenoic acid (Fluka), 10-undecen-1-ol (Aldrich), 1,5,7-Triazabicyclo[4.4.0]dec-5-

ene (TBD, Aldrich), ethyl vinyl ether (Aldrich), benzylidene-

bis(tricyclohexylphosphine)dichlororuthenium (C1, Grubbs catalyst 1st generation, 

Aldrich), benzylidene[1,3-bis(2,4,6-trimethylphenyl)-2-

imidazolidinylidene]dichloro(tricyclohexylphosphine)ruthenium (C2, Grubbs catalyst 

2nd generation, Aldrich) and [1,3-bis-(2,4,6-trimethylphenyl)-2-

imidazolidinylidene]dichloro(o-isopropoxyphenylmethylene)ruthenium (C3, Hoveyda-

Grubbs catalyst 2nd generation, Aldrich) were used as received. 10-(2´,5´-

Dihydroxyphenyl)-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO-I) 

was synthesized in our laboratory according to the published procedure,26 10-(2´,5´-

Bis(10-undecenoyloxy) phenyl)-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide 

(DOPO-II) was synthesized according to a previously published procedure.27 

 

Synthesis of DOPO-II (M1). 5.0 g (15.4 mmol) of 10-(2´,5´-dihydroxyphenyl)-9,10-

dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO-I), 4 mL of pyridine, and 125 

mL of anhydrous dichloromethane were placed in a 250 mL round bottomed flask under 

dry argon atmosphere. To this solution, 6.5 g (32.0 mmol) of 10-undecenoyl chloride 

were added dropwise while stirring at room temperature for 15 min. The temperature 
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was raised to reflux temperature for 15 min. The progress of the reaction was monitored 

by thin layer chromatography using hexane/ethyl acetate (1:1) as eluent. After the 

reaction had finished, the crude was placed in a separation funnel and washed with 

water, 2 N HCl aqueous solution, a 5% NaHCO3 solution and brine. DOPOII was 

obtained after drying the dichloromethane solution with anhydrous magnesium sulfate 

and eliminating the solvent at reduced pressure. The product was purified by 

recrystallization from hexane to give 9.5 g of DOPO-II (yield 94%) as a white 

crystalline solid (mp 63 ºC). 

Spectroscopic data for M1 coincides with the previously described.27 

 

Synthesis of undec-10-enyl undec-10-enoate (M2). To a solution of 10-undecenoic 

acid (46.5 g, 0.247 mol) and 10-undecen-1-ol (42.9 g, 0.247 mol) in toluene (200 mL) 

was added 1.95 mL (4.9 mmol) of titanium (IV) tert-butoxide. The reaction mixture was 

stirred magnetically and refluxed overnight in a Dean-Stark apparatus. At the end of 

reaction the mixture was cooled to ambient temperature, washed with acidic water, 

sodium carbonate solution, and water several times. After drying with anhydrous 

sodium sulfate, toluene was removed in vacuo and the residue was purified and 

separated by column chromatography with hexane–diethylether (8:2) as eluent. The 

product was obtained as a colorless liquid with a yield of 80g (96 %). 

Spectroscopic data for M2 coincides with the previously described.21 

 

ADMET polymerizations: M1 (0.3 g, 0.46 mmol), or M2 (0.3 g, 0.89 mmol), or a 

mixture of both in the desired ratio (see Tables 2 and 3) and one of the metathesis 

catalysts (C1-C3, 1 % mol) were thoroughly mixed and placed in a 3 mL conical vial 

(Supelco) equipped with screw cap and septa. If required, the respective amount of end-

capper (methyl 10-undecenoate) was added. The reaction mixture was stirred 

magnetically at 80 or 100 ºC under a continuous flow of nitrogen. After 24 h reaction, 

the residue was dissolved in THF and the metathesis reaction was stopped by adding 

ethyl vinyl ether (500-fold excess to the catalyst) and stirring for 30 minutes at room 

temperature. M1 homopolymers P1 (at 80 ºC) and P´1 (at 100 ºC) were precipitated as 

light brown sticky solids by slow addition in cold methanol and then in hexane. M2 

homopolymers P11 (at 80 ºC) and P´11 (at 100 ºC) were obtained as white solids by 

precipitation in cold methanol. M1/M2 copolymers (P2-P10 and P´2-P´10) were 

precipitated by slow addition in cold methanol and then in hexane.  
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Spectroscopic data for P1: 

FTIR: 3066 cm-1 (Ar C-H, stretching), 2920 and 2850 (C-H, stretching), 1764 cm-1 

(ester C=O, stretching), 1461 cm-1 (C=C, stretching), 1238 cm-1 (P=O, stretching), 1205 

cm-1 (C-O, stretching), 966 cm-1 (C=C-H, out-of-plane deformation), 925 cm-1 (P-O, 

stretching), 780, 757 and 714 cm-1 (Ar). 
1H NMR (CDCl3, TMS, 400 MHz, δ in ppm): 8.09-7.91 (3H, m, Ar), 7.71-7.63 (1H, m, 

Ar), 7.62-7.52 (1H, m, Ar), 7.45-7.33 (3H, m, Ar), 7.30-7.19 (2H, m, Ar), 7.18-7.10 

(1H, m, Ar), 5.44-5.32 (2H, m, CH=CH), 2.56 (2H, t, J = 7.42 Hz, COCH2), 2.08-1.87 

(4H, m, CH2-CH=CH), 1.81-1.60 (4H, m, COCH2-CH2 and COCH2), 1.47-0.91 (22H, 

m, COCH2-CH2 and aliphatic). 
13C NMR (CDCl3, TMS, 100.6 MHz, δ in ppm, Scheme 1): 172.08 (C19), 171.03 (C29), 

149.83 (C5), 149.42 (d, J = 8.45 Hz, C2), 147.96 (d, J = 17.60 Hz, C18), 135.25 (d, J = 

6.14 Hz, C12), 133.33 (C9), 131.00 (C11), 130.82 (C16),130.50–130.43 (C28), 128.71 (d, J 

= 14.48 Hz, C10), 128.38 (C4), 128.24 (d, J = 8.35 Hz, C2), 124.92–124.76 (C3, C14, C15), 

124.67 (d, J = 133.49 Hz, C7), 123.31 (d, J = 10.66 Hz, C8), 122.80 (d, J = 144.86 Hz, 

C1), 121.24 (d, J = 11.17 Hz, C13), 120.85 (d, J = 6.94 Hz, C17), 34.39 (C30), 33.33 (C20), 

32.76 (C27), 29.90-28.96 (C22-C26), 27.38 (C27 )́, 24.99 (C31), 24.19 (C21). 
31P NMR (CDCl3, 162 MHz, δ in ppm): 18.09. 

 

Spectroscopic data for M1/M2 copolymers: 

FTIR: 3066 cm-1 (Ar C-H, stretching), 1764 cm-1 (COOR, stretching), 1733 cm-1 

(COOR, stretching), 1461 cm-1 (C=C, stretching), 1241 cm-1 (C-O, stretching), 1238 

cm-1 (P=O, stretching), 1172 cm-1 (C-O, stretching), 966 cm-1 (C=C-H, out-of-plane 

deformation), 925 cm-1 (P-O, stretching), 780, 757 and 714 cm-1 (Ar). 
1H NMR (CDCl3, TMS, 400 MHz, δ in ppm): 8.07-7.91 (m, Ar), 7.70-7.64 (m, Ar), 

7.60-7.54 (m, Ar), 7.45-7.35 (m, Ar), 7.30-7.21 (m, Ar), 7.15-7.12 (m, Ar), 5.44-5.30 

(m, CH=CH), 4.03 (t, J = 6.73 Hz, COO-CH2), 2.56 (t, J = 7.47 Hz, COCH2), 2.27 (t, J 

= 7.53 Hz, CO-CH2), 2.04-1.88 (m, CH2-CH=CH), 1.78-1.64 (m, COCH2-CH2 and 

COCH2), 1.64-1.54 (m, CH2-CH2COOCH2-CH2), 1.45-0.91 (m, COCH2-CH2 and 

aliphatic). 
13C NMR (CDCl3, TMS, 100.6 MHz, δ in ppm, Scheme 2): 174.12 (COOR, C29), 

172.03 (COOR, C19), 170.98 (C´OOR, C29), 149.79 (C5), 149.37(d, J = 8.45 Hz, C2), 
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147.94 (d, J = 16.90 Hz, C18), 135.24 (d, J = 6.04 Hz, C12), 133.27 (C9), 131.00 (C11), 

130.80 (C16), 130.52–130.40 (C23), 128.68 (d, J = 14.99 Hz, C10), 128.35 (C4), 128.23 

(d, J = 8.45 Hz, C2), 124.89–124.73 (C3, C14, C15), 124.70 (d, J = 133.69 Hz, C7), 

123.28 (d, J = 10.46 Hz, C8), 122.80 (d, J = 150.39 Hz, C1), 121.21 (d, J = 11.17 Hz, 

C13), 120.84 (d, J = 6.14 Hz, C17), 64.53 (C30), 34.53 (C28), 34.37 (C25), 33.33 (C20), 

32.76 (C22), 29.90-28.78 (aliphatic), 27.36 (C22 )́, 26.07 (C31), 25.15 (C27), 24.99 (C26), 

24.18 (C21). 
31P NMR (CDCl3, 162 MHz, δ in ppm): 18.03. 

 

Spectroscopic data for P11 and P´11 coincide with the previously decribed.21  

 

RESULTS AND DISCUSSION 

 

The phosphorus-containing monomer DOPO II (M1, Scheme 1) was synthesized in two 

steps as previously reported.27 Therefore, the nucleophilic DOPO was reacted with the 

electron deficient benzoquinone to give a diphenol which was then esterified with two 

molecules of 10-undecenoyl chloride. As already explained in the introduction, the 

activity of metathesis catalysts during ADMET polymerizations can be affected by the 

presence of heteroatoms or bulky substituents.6 M1 contains phosphorus and oxygen in 

a bulky aromatic core. However, the terminal double bonds of M1 are nine carbons 

spaced from this core and the phosphorus of M1 is non-coordinative. Therefore, we 

expected that this monomer might be polymerizable via ADMET. In order to confirm 

this expectation and to obtain some first insight into the behavior of different metathesis 

catalysts with M1, we studied the ADMET polymerization of M1 using 1% mol first 

generation Grubbs (C1), second generation Grubbs (C2) and second generation 

Hoveyda-Grubbs (C3) catalysts. These ADMET reactions were run for 24 hours at 80 

ºC in absence of solvent and under a constant flow of nitrogen to remove the released 

ethylene more efficiently. When M1 started melting (63 ºC) the reaction proceeded very 

fast and the increase of the viscosity of the reaction mixture caused the non-

homogeneous distribution of the catalyst in the melted monomer. For this reason, higher 

molecular weights were obtained when the monomer M1 was thoroughly mixed with 

the metathesis catalysts in the solid state before the reactions were started. Adding a 

solvent (o-xylene) to increase the homogeneity of the reaction mixture did not give 
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better results. Moreover, the use of solvent was ruled out as it would favor the formation 

of cyclic oligomers due to statistics. 
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Scheme 1. Synthesis of phosphorus-containing polymer via ADMET 

polymerization. 

