
4
Examples

In this section we will apply our method to different illustrative examples in
order to show its performance in comparison with other techniques. All of
them have been used previously in many articles and can be considered as
benchmarks. Apart from being useful to compare the different alternatives,
each one will facilitate the understanding of different qualities which we also
want to emphasize.

The first example is a nonlinear static function often used in the literature
of fuzzy modeling [111, 58, 20] and will help us to review the whole method
in detail.

The second example is about time series prediction. Here we will consider
two popular time series, the Box and Jenkins’ gas furnace data [7] cited in
[113, 86, 122, 90, 110, 124, 111, 69, 118, 119, 58, 20] and also the Mackey-
Glass chaotic time series [72] studied in [120, 47, 51, 18, 33]. Both of them are
benchmarks for the prediction of dynamic systems. They are also useful to
observe the trade-off between accuracy and intelligibility because in general
they have been used to achieve models with high accuracy in spite of not
being intelligible.

The third example is about fuzzy control. In this part we will study two
popular examples of intelligent control able to operate like humans, the truck
backer-upper control or even the truck and trailer [82, 83, 61, 97, 40, 62, 63,
120, 52, 103, 16] and the ball-beam control system. Here our method will
be considered to show its capabilities when building an intelligible controller
from input-output data and also to show how it can be applied to explain
the control actions applied with a non-fuzzy controller.

Finally four short examples will be included: a real application of mod-
eling about the electrical network maintenance cost [11]; a fuzzy model pro-
posed in [111] in order to study the reproduction of the method and thus, to
obtain the same model or at least a similar one; the simplification of FRBS
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whose transfer function is quite linear; and finally a simple function in order
to compare our method with probably the most popular one: ANFIS.

4.1 Criteria to evaluate the methodology

The criteria to evaluate the performance of the method must be according to
the objectives of this work and consequently, they must evaluate the trade-off
between accuracy and intelligibility. Furthermore, we must also analyze the
computational cost because this is another objective of our research. Thus,
in the following examples, we will do studies and make comparisons about
these three aspects:

• Accuracy

Accuracy is obviously defined in terms of the error, as the difference
between the original samples and the output of the resulting model.
Among the different possibilities for defining the overall error here we
will consider the RMSE for being the most commonly used definition
found in the literature and thus, it will help us to compare the perfor-
mance of our models with other alternatives.

RMSE =

√√√√ 1

N

N∑

k=1

(ymodel(k)− ymeasured(k))2 (4.1)

Nevertheless, recall that our preferred definition for the error is the
NRMSE (Equation 3.42) and this is the parameter we consider in order
to decide when the modeling process ends. We stop whether the overall
error or the error of every linearized fuzzy curve, both defined with the
NRMSE, reach the desired error value.

• Intelligibility

We have explained the different criteria to be considered in order to
obtain an intelligible fuzzy model and we have also explained how our
method satisfies most of them: distinguishability, completeness, cover-
age, normality ... Thus, here we will just measure those which are more
objective, the number of linguistic labels, which depend on the number
of inputs, the number of sets and the number of rules.

Furthermore we will detail the type of FRBS when we compare our
method with some alternatives which use the Takagi-Sugeno’s model.
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• Computational cost

In the examples where the computational cost should be compared, we
have done all the measurements by using the same hardware and the
same software. This allows us to compare the computational cost in
terms of the elapsed time.

Nevertheless, we will not argue all these aspects in every example and
only those with results which may be more significant will be commented in
each case.

Furthermore and in order to clarify the results, most of the information
will be provided by means of tables and by using graphics extracted directly
from the implementation of the method with Matlab.

4.2 A nonlinear static function

4.2.1 Problem statement

Here we will consider the following double-input single-output function

y =
(
1 + x−2

1 + x−1.5
2

)2
1 ≤ x1, x2 ≤ 5 (4.2)

plotted in figure 4.1. This function was proposed by M. Sugeno [111] and
we will use exactly the same data which are given in table 4.1 in order to
compare results.
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Figure 4.1: Original function proposed by M. Sugeno.
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Data of the nonlinear function
x1 x2 y x1 x2 y x1 x2 y x1 x2 y x1 x2 y

1.40 1.80 3.70 4.28 4.96 1.31 1.18 4.29 3.35 1.96 1.90 2.70 1.85 1.43 3.52
3.66 1.60 2.46 3.64 2.14 1.95 4.51 1.52 2.51 3.77 1.45 2.70 4.84 4.32 1.33
1.05 2.55 4.63 4.51 1.37 2.80 1.84 4.43 1.97 1.67 2.81 2.47 2.03 1.88 2.66
3.62 1.95 2.08 1.67 2.23 2.75 3.38 3.70 1.51 2.83 1.77 2.40 1.48 4.44 2.44
3.37 2.13 1.99 2.84 1.24 3.42 1.19 1.53 4.99 4.10 1.71 2.27 1.65 1.38 3.94
2.00 2.06 2.52 2.71 4.13 1.58 1.78 1.11 4.71 3.61 2.27 1.87 2.24 3.74 1.79
1.81 3.18 2.20 4.85 4.66 1.30 3.41 3.88 1.48 1.38 2.55 3.14 2.46 2.12 2.22
2.66 4.42 1.56 4.44 4.71 1.32 3.11 1.06 4.08 4.47 3.66 1.42 1.35 1.76 3.91
1.24 1.41 5.05 2.81 1.35 1.97 1.92 4.25 1.92 4.61 2.68 1.63 3.04 4.97 1.44
4.82 3.80 1.39 2.58 1.97 2.29 4.14 4.76 1.33 4.35 3.90 1.40 2.22 1.35 3.39

Table 4.1: Original samples proposed by M. Sugeno.

4.2.2 A whole case in detail

We will use this example in order to illustrate all the steps of the method
in detail. Nevertheless, one should remember that the resulting model may
change in every execution because we use a statistic of the optimal β which is
computed from random partitions of the original samples. This occurs even
with the same value for the desired error parameter.

For this reason, first we will show the steps of only one of these executions
where the only adjustable parameter, the desired error (ε), was ε=10% and
then we will analyze how the final models vary in different executions and
thus, the robustness of the method.

Rounded values

At the beginning we compute the values which are necessary in order to
round some numbers, basically the possible points of the universes of scope
where the fuzzy sets may be placed. They are obtained by considering the
range of the samples and the ε parameter.

In this example the range of the original variables is 3.80 for the input x1

because it varies between 1.05 and 4.85, 3.91 for the input x2 and 3.97 for
the output y. With ε=10%, the numerical results of the three variables will
be rounded close to multiples of 0.380 for x1, equal to the 10% of 3.80, 0.391
for x2 and 0.397 for the output. Nevertheless, as these values are in general
poorly intelligible, they are finally rounded to multiples of 0.1.

Furthermore some of these values of the universes of scope will not be
considered in order to reduce the computational cost, those without any
original sample inside its neighborhood.

Observe in figure 4.2 how for the first input x1 the values 3.9 and 5.0
will not be considered while for the second input x2 the values 2.4, 3.0, 3.3,
3.4, 3.5 and 4.0 will also be ignored. The rest of the points are potentially
possible points where the fuzzy sets can be placed.
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Figure 4.2: Original samples and possible points of the universes of scope.

Train set and test set for the optimal β
The next step consists in computing the optimal β for each input variable

from which we will compute the optimal fuzzy curves. Remember that in fact
we only obtain a statistic because the original samples must be grouped into
a train set of samples and a test set of samples. Otherwise the trivial solution
for the optimal β would be equal to zero.

Consequently, we make several partitions of the original samples from
which we compute the mean of their optimal β until we assure this statistic
with an error lower than 10% and a confidence interval higher than 90%.
These two values are fixed as the desired error parameter (ε) for the first one
and 100 minus the same parameter for the second one. Thus, in this case, in
90 of every 100 partitions the optimal β will be inside the range defined by
the result ±10%. A lower ε would give a more confident parameter.

These two sets of samples, the train set and the test set, are generated by
taking randomly two samples close to each possible point of the universe of
scope which have been computed in the former step, one for the train set and
the other one for the test set. The points of the universe of scope without at
least two samples inside its neighborhood are not considered.

Nevertheless, if less than half of these points do not have at least two
samples inside its neighborhood they are temporarily reduced to the half by
changing the rounded value to the double of its magnitude. In the current
example this situation occurs for both input variables, as can be observed in
the last figure 4.2.

Therefore, either the train set or the test set are generated by taking
randomly two of the samples close to each point of the universe of scope
rounded to 0.2. Figure 4.3 shows how the samples have been grouped for
this purpose.
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Figure 4.3: Groups of samples in order to generate the train set and test set.

Furthermore, observe how some of the original samples have been ex-
tracted because they do not have at least another sample inside its range,
like for example (x1 = 3.11, y = 4.08) or (x2 = 3.18, y = 2.20).

Once we have these two random sets, we are ready to compute the optimal
β of this partition. For instance we could consider the random samples shown
in figure 4.4 for the first input x1.
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Train points

1.24 1.35 1.65 1.78 2.03 2.24 2.66 2.71 3.38 3.61 4.14 4.47 4.51 4.85
5.05 3.91 3.94 4.71 2.66 1.79 1.56 1.58 1.51 1.87 1.33 1.42 2.51 1.30

Test points

1.19 1.38 1.67 1.85 2.00 2.22 2.58 2.84 3.37 3.64 4.28 4.44 4.61 4.82
4.99 3.14 2.75 3.52 2.52 3.39 2.29 3.42 1.99 1.95 1.31 1.32 1.63 1.39

Figure 4.4: Random points for x1.

We will show the next steps only for this variable. The same process
would be done for the other one.
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Boundaries of the optimal β
Once we have the train set and the test set, we are ready to compute the

optimal β. Nevertheless, recall that we can know the boundaries between
which the optimal β can be found in order to improve its search. If we
consider the previous train set and test set, these boundaries are βmin=0.0417
and βmax=11.2746.

The first one results from the test point {4.44,1.32} by having its closest
train points {4.47,1.42} and {4.51,2.51} at a distance equal to d1=0.03 and
d2=0.07 respectively because this is the case with the minimum value for

d2
2 − d1

2 and thus, βmin=
√
−0.072−0.032

ln(0.01×10)
= 0.0417.

The βmax results from the test point {1.19,4.99} by having its closest
train point {1.24,5.05} and its farthest train point {4.85,1.30} at a distance
equal to d1=0.05 and d∞=3.66 respectively because this is the case with the

maximum value for d∞
2− d1

2 and thus, βmax=
√
− 3.662−0.052

ln(0.01×(100−10))
= 11.2746.

As the range between βmin and βmax is usually very large we compute the
derivative of the square error ∂ε

∂β
with some values for the β parameter inside

this range in order to reduce the boundaries between which the optimal value
is placed. For instance, if 3 points per decade are considered then a total
amount of 9 values would be computed:

β 0.0417 0.0839 0.1690 0.3404 0.6855 1.3805 2.7801 5.5986 11.2746
∂ε/∂β 0.0278 0.0489 -0.2578 -0.6830 -1.2204 0.3026 1.9408 0.9268 0.2621

Therefore we conclude that there is a local minimum between 0.6855 and
1.3805 where the sign of the derivative changes from negative to positive. If
all the derivatives would have shown the same sign then another group of
train and test samples would have been generated.

Search of the optimal β with the bisection method
We finally use the bisection method in order to fit the optimal value with

an error lower than the 10%. In this case only three iterations are necessary:

Iteration Initial 1st 2nd 3rd

[βmin, βmax] [0.6855,1.3805] [1.0330,1.3805] [1.2067,1.3805] [1.2067,1.2936]
∂ε/∂β [-1.2204,0.3026] [-0.5156,0.3026] [-0.1013,0.3026]

Once we know that the optimal β is between 1.2067 and 1.2936, we can assure
its value with an error lower than 10% and we conclude an optimal β equal
to the mid point of this range, that is 1.2502. If we had found more than
one local minimum we would have searched all of them in order to choose
the one with the lowest error.

