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This thesis is structured in eight chapters.

Chapter 1. Introduction. This chapter gives an overview of DNA microarrays, their

origin, types and applications. The steps involved in the generation of the microarray

data, from hybridization to image acquisition and data pre processing, are described.

The need of multivariate data analysis is justified. Finally, the multivariate methods used

for analyzing microarray data are cited, focusing on classification methods.

Chapter 2. Thesis Objectives. In this chapter are described the aims of this thesis. These

objectives are developed in the publications included in the next chapters.

Chapter 3. Discussion of the implementation of the reject option in p DPLS. This

chapter discusses the implementation of the reject option in p DPLS. Firstly, the

calculation of the p DPLS model and the class prediction process based on the Bayes

rule are detailed. Then, the limitations of the classification based on the Bayes rule are

discussed. Two approximations to introduce a reject option that overcome the cited

limitations discussed in previous section are presented. Finally, the implications of the

reject option in the evaluation of the classifiers are commented.

Chapter 4. Classification from microarray data using p DPLS with reject option. This

paper (C. Botella, J. Ferré, R. Boqué, Talanta, 80 (2009) 321 328) describes the

implementation of a reject option in p DPLS models in order to improve the

classification of microarray data. The reject option allows a p DPLS model to not classify

outliers and ambiguous samples. This ensures that only the samples whose classification

is reliable enough are indeed classified. As a consequence, the number of

misclassifications decreases and the accuracy of the classifier improves.

Chapter 5. Outlier detection and ambiguity detection for microarray data in p DPLS

regression. Outlier detection is often overlooked in microarray data analysis with factor

Structure
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based classification methods. However, outlier diagnostics are required when

implementing any classification method in real practice. In this paper (C. Botella, J.

Ferré, R. Boqué, Journal of Chemometrics (2010) Accepted) two procedures, typically

used in chemometrics, are combined with the reject option (chapter 4) to detect

outliers and ambiguous samples in p DPLS. The application of these diagnostics

increases the accuracy of the p DPLS models and avoids classifying samples from classes

that were not modelled.

Chapter 6. Gene selection based on selectivity ratio for probabilistic discriminant

partial least squares. Gene selection is a fundamental step in microarray data analysis.

It allows both identifying the genes that characterize a certain disease and also

simplifying and improving classification models by discarding irrelevant genes. In this

paper (C. Botella, J. Ferré, R. Boqué, (2010) submitted) a gene selection procedure that

is specific for PLS is used to find the best subset of genes that discriminate between

different subtypes of tumours and also between healthy and tumour samples. The

procedure is based on selecting the genes that maximize the selectivity ratio (SR) index.

The paper also shows that the calculated accuracy of a classifier can be largely

influenced by how the dataset is splitted into a training set and a test set. Certain splits

can lead to a wrong assessment of the validity of the gene selection algorithm. A

repetitive procedure consisting of data split, gene selection, training and validation is

proposed in order to test the goodness of the genes selected whit the SR index.

Chapter 7. Multi class classification of microarray gene expression data. In most cases,

samples to be classified from microarray data may belong to more than two subtypes of

a disease. The p DPLS approach used so far only allows discriminating between two

subtypes. This chapter (C. Botella, J. Ferré, R. Boqué, (2010) submitted) describes a

classification strategy to be used when there are more than two candidate classes. The

method combines the predictions from one versus one p DPLS models with the Linear

Discriminant Analysis (LDA) classifier.
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Chapter 8. Conclusions. This chapter sums up the improvements achieved by the

methods presented in this thesis.

The Appendix contains a description of the datasets used in this thesis, the list of the

abbreviations used, and the list of papers and presentations performed during this

period.
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1.1 Genetic expression

Deoxyribonucleic acid (DNA) molecules are the

genetic material of most living organisms [1].

They are chains of nucleotides (Figure 1). A

nucleotide consists of a phosphate group, a

deoxyribose sugar molecule and a nitrogenous

base (guanine, cytosine, adenine or thymine)

[1]. Genes are sequences of hundreds or

thousands of these nucleotides that encode

the genetic information to make specific

proteins [2].

Figure 1. DNA chain. Source: [3].

The protein formation involves a

transcription process, in which the

genes are mapped into messenger

RNA (mRNA) by the RNA

polymerase enzyme [1, 4] followed

by a translation process, in which

the aminoacids encoded by the

mRNA codons are joined in the

presence of transfer RNA (tRNA)

and ribosomal RNA (rRNA) (Figure

2).

Figure 2. Transcription and translation processes in the making of a protein. Source: [3].
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The genes regulate the protein expressions and consequently the metabolic processes

of the living organisms. Some genes are only expressed in particular cell types or in

certain development stages [5], so these genes (or their expressed intermediate,

mRNA) can be seen as markers to define particular cellular states, such as healthy or

tumour [6].

1.2 Microarrays

Microarray technology is a powerful

tool for simultaneously evaluating the

expression level of thousands of genes

in a cell [2] and, hence, the

information that is encoded in the

DNA [6].

A microarray is a microscopic slide

that contains an ordered series of

DNA, RNA proteins or tissues. The DNA

microarrays are the most common [7]. A DNA microarray is generally a glass slide or a

silicon chip in which thousands of gene sequences are printed (Figure 3). On every spot

many copies of a specified DNA sequence are chemically bonded to the surface of the

slide [2]. The genes immobilized onto the slide are called the DNA probe. Over this

DNA probe, the target DNA or the target RNA (depending on the microarray platform)

obtained from the cell under study is hybridized (hydrogen bonded). The amount of

hybridization is measured and related to the presence and expression of certain genes

in the cell.

Figure 3. Parts of a microarray. 1. Slide, 2. Probe

DNA, 3. Target DNA. Source: Affymetrix.

1
2

3
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Figure 4 shows the workflow process in a microarray experiment. The experimental

process varies depending on the microarray platform that is used (see below). After

data have been measured and pre processed, multivariate analysis is needed to deal

with the large amount of data that every microarray experiment generates [7 10].

Figure 4. Microarray workflow process.

1.2.1 Microarray platforms and experimentation

The first DNA array was developed by Ed Southern in 1975 [10]. Southern noticed that

labelled acid nucleic molecules could be used to evaluate other molecules linked on a

solid support. He used the array to verify the presence or the absence of a specific

sequence of DNA from the different sources and to identify the size of the restriction

fragment.

In 1995, an in situ probe synthesis method for photolitographically manufacturing DNA

arrays was developed by Fodor et al. [11] and commercialized by Affymetrix Inc. At the

same time, pre synthesized DNA microarrays were popularized by Patrick O. Brown�’s

laboratory at Stanford University [12]. They published step by step plans for building a

robotic DNA arrayer [13]. This was, together with the development of the Southern

blot, one of the milestones in the microarray development because the Brown�’s

method made microarrays affordable for research laboratories, while the early

methods for manufacturing miniaturized DNA arrays using in situ probe synthesis

required sophisticated and expensive robotic equipment.

Experimental
desing

Experimental
process Data extraction Data analysis

Biological question
Goal

Probe and targetDNA
preparation
Printing
Hybridization

Data adquisition
Data pre processing
Quantification

Gene selection
Cluster analysis
Data classification
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Nowadays, there are two main microarray platforms, namely cDNA arrays (where c

means complementary) and oligonucleotide arrays. They differ in the preparation and

content of the probe, and also on the sample preparation [2, 5] (Table 1). Figure 5

shows the experimental procedure in a cDNA microarray experiment and in a in situ

oligonucleotide microarray experiment.

In cDNA microarrays, the probes are cDNAs typically 100 300 bases long. A cDNA

strand is a DNA strand synthetized using a reverse transcriptase enzyme, which makes

a DNA sequence complementary to the mRNA present in cells [2]. Note that the

commonly called DNA microarrays are actually cDNAmicorarrays. The target sample

consists of chains of cDNA of the test samples Cy5 labeled and chains of cDNA of

refernece sample Cy3 labeled [2, 5]. After the sample has been hybridized, microarrays

are washed for several minutes in decreasing salt buffers and finally dried either by

centrigugation of the slide or a rinse in isopropanol followed by quick drying with

nitrogen gas or filtered air [7]. The raw microarray data are obtained by exciting the

fluorescent dyes at each spot and scanning the microarray. One intensity value is

generated by the emission from the Cyanine 3 (Cy3) fluorophore and another from

Cyanine 5 (Cy5). The total fluorescence emitted by the spot at each wavelength is

proportional to the total amount of the dye in the spot. Hence, it is proportional to the

total amount of reference or test sample hybridized. When images of both dyes

(colour channels) are mixed, the typical microarray picture is obtained [1, 7, 14]. The

colours on the microarray image respond to the four respective situations of

microarray hybridization (Figure 6): no hybridization (black spot), reference sample

hybridization (green spot), target sample hybridization (red spot) and test and

reference sample hybridization (yellow spot). Different intensities of the colours

indicate different levels of hybridization.
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DNA microarray images from different samples are then transformed onto gene

expression data matrices. Each row of the matrix corresponds to a sample and each

column corresponds to a gene. Each value characterizes the expression level of the

particular gene in that particular sample. The gene expression is given by the ratio

between the intensities in the red and the green channels, which are directly related to

the level of expression of the transcript [1].

The in situ oligonucleotide arrays, produced by Affymetrix, each gene is represented

as a probe set of 10 25 oligonucleotide pairs1 instead of one full length or partial cDNA

clone. These probes are synthesized directly on the surface of the support. The target

sample is a cDNA biotin labeled [2, 7]. In contrast on the spotted cDNA arrays, in this

case the test and the reference sample are hybridized separately on different chips;

then, data adquisition is done by scanning the probe array. It creates a 8×8 pixels (on

average) for any probe cell. A single intensity value for every probe cell, representative

of the hybridization level of its target, is derived. Finally, the gene expression is given

by the differences of PM and MM [1]. The gene expressions of all genes analysed for a

sample are given in a row of the gene expression matrix.

Table 1. Types of microarrays. Source: [1].

Probe Arraying technique Microarray platform

cDNA Robotic spotting Spotted cDNA microarrays

Oligonucleotides

Robotic spotting Spotted oligonucleotide microarrays

In situ synthesis In situ oligonucleotide microarrays

1
The oligonucleotide pair (probe pair) comprises one oligonucleotide that perfectly matches the gene

sequence (Perfect Match, PM) and a second oligonucleotide having one nucleotide mismatch in the middle
of it (Mismatch, MM).

ARRAY 
IMAGE 
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Figure 5. cDNA and in situ oligonucleotide microarray sample preparation, hybridization and data
measurement.

GENEEXPRESSIONDATAMATRIX

AAAA

Test sample Reference sample

Cells or
tissueRNA

extraction

Total RNA

Reverse
transcription
and labeling

Cy3
labeled
cDNA

Cy5
labeled
cDNA

Mix and hybridize

cDNA
synthesis

AAAA
TTTT T7
promotor

AAAA

TTTT T7
promotor

In vitro
transcription

B B B B B B

Double
stranded
cDNA

Biotin
labeled
cRNA

Cy3Cy5Cy5 Cy3

laser

laser

Excitation

Emission

Emission

log2(Cy5/Cy3) log(PM MM)

Genes

Samples

Test sample Reference sample

RNA
extraction

Cells or
tissue

Total RNA
AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

TTTT

TTTT

TTTT

TTTT

UNIVERSITAT ROVIRA I VIRGILI 
MULTIVARIATE CLASSIFICATION OF GENE EXPRESSION MICROARRAY DATA 
Cristina Botella Pérez 
ISBN:978-84-693-5427-8/DL:T-1418-2010 



1.2 Microarrays

 
 
  

25

1.2.2. Microarray data

The experimental steps involved in a microarray workflow, from microarray

manufacture to microarray data extraction (Figure 4 and 5), may introduce noise and

variability in the data. Common sources of variability in microarray experiments are

variations related to microarray manufacturing and variations related to microarray

scanning [7]. Variability related to microarray manufacturing is due to dye effects, slide

effects or print tip effects. The variability of microarray scanning is due to scanner

manufacturing and to a non specific background. The most common origins of both

[15] are summarized in Table 2. To minimize the effect of the sources of variation that

may affect microarray data a proper pre processing data is fundamental in microarray

data analysis. This pre processing transforms the data to make them suitable for

analysis [1]. Pre processing of microarray data is done in the steps described next [16].

Table 2. Sources of variations of microarray data.

Abbreviations. PCR: Polymerase chain reaction.

Microarray
manufacturing

Dye effects
 Different incorporation of dyes
 Dye instability
 Gene label interaction

Slide effects

 Printing variability
 Different pin efficiency over time
 Array coating
 Slide inhomogeneities
 Efficiency of the hybridization reaction
 Background noise on the slide

Spatial,
Print tip or Plate
effects

 Different amounts of RNA of probes and DNA
target sample

 Temperature and humidity
 PCR amplification
 Sample preparation protocols

Microarray
scanning

 Scanner manufacture for example due: laser wrongly adjusted or laser
misaligned.

 Non specific background and over shining, non specific radiations and
signals from neighbouring.

 Image analysis, non linear transmission characteristics, saturation
effects and variations in spot shape.
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Background subtraction

Signal intensities of a gene include contributions from non specific hybridizations and

other fluorescences from the glass. This background fluorescence is estimated from

the pixels that are near the feature but are not a part of a spot [17]. Local background

for each channel and spot is evaluated focusing on small regions surrounding the spot

mask (region 2 in Figure 6). Then, the median or the mean of pixel values in this region

is calculated for each channel and subtracted from the spot intensity [14].

A less used alternative calculates a global background for each slide: an average of

negative control spot intensities is used as background value, being the empty spots

the negative control spots.

Figure 6. Scanned Microarray image. 1. Feature pixels 2. Background pixels 3. Two pixel exclusion region.
Source: GENEPIX PRO [17].

In in situ oligonucleotide arrays a local background is calculated for each probe and

then a weighted combination of these backgrounds is substracted from all the probes

of the microarray.

1

2 3
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Treatment of missing values

Microarray datasets frequently contain missing values, either because the spot is

empty (intensity=0), or because the background intensity is higher than the spot

intensity (intensity with background corrected<0). These values need to be deleted or

estimated and replaced, in a process called imputation, for subsequent data mining

[18].

In the imputation, the missing values may be replaced by a 1 (i.e. since log(1)=0, what

means no gene expression) or replaced by the mean of the intensities of the gene

among all the samples.

Particularly, in affymetrix datasets, when the intensity of the Mismatch probe cell is

higher than the Perfect match intensity, this probe has not physiological sense, in such

a case a value called Change Threshold is used instead of the Mismatch intensity [7].

Filtering bad data

Filtering excludes from the data the observations that do not fulfil a pre formulated

presumption [4]. For example, too low intensity values that cannot be trusted due to

instrumental limitations of the scanner. Typically, the lowest intensity value of the

reliable microarray data, referred as �“floor�”, is 10. Values below �“floor�” are usually

removed (filtered) from the data because they are not reliable enough. Similarly, the

array elements at the high end of the fluorescence intensities may saturate the

detector. The threshold referred to as �“ceiling�” value is set at 16.000 and values over

�“ceiling�” are removed too [4, 19].
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Fold change, log2 (two fold)

In cDNA microarrays the expression of a gene in a sample is the ratio of the intensities

in both channels for that gene. Although these ratios provide an intuitive measure of

expressions changes, they have the disadvantage of treating up and down regulated

genes differently. Genes up regulated by a factor of 2 have an expression ratio of 2,

whereas those down regulated by the same factor have an expression ratio of 0.5. The

most widely used transformation of the ratio is the logarithm base 2, which treats up

regulated and down regulated genes symmetrically, so that a gene up regulated by a

factor of 2 has a log2(ratio) = 1, a gene down regulated by a factor of 2 has a log2(ratio)

= 1, and a gene expressed at a constant level (with a ratio of 1) has a log2(ratio) = 0.

So, log2(ratio) will be used to represent expression levels [19].

In some cases the log transformation may be too �“strong�” and have the effect of

increasing the importance of the low intensities. Then, a weaker transformation like a

cube root is used [6].

Normalization

Normalization consists of removing arbitrary variations in the measured gene

expression levels of hybridized samples so that biological differences (different gene

expressions) can be more easily distinguished. Table 3 summarises the main

normalization criteria used and the systematic variation they remove.

The most used method is the LOcally WEighted Scatterplot Smoothing (LOWESS)

correction [20] for non linear data, and total intensity normalization or median

subtraction otherwise. In in situ microarrays analysis a separate probe array

experiment is performed, which is used by scaling techniques to minimize differences
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in overall signal intensities between the two arrays, allowing for a more reliable

detection of biologically relevant changes in the sampples [1, 7].

Table 3. Strategies for microarray data normalization.

1.2.3 Microarray applications

The first microarray paper featured the small mustard plant Arabidopsis thaliana [23],

but the technology quickly spread to yeast [24], mouse [25], and human [26, 27]

studies.

Present main applications of microarrays [28] include the identification of genetic

individuality of tissues or organisms (e.g. detection of single nucleotide

polymorphisms, SNPs) [7, 29], the investigation of cellular states and processes (such

Normalization methods Dye
effects

Slide
effects

spatial
effects

Scanner
effects

between
arrays

LOWESS correction for each

print tip [7, 15, 16]

Linear correction

[16, 21]

Total intensity normalization

[19]

Two dyes Cy3 and Cy5

[7, 15]

Double dye experimentation,

dying a sample once with Cy5

and with Cy3 in the second

experiment [19, 22]

Ratios values escalation across

the slides [19, 22]

Housekeeping genes [15]
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as the sporulation process) [30], the diagnosis of genetic and infectious diseases [31

33], the identification of the subtypes of a certain disease [34, 35], the detection of

genetic warning signs [36] or the drug selection [37].

In the large number of investigation areas, oncology has become the main field of DNA

microarray applications [38]. General aspects of cancer expression profiling have been

extensively reviewed [39 41]. It has been shown that subclassification of tumours

based on their molecular profiles may help to explain why these tumours respond

differently to treatment. Golub et al. [34] were the first to use microarray gene

expression data to distinguish between acute myeloid leukemia and acute lymphocytic

leukemia. Posterior studies allowed distinguishing samples of adult versus paediatric

leukemia [42], different subtypes of leukemia [43] and their molecular characterization

[44]. Recently, Su et al. [45] and Ross et al. [46] used large scale RNA profiling to

construct a molecular classification of different carcinomas (prostate, lung, ovary,

colorectum, kidney, liver, pancreas, bladder/urethra, and gastroesophagus). Additional

research for diagnosis by genetic profiling has been done for different cancers [47, 48].

In breast cancer, microarrays permitted differentiating between tumour types,

corresponding to BRCA1, BRCA2 and sporadic mutations [13, 49], the differentiation

between the estrogen receptors [50] and the differentiation between the stages in the

cancer progression [31]. In melanoma, most of the efforts have been applied to

differentiate between metastasis and no metastasis tissues [51, 52] and in

hepatocellular carcinoma the research has involved the pursuit of cancer progression

[53]. In other types of tumours, the diagnosis has been the main target. This is the case

of bladder cancer [54], cutaneous squamous cell cancer [55], and lung cancer [56]. In

the fields of colon [57], prostate [23], liver [58], glioma [59] and epithelia [60] cancers,

the research has focused on the differentiation between tumour and normal tissues

and in the case of lymphoma [35], medulloblastoma [61] and adenocrinoma [62] on

the differentiation between different subtypes of them.
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In non oncological clinical diagnosis, DNA microarrays are used to search for the

expression pattern characteristics of complex genetic disorders [47] such as diabetes

[33], obesity [63, 64], and schizophrenia [65]. Microarrays have also been used in

transplantation research; for example in renal transplantation to generate gene

expression profiles of renal biopsies for diagnoses of acute rejection [66], or in

diagnosis of infectious diseases, to detect gene sequences in the genomes of

Mycobacterium tuberculosis, HIV [67, 68], and other pathogens with the aim of

providing a diagnostic tool that detects expression of antibiotic resistance genes or

specified viral subtypes [38].

Another important application of DNA microarrays is the identification of the genes

that are responsible of a certain disease [48]. One of the first papers that reported the

use of microarrays for this purpose identified the genes differentially expressed

between a rat strain with insulin resistance and a normal insulin sensitive control strain

[69]. After this study, microarrays have been applied to identify genes involved in

many different cancer expressions [70 72], tumour progressions [73] or in many other

clinical fields such as neuronal diseases [74, 75]. In the last few years many methods

have been developed to identify the most relevant genes for a certain diagnosis. Three

major groups of methods exist: filters, wrappers and embedded techniques [76]. These

methods have been based on Genetic Algorithms [77], Random Forests [78], weights

of SVM [79], t tests or the Wilcoxon test [80], to cite a few. Most of these criteria are

univariate (i.e. each feature is evaluated independently), thus simple to interpret, but

they omit interactions and correlations between genes during gene selection [81].

Anyhow, these interactions must be taken into account since it has been shown that

there exist pairs of genes that are coexpressed. In a simple manner, if we find that the

genetic expression levels for two genes are similar, we can hypothesize that the

respective genes are co regulated and possibly functionally related [82]. More
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accurately, these coexpressions have been proved based on the correlation of

expression profiles or on functional and chromosomal structural information [83, 84].

 

Linked with the identification of the genes that are responsible for a disease,

microarrays have also been applied to find mutations that are responsible for the

disease phenotype. Although there are numerous methods for identifying the

mutations, microarrays may best satisfy a need for rapid, accurate and cost effective

method for genetic polymorphism identification [47]. This identification has been

presented as the foundation of pharmacogenomics. In next future, pharmacogenomics

aims to optimize the dose and drug formulation and to predict good and adverse

clinical responses to individual drugs, using microarrays for personalized medicine [38,

47, 85].

The huge amount of data generated in each microarray experiment implies the use of

multivariate techniques for their analysis. In one of the first studies with microarrays,

Golub et al. [34] applied two cluster self organizing maps to group 38 samples of

leukemia into two classes. Eisen et al. [86] used hierarchical clustering to find out the

genes with similar functions. Hierarchical clustering has also been used to discover two

molecular distinct types of diffuse large B cell lymphoma in which the patients in the

two subgroups showed significant differences in overall survival [35], and to categorize

breast cancer into its subtypes [87]. PCA has been applied to discriminate between

different tumour tissues, including colon carcinoma, breast carcinoma, central nervous

system tumour, lung cancer, leukemia, melanoma, ovarian carcinoma, and prostate

cancer [88]. The same analysis has been performed with k means clustering [88].

Multivariate supervised classification methods are probably the most important tools

for microarray data analysis. Such methods can be used to identify different expressed

genes, to find subgroups of samples, to differentiate between different states of a
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tumour and to infer the class of a sample from its gene expression microarray data. In

general terms, the aim of any classifier is to build a decision rule from a preclassified

dataset and use it to assign a new unlabeled sample to one or none of the predefined

classes. A large number of classification methods have been used in microarray data

analysis. The main studies are summarized in Table 4.

Table 4. Classification references for microarray gene expression data.

Classification method Objective of the study

SVM

Differentiate between ovarian cancer tissues, normal ovarian tissues and

other normal tissues [89].

Recognize five sets of genes in functional classes that were expected to be

co regulated: those mediating the tricarboxylic acid cycle, respiration,

cytoplasmic ribosome biosynthesis, proteasome biosynthesis and histone

biosynthesis [90].

TPCR

Discriminate between tumours from a variety of tissues and organs, e.g.

between subtypes of leukemia and the mutations of breast cancer [91].

Differentiate between round blue cell tumours of childhood

(neuroblastoma, rhabdomysarcoma, non Hodgkin lymphoma and Ewing

family of tumours) [91].

NN

Classify cancer samples into the same four groups of childhood cancer

[92].

Investigate the gene expression patterns associated with estrogens

receptor status in sporadic breast cancer [93].

MCR ALS

Classify types of leukemia [94].

Differentiate between nine types of tumour samples (breast cancer,

central nervous system tumour, colon carcinoma, lung cancer, leukemia,

melanoma, ovarian carcinoma, prostate cancer and renal carcinoma) [94].

SOM + k means clustering Classify subtypes of oral cancer [95].
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KNN
Select a subset of genes to classify subtypes of leukemia and a subset to

discriminate between tumour and healty colon samples [96].

PLS (for dimension

reduction) + LD or QLD

Differentiate between tumour and healthy samples of colon and ovarian

[97].

Differentiate between the subtypes of a cancer such as lymphoma or

leukemia [97].

PLS + PHR Predict patient survival probabilities [98].

PLS + RPLR
Classify samples of two types of leukemia [99].

Differentiate between healthy and tumour colon samples [99].

DPLS

Differentiate between samples before and after chemotherapy [100].

Identify the estrogens receptor status [100].

Differentiate the states of a breast cancer tumour [101].

Predict the drug efficacy using expression data biomarkers [102].

Identify the most relevant genes correlated with a certain tumour [103].

Predict the quality of a DNA microarray spot [104].

Classify tumour samples (different types of lymphoma and breast

cancer) [105].

Differentiate between healthy samples and samples of carcinoma, colon

and prostate tumour [105].

Identify genes whose expression appears to be synchronized with cell

cycling [106].

Identify genes with periodic fluctuations in expression levels coupled to

the cell cycle in the budding yeast [106].

Select a few gene expressions that are the most effective in

discriminating tumoral types (melanoma, colon, leukemia and renal

tumour cells) [103, 107].

Identify new lung cancer molecular markers with diagnostic value [108].

Abbreviations. SVM: Support vector machines, TPCR: Total principal component regression, NN: Neural
networks, MCR ALS: Multivariate curve resolution alternating least squares, SOM: self organizing maps ,
KNN: K nearest neighbours, PLS: Partial least squares, LD: Logistic discrimination, QLD: Quadratic logistic
discrimination, PHR: Proportional hazard regression, RPLR: Ridge penalized logistic regression, DPLS:
Discriminant partial least squares.
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Recently, the interest for using Discriminant Partial Least Squares (DPLS) has increased

[109, 110]. This interest arises from the high computational efficiency, large flexibility

and versatility of the method for the addressed microarray classification problems, and

from the existence of a variety of algorithmic variants [110]. Hence, to improve the

DPLS model in order to obtain better classification models and performances plays a

key role in gene expression microarray data classification.