 

The results of the ADMET polymerizations of M1 are shown in Table 1. By GPC, 

a Mn of 21,300 Da was obtained when we used C2 as catalyst. However, with C1 and 

C3, molecular weights of only around 6000 Da were obtained together with poor 

monomer conversion. Furthermore, we observed that the obtained molecular weights 

decreased with higher or lower reaction temperatures and with lower amounts of 

catalyst. Therefore, we concluded that 1% of C2 is best suited for the polymerization of  

 

Table 1. Results of initial investigations of the ADMET polymerization of M1. 

Catalyst (%)a T (ºC) Mn / PDI b 

C1 (1%) 80 6,700 / 1.75 

C2 (1 %) 80 21,300 / 2.33 

C3 (1%) 80 6,000 / 1.77 
a mol % relative to diene, b GPC data. 
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M1 and used this condition for all further polymerizations. The 1H-NMR spectra of the 

monomer M1 and the polymer P1 are shown in Figure 1. Terminal olefin signals can 

clearly be observed at 4.93 and 5.73 ppm in the monomer spectrum. After ADMET 

polymerization, only an internal olefin signal centered at 5.4 ppm is observed, and no 

end group signals can be seen confirming the high molecular weight of the polymer. All 

other signals and relative integrals essentially remain unchanged indicating that P1 has 

the depicted structure and no side reactions occurred. 
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Figure 1. 1H NMR spectra of M1 (a), P1 (b) and P7(c). 

 

Once demonstrated that the ADMET polymerization of the phosphorus-containing 

monomer M1 can be carried out with C2 to afford quite high molecular weight 

polymers, our next aim was to control the phosphorus content in the polymers regarding 

their flame retardant properties. P1 has 4.72 wt% of phosphorus, but it is well known 

that percentages of 2-3 wt% of phosphorus are enough to infer flame retardant 

properties to polymers.12 In order to lower the phosphorus content, and, at the same 

time, increase the renewable content of the final polymers, we decided to copolymerize 

M1 with undecylenyl undecenoate (M2) (Scheme 2), an α,ω-diene that is 100 % 

renewable.21 The ADMET copolymerizations were carried out at 80 ºC using the 
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metathesis catalyst C2. The copolymerizations were run at different M1/M2 molar 

ratios to study the effect of the copolymer on the molecular weight. The results are 

summarized in Table 2. 
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Scheme 2. Synthesis of phosphorus-containing renewable copolymers and copolymer 

telechelics via ADMET polymerization. 

 

The most surprising effect is observed when a 9/1 (M1/M2) ratio is used. The 

molecular weight was increased twofold compared to the M1 homopolymer. One 

possible explanation is that adding a little amount of M2, which is liquid at room 

temperature, provides higher homogeneity to the reaction mixture by acting as a 

solvent. However, this effect is not observed at higher M2 contents and the molecular 

weights decrease for the other M1/M2 ratios. Moreover, the addition of higher amounts 

of M1 causes a non-homogeneous molecular weight distribution in the final polymers. 

The GPC curves of the polymers with intermediate M1/M2 ratios show a bimodal 

molecular weight distribution (Figure 2), probably due to a lack of miscibility of both 

monomers when mixed in similar amounts. An increase of the reaction temperature 

should help to increase the miscibility of both components, but it could also affect the 

stability of the metathesis catalyst. Therefore, copolymerizations were also carried out 

at 100 ºC since C2 is also active at higher temperatures. Table 3 shows the results of the  
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Table 2. Analytic results of M1/M2 copolymers prepared at 80 °C. 

Sample (M1 / M2)a % P b Mn
 c PDI c Tg  (ºC)d / Tm (ºC)d 

P1 (10 / 0) 4.72 21,300 2.33 7.9 / - 

P2 (9 / 1) 4.46 38,000 2.09 25.5 / - 

P3 (8 / 2) 4.18 32,000 3.01 20.1 / - 

P4 (7 / 3) 3.87 21,700 2.60 3.9 / - 

P5 (6 / 4) 3.52 9,400 1.73 -29.3 / 9.4 

P6 (5 / 5) 3.12 12,900 3.46 -16.6 / 23.7 

P7 (4 / 6) 2.67 12,700 3.51 - / 27.7 

P8 (3 / 7) 2.15 10,600 2.85 - / 35.2 

P9 (2 / 8) 1.54 14,000 2.96 - / 41.7 

P10 (1 / 9) 0.84 16,100 2.33 - / 47.7 

P11 (0 / 10) 0.00 11,800 2.32 - / 54.6 

 
a mol/mol ratio, b weight/weight percentages, c GPC data, d from DSC experiments. 

 

100 ºC ADMET copolymerization of M1 and M2 at different monomer ratios. Despite 

the resistance of C2 to high temperatures, the molecular weights obtained for this 

copolymer series are lower compared to the copolymers obtained at 80 ºC. This 

indicates that the catalyst loses activity at 100 ºC. However, the increase of the 

temperature gave homogeneous copolymers at all M1/M2 ratios (observed by GPC, 

Figure 2), thus solving the problem of the bimodal molecular weight distribution. As a 

representative example of this copolymer series, Figure 1 depicts the 1H-NMR spectrum 

of the 80 ºC 4/6 copolymer (P7). Also here, the terminal olefin signals are not observed 

confirming the high molecular weight of the copolymer. 

The addition of a monofunctional monomer (chain stopper) to ADMET 

polymerizations not only permits to control the molecular weight of the polymers but 

also chain-end functionalized polymers can be obtained. This is a useful strategy 

allowing further modifications and the production of phase-separated materials such as 

ABA triblock copolymers or segmented block copolymers.1 Moreover, when a 

functional group with easy to integrate 1H-NMR signals is used in the end-capping, the  
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Figure 2. GPC traces of different copolymers. 

 

Table 3. Analytic results of M1/M2 copolymers prepared at 100 °C. 

Sample (M1 / M2)a % P b Mn
 c PDI c Tg  (ºC)d / Tm (ºC)d 

P´1 (10 / 0) 4.72 6,300 2.38 1.4 / - 

P´2 (9 / 1) 4.46 10,900 2.20 8.6 / - 

P´3 (8 / 2) 4.18 14,000 2.50 14.7 / - 

P´4 (7 / 3) 3.87 13,700 2.34 -2.2 / - 

P´5 (6 / 4) 3.52 8,200 2.25 -19.2 / - 

P´6 (5 / 5) 3.12 7,800 2.34 -16.2 / 22.2 

P´7 (4 / 6) 2.67 10,500 2.66 - / 26.7 

P´8 (3 / 7) 2.15 10,600 2.05 - / 34.0 

P´9 (2 / 8) 1.54 11,100 1.98 - / 39.2 

P´10 (1 / 9) 0.84 16,200 1.83 - / 45.6 

P´11 (0 / 10) 0.00 17,800 2.10 - / 56.8 

 
a mol/mol ratio, b weight/weight percentages, c GPC data, d from DSC experiments. 
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precise determination of the number of repeating units can be achieved. In this way, 

methyl 10-undecenoate was added as monofunctional chain stopper to selected ADMET 

polymerizations (Scheme 2). The analysis of the end-capped polymers by 1H-NMR 

spectroscopy allowed us to determine the ratio of the methoxy end-group signals with 

backbone signals. Thus we were able to accurately determine the DP and molecular 

weights of these telechelics. The obtained values for different copolymers are clearly 

higher than those calculated by GPC (Table 4). The molecular weight values obtained 

by GPC can be underestimated due to the difference of the hydrodynamic volume 

between the polymers synthesized and the PMMA standards used in the GPC 

calibration. For this reason, the actual molecular weights of the non-capped copolymers 

presented in Tables 2 and 3 are expected to be about twice as high as molecular weights 

obtained by GPC and presented in Tables 2 and 3. 

The DSC traces of the copolymers synthesized at 80 ºC are shown in Figure 3a 

and the data are collected in Table 2. The homopolymer P1 shows a glass transition 

temperature (Tg) at 7.9 ºC. For P2 (9/1 M1/M2 ratio) this value is increased to 25.5 ºC, 

but higher M2 contents lower the Tg. This behavior can not only be attributed to 

variations of the molecular weight, but other factors such as the higher segmental 

mobility of M2 must be taken into account. Moreover, at percentages of M2 higher than  

 

Table 4. Analytic data of copolymers prepared with methyl 10-undecenate as a 

chainstopper. a mol/mol ratio. 

M1 / M2 a 
methyl 

10-undecenoate 
(%) 

T (ºC) Mn
c Mn 

(1H-NMR) 
PDIc 

10 / 0 5 80 19,700 35,100 2.3 

9 / 1 5 100 11,500 26,700 2.3 

1 / 9 5 80 12,200 28,700 1.8 

1 / 9 5 100 12,100 21,000 1.9 

 
a mol/mol ratio, b mol % relative to diene, c GPC data. 

 

40%, M2 rich regions are able to arrange and crystallize and thus a Tm is also observed 

(P5 and P6). For these semicrystalline materials both Tg and Tm increase as the M2 

content does. This behavior can be related to the physical crosslinking effect of 
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crystalline regions of increasing size and order. At percentages of M2 higher than 50%, 

the crystalline fraction dominates and only a melting endotherm with maximum 

temperatures increasing from P7 to P11 is observed. The DSC traces of the polymers 

obtained at 100 ºC (Figure 3b) show a similar behavior. However, the Tg values of the 

amorphous materials are slightly lower due to the lower molecular weights achieved. 