This process is repeated with different test and train sets of samples in
order to compute the mean of their optimal values until we accomplish the
required confidence interval and error.
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Figure 4.5 shows the final results after computing 118 iterations for the
first input and 124 iterations for the second one. In this case we obtained an
optimal β = 0.7774 for the input x1 and β = 1.0306 for the input x2.

Iteration 118
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Figure 4.5: Statistics for βx1 and βx2 .

Optimal fuzzy curves
Once we have the optimal β for each input then we compute the fuzzy

curves. For this purpose we only evaluate them in every point of the universes
of scope where a fuzzy set can be placed, based on the original rounded values
which were 0.1 for both inputs. Figure 4.6 shows these fuzzy curves.
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Figure 4.6: Fuzzy curves with optimal β.

Input partition based on the linearization of the fuzzy curves
Now we begin the hierarchical process of linearizing these fuzzy curves

until the error due to the linearization is lower than the desired error para-
meter, in this case 10%. In the first iteration we only consider the boundaries
of the universe of scope as fuzzy sets and thus, two fuzzy sets are considered
for each input, placed at 1.0 and 4.9 for x1 and 1.0 and 5.0 for x2, as shows
figure 4.7.
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Figure 4.7: Initial iteration.

Possible output sets based on the Wang&Mendel’s method
We only need to define the possible output sets of each possible rule in

order to conclude the current model. Based on the method proposed by
Wang&Mendel, for each possible rule we search the sample with the highest
fuzzification value. In this case we have 4 possible rules:

Rule Closest sample Possible set

x1 close to 1.0 and x2 close to 1.0 {1.24,1.41,5.05} 5.05
x1 close to 1.0 and x2 close to 5.0 {1.18,4.29,3.35} 3.35
x1 close to 4.9 and x2 close to 1.0 {4.51,1.37,2.80} 2.80
x1 close to 4.9 and x2 close to 5.0 {4.85,4.66,1.30} 1.30

If there was a rule whose fuzzification values would have been equal to zero
for all the samples, this rule would had been removed from the set of rules.

Clustering the output sets based on the Chiu’s method
In order to improve the intelligibility of the model, the output sets are

clustered based on the Chiu’s method.
Nevertheless, when there are still few rules and obviously few possible

output sets, the final output sets are in general the same which were ini-
tially proposed. This is what will happen here and during the following two
iterations.

For this purpose, first we compute the possible points of the universe
of scope where an output fuzzy set can be placed. As at the beginning we
decided to round them to 0.1 we can consider four possible output sets placed
at 1.3, 2.8, 3.4 and 5.0.

In this case the parameters used by the Chiu’s method are rα = rβ =
ε (5.0− 1.3) = 0.37 and α = β = − ln(ε)/ra

2 = 16.82.
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First, we compute the potential P for each possible output set with equa-
tion 3.39. The possible sets placed at 2.8 and 3.4 show the highest value of P
equal to 1.0023 and they are chosen as the initial clusters. We then compute
the new potential P for each possible output set once subtracted a magni-
tude proportional to the former P and to its distance to the last clusters by
considering the equation 3.40. Now the possible sets with the highest P are
those placed at 1.3 and 5.0 with P equal to 1. Therefore, we choose both of
them as new clusters. As the new potential P of all the possible output sets
is lower than ε=10%, we conclude that the final possible output sets must
be placed at 1.3, 2.8, 3.4 and 5.0.

Finally we assign to each possible rule the possible output set which is
closest to it.

Computation of the NRMSE in order to decide if the process
ends

Once we have the final model we compute its RMSE=0.9698. Neverthe-
less as its NRMSE=93.98% is higher than 10% and also the NRMSE of each
linearized fuzzy curve (NRMSEx1=24.10%, NRMSEx2=13.40%) we must do
another iteration by seeking the highest error in both linearizations in order
to diminish it.

Search of the new input partition

As the highest error of the first input is 0.39 when x1 is 2.7 and the highest
error of the second input is 0.30 when x2 is either 3.6, 3.7 or 3.8, we conclude
that a new set should be placed for the input variable x1 at 2.7. Figure 4.8
shows the model proposed for the second iteration.
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Figure 4.8: Second iteration.
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Hierarchical process by repeating the same steps until a satis-
factory model is achieved

We repeat the previous process. Therefore, first we look for the output
values of the samples which adapt better to each new possible rule based
on the Wang&Mendel’s method. Here we must compute only two new rules
because the other four possible rules are obviously the same than before:

Rule Closest sample Possible set

x1 close to 2.7 and x2 close to 1.0 {2.84,1.24,3.42} 3.42
x1 close to 2.7 and x2 close to 5.0 {3.04,4.97,1.44} 1.44

Due to the rounded values, we must cluster the possible output sets placed
at: 1.3, 1.4, 2.8, 3.4 and 5.0. In this case the initial cluster is placed at 1.4
with P=1.8452, the next cluster is placed at 3.4 with P=1.0023, the third
cluster is placed at 5.0 with P=1, the fourth cluster is placed at 2.8 with
P=0.9999 and the fifth cluster is placed at 1.3 with P=0.2857. We stop here
because the potential P in all the possible output sets have a potential P
lower than 10%. Thus, the final output sets are placed at 1.3, 1.4, 2.8, 3.4
and 5.0.

We compute the RMSE of this model which is equal to 0.6074. Neverthe-
less we must do another iteration because either its NRMSE=58.86% or the
NRMSE of the linearized fuzzy curve of the second input NRMSEx2 = 13.40%
are still higher than 10%. The NRMSEx1 of the linearized fuzzy curve of the
first input is 3.23% and by being lower than 10% we conclude that no more
sets will be considered for this variable. For this reason we only seek the
highest error in the linearization of the second variable. This occurs when
x2 is either 3.6, 3.7 or 3.8 with an error equal to 0.30 and therefore, we will
consider a new fuzzy set placed at the mean of these values. Figure 4.9 shows
the model proposed for the third iteration.

We repeat all the steps again. First, we look for the possible output values
of the new rules. In this case we must compute three new rules:

Rule Closest sample Possible set

x1 close to 1.0 and x2 close to 3.7 {1.05,2.55,4.63} 4.63
x1 close to 2.7 and x2 close to 3.7 {2.24,3.74,1.79} 1.79
x1 close to 4.9 and x2 close to 3.7 {4.82,3.80,1.39} 1.39

Now we must cluster seven values: 1.3, 1.4, 1.8, 2.8, 3.4, 4.6 and 5.0. In
this case the inital cluster is placed at 1.4 with P=1.9130, the next cluster is
placed at 4.6 with P=1.0678, the third cluster is placed at 2.8 with P=1.0023,
the fourth cluster is placed at 3.4 with P=0.9999, the fifth cluster is placed at
5.0 with P=0.9954, the sixth cluster is placed at 1.8 with P=0.9532 and the
last cluster is placed at 1.3 with P=0.2291. We stop here after all the possible
output sets have a potential P lower than 10%. Thus, the final output sets
are placed at 1.3, 1.4, 1.8, 2.8, 3.4, 4.6 and 5.0.
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Figure 4.9: Third iteration.

With this model the RMSE=0.6192 and the NRMSE=60.00%. As either
this NRMSE or the NRMSE of the linearization of the fuzzy curve of the
second variable (NRMSEx2 = 10.54%) are still higher than 10% we look for
another fuzzy set which will be placed at x2=2.5 because this is the point
with the highest error equal to 0.21. Figure 4.10 shows the model proposed
for the fourth iteration.
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Figure 4.10: Fourth and last iteration.

We repeat the process again.
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Therefore, we look for the possible output values of the new rules:

Rule Closest sample Possible set

x1 close to 1.0 and x2 close to 2.5 {1.05,2.55,4.63} 4.63
x1 close to 2.7 and x2 close to 2.5 {2.46,2.12,2.22} 2.22
x1 close to 4.9 and x2 close to 2.5 {4.61,2.68,1.63} 1.63

Now we must cluster the following nine output values: 1.3, 1.4, 1.6, 1.8,
2.2, 2.8, 3.4, 4.6 and 5.0. In this case the inital cluster is placed at 1.4
with P=2.4233, the second cluster is placed at 1.8 with P=1.4965, the third
cluster is placed at 4.6 with P=1.0678, the fourth cluster is placed at 2.8
with P=1.0047, the fifth cluster is placed at 3.4 with P=0.9999, the sixth
cluster is placed at 5.0 with P=0.9954 and the last cluster is placed at 2.2
with P=0.9686. The final output sets are placed at 1.4, 1.8, 2.2, 2.8, 3.4,
4.6 and 5.0. In fact this has been the first time the method has been able
to remove some of the possible output sets and the nine original values have
been reduced to seven.

This model has a RMSE=0.5409 and a NRMSE=52.42% which is higher
than 10%. Nevertheless we stop the hierarchical process here because the
NRMSE of the linearized fuzzy curve of the second variable (NRMSEx2 =
2.21%) is finally lower than 10%.

Final model
We choose as result the model of the last iteration because it had the

lowest RMSE. The final rules in this case are:

if x1 is close to 1.0 and x2 is close to 1.0 then y is close to 5.0
if x1 is close to 1.0 and x2 is close to 2.5 then y is close to 4.6
if x1 is close to 1.0 and x2 is close to 3.7 then y is close to 4.6
if x1 is close to 1.0 and x2 is close to 5.0 then y is close to 3.4
if x1 is close to 2.7 and x2 is close to 1.0 then y is close to 3.4
if x1 is close to 2.7 and x2 is close to 2.5 then y is close to 2.2
if x1 is close to 2.7 and x2 is close to 3.7 then y is close to 1.8
if x1 is close to 2.7 and x2 is close to 5.0 then y is close to 1.4
if x1 is close to 4.9 and x2 is close to 1.0 then y is close to 2.8
if x1 is close to 4.9 and x2 is close to 2.5 then y is close to 1.8
if x1 is close to 4.9 and x2 is close to 3.7 then y is close to 1.4
if x1 is close to 4.9 and x2 is close to 5.0 then y is close to 1.3

Many authors have proposed several techniques able to convert the previ-
ous result into a full linguistic result by applying to each fuzzy set a linguistic
name. Early works were done by M. Sugeno [111] and since then several al-
ternatives have appeared. Nevertheless this is not the objective of the current
work and here we will not make more considerations about it.
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4.2.3 Analysis of results

In general we may obtain better results in terms of error if the ε parame-
ter is reduced but then we will probably have a higher number of sets and
consequently a poorer linguistic intelligibility.

Anyway this is not always true by the fact to work with statistics of the
optimal β which can differ in every execution. Therefore, we can analyze the
robustness of the resulting models due to different ε values.

For this purpose we will consider five values for the ε equal to 6%, 8%,
10%, 12% and 14%. For each one we will perform 100 executions in order to
have enough information to study the robustness of the method.

Due to the final amount of information, the results of the different analy-
ses are shown with box plots together with the values for the upper quartile
(75-th percentile), the median, the lower quartile (25-th percentile), the mean
(µ), the standard deviation (σ) and the relation between these two last pa-
rameters (σ/µ).