UNIVERSITAT ROVIRA I VIRGILI 
MULTIVARIATE CLASSIFICATION OF GENE EXPRESSION MICROARRAY DATA 
Cristina Botella Pérez 
ISBN:978-84-693-5427-8/DL:T-1418-2010 



Introduction

36

[1] Ting Lee, M.L., Analysis of microarray gene expression data. 2004, USA: Kluwer Academic
Publishers.

[2] Higgs, P.G. and T.K. Attwood, Bioinformatics and Molecular Evolution, ed. B.S. Ltd. 2006:
Blackwell Publishing.

[3] U.S. Department of health and human services, The New Genetics, in NIH Publication No.07 662.
2006.

[4] Baldi, P. and G.W. Hatfield, DNA microarrays and Gene expression. From Experiments to Data
Analysis and Modeling. 2002, Cambridge: Cambridge University Press.

][5] Primrose, S.B. and R.M. Twyman, Principles of Gene Manipulation and Genomics (7th edition).
2006: Blackwell Publishing.

[6] Göhlmann, H. and W. Talloen, Gene Expression Studies Using Affymetrix Microarrays.
Mathematical and Computational Biology Series, ed. C. Hall. 2009: Taylor & Francis Group, LLC.

[7] Pasanen, T., et al., DNA Microarray Data Analysis. 2003, Helsinki: Ed. CSC The Finnish IT center for
Science.

[8] Allison, D.B., et al., Microarray data analysis: form disarray to consolidation and consensus.
Nature Reviews (Genetics), 2006. 7: p. 55 65.

[9] Liew, A.W. C., H. Yan, and M. Yang, Pattern Recognition techniques for the emerging field of
bioinformatics: A review. . Pattern Recognition, 2005. 38: p. 2055 2073.

[10] Southern, E., Detection of specific sequences among DNA fragments separated by gel
electrophoresis. Journal of Molecular Biology, 1975. 98: p. 503 507.

[11] Fodor, S.P., et al.,Multiplexed biochemical assays with biological chips. Nature, 1993. 364: p. 555
556.

[12] Shena, M., et al., Quantitative monitoring of gene expression Patterns with complementary DNA
microarray. Science, 1995. 270: p. 467 470.

[13] Hedenfalk, I., et al., Gene Expression profiles in hereditary breast cancer. The New England Journal
of Medicine, 2001. 344: p. 539 548.

[14] Mada, H., Microarray Data Analysis (I), Part A: cDNA spotted Microarray. Material of Data
Analysis Course. http://www.sinica.edu.tw/~hmwu/CourseSMDA/index.htm, Academia Sinica:
Institute of Statistical Science: Taiwan.

[15] Schuchhardt, J., et al., Normalization strategies for cDNA microarrays. Nucleic Acids Research,
2000. 28: p. e47.

[16] Berrar, D., W. Dubitzky, and M. Granzow., A practical approach to microarray data analysis. 2004,
USA: Kluwer Academic Publishers.

[17] http://www.moleculardevices.com/.
[18] Wang, D. and e. al., Effects of replacing the unreliable cDNA microarray measurements on the

disease classification based on gene expression profiles and functional modules. Bioinformatics,
2006. 22: p. 2883 2889.

[19] Quackenbush, J., Extracting biology from high dimensional biological data. J Exp Biol, 2007. 210:
p. 1507 1517.

[20] Cleveland, W.S., Robust Locally Weighted Regression and Smoothing Scatterplots. Journal of the
American Statistical Association, 1979. 74: p. 829 836.

[21] Kepler, T.B., L. Crosby, and K.T. Morgan, Normalization and analysis of DNA microarray data by
self consistency and local regression. Genome Biology, 2002. 3: p. 1 12.

UNIVERSITAT ROVIRA I VIRGILI 
MULTIVARIATE CLASSIFICATION OF GENE EXPRESSION MICROARRAY DATA 
Cristina Botella Pérez 
ISBN:978-84-693-5427-8/DL:T-1418-2010 



References

 
 
  

37

[22] Yang, Y.H., et al., Normalization for cDNA microarray data: a robust composite method addressing
single and multiple slide systematic variation. Nucleic Acids Research, 2002. 30: p. e15.

[23] Singh, D., et al., Gene expression correlates of clinical prostate cancer behavior. Cancer Cell, 2002.
1: p. 203 209.

[24] Shalon, D., S.J. Smith, and P.O. Brown, 1996. Genome Research, A DNA microarray system for
analyzing complex DNA samples using two color fluorescent probe hybridization. 6: p. 639 645.

[25] Lockhart, D.J., et al., DNA Expression monitoring by hybridization to high density oligonucleotide
arrays. Nature Biotechnology, 1996. 14: p. 1675 1680.

[26] Baldini, A. and D.C. Ward, In situ hybridization banding of human chromosomes with Alu PCR
products: a simultaneous karyotype for gene mapping studies. . Genomics, 1991. 9: p. 770 774.

[27] Ried, T., et al., Multicolor fluorescence in situ hybridization for the simultaneous detection of
probe sets for chromosomes 13, 18, 21, X and Y in uncultured amniotic fluid cells. Human
Molecular Genetics, 1992. 1: p. 307 313.

[28] Lesk, A.M., Introduction to Bioinformatics (3rd Edition). 2008: Oxford University Press.
[29] Butcher, L.M., et al., SNPs, microarrays and pooled DNA: identification of four loci associated with

mild mental impairment in a sample of 6000 children. Human Molecular Genetics, 2005. 14: p.
1315 1325.

[30] Friedlander, G., et al., Modulation of the transcription regulatory program in yeast cells
committed to sporulation. Genome Biology, 2006. 7: article R20.

[31] Veer, L.J.v.t., et al., Gene expression profiling predicts clinical outcome of breast cancer. Nature,
2002. 415: p. 530 535.

[32] Thomas, R.S., et al., Identification of toxicologically predictive gene sets using cDNA microarrays.
Molecular Pharmacology, 2001. 60: p. 1189 1194.

[33] Mootha, V.K., et al., PGC 1a responsive genes involved in oxidative phosphorylation are
coordinately downregulated in human diabetes. Nature, 2003. 34(3): p. 266 273.

[34] Golub, T.R., et al.,Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene
Expression Monitoring. Science, 1999. 285: p. 531 537.

[35] Alizadeh, A.A., et al., Distinct types of diffuse large B cell lymphoma identifyed by gene expression
profyling. Nature, 2000. 403 p. 503 511.

[36] Sebat, J., et al., Strong Association of De Novo Copy Number Mutations with Autism. Science,
2007. 316: p. 445 449.

[37] Chavan, P., K. Joshi, and B. Patwardhan, DNA Microarrays in Herbal Drug Research. eCAM, 2006.
3(7): p. 447 457.

[38] Aitman, T.J., Science, medicine, and the future: DNA microarrays in medical practice. The Brithish
Medical Journal, 2001. 323: p. 611 615.

[39] Cuperlovic Culf, M., N. Belacel, and J. Ouellette, Determination of tumour marker genes from
gene expression data. Drug Discovery Today Targets (Reviews), 2005. 10: p. 429 437.

[40] MacGregor, P.F. and J.A. Squire, Applications of microarrays to the analysis of gene expression in
cancer. Clinical Chemistry, 2002. 48: p. 1170 1177.

[41] Wadlow, R. and S. Ramaswamy, DNA microarrays in clinical cancer research. Current Molecular
Medicine, 2005. 5: p. 111 120.

[42] Kohlmann, A., et al., Pediatric acute lymphoblastic leukemia (ALL) gene expression signatures
classify an independent cohort of adult ALL patients Leukemia, 2004. 18: p. 63 71.

[43] Haferlach, T., et al., AML M3 and AML M3 variant each have a distinct gene expression signature
but also share patterns different from other genetically defined AML subtypes. Genes
Chromosomes Cancer, 2005: p. 113 127.

UNIVERSITAT ROVIRA I VIRGILI 
MULTIVARIATE CLASSIFICATION OF GENE EXPRESSION MICROARRAY DATA 
Cristina Botella Pérez 
ISBN:978-84-693-5427-8/DL:T-1418-2010 



Introduction

38

[44] Kohlmann, A., et al., Molecular characterisation of acute leukemias by use of microarray
technology. Genes Chromosomes Cancer, 2003. 37: p. 396 405.

[45] Su, A.I., et al.,Molecular classification of human carcinomas by use of gene expression signatures.
Cancer Research, 2001. 61: p. 7388 7393.

[46] Ross, D.T., et al., Systematic variation in gene expression patterns in human cancer cell lines.
Nature Genetics, 2000. 24: p. 227 235.

[47] Petrik, J., Diagnostic applications of microarrays. Transfusion Medicine. 16: p. 233 247.
[48] Frolov, A.E., Differential Gene Expression Analysis by DNA Microarray Technology and Its

Application in Molecular Oncology.Molecular Biology, 2003. 37: p. 486 494.
[49] Sorlie, T., et al., Gene expression patterns of breast carcinomas distinguish tumor subclasses with

clinical implications. . Proceedings of the National Academy of Sciences, 2001. 98: p. 10869
10874.

[50] West, M., et al., Predicting the clinical status of human breast cancer by using gene expression
profiles. Proceedings of the National Academy of Sciences of the United States of America (PNAS),
2001. 98: p. 11462 11467.

[51] Bittner, M., et al., Molecular classification of cutaneous malignant melanoma by gene expression
profiling. Nature, 2000. 406: p. 536�–540.

[52] Clark, E.A., et al., Genomic analysis of metastasis reveals an essential role for RhoC. Nature, 2000.
406: p. 532 535.

[53] Mao, H.J., et al., Monitoring microarray based gene expression profile changes in hepatocellular
carcinoma.World Journal of Gastroenterology, 2005. 11: p. 2811 2816.

[54] Dyrskjot, L., Classification of bladder cancer by microarray expression profiling: towards a general
clinical use of microarrays in cancer diagnostics. Expert Reviews in Molecular Diagnostics. 2003. 3:
p. 635�–647.

[55] Dooley, T.P., et al., Biomarkers of human cutaneous squamous cell carcinoma from tissues and
cell lines identified by DNA microarrays and qRT PCR. . Biochemical and Biophysical Research
Communications, 2003. 306: p. 1026 1036.

[56] Gordon, G.J., R.V. Jensen, and L.L. Hsiao, Translation of microarray data into clinically relevant
cancer diagnostic tests using expression ratios in lung cancer and mesothelioma. Cancer Research,
2002. 62: p. 4963�–4967.

[57] Alon, U., et al., Broad patterns of gene expression revealed by clustering analysis of tumor and
normal colon tissues probed by oligonucleotide arrays. Cell Biology, 1999. 96: p. 6745 6750.

[58] Chen, X., et al., Gene expression patterns in human liver cancers. Molecular Biology of the Cell,
2002. 13: p. 1929 1939.

[59] Boom, J.v.d., et al., Characterization of Gene Expression Profiles Associated with glioma
progression using Oligonucleotide based microarray analysis and Real Time Reverse
Transcription Polymerase Chain Reaction. American Journal of Pathology, 2003. 163: p. 1033
1043.

[60] Kitahara, O., et al., Alterations of gene expression during colorectal carcinogenesis revealed by
cDNA microarrays after laser capture microdissection of tumour tissues and normal epithelia. .
Cancer Research, 2001. 61: p. 3544 3549.

[61] Pomeroy, S.L. and e. al, Prediction of central nervous system embryonal tumour outcome based
on gene expression. Nature, 2002. 415: p. 436 442.

[62] Bhattacharjee, A., et al., Classification of human lung carcinomas by mRNA expression profiling
reveals distinct adenocarcinoma subclasses. Proceedings of the National Academy of Sciences,
2001. 98: p. 13790�–13795.

UNIVERSITAT ROVIRA I VIRGILI 
MULTIVARIATE CLASSIFICATION OF GENE EXPRESSION MICROARRAY DATA 
Cristina Botella Pérez 
ISBN:978-84-693-5427-8/DL:T-1418-2010 



References

 
 
  

39

[63] Nadler, S.T., et al., The expression of adipogenic genes is decreased in obesity and diabetes
mellitus. Proceedings of the National Academy of Sciences, 2000. 97: p. 11371 11376.

[64] Permana, P.A., A.D. Parigi, and P.A. Tataranni,Microarray gene expression profiling in obesity and
insulin resistance. Nutrition, 2004. 20: p. 134 138.

[65] Hakak, Y., et al., Genome wide expression analysis reveals dysregulation of myelination related
genes in chronic schizophrenia. Proceedings of the National Academy of Sciences, 2001. 98: p.
4746 4751.

[66] Mayeux, R., Mapping the new frontier: complex genetic disorders. The Journal of Clinical
Investigation, 2005. 115: p. 1404 1407.

[67] Kozal, M.J., et al., Extensive polymorphisms observed in the HIV1 cladeB protease gene using
highdensity oligonucleotide arrays. Nature Medicine, 1996. 2: p. 753 759.

[68] Gingeras, T.R., et al., Simultaneous genotyping and species identification using hybridization
pattern recognition of generic mycobacterium DNA arrays. Genome Research, 1998. 8: p. 435
448.

[69] Aitman, T.J., et al., Identification of Cd36 (Fat) as an insulinresistance gene causing defective fatty
acid and glucose metabolism in hypertensive rats. Nature Genetics,, 1999. 21: p. 76 83.

[70] Otero, E., et al., DNA microarrays in oral cancer.Medicina Oral, 2004. 9: p. 288 292.
[71] Graveel, C.R., et al., Expression profiling and identification of novel genes in hepatocellular

carcinomas. Oncogene, 2001. 20: p. 2704 2712.
[72] Brem, R., et al., Global analysis of differential gene expression after transformation with the v H

ras oncogene in a murine tumor model. Oncogene, 2001. 20: p. 2854 2858.
[73] Okabe, H., et al., Genome wide analysis of gene expression in human hepatocellular carcinomas

using cDNA microarray: identification of genes involved in viral carcinogenesis and tumor
progression. Cancer Research, 2001. 61: p. 2129�–2137.

[74] Cavallaro, S., et al., Gene expression profiles during long term memory consolidation. European
Journal of Neuroscience, 2001. 13: p. 1809 1815.

[75] Zirlinger, M., G. Kreiman, and D.J. Anderson, Amygdala enriched genes identified by microarray
technology are restricted to specific amygdaloid subnuclei. Proceedings of the National Academy
of Sciences, 2001. 98: p. 5270 5275.

[76] Saeys, Y., I. Inza, and P. Larrañaga, A review of feature selection techniques in bioinformatics.
Bioinformatics, 2007. 23: p. 2507 2517.

[77] Tang, E.K., P. Suganthan, and X. Yao, Gene selection algorithms for microarray data based on least
squares support vector machine. BMC Bioinformatics, 2006. 7: article 95.

[78] Díaz Uriarte, R. and S.A.d. Andrés, Gene selection and classification of microarray data using
random forest. BMC Bioinformatics, 2006. 7: article 3.

[79] Guyon, I., et al., Gene Selection for Cancer Classification using Support Vector Machines. Machine
Learning, 2002. 46: p. 389 422.

[80] Troyanskaya, O.G., et al., Nonparametric methods for identifying differentially expressed genes in
microarrays. Bioinformatics, 2002. 18: p. 1454 1461.

[81] Li, G. Z., et al., Partial Least Squares based dimension reduction with gene selection for tumour
classification. 7th IEEE International Conference onBioinformatics and Bioengineering, 2007: p.
1439 1444.

[82] Brazma, A. and J. Vilo, Gene expression data analysis. Federation of European Biochemical
Societies Letters, 2000. 480: p. 17 24.

[83] Lee, H.K., et al., Coexpression Analysis of Human Genes Across Many Microarray Data Sets.
Genome Research, 2004. 14: p. 1085 1094.

UNIVERSITAT ROVIRA I VIRGILI 
MULTIVARIATE CLASSIFICATION OF GENE EXPRESSION MICROARRAY DATA 
Cristina Botella Pérez 
ISBN:978-84-693-5427-8/DL:T-1418-2010 



Introduction

40

[84] Kluger, Y., et al., Relationship between gene co expression and probe localization on microarray
slides. BMC Genomics, 2003. 4: p. 49 54.

[85] Gunther, E.C. and e. al., Prediction of drug efficacy by classification of drug induced genomic
expression profiles in vitro. Proceedings of the National Academy of Sciences, 2003. 100: p. 9608
9613.

[86] Eisen, M.B., et al., Cluster analysis and display of genome wide expression patterns. Proceedings
of the National Academy of Sciences, 1998. 95: p. 14863 14868.

[87] Perou, C.M., et al.,Molecular portraits of human breast tumours. Nature, 2000. 406: p. 747 752.
[88] Crescenzi, M. and A. Giuliani, The main biological determinants of tumor line taxonomy elucidated

by a principal component analysis of microarray data. FEBS Letters 2001. 507: p. 114 118.
[89] Furey, T.S., et al., Support Vector Machine classification and validation of cancer tissue samples

using microarray expression data. Bioinformatics, 2000. 16: p. 906 914.
[90] Brown M.P.S, e.a., Knowledge based analysis of microarray gene expression data by using support

vector machines. Proceedings of the National Academy of Sciences, 2000. 97: p. 262 267.
[91] Tan, Y., et al., Multi class cancer classification by total principal component regression (TPCR)

using microarray gene expression data. Nucleic Acids Research 2005. 33: p. 56 65.
[92] Khan, J., et al., Classification and diagnostic prediction of cancers using gene expression profiling

and artificial neural networks. Nature Medicine, 2001. 7: p. 673 679.
[93] Gruvberger, S., et al., Estrogen receptor status in breast cancer is associated with remarkably

distinct gene expression patterns. Cancer Research, 2001. 61: p. 5979 5984.
[94] Jaumot, J., R. Tauler, and R. Gargallo, Exploratory data analysis of DNA microarrays by

multivariate curve resolution. Analytical Biochemistry, 2006. 358: p. 76 89.
[95] Warner, G.C., et al., Molecular classification of oral cancer by cDNA Microarrays Identifies

overexpressed genes correlated with nodal metastasis. International Journal Cancer, 2004. 110: p.
857 868.

[96] Li, L., et al., Gene selection for sample classification based on gene expression data: study of
sensitivity to choice of parameters of the GA/KNN method. Bioinformatics, 2001. 17: p. 1131
1142.

[97] Nguyen, D.V. and D.M. Rocke, Tumor classification by partial least squares microarray gene
expression data. Bioinformatics, 2002. 18: p. 39 50.

[98] Nguyen, D.V. and D.M. Rocke, Partial least squares proportional hazard regression for application
to DNA microarray survival data. Bioinformatics, 2002. 18: p. 1625 1632.

[99] Fort, G. and S. Lambert Lacroix, Classification using Partial Least Squares with Penalized Logistic
Regression. Bioinformatics, 2005. 21: p. 1104 1111.

[100] Pérez Enciso, M. and M. Tenenhaus, Prediction of clinical outcome with microarray data: a partial
least squares discriminant analysis (PLS DA) approach. Human Genetics, 2003. 112: p. 581 592.

[101] Modlich, O., et al., Predictors of primary breast cancers responsiveness to preoperative
Epirubicin/Cyclophosphamide based chemotherapy: translation of microarray data into clinically
useful predictive signature. Journal of Translational Medicine, 2005. 3: article 32.

[102] Man, M.Z., et al., Evaluation methods for classifying Expression data. Journal of
Biopharmaceutical Statistics, 2004. 14: p. 1065 1084.

[103] Musumarra, G., et al., Potentialities of multivariate approaches in genome based cancer research:
identification of candidate genes for new diagnostics by PLS discriminant analysisy. Journal of
Chemometrics 2004. 18: p. 125 132.

[104] Bylesjö, M., et al., MASQOT: a method for cDNA microarray spot quality control. BMC
Bioinformatics, 2005. 6: p. 250.

UNIVERSITAT ROVIRA I VIRGILI 
MULTIVARIATE CLASSIFICATION OF GENE EXPRESSION MICROARRAY DATA 
Cristina Botella Pérez 
ISBN:978-84-693-5427-8/DL:T-1418-2010 



References

 
 
  

41

[105] Boulesteix, A. L., PLS dimension reduction for classification with microarray data. Statistical
Applications in Genetics and Molecular Biology, 2004. 3: article 33.

[106] Johansson, D., P. Lindgren, and A. Berglund, A multivariate approach applied to microarray data
for identification of genes with cell cycle coupled transcription. . Bioinformatics. 19: p. 467 473.

[107] Musumarra, G., et al., A Bioinformatic Approach to the Identification of Candidate Genes for the
Development of New Cancer Diagnostics. Biol. Chem., 2003. 384: p. 321 327.

[108] Musssumarra, G., et al., Genome based identification of diagnostic molecular markers for human
lung carcinomas by PLS DA. Computational Biology and Chemistry, 2005. 29: p. 183 195.

[109] Nguyen, D.V. and D.M. Rocke, Multi class cancer classification via partial least squares with gene
expression profiles. Bioinformatics, 2002. 18: p. 1216 1226.

[110] Boulesteix, A. L. and K. Strimmer, Partial least squares: a versatile tool for the analysis of high
dimensional genomic data. Briefings in Bioinformatics, 2007. 8: p. 32 44.

UNIVERSITAT ROVIRA I VIRGILI 
MULTIVARIATE CLASSIFICATION OF GENE EXPRESSION MICROARRAY DATA 
Cristina Botella Pérez 
ISBN:978-84-693-5427-8/DL:T-1418-2010 



.

UNIVERSITAT ROVIRA I VIRGILI 
MULTIVARIATE CLASSIFICATION OF GENE EXPRESSION MICROARRAY DATA 
Cristina Botella Pérez 
ISBN:978-84-693-5427-8/DL:T-1418-2010 



CHAPTER  2 Thesis Objectives

UNIVERSITAT ROVIRA I VIRGILI 
MULTIVARIATE CLASSIFICATION OF GENE EXPRESSION MICROARRAY DATA 
Cristina Botella Pérez 
ISBN:978-84-693-5427-8/DL:T-1418-2010 



 

UNIVERSITAT ROVIRA I VIRGILI 
MULTIVARIATE CLASSIFICATION OF GENE EXPRESSION MICROARRAY DATA 
Cristina Botella Pérez 
ISBN:978-84-693-5427-8/DL:T-1418-2010 



Thesis objectives

45

Microarrays allow the simultaneous analysis of thousands of gene expressions. Clinical

diagnosis based on gene expression data has two main targets: 1) to achieve the

correct diagnostic for a patient with the greatest confidence and 2) to identify the

genes responsible for a particular disease. In data analysis words, these objectives

imply developing the best classification model in order to classify a sample in its true

class with a low risk of misclassification and to identify the relevant variables that allow

discriminating among the classes under study.

Multivariate methods are required to analyse the huge amount of data generated in

microarray experiments. Discriminant Partial Least Squares (DPLS) classification is

commonly used in this field. The performance of this classification method depends on

many settings such as the data pre processing, the number of factors, the number of

variables and the presence of outliers. Taking into account these considerations the

aim of this thesis is to optimize the classification based on DPLS in order to classify

clinical samples from their gene expression microarray data. More in detail the

objectives of the present thesis are:

1. To discuss the limitation of p DPLS classification following the Bayes rule, which

forces the classifier to always assign a sample to one of the modeled classes, and

propose different approaches to overcome this limitation.

2. To implement the reject option in the probabilistic Discriminant Partial

Least Squares method (p DPLS), used to classify the samples from their gene

expression data. This gives to the classification rule the ability to reject to

classify a sample when the risk of misclassification is too high, and avoids

forcing the classification into one of the modelled classes.

3. To develop a new method for detecting ambiguous samples and outliers for p

DPLS, in order to improve the accuracy of the classification model. This will avoid
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classifying samples that would be probably misclassified due: 1) they share

characteristics of the two classes modelled, 2) they do not belong to any of the

modelled classes 3) they have errors in instrumental data or 4) they have errors in

their class codification.

4. To develop a new method for gene selection in order to reduce the data

dimensionality �– eliminating the redundant data and the noise �– and to improve

the classification model by decreasing the risk of misclassification.

5. To study the implications that the split of the datasets into training and test

sets have on gene selection and on the performance of the classification models.

6. To extend the binary classification based on DPLS to multi class classification.

This should help to solve common clinical classification problems in which more

than two subtypes of samples are involved.
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3.1 Introduction

Microarray gene expression data are characterized by a set of P features or

measurements obtained through observation, which are represented by the vector x.

The objective of a classifier is to assign a class (category) label (y) to this sample based

on its recorded x. In the probabilistic Discriminant Partial Least Squares classification

method (p DPLS) [1], the PLS model translates x into a predicted value . This and the

probability density function (PDF) that describes the distribution of the �’s of the

training samples of each class are used to calculate the a posteriori probability that the

sample belongs to each modeled class. Classification is then decided using the Bayes

rule for minimum error [2].

The Bayes rule is commonly used as a criterion for classification. Its drawback is that the

unknown sample is always classified, even if the sample is either an outlier or is

ambiguous (it has a similar a posteriori probability to belong to both classes). In such

situations, it would be better to reject to classify the sample [3].

The objective of this chapter is to discuss the implementation of the reject option in p

DPLS. Section 3.2 introduces the formulation of the p DPLS model. Then, the application

of the Bayes rule for classifying in p DPLS is shown in section 3.3. Section 3.4 discusses

the limitations of using the Bayes rule in p DPLS. Limitations that are overcome by

implementing a reject option. Two approximations for implementing the reject option in

p DPLS are discussed in section 3.5. Finally, section 3.6 discusses the necessary changes

in the interpretation of the measures of classification performance when the classifier

includes the reject option.
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3.2 Probabilistic discriminant partial least squares

3.2.1 The partial least squares model

One task in data analysis is to describe the relationship between the observations in the

predictor space (X) and a dependent variable (y) [4]. Partial least squares (PLS) is a

regression method that specifically searches a set of components (or factors) that

perform a simultaneous decomposition of X and y with the constraint that these

components explain as much as possible the covariance between X and y. Discriminant

PLS (DPLS) applies PLS regression to binary classification problems, in which y codifies

the class of the samples [5, 6]. With microarray gene expression data, X is an N Pmatrix

of N samples and P gene expressions and y is a N 1 vector of ones and zeros, where the

integer 0 indicates that the sample belongs to class 0 (e.g. �“cancer type I�”) and the

integer 1 indicates that the sample belongs to class 1 (e.g. �“cancer type II�”).