The semicrystalline materials show comparable Tm values as expected for a similar 

crystalline arrangement. 
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Figure 3. DSC traces of all investigated polymers prepared at 80°C (a) and 100°C (b). 
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The thermal stability of the copolymer series was studied by thermogravimetric analysis 

(TGA) in nitrogen and air atmospheres. The thermal stability of the copolymers 

obtained at 80 ºC and 100 ºC under nitrogen (Figure 4, data in tables 5 and 6) is similar 

in both series with 5% weight loss temperature (T5%) between 290 and 390 ºC for the 80 

ºC series and between 242 and 344 °C for the 100 ºC series. The main maximum weight  

 

Table 5. Thermal stability data and flame retardant characterization of copolymers prepared at 

80 °C 

  TGA (N2) TGA (Air)  

Sample 
(M1 / M2)a 

% P b T5% loss 

(ºC) 
Tmax 
(ºC)c 

Char 800ºC 

(%)b 
T5% loss 

(ºC) 
Tmax (ºC)c Char 800ºC 

(%)b LOI 

P1 (10 / 0) 4.72 317 327 / 464 9.3 317 
441 / 550 / 

746 
8.4 22.8 

P2 (9 / 1) 4.46 348 316 / 460 8.9 356 
438 / 480 / 
568 / 713 

4.2 22.1 

P3 (8 / 2) 4.18 390 460 8.8 356 
452 / 595 / 

705 
5.2 22.4 

P4 (7 / 3) 3.87 381 462 8.4 359 440 / 555 1.8 22.6 

P5 (6 / 4) 3.52 290 
232 / 332 

/ 464 
7.8 310 

427 / 461 / 
533 

1.4 22.7 

P6 (5 / 5) 3.12 357 310 / 470 5.7 336 
418 / 541 / 
665 /693 

1.6 23.5 

P7 (4 / 6) 2.67 353 465 4.9 330 
343 / 460 / 
544 / 680 

1.1 22.1 

P8 (3 / 7) 2.15 350 311 / 470 2.8 336 
413 / 535 / 

678 
0.9 21.6 

P9 (2 / 8) 1.54 356 
314 / 438 

/ 466 
1.8 338 

421 / 460 / 
548 / 619 

0.5 21.3 

P10 (1 / 9) 0.84 358 
326 / 437 

/ 467 
1.8 322 

396 / 424 / 
512 

0.0 20.9 

P11 (0 / 
10) 

0.00 378 433 / 462 0.0 330 421 / 509 0.0 19.0 

 
a mol/mol ratio, b weight/weight percentages, c temperatures of maximum weight loss rate. 

 

loss rates were found between 433 and 470 ºC for the 80 ºC series and between 422 and 

469 ºC for the 100  C series. The typical bond energies of P-C, C-C, C-O and C-H 

bonds are 260, 349, 286 and 370 KJ/mol, respectively. This means that the thermal 

stability of a polymer should be lowered by addition of a phosphorus-containing 

comonomer. However, M1 contains phosphorus as a pendant group and it has been 

demonstrated that the presence of phosphorus as a pendant group does not affect the 

thermal stability as it does when it is part of the main chain.28 Moreover, Wang and Lin 
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reported the unusual high thermal stability of the P-O-C bond in a similar DOPO-

derived polyester, which could be attributed to the three phenylene groups protection.29 

The thermal degradation of the pendant group leads to the formation of the phosphorus-

containing char, which acts as a protective layer for the polymer surface. Therefore, the 

residues obtained at 800 ºC increase as the phosphorus content does, reaching a 

maximum around 10% in both copolymer series. The TGA measurements in air 

atmosphere (Figure 5) show a main degradation step followed by a complex 

degradation process for both copolymer series.  
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Figure 4. TGA measurements of copolymers obtained at 80 ºC (a) and 100 ºC (b) under 

nitrogen atmosphere. 
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In all samples, the weight loss rate is lowered around 500 ºC by formation of an 

intermediate residue. The thermal behavior of the polymers at this temperature is 

representative of the polymer surface behavior under flame conditions. Thus, a high 

amount of char at 500 ºC would mean a better protection of the non-burned polymer. 

The general tendency observed in both copolymer series is a direct relationship between  

 

Table 6. Thermal stability data and flame retardant characterization of copolymers prepared at 

100 °C 

  TGA (N2) TGA (Air) 

Sample 
(M1 / M2)a 

% P b T5% loss 

(ºC) 
Tmax (ºC)c Char 800ºC 

(%)b 
T5% loss 

(ºC) 
Tmax (ºC)c Char 800ºC 

(%)b 

P´1 (10 / 0) 4.72 288 310 / 460 10.4 297 
410 / 543 / 

656 
4.7 

P´2 (9 / 1) 4.46 307 316 / 456 10.3 302 
409 / 445 / 
529 / 692 

3.1 

P´3 (8 / 2) 4.18 328 308 / 460 10.3 320 
424 / 528 / 

714 
4.6 

P´4 (7 / 3) 3.87 315 316 / 457 10.5 310 
406 / 456 / 
531 / 668 

2.7 

P´5 (6 / 4) 3.52 310 311 / 462 7.0 306 
425 / 540 / 

624 
0.7 

P´6 (5 / 5) 3.12 314 314 / 466 5.7 310 
417 / 442 / 
519 / 617 

1.1 

P´7 (4 / 6) 2.67 322 431 / 468 5.4 308 
392 / 465 / 
523 / 586 

1.5 

P´8 (3 / 7) 2.15 316 
325 / 422 / 

454 
4.2 308 

400 / 448 / 
544 

1.4 

P´9 (2 / 8) 1.54 242 
229 / 327 / 
427 / 463 

4.0 291 
413 / 464 / 
531 / 593 

1.1 

P´10 (1 / 9) 0.84 304 
330 / 424 / 

464 
2.8 290 

360 / 430 / 
453 / 525 

0.1 

P´11 (0 / 10) 0.00 344 431 / 469 0.0 344 425 / 506 0.0 

 
a mol/mol ratio, b weight/weight percentages, c temperatures of maximum weight loss rate. 
 

the phosphorus content and the amount of char formed at 500 ºC. As a consequence, the 

subsequent oxidative degradation is retarded proportionally to the phosphorus content. 

Thus, the char residues found at 800 ºC in air atmosphere range from 0.0 to 8.4 % in the 

80 ºC copolymer series and from 0.0 to 4.7 % in the 100 ºC copolymer series. These 

observations clearly indicate the advantages of defined polymer libraries in polymer 
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science.30 Here, the systematic variation of the phosphorous content allowed us a 

straightforward correlation of material properties with molecular characteristics. 
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Figure 5. TGA measurements of copolymers obtained at 80 ºC (a) and 100 ºC (b) under air 

atmosphere. 

 

The flame retardancy properties of the copolymer series synthesized at 80 ºC were 

evaluated using the limiting oxygen index (LOI) test. The LOI is the minimum 

concentration of oxygen determined in a flowing mixture of oxygen and nitrogen that 

will just support the flaming combustion of a certain material. For the preparation of the 

samples, concentrated solutions of each polymer in THF were used to impregnate glass 

fiber probes (50 x 10 x 1 mm3). We used these probes instead of standard ones due to 
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the lack of consistence of the obtained polymers. The LOI values obtained are shown in 

Table 2. P11 gave a LOI of 19.0, which indicates that it has not flame retardant 

properties. However, the introduction of M1 as comonomer causes a clear and steady 

increase of the LOI with the increasing P content reaching a maximum value of 23.5 for 

a phosphorus content of 3.12 % (P6). Interestingly, higher phosphorus contents did not 

give an increase in the LOI values but a slight decrease from 23.5 (P6) to 22.1 (P2). It is 

known that low phosphorus contents are sufficient to infer flame retardant properties to 

polymers and that high contents do not usually give better results.31,32 However, in this 

case a decrease in the LOI values is observed when the phosphorus content is increased. 

A possible explanation to this fact may be found in the thermal properties of the 

copolymers. As mentioned above, P11 is crystalline with a melting point of 54.6 ºC. 

The incorporation of increasing amounts of M2 comonomer causes a gradual decrease 

of Tm until amorphous copolymers are obtained. In polymers, the amount of energy 

required to initiate combustion varies as a function of the physical characteristics of the 

material. During the heating of semi-crystalline thermoplastics, the polymer softens, 

melts and drips. As a consequence, depending on the heat-storage capacity and the 

enthalpy of fusion of the polymer, part of the energy involved in the combustion process 

is consumed.33 For this reason, the LOI values found for the copolymers P10-P6 could 

be affected not only by the presence of phosphorus, but also by its crystalline fraction. 

The polymers P5-P1 are essentially amorphous and thus, no endothermic processes can 

be added to the effect of phosphorus resulting in lower LOI values. 

 

CONCLUSIONS 

 

A phosphorus-containing α,ω-diene bearing two 10-undecenoic acid moieties has been 

homopolymerized via acyclic diene metathesis (ADMET) using Grubbs 2nd generation 

metathesis catalyst. This monomer was also copolymerized with undecylenyl 

undecenoate leading to a series of copolymers with different phosphorus contents. 

Moreover, the molecular weight of the prepared polyesters could be controlled by 

addition of methyl 10-undecenoate as chain stopper. The presence of phosphorus in the 

structure of the monomer did not affect the activity of the catalyst and high molecular 

weight polyesters could be obtained. The polymerizations were carried out at two 

different temperatures. When working at 80 ºC, inhomogeneous molecular weight 

distributions were obtained for intermediate comonomer ratios. When the temperature 
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was increased to 100 ºC the catalyst lost activity, as observed by somewhat lower 

molecular weights, but homogeneous molecular weight distributions were found in all 

polymers. LOI values up to 23.5 were obtained for the phosphorus-containing 

polyesters P1-P10. These values show an increase in the flame retardant properties of 

the polyesters compared to the phosphorous-free sample P11. Both studies monomers 

have a high percentage of renewable resources, in this case a castor oil derived platform 

chemical, and thus the studied polymers can be considered as renewable flame retardant 

materials.  
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ABSTRACT. An α,ω-diene containing hydroxyl groups was prepared from plant oil 

derived platform chemicals. The acyclic diene metathesis copolymerization (ADMET) 

of this monomer with a phosphorus-containing α,ω-diene (DOPO II), also plant oil 

derived, afforded a series of phosphorus containing linear polyesters, which have been 

fully characterized. The backbone hydroxyls of these polyesters have been acrylated and 

radically polymerized to produce cross-linked polymers. The thermomechanical and 

mechanical properties, the thermal stability, and the flame retardancy of these 

phosphorus based thermosets have been studied. Moreover, methyl 10-undecenoate has 

been used as chain stopper in selected ADMET polymerizations in order to study the 

effect of the prepolymers molecular weights on the different properties of the final 

materials. 

Keywords: polyester, renewable resources, ADMET, flame retardant, cross-linked 

polymer. 

 

 

INTRODUCTION 

 

Recently, the use of plant oils as renewable feedstock for the development of designed 

polymeric materials has received particular attention due to environmental concerns.1 

The main components of vegetable oils are triglycerides, consisting of glycerol and fatty 

acids. The chemical modification of their structure enables the synthesis a wide variety 
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of monomers for the development of polymers with specific properties,2 that are now 

being used in an increasing number of industrial applications.  