Figure 4.11 shows the box plot of the RMSE obtained with different ε
together with their mean (µRMSE) and standard deviation (σRMSE). As we
expected, a higher value in the ε yields in general a higher RMSE. Neverthe-
less, observe how there are extreme values for which the results are neither
better nor worse. We will discuss these results after watching the rest of box
plots.
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Desired error 6% 8% 10% 12% 14%
Upper quartile 0.5369 0.5369 0.5409 0.6073 0.6469

Median 0.5369 0.5300 0.5409 0.6073 0.6469
Lower quartile 0.5139 0.5139 0.5130 0.5991 0.6469

µRMSE 0.5284 0.5290 0.5326 0.6041 0.6469
σRMSE 0.0111 0.0129 0.0222 0.0118 0.0000

σRMSE/µRMSE 0.0210 0.0244 0.0416 0.0196 0.0000

Figure 4.11: Box plot for the RMSE.
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In order to compare the intelligibility of the models, the number of rules
and the number of sets are given together again with their statistics in figure
4.12.
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6% 8% 10% 12% 14% Desired error 6% 8% 10% 12% 14%
12 12 12 9 9 Upper quartile 16 16 15 13 10
12 12 12 9 9 Median 16 16 15 12 10
12 12 12 6 9 Lower quartile 16 15 15 10 10
12 12 11.7300 7.5600 9 µ 15.7900 15.6400 14.6500 11.4300 10
0 0 1.1358 1.5064 0 σ 0.4094 0.5949 1.0088 1.4160 0
0 0 0.0968 0.1993 0 σ/µ 0.0259 0.0380 0.0689 0.1239 0

Figure 4.12: Box plots for the number of rules and number of sets.

In fact the differences between the executions with the same desired error
parameter are due to the different values of the optimal β. Figure 4.13 shows
the box plots for βx1 and βx2 . A lower ε gives more confident parameters.

Finally the elapsed time1 in seconds for each execution is given in figure
4.14 together again with their mean (µetime) and standard deviation (σetime).
Obviously a higher value of ε decreases the elapsed time for each execution
by considering less possible points in the universe of scope where the fuzzy
sets can be placed.

After watching these box plots, we conclude that the models are quite ro-
bust in spite of working with statistical parameters because most of the boxes
have the same value, either for the 25-th percentile or the 75-th percentile.

In general a higher value for the ε decreases the necessary number of rules
and sets but increases the RMSE. But if the ε is very high then the inefficient
grid of the universe of scope gives always the same model despite changing
the values of the β parameter. If on the other hand the ε is very low, the
very similar values for the β parameter give obviously the same model too.

1The method has been tested in Matlab R12.1 (Microsoft XP Professional) under a
Mobile Pentium 4 at 1.7GHz with 512MB of RAM.
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6% 8% 10% 12% 14% Desired error 6% 8% 10% 12% 14%
0.7670 0.7843 0.7933 0.7977 1.5075 Upper quartile 1.0902 1.0937 1.0933 1.1459 1.5377
0.7538 0.7583 0.7639 0.7561 1.4137 Median 1.0619 1.0589 1.0546 1.0920 1.4562
0.7310 0.7302 0.7317 0.7220 1.3366 Lower quartile 1.0395 1.0288 1.0187 1.0153 1.3633
0.7501 0.7564 0.7617 0.7622 1.4133 µ 1.0638 1.0610 1.0567 1.0908 1.4562
0.0231 0.0389 0.0435 0.0566 0.1247 σ 0.0359 0.0490 0.0664 0.0937 0.1441
0.0309 0.0515 0.0571 0.0742 0.0883 σ/µ 0.0338 0.0462 0.0628 0.0858 0.0990

Figure 4.13: Box plots for the β parameters.
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Median 3.7355 3.0790 2.3840 2.2730 1.4370
Lower quartile 3.2800 2.8340 2.3380 2.2435 1.412

µetime 3.6578 3.0378 2.4246 2.2922 1.4296
σetime 0.4389 0.3024 0.1443 0.0751 0.0284

σetime/µetime 0.1200 0.0996 0.0596 0.0327 0.0199

Figure 4.14: Box plot for the elapsed time.

Observe how in spite of having slight differences between models we can
find a model with a medium value for the ε whose RMSE is the lowest one
because the accuracy of β is proportional in general to the RMSE but the
fact to work with nonlinear systems can break sometimes this rule.
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4.2.4 Model with highest accuracy

Here it is interesting to observe that among the 100×5 executions, the result
with the lower RMSE was obtained when ε=10% and whose optimal values
for the β parameters were equal to 0.699 for x1 and 1.190 for x2. This model
plotted in figure 4.15 had three sets for x1, four sets for x2, 8 output sets, 12
rules and a RMSE=0.485. Table 4.2 shows the 12 rules of this model where
the numbers are the cores of the fuzzy sets.
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Figure 4.15: Best model in terms of RMSE.

Rule matrix

x1\x2 1.0 2.3 3.8 5.0
1.0 5.0 4.6 4.6 3.4
2.6 3.4 2.2 1.8 1.4
4.9 2.8 1.8 1.4 1.3

Table 4.2: Best model in terms of RMSE.

4.2.5 Comparisons

The results are compared with other methods in table 4.3 where, apart from
the error, the number of sets, the number of rules and the type of the fuzzy
model (Takagi-Sugeno or Sugeno-Yasukawa2 are given in order to compare
their linguistic capabilities. The values given with our method are the ones
computed with the median β parameters of the previous executions.

2Sugeno-Yasukawa is the output singleton FRBS which we consider.



104 Examples

Method Type Sets Rules RMSE

Sugeno [111] S-Y 18 6 0.564
Delgado EST1[20] S-Y 15 25 0.493

Our method with de=6% S-Y 16 12 0.537
Our method with de=8% S-Y 16 12 0.530
Our method with de=10% S-Y 15 12 0.541
Our method with de=12% S-Y 12 9 0.607
Our method with de=14% S-Y 10 9 0.647
Our method (best model) S-Y 15 12 0.485

Kim [58] T-S 3 eqs. with 6 vars. 3 0.281

Table 4.3: Comparisons between different methods.

It is difficult to compare a Sugeno-Yasukawa’s model with a Takagi-
Sugeno’s one. As cited in [20] the first one is easier to implement and in-
tuitively more persuasive towards human beings because its consequent parts
are expressed by linguistic variables, not linear equations and for this reason
we considered this option.

Anyway, our method shows similar performances to others with a sim-
ple algorithm which can also adjust its error and consequently its linguistic
capabilities based on the ε parameter.

4.2.6 Summary

Despite working with statistical parameters which can give different models
in different executions, the box plots have shown how the results are quite
robust and in many cases the models are very similar between them or even
exactly the same.

We have also observed how the trade-off between intelligibility and ac-
curacy can be adjusted with the desired error value. Nevertheless there are
some extreme values for which the models do not vary.

4.3 Predicting two popular time series

4.3.1 Box and Jenkins’ Gas Furnace Data

In this section we will study the data appeared in [7] which are 296 values
given in table 4.4 of a gas furnace system with a sampling interval of 9
seconds.

The data were recorded from a combustion process of an air-methane
mixture. The only input u(k) is the gas flow rate into the furnace and the
output measurement y(k) is de CO2 concentration in outlet gas.
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These data are considered as a benchmark in prediction analyses.

Box and Jenkins’ Data
k u y k u y k u y k u y k u y

1 -0.109 +53.8 61 +1.146 +51.5 121 -0.876 +59.4 181 -1.218 +52.3 241 -1.794 +57.8
2 +0.000 +53.6 62 +1.155 +51.6 122 -0.885 +58.4 182 -1.183 +53.0 242 -1.302 +58.3
3 +0.178 +53.5 63 +1.112 +51.2 123 -0.800 +57.6 183 -0.873 +53.8 243 -1.030 +58.6
4 +0.339 +53.5 64 +1.121 +50.5 124 -0.544 +56.9 184 -0.336 +54.6 244 -0.918 +58.8
5 +0.373 +53.4 65 +1.223 +50.1 125 -0.416 +56.4 185 +0.063 +55.4 245 -0.798 +58.8
6 +0.441 +53.1 66 +1.257 +49.8 126 -0.271 +56.0 186 +0.084 +55.9 246 -0.867 +58.6
7 +0.461 +52.7 67 +1.157 +49.6 127 +0.000 +55.7 187 +0.000 +55.9 247 -1.047 +58.0
8 +0.348 +52.4 68 +0.913 +49.4 128 +0.403 +55.3 188 +0.001 +55.2 248 -1.123 +57.4
9 +0.127 +52.2 69 +0.620 +49.3 129 +0.841 +55.0 189 +0.209 +54.4 249 -0.876 +57.0
10 -0.180 +52.0 70 +0.255 +49.2 130 +1.285 +54.4 190 +0.556 +53.7 250 -0.395 +56.4
11 -0.588 +52.0 71 -0.280 +49.3 131 +1.607 +53.7 191 +0.782 +53.6 251 +0.185 +56.3
12 -1.055 +52.4 72 -1.080 +49.7 132 +1.746 +52.8 192 +0.858 +53.6 252 +0.662 +56.4
13 -1.421 +53.0 73 -1.551 +50.3 133 +1.683 +51.6 193 +0.918 +53.2 253 +0.709 +56.4
14 -1.520 +54.0 74 -1.799 +51.3 134 +1.485 +50.6 194 +0.862 +52.5 254 +0.605 +56.0
15 -1.302 +54.9 75 -1.825 +52.8 135 +0.993 +49.4 195 +0.416 +52.0 255 +0.501 +55.2
16 -0.814 +56.0 76 -1.456 +54.4 136 +0.648 +48.8 196 -0.336 +51.4 256 +0.603 +54.0
17 -0.475 +56.8 77 -0.944 +56.0 137 +0.577 +48.5 197 -0.959 +51.0 257 +0.943 +53.0
18 -0.193 +56.8 78 -0.570 +56.9 138 +0.577 +48.7 198 -1.813 +50.9 258 +1.223 +52.0
19 +0.088 +56.4 79 -0.431 +57.5 139 +0.632 +49.2 199 -2.378 +52.4 259 +1.249 +51.6
20 +0.435 +55.7 80 -0.577 +57.3 140 +0.747 +49.8 200 -2.499 +53.5 260 +0.824 +51.6
21 +0.771 +55.0 81 -0.960 +56.6 141 +0.900 +50.4 201 -2.473 +55.6 261 +0.102 +51.1
22 +0.866 +54.3 82 -1.616 +56.0 142 +0.993 +50.7 202 -2.330 +58.0 262 +0.025 +50.4
23 +0.875 +53.2 83 -1.875 +55.4 143 +0.968 +50.9 203 -2.053 +59.5 263 +0.382 +50.0
24 +0.891 +52.3 84 -1.891 +55.4 144 +0.790 +50.7 204 -1.739 +60.0 264 +0.922 +50.0
25 +0.987 +51.6 85 -1.746 +56.4 145 +0.399 +50.5 205 -1.261 +60.4 265 +1.032 +52.0
26 +1.263 +51.2 86 -1.474 +57.2 146 -0.161 +50.4 206 -0.569 +60.5 266 +0.866 +54.0
27 +1.775 +50.8 87 -1.201 +58.0 147 -0.553 +50.2 207 -0.137 +60.2 267 +0.527 +55.1
28 +1.976 +50.5 88 -0.927 +58.4 148 -0.603 +50.4 208 -0.024 +59.7 268 +0.093 +54.5
29 +1.934 +50.0 89 -0.524 +58.4 149 -0.424 +51.2 209 -0.050 +59.0 269 -0.458 +52.8
30 +1.866 +49.2 90 +0.040 +58.1 150 -0.194 +52.3 210 -0.135 +57.6 270 -0.748 +51.4
31 +1.832 +48.4 91 +0.788 +57.7 151 -0.049 +53.2 211 -0.276 +56.4 271 -0.947 +50.8
32 +1.767 +47.9 92 +0.943 +57.0 152 +0.060 +53.9 212 -0.534 +55.2 272 -1.029 +51.2
33 +1.608 +47.6 93 +0.930 +56.0 153 +0.161 +54.1 213 -0.871 +54.5 273 -0.928 +52.0
34 +1.265 +47.5 94 +1.006 +54.7 154 +0.301 +54.0 214 -1.243 +54.1 274 -0.645 +52.8
35 +0.790 +47.5 95 +1.137 +53.2 155 +0.517 +53.6 215 -1.439 +54.1 275 -0.424 +53.8
36 +0.360 +47.6 96 +1.198 +52.1 156 +0.566 +53.2 216 -1.422 +54.4 276 -0.276 +54.5
37 +0.115 +48.1 97 +1.054 +51.6 157 +0.560 +53.0 217 -1.175 +55.5 277 -0.158 +54.9
38 +0.088 +49.0 98 +0.595 +51.0 158 +0.573 +52.8 218 -0.813 +56.2 278 -0.033 +54.9
39 +0.331 +50.0 99 -0.080 +50.5 159 +0.592 +52.3 219 -0.634 +57.0 279 +0.102 +54.8
40 +0.645 +51.1 100 -0.314 +50.4 160 +0.671 +51.9 220 -0.582 +57.3 280 +0.251 +54.4
41 +0.960 +51.8 101 -0.288 +51.0 161 +0.933 +51.6 221 -0.625 +57.4 281 +0.280 +53.7
42 +1.409 +51.9 102 -0.153 +51.8 162 +1.337 +51.6 222 -0.713 +57.0 282 +0.000 +53.3
43 +2.670 +51.7 103 -0.109 +52.4 163 +1.460 +51.4 223 -0.848 +56.4 283 -0.493 +52.8
44 +2.834 +51.2 104 -0.187 +53.0 164 +1.353 +51.2 224 -1.039 +55.9 284 -0.759 +52.6
45 +2.812 +50.0 105 -0.255 +53.4 165 +0.772 +50.7 225 -1.346 +55.5 285 -0.824 +52.6
46 +2.483 +48.3 106 -0.229 +53.6 166 +0.218 +50.0 226 -1.628 +55.3 286 -0.740 +53.0
47 +1.929 +47.0 107 -0.007 +53.7 167 -0.237 +49.4 227 -1.619 +55.2 287 -0.528 +54.3
48 +1.485 +45.8 108 +0.254 +53.8 168 -0.714 +49.3 228 -1.149 +55.4 288 -0.204 +56.0
49 +1.214 +45.6 109 +0.330 +53.8 169 -1.099 +49.7 229 -0.488 +56.0 289 +0.034 +57.0
50 +1.239 +46.0 110 +0.102 +53.8 170 -1.269 +50.6 230 -0.160 +56.5 290 +0.204 +58.0
51 +1.608 +46.9 111 -0.423 +53.3 171 -1.175 +51.8 231 -0.007 +57.1 291 +0.253 +58.6
52 +1.905 +47.8 112 -1.139 +53.0 172 -0.676 +53.0 232 -0.092 +57.3 292 +0.195 +58.5
53 +2.023 +48.2 113 -2.275 +52.9 173 +0.033 +54.0 233 -0.620 +56.8 293 +0.131 +58.3
54 +1.815 +48.3 114 -2.594 +53.4 174 +0.556 +55.3 234 -1.086 +55.6 294 +0.017 +57.8
55 +0.535 +47.9 115 -2.716 +54.6 175 +0.643 +55.9 235 -1.525 +55.0 295 -0.182 +57.3
56 +0.122 +47.2 116 -2.510 +56.4 176 +0.484 +55.9 236 -1.858 +54.1 296 -0.262 +57.0
56 +0.122 +47.2 116 -2.510 +56.4 176 +0.484 +55.9 236 -1.858 +54.1
57 +0.009 +47.2 117 -1.790 +58.0 177 +0.109 +54.6 237 -2.029 +54.3
58 +0.164 +48.1 118 -1.346 +59.4 178 -0.310 +53.5 238 -2.024 +55.3
59 +0.671 +49.4 119 -1.081 +60.2 179 -0.697 +52.4 239 -1.961 +56.4
60 +1.019 +50.6 120 -0.910 +60.0 180 -1.047 +52.1 240 -1.952 +57.2