PLS decomposes X and y into:

(1)

(2)

where T is the scores matrix, P is the loadings matrix, u is the vector of scores for y and q

is the loading [7]. E is the (error) residual matrix of the X�–matrix and f is the vector of

(error) residual of the y�–vector. An inner relationship is constructed that relates the

scores of the X block to the scores of the y block.

(3)
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Once the model is calculated, the above equations can be combined to obtain a vector

of regression coefficients for a given number of factors:

(4)

whereW is the matrix whose columns are the weights in Eq. (3).

The prediction for a sample is calculated as:

(5)

Note that if b has been calculated from mean centered data, then x in Eq. (5) should be

mean centered, and the predicted should be processed accordingly. Ideally, the

prediction for a sample of class 1 should be 1 and for a sample of class 0 should be

0. Since this is never the case, because of random variability and modelling error, a

threshold is defined so that a sample whose prediction is above this threshold is

classified into class 1, and otherwise it is classified into class 0. The threshold can be

defined with a different degree of rigour (e.g., the threshold is arbitrarily set at 0.5 or

assuming that the �’s of the training samples follow a Gaussian distribution and

estimating the distribution using the mean and standard deviation of the �’s of each

class). In the following section, the threshold is defined from PDFs that describe each

class. This has lead to a new version of DPLS called probabilistic DPLS (p DPLS).

3.2.2 Probability density function of a class

In p DPLS, one PDF is calculated that represents the PLS predictions characterizing the

samples of class 0 and one PDF is calculated that represents the range of predictions of

samples of class 1. The PDFs are calculated as follows. For the PLS model with A

factors, the training samples are predicted with Eq. (5). For each training sample i, a
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Gaussian function (also called kernel function) centred at the predicted value i is

calculated as:

(6)

where

(7)

and

(8)

SEPi is the standard error of prediction for sample i, hi is the leverage of the sample,

RMSEC is the root mean square error of calibration, yi is the known class of the training

sample i (i.e. the value 0 for a sample of class 0 and the value 1 for a sample of class

1) and is 1 if the data has been centred and 0 otherwise. Figure 1 shows the Gaussian

functions calculated for three training samples of class 0 and four samples of class 1.

Figure 1. Gaussian functions (f( i)) and PDFs (p( | 0), p( | 1)) calculated for a hypothetical p DPLS model.
Note that the width of the Gaussian kernel for each sample is different, because it depends on the leverage of
the sample, and, ultimately, on the relative position of the sample in the multivariate space.

0 1

f( i)
SEP i

i

f( i)

)|�ˆ( 0yp )|�ˆ( 1yp
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The PDFs for class 0 and 1 are calculated by averaging the individual kernel functions

of the training samples of each class:

(9)

(10)

where n0 and n1 are the number of samples of class 0 and class 1 respectively.

For a test sample, the predicted value i is calculated with Eq. (5) for a DPLS model with

A factors. Then, the sample is classified according to its probability to belong to each

one of the classes, as it is shown in the next section.

3.3 Class prediction

3.3.1 Classification based on probabilities

Classification based on a priori probability

Let { 1�… c} be a finite set of C classes. The a priori probability P( c) is the probability of

observing class c when a new sample arrives [8]. It reflects our prior knowledge of how

likely we are to get a sample of one class (e.g. �“cancer type I�”) and not another kind of

sample (e.g. �“healthy�” or �“cancer type II�”) [9]. A priori probabilities are often considered

equal for all the classes [10, 11] or calculated from the number of samples in the

training set assuming that this set is representative of the population [12 14], with the

constraint that [8].
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In p DPLS, the a priori probabilities are P( 0) =n0/N and P( 1)=n1/N for class 0 and class

1 respectively, where n0 is the number of training samples of class 0, n1 is the number

of samples of class 1 and N = n0 + n1.

Based on the a priori probability only, the classification rule in p DPLS that minimizes the

probability of error is to assign a sample to class c if

    (11)

The drawback of this rule is that it will always assign any new sample to the same class

(the one with the highest a priori probability), although we know that samples from

different classes may arrive. The information about the sample contained in x is ignored.

Classification based on probability density functions

A better classification decision can be made by using the measurement vector x that

characterizes the incoming sample; in our case, the data x from a microarray

experiment. In p DPLS, x is first converted into the prediction with Eq. (5) for the PLS

model with A factors. Then, the rule is to assign the sample i with prediction i to the

class c if

(12)

where p( i| c) is the class conditional PDF for class c obtained from the �’s of the

training samples evaluated at position i (section 3.2.2). Note that, if for a certain

sample, p( i| 0) = p( i| 1), the value of the PDF will not decide. Figure 2 shows different

PDFs for two classes, 0 and 1 for different hypothetical p DPLS models (e.g. calculated

with different number A of factors). For a given sample with the predicted value i ( ),

the classification is done by comparing the values of each PDF at such i (arrows in

Figure 2a). The sample is classified into the class with the largest p( i| c). Note that in

the zone where the PDFs overlap, the values p( i| c) are similar for both classes (see the

UNIVERSITAT ROVIRA I VIRGILI 
MULTIVARIATE CLASSIFICATION OF GENE EXPRESSION MICROARRAY DATA 
Cristina Botella Pérez 
ISBN:978-84-693-5427-8/DL:T-1418-2010 



3.3 Class prediction

55

first two PDFs images in Figure 2a). Hence, a small variation in i due to random error in

xmay change the class that has the largest p( i| c), and hence changes the classification

decision. The classification of samples in that zone (called ambiguous samples) will be

discussed later.

Figure 2. Example for hypothetical p DPLS models a. PDFs b. a posteriori probabilities c. risk functions
assuming cc=0 and cc�’=1.

Classification based on a posteriori probability

A more elaborated classification decision combines the a priori probability and the

prediction i of the incoming sample. The probability that this new sample belongs to

class c in a C class problem is given by the Bayes�’ a posteriori probability expression:
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(13)

When applied to microarray data classification, P( c| i) is the probability that a cell or

tissue characterized by its gene expression data x (from which i is obtained) is either

from the �“healthy�” class or, otherwise, from the �“tumour�” class.

The denominator (known as evidence or unconditional probability density function) is a

scale factor that measures how frequently we will measure a sample with such i:

(14)

The rule assigns the sample to the class with the largest a posteriori probability. So, a

sample will be assigned to class c if:

(15)

Or, since the evidence is the same for all the classes, if

(16)

For a two class classification problem, as in p DPLS, the a posteriori probabilities P( c i)

are:

(17a)

(17b)

where:

(18)
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Figure 2b shows the a posteriori probabilities calculated from the PDFS of Figures 2a for

two classes along the domain. The arrows indicate the a posteriori probability of the

sample ( ) in each class.

Note that since the a posteriori probability is calculated as a ratio (Eq. 17a b), it

increases for one class as the is far away from the PDF of the other class. Hence, for a

sample with i predicted value ( ) the classification is more risked when PDFs overlap

(first two rows of images of Figure 2). Instead when the distributions are more

separated (images on third and fourth rows in Figure 2), the classification action is taken

with higher probability of being correct.

3.3.2 Classification based on risk

Classification costs

Each classification decision has an associated cost. Let { 1�… c} be the possible decisions,

where c indicates that the sample is classified in class c. Let ( c| c�’) be the cost

incurred for making the decision c (classify in c) when the true class is c�’. For short

( c| c�’) is represented as cc�’.

In practice, to decide the right costs for the classification problem is difficult and

requires an expert opinion. Costs result from combining several factors measured in

different units �– money, time or quality of life [8] �–, but a general approach is to

consider that a correct classification has cost 0 (i.e., when a sample of class c has been

classified in class c, cc = 0) and an incorrect classification has cost 1 (i.e., when a sample

of class c has been classified in class c�’, cc�’ = 1) [15 17]. Other approaches have been

used. Santos Pereira [18] proposed seven different combinations of costs to optimize

the classification, based on the work published by Tortorella [19]. They introduced

negative costs for correct classifications and positive costs for misclassifications. Deceux
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[15] presented costs of classifying the samples in three different classes, with values

from 0.5 to 3 to penalize each classification. Another strategy is to assign different costs

to each type of error and classification, i.e. to classify a sample as �“healthy�” when it is

�“tumor�” is penalized different, with a higher cost, than to classify a sample as �“tumor�”

when it is �“healthy�” [9, 20].

The risk of classification

The risk of classification, called the conditional risk, R( c| i) is defined as the expected

loss (cost). Conditional means that the risk depends on the value that characterizes the

sample (here i, that derives from the observed x through the PLS model) in which the

classification is based on. Depending on i, we may run a higher or a lower risk. For a

particular i and the action c taken, the loss incurred is ( c| c�’), where c�’ is the

possible true class (i.e. classes in wihch the samples may be classified). Since P( c�’| i) is

the probability that the true class for such i is c�’, the expected loss associated with

taking action c is [9]:

(19)
 

For two classes, the risk of classification becomes:

(20a)

 (20b)

Here action 0 is �“classify the sample into class 0�” and action 1 is �“classify the sample

into class 1�”. 01 is the loss incurred for deciding 0 when the true class is 1, 10 is the

loss incurred for deciding 1 when the true class is 0 and 00 and 11 are the costs of

correctly classifying the samples into class 0 and class 1, respectively.
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Whenever we have a prediction i we can minimize the expected loss by selecting the

action that minimizes the conditional risk. The decision rule based on risk is known as

Bayes�’ theorem of the minimum error [2]. The rule for the Bayes minimum risk classifies

the sample in class c if

(21)

For binary classifiers like p DPLS, Eq. (21) becomes to classify the sample into class:

(22)

with R( 0| i) and R( 1| i) evaluated with equations 20a 20b.

If we consider cost zero for a correct classification and cost one for any error (i.e., 00 =

11 = 0 and 01 = 10 =1), the risk of classification becomes:

(23a)

(23b)

and the classification decision may be expressed in terms of a posteriori probabilities as

(24)

Figure 2c shows the risk over the domain for a binary classifier with cc=0 and cc�’=1.

Note that the risk curves are opposite to the a posteriori probability curves, i.e., a high a

posteriori probability involves a low risk, and vice versa. Also note that the risk of

classification in one of the classes decreases the furthest away the prediction is from the

PDF of the other class. For a test sample ( ), in the top two models, the risk taken to

classify the sample into class 0, R( 0| i), is similar to the risk to classify the sample into

class 1, R( 1| i). In such a situation the chance of misclassification is high. By contrast,

when the PDFs are not overlapped (Figure 2c, bottom) the risk taken when classifying
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this sample in class 0 is much higher than the risk taken when classifying it in class 1

(i.e R( 0| i) >> R( 1| i)). Hence the sample will be classified in class 1 with a low risk of

classification.

The classification based on risk is a general rule from which the previous rules derive. To

be meaningful, the classification based on risks requires the costs to be set objectively

(e.g. in monetary units). If they are not known and the cost of misclassification is set

equal to one and the cost of correct classification is set equal to zero, the classification

based on risk is equivalent to the classification based only on a posteriori probabilities.

3.4 Discussion of class prediction

The Bayes rule is optimal in the sense that no other rule can yield a lower error

probability. However, when the i lies in the ambiguity region and when the sample lies

in the limits of the classes�’ domains this rule may lead to questionable results. These

situations are commented below.

It is common that in binary classification the PDFs of class 0 and class 1 overlap

(Figure 3a). The overlap arises because either the classification algorithm has a limited

discriminative power, or because some samples of both classes have similar measured x.

A sample whose prediction is in that region has similar values of the PDFs p( i 0) p( i

1) and, assuming that the a priori probabilities are equal, has also similar values of the

a posteriori probabilities P( 0 i) P( 1 i). Since there is not a clear difference, the

sample could well belong to any of the two classes and the probability of

misclassification is high. The overlap zone (dashed region in Figure 3) is called ambiguity

region.
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Figure 3. Hipothetic p DPLS model. a b. PDF�’s c b. a posteriori probability functions. Class 0 is represented by

the green line and class 1 by the yellow line. The dashed region is the ambiguity region.

Another common situation arises when the sample�’s prediction is outside the range of

the predictions of the training samples. This situation may happen at the extremes of

the PDFs (Figure 3a and 3b) and also in the region between the PDFs if the PDFs do not

overlap (Figure 3b). In these regions, the class conditional probabilities p( i| c) are very

low for both classes and also the products p( i| 0) P( 0) and p( i| 1) P( 1) are low.

However, note in the limits of the PDFs, the a posteriori probability for one of the

classes is high (Figures 3c and 3d) because it is calculated as a ratio. For example, for

p( i| 0) P( 0) = 10 7 and p( i| 1) P( 1)= 10 10, the a posteriori probability is P( 0 i) =

10 7 / (10 7+10 10) 1. By letting the a posteriori probability decide, the sample would be

classified into class 0 with a high a posteriori probability. This result is satisfactory if the
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sample must necessarily belong to one of the two possible classes and the classification

model has been designed to do so. However, the fact that the prediction of the sample

is in the tail of the PDF, where only a very low percentage of training samples are,

suggests that the sample may be an outlier and even not belong to the class. Hence,

allowing the classifier to reject to classify, instead of forcing it to make a classification

decision, might be advantageous. This possibility is not considered neither in the two

class Bayes rule of a posteriori probability (Eq. 15) nor in the minimum risk of

classification rules (Eq. 21), which will always classify the sample.

3.5 Probabilistic discriminant partial least squares with

reject option

In many cases, such as in clinical diagnosis, the cost of a wrong classification may be so

high that it may be better to suspend the decision (to reject to classify the sample), and

call for a further test [21], than to risk to obtain a wrong classification. The reject option

is introduced in a classification rule to preserve against excessive misclassifications [3]

and to obtain the accuracy required by the user of the classification system [22]. The

reject option avoids classifying the samples with a high probability to be wrongly

classified [22], and only the classifications with a low risk are performed. Hence, the

reject option converts potential misclassifications into rejections [23], which reduces the

error rate. The reject option, however, has two limitations:

1. Some samples that would be correctly classified by the classification model

may be converted into rejections.

2. The classification model becomes useless if too many samples are rejected.

Undoubtedly a tradeoff between errors and rejects must be achieved [18]. Several

strategies have been developed to define the optimal reject option [11, 18, 21, 23, 24].
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These strategies basically reduce to two approximations, either by defining the reject

option as a new class (reject class) to which the objects are assigned to or by defining

the reject option as a threshold so the object is only classified if its a posteriori

probability is higher than the threshold. These two approaches are commented below.

3.5.1 Reject option as a class

The reject option may be introduced in the classification process as an additional class,

the reject class ( r). In such a case, the possible classification actions of the p DPLS

classifier are: classify the sample into class 0 ( 0), classify the sample into class 1 ( 1)

and classify the sample into the reject class r ( r).

Classification based on a posteriori probability

The a posteriori probabilities when the reject option is implemented as a class are

defined as:

(25a)

(25b)

(25c)

where the scale factor defined in Eq. (14) becomes:

(26)

The rule is to classify into:

(27)
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If the reject class is defined in this way, the a priori probabilities for class 0 and class 1

are calculated from the proportion of samples of each class in the training set. For the

reject class, P( r) is the a priori probability that a new sample that should be rejected

arrives and p( i r) defines the distribution of the i of any sample that should be

rejected. Both p( i r) and P( r) are clearly difficult to calculate. Usually it is assumed

that the reject class has a uniform distribution over the domain [25] and since the a

priori probability has only a

multiplicative effect, only the

product p( i r) P( r) must be

calculated. One criterion is to

define p( i r) P( r) as a threshold

so that the 5% of the area in the

tails of the PDFs is below this

threshold [11] (dashed regions in

Figure 4). In this way a sample

whose i is at the tails of the PDFs

is rejected. Figure 4 shows the

PDFs for class 0 and class 1 for

overlapped and non overlapped

classes. The red horizontal line is

the uniform distribution calculated

for the reject class. Note that this

reject class defines two kinds of

regions, the acceptance and the

reject ones.

Figure 4. PDFs for overlapped and non overlapped classes ( 0 and 1) and the reject class ( r). The reject class
is defined as a uniform distribution. This is set as the 5% area in the tails of the PDFs.
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The a posteriori probabilities (Eq. 25a 25c) derived from the PDFs in Figure 4 are shown

in Figure 5. When the PDFs are overlapped (Figure 5a), the reject class is useful at the

ends of the PDFs and also in the ambiguous zone if the distribution defining the reject

class is higher than the PDFs of the classes. However, samples in the ambiguous zone

will not be rejected if the reject class is below the PDFs of the classes (as usually

happens) because the a posteriori probability of the reject class will always be smaller

than the probability of classification

(i.e. P( r| i) < max (P( 0| i),

P( 1| i)). For non overlapped

distributions (Figure 5b) between the

PDFs the probability of the sample to

belong to the reject class is the

largest of the three a posteriori

probabilities, so a sample in that

zone would be rejected. This is the

behaviour to be expected because

there are no training samples with

such i values. The same happens at

the extreme of these distributions

(i.e. equally to the extremes of

overlapped distributions). In which

the samples whith such i will be

rejected to classify.

Figure 5. A posteriori probabilities for class 0 (green), class 1 (yellow), and the reject class r (red) for a.
overlapped classes and b. non overlapped classes presented on Figure 4. 

Different adaptations of the reject class have been described. Pereira et al. [18]
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introduced in the evaluation of a posteriori probabilities nor in the conditional risk. Their

approach may be assimilated to introduce a reject threshold. Landgrebe et al. [10]

considered the problem as one in which there is a well defined target class and a poorly

defined outlier class, and introduced the reject class only in the prediction step. In other

words, in the training step there are two classes (target and outlier) and in the

prediction or classification step an additional class is used, the reject class. This class is

assumed to be uniformly distributed across the training classes�’ domains, and it is

included in the evaluation of the probabilities. The criticism arises because in this

approach the a priori probabilities used in the training step are different than the a

priori probabilities used in the prediction step. Muzzolini et al. [11] introduced an

ambiguous class to reduce the probability of an erroneous classification. This class

identifies those samples that are classified as belonging to two or more classes with

(near) equal probability. In addition, they introduced the reject distance to identify

those samples that have little or no similarity with the predefined classes. The reject

thresholds to identify such samples are determined by fixing the probability in which the

samples are classified as belonging to the distance reject class. This is equivalent to

reject the samples predicted outside a confidence interval fixed around each PDF (reject

distance) [11].

3.5.2 Reject option as a threshold

A second alternative to introduce the reject option is to introduce a reject threshold.

Classification based on a posteriori probability

The a posteriori probabilities for each class over the domain are calculated (Eqs. 17a

17b) using the PDFs (Figure 6a 6b). For such a posteriori probabilities a threshold of

rejection is set at (1�–t) (Figure 6c 6d), so that a sample is rejected if the maximum a

posteriori probability is lower than this threshold value [22].
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The classification rule based on a posteriori probabilities with reject option becomes

classify into:

(28)

and reject the sample if:

                            (29)

If the PDFs of the two classes are overlapped, the reject threshold divides the domain

into two regions: acceptance region and reject region (Figure 6c and 6d).

Figure 6. (a b) PDFs for overlapped and no overlapped classes. (c d) a posteriori probabilities with reject
threshold derived from a b PDFs.
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According to Chow in [23], the optimal reject threshold (t) is given by

(30)

where r is the cost of rejecting a sample and c and m are the costs of a correct

classification or a misclassification, respectively. Generally m> r> c, and in most cases

c=0 (i.e. there is no cost if the classification is correct) [23, 26].

A limitation of classification based on Eq. (28) and Eq. (29) is that the threshold has no

effect if the PDFs are not overlapped (Figures 6b and 6d), since there is not a significant

ambiguous region. Note also that for the reject option work properly, (1�–t) must be

higher than 0.5. If (1�–t) is lower than 0.5 the probability to classify the sample in one of

the classes will always be higher than the reject threshold so that the classification rule

based on a posteriori probabilities with reject option is simply the classical Bayes rule

(see Figure 6a). In addition, the use of the a posteriori probability of the class and the

reject threshold for rejection ignores the possibility of having samples from unknown

classes. This situation may be partially overcomed by setting limits on the PDFs (High

Limit and Low Limit in Figure 3 as will be discussed on chapter 4). These limits avoid

classifying samples that lie on the extremes of the classes.

Other approaches have been proposed to implement rejection based on thresholds.

Fumera et al. [22] proposed to set an individual threshold for each class, thus avoiding

rejecting too many samples of one of the classes if the number of samples of both

classes is not balanced. Tortorella et al. [19, 21] considered also two thresholds, which

were optimized by maximizing the classification utility function. This is an alternative to

the Chow�’s approach. Chow takes into account costs and minimizes the risk [18]. In

order to optimize the reject threshold, Li et al. [27] proposed to control the error

instead of finding a trade off between rejection rate and error rate. They reformulated

the problem as: given an error rate for each class, design a classifier with the smallest
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rejection rule. A similar alternative was proposed by Hanczar et al. [28], although they

controlled the conditional error rate of the classifier, not the error rate. Kressel et al.

[29] optimized the reject threshold to get a minimal false positive rate and Herbei et al.

[30] presented the rejection cost t as the upper bound on the conditional probability of

misclassification, optimized by minimizing the error rate for also a minimal reject rate.

These approaches often ignore the detection of outliers and the rejection of samples

when the classes are not overlapped.

Further improvements on the application of the reject option are discussed in chapter 4.

3.6 Implications of reject option in classification

performance evaluation

When a classifier involves the reject option, the performance measures the classifier

must be properly interpreted in order to take into account that samples can be rejected.

p DPLS is a binary classifier. This means that the classification decision is to choose

between two classes, 1 and 0, that can be generically called Positive (P) class and

Negative (N) class respectively. Hence, the result from p DPLS can be that the sample is

correctly classified in its class, either in class 1 (True Positive, TP, i.e., a positive sample

that is classified as positive) or in class 0 (True Negative, TN, i.e., a negative sample that

is classified as negative) or incorrectly classified, either in class 1 (False Positive, FP, i.e.,

a negative sample that is incorrectly classified as positive) or in class 0 (False Negative ,

FN, i.e., a positive sample that is classified as negative) (Table 1). When the reject option

is implemented, the possible outputs of the classifier include that the sample may be

rejected. A positive object that is rejected is called Reject Positive (RP) and, equivalently,

a negative object that is rejected is called Reject Negative (RN). A sample may have been
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rejected because its classification was not reliable enough (the risk was too high) or

because it was pointed out as outlier (see chapters 4 and 5).

Table 1. Confusion matrix, outcomes of a binary classifier, as described by Kohavi and Provost in [31].

True class

Predicted

Positive ( 0) Negative( 1)

Positive ( 0) TP FP

Negative ( 1) FN TN

Rejected ( r) RP RN

The objective of p DPLS or any other classifier is to classify correctly as many future

samples as possible, i.e., minimize the number of false positives, false negatives and

rejections. For simplicity, this is generally evaluated by the accuracy or the error rate of

the classification model.

Accuracy is defined as the percentage of samples correctly classified:

(31)

If rejection is not an option, all samples are classified and the denominator of Eq. (31) is

equal to the number of samples I submitted to the classifier (i.e. I = TN+FN+TP+FP).

Hence, classically, accuracy is calculated by dividing the number of samples correctly

classified by the total number of samples, I. When rejection is an option, Eq. (31) is still

valid but note that the denominator is no longer equal to the total number of samples I,

since some of them may have been rejected (i.e. I = TN+FN+TP+FP+RP+RN). Hence, the

accuracy must be interpreted as the percentage of correctly classified samples with

respect to the number of samples for which the classifier issued a class label [22]. Note

that this is the most meaningful interpretation, although it is rarelly considered in the

works with reject option, in which the accuracy is calculated by dividing the number of
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samples classified correctly by the number of samples submitted to the classifier, either

rejected or not [21].

This significance resides in that the experimenter wants that the class label issued by the

classifier be correct. Hence, the performance measure should reflect the percentage of

the samples for which the classifier assigned a class and if it has been done correctly or

wrongly. In this way, the accuracy of the classifier with reject option can be higher than

the accuracy of the classifier without reject option (note that if the accuracy were

defined over the total number of samples, classifiers with reject option would always

performe worse than models without reject option, because the number of samples

well classified using the reject option would be equal or lower).

Similarly, the error rate is defined as the percentage of samples that are assigned to the

wrong class [32]:

(32)

The error rate must be also reinterpreted like the accuracy parameter when rejection is

an option. Hence, the denominator of Eq. (32) is the total number of samples classified

(without taking into account the rejected ones).

The sensitivity and the specificity are defined in similar terms [33].

(33)

(34)

The sensitivity is evaluated as the number of positive samples (class 1) correctly

classified respect to the number of positive samples classified. Note that, while the

denominator expression must be maintained, without reject option the number of
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positive samples classified is the total number of positive samples, with reject option,

the number of positive samples classified (TP+FN) may differ from the total number of

positive samples (TP+FN+RP). An analogous situation happens for the negative samples

with the Specificity. In this measure, the number of negative samples classified may

differ from the number of total negative samples since some of them may be rejected

when the reject option is implemented.

Furthermore, when the reject option is introduced, new performance parameters

appear [33]:

(35)

(36)

However, the redefinition of the performance parameters is not enough to accurately

evaluate the classifiers with reject option. Note that a model that rejects to classify most

of the samples but classifies correctly the remaining few will have a high accuracy;

however, it is not useful. In addition, the drawback of using parameters like accuracy is

that individually they are not enough to evaluate all the aspects that summarize the

performance of the classifier (i.e. correct classifications, misclassifications and

rejections). For that purpose, the cost is a more useful parameter. It is defined as:

(37)

where m is the cost of a wrong classification, r is the cost of rejecting a sample, c is the

cost of a correct classification and Nm, Nr, Nc are the number of samples misclassified,

rejected or correctly classified, respectively. The Cost allows taking into account the

rejections and, in addition, the cost that each classification implies [3, 17]. These costs

( ) must be optimized to keep the efficiency of the classifier.
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3.7 Conclusions

Probabilistic Discriminant Partial Least Squares (p DPLS) is a binary classifier that has

some advantages over other versions of DPLS: 1) it assumes neither an arbitrary

classification threshold for the �’s nor a Gaussian distribution for the �’s of each class,

and 2) it assigns the class label based on the Bayes classification rule of the a posteriori

probability, or, more generally, of minimum risk.