Synthetic polymer materials are used in many areas and thus the fire hazards 

associated with the use of these materials are of great concern for both consumers and 

manufacturers.3 Due to the composition of triglycerides, plant oil based polymers are 

flammable, just like many other currently used polymeric materials. The flammability 

of these materials is a shortcoming in some applications. Therefore, the use of flame 

retardants to reduce the combustibility of polymers is an important part of the 

development of plant oil based polymeric materials. In this way, the synthesis of flame-

retardant polymers from bromoacrylated plant oil triglycerides was reported.4 However, 

it is known that bromine-containing flame-retardant resins release hydrogen bromide 

during combustion, which is toxic and corrosive.5 The concept of sustainable 

development requires fire retardant technologies to be developed that have a minimum 

impact on health and the environment throughout the life cycle of the fire-resistant 

material: starting from its synthesis, via fabrication, use, and recycling to its final 

disposal. Therefore, the search for new environmentally friendly flame-retardant 

polymeric materials is of large current interest. Phosphorus based polymers, for 

instance, are an effective and well established class of flame retardant materials.6 They 

have a good flame retardant performance and are preferred to the widely applied 

halogenated flame retardants due to environmental and health reasons.7 

Acyclic diene metathesis (ADMET) polymerization has proven to be a useful 

tool for the synthesis of polymers bearing a wide variety of functional groups.8,9 The 

ADMET polymerization of α,ω-dienes affords strictly linear, unsaturated polymers 

through a step-growth polycondensation, which is driven by the release of ethylene. In a 

previous study,10 we synthesized a series of phosphorus-containing linear polyesters 

through ADMET copolymerization of a phosphorus based α,ω-diene with different 

amounts of a castor oil derived diene. These polymers showed good flame retardancy 

and potential application as flame retardant coatings. However, the low Tg of these 

polymers can be a limiting factor for some applications. Taking into account the high 

functional group tolerance of the so called second generation Grubbs metathesis 

catalysts,11,12 ADMET polymerization enables the introduction of functional groups that 

can act as cross-linking points for the development of thermosets with improved 

mechanical properties.13 This work thus deals with the synthesis of plant oil based linear 

polyesters containing phosphorus and alcohol functionalities via ADMET. Further 
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cross-linking of these polymers has been achieved through acrylation of the hydroxyl 

groups and subsequent radical polymerization affording flame retardant resins. The 

thermal and flame retardant properties of the obtained materials are reported within this 

contribution. 

 

EXPERIMENTAL SECTION 

 

Materials 

All chemicals were used as received unless otherwise specified. 10-undecenoic acid, 

1,3-dichloro-2-propanol, ethyl vinyl ether and dicumyl peroxide were purchased from 

Aldrich. Potassium carbonate and tetrabutylammonium hydrogen sulfate were 

purchased from Fluka, anhydrous magnesium sulfate and hydrochloric acid were 

purchased from Scharlab. Benzylidene-bis(tricyclohexylphosphine)dichlororuthenium 

(C1, Grubbs catalyst 1st generation), benzylidene[1,3-bis(2,4,6-trimethylphenyl)-2-

imidazolidinylidene]dichloro(tricyclohexylphosphine)ruthenium (C2, Grubbs catalyst 

2nd generation) and [1,3-Bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene]dichloro(o-

isopropoxyphenylmethylene)ruthenium (C3, Hoveyda-Grubbs catalyst 2nd generation) 

were purchased from Aldrich. Hexane, ethyl acetate and methanol were purchased from 

Scharlab. Tetrahydrofuran CHROMASOLV® Plus (HPLC) was purchased from 

Aldrich. Triethylamine (Aldrich) was dried by distillation over CaH2 and acryloyl 

chloride (Aldrich) was distilled under vacuum before use. Dimethylformamide and 

dichloromethane (Scharlab) were dried over P2O5 and distilled immediately before use. 

Toluene was distilled from sodium/benzophenone. Thin layer chromatography (TLC) 

was performed on silica gel TLC-cards (60 F254, Merck). Compounds were visualized 

by spraying with sulphuric acid/anisaldehyde ethanol solution and heating at 200 ºC. 

For column chromatography, silica gel 60 A.C.C. 40-63 µm (SDS) was used. Methyl 

10-undecenoate was prepared by esterification with methanol from corresponding 10-

undecenoic acid according to standard procedures. 10-[2´,5´-Bis(10-

undecenoyloxy)phenyl]-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide 

(DOPO-II) was synthesized according to a previously published procedure.14 

 

Synthesis of 1,3- and 1,2-di-10-undecenoylglycerol mixture (M1). 10-undecenoic 

acid (7.14 g, 38.7 mmol), potassium carbonate (5.36 g, 38.7 mmol) and 

tetrabutylammonium hydrogen sulfate (0.26 g, 0.77 mmol) were mixed in a dry 250 mL 
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two-necked flask under argon. The potassium carbonate was grinded and kept at 100 ºC 

for 24 h prior to use. Anhydrous dimethylformamide (60 mL) and anhydrous toluene 

(60 mL) were added. The mixture was heated to reflux and stirred for 20 min. 1,3-

dichloro-2-propanol (1.85 mL, 19.4 mmol) was then added with vigorous stirring and 

the reaction was monitored with TLC (hexane/ethyl acetate 5/1). After completion of 

the reaction (approximately 4 h), the mixture was allowed to cool down under a 

constant flow of argon. The reaction mixture was diluted with toluene, washed twice 

with water, twice with HCl (5%) and once with brine. The organic layer was dried over 

MgSO4 and the solvent was removed under reduced pressure. The 1,3- and 1,2-di-10-

undecenoylglycerol mixture (M1) was obtained in 55 % yield after column 

chromatography with hexane/ethyl acetate 6/1. 

FTIR (cm-1): 3475 (O-H), 3077 (=C-H), 1735 (C=O), 1638 (C=C), 1163 (C-O). 
1H NMR (CDCl3, TMS, δ in ppm): 5.83-5.73 (m, CH2=CH), 5.09-5.04 (m, CH-O of 1,2 

isomer), 5.00-4.89 (m, CH2=CH), 4.30 (dd, J = 12.00, 4.40 Hz, CH2-CO of 1,2 isomer), 

4.24-4.03 (m, O-CH2-CHOH-CH2-O of 1,3 isomer and CH2-CO of 1,2 isomer), 3.70 (d, 

J = 5.20 Hz, CH2-OH of 1,2 isomer), 2.65 (broad, OH), 2.33 (t, J = 7.60 Hz, CH2-

COOCH2), 2.30 (t, J = 7.60 Hz, CH2-COOCH), 2.01 (q, J = 7.07 Hz, CH2-CH=CH2), 

1.64-1.56 (m, CH2-CH2CO), 1.39-1.22 (m, CH2). 
13C NMR (CDCl3, TMS, δ in ppm): 174.11 (COOR of 1,3 isomer), 173.98 (COOR of 

1,2 isomer), 173.63 (COOR of 1,2 isomer), 139.32 (CH2=CH), 114.34 (CH2=CH), 

72.23 (CH-O of 1,2 isomer), 68.43 (CH-OH of 1,3 isomer), 65.18 (CH2-O of 1,3 

isomer), 62.23 (CH2-CO of 1,2 isomer), 61.60 (CH2-OH of 1,2 isomer), 34.43 (CH2-

CO), 34.25 (CH2-CH=CH2), 33.95 (CH2-CO), 29.46 (CH2), 29.44 (CH2), 29.37 (CH2), 

29.35 (CH2), 29.25 (CH2), 29.22 (CH2), 29.21 (CH2), 29.03 (CH2), 29.07 (CH2), 25.08 

(CH2-CH2CO), 25.03 (CH2-CH2CO). 

 

ADMET polymerization of M1. M1 (3g, 7.07 mmol) and Hoveyda-Grubbs 2nd 

generation catalyst (22.1 mg, 0.035 mmol) were placed in a dry 10 mL round-bottom 

flask under nitrogen atmosphere. The mixture was stirred magnetically at 80 ºC under a 

constant flow of nitrogen. After 12 h, the residue was dissolved in THF and the 

metathesis reaction was stopped by adding ethyl vinyl ether (500-fold excess to the 

catalyst) and stirring for 30 min at room temperature. P1 was precipitated from 

methanol as a light brown sticky solid with 96% yield. 

FTIR (cm-1): 3540 (O-H), 1742 (C=O), 1142 (C-O). 
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1H NMR (CDCl3, TMS, δ in ppm): 5.42-5.30 (m, CH=CH), 5.10-5.05 (m, CH-O of 1,2 

isomer), 4.31 (dd, J = 11.60, 4.40 Hz, CH2-CO of 1,2 isomer), 4.24-4.04 (m, O-CH2-

CHOH-CH2-O of 1,3 isomer and CH2-CO of 1,2 isomer), 3.74-3.69 (m, CH2-OH of 1,2 

isomer), 2.65 (broad, OH), 2.35-2.29 (m, CH2-CO), 2.04-1.90 (CH2-CH=CH), 1.70-1.56 

(m, CH2-CH2CO), 1.38-1.21 (m, CH2). 
13C NMR (CDCl3, TMS, δ in ppm): 174.14 (COOR), 173.65 (COOR), 131.00-129.50 

(CH=CH), 72.23 (CH-O of 1,2 isomer), 68.40 (CH-OH of 1,3 isomer), 65.19 (CH2-O of 

1,3 isomer), 62.24 (CH2-CO of 1,2 isomer), 61.57 (CH2-OH of 1,2 isomer), 34.44 (CH2-

CO), 34.26 (CH2-CO), 32.76 (CH2-CH=CH, trans), 29.77 (CH2), 29.62 (CH2), 29.41 

(CH2), 29.28 (CH2), 29.14 (CH2), 28.91 (CH2), 28.76 (CH2), 27.35 (CH2-CH=CH, cis), 

25.04 (CH2-CH2CO), 24.90 (CH2-CH2CO). 

 

ADMET copolymerization of M1 and DOPO II (M2). M1 and M2 were mixed (3 g 

scale) in the desired molar ratio (see table 1) in a dry 10 mL round-bottom flask under 

nitrogen atmosphere. If required, the respective amount of end-capper (methyl 10-

undecenoate) was added. Grubbs 2nd generation catalyst (0.5 % mol related to dienes) 

was added and the mixture was stirred magnetically at 70 ºC under a constant flow of 

nitrogen. After 12 h, the residue was dissolved in THF and the metathesis reaction was 

stopped by adding ethyl vinyl ether (500-fold excess to the catalyst) and stirring for 30 

min at room temperature. P2-P6 were precipitated from methanol with yields >95%. 

The spectroscopic data is essentially the same for all polymers. 

FTIR (cm-1): 3450 (O-H), 1764 (C=O, Ar-COOR), 1735 (C=O, COOR), 1607, 1595, 

1582 and 1560 (Ar C-C), 1165 (C-O), 1116 (P=O), 925 (P-O), 780 and 757 (Ar C-H). 

