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List of publications

This thesis has summarized the author’s research experience in the field of
fuzzy modeling for the last seven years. Obviously, during its development
we have published several articles related to this work. Here we enumerate
them and we also include their abstracts. They are sorted by its publication
date in descending order.

1. An Intelligible Approach for the Synthesis of Intelligible Fuzzy
Models
Submitted to Fuzzy Sets and Systems (but not accepted yet)
International Fuzzy Systems Association & Elsevier
Elsevier, 2005
We present an heuristic methodology devised to address the problems
encountered in designing an intelligible fuzzy model to fit a set of input-
output data. In particular, we are able to determine the number of
fuzzy sets, place them in the universe of scope and propose a set of
linguistic rules that relate them.

The resulting method is very simple and also intelligible. Therefore, it
performs the final models with a low computational cost but further-
more, if helps the tuning of its different options based on the nature of
the problem and the nature of the users. Thus, observe that we will
focus this work not only on the intelligibility of the model but also on
the intelligibility of the method itself.

We do not seek to conclude that our method is better than others but
to obtain an acceptable error in comparison while keeping the linguistic
capacities of the fuzzy model. In fact with this methodology we will be
able to choose the precision of the model and consequently its degree
of intelligibility.
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2. A Fast Approach to Synthesize Intelligible Fuzzy Systems
from Input-Output Data
Proceedings of the IFSA’05 Word Congress
International Fuzzy Systems Association
Beijing, 2005
We present a set of heuristic criteria devised to address the problems
encountered in designing a fuzzy controller to fit a set of input-output
data. The objective is to obtain in a fast and simple manner an intelli-
gible model able to undergo further refinements. We detail the method,
compare it with other alternatives and finally some examples are given.

3. Intelligible Fuzzy Models Applied to Time Series Prediction
and Control
Poster for the 7-th CCIA
Catalan Association for Artificial Intelligence
Barcelona, 2004
A simple and fast method to build fuzzy systems from input-output
data consists in computing optimal fuzzy curves whose linearization
can define the necessary fuzzy sets. In this paper we review this method
and show its capacities to predict the popular Box and Jenkins’ time
series and to control the ball and beam system.

4. Building Controllers from Optimal Fuzzy-Curves: A Simple
and Intelligible Approach
Proceedings of the 2004-EUROFUSE Workshop on Data and Knowl-
edge Engineering
European Chapter of the International Fuzzy Systems Association
Warsaw, 2004
In this paper we present a set of heuristic criteria devised to address
the problems encountered in designing a fuzzy controller to fit a set of
input-output data. The objective is to obtain an intelligible starting
control able to undergo further refinements. The method is exemplified
by means of two popular cases: the truck backer-upper and the ball and
beam problem.

5. An Approach of Fuzzy Modeling towards Intelligible Model-
ing
Proceedings of the 5th WSEAS Int.Conf. on fuzzy sets and fuzzy sys-
tems
World Scientific and Engineering Academy and Society
Udine, 2004
In this paper we present a set of heuristic criteria devised to address the
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problems encountered in designing a fuzzy system to fit a set of input-
output data. The objective is to obtain in a simple and fast manner
a good starting model to undergo further refinements. The result is a
simple algorithm with a similar performance than other techniques but
with a low computational cost.

6. Min-square Fitting of Fuzzy Curves
Proceedings of the IFSA’03 World Congress
International Fuzzy Systems Association
Istanbul, 2003
Fuzzy curves proposed by Lin et al. deliver a smooth representation
of the relation between two variables from the weighted average of
near samples. This average is taken from samples inside a window of
adjustable size by means of a parameter defined in the fuzzy curves,
the b or β parameter, which is adjusted empirically until the moment.
This paper proposes a method to fit this parameter so that the fuzzy
curve presents the minimum square error between its result and the
samples.

7. Extracting Relevant Information from Input-Output Data
Poster for the 4-th CCIA
Catalan Association for Artificial Intelligence
Barcelona, 2001
In this paper a set of heuristic criteria devised to address the prob-
lems encountered in designing a fuzzy system from input-output data
is presented. In particular, we show how to discriminate unsignificant
linguistic variables, determine the number of fuzzy sets, place them in
the universe of scope, and propose a set of linguistic rules. The objec-
tive is to obtain in a simple and fast manner an algorithm simpler than
the standard ones with minimum computational cost but still similar
performance and more intelligibility in most cases.