Table 4.4: Box and Jenkins’ Data.

Conventional models have considered u(k), u(k − 1), u(k − 2), . . . , y(k −
1), y(k − 2), y(k − 3), . . . as possible inputs in order to predict the current
output y(k).
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First, we will consider two input variables, y(k − 1) and u(k − 4) by
being one of the most correlated variables with y(k)3. These two variables
have been commonly used in literature. In fact the furnace considered here
is believed to exhibit a slow dynamic response and old control inputs must
significantly influence the newest output.

This example has normally been applied to emphasize the precision of
prediction techniques. For this reason and in order to compare results, we
will consider low values for the desired error parameter ε in spite of not being
interested in models with high accuracy but with a satisfactory intelligibility.
Here we will consider three different values for the desired error parameter
ε equal to 1%, 3% and 5%. For each value we computed 100 executions in
order to verify the robustness of the results.

We will show the same box plots as before. Figure 4.16 shows the box
plot for the RMSE, figure 4.17 shows the box plots for the number of rules
and sets and figure 4.18 shows the box plot for the β parameter.
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Figure 4.16: Box plot for the RMSE.

Observe how the results are quite robust like in the previous example and
in fact even more because we have more samples. The conclusions about how
the accuracy and intelligibility vary based on the value of the β parameter
are the same than before.

3The correlation coefficient between y(k) and y(k − 1) is 0.97 while between y(k) and
u(k − 4) is 0.92.
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Figure 4.17: Box plots for the number of rules and the number of sets.
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Figure 4.18: Box plots for the optimal β.

For this reason we will just show the resulting predictions with the median
values of β: βy(k−1) = 1.0530 and βu(k−4) = 0.4368 when ε=1%, βy(k−1) =
1.0517 and βu(k−4) = 0.4371 when ε=3% and βy(k−1) = 1.5200 and βu(k−4) =
0.4414 when ε=5%.
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Figures 4.19, 4.20 and 4.21 show the original and predicted values for each
model when ε=1%, 3% and 5% respectively. Observe how among the different
combinations of input sets, there are some possible rules which are not defined
(NaR) because they don’t have any sample inside its neighborhood.
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Rule matrix

y(k − 1)\u(k − 4) -2.8 -2.4 -1.4 -0.7 0.1 1.2 1.8 2.1 2.6 2.9
45.6 53.0 NaR NaR 52.0 NaR 47.8 48.1 46.9 46.0 45.6
48.1 59.4 58.0 54.4 53.0 49.4 48.3 47.9 47.2 47.0 47.0
49.4 NaR 56.0 54.4 52.0 50.6 49.3 48.8 47.9 47.0 47.0
51.4 NaR 56.0 54.4 53.0 51.6 51.0 49.4 NaR NaR NaR
55.7 59.4 58.0 56.8 55.3 54.6 54.5 54.5 NaR 47.0 47.0
59.8 60.2 60.0 58.4 57.6 58.3 57.8 NaR NaR NaR NaR
60.5 60.0 60.5 58.4 57.6 NaR 57.8 52.8 NaR NaR 57.8

Figure 4.19: Resulting prediction when ε=1%.

The RMSE was 0.4537 when ε=1%, 0.7279 when ε=3% and 0.7080 when
ε=5%. Despite not being very usual, in this case the RMSE when ε is 5% is
lower than the RMSE when this parameter is 3%. This is due to the fact to
work with statistical results because in general the lower value for the ε the
lower RMSE, as can be observed in the box plots of figure 4.16.

Finally we can compare these results with other alternatives appeared in
the literature which are given in table 4.5.

Observe that we achieve a similar performance in comparison with other
methods in spite of the simplicity of the method. The accuracy and in-
telligibility are in the average of other techniques which also consider the
Sugeno-Yasukawa’s model. In fact we can obtain the lowest RMSE among
these alternatives by considering a low value for the ε parameter in spite of
increasing the number of sets. On the other hand we can obtain a simple and
fast model by increasing this parameter but then the RMSE is slightly higher
than the other methods. Suprisingly, the results are even better than some
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y(k − 1)\u(k − 4) -2.8 -2.4 -0.7 1.8 2.9
45.6 53.0 NaR 52.0 48.1 45.6
48.1 59.4 58.0 53.0 47.9 47.0
60.5 60.0 60.5 57.6 52.8 57.8

Figure 4.20: Resulting prediction when ε=3%.
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y(k − 1)\u(k − 4) -2.8 -0.7 1.8 2.9
45 53 52 48 46
48 58 53 48 47
61 60 58 53 58

Figure 4.21: Resulting prediction when ε=5%.

Takagi-Sugeno’s models which nevertheless, can obtain the lowest RMSE but
with a very complex model with up to six input variables.
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Method Type Inputs Rules RMSE

Tong [113] S-Y 2 19 0.685
Xu [122] S-Y 2 25 0.573

Pedrycz [86] S-Y 2 81 0.566
Peng [90] S-Y 2 49 0.548

Our method with ε=1% S-Y 2 54 0.454
Our method with ε=3% S-Y 2 14 0.728
Our method with ε=5% S-Y 2 12 0.708

Yoshinari [124] T-S 2 6 0.546
Sugeno-Yasukawa[111] T-S 3 6 0.436
Wang-Langari [119] T-S 2 5 0.415
Sugeno-Tanaka [110] T-S 6 2 0.261
Wang-Langari [118] T-S 6 2 0.257

Table 4.5: Comparisons between different methods.

4.3.2 Mackey-Glass chaotic time series

Chaotic systems are based on deterministic maps which generate sequences
which seem to be random series. Anyway its behavior seems to be so unpre-
dictable that its characterization is usually very arduous. Here we will study
the capabilities of the proposed method in order to model the Mackey-Glass
chaotic time series defined with the following delay differential equation 4.3.

dx (t)

dt
=

0.2x (t− τ)

1 + x10 (t− τ)
− 0.1x (t) (4.3)

It describes the arterial CO2 concentration in the case of normal and
abnormal respiration [72]. Under the premise that τ > 17 it exhibits a
chaotic behavior. Higher values of τ yield to higher dimensional chaos.

These series were already used by L.X. Wang and J.M. Mendel [120] with
τ = 30. Nevertheless and in order to facilitate the comparisons with other
methods, here we will consider τ = 17 like J.R. Jang [47, 51] because this is
the value with more references since then in the literature.

We will use exactly the same data of Jang which are 1000 samples of four
past values with the time lag of 6 seconds {x(t-18), x(t-12), x(t-6), x(t)}
in order to predict a value 6 seconds ahead {x(t+6)}. The first 500 pairs
are used as train set while the remaining 500 are used as test set. The
values we have considered have been computed with the fourth-order Runge-
Kutta method with a fixed time step of 0.1 seconds and an initial condition
x(0)=1.2. The 1000 data pairs have been stored every second between t=118
and t=1117 and are plotted in figure 4.22.

Despite willing to predict its behavior, we will not consider a very low
value for the desired error parameter ε in order to obtain a satisfactory
model in terms of intelligibility. The fact to have four inputs increases the
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Figure 4.22: Samples of the chaotic time series.

complexity of model and with a low value for the ε the resulting model could
be inintelligible if a high accuracy was required. Thus, we will consider only
ε=5% and ε=10% for comparisons.

After computing 100 different executions with the train data, the me-
dian values for the β parameters were βx(t−18) = 0.0652, βx(t−12) = 0.0877,
βx(t−6) = 0.1378 and βx(t) = 0.1519 when ε=5% while βx(t−18) = 0.1183,
βx(t−12) = 0.1633, βx(t−6) = 0.2659 and βx(t) = 0.2434 when ε=10%. Observe
that the values in the second case are close to the double of those found
in the first one. This is due to the grid partition of the universe of scope.
Remember that when computing the optimal β, the data are grouped in the
test set and the train set, which are made by taking two samples close to
each possible point of the universe of scope where a fuzzy set can be placed.
Thus, a lower ε yields a narrow grid and therefore, as the resulting train and
test sets have their values closer between them, the optimal β is lower.