1H NMR (CDCl3, TMS, δ in ppm, number assignations related to scheme 2): 8.07-7.94 

(m, H8,14,6), 7.69 (t, J = 7.4 Hz, H9), 7.57 (dd, J = 15.2, 7.6 Hz, H11), 7.45-7.36 (m, 

H10,16,4), 7.30-7.23 (m, H15,17), 7.14 (dd, J = 8.6, 6.6 Hz, H3), 5.43-5.31 (m, CH=CH), 

5.10-5.06 (m, CH-O of 1,2 isomer), 4.31 (dd, J = 11.60, 4.40 Hz, CH2-CO of 1,2 

isomer), 4.23-4.03 (m, O-CH2-CHOH-CH2-O of 1,3 isomer and CH2-CO of 1,2 isomer), 

3.71 (d, J = 4.4 Hz, CH2-OH of 1,2 isomer), 2.57 (t, J = 7.6 Hz, H23), 2.35-2.29 (m, 

CH2-CO), 2.04-1.90 (CH2-CH=CH), 1.78-1.56 (m, H24,20 and CH2-CH2CO), 1.44-0.92 

(m, H21 and CH2). 
13C NMR (CDCl3, TMS, δ in ppm, number assignations related to scheme 2): 173.91 

(COOR of 1,3 isomer), 173.76 (COOR of 1,2 isomer), 173.46 (COOR of 1,2 isomer), 
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171.94 (C19), 170.85 (C22), 149.71 (C5), 149.22 (d, 9.15 Hz, C2), 147.82 (d, 16.80 Hz, 

C18), 135.09 (d, 5.33 Hz, C12), 133.28 (C9), 130.90 (C11), 130.73 (C16), 130.32 

(CH=CH), 128.61 (d, J = 15.29 Hz, C10), 128.31 (C4), 128.01 (d, J = 8.35 Hz, C6), 

124.30 (d, J = 134.30 Hz, C7), 124.80-124.61 (C3, C14, C15), 123.21 (d, J = 9.87 Hz, C8), 

122.48 (d, J = 145.26 Hz, C1), 121.02 (d, J = 11.47 Hz, C13), 120.66 (d, J = 6.84 Hz, 

C17), 72.04 (CH-O of 1,2 isomer), 67.91 (CH-OH of 1,3 isomer), 64.98 (CH2-O of 1,3 

isomer), 62.28 (CH2-CO of 1,2 isomer), 61.16 (CH2-OH of 1,2 isomer), 34.26 (CH2-

CO), 34.21 (C23), 34.08 (CH2-CO), 33.17 (C20), 32.59 (CH2-CH=CH, trans), 29.72 

(CH2), 29.59 (CH2), 29.47 (CH2), 29.32 (CH2), 29.25 (CH2), 29.12 (CH2), 28.95 (CH2), 

28.79 (CH2), 27.19 (CH2-CH=CH, cis), 24.86 (CH2-CH2CO, C24), 24.03 (C21).
 31P NMR 

(CDCl3, 162 MHz, δ in ppm): 18.15. 

 

Acrylation of ADMET polymers P1-P6. In a standard procedure, an anhydrous 

dichloromethane solution of an ADMET polymer (8 mL of DCM per g of polymer) was 

placed in a round-bottom flask under argon. The solution was cooled to 0 ºC and 

acryloyl chloride (1.5 mol-fold excess to hydroxyl groups), followed by triethylamine (3 

mol-fold excess to hydroxyl groups) were added. The reaction mixture was allowed to 

reach room temperature and vigorous stirring was maintained for 2 h. The residue was 

added dropwise to stirring methanol and the pure acrylated polymers (AP1-AP6) were 

obtained in yields between 60 and 96 % as a light brown sticky solid precipitate.  

 

Spectroscopic data for AP1: 

FTIR (cm-1): 1740 (C=O, COOR), 1637 (C=C, acrylate), 1173 (C-O), 808 (C=C-H). 
1H NMR (CDCl3, TMS, δ in ppm): 6.43 (dd, J = 17.2, 1.2 Hz, COCH=CH2), 6.41 (dd, J 

= 17.2, 1.2 Hz, COCH=CH´2), 6.12 (dd, J = 17.2, 10.0 Hz, COCH=CH2), 6.11 (dd, J = 

17.2, 10.0 Hz, COCH´=CH2), 5.88 (dd, J = 10.0, 1.2 Hz, COCH=CH2), 5.87 (dd, J = 

10.0, 1.2 Hz, COCH=CH´2), 5.45-5.27 (m, CH=CH and CH-O of 1,2 isomer), 4.44-4.09 

(m, O-CH2-CH-CH2-O of 1,3 isomer, CH2-CO of 1,2 isomer and CH2-O of 1,2 isomer), 

2.34-2.28 (m, CH2-CO), 2.04-1.90 (m, CH2-CH=CH), 1.72-1.59 (m, CH2-CH2CO), 

1.44-1.20 (CH2). 
13C NMR (CDCl3, TMS, δ in ppm): 173.50 (COOR), 165.31 (COOR acrylate), 132.06 

(CH=CH2 acrylate), 130.51 (CH=CH), 128.00 (CH=CH2 acrylate), 69.47 (CH-

OCOCH=CH2), 68.95 (CH-OCOR), 62.59 (CH2-OCOCH=CH2), 62.22 (CH2-OCOR), 
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34.19 (CH2-CO), 32.79 (CH2-CH=CH, trans), 29.82-28.98 (CH2), 27.38 (CH2-CH=CH, 

cis), 24.22 (CH2-CH2CO). 

 

Spectroscopic data for AP2-AP6: 

FTIR (cm-1): 3066 (Ar C-H), 1764 (C=O, Ar COOR), 1736 (C=O, COOR), 1637 (C=C, 

acrylate), 1607, 1595, 1582 and 1560 (Ar C-C), 1180 (C-O), 1118 (P=O), 922 (P-O), 

808 (C=C-H), 780 and 757 (Ar C-H). 
1H NMR (CDCl3, TMS, δ in ppm, number assignations related to scheme 2): 8.07-7.95 

(m, H8,14,6), 7.69 (t, J = 7.8 Hz, H9), 7.60-7.55 (m, H11), 7.45-7.36 (m, H10,16,4), 7.30-

7.23 (m, H15,17), 7.15 (dd, J = 8.6, 6.6 Hz, H3), 6.43 (dd, J = 17.2, 1.2 Hz, COCH=CH2), 

6.41 (dd, J = 17.2, 1.2 Hz, COCH=CH´2), 6.12 (dd, J = 17.2, 10.0 Hz, COCH=CH2), 

6.11 (dd, J = 17.2, 10.0 Hz, COCH´=CH2), 5.88 (dd, J = 10.0, 1.2 Hz, COCH=CH2), 

5.87 (dd, J = 10.0, 1.2 Hz, COCH=CH´2), 5.45-5.27 (m, CH=CH and CH-O of 1,2 

isomer), 4.42-4.10 (m, O-CH2-CH-CH2-O of 1,3 isomer, CH2-CO of 1,2 isomer and 

CH2-O of 1,2 isomer), 2.57 (t, J = 7.6 Hz, H23), 2.32-2.28 (m, CH2-CO), 2.04-1.90 

(CH2-CH=CH), 1.78-1.54 (m, H24,20 and CH2-CH2CO), 1.44-0.92 (m, H21 and CH2). 
13C NMR (CDCl3, TMS, δ in ppm, number assignations related to scheme 2): 173.47 

(COOR), 172.08 (C19), 171.03 (C22), 165.29 (COOR acrylate), 149.85 (C5), 149.45 (d, 

9.20 Hz, C2), 147.97 (d, 16.80 Hz, C18), 135.24 (C12), 133.32 (), 132.02 (CH=CH2 

acrylate), 131.03 (C11), 130.83 (C16), 130.48 (CH=CH), 128.72 (d, J = 14.48 Hz, C10), 

128.37 (C4), 128.25 (d, J = 7.64 Hz, C6), 127.96 (CH=CH2 acrylate), 124.72 (d, J = 

135.00 Hz, C7), 124.92-124.83 (C3, C14, C15), 123.31 (d, J = 9.86 Hz, C8), 122.82 (d, J = 

144.86 Hz, C1), 121.23 (d, J = 11.47 Hz, C13), 120.88 (d, J = 6.04 Hz, C17), 69.45 (CH-

OCOCH=CH2), 68.91 (CH-OCOR), 62.57 (CH2-OCOCH=CH2), 62.19 (CH2-OCOR), 

34.39 (CH2-CO, C23), 34.18 (CH2-CO), 33.34 (CH2-CO, C20), 32.76 (CH2-CH=CH, 

trans), 29.78-28.97 (CH2), 27.37 (CH2-CH=CH, cis), 24.99 (CH2-CH2CO, C24), 24.19 

(CH2-CH2CO, C21). 

 

Curing reactions and extraction of soluble parts 

A dichloromethane solution (0.3 g/mL) of each acrylated polyester (APs) and dicumyl 

peroxide (2% mol related to acrylate groups) was cast on a glass plates of 7.5 x 2.5 cm2. 

The samples were heated to 40 ºC for 2h in order to remove the solvent and then the 

temperature was raised to 150 ºC at 1 ºC/min and maintained for 12h. All samples were 

subjected to soxhlet extraction with previously distilled dichloromethane to determine 
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their soluble fractions. 0.5g of each sample were extracted with 125 mL of 

dichlorometane. Previously to extractions, the samples were grinded to maximize the 

extraction efficiency.  

 

Instrumentation 
1H NMR 400 MHz and 13C NMR 100.6 MHz NMR spectra were obtained using a 

Varian Gemini 400 spectrometer with Fourier transform. CDCl3 was used as solvent 

and TMS as internal reference. Molecular weights were determined on a Shimadzu gel 

permeation chromatography (GPC) system equipped with a LC-20AD pump, RID-10A 

refractive index detector, SIL-20A autosampler, and a CTO-20A column oven set to 50 

ºC. A PLgel 5 µm Mixed-D column from Polymerlabs in THF at a flow rate of 1 

mL/min was used. Linear poly(methyl methacrylate) standards (Polymer Standards 

Service PPS, Germany, Mp 102-981.000 Da) were used for calibration. The IR analyses 

were performed on a FTIR-680PLUS spectrophotometer with a resolution of 4 cm-1 in 

the transmittance mode. An attenuated-total-reflection accessory with thermal control 

and a diamond crystal was used to determine FTIR/ATR spectra. Calorimetric studies 

were carried out on a Mettler DSC822 differential scanning calorimeter using N2 as a 

purge gas (20 mL/min). Dynamic mechanical thermal analysis (DMTA) and tensile 

tests were performed using a TA DMA 2928 in the controlled force-Tension Film mode 

with a preload force of 0.1 N, an amplitude of 10 µm and at a fixed frequency of 1 Hz in 

the –100 to 200 ºC range and at a heating rate of 3 ºC/min. Rectangular samples with 

dimensions 10 x 5 x 0.5 mm3 were used. The tensile assays were performed by triplicate 

on rectangular samples (10 x 5 x 0.5 mm3) measuring the strain while applying a ramp 

of 0.5 N/min at 30 ºC. A preload force of 0.05 N and a soak time of 3 min were used. 