However, the strict application of the Bayes rule forces the classifier to always assign the

sample to one of the predefined classes. This is a limitation for those samples that may

be outliers or ambiguous, and hence with a large chance to be misclassified. The danger

of misclassification can be reduced by implementing the reject option. In this chapter,

two approximations to implement the reject option in p DPLS have been discussed. One

of them introduces reject option as a reject class. The second one introduces the reject

option as a threshold. The best approach to introduce the reject option is to set a reject

threshold. With this approach, the a priori probabilities or shapes of an extra class do

not need to be assumed. However, the reject option set by the reject threshold alone is

not able to reject outliers; so, additional constraints must be considered.

It is also essential for any classifier to evaluate correctly the classification performance.

A general approach is to use the accuracy or the error rate. These parameters, however,

have the weaknesses that they consider all incorrect decisions (or correct decisions)

equally risky and they treat all outcomes as equally likely [26]. Since the rejections are

not evaluated, these parameters are not useful to evaluate classifiers with reject option.

For such classifiers, the Cost parameter is a better approach.
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Microarrays allow evaluating simultaneously the expression of thousands of genes in a

cell. One of the most relevant applications of these gene expressions is to classify the

samples (e.g. cell or tissues) into one of the classes of interest. Discriminant Partial

Least Squares (DPLS) is often used for such a purpose. However, most published results

report the straight application of this method, with disregard to the quality of each

individual prediction and the possibility of detecting prediction outliers. The aim of this

chapter is to improve DPLS for classifying microarray data. Firstly, we implement a new

version of DPLS called probabilistic Discriminant Partial Least Squares (p DPLS). This

method bases the classification of a sample on kernel probability density functions

(PDFs) and the Bayes rule of a posteriori probability. Secondly, a reject option is

introduced so that the classifier can reject samples in the ambiguity region, based on

Chow�’s rule, and can reject samples outside the defined limits of the classes. The

ambiguity region is the zone where the PDFs that characterize each one of the classes

overlap. In that zone, the model cannot discriminate well enough whether a sample

belongs to one class or to the other, either because of limitation of the PLS model, or

because the samples actually share characteristics of the modeled classes. Hence, there

is high risk that any attempt of classifying that sample could result in a misclassification.

The second possibility of rejection is implemented at the ends of the classes�’ domains

and also between PDFs for non overlapped classes. Samples in those regions have

extreme predictions, outside the limits set for the classes, so they may be considered as

outliers. For such samples, we prefer to reject to classify them instead of taking the risk

of misclassifying them. These two approaches will be detailed and discussed in the

methods section.

The existence of a reject option increases the experimenter�’s confidence in the

classification rule and improves the accuracy of the final classification models. Note that

with reject option only those samples whose classification is reliable are actually

classified, while the samples either outside the limits or in the ambiguity region that

could lead to misclassifications are rejected to classify.

UNIVERSITAT ROVIRA I VIRGILI 
MULTIVARIATE CLASSIFICATION OF GENE EXPRESSION MICROARRAY DATA 
Cristina Botella Pérez 
ISBN:978-84-693-5427-8/DL:T-1418-2010 



Chapter 4

80

The p DPLS with reject option was tested with two public datasets. With the Human

Cancers dataset, the accuracy measured by leave one out cross validation was

improved from 97% to 99% when compared to p DPLS without reject option. For the

Breast Cancer dataset, the method could reject 100% of the test samples submitted to

the classifier that did not belong to any of the modelled classes. These samples would

have been misclassified if the reject option had not been considered.

This work is presented in paper form published in Talanta 2009, Vol. 8 (1) 321 328.

UNIVERSITAT ROVIRA I VIRGILI 
MULTIVARIATE CLASSIFICATION OF GENE EXPRESSION MICROARRAY DATA 
Cristina Botella Pérez 
ISBN:978-84-693-5427-8/DL:T-1418-2010 



81

Classification frommicroarray data using probabilistic

discriminant partial least squares with reject option

Cristina Botella, Joan Ferré*, Ricard Boqué
Department of Analytical Chemistry and Organic Chemistry, Rovira i Virgili University. 

 Marcel·lí Domingo s/n, 43007. Tarragona, Spain 
*Corresponding author: joan.ferre@urv.cat

Talanta 2009, Vol. 8 (1) 321 328 (Edited for format)

Abstract

Microarrays are used to simultaneously determine the expressions of thousands of

genes. An important application of microarrays is in the classification of samples into

classes of interest (e.g. either healthy cells or tumour cells). Discriminant Partial Least

Squares (DPLS) has often been used for this purpose. In this paper, we describe an

improvement to DPLS that uses kernel based probability density functions and the

Bayes rule to classify samples whilst keeping the option of not classifying the sample if

this cannot be done with sufficient confidence. With this approach, those samples

outside the boundaries of the known classes or from the ambiguity region between

classes are rejected and only samples with a high probability of being correctly classified

are indeed classified. The optimal model is found by simultaneously minimizing the

misclassification and rejection costs. The method (p DPLS with reject option) was tested

with two datasets. For the Human Cancers dataset the accuracy (obtained by leave one

out cross validation) was improved from 97% to 99% when compared to p DPLS without

reject option. For the Breast Cancer dataset, p DPLS with reject option was able to reject

100% of the test samples that did not belong to any of the modelled classes. These

samples would have been misclassified if the reject option had not been considered.
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4.1 Introduction

Supervised classification is increasingly being applied to microarray gene expression

data in order to predict tumour types [1 3], to differentiate between healthy and

tumour samples [4 6] and to differentiate between pharmacological mechanisms [7],

among other applications. Microarray data are characterized by thousands of variables

(genes) and few samples, resulting in high redundancy and a high number of non

informative measurements. There has been a lot of interest in using factor based

multivariate classification methods such as Discriminant Partial Least Squares (DPLS) to

analyze these data [8, 9]. The DPLS uses a few latent variables rather than a lot of

measured variables and this brings with it a series of advantages. DPLS takes variable

correlations into account, filters noise and leads to classification rules with good

predictive performance, especially when DPLS is implemented together with variable

selection methods. DPLS has been used to differentiate between samples before and

after chemotherapy [10], to determine the different states of a breast cancer tumour

[11], to predict the efficacy of a drug by using expression data biomarkers [12], and to

predict the quality of DNA microarray spots [13].

Like other classification rules, DPLS must have two main qualities: it must provide

reliable classifications of forthcoming samples and it must minimize the number of

misclassifications (i.e. the expected error rate). Both of these are improved if the

classifier is allowed to reject doubtful samples instead of always being forced to

classify them in one of the modelled classes. By classifying only the most well defined

cases, both the accuracy of the classifier and the reliability of each classification are

improved.
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In this paper we implement the reject option in the recently developed p DPLS

classifier and show how it can be used for microarray data classification. p DPLS is a

variant of DPLS, which uses kernel functions to calculate a probability density function

(PDF) for each class. This allows a flexible implementation of the Bayes rule for

classification, and also provides a measure of the reliability of the classification.

Reliability is a primary concern in statistical classification, especially when this

classification is used in critical health applications such as cancer diagnosis [14], an

issue which has also led to several other studies [15].

In classification, rejection is advantageous when: (a) the new sample does not belong

to any of the trained classes, (b) the new sample belongs to one of the classes but is

very different from the samples used for training the classifier, or (c) the sample is in

the boundary region between classes. Situation (a) occurs when the sample is an

outlier. Forcing the classifier to decide among one of the modelled classes will produce

a classification error (e.g. a cell does not belong to any of the modelled cell types but it

is classified as one of them). Situation (b) typically arises when the sampling of the

training samples is incomplete or not representative. Finally, situation (c) may arise, for

example, because of the limited discriminative power of the measured variables or

because the classification algorithm has limited discriminative power. Although

samples in situations (b) and (c) might finally be classified correctly, they might also be

classified incorrectly because either they are unique samples or they are ambiguous

samples and can belong to either of the classes, respectively.

The reject option aims to overcome situations (a) to (c) by rejecting the sample and not

classifying it when the probability of error is too high. This is a safeguard against errors

and improves the accuracy of the classifier, which is evaluated as the percentage of

samples correctly classified among the number of samples classified [16]. This in turn

leads to greater confidence in the samples that are finally classified. The reject option
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can be fine tuned in order to avoid rejecting too many samples that would otherwise

be classified correctly. Since too high a rejection rate would decrease the usefulness of

the classifier, a compromise must be reached between improving the accuracy and

reducing the usefulness of the classifier. There has been extensive research into the

theoretical aspects of the reject option [14, 17 28], most of which relates to Chow�’s

reject option [29], which implemented the reject option for the Bayes rule. Chow�’s

reject option has recently been used to microarray expression data [30].

There are still two limitations to jointly applying the Bayes and Chow rules. First, they

are not adequate for the extreme (outlying) samples (situations (a) (b)) which are

typically found at the extremes of the probability density functions (PDFs). These

samples must be rejected according to a different criterion. Second, both rules require

knowledge of the a priori probabilities and the PDFs of the classes [31], which makes

applying these rules more difficult. In this paper, the first limitation is overcome by

including distance based thresholds, which is equivalent to selecting a confidence

interval around each class and rejecting samples outside this interval [17]. The second

limitation is overcome by the calculating PDF like functions in p DPLS [32], which

makes an approximate Bayesian classification easier.

4.2 Methods

4.2.1 Probabilistic DPLS

The DPLS method applies Partial Least Squares (PLS) regression to binary classification

problems, in which the dependent variable y codifies the class of each sample [8, 33].

A DPLS model is calculated by regressing y on X using the adequate number of factors.
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For microarray gene expression data, X is an N P matrix of N samples and P gene

expressions and y is a N 1 vector of ones and zeros, where the integer 0 codifies the

sample as belonging to class 0 (e.g. �“cancer of type I�”) and the integer 1 codifies the

sample as belonging to class 1 (e.g. �“cancer of type II�”). For a sample i, the value

predicted by the PLS model is i = xi
Tb, where the b's are the regression coefficients for

the model of A factors and the adequate pre processing is implicit (e.g. if the b�’s had

been calculated from mean centered data, then xi should be mean centered, and the

predicted i should be unprocessed accordingly). With the coding of y, the prediction

for a sample should be close to 0 if the sample belongs to class 0, and it should be

close to 1 if the sample belongs to class 1. In order to better define the cut off value

between classes, Pérez et al. [32] developed p DPLS, a probabilistic version of the DPLS

in which the uncertainty of the predicted value is accounted for in the calculation of

the model. This method is described here for completeness. The method starts by

calculating a DPLS model of A factors with X and y. Then, this model is used to predict

the training samples and, for each training sample i, a Gaussian function centred at the

predicted value i is calculated as:

(1)

(2)

(3)

where SEPi is the standard error of prediction for sample i, hi is the leverage of the

sample, RMSEC is the root mean square error of calibration, yi is the known class of the

training sample i (i.e. value 0 for a sample of class 0 and value 1 for a sample of class

1) and is 1 if the data has been centred and 0 if it has not. Figure 1 shows the
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Gaussian functions calculated from the predictions of three training samples of class

0 and four samples of class 1. Note that the width of the Gaussian kernel for sample

i depends on SEPi, which is particular to that sample, and depends on the relative

position of the sample in the multivariate space. Then, for classes 0 and 1, a PDF is

calculated as the average of the individual kernel functions of the training samples of

each class:

(4)

(5)

where n0 and n1 are the number of samples of class 0 and class 1 respectively.

Figure 1. Simulated PDFs of class 0 and class 1 obtained from Equations (4) and (5). The kernel functions
(Eq. (1)) are centred on prediction i of each training sample. According to the code assigned to the classes,

the sample predictions of class 0 and class 1 should be located around the values 0 and 1 respectively.
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4.2.2 Bayes rule for classification

In p DPLS, the predicted class for sample i is obtained using the Bayes rule. The

prediction i for that sample is used to obtain the a posteriori probabilities P( 0 i) and

P( 1 i). These are the probabilities that the sample belongs either to class 0 or to

class 1, once it is known that the sample�’s prediction is i. For the two class

classification problem:

(6a)

(6b)

where p( i 0) and p( i 1) are the conditional probabilities evaluated from the PDFs of

classes 0 and 1 and P( 0) and P( 1) are the a priori probabilities. Both a priori

probabilities may be estimated as the proportion of samples of each class in the

training set, provided that the set is representative of the overall population. That is,

P( 0)=n0/N and P( 1) = n1/N where N=n0+n1. The denominator of Equation (6a) and

(6b) is:

(7)

The Bayes rule assigns the sample to the class in which it has the highest a posteriori

probability [31]. The rule is:

(8)

Although this rule is optimal in the sense that no other rule can yield a lower error

probability, it is not always satisfactory. For example, when the i is at one of the

extremes of the PDF (Figure 2), both p( i 0) and p( i 1) are low, and the products p( i
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0) P( 0) and p( i 1) P( 1) are also low but the a posteriori probability for one of the

classes (the ratio in Equations 6a and 6b) is high. This means that the further the

prediction i is from one class, the more likely it will be allocated to the other class.

This is a reasonable result since the classifier only expects to receive samples from the

two modelled classes. In most multivariate applications, however, samples from non

modelled classes (outliers) may also be inadvertently submitted to the classifier. The

predictions for those samples will most probably be found at the tails of a PDF, and,

hence give a misleading high a posteriori probability for one of the classes.

Consequently, forcing the two class Bayes rule to classify any input sample may involve

a high risk because outliers may be erroneously classified in one of the modelled

classes.

Figure 2. Possible distributions

of class 0 and class 1with the
distance reject limits. a.
Overlapped classes. b. Well
separated classes. and
indicate possible predictions of
unknown samples for which
the Bayes rule gives
questionable results. LL0, HL0,
LL1 and HL1 are the limits for
rejection based on the distance
reject option.

1 reject

HL1         

0

p( i 1)·P( 1)p( i 0)·P( 0)

reject

LL0a

1 reject

HL1

0

p( i 1)·P( 1)p( i 0)·P( 0)

rejectreject

LL1HL0LL0

b
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Another situation in which the usefulness of the Bayes rule is limited occurs when the

predicted value is in the boundary between classes (the ambiguity region). The dot in

the centre of Figure 2a represents a sample whose characteristics are similar for both

classes, with the result that the model cannot clearly distinguish whether it belongs to

one class or to the other. Again, the sample will be assigned to the class to which,

according to the Bayes rule, it has the highest probability of belonging. However, since

the probability that the sample belongs to class 0 is similar to the probability that it

belongs to class 1, there is a high risk of misclassification and the reliability of the

classification is low.

These situations show that the reject option might be an advantageous addition to the

decision rule. In this paper, we implement the reject option in p DPLS. Both the

classification reliability and accuracy of the p DPLS model are improved by identifying

unreliable classifications and rejecting the sample instead of running the risk of

misclassifying it.

4.2.3 Implementation of the reject option in p DPLS

The reject option in the case of classification ambiguity (i.e. for overlapped PDFs) can

be derived by adapting Chow�’s rule to the PDFs obtained in p DPLS. Chow�’s rule sets a

threshold t so that the sample is rejected if the highest a posteriori probability is lower

than (1�– t). In other words, the sample is classified only if:

(9)

Thus, only those samples whose classification is reliable enough are indeed classified.

The other samples are rejected because they could be misclassified. The threshold that
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optimizes the trade off between the error rate and reject rate can be derived from the

costs associated with each classification result [29]:

(10)

where m, r, and c, are the costs of incorrect classification, of rejection and of correct

classification, respectively. The values that are assigned to these costs make the reject

option tuneable. The cost of being wrong is higher than the cost of both rejecting and

classifying correctly ( m > r > c). In fact, it is preferable to reject a sample and gather

additional information than to classify the sample incorrectly. It is also generally

assumed that classifying correctly has no cost ( c = 0). Note that Equation 9 is a

generalization of the standard Bayes rule. In particular, for the extreme case in which

the cost of rejection r equals the cost of misclassification m, the reject threshold is t =

1 and Chow�’s rule is reduced to the standard Bayes rule, in which samples are never

rejected. A sample is also not rejected if t >1/C, where C is the number of possible

classes (C=2 for a binary classification) [34].

The second reason for using the reject option is to avoid classifying extreme samples

that have a large a posteriori probability but low values at both PDFs. In order to solve

this problem, Dubuisson and Masson [18] added a distance reject criterion to Chow�’s

ambiguity reject option. This idea is implemented here for the p DPLS model by

imposing limits on the values, which define the extreme regions in which the samples

will be rejected. The limits are chosen so that the sum of the area in the tails of each

PDF is five percent of the total area of the distribution (i.e. the distance reject

probability equals 0.05 for each class, see Figure 2) [19]. Since the limits depend on the

shape of the distributions of each class, they are particular for each p DPLS model with

a given number of factors. In practice, when the PDFs are overlapped we have two
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operative limits, a High Limit (HL) and a Low Limit (LL) and when the PDFs are

separated we have four limits (HL and LL for each class, see Figure 2).

Assuming the constraints for the distance reject and the ambiguity reject, the Bayes

rule with reject option is:

(11)

4.2.4 Evaluation of the classification method performance

The p DPLS models can be calculated for a different number of factors that are needed

to explain the relevant information. Thus, every p DPLS model will produce different

predictions for the calibration samples and, therefore, for the different PDFs, which, in

turn, will influence the performance of the classifier. The performance of a classifier is

commonly characterized by its error rate (or the classification rate, which is the

percentage of correctly classified samples) when classifying a test set of unseen

samples that were not used during the training phase. The actual class of every sample

in the test set is compared to the class to which it is assigned by the classifier. In

general terms, however, it is not the misclassification (and rejection) rate that we want

to minimize, but the misclassification (and rejection) cost [35], since the cost more

accurately reflects the objective of the classification rule [36]. The Cost is here defined

as:
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(12)

where Nr is the number of rejected samples and Nm is the number of misclassified

samples. The cost of correctly classifying a sample has been set to zero. Here, the

minimization of the cost will be used to decide on the optimal number of factors in the

p DPLS model.

4.3 Results and Discussion

4.3.1 Datasets

The proposed classification rule (Eq. 11) was applied to two datasets, the Human

Cancers dataset [37] and the Breast Cancer dataset [38]. These datasets have been

studied extensively in the literature [39, 40] and also used to evaluate the performance

of classification models [41 44]. The Human Cancers dataset consists of 282 microRNA

(miRNA, non coding RNA species) normalized expression profiles for 218 samples,

including 46 healthy samples (class 0) and 172 tumour samples (class 1) from several

healthy and tumour tissues (ovary, colon and lung to mention a few). The dataset was

divided into a training set and a test set by applying the Kennard Stone algorithm [45]

to the scores of the first 20 Principal Components (PCs), which were obtained from the

Principal Component Analysis (PCA) of the raw gene expression matrix. For this

dataset, the training set contained 153 samples (116 samples of class 1 and 37

samples of class 0), and the test set had 65 samples (56 of class 1 and 9 of class 0).

The Breast Cancer dataset consists of 5361 normalized gene expression ratios. These

were used in [38] to prove that a hereditable mutation influences the gene expression

profile of breast cancer. Seven samples of the BRCA1 mutation were used as class 0,

eight samples of BRCA2 mutation were used as class 1, and six samples of Sporadic

mutation were used as test samples.
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4.3.2 Human Cancers dataset

Although p DPLS is a full variable method, it can often be improved by carefully

selecting the variables and removing irrelevant miRNA expressions that interfere with

the discriminative power of the relevant miRNA [46]. For this dataset, the 100

variables with the highest VIP values (variable importance for the projection) were

considered. VIP values were calculated as described in [8, 47]. These values quantify

how each variable influences the response summed over all components and classes.

For the selected variables, six p DPLS models were calculated with 1 to 6 factors using

mean centered miRNA expression patterns (we will denote each model as p DPLSA,

where A is the number of factors). The a priori probabilities for these six models were

P( 0) = 37/153 = 0.24 and P( 1) = 116/153 = 0.76.

The PDF of classes 0 and 1 were calculated for each p DPLS model (Eqs. 1 to 5). The

test sample was classified by obtaining its prediction and then calculating the a

posteriori probabilities (Eqs 6a, 6b). Finally, the sample was either rejected or classified

in the class with the highest a posteriori probability (Eq. 11). In this dataset, the high

and low limits (HL and LL) for i were defined so as to retain the five percent of the

total area of the PDF in the tails of the distributions. The costs were arbitrarily set to

c= 0, r= 0.25, and m= 1 because no information was available about the costs of each

classification decision. Note that these costs are relative, and indicate that it is

preferable to reject four samples than to classify one wrongly. These values are

illustrative and should be adjusted for each particular classification problem. With

these values, the threshold value for rejection in the ambiguity zone is t = 0.25 (Eq. 10).

The models with A=1 to A=6 factors were validated by leave one out cross validation

(CV). In this process, sample i was left out of the training set, the p DPLSA model was

calculated, and the prediction i for the left out sample was obtained (note that the a

priori probabilities were recalculated to take into account that one sample had been
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left out). This procedure was repeated for all the samples of the training set and for all

the p DPLS models.

Figure 3 and Table 1 show the cross validation results obtained for the different p

DPLS models when the reject option (Eq. 11) is considered. Note that predictions for

samples in class 0 are around 0 and predictions for samples in class 1 are around 1,

but that the predictions partially overlap in models with less than four factors

(underfitted models). As a result of the overlap, many samples are either rejected or

wrongly classified and the cost of these models (Table 1) is high. For example, for p

DPLS2, 51% of the samples in class 0 were rejected by CV and 27% were misclassified.

On the other hand, the predictions from the models with four to six factors are

grouped tighter together. Consequently, these models have fewer misclassifications,

fewer rejections, and lower classification costs.

Figure 3. Prediction of the training samples by CV for the different p DPLS models with reject option.

Squares: healthy samples (class 0), �– Green: correctly classified, Blue: misclassified, Red: rejected to

classify�–. Circles: tumour samples (class 1), �– Yellow: correctly classified, Brown: misclassified, Orange:
rejected to classify�–.
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Table 1. Classification of validation samples by leave one out cross validation and test samples for the
different p DPLS models for t =0.25. In brackets, classifications performed without considering the reject
option.

Factors Cost

Cross Validation Samples

Wrongly

classified
Rejected

Correctly

classified

Wrongly

classified
Rejected

Correctly

classified

Samples of class 0 Samples of class 1

1 30.3 0 (6) 24 10 (31) 2 (19) 89 25 (97)

2 15.5 10 (22) 19 8 (15) 0 (0) 3 113 (116)

3 7.3 4 (9) 13 20 (28) 0 (0) 0 116 (116)

4 5 2 (4) 8 27 (33) 0 (0) 4 112 (116)

5 3 1 (4) 4 32 (33) 0 (1) 4 112 (115)

6 3 1 (5) 7 29 (32) 0 (1) 1 115 (115)

Factors

Test Samples

Wrongly

classified
Rejected

Correctly

classified

Wrongly

classified
Rejected

Correctly

classified

Samples of class 0 Samples of class 1

1 0 (2) 6 3 (7) 0 (0) 17 39 (55)

2 2 (4) 5 2 (5) 0 (0) 0 56 (56)

3 0 (2) 4 5 (7) 0 (0) 0 56 (56)

4 0 (0) 2 7 (9) 0 (0) 0 56 (56)

5 0 (0) 0 9 (9) 0 (0) 0 56 (56)

6 0 (0) 0 9 (9) 0 (0) 0 56 (56)
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In terms of classification cost, the optimal model is p DPLS5 since no further

improvement is obtained for the model of six factors. The PDFs for this model are

presented in Figure 4a and the a posteriori probabilities across the domain are

presented in Figure 4b. The limits were found to be LL0 = �–0.43 and HL1 = 1.42. Thus,

samples with a predicted value i < �–0.43 or i >1.42 would be flagged as outliers and

rejected. These limits were different for each p DPLSA model because the training

sample predictions changed. According to the rejection criterion, eight samples (four

from class 0 and four from class 1) were rejected, all of them in the ambiguity region

(Table 1). As an example, the dot in Figure 4 corresponds to the sample T_BRST_2

(tumour sample, class 1) during the leave one out process. The prediction is i =0.44

and the calculated a posteriori probabilities are P( 0 i) =0.59 and P( 1 i) =0.41 (Eqs.

6a, 6b). Since both probabilities are similar, the confidence (reliability) that the

classification is correct is low because a slight shift in i due to measurement errors

could have changed the assigned class. The application of the classic Bayes rule (Eq. 8)

would assign the sample to the class with the highest a posteriori probability, meaning

that the sample would be wrongly classified into class 0. By allowing the reject

option, defined here by Chow�’s rule (with t=0.25), the sample was rejected and not

classified because the highest a posteriori probability was below 1 t (i.e. max (P( 1 i),

P( 0 i) < 0.75 ). In this case, the reject option prevented us from classifying a tumour

sample as a healthy sample, and the expert would be prompted to make more tests

before the final diagnosis. It is interesting to note, as we indicated before, that the

reject option�’s performance depends on the relative costs assigned to the classification

results. Thus, by setting different costs, the threshold (and hence the number of

samples rejected) will be tuned to meet the experimenter's needs.
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Figure 4. a. PDFs for the five factor p DPLS model obtained from the training samples during the LOOCV
process when T_BRST_2 is used as the validation sample. b. A posteriori probabilities across the domain
(Eq. 6a and 6b) derived from the PDFs in a b. The prediction and the a posteriori probability for sample
T_BRST_2 during the LOOCV process are also shown.

For comparison, Table 1 shows in brackets the classification results when the classical

Bayes rule is applied. For the model that best minimizes the cost, that is, p DPLS5, five

samples were misclassified if the reject option was not applied, whereas only one

sample was misclassified (a healthy sample) when the reject constraints were applied.