8. Automatic Process for the Synthesis of Fuzzy Systems from
Input-Output Data
Proceedings of the 1999 EUSFLAT-ESTYLF Joint Conference
European Society for Fuzzy Logic and Technology
Palma de Mallorca, 1999
In this paper we present a set heuristic criteria devised to address the
problems encountered in designing a fuzzy system to fit a set of input-
output data. In particular, we discriminate unsignificant linguistic vari-
ables, determine the number of fuzzy sets, place them in the universe
of scope, propose a set of linguistic rules and give the necessary number
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of bits to represent each variable. The objective is to obtain in a simple
and fast manner a good starting model to undergo further refinements.



C
Algorithms

Here we provide the algorithm of the methodology that we have proposed
in this work with the Wang&Mendel’s option and the Chiu’s clustering op-
tion. We detail all the steps except for some few computations that we have
considered in the real program in order to diminish the elapsed time.

In order to facilitate its understanding we have considered for every vari-
able the same name in all procedures. Every variable is treated as a global
variable and thus, the whole algorithm can be obtained by joining directly
all the procedures. Furthermore we have included some comments where the
methodology could be difficult to understand.

Every variable is identified with an intelligible name and in most cases
they have the same name that we have used when we have explained the
methodology.

Anyway, among all the variables there is one of them, fuzzy curve, probably
one of the most significant, which should be introduced here because it has
not been explained before. This variable is a 3-dimensional array where
the first number indicates the input variable, the second number indicates
the fuzzy set of this variable and the third number indicates the type of
information which may be a 1 if it indicates the value of the universe of
scope (UoS), a 2 if it indicates the value of the fuzzy curve in this point, a
3 if it indicates the value of the linearized fuzzy curve in this point, a 4 if
it indicates the error between the real value and the linearized value in this
point or a 5 if it indicates the rounded value of this error.

Furthermore in every call to a function we include with a subscript the
number of the algorithm in order to locate it quickly. For example the call
ComputeOptimalBeta4 means that this procedure can be found in the algorithm
number 4.

Nevertheless, some generic functions are not detailed here. These are the
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following:

• Abs → Absolute value.

• All → True if all elements of a vector are nonzero.

• Any → True if any element of a vector is nonzero.

• Bisection → Bisection method.

• Ceil → Round towards plus infinity.

• Exp → Exponential.

• Find → Find indices of nonzero elements.

• Floor → Round towards minus infinity.

• FuzzySystem → Perform fuzzy inference calculations.

• Length → Length of a vector or matrix.

• Log → Natural logarithm.

• LogCommon → Common base 10 logarithm.

• LogDivision → Logarithmically spaced vector.

• Max → Largest value.

• Mean → Mean value.

• Min → Smallest value.

• Prod → Product of values.

• Rand → Uniformly distributed random numbers.

• Round → Round towards nearest integer.

• Sort → Sort in ascending order.

• Sqrt → Square root.

• Std → Standard deviation.

• Sum → Sum of values.

• TStudentInv → Inverse of Student’s T cumulative distribution function.
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input : the samples in a matrix samples of size #samples ×#variables

the desired error in a variable desired error between 0 and 100
output: the fuzzy sets in a matrix sets final of size #variables ×#sets

the rules in a matrix rules final of size #rules ×#variables

the RMSE in a variable model rmserror final

the NRMSE in a variable model nrmserror final

begin
num samples ← number of rows of samples

num variables ← number of columns of samples

num inputs ← num variables-1
ComputeRoundValues 2

ComputeUoSPoints 3

ComputeOptimalBeta 4

ComputeFuzzyCurves 7

EvaluateOddFuzzyCurve 8

ExtremaFuzzySets 9

best model nrmserror ← ∞
repeat

ComputeLinearFuzzyCurve 10

PossibleOutSetsWithWangMendel 11

ClusteringOutSetsWithChiu 12

EvaluateCurrentModel 13

EvaluateStopDecision 14

until end of process =TRUE

end

Algorithm 1: Main procedure
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begin
for i ← 1 to num variables do

round value[i] ← (Max(samples)-Min(samples))×(desired error/100)
round value rounded[i] ← 1
if round value[i] < 0.5 then

while round value[i] < 0.5 do
round value[i] ← round value[i]× 10
round value rounded[i] ← round value rounded[i]/10