Figures 4.23 and 4.24 show the final models when ε=5% and ε=10%,
respectively. In the first case we obtained 4 sets for x(t-18), x(t-12) and
x(t-6), 2 sets for x(t) and 27 sets for the output x(t+6) with a total amount
of 124 rules. In the second case we obtained 5 sets for x(t-18), 4 sets for
x(t-12), 3 sets for x(t-6), 4 sets for x(t) and 10 sets for the output x(t+6)
with a total amount of 179 rules.

Observe how these models are surprisingly different from those computed
in the other examples because in this case the model with the low ε requires
less sets in order to achieve the desired error. This happened because the
model with the high ε had a wide grid in the universe of scope and then
the method demanded a high number of sets in order to achieve the desired
error. On the other hand, when the ε was low then the narrow grid of the
universe of scope helped the model to place the sets in less but better points
and thus, it needed less sets in order to satisfy the desired error.
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Figure 4.23: Resulting model when ε=5%.
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Figure 4.24: Resulting model when ε=10%.
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Figures 4.25 and 4.26 show the resulting predictions when ε=5% and
ε=10% respectively, either for the train set or the test set. In the first case
RMSEtrain=0.0413 and RMSEtest=0.0407. In the second case we obtained a
RMSEtrain=0.0647 and RMSEtest=0.0614.
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Figure 4.25: Resulting predictions when ε=5%.
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Figure 4.26: Resulting predictions when ε=10%.

We can compare these results with other methods found in the literature.
Table 4.6 shows their main differences.
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Method Type RMSE

S. Chiu [18] T-S with 9 clusters and 9 linear eqs. with 4 vars. 0.0005
R. Jang (ANFIS) T-S with 2 sets per input and 16 linear eqs. with 4 vars. 0.0016

Gaweda [33] 3 relational fuzzy rules with 39 parameters 0.0071
AR model x(t + 6) = a0 + a1x(t) + a2x(t− 6) + . . . + a103x(t− 102× 6) 0.0432

Linear model x(t + 6) = a0 + a1x(t) + a2x(t− 6) + a3x(t− 12) + a4x(t− 18) 0.1251
Our method with ε=5% S-Y with 14 input sets 0.0413
Our method with ε=10% S-Y with 16 input sets 0.0647

Table 4.6: Comparisons between different methods.

As we expected, our method is worse in terms of the error than many
other techniques. Chiu and Jang (ANFIS) obtain the lowest RMSE because
this is their prior objective; nevertheless its computational cost is very high.
For example ANFIS needs a media of 123 seconds per epoch and if 500 epochs
are computed, which is the same number used by Jang, more than 17 hours
are necessary. On the contrary we just need 3.5 seconds plus 0.033 seconds
for every iteration when computing the β parameters when ε=10%. The
slowest cases were found when 68 iterations were necessary for βx(t−18), 113
βx(t−12), 536 for βx(t−6) and 112 for βx(t), and the whole method lasted 30.8
seconds. Both time computations have been done under the same hardware4

and software5. Gaweda obtained very good results but nevertheless, prior
information about the correlation between the variables is necessary in order
to group them. Linear models perform in general worse than our method in
terms of the error.

4.3.3 Summary

Models for making predictions with a high accuracy have always been de-
manded without taking into account its intelligibility. Thus, when fuzzy
logic was considered as a possible method, their linguistic benefits began to
be forgotten. These were in fact the responsibles of loosing for years the
main virtues of fuzzy logic proposed by Zadeh.

Despite not being very interested in accurate predictions we have also
shown how our method can obtain similar results while keeping the intelli-
gibility of the models. In fact its main virtue is getting a first intelligible
model to undergo further analyses with low computational cost.

4Mobile Pentium 4 at 1.7GHz with 512MB of RAM.
5Matlab (R12.1) and ANFIS has been tested with the application developed by Jang

for the Matlab’s fuzzy logic toolbox (version 2.1.1).
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4.4 Two popular control problems

4.4.1 Truck and trailer

With this problem we will analyze our method from two points of view. First,
we will study the truck backer-upper control in order to show how it obtains
a fuzzy control from a set of required control actions. Then we will study
the truck and trailer backer-upper control in order to show how it explains
the actions that a very efficient non-fuzzy control applies to the truck.

The first case, originally proposed by D.H. Nguyen and B. Widrow [82],
is a typical nonlinear control problem to back up a truck to the loading dock
from any reasonable initial location. Figure 4.27 shows the loading zone
and also the variables involved in this control. The truck position is exactly
determined by the three state variables x ∈ [−50m, +50m], y ∈ [0, +100m]
and θ ∈ [−90, +270]. The first two variables (x, y) specify the position of the
rear center of the truck in the plane. The last variable θ is the angle of the
truck with the horizontal.
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Figure 4.27: Loading zone for the truck.

The goal is to make the truck arrive to the loading dock (xf = 0, yf = 0)
and to have the truck aligned with θf = 90. Only backing up is considered
and the truck moves backward by a fixed distance every step. The controller
must produce the appropiate steering angle φ ∈ [−45, +45] at every step
from the former input variables. Positive angles of φ are counterclockwise
rotations while negative ones are clockwise. Furthermore, the y-position can
be omitted as input if enough clearance between the truck and the loading
dock is given.
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We will use our method in order to build a fuzzy controller able to solve
the truck backer-upper case.

A common approach in control problems is to work with the samples given
by an expert. This approach deals with fuzzy logic theory because experts
can bring out linguistic relations which easily can turn into the necessary
samples to build the controller.

Nevertheless the required amount of samples is difficult to know. As we
need enough data to fit a good representation of the necessary operations to
drive the truck, here we will consider the following input values: from -50
meters to +50 meters with a step of 5 meters for the x-position and from
-90o

¯ to +270o
¯ with a step of 30o

¯ for the truck angle. Finally a steering angle
from -45o

¯ to +45o
¯ with a step of 15o

¯ is assigned to each possible input pair.
From the total amount of 273 samples only those with x ≥ 0 are given in
table 4.7 due to the simmetry of the steering angle when x < 0.

Samples

θ \ x 0 5 10 15 20 25 30 35 40 45 50
-90 -30 -30 -30 -30 -15 -15 -15 -15 -15 -15 -15
-60 -30 -30 -30 -30 -15 -15 -15 -15 -15 -15 -15
-30 -30 -30 -30 -30 -15 -15 -15 -15 -15 -15 -15
0 -30 -30 -30 -30 -15 -15 -15 -15 -15 -15 -15
30 -30 -15 -15 -15 +15 +15 +15 +15 +15 +15 +15
60 -15 +15 +15 +15 +30 +30 +30 +30 +30 +30 +30
90 0 +30 +30 +30 +30 +30 +30 +30 +30 +30 +30
120 +15 +30 +30 +30 +45 +45 +45 +45 +45 +45 +45
150 +30 +45 +45 +45 +45 +45 +45 +45 +45 +45 +45
180 +30 +45 +45 +45 +45 +45 +45 +45 +45 +45 +45
210 +30 +45 +45 +45 +45 +45 +45 +45 +45 +45 +45
240 +30 +45 +45 +45 +45 +45 +45 +45 +45 +45 +45
270 +30 +45 +45 +45 +45 +45 +45 +45 +45 +45 +45

Table 4.7: Samples for the truck.

First, we compute for both inputs the statistic of the β parameter which
diminishes the square error of the fuzzy curves. The results with a level of
confidence of 90% and a relative error of 10% are βx = 7.0571 and βθ =
27.5219 and are plotted in figures 4.28 and 4.29, respectively.

Once we have the optimal values for the β parameter then the fuzzy
curves are linearized until a high relative error of 20% is achieved in order to
obtain a simple but intelligible model.

Observe that we have doubled the value of the desired error parameter
in order to emphasize the fact that the method can easily be tuned based on
each problem.

Furthermore, we have rounded the values for the input x to 10 meters,
the values for the input θ to 30o

¯ and the values for the output φ to 5o
¯.
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Figure 4.28: Statistics for the βx parameter.
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Figure 4.29: Statistics for the βθ parameter.

We have plotted the resulting fuzzy sets in figures 4.30 and 4.31. They
are placed at -50, -20, 20 and 50 for the input x and -90, 0, 180 and 270 for
the input θ.
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Figure 4.30: Linearization of the fuzzy curve for the input x.
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Figure 4.31: Linearization of the fuzzy curve for the input θ.

Finally the rule matrix with the previous linearization is given in table 4.8
which could be simplified if we consider trapezoidal membership functions.
In this case we could join the sets of x placed at {-50,-20} as one trapezoidal
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set and also those placed at {20,50}. Obviously, we could do the same for
the variable θ with the sets placed at {-90,0} and also at {180,270}.

Rule matrix

θ \ x -50 -20 20 50
-90 -45 -45 -15 -15
0 -45 -45 -15 -15

180 15 15 45 45
270 15 15 45 45

Table 4.8: Rules of the controller.

This controller has succesfully been tested with Simulink except for those
situations where the y-position should have been considered as input because
the original position of the truck was too close to the loading dock. Figure
4.32 shows the Simulink’s program and figure 4.33 displays some simulations.
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Figure 4.32: Truck’s model with Simulink.

In this problem the linearized fuzzy curves are odd functions reason why
we suggest choosing the mid point of the universe of scope as a fuzzy set.
This option is always recommended in control systems in order to define
the accomplishment of the target in spite of not having any error due to
linearization in this point.

In this case the model would have had 5 sets for each input and 7 output
sets whose rules are given in table 4.9.

This controller works exactly like the previous one and obviously it can
also be simplified with trapezoidal membership functions in order to have 3
fuzzy sets for each input and 9 rules.
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Figure 4.33: Simulations for the truck.

Rule matrix

θ \ x -50 -20 0 20 50
-90 -45 -45 -30 -15 -15
0 -45 -45 -30 -15 -15
90 -30 -30 0 30 30
180 15 15 30 45 45
270 15 15 30 45 45

Table 4.9: Rules of the controller by considering odd fuzzy curves.

Now we will consider the truck and trailer backer-upper problem. In fact
this problem has already been solved with different techniques and between
them, we will take the efficient controller proposed by K. Chellapilla [16]
which was developed with evolutionary programming. If we have decided to
consider this controller is because it will help us to clarify one of the main
purposes of our method: the capacity of explaining a complex process by
means of an intelligible model.

The controller proposed by Chellapilla computes the desired control ac-
tions with the following expression6: (ADD (ADD (ADD (IFLTZ 0.378274 -
0.419594 TANG) Y) DIFF) (ADD (MUL (SUB X -0.239431) (SUB DIFF TANG))
(DIV (MUL X TANG) (ADD 0.229157 (DIV (MUL (SUB TANG Y) (MUL Y
(ADD (ATG (SUB Y TANG) (SUB X (DIV -0.447904 Y))) (DIV (IFLTZ X DIFF
TANG) (MUL Y Y))))) (IFLTZ (MUL TANG TANG) (ATG (IFLTZ (MUL (SUB
(DIV Y X) (ADD TANG -0.432548)) (SUB (ADD (ATG (IFLTZ DIFF 0.650782
DIFF) (SUB Y -0.534967)) (DIV (MUL X -0.698540) (SUB 0.357931 -0.079263)))

6The variables are X, Y, TANG (θt) and DIFF (θc − θt). The operators are ADD,
SUB (substraction), MUL (multiplication), DIV (division), ATG (tan−1(y/x) producing
an angle in the range −π to +π) and IFLTZ (with 3 arguments in order to represent the
operation if arg1 is less than zero then return arg2 else return arg3).
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(MUL (DIV -0.262260 (IFLTZ (DIV Y DIFF) (ADD (MUL (SUB (ATG TANG
(SUB (SUB (IFLTZ Y TANG Y) (ADD (SUB TANG DIFF) (SUB Y TANG)))
(DIV DIFF (SUB (ADD DIFF TANG) (MUL TANG -0.418766))))) (ATG TANG
DIFF)) (ADD (DIV DIFF (IFLTZ TANG 0.156674 TANG)) (IFLTZ TANG (ADD
-0.118834 0.893238) DIFF))) DIFF) X)) (SUB -0.345314 DIFF)) (DIV (ADD -
0.629664 Y) (DIV Y -0.702695))))) TANG DIFF) DIFF) TANG))))))

Thus, we will try to obtain an intelligible model which explains how the
previous controller works by generating several samples from it and by apply-
ing them to our method. Figure 4.34 shows the loading zone for this problem.
Here we have changed the boundaries of the loading zone in comparison with
the previous problem without the trailer in order to leave them like those
which are used by Chellapilla [16].
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Figure 4.34: Loading zone for the truck and trailer.