Thermal stability studies were carried out on a Mettler TGA/SDTA851e/LF/1100 with 

N2 as purge gas. The studies were performed in the 30-800 ºC temperature range at a 

scan rate of 10ºC/min. The limiting oxygen index (LOI) is the minimum concentration 

of oxygen determined in a flowing mixture of oxygen and nitrogen that will just support 

the flaming combustion of materials. LOI values were measured in vertical tests on a 

Stanton Redcroft instrument provided with an oxygen analyser. The dimensions of the 

polymer films were 100 x 5 x 0.5 mm3. 
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RESULTS AND DISCUSSION 

 

The versatility of ADMET polymerization enables the synthesis of linear polymers with 

functional groups that can be used as cross-linking points.13,15 Taking into account the 

good flame retardant properties obtained in our previous work with DOPO II (M2) as 

phosphorus containing comonomer,10 we decided to use it for the preparation of flame 

retardant thermosets. To introduce cross-linking points into the polymer backbone, a 

hydroxyl containing α,ω-diene (M1, scheme 1) was synthesized. M1 and M2 were 

copolymerized in different molar ratios via ADMET to give a series of linear polyesters 

with different phosphorus contents. The hydroxyl groups of these polyesters were then 

esterified with acryloyl chloride to introduce polymerizable groups, and finally, the 

resulting acrylated polyesters were cross-linked via radical polymerization to obtain a 

family of flame retardant thermosets. 
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Scheme 1. Synthesis of 1,3- and 1,2-di-10-undecenoylglycerol mixture and ADMET 

polymerization in presence of Hoveyda-Grubbs 2nd generation catalyst. 

 

For the synthesis of M1, 1,3-dichloro-2-propanol was reacted with two 

equivalents of 10-undecenoic acid in presence of  potassium carbonate and 

tetrabutylammonium hydrogen sulfate (TBAH) as phase transfer catalyst (Scheme 1). It 
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must be pointed out that 1,3-dichloro-2-propanol can be obtained directly from 

glycerol16 and 10-undecenoic acid is obtained from castor oil pyrolysis, thus, both 

reagents can be plant oil derived and M1 can be considered as 100% renewable. The 
1H-NMR analysis of the reaction mixture revealed the presence of 1,3-

diundecenoylglycerol together with 1,2-diundecenoylglycerol and triundecenoylglycerol 

as byproducts. In the reaction conditions, glycidyl undecenoate is formed as 

intermediate (detected by 1H-NMR), and eventually, the epoxide is opened by another 

undecenoic acid molecule, leading to a mixture of both diacylglycerols. The crude 

reaction mixture was subjected to column chromatography and the resulting mixture of 

1,3- and 1,2-di-10-undecenoylglycerol (60:40, as determined by 1H-NMR, see figure 1) 

was used in the ADMET polymerizations. 

It is known that ADMET polymerizations can be carried out with heteroatom-

containing dienes, if the heteroatom is not situated close to the double bonds.17 In both 

M1 and M2, the terminal olefins are nine carbon atoms spaced from the functional 

groups. Moreover, previous work in Wagener’s group9 proved the viability of ADMET 

polymerization of alcohol containing dienes using Grubbs 1st generation catalyst.  

We first tested different metathesis catalysts in the polymerization of M1. The 

ADMET polymerizations were run in bulk while a continuous flow of nitrogen was 

passed through the reaction mixture in order to remove the ethylene, which is released 

during the metathesis reaction. When 1% mol Grubbs 1st generation catalyst (C1) was 

used, oligomerization and poor conversion (by GPC) at 80 ºC after 24 h occurred, 

probably due to catalyst degradation in presence of the primary alcohol of 1,2-

diundecenoylglycerol.18 On the other hand, when 1% mol Grubbs (C2) and Hoveyda-

Grubbs (C3) 2nd generation catalysts were used at 80 ºC, THF insoluble products were 

obtained. Moreover, the polymerization products were not soluble in common organic 

solvents, suggesting that some kind of cross-linking reaction might have taken place. 

This poor solubility of hydroxyl functionalized ADMET polymers was also observed by 

Valenti et al., and the only proposed reason for this behavior was the high molecular 

weight of the investigated polymers.9 However, when the catalyst load was lowered to 

0.5% mol, THF soluble polymers were obtained at 80 ºC with C1 and C2. Similar 

results were found in the bulk copolymerization of M1 and M2 at 80 ºC in 1:1 molar 

ratio. C1 gave oligomerization, while C2 and C3 produced insoluble polymers with 1% 

mol catalyst. When the polymerizations were conducted at 70 ºC with 0.5% mol of C2 
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and C3, soluble polymers were obtained with monomer conversions over 98% (by 

GPC). 

On the basis of the results obtained in the initial experiments, we synthesized a 

series of polymers (P1-P4) with different M1/M2 molar ratios (Scheme 2) with the aim 

of determining the effect of the phosphorus content on the properties of the ADMET 

polymers and the final materials. We also wanted to study the effect of the molecular 

weight of the ADMET polymers on the flame retardant properties of the cross-linked 

materials. For this purpose, we performed ADMET polymerizations with 10 and 20% of 

methyl 10-undecenoate as chain stopper for the highest phosphorus content (P5 and P6, 

scheme 2). As reported previously, this procedure results in an efficient end-capping 

and reduction of the molecular weight.10,19 Thus, six polyesters (P1-P6) with different 

M1/M2 molar ratios were synthesized (see table 1). 
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Scheme 2. Synthesis of phosphorous containing polyesters via ADMET copolymerization with 

(bottom) and without (top) chain stopper. 

 

Figure 1 shows the 1H-NMR spectra of M1 (as a mixture of isomers) (Fig. 1a), 

P1 (Fig. 1b) and P3 (Fig. 1c) as representative examples. The ADMET polymerizations 

could be confirmed by the disappearance of the terminal olefin signals at 5.8 and 4.9 
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ppm together with the appearance of a multiplet at 5.3 ppm in both P1 and P3. 

Although not possible in all cases, the analysis of the integrations of the chain end 

olefins revealed a Mn of 24,600 Da for P2 and 18,400 Da for P3. These values are 

significantly higher than the ones obtained by GPC (3,700 and 5,200 Da, respectively). 

However, there is no direct correlation between GPC and NMR Mn values due to the 

different M1/M2 contents of P2 and P3, which cause different hydrodynamic volumes.  

For P1 and P4, the chain end signals were too small for reliable integration indicating 

that high molecular weigh polymers were obtained. In the cases of P5 and P6, the Mn 

could not be determined as the end-capping was not completely efficient and both 

terminal olefins and methyl ester signals were observed. Nevertheless, the objective of 

obtaining two polyesters with the same phosphorus content as P4, but lower molecular 

weights was achieved. Furthermore, these results indicate that high molecular weight 

hydroxyl-containing polyesters could be synthesized via ADMET polymerization. 
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Figure 1. 1H NMR spectra of a) M1 (mixture of isomers), b) P1 and c) P3. 
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Table 1. GPC, 1H-NMR and thermal characterization of the phosphorus-

containing ADMET polyesters. 

Polymer 
(M1 / M2)a 

% P b Mn
 c Mn 

(NMR) 
PDI c Tg  (ºC)d / Tm 

(ºC)d 

P1 (10.0 / 0.0) 0.0 5,300 -d 2.18 -25.8  / 41.3 

P2 (7.5 / 2.5) 1.6 3,700 24,600 2.20 -27.2 / 21.7 

P3 (5.0 / 5.0) 2.9 5,200 18,400 2.56 -12.4 

P4 (2.5 / 7.5) 3.9 7,300 -d 3.13 5.9 

P5 (2.5 / 7.5) 3.9 4,400 - 2.32 -16.6 

P6 (2.5 / 7.5) 3.9 3,900 - 2.04 -19.1 

 
a mol/mol ratio, b weight/weight percentages, c GPC data, 
d end group signals not detectable, e DSC data. 

 

The thermal characterization of the ADMET polyesters was carried out with 

differential scanning calorimetry (DSC). The DSC traces stemming from the second 

heating run (20 ºC/min) of P1-P4 are shown in figure 2 and the data is collected in table 

1. The thermal analysis of P1 showed a glass transition (Tg) at –25.8 ºC and a melt 

followed by a cold crystallization and a second melt (Tm) at 41.3 ºC. However, 

observations with a polarizing microscope did not reveal two different melting 

processes when using different heating rates or annealing conditions. As M2 is added as 

comonomer, polymer crystallization becomes more difficult due to the bulky aromatic 

core of M2. Moreover, the increase in the aromatic content causes restrictions in the 

segmental mobility and an increase in the Tg occurs. The DSC trace of P2, with only a 

low content of M2, reveals a Tg of –27.2 ºC and just one Tm of 21.7 ºC. Finally, P3 and 

P4 show only glass transitions at –12.4 ºC and 5.9 ºC respectively. As previously 

mentioned, the addition of methyl 10-undecenoate as chain stopper in the synthesis of 

UNIVERSITAT ROVIRA I VIRGILI 
PLANT OILS AS RENEWABLE PRECURSORS OF THERMOSETTING AND FLAME RETARDANT POLYMERS 
Lucas Montero de Espinosa Meléndez 
ISBN:978-84-692-9759-9/DL:T-205-2010 
 
 



Submitted to Journal of Polymer Science Part A: Polymer Chemistry 156

P4 affords lower molecular weights. As a result, the Tgs obtained for P5 (-16.6 ºC) and 

P6 (-19.1 ºC) are found below that of P4. 
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Figure 2. DSC traces of the phosphorus-containing ADMET polyesters P1-P4. 

 

The thermal stability of the ADMET polyesters was studied by 

thermogravimetric analysis (TGA) under nitrogen and air atmospheres (data in table 2). 

Good thermal stability is observed for P1-P6 under nitrogen (Fig 3a) with 5% weigh 

loss around 310 ºC. For P1, the main degradation step takes place at 430 ºC but as M2 

is introduced, the thermal stability increases and a new degradation step appears around 

460 ºC. Moreover, an increase in the aromatic and phosphorus content carries an 

increase in the char obtained at 800 ºC from P1 (0.0%) to P4 (8.8 %). The thermal 

stability and char obtained at 800 ºC of P5 and P6 is lowered with respect to P4 due to 

their lower molecular weight. A similar trend is observed in the thermal degradation 

behaviour under air (Fig 3b). 5% weight loss around 310 ºC and two main degradation 

steps related with the M1/M2 composition at 430 and 450 ºC were observed under these 

conditions. Under air, the residues at 800 ºC increase with the phosphorus content 

reaching a maximum value of 9.1% for P4. 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
PLANT OILS AS RENEWABLE PRECURSORS OF THERMOSETTING AND FLAME RETARDANT POLYMERS 
Lucas Montero de Espinosa Meléndez 
ISBN:978-84-692-9759-9/DL:T-205-2010 
 
 



Submitted to Journal of Polymer Science Part A: Polymer Chemistry 157

 

Table 2. TGA results of the phosphorus-containing ADMET polyesters.  