endw

else
while round value[i] > 0.5 do

round value[i] ← round value[i]/10
round value rounded[i] ← round value rounded[i]× 10

endw

endif
round value[i] ← round value rounded

endfor

end

Algorithm 2: ComputeRoundValues
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begin
for i ← 1 to num inputs do

accepted points ← NULL
min point ← Floor(Min(samples[:, i])/round value[i])×round value[i]
step point ← round value[i]
max point ← Ceil(Max(samples[:, i])/round value[i])×round value[i]
current point ← min point

repeat
accepted points ← [accepted points current point]
current point ← current point + step point

until current point > max point

num points[i] ← 0
for j ← 1 to Length(accepted points) do

if Any(Abs(samples[:, i]− possible points[j])≤ round value[i]) then
accepted points ← [accepted points possible points[j]]
num points[i] ← num points[i] + 1

endif

endfor
fuzzy curve[i, ; , 1] ← accepted points

endfor

end

Algorithm 3: ComputeUoSPoints
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begin
for i ← 1 to num inputs do

round input value ← round value[i]
GroupedSamplesToComputeOptimalBeta 5

optimal beta mean ← NULL
optimal beta std ← NULL
current error ← ∞
current iteration ← 1
while (current error > desired error)OR(current iteration ≤ 21) do

TestTrainPointsToComputeOptimalBeta 6

possible min ← NULL
for j ← 2 to Length(derivative square error) do

if (derivative square error[j, 2] ≥
0)AND(derivative square error[j− 1, 2] ≤ 0) then

possible min[:, 1] ←
[possible min[:, 1] derivative square error[j− 1, 1]]
possible min[:, 2] ← [possible min[:, 2] derivative square error[j, 1]]

endif

endfor
local min ← Bisection(possible min)

if Length(local min)=1 then
optimal beta[current iteration] ← local min

else
Comment: Choosing the global minimum.
square error ← NULL
for k ← 1 to Length(local min) do

square error[k] ← 0
for q ← 1 to Length(grouped samples) do

numerator ← Sum(Exp(−((train points[:
, 1]− test points[q, 1])/(local min[k])))×train points[:, 2])
denominator ← Sum(Exp(−((train points[:
, 1]− test points[q, 1])/(local min[k]))))
square error[k] ← square error[k] + 0.5× (test points[q, 2]−
(numerator/denominator))2

endfor

endfor
optimal beta[current iteration] ←
Mean(local min[Find(square error = Min(square error))])

endif
optimal beta mean[current iteration] ← Mean(optimal beta)

optimal beta std[current iteration] ←
Std(optimal beta/Sqrt(current iteration))

current error ←
100× TStudentInv((200-desired error)/200,current iteration-1)×
optimal beta std[current iteration]/optimal beta mean[current iteration]
current iteration ← current iteration + 1

endw
optimal beta[i] ← optimal beta mean[current iteration− 1]

endfor

end

Algorithm 4: ComputeOptimalBeta
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begin
satisfactory group of samples ← FALSE
while satisfactory group of samples = FALSE do

min point ← Floor(Min(samples[:, i])/round input value)×round input value

step point ← round value[i]
max point ← Ceil(Max(samples[:, i])/round input value)×round input value

current point ← min point

repeat
possible points ← [possible points current point]
current point ← current point + step point

until current point > max point

grouped samples ← NULL
for j ← 1 to Length(possible points) do

grouped samples[Length(grouped samples) + 1, :, 1] ← samples

[Find(Abs(samples[:, i]− possible points[j])≤(round input value/2)),1]
grouped samples[Length(grouped samples), :, 2] ← samples

[Find(Abs(samples[:, i]− possible points[j])≤(round input value/2)),2]
endfor
if Length(grouped samples)>(0.5×Length(possible points)) then

satisfactory group of samples ← TRUE
else

round input value ← round input value× 2
endif

endw

end

Algorithm 5: GroupedSamplesToComputeOptimalBeta
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begin
satisfactory partition ← FALSE
while satisfactory partition = FALSE do

test points ← NULL
train points ← NULL
for j ← 1 to Length(grouped samples) do

k ← Rand(1 to Length(grouped samples))

test points[:, 1] ← [test points[:, 1] grouped samples[j, k[1], 1]]
test points[:, 2] ← [test points[:, 2] grouped samples[j, k[1], 2]]
train points[:, 1] ← [train points[:, 1] grouped samples[j, k[2], 1]]
train points[:, 2] ← [train points[:, 2] grouped samples[j, k[2], 2]]

endfor
beta min ← ∞
beta max ← 0
for j ← 1 to Length(grouped samples) do

current dist ← Sort(Abs(test points[i, 1]− train points[:, 1]))
min dist ← current dist