The kinematics of this problem can be solved with the following equations:

A = r cos φ(t) (4.4)

B = A cos (θc(t)− θt(t)) (4.5)

C = A sin (θc(t)− θt(t)) (4.6)

x(t + 1) = x(t)−B cos θt(t) (4.7)

y(t + 1) = y(t)−B sin θt(t) (4.8)

θc(t + 1) = tan−1

(
dc sin θc(t)− r cos θc(t) sin φ(t)

dc cos θc(t) + r sin θc(t) sin φ(t)

)
(4.9)

θt(t + 1) = tan−1

(
ds sin θc(t)− C cos θc(t)

ds cos θc(t) + C sin θc(t)

)
(4.10)
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In these equations tan−1(y/x) is the two-argument arctangent function
producing an angle in the range −π to +π. The length of the tractor dc is
6 meters and the length of the trailer ds is 14 meters. Time is measured in
steps of 0.02 seconds and the speed of the truck is constant and the distance
moved backward in one time step r is 0.2 meters.

First, we have sampled the controller proposed by Chellapilla. Due to
the symmetry of the problem we have only considered the values with y ≥ 0.
Thus, we have varied the variable x from 0 to 40 meters with a step of 5
meters, the variable y from 0 to +50 meters with a step of 5 meters and the
variables θc and θt from 0o

¯ to 120o
¯ with a step of +15o

¯ . The total amount
of samples has been 9× 11× 9× 9 = 8019.

With a desired error equal to 5% we have obtained the fuzzy sets plotted
in figure 4.35 and the following 81 rules which relate them:
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Figure 4.35: Fuzy sets for the truck and trailer problem.

if x is small and y is small and θc is small and θt is small then φ is turn left

if x is small and y is small and θc is small and θt is medium then φ is turn left

if x is small and y is small and θc is small and θt is high then φ is turn left

if x is small and y is small and θc is medium and θt is small then φ is turn left

if x is small and y is small and θc is medium and θt is medium then φ is turn left

if x is small and y is small and θc is medium and θt is high then φ is turn left

if x is small and y is small and θc is high and θt is small then φ is turn left

if x is small and y is small and θc is high and θt is medium then φ is turn left
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if x is small and y is small and θc is high and θt is high then φ is turn left

if x is small and y is medium and θc is small and θt is small then φ is turn left

if x is small and y is medium and θc is small and θt is medium then φ is turn left

if x is small and y is medium and θc is small and θt is high then φ is turn left

if x is small and y is medium and θc is medium and θt is small then φ is turn left

if x is small and y is medium and θc is medium and θt is medium then φ is turn left

if x is small and y is medium and θc is medium and θt is high then φ is turn left

if x is small and y is medium and θc is high and θt is small then φ is turn left

if x is small and y is medium and θc is high and θt is medium then φ is turn left

if x is small and y is medium and θc is high and θt is high then φ is turn left

if x is small and y is high and θc is small and θt is small then φ is turn left

if x is small and y is high and θc is small and θt is medium then φ is turn left

if x is small and y is high and θc is small and θt is high then φ is turn left

if x is small and y is high and θc is medium and θt is small then φ is turn left

if x is small and y is high and θc is medium and θt is medium then φ is turn left

if x is small and y is high and θc is medium and θt is high then φ is turn left

if x is small and y is high and θc is high and θt is small then φ is turn left

if x is small and y is high and θc is high and θt is medium then φ is turn left

if x is small and y is high and θc is high and θt is high then φ is turn left

if x is medium and y is small and θc is small and θt is small then φ is turn left

if x is medium and y is small and θc is small and θt is medium then φ is turn left

if x is medium and y is small and θc is small and θt is high then φ is turn left

if x is medium and y is small and θc is medium and θt is small then φ is turn left

if x is medium and y is small and θc is medium and θt is medium then φ is turn left

if x is medium and y is small and θc is medium and θt is high then φ is turn left

if x is medium and y is small and θc is high and θt is small then φ is turn left

if x is medium and y is small and θc is high and θt is medium then φ is turn left

if x is medium and y is small and θc is high and θt is high then φ is turn left

if x is medium and y is medium and θc is small and θt is small then φ is turn left

if x is medium and y is medium and θc is small and θt is medium then φ is turn right

if x is medium and y is medium and θc is small and θt is high then φ is turn right

if x is medium and y is medium and θc is medium and θt is small then φ is turn left

if x is medium and y is medium and θc is medium and θt is medium then φ is turn right

if x is medium and y is medium and θc is medium and θt is high then φ is turn right

if x is medium and y is medium and θc is high and θt is small then φ is turn left

if x is medium and y is medium and θc is high and θt is medium then φ is turn left

if x is medium and y is medium and θc is high and θt is high then φ is turn right

if x is medium and y is high and θc is small and θt is small then φ is turn left

if x is medium and y is high and θc is small and θt is medium then φ is turn right

if x is medium and y is high and θc is small and θt is high then φ is turn right

if x is medium and y is high and θc is medium and θt is small then φ is turn left
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if x is medium and y is high and θc is medium and θt is medium then φ is turn left

if x is medium and y is high and θc is medium and θt is high then φ is turn right

if x is medium and y is high and θc is high and θt is small then φ is turn left

if x is medium and y is high and θc is high and θt is medium then φ is turn left

if x is medium and y is high and θc is high and θt is high then φ is turn right

if x is high and y is small and θc is small and θt is small then φ is turn left

if x is high and y is small and θc is small and θt is medium then φ is turn left

if x is high and y is small and θc is small and θt is high then φ is turn left

if x is high and y is small and θc is medium and θt is small then φ is turn left

if x is high and y is small and θc is medium and θt is medium then φ is turn left

if x is high and y is small and θc is medium and θt is high then φ is turn left

if x is high and y is small and θc is high and θt is small then φ is turn left

if x is high and y is small and θc is high and θt is medium then φ is turn left

if x is high and y is small and θc is high and θt is high then φ is turn left

if x is high and y is medium and θc is small and θt is small then φ is turn left

if x is high and y is medium and θc is small and θt is medium then φ is turn right

if x is high and y is medium and θc is small and θt is high then φ is turn right

if x is high and y is medium and θc is medium and θt is small then φ is turn left

if x is high and y is medium and θc is medium and θt is medium then φ is turn right

if x is high and y is medium and θc is medium and θt is high then φ is turn right

if x is high and y is medium and θc is high and θt is small then φ is turn left

if x is high and y is medium and θc is high and θt is medium then φ is turn left

if x is high and y is medium and θc is high and θt is high then φ is turn right

if x is high and y is high and θc is small and θt is small then φ is turn left

if x is high and y is high and θc is small and θt is medium then φ is turn right

if x is high and y is high and θc is small and θt is high then φ is turn right

if x is high and y is high and θc is medium and θt is small then φ is turn left

if x is high and y is high and θc is medium and θt is medium then φ is turn left

if x is high and y is high and θc is medium and θt is high then φ is turn right

if x is high and y is high and θc is high and θt is small then φ is turn left

if x is high and y is high and θc is high and θt is medium then φ is turn left

if x is high and y is high and θc is high and θt is high then φ is turn right

We have observed how this fuzzy controller works in a very similar way
to the one proposed by Chellapilla. Figure 4.36 shows two cases with initial
values (x = 20, y = 50, θc = θt = 90) and also (x = 40, y = 50, θc = θt = 90)
where the position of the truck is plotted in red with the original controller
and in blue with the fuzzy controller. These are the same cases tested by
Chellapilla apart from some other cases which are not considered here because
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they produce jack-knifing7 with both controllers.
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Figure 4.36: Simulations for the truck and trailer.

Despite not working exactly like the original controller, the most impor-
tant conclusion is that our method explains in a very clear manner how the
original controller works. Recall that we are interested in intelligible models
in spite of its exactitude. Anyway our solution only gives intelligible rules in
a local manner (rule by rule) but without assuring the intelligibility of the
whole linguistic explanation if there are many rules. Later in the conclusions,
we will review this aspect.

4.4.2 Ball and beam

We can repeat the last application by building a fuzzy controller from the
samples of a more complex fuzzy controller covering the whole input space.
We will demonstrate the capabilities of the proposed method in order to
simplify the original controller with the popular ball and beam problem and
to improve the intelligibility of the required control actions. Due to its non-
linearity, this problem has been addressed quite often in control literature.

The problem plotted in figure 4.37 consists in placing a ball to any desired
location on a horizontal beam by controlling its angle.

7Jack Knife is a term applied to the dangerous situation when a large 18 wheel truck
and its trailer go into a skid and the trailer swings out and stops to form an angle of 90
degrees with each other. This term comes from a description of how the blade of a jack
knife forms the angle with its protective handle. In this situation the vehicle is likely to
roll over. For this reason we will not consider the cases for which |θc − θt| ≥ 90.
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Figure 4.37: Problem statement.

This system can be described with the state space model proposed by
Hauser, Sastry and Kokotović [39]. If r is the radius of the ball from the
center of the beam and θ is the angle of the beam, the dynamics of the
system can be expressed with equation 4.11
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

ẋ1

ẋ2

ẋ3

ẋ4


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B (x1x4
2 −G sin (x3))

x4

0


 +




0
0
0
1


 u (4.11)

where (x1, x2, x3, x4) =
(
r, ṙ, θ, θ̇

)
, G represents the gravity acceleration and

B=0.7143. We desire to bring the ball radius y = x1 = r to any set point
by controlling the torque of the beam u = θ̈. The set point can be either a
constant or a function of time.

In fact this system and a possible controller have already been developed
with Simulink in the Fuzzy Logic Toolbox for Matlab (figure 4.38). From a
prompt window the user can choose between a sinusoid, square or saw wave
or even any desired set point with the mouse (figure 4.39).

The original fuzzy controller proposed in the Fuzzy Logic Toolbox is a
Takagi-Sugeno system with 4 inputs: in1 = x1 − x1target , in2 = x2, in3 = x3,
in4 = x4; 2 fuzzy sets for each one which are plotted in figure 4.40 and 16
rules given in equation 4.12 by using a matrix format in order to compact
them8.

8For example the 5-th rule says that ”if in1 is Set11 and in2 is Set22 and in3 is Set31

and in4 is Set41 then θ is 0.734+2.234×in1-12.853×in2-6.110×in3-1.034×in4”.
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Figure 4.38: Description with Simulink of the ball and beam.

Figure 4.39: Simulator with Simulink for the ball and beam problem.




Set11 Set21 Set31 Set41

Set11 Set21 Set31 Set42

Set11 Set21 Set32 Set41

Set11 Set21 Set32 Set42

Set11 Set22 Set31 Set41

Set11 Set22 Set31 Set42

Set11 Set22 Set32 Set41

Set11 Set22 Set32 Set42

Set12 Set21 Set31 Set41

Set12 Set21 Set31 Set42

Set12 Set21 Set32 Set41

Set12 Set21 Set32 Set42

Set12 Set22 Set31 Set41

Set12 Set22 Set31 Set42

Set12 Set22 Set32 Set41

Set12 Set22 Set32 Set42







in1

in2

in3

in3


 →




1.015 2.234 -12.665 -4.046 0.026
1.161 1.969 -9.396 -6.165 0.474
1.506 2.234 -12.990 -1.865 1.426
0.734 1.969 -9.381 -4.688 -0.880
0.734 2.234 -12.853 -6.110 -1.034
1.413 1.969 -9.485 -6.592 1.159
1.225 2.234 -12.801 -3.929 0.366
0.985 1.969 -9.291 -5.115 -0.195
0.985 1.969 -9.292 -5.115 0.195
1.225 2.234 -12.802 -3.929 -0.366
1.413 1.969 -9.485 -6.592 -1.159
0.734 2.234 -12.853 -6.110 1.034
0.734 1.969 -9.381 -4.688 0.880
1.506 2.234 -12.990 -1.865 -1.426
1.161 1.969 -9.396 -6.165 -0.474
1.015 2.234 -12.665 -4.046 -0.026







1
in1

in2

in3

in4




(4.12)
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Figure 4.40: Fuzzy sets of the controller defined in the Fuzzy Logic Toolbox.