Thus, this model�’s classification accuracy (i.e. the ratio of samples well classified and

the number of samples classified) was improved from 97% (148/153) to 99%

(144/148). Notice, however, that the reject option also rejected some samples that

would otherwise be correctly classified: the number of samples well classified

decreased from 148 to 144. This reduction in the number of well classified samples is

the price to pay for safeguarding against errors, and follows the trend of the suggested

costs of classifications, in which rejecting four samples was preferable to misclassifying

one.

Different reject thresholds were tested by varying the classification costs (Table 2).

When r=0.10, m=1 and c=0, the threshold was t=0.10. As expected, the number of

rejected samples increased because the cost of doing so decreased (i.e. we preferred
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to reject ten samples rather than classify one wrongly). However, the number of

misclassified samples did not change, which means that the rule rejected samples that

would have been correctly classified with t=0.25. Thus, decreasing t to below 0.25 did

not improve the model�’s classification performance for this dataset. On the other

hand, when t was set to 0.35 (i.e. r=0.35, e=1, c=0), the results (not shown) were the

same as those obtained for t = 0.25. Hence, t = 0.25 was considered optimal for this p

DPLS5 model.

The samples of the test set were also classified according to Eq. 11. For the p DPLS5

model using t=0.25, 100% of the samples were well classified and there were no

rejects (Figure 5 and Table 1). By setting the threshold to t=0.10, two correctly

classified healthy samples turned into rejects (Table 2). This was seen in the

classification of the training samples above and highlights the need to set an adequate

reject threshold in order to obtain an adequate trade off between the rejects and the

misclassifications. This will depend on the needs of the experimenter and the cost

constraints in each particular application.

Figure 5. Classification of test samples for the different p DPLS models with reject option. Squares: healthy

samples (class 0), �– Green: correctly classified, Blue: misclassified, Red: rejected to classify�–. Circles: tumour

samples (class 1), �– Yellow: correctly classified, Brown: misclassified, Orange: rejected to classify�–.
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Table 2. Classification of validation samples via leave one out cross validation and test samples for the
different p DPLS models for t =0.10.

Factors Cost

Cross Validation Samples

Wrongly

classified
Rejected

Correctly

classified

Wrongly

classified
Rejected

Correctly

classified

Samples of class 0 Samples of class 1

1 16.1 0 36 1 1 115 0

2 6.5 2 31 4 0 14 102

3 5.9 3 23 11 0 6 110

4 3.5 1 17 19 0 8 108

5 3.3 1 14 22 0 9 107

6 2.9 1 13 23 0 4 110

Factors

Test Samples

Wrongly

classified
Rejected

Correctly

classified

Wrongly

classified
Rejected

Correctly

classified

Samples of class 0 Samples of class 1

1 0 9 0 0 56 0

2 0 9 0 0 0 56

3 0 7 2 0 0 56

4 0 3 6 0 0 56

5 0 2 7 0 0 56

6 0 2 7 0 0 56
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4.3.3 Breast Cancer dataset

This dataset demonstrates the rejection of test samples that are outside the class

limits. The same methodology as for the Human Cancers dataset was used except that

the Kennard Stone algorithm was not applied. Instead, the samples of mutations

BRCA1 and BRCA2 were used as a training set and the Sporadic mutation samples were

used as a test set. The aim was to show that the classification rule could reject

prediction samples from non modelled classes. This would prevent the classification

error that would otherwise occur if the classifier had to assign the samples to one of

the two modelled classes. Detecting this type of outlier is fundamental to the

application of any classification rule.

Probabilistic DPLS models were calculated for one to three factors by using log2 mean

centred gene expression data from BRCA1 (class 0) and BRCA2 (class 1) mutation

samples. This data consisted of the 51 most relevant gene expressions according to

[38]. These genes were found to be the most discriminative between the three

mutations. The costs of classifying correctly, rejecting and misclassifying were set at

c= 0, r= 0.25, and m= 1 respectively. The one factor p DPLS model (p DPLS1) was the

optimal model with the lowest cost (i.e. cost of 0.5). Models with two and three

factors were overfitted, with costs of 2.5 and 3.25 respectively. These higher costs are

due to the fact that most of the samples are rejected and, although there are no

misclassifications, the classifiers become useless. For example, for the p DPLS2 model,

10 of the 15 training samples were rejected during LOOCV. Similarly, the p DPLS3

model rejected 13 of the training samples.

The p DPLS1 calculated with the 51 gene expressions selected in the bibliography was

able to distinguish the samples of class 0 from those of class 1, thus providing well

separated PDFs (Figure 6). Only the sample s1252_P2, of class 0, and the sample

s1816_P13, of class 1, were rejected during LOOCV. The predictions of both samples
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were outside the limits of the classes (i.e. s1252_P2 >HL0 and s1816_P13>HL1). Notice that

because the PDFs were not overlapped, there was no ambiguity region and the limits

of the classes were defined by four operative limits. The classification performance of

the p DPLS1 did not change when the reject threshold was varied to t=0.35 and t=0.10.

The p DPLS1 model was used to classify the six test samples of sporadic mutation of

breast cancer. This mutation was not modelled in the training step; hence, all these

samples should be pointed as outliers and not classified. Classifying these samples in

any of the two modelled classes would result in a classification error. Figure 6 shows

the PDFs (Eqs. 4 and 5) of class 0 and class 1 for p DPLS1 together with the

predictions for the test samples. According to Eq. 11, all test samples were correctly

detected as outliers and rejected since their predictions i were between the limits HL0

( = 0.24) and LL1( = 0.54). If the reject constraints had not been applied, the classifier

would have assigned the test samples to the class with the highest a posteriori

probability. In this case, the samples s1572_P16 and s1324_P17 would have been

incorrectly classified into class 1 (i.e. as BRCA2 mutation samples) and the remaining

samples (s1649_P15, s1320_P18, s1542_P19 and s1281_P21) would have been

incorrectly classified into class 0 (as BRCA1 mutation samples). For these samples, the

a posteriori probability for one class was near 1. For example, sample s1572_P16 had

p( i 0)= 6 10 6 and p( i 1)= 2 10 3 which results in P( 0 i) 0 and P( 1 i) 1.

Therefore, if it is believed that the a posteriori probability demonstrates the

classification�’s reliability, then the high values of probability obtained for the test

samples would suggest that we can trust the classifications, despite the fact that all of

them were incorrect. This shows that the classic Bayes rule is unreliable when both

conditional probabilities p( i 0) and p( i 1) are low. Moreover, it should be noted

that the predicted values are not as extreme as those expected for outliers. Hence,

these are not directly suspicious samples because of their i values. It was the reject

option, which set limits on the classes, which allowed these samples to be detected.
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Figure 6. PDFs for the one factor p DPLS model. Limits on LL0= 0.15, HL0=0.24, LL1=0.54 and HL1=1.50.
Triangles represent the test samples classified with p DPLS1.

4.4 Conclusions

Recently, the DPLS method has received much attention in the field of gene expression

data analysis. We have applied a new version of DPLS, namely probabilistic DPLS (p

DPLS), to classify biological samples using their microRNA (miRNA) expression patterns

and cDNA microarray data. p DPLS takes into account the uncertainty of the PLS

predictions in the definition of the classification model. In this version, the possibility

of rejection has been introduced. p DPLS with reject option performs better than the

original p DPLS, because only those samples that have the highest probability of being

correctly classified are indeed classified, whereas doubtful cases are rejected. The

methodology involves evaluating the probability of each classification together with
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the overall cost of the classifications performed for each model. In addition, the reject

option allows us to deal with situations in which the results of the Bayes rule may be

questioned. Moreover, the classification rule with reject option can help the

experimenter to check that a sample does not belong to any of the classes modelled in

the training step and therefore to ensure that it is rejected rather than misclassified.

Thus, the reject option enables the classifier to detect outliers, and this in turn

provides a new approach for improving outlier detection methods in the near future.
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Microarray data are obtained after a complex series of experimental steps that go

from hybridization to image analysis. Microarray manufacturing errors like dye

instability, different incorporation of the dyes, slide, spatial and print tip effects

together with scanning errors may introduce unspected data variability, which can

make the collected data for one sample very different than the data from other

samples of the same class. Additionally, the experimenter may be confronted with new

samples that are not like any of the other samples that have been modelled (e.g.,

samples that do not belong to any of the modelled classes). All these samples are

considered as outliers, and can have a degrading impact in the calculated classification

model (if they are training samples), can produce wrong evaluations of the

classification performance of the model (if the samples are validation samples) and can

lead to wrong classifications (if the samples are new samples to be classified).

Outlier detection is often unnoticed in microarray data classification. However it is

essential that any classificatition method that is intended to have a real practical use

be implemented together with appropriate outlier detection tools.

Basically, all the outliers can be detected either because they have errors in the

recorded data (x), because they have been identified erroneously (with erroneous y),

because they have abnormal x y relation or because they belong to a different

population than the samples we are trying to classify. In this work we develop outlier

detection for probabilistic discriminant partial least squares (p DPLS) method by

combining diagnostics based on leverage and x residuals (common in PLS) and the

reject option approach developed in chapter 4.

The method was tested on two datasets: the prostate cancer dataset and the small

round blue cell tumours of childhood dataset. Results showed that without outliers the

p DPLS classification models have better classification abilities and samples from
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classes not modelled during the training step are rejected to classify, thus avoiding

their misclassification.

The removal of outliers in the prostate cancer dataset reduced the Cost of

classification per sample from 0.11 to 0.06, and the model increased the proportion of

correct classifications of test samples from 95% to 100%. In the small round blue cell

tumours of childhood dataset the p DPLS with outlier detection method implemented

is able to flag correctly as outliers the 95% of the samples in the prediction step. These

samples did not belong to any of the classes modelled. When the outlier detection

method was not implemented in the training step, only the 5% of the test samples

were pointed as outliers, misclassifiying the remaining 95%.

This work is presented in paper form published in Journal of Chemometrics 2010

(Accepted).
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Abstract

The reject option plays an important role in the classification of microarray data. In this

work, a reject option is implemented in the discriminant partial least squares (p DPLS)

method in order to reject to classify both outliers and ambiguous samples. Microarray

data are highly susceptible to present outliers because of the many steps involved in

the experimental process. During the development of the classifier, outliers in the

training data may strongly influence the model and degrade its performance. Some

future samples to be classified may also be outliers that will most probably be

misclassified. Ambiguous samples are samples that cannot be clearly assigned to any

of the classes with a high confidence. In this work outlier detection and ambiguity

detection are implemented taking into account the x residuals, the leverage and the

predicted . The method was applied to oligonucleotide microarray data and cDNA

microarray data. For the first dataset (prostate cancer data set), the outlier detection

criteria allowed us to remove nine samples from the training set. The model without

those samples had better classification ability, with a decrease in the classification Cost

per sample from 0.10 to 0.07. The method was also used in a second dataset (small

round blue cell tumours of childhood dataset) to detect prediction outliers so that

most of the outliers were rejected to classify and misclassifications were reduced from

100% to 5%.
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5.1 Introduction

Outlier detection plays a fundamental role in the development and application of

multivariate classification methods for microarray data. Outliers are either samples,

variables, or certain variables in certain samples that have a different behaviour than

the rest of the data. This paper focuses on sample outliers. Sample outliers may be

training samples, validation samples, or future samples to be classified. The

experimenter is interested in flagging them for different reasons. Outliers in the

training set may have an excessive influence on the classification rule, unless robust

methods of classification are used. Hence, it is interesting to know whether the

classification rule is dominated by a few special samples, and discover if this influence

can be adverse. Samples with large measurement errors or samples that belong to a

different population than the samples we are trying to classify will degrade the rule.

These "bad" outliers should be detected, removed and the rule recalculated. Training

outliers may also contain "good" samples with unique information. These must be

kept, since they will improve the model by expanding its application domain. Their

detection will warn the experimenter that more samples of the similar type should be

obtained in order to model that variability better. Study of the good outliers may also

lead to discover special variables (gene expressions) that may have a high

discriminative power [1]. Outlier detection must also be applied when future samples

are to be classified, which is the ultimate objective of the classification rule. Unknown

samples that do not belong to any of the classes for which the classification rule was

trained or samples with large data errors will be misclassified. The experimenter wants

to be warned about these samples so that they can be rejected to classify until more

information is available. In this sense, outlier detection increases the confidence the

experimenter has in the classification protocol, since the samples that might be

misclassified will hopefully be flagged. Finally, outlier detection must also be used to

detect outliers in the validation set. Samples not representative of the future samples
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to be classified will likely produce an erroneous classification result that will worsen

the classification ability of the model. Hence, these samples should be detected, as it is

done for the unknown samples, and not considered to evaluate the performance of

the model.

The particularities of microarray gene expression data and the many levels of variation

introduced at the complex experimental stages, from hybridization to image analysis,

make necessary the use of outlier diagnostics [2, 3]. First of all, the recorded

microarray data depend on the biological variations of the population under study

(intrinsic to all organisms and influenced by genetic or environmental factors).

Technical variations introduced during the extraction, labelling or hybridization of

samples, scanner settings and measurement errors associated with the reading of the

fluorescent signals (which may be affected, for example, by dust on the array [4]) will

also increase the data variability. Moreover, the large number of variables (gene

expressions) compared to the relatively low number of objects, make the data analysis

and the classification a nontrivial task. Fortunately, the combined use of data pre

processing and multivariate algorithms can extract the main systematic variation in the

data and lead to satisfactory classification results. For example, normalization

methods, such as the lowess correction [5] or the total intensity normalization [6] can

remove inconsistencies of the microarray data. However, not all the errors in the data

may be mathematically removed and outlier diagnostics are still needed in order to

prevent misclassifications due to new unexpected data variations. Outlier detection is

also needed to flag those samples from new unexpected classes (biological outliers)

and those that present extreme biological variability.

Several methods have been used for detecting outliers in microarray data for particular

classification rules. Paoli [7] improved the performance of Support Vector Machines

(SVM) by selecting the optimal number of genes and treating the most relevant as
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outliers. Moffitt [8] constructed the SVM model by removing outliers via re validation.

Olsen [9] analysed the intensity scores of tissue microarrays of sarcoma phenotypes

with Euclidean hierarchical cluster analysis, presenting as outliers those samples that

did not cluster into any of the defined groups. The VizRank tool, which combines the k

nearest neighbours (k NN) method with a range of visualizations was also used to

detect outliers [10]. Model et al. [11] pointed out that outliers in microarray data

cannot always be detected visually and proposed a robust version of Principal

Component Analysis (rPCA). Their objective was to exclude single outlier chips from

the analysis and to detect systematic changes in experimental conditions as early as

possible in order to facilitate a fast recalibration of the production process. Shieh [12]

addressed outlier detection with highly different expression patterns in microarray

data using also PCA and a robust estimation of Mahalanobis distance. Tomlins et al.

[13] proposed the cancer outlier profile analysis (COPA) method for detecting

translocations from microarray data. For gene selection, genetic algorithms were

proposed for outlier detection using a grid count tree [14]. Liu et al. studied different

statistical methods to detect genes with differential expressions across the different

class samples (1). And Loo et al. used with the same objective, filter based methods

[15]. In contrast, Tibshirani [16] and Wu [17] proposed alternative cancer outlier

differential expression detection methods for detecting genes that, inside a disease

group, exhibit unusually high gene expression in some but not all samples.

In this work, we develop outlier detection for discriminant partial least squares (DPLS).

DPLS is one of the preferred methods for classification of microarray data [18]. In DPLS,

the assigned class is decided from the predicted value when the measured

microarray data are submitted to a PLS model. Hence, the outlier detection

approaches that exist for PLS (already applied in multivariate calibration in chemical

and industrial fields) can be applied. Pell used the studentized residuals versus

leverage plot to detect outliers in PLS, which was successful when either masking or

UNIVERSITAT ROVIRA I VIRGILI 
MULTIVARIATE CLASSIFICATION OF GENE EXPRESSION MICROARRAY DATA 
Cristina Botella Pérez 
ISBN:978-84-693-5427-8/DL:T-1418-2010 



5.1 Introduction

115

swamping occurred [19]. Pell [20] also, based on the work by Martens and Næs [21],

detected outliers from an F ratio which compared the validation samples x residuals to

the x residuals of the calibration samples. Chiang and Pell [22] presented the closest

distance to center (CDC), a multiple outlier detection algorithm applied together with

ellipsoidal multivariate trimming (MVT), taking into account only the x data. A

methodology to detect prediction outliers in PLS was applied by projecting the new

objects on the Sammon�’s mapping space containing the convex hull which defines a

boundary around each cluster and another around the whole calibration data [23]. Q

and Hotelling�’s T2 statistics [24] were also used to detect outliers in PLS, although the

authors indicated that in some cases these indexes would not be enough.

Most of these mentioned approaches take into account only the x response data to

point a sample as a potential outlier since it is the only information available for

unknown samples. Note also that the predicted value is rarely used to detect

prediction outliers in PLS, since it is often difficult to set limits on the lowest and

highest values of that can be accepted. Only those predictions that are really extreme

can warn the sample being an outlier. DPLS, however, has the particularity that the

values (from which the class is decided) are located around the value that codifies the

class (around 0 or 1 in the DPLS scheme used in this paper) and that probability density

functions of the predictions can be established. This fact has been previously used to

define a reject option for DPLS and microarray data [25]. The reject option allowed to

reject to classify those samples that had extreme values or those with "normal"

values but whose classification was ambiguous (i.e., samples that have a very similar

probability to belong to any of the modelled classes). In this paper, we provide a

unified approach for outlier detection in DPLS for microarray data. This approach

combines the new criterion based on the predicted value particularly developed for

DPLS, with the well known diagnostics based on the leverage and the x residuals

commonly used in PLS.
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5.2 Theory

5.2.1 Probabilistic Discriminant Partial Least Squares

DPLS is the application of PLS regression to classification problems. A DPLS model is

calculated by regressing y, which codifies the class of the samples, on X using A latent

variables (factors) [18, 26]. For microarray gene expression data, X is an N P matrix of

N samples and P gene expressions and y is a N 1 vector of ones and zeros, where the 0

codifies that the sample belongs to class 0 and the 1 codifies that the sample belongs

to class 1. For an unknown sample with measured x data, xt, the value predicted by

the DPLS model taking into account A factors is given by t = xt
Tb, where b is the vector

of regression coefficients and the pre processing is implicit in the formula. With the

mentioned coding, t should ideally be close to zero if the sample belongs to class 0

and close to one if the sample belongs to class 1. The criterion for deciding the class

from t will influence the performance of the classification rule. The criterion used in

this work is based on the probabilistic version of DPLS, p DPLS [27]. The p DPLS

procedure starts by calculating a PLS model of A factors relating X and y. Then, the

training samples are predicted with this model. For each training sample i, a potential

function f( i,SEPi) is calculated with the shape of a Gaussian centred at the predicted

value i and with standard deviation the standard error of prediction (SEPi) of that

sample. Next, the individual potential functions of all the samples of class 0 are

averaged to obtain the probability density function (PDF) that describes the

predictions of class 0 (Eq. 1):

(1)
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where n0 is the number of samples of class 0. The PDF for class 1 is calculated

likewise, using n1, the number of samples of class 1. A sample is classified by

calculating its prediction and applying the Bayes theorem to the two PDFs so that the

sample is allocated in the class with the highest a posteriori probability. A consequence

of the straight application of this rule is that a sample is always classified in one of the

classes. So, samples from new unexpected classes will be misclassified, and those

samples with either extremely low or extremely high values of (which may be

outliers) will be assigned to one of the classes with a very large probability.

5.2.2 Reject option in p DPLS

The purpose of the reject option in p DPLS is to allow the classifier to reject a sample if

this will likely be misclassified. In other words, a class label is assigned only to those

samples with the highest probability of being correctly classified. By not forcing the

classifier to always make a decision in one of the two modelled classes, the

misclassification rate of the model (measured as the number of correctly classified

samples with respect to the number of samples for which the classifier assigns a class)

decreases, and gives confidence to the experimenter on the outputs of the

classification rule. The reject option in p DPLS is implemented here for two main types

of samples: outliers and ambiguous samples.

5.2.2.1 Rejection of outliers

Outliers are samples whose x data have different features than the bulk of the training

samples. Several reasons for this behaviour are (a) the sample belongs to a class that

was not modelled, (b) the sample belongs to one of the modelled classes but the x

data have gross errors or contain unmodelled interferences, and (c) the sample

belongs to one of the modelled classes but has correct extreme values of some

variables. Samples in situation (a) should be detected and rejected otherwise they will
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be wrongly classified in one of the two modelled classes. Samples in situations (b) and

(c) will not necessarily be misclassified, but this uncommon behaviour will likely affect

the classification result and hence we might prefer to reject the samples and ask for

extended analysis instead of running the risk of misclassifying them. Outliers (hence,

candidates to be rejected to classify) in p DPLS are flagged based on the following four

criteria: limits on the , leverage, ratio of residual variances and classification error.

a. Limits on the

In p DPLS, the predictions of the training samples are used to calculate a distribution

of predictions for each class (see Figure 1). These distributions are ideally centered on

0 and 1, the reference values used at the training stage. Uncommon x data will

produce values at the extremes of the PDF�’s of a class. Hence, limits for are set

around the majority of the of the training data. These limits define regions in the

axis in which the sample is either classified in one class, in the other class, or rejected

to classify [25]. The limits are defined such that the area in the tails of each distribution

is five percent of the total area of the distribution (i.e. 2.5% in each tail of the PDF of

each class). These limits depend on the PDFs. Hence, they are different for p DPLS

models with a different number of factors. In practice, when the PDFs are overlapped

(Figure 1) there are two limits, a High Limit (HL) and a Low Limit (LL) and when the

PDFs are separated there are four limits (a HL and a LL for each class) (Figure 4b). A

sample with a predicted outside the limits will be flagged as outlier. If the PDFs are

not overlapped, a sample with between HL0 and LL1 will be flagged as inlier. This

criterion improves the direct application of the Bayes rule in the sense that, at the

extremes of the PDFs, the a posteriori probability for one class is high, and hence the

Bayes rule would assign the sample to that class with a high probability. By imposing

the limits, the sample will now be rejected to classify. Note also that the limits on the

values will not account for all the outlier situations in p DPLS, since they will not detect

those outliers whose unusual x data makes be inside a classification region, e.g.
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when the of a sample of class 0 falls within the classification region of class 1.

These samples might be detected by the criteria described next.

b. Leverage

The leverage of sample t for a DPLS model calculated with mean centered x data is

given by [28]:

(2)

where tt denotes the score vector and T is the scores matrix of the mean centered

training data. The leverage measures the distance from the sample to the center

(mean) of the training set taking into account the correlation in the data. A low value of

ht indicates that the sample is similar to the average of the training samples. A high

leverage indicates that the sample has an unusual x vector (or score vector) relative to

the training samples, so it is an x outlier. In that case, the experimenter should suspect

about the reliability of the classification and wait for additional studies. Although no

strict rules exist, it is common to declare as a high leverage sample the one with

hth 3 where h is the average leverage value for the training samples (

) [29, 30].

c. Ratio of residual variances

In DPLS, there is a vector of x residuals for each sample and number of factors A used

in the model. The residuals are the difference between the measured x data and the

data predicted by the model with A factors. While the leverage refers to the position of

the sample in the subspace of the factors used for regression, the residual refers to the

orthogonal subspace, i.e., the factors not used for regression. Residuals that are much

larger than most of the residuals of the training samples indicate that the sample is
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poorly described by the model for that number of factors and, hence, it is an x outlier.

It must be pointed out, however, that large x residuals do not necessarily imply a

wrong , and, hence, a wrong classification. Actually, one of the advantages of the

factor based methods such as PLS is that the factors retained in the model should

account for the relevant variability in the x data, while the remaining factors not used

in the model should account for the irrelevant variability (the x residuals). Hence, a

large x residual simply indicates that some part of the measured x data is not

modelled. However, there is a large chance that the source of these unmodelled data

had also a contribution in the model space and influenced the . These outliers are

detected by comparing the unmodelled parts of the test sample to the unmodelled

parts of the training samples using the A factor p DPLS model [31] with the ratio of

residual variances:

(3)

where st
2 is the residual variance for the test sample :

(4)

and sT
2 is the total variance for the training samples [21]:

(5)

An object with V>3 is considered to be an outlier. A similar criterion was used in [31] to

detect outliers in PLS. Note that the usual comparison of V with a tabulated F value is

not useful. The very large number of degrees of freedom involved [32] makes the

tabulated F value be low and most of the samples be flagged as outliers, which is

meaningless.
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Figure 1. Probability density functions (PDFs) for the p DPLS model with two factors obtained during leave
one out cross validation and influence plots for the training samples when a sample is used as a test. a b.
PDFs and influence plot when sample N43_normal is left out c d. PDFs and influence plot when sample
T11_tumour is left out, e f. PDFs and influence plot when sample N41_normal is left out. In a, c and e, the
triangle ( ) identifies the prediction of the left out sample. In b, d and f, the triangle ( ) identifies the left
out sample as compared to the rest of the training data. The vertical and the horizontal dotted lines indicate
the limits for outlier detection.
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d. Classification error

Classification error is an easy to use outlier diagnostics during the training stage of a

classification rule. When the x y relation of a sample does not agree with the x y

relation described by the model, the sample is misclassified, and this is used to flag the

sample as an outlier. This is the equivalent to a large prediction error in regression

models. Different from the criteria (a) to (c), the classification error can only be used to

detect outliers in the training and validation sets because it requires the true class to

be known. Despite it cannot be applied to new samples, the criterion is still very

helpful to refine the classification model.

5.2.2.2 Rejection of ambiguous samples

Ambiguous samples are samples that share characteristics of both class 0 and class 1

because the measured x variables are not discriminative enough for the algorithm

used. When these samples are predicted by the DPLS model, their values are in the

boundary between classes (ambiguity region, Figure 1) so the Bayesian probability of

belonging to any of the classes P( c| t) is similar. Even small variations in the

measured x data can make the classifier assign the sample to either one class or the

other. This increases the uncertainty of the classification result, so it may be preferable

to reject that sample. This rejection is defined by the rule:

 (6)

so that the sample is rejected if the a posteriori probability of belonging to any of the

classes is lower than a reject threshold (1�–t). Note that the threshold can be set to

reject any slightly doubtful sample. This improves the error rate of the classifier, since

less samples will be misclassified, but, in turn, more samples will be rejected that

otherwise could be correctly classified, which reduces the usefulness of the classifier.