[Min(Find(((current dist-Min(current dist))>0)))]2−Min(current dist)2

beta min ← Min([beta min Sqrt(−(min dist/Log(0.01× desired error)))])

max dist ← Max(current dist)2−Min(current dist)2

beta max ← Max([beta max Sqrt(−(max dist

/Log(0.01×(100−desired error))))])

endfor
num decades ← LogCommon(beta max)-LogCommon(beta min)

points per decade ← 3
square error[:, 1] ← LogDivision(beta min to
beta max,num decades,points per decade)

derivative square error[:, 1] ← square error[:, 1]
for j ← 1 to Length(derivative square error) do

derivative square error[j, 2] ← 0
for k ← 1 to Length(grouped samples) do

A ← Sum(Exp(−((test points[k, 1]− train points[:
, 1])/derivative square error[j, 1])2)×(test points[k, 2]− train points[:
, 2]))
B ← Sum(Exp(−((test points[k, 1]− train points[:
, 1])/derivative square error[j, 1])2)×((test points[k, 1]− train points[:
, 1])2)× train points[:, 2])
C ← Sum(Exp(−((test points[k, 1]− train points[:
, 1])/derivative square error[j, 1])2))
D ← Sum(Exp(−((test points[k, 1]− train points[:
, 1])/derivative square error[j, 1])2)×((test points[k, 1]− train points[:
, 1])2))
E ← Sum(Exp(−((test points[k, 1]− train points[:
, 1])/derivative square error[j, 1])2)×train points[:, 2])
derivative square error[j, 2] ←
derivative square error[j, 2] + (A× (−B× C + D× E))/(C3)

endfor
derivative square error[j, 2] ←
derivative square error[j, 2]/(derivative square error[j, 1]2)

endfor
for j ← 2 to Length(derivative square error) do

if (derivative square error[j, 2] ≥ 0)AND(derivative square error[j− 1, 2] ≤ 0)
then

satisfactory partition ← TRUE
endif

endfor

endw

end

Algorithm 6: TestTrainPointsToComputeOptimalBeta
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begin
for i ← 1 to num inputs do

for j ← 1 to num points[i] do
numerator ← Sum(Exp(−((fuzzy curve[i, j, 1]− samples[:
, i])/optimal beta[i])2)×samples[:, num variables])
denominator ←
Sum(Exp(−((fuzzy curve[i, j, 1]− samples[:, i])/optimal beta[i])2))
fuzzy curve[i, j, 2] ← numerator/denominator

endfor

endfor

end

Algorithm 7: ComputeFuzzyCurve
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begin
for i ← 1 to num inputs do

is odd function ← TRUE
global mid point ← Sum(fuzzy curve[i, 1 to num points[i], 2])/num points[i]
for j ← 2 to num points[i]/2 do

current mid point ←
(fuzzy curve[i, j, 2] + fuzzy curve[i, num points[i]− j + 1, 2])/2
if ((current mid point < global mid point− ((desired error/100)×
round value(num variables)))OR(current mid point >
global mid point + ((desired error/100)× round value(num variables)))) then

is odd function ← FALSE
endif

endfor

endfor

end

Algorithm 8: EvaluateOddFuzzyCurve
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begin
input sets ← NULL
if Any(is odd function)=FALSE then

for i ← 1 to num inputs do
input sets[i, :, 1] ← [fuzzy curve[i, 1, 1] fuzzy curve[i, num points[i], 1]]
input sets[i, :, 2] ← [fuzzy curve[i, 1, 2] fuzzy curve[i, num points[i], 2]]
num sets[i] = 2

endfor

else
for i ← 1 to num inputs do

if is odd function[i]=FALSE then
input sets[i, :, 1] ← [fuzzy curve[i, 1, 1] fuzzy curve[i, num points[i], 1]]
input sets[i, :, 2] ← [fuzzy curve[i, 1, 2] fuzzy curve[i, num points[i], 2]]
num sets[i] = 2