We have computed 625 samples from this controller equally spaced and
covering the whole input space in order to test our method with in1 ∈ { -1.5,
-0.5, 0, 0.5, 1.5}, in2 ∈ { -1.5, -0.5, 0, 0.5, 1.5}, in3 ∈ { -0.2, -0.1, 0, 0.1, 0.2}
and in4 ∈ { -0.4, -0.2, 0, 0.2, 0.4}.

After 20 executions with the desired error parameter equal to 3% the
median values for the optimal β parameters were βin1 = 1.840, βin2 = 1.410,
βin3 = 0.226 and βin4 = 0.478.

The linearization is accomplished with very few segments because the
resulting fuzzy curves are quite linear. For example only two sets for each
variable are necessary if the value for the ε parameter is equal or higher than
3%. Figure 4.41 shows these sets when ε = 3%. In fact the NRMSE between
the linearized function and the original fuzzy curves is only 0.74% for the
first variable, 2.74% for the second one, 1.20% for the third one and 0.79%
for the last one.

The difference between these sets and those proposed in the Matlab’s
Toolbox is its linearity and furthermore the accomplishment of the normal
property of the fuzzy sets which is recommended in order to improve the
intelligibility of the resulting model.

Finally the output sets and the rules obtained with our method are given



Two popular control problems 129

−2 0 2
−10

0

10

In
pu

t 1

Fuzzy curve

−2 0 2
−10

0

10
Linearization

−2 0 2
0

0.5

1
Fuzzy sets

−2 0 2
−10

0

10

In
pu

t 2

−2 0 2
−10

0

10

−2 0 2
0

0.5

1

−0.2 0 0.2
−10

0

10

In
pu

t 3

−0.2 0 0.2
−10

0

10

−0.2 0 0.2
0

0.5

1

−0.5 0 0.5
−10

0

10

In
pu

t 4

−0.5 0 0.5
−10

0

10

−0.5 0 0.5
0

0.5

1

Figure 4.41: Linearized fuzzy curves when ε=3%.

in equation 4.13 by using the same matrix format than before.



Set11 Set21 Set31 Set41

Set11 Set21 Set31 Set42

Set11 Set21 Set32 Set41

Set11 Set21 Set32 Set42

Set11 Set22 Set31 Set41

Set11 Set22 Set31 Set42

Set11 Set22 Set32 Set41

Set11 Set22 Set32 Set42

Set12 Set21 Set31 Set41

Set12 Set21 Set31 Set42

Set12 Set21 Set32 Set41

Set12 Set21 Set32 Set42

Set12 Set22 Set31 Set41

Set12 Set22 Set31 Set42

Set12 Set22 Set32 Set41

Set12 Set22 Set32 Set42







in1

in2

in3

in3


 →




-0.6
-4.7
-5.9
-8.6
6.2
1.2
0.9
-2.5
2.5
-0.9
-1.2
-6.2
8.6
5.9
4.7
0.6




(4.13)

Our controller and the original controller have been tested with Simulink.
We have tried to track a sine wave set point, a square wave and a also a saw
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wave with an amplitude equal to the length of half beam (2 meters) and a
period of 0.5 radians per second for the three cases.

The simulations for the first 40 seconds are plotted in figure 4.42 where
the target position has been plotted in green, the ball’s position with the
Matlab’s controller has been plotted in red and the ball’s position with our
controller has been plotted in blue.
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Figure 4.42: Simulations for the ball and beam.

Except for the sine wave target, where both results are very similar, in
the other two simulations the original controller responds a little bit faster
than our controller. Nevertheless observe how for this reason the ball would
fall with the original controller with the square wave target. Therefore, the
performance obtained with our controller is similar or even better in some
cases by considering that is quite simple.

In any control application the output of the controller should be analyzed
and for this reason this signal has been plotted for the three previous cases
in figure 4.43.

In order to compare them the sum of their square values has been com-
puted by being proportional to the necessary energy to control the beam.
Due to a smoother signal, the results for the sine wave are better when the
original control is considered (3.14) in comparison with our control (8.41),
while our control is better in terms of this energy in the other two cases. For
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the square wave this value is 1611 with the original control and 304 with our
control. For the saw wave these values are 867 and 292, respectively.
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Figure 4.43: Control signals for the ball and beam.

Obviously a lower error could have been obtained by changing the desired
error parameter but with a more complex model. For instance, if the desired
error was only of 1%, then 4 sets for each input variable and a total amount
of 256 rules would have been obtained. In this case the resulting control was
very simlar to the original one.

4.4.3 Summary

Control problems have demanded for a long time a method able to obtain
controllers from the input-output values given by an expert. In fact the
foundation of the method we have exposed must be searched under this
premise. In this section we have shown how our solution can give results
very similar to the ones obtained with other techniques and furthermore by
keeping a satisfactory intelligibility of the final controller which simplifies the
typical latter adjustments.
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4.5 Short examples

4.5.1 The electrical network maintenance

Here we will consider a real problem [11] in order to compare the perfor-
mance of our method with other alternatives which are also focused on the
intelligibility. Moreover we will take advantage of the data (495 samples with
2 inputs) in order to show some of the different alternatives to be considered
with the proposed method. The problem states as follows [11]:

Sometimes, there is a need to measure the amount of electricity lines
that an electric company owns. This measurement may be useful for several
aspects such us the estimation of the maintenance costs of the network, which
was the main goal of the problem presented here in Spain. High and medium
voltage lines can be easily measured, but low voltage line is contained in cities
and villages, and it would be very expensive to measure it. This kind of line
used to be very convoluted and, in some cases, one company may serve more
than 10,000 small nuclei. An indirect method to determine the length of line
is needed. The problem involves finding a model that relates the total length
of low voltage line installed in a rural town with the number of inhabitants
in the town and the mean of the distances from the center of the town to
the three furthest clients in it. This model will be used to estimate the total
length of line being maintained.

Like in the former examples and due to the statistical analyses, several
executions have been computed from which the median results are shown in
table 4.10. Observe that we have considered four alternatives based on the
technique used to define the output sets (Wang&Mendel or Takagi&Sugeno)
and the clustering technique (Chiu’s method or fuzzy C-means). For each
alternative we have computed models by varying the desired error between
1% and 5%.

Observe how the results of the different alternatives are very similar. For
this reason we usually prefer using the Wang&Mendel’s method in order to
define the possible output sets and the Chiu’s clustering technique in order
to cluster the final fuzzy sets because this is the fastest combination9. The
Wang&Mendel’s option is clearly faster than the Takagi&Sugeno’s ε2 optimal
method while the Chiu’s alternative is in general slightly faster than the fuzzy
C-means but with a higher number of clusters.

Anyway, if we were interested in having less clusters like fuzzy C-means
than we can increase the value of the parameter rβ slightly higher than the
value of the parameter rα. For instance Chiu suggests rβ = 1.5rα but we

9In this case the mean of the elapsed time when ε = 1% was 90.02sec with W&M+Chiu,
94.53sec with W&M+FCM, 213.80sec with T&S+Chiu and 230.75sec with T&S+FCM.
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W&M + Chiu
Error Sets Rules RMSE Median model

1% 35.5 44 601.79 6 × 7 in sets → 21 out sets (38 rules) with RMSE=593.3
2% 35 43 626.82 8 × 6 in sets → 18 out sets (38 rules) with RMSE=625.4
3% 39.5 52.5 638.32 9 × 7 in sets → 22 out sets (43 rules) with RMSE=637.9
4% 19 16 715.60 5 × 5 in sets → 15 out sets (24 rules) with RMSE=684.2
5% 13 8 746.98 4 × 2 in sets → 7 out sets (8 rules) with RMSE=747.0

W&M + FCM
Error Sets Rules RMSE Median model

1% 27 44 600.79 7 × 6 in sets → 12 out sets (38 rules) with RMSE=598.5
2% 27 41.5 587.50 7 × 6 in sets → 12 out sets (35 rules) with RMSE=583.5
3% 27 40.5 583.19 8 × 6 in sets → 13 out sets (38 rules) with RMSE=581.9
4% 11.5 11 774.39 6 × 5 in sets → 11 out sets (28 rules) with RMSE=695.4
5% 9 6 775.15 3 × 2 in sets → 4 out sets (6 rules) with RMSE=775.2

T&S + Chiu
Error Sets Rules RMSE Median model

1% 34 34 601.75 6 × 7 in sets → 21 out sets (34 rules) with RMSE=600.0
2% 35 36 623.25 8 × 7 in sets → 21 out sets (36 rules) with RMSE=621.1
3% 33.5 33 619.73 6 × 7 in sets → 19 out sets (30 rules) with RMSE=613.1
4% 8 4 633.20 2 × 2 in sets → 4 out sets (4 rules) with RMSE=633.2
5% 8 4 633.20 2 × 2 in sets → 4 out sets (4 rules) with RMSE=633.2

T&S + FCM
Error Sets Rules RMSE Median model

1% 41.5 66.5 594.28 7 × 9 in sets → 15 out sets (48 rules) with RMSE=587.6
2% 31 42 595.34 8 × 8 in sets → 15 out sets (42 rules) with RMSE=594.4
3% 26 31 588.30 7 × 6 in sets → 12 out sets (31 rules) with RMSE=589.0
4% 9 6 778.17 3 × 2 in sets → 4 out sets (6 rules) with RMSE=775.2
5% 9.5 7 752.24 3 × 3 in sets → 4 out sets (8 rules) with RMSE=729.3

Table 4.10: Comparisons between different options in the real problem.

usually consider rβ = rα.
Figure 4.44 shows from different points of view the output values in blue

together with original samples in red for the model with the desired error
equal to 1% and with the W&M+Chiu’s alternative.

Table 4.11 obtained from [11] shows the results with other common meth-
ods in order to observe how the our method assures a similar performance
in spite of being very simple. For those methods where the data must be
divided between a train set and a test set, the RMSE given in the table is
the one obtained only with the train set.

Method Labels or sets RMSE

Linear regression 2 758.65
Exponential regression 2 682.27

2nd order polynomial regression 6 686.95

3rd order polynomial regression 10 686.93
3 layer perceptron 2-25-1 102 582.06
COR [11] 21 585.93

Table 4.11: Comparisons between different methods.
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Figure 4.44: Output values in the real problem.

4.5.2 Reproduction of a fuzzy system

With this case we will study the capability of our method to reproduce a
fuzzy system. This property is based on the generation of samples from a
fuzzy model in order to evaluate if the method under test can give the same
or at least a similar transfer function [111].

We will consider 100 equidistant values for each input from the fuzzy
system given in figure 4.45 which was already used in [111].

We have considered four values for the desired error equal to 2%, 4%, 6%
and 8%. The results are given in figures 4.46 and 4.47. Observe how the
final transfer functions are similar to the original one.

The main difference between our models and the original one is the fact
that we only work with triangular membership functions and consequently
we need more sets for each variable. Nevertheless, observe in figure 4.48 how
the model given in figure 4.46 with ε=2% could be simplified with trapezoidal
sets given exactly the same structure.