Chow [33] derived an optimum rejection scheme that gives a trade off between reject

rate and error rate. This rule was recently described for p DPLS [25].
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5.3 Results

5.3.1 Data

The prostate cancer data set [34] consists of 50 non tumour samples (class 0) and 52

tumour samples (class 1) with 12600 gene expressions (variables). From these gene

expressions (variables), the 150 with the highest variance weight [35] were selected to

avoid irrelevant genes from interfering with the discrimination power of the relevant

genes [36]. The dataset was divided into a training set (82 samples, 42 of class 0 and

40 of class 1) and a test set (20 samples, 8 of class 0 and 12 of class 1) using the

Kennard Stone algorithm [37]. This dataset is used to show the ability of the

methodology to detect outliers in the training set and to show that the final

classification model and the prediction of the test set improve when these outliers are

deleted.

The small round blue cell tumours of childhood dataset [38] includes 2308 gene

expressions of 12 samples of neuroblastoma (NB), 8 samples of non Hodgkin

lymphoma (BL), 23 samples of Ewing family of tumours (EWS) and 20 samples of

rhabdomyosarcoma (RMS). EWS samples (class 0) and RMS samples (class 1) were

used for training and the remaining, NB and BL samples, as test samples. This dataset

was used to show how the proposed method can reject new samples that do not

belong to any of the modelled classes. Since, the test samples do not belong to any of

the modelled classes, they would be misclassified unless the reject option is

implemented.
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5.3.2 Prostate data set

Briefly, the procedure was as follows. First, the p DPLS model was calculated for a given

number of factors using mean centered gene expressions of the training samples. Then,

the training samples were predicted and the predictions, , were used to calculate

kernel Gaussians, which, in turn, defined a PDF for each class (Eq. 1). From the PDFs, the

reject option limits for were set. The leverage and x residuals of the training samples

were also calculated. An unknown sample with measured xt, was first predicted ( t=xt
Tb)

and the x residuals, the leverage and the probability of classification for each modelled

class (evaluated as the Bayes a posteriori probability detailed in [25]) were calculated.

The sample was then either classified or rejected to classify if it was flagged as outlier

(section 2.2.1) or ambiguous (section 2.2.2, Eq. 6). Before classifying unknown samples,

the optimal model was selected by leave one out cross validation (LOOCV). In LOOCV, a

sample is left out and the model is calculated using the remaining samples. Each left out

sample was treated as an unknown sample and was either classified or rejected as

described above. Of the rejected samples, outliers were removed from the training set

and the model was recalculated; ambiguous samples, however, were maintained in the

model since they introduced relevant variability.

The performance of the model was evaluated with the classification cost per sample:

(7)

where Nr is the number of samples rejected, Nm is the number of samples misclassified,

r and m, are the costs of rejecting a sample or misclassifying it respectively and N is

the total number of samples used to validate the model. The cost criterion, calculated

during LOOCV, was used to compare the p DPLS models with a different number of

factors and to select the optimal model. Note that r and m may be fine tuned to meet

the requirements of the classification problem. Since for this dataset there is no

reference in the literature about the associated costs of rejecting or misclassifying a
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sample, we used r =0.25 and m =1, which indicates that we prefer to reject four

samples instead of classifying one wrong. In this case, r values lower than 0.25 did not

improve the classification performance of the model.

For this dataset, preliminary p DPLS models using 1 to 4 factors were calculated. Taking

into account the cost per sample calculated by LOOCV, the optimal model had two

factors. Samples N43_normal and N25_normal (both of class 0) were pointed out as

outliers because their predictions were outside the accepted region for for its

corresponding cross validation segment. The prediction of sample N43_normal (Figure

1a b) was = 0.59, lower than LL0= 0.56, while sample N25_normal had = 0.66, lower

than the limit LL0= 0.50 established for its p DPLS model (note that the limits HL and LL

vary for each cross validation segment since the p DPLS is calculated with different

samples). These extreme predictions suggested the possibility of an unusual x vector.

This was later confirmed because the leverage of these samples exceeded three times

the average leverage of the training set: sample N43_normal had h = 0.13 while h =0.024

and sample N25_normal had h = 0.23 while h =0.037. The reason for the high leverage is

that five genes, those with Accession Numbers 36785_at, 221_s_at, 774_g_at,

31449_at, 38411_at, had higher intensities than the rest of the samples of class 0. The

five variables (genes) differentially expressed, in this case, were not considered relevant

since the different intensities were only present in a few samples so they did not seem

to respond to a differential characteristic of one class.

In addition to the samples N43_normal and N25_normal, the leverage criterion also

flagged sample N33_normal as outlier (h = 0.12, while h =0.025), despite this sample did

not have an unusual .

Six additional samples (N04_normal, T02_tumour, T05_tumour, T11_tumour,

T15_tumour and T25_tumour) were rejected for having high x residuals (V > 3). These
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six samples had most of the gene expressions with higher intensities than the mean of

the intensities of the training samples, so the samples were not well modelled by the

factors of the DPLS model. The T11_tumour sample (class 1) (Figure 1c d), for example,

was rejected because V = 9.45. Its prediction =0.47 was closer to the predictions for

class 0 than to the predictions of class 1 so the sample would have been classified

wrongly (i.e., non tumour) if it had not been rejected. Notice that the prediction for this

sample is not an extreme value, so the sample had not been labelled as suspicious based

only on the prediction.

In addition to the previous samples flagged as outliers, five samples were wrongly

classified (Table 1). In these samples, the relation of x y did not agree with the trend

modelled by the p DPLS model. The reason for the wrong classification is that the

intensities of the samples of class 0 (non tumour) are lower than those of class 1

(tumour) for the majority of the samples of this dataset. The sample N38_normal (class

0), however, had intensities in some of the variables higher than expected, more

similar to the intensities of tumour samples (class 1) than to the intensities of the

samples of its true class (Figure 2a). For this reason, the sample was misclassified. The

opposite happened with the misclassified samples of class 1 (T39_tumour,

T21_tumour, T49_tumour and T34_tumour). Some intensities were lower than most of

the intensities of class 0 (Figure 2b). This situation may result from either an incorrect

codification of the samples (mislabelling), experimental problems (e.g. bad intensity

acquisition) or because these samples were truly different from the rest of samples of

their class (which would indicate that more representative samples of this type should

be collected before they are included in the model).
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Figure 2. a. Intensities of sample N38_normal of class 0 (grey) and mean of intensities of class 0. b.

Intensities of sample T21_tumour of class 1 (grey) and mean of intensities of class 1 (black).

During the cross validation process, four additional samples were rejected to classify

because they were ambiguous. These samples did not have extreme values, so they

were not likely to influence the model excessively and they were kept in the training set.

However, since in the LOOCV process these samples acted as test samples, they were

considered as rejects for the calculation of the performance of the classifier. An example

is shown in Figure 1e and 1f. The figure shows the acceptance and reject regions for the

cross validation model when sample N41_normal is left out. Because its was in the

0 50 100 150
0

200

400

600

800

1000

1200

a

Variable number

In
te
ns
it
ie
s

50 100 150

0

200

400

600

800

1000

1200

1400

1600

Variable number

In
te
ns
it
ie
s

b

UNIVERSITAT ROVIRA I VIRGILI 
MULTIVARIATE CLASSIFICATION OF GENE EXPRESSION MICROARRAY DATA 
Cristina Botella Pérez 
ISBN:978-84-693-5427-8/DL:T-1418-2010 



Outlier detection and ambiguity detection
for microarray data in p DPLS

128

ambiguity zone, this sample would have been rejected to classify if it had been an

unknown sample.

It is to note also that the outlier detection process could suffer from the masking effect,

so that the presence of several outliers could hide the presence of some other outlier.

Despite this, extreme samples could still be detected and the model was recalculated

without those samples. The optimal model was again the p DPLS model with 2 factors,

with a decrease of the Cost of classification per sample from 0.11 to 0.06 (Figure 3).

Figure 3. Cost per sample for the training samples with r=0.25 and m=1. ( ) p DPLS model with all the
samples. ( ) p DPLS models after removing outliers.

Table 1 shows the classification results for the models calculated with the original

dataset and with the dataset after removing the rejected training samples. The LOOCV

and test set classifications are first presented for the initial dataset using the p DPLS

model for two factors (columns 2 and 3) without reject option (i.e., there are no

rejected samples). Columns 4 and 5 show the classifications when the reject option is
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enabled. Note that one false negative and one false positive of the classical model

become rejects. In turn, five true negatives and six true positives become also rejects.

This is because the high certainty required in the classification results makes the

samples with uncertain classification be rejected. Columns 6 to 9 show the results after

the outliers in the training set had been removed. Comparing the classical p DPLS

models with and without outliers (columns 2 3 and 6 7), it is seen that the model

without outliers misclassifies one sample less. This improvement is more notable when

rejection is allowed (columns 4 5 versus 8 9). In this case, the LOOCV error rate

(calculated as the ratio of samples misclassified divided by the samples classified), for

the model with outliers is 5/69=0.07, higher than the error rate for the depurated model

(2/56=0.04). The reduction of misclassified samples is also observed in the test set.

Columns 8 and 9 show the results of the depurated model with reject option. This

depurated model predicts better than the models calculated with all the training

samples without reject option. This optimal model classifies wrongly only two samples,

and also has fewer rejections, so the classification Cost per sample is lower (Figure 3).

The prediction of the test set is also better. The two misclassifications of p DPLS

calculated with the initial dataset are now rejections (based on the ambiguity rejection

rule, Eq. 6). Compared with the p DPLS model with reject option calculated with the

initial dataset, the number of misclassifications and of rejections decreased, so the

classification cost per sample decreases from 0.10 to 0.07. Hence, the removal of the

outliers of the training set improved the p DPLS model in the sense of classifying better

both the training samples via LOOCV and the test samples.
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Table 1. Prostate cancer dataset. Classification of validation and test samples for the p DPLS model with two
factors calculated with initial training samples and after removing outliers.

Initial dataset Dataset after removing outliers from the
training set

p DPLS p DPLS with reject
option

p DPLS p DPLS with reject
option

LOOCV test LOOCV test LOOCV test LOOCV test

FN 2 2 1 1 6 2 2 0

FP 5 0 4 0 0 0 0 0

TN 42 5 37 5 38 5 33 5

TP 33 13 27 13 24 13 21 13

RN 0 0 6 0 0 0 5 0

RP 0 0 7 1 0 0 7 2

** False Negative (FN): samples of class 0 classified in class 1, False Positive (FP): samples of class 1

classified as class 0, Reject Negative (RN): samples of class 1 rejected, Reject Positive (RP): samples of class

0 rejected, True Negative (TN): samples of class 1 correctly classified, True Positive (TP): samples of class 0

correctly classified.

5.3.3 Small round blue cells tumour dataset

The same strategy as for the prostate cancer dataset was followed. In this case the p

DPLS models were calculated using the 96 most significant gene expressions according

to reference [38]. Preliminary p DPLS models were calculated with 1 to 3 factors using

mean centered gene expression data and then validated by LOOCV. The optimal model,

with the lowest cost of classification per sample was the one factor model. For this

model, four training samples were detected as outliers. Three of them had large x

residuals with values st
2/sT

2 of 4.98 (sample EWS_T13), 6.11 (sample RMS_T7), and 8.43

(sample RMS_T11) larger than the cut off value of 3. Moreover, the prediction of sample

RMS_T11 was = 1.91, higher than the class limit HL1=1.35. The fourth outlier, sample

EWS_T12, had a prediction = 0.18, lower than the limit LL0= 0.072. After deleting
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these four samples, the p DPLS model was recalculated and used to predict the test

samples. Without reject option, all the test samples would have been incorrectly

classified by the model. With the reject option, 19 out of the 20 test samples were

pointed as outliers by the limits because they were inliers. The other sample had the

prediction in the acceptance region and hence it was classified, but erroneously. The

classification performance would have been worse if the p DPLS model had not been

depurated from outliers. Without excluding the training outliers, the PDFs of the model

varied, and hence the limits for rejection (Figure 4). In that case (i.e., the p DPLS model

calculated with all the training samples) only 13 of the 20 test samples were rejected

and the remaining 7 were considered valid by the model and classified either in class 0

or in class 1 (hence, wrongly classified). Note that the test samples have intermediate

values of the x variables between the two modelled classes EWS and RMS. Since the

samples are close to the centre of the multivariate space, their predictions were around

0.5, in the middle of the PDFs of the two modelled classes. In this case, none of test

samples could have been rejected neither by the leverage criterion (the maximum

leverage was h=0.01, while the 3 was 0.15 for this model) nor by the ratio of variances

(all had V<3). This shows the complementary information that the limits, the leverage

and the ratio of variances offer.
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Figure 4. Small round blue cells tumour dataset. PDFs of p DPLS model with one factor a. with all the training
samples, b. without the training outliers. Note how PDFs (and hence, the limits and the rejection and
acceptance zones) change when outliers in training set are removed.

5.4 Conclusions

Classification rules for microarray data require appropriate rejection diagnostics. The

several steps involved in the generation and measurement of microarray data, that may

introduce important errors in the data, as well as the possibility of submitting to the

classifier samples from a non modelled class, make it necessary the use of diagnostics to

prevent misclassifications. Rejection diagnostics act both in the training stage of the

rule, by identifying those outliers than can degrade the performance of the rule, and in

the prediction of new incoming samples, by identifying those samples that will likely be

misclassified. Within this approach, the classification model is not forced to classify any
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future sample that arrives. This work extends the previous work on reject option for p

DPLS that was based only on the predicted , which has been shown to be not always

sufficient to detect outliers. Both training and prediction outliers were now detected by

taking into account the x residuals, the leverage and the predicted . The possibility of

using x residuals is an advantage of classification methods based on latent variables

such as p DPLS. The deletion of the training outliers from the training set improved the

classification model. At the prediction stage, samples were rejected to classify either

because they were outliers, or because they were ambiguous.
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Microarray data are often used to determine if a cell or a tissue is healthy or tumour,

or if it belongs to a subtype of a certain tumour. The quality of these classifications

depends on the discriminating ability of the multivariate classification model. This

ability decreases if irrelevant genes are included in the training data. Hence, gene

selection plays a key role in the analysis of microarray data. In fact, gene selection

acomplishes several purposes: 1) the identification of genes that are biologically

relevant for the development of a certain disease 2) the discovery of coexpressed

genes in order to build metabolic pathways and 3) the reduction of the dimensionality

of the data in order to make data analysis easier.

Many gene selection methods have been developed. Some are based on biological

inferences and some have been developed from other type of data. In some cases,

gene selection is based on criteria that can be valid for different types of classification

models, such as using genetic algorithms to select the genes that minimize the

prediction error of a certain classifier [1]. Different classification strategies can be

plugged into this selection scheme, as long as the model takes in certain selected

genes and gives out a prediction error that characterizes the selected subset of genes.

Others, such as selecting the genes that are most correlated with the class label [2] or

based on statistical tests [3 4] ignore how classification algorithms processes the data,

so it may not favour the same systematic variations in the data that the algorithm will

do.

Since the basis of this thesis has been the application of DPLS, we sought for gene

selection that could enhance the characteristics that the DPLS algorithm uses from the

data. Hence, in this work, we implement the selectivity ratio (SR) index in order to

choose the most relevant subset of genes for classification with p DPLS models. The

selectivity ratio evaluates specifically the most relevant variables in PLS models. For

each variable, this index is the ratio of the explained variance with respect to the
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residual variance. The best genes are those with a high explained variance and a low

residual variance. Hence, the genes with the highest SR are selected as significant and

the remaining genes are discarded from the analysis.

This paper also discusses another important aspect related to gene selection, namely

the influence that the split of the dataset into training and test sets has on the subset

of selected genes and on the evaluation of the classifier performance. It is a common

practice that the goodness of a gene selection algorithm is checked by classifying a test

set. For that purpose, the initial data set is split into a training set and a test set either

randomly or using an algorithm such as the Kennard Stone algorithm. Then, based on

the training set, a subset or several subsets of genes are selected, and the classification

model is calculated using only these genes. Next, the test set is classified. The subset of

genes with the highest classification ability indicates the best goodness of the

selection. These selected genes may be relevant only to discriminate the samples of

this particular training set and the test accuracy may be overoptimistic since the genes

were selected based on the accuracy of classification of this particular test set.

In this chapter it is shown that the split of the data intro training and test subsets

influences the accuracy of the classification. Certain splits can lead to classify correctly

100% of the test samples while other splits can only classify correctly 80% of the test

set, thus giving a false indication of the true ability of the gene selection algorithm for

selecting the best genes. In this work, many random splits of training and test sets

have been used for defining the final accuracy of the classification models.

These aspects are discussed and implemented for two datasets, prostate cancer

dataset and non small cell lung cancer dataset. For the prostate cancer dataset, the

mean of the accuracies (by cross validation) of classification increased from 85% (all

5966 genes used) to 94% when only 17 selected genes were used. Equivalently, the
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mean of accuracies for the test samples increased from 84% to 94%. For the non small

cell lung cancer dataset, the model calculated with only 17 of the 54675 original genes,

provided a cross validation classification accuracy of 93%.

This work has been submitted in April 2010.
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ABSTRACT

Most of the gene expressions measured in a microarray experiment are irrelevant for

the final application of the data. Irrelevant genes may confound the classification

models and decrease their performance. In this work, a gene selection method based

on the selectivity ratio index is used. This index is specific for the DPLS method and has

been used to select the best genes that discriminate between healthy and tumour

prostate cancer tissues and that discriminate between different subtypes of non small

cell lung cancers. It is also shown that the split of the dataset into training and test sets

influences both the genes selected and the estimated accuracy of the classification

model. A wrong assessment of the accuracy of the model may lead to either reject a

good subset of genes or accept a suboptimal subset. To overcome this influence a

repetitive strategy including data split, gene selection, validation and prediction is

performed. For the prostate dataset, models calculated with only 17 selected genes

were able to classify the samples with accuracies around the 94%, better than models

calculated with all the gene expressions (5966) whose accuracies varied between 50

and 100% depending on the data split. For the non small cell lung cancer dataset the

models calculated with the genes selected following the selectivity ratio index had

UNIVERSITAT ROVIRA I VIRGILI 
MULTIVARIATE CLASSIFICATION OF GENE EXPRESSION MICROARRAY DATA 
Cristina Botella Pérez 
ISBN:978-84-693-5427-8/DL:T-1418-2010 



6.1 Introduction

143

better classification abilities, independently to the split of the data (accuracies from 94

to 98% for leave one out cross validation) than the models calculated with all the

genes.

6.1 Introduction

DNA microarrays simultaneously provide gene expressions for thousands of genes.

Usually, only a few of the measurements describe informative genes either

overexpressed or underexpressed, while the rest describe unspecific variations or

noise. Discovering the co expressed genes is interesting in order to build metabolic

pathways, to know the biological relevance of genes for clinical diagnosis and also to

enhance the performance of classification algorithms [1]. Classification of cells and

tissues according to their gene expression profiles is one of the main uses of

microarray data. Multivariate classification is adversely affected by irrelevant genes,

which interfere with the discriminative power of the relevant genes. Hence, gene

selection is needed to enhance the accuracy of the classifiers, and it is especially

relevant when the biochemical importance of the selected genes will be sought.

In the last years, many methods have been developed to identify the most relevant

genes for certain types of diagnoses. Three major groups of methods have been

described: filters, wrappers and embedded techniques [2]. Some methods have been

based on genetic algorithms [3], random forests [4], weights of support vector

machines [5] and statistical tests such as the t test or the Wilcoxon test [6] to cite a

few.

DPLS is one of the most used classification methods for gene expression data [7].

DPLS's most important feature is that it uses linear combinations of the original
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variables, which enables dimensionality reduction, noise filtering and outlier detection.

Although DPLS does not necessarily require variable selection, it is preferable to input

only the relevant variables and to discard those that can distort the calculated factor

space. Several approaches for gene selection in PLS have been described. Tan et al. [8]

selected genes using the sum of squared correlation coefficients between the gene

expressions and the response variables. Czekaj and Walczak [1] used the stability of

regression coefficients, and Li Shen [9], following the work of Guyon et al. [5], selected

the genes with a high absolute value of the regression coefficient using a recursive

feature elimination system. Petterson [10], based on Trygg et al. approach [11], used

the first weight vector of a PLS model with one factor to estimate the importance of a

gene for describing the dependent variable. Other criteria often used to select genes is

the Variable Importance on Projection (VIP) [12], which is based on the weighs of the

DPLS model and t�– or F�–statistics [13, 14].

Since each classification method enhances particular features of the data, gene

selection based on general criteria (e.g., selecting the genes that are most correlated

with the class label) does not always provide optimal solutions. Recently, Rajalahti et

al. [15] used the selectivity ratio (SR) index to discover the relevant variables in a mass

spectral profile, detecting peptides in the low molecular mass range without problems

of false biomarker candidates. The advantage of this index is that it can be calculated

specifically for DPLS so that the variables pointed as relevant have also the largest

discriminative power for this type of classification model.

In this work we show the use of the selectivity ratio index to choose the most relevant

genes when the classification is carried out using DPLS and microarray gene expression

data. It is shown that the initial split of the dataset into a training and a test set may

influence significantly the estimated classification performance of the classifiers, and

hence the conclusion about the goodness of the selection criterion and of the selected
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subset of genes. An approach based on repetitive data split, gene selection, training of

the classifier and validation is used in order to better estimate the ability of the

selected genes for providing a good classifier.

6.2 Methods

6.2.1 Probabilistic discriminant partial least squares (p DPLS)

Probabilistic Discriminant Partial Least Squares (p DPLS) is a new version of

Discriminant Partial Least Squares (DPLS) regression [16]. Briefly, p DPLS starts by

calculating a PLS model of A factors relating a N P gene expression matrix (X) and a

N 1 vector of ones and zeros that codifies the samples�’ class (y). Next, the training

samples are predicted with this model. For each training sample, a potential function is

calculated as a gaussian centred at the predicted value and with standard deviation

equal to the standard error of prediction (SEP) of that sample. Next, the potential

functions of the samples of the same class are averaged to obtain the probability

density function (PDF) of class 0 and of class 1. The classification of a test sample is

done by calculating the a posteriori probability on each class, based on the prediction

of the sample. The performance of DPLS depends on the relevance of the input genes.

Below, the selectivity ratio index is introduced as a method for gene selection.

6.2.2 Selectivity ratio index

The selectivity ratio (SR) index [15] is based on Kvalheim and Karstang target rotation

approach [17]. It is defined as the ratio of the explained variance (vex,p) to the residual

variance (vres,p,) of a variable:
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(1)

A target projection model is calculated as

X= tTPpTP
T + ETP = XTP + ETP   (2)

where tTP (N×1) are the target projected scores and pTP (P×1) and the target projected

loadings. These are obtained as

tTP=X bPLS/||bPLS||    (3)

pTP
T=tTP

TX/(tTP
TtTP)    (4)

where bPLS (P×1) are the regression coefficients of the DPLS model calculated for A

factors. From Eq. (2), the explained variance for variable p, vex,p, is calculated from the

pth column of XTP and the residual variance for variable p, vres,p, is calculated from the

pth column of ETP.

The genes with the highest SR are the ones that best define the relevant variations in

the data.

6.2.3 Effect of data split on performance evaluation

Commonly, gene selection starts by splitting the dataset into a training set and a test

set [18 20], either randomly or using a sample selection algorithm such as the Kennard

and Stone algorithm [21]. Then, genes are selected so as to optimize a criterion

calculated from the training set, and the goodness of the selected genes, and hence of

the selection criterion, is checked either by cross validation [22, 23] or by predicting a

test set [18 20, 24]. Other debatable approaches, such as selecting the genes that best

classify a test set have also been used [25]. The limitation of the single split approach is

that a selection algorithm or a set of selected genes may be discarded because an
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unfortunate split of the dataset leads to low classification accuracies for the test set.

Or the other way round, a suboptimal set of genes can be accepted if the classification

ability of that particular test set is high.

In order to overcome this situation, gene selection is done in this work from one

thousand different training subsets selected randomly. For each training set, a DPLS

model is evaluated and the selectivity ratio index SR for each gene is evaluated. After

the one thousand iterations, the mean of the SR's of each gene is calculated and the

genes with the largest mean SR are selected. The usefulness of the genes selected is

then checked by calculating the classification accuracy of new five hundred DPLS

models calculated using the selected genes after randomly selecting the training and

test sets again.

6.3 Results

6.3.1 Datasets

The prostate dataset [26] consists of 50 non tumour samples (class 0) and 52 tumour

samples (class 1) with 12.600 gene expressions analysed for each sample. This dataset

has been previously studied in gene selection studies and used to evaluate the

performance of a classification method [4, 27, 28] to cite a few.

The non small cell lung cancer (NSCLC) dataset [29] consists of 58 samples of the two

major histological subtypes of lung cancer, 40 from adenocarcinoma (class 0) and 18

from the squamous cell carcinoma (class 1) with 54675 gene expressions analysed for

each sample.
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6.3.2 Discussion

6.3.2.1 Prostate cancer dataset

The dataset was pre processed like in [26]. The floor value was set at 10, the ceil value

at 16000 and the genes with (Imaxp Iminp) < 50 and (Imaxp/Iminp) <5 were removed,

where Imaxp and Iminp are the maximum and minimum intensities of the gene

respectively. The intensities of the final 5966 genes left were then log2 transformed.

This dataset was randomly split into a training set and a test set with the only

constraint that the training set should contain 50% of the samples of each class from

the initial dataset. Then two factor DPLS models were calculated with mean centered

data and the SR index was calculated for each gene. The number of factors was initially

determined as the one with the lowest root mean square error of cross validation

using all the genes. It was latter checked that a different reasonable number of factors

of the DPLS model did not affect the genes that were selected as relevant after the one

thousand repetitions. The procedure was repeated one thousand times and the

average SR index of each gene was calculated. The 10, 17 and 35 genes with the

highest average of SR for these models were selected as potentially relevant (Table 1).