else
if (num points[i]/2)−Floor(num points[i]/2))=0 then

input sets[i, :, 1] ←
[fuzzy curve[i, 1, 1] (fuzzy curve[i, num points[i]/2, 1] +
fuzzy curve[i, num points[i]/2+1, 1])/2 fuzzy curve[i, num points[i], 1]]
input sets[i, :, 2] ←
[fuzzy curve[i, 1, 2] (fuzzy curve[i, num points[i]/2, 2] +
fuzzy curve[i, num points[i]/2+1, 2])/2 fuzzy curve[i, num points[i], 2]]

else
input sets[i, :, 1] ← [fuzzy curve[i, 1, 1]
fuzzy curve[i,Ceil(num points[i]/2),1] fuzzy curve[i, num points[i], 1]]
input sets[i, :, 2] ← [fuzzy curve[i, 1, 2]
fuzzy curve[i,Ceil(num points[i]/2),2] fuzzy curve[i, num points[i], 2]]

endif
num sets[i] = 3

endif

endfor

endif

end

Algorithm 9: ExtremaFuzzySets
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begin
for i ← 1 to num inputs do

if fuzzy curve[:, :, 3]=NULL then
Comment: 1st iteration. Compute every point of the Univ. of Scope.
for j ← 1 to num points[i] do

edge low ← Sum(input sets[i, :, 1] ≤ fuzzy curve[i, j, 1])
edge low ← num sets[i]−Sum(input sets[i, :, 1] ≥ fuzzy curve[i, j, 1])+1
if edge low <edge high then

fuzzy curve[i, j, 3] ← (input sets[i, edge high, 2]−
input sets[i, edge low, 2])/(input sets[i, edge high, 1]−
input sets[i, edge low, 1])× (fuzzy curve[i, j, 1]−
input sets[i, edge low, 1]) + input sets[i, edge low, 2]

else
fuzzy curve[i, j, 3] ← input sets[i, edge low, 2]

endif
fuzzy curve[i, j, 4] ← Abs(fuzzy curve[i, j, 2]− fuzzy curve[i, j, 3])
fuzzy curve[i, j, 5] ← Round(fuzzy curve[i, j, 4])

endfor

else
Comment: Compute only those which may change.
for j ← 2 to num sets[i]− 1 do

if All(old sets[i, :, 1] 6= input sets[i, j, , 1]) then
points to modify ← Find((fuzzy curve[i, :, 1] >
input sets[i, j− 1])AND(fuzzy curve[i, :, 1] < input sets[i, J + 1]))
for k ← 1 to Length(points to modify) do

edge low ←
Sum(input sets[i, :, 1] ≤ fuzzy curve[i, points to modify[k], 1])
edge high ← num sets[i]−Sum(input sets[i, :, 1] ≥
fuzzy curve[i, points to modify[k], 1])+1
if edge low < edge high then

fuzzy curve[i, points to modify[k], 3] ←
(input sets[i, edge high, 2]−
input sets[i, edge low, 2])/(input sets[i, edge high, 1]−
input sets[i, edge low, 1])×
(fuzzy curve[i, points to modify[k], 1]−
input sets[i, edge low, 1]) + input sets[i, edge low, 2]

else
fuzzy curve[i, points to modify[k], 3] ←
input sets[i, edge low, 2]

endif
fuzzy curve[i, points to modify[k], 4] ←
Abs(fuzzy curve[i, points to modify[k], 2]−
fuzzy curve[i, points to modify[k], 3])
fuzzy curve[i, points to modify[k], 5] ←
Round(fuzzy curve[i, points to modify[k], 4]/((desired error/100)×
round value[num variables]))×((desired error/100)×
round value[num variables])

endfor

endif

endfor

endif

endfor

end

Algorithm 10: ComputeLinearFuzzyCurve
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begin
num rules ← Prod(num sets)

rules ← NULL
for r ← 1 to num rules do

for i ← 1 to num inputs do
n ← Prod(num sets[i + 1 to num inputs])
rules[r, i] ← Ceil(r/n)
rules[r, i] ← rules[r, i]− num sets[i]×Ceil(rules[r, i]/num sets[i]− 1)
rules[r, i] ← input sets[i, rules[r, i], 1]