In fact it is very easy to simplify results with trapezoidal sets. Once the
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Figure 4.45: Original fuzzy system in order to study its reproductivity.
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x1

Rules with ε=2%

x1\x2 0.0 2.4 4.5 7.5 10.0
0.0 -8.00 -8.00 -6.00 -2.00 -2.00
2.4 -8.00 -8.00 -6.00 -2.00 -2.00
4.4 -4.00 -4.00 0.00 2.00 2.00
5.8 -4.00 -4.00 0.00 2.00 2.00
7.5 -2.00 -2.00 4.00 6.00 6.00

10.00 -2.00 -2.00 4.00 6.00 6.00

Rules with ε=4%

x1\x2 0.0 2.4 4.5 7.5 10.0
0.0 -8.00 -8.00 -6.00 -2.00 -2.00
2.4 -8.00 -8.00 -6.00 -2.00 -2.00
4.4 -4.00 -4.00 0.00 2.00 2.00
7.5 -2.00 -2.00 4.00 6.00 6.00

10.00 -2.00 -2.00 4.00 6.00 6.00

Figure 4.46: Resulting models with ε=2% and ε=4%.

rule matrix with triangular sets is obtained we search, for each input set, if
the output set assigned to its neighbor rule with the same input sets, apart
from the one belonging to the current variable, is exactly the same. If this
situation is repeated for all the rules with the same input values then both
sets can be grouped into a trapezoidal one.
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x1

Rules with ε=6%

x1\x2 0.0 7.0 10.0
0.0 -8.00 -2.00 -2.00
3.0 -8.00 -2.00 -2.00
7.0 -2.00 6.00 6.00

10.00 -2.00 6.00 6.00

Rules with ε=8%

x1\x2 0.0 7.0 10.0
0.0 -8.00 -2.00 -2.00
3.0 -8.00 -2.00 -2.00
7.0 -2.00 6.00 6.00

10.00 -2.00 6.00 6.00

Figure 4.47: Resulting models with ε=6% and ε=8%.
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Figure 4.48: Trapezoidal membership functions from triangular ones.

4.5.3 Simplifying quasi-linear fuzzy systems

Some of the original fuzzy controllers were developed by copying the basis
of classical control into FRBS. Thus, most of the original fuzzy controllers
were PD-fuzzy controllers, PI-fuzzy controllers, PID-fuzzy controllers and so
on. Here we will consider one of them (PD-fuzzy) in order to show how our
method can simplify its structure without degrading its performance.

A proportional-derivative (PD) classical control considers two inputs: the
error between the target and the current value and also the derivative of this
error. The relation between these variables (e,d) and the control signal (u)
is defined with a linear equation such as u = Kee + Kdd. The constants Ke

and Kd are adjusted depending on each problem.
Many people implements PD controls with fuzzy theory. Thus, they

define for each input several fuzzy sets which are normally odd and equally
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spaced along the universe of scope. Figure 4.49 shows an example of this
kind of sets10.
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Figure 4.49: Fuzy sets for the PD-fuzzy control.

The rule matrix which relates the input sets and the output sets is in
general symmetrical. Table 4.12 shows the rule matrix for a PD-fuzzy with
the previous fuzzy sets.

Rule matrix

d \ e NL NM ZE PM PL
NL NL NL NM NS ZE
NM NL NM NS ZE PS
ZE NM NS ZE PS PM
PM NS ZE PS PM PL
PL ZE PS PM PL PL

Table 4.12: Rules of the PD-fuzzy control.

The transfer function of this FRBS is plotted in figure 4.50 where we can
observe how this is a quasi-linear function.

The fact that our method gives simple FRBS by linearizing the set of
samples, suggests that it may be applied in order to simplify the original
PD-fuzzy control. Therefore, we will show how in this case the number of
fuzzy sets is not very important because the same transfer function or at
least a very similar one can be obtained with a simpler and more intelligible
model.

We have considered three values for the desired error equal to 1%, 5%
and 10%. The results are given in figures 4.51 and 4.52. Observe how the
final transfer functions are simpler but very similar to the original one.

10NL means negative large, NM means negative medium, NS means negative small, ZE
means zero, PS means positive small, PM means positive medium and PL means positive
large.
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Figure 4.50: Original transfer function of the PD-fuzzy control.
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Original rules

d \ e NL NM ZE PM PL
NL NL NL NM NS ZE
NM NL NM NS ZE PS
ZE NM NS ZE PS PM
PM NS ZE PS PM PL
PL ZE PS PM PL PL

Rules with ε=1%

d \ e -1.0 -0.7 -0.5 0.5 0.7 1.0
-1.0 -1.00 -1.00 -1.00 -0.33 -0.20 0.00
-0.6 -1.00 -0.84 -0.73 -0.07 0.07 0.27
-0.4 -0.93 -0.73 -0.60 0.07 0.20 0.40
0.4 -0.40 -0.20 -0.07 0.60 0.73 0.93
0.6 -0.27 -0.07 0.07 0.73 0.84 1.00
1.0 0.00 0.20 0.33 1.00 1.00 1.00

Figure 4.51: Original and resulting model with ε=1%.

The model with ε=1% has 6 sets for each input, 21 output sets, 36 rules
and a NRMSE=0.48%; the model with ε=5% has 4 sets for each input, 9
output sets, 16 rules and a NRMSE=3.66%; and the model with ε=10% has
2 sets for each input, 3 output sets, 4 rules and a NRMSE=22.06%.
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Rules with ε=5%

d \ e -1.0 -0.5 0.5 1.0
-1.0 -1.0 -1.0 -0.3 0.0
-0.6 -1.0 -0.7 -0.1 0.3
-0.6 -0.3 0.1 0.7 1.0
1.0 0.0 0.3 1.0 1.0

Rules with ε=10%

d \ e -1.0 1.0
-1.0 -1.0 0.0
1.0 0.0 1.0

Figure 4.52: Resulting models with ε=5% and ε=10%.

Observe how we can play with the trade-off between accuracy and intel-
ligibility by varying the desired error parameter. The fact is that we can
simplify the necessary rules to explain how the PD-fuzzy works without de-
grading significantly its transfer function.

In this example we have not considered the different treatment of the
fuzzy curves if they are odd. If we had considered this option we would have
obtained very similar results in every execution which would have differed
only by the inclusion of a fuzzy set placed at 0 for each input. The overall
error is very similar or even the same, depending on the statistical result of
every execution.

4.5.4 Comparisons with ANFIS

There is no doubt that the most popular identification method by means
of fuzzy logic has been ANFIS for a long time. ANFIS (artificial neuro-
fuzzy inference system) was presented in 1993 [47, 50] by J.R. Jang who
proposed a hybrid learning rule in order to improve the learning process
based on gradient descent techniques. Its main feature was getting the best
model in terms of square error, avoiding becoming trapped in local minima.
Thus, ANFIS applies gradient descent together with least-squares in order
to identify the parameters in an adaptative network until a certain error
has been achieved. In spite of the latter investigations [48, 49], the model
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structure must be introduced in advance (number of inputs and number
of sets) and the process can spend a long time if many samples must be
considered, basically due to the least-squares computations.

It has been for years one of the best methods because most investigations
were focused on the error but not on the intelligibility of the resulting models.
In fact ANFIS is usually the technique we prefer when we search a model
with a high accuracy. But in spite of being based on a completely different
objective from our current investigation, we have considered interesting to
do some comparisons between ANFIS and our method in order to emphasize
their different targets.

Here we will consider a circular function of three and four variables with
a different numbers of samples which have been generated randomly:

y =
√

1− x2
1 − x2

2 − x2
3 with 103, 104 and 105 random samples in R

y =
√

1− x2
1 − x2

2 − x2
3 − x2

4 with 104, 105 and 106 random samples in R

We have done several executions from which their median values have
been considered in order to give results independent from the random gener-
ation of the samples. For each simulation, first we have applied our method
and when the model has been obtained then we have applied ANFIS with
the same fuzzy structure (number of input sets for each input and singleton
sets as outputs). Results from different cases are given in table 4.13.

Our method ANFIS
Settings Time (sec) RMSE Sets Time (sec) RMSE Sets

3 inputs with 103 samples and ε=20% 3.585 28.67% 13 0.201 16.14% 26
3 inputs with 104 samples and ε=20% 5.968 23.43% 13 3.184 10.92% 46
3 inputs with 105 samples and ε=20% 32.376 26.43% 13 129.727 10.85% 46
4 inputs with 104 samples and ε=20% 8.523 27.26% 16 9.073 15.19% 65
4 inputs with 105 samples and ε=20% 55.591 30.51% 15 188.882 18.07% 46
4 inputs with 106 samples and ε=20% 532.176 33.62% 15 Stopped after three days
3 inputs with 103 samples and ε=10% 6.289 18.08% 22 0.921 7.35% 88
3 inputs with 104 samples and ε=10% 8.582 13.32% 23 10.495 7.03% 93
3 inputs with 105 samples and ε=10% 53.847 14.27% 21 201.520 7.11% 93
4 inputs with 104 samples and ε=10% 15.161 23.12% 20 1105.470 9.88% 134
4 inputs with 105 samples and ε=10% 127.363 26.33% 22 Stopped after three days
4 inputs with 106 samples and ε=10% 1020.388 31.47% 21 Stopped after three days

Table 4.13: Comparisons between ANFIS and our method which ends by
watching the error of the linearized fuzzy curves.

Observe how ANFIS achieves always better results in terms of the error
because this is its main purpose but many more sets are in general necessary
and thus, the final model is less comprehensible. Furthermore, it may give



Short examples 141

absurd models by placing the sets outside the logical range of possible values
because it does not consider the boundaries of the variables.

On the other hand our method is faster basically if many samples are given
but still gives a satisfactory error with quite less fuzzy sets. For example if
ε = 10%, the case with four inputs and 106 samples took half an hour with our
method but more than three days with ANFIS. In fact we stopped ANFIS in
some executions after being computing the model for more than 3 days (more
than 25000 seconds), basically when we have a high number of samples.

Nevertheless recall that our method ends either for a global NRMSE of
for an error of all the linearized fuzzy curves lower than the desired error. In
most cases this last condition is the one that prevails and then the final global
NRMSE is higher than the desired error parameter. In order to compare our
method with ANFIS, which always ends when it reaches a certain global
error, we have considered some executions which stop only if a certain global
NRMSE is achieved. The results are given in table 4.14.

Our method ANFIS
Settings Time (sec) RMSE Sets Time (sec) RMSE Sets

3 inputs with 103 samples and ε=20% 5.277 13.14% 23 0.201 16.14% 26
3 inputs with 104 samples and ε=20% 17.034 11.25% 24 3.184 10.92% 46
3 inputs with 105 samples and ε=20% 151.167 11.60% 25 129.727 10.85% 46
4 inputs with 104 samples and ε=20% 59.105 13.11% 26 9.073 15.19% 65
4 inputs with 105 samples and ε=20% 522.481 13.10% 27 188.882 18.07% 46
4 inputs with 106 samples and ε=20% 5072.163 13.22% 27 Stopped after three days
3 inputs with 103 samples and ε=10% 13.660 9.50% 36 0.921 7.35% 88
3 inputs with 104 samples and ε=10% 46.737 8.16% 37 10.495 7.03% 93
3 inputs with 105 samples and ε=10% 359.557 7.69% 38 201.520 7.11% 93
4 inputs with 104 samples and ε=10% 238.122 11.13% 39 1105.470 9.88% 134
4 inputs with 105 samples and ε=10% 2612.606 10.25% 41 Stopped after three days
4 inputs with 106 samples and ε=10% 22173.123 10.00% 42 Stopped after three days

Table 4.14: Comparisons between ANFIS and our method which ends by
watching only the global NRMSE.

We conclude that we can reach also the same or similar error in compari-
son with ANFIS but with a more comprehensible model by having quite less
sets (linguistic labels). Furthermore our method is clearly faster than ANFIS
when a high number of samples are considered.
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