Figure 1 shows the mean SR for the fifty genes with the highest index. After the first 17

selected genes, the remaining genes have similar SR. Hence, the discriminative power

for the rest of the genes is not relevant enough to justify their inclusion in the model.

Anyway, the best 10, 17 and 35 genes were selected in order to compare them with

previous selection results using the random probabilistic model building genetic

algorithm (RPMBGA) criterion [25].
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Figure 1. Mean of SR among the 1000 iterations for the fifty genes with highest SR.

Table 1. The 35 most relevant genes accordingly with the SR index calculated from 1000 p DPLS models.

Id of genes selected

10 genes 17 genes 35 genes

37639_at

32598_at

40282_s_at

41468_at

38406_f_at

41288_at

38634_at

32243_g_at

37366_at

40856_at

1767_s_at

36601_at

37720_at

575_s_at

39315_at

34840_at

31444_s_at

39756_at

769_s_at

36491_at

38410_at

38087_s_at

40024_at

38051_at

33904_at

33362_at

33137_at

32076_at

1521_at

35742_at

32206_at

1740_g_at

34407_at

33198_at

1513_at

*Note that to avoid redundancy, the 17 genes are the 10 in the first column plus the 7 in the second column,
and analogously the 35 genes are the 10 in the first column plus the 7 in the second and the 18 in the third
and the fourth columns.

The ability of the selected genes to discriminate between tumour and non tumour

samples was evaluated for models calculated using the 10, 17 and 35 relevant genes

only [24]. In order to make the results less dependent on data split, the classification
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performance was calculated for five hundred p DPLS models. These models were

calculated from randomly generated training and test sets with 50% of samples of each

class in each set. For a better comparison, the samples in the training set and test set

in each repetition are the same for the models calculated with 10, 17 and 35 genes.

The histograms in Figure 2 summarize the validation accuracies of the five hundred

models calculated with 10, 17 or 35 genes. For each model (a selected subset of

training samples and genes) the leave one out cross validation (LOOCV) accuracy and

the test set accuracy were evaluated. If the subset of genes is adequate, one would

expect both accuracies be high and similar, independently on the samples used to

calculate the model.

Figure 2a shows that the models calculated with 10 genes had LOOCV accuracies from

85% to 100% depending on the data split. Test set accuracies also ranged from 85% to

100%. Most of the models had a LOOCV accuracy of 96% and test set accuracy of 92%.

These high values of both accuracies indicate that the subset of genes accounted for

the main differences between non tumour and tumour prostate cancer samples. The

fact that the histogram is sharp indicates that the high accuracy was maintained for

most of the models and it was quite independent on the split of the samples into

training and test sets. Note also that a single unfortunate split can lead to low values of

both LOOCV accuracy (88%) and test accuracy (90%), which could lead to reject the

selected subset of genes in front of previously reported subsets as they did not

improve the performance. Also note that some data splits can lead to models with a

large difference between the LOOCV classification accuracies and the test sets

classification accuracies (e.g. LOOCV accuracy of 88% and test set accuracy of 100%).

These results highlight the relevance that the data split may have when determining

the usefulness of a selected subset of genes or the usefulness of a given classification

rule.
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Similar remarks can be drawn from Figures 2b and 2c for models calculated with the

optimal 17 and 35 genes following the SR criterion. For 17 genes, the most frequent

LOOCV accuracy is 94%, with a test accuracy of 92% (Figure 2b). For the subset of 35

genes, most of the models have high LOOCV and test accuracies of 94% (Figure 2c).

The models calculated with genes selected with the selectivity ratio index were

compared with models calculated from genes selected in the bibliography. Figure 2d

shows the accuracies when the five hundred models calculated using optimal genes

reported in reference [25]. Note that although the subsets of genes were chosen with

a different criterion (RMPMGA) and for a different classifier (support vector machines),

they can also give DPLS models with high accuracies. However, the histograms are not

as sharp as in Figure 2(a c), so the quality of the models depends much more on the

data into training and test sets than when the genes are selected with the SR index.

Reference [25] reported test set accuracies of 98% calculated for one single dataset

split. Note that for DPLS those genes can give accuracies as high as 100% for certain

dataset splits, but most of them have around 92% accuracy. This suggests an inferior

performance for p DPLS than when the subset selected with the SR index is used.

For the subsets of 17 and the 35 genes, the accuracies varied from 85% to 100%

(Figure 2e 2f). Note that in that case the accuracies obtained depended even more on

the training and test sets in which the dataset was split and the histograms were more

flat.

When using the raw dataset without gene selection (5966 genes), the validation

accuracies range from 50% to 100% for different data splits (Figure 3). The mean of

LOOCV accuracy was 85% and the mean of test accuracy was 84%. The lower

accuracies as compared to using subsets of selected genes can be attributed to the fact

that the models are taking into account false correlations. Given the large number of
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genes, some uninteresting genes may become correlated with the class label for a

certain data split, so that the model will assign a high modelling importance to those

genes. The test set, which does not show the same correlation pattern, is then

classified with a high error. The almost flat histogram suggests that the accuracies

change often depending on the split into training and tests set and hence that using all

the genes are not able to provide models that systematically perform well.

Figure 2. Prostate dataset training (LOOCV) and test accuracy frequences (per unit) for the five hundred p
DPLS models calculated with 10 (a, d), 17 (b, e) and 35 (c, f) genes chosen with the SR criterion (a c) and by
RPMBGA (d f).  
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Figure 3. Prostate cancer dataset. Training and test accuracy frequences (per unit) for the five hundred p
DPLS models calculated with all final genes the genes after preprocessing (5966 genes).   

6.3.2.2 Non small cell lung cancer dataset

The non small cell lung cancer dataset consists of 54675 gene expressions from 58

samples of asenocarcinoma (AC) and squamous cell carcinoma (SCC). Following the

procedure described for the prostate dataset, one thousand randomly training and

test subsets were generated and the SR index for each gene was calculated for each of

the models to discriminate between AC and SCC samples. The 17 and 30 genes with

the highest average SR index over the one thousand models were selected as relevant

(Table 2). This number of genes was decided in order to compare the results with

previously reported results [29].
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Table 2. The 30 most relevant genes accordingly with the SR index 1000 p DPLS models.

 
Id of genes selected

17 genes 30 genes

206032_at

206033_at

211194_s_at

216918_s_at

244107_at

207382_at

57703_at

206266_s_at

206165_s_at

204455_at

217528_at

206164_at

225822_at

226832_at

221795_at

222892_s_at

230464_at

1559606_at

205595_at

217272_s_at

221796_at

235075_at

214680_at

204136_at

203097_s_at

201818_at

1555501_s_at

219507_at

228806_at

206156_at

* The 30 genes are the 17 in the first two columns plus the 13 in the third and fourth columns.

The selected genes were used to calculate five hundred p DPLS models using random

training and test sets. These models were also compared with the models calculated

with the genes selected in a previous work [29].

Figure 4 summarizes the validation accuracies of the five hundred models obtained by

LOOCV and by predicting the test set for subsets of 17 and 30 genes. The accuracies for

LOOCV and for test data ranged from 85% to 100%. Note that most of the models with

the 17 genes selected having maximal SR have LOOCV and test accuracies from 94 to

98% (Figure 4a). This fact is even more notable when the 30 genes are used (Figure

4b), for which the number of models with test accuracies out of this range is

insignificant. In contrast, for the 17 and 30 genes selected in [29] the p DPLS models

have varying accuracies, from 88% to 98%, without dominant training and test

accuracy values (Figures 4c 4d). Again, this points out the importance that the data

split has on the evaluated accuracies. Note also that the mean of the test accuracies

obtained by the models calculated with the genes selected following the SR criterion
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are slightly better than those obtained with the genes selected in [29] (from the 92%

to 93% for the 17 genes subset or from 92% to 93% for the 30 genes subset).

selected in [29] (from the 92% to 93% for the 17 genes subset or from 92% to 93% for

the 30 genes subset).

 
Figure 4. Training and test accuracy frequences (per unit) for the five hundred p DPLS models calculated with
17 (a, c) and 30 (b, d) genes selected by the SR criterion (a b) or in the reference work (c d).

6.4 Conclusions

The selectivity ratio index has been used to select the best subset of discriminant

genes for microarray data classification with p DPLS. The methodology reduces the

influence of the samples selected as training samples on the final classification

accuracies, and the genes selected give models with very similar classification abilities
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independent of the data split. We have also shown that the accuracies of the models

may depend to a large extent on the particular samples in the training set and that

using a single test set to validate the gene subset may result in either too optimistic or

pessimistic conclusions.
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Microarray gene expression data were initially used for binary differentiation e.g., to

classify a sample or a cell as healthy or tumour. Commonly, however, the diseases with

genetic origin have more than two subtypes, so the problem of classifying a sample from

gene expression data is more often than not a multi class classification problem.

Although some classification algorithms can easily handle many classes (e.g., k nearest

neighbours classification), others (e.g. some versions of DPLS) are designed to deal with

two classes only. In order to be able to use for multiclass classification the powerful

binary classifiers available, new strategies have to be devised. One of these strategies is

to perform binary classifications between pairs of classes, and then combine the results

to obtain the final class label. This one versus one strategy is often better than to model

one class against all the others (the one versus all strategy). The reason is that in the

one versus all strategy, different subtypes of samples are grouped into the same class,

which must be differentiated from the target class. In contrast, the one versus one

strategy allows the model to focus on the genes that actually differentiate one particular

class from another particular class.

A difficulty in the one versus one strategy is that a new sample will be submitted to all

the binary models that make the classification system. For the binary models that

modelled the class, the prediction should be that the sample belongs to the modelled

class. For all the other models, the sample is an outlier and should be detected as such.

Hence, the combination of the results of the binary classifiers in order to obtain the final

assigned class is a fundamental step.

In the present work multi class classification is performed in two steps by combining

partial least squares (PLS) regression and the linear discriminant analysis (LDA). In the

initial step, one versus one PLS models allow obtaining the predictions for each sample
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(a single value) and for each model. Each one versus one PLS model can only

discriminate between two different classes. However, the predictions of samples from

the classes not modelled by each PLS model may span all the domain, and hence

misclassified. So, the multi classification is done in a second step with the LDA classifier

applied over the predictions of the samples for all the one versus one PLS models.

The methodology was used to classify samples of leukemia and small round blue cell

tumours datasets. The accuracies of classification were 97%, using only 15 genes, and

100% with 17 genes, respectively.

This paper was submitted in May 2010.
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ABSTRACT

When classification from microarray gene expression data is a multi class problem, the

outputs of binary classifiers such as discriminant partial least squares (DPLS) must be

combined to obtain the final classification result. In this work a new methodology for

multi class classification that combines partial least squares (PLS) and linear

discriminant analysis (LDA) has been developed. The method also includes a gene

selection step based on the selectivity ratio index so that the best performing genes

for each binary PLS model are selected. When the methodology was applied to the

leukemia dataset, that has three classes, 97% of the samples were correctly classified

using only 15 genes in the PLS models. For the round blue cell tumour dataset, that has

four classes, 100% of the samples were correctly classified using only 17 genes in the

PLS models.
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7.1. Introduction

 

An important challenge in the use of large scale gene expression data for biological

classification occurs when the dataset involves multiple classes [1]. So far, most of the

research on classification of microarray data has focused on two major classes only

(e.g. normal versus cancer tissue, response to treatment versus no response).

However, practical cancer diagnosis requires differentiating among more than two

types or subtypes and, hence, multi class classification techniques are needed [2].

Multi class classification can be approached in two ways. One way is the use of

algorithms that treat multi class problems directly, such as k Nearest Neighbours

(kNN), Linear Discriminant Analysis (LDA) or Neural Networks (NN). A second way is to

decompose the multi class problem into multiple binary classification problems and

use binary classification algorithms, such as Discriminant Partial Least Squares (DPLS)

or Total Principal Component Regression (TPCR). These binary classification models can

be calculated by modelling either one class versus the others (one versus all, OVA), one

class versus each other class (one versus one, OVO) or using hierarchical partitioning

[3, 4]. Then, the results of the binary classifiers are combined to obtain the assigned

class label.

Several novel methods have been developed for multi class classification with

microarray data. Tan et al. in [5] used TPCR, which takes into account the information

of the dependent variables and also the errors in the dependent and independent

variables. Ooi et al. in [1] used genetic algorithms (GA) for gene selection and

classification was based on the maximum likelihood. They obtained better

classification accuracies than previously published methods and reduced the number

of genes needed for classification. Leng et al. in [6] proposed Sparse Optimal Score

(SOS), based on Fisher LDA, as a multicategory classifier and classified three public
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datasets satisfactorily. Tibshirani et al. [7] proposed the nearest shrunken centroid

method, for cancer class prediction. With the same multi classification objective, some

studies proposed derivations of SVM for multi classification. Lee et al. designed an

optimal multicategory SVM [8], Peng et al. in [2] and Liu et al. in [9] combined GA and

one versus one SVM. In contrast, de Souza et al. in [10] applied GA and one versus all

SVM.

DPLS has proven useful for binary classification of microarray data but it has not been

much studied for multiclass classification. Nguyen et al. [11] used PLS as a dimension

reduction technique for a posterior classification with Logistic discrimination or

Quadratic Discriminant Analysis. DPLS2 was used by Tan et al. [12] to classify multiclass

public datasets using the OVA strategy. However, this strategy may lack biological

sense for microarray data analysis when, for instance, healthy samples must be

grouped together with tumour samples and discriminated from other tumour types.

In this work we describe the application of PLS combined with LDA for multi class

classification. Several OVO PLS models are calculated and LDA is applied to the

predictions of the samples on each of these models. The advantage of using OVO

models is that each model maximizes the differences between the two modelled

classes. Additionally, gene selection is performed for each PLS model to increase the

discriminant ability. The selection is based on the highest selectivity ration index [13]

that is specially suited for PLS. The method has been applied to two datasets, the

leukemia dataset [14] and small round blue cell tumour dataset [15].
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7.2 Methods

7.2.1 Multi class classification method: Partial Least Squares Linear
discriminant analysis

The multi class classification in C classes is done by combining PLS regression and LDA

(Figure 1) and may be validated by leave one out cross validation (LOOCV) or by a test

set.

PLS is a regression method based on maximizing the covariance between X and y [16].

The gene expression microarray data, X is an N×p matrix of N samples and P gene

expressions and y is a vector of zeros and ones that codifies the classes of the samples.

In this paper, one versus one PLS models are calculated, so X only contains samples

from two modelled classes, for instance class 1 (e.g. �“tumour type I�”) and class 2

(e.g. �“tumour type II�”). The zeros in y codify the samples of class 1 and the ones in y

codify the samples of class 2. With these settings, PLS models for every combination

of two classes i vs. j i = 1,�…C, j>i are calculated (Figure 1(c)).

For a sample to be classified in one of the C classes, its prediction in each DPLS model

is calculated as:

(1)

where b is the vector of regression coefficients for the model of A factors and x is the

gene expression vector for such sample. Note that if b has been calculated from mean

centered data then x should be mean centered and should be processed accordingly.

The sample to be classified is predicted in all the OVO PLS models (Figure 1(c)), thus

obtaining a vector, of predictions (Figure 1(d)). For instance, if there are three

subtypes of samples, three PLS models are calculated: class 1 versus class 2, class 1

versus class 3 and class 2 versus class 3. The prediction of a sample in these three
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models generates = [ 12 13 23] (the subscripts indicate the classes accounted for in

each model) that describes the behaviour of the sample in the multiclass classifier.

Ideally, if the sample belongs to class 1, 12 and 13 should be close to zero and 23

should be far above 1 or far below 0 so that the sample could be detected as an outlier

in the model of class 2 vs. class 3. Actually, this is not always the case and outliers

may have predictions along the entire domain and mixed with the predictions of the

modelled classes. Similarly, a sample of class 2 should have a 12 close to one, a 23

close to zero and an undetermined value of 13. Finally, a sample of class 3 should

have 13 and 23 close to one and an undetermined value of 12. LDA is then applied to

.

LDA finds discriminant functions (directions) such that the distance between the

classes�’ mean vectors is maximized when the data are projected onto such functions.

Let be the vector of predictions obtained for the sample that must be classified. A

discriminant score (m) is calculated for that sample in each discriminant function as:

(2)

where c is the mean vector of the predictions of the training samples of class c, c is

the a priori probability of class c calculated as the number of samples of the class over

the total number of samples.

(3)

and is the covariance matrix evaluated as:

(4)

where Sc is

(5)
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Then the sample is classified in the class for which it has the lowest classification score

(Figure 1(e)).

 

Figure 1. Scheme of a three class PLS LDA training classification process: a. Initial dataset. b OVO PLS model
with an A factors (initial guess) are calculated and genes are selected with the SR index for each model. c.
The optimal OVO PLS models are calculated with the selected genes. d. All the training samples are predicted
in each OVO PLS model obtaining a matrix. D. LDA classifier is calculated, using as independent variables
and y as the class code. Note the P12, P23 and P13 represent the same number of genes but not necessarily
the same genes. The optimal number of factors in the OVO PLS models is those that minimize the RMSECV
criterion.

7.2.2 Selectivity ratio index

The Selectivity Ratio (SR) index flags the most relevant variables for PLS. It is based on

a target rotation approach [17] and is detailed in reference [13]. The SR index is

defined as the ratio of the explained variance (vex,p) to the residual variance (vres,p) of a

variable (p):

SRp= vex,p/ vres,p (6)
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Taking into account that PLS decomposes X as:

X= tTPpTP
T + ETP =XTP + ETP (7)

where tTP (P×1) are the target projected scores and pTP (P×1) and the target projected

loadings.The explained variance for each variable p is calculated from the p column of

the reconstructed XTP, and the residual variance is calculated from the p column of the

residual matrix E. Note that tTP and pTP on equation 7 are calculated following the

procedure in [13]. The genes with a highest SRp index are selected as the more relevant

to discriminate between the two classes modelled by the PLS model. Note that each

OVO PLS model has its optimal subset of genes that best discriminate between the two

modelled classes. The number of genes in the subset may differ from one PLS model to

another. To avoid an additional optimization step, the methodology implemented here

used the same number of genes for all the PLS models, although the genes were not

necessarily the same.

7.3 Datasets

The leukemia dataset [14] consists of 72 samples of acute lymphoblastic leukemias

carrying a chromosomal translocation that derives on three subtypes of samples, acute

lymphoblastic leukemia (ALL, 24 samples class 1), mixed lineage leukemia (MLL, 20

samples, class 2) and acute myeloid leukemia (AML, 28 samples, class 3). For each

sample 12582 gene expressions were obtained. This dataset was pre processed as

described in [14].

The small round blue cell tumour (SRBCT) dataset [15] consists of 63 training samples

from four different cell subtypes. 23 samples are from Ewing family of tumours (EWS,

1), 20 are rhabdomyosarcomas (RMS, class 2), 12 are neuroblastomas (NB, 3) and
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the remaining 8 are Burkitt lymphomas (BL, 4). The independent test set has 20

samples, 6 of class 1, 5 of class 2, 6 of class 3 and 3 of class 4. For each training

and test sample 2308 genes were analysed. The algorithms were run in Matlab

software.

7.4 Results

7.4.1 Leukemia dataset

Three OVO PLS models were calculated for A factors: a model of ALL vs. MLL, a model

of ALL vs. AML, and a model of MLL vs. AML. For each PLS model, genes having the

highest SR index were selected. Three groups of 15, 50 and 100 genes were tested so

that the results could be compared with previous results [14, 18]. The OVO PLS models

were recalculated using the selected genes and the optimal number of factors was the

one that minimized the root mean square error of leave one out cross validation

(RMSECV). Note that this number of factors may differ from the ones used in the

preliminary model used for selecting the genes.The three optimal PLS models were

used to predict all the training samples. A matrix (72×3) of predictions was then

obtained and used for training the LDA classifier. A sample to be classified was first

predicted with the three PLS models, thus obtaining a vector, (3×1) of predictions.

This vector was supplied to the LDA classifier to obtain the final classification.

In this dataset, a test set was not available, so leave one out cross validation (LOOCV)

was carried out. Hence, all the samples were used once as a test sample, obtaining for

each one a (3×1) vector of predictions, and yielding matrix t (72×3) of predictions in

total. This matrix was used to predict the class with the LDA classifier calculated with

the training samples in the previous step.
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Modelling with the 15 most relevant genes

Figure 2a shows the LOOCV predictions from the three binary PLS models calculated

with only the 15 most discriminant genes, selected according to the SR index. Note

that the model of ALL vs. MLL can discriminate correctly samples from the class ALL

(whose predictions are around 0) from the samples of class MLL (whose predictions are

around 1). However, it cannot differentiate the samples from class AML. Ideally, these

samples should behave differently and have extreme predictions, so that they could be

detected as outliers. Instead, their predictions are between the values 0 and 1, so the

predictions of the PLS model only are not enough for correctly classifying all the

samples. A similar situation happened with the MLL samples in the model ALL vs. AML

and with the AML samples in the model ALL vs. MLL (Figure 2a).

Next, LDA was applied to the predictions of each LOOCV sample. Figure 2b shows the

validation samples already classified by LDA in the space of the PLS. The LOOCV

classification accuracy was 97.2%, higher than the 95% accuracy by LOOCV previously

reported for this dataset [14] using kNN and selecting the genes following a signal to

noise criterion. A 97.2% of accuracy means that the method only misclassified 2 of the

72 samples. These two misclassified samples, MLL_2 and MLL_15, are samples of class

MLL that were assigned to class AML. Figure 3 shows the discriminant scores of the LDA

classifier for the first two discriminant functions. Note that for these samples the

discriminant score in the second discriminant function is not high enough to be

assigned to their true class MLL. Both samples have raw intensities lower than the

intensities of the samples of their true class MLL and more similar to the intensities of

the samples of class AML. As a consequence, the discriminant scores and the predicted

�’s for these two samples were more similar to the �’s for class AML. More concretely

(Table 1) MLL_2 has predictions 12 = 0.62 and 13 = 0.94, which are almost equal to the

mean of the predictions of the samples of class AML ( 12= 0.68 and 13 = 0.97) and

differ considerably from the mean of the predictions for the samples of its true class
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( 12= 0.94 and 13 = 0.61). The predictions for the model of MLL vs. AML did not

contribute significantly to the classification of the MLL_2 sample, having a value

between the predictions of both classes.

 

 

Figure 2a.Predictions of LOOCV samples for OVO PLS models 2b. Samples classified according to LDA based
on the LOOCV predictions of the OVO PLS models calculated with the 15 genes selected with the highest SR
index. ( ) samples of class ALL correctly classified, ( ) samples of class MLL correctly classified, (×) samples of
class AML correctly classified, and ( ) misclassified samples.
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Figure 3. Discriminant scores of the LDA classifier calculated for the first two discriminant functions. ( )

samples of class ALL ( ) samples of class MLL, (×) samples of class AML, and ( ) misclassified samples.

Modelling with the 50 most relevant genes

When the number of genes selected to calculate the PLS models was 50, the

classification performance was similar as for 15 genes, except for one additional

sample that was misclassified. The predictions of each class are more clustered around

their target values, which should improve the discrimination between the classes.

However, the two outliers detected when the classification was performed with 15

genes, MLL_2 and MLL_15, were again outliers. In addition, the sample AML_11 was

also pointed out as outlier. This resulted in a 95.8% of LOOCV classification accuracy. In

this case, then, increasing the number of genes worsened the classification. This

contrasts with previous results where the best accuracies were obtained with 50 genes

[18].

Figures 4a and 4b show the predictions and the LOOCV results for the models

calculated with 50 genes. The two samples of class MLL misclassified (MLL_2 and
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sample whose intensities for these 50 selected genes are higher than the expected for

a sample of class AML. This did not happen when only 15 genes were used. These high

intensities influenced the predicted y, which was similar to the predictions of the MLL

samples and very different from the predictions of the samples of its true class.

When the number of genes increased to 100 the classification performance was like

the performance of the models with 50 genes, and the three samples pointed above as

outliers were again misclassified.

 

Figure 4a. Predictions of LOOCV samples for OVO PLS models calculated with the 50 genes with highest SR
index. 4b. Classification of LDA from the OVO PLS predictions. ( ) samples of class ALL correctly classified, ( )
samples of class MLL correctly classified, (×) samples of class AML correctly classified and ( ) misclassified
samples.

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

0
0.4

0.8
1.2

-2

0

2
-0.4

0

0.4

0.8

1.2

a

b

PLS model of  
class ALL vs. 

class MLL

PLS model of  
class  ALL vs. 

class AML 

PLS model of  
class  MLL vs. 

class AML

 of
m

od
el 

 M
LL

 v
s. 

AM
L

 of modelALL vs. AML 

 of modelALL vs. AML

UNIVERSITAT ROVIRA I VIRGILI 
MULTIVARIATE CLASSIFICATION OF GENE EXPRESSION MICROARRAY DATA 
Cristina Botella Pérez 
ISBN:978-84-693-5427-8/DL:T-1418-2010 



7.4 Results

175

7.4.2 Small round blue cell tumour dataset

Following the procedure described for the leukemia dataset, OVO PLS models were

calculated. By combining the four different classes, six PLS models were calculated. For

each one, the best 17 discriminant genes, obtained using the SR index, were selected.

The optimal number of factors for each one of the six PLS models was determined

based on the minimum RMSECV. The optimal PLS models were used to predict all the

training samples, which where then submitted to the LDA classifier. Figure 5 shows the

predictions for the test samples for three of the six PLS models, along with the

classification performed by LDA from those predictions. From the OVO PLS predictions

LDA was able to classify correctly all test samples.. Note that in reference [15] a 100%

of test accuracy was achieved using 96 genes. With PLS LDA, the same performance is

achieved using only 17 genes, selected independently for each one of the OVO PLS

models.

 

Figure 5. Predictions from three of the six PLS models and the classification performed by LDA. (×) samples
of class EWS ( ) samples of class RMS ( ) represents samples of class NB ( ) represents samples of class
BL). All of the samples are correctly classified.
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7.5 Conclusions

 
LDA applied on the predictions of one versus one PLS models allows multi class

classification of microarray gene expression data with good performance. By selecting

the most discriminant genes independently for each PLS model, the accuracies are

similar to those previously published but using less genes. In addition, the use of only a

few genes allows a better posterior interpretation of the biological sense of the genes

and their relation with a particular illness.
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1. Probabilistic Discriminant Partial Least Squares (p DPLS) has been
applied to the binary classification of microarray gene expression data.