endfor
is new rule ← TRUE
for old r ← 1 to Length(old rules) do

if All(rules[r, 1 to num inputs] = old rules[old r, 1 to num inputs]) then
rules[r, num variables] ← old rules[old r, num variables]
is new rule ← FALSE

endif

endfor
if is new rule = TRUE then

fuzzyfication ← NULL
for i ← 1 to num inputs do

c ← Find(input sets[i, :, 1] = rules[r, i])
if c =1 then

fuzzyfication left ← (input sets[i, c + 1]− samples[:
, 1])/(input sets[i, c + 1, 1]− input sets[i, c, 1])
fuzzyfication left[Find(fuzzyfication left > 1)] ← 1
fuzzyfication left[Find(fuzzyfication left < 0)] ← 0
fuzzyfication right ← NULL

else if c < num sets[i] then
fuzzyfication left ← (input sets[i, c + 1, 1]− samples[:
, 1])/(input sets[i, c + 1, 1]− input sets[i, c, 1])
fuzzyfication left[Find((fuzzyfication left >
1)OR(fuzzyfication left < 0))] ← 0
fuzzyfication right ← (samples[:
, 1]− input sets[i, c− 1, 1])/(input sets[i, c, 1]− input sets[i, c− 1, 1])
fuzzyfication right[Find((fuzzyfication right >
1)OR(fuzzyfication right < 0))] ← 0

endif
else

fuzzyfication right ← (samples[:
, 1]− input sets[i, c− 1, 1])/(input sets[i, c, 1]− input sets[i, c− 1, 1])
fuzzyfication right[Find(fuzzyfication right > 1)] ← 1
fuzzyfication right[Find(fuzzyfication right < 0)] ← 0
fuzzyfication left ← NULL

endif
fuzzyfication[:, i] ← Max(fuzzyfication left fuzzyfication right)

endfor
fuzzyfication ← Prod(fuzzyfication)

if Max(fuzzyfication)>0 then
rules[r, num variables] ←
Mean(samples[Find(fuzzyfication =Max(fuzzyfication)) num variables])

endif
old rules ← [old rules rules[r, :]]

endif

endfor
num rules ← Length(rules)

end

Algorithm 11: PossibleOutSetsWithWangMendel
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begin
sets to cluster ← Sort(rules[:, num variables])
for i ← 1 to num inputs do

possible points ← NULL
min point ←
Round(Min(sets to cluster)/round value[num variables])×round value[num variables]
step point ← round value[num variables]
max point ←
Round(Max(sets to cluster)/round value[num variables])×round value[num variables]
current point ← min point

repeat
possible points ← [possible points current point]
current point ← current point + step point

until current point > max point

endfor
for i ← 1 to Length(possible points) do

if Any(Abs(points− possible points[i])≤ (round value/2)) then
points ← [points possible points[i]]

endif

endfor
n ← Length(points)

radius a ← (desired error/100)× (Max(sets to cluster)−Min(sets to cluster))
radius b ← radius a

alpha parameter ← −Log(desired error/100)/(radius a2)
beta parameter ← −Log(desired error/100)/(radius b2)
for i ← 1 to n do

p factor[i] ← Sum(Exp(−alpha parameter× (points[i]− points)2))
endfor
last max p factor ← Max(p factor)

max p factor ← last max p factor

Comment: Initial cluster.
possible cluster ← sets to cluster[Find(p factor = max p factor)]
cluster ← possible cluster[1]
added cluster ← possible cluster[1]
for i ← 2 to Length(possible cluster) do

if All(cluster 6= possible cluster[i]) then
cluster ← [cluster possible cluster[i]]
added cluster ← [added cluster possible cluster[i]]

endif

endfor
Comment: Next clusters.
no more clusters ← FALSE
while no more clusters = FALSE do

for i ← 1 to Length(added cluster) do
p factor ← p factor− last max p factor×Exp(−beta parameter× (points−
added cluster[i])2)

endfor
last max p factor ← Max(p factor)

if last max p factor > ((desired error/100)× max p factor) then
possible cluster ← points[Find(p factor = last max p factor)]
added cluster ← NULL
for i ← 1 to Length(possible cluster) do

if All(cluster 6= possible cluster[i]) then
cluster ← [cluster possible cluster[i]]
added cluster ← [added cluster possible cluster[i]]