  TGA  (N2) TGA  (Air) 

Polymer 
 

% P a T5% loss 

(ºC) 
Tmax (ºC)b Char800ºC 

(%) 
T5% loss 

(ºC) 
Tmax (ºC)b Char800ºC 

(%) 

P1 0.0 315 316 / 432 0.0 295 
316 / 431 / 

496 
0.0 

P2 1.6 297 
307 / 413 / 

465 
6.0 296 

306 / 413 / 
457 / 653 

0.0 

P3 2.9 311 413 / 465 7.4 315 
412 / 448 / 

603 
4.1 

P4 3.9 313 462 8.8 324 452 / 577 9.1 

P5 3.9 312 413 / 463 8.2 313 
420 / 453 / 

564 
3.0 

P6 3.9 309 413 / 465 7.9 312 
393 / 453 

/564 
2.2 

 
a weight/weight percentages, b temperature of maximum weigh loss rate. 

 

In the next step, the hydroxyl functionalized polyesters P1 to P6 were reacted with 

acryloyl chloride in the presence of triethylamine (Scheme 3). The acrylated polyesters 

(AP1 to AP6) were isolated by slow addition of the reaction mixture to methanol in 

yields between 60 and 96 %. Non quantitative yields were probably due to the increased 

solubility of the polyesters in methanol after acrylation of the hydroxyl groups, that led 

to partial fractionation. Two representative 1H-NMR spectra are shown in figure 4, 

where the characteristic set of signals at 6.3, 6.1 and 5.7 ppm confirm the presence of 

the acrylate groups. Moreover, in the 13C-NMR spectrum, the complete disappearance 

of the signals belonging to the non acrylated polymer P3 and the appearance of the 

signals of AP3 confirms full functionalization. 
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Figure 3. TGA measurements a) under nitrogen, and b) under air of the phosphorus-containing 

ADMET polyesters P1-P6. 
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Scheme 3. Synthesis of acrylated phosphorous-containing polyesters AP1-AP6. 
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Based on our previous experience in the cross-linking of acrylate derivatives,20,21 

dicumyl peroxide was chosen as radical initiator for the cross-linking reaction of the 

acrylated ADMET polyesters. DSC curing runs between APs and dicumyl peroxide 

(2% molar to acrylate groups) showed similar exotherms with onsets ca. 150 ºC for all 

the acrylated polyesters. Once the curing conditions were established, APs and dicumyl 
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Figure 4. 1H-NMR spectrum of AP3 and enlargement of the 75-60 ppm region of 13C-NMR 

spectra of P3 and AP3. 

 

peroxide (2% mol) were dissolved in dichloromethane (0.3 g/mL) and the resulting 

solution was cast on a glass plate. The samples were heated at 40 ºC for 2h to remove 

the solvent and then the temperature was raised to 150 ºC at 1 ºC/min and maintained 

for 12h. The cured materials (samples I to VI), were obtained as light brown transparent 

films. The curing extent of the cross-linking reactions was studied with FTIR 

spectroscopy by following the disappearance of the acrylate group bands. Figure 5 

shows the FTIR spectra of AP3 and sample III as a representative example of the cross-

linking reaction. The bands at 1637 cm-1 (C=C stretching), 1403 and 1294 cm-1 (=C-H 

in-plane deformation) and 983 and 808 cm-1 (=C-H out-of-plane deformation) 

completely disappear confirming the polymerization of the acrylate groups. The 

reactivity of non-conjugated internal double bonds towards radical polymerization is 

very low,22,23 thus, the double bonds of the polyester backbone were not expected to 

polymerize. This is confirmed in the ATR-FTIR spectrum after cross-linking by the 

presence of the band at 967 cm-1, which is associated to the C=C-H out-of-plane 
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deformation. The cross-link extent was also investigated by extracting the soluble 

fraction of samples I-VI. Sample I presents a soluble fraction of 0.9 %, that indicates a 

very high cross-linking degree. The soluble fractions increase as the M2 content does 

reaching a value of 20.3 % for sample IV due to the decreasing number of cross-link 

points available in the linear prepolymers. The soluble fractions of samples V (16.8 %) 

and VI (17.7 %) are similar to that of sample IV showing that similar cross-linking 

degrees were achieved independently of the prepolymers molecular weights. 

 The soluble fractions were analyzed by 1H and 31P-NMR spectroscopy. 1H-NMR 

showed total reaction of the acrylate double bonds and the presence of a triplet ca. 2.4 

ppm belonging to the methylene protons adjacent to the carbonyls of the polymerized 

acrylates. This clearly indicates that the soluble fractions are composed of low 

molecular weight polymers instead of non polymerized acrylates. However, the 

aromatic region showed little variations suggesting some change taking place in the 

DOPO moiety. This was further confirmed by examining the 31P-NMR spectra, where a 

new singlet at 32.6 ppm appeared together with DOPO signal (18.2 ppm). This new 

signal matches with the opened DOPO form, having a phosphinic acid functionality 

(hydrolysis of the P-O bond). Although the DOPO ring was closed throughout the 

synthesis of M2, ADMET polymerizations and acrylation reactions, it is known that a 

certain amount of hydrated DOPO can be found when using DOPO as a reagent, and 

dehydration at temperatures over 200 ºC under vacuum are usually necessary prior to 

use.24 It is thus possible that part of the pendant DOPO moieties were hydrated by long 

exposure of the samples to air. Since the DOPO P-O bond is cleaved in the early stages 

of thermal degradation (300 ºC),25 the flame retardant action of these materials will not 

be affected in any case and thus, the presence of the opened form of DOPO does not 

interfere with the aim of this study. 
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Figure 5. FTIR-ATR spectra of a) AP3 and b) sample III. The absorption bands associated to 

the acrylate group are indicated. 

 

Figure 6 shows the dynamic thermomechanical analysis of samples I to VI as the tan 

delta plots from –100 to 150 ºC. The main peak of the tan delta plots, that is the alpha 

relaxation, is related to the glass transition temperature. As expected, from sample I to 

sample IV, the maximum of the tan delta peak shifts to higher temperatures as M2 

content increases due to the increasing aromatic fraction. On the other hand, an increase 

in M2 content means more space between acrylate groups, that is accompanied by a loss 

of crosslink density, and a decreased cross-link density is manifested by a smaller tan 

delta peak.26 This fact is confirmed by the height of the tan delta peak, which increases 

from sample I to sample IV. The effect of the prepolymer molecular weight on the 

dynamic mechanical properties of the cross-linked materials is observed in samples IV, 

V and VI. The Tg value drops from sample IV to samples V and VI as a consequence of 

the lower molecular weights of P5 and P6 with respect to P4. 
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Table 3. Dynamic thermomechanical characterization, TGA results and LOI values of cross-

linked polymers I-VI. 

    TGA  (N2) TGA  (Air)  

Sample % P a Tg b 
(ºC) 

Soluble 
fraction 
(%)a 

T5% loss 

(ºC) 
Tmax 
(ºC) c 

Char800ºC 
(%) 

T5% loss 

(ºC) 
Tmax 
(ºC) c 

Char800ºC 
(%) 

LOI 

I 0.0 35.4 0.9 343 434 5.0 331 428 0.0 18.4 

II 1.5 47.0 4.1 328 
423 / 
462 

9.8 324 
418 / 
452 / 
564 

0.1 21.8 

III 2.7 47.3 8.9 346 
425 / 
463 

10.9 328 
418 / 
449 / 
619 

2.6 24.0 

IV 3.8 52.2 20.3 358 463 11.2 337 
449 / 
592 

7.6 25.7 

V 3.8 40.0 16.8 344 
425 / 
462 

10.7 325 
419 / 
449 / 
609 

4.8 21.9 

VI 3.8 47.9 17.7 337 
425 / 
462 

10.2 329 
419 / 
452 / 
631 

6.0 21.7 

 
a Weight/weight percentages, b Maxima of the tan delta peak, d Temperatures of maximum 

weight loss rate. 
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Figure 6. Tan delta plots of the cross-linked polymers I-VI. 
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The thermal degradation behaviour of the cross-linked materials under nitrogen 

and air atmospheres is shown in figure 7 and the data is collected in table 3. Under 

nitrogen (Fig. 7a), all samples present good thermal stability with 5 % weight loss 

around 340 ºC. From the maxima of weight loss rate it can be inferred that two general 

degradation mechanisms are taking place, which can be related to the prepolymer 

composition. Sample I contains the M1 homopolymer and degrades in one single step 

with the maximum weight loss rate around 430 ºC. As M2 is added, a new maximum of 

weight loss rate appears around 460 ºC, which becomes the main degradation step as the 

M2 content increases. The char at 800 ºC increases from sample I (5.0 %) to sample IV 

(11.2 %) as the phosphorus content does and slightly decreases for samples V and VI as 

a result of their lower crosslink density that causes a lower thermal stability. The 

thermal degradation behaviour under air atmosphere is presented in figure 7b. 5 % 

weight  loss around 330 ºC is observed for all samples followed by a main degradation 

process and an oxidative degradation step. Sample I presents a one-step degradation 

mechanism around 430 ºC before the oxidative degradation. As explained above, the 

introduction of M2 as comonomer increases the thermal stability and a second 

degradation step appears at a higher temperature (ca. 450 ºC). For the M2 containing 

samples, the degradation rate is retarded over 500 ºC with formation of an intermediate 

char. The amount of char formed at these temperatures, that increases proportionally to 

the phosphorus content, indicates how efficiently the burning surface would protect the 

rest of the polymer under real fire conditions. Moreover, the char at 800 ºC increases 

with the phosphorus content from sample I to sample IV and decreases for samples V 

and VI for the reasons explained above. These cross-linked systems show an increased 

thermal stability with onset degradation temperatures 30 ºC above the non-cross-linked 

polymers, both under nitrogen and air atmospheres. The cross-linking retards the release 

of volatiles and favours char formation. 

The mechanical properties of the cross-linked materials were investigated in 

tensile assays. The mechanical parameters obtained are collected in Table 4 and selected 

stress-strain curves of samples I to VI are compared in Figure 8. When examining the 

behaviour of samples I to IV, two different factors must be taken into account. There is 

an increase in the aromatic content that leads to an increase of the network rigidity, but 

at the same time there is a decrease in the cross-link density. Due to the combination of 
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both factors, the modulus decreases from sample I to sample IV as a result of the 

decreasing cross-link density, but as the same time, the tensile strength increases due to  
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Figure 7. TGA measurements a) under nitrogen, and b) under air of the cross-linked polymers 

I-VI. 