The probabilistic Discriminant Partial Least Squares (p DPLS) method has been

successfully applied to classification of microarray gene expression data. In the training

step, a PLS model is calculated from the microarray data matrix X and the vector y of 0�’s

and 1�’s that codifies two classes. Next, the training data are predicted with the PLS

model for a selected number of factors and their predictions are used to estimate two

probability density functions (PDFs), one for each modelled class. These PDFs define the

range of predictions that characterizes each class. In the prediction step, the prediction

of the sample to be classified and the PDFs are used to calculate the a posteriori

probability that the sample belongs to each one of the modelled classes. The sample is

then assigned to the class with the highest probability.

There are several reasons that make p DPLS suitable for classifying microarray data.

Microarray data involve thousands of variables and a much smaller number of samples.

Many of these variables are redundant, falsely correlated or irrelevant to distinguish

between classes. The PLS model compresses the large data matrix X into a few latent

variables by focussing on the variables in X that are most correlated with the vector of

class codes y. Hence, the classifier uses the systematic relevant data variability, so that

the prediction of a sample and the final classification result are minimally affected by

irrelevant genes. In addition, since only a few latent variables are used, a noise filtering

effect is achieved.

Another advantage of p DPLS in front of other algorithms that perform discriminant PLS

lies in the calculation of the PDFs of each class and in how the class label is assigned. The

classical discriminant PLS approach decides the class label based only on whether is

higher or lower than an arbitrary threshold (e.g. 0.5). More elaborated procedures

assume that the 's of each class are normally distributed, and the mean and standard
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deviation of the 's are used to estimate a Gaussian distribution for each class. The

threshold is then the where the PDFs of both classes coincide or (if a priori

probabilities are taken into account) where the a posteriori probabilities are the same.

None of these approaches has been useful for microarray data. First, there is not reason

for setting an arbitrary threshold. Second, the number of samples available for analysis

is usually limited and often one class may have many more samples than the other. This

makes the prediction of the PLS model be usually not clustered around the target values

0 and 1 that codify the classes, but slightly biased and not normally distributed (see, for

example, the predictions in Figure 6 of chapter 4). In p DPLS the type of distribution of

the 's does not need to be assumed and the PDFs are calculated by combining kernel

functions. Hence, the PDFs better describe the distribution of the predictions of each

class. In addition, the kernel functions use as smoothing parameter the uncertainty of

the predictions, so that the relative position of the samples in the multivariate space

also contributes to the calculated PDFs through the leverage and the fit of the model.

Another advantage of the p DPLS method used in this thesis is that limits for the range

of possible 's of each class can be set, which allows outlier detection (see section 2

below) and the implementation of a reject option that allows rejecting to classify a

sample when the a posteriori probabilities for both classes are too similar (see section 2

below). The latent variable structure of the PLS model also offers enhanced outlier

detection capabilities based on the leverage and residual variance (see section 4 below).

A final advantage of p DPLS is that diverse variable selection methodologies, already

used in PLS regression, can be used to select the most relevant genes for classification.

One of these methodologies has been implemented in the p DPLS, as it is explained in

the section 5 below.
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2. A reject option was implemented in probabilistic Discriminant
Partial Least Squares (p DPLS).

The classification in p DPLS is based on the Bayes Theorem so that the sample is

assigned to the class with the highest a posteriori probability. The straight application of

this rule makes produces that a sample will always be assigned to one of the modelled

classes even when the sample may be suspected. One of these situations occurs when

the prediction of the new sample is at the extremes of the PDF of one class. Such a

sample is so different from the training samples (it is an outlier) that it might be

misclassified. The second situation occurs when the PDFs of the two classes are partially

overlapped, and the sample has a prediction in the overlap zone (called ambiguous

region). That sample has characteristics of both classes, so the a posteriori probability to

belong to any of the classes is similar and its classification is not reliable enough. While

the samples in the two mentioned situations should preferably be not classified, the

strict application of the Bayes Theorem forces its assignement into one of the modelled

classes. In this thesis, the possibility of not classifying a sample has been implemented in

p DPLS. This is called the reject option. The reject option in p DPLS is generally

overlooked. However, it allows avoiding classifications with a low reliability, by rejecting

to classify both outliers and ambiguous samples. This increases the confidence of the

experimenter that the classification model yields correct results when a class label is

issued for a new sample.

In this work, the reject option for ambiguous samples has been implemented in p DPLS

as a reject threshold (following Chow�’s rule), and the reject option for outliers has been

implemented by setting limits to the allowed values for each class.

An inconvenient of the reject option is that some samples rejected would be classified

correctly if reject option is not implemented. Hence, when the reject threshold and
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limits are set, a trade off between the number of samples incorrectly classified,

correclty classified and rejected must be achieved.

In this thesis, p DPLS with reject option has been successfully applied to classify

oligonucleotide and miRNA microarray data by rejecting samples that would have been

classified incorrectly. With the reject option, for the Small Round Blue Cell Cancer

dataset the misclassification rate of the model was reduced from 100% to 10% for test

samples from classes not modelled during the training step, and for the Human Cancers

dataset from 3% to less than 1% for the training samples classified by cross validation.

3. The performance evaluation of classifiers must be reconsidered
when a reject option is allowed.

A p DPLS classifier must be evaluated to assure its quality. Common measures of a

classifiers�’ performance are the accuracy or the error rate. These parameters are usually

calculated as the number of correct (or erroneous) classifications over the total number

of samples classified.

When rejection is not an option, the total number of samples classified is equal to the

number of samples that have been submitted to the classifier. In contrast, when

rejection is an option the calculation of performance values such as the accuracy or the

error rate are still useful but must be reinterpreted to be meaningful. They are equally

calculated as the number of correct (or erroneous) classifications over the total number

of samples classified. However, the number of samples for which the classifier has given

a class label (classified) may be different than the total number of samples submitted to

the classifier (the difference is the number of samples that have been rejected).

The reasoning of this reinterpretation is that the analyst wants, first of all, that the class

label issued by the classifier is correct. Hence, the performance measure should reflect
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the percentage of the samples for which the classifier assigned a class, which are the

ones for which a decision is taken (e.g., 'tumour type 1', 'tumour type 2'). After that, the

analyst may accept the classifier to reject some �“difficult�” samples (of course, the

classifier should classify as many samples as possible and reject as few as possible). In

addition, if the accuracy were defined over the total number of samples, classifiers with

reject option would always perform worse than models without reject option, because

the number of samples correctly classified using the reject otpion would be equal or

lower).

The performance measures are also used to decide among several classifiers. For

example, in p DPLS, different classifiers are obtained by selecting a different number of

factors in the PLS model. When the reject option is allowed, the error rate alone may

not be a sufficient criterion to compare classifiers, since the rejected samples are not

included in the count. In that sense, a classifier that rejects most of the samples and

classifies correctly the remaining will have a high accuracy, although it is clearly not

useful for classification.

A better criterion for evaluating the performance of a classifier is to use the Cost

parameter, which takes into account the number of rejected samples. The Cost

evaluates the number of correct classifications, the misclassifications and also the

rejections of the model, taking into account the individual cost of each of these actions

and providing a single value representative of the performance of the classifier or the

classification model. The Cost has been used in this thesis to compare the performance

of the p DPLS with reject option and to determine the optimal number of factors for the

p DPLS model. The Cost has also been used to evaluate if removing outliers improves

the p DPLS models (see section 4).
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4. Outlier detection in p DPLS has been implemented as a reject option.

Microarray data may contain outliers caused by the many steps involved in obtaining

the data. Moreover, samples that belong to classes that have not been modelled may

also be submitted to the p DPLS classifier. Hence, outlier detection is a necessary tool

for the practical implementation of p DPLS. Outliers in p DPLS were detected in this

work by combining leverage, variances and predicted values ( ) of the p DPLS model.

This method for outlier detection allows to reject not only samples with errors in the

instrumental data (x), in the codification (y) or samples with an erroneous x y relation

but also to identify that an incoming sample does not belong to any of the classes in the

training set.

In the Small Blue Round Cell tumours dataset, 90 % of the samples of a class not

modelled in the training step were detected as outliers using this method. These

samples would have been all misclassified if the reject option had not been used. In the

prostate dataset, outlier elimination improves the classification model, decreasing the

Cost per classification from 0.11 to 0.06. The outlier elimination has also a beneficial

effect on the accuracy of the classification of unknown (test) samples, which increases

from 95% to 100%, rejecting to classify a sample that had been wrongly classified.

5. Gene selection was implemented in p DPLS with reject option

Most of the thousands of gene expressions in microarray datasets are irrelevant to

classify samples. Irrelevant data may degrade the classifier�’s performance and difficult

the understanding of the genes that are discriminating the classes. For these reasons,

variable selection is required.
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In this work the selectivity ratio index has been applied as a gene selection method to

select the relevant variables in PLS. This allowed pointing out the most relevant genes to

discriminate subtypes of prostate cancer and non small cell lung types of cancer with

high accuracy independently on the training and test sets used.

For the prostate dataset, models with only 17 selected genes had a mean LOOCV

accuracy of 94%, compared to the 85% accuracy obtained for the p DPLS model without

gene selection (5966 genes). Equivalently, the mean of the accuracies for the test set

improved to 92% from the 84% obtained without gene selection. When the number of

selected genes increases from 17 to 35, the accuracy did not improve. Similarly for the

non small cell lung cancer dataset, the genes used in the classification were reduced

from 54675 to 17, achieving a mean of LOOCV accuracy of 93%. In this case the increase

in the number of genes selected from 17 to 30 neither improved the classification

accuracy.

The most adequate method for proving the validity of a selected subset of genes (and, in

turn, the validity of the gene selection algorithm, and of the gene selection criterion) has

also been studied. Most variable selection methods start by initially splitting the dataset

into a training and a test set. Such an split influences the calculated accuracy of the

classification model and also influences the conclusion about the validity of the selected

subset of genes. If the selected genes and the conclusions are based on a single split,

underoptimistic or overoptimistic results can be found. A single unfortunate split can

lead to low accuracies (around 88%) and, by contrast, a fortunate split can lead to

overoptimistic accuracies (around 100%). For this reason, a repetitive strategy of

training set and test set splits, gene selection, p DPLS model calculation and validation

was carried out to measure the performance of the selected genes. The genes selected

following this strategy provided models much less influenced by the split of the data.
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6. Linear Discriminant Analysis has been combined with PLS to solve
multi class classification problems.

Multi class classifiers are required for microarray data classification since most of the

cells or tissues to be classified may belong to more than two classes.

p DPLS is suitable to analyse microarray data due to advantages like the use of latent

variables or the noise reduction (detailed in section 1), which are important in order to

improve the multiclass classification. However, p DPLS is a binary classifier, hence, it can

only discriminate between two classes at a time. One usual option is to reduce the

multiclass classification problems to binary classification ones, following a one versus

one or a one versus all strategy; but these strategies are not always enough to achieve

an adequate muticlass classification. The inconvenient resides that the DPLS allows

discriminating between two modelled classes, but the predicted values of the

incoming samples (that may not belong to any of these two classes) present values that

span all the domain (i.e. Figure 2a chapter 7). Hence, these samples are confused

among the samples of the modelled classes, assigned to any of them and, so,

misclassified.

In this thesis a method that combines PLS and linear discriminant analysis (LDA) has

been developed for multi class classification. The method involves also a selection of the

most discriminant genes for each of the PLS models. This strategy allows reducing the

data dimension and performing the multi class classification with high accuracy with a

few genes. This method has been applied to the leukemia and the small round blue cell

tumour dataset. Leukemia data consist on three different types of samples (AML, ALL

and MLL) that generally have poor prognosis and the small round blue cell tumour

includes four subtypes (NB, RMS, NHL and EWS) the accurate diagnosis of which is

essential because the treatment options, responses to therapy and prognoses vary

widely depending on it. For both datasets, the accuracies achieved were very high, a
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97% and a 100% of classification accuracy, respectively, using 15 genes to classify the

leukemia dataset and 17 genes for the small round blue cell tumour dataset.
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Datasets

Human cancers dataset

The Human Cancers dataset was published by Lu et al. in [1]. The normalized dataset is

available at [2] together with supplementary information [1]. The dataset consists of

282 microRNA (miRNA, non coding RNA species) of 218 samples (46 healthy and 172

tumour) from twenty tissues (ovary, colon, lung, prostate, bladder, breast, follicular

lymphoma, kidney, liver, brain, melanoma, mesothelioma, stomach, uterus, acute

myelogenous leukaemia, diffuse large B cell lymphoma, B cell ALL, mycosis fungoides,

mixed lineage leukaemia and T cell ALL).

The published dataset had been normalized as detailed in the Supplementary_Notes

document:

1. Well to well scaling �– the reading from each well was scaled such that

the total of the two post labeling controls, in that well, became 4500

(a median value based on a pilot study).

2. Sample scaling �– the normalized readings were scaled such that total

of the 6 pre labeling controls in each sample reached 27,000 (a median

value based on a pilot study).

3. Floor threshold was set at 32.

4. Data were log2 transformed.

 

The normalized downloadable data file is a tab delimited text file (miGCM_218.gct), of

218 samples and 217 gene expression (left after filtering). The first row of the matrix

indicates the tissue ID, and the first and the second column detail the gene name and

genes description respectively.
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In this original work, the dataset was used to demonstrate the feasibility and utility of

monitoring the expression of miRNAs in human cancer tissue. This dataset has been

used in other studies. Lodes et al. [3] used the miRNA as markers for cancer detection

and it has been pointed that miRNAs may be the future of pharmacogenomics [4].

In this thesis it has been used to evaluate the performance of the probabilistic DPLS with

reject option classifier.

 

Breast cancer dataset

The Breast Cancer dataset was published by Hedenfalk et al. in [5]. The dataset after

filtering (3226 genes) is available in [6].

The downloadable data are the normalized gene expression ratios of 21 samples and

from three different mutations (BRCA1, BRCA2 and sporadic mutation). The format

description document, in the same web page, describes the downloadable data. The

downloadable data file is a tab delimited text file, in which the first row indicates the

Patient ID for each experiment (1to 21). The second row provides the mutation

classification for each experiment, (BRCA1,BRCA2, Sporadic) and the third row provides

the experiment ID, (s1996, s1822, etc). Columns 1 to 3 are related to the genes ID and

their localization in the plate. Columns 4 to 24 contain gene expression ratios for each

gene in each experiment.

The gene expression ratios are derived from the fluorescent intensity (proportional to

the gene expression level) of a tumor sample (BRCA1, BRCA2, or Sporadic) divided by

the fluorescent intensity of a common reference sample (MCF 10A cell line). The

common reference sample is used in all 21 microarray experiments.
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The genes are filtered based on: (a) average fluorescent intensity (level of expression)

greater than 2,500 (gray level) across all 21 samples, (b) average spot area greater than

40 pixels across all 21 samples, and (c) no more than one sample in which the spot area

is zero pixels.

The ratios, included in the downloadable data file, for each experiment were normalized

such that the majority of the gene expression ratios from a pre selected internal control

gene set were around 1.0. No log transformation was done in the downloadable data.

This dataset was previously used to evaluate the performance of classification models

[7, 8], for gene selection methods testing [9, 10], for multiclass classification models

evaluation [6] and to check imputation methods [11], to cite a few.

We have used this dataset to demonstrate the usefulness of p DPLS with reject option

to reject to classify samples from classes not modeled in the training step.

Prostate dataset

The prostate cancer dataset was published by Singh et al in [12] and it is available on

[13].After filtering, it has 50 non tumour samples and 52 tumour samples with 12600

gene expressions.

The pre processing was detailed in the supplementary information document

(SuppInfo_CCv3.pdf). Briefly, the data was scaled to reference intensity (mean average

difference of all genes present in the microarrays). The genes with average differences

below 10 were filtered. Equivalently, the maximum threshold was set at 16000. After

thresholding, the relative variation of expression for each gene was determined by

dividing the maximum expression (Max) of the gene among all samples by the minimum
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expression (Min). The absolute variation in expression was determined by subtracting

the (Min) from the maximum (Max). The genes with (Max/Min) <5 or (Max Min) <50

were also filtered.

The downloadable matrix is a tab delimited text file that contains expression values in

Affymetrix's scaled average difference units. Rows 1 to 3 contain the identification of

the samples, the scale factor of each microarray (sample) and the number of genes

respectively. Associated to each average difference expression number there is a P, M,

or A label that indicates whether RNA for the gene is present, marginal, or absent,

respectively (as determined by the GeneChip software), based upon the matched and

mismatched probes for the genes.

This dataset was previously studied in gene selection studies and used to evaluate the

performance of classification methods. To cite a few, Dettling et al. [14] used this

dataset (and others) to demonstrate that when bagging was used as a module in

boosting, the resulting classifier consistently improved the predictive performance;

Diaz Uriarte et al. in [15] used this dataset to check gene selection and the performance

of a classification using random forest; and Jeffery et al. in [16] used this dataset to

compare different gene selection methods (and the lists of genes generated by each

one) and different classifiers.

In this thesis, this has been used to check the outlier detection and gene skeleton

methods implemented to p DPLS classifier.

Small round blue cells tumour dataset

The small round blue cell tumours of childhood dataset was published by Khan et al. in

[17] and it is available at [18]. The pre processing of the data is detailed in the

Supplemental Methods document.
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Initially, the expression levels from 6567 genes were measured for each one of the 88

analyzed samples (of which 63 were labelled as calibration samples and 25 were blind

tests). In the analysis the red intensity (ri) and the relative red intensity (rri) were used.

Genes were omitted if for any of the samples ri was less than 20. This main removed

spots for which the image analysis failed. With this cut only 2308 genes were left.

The final downloadable dataset is a tab delimited text file that contains the natural

algorithm of the relative red intensity (rri) for all of all the 88 samples and 2308 genes.

This dataset was previously used to check gene selection methods [19, 20], to compare

between different linear discriminant methods [21] or to evaluate multi class

classification methods [22].

We have used this to check the ability of the proposed outlier detection method of

detecting samples from classes not modeled in the training step of the p DPLS models.

Furthermore it has been used to demonstrate the ability of the PLS combined with

linear discriminant analysis (LDA) to multi class classification.

Non small cell lung cancer

The non small cell lung cancer (NSCLC) dataset was published by Kuner et al. in [23]. The

dataset consists of 58 samples of the two major histological subtypes of lung cancer, 40

from adenocarcinoma and 18 from the squamous cell carcinoma. For each one, 54675

gene expressions were analysed. The data were normalized by the gcRMA method

published by Wu et al. in [24]. From the initial 60 hybridizations two microarray

hybridizations (PatID 42 and 421) failed the quality criteria due to local hybridization

artefacts and were excluded from further analysis.
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The data are available at NCBI GEO database [25] with the dataset identification

GSE10245. Raw data are provided as supplementary files, one for each sample. All

samples are grouped in a matrix in the Series Matrix File. This is a tab delimited file with

the hybridizations of the 58 samples.

This dataset was recently published (year 2009) and, as far as we known, it has not been

used yet to check classifiers or gene selection method. It has been only used as a

reference in biological studies of lung cancer.

We have used non small cell lung cancer dataset to verify the usefulness of the gene

selection method proposed and to show the influence over the accuracies of the

classification models that have the initial divisions of the datasets (i.e. the splits of the

dataset into a training and a test set).

Leukemia dataset

The leukemia dataset was published by Armstrong et al in [26] and it is available on [27].

This dataset consists of 72 samples of acute lymphoblastic leukemias carrying a

chromosomal translocation that derives on three subtypes of samples, 24 samples of

acute lymphoblastic leukemia (ALL), 20 samples of mixed lineage leukemia (MLL) and 28

samples of acute myeloid leukemia (AML). For each sample 12582 gene expressions

were analysed.

The downloadable data is a tab delimited file text. The file contains Affymetrix "average

difference" expression values for all samples. The data are already scaled as detailed in

the File info document. Linear scaling is used to reduce technical noise due to global

intensity differences between scans. Linear regression of all "Present" genes (Affymetrix

"P" calls) was used to determine the scaling factor for each scan (the first ALL scan used

as a reference). The scaling factor was applied to expression values (regardless of A/P
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call). Scaling factors ranged from 0.93 to 2.1; all scaling factors are shown in the scan id

file.

Then once the dataset obtained, user must pre process it according to the authors in

[26] as follows: a floor threshold and a ceiling threshold were set at 100 units and at

16000 units respectively. After this pre processing, gene expression values were

subjected to the variation filter. The variation filter tests for a fold change and absolute

variation over samples, by comparing max/min and max min intensities. The max/min

filter was set at 5 and the max min at 500 for all experiments.

This dataset had been previously used to compare different gene selection methods [20]

and to check different multi class classification methods and strategies [20, 28, 29].

We have used this dataset to show the ability of the multi class classifier proposed in

this thesis by combining PLS and LDA.
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Abreviations

AC Adenocarcinoma
ALL Acute lymphoblastic leukemia
AML Acute myeloid leukemia
BL Burkitt lymphomas
BRCA1 Breast cancer gene 1
BRCA2 Breast cancer gene 2
CDC Closest distance to center
cDNA Complementary deoxyribonucleic acid
CV Cross validation
Cy3 Cyanine 3
Cy5 Cyanine 5
DA Discriminant analysis
DNA Deoxyribonucleic acid
DPLS Discriminant partial least squares
EWS Ewing family of tumours
FN False negative
FP False positive
GA Genetic algorithms
HL High limit
KNN K nearest neighbours
LDA Linear discriminant analysis
LL Low limit
LOOCV Leave one out cross validation
LOWESS Locally weighted scatterplot smoothing
MA plot Ratio intensity plot
miRNA MicroRNA, non coding RNA species
MLL Mixed lineage leukemia
mRNA Messenger ribonucleic acid
MVT Ellipsoidal multivariate trimming
NB Neuroblastoma
NN Neural networks
NSCLC Non small cell lung cancer
OVA One versus all
OVO One versus one
PCA Principal component analysis
Pcs Principal components
PDF Probability density function
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p DPLS Probabilistic discriminant partial least squares
RMS Rhabdomyosarcoma
RMSEC Root mean square of calibration
RMSECV Root mean square of cross validation
RMSEP Root mean square of prediction
RN Reject negative
RNA Ribonucleic acid
RP Reject positive

RPMBGA Random probabilistic model building genetic algorithm
rRNA Ribosomal ribonucleic acid
SCC Squamous cell carcinoma
SEP Standard error of prediction
SOS Sparse optimal score
SR Selectivity ratio
SRBCT Small round blue cell tumour
SVM Support vector machines
TN True negative
TNR True negative rate
TP True positive
TPCR Total principal component regression
TPR True positive rate
tRNA Transfer ribonucleic acid
VIP Variable importance on projection

UNIVERSITAT ROVIRA I VIRGILI 
MULTIVARIATE CLASSIFICATION OF GENE EXPRESSION MICROARRAY DATA 
Cristina Botella Pérez 
ISBN:978-84-693-5427-8/DL:T-1418-2010 



Multivariate classification of gene
expression microarray data

204

Publications

Cristina Botella, Joan Ferré, Ricard Boqué. Classification from microarray data using

probabilistic discriminant partial least squares with reject option.Talanta, 2009, 80(1):

321 329.

Cristina Botella, Joan Ferré, Ricard Boqué. Outlier detection and ambiguity detection for

microarray data in probabilistic Discriminant Partial Least Squares Regression. Journal of

Chemometrics, 2010, Accepted.

Cristina Botella, Joan Ferré, Ricard Boqué. Gene selection in microarray data based on

selectivity ratio. 2010, Submitted.

Cristina Botella, Joan Ferré, Ricard Boqué. Multi class classification of microarray gene

expression data. 2010, Submitted.

UNIVERSITAT ROVIRA I VIRGILI 
MULTIVARIATE CLASSIFICATION OF GENE EXPRESSION MICROARRAY DATA 
Cristina Botella Pérez 
ISBN:978-84-693-5427-8/DL:T-1418-2010 



Appendix

205

Communications

Cristina Botella, Joan Ferré and Ricard Boqué

A new criterion for selecting the optimal number of factors in Discriminant Partial Least

Squares (DPLS). Application to microarray gene expression data.

VI Colloquium Chemiometricum Mediterraneum, Saint Maximin. France. 2007

Poster communication

Cristina Botella, Joan Ferré and Ricard Boqué

A new performance criterion for classification methods for microarray gene expression

data.

CAMDA (Critical Assessment of Microarray Data Analysis) ,Valencia, Spain. 2007

Poster communication

Cristina Botella, Joan Ferré and Ricard Boqué

Classification of tumour cells from gene expression data using Probabilistic DPLS with

reject option.

III Workshop de Quimiometria, Burgos, Spain. 2008

Oral communication

 
Cristina Botella, Joan Ferré and Ricard Boqué

Reject option implementing outlier detection and ambiguity detection in the

classification of microarray gene expression data. 

11th Scandinavian Symposium on Chemometrics, Loen, Norway. 2009

Poster communication

UNIVERSITAT ROVIRA I VIRGILI 
MULTIVARIATE CLASSIFICATION OF GENE EXPRESSION MICROARRAY DATA 
Cristina Botella Pérez 
ISBN:978-84-693-5427-8/DL:T-1418-2010 



Multivariate classification of gene
expression microarray data

206

Cristina Botella, Joan Ferré and Ricard Boqué

Gene selection in microarray data based on selectivity ratio.

VII Colloquium Chemiometricum Mediterraneum, Granada. Spain. 2010

Poster communication

 

UNIVERSITAT ROVIRA I VIRGILI 
MULTIVARIATE CLASSIFICATION OF GENE EXPRESSION MICROARRAY DATA 
Cristina Botella Pérez 
ISBN:978-84-693-5427-8/DL:T-1418-2010 


	Còpia de PlantillaPortadaTDX.pdf
	ISBN: 978-84-693-5427-8
	Dipòsit Legal: T-1418-2010