endif

endfor

else
no more clusters ← TRUE

endif

endw
possible output sets ← Sort(cluster)

end

Algorithm 12: ClusteringOutSetsWithChiu
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begin
Comment: Adding the boundaries of the UoS in possible output sets.
if All(possible output sets 6=min(rules[:, num variables])) then

possible output sets ← [possible output sets min(rules[:, num variables])]
endif
if All(possible output sets 6=max(rules[:, num variables])) then

possible output sets ← [possible output sets max(rules[:, num variables])]
endif
Comment: Choosing the closest possible output set to the singleton of each rule.
for r ← 1 to num rules do

rules[r, num variables] ←
round(mean(possible output sets[Find(Abs(possible output sets−
rules[r, num variables])=min(Abs(possible output sets−
rules[r, num variables])))]))

endfor
Comment: We have the model.
output sets ← rules[:, num variables]
for i ← 1 to num inputs do

sets[i, :] ← input sets[i, :, 1]
endfor
sets[num variables, :] ← output sets

Comment: Computing the error of the model.
output with model ← FuzzySystem(sets,rules,samples)

model nrmserror ← Sqrt(mean((output with model− samples[:
, num variables])2)/mean((samples[:, num variables]−mean(samples[:, num variables]))2))
model rmserror ← Sqrt(mean((output with model− samples[:, num variables])2))
for i ← 1 to num inputs do

fuzzy curve nrmserror[i] ← Sqrt(mean(fuzzy curve[i, :, 4]2)/mean((samples[:
, num variables]−mean(samples[:, num variables]))2))

endfor
if model nrmserror < best model nrmserror then

sets final ← sets

rules final ← rules

model nrmserror final ← model nrmserror

model rmserror final ← model rmserror

best model nrmserror ← model nrmserror
endif

end

Algorithm 13: EvaluateCurrentModel
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begin
if (model nrmserror ≤ desired error)OR(All(fuzzy curve nrmserror ≤ desired error))

then
Comment: Successful end of process.
end of process ← TRUE

else if Sum(Sum(fuzzy curve[:, :, 5]=0)=num points)=num inputs then
Comment: No more sets are considered due to a high desired error.
end of process ← TRUE

else
Comment: Search the variable with highest error in order to diminish it.
old sets ← input sets

highest error ← Max(fuzzy curve[:, :, 5])
input with highest error ← Find(highest error =Max(highest error))

for i ← 1 to Length(input with highest error) do
new set ← NULL
possible new set ← NULL
max error found ← −∞
for j ← 1 to num points[input with highest error[i]] do

if fuzzy curve[input with highest error[i], j, 5] =
highest error[input with highest error[i] then

if fuzzy curve[input with highest error[i], j, 4] > max error found

then
possible new set ←
[fuzzy curve[input with highest error[i], j, 1]
fuzzy curve[input with highest error[i], j, 2]]
max error found ← fuzzy curve[input with highest error[i], j, 4]

else if
fuzzy curve[input with highest error[i], j, 4] = max error found then

possible new set[1] ←
[possible new set[1] fuzzy curve[input with highest error[i], j, 1]
possible new set[2] ←
[possible new set[2] fuzzy curve[input with highest error[i], j, 2]

endif

endif
if (fuzzy curve[input with highest error[i], j, 5] <
highest error[input with highest error[i]])AND(Length(possible new set)>
0) then

new set[1] ← [new set[1] Mean(possible new set[1])]
new set[2] ← [new set[2] Mean(possible new set[2])]
possible new set ← NULL
max error found ← −∞

endif

endfor
if Length(possible new set) then

new set[1] ← [new set[1] Mean(possible new set[1])]
new set[2] ← [new set[2] Mean(possible new set[2])]

endif
sets current variable[:, 1] ← [input sets[input with highest error[i], 1 to
num sets[input with highest error[i], 1] new set[1]]
sets current variable[:, 2] ← [input sets[input with highest error[i], 1 to
num sets[input with highest error[i], 2] new set[2]]
sets current variable ← Sort(sets current variable)

input sets[input with highest error[i], :, 1] ← sets current variable[:, 1]
input sets[input with highest error[i], :, 2] ← sets current variable[:, 2]
num sets[input with highest error[i]] ←
Sum(input sets[input with highest error[i], :, 1]] > −∞)

endfor

endif

end

Algorithm 14: EvaluateStopDecision
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