 

the increasing aromatic content. The decrease of cross-link density also determines the 

elongation at break, that increases from sample I to sample IV reaching a maximum 

value of 142 % for sample IV. However, the variation of these parameters is not 

completely linear; the modulus increases for sample III, suggesting a higher influence 

of the aromatic fraction on mechanical behaviour of this sample. Moreover, sample IV 

shows a decrease in tensile strength due to its lower cross-link density compared to 

samples I-III, that is confirmed by the differences in soluble fractions. The effect of the 
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prepolymer molecular weight on the mechanical properties is clearly observed when 

comparing the stress/strain curves of samples IV to VI. Although the aromatic content 

remains constant, the tensile strength and modulus decrease. Moreover, the elongation 

at break is reduced twofold. 

The flame retardancy of the cross-linked materials was evaluated using the 

limiting oxygen index (LOI) vertical test with films of thickness between 0.4 and 0.5 

mm. Table 3 contains the LOI values obtained for samples I to VI. The phosphorus-free 

 

Table 4. Mechanical properties of the cross-

linked polymers I-VI. 

Sample 
Modulus 
(MPa) 

TS (MPa) 
Elongation 

(%) 

I 65.8 2.37 5 

II 31.5 3.07 15 

III 54.2 4.50 31 

IV 16.8 2.16 142 

V 10.3 1.46 64 

VI 10.1 1.96 62 

 
a Tensile strenght, b Elongation at break. 

 

sample I gave a LOI value of 18.4, a low index, which is related to its high aliphatic 

content. The LOI values clearly increase with the phosphorus content from sample II to 

sample IV reaching a value of 25.7 for the later. The effect of the prepolymer molecular 

weight at a constant phosphorus content on the flame retardancy can be observed by 

comparing samples IV, V and VI. The LOI value drops from 25.7 in sample IV to 21.9 

and 21.7 in samples V and VI respectively. During combustion, the thermal scission of 

the polymer backbone leads to fragments of different sizes. In the case of low crosslink 

density, small volatile fragments are rapidly produced and released to the flame, thus 

feeding it. Since the prepolymer molecular weights decrease from sample IV to sample 

VI, the crosslink density also does and as a result lower LOI values are obtained. The 

effect of the crosslink density on the flame retardant properties is further confirmed 

when comparing the LOI values of samples II and VI. Despite its lower phosphorus 
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content (1.5%), sample II gave the same LOI than sample VI (3.8%). The molecular 

weights of P2 and P6 are similar; however, the higher hydroxyl content of P2 is 

responsible for the higher cross-link density of sample II. As a result, a similar flame 

retardant behaviour is obtained for both samples. 
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Figure 8. Stress/strain curves of the cross-linked polymers I-VI. 

 

 

 

CONCLUSIONS 

 

A plant oil-based α,ω-diene containing hydroxyl groups (M1) has been successfully 

polymerized via acyclic diene metathesis (ADMET) polymerization with Hoveyda-

Grubbs 2nd generation catalyst, reaching high molecular weights. This monomer has 

also been copolymerized with an α,ω-diene bearing a DOPO pendant group using 

Grubbs 2nd generation catalyst. In this way, phosphorus containing polyesters with 

molecular weights over 18,000 Da have been obtained. Moreover, while maintaining a 

constant phosphorus content, the molecular weigh of the polyesters has been reduced 

using methyl 10-undecenoate as renewable chain stopper. The crystallinity of these 

polyesters decreased as the amount of DOPO-based comonomer (M2) was increased 
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and totally amorphous polymers were obtained for the higher M2 contents. Extensive 

acrylation of the hydroxyl groups in the polyesters backbone followed by radical 

polymerization afforded thermosetting polymers with high cross-linking degrees. These 

plant oil-based thermosets show glass transition temperatures ranging from 35 to 52 ºC, 

good thermal stability, and relatively good flame retardancy despite their high aliphatic 

(fatty acid) content. 
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GENERAL CONCLUSIONS 

 

 

• High oleic sunflower oil has been used as renewable starting material for the 

synthesis of two monomers as precursors of plant oil-based cross-linked 

polymers. 

 

• The photoperoxidation of high oleic sunflower oil with singlet oxygen has been 

used as an efficient reaction for the synthesis of functionalized triglyceride 

derivatives. In this reaction, high oleic sunflower oil and oxygen are the only 

reactants, making this transformation very attractive from an environmental 

point of view. 

 

• A triglyceride derivative containing α,β-unsaturated ketones has been 

synthesized and cross-linked via aza-Michael addition with an aromatic diamine. 

The high reactivity of this monomer and the properties of the final materials 

make this curing system a good alternative to the conventional plant oil-based 

epoxy-amine systems. 

 

• The effects of the reaction conditions on the mentioned aza-Michael cross-

linking reaction have been studied. High temperatures and the presence of a 

Lewis acid promote the formation of substituted quinolines as cross-link points. 

On the basis of these findings, new plant oil-based quinoline-containing 

thermosets have been synthesized. 

 

• A triglyceride derivative containing allylic alcohol groups has been synthesized, 

acrylated, and cross-linked via radical polymerization. The extensive 

hydrogenation of this derivative, prior to acrylation and radical polymerisation, 

has led to an improvement of the thermal stability of the cross-linked polymers. 

In both cases, highly cross-linked thermosets have been obtained. 

 

• High oleic sunflower oil and 10-undecenoic acid have been used as renewable 

starting materials for the synthesis of plant oil-based flame retardant polymers. 
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• A series of new high oleic sunflower oil-based monomers containing phosphine 

oxide and acrylate groups have been synthesized and cross-linked via radical 

polymerization. These cross-linked materials have shown improved thermal 

stability and flame retardancy. Phosphorus compounds have been found among 

the pyrolisis products in the gas-phase suggesting a gas-phase mechanism of 

flame inhibition. Finally, a thermal degradation mechanism has been proposed. 

 

• Acyclic diene metathesis (ADMET) polymerization has been proven to be an 

efficient tool for the synthesis of phosphorus-containing plant oil-based linear 

polyesters. 

 

• A series of new phosphorus-containing castor oil-derived polyesters have been 

synthesized via ADMET polymerization. Some of these linear polyesters have 

shown good flame retardant properties. 

 

• A series of new castor oil-derived polyesters containing hydroxyl and phosphine 

oxide groups have been synthesized via ADMET polymerization. Acrylation of 

the backbone hydroxyls followed by radical polymerization has led to a family 

of flame retardant cross-linked polymers. 
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APENDIXES 

 

Apendix A. List of abbreviations 

 
1H, 13C and 31P-NMR Proton, carbon and phosphorus nuclear magnetic 

resonance 

ADMET   Acyclic diene metathesis 

ASO    Acrylated high oleic sunflower oil 

ASO[H]   Acrylated hydrogenated high oleic sunflower oil 

BF3·MEA   Boron trifluoride-ethylamine complex 

CDPP    Chlorodiphenylphosphine 

DCM    Dichloromethane 

DCP    Dicumyl peroxide 

DDM    4,4´-Diaminodiphenylmethane 

DMTA    Dynamomechanical thermal analysis 

DOPO    9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide 

DSC    Differential scanning calorimetry 

EDX    Energy-dispersive X-ray spectroscopy 

EMO    Epoxidized methyl oleate 

FR    Flame retardant 

FTIR/ATR   Fourier transform infrared spectroscopy 

gHSQC  Gradient-selected heteronuclear single quantum 

correlation 

gCOSY   Gradient-selected correlation spectroscopy 

GC/MS   Gas chromatography coupled with mass spectrometry 

GPC    Gel permeation chromatography 

hr-MAS NMR High resolution magic angle spinning nuclear magnetic 

resonance 

HSO    Hydrogenated high oleic sunflower oil 

HSO[H]   Acrylated hydrogenated high oleic sunflower oil 

LOI    Limiting oxygen index 

Mn    Number average molecular weight 

Mw    Weight average molecular weight    
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P-ASO Tertiary phosphine oxide containing acrylated high oleic 

sunflower oil 

PDI    Polydispersity index (Mw/Mn) 

PETA    Pentaerithritol tetraacrylate 

P-SO Tertiary phosphine oxide containing high oleic sunflower 

oil 

SEM    Scanning electron microscopy 

SO    High oleic sunflower oil 

T5% loss    Temperature of 5 % weight loss  

Tg    Glass transition temperature 

TGA    Thermogravimetric analysis 

THF    Tetrahydrofuran 

TLC    Thin layer chromatography 

Tm    Melting temperature 

Tmax    Temperature of maximum weight loss 

TMS    Tetramethylsilane 

TPP    Tetraphenylporphyrine 

UV-vis    Ultraviolet-visible spectroscopy 
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A New Enone-Containing Triglyceride Derivative as Precursor of Thermosets from 
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Montero de Espinosa, L.;  Ronda, J. C.; Galià, M.; Cádiz, V. J Polym Sci Part A: Polym 

Chem 2008, 46, 6843-6850. 
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Apendix C. Stages and meeting contributions 

 

 

Stages 

 

Three months stay (1st September - 1st December 2008) at the University of Applied 

Sciences Oldenburg / Ostfriesland / Wilhelmshaven, Faculty of Technology, Emden (Germany) 

under the supervision of Prof. Dr. Michael A. R. Meier. 

 

Two weeks stay (July 2009) at the University of Applied Sciences Oldenburg / Ostfriesland / 

Wilhelmshaven, Faculty of Technology, Emden (Germany) under the supervision of Prof. Dr. 

Michael A. R. Meier. 

 

 

Meeting contributions 

 

Flame Retardant Vegetable Oil-based Thermosetting Polymers. 

L. Montero de Espinosa, J. C. Ronda, M. Galià, V. Cádiz. 

Oral communication. 

11th European Meeting on Fire Retardant Polymers, Bolton, Manchester (UK), 03-06 

July, 2007. 

 

Polímeros retardantes a la llama derivados de ésteres del ácido oléico modificados con 

óxidos de fosfina. 

L. Montero de Espinosa, J. C. Ronda, M. Galià, V. Cádiz. 

Oral communication. 

X Reunión Del Grupo Especializado De Polímeros (RSEQ y RSEF), Sevilla (Spain), 

16-20 September, 2007. 

 

Vegetable oil-based thermosetting polymers. 

V. Cádiz, L. Montero de Espinosa, J. C. Ronda, M. Galià. 

Poster. 

International Workshop On Biomacromolecules 2008, Stockholm (Sweden), 1-4 June, 

2008. 
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Flame retardant polyesters from renewable resources via ADMET. 

L. Montero de Espinosa, J. C. Ronda, V. Cádiz, M. A. R. Meier. 

Poster. 

2nd Workshop On Fats And Oils As Renewable Feedstock For The Chemical Industry, 